

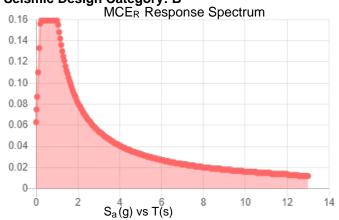
BE STRUCTURAL ENGINEERS

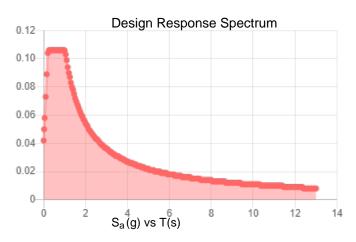
STRUCTURAL CALCULATIONS FOR:

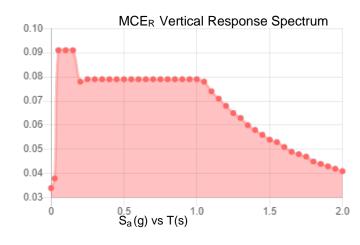
WSS Lee's Summit, MO Lee's Summit, MO

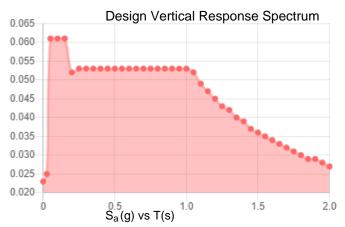
<u>Section</u>	<u>Description</u>	<u>Page</u>
Α	Design Loads	2
В	Framing Design	35
С	Foundations	159
D	Lateral Stability	214
E	Stairs	508
F	Connections	520
G	СМИ	555

LOADS


Seismic D - Stiff Soil


Site Soil Class:


Results:


S _s :	0.099	S _{D1} :	0.109
S ₁ :	0.068	T_L :	12
F _a :	1.6	PGA:	0.047
F _v :	2.4	PGA _M :	0.075
S _{MS} :	0.159	F _{PGA} :	1.6
S _{M1} :	0.163	l _e :	1
S _{DS} :	0.106	C _v :	0.7

Seismic Design Category: B

Data Accessed:

Mon Jun 26 2023

Date Source:

USGS Seismic Design Maps based on ASCE/SEI 7-16 and ASCE/SEI 7-16 Table 1.5-2. Additional data for site-specific ground motion procedures in accordance with ASCE/SEI 7-16 Ch. 21 are available from USGS.

Project WSS - Lee's Summit Project No. 23-283

Calc. By <u>GL</u> Checked By <u>DN</u> Date <u>6/29/2023</u>

SEISMIC FORCES

In accordance with ASCE 7-16

Tedds calculation version 3.1.04

Site parameters

Site class D

Mapped acceleration parameters (Section 11.4.2)

at short period Ss = 0.099 at 1 sec period $S_1 = \textbf{0.068}$ Site coefficientat short period (Table 11.4-1) $F_a = \textbf{1.600}$ at 1 sec period (Table 11.4-2) $F_v = \textbf{2.400}$

Spectral response acceleration parameters

at short period (Eq. 11.4-1) $S_{MS} = F_a \times S_S = \textbf{0.158}$ at 1 sec period (Eq. 11.4-2) $S_{M1} = F_v \times S_1 = \textbf{0.163}$

Design spectral acceleration parameters (Sect 11.4.4)

at short period (Eq. 11.4-3) $S_{DS} = 2/3 \times S_{MS} = 0.106$ at 1 sec period (Eq. 11.4-4) $S_{D1} = 2/3 \times S_{M1} = 0.109$

Seismic design category

Occupancy category (Table 1-1)

Seismic design category based on short period response acceleration (Table 11.6-1)

Α

Seismic design category based on 1 sec period response acceleration (Table 11.6-2)

В

Seismic design category B

Approximate fundamental period

Height above base to highest level of building $h_n = 36.56$ ft

From Table 12.8-2:

Structure type All other systems

Building period parameter C_t $C_t = 0.02$ Building period parameter x x = 0.75

Approximate fundamental period (Eq 12.8-7) $T_a = C_t \times (h_n)^x \times 1 \sec / (1ft)^x = \textbf{0.297} \sec$

Building fundamental period (Sect 12.8.2) $T = T_a = 0.297$ sec

Long-period transition period $T_L = 6$ sec

Seismic response coefficient

Calculated (Eq 12.8-2)

Seismic force-resisting system (Table 12.2-1)

A. Bearing_Wall_Systems

15. Light-frame (wood) walls sheathed with wood structural panels

Response modification factor (Table 12.2-1) R = 6.5Seismic importance factor (Table 1.5-2) $I_e = 1.000$

Seismic response coefficient (Sect 12.8.1.1)

 $C_{s_calc} = S_{DS} / (R / I_e) = 0.0162$

Seismic response coefficient $C_s = 0.0162$

rt No. 23-283

Calc. By GL Checked By DN Date 6/29/2023

Seismic base shear (Sect 12.8.1)

Effective seismic weight of the structure W = 2338.9 kipsSeismic response coefficient $C_s = 0.0162$

Seismic base shear (Eq 12.8-1) $V = C_s \times W = 38.0$ kips

Vertical distribution of seismic forces (Sect 12.8.3)

Vertical distribution factor (Eq 12.8-12) $C_{vx} = w_x \times h_x^k / \Sigma(w_i \times h_i^k)$

Lateral force induced at level i (Eq 12.8-11) $F_x = C_{vx} \times V$

Vertical force distribution table

Level	Height from base to Level i (ft), hx	Portion of effective seismic weight assigned to Level i (kips),	Distribution exponent related to building period, k	Vertical distribution factor, C _{vx}	Lateral force induced at Level i (kips), Fx
1	9.6;	483.9;	1.00;	0.081;	3.1
2	19.0;	596.6;	1.00;	0.199;	7.6
3	28.5;	618.2;	1.00;	0.309;	11.8
4	36.6;	640.3;	1.00;	0.410;	15.6

Snow

Results:

Ground Snow Load, p_g: Mapped Elevation:

Data Source:

Date Accessed:

20 lb/ft² 956.7 ft

ASCE/SEI 7-16, Table 7.2-8

Mon Jun 26 2023

Values provided are ground snow loads. In areas designated "case study required," extreme local variations in ground snow loads preclude mapping at this scale. Site-specific case studies are required to establish ground snow loads at elevations not covered.

Snow load values are mapped to a 0.5 mile resolution. This resolution can create a mismatch between the mapped elevation and the site-specific elevation in topographically complex areas. Engineers should consult the local authority having jurisdiction in locations where the reported 'elevation' and 'mapped elevation' differ significantly from each other.

The ASCE 7 Hazard Tool is provided for your convenience, for informational purposes only, and is provided "as is" and without warranties of any kind. The location data included herein has been obtained from information developed, produced, and maintained by third party providers; or has been extrapolated from maps incorporated in the ASCE 7 standard. While ASCE has made every effort to use data obtained from reliable sources or methodologies, ASCE does not make any representations or warranties as to the accuracy, completeness, reliability, currency, or quality of any data provided herein. Any third-party links provided by this Tool should not be construed as an endorsement, affiliation, relationship, or sponsorship of such third-party content by or from ASCE.

ASCE does not intend, nor should anyone interpret, the results provided by this Tool to replace the sound judgment of a competent professional, having knowledge and experience in the appropriate field(s) of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the contents of this Tool or the ASCE 7 standard.

In using this Tool, you expressly assume all risks associated with your use. Under no circumstances shall ASCE or its officers, directors, employees, members, affiliates, or agents be liable to you or any other person for any direct, indirect, special, incidental, or consequential damages arising from or related to your use of, or reliance on, the Tool or any information obtained therein. To the fullest extent permitted by law, you agree to release and hold harmless ASCE from any and all liability of any nature arising out of or resulting from any use of data provided by the ASCE 7 Hazard Tool.

Calc. By GL Checked By DN

SNOW LOADING

In accordance with ASCE7-16

Tedds calculation version 1.0.11

Date_7/27/2023

Building details

Roof type Flat

Width of roof b = 34.25 ft

Ground snow load

Ground snow load (Figure 7.2-1) $p_q = 20.00 \text{ lb/ft}^2$

Density of snow $\gamma = \min(0.13 \times p_g / 1 \text{ft} + 14 \text{lb/ft}^3, 30 \text{lb/ft}^3) = 16.60 \text{ lb/ft}^3$

Terrain typeSect. 26.7

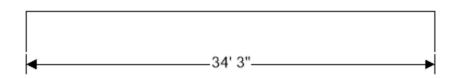
Exposure condition (Table 7.3-1) Partially exposed

Exposure factor (Table 7.3-1) $C_e = 1.00$

Thermal condition (Table 7.3-2)

Unheated structures

Thermal factor (Table 7.3-2) $C_t = 1.20$ Importance category (Table 1.5-1)


Importance factor (Table 1.5-2) $l_s = 1.00$

Min snow load for low slope roofs (Sect 7.3.4) $p_{f_min} = I_s \times p_g = 20.00 \text{ lb/ft}^2$

Flat roof snow load (Sect 7.3) $p_f = 0.7 \times C_e \times C_t \times I_s \times p_g = \textbf{16.80} \text{ lb/ft}^2$

Balanced load

20.0 pst

Roof elevation

Drift calculations

Balanced snow load height $h_b = p_f / \gamma = 1.01$ ft

Height from balance load to top of upper roof $h_c = h_{diff} - h_b = 34.59$ ft

Drift height leeward drift $h_{d_l} = min(\sqrt{(I_s)} \times (0.43 \times (max(20 \text{ ft, } I_u) \times 1 \text{ft}^2)^{1/3} \times (p_g / 1 \text{lb/ft}^2 + 10)^{1/4})$

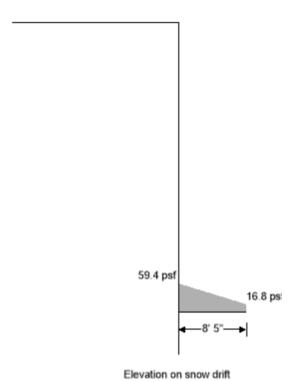
-1.5 ft, $0.6 \times \text{li}$) = **2.56** ft

Drift height windward drift $h_{d_w} = \min(0.75 \times \sqrt{(l_s)} \times (0.43 \times (max(20 \text{ ft, li}) \times 1 \text{ft}^2)^{1/3} \times (p_g / 1 \text{lb/ft}^2)^{1/3} \times (p_g / 1 \text{lb/ft}^2)^{1$

+ 10)^{1/4} - 1.5ft), $\sqrt{(l_s \times p_g \times l_1 / (4 \times \gamma))} = 0.92$ ft

Maximum lw/ww drift height $h_{d_{-}max} = max(h_{d_{-}w}, h_{d_{-}l}) = 2.56 \text{ ft}$

Drift height $h_d = min(h_{d_max}, h_c) = 2.56 \text{ ft}$


Drift width $W_d = min(4 \times h_{d_max}, 8 \times h_c) = 10.26 \text{ ft}$

Drift surcharge load $p_d = h_d \times \gamma = 42.58 \text{ lb/ft}^2$

Project WSS - Lee's Summit, MO	Project No. 23-283
	110/0011101-20-200

Calc. By GL Checked By DN Date 7/27/2023

Calc. By <u>GL</u> Checked By <u>DN</u> Date <u>7/21/2023</u>

SNOW LOADING

In accordance with ASCE7-16

Tedds calculation version 1.0.11

Building details

Roof type Flat

Width of roof b = 57.33 ft

Ground snow load

Ground snow load (Figure 7.2-1) $p_g = 20.00 \text{ lb/ft}^2$

Density of snow $\gamma = \min(0.13 \times p_g / 1 \text{ft} + 14 \text{lb/ft}^3, 30 \text{lb/ft}^3) = 16.60 \text{ lb/ft}^3$

Terrain typeSect. 26.7

Exposure condition (Table 7.3-1) Partially exposed

Exposure factor (Table 7.3-1) $C_e = 1.00$ Thermal condition (Table 7.3-2) All

Thermal factor (Table 7.3-2) $C_t = 1.00$

Importance category (Table 1.5-1) II
Importance factor (Table 1.5-2) Is = **1.00**

Min snow load for low slope roofs (Sect 7.3.4) $p_{f_min} = l_s \times p_g = 20.00 \text{ lb/ft}^2$

Flat roof snow load (Sect 7.3) $p_f = 0.7 \times C_e \times C_t \times I_s \times p_g = 14.00 \text{ lb/ft}^2$

Left parapet

Balanced snow load height $h_b = p_f \, / \, \gamma = \textbf{0.84} \; \text{ft}$

Height of left parapet $h_{pptL} = 4.50 \text{ ft}$

Height from balance load to top of left parapet $h_{c_pptL} = h_{pptL} - h_b = 3.66 \text{ ft}$

Length of roof - left parapet $l_{u_pptL} = b = 57.33 \text{ ft}$

Drift height windward drift - left parpet $h_{d_l_pptL} = \sqrt{(I_s) \times 0.75 \times (0.43 \times (max(20 \text{ ft}, \ I_{u_pptL}) \times 1 \text{ft}^2)^{1/3} \times (p_g / I_s)^{1/3}}$

 $1lb/ft^2 + 10)^{1/4} - 1.5ft) =$ **1.79**ft

Drift height - left parapet $h_{d_pptL} = min(h_{d_pptL}, h_{pptL} - h_b) = 1.79 \text{ ft}$

Drift width $W_{d_pptL} = min(4 \times h_{d_l_pptL}, 8 \times (h_{pptL} - h_b), b) = 7.14 \text{ ft}$

Drift surcharge load - left parapet $p_{d_pptL} = h_{d_pptL} \times \gamma = 29.64 \text{ lb/ft}^2$

Right parapet

Height of right parapet $h_{pptR} = 7.50 \text{ ft}$

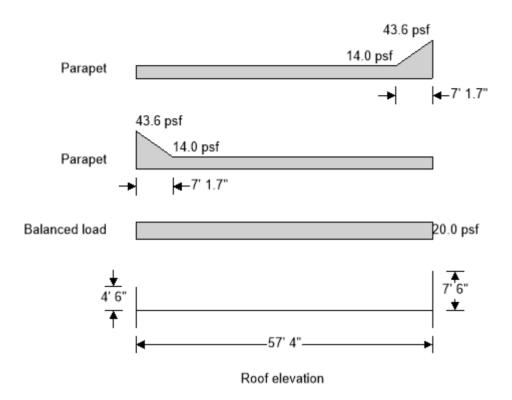
Height from balance load to top of right parapet $h_{c_pptR} = h_{pptR} - h_b = 6.66$ ft

Length of roof - right parapet $l_{u_pptR} = b = 57.33 \text{ ft}$

Drift height windward drift - right parpet $h_{d_l_pptR} = \sqrt{(I_s) \times 0.75 \times (0.43 \times (max(20 \text{ ft}, I_{u_pptR}) \times 1 \text{ft}^2)^{1/3} \times (p_g / I_s)^{1/3}}$

 $1lb/ft^2 + 10)^{1/4} - 1.5ft) =$ **1.79**ft

Drift height - right parapet $h_{d_pptR} = min(h_{d_l_pptR}, h_{pptR} - h_b) = 1.79 \text{ ft}$


Drift width $W_{d_pptR} = min(4 \times h_{d_pptR}, 8 \times (h_{pptR} - h_b), b) = \textbf{7.14} \text{ ft}$

Drift surcharge load - right parapet $p_{d_pptR} = h_{d_pptR} \times \gamma = 29.64 \text{ lb/ft}^2$

Project WSS - Lee's Summit Project No.-23-283

Calc. By GL Checked By DN Date 7/21/2023

Calc. By <u>GL</u> Checked By <u>DN</u> Date <u>7/21/2023</u>

SNOW LOADING

In accordance with ASCE7-16

Tedds calculation version 1.0.11

Building details

Roof type Flat

Width of roof b = 57.33 ft

Ground snow load

Ground snow load (Figure 7.2-1) $p_g = 20.00 \text{ lb/ft}^2$

Density of snow $\gamma = \min(0.13 \times p_g / 1 \text{ft} + 14 \text{lb/ft}^3, 30 \text{lb/ft}^3) = 16.60 \text{ lb/ft}^3$

Terrain typeSect. 26.7

Exposure condition (Table 7.3-1) Partially exposed

Exposure factor (Table 7.3-1) $C_e = 1.00$ Thermal condition (Table 7.3-2) All

Thermal factor (Table 7.3-2) $C_t = 1.00$

Importance category (Table 1.5-1)

Importance factor (Table 1.5-2)

Is = **1.00**

Min snow load for low slope roofs (Sect 7.3.4) $p_{f min} = l_s \times p_g = 20.00 \text{ lb/ft}^2$

Flat roof snow load (Sect 7.3) $p_f = 0.7 \times C_e \times C_t \times I_s \times p_g = 14.00 \text{ lb/ft}^2$

Left parapet

Balanced snow load height $h_b = p_f \, / \, \gamma = \textbf{0.84} \; \text{ft}$

Height of left parapet $h_{pptL} = 4.50 \text{ ft}$

Height from balance load to top of left parapet $h_{c_pptL} = h_{pptL} - h_b = 3.66 \text{ ft}$

Length of roof - left parapet $l_{u_pptL} = b = 57.33$ ft

Drift height windward drift - left parpet $h_{d_l_pptL} = \sqrt{(I_s) \times 0.75 \times (0.43 \times (max(20 \text{ ft}, \ I_{u_pptL}) \times 1 \text{ft}^2)^{1/3} \times (p_g / I_s)^{1/3}}$

 $1lb/ft^2 + 10)^{1/4} - 1.5ft) =$ **1.79**ft

Drift height - left parapet $h_{d_pptL} = min(h_{d_pptL}, h_{pptL} - h_b) = 1.79 \text{ ft}$

Drift width $W_{d_pptL} = min(4 \times h_{d_l_pptL}, 8 \times (h_{pptL} - h_b), b) = 7.14 \text{ ft}$

Drift surcharge load - left parapet $p_{d_pptL} = h_{d_pptL} \times \gamma = 29.64 \text{ lb/ft}^2$

Right parapet

Height of right parapet $h_{pptR} = 7.50 \text{ ft}$

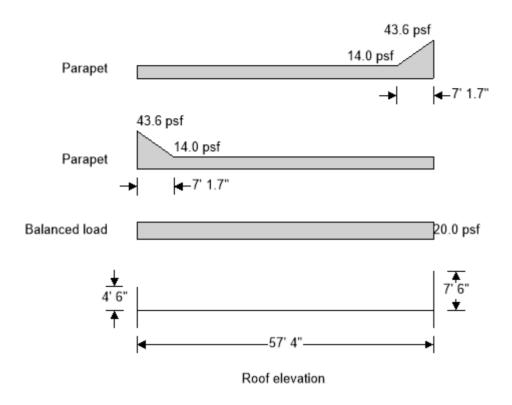
Height from balance load to top of right parapet $h_{c_pptR} = h_{pptR} - h_b =$ **6.66** ft

Length of roof - right parapet $l_{u_pptR} = b = 57.33 \text{ ft}$

 $\text{Drift height windward drift - right parpet} \\ \qquad \qquad \text{h}_{\text{d_pptR}} = \sqrt{(I_s) \times 0.75 \times (0.43 \times (\text{max}(20 \text{ ft, } I_{\text{u_pptR}}) \times 1 \text{ft}^2)^{1/3} \times (p_g / I_s)^{1/3}} \\ \qquad \qquad \text{h}_{\text{d_pptR}} = \sqrt{(I_s) \times 0.75 \times (0.43 \times (\text{max}(20 \text{ ft, } I_{\text{u_pptR}}) \times 1 \text{ft}^2)^{1/3}} \\ \times (p_g / I_s) \times (p_g / I_s)^{1/3} \times (p_g / I_s)^{1/3} \\ \times (p_g / I_s)^{1/3} \times (p_g / I_s)^{1/3} \times (p_g / I_s)^{1/3} \\ \times (p_g /$

 $1 \frac{1}{2} + 10)^{1/4} - 1.5 \text{ ft} = 1.79 \text{ ft}$

Drift height - right parapet $h_{d_pptR} = min(h_{d_l_pptR}, h_{pptR} - h_b) = 1.79 \text{ ft}$


Drift width $W_{d_pptR} = min(4 \times h_{d_pptR}, 8 \times (h_{pptR} - h_b), b) = 7.14 \text{ ft}$

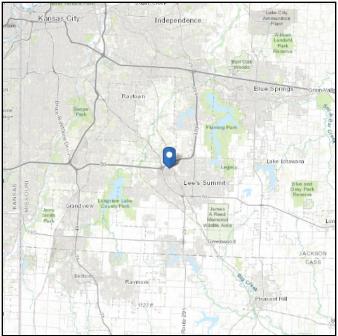
Drift surcharge load - right parapet $p_{d_pptR} = h_{d_pptR} \times \gamma = 29.64 \text{ lb/ft}^2$

Project WSS - Lee's Summit Project No. -23-283

Calc. By <u>GL</u> Checked By <u>DN</u> Date <u>7/21/2023</u>

ASCE 7 Hazards Report

Address:


No Address at This Location

ASCE/SEI 7-16 Latitude: 38.933407 Standard: Risk Category: || Longitude: -94.396221

D - Stiff Soil Soil Class: **Elevation:** 956.6529147073804 ft

(NAVD 88)

Wind

Results:

Wind Speed 109 Vmph 10-year MRI 76 Vmph 25-year MRI 83 Vmph 50-year MRI 88 Vmph 100-year MRI 94 Vmph

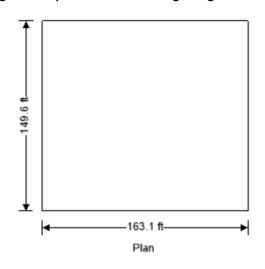
ASCE/SEI 7-16, Fig. 26.5-1B and Figs. CC.2-1-CC.2-4, Data Source: and Section 26232

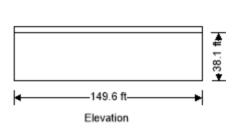
Date Accessed:

Value provided is 3-second gust wind speeds at 33 ft above ground for Exposure C Category, based on linear interpolation between contours. Wind speeds are interpolated in accordance with the 7-16 Standard. Wind speeds correspond to approximately a 7% probability of exceedance in 50 years (annual exceedance probability = 0.00143, MRI = 700 years).

Site is not in a hurricane-prone region as defined in ASCE/SEI 7-16 Section 26.2.

Project WSS - Job Ref. 23-


Calc. by _____ Date 7/21/2023


WIND LOADING

In accordance with ASCE7-16

Using the components and cladding design method

Tedds calculation version 2.1.13

Building data

Type of roof Flat

Length of building b = 163.13 ft Width of building d = 149.63 ft Height to eaves H = 38.08 ft Height of parapet $h_p = 4.50 \text{ ft}$ Mean height h = 38.08 ft

End zone width $a = \max(\min(0.1 \times \min(b, d), 0.4 \times h), 0.04 \times \min(b, d), 3ft) = 14.96 \text{ ft}$

General wind load requirements

Basic wind speed V = **109.0** mph

Risk category II

Velocity pressure exponent coef (Table 26.6-1) $K_d = 0.85$ Ground elevation above sea level $z_{gl} = 957$ ft

Ground elevation factor $K_e = exp(-0.0000362 \times z_{gl}/1ft) = 0.97$

Exposure category (cl 26.7.3)

Enclosure classification (cl.26.12) Enclosed buildings Internal pressure coef +ve (Table 26.13-1) $GC_{pi_p} = 0.18$ Internal pressure coef -ve (Table 26.13-1) $GC_{pi_n} = -0.18$ Parapet internal pressure coef +ve (Table 26.11-1) $GC_{pi_pp} = 0.18$ Parapet internal pressure coef -ve (Table 26.11-1) $GC_{pi_np} = -0.18$ Gust effect factor $G_f = 0.85$

Topography

Topography factor not significant $K_{zt} = 1.0$

Velocity pressure

Velocity pressure coefficient (Table 26.10-1) $K_z = 1.03$

 $q_h = 0.00256 \times K_z \times K_{zt} \times K_d \times K_e \times V^2 \times 1 psf/mph^2 = \textbf{25.7} \ psf/mph^2 = \textbf$

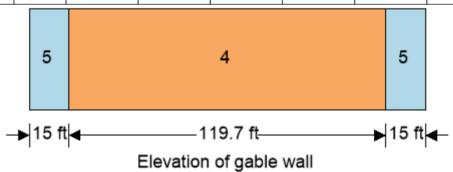
Velocity pressure at parapet

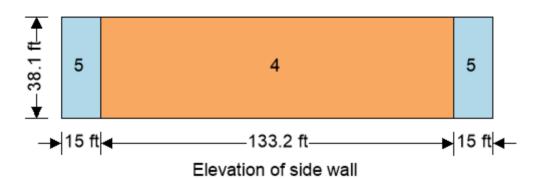
Velocity pressure coefficient (Table 26.10-1) $K_z = 1.05$

 $q_p = 0.00256 \times K_z \times K_{zt} \times K_d \times K_e \times V^2 \times 1 psf/mph^2 = \textbf{26.3} \ psf/mph^2 = \textbf{26.3} \ psf/mph^2 = \textbf{26.3} \ psf/mph^2 = \textbf{26.4} \ psf/mph^2 = \textbf$

Calc. by _____ Chk'd by ____ Date 7/21/2023

Peak velocity pressure for internal pressure


Peak velocity pressure – internal (as roof press.) $q_i = 25.68 \text{ psf}$

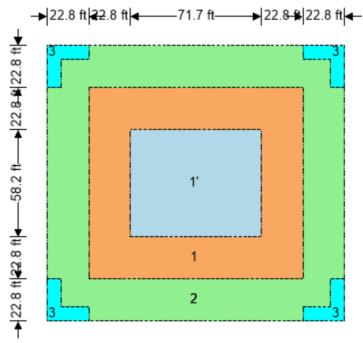

Equations used in tables

Net pressure $p = q_h \times [GC_p - GC_{pi}]$ Parapet net pressure $p = q_p \times [GC_p - GC_{pi_p}]$

Components and cladding pressures - Wall (Table 30.3-1 and (Figure 30.3-2A))

Component	Zone	Length (ft)	Width (ft)	Eff. area (ft²)	+GCp	-GCp	Pres (+ve) (psf)	Pres (-ve) (psf)
<10sf	4	-	-	10.0	0.90	-0.99	27.7	-30.1
20sf	4	-	-	20.0	0.85	-0.94	26.5	-28.8
50sf	4	-	-	50.0	0.79	-0.88	24.9	-27.2
>100sf	4	-	-	100.0	0.74	-0.83	23.7	-26.0
10sf	5	-	-	10.0	0.90	-1.26	27.7	-37.0
20sf	5	-	-	20.0	0.85	-1.16	26.5	-34.5
50sf	5	-	-	50.0	0.79	-1.04	24.9	-31.3
>100sf	5	-	-	100.0	0.74	-0.94	23.7	-28.8
20 psf (W)	4p	-	-	20.0	0.85	-2.14	27.1	-61.0
20 psf (L)	4p	-	-	20.0	0.85	-0.94	27.1	-29.5
20 psf (W)	5p	-	-	20.0	0.85	-2.14	27.1	-61.0
20 psf (L)	5p	-	-	20.0	0.85	-1.16	27.1	-35.3

Components and cladding pressures - Roof (Figure 30.3-2A)


' -			=	_	=				
Component	Zone	Length	Width	Eff. area	+GC _p	-GC _p	Pres (+ve)	Pres (-ve)	
		(ft)	(ft)	(ft ²)			(psf)	(psf)	

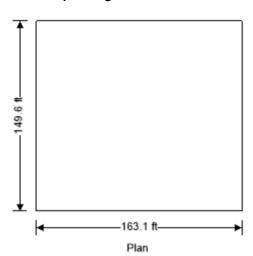
Calc. by _____ Chk'd by ____ Date_7/21/2023

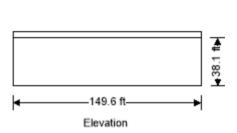
Component	Zone	Length (ft)	Width (ft)	Eff. area (ft²)	+GC _p	-GCp	Pres (+ve) (psf)	Pres (-ve) (psf)
<10sf	1	-	-	10.0	0.30	-1.70	12.3 #	-48.3
20sf	1	-	-	20.0	0.27	-1.58	11.6 #	-45.1
50sf	1	-	-	50.0	0.23	-1.41	10.5 #	-40.9
>100sf	1	-	-	100.0	0.20	-1.29	9.8 #	-37.7
<10sf	2	-	-	10.0	0.90	-2.30	27.7	-63.7
20sf	2	-	-	20.0	0.85	-2.14	26.5	-59.6
50sf	2	-	-	50.0	0.79	-1.93	24.9	-54.2
>100sf	2	-	-	100.0	0.74	-1.77	23.7	-50.1
<10sf	3	-	-	10.0	0.90	-2.30	27.7	-63.7
20sf	3	-	-	20.0	0.85	-2.14	26.5	-59.6
50sf	3	-	-	50.0	0.79	-1.93	24.9	-54.2
>100sf	3	-	-	100.0	0.74	-1.77	23.7	-50.1

The final net design wind pressure, including all permitted reductions, used in the design shall not be less than 16psf acting in either direction

Plan on roof

Project WSS - Job Ref. 23-


Tedds calculation version 2.1.13


Calc. by Chk'd by Date 6/26/2023

WIND LOADING

In accordance with ASCE7-16

Using the envelope design method

Building data

Type of roof Flat

Length of building b = 163.13 ft Width of building d = 149.63 ft Height to eaves H = 38.08 ft Height of parapet $h_p = 4.50 \text{ ft}$ Mean height h = 38.08 ft

End zone width $a = \max(\min(0.1 \times \min(b, d), 0.4 \times h), 0.04 \times \min(b, d), 3ft) = 14.96 \text{ ft}$

Plan length of Zone 2/2E when GC_{pf} negative $Lz_2 = min(0.5 \times d, 2.5 \times H) = 74.81$ ft Plan length of Zone 3/3E encroachment on zone 2 $Lz_3 = max(0 \text{ ft}, 0.5 \times d - Lz_2) = 0.00$ ft

General wind load requirements

Basic wind speed V = 109.0 mph

Risk category

Velocity pressure exponent coef (Table 26.6-1) $K_d = 0.85$ Ground elevation above sea level $z_{gl} = 1011$ ft

Ground elevation factor $K_e = exp(-0.0000362 \times z_g/1ft) = 0.96$

Exposure category (cl 26.7.3)

Enclosure classification (cl.26.12) Enclosed buildings Internal pressure coef +ve (Table 26.13-1) $GC_{pi_p} = 0.18$ Internal pressure coef –ve (Table 26.13-1) $GC_{pi_n} = -0.18$

Topography

Topography factor not significant $K_{zt} = 1.0$

Velocity pressure

Velocity pressure coefficient (Table 26.10-1) $K_z = 1.03$

Velocity pressure $q_h = 0.00256 \times K_z \times K_{zt} \times K_d \times K_e \times V^2 \times 1 psf/mph^2 = 25.6 \ psf/mph^2 = 25.6 \$

Velocity pressure at parapet

Velocity pressure coefficient (Table 26.10-1) $K_z = 1.05$

Velocity pressure $q_p = 0.00256 \times K_z \times K_{zt} \times K_d \times K_e \times V^2 \times 1 psf/mph^2 = \textbf{26.2} \ psf/mph^2 = \textbf{26.$

Project WSS - Job Ref. 23-

Parapet pressures and forces

Velocity pressure at top of parapet

Combined net pressure coefficient, leeward

Combined net parapet pressure, leeward

Combined net pressure coefficient, windward

Combined net parapet pressure, windward

Wind direction 0 deg (|| to width):

Leeward parapet force

Windward parapet force

Wind direction 90 deg (|| to length):

Leeward parapet force

Windward parapet force

Design wind pressures

Design wind pressure equation

 $q_p = 26.24 \text{ psf}$

 $GC_{pnl} = -1.0$

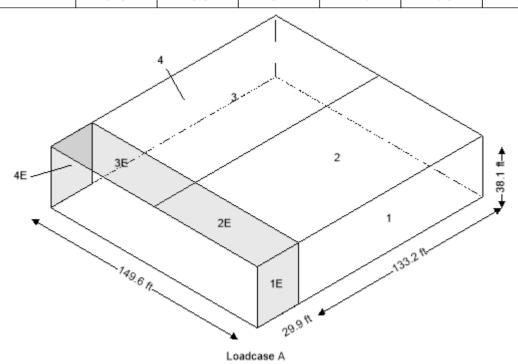
 $p_{pl} = q_p \times GC_{pnl} = -26.24 \text{ psf}$

 $GC_{pnw} = 1.5$

 $p_{pw} = q_p \times GC_{pnw} = 39.36 \text{ psf}$

 $F_{w,wpl_0} = p_{pl} \times h_p \times b = -19.3 \text{ kips}$

 $F_{w,wpw_0} = p_{pw} \times h_p \times b = 28.9 \text{ kips}$

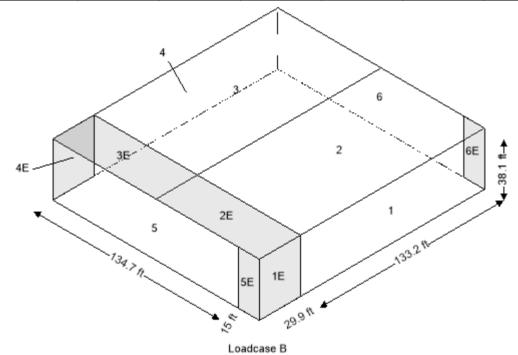

 $F_{w,wpl_90} = p_{pl} \times h_p \times d = -17.7 \text{ kips}$

 $F_{w,wpw_90} = p_{pw} \times h_p \times d = 26.5 \text{ kips}$

 $p = q_h \times [(GC_{pf}) - (GC_{pi})]$

Design wind pressures - Loadcase A

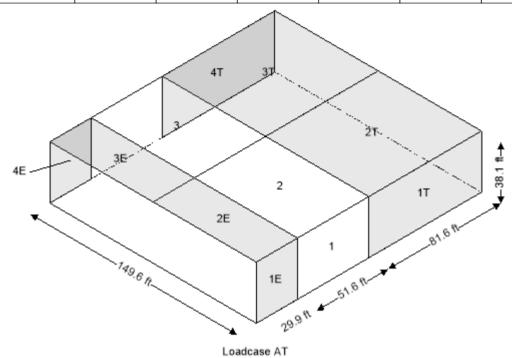
Zone	GCpf	p(+GCpi) (psf)	p(-GCpi) (psf)	Area (ft²)	+Fwi (kips)	-Fwi (kips)
1	0.40	5.6	14.9	5073	28.6	75.4
2	-0.69	-22.3	-13.1	9965	-222.2	-130.3
3	-0.37	-14.1	-4.9	9965	-140.5	-48.5
4	-0.29	-12.0	-2.8	5073	-61.1	-14.3
1E	0.61	11.0	20.3	1140	12.6	23.1
2E	-1.07	-32.0	-22.8	2239	-71.7	-51.1
3E	-0.53	-18.2	-9.0	2239	-40.7	-20.1
4E	-0.43	-15.6	-6.4	1140	-17.8	-7.3


A17 of 33

Calc. by _____ Chk'd by _____ Date <u>6/26/2023</u>

Design wind pressures - Loadcase B

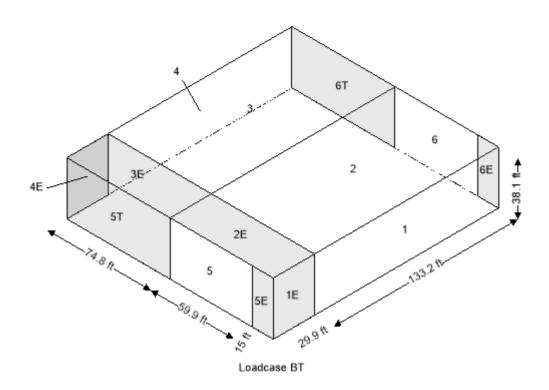
Zone	GCpf	p(+GCpi) (psf)	p(-GCpi) (psf)	Area (ft²)	+Fwi (kips)	-Fwi (kips)
1	-0.45	-16.1	-6.9	5073	-81.9	-35.1
2	-0.69	-22.3	-13.1	9965	-222.2	-130.3
3	-0.37	-14.1	-4.9	9965	-140.5	-48.5
4	-0.45	-16.1	-6.9	5073	-81.9	-35.1
5	0.40	5.6	14.9	5128	28.9	76.2
6	-0.29	-12.0	-2.8	5128	-61.8	-14.5
1E	-0.48	-16.9	-7.7	1140	-19.3	-8.8
2E	-1.07	-32.0	-22.8	2239	-71.7	-51.1
3E	-0.53	-18.2	-9.0	2239	-40.7	-20.1
4E	-0.48	-16.9	-7.7	1140	-19.3	-8.8
5E	0.61	11.0	20.3	570	6.3	11.5
6E	-0.43	-15.6	-6.4	570	-8.9	-3.7


Design wind pressures - Loadcase AT

Zone	GCpf	p(+GCpi) (psf)	p(-GCpi) (psf)	Area (ft²)	+Fwi (kips)	-Fwi (kips)
1	0.40	5.6	14.9	1967	11.1	29.2
2	-0.69	-22.3	-13.1	3863	-86.2	-50.5
3	-0.37	-14.1	-4.9	3863	-54.5	-18.8
4	-0.29	-12.0	-2.8	1967	-23.7	-5.5
1E	0.61	11.0	20.3	1140	12.6	23.1
2E	-1.07	-32.0	-22.8	2239	-71.7	-51.1

Calc. by _____ Chk'd by _____ Date <u>6/26/2023</u>

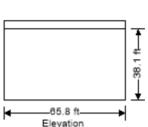
3E	-0.53	-18.2	-9.0	2239	-40.7	-20.1
4E	-0.43	-15.6	-6.4	1140	-17.8	-7.3
1T	-	1.4	3.7	3106	4.4	11.5
2T	-	-5.6	-3.3	6102	-34.0	-19.9
3T	-	-3.5	-1.2	6102	-21.5	-7.4
4T	-	-3.0	-0.7	3106	-9.4	-2.2



Design wind pressures - Loadcase BT

Zone	GCpf	p(+GCpi) (psf)	p(-GCpi) (psf)	Area (ft²)	+Fwi (kips)	-Fwi (kips)
1	-0.45	-16.1	-6.9	5073	-81.9	-35.1
2	-0.69	-22.3	-13.1	9965	-222.2	-130.3
3	-0.37	-14.1	-4.9	9965	-140.5	-48.5
4	-0.45	-16.1	-6.9	5073	-81.9	-35.1
5	0.40	5.6	14.9	2564	14.5	38.1
6	-0.29	-12.0	-2.8	2564	-30.9	-7.2
1E	-0.48	-16.9	-7.7	1140	-19.3	-8.8
2E	-1.07	-32.0	-22.8	2239	-71.7	-51.1
3E	-0.53	-18.2	-9.0	2239	-40.7	-20.1
4E	-0.48	-16.9	-7.7	1140	-19.3	-8.8
5E	0.61	11.0	20.3	285	3.1	5.8
6E	-0.43	-15.6	-6.4	570	-8.9	-3.7
5T	-	1.4	3.7	2849	4.0	10.6
6T	-	-3.0	-0.7	2849	-8.6	-2.0

Calc. by _____ Chk'd by _____ Date <u>6/26/2023</u>


Calc. by _____ Date 6/27/2023

WIND LOADING

In accordance with ASCE7-16

Using the envelope design method

Tedds calculation version 2.1.13

Building data

Type of roof Flat

End zone width $a = max(min(0.1 \times min(b, d), 0.4 \times h), 0.04 \times min(b, d), 3ft) = 6.58 \text{ ft}$

Plan length of Zone 2/2E when GC_{pf} negative $Lz_2 = min(0.5 \times d, 2.5 \times H) = 32.92$ ft Plan length of Zone 3/3E encroachment on zone 2 $Lz_3 = max(0 \text{ ft}, 0.5 \times d - Lz_2) = 0.00$ ft

163.1 ft

Plan

General wind load requirements

Basic wind speed V = 109.0 mph

Risk category II

 $\begin{tabular}{lll} Velocity pressure exponent coef (Table 26.6-1) & $K_d = \textbf{0.85}$ \\ Ground elevation above sea level & $z_{gl} = \textbf{1011}$ ft \\ \end{tabular}$

Ground elevation factor $K_e = exp(-0.0000362 \times z_g/1ft) = 0.96$

Exposure category (cl 26.7.3)

Enclosure classification (cl.26.12) Enclosed buildings Internal pressure coef +ve (Table 26.13-1) $GC_{pi_p} = 0.18$ Internal pressure coef -ve (Table 26.13-1) $GC_{pi_n} = -0.18$

Topography

Topography factor not significant $K_{zt} = 1.0$

Velocity pressure

Velocity pressure coefficient (Table 26.10-1) $K_z = 1.03$

 $\label{eq:pressure} Q_h = 0.00256 \times K_z \times K_{zt} \times K_d \times K_e \times V^2 \times 1 psf/mph^2 = \textbf{25.6} \ psf/mph^2 = \textbf{2$

Velocity pressure at parapet

Velocity pressure coefficient (Table 26.10-1) $K_z = 1.05$

Velocity pressure $q_p = 0.00256 \times K_z \times K_{zt} \times K_d \times K_e \times V^2 \times 1 psf/mph^2 = 26.2 psf$

Parapet pressures and forces

Velocity pressure at top of parapet $q_P = 26.24 \text{ psf}$ Combined net pressure coefficient, leeward $GC_{pnl} = -1.0$

Combined net parapet pressure, leeward $p_{pl} = q_p \times GC_{pnl} = -26.24 \text{ psf}$

Combined net pressure coefficient, windward $GC_{pnw} = 1.5$

Calc. by _____ Chk'd by ____ Date_6/27/2023

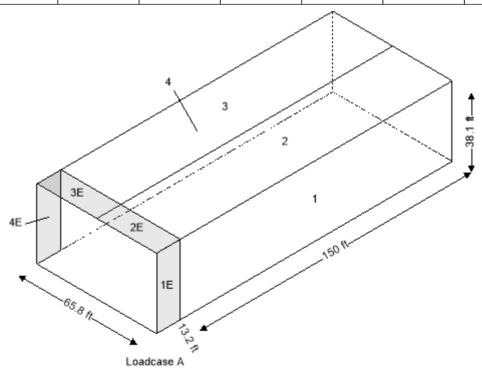
 $p_{pw} = q_p \times GC_{pnw} =$ **39.36** psf

Combined net parapet pressure, windward

Wind direction 0 deg (|| to width):

Leeward parapet force $F_{w,wpl_0} = p_{pl} \times h_p \times b = \textbf{-19.3 kips}$ Windward parapet force $F_{w,wpw_0} = p_{pw} \times h_p \times b = \textbf{28.9 kips}$

Wind direction 90 deg (|| to length):


 $\begin{tabular}{ll} Leeward parapet force & F_{w,wpl_90} = p_{pl} \times h_p \times d = \textbf{-7.8 kips} \\ Windward parapet force & F_{w,wpw_90} = p_{pw} \times h_p \times d = \textbf{11.7 kips} \\ \end{tabular}$

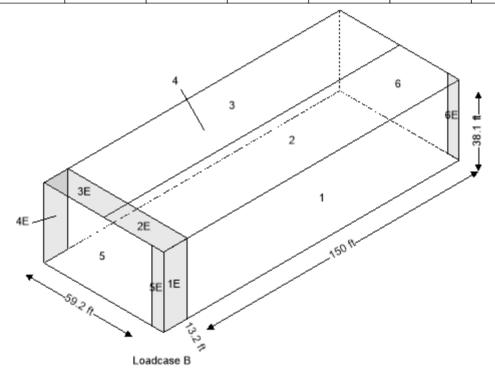
Design wind pressures

Design wind pressure equation $p = q_h \times [(GC_{pf}) - (GC_{pi})]$

Design wind pressures - Loadcase A

Zone	GCpf	p(+GCpi) (psf)	p(-GCpi) (psf)	Area (ft²)	+Fwi (kips)	-Fwi (kips)
1	0.40	5.6	14.9	5711	32.2	84.9
2	-0.69	-22.3	-13.1	4936	-110.1	-64.5
3	-0.37	-14.1	-4.9	4936	-69.6	-24.0
4	-0.29	-12.0	-2.8	5711	-68.8	-16.1
1E	0.61	11.0	20.3	501	5.5	10.2
2E	-1.07	-32.0	-22.8	433	-13.9	-9.9
3E	-0.53	-18.2	-9.0	433	-7.9	-3.9
4E	-0.43	-15.6	-6.4	501	-7.8	-3.2

Design wind pressures - Loadcase B

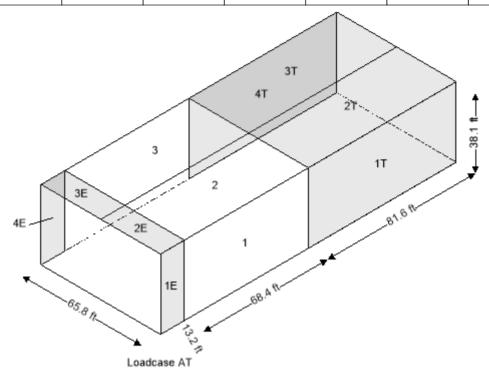

Zone	GCpf	p(+GCpi) (psf)	p(-GCpi) (psf)	Area (ft²)	+Fwi (kips)	-Fwi (kips)
1	-0.45	-16.1	-6.9	5711	-92.2	-39.5
2	-0.69	-22.3	-13.1	4936	-110.1	-64.5

Project WSS -	Job Ref. 23
---------------	-------------

by Date 6/27/2023	
	by Date 6/27/2023

3	-0.37	-14.1	-4.9	4936	-69.6	-24.0
4	-0.45	-16.1	-6.9	5711	-92.2	-39.5
5	0.40	5.6	14.9	2256	12.7	33.5
6	-0.29	-12.0	-2.8	2256	-27.2	-6.4
1E	-0.48	-16.9	-7.7	501	-8.5	-3.9
2E	-1.07	-32.0	-22.8	433	-13.9	-9.9
3E	-0.53	-18.2	-9.0	433	-7.9	-3.9
4E	-0.48	-16.9	-7.7	501	-8.5	-3.9
5E	0.61	11.0	20.3	251	2.8	5.1
6E	-0.43	-15.6	-6.4	251	-3.9	-1.6

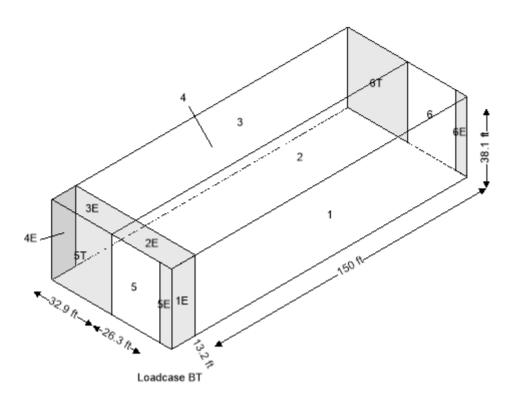
Design wind pressures – Loadcase AT


Zone	GCpf	p(+GCpi) (psf)	p(-GCpi) (psf)	Area (ft²)	+Fwi (kips)	-Fwi (kips)
1	0.40	5.6	14.9	2605	14.7	38.7
2	-0.69	-22.3	-13.1	2251	-50.2	-29.4
3	-0.37	-14.1	-4.9	2251	-31.7	-11.0
4	-0.29	-12.0	-2.8	2605	-31.4	-7.3
1E	0.61	11.0	20.3	501	5.5	10.2
2E	-1.07	-32.0	-22.8	433	-13.9	-9.9
3E	-0.53	-18.2	-9.0	433	-7.9	-3.9
4E	-0.43	-15.6	-6.4	501	-7.8	-3.2
1T	-	1.4	3.7	3106	4.4	11.5
2T	-	-5.6	-3.3	2685	-15.0	-8.8

Project WSS - Job Ref. 23-

Calc. by _____ Chk'd by ____ Date <u>6/27/2023</u>

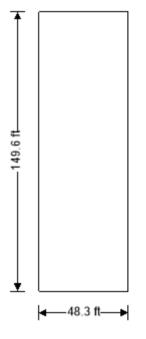
3T	-	-3.5	-1.2	2685	-9.5	-3.3
4T	-	-3.0	-0.7	3106	-9.4	-2.2

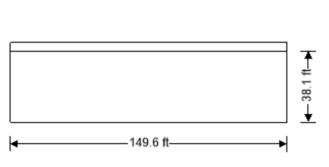

Design wind pressures - Loadcase BT

Zone	GCpf	p(+GCpi) (psf)	p(-GCpi) (psf)	Area (ft²)	+Fwi (kips)	-Fwi (kips)	
1	-0.45	-16.1	-6.9	5711	-92.2	-39.5	
2	-0.69	-22.3	-13.1	4936	-110.1	-64.5	
3	-0.37	-14.1	-4.9	4936	-69.6	-24.0	
4	-0.45	-16.1	-6.9	5711	-92.2	-39.5	
5	0.40	5.6	14.9	1128	6.4	16.8	
6	-0.29	-12.0	-2.8	1128	-13.6	-3.2	
1E	-0.48	-16.9	-7.7	501	-8.5	-3.9	
2E	-1.07	-32.0	-22.8	433	-13.9	-9.9	
3E	-0.53	-18.2	-9.0	433	-7.9	-3.9	
4E	-0.48	-16.9	-7.7	501	-8.5	-3.9	
5E	0.61	11.0	20.3	125	1.4	2.5	
6E	-0.43	-15.6	-6.4	251	-3.9	-1.6	
5T	-	1.4	3.7	1254	1.8	4.7	
6T	-	-3.0	-0.7	1254	-3.8	-0.9	

Project WSS -	Job Ref. 23
---------------	-------------

Calc. by _____ Chk'd by ____ Date <u>6/27/2023</u>


Calc. by GL Chk'd by DN Date 6/28/2023


WIND LOADING

In accordance with ASCE7-16

Using the envelope design method

Tedds calculation version 2.1.13

Elevation

Plan

Building data

Type of roof Flat Length of building b = 48.33 ft Width of building d = 149.63 ft

 $\begin{aligned} & \text{Height to eaves} & & \text{H} = \textbf{38.08 ft} \\ & \text{Height of parapet} & & & h_p = \textbf{4.50 ft} \\ & \text{Mean height} & & & h = \textbf{38.08 ft} \end{aligned}$

End zone width $a = \max(\min(0.1 \times \min(b, d), 0.4 \times h), 0.04 \times \min(b, d), 3ft) = \textbf{4.83} \text{ ft}$

Plan length of Zone 2/2E when GC_{pf} negative $Lz_2 = min(0.5 \times d, 2.5 \times H) = 74.81$ ft Plan length of Zone 3/3E encroachment on zone 2 $Lz_3 = max(0 \text{ ft}, 0.5 \times d - Lz_2) = 0.00 \text{ ft}$

General wind load requirements

Basic wind speed V = 109.0 mph

Risk category II

Velocity pressure exponent coef (Table 26.6-1) $K_d = 0.85$ Ground elevation above sea level $z_{ql} = 1011$ ft

Ground elevation factor $K_e = exp(-0.0000362 \times z_g/1ft) = 0.96$

Exposure category (cl 26.7.3)

Enclosure classification (cl.26.12) Enclosed buildings Internal pressure coef +ve (Table 26.13-1) $GC_{pi_p} = 0.18$ Internal pressure coef -ve (Table 26.13-1) $GC_{pi_n} = -0.18$

Topography

Topography factor not significant $K_{zt} = 1.0$

Velocity pressure

Velocity pressure coefficient (Table 26.10-1) $K_z = 1.03$

Project WSS - Lee's Summit Job Ref. 23-283

Calc. by GL Chk'd by DN Date 6/28/2023

 $Velocity\ pressure \\ q_h = 0.00256 \times K_z \times K_{zt} \times K_d \times K_e \times V^2 \times 1 psf/mph^2 = \textbf{25.6}\ psf/mph^2 = \textbf{25.6} \ psf/mph^2 = \textbf{2$

Velocity pressure at parapet

Velocity pressure coefficient (Table 26.10-1) $K_z = 1.05$

Velocity pressure $q_p = 0.00256 \times K_z \times K_{zt} \times K_d \times K_e \times V^2 \times 1 psf/mph^2 = \textbf{26.2} \ psf/mph^2 = \textbf{26.$

Parapet pressures and forces

Velocity pressure at top of parapet $q_P = 26.24 \text{ psf}$ Combined net pressure coefficient, leeward $GC_{pnl} = -1.0$

Combined net parapet pressure, leeward $p_{pl} = q_p \times GC_{pnl} = -26.24 \text{ psf}$

Combined net pressure coefficient, windward GCpnw = 1.5

Combined net parapet pressure, windward $p_{pw} = q_p \times GC_{pnw} = \textbf{39.36} \text{ psf}$

Wind direction 0 deg (|| to width):

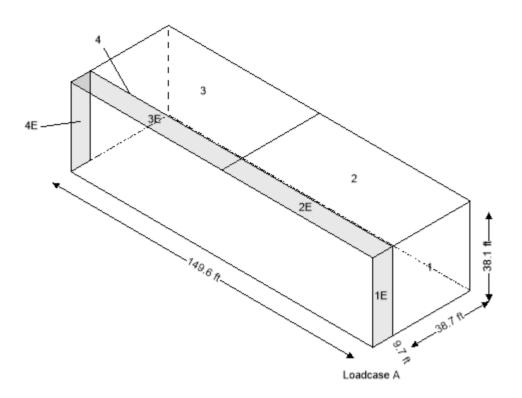
Leeward parapet force $F_{w,wpl_0} = p_{pl} \times h_p \times b = \textbf{-5.7 kips}$ Windward parapet force $F_{w,wpw_0} = p_{pw} \times h_p \times b = \textbf{8.6 kips}$

Wind direction 90 deg (|| to length):

Leeward parapet force $F_{w,wpl_90} = p_{pl} \times h_p \times d = \textbf{-17.7 kips}$ Windward parapet force $F_{w,wpw_90} = p_{pw} \times h_p \times d = \textbf{26.5 kips}$

Design wind pressures

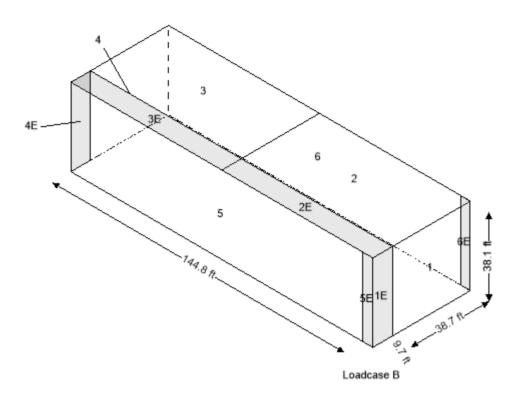
Design wind pressure equation $p = q_h \times [(GC_{pf}) - (GC_{pi})]$


Design wind pressures - Loadcase A

Zone	GCpf	p(+GCpi) (psf)	p(-GCpi) (psf)	Area (ft²)	+Fwi (kips)	-Fwi (kips)	
1	0.40	5.6	14.9	1473	8.3	21.9	
2	-0.69	-22.3	-13.1	2893	-64.5	-37.8	
3	-0.37	-14.1	-4.9	2893	-40.8	-14.1	
4	-0.29	-12.0	-2.8	1473	-17.7	-4.2	
1E	0.61	11.0	20.3	368	4.1	7.5	
2E	-1.07	-32.0	-22.8	723	-23.2	-16.5	
3E	-0.53	-18.2	-9.0	723	-13.2	-6.5	
4E	-0.43	-15.6	-6.4	368	-5.8	-2.4	

Job Ref. 23-283

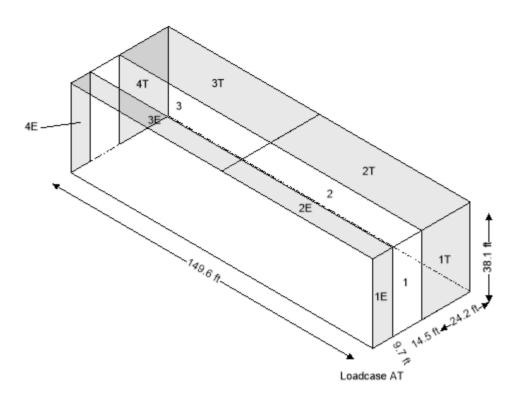
Calc. by <u>GL</u> Chk'd by DN Date <u>6/28/2023</u>



Design wind pressures - Loadcase B

Zone	GCpf	p(+GCpi) (psf)	p(-GCpi) (psf)	Area (ft²)	+Fwi (kips)	-Fwi (kips)	
1	-0.45	-16.1	-6.9	1473	-23.8	-10.2	
2	-0.69	-22.3	-13.1	2893	-64.5	-37.8	
3	-0.37	-14.1	-4.9	2893	-40.8	-14.1	
4	-0.45	-16.1	-6.9	1473	-23.8	-10.2	
5	0.40	5.6	14.9	5514	31.1	82.0	
6	-0.29	-12.0	-2.8	5514	-66.4	-15.5	
1E	-0.48	-16.9	-7.7	368	-6.2	-2.8	
2E	-1.07	-32.0	-22.8	723	-23.2	-16.5	
3E	-0.53	-18.2	-9.0	723	-13.2	-6.5	
4E	-0.48	-16.9	-7.7	368	-6.2	-2.8	
5E	0.61	11.0	20.3	184	2.0	3.7	
6E	-0.43	-15.6	-6.4	184	-2.9	-1.2	

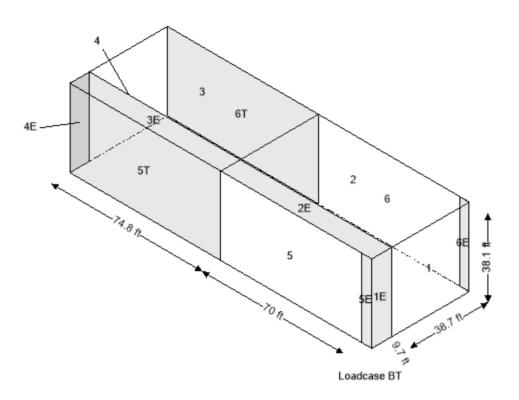
Calc. by <u>GL</u> Chk'd by DN Date <u>6/28/2023</u>



Design wind pressures - Loadcase AT

Zone	GCpf	p(+GCpi) (psf)	p(-GCpi) (psf)	Area (ft²)	+Fwi (kips)	-Fwi (kips)	
1	0.40	5.6	14.9	552	3.1	8.2	
2	-0.69	-22.3	-13.1	1085	-24.2	-14.2	
3	-0.37	-14.1	-4.9	1085	-15.3	-5.3	
4	-0.29	-12.0	-2.8	552	-6.7	-1.6	
1E	0.61	11.0	20.3	368	4.1	7.5	
2E	-1.07	-32.0	-22.8	723	-23.2	-16.5	
3E	-0.53	-18.2	-9.0	723	-13.2	-6.5	
4E	-0.43	-15.6	-6.4	368	-5.8	-2.4	
1T	-	1.4	3.7	920	1.3	3.4	
2T	-	-5.6	-3.3	1808	-10.1	-5.9	
3T	-	-3.5	-1.2	1808	-6.4	-2.2	
4T	-	-3.0	-0.7	920	-2.8	-0.6	

Calc. by <u>GL</u> Chk'd by DN Date <u>6/28/2023</u>


Design wind pressures - Loadcase BT

Zone	GCpf	p(+GCpi) (psf)	p(-GCpi) (psf)	Area (ft²)	+Fwi (kips)	-Fwi (kips)	
1	-0.45	-16.1	-6.9	1473	-23.8	-10.2	
2	-0.69	-22.3	-13.1	2893	-64.5	-37.8	
3	-0.37	-14.1	-4.9	2893	-40.8	-14.1	
4	-0.45	-16.1	-6.9	1473	-23.8	-10.2	
5	0.40	5.6	14.9	2757	15.5	41.0	
6	-0.29	-12.0	-2.8	2757	-33.2	-7.8	
1E	-0.48	-16.9	-7.7	368	-6.2	-2.8	
2E	-1.07	-32.0	-22.8	723	-23.2	-16.5	
3E	-0.53	-18.2	-9.0	723	-13.2	-6.5	
4E	-0.48	-16.9	-7.7	368	-6.2	-2.8	
5E	0.61	11.0	20.3	92	1.0	1.9	
6E	-0.43	-15.6	-6.4	184	-2.9	-1.2	
5T	-	1.4	3.7	2849	4.0	10.6	
6T	-	-3.0	-0.7	2849	-8.6	-2.0	

Project WSS - Lee's Summit Job Ref. 23-283

Calc. by <u>GL</u> Chk'd by DN Date <u>6/28/2023</u>

Project WSS LEE'S SUMMIT Project No. 23-283

Calc. By GL Checked By DN Date 7/28/2023

Local Building Code if applicable (CBC, FBC, etc)

(IBC 2018) (IBC 2015) (IBC 2012)

ASCE 7-16 ASCE 7-10 ASCE 7-10 S_{DS} = **0.106**

ACI 318-14 ACI 318-14 ACI 318-11 AISC 360-16 AISC 360-10 AISC 360-10

ANSI/AWC NDS-18 ANSI/AWC NDS-15 AWC/AF&PA NDS-12

TMS 402/602-16 ACI 530-13 ACI 530-13

Dead Loa	nds_	Live Loads		
Roof		Roof		
Top Chord	15 psf	Top Chord	20 psf	
Bottom Chord	10 psf	Bottom Chord	10 psf	(Non-concurrent)
Total	25 psf	Total	20 psf	
Floor		Floor		
3/4" Gypcrete	7 psf	Private Rooms/Corridors	40 psf	
3/4" plywood	2.5 psf	Public Rooms/Corridors	100 psf	
Floor Trusses	3 psf		•	
MEP	4 psf			
(2) 5/8" Gyp. ceiling	5.5 psf			
Flooring	1 psf			
Insulation	1 psf			
Misc.	1 psf	Ext. Stud Walls W/ Veneer (2x6)	
Total	25 psf	Stucco	12 psf	
			23 psf	
Ext. Stud Walls (2x6)				
gypsum, insulated,	25 psf	1 1/2" stone veneer (2x6)		
3/8-in. siding,		Veneer	15 psf	
Stucco, and Stone			26 psf	
Total	25 psf			
		Ext. Stud Walls W/ Brick (2x	6)	
Int. Stud Walls (2x4)		Brick	30 psf	
Wood or steel studs,	11 psf		41 psf	
5/8" gypsum board				
each side		Masonry Elevator		
Total	11 psf	8" CMU	60 psf	
			60 psf	

 Material Thickness
 Snow Loading

 3/4" plywood
 0.75 "
 20 psf

 Floor Trusses
 16.00 "
 Interior Wind Pressure

 Sill PL
 1.50 "
 5 psf

 Total
 21.25 "
 5 psf

Roof Truss Depth 24.00 "

	A	ctual Stud Height		
Elev	ations	Wall	FLR to FLR Height (ft)	Stud Height
136.56 '	138.56 '	Roof Int. LB 2x4 (Corridor)	2.00 '	1.75 '
128.47 '	136.56 '	4 th FLR Int. LB 2x4 (Ext. & Corridor)	8.09 '	7.72 '
118.98 '	128.47 '	3 rd FLR Int. LB 2x4 (Ext. & Corridor)	9.49 '	7.72 '
109.49 '	118.98 '	2 nd FLR Int. LB 2x4 (Ext. & Corridor)	9.49 '	7.72 '
100.00 '	109.49 '	1 st FLR Int. LB 2x4 (Ext. & Corridor)	9.49 '	7.72 '
Total W	all Height		38.56 '	

FRAMING

Project_WSS_LEE'S_SUMMIT Project_NO 23-283

Calc_By__GL Checked By__DN ___ Date__7/28/2023_

Short	Exterior		Wall	T '1 140		DL	(psf)	LL (psf)	Snow	Wind Pres.	Stud		Individual	- w (plf)		Cumu	ılative - w	(plf)	Cumul	lative - Axio	al (lb)	Moment	t (lb-ft)
G	irid	Wall	Height (ft)	Trib. Wi	dth (ft)	Wall	Floor	Floor	(psf)	(psf)	Spac. (in)	DL	DL wall	LL	SL/LLr	DL	LL	SL/LLr	DL	LL	SL/LLr	Wind	Seismi
Elev	ations	Roof Ext. LB	2.00	Public	0.00	25	25	-	20	39.36	16	254.43	50.00	-	203.54	50.00	-	203.54	66.67	0.00	271.39	104.96	7.07
136.56	138.56	2x6		Private	10.18	-	25	-	20														
				Drift	0.00	-	-	-	0														
128.47	136.56	4 th FLR Ext. LB	8.09	Public	0.00	25	25	100	0	28.8	16	254.43	202.34	407.08	-	506.77	0.00	-	675.69	0.00	271.39	314.44	28.93
		2x6		Private	10.18	-	25	40	0														
				Drift	0.00	-	-	-	0														
118.98	128.47	3 rd FLR Ext. LB	9.49	Public	0.00	25	25	100	0	28.8	16	254.43	237.24	407.08	-	998.43	407.08	-	1331.24	542.77	271.39	432.25	39.77
		2x6		Private	10.18	-	25	40	0														
				Drift	0.00	-	-	-	0														
109.49	118.98	2 nd FLR Ext. LB	9.49	Public	0.00	25	25	100	0	28.8	16	254.43	237.24	407.08	-	1490.10	814.16	-	1986.80	1085.55	271.39	432.25	39.77
		2x6		Private	10.18	-	25	40	0														
				Drift	0.00	-	-	-	0														
100.00	109.49	1st FLR Ext. LB	9.49	Public	0.00	25	25	100	0	28.8	16	-	237.24	0.00	-	1981.76	1221.24	-	2642.35	1628.32	271.39	432.25	39.77
		2x6		Private	10.18	-	25	40	0														
				Drift	0.00	-	-	-	0														
				1																			
	Interior	Wall	Wall	Trib. Wi	dth (ft)		(psf)	LL (psf)	Snow	Wind Pres.	Stud	(10	Individual		T		lative - w			lative - Axio		Moment	
	QQ, II-NN	2 (1	Height (ft)	Public	2.67	Wall	Floor	Floor	(psf)	(psf) 5	Spac. (in)		DL wall (plf)		SL (plf)	DL (plf)	LL (plf)		DL (lb)	LL (lb)	SL (lb)	Wind	Seismi
Elev	ations	Roof Int. LB 2x4	0.00	Private	2.67 12.06	11	25 25	-	20 20	5	16	368.25	0.00	-	294.60	0.00	-	294.60	0.00	0.00	392.80	0.00	0.00
		(Corridor)		Private	12.06	-	25	-	20														
		(Corridor)																					
128.47	136.56	4 th FLR Int. LB	8.09	Public	2.67	11	25	100	0	5	16	368.25	89.03	749.40		457.28	0.00	-	609.71	0.00	392.80	54.59	12.73
120.47	130.30	2x4	0.05	Private	12.06		25	40	0	,		300.23	03.03	743.40		457.20	0.00		003.71	0.00	332.00	54.55	12.73
		ZA-		Drift	0.00	-	-		0														
				Dinic	0.00																		
118.98	128.47	3 rd FLR Int. LB	9.49	Public	2.67	11	25	100	0	5	16	368.25	104.39	749.40		929.92	749.40	-	1239.89	999.20	392.80	75.04	17.50
110.50	120.47	2x4		Private	12.06		25	40	0										1255.05	333.20	332.00	75.04	17.50
				Drift	0.00	-			Ö														
109.49	118.98	2 nd FLR Int. LB	9.49	Public	2.67	11	25	100	0	5	16	368.25	104.39	749.40		1402.55	1498.80	-	1870.07	1998.40	392.80	75.04	17.50
		2x4		Private	12.06		25	40	0														
				Drift	0.00		-	-	0														
	109.49	1st FLR Int. LB	9.49	Public	2.67	11	25	100	0	5	16	l	104.39	_	_	1975 10	2248.20		2500.25	2997.60	302.80	75.04	17.50
100.00	105.45	I FLN IIIL LD	5.45	i ubiic	2.07	11	23	100		,	10	-	104.55			10/3.13	2240.20		2300.23	2557.00	332.00	75.04	17.50
100.00	105.45	2x4	5.45	Private	12.06	-	25	40	0	,	10	_	104.55			1073.13	2240.20	-	2300.23	2557.00	332.00	73.04	17.30

	dium Exterior		Wall			DL ((psf)	LL (psf)	Snow	Wind Pres.	Stud		Individual -	w (plf)		Cumu	ılative - w	(plf)	Cumu	lative - Axid	ıl (lb)	Moment	(lb-ft)
	RR, 6-8, 10-11, 13-	Wall	Height (ft)	Trib. Wid	dth (ft)	Wall	Floor	Floor	(psf)	(psf)	Spac. (in)	DL (plf)	DL wall (plf)	LL (plf)	SL (plf)	DL (plf)	LL (plf)	SL (plf)	DL (Ib)	LL (lb)	SL (lb)	Wind	Seismic
	5, & 17-19 levations	Roof Ext. LB	2.00	Public	0.00	25	25	-	20	39.36	16	304.43	50.00	()-97	243.54	50.00	(6.97	243.54	66.67	0.00	324.72	104.96	7.07
136.5		2x6	2.00	Private	12.18	25	25	-	20	39.30	10	304.43	50.00	-	243.54	50.00	-	243.54	00.07	0.00	324.72	104.50	7.07
130.3	130.30	2.00		Drift	0.00	-	-		0														
0	0			Dine	0.00				•														
128.4	7 136.56	4 th FLR Ext. LB	8.09	Public	0.00	25	25	100	0	28.8	16	304.43	202.34	487.08	-	556.77	0.00	-	742.36	0.00	324.72	314.44	28.93
		2x6		Private	12.18	-	25	40	0														
				Drift	0.00	-	-	-	0														
0	0																						
118.9	128.47	3 rd FLR Ext. LB	9.49	Public	0.00	25	25	100	0	28.8	16	304.43	237.24	487.08	-	1098.43	487.08	-	1464.58	649.44	324.72	432.25	39.77
		2x6		Private	12.18	-	25	40	0														
	_			Drift	0.00	-	-	-	0														
109.4	0 118.98	2 nd FLR Ext. LB	9,49	Public	0.00	25	25	100	0	28.8	16	304.43	237.24	487.08		1640.10	974.16		2186.80	1298.88	324.72	432.25	39.77
109.4	110.90	2 rd FLR Ext. LB 2x6	9.49	Private	12.18	25	25	40	0	28.8	10	304.43	237.24	487.08	-	1040.10	974.10	-	2180.80	1298.88	324.72	432.25	39.77
		2.00		Drift	0.00		- 23	-	0														
0	0			Dine	0.00				•														
100	109.489583	1st FLR Ext. LB	9.49	Public	0.00	25	25	100	0	28.8	16	-	237.24	-	-	2181.76	1461.24	-	2909.02	1948.32	324.72	432.25	39.77
		2x6		Private	12.18	-	25	40	0														
		(Corridor)		Drift	0.00	-	-	-	0														
	dium Interior		Wall			DL ((psf)	LL (psf)	Snow	Wind Pres.	Stud		Individual -	w (plf)		Сити	ılative - w	(plf)	Cumu	lative - Axio	ıl (lb)	Moment	(lb-ft)
Grid 2-4	6-8, 10-11, 13-15, & 17-19	Wall	Height (ft)	Trib. Wid	dth (ft)	Wall	Floor	Floor	(psf)	(psf)	Spac. (in)	DL (plf)	DL wall (plf)	LL (plf)	SL (plf)	DL (plf)	LL (plf)	SL (plf)	DL (lb)	LL (lb)	SL (lb)	Wind	Seismic
	levations	Roof Int. LB	0.00	Public	2.81	11	25	-	20	5	16	374.74	0.00	-	299.79	0.00	-	299.79	0.00	0.00	399.72	0.00	0.00
		2x4		Private	12.18	-	25	-	20														
128.4	7 136.56	4 th FLR Int. LB	8.09	Public	2.67	11	25	100	0	5	16	372.25	89.03	755.80	-	463.77	0.00	-	618.36	0.00	399.72	54.59	12.73
		2x4		Private	12.22	-	25	40	0														
				Drift	0.00	-	-	-	0														
l		-rd · ·	0.40				25	400		-		272.25	40430	755.05		040.45	755.05						
118.9	3 128.47	3 rd FLR Int. LB	9.49	Public	2.67	11	25	100	0	5	16	372.25	104.39	755.80	-	940.40	755.80	-	1253.87	1007.73	399.72	75.04	17.50
		2x4		Private Drift	12.22	-	25	40	0														
				Drift	0.00	-	-	-	U														
109.4	118.98	2 nd FLR Int. LB	9,49	Public	2.67	11	25	100	0	5	16	372.25	104.39	755.80		1417.04	1511.60		1889.39	2015.47	399.72	75.04	17.50
109.4	110.90	2 FLR III. LB	5.45	Private	12.22	-	25	40	0	,	10	3,2.23	104.33	, 55.00	-	1417.04	1311.00	-	1009.39	2015.47	333.72	75.04	17.50
		2.7		Drift	0.00		-	-	0														
				5	0.00				3														
100.0	109.49	1st FLR Int. LB	9.49	Public	2.67	11	25	100	0	5	16	-	104.39	-	-	1893.68	2267.40	-	2524.90	3023.20	399.72	75.04	17.50
		2x4		Private	12.22	-	25	40	0														
				Drift	0.00	-	-	-	0														

~	LONG C), 11-13, & 15-	#	Wall			DL	(psf)	LL (psf)	Snow	Wind Pres.	Stud		Individual -	w (plf)		Cumi	ılative - w	(plf)	Cumul	ative - Axio	ıl (lb)	Moment	(lb-ft)
GII	14-0, 6-10		Wall	Height (ft)	Trib. Wid	atn (Jt)	Wall	Floor	Floor	(psf)	(psf)	Spac. (in)	DL (plf)	DL wall (plf)	LL (plf)	SL (plf)	DL (plf)	LL (plf)	SL (plf)	DL (lb)	LL (lb)	SL (Ib)	Wind	Seismic
	Eleva		Roof Ext. LB	2.00	Public	0.00	25	25	- '	20	39.36	16	323.00	50.00	-	258.40	50.00	-	258.40	66.67	0.00	344.53	104.96	7.07
1	36.56	138.56	2x6		Private	12.92	-	25	-	20														
					Drift	0.00	-	-	-	0														
1	28.47	136.56	4 th FLR Ext. LB	8.09	Public	0.00	25	25	100	0	28.8	16	323.00	202.34	516.80	-	575.34	0.00	-	767.13	0.00	344.53	314.44	28.93
			2x6		Private	12.92	-	25	40	0														
					Drift	0.00	-	-	-	0														
1	18.98	128.47	3 rd FLR Ext. LB	9.49	Public	0.00	25	25	100	0	28.8	16	323.00	237.24	516.80	-	1135.58	516.80	-	1514.11	689.07	344.53	432.25	39.77
			2x6		Private	12.92	-	25	40	0														
					Drift	0.00	-	-	-	0														
1	09.49	118.98	2 nd FLR Ext. LB	9.49	Public	0.00	25	25	100	0	28.8	16	323.00	237.24	516.80	-	1695.82	1033.60	-	2261.10	1378.13	344.53	432.25	39.77
			2x6		Private	12.92	-	25	40	0														
					Drift	0.00	-	-	-	0														
١.			.st	0.40			25	25	400		20.0	4.5		227.24			2255.05	4550.40						
1	00.00	109.49	1st FLR Ext. LB	9.49	Public	0.00	25	25	100	0	28.8	16	-	237.24	-	-	2256.06	1550.40	-	3008.08	2067.20	344.53	432.25	39.77
			2x6		Private Drift	12.92		25	40	0														
	Long Ir	nterior			Dillit	0.00	- DL		LL (psf)					Individual -	w (nlf)		Cumi	ılative - w	(nlf)	Cumul	ative - Axio	d (lb)	Moment	(lh-ft)
Gri), 11-13, & 15-	Wall	Wall Height (ft)	Trib. Wid	dth (ft)	Wall	Floor	Floor	Snow (psf)	Wind Pres. (psf)	Stud Spac. (in)	DL (plf)	DL wall (plf)	LL (plf)	SL (plf)	DL (plf)	LL (plf)	SL (plf)	DL (lb)	LL (lb)	SL (Ib)	Wind	Seismic
	1								FIOUI						LL (PIJ)			LL (pij)						
	Eleva	tions	Roof Int. LB	0.00	Public	2.81	11	25	-	20	5	16	393.31	0.00	-	314.65	0.00	-	314.65	0.00	0.00	419.53	0.00	0.00
			2x4		Private	12.92	-	25	-	20														
١.		425.55	4 th FLR Int. LB	8.09	B 11:	2.04	11	25	100	0	5	16	393.31	89.03	798.05		482.34	0.00		642.42	0.00	440.50		40.70
1	28.47	136.56	2x4	8.09	Public	2.81 12.92	11	25	40	0	5	10	393.31	89.03	798.05	-	482.34	0.00	-	643.13	0.00	419.53	54.59	12.73
			2X4		Private Drift	0.00		25	40	0														
					Dillit	0.00				U														
1	18.98	128.47	3 rd FLR Int. LB	9.49	Public	2.81	11	25	100	0	5	16	393.31	104.39	798.05	-	980.04	798.05	-	1306.72	1064.07	419 52	75.04	17.50
-	10.50	120.47	2x4	3.43	Private	12.92		25	40	0	,	10	555.51	204.55	750.05		300.04	750.05		1300.72	1004.07	413.33	75.04	17.50
			ZA-		Drift	0.00	-	-	-	0														
					Dinit	0.00				Ü														
1	09.49	118.98	2 nd FLR Int. LB	9.49	Public	2.81	11	25	100	0	5	16	393.31	104.39	798.05		1477.74	1596.10		1970 32	2128.13	419 53	75.04	17.50
1 -			2x4		Private	12.92	-	25	40	0	-									22.0.52		5.55	. 2.0-1	250
													1				ı							
					Drift	0.00	-	-	-	0														
						0.00	-	-	-	0														
1	00.00	109.49		9.49	Drift		- 11	25	100	0	5	16	_	104.39			1975.44	2394.15	_	2633.92	3192.20	419.53	75.04	17.50
1	00.00	109.49	1 st FLR Int. LB 2x4	9.49		0.00 2.81 12.92		- 25 25			5	16	-	104.39	-	-	1975.44	2394.15	-	2633.92	3192.20	419.53	75.04	17.50

Applicable Load Combinations (2018 IBC) 1.) D 2.) D + L 3.) D + (L or S) 4.) D + 0.75L + 0.75(Lr or S) 5.) D + 0.6W

6.) D + 0.75L + 0.45W + 0.75(Lr or S) 7.) 0.6D + 0.6W 8.) D + 0.7E 9.) D + 0.525E + 0.75L + 0.75S 10.) 0.6D + 0.7E

Wall Stud Loads @ Floor Level

_	Wall	Comb	o 2	Com	bo 3	Com	bo 5	Com	nbo 6	Com	bo 8	Comb	o 9*	N	1ax
	waii	Axial	Mom.	Axial	Mom.	Axial	Mom.	Axial	Mom.	Axial	Mom.	Axial	Mom.	Axial	Mom.
	Roof Ext. LB	67	0	338	0	67	63	270	47	67	5	270	4	338	63
Short Exterior	4 th FLR Ext. LB	676	0	947	0	676	189	879	141	676	20	879	15	947	189
Snort Exterior Grid	3 rd FLR Ext. LB	1874	0	1603	0	1331	259	1942	195	1331	28	1942	21	1942	259
diu	2 nd FLR Ext. LB	3072	0	2258	0	1987	259	3004	195	1987	28	3004	21	3072	259
	1st FLR Ext. LB	4271	0	2914	0	2642	259	4067	195	2642	28	4067	21	4271	259
	Roof Int. LB	0	0	393	0	0	0	295	0	0	0	295	0	393	0
Short Interior	4 th FLR Int. LB	610	0	1003	0	610	33	904	25	610	9	904	7	1003	33
Grid W-QQ, II-NN	3 rd FLR Int. LB	2239		1633	0	1240	45	2284	34	1240	12	2284	9	2284	45
ond W day ii iiii	2 nd FLR Int. LB	3868	0	2263	0	1870	45	3663	34	1870	12	3663	9	3868	45
	1 st FLR Int. LB	5498		2893	0	2500	45	5043	34	2500	12	5043	9	5498	45
	Roof Ext. LB	67	-	391	0	67	63	310	47	67	5	310	4	391	63
Medium Exterior	4 th FLR Ext. LB	742	0	1067	0	742	189	986	141	742	20	986	15	1067	189
Grid TT-RR, 6-8, 10-11,	3 rd FLR Ext. LB	2114	0	1789	0	1465	259	2195	195	1465	28	2195	21	2195	259
13-15, & 17-19	2 nd FLR Ext. LB	3486	0	2512	0	2187	259	3404	195	2187	28	3404	21	3486	259
	1 st FLR Ext. LB	4857		3234	0	2909	259	4614	195	2909	28	4614	21	4857	259
	Roof Int. LB	0	0	400	0	0	0	300	0	0	0	300	0	400	0
Medium Interior	4 th FLR Int. LB	618	0	1018	0	618	33	918	25	618	9	918	7	1018	33
Grid 2-4, 6-8, 10-11, 13-	3 rd FLR Int. LB	2262	0	1654	0	1254	45	2309	34	1254	12	2309	9	2309	45
15, & 17-19	2 nd FLR Int. LB	3905	0	2289	0	1889	45	3701	34	1889	12	3701	9	3905	45
	1 st FLR Int. LB	5548		2925	0	2525	45	5092	34	2525	12	5092	9	5548	45
	Roof Ext. LB	67	0	411	0	67	63	325	47	67	5	325	4	411	63
Long Exterior	4 th FLR Ext. LB	767	0	1112	0	767	189	1026	141	767	20	1026	15	1112	189
Grid 4-6, 8-10, 11-13, &	3 rd FLR Ext. LB	2203	0	1859	0	1514	259	2289	195	1514	28	2289	21	2289	259
15-17	2 nd FLR Ext. LB	3639	0	2606	0	2261	259	3553	195	2261	28	3553	21	3639	259
	1 st FLR Ext. LB	5075	0	3353	0	3008	259	4817	195	3008	28	4817	21	5075	259
	Roof Int. LB	0	0	420	0	0	0	315	0	0	0	315	0	420	0
Long Interior	4 th FLR Int. LB	643	0	1063	0	643	33	958	25	643	9	958	7	1063	33
Grid 4-6, 8-10, 11-13, &	3 rd FLR Int. LB	1307	0	1726	0	1307	45	2419	34	1307	12	2419	9	2419	45
15-17	2 nd FLR Int. LB	4098	0	2390	0	1970	45	3881	34	1970	12	3881	9	4098	45
	1st FLR Int. LB	5826	0	3053	0	2634	45	5343	34	2634	12	5343	9	5826	45

STRUCTURAL ENGINEERS

Project WSS LEE'S SUMMIT Project No. 23-283

Calc. By GL Checked By DN Date 7/28/2023

Drift

0.00

Stud Wall Loads (Non-Load Bearing)
Exterior Cumulative - w (plf) Snow (psf) Wind Pres. (psf) Stud Spac. (in) Cumulative - Axial (lb) Wall Individual - w (plf) Moment (lb-ft) Grid 2 & 19 Elevations Wall leight (ft) DL LL SL/LL 24.00 - 20.0 DL LL SL/LL, 32.00 0.00 26.67
 DL
 DL wall
 LL
 SL/LL r

 25.00
 24.00
 20.00
 Roof Ext. LB 2.00 0.00 20 Public 39.36 20.00 136.56 1.00 25 138.56 2x6 Private 20 0 0 128.47 136.56 4th FLR Ext. LB 8.09 Public 0.00 12 25 100 28.8 16 25.00 97.13 40.00 146.13 0.00 194.83 0.00 26.67 314.44 13.89 1.00 Private Drift 0 25.00 113.88 40.00 285.00 128.47 3rd FLR Ext. LB 0.00 380.00 53.33 26.67 19.09 118.98 Public 432.25 2x6 Private 1.00 25 40 0 Drift 2nd FLR Ext. LB 0 25.00 423.88 80.00 109.49 118.98 9.49 Public 0.00 12 100 28.8 16 113.88 40.00 565.17 106.67 26.67 432.25 19.09 Drift 0.00 1st FLR Ext. LB 9.49 Public 25 25 100 0 113.88 562.75 120.00 19.09 2x6 Private 40 Drift 0.00 Interior Wall Wind Pres. Stud Individual - w (plf) Cumulative - w (plf) Cumulative - Axial (lb) Moment (lb-ft) Grid 3-18 Wall Trib. Width (ft) DL LL SL/LL,
0.00 - " (psf)
 DL
 DL woll
 LL
 SL/LL r

 50.00
 0.00
 40.00
 DL LL SL/LL, Wind Seismic Elevations Wall Floor Floor 0.00 Roof Ext. LB 0.00 Public 20 50.00 11 16 0.00 53.33 2x6 Private 2.00 25 20 4th FLR Ext. LB 128.47 136.56 8.09 Public 0.00 11 100 0 16 50.00 89.03 80.00 139.03 0.00 185.38 0.00 53.33 54.59 12.73 Private Drift 2.00 25 40 9.49 Public 0.00 11 100 16 50.00 104.39 80.00 293.42 80.00 391.22 106.67 53.33 75.04 17.50 2x6 Private 2.00 25 40 Drift 0.00 0 0.00 2.00 100 40 109.49 118.98 2nd FLR Ext. LB Public 11 25 25 16 50.00 104.39 80.00 447.80 160.00 597.07 213.33 53.33 75.04 17.50 Private 2x6 Drift 0.00 0 1st FLR Ext. LB 802.92 320.00 53.33 17.50 25 25 2.00 Private

Stair I	nterior		Wall						Snow	Wind Pres.	Stud		Individua	l - w (nlf)		Cun	nulative - w	(nlf)	Cumul	ative - Axi	al (lh)	Momen	nt (lh_ft)
Grid 2		Wall	Height (ft)	Trib. Wid	dth (ft)		(psf)	LL (psf)	(psf)	(psf)	Spac. (in)				T 6.								,,
Eleva	ations	- *		D 11:	4.00	Wall	Floor	Floor				DL	DL wall	LL	SL/LL,	DL	LL	SL/LL,	DL 0.00	0.00	SL/LL , 53.33	Wind 0.00	Seismic
		Roof Int. LB 2x6	0.00	Public Private	1.00	11	25 25	-	20 20	5	16	50.00	0.00	-	40.00	0.00	-	40.00	0.00	0.00	53.33	0.00	0.00
		2.00		riivate	1.00		23	-	20														
128.47	136.56	4 th FLR Int. LB	8.09	Public	1.00	11	25	100	0	5	16	50.00	89.03	140.00	-	139.03	0.00	-	185.38	0.00	53.33	54.59	12.73
		2x6		Private Drift	1.00 0.00	-	25	40	0														
				Driit	0.00	-		-	U														
118.98	128.47	3 rd FLR Int. LB	9.49	Public	1.00	11	25	100	0	5	16	50.00	104.39	140.00	-	293.42	140.00	-	391.22	186.67	53.33	75.04	17.50
		2x6		Private	1.00	-	25	40	0														
				Drift	0.00	-	-	-	0														
109.49	118.98	2 nd FLR Int. LB	9.49	Public	1.00	11	25	100	0	5	16	50.00	104.39	140.00	-	447.80	280.00	-	597.07	373.33	53.33	75.04	17.50
		2x6		Private	1.00	-	25	40	0														
				Drift	0.00	-	-	-	0														
100.00	109.49	1st FLR Int. LB	9.49	Public	1.00	11	25	100	0	5	16	-	104.39	-	-	602.19	420.00	-	802.92	560.00	53.33	75.04	17.50
		2x6		Private	1.00	-	25	40	0														
				Drift	0.00	-	-	-	0														
Mid I	nterior	Wall	Wall	Trib. Wid	dth (ft)	DL		LL (psf)	Snow	Wind Pres.	Stud		Individua				nulative - w			ative - Axi		Momen	
Eleva	ations		Height (ft)			Wall	Floor	Floor	(psf)	(psf)	Spac. (in)	DL	DL wall	LL	SL/LL,	DL	LL	SL/LL,	DL	LL	SL/LL _r	Wind	Seismic
		Roof Int. LB	0.00	Public	0.00	11	25	-	20	5	16	50.00	0.00	-	40.00	0.00	-	40.00	0.00	0.00	53.33	0.00	0.00
		2x6		Private	2.00	-	25	-	20														
128.46875	136.5625	4 th FLR Int. LB	8.09	Public	0.00	11	25	100	0	5	16	50.00	89.03	80.00	-	139.03	0.00	-	185.38	0.00	53.33	54.59	12.73
		2x6		Private	2.00	-	25	40	0														
				Drift	0.00	-	-	-	0														
118,97917	128.46875	3 rd FLR Int. LB	9.49	Public	0.00	11	25	100	0	5	16	50.00	104.39	80.00		293.42	80.00		391.22	106.67	53.33	75.04	17.50
110.57517	120.40075	2x6		Private	2.00	-	25	40	0										331.22	100.07	33.33	73.04	17.50
				Drift	0.00	-	-	-	0														
																							1
109.48958	118.97917	2 nd FLR Int. LB	9.49	Public	0.00	11	25	100	0	5	16	50.00	104.39	80.00	-	447.80	160.00	-	597.07	213.33	53.33	75.04	17.50
109.48958	118.97917	2 nd FLR Int. LB 2x6	9.49	Private	2.00	-	25 25	100 40	0	5	16	50.00	104.39	80.00	-	447.80	160.00	-	597.07	213.33	53.33	75.04	17.50
109.48958	118.97917		9.49			11 - -				5	16	50.00	104.39	80.00	-	447.80	160.00	-	597.07	213.33	53.33	75.04	17.50
109.48958	118.97917 109.48958	2x6	9.49	Private	2.00	-			0	5	16	50.00	104.39	80.00	-	447.80 602.19	160.00 240.00	-	597.07 802.92	213.33	53.33	75.04 75.04	17.50 17.50
				Private Drift	2.00 0.00	-	25	40	0			50.00		80.00	-								

Stair E	xterior		Wall						Snow	Wind Pres.	Stud		Individua	l w (nlf)		Cum	nulative - w	(nlf)	Cumul	ative - Axi	al (lb)	Momen	a+ //b ++1
Grid 1		Wall	Height (ft)	Trib. Widt	h (ft)		(psf)	LL (psf)	(psf)	(psf)	Spac. (in)												
Eleva	itions	2 (1 1 12	2.00	D. I.I.	4.00	Wall 12	Floor	Floor		39.36	4.5	DL	DL wall	LL -	SL/LL,	DL 24.00	LL	SL/LL,	DL	<i>LL</i> 0.00	SL/LL , 26.67	Wind	Seismic
136.56	138.56	Roof Int. LB 2x6	2.00	Public Private	1.00 0.00	12	25 25	-	20 20	39.36	16	25.00	24.00	-	20.00	24.00	-	20.00	32.00	0.00	26.67	104.96	3.39
130.30	130.30	2.00		Drift	0.00		23		0														
				Dilli	0.00	-	-		U														
128.47	136.56	4 th FLR Int. LB	8.09	Public	1.00	12	25	100	0	28.8	16	25.00	97.13	100.00		146.13	0.00		194.83	0.00	26.67	314.44	13.89
120.47	130.30	2x6	0.03	Private	0.00	-	25	40	0	20.0	10	25.00	37.13	100.00		140.13	0.00		154.05	0.00	20.07	314.44	13.05
		2.00		Drift	0.00	-	-		0														
				Dillic	0.00				Ü														
118.98	128.47	3 rd FLR Int. LB	9.49	Public	1.00	12	25	100	0	28.8	16	25.00	113.88	100.00		285.00	100.00		380.00	133.33	26.67	432.25	19.09
110.50	120.47	2x6		Private	0.00		25	40	0										300.00	133.33	20.07	432.23	15.05
		EAO.		Drift	0.00	_	-		0														
									-														
109.49	118.98	2 nd FLR Int. LB	9.49	Public	1.00	12	25	100	0	28.8	16	25.00	113.88	100.00	-	423.88	200.00		565.17	266.67	26.67	432.25	19.09
		2x6		Private	0.00	-	25	40	0														
				Drift	0.00	-	-	-	0														
100.00	109.49	1st FLR Int. LB	9.49	Public	1.00	12	25	100	0	28.8	16	-	113.88	-	-	562.75	300.00	-	750.33	400.00	26.67	432.25	19.09
		2x6		Private	0.00	-	25	40	0														
				Drift	0.00	-	-	-	0														
Placel	holder		Wall			DI I	(psf)	LL (psf)	Snow	Wind Pres.	Stud		Individua	I - w (nlf)		Cun	nulative - w	(nlf)	Cumuli	ative - Axi	al (lh)	Momen	s+ //h f+1
		Wall		Trih Win	Ith (ft)		17-11	EE (P3)/		vviiid i i cs.			mannaaa	i - w (pij)	1	Curi	ididtive vi		Cumun	ULIVE - ANI			ונ (וטיןנ)
Eleva		Wall	Height (ft)	Trib. Wia		Wall	Floor	Floor	(psf)	(psf)	Spac. (in)	DL	DL wall	LL LL	SL/LL,	DL	LL	SL/LL,	DL	Ш	SL/LL,	Wind	Seismic
	itions	Roof Ext. LB		Public	1.00		Floor 25	Floor -	(psf) 20			DL 25.00			SL/LL , 20.00		T			T			
136.56			Height (ft)	Public Private	1.00	Wall	Floor	Floor	(psf) 20 20	(psf)	Spac. (in)		DL wall	LL		DL	LL	SL/LL,	DL	Ш	SL/LL,	Wind	Seismic
	itions	Roof Ext. LB	Height (ft)	Public	1.00	Wall	Floor 25	Floor -	(psf) 20	(psf)	Spac. (in)		DL wall	LL		DL	LL	SL/LL,	DL	Ш	SL/LL,	Wind	Seismic
136.56	138.56	Roof Ext. LB 2x6	Height (ft) 2.00	Public Private Drift	1.00 0.00 0.00	Wall 12	25 25 -	Floor - - -	(psf) 20 20 0	(psf) 39.36	Spac. (in) 16	25.00	DL walf 24.00	LL -		DL 24.00	- -	SL/LL, 20.00	DL 32.00	0.00	SL/LL, 26.67	Wind 104.96	Seismic 3.39
	itions	Roof Ext. LB 2x6 4 th FLR Ext. LB	Height (ft)	Public Private Drift Public	1.00 0.00 0.00	Wall 12 12	Floor 25 25 -	100	(psf) 20 20 0	(psf)	Spac. (in)		DL wall	LL		DL	LL	SL/LL,	DL	Ш	SL/LL,	Wind	Seismic
136.56	138.56	Roof Ext. LB 2x6	Height (ft) 2.00	Public Private Drift Public Private	1.00 0.00 0.00 1.00 0.00	Wall 12 12 -	25 25 -	Floor 100 40	(psf) 20 20 0 0	(psf) 39.36	Spac. (in) 16	25.00	DL walf 24.00	LL -		DL 24.00	- -	SL/LL, 20.00	DL 32.00	0.00	SL/LL, 26.67	Wind 104.96	Seismic 3.39
136.56	138.56	Roof Ext. LB 2x6 4 th FLR Ext. LB	Height (ft) 2.00	Public Private Drift Public	1.00 0.00 0.00	Wall 12 12	Floor 25 25 -	100	(psf) 20 20 0	(psf) 39.36	Spac. (in) 16	25.00	DL walf 24.00	LL -		DL 24.00	- -	SL/LL, 20.00	DL 32.00	0.00	SL/LL, 26.67	Wind 104.96	Seismic 3.39
136.56 128.47	138.56 136.56	Roof Ext. LB 2x6 4 th FLR Ext. LB 2x6	Height (ft) 2.00 8.09	Public Private Drift Public Private Drift	1.00 0.00 0.00 1.00 0.00 0.00	Wall 12 12 12 -	Floor 25 25 - 25 25 -	Floor 100 40 -	(psf) 20 20 0 0 0 0	(psf) 39.36 28.8	Spac. (in) 16 16	25.00 25.00	DL wall 24.00 97.13	100.00	20.00	DL 24.00	0.00	SL/LL, 20.00	DL 32.00	0.00	SL/LL, 26.67 26.67	Wind 104.96 314.44	Seismic 3.39 13.89
136.56	138.56	Roof Ext. LB 2x6 4 th FLR Ext. LB 2x6	Height (ft) 2.00	Public Private Drift Public Private Drift	1.00 0.00 0.00 1.00 0.00 0.00	Wall 12 12 - 12 - 12	25 25 25 25 25 25 25 25	Floor 100 40 - 100	(psf) 20 20 0 0 0 0 0 0	(psf) 39.36	Spac. (in) 16	25.00	DL walf 24.00	LL -		DL 24.00	- -	SL/LL, 20.00	DL 32.00	0.00	SL/LL, 26.67 26.67	Wind 104.96	Seismic 3.39
136.56 128.47	138.56 136.56	Roof Ext. LB 2x6 4 th FLR Ext. LB 2x6	Height (ft) 2.00 8.09	Public Private Drift Public Private Drift Public Private	1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00	Wall 12 - 12 - 12 - 12 -	Floor 25 25 - 25 25 -	Floor 100 40 - 100 40	(psf) 20 20 0 0 0 0 0 0 0	(psf) 39.36 28.8	Spac. (in) 16 16	25.00 25.00	DL wall 24.00 97.13	100.00	20.00	DL 24.00	0.00	SL/LL, 20.00	DL 32.00	0.00	SL/LL, 26.67 26.67	Wind 104.96 314.44	Seismic 3.39 13.89
136.56 128.47	138.56 136.56	Roof Ext. LB 2x6 4 th FLR Ext. LB 2x6	Height (ft) 2.00 8.09	Public Private Drift Public Private Drift	1.00 0.00 0.00 1.00 0.00 0.00	Wall 12 12 - 12 - 12	25 25 25 25 25 25 25 25	Floor 100 40 - 100	(psf) 20 20 0 0 0 0 0 0	(psf) 39.36 28.8	Spac. (in) 16 16	25.00 25.00	DL wall 24.00 97.13	100.00	20.00	DL 24.00	0.00	SL/LL, 20.00	DL 32.00	0.00	SL/LL, 26.67 26.67	Wind 104.96 314.44	Seismic 3.39 13.89
136.56 128.47 118.98	138.56 136.56 128.47	Roof Ext. LB 2x6 4 th FLR Ext. LB 2x6 3 rd FLR Ext. LB 2x6	8.09 9.49	Public Private Drift Public Private Drift Public Private Drift	1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00	Wall 12 12 - 12 12 12	25 25 25 25 25 25 25 25 25 25 25 25 25 2	Floor	(psf) 20 20 0 0 0 0 0 0 0 0 0	(psf) 39.36 28.8	5pac. (in) 16 16	25.00 25.00 25.00	97.13 113.88	100.00	20.00	DL 24.00 146.13 285.00	0.00	SL/LL, 20.00	DL 32.00 194.83 380.00	0.00 0.00	SL/LL, 26.67 26.67 26.67	Wind 104.96 314.44 432.25	3.39 13.89 19.09
136.56 128.47	138.56 136.56	Roof Ext. LB 2x6 4 th FLR Ext. LB 2x6 3 rd FLR Ext. LB 2x6	Height (ft) 2.00 8.09	Public Private Drift	1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00	Wall 12 - 12 - 12 - 12 -	25 25 25 25 25 25 25 25 25 25 25 25 25 2	Floor	(psf) 20 20 0 0 0 0 0 0 0 0 0	(psf) 39.36 28.8	Spac. (in) 16 16	25.00 25.00	DL wall 24.00 97.13	100.00	20.00	DL 24.00	0.00	SL/LL, 20.00	DL 32.00 194.83 380.00	0.00	SL/LL, 26.67 26.67 26.67	Wind 104.96 314.44	Seismic 3.39 13.89
136.56 128.47 118.98	138.56 136.56 128.47	Roof Ext. LB 2x6 4 th FLR Ext. LB 2x6 3 rd FLR Ext. LB 2x6	8.09 9.49	Public Private Drift	1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00	Wall 12 12 - 12 12 12	25 25 25 25 25 25 25 25 25 25 25 25 25 2	Floor	(psf) 20 20 0 0 0 0 0 0 0 0 0 0 0 0	(psf) 39.36 28.8	5pac. (in) 16 16	25.00 25.00 25.00	97.13 113.88	100.00	20.00	DL 24.00 146.13 285.00	0.00	SL/LL, 20.00	DL 32.00 194.83 380.00	0.00 0.00	SL/LL, 26.67 26.67 26.67	Wind 104.96 314.44 432.25	3.39 13.89 19.09
136.56 128.47 118.98	138.56 136.56 128.47	Roof Ext. LB 2x6 4 th FLR Ext. LB 2x6 3 rd FLR Ext. LB 2x6	8.09 9.49	Public Private Drift	1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00	Wall 12 - 12 - 12 - 12 - 12 - 12 - 12 - -	25 25 25 25 25 25 25 25 25 25 25 25 25 2	Floor	(psf) 20 20 0 0 0 0 0 0 0 0 0	(psf) 39.36 28.8	5pac. (in) 16 16	25.00 25.00 25.00	97.13 113.88	100.00	20.00	DL 24.00 146.13 285.00	0.00	SL/LL, 20.00	DL 32.00 194.83 380.00	0.00 0.00	SL/LL, 26.67 26.67 26.67	Wind 104.96 314.44 432.25	3.39 13.89 19.09
136.56 128.47 118.98	138.56 136.56 128.47	Roof Ext. LB 2x6 4 th FLR Ext. LB 2x6 3 rd FLR Ext. LB 2x6 2 nd FLR Ext. LB 2x6	8.09 9.49	Public Private Drift	1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00	Wall 12 -	25 25 25 25 25 25 25 25 25 25 25 25 25 2	Floor	(psf) 20 20 0 0 0 0 0 0 0 0 0 0 0 0	(psf) 39.36 28.8	5pac. (in) 16 16	25.00 25.00 25.00	97.13 113.88	100.00	20.00	DL 24.00 146.13 285.00	0.00	SL/LL, 20.00	DL 32.00 194.83 380.00	0.00 0.00 133.33	26.67 26.67 26.67 26.67	Wind 104.96 314.44 432.25	3.39 13.89 19.09
136.56 128.47 118.98	138.56 136.56 128.47	Roof Ext. LB 2x6 4 th FLR Ext. LB 2x6 3 rd FLR Ext. LB 2x6 2 nd FLR Ext. LB 2x6 1 st FLR Ext. LB	Height (ft) 2.00 8.09 9.49	Public Private Drift Public Private Public Private Private Private Private Private Private	1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 1.00 0.00	Wall 12 - 12 - 12 - 12 - 12 - 12 - 12 - -	25 25 25 25 25 25 25 25 25 25 25 25 25 2	Floor	(psf) 20 20 0 0 0 0 0 0 0 0 0 0 0 0	(psf) 39.36 28.8 28.8	Spac. (in) 16 16 16	25.00 25.00 25.00	24.00 97.13 113.88	100.00	20.00	DL 24.00 146.13 285.00 423.88	0.00	\$L/LL, 20.00	DL 32.00 194.83 380.00	0.00 0.00	SL/LL, 26.67 26.67 26.67	Wind 104.96 314.44 432.25	3.39 13.89 19.09
136.56 128.47 118.98	138.56 136.56 128.47	Roof Ext. LB 2x6 4 th FLR Ext. LB 2x6 3 rd FLR Ext. LB 2x6 2 nd FLR Ext. LB 2x6	Height (ft) 2.00 8.09 9.49	Public Private Drift	1.00 0.00 0.00 1.00 0.00 0.00 1.00 0.00 0.00	Wall 12 -	25 25 25 25 25 25 25 25 25 25 25 25 25 2	Floor	(psf) 20 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(psf) 39.36 28.8 28.8	Spac. (in) 16 16 16	25.00 25.00 25.00	24.00 97.13 113.88	100.00	20.00	DL 24.00 146.13 285.00 423.88	0.00	\$L/LL, 20.00	DL 32.00 194.83 380.00	0.00 0.00 133.33	26.67 26.67 26.67 26.67	Wind 104.96 314.44 432.25	3.39 13.89 19.09

Applicable Load Combinations (2018 IBC) 1.) D 2.) D + L 3.) D + (L or S) 4.) D + 0.75L + 0.75(Lr or S) 5.) D + 0.6W

6.) D + 0.75L + 0.45W + 0.75(Lr or S) 7.) 0.6D + 0.6W 8.) D + 0.7E 9.) D + 0.525E + 0.75L + 0.75S 10.) 0.6D + 0.7E

Wall Stud Loads @ Floor Level

	Wall	Combo	2	Com	bo 3	Com	bo 5	Com	bo 6	Comb	00 8	Comb	9*	M	lax
	wali	Axial	Mom.												
	Roof Ext. NLB	32	0	59	0	32	63	52	47	32	2	52	2	59	63
	4 th FLR Ext. NLB	195	0	222	0	195	189	215	141	195	10	215	7	222	189
Exterior Grid 2 & 19	3 rd FLR Ext. NLB	433	0	407	0	380	259	440	195	380	13	440	10	440	259
G110 2 & 15	2 nd FLR Ext. NLB	672	0	592	0	565	259	665	195	565	13	665	10	672	259
	1st FLR Ext. NLB	910	0	777	0	750	259	890	195	750	13	890	10	910	259
	Roof Ext. NLB	0	0	53	0	0	0	40	0	0	0	40	0	53	0
Interior	4 th FLR Ext. NLB	185	0	239	0	185	33	225	25	185	9	225	7	239	33
Grid 3-18	3 rd FLR Ext. NLB	498	0	445	0	391	45	511	34	391	12	511	9	511	45
G110 3-10	2 nd FLR Ext. NLB	810	0	650	0	597	45	797	34	597	12	797	9	810	45
	1st FLR Ext. NLB	1123	0	856	0	803	45	1083	34	803	12	1083	9	1123	45
	Roof Int. LB	0	0	53	0	0	0	40	0	0	0	40	0	53	0
Stair Interior	4 th FLR Int. LB	185	0	239	0	185	33	225	25	185	9	225	7	239	33
Grid 2 & 19	3 rd FLR Int. LB	578	0	445	0	391	45	571	34	391	12	571	9	578	45
0110 2 0 13	2 nd FLR Int. LB	970	0	650	0	597	45	917	34	597	12	917	9	970	45
	1 st FLR Int. LB	1363	0	856	0	803	45	1263	34	803	12	1263	9	1363	45
	Roof Int. NLB	0	0	53	0	0	0	40	0	0	0	40	0	53	0
	4 th FLR Int. NLB	185	0	239	0	185	33	225	25	185	9	225	7	239	33
Med. Int.	3 rd FLR Int. NLB	498	0	445	0	391	45	511	34	391	12	511	9	511	45
	2 nd FLR Int. NLB	810	0	650	0	597	45	797	34	597	12	797	9	810	45
	1st FLR Int. NLB	1123	0	856	0	803	45	1083	34	803	12	1083	9	1123	45
	Roof Int. NLB	32	0	59	0	32	63	52	47	32	2	52	2	59	63
Stair Exterior	4 th FLR Int. NLB	195	0	222	0	195	189	215	141	195	10	215	7	222	189
Grid 1 & 20	3 rd FLR Int. NLB	513	0	407	0	380	259	500	195	380	13	500	10	513	259
G110 1 0 20	2 nd FLR Int. NLB	832	0	592	0	565	259	785	195	565	13	785	10	832	259
	1st FLR Int. NLB	1150	0	777	0	750	259	1070	195	750	13	1070	10	1150	259
	Roof Ext. NLB	32	0	59	0	32	63	52	47	32	2	52	2		
	4 th FLR Ext. NLB	195	0	222	0	195	189	215	141	195	10	215	7		
Placeholder	3 rd FLR Ext. NLB	380	0	407	0	380	259	500	195	380	13	500	10		
	2 nd FLR Ext. NLB	832	0	592	0	565	259	785	195	565	13	785	10		
	1st FLR Ext. NLB	1150	0	777	0	750	259	1070	195	750	13	1070	10		

Project WSS LEE'S	SUMMIT	Project No	23-283
Calc. ByGL	Checked By DN	Date	7/28/2023

Exterior Headers Short - Grid 3-8 & 10-12 & 15-20

011011 0111	<u> </u>							
		Ext. Wall	Window	BRNG Stud	FLR Loads	FLR Loads	Total Loads	Total Loads
	H (ft)	Weight (plf)	L (ft)	PNT Load (#)	DL (plf)	LL(LLr/S) (plf)	DL (plf)	LL(LLr/S) (plf)
Roof	0.00 '	50.00	4		254.43	203.54	304.43	203.54
4 th FLR	7.72 '	202.34	4	404.69	254.43	407.08	456.77	407.08
3 rd FLR	7.72 '	237.24	4	474.48	254.43	407.08	491.66	407.08
2 nd FLR	7.72 '	237.24	4	474.48	254.43	407.08	491.66	407.08
1 st FLR	7.72 '							

King Stud L	.oaus							
	Header	Wind Pres.	Window	Stud Spac.	Trib. Width	Wind		Wind
		(psf)	L (ft)	(in)	(ft)	(plf)	H (ft)	(#-ft)
Roof	4 th FLR	39.36	4	16	2.67	104.96	7.72 '	781.68
4 th FLR	3 rd FLR	39.36	4	16	2.67	104.96	7.72 '	781.68
3 rd FLR	2 nd FLR	39.36	4	16	2.67	104.96	7.72 '	781.68
2 nd FLR	1 st FLR	39.36	4	16	2.67	104.96	7.72 '	781.68
1 st FLR								

Н	leader Load:	s Entered In TE	DDS
	Header	Total Loads	Total Loads
	пеацеі	DL (plf)	LL(LLr/S) (plf)
Roof	4 th FLR	304.43	203.54
4 th FLR	3 rd FLR	456.77	407.08
3 rd FLR	2 nd FLR	491.66	407.08
2 nd FLR	1 st FLR	491.66	407.08
1 st FLR			

Bearing S	tud Loads
DL (#)	LL (#)
608.85	0.00
913.54	814.16
983.33	814.16
983.33	814.16

King Stud + Cu	mulative Bear	ing Stud Loads
DL (#)	LL (#)	Wind (#-ft)
608.85	0.00	781.68
1522.39	814.16	781.68
2505.72	1628.32	781.68
3489.05	2442.48	781.68

Med - Grid (Placeholder)

	wed - drid (Flaceriolder)							
		Ext. Wall	Window	BRNG Stud	FLR Loads	FLR Loads	Total Loads	Total Loads
	H (ft)	Weight (plf)	L (ft)	PNT Load (#)	DL (plf)	LL(LLr/S) (plf)	DL (plf)	LL(LLr/S) (plf)
Roof	0.00 '	50.00	4		304.43	243.54	354.43	243.54
4 th FLR	7.72 '	202.34	4	404.69	304.43	487.08	506.77	487.08
3 rd FLR	7.72 '	237.24	4	474.48	304.43	487.08	541.66	487.08
2 nd FLR	7.72 '	237.24	4	474.48	304.43	487.08	541.66	487.08
1 st FLR	7.72 '							

		Miller of Dance	VA Constance	Charles Corner	Table Marketale	1477 1		140
	Header	Wind Pres.	Window	Stud Spac.	Trib. Width	Wind		Wind
		(psf)	L (ft)	(in)	(ft)	(plf)	H (ft)	(#-ft)
Roof	4 th FLR	39.36	4	16	2.67	104.96	7.72 '	781.68
4 th FLR	3 rd FLR	39.36	4	16	2.67	104.96	7.72 '	781.68
3 rd FLR	2 nd FLR	39.36	4	16	2.67	104.96	7.72 '	781.68
2 nd FLR	1 st FLR	39.36	4	16	2.67	104.96	7.72 '	781.68
1 st FLR								

Header Loads Entered In TEDDS						
	Header	Total Loads	Total Loads			
	Headel	DL (plf)	LL(LLr/S) (plf)			
Roof	4 th FLR	354.43	243.54			
4 th FLR	3 rd FLR	506.77	487.08			
3 rd FLR	2 nd FLR	541.66	487.08			
2 nd FLR	1 st FLR	541.66	487.08			
1 st FLR						

Bearing Stud Loads					
DL (#) LL (#)					
708.85	0.00				
1013.54	974.16				
1083.33	974.16				
1083.33	974.16				

King Stud + Cumulative Bearing Stud Loads								
DL (#)	Wind (#-ft)							
708.85	0.00	781.68						
1722.39	974.16	781.68						
2805.72	1948.32	781.68						
3889.05	2922.48	781.68						

Long - Grid 4-6, 8-10, & 17-19

LONG CITA								
		Ext. Wall	Window	BRNG Stud	FLR Loads	FLR Loads	Total Loads	Total Loads
	H (ft)	Weight (plf)	L (ft)	PNT Load (#)	DL (plf)	LL(LLr/S) (plf)	DL (plf)	LL(LLr/S) (plf)
Roof	0.00 '	50.00	4		323.00	258.40	373.00	258.40
4 th FLR	7.72 '	202.34	4	404.69	323.00	516.80	525.34	516.80
3 rd FLR	7.72 '	237.24	4	474.48	323.00	516.80	560.24	516.80
2 nd FLR	7.72 '	237.24	4	474.48	323.00	516.80	560.24	516.80
1 st FLR	7.72 '							

King Staa L	King State Loads								
	Header	Wind Pres.	Window	Stud Spac.	Trib. Width	Wind		Wind	
		(psf)	L (ft)	(in)	(ft)	(plf)	H (ft)	(#-ft)	
Roof	4 th FLR	39.36	4	16	2.67	104.96	7.72 '	781.68	
4 th FLR	3 rd FLR	39.36	4	16	2.67	104.96	7.72 '	781.68	
3 rd FLR	2 nd FLR	39.36	4	16	2.67	104.96	7.72 '	781.68	
2 nd FLR	1 st FLR	39.36	4	16	2.67	104.96	7.72 '	781.68	
1 st FLR									

Header Loads Entered In TEDDS						
	Header	Total Loads	Total Loads			
	пеацеі	DL (plf)	LL(LLr/S) (#)			
Roof	4 th FLR	373.00	258.40			
4 th FLR	3 rd FLR	525.34	516.80			
3 rd FLR	2 nd FLR	560.24	516.80			
2 nd FLR	1 st FLR	560.24	516.80			
1 st FLR						

Bearing Stud Loads				
DL (#) LL (#)				
746.00	0.00			
1050.69	1033.60			
1120.48	1033.60			
1120.48	1033.60			

King Stud + Cumulative Bearing Stud Loads							
DL (#) LL (#) Wind (#-ft)							
746.00	0.00	781.68					
1796.69	1033.60	781.68					
2917.17	2067.20	781.68					
4037.65	3100.80	781.68					

Applicable Load Combinations (2015 IBC) 1.) D + L 2.) D + 0.6W 3.) D + 0.75L + 0.75(0.6W) + 0.75S

Worst Case								
	Bearing	Stud Loads	K	ing Stud Load	ls			
	DL (#)	LL (#)	DL (#)	LL (#)	Wind (#-ft)			
4 th FLR	746.00	0.00	746.00	0.00	781.68			
3 rd FLR	1050.69	1033.60	1796.69	1033.60	781.68			
2 nd FLR	1120.48	1033.60	2917.17	2067.20	781.68			
1 st FLR	1120.48	1033.60	4037.65	3100.80	781.68			

Bearing Studs		King Studs							
1	1	1 2		3	3				
(#)	(#)	(#) (#-ft)		(#)	(#-ft)				
746.00	746.00	746.00	469.01	746.00	351.76				
2084.29	2830.29	1796.69	469.01	2571.89	351.76				
2154.08	4984.37	2917.17	469.01	4467.57	351.76				
2134.00	4304.37	2317.17	403.01	4407.57	331.70				
2154.08	7138.45	4037.65	469.01	6363.25	351.76				

 Project
 WSS LEE'S SUMMIT
 Project No.
 23-283

 Calc. By
 GL
 Checked By
 DN
 Date
 7/28/2023

Interior Headers
Short - Grid 1-2 & 19-20

Short - Grid	<u>a 1-2 & 19-2</u>	<u>20</u>						
		Int. Wall	Door	BRNG Stud	FLR Loads	FLR Loads	Total Loads	Total Loads
	H (ft)	Weight (plf)	L (ft)	PNT Load (#)	DL (plf)	LL(LLr/S) (plf)	DL (plf)	LL(LLr/S) (plf)
Roof	0.00 '	0.00	3		368.25	294.60	368.25	294.60
4 th FLR	7.72 '	89.03	3	133.55	368.25	749.40	457.28	749.40
3 rd FLR	7.72 '	104.39	3	156.58	368.25	749.40	472.64	749.40
2 nd FLR	7.72 '	104.39	3	156.58	368.25	749.40	472.64	749.40
1 st FLR	7.72 '							

	Header	Wind Pres.	Door	Stud Spac.	Trib. Width	Wind		Wind
	i i caaci	(psf)	L (ft)	(in)	(ft)	(plf)	H (ft)	(#-ft)
Roof	4 th FLR	5	3	16	2.17	10.83	7.72	80.68
4 th FLR	3 rd FLR	5	3	16	2.17	10.83	7.72	80.68
3 rd FLR	2 nd FLR	5	3	16	2.17	10.83	7.72	80.68
2 nd FLR	1 st FLR	5	3	16	2.17	10.83	7.72	80.68
1 st FLR								

Н	Header Loads Entered In TEDDS								
	Header	Total Loads	Total Loads						
	Headel	DL (plf)	LL(LLr/S) (plf)						
Roof	4 th FLR	368.25	294.60						
4 th FLR	3 rd FLR	457.28	749.40						
3 rd FLR	2 nd FLR	472.64	749.40						
2 nd FLR	1 st FLR	472.64	749.40						
1 st FLR									

Bearing Stud Loads				
DL (#)	LL (#)			
552.38	0.00			
685.92	1124.10			
708.95	1124.10			
708.95	1124.10			

King Stud + Cumulative Bearing Stud Loads								
DL (#)	LL (#)	Wind (#-ft)						
552.38	0.00	80.68						
1238.30	1124.10	80.68						
1947.25	2248.20	80.68						
2656.20	3372.30	80.68						

Medium - Grid 2-4, 6-8, 10-11, 13-15, & 17-19

		0, 10 11, 13 13	,					
		Int. Wall	Door	BRNG Stud	FLR Loads	FLR Loads	Total Loads	Total Loads
	H (ft)	Weight (plf)	L (ft)	PNT Load (#)	DL (plf)	LL(LLr/S) (plf)	DL (plf)	LL(LLr/S) (plf)
Roof	0.00 '	0.00	3		374.74	299.79	374.74	299.79
4 th FLR	7.72 '	89.03	3	133.55	372.25	755.80	461.28	755.80
3 rd FLR	7.72 '	104.39	3	156.58	372.25	755.80	476.64	755.80
2 nd FLR	7.72 '	104.39	3	156.58	372.25	755.80	476.64	755.80
1 st FLR	7.72 '							

King Stud L	Header	Wind Pres.	Door	Stud Spac.	Trib. Width	Wind		Wind
		(psf)	L (ft)	(in)	(ft)	(plf)	H (ft)	(#-ft)
Roof	4 th FLR	5	3	16	2.17	10.83	7.72	80.68
4 th FLR	3 rd FLR	5	3	16	2.17	10.83	7.72	80.68
3 rd FLR	2 nd FLR	5	3	16	2.17	10.83	7.72	80.68
2 nd FLR	1 st FLR	5	3	16	2.17	10.83	7.72	80.68
1 st FLR								

Н	Header Loads Entered In TEDDS							
	Header	Total Loads	Total Loads					
	Headel	DL (plf)	LL(LLr/S) (plf)					
Roof	4 th FLR	374.74	299.79					
4 th FLR	3 rd FLR	461.28	755.80					
3 rd FLR	2 nd FLR	476.64	755.80					
2 nd FLR	1 st FLR	476.64	755.80					
1 st FLR								

Bearing Stud Loads				
DL (#)	LL (#)			
562.11	0.00			
691.92	1133.70			
714.95	1133.70			
714.95	1133.70			

King Stud + Cumulative Bearing Stud Loads								
DL (#)	LL (#)	Wind (#-ft)						
562.11	0.00	80.68						
1254.03	1133.70	80.68						
1968.98	2267.40	80.68						
2683.93	3401.10	80.68						

Long - Grid 4-6, 8-10, 11-13, & 15-17

	,,	11 13, 0 13 1,						
		Int. Wall	Door	BRNG Stud	FLR Loads	FLR Loads	Total Loads	Total Loads
	H (ft)	Weight (plf)	L (ft)	PNT Load (#)	DL (plf)	LL(LLr/S) (plf)	DL (plf)	LL(LLr/S) (plf)
Roof	0.00 '	0.00	3		393.31	314.65	393.31	314.65
4 th FLR	7.72 '	89.03	3	133.55	393.31	798.05	482.34	798.05
3 rd FLR	7.72 '	104.39	3	156.58	393.31	798.05	497.70	798.05
2 nd FLR	7.72 '	104.39	3	156.58	393.31	798.05	497.70	798.05
1 st FLR	7.72 '							

6 5 6 6 6 6								
	Header	Wind Pres.	Door	Stud Spac.	Trib. Width	Wind		Wind
		(psf)	L (ft)	(in)	(ft)	(plf)	H (ft)	(#-ft)
Roof	4 th FLR	5	3	16	2.17	10.83	7.72	80.68
4 th FLR	3 rd FLR	5	3	16	2.17	10.83	7.72	80.68
3 rd FLR	2 nd FLR	5	3	16	2.17	10.83	7.72	80.68
2 nd FLR	1 st FLR	5	3	16	2.17	10.83	7.72	80.68
1 st FLR								

Header Loads Entered In TEDDS				
	Header	Total Loads	Total Loads	
	пеацеі	DL (plf)	LL(LLr/S) (plf)	
Roof	4 th FLR	393.31	314.65	
4 th FLR	3 rd FLR	482.34	798.05	
3 rd FLR	2 nd FLR	497.70	798.05	
2 nd FLR	1 st FLR	497.70	798.05	
1 st FLR				

Bearing Stud Loads				
DL (#)	LL (#)			
589.97	0.00			
723.52	1197.08			
746.55	1197.08			
746.55	1197.08			

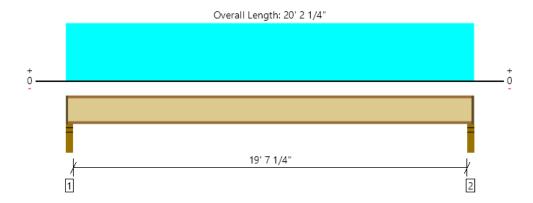
King Stud + Cumulative Bearing Stud Loads				
DL (#)	LL (#)	Wind (#-ft)		
589.97	0.00	80.68		
1313.48	1197.08	80.68		
2060.03	2394.15	80.68		
2806.58	3591.23	80.68		

Applicable Load Combinations (2015 IBC) 1.) D+L

2.) D + 0.6W 3.) D + 0.75L + 0.75(0.6W) + 0.75S

Worst Case					
	Bearing	Stud Loads	K	ls	
	DL (#)	LL (#)	DL (#)	LL (#)	Wind (#-ft)
4 th FLR	589.97	0.00	589.97	0.00	80.68
3 rd FLR	723.52	1197.08	1313.48	1197.08	80.68
2 nd FLR	746.55	1197.08	2060.03	2394.15	80.68
1 st FLR	746.55	1197.08	2806.58	3591.23	80.68

Bearing Studs		King Studs			
1	1		2	3	
(#)	(#)	(#)	(#-ft)	(#)	(#-ft)
589.97	589.97	589.97	48.41	589.97	36.31
1920.59	2510.56	1313.48	48.41	2211.29	36.31
1943.62	4454.18	2060.03	48.41	3855.64	36.31
1943.62	6397.80	2806.58	48.41	5500.00	36.31



Justs_imported				
Level	Level			
Member Name	Results	Current Solution	Comments	
Private Room - Short 20'-4 1/4"	Passed	1 piece(s) 16" TJI® 360 @ 16" OC		
Private Room - Med 24'-4 1/4"	Passed	1 piece(s) 16" TJI® 360 @ 16" OC		
Private Room - Long 25'-10 1/4"	Passed	1 piece(s) 16" TJI® 360 @ 16" OC		
4 Elevator Lobby - Short 16'-4.5"	Passed	1 piece(s) 16" TJI® 360 @ 16" OC		
4 Elevator Utility - Long 27'	Passed	1 piece(s) 16" TJI® 560 @ 10" OC		
2&3 Elevator Lobby - Short	Passed	1 piece(s) 16" TJI® 560 @ 16" OC		
2&3 Elevator Utility - Long	Passed	1 piece(s) 16" TJI® 560 @ 12" OC		
Corridor - 5'-7 1/2"	Passed	1 piece(s) 2 x 8 DF No.2 @ 16" OC		
Ladder Framing 2x	Passed	1 piece(s) 2 x 8 DF No.2 @ 24" OC		
Ladder Framing TJI	Passed	2 piece(s) 16" TJI® 560 @ 16" OC		

ForteWEB Software Operator	Job Notes
George Luetje BSE Structural Engineers (913) 492-7400 gluetje@bsestructural.com	

Level, Private Room - Short 20'-4 1/4" 1 piece(s) 16" TJI ® 210 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	866 @ 19' 11 3/4"	1134 (2.25")	Passed (76%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	850 @ 3 1/2"	2190	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	4235 @ 10' 1 1/8"	5140	Passed (82%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.276 @ 10' 1 1/8"	0.659	Passed (L/859)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.449 @ 10' 1 1/8"	0.989	Passed (L/529)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	46	Any	Passed		

System : Floor Member Type : Joist Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.50"	2.50"	1.75"	336	538	875	1" Rim Board
2 - Stud wall - DF	3.50"	2.25"	1.75"	336	538	875	1 1/4" Rim Board

[•] Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 1" o/c	
Bottom Edge (Lu)	20' o/c	

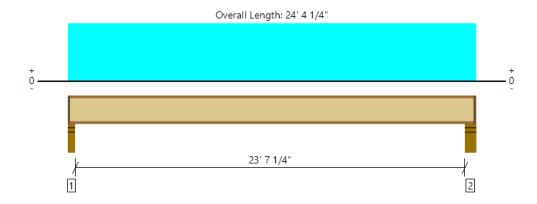
 $[\]bullet \mathsf{TJI}$ joists are only analyzed using Maximum Allowable bracing solutions.

 $[\]bullet \mbox{Maximum allowable bracing intervals based on applied load.} \\$

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 20' 2 1/4"	16"	25.0	40.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
George Luetje BSE Structural Engineers (913) 492-7400 gluetje@bsestructural.com	

Level, Private Room - Med 24'-4 1/4" 1 piece(s) 16" TJI ® 360 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1041 @ 2 1/2"	1263 (2.50")	Passed (82%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	1023 @ 3 1/2"	2190	Passed (47%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	6121 @ 12' 1 1/8"	8405	Passed (73%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.445 @ 12' 1 1/8"	0.792	Passed (L/640)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.724 @ 12' 1 1/8"	1.189	Passed (L/394)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	36	Any	Passed		

System : Floor Member Type : Joist Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.50"	2.50"	1.75"	403	645	1048	1" Rim Board
2 - Stud wall - DF	5.50"	4.25"	1.75"	409	654	1063	1 1/4" Rim Board

[•] Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

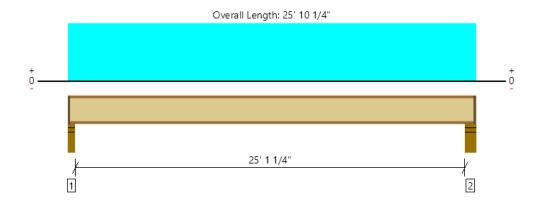
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 4" o/c	
Bottom Edge (Lu)	24' 2" o/c	

[•]TJI joists are only analyzed using Maximum Allowable bracing solutions.

 $[\]bullet \mbox{Maximum allowable bracing intervals based on applied load.} \\$

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 24' 4 1/4"	16"	25.0	40.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
George Luetje BSE Structural Engineers (913) 492-7400 gluetje@bsestructural.com		

Level, Private Room - Long 25'-10 1/4" 1 piece(s) 16" TJI ® 360 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1106 @ 2 1/2"	1263 (2.50")	Passed (88%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	1088 @ 3 1/2"	2190	Passed (50%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	6918 @ 12' 10 1/8"	8405	Passed (82%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.562 @ 12' 10 1/8"	0.842	Passed (L/540)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.913 @ 12' 10 1/8"	1.264	Passed (L/332)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	29	Any	Passed		

System : Floor Member Type : Joist Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro™ Rating include: None.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.50"	2.50"	1.86"	428	685	1113	1" Rim Board
2 - Stud wall - DF	5.50"	4.25"	1.91"	434	694	1128	1 1/4" Rim Board

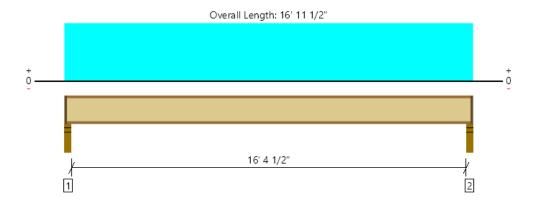
[•] Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' o/c	
Bottom Edge (Lu)	25' 8" o/c	

- •TJI joists are only analyzed using Maximum Allowable bracing solutions.
- $\bullet \mbox{Maximum allowable bracing intervals based on applied load.} \\$

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 25' 10 1/4"	16"	25.0	40.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
George Luetje BSE Structural Engineers (913) 492-7400 gluetje@bsestructural.com		

Level, 4 Elevator Lobby - Short 16'-4.5" 1 piece(s) 16" TJI ® 360 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	503 @ 2 1/2"	1502 (2.25")	Passed (33%)	1.25	1.0 D + 1.0 Lr (All Spans)
Shear (lbs)	491 @ 3 1/2"	2738	Passed (18%)	1.25	1.0 D + 1.0 Lr (All Spans)
Moment (Ft-lbs)	2052 @ 8' 5 3/4"	10506	Passed (20%)	1.25	1.0 D + 1.0 Lr (All Spans)
Live Load Defl. (in)	0.058 @ 8' 5 3/4"	0.551	Passed (L/999+)		1.0 D + 1.0 Lr (All Spans)
Total Load Defl. (in)	0.132 @ 8' 5 3/4"	0.827	Passed (L/999+)		1.0 D + 1.0 Lr (All Spans)
TJ-Pro™ Rating	57	Any	Passed		

System : Floor Member Type : Joist Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro™ Rating include: None.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Roof Live	Factored	Accessories
1 - Stud wall - DF	3.50"	2.25"	1.75"	283	226	509	1 1/4" Rim Board
2 - Stud wall - DF	3.50"	2.25"	1.75"	283	226	509	1 1/4" Rim Board

[•] Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

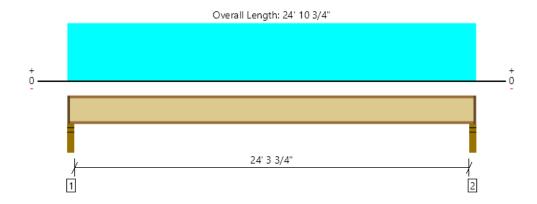
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	7' 11" o/c	
Bottom Edge (Lu)	16' 9" o/c	

[•]TJI joists are only analyzed using Maximum Allowable bracing solutions.

 $[\]bullet \mbox{Maximum allowable bracing intervals based on applied load.} \\$

			Dead	Roof Live	
Vertical Load	Location	Spacing	(0.90)	(non-snow: 1.25)	Comments
1 - Uniform (PSF)	0 to 16' 11 1/2"	16"	25.0	20.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
George Luetje BSE Structural Engineers (913) 492-7400 gluetje@bsestructural.com		

Level, 4 Elevator Utility - Long 27' 1 piece(s) 16" TJI ® 560 @ 10" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1286 @ 2 1/2"	1396 (2.25")	Passed (92%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	1266 @ 3 1/2"	2710	Passed (47%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	7802 @ 12' 5 3/8"	12925	Passed (60%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.568 @ 12' 5 3/8"	0.816	Passed (L/517)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.711 @ 12' 5 3/8"	1.224	Passed (L/413)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	48	Any	Passed		

System : Floor Member Type : Joist Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.50"	2.25"	1.83"	259	1037	1297	1 1/4" Rim Board
2 - Stud wall - DF	3.50"	2.25"	1.83"	259	1037	1297	1 1/4" Rim Board

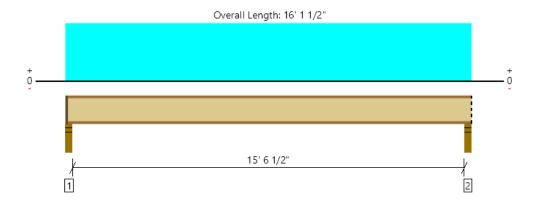
[•] Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	7' 4" o/c	
Bottom Edge (Lu)	24' 8" o/c	

[•]TJI joists are only analyzed using Maximum Allowable bracing solutions.

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 24' 10 3/4"	10"	25.0	100.0	Default Load


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
George Luetje BSE Structural Engineers (913) 492-7400 gluetje@bsestructural.com		

Level, 2&3 Elevator Lobby - Short 1 piece(s) 16" TJI ® 560 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1326 @ 2 1/2"	1396 (2.25")	Passed (95%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	1295 @ 3 1/2"	2710	Passed (48%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	5141 @ 8' 3/4"	12925	Passed (40%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.177 @ 8' 3/4"	0.524	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.221 @ 8' 3/4"	0.785	Passed (L/851)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	62	Any	Passed		

System : Floor Member Type : Joist Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro™ Rating include: None.

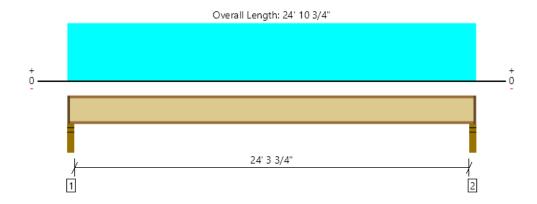
	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.50"	2.25"	1.98"	269	1075	1344	1 1/4" Rim Board
2 - Stud wall - DF	3.50"	3.50"	2.05"	269	1075	1344	Blocking

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	9' 3" o/c	
Bottom Edge (Lu)	16' o/c	

- $\bullet \mbox{TJI}$ joists are only analyzed using Maximum Allowable bracing solutions.
- $\bullet {\sf Maximum\ allowable\ bracing\ intervals\ based\ on\ applied\ load}.$

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 16' 1 1/2"	16"	25.0	100.0	Default Load


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
George Luetje BSE Structural Engineers (913) 492-7400 gluetje@bsestructural.com		

Level, 2&3 Elevator Utility - Long 1 piece(s) 16" TJI ® 560 @ 12" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1111 @ 2 1/2"	1396 (2.25")	Passed (80%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	1094 @ 3 1/2"	2710	Passed (40%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	6741 @ 12' 5 3/8"	12925	Passed (52%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.329 @ 12' 5 3/8"	0.816	Passed (L/893)		1.0 D + 0.75 L + 0.75 Lr (All Spans)
Total Load Defl. (in)	0.666 @ 12' 5 3/8"	1.224	Passed (L/441)		1.0 D + 0.75 L + 0.75 Lr (All Spans)
TJ-Pro™ Rating	45	Any	Passed		

System : Floor Member Type : Joist Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Roof Live	Factored	Accessories
1 - Stud wall - DF	3.50"	2.25"	1.75"	622	498	311	1229	1 1/4" Rim Board
2 - Stud wall - DF	3.50"	2.25"	1.75"	622	498	311	1229	1 1/4" Rim Board

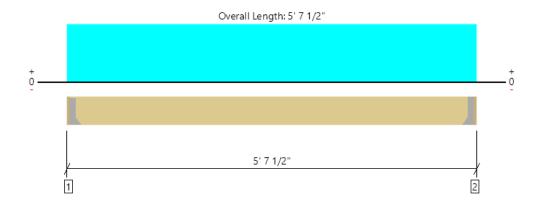
[•] Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	7' 8" o/c	
Bottom Edge (Lu)	24' 8" o/c	

 $[\]bullet \mathsf{TJI}$ joists are only analyzed using Maximum Allowable bracing solutions.

 $[\]bullet \mbox{Maximum allowable bracing intervals based on applied load.} \\$

			Dead	Floor Live	Roof Live	
Vertical Loads	Location	Spacing	(0.90)	(1.00)	(non-snow: 1.25)	Comments
1 - Uniform (PSF)	0 to 24' 10 3/4"	12"	25.0	40.0	-	Default Load
2 - Uniform (PSF)	0 to 24' 10 3/4"	12"	25.0	-	25.0	


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
George Luetje BSE Structural Engineers (913) 492-7400 gluetje@bsestructural.com		

Level, Corridor - 5'-7 1/2" 1 piece(s) 2 x 8 DF No.2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	448 @ 1 1/2"	1406 (1.50")	Passed (32%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	347 @ 8 3/4"	1305	Passed (27%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	602 @ 2' 9 3/4"	1360	Passed (44%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.033 @ 2' 9 3/4"	0.179	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.041 @ 2' 9 3/4"	0.269	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- · Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on 7 1/4" DF beam	1.50"	Hanger ¹	1.50"	94	375	469	See note 1
2 - Hanger on 7 1/4" DF beam	1.50"	Hanger ¹	1.50"	94	375	469	See note 1

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 5" o/c	
Bottom Edge (Lu)	5' 5" o/c	

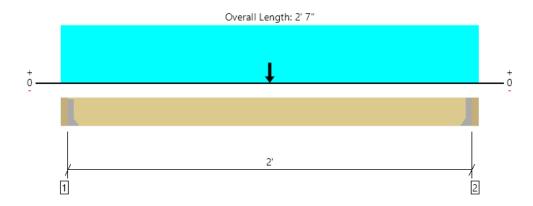
 $[\]bullet {\sf Maximum\ allowable\ bracing\ intervals\ based\ on\ applied\ load}.$

Connector: Simpson Strong-1	ie -					
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	LU26	1.50"	N/A	6-10dx1.5	4-10dx1.5	
2 - Face Mount Hanger	LU26	1.50"	N/A	6-10dx1.5	4-10dx1.5	

[•] Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 5' 7 1/2"	16"	25.0	100.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
George Luetje BSE Structural Engineers (913) 492-7400 gluetje@bsestructural.com		

Level, Ladder Framing 2x 1 piece(s) 2 x 8 DF No.2 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	465 @ 3 1/2"	1406 (1.50")	Passed (33%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	355 @ 10 3/4"	1175	Passed (30%)	0.90	1.0 D (All Spans)
Moment (Ft-lbs)	360 @ 1' 3 1/2"	1224	Passed (29%)	0.90	1.0 D (All Spans)
Live Load Defl. (in)	0.000 @ 1' 3 1/2"	0.067	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.003 @ 1' 3 1/2"	0.100	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- · Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Hanger on 7 1/4" DF beam	3.50"	Hanger ¹	1.50"	400	103	503	See note 1
2 - Hanger on 7 1/4" DF beam	3.50"	Hanger ¹	1.50"	400	103	503	See note 1

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ¹ See Connector grid below for additional information and/or requirements.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	2' o/c	
Bottom Edge (Lu)	2' o/c	

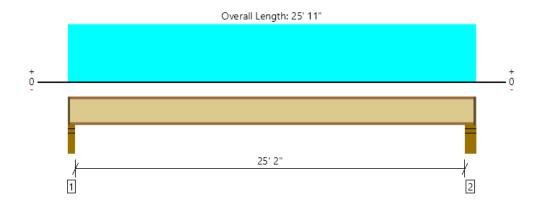
 $[\]bullet {\sf Maximum\ allowable\ bracing\ intervals\ based\ on\ applied\ load}.$

Connector: Simpson Strong-Tie						
Support	Model	Seat Length	Top Fasteners	Face Fasteners	Member Fasteners	Accessories
1 - Face Mount Hanger	LU26	1.50"	N/A	6-10dx1.5	4-10dx1.5	
2 - Face Mount Hanger	LU26	1.50"	N/A	6-10dx1.5	4-10dx1.5	

[•] Refer to manufacturer notes and instructions for proper installation and use of all connectors.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Point (lb)	1' 3 1/2"	N/A	670	-	Default Commercial Load
2 - Uniform (PLF)	0 to 2' 7"	N/A	50.0	80.0	

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
George Luetje BSE Structural Engineers (913) 492-7400 gluetje@bsestructural.com		

Level, Ladder Framing TJI 2 piece(s) 16" TJI ® 560 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2897 @ 2 1/2"	2924 (2.50")	Passed (99%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	2850 @ 3 1/2"	5420	Passed (53%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	18170 @ 12' 10 1/2"	25850	Passed (70%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.209 @ 12' 10 1/2"	0.844	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.889 @ 12' 10 1/2"	1.267	Passed (L/342)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	48	Any	Passed		

System : Floor Member Type : Joist Building Use : Commercial Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.50"	2.50"	2.45"	2230	687	2916	1" Rim Board
2 - Stud wall - DF	5.50"	4.25"	2.51"	2258	696	2954	1 1/4" Rim Board

[•] Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 9" o/c	
Bottom Edge (Lu)	25' 9" o/c	

[•]TJI joists are only analyzed using Maximum Allowable bracing solutions.

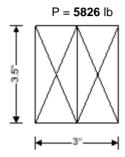
 $[\]bullet \mbox{Maximum allowable bracing intervals based on applied load.} \\$

Vertical Loads	Location	Spacing	Dead (0.90)	Floor Live (1.00)	Comments
1 - Uniform (PLF)	0 to 25' 11"	N/A	142.5	-	
2 - Uniform (PSF)	0 to 25' 11"	16"	23.0	40.0	Default Commercial Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

STRUCTURAL WOOD MEMBER DESIGN (NDS)


In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Project No. 23-283

Analysis results

Design axial compression

Sawn lumber section details

 $\begin{array}{lll} \mbox{Nominal breadth of sections} & b_{\mbox{nom}} = 2 \mbox{ in} \\ \mbox{Dressed breadth of sections} & b = 1.5 \mbox{ in} \\ \mbox{Nominal depth of sections} & d_{\mbox{nom}} = 4 \mbox{ in} \\ \mbox{Dressed depth of sections} & d = 3.5 \mbox{ in} \\ \mbox{Number of sections in member} & N = 2 \\ \end{array}$

Overall breadth of member $b_b = N \times b = 3$ in

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\label{eq:bending_parallel} Bending parallel to grain & F_b = 900 \text{ lb/in}^2 \\ Tension parallel to grain & F_t = 575 \text{ lb/in}^2 \\ Compression parallel to grain & F_c = 1350 \text{ lb/in}^2 \\ Compression perpendicular to grain & F_c_perp = 625 \text{ lb/in}^2 \\ Shear parallel to grain & F_v = 180 \text{ lb/in}^2 \\ \end{cases}$

Modulus of elasticity $E = 1600000 \text{ lb/in}^2$ Modulus of elasticity, stability calculations $E_{min} = 580000 \text{ lb/in}^2$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Effective length in x-axis $L_{ex} = L_x \times K_x = \textbf{7.72} \text{ ft}$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

Section properties

Cross sectional area of member $A = N \times b \times d = \textbf{10.50} \text{ in}^2$ Section modulus $S_x = N \times b \times d^2 / 6 = \textbf{6.12} \text{ in}^3$ $S_y = d \times (N \times b)^2 / 6 = \textbf{5.25} \text{ in}^3$ Second moment of area $I_x = N \times b \times d^3 / 12 = \textbf{10.72} \text{ in}^4$

 $I_V = d \times (N \times b)^3 / 12 = 7.87 \text{ in}^4$

Adjustment factors

Load duration factor - Table 2.3.2 $C_D = 1.00$

Project No. 23-283

Calc. By GL Checked By DN Date 7/27/2023

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

Cic_perp = **1.00**

 $\label{eq:continuous} \begin{array}{ll} \text{Repetitive member factor - cl.4.3.9} & \text{$C_{\text{r}} = 1.00$} \\ \text{Bearing area factor - cl.3.10.4} & \text{$C_{\text{b}} = 1.00$} \\ \text{Column stability coefficient - cl.15.3.2} & \text{$K_{\text{f}} = 1.00$} \\ \end{array}$

Adjusted modulus of elasticity for column stability $E_{min}' = E_{min} \times C_{ME} \times C_t \times C_{IE} = 580000 \text{ lb/in}^2$ Reference compression design value $F_{c^*} = F_c \times C_D \times C_{MC} \times C_t \times C_{Fc} \times C_i = 1552 \text{ lb/in}^2$ Critical buckling design value for compression $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 681 \text{ lb/in}^2$

c = 0.80

Column stability factor - eq.15.3-1

 $C_{P} = K_{f} \times [(1 + (F_{cE} / F_{c}^{*})) / (2 \times C) - \sqrt{[((1 + (F_{cE} / F_{c}^{*})) / (2 \times C))^{2} - (F_{cE} / F_{c}^{*}) / C]]} = 0.39$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 1.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Strength in compression parallel to grain - cl.3.6.3

Design compressive stress $F_c' = F_c \times C_D \times C_t \times C_F \times C_i \times C_P = 604 \text{ lb/in}^2$

Applied compressive stress fc = P / A = 555 lb/in²

 $f_c / F_{c'} = 0.919$

PASS - Design compressive stress exceeds applied compressive stress

STRUCTURAL WOOD MEMBER DESIGN (NDS)

In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Project No. 23-283

Analysis results

Design moment in major axis

Design axial compression

M_x = 45 lb_ft
P = 2634 lb

Sawn lumber section details

 $\begin{array}{lll} \mbox{Nominal breadth of sections} & \mbox{b}_{\mbox{nom}} = 2 \mbox{ in} \\ \mbox{Dressed breadth of sections} & \mbox{b} = 1.5 \mbox{ in} \\ \mbox{Nominal depth of sections} & \mbox{d}_{\mbox{nom}} = 4 \mbox{ in} \\ \mbox{Dressed depth of sections} & \mbox{d} = 3.5 \mbox{ in} \\ \mbox{Number of sections in member} & \mbox{N} = 2 \end{array}$

Overall breadth of member $b_b = N \times b = 3$ in

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\label{eq:bending_parallel} \begin{tabular}{ll} Bending parallel to grain & F_b = 900 lb/in^2 \\ Tension parallel to grain & F_t = 575 lb/in^2 \\ Compression parallel to grain & F_c = 1350 lb/in^2 \\ Compression perpendicular to grain & F_c_perp = 625 lb/in^2 \\ Shear parallel to grain & F_v = 180 lb/in^2 \\ \end{tabular}$

Modulus of elasticity $E = 1600000 \text{ lb/in}^2$ Modulus of elasticity, stability calculations $E_{min} = 580000 \text{ lb/in}^2$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Effective length in x-axis $L_{ex} = L_x \times K_x = 7.72 \text{ ft}$

Unbraced length in y-axis $L_y = 1$ ft Effective length factor in y-axis $K_y = 1$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

Section properties

Cross sectional area of member $A = N \times b \times d = 10.50 \text{ in}^2$

Section modulus $S_x = N \times b \times d^2 / 6 = 6.12 \text{ in}^3$

 $S_y = d \times (N \times b)^2 / 6 = 5.25 \text{ in}^3$

Second moment of area $I_x = N \times b \times d^3 / 12 = 10.72 \text{ in}^4$

 $I_y = d \times (N \times b)^3 / 12 = 7.87 \text{ in}^4$

Project No. 23-283

Adjustment factors

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

Adjusted modulus of elasticity for column stability $E_{min}' = E_{min} \times C_{ME} \times C_t \times C_{iE} = 580000 \text{ lb/in}^2$ Reference compression design value $F_{c^*} = F_c \times C_D \times C_{Mc} \times C_t \times C_{Fc} \times C_i = 1552 \text{ lb/in}^2$ Critical buckling design value for compression $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 681 \text{ lb/in}^2$

c = 0.80

Column stability factor - eq.15.3-1

 $C_P = K_f \times [(1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{[((1 + (F_{cE} / F_{c^*})) / (2 \times c))^2 - (F_{cE} / F_{c^*}) / c]]} = 0.39$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 1.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Strength in bending - cl.3.3.1

Design bending stress $F_{b}{}^{\prime} = F_{b} \times C_{D} \times C_{t} \times C_{Fb} \times C_{i} \times C_{r} = \textbf{1350 lb/in}^{2}$

Actual bending stress $f_b = M_x / S_x = 88 \text{ lb/in}^2$

 $f_b / F_{b'} = 0.065$

PASS - Design bending stress exceeds actual bending stress

Strength in compression parallel to grain - cl.3.6.3

Design compressive stress $F_c' = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = \textbf{604 lb/in}^2$

Applied compressive stress $f_c = P \ / \ A = \textbf{251} \ lb/in^2$

 $f_c / F_c' = 0.416$

PASS - Design compressive stress exceeds applied compressive stress

Bending and axial compression - cl.3.9.2

Critical buckling design value about x-x axis $F_{cE1} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 681 \text{ lb/in}^2$

Bending and compression check - eq.3.9-3 $[f_c / F_c']^2 + f_{b1} / (F_{b1}' \times [1 - (f_c / F_{cE1})]) = \textbf{0.276} < \textbf{1}$

PASS - Combined compressive and bending stresses are within permissible limits

STRUCTURAL WOOD MEMBER DESIGN (NDS)

In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Project No. 23-283

Analysis results

Design moment in major axis

Design axial compression

Mx = 34 lb_ft
P = 5343 lb

Sawn lumber section details

 $\begin{array}{lll} \mbox{Nominal breadth of sections} & \mbox{b}_{\mbox{nom}} = 2 \mbox{ in} \\ \mbox{Dressed breadth of sections} & \mbox{b} = 1.5 \mbox{ in} \\ \mbox{Nominal depth of sections} & \mbox{d}_{\mbox{nom}} = 4 \mbox{ in} \\ \mbox{Dressed depth of sections} & \mbox{d} = 3.5 \mbox{ in} \\ \mbox{Number of sections in member} & \mbox{N} = 2 \\ \end{array}$

Overall breadth of member $b_b = N \times b = 3 \text{ in}$

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\begin{array}{lll} \mbox{Bending parallel to grain} & \mbox{F_b} = 900 \mbox{ lb/in}^2 \\ \mbox{Tension parallel to grain} & \mbox{F_t} = 575 \mbox{ lb/in}^2 \\ \mbox{Compression parallel to grain} & \mbox{F_c} = 1350 \mbox{ lb/in}^2 \\ \mbox{Compression perpendicular to grain} & \mbox{F_c} = 625 \mbox{ lb/in}^2 \\ \mbox{Shear parallel to grain} & \mbox{F_v} = 180 \mbox{ lb/in}^2 \\ \mbox{Modulus of elasticity} & \mbox{E} = 1600000 \mbox{ lb/in}^2 \\ \end{array}$

Modulus of elasticity, stability calculations E_{min} = **580000** lb/in²

Mean shear modulus $G_{\text{def}} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Effective length in x-axis $L_{ex} = L_x \times K_x = \textbf{7.72} \text{ ft}$

Unbraced length in y-axis $L_y = 1$ ft Effective length factor in y-axis $K_y = 1$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

Section properties

Cross sectional area of member $A = N \times b \times d = \textbf{10.50} \text{ in}^2$ Section modulus $S_x = N \times b \times d^2 / 6 = \textbf{6.12} \text{ in}^3$

 $S_y = d \times (N \times b)^2 / 6 = 5.25 \text{ in}^3$

Second moment of area $I_x = N \times b \times d^3 / 12 = 10.72 \text{ in}^4$

 $I_y = d \times (N \times b)^3 \, / \, 12 = \textbf{7.87} \, \, in^4$

Project No. 23-283

Adjustment factors

Load duration factor - Table 2.3.2	$C_D = 1.00$
Temperature factor - Table 2.3.3	$C_t = 1.00$
Size factor for bending - Table 4A	$C_{Fb} = 1.50$
Size factor for tension - Table 4A	$C_{Ft} = 1.50$
Size factor for compression - Table 4A	CFc = 1.15
Flat use factor - Table 4A	$C_{fu} = 1.10$

Incising factor for modulus of elasticity - Table 4.3.8

 $C_{iE} = 1.00$

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

 $\label{eq:continuous} \begin{array}{ll} \text{Repetitive member factor - cl.4.3.9} & C_r = \textbf{1.00} \\ \text{Bearing area factor - cl.3.10.4} & C_b = \textbf{1.00} \\ \text{Column stability coefficient - cl.15.3.2} & K_f = \textbf{1.00} \\ \end{array}$

Adjusted modulus of elasticity for column stability $E_{min}' = E_{min} \times C_{ME} \times C_{t} \times C_{iE} = 580000 \text{ lb/in}^{2}$ Reference compression design value $F_{c^{*}} = F_{c} \times C_{D} \times C_{Mc} \times C_{t} \times C_{Fc} \times C_{i} = 1552 \text{ lb/in}^{2}$ Critical buckling design value for compression $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^{2} = 681 \text{ lb/in}^{2}$

c = 0.80

Column stability factor - eq.15.3-1

 $C_{P} = K_{f} \times \left[\left(1 + \left(F_{cE} \, / \, F_{c}^{*} \right) \right) / \left(2 \times c \right) - \sqrt{\left[\left(\left(1 + \left(F_{cE} \, / \, F_{c}^{*} \right) \right) / \left(2 \times c \right) \right)^{2} - \left(F_{cE} \, / \, F_{c}^{*} \right) / \, c \right] \right]} = \textbf{0.39}$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 1.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Strength in bending - cl.3.3.1

Design bending stress $F_b' = F_b \times C_D \times C_t \times C_L \times C_{Fb} \times C_i \times C_r = \textbf{1350 lb/in}^2$

Actual bending stress $f_b = M_x / S_x = 67 \text{ lb/in}^2$

 $f_b / F_{b'} = 0.049$

PASS - Design bending stress exceeds actual bending stress

Strength in compression parallel to grain - cl.3.6.3

Design compressive stress $F_c' = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = \textbf{604 lb/in}^2$

Applied compressive stress $f_c = P \ / \ A = \textbf{509} \ lb/in^2$

 $f_c / F_c' = 0.843$

PASS - Design compressive stress exceeds applied compressive stress

Bending and axial compression - cl.3.9.2

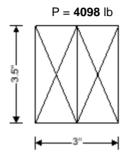
Critical buckling design value about x-x axis $F_{\text{cE1}} = 0.822 \times E_{\text{min}} / (L_{\text{ex}} / d)^2 = \textbf{681} \text{ lb/in}^2$

Bending and compression check - eq.3.9-3 $[f_c / F_c]^2 + f_{b1} / (F_{b1} \times [1 - (f_c / F_{cE1})]) = 0.906 < 1$

PASS - Combined compressive and bending stresses are within permissible limits

Calc. By GL Checked By DN

Date_6/30/2023


STRUCTURAL WOOD MEMBER DESIGN (NDS)

In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Analysis results

Design axial compression

Sawn lumber section details

 $\begin{array}{lll} \mbox{Nominal breadth of sections} & \mbox{b}_{\mbox{nom}} = 2 \mbox{ in} \\ \mbox{Dressed breadth of sections} & \mbox{b} = 1.5 \mbox{ in} \\ \mbox{Nominal depth of sections} & \mbox{d}_{\mbox{nom}} = 4 \mbox{ in} \\ \mbox{Dressed depth of sections} & \mbox{d} = 3.5 \mbox{ in} \\ \mbox{Number of sections in member} & \mbox{N} = 2 \end{array}$

Overall breadth of member $b_b = N \times b = \textbf{3} \text{ in}$

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\begin{array}{lll} \mbox{Bending parallel to grain} & \mbox{F_b} = 900 \mbox{ lb/in}^2 \\ \mbox{Tension parallel to grain} & \mbox{F_t} = 575 \mbox{ lb/in}^2 \\ \mbox{Compression parallel to grain} & \mbox{F_c} = 1350 \mbox{ lb/in}^2 \\ \mbox{Compression perpendicular to grain} & \mbox{F_{c_perp}} = 625 \mbox{ lb/in}^2 \\ \mbox{Shear parallel to grain} & \mbox{F_v} = 180 \mbox{ lb/in}^2 \\ \mbox{Modulus of elasticity} & \mbox{E} = 1600000 \mbox{ lb/in}^2 \\ \mbox{} \end{array}$

Modulus of elasticity $E = 1600000 \text{ lb/in}^2$ Modulus of elasticity, stability calculations $E_{min} = 580000 \text{ lb/in}^2$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Effective length in x-axis $L_{ex} = L_x \times K_x = \textbf{7.72} \text{ ft}$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

Section properties

Cross sectional area of member $A = N \times b \times d = \textbf{10.50} \text{ in}^2$ Section modulus $S_x = N \times b \times d^2 / 6 = \textbf{6.12} \text{ in}^3$ $S_y = d \times (N \times b)^2 / 6 = \textbf{5.25} \text{ in}^3$ Second moment of area $I_x = N \times b \times d^3 / 12 = \textbf{10.72} \text{ in}^4$

 $I_V = d \times (N \times b)^3 / 12 = 7.87 \text{ in}^4$

Adjustment factors

Load duration factor - Table 2.3.2 $C_D = 1.00$

Project WSS - Lee's Summit Project No. 23-283

Calc. By GL Checked By DN Date 6/30/2023

 $\label{eq:continuous} \begin{array}{lll} \text{Temperature factor - Table 2.3.3} & C_t = \textbf{1.00} \\ \text{Size factor for bending - Table 4A} & C_{Fb} = \textbf{1.50} \\ \text{Size factor for tension - Table 4A} & C_{Fc} = \textbf{1.50} \\ \text{Size factor for compression - Table 4A} & C_{Fc} = \textbf{1.15} \\ \text{Flat use factor - Table 4A} & C_{fu} = \textbf{1.10} \\ \end{array}$

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

Cic_perp = **1.00**

 $\label{eq:continuous} \begin{array}{ll} \text{Repetitive member factor - cl.4.3.9} & \text{$C_{r} = 1.00$} \\ \text{Bearing area factor - cl.3.10.4} & \text{$C_{b} = 1.00$} \\ \text{Column stability coefficient - cl.15.3.2} & \text{$K_{f} = 1.00$} \\ \end{array}$

Adjusted modulus of elasticity for column stability $E_{min}' = E_{min} \times C_{ME} \times C_t \times C_{iE} = 580000 \text{ lb/in}^2$ Reference compression design value $F_{c^*} = F_c \times C_D \times C_{MC} \times C_t \times C_{Fc} \times C_i = 1552 \text{ lb/in}^2$ Critical buckling design value for compression $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 681 \text{ lb/in}^2$

c = 0.80

Column stability factor - eq.15.3-1

 $C_{P} = K_{f} \times [(1 + (F_{cE} / F_{c}^{*})) / (2 \times C) - \sqrt{[((1 + (F_{cE} / F_{c}^{*})) / (2 \times C))^{2} - (F_{cE} / F_{c}^{*}) / C]]} = 0.39$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 1.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Strength in compression parallel to grain - cl.3.6.3

Design compressive stress $F_c{}^{!} = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = \textbf{604} \; lb/in^2$

Applied compressive stress $f_c = P / A = 390 \text{ lb/in}^2$

 f_c / F_c ' = **0.646**

PASS - Design compressive stress exceeds applied compressive stress

STRUCTURAL WOOD MEMBER DESIGN (NDS)

In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Project No. 23-283

Analysis results

Design moment in major axis

Design axial compression

Mx = 45 lb_ft
P = 1970 lb

Sawn lumber section details

 $\begin{array}{lll} \mbox{Nominal breadth of sections} & \mbox{b}_{\mbox{nom}} = 2 \mbox{ in} \\ \mbox{Dressed breadth of sections} & \mbox{b} = 1.5 \mbox{ in} \\ \mbox{Nominal depth of sections} & \mbox{d}_{\mbox{nom}} = 4 \mbox{ in} \\ \mbox{Dressed depth of sections} & \mbox{d} = 3.5 \mbox{ in} \\ \mbox{Number of sections in member} & \mbox{N} = 2 \\ \end{array}$

Overall breadth of member $b_b = N \times b = 3$ in

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\label{eq:bending parallel to grain} $F_b = 900 \text{ lb/in}^2$$ Tension parallel to grain $F_t = 575 \text{ lb/in}^2$$ Compression parallel to grain $F_c = 1350 \text{ lb/in}^2$$ Compression perpendicular to grain $F_{c_perp} = 625 \text{ lb/in}^2$$ Shear parallel to grain $F_v = 180 \text{ lb/in}^2$$ The state of the$

Modulus of elasticity $E = 1600000 \text{ lb/in}^2$ Modulus of elasticity, stability calculations $E_{min} = 580000 \text{ lb/in}^2$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Effective length in x-axis $L_{ex} = L_x \times K_x = \textbf{7.72} \text{ ft}$

Unbraced length in y-axis $L_y = 1$ ft Effective length factor in y-axis $K_y = 1$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

Section properties

Cross sectional area of member $A = N \times b \times d = 10.50 \text{ in}^2$

Section modulus $S_x = N \times b \times d^2 / 6 = 6.12 \text{ in}^3$

 $S_y = d \times (N \times b)^2 / 6 = 5.25 \text{ in}^3$

Second moment of area $I_x = N \times b \times d^3 / 12 = 10.72 \text{ in}^4$

 $I_y = d \times (N \times b)^3 \, / \, 12 = \textbf{7.87} \, \, in^4$

Project No. 23-283

Adjustment factors

Load duration factor - Table 2.3.2	$C_D = 1.00$
Temperature factor - Table 2.3.3	$C_t = 1.00$
Size factor for bending - Table 4A	C _{Fb} = 1.50
Size factor for tension - Table 4A	$C_{Ft} = 1.50$
Size factor for compression - Table 4A	CFc = 1.15
Flat use factor - Table 4A	$C_{fu} = 1.10$

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

 $\label{eq:continuous} \begin{array}{ll} \text{Repetitive member factor - cl.4.3.9} & C_r = \textbf{1.00} \\ \text{Bearing area factor - cl.3.10.4} & C_b = \textbf{1.00} \\ \text{Column stability coefficient - cl.15.3.2} & K_f = \textbf{1.00} \\ \end{array}$

Adjusted modulus of elasticity for column stability $E_{min}' = E_{min} \times C_{ME} \times C_{t} \times C_{iE} = 580000 \text{ lb/in}^{2}$ Reference compression design value $F_{c^{*}} = F_{c} \times C_{D} \times C_{Mc} \times C_{t} \times C_{Fc} \times C_{i} = 1552 \text{ lb/in}^{2}$ Critical buckling design value for compression $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^{2} = 681 \text{ lb/in}^{2}$

c = 0.80

Column stability factor - eq.15.3-1

 $C_{P} = K_{f} \times [(1 + (F_{cE} / F_{c}^{*})) / (2 \times c) - \sqrt{[((1 + (F_{cE} / F_{c}^{*})) / (2 \times c))^{2} - (F_{cE} / F_{c}^{*}) / c]]} = 0.39$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 1.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Strength in bending - cl.3.3.1

Design bending stress $F_b' = F_b \times C_D \times C_t \times C_L \times C_{Fb} \times C_i \times C_r = \textbf{1350 lb/in}^2$

Actual bending stress $f_b = M_x / S_x = 88 \text{ lb/in}^2$

 $f_b / F_{b'} = 0.065$

PASS - Design bending stress exceeds actual bending stress

Strength in compression parallel to grain - cl.3.6.3

Design compressive stress $F_c' = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = \textbf{604 lb/in}^2$

Applied compressive stress $f_c = P \ / \ A = \textbf{188} \ lb/in^2$

 $f_c / F_{c'} = 0.311$

PASS - Design compressive stress exceeds applied compressive stress

Bending and axial compression - cl.3.9.2

Critical buckling design value about x-x axis $F_{cE1} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 681 \text{ lb/in}^2$

Bending and compression check - eq.3.9-3 $[f_c / F_c]^2 + f_{b1} / (F_{b1} \times [1 - (f_c / F_{cE1})]) = 0.187 < 1$

PASS - Combined compressive and bending stresses are within permissible limits

STRUCTURAL WOOD MEMBER DESIGN (NDS)

In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Project No. 23-283

Analysis results

Design moment in major axis

Design axial compression

Mx = 34 lb_ft
P = 3881 lb

Sawn lumber section details

 $\begin{array}{lll} \mbox{Nominal breadth of sections} & \mbox{b}_{\mbox{nom}} = 2 \mbox{ in} \\ \mbox{Dressed breadth of sections} & \mbox{b} = 1.5 \mbox{ in} \\ \mbox{Nominal depth of sections} & \mbox{d}_{\mbox{nom}} = 4 \mbox{ in} \\ \mbox{Dressed depth of sections} & \mbox{d} = 3.5 \mbox{ in} \\ \mbox{Number of sections in member} & \mbox{N} = 2 \\ \end{array}$

Overall breadth of member $b_b = N \times b = 3 \text{ in}$

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\begin{array}{lll} \mbox{Bending parallel to grain} & \mbox{F_b} = 900 \mbox{ lb/in}^2 \\ \mbox{Tension parallel to grain} & \mbox{F_t} = 575 \mbox{ lb/in}^2 \\ \mbox{Compression parallel to grain} & \mbox{F_c} = 1350 \mbox{ lb/in}^2 \\ \mbox{Compression perpendicular to grain} & \mbox{F_c} = 625 \mbox{ lb/in}^2 \\ \mbox{Shear parallel to grain} & \mbox{F_v} = 180 \mbox{ lb/in}^2 \\ \mbox{Modulus of elasticity} & \mbox{E} = 1600000 \mbox{ lb/in}^2 \\ \end{array}$

Modulus of elasticity, stability calculations $E_{min} = 580000 \text{ lb/in}^2$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Effective length in x-axis $L_{ex} = L_x \times K_x = \textbf{7.72} \text{ ft}$

Unbraced length in y-axis $L_y = 1$ ft Effective length factor in y-axis $K_y = 1$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

Section properties

Cross sectional area of member $A = N \times b \times d = 10.50 \text{ in}^2$

Section modulus $S_x = N \times b \times d^2 / 6 = 6.12 \text{ in}^3$

 $S_y = d \times (N \times b)^2 / 6 = 5.25 \text{ in}^3$

Second moment of area $I_x = N \times b \times d^3 / 12 = 10.72 \text{ in}^4$

 $I_y = d \times (N \times b)^3 / 12 = 7.87 \text{ in}^4$

Project No. 23-283

Adjustment factors

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

 $\label{eq:continuous} \begin{array}{lll} \text{Repetitive member factor - cl.4.3.9} & C_r = \textbf{1.00} \\ \text{Bearing area factor - cl.3.10.4} & C_b = \textbf{1.00} \\ \text{Column stability coefficient - cl.15.3.2} & K_f = \textbf{1.00} \\ \end{array}$

Adjusted modulus of elasticity for column stability $E_{min}' = E_{min} \times C_{ME} \times C_{t} \times C_{iE} = 580000 \text{ lb/in}^{2}$ Reference compression design value $F_{c^{*}} = F_{c} \times C_{D} \times C_{Mc} \times C_{t} \times C_{Fc} \times C_{i} = 1552 \text{ lb/in}^{2}$ Critical buckling design value for compression $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^{2} = 681 \text{ lb/in}^{2}$

c = 0.80

Column stability factor - eq.15.3-1

 $C_P = K_f \times [(1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{[((1 + (F_{cE} / F_{c^*})) / (2 \times c))^2 - (F_{cE} / F_{c^*}) / c]]} = 0.39$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 1.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Strength in bending - cl.3.3.1

Design bending stress $F_b' = F_b \times C_D \times C_t \times C_L \times C_{Fb} \times C_i \times C_r = \textbf{1350 lb/in}^2$

Actual bending stress $f_b = M_x / S_x = 67 \text{ lb/in}^2$

 $f_b / F_{b'} = 0.049$

PASS - Design bending stress exceeds actual bending stress

Strength in compression parallel to grain - cl.3.6.3

Design compressive stress $F_c' = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = \textbf{604 lb/in}^2$

Applied compressive stress $f_c = P \ / \ A = \textbf{370} \ lb/in^2$

 $f_c / F_c' = 0.612$

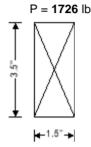
PASS - Design compressive stress exceeds applied compressive stress

Bending and axial compression - cl.3.9.2

Critical buckling design value about x-x axis $F_{cE1} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 681 \text{ lb/in}^2$

Bending and compression check - eq.3.9-3 $[f_c / F_c']^2 + f_{b1} / (F_{b1}' \times [1 - (f_c / F_{cE1})]) = \textbf{0.483} < \textbf{1}$

STRUCTURAL WOOD MEMBER DESIGN (NDS)


In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

—— Project No. 23-283

Analysis results

Design axial compression

Sawn lumber section details

 $\begin{array}{lll} \mbox{Nominal breadth of sections} & b_{\mbox{nom}} = 2 \mbox{ in} \\ \mbox{Dressed breadth of sections} & b = 1.5 \mbox{ in} \\ \mbox{Nominal depth of sections} & d_{\mbox{nom}} = 4 \mbox{ in} \\ \mbox{Dressed depth of sections} & d = 3.5 \mbox{ in} \\ \mbox{Number of sections in member} & N = 1 \end{array}$

Overall breadth of member $b_b = N \times b = 1.5$ in

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\begin{array}{lll} \mbox{Bending parallel to grain} & \mbox{F}_b = 900 \ lb/in^2 \\ \mbox{Tension parallel to grain} & \mbox{F}_t = 575 \ lb/in^2 \\ \mbox{Compression parallel to grain} & \mbox{F}_c = 1350 \ lb/in^2 \\ \mbox{Compression perpendicular to grain} & \mbox{F}_{c_perp} = 625 \ lb/in^2 \\ \mbox{Shear parallel to grain} & \mbox{F}_v = 180 \ lb/in^2 \\ \mbox{Modulus of elasticity} & \mbox{E} = 1600000 \ lb/in^2 \\ \mbox{Modulus of elasticity, stability calculations} & \mbox{E}_{min} = 580000 \ lb/in^2 \\ \end{array}$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Effective length in x-axis $L_{ex} = L_x \times K_x = 7.72$ ft

Unbraced length in y-axis $L_y = 1$ ft Effective length factor in y-axis $K_y = 1$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

The beam is one of three or more repetitive members

Section properties

Cross sectional area of member $A = N \times b \times d = \textbf{5.25} \text{ in}^2$ Section modulus $S_x = N \times b \times d^2 / 6 = \textbf{3.06} \text{ in}^3$ $S_y = d \times (N \times b)^2 / 6 = \textbf{1.31} \text{ in}^3$ Second moment of area $I_x = N \times b \times d^3 / 12 = \textbf{5.36} \text{ in}^4$

 $I_y = d \times (N \times b)^3 / 12 = 0.98 \text{ in}^4$

Project WSS - Lee's Summit, MO - Combo 3	Project No. 23-283	

Adjustment factors

Load duration factor - Table 2.3.2	$C_D = 1.00$
Temperature factor - Table 2.3.3	$C_t = 1.00$
Size factor for bending - Table 4A	C _{Fb} = 1.50
Size factor for tension - Table 4A	$C_{Ft} = 1.50$
Size factor for compression - Table 4A	CFc = 1.15
Flat use factor - Table 4A	$C_{fu} = 1.10$

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

Repetitive member factor - cl.4.3.9 $C_r = 1.15$ Bearing area factor - cl.3.10.4 $C_b = 1.00$

Adjusted modulus of elasticity for column stability $E_{min}' = E_{min} \times C_{ME} \times C_t \times C_{iE} = 580000 \text{ lb/in}^2$ Reference compression design value $F_{c^*} = F_c \times C_D \times C_{MC} \times C_t \times C_{Fc} \times C_i = 1552 \text{ lb/in}^2$ Critical buckling design value for compression $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 681 \text{ lb/in}^2$

c = 0.80

Column stability factor - eq.3.7-1

 $C_P = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{[((1 + (F_{cE} / F_{c^*})) / (2 \times c))^2 - (F_{cE} / F_{c^*}) / c]} = 0.39$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 2.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Strength in compression parallel to grain - cl.3.6.3

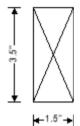
Design compressive stress $F_c' = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = \textbf{604 lb/in}^2$

Applied compressive stress $f_c = P / A = 329 \text{ lb/in}^2$

 $f_c / F_c' = 0.545$

PASS - Design compressive stress exceeds applied compressive stress

STRUCTURAL WOOD MEMBER DESIGN (NDS)


In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

—— Project No. 23-283

Analysis results

 $\label{eq:majoraxis} \text{Design moment in major axis} \qquad \qquad \text{M}_{\text{x}} = \textbf{45} \text{ lb_ft}$ $\text{Design axial compression} \qquad \qquad \text{P} = \textbf{1307} \text{ lb}$

Sawn lumber section details

 $\begin{array}{lll} \mbox{Nominal breadth of sections} & \mbox{b}_{\mbox{nom}} = 2 \mbox{ in} \\ \mbox{Dressed breadth of sections} & \mbox{b} = 1.5 \mbox{ in} \\ \mbox{Nominal depth of sections} & \mbox{d}_{\mbox{nom}} = 4 \mbox{ in} \\ \mbox{Dressed depth of sections} & \mbox{d} = 3.5 \mbox{ in} \\ \mbox{Number of sections in member} & \mbox{N} = 1 \end{array}$

Overall breadth of member $b_b = N \times b = 1.5$ in

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\begin{tabular}{lll} Bending parallel to grain & F_b = 900 \ lb/in^2 \\ Tension parallel to grain & F_t = 575 \ lb/in^2 \\ Compression parallel to grain & F_c = 1350 \ lb/in^2 \\ Compression perpendicular to grain & F_{c_perp} = 625 \ lb/in^2 \\ Shear parallel to grain & F_v = 180 \ lb/in^2 \\ Modulus of elasticity & E = 1600000 \ lb/in^2 \\ Modulus of elasticity, stability calculations & E_{min} = 580000 \ lb/in^2 \\ \end{tabular}$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Service condition Dry
Load duration Ten years
Unbraced length in x-axis $L_x = 7.72$ ft
Effective length factor in x-axis $K_x = 1$

Effective length in x-axis $L_{ex} = L_x \times K_x = 7.72$ ft

Unbraced length in y-axis $L_y = 1$ ft Effective length factor in y-axis $K_y = 1$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

The beam is one of three or more repetitive members

Section properties

Cross sectional area of member $A = N \times b \times d = \textbf{5.25} \text{ in}^2$ Section modulus $S_x = N \times b \times d^2 / 6 = \textbf{3.06} \text{ in}^3$ $S_y = d \times (N \times b)^2 / 6 = \textbf{1.31} \text{ in}^3$ Second moment of area $I_x = N \times b \times d^3 / 12 = \textbf{5.36} \text{ in}^4$

 $I_y = d \times (N \times b)^3 / 12 = 0.98 \text{ in}^4$

Project WSS - Lee's Summit, MO - Combo 3	

Project No. 23-283

Calc. By GL Checked By DN Date 7/27/2023

Adjustment factors

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

Repetitive member factor - cl.4.3.9 $C_r = 1.15$ Bearing area factor - cl.3.10.4 $C_b = 1.00$

Adjusted modulus of elasticity for column stability $E_{min}' = E_{min} \times C_{ME} \times C_{t} \times C_{iE} =$ **580000** lb/in² Reference compression design value $F_{c^*} = F_{c} \times C_{D} \times C_{Mc} \times C_{t} \times C_{Fc} \times C_{i} =$ **1552** lb/in² Critical buckling design value for compression $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 =$ **681** lb/in²

c = 0.80

Column stability factor - eq.3.7-1

 $C_P = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{[((1 + (F_{cE} / F_{c^*})) / (2 \times c))^2 - (F_{cE} / F_{c^*}) / c]} = 0.39$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 2.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Strength in bending - cl.3.3.1

Design bending stress $F_b' = F_b \times C_D \times C_t \times C_L \times C_{Fb} \times C_i \times C_r = 1552 \text{ lb/in}^2$

Actual bending stress $f_b = M_x / S_x = 176 \text{ lb/in}^2$

 $f_b / F_{b'} = 0.114$

PASS - Design bending stress exceeds actual bending stress

Strength in compression parallel to grain - cl.3.6.3

Design compressive stress $F_{\text{c}}' = F_{\text{c}} \times C_{\text{D}} \times C_{\text{t}} \times C_{\text{Fc}} \times C_{\text{i}} \times C_{\text{P}} = \textbf{604} \text{ lb/in}^2$

Applied compressive stress $f_c = P / A = 249 \text{ lb/in}^2$

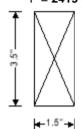
 $f_c / F_{c'} = 0.412$

PASS - Design compressive stress exceeds applied compressive stress

Bending and axial compression - cl.3.9.2

Critical buckling design value about x-x axis $F_{cE1} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 681 \text{ lb/in}^2$

Bending and compression check - eq.3.9-3 $[f_c / F_c]^2 + f_{b1} / (F_{b1}' \times [1 - (f_c / F_{cE1})]) = \textbf{0.349} < \textbf{1}$


STRUCTURAL WOOD MEMBER DESIGN (NDS)

In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Analysis results

Design moment in major axis $M_x = 34 \text{ lb_ft}$ Design axial compression P = 2419 lb

Sawn lumber section details

 $\begin{array}{lll} \mbox{Nominal breadth of sections} & \mbox{b}_{\mbox{nom}} = 2 \mbox{ in} \\ \mbox{Dressed breadth of sections} & \mbox{b} = 1.5 \mbox{ in} \\ \mbox{Nominal depth of sections} & \mbox{d}_{\mbox{nom}} = 4 \mbox{ in} \\ \mbox{Dressed depth of sections} & \mbox{d} = 3.5 \mbox{ in} \\ \mbox{Number of sections in member} & \mbox{N} = 1 \end{array}$

Overall breadth of member $b_b = N \times b = 1.5$ in

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\begin{tabular}{lll} Bending parallel to grain & F_b = 900 \ lb/in^2 \\ Tension parallel to grain & F_t = 575 \ lb/in^2 \\ Compression parallel to grain & F_c = 1350 \ lb/in^2 \\ Compression perpendicular to grain & F_{c_perp} = 625 \ lb/in^2 \\ Shear parallel to grain & F_v = 180 \ lb/in^2 \\ Modulus of elasticity & E = 1600000 \ lb/in^2 \\ Modulus of elasticity, stability calculations & E_{min} = 580000 \ lb/in^2 \\ \end{tabular}$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Service condition Dry
Load duration Ten years
Unbraced length in x-axis $L_x = 7.72$ ft
Effective length factor in x-axis $K_x = 1$

Effective length in x-axis $L_{ex} = L_x \times K_x = 7.72$ ft

Unbraced length in y-axis $L_y = 1$ ft Effective length factor in y-axis $K_y = 1$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

The beam is one of three or more repetitive members

Section properties

Cross sectional area of member $A = N \times b \times d = \textbf{5.25} \text{ in}^2$ Section modulus $S_x = N \times b \times d^2 / 6 = \textbf{3.06} \text{ in}^3$ $S_y = d \times (N \times b)^2 / 6 = \textbf{1.31} \text{ in}^3$

Second moment of area $I_x = N \times b \times d^3 / 12 = 5.36 \text{ in}^4$

 $I_V = d \times (N \times b)^3 / 12 = 0.98 \text{ in}^4$

Project WSS - Lee's Summit, MO - Combo 6 Project No. 23-283

Calc. By GL Checked By DN Date 7/27/2023

Adjustment factors

Load duration factor - Table 2.3.2	$C_D = 1.00$
Temperature factor - Table 2.3.3	$C_t = 1.00$
Size factor for bending - Table 4A	CFb = 1.50
Size factor for tension - Table 4A	$C_{Ft} = \textbf{1.50}$
Size factor for compression - Table 4A	CFc = 1.15
Flat use factor - Table 4A	$C_{\text{fu}} = \textbf{1.10}$

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

Repetitive member factor - cl.4.3.9 $C_r = 1.15$ Bearing area factor - cl.3.10.4 $C_b = 1.00$

Adjusted modulus of elasticity for column stability $E_{min}' = E_{min} \times C_{ME} \times C_t \times C_{iE} = 580000 \text{ lb/in}^2$ Reference compression design value $F_{c^*} = F_c \times C_D \times C_{MC} \times C_t \times C_{Fc} \times C_i = 1552 \text{ lb/in}^2$ Critical buckling design value for compression $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 681 \text{ lb/in}^2$

c = 0.80

Column stability factor - eq.3.7-1

 $C_P = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{[((1 + (F_{cE} / F_{c^*})) / (2 \times c))^2 - (F_{cE} / F_{c^*}) / c]} = 0.39$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 2.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Strength in bending - cl.3.3.1

Design bending stress $F_b' = F_b \times C_D \times C_t \times C_L \times C_{Fb} \times C_i \times C_r = 1552 \text{ lb/in}^2$

Actual bending stress $f_b = M_x / S_x = 133 \text{ lb/in}^2$

 $f_b / F_{b'} = 0.086$

PASS - Design bending stress exceeds actual bending stress

Strength in compression parallel to grain - cl.3.6.3

Design compressive stress $F_{\text{c}}{}^{!} = F_{\text{c}} \times C_{\text{D}} \times C_{\text{t}} \times C_{\text{Fc}} \times C_{\text{i}} \times C_{\text{P}} = \textbf{604 lb/in}^{2}$

Applied compressive stress $f_c = P / A = 461 \text{ lb/in}^2$

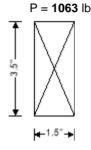
 $f_c / F_c' =$ **0.763**

PASS - Design compressive stress exceeds applied compressive stress

Bending and axial compression - cl.3.9.2

Critical buckling design value about x-x axis $F_{cE1} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 681 \text{ lb/in}^2$

Bending and compression check - eq.3.9-3 $[f_c / F_c']^2 + f_{b1} / (F_{b1}' \times [1 - (f_c / F_{cE1})]) = 0.848 < 1$


STRUCTURAL WOOD MEMBER DESIGN (NDS)

In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Analysis results

Design axial compression

Sawn lumber section details

 $\begin{array}{lll} \mbox{Nominal breadth of sections} & \mbox{b}_{\mbox{nom}} = 2 \mbox{ in} \\ \mbox{Dressed breadth of sections} & \mbox{b} = 1.5 \mbox{ in} \\ \mbox{Nominal depth of sections} & \mbox{d}_{\mbox{nom}} = 4 \mbox{ in} \\ \mbox{Dressed depth of sections} & \mbox{d} = 3.5 \mbox{ in} \\ \mbox{Number of sections in member} & \mbox{N} = 1 \end{array}$

Overall breadth of member $b_b = N \times b = 1.5$ in

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\begin{array}{lll} \mbox{Bending parallel to grain} & \mbox{F_b = 900 lb/in}^2 \\ \mbox{Tension parallel to grain} & \mbox{F_t = 575 lb/in}^2 \\ \mbox{Compression parallel to grain} & \mbox{F_c = 1350 lb/in}^2 \\ \mbox{Compression perpendicular to grain} & \mbox{F_{c_perp} = 625 lb/in}^2 \\ \mbox{Shear parallel to grain} & \mbox{F_{v} = 180 lb/in}^2 \\ \mbox{Modulus of elasticity} & \mbox{E = 1600000 lb/in}^2 \\ \mbox{Modulus of elasticity, stability calculations} & \mbox{E_{min} = 580000 lb/in}^2 \\ \mbox{} \end{array}$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Service condition Dry
Load duration Ten years
Unbraced length in x-axis $L_x = 7.72 \text{ ft}$ Effective length factor in x-axis $K_x = 1$

Effective length in x-axis $L_{ex} = L_x \times K_x = 7.72$ ft

Unbraced length in y-axis $L_y = 1$ ft Effective length factor in y-axis $K_y = 1$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

The beam is one of three or more repetitive members

Section properties

Cross sectional area of member $A = N \times b \times d = \textbf{5.25} \text{ in}^2$ Section modulus $S_x = N \times b \times d^2 / 6 = \textbf{3.06} \text{ in}^3$ $S_y = d \times (N \times b)^2 / 6 = \textbf{1.31} \text{ in}^3$ Second moment of area $I_x = N \times b \times d^3 / 12 = \textbf{5.36} \text{ in}^4$

 $I_y = d \times (N \times b)^3 / 12 = 0.98 \text{ in}^4$

Project WSS - Lee's Summit, MO - Combo 3	Drainat No. 22 202
1 TOJECT W33 - LCC 3 Sulfillill, IVIO - COITIDO 3	Project No. 22 282

Adjustment factors

Load duration factor - Table 2.3.2	$C_D = 1.00$
Temperature factor - Table 2.3.3	$C_t = 1.00$
Size factor for bending - Table 4A	C _{Fb} = 1.50
Size factor for tension - Table 4A	$C_{Ft} = 1.50$
Size factor for compression - Table 4A	CFc = 1.15
Flat use factor - Table 4A	$C_{fu} = 1.10$

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

Repetitive member factor - cl.4.3.9 $C_r = 1.15$ Bearing area factor - cl.3.10.4 $C_b = 1.00$

Adjusted modulus of elasticity for column stability $E_{min}' = E_{min} \times C_{ME} \times C_t \times C_{iE} = 580000 \text{ lb/in}^2$ Reference compression design value $F_{c^*} = F_c \times C_D \times C_{MC} \times C_t \times C_{Fc} \times C_i = 1552 \text{ lb/in}^2$ Critical buckling design value for compression $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 681 \text{ lb/in}^2$

c = 0.80

Column stability factor - eq.3.7-1

 $C_P = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{[((1 + (F_{cE} / F_{c^*})) / (2 \times c))^2 - (F_{cE} / F_{c^*}) / c]} = 0.39$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 2.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

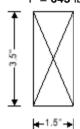

Strength in compression parallel to grain - cl.3.6.3

Design compressive stress $F_c' = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = \textbf{604 lb/in}^2$

Applied compressive stress $f_c = P / A = 202 \text{ lb/in}^2$

 $f_c / F_c' = 0.335$

PASS - Design compressive stress exceeds applied compressive stress


STRUCTURAL WOOD MEMBER DESIGN (NDS)

In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Analysis results

Design moment in major axis $M_x = 33 \text{ lb_ft}$ Design axial compression P = 643 lb

Sawn lumber section details

 $\begin{array}{lll} \mbox{Nominal breadth of sections} & \mbox{b}_{\mbox{nom}} = 2 \mbox{ in} \\ \mbox{Dressed breadth of sections} & \mbox{b} = 1.5 \mbox{ in} \\ \mbox{Nominal depth of sections} & \mbox{d}_{\mbox{nom}} = 4 \mbox{ in} \\ \mbox{Dressed depth of sections} & \mbox{d} = 3.5 \mbox{ in} \\ \mbox{Number of sections in member} & \mbox{N} = 1 \end{array}$

Overall breadth of member $b_b = N \times b = 1.5$ in

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\begin{tabular}{lll} Bending parallel to grain & F_b = 900 \ lb/in^2 \\ Tension parallel to grain & F_t = 575 \ lb/in^2 \\ Compression parallel to grain & F_c = 1350 \ lb/in^2 \\ Compression perpendicular to grain & F_{c_perp} = 625 \ lb/in^2 \\ Shear parallel to grain & F_v = 180 \ lb/in^2 \\ Modulus of elasticity & E = 1600000 \ lb/in^2 \\ Modulus of elasticity, stability calculations & E_{min} = 580000 \ lb/in^2 \\ \end{tabular}$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Service condition Dry
Load duration Ten years
Unbraced length in x-axis $L_x = 7.72$ ft
Effective length factor in x-axis $K_x = 1$

Effective length in x-axis $L_{ex} = L_x \times K_x = 7.72$ ft

Unbraced length in y-axis $L_y = 1$ ft Effective length factor in y-axis $K_y = 1$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

The beam is one of three or more repetitive members

Section properties

Cross sectional area of member $A = N \times b \times d = \textbf{5.25} \text{ in}^2$ Section modulus $S_x = N \times b \times d^2 / 6 = \textbf{3.06} \text{ in}^3$ $S_y = d \times (N \times b)^2 / 6 = \textbf{1.31} \text{ in}^3$ Second moment of area $I_x = N \times b \times d^3 / 12 = \textbf{5.36} \text{ in}^4$

Adjustment factors

Load duration factor - Table 2.3.2	C _D = 1.00
Temperature factor - Table 2.3.3	$C_t = \textbf{1.00}$
Size factor for bending - Table 4A	CFb = 1.50
Size factor for tension - Table 4A	$C_{\text{Ft}} = \textbf{1.50}$
Size factor for compression - Table 4A	CFc = 1.15
Flat use factor - Table 4A	$C_{\text{fu}} = \textbf{1.10}$

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

Repetitive member factor - cl.4.3.9 $C_r = 1.15$ $C_b = 1.00$ Bearing area factor - cl.3.10.4

Adjusted modulus of elasticity for column stability $E_{min}' = E_{min} \times C_{ME} \times C_{t} \times C_{iE} = 580000 \text{ lb/in}^2$ Reference compression design value $F_c^* = F_c \times C_D \times C_{Mc} \times C_t \times C_{Fc} \times C_i = 1552 \text{ lb/in}^2$ Critical buckling design value for compression $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 681 \text{ lb/in}^2$

c = 0.80

Column stability factor - eq.3.7-1

 $C_P = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{[((1 + (F_{cE} / F_{c^*})) / (2 \times c))^2 - (F_{cE} / F_{c^*}) / c]} = 0.39$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 2.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Strength in bending - cl.3.3.1

 $F_b' = F_b \times C_D \times C_t \times C_L \times C_{Fb} \times C_i \times C_r = 1552 \text{ lb/in}^2$ Design bending stress

 $f_b = M_x / S_x = 129 \text{ lb/in}^2$ Actual bending stress

 $f_b / F_{b'} = 0.083$

PASS - Design bending stress exceeds actual bending stress

Strength in compression parallel to grain - cl.3.6.3

 $F_c{'} = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = \textbf{604 lb/in}^2$ Design compressive stress

 $f_c = P / A = 122 lb/in^2$ Applied compressive stress

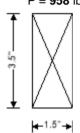
 $f_c / F_c' = 0.203$

PASS - Design compressive stress exceeds applied compressive stress

Bending and axial compression - cl.3.9.2

Critical buckling design value about x-x axis $F_{cE1} = 0.822 \times E_{min'} / (L_{ex} / d)^2 = 681 \text{ lb/in}^2$

 $[f_c / F_c']^2 + f_{b1} / (F_{b1}' \times [1 - (f_c / F_{cE1})]) = 0.143 < 1$ Bending and compression check - eq.3.9-3


STRUCTURAL WOOD MEMBER DESIGN (NDS)

In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Analysis results

Design moment in major axis $M_x = 25 \text{ lb_ft}$ Design axial compression P = 958 lb

Sawn lumber section details

 $\begin{array}{lll} \mbox{Nominal breadth of sections} & \mbox{b}_{\mbox{nom}} = 2 \mbox{ in} \\ \mbox{Dressed breadth of sections} & \mbox{b} = 1.5 \mbox{ in} \\ \mbox{Nominal depth of sections} & \mbox{d}_{\mbox{nom}} = 4 \mbox{ in} \\ \mbox{Dressed depth of sections} & \mbox{d} = 3.5 \mbox{ in} \\ \mbox{Number of sections in member} & \mbox{N} = 1 \end{array}$

Overall breadth of member $b_b = N \times b = 1.5$ in

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\begin{tabular}{lll} Bending parallel to grain & F_b = 900 \ lb/in^2 \\ Tension parallel to grain & F_t = 575 \ lb/in^2 \\ Compression parallel to grain & F_c = 1350 \ lb/in^2 \\ Compression perpendicular to grain & F_{c_perp} = 625 \ lb/in^2 \\ Shear parallel to grain & F_v = 180 \ lb/in^2 \\ Modulus of elasticity & E = 1600000 \ lb/in^2 \\ Modulus of elasticity, stability calculations & E_{min} = 580000 \ lb/in^2 \\ \end{tabular}$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Service condition Dry
Load duration Ten years
Unbraced length in x-axis $L_x = 7.72 \text{ ft}$ Effective length factor in x-axis $K_x = 1$

Effective length in x-axis $L_{ex} = L_x \times K_x = 7.72$ ft

Unbraced length in y-axis $L_y = 1$ ft Effective length factor in y-axis $K_y = 1$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

The beam is one of three or more repetitive members

Section properties

Cross sectional area of member $A = N \times b \times d = 5.25 \text{ in}^2$ Section modulus $S_x = N \times b \times d^2 / 6 = 3.06 \text{ in}^3$ $S_y = d \times (N \times b)^2 / 6 = 1.31 \text{ in}^3$ Second moment of area $I_x = N \times b \times d^3 / 12 = 5.36 \text{ in}^4$

 $I_y = d \times (N \times b)^3 / 12 = 0.98 \text{ in}^4$

— Project No. 23-283

Calc. By GL Checked By DN Date 7/27/2023

Adjustment factors

Load duration factor - Table 2.3.2	C _D = 1.00
Temperature factor - Table 2.3.3	Ct = 1.00
Size factor for bending - Table 4A	CFb = 1.50
Size factor for tension - Table 4A	CFt = 1.50
Size factor for compression - Table 4A	CFc = 1.15
Flat use factor - Table 4A	$C_{fu} = 1.10$

Incising factor for modulus of elasticity - Table 4.3.8

 $C_{iE} = 1.00$

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

Repetitive member factor - cl.4.3.9 $C_r = 1.15$ Bearing area factor - cl.3.10.4 $C_b = 1.00$

Adjusted modulus of elasticity for column stability $E_{min}' = E_{min} \times C_{ME} \times C_t \times C_{iE} = 580000 \text{ lb/in}^2$ Reference compression design value $F_{c^*} = F_c \times C_D \times C_{Mc} \times C_t \times C_{Fc} \times C_i = 1552 \text{ lb/in}^2$ Critical buckling design value for compression $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 681 \text{ lb/in}^2$

c = 0.80

Column stability factor - eq.3.7-1

 $C_P = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{[((1 + (F_{cE} / F_{c^*})) / (2 \times c))^2 - (F_{cE} / F_{c^*}) / c]} = 0.39$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 2.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Strength in bending - cl.3.3.1

Design bending stress $F_b' = F_b \times C_D \times C_t \times C_L \times C_{Fb} \times C_i \times C_r = 1552 \text{ lb/in}^2$

Actual bending stress $f_b = M_x / S_x = 98 \text{ lb/in}^2$

 $f_b / F_{b'} = 0.063$

PASS - Design bending stress exceeds actual bending stress

Strength in compression parallel to grain - cl.3.6.3

Design compressive stress $F_{\text{c}}{}^{!} = F_{\text{c}} \times C_{\text{D}} \times C_{\text{t}} \times C_{\text{Fc}} \times C_{\text{i}} \times C_{\text{P}} = \textbf{604 lb/in}^{2}$

Applied compressive stress $f_c = P / A = 182 \text{ lb/in}^2$

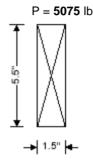
 $f_c / F_c' = 0.302$

PASS - Design compressive stress exceeds applied compressive stress

Bending and axial compression - cl.3.9.2

Critical buckling design value about x-x axis $F_{cE1} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 681 \text{ lb/in}^2$ Bending and compression check - eq.3.9-3 $[f_c / F_c']^2 + f_{b1} / (F_{b1}' \times [1 - (f_c / F_{cE1})]) = 0.178 < 1$

STRUCTURAL WOOD MEMBER DESIGN (NDS)


In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

— Project No. 23-283

Analysis results

Design axial compression

Sawn lumber section details

Nominal breadth of sections $b_{nom} = 2$ in Dressed breadth of sections b = 1.5 in Nominal depth of sections $d_{nom} = 6$ in Dressed depth of sections d = 5.5 in Number of sections in member N = 1

Overall breadth of member $b_b = N \times b = 1.5$ in

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\begin{array}{lll} \mbox{Bending parallel to grain} & \mbox{F_b = 900 lb/in}^2 \\ \mbox{Tension parallel to grain} & \mbox{F_t = 575 lb/in}^2 \\ \mbox{Compression parallel to grain} & \mbox{F_c = 1350 lb/in}^2 \\ \mbox{Compression perpendicular to grain} & \mbox{F_{c_perp} = 625 lb/in}^2 \\ \mbox{Shear parallel to grain} & \mbox{F_{v} = 180 lb/in}^2 \\ \mbox{Modulus of elasticity} & \mbox{E = 1600000 lb/in}^2 \\ \mbox{Modulus of elasticity, stability calculations} & \mbox{E_{min} = 580000 lb/in}^2 \\ \mbox{} \end{array}$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Service condition Dry
Load duration Ten years
Unbraced length in x-axis $L_x = 7.72$ ft
Effective length factor in x-axis $K_x = 1$

Effective length in x-axis $L_{ex} = L_x \times K_x = 7.72$ ft

Unbraced length in y-axis $L_y = \textbf{1} \ \text{ft}$ Effective length factor in y-axis $K_y = \textbf{1}$

Effective length in y-axis $L_{ey} = L_y \times K_y = \textbf{1} \text{ ft}$

The beam is one of three or more repetitive members

Section properties

Cross sectional area of member $A = N \times b \times d = \textbf{8.25} \text{ in}^2$ Section modulus $S_x = N \times b \times d^2 / 6 = \textbf{7.56} \text{ in}^3$ $S_y = d \times (N \times b)^2 / 6 = \textbf{2.06} \text{ in}^3$ Second moment of area $I_x = N \times b \times d^3 / 12 = \textbf{20.80} \text{ in}^4$

L dv/Nvb/3/42 4 FE in

 $I_y = d \times (N \times b)^3 / 12 = 1.55 \text{ in}^4$

Project WSS - Lee's Summit - Exterior Wall Project No. 23-283

Calc. By <u>GL</u> Checked By <u>DN</u> Date <u>6/30/2023</u>

Adjustment factors

Load duration factor - Table 2.3.2	$C_D = 1.00$
Temperature factor - Table 2.3.3	$C_t = \textbf{1.00}$
Size factor for bending - Table 4A	$C_{Fb} = 1.30$
Size factor for tension - Table 4A	$C_{Ft} = 1.30$
Size factor for compression - Table 4A	$C_{Fc} = 1.10$
Flat use factor - Table 4A	$C_{\text{fu}} = \textbf{1.15}$

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

Repetitive member factor - cl.4.3.9 $C_r = 1.15$ Bearing area factor - cl.3.10.4 $C_b = 1.00$

 $\label{eq:compression} \begin{tabular}{ll} Adjusted modulus of elasticity for column stability & $E_{min}' = E_{min} \times C_{ME} \times C_t \times C_{iE} = {\bf 580000} \ lb/in^2 \\ Reference compression design value & $F_{c^*} = F_c \times C_D \times C_{MC} \times C_t \times C_{Fc} \times C_i = {\bf 1485} \ lb/in^2 \\ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' \ / \ (L_{ex} \ / \ d)^2 = {\bf 1680} \ lb/in^2 \\ \end{tabular}$

c = 0.80

Column stability factor - eq.3.7-1

 $C_P = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{[((1 + (F_{cE} / F_{c^*})) / (2 \times c))^2 - (F_{cE} / F_{c^*}) / c]} = 0.73$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 3.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Strength in compression parallel to grain - cl.3.6.3

Design compressive stress $F_c' = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = \textbf{1087 lb/in}^2$

Applied compressive stress $f_c = P / A = 615 \text{ lb/in}^2$

 $f_c / F_c' = 0.566$

PASS - Design compressive stress exceeds applied compressive stress

Calc. By GL Checked By DN

Date 7/3/2023

STRUCTURAL WOOD MEMBER DESIGN (NDS)

In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Analysis results

Design moment in major axis Design axial compression

 $M_x = 259 \text{ lb ft}$ P = **3008** lb

→ 1.5" **←**

Sawn lumber section details

 $b_{nom} = 2 in$ Nominal breadth of sections Dressed breadth of sections b = 1.5 inNominal depth of sections $d_{nom} = 6 in$ d = 5.5 inDressed depth of sections N = 1Number of sections in member

Overall breadth of member $b_b = N \times b = 1.5 \text{ in}$

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

Bending parallel to grain $F_b = 900 \text{ lb/in}^2$ $F_t = 575 \text{ lb/in}^2$ Tension parallel to grain $F_c = 1350 \text{ lb/in}^2$ Compression parallel to grain Compression perpendicular to grain Fc_perp = **625** lb/in² Shear parallel to grain $F_v = 180 \text{ lb/in}^2$ E = 1600000 lb/in² Modulus of elasticity Modulus of elasticity, stability calculations $E_{min} = 580000 \text{ lb/in}^2$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Service condition Dry Load duration Ten minutes

Unbraced length in x-axis $L_x = 7.72 \text{ ft}$ Effective length factor in x-axis $K_x = 1$

Effective length in x-axis $L_{ex} = L_x \times K_x = 7.72 \text{ ft}$

 $L_v = 1$ ft Unbraced length in y-axis Effective length factor in y-axis $K_{y} = 1$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1 \text{ ft}$

The beam is one of three or more repetitive members

Section properties

Cross sectional area of member $A = N \times b \times d = 8.25 \text{ in}^2$ $S_x = N \times b \times d^2 / 6 = 7.56 in^3$ Section modulus $S_y = d \times (N \times b)^2 / 6 = 2.06 \text{ in}^3$

Second moment of area $I_x = N \times b \times d^3 / 12 = 20.80 \text{ in}^4$

 $I_V = d \times (N \times b)^3 / 12 = 1.55 \text{ in}^4$

— Project No. 23-283—

Calc. By GL Checked By DN Date 7/3/2023

Adjustment factors

Load duration factor - Table 2.3.2	$C_D = 1.60$
Temperature factor - Table 2.3.3	Ct = 1.00
Size factor for bending - Table 4A	$C_{Fb} = 1.30$
Size factor for tension - Table 4A	CFt = 1.30
Size factor for compression - Table 4A	CFc = 1.10
Flat use factor - Table 4A	$C_{fu} = 1.15$

Incising factor for modulus of elasticity - Table 4.3.8

 $C_{iE} = 1.00$

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

Repetitive member factor - cl.4.3.9 $C_r = 1.15$ Bearing area factor - cl.3.10.4 $C_b = 1.00$

Adjusted modulus of elasticity for column stability $E_{min}' = E_{min} \times C_{ME} \times C_t \times C_{iE} = 580000 \text{ lb/in}^2$ Reference compression design value $F_{c^*} = F_c \times C_D \times C_{MC} \times C_t \times C_{Fc} \times C_i = 2376 \text{ lb/in}^2$ Critical buckling design value for compression $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 1680 \text{ lb/in}^2$

c = 0.80

Column stability factor - eq.3.7-1

 $C_P = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{[((1 + (F_{cE} / F_{c^*})) / (2 \times c))^2 - (F_{cE} / F_{c^*}) / c]} = 0.56$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 3.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Strength in bending - cl.3.3.1

Design bending stress $F_b' = F_b \times C_D \times C_t \times C_L \times C_{Fb} \times C_i \times C_r = 2153 \text{ lb/in}^2$

Actual bending stress $f_b = M_x / S_x = 411 \text{ lb/in}^2$

 $f_b / F_{b'} =$ **0.191**

PASS - Design bending stress exceeds actual bending stress

Strength in compression parallel to grain - cl.3.6.3

Design compressive stress $F_c' = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = \textbf{1337 lb/in}^2$

Applied compressive stress $f_c = P / A = 365 \text{ lb/in}^2$

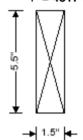
 $f_c / F_c' = 0.273$

PASS - Design compressive stress exceeds applied compressive stress

Bending and axial compression - cl.3.9.2

Critical buckling design value about x-x axis $F_{cE1} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 1680 \text{ lb/in}^2$ Bending and compression check - eq.3.9-3 $[f_c / F_c']^2 + f_{b1} / (F_{b1}' \times [1 - (f_c / F_{cE1})]) = 0.318 < 1$

STRUCTURAL WOOD MEMBER DESIGN (NDS)


In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

----- Project No. 23-283

Analysis results

Design moment in major axis $M_x = 195 \text{ lb_ft}$ Design axial compression P = 4817 lb

Sawn lumber section details

Nominal breadth of sections $b_{\text{nom}} = 2 \text{ in}$ Dressed breadth of sections b = 1.5 inNominal depth of sections $d_{\text{nom}} = 6 \text{ in}$ Dressed depth of sections d = 5.5 inNumber of sections in member N = 1

Overall breadth of member $b_b = N \times b = 1.5$ in

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\begin{array}{lll} \mbox{Bending parallel to grain} & \mbox{F_b = 900 lb/in}^2 \\ \mbox{Tension parallel to grain} & \mbox{F_t = 575 lb/in}^2 \\ \mbox{Compression parallel to grain} & \mbox{F_c = 1350 lb/in}^2 \\ \mbox{Compression perpendicular to grain} & \mbox{F_{c_perp} = 625 lb/in}^2 \\ \mbox{Shear parallel to grain} & \mbox{F_v = 180 lb/in}^2 \\ \mbox{Modulus of elasticity} & \mbox{E = 1600000 lb/in}^2 \\ \mbox{Modulus of elasticity, stability calculations} & \mbox{E_{min} = 580000 lb/in}^2 \\ \end{array}$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Service condition Dry

Effective length in x-axis $L_{ex} = L_x \times K_x = 7.72$ ft

Unbraced length in y-axis $L_y = \textbf{1} \ \text{ft}$ Effective length factor in y-axis $K_y = \textbf{1}$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

The beam is one of three or more repetitive members

Section properties

Cross sectional area of member $A = N \times b \times d = \textbf{8.25} \text{ in}^2$ Section modulus $S_x = N \times b \times d^2 / 6 = \textbf{7.56} \text{ in}^3$ $S_y = d \times (N \times b)^2 / 6 = \textbf{2.06} \text{ in}^3$ Second moment of area $I_x = N \times b \times d^3 / 12 = \textbf{20.80} \text{ in}^4$

 $I_V = d \times (N \times b)^3 / 12 = 1.55 \text{ in}^4$

Adjustment factors

Load duration factor - Table 2.3.2	$C_D = 1.60$
Temperature factor - Table 2.3.3	Ct = 1.00
Size factor for bending - Table 4A	CFb = 1.30
Size factor for tension - Table 4A	$C_{Ft} = 1.30$
Size factor for compression - Table 4A	CFc = 1.10
Flat use factor - Table 4A	$C_{fu} = 1.15$

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

Repetitive member factor - cl.4.3.9 $C_r = 1.15$ Bearing area factor - cl.3.10.4 $C_b = 1.00$

 $\label{eq:compression} \begin{tabular}{ll} Adjusted modulus of elasticity for column stability & $E_{min}' = E_{min} \times C_{ME} \times C_t \times C_{iE} = {\bf 580000} \ lb/in^2 \\ Reference compression design value & $F_{c^*} = F_c \times C_D \times C_{MC} \times C_t \times C_{Fc} \times C_i = {\bf 2376} \ lb/in^2 \\ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' \ / \ (L_{ex} \ / \ d)^2 = {\bf 1680} \ lb/in^2 \\ \end{tabular}$

c = 0.80

Column stability factor - eq.3.7-1

 $C_{P} = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{[((1 + (F_{cE} / F_{c^*})) / (2 \times c))^2 - (F_{cE} / F_{c^*}) / c]} = 0.56$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 3.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Strength in bending - cl.3.3.1

Design bending stress $F_b' = F_b \times C_D \times C_t \times C_L \times C_{Fb} \times C_i \times C_r = 2153 \text{ lb/in}^2$

Actual bending stress $f_b = M_x / S_x = 309 \text{ lb/in}^2$

 $f_b / F_b' =$ **0.144**

PASS - Design bending stress exceeds actual bending stress

Strength in compression parallel to grain - cl.3.6.3

Design compressive stress $F_c' = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = \textbf{1337 lb/in}^2$

Applied compressive stress f_c = P / A = **584** lb/in²

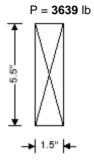
 $f_c / F_{c'} = 0.437$

PASS - Design compressive stress exceeds applied compressive stress

Bending and axial compression - cl.3.9.2

Critical buckling design value about x-x axis $F_{cE1} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 1680 \text{ lb/in}^2$ Bending and compression check - eq.3.9-3 $[f_c / F_c']^2 + f_{b1} / (F_{b1}' \times [1 - (f_c / F_{cE1})]) = 0.411 < 1$

STRUCTURAL WOOD MEMBER DESIGN (NDS)


In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Project No. 23-283

Analysis results

Design axial compression

Sawn lumber section details

Nominal breadth of sections $b_{nom} = 2$ in Dressed breadth of sections b = 1.5 in Nominal depth of sections $d_{nom} = 6$ in Dressed depth of sections d = 5.5 in Number of sections in member N = 1

Overall breadth of member $b_b = N \times b = 1.5$ in

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\begin{array}{lll} \mbox{Bending parallel to grain} & \mbox{F_b = 900 lb/in}^2 \\ \mbox{Tension parallel to grain} & \mbox{F_t = 575 lb/in}^2 \\ \mbox{Compression parallel to grain} & \mbox{F_c = 1350 lb/in}^2 \\ \mbox{Compression perpendicular to grain} & \mbox{F_{c_perp} = 625 lb/in}^2 \\ \mbox{Shear parallel to grain} & \mbox{F_{v} = 180 lb/in}^2 \\ \mbox{Modulus of elasticity} & \mbox{E = 1600000 lb/in}^2 \\ \mbox{Modulus of elasticity, stability calculations} & \mbox{E_{min} = 580000 lb/in}^2 \\ \mbox{} \end{array}$

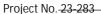
Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

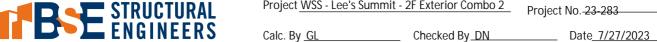
Member details

Service condition Dry
Load duration Ten years
Unbraced length in x-axis $L_x = 7.72$ ft
Effective length factor in x-axis $K_x = 1$

Effective length in x-axis $L_{ex} = L_x \times K_x = 7.72$ ft

 $L_y = \textbf{1} \ \text{ft}$ Effective length factor in y-axis $K_y = \textbf{1} \ \text{ft}$


Effective length in y-axis $L_{ey} = L_y \times K_y = \textbf{1} \text{ ft}$


The beam is one of three or more repetitive members

Section properties

Cross sectional area of member $A = N \times b \times d = \textbf{8.25} \text{ in}^2$ Section modulus $S_x = N \times b \times d^2 / 6 = \textbf{7.56} \text{ in}^3$ $S_y = d \times (N \times b)^2 / 6 = \textbf{2.06} \text{ in}^3$ Second moment of area $I_x = N \times b \times d^3 / 12 = \textbf{20.80} \text{ in}^4$

 $I_y = d \times (N \times b)^3 / 12 = 1.55 \text{ in}^4$

Adjustment factors

 $C_D = 1.00$ Load duration factor - Table 2.3.2 Temperature factor - Table 2.3.3 $C_t = 1.00$ Size factor for bending - Table 4A CFb = 1.30 Size factor for tension - Table 4A C_{Ft} = 1.30 Size factor for compression - Table 4A CFc = 1.10 Flat use factor - Table 4A $C_{fu} = 1.15$

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

Repetitive member factor - cl.4.3.9 $C_r = 1.15$ $C_b = 1.00$ Bearing area factor - cl.3.10.4

Adjusted modulus of elasticity for column stability $E_{min}' = E_{min} \times C_{ME} \times C_{t} \times C_{iE} = 580000 \text{ lb/in}^2$ Reference compression design value $F_{c}^{*} = F_{c} \times C_{D} \times C_{Mc} \times C_{t} \times C_{Fc} \times C_{i} = \textbf{1485 lb/in}^{2}$ Critical buckling design value for compression $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 1680 \text{ lb/in}^2$

c = 0.80

Column stability factor - eq.3.7-1

 $C_P = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{[((1 + (F_{cE} / F_{c^*})) / (2 \times c))^2 - (F_{cE} / F_{c^*}) / c]} = 0.73$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 3.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Strength in compression parallel to grain - cl.3.6.3

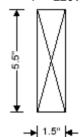
 $F_c' = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = 1087 \text{ lb/in}^2$ Design compressive stress

 $f_c = P / A = 441 lb/in^2$ Applied compressive stress

 $f_c / F_{c'} = 0.406$

PASS - Design compressive stress exceeds applied compressive stress

STRUCTURAL WOOD MEMBER DESIGN (NDS)


In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Project No. 23-283

Analysis results

Design moment in major axis $M_x = 259 \text{ lb_ft}$ Design axial compression P = 2261 lb

Sawn lumber section details

Nominal breadth of sections $b_{\text{nom}} = 2 \text{ in}$ Dressed breadth of sections b = 1.5 inNominal depth of sections $d_{\text{nom}} = 6 \text{ in}$ Dressed depth of sections d = 5.5 inNumber of sections in member N = 1

Overall breadth of member $b_b = N \times b = 1.5$ in

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\begin{array}{lll} \mbox{Bending parallel to grain} & \mbox{F_b = 900 lb/in}^2 \\ \mbox{Tension parallel to grain} & \mbox{F_t = 575 lb/in}^2 \\ \mbox{Compression parallel to grain} & \mbox{F_c = 1350 lb/in}^2 \\ \mbox{Compression perpendicular to grain} & \mbox{F_{c_perp} = 625 lb/in}^2 \\ \mbox{Shear parallel to grain} & \mbox{F_v = 180 lb/in}^2 \\ \mbox{Modulus of elasticity} & \mbox{E = 1600000 lb/in}^2 \\ \mbox{Modulus of elasticity, stability calculations} & \mbox{E_{min} = 580000 lb/in}^2 \\ \end{array}$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Effective length in x-axis $L_{ex} = L_x \times K_x = 7.72$ ft

Unbraced length in y-axis $L_y = 1$ ft Effective length factor in y-axis $K_y = 1$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

The beam is one of three or more repetitive members

Section properties

Cross sectional area of member $A = N \times b \times d = \textbf{8.25} \text{ in}^2$ Section modulus $S_x = N \times b \times d^2 / 6 = \textbf{7.56} \text{ in}^3$ $S_y = d \times (N \times b)^2 / 6 = \textbf{2.06} \text{ in}^3$ Second moment of area $I_x = N \times b \times d^3 / 12 = \textbf{20.80} \text{ in}^4$

 $I_V = d \times (N \times b)^3 / 12 = 1.55 \text{ in}^4$

Project No. 23-283

Adjustment factors

Load duration factor - Table 2.3.2	C _D = 1.00
Temperature factor - Table 2.3.3	$C_t = 1.00$
Size factor for bending - Table 4A	CFb = 1.30
Size factor for tension - Table 4A	$C_{Ft} = 1.30$
Size factor for compression - Table 4A	CFc = 1.10
Flat use factor - Table 4A	$C_{fu} = 1.15$

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

Repetitive member factor - cl.4.3.9 $C_r = 1.15$ Bearing area factor - cl.3.10.4 $C_b = 1.00$

 $\label{eq:compression} \begin{tabular}{ll} Adjusted modulus of elasticity for column stability & $E_{min}' = E_{min} \times C_{ME} \times C_t \times C_{iE} = {\bf 580000} \ lb/in^2 \\ Reference compression design value & $F_{c^*} = F_c \times C_D \times C_{MC} \times C_t \times C_{Fc} \times C_i = {\bf 1485} \ lb/in^2 \\ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' \ / \ (L_{ex} \ / \ d)^2 = {\bf 1680} \ lb/in^2 \\ \end{tabular}$

c = 0.80

Column stability factor - eq.3.7-1

 $C_P = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{[((1 + (F_{cE} / F_{c^*})) / (2 \times c))^2 - (F_{cE} / F_{c^*}) / c]} = 0.73$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 3.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Strength in bending - cl.3.3.1

Design bending stress $F_b' = F_b \times C_D \times C_t \times C_L \times C_{Fb} \times C_i \times C_r = 1346 \text{ lb/in}^2$

Actual bending stress $f_b = M_x / S_x = 411 \text{ lb/in}^2$

 $f_b / F_{b'} = 0.305$

PASS - Design bending stress exceeds actual bending stress

Strength in compression parallel to grain - cl.3.6.3

Design compressive stress $F_c' = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = \textbf{1087 lb/in}^2$

Applied compressive stress $f_c = P / A = 274 \text{ lb/in}^2$

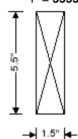
 $f_c / F_c' = 0.252$

PASS - Design compressive stress exceeds applied compressive stress

Bending and axial compression - cl.3.9.2

Critical buckling design value about x-x axis $F_{cE1} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 1680 \text{ lb/in}^2$ Bending and compression check - eq.3.9-3 $[f_c / F_c']^2 + f_{b1} / (F_{b1}' \times [1 - (f_c / F_{cE1})]) = 0.429 < 1$

STRUCTURAL WOOD MEMBER DESIGN (NDS)


In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Project No. 23-283

Analysis results

Design moment in major axis $M_x = 195 \text{ lb_ft}$ Design axial compression P = 3553 lb

Sawn lumber section details

Nominal breadth of sections $b_{\text{nom}} = 2 \text{ in}$ Dressed breadth of sections b = 1.5 inNominal depth of sections $d_{\text{nom}} = 6 \text{ in}$ Dressed depth of sections d = 5.5 inNumber of sections in member N = 1

Overall breadth of member $b_b = N \times b = 1.5$ in

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\begin{array}{lll} \mbox{Bending parallel to grain} & \mbox{F_b = 900 lb/in}^2 \\ \mbox{Tension parallel to grain} & \mbox{F_t = 575 lb/in}^2 \\ \mbox{Compression parallel to grain} & \mbox{F_c = 1350 lb/in}^2 \\ \mbox{Compression perpendicular to grain} & \mbox{F_{c_perp} = 625 lb/in}^2 \\ \mbox{Shear parallel to grain} & \mbox{F_v = 180 lb/in}^2 \\ \mbox{Modulus of elasticity} & \mbox{E = 1600000 lb/in}^2 \\ \mbox{Modulus of elasticity, stability calculations} & \mbox{E_{min} = 580000 lb/in}^2 \\ \end{array}$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Effective length in x-axis $L_{ex} = L_x \times K_x = 7.72$ ft

Unbraced length in y-axis $L_y = 1$ ft Effective length factor in y-axis $K_y = 1$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

The beam is one of three or more repetitive members

Section properties

Cross sectional area of member $A = N \times b \times d = \textbf{8.25} \text{ in}^2$ Section modulus $S_x = N \times b \times d^2 / 6 = \textbf{7.56} \text{ in}^3$ $S_y = d \times (N \times b)^2 / 6 = \textbf{2.06} \text{ in}^3$ Second moment of area $I_x = N \times b \times d^3 / 12 = \textbf{20.80} \text{ in}^4$

 $I_V = d \times (N \times b)^3 / 12 = 1.55 \text{ in}^4$

Project No. 23-283

Adjustment factors

Load duration factor - Table 2.3.2	$C_D = 1.00$
Temperature factor - Table 2.3.3	$C_t = \textbf{1.00}$
Size factor for bending - Table 4A	$C_{Fb} = 1.30$
Size factor for tension - Table 4A	$C_{Ft} = 1.30$
Size factor for compression - Table 4A	CFc = 1.10
Flat use factor - Table 4A	$C_{fu} = 1.15$

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

Repetitive member factor - cl.4.3.9 $C_r = 1.15$ Bearing area factor - cl.3.10.4 $C_b = 1.00$

 $\label{eq:compression} \begin{tabular}{ll} Adjusted modulus of elasticity for column stability & $E_{min}' = E_{min} \times C_{ME} \times C_t \times C_{iE} = {\bf 580000} \; lb/in^2 $$ Reference compression design value & $F_{c^*} = F_c \times C_D \times C_{MC} \times C_t \times C_{Fc} \times C_i = {\bf 1485} \; lb/in^2 $$ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = {\bf 1680} \; lb/in^2 $$ $$ Adjusted modulus of elasticity for column stability & $F_{c^*} = C_{min} \times C_{ME} \times C_t \times C_{iE} = {\bf 580000} \; lb/in^2 $$ $$ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = {\bf 1680} \; lb/in^2 $$ $$ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = {\bf 1680} \; lb/in^2 $$ $$ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = {\bf 1680} \; lb/in^2 $$ $$ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = {\bf 1680} \; lb/in^2 $$ $$ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = {\bf 1680} \; lb/in^2 $$ $$ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = {\bf 1680} \; lb/in^2 $$ $$ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = {\bf 1680} \; lb/in^2 $$ $$ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = {\bf 1680} \; lb/in^2 $$ $$ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = {\bf 1680} \; lb/in^2 $$ $$ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = {\bf 1680} \; lb/in^2 $$ $$ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = {\bf 1680} \; lb/in^2 $$ $$ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = {\bf 1680} \; lb/in^2 $$ $$ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' / ($

c = 0.80

Column stability factor - eq.3.7-1

 $C_P = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{[((1 + (F_{cE} / F_{c^*})) / (2 \times c))^2 - (F_{cE} / F_{c^*}) / c]} = 0.73$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 3.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Strength in bending - cl.3.3.1

Design bending stress $F_b' = F_b \times C_D \times C_t \times C_L \times C_{Fb} \times C_i \times C_r = 1346 \text{ lb/in}^2$

Actual bending stress $f_b = M_x / S_x = 309 \text{ lb/in}^2$

 $f_b / F_{b'} = 0.230$

PASS - Design bending stress exceeds actual bending stress

Strength in compression parallel to grain - cl.3.6.3

Design compressive stress $F_c{}^{\prime} = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = \textbf{1087 lb/in}^2$

Applied compressive stress $f_c = P / A = 431 \text{ lb/in}^2$

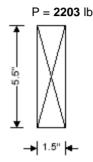
 $f_c / F_c' = 0.396$

PASS - Design compressive stress exceeds applied compressive stress

Bending and axial compression - cl.3.9.2

Critical buckling design value about x-x axis $F_{cE1} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 1680 \text{ lb/in}^2$ Bending and compression check - eq.3.9-3 $[f_c / F_c']^2 + f_{b1} / (F_{b1}' \times [1 - (f_c / F_{cE1})]) = 0.466 < 1$

STRUCTURAL WOOD MEMBER DESIGN (NDS)


In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Project No. 23-283

Analysis results

Design axial compression

Sawn lumber section details

Nominal breadth of sections $b_{nom} = 2$ in Dressed breadth of sections b = 1.5 in Nominal depth of sections $d_{nom} = 6$ in Dressed depth of sections d = 5.5 in Number of sections in member N = 1

Overall breadth of member $b_b = N \times b = 1.5$ in

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\begin{array}{lll} \mbox{Bending parallel to grain} & \mbox{F_b = 900 lb/in}^2 \\ \mbox{Tension parallel to grain} & \mbox{F_t = 575 lb/in}^2 \\ \mbox{Compression parallel to grain} & \mbox{F_c = 1350 lb/in}^2 \\ \mbox{Compression perpendicular to grain} & \mbox{F_{c_perp} = 625 lb/in}^2 \\ \mbox{Shear parallel to grain} & \mbox{F_{v} = 180 lb/in}^2 \\ \mbox{Modulus of elasticity} & \mbox{E = 1600000 lb/in}^2 \\ \mbox{Modulus of elasticity, stability calculations} & \mbox{E_{min} = 580000 lb/in}^2 \\ \mbox{} \end{array}$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

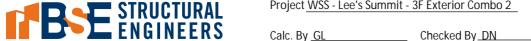
Service condition Dry
Load duration Ten years
Unbraced length in x-axis $L_x = 7.72$ ft
Effective length factor in x-axis $K_x = 1$

Effective length in x-axis $L_{ex} = L_x \times K_x = 7.72$ ft

 $L_y = \textbf{1} \ \text{ft}$ Effective length factor in y-axis $K_y = \textbf{1} \ \text{ft}$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1 \text{ ft}$

The beam is one of three or more repetitive members


Section properties

Cross sectional area of member $A = N \times b \times d = \textbf{8.25} \text{ in}^2$ Section modulus $S_x = N \times b \times d^2 / 6 = \textbf{7.56} \text{ in}^3$ $S_y = d \times (N \times b)^2 / 6 = \textbf{2.06} \text{ in}^3$

Second moment of area $I_x = N \times b \times d^3 / 12 = 20.80 \text{ in}^4$

 $I_y = d \times (N \times b)^3 / 12 = 1.55 \text{ in}^4$

Date 7/27/2023

Adjustment factors

Load duration factor - Table 2.3.2	$C_D = 1.00$
Temperature factor - Table 2.3.3	$C_t = \textbf{1.00}$
Size factor for bending - Table 4A	$C_{Fb} = 1.30$
Size factor for tension - Table 4A	$C_{Ft} = 1.30$
Size factor for compression - Table 4A	CFc = 1.10
Flat use factor - Table 4A	$C_{fu} = 1.15$

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

Repetitive member factor - cl.4.3.9 $C_r = 1.15$ $C_b = 1.00$ Bearing area factor - cl.3.10.4

Adjusted modulus of elasticity for column stability $E_{min}' = E_{min} \times C_{ME} \times C_{t} \times C_{iE} = 580000 \text{ lb/in}^2$ Reference compression design value $F_c^* = F_c \times C_D \times C_{Mc} \times C_t \times C_{Fc} \times C_i = 1485 \text{ lb/in}^2$ $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 1680 lb/in^2$ Critical buckling design value for compression

c = 0.80

Column stability factor - eq.3.7-1

 $C_P = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{[((1 + (F_{cE} / F_{c^*})) / (2 \times c))^2 - (F_{cE} / F_{c^*}) / c]} = 0.73$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 3.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Strength in compression parallel to grain - cl.3.6.3

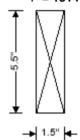
 $F_c{'} = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = \textbf{1087 lb/in}^2$ Design compressive stress

 $f_c = P / A = 267 \text{ lb/in}^2$ Applied compressive stress

 $f_c / F_{c'} = 0.246$

PASS - Design compressive stress exceeds applied compressive stress

STRUCTURAL WOOD MEMBER DESIGN (NDS)


In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Project No. 23-283

Analysis results

Design moment in major axis $M_x = 259 \text{ lb_ft}$ Design axial compression P = 1514 lb

Sawn lumber section details

Nominal breadth of sections $b_{\text{nom}} = 2 \text{ in}$ Dressed breadth of sections b = 1.5 inNominal depth of sections $d_{\text{nom}} = 6 \text{ in}$ Dressed depth of sections d = 5.5 inNumber of sections in member N = 1

Overall breadth of member $b_b = N \times b = 1.5$ in

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\begin{array}{lll} \mbox{Bending parallel to grain} & \mbox{F_b = 900 lb/in}^2 \\ \mbox{Tension parallel to grain} & \mbox{F_t = 575 lb/in}^2 \\ \mbox{Compression parallel to grain} & \mbox{F_c = 1350 lb/in}^2 \\ \mbox{Compression perpendicular to grain} & \mbox{F_{c_perp} = 625 lb/in}^2 \\ \mbox{Shear parallel to grain} & \mbox{F_v = 180 lb/in}^2 \\ \mbox{Modulus of elasticity} & \mbox{E = 1600000 lb/in}^2 \\ \mbox{Modulus of elasticity, stability calculations} & \mbox{E_{min} = 580000 lb/in}^2 \\ \end{array}$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Effective length in x-axis $L_{ex} = L_x \times K_x = 7.72$ ft

Unbraced length in y-axis $L_y = \textbf{1} \ \text{ft}$ Effective length factor in y-axis $K_y = \textbf{1}$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

The beam is one of three or more repetitive members

Section properties

Cross sectional area of member $A = N \times b \times d = \textbf{8.25} \text{ in}^2$ Section modulus $S_x = N \times b \times d^2 / 6 = \textbf{7.56} \text{ in}^3$ $S_y = d \times (N \times b)^2 / 6 = \textbf{2.06} \text{ in}^3$ Second moment of area $I_x = N \times b \times d^3 / 12 = \textbf{20.80} \text{ in}^4$

 $I_V = d \times (N \times b)^3 / 12 = 1.55 \text{ in}^4$

Adjustment factors

Load duration factor - Table 2.3.2	C _D = 1.00
Temperature factor - Table 2.3.3	$C_t = 1.00$
Size factor for bending - Table 4A	C _{Fb} = 1.30
Size factor for tension - Table 4A	$C_{Ft} = 1.30$
Size factor for compression - Table 4A	CFc = 1.10
Flat use factor - Table 4A	$C_{\text{fu}} = 1.15$

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

Repetitive member factor - cl.4.3.9 $C_r = 1.15$ Bearing area factor - cl.3.10.4 $C_b = 1.00$

 $\label{eq:compression} \begin{tabular}{ll} Adjusted modulus of elasticity for column stability & $E_{min}' = E_{min} \times C_{ME} \times C_t \times C_{iE} = {\bf 580000} \ lb/in^2 \\ Reference compression design value & $F_{c^*} = F_c \times C_D \times C_{MC} \times C_t \times C_{Fc} \times C_i = {\bf 1485} \ lb/in^2 \\ Reference compression & $F_{cE} = 0.822 \times E_{min}' \ / \ (L_{ex} \ / \ d)^2 = {\bf 1680} \ lb/in^2 \\ \end{tabular}$

c = 0.80

Column stability factor - eq.3.7-1

 $C_P = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{[((1 + (F_{cE} / F_{c^*})) / (2 \times c))^2 - (F_{cE} / F_{c^*}) / c]} = 0.73$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 3.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Strength in bending - cl.3.3.1

Design bending stress $F_b' = F_b \times C_D \times C_t \times C_L \times C_{Fb} \times C_i \times C_r = 1346 \text{ lb/in}^2$

Actual bending stress $f_b = M_x / S_x = 411 \text{ lb/in}^2$

 $f_b / F_{b'} = 0.305$

PASS - Design bending stress exceeds actual bending stress

Strength in compression parallel to grain - cl.3.6.3

Design compressive stress $F_c{}^{\prime} = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = \textbf{1087 lb/in}^2$

Applied compressive stress $f_c = P \ / \ A = \textbf{184} \ lb/in^2$

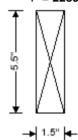
 $f_c / F_{c'} =$ **0.169**

PASS - Design compressive stress exceeds applied compressive stress

Bending and axial compression - cl.3.9.2

Critical buckling design value about x-x axis $F_{cE1} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 1680 \text{ lb/in}^2$ Bending and compression check - eq.3.9-3 $[f_c / F_c']^2 + f_{b1} / (F_{b1}' \times [1 - (f_c / F_{cE1})]) = 0.371 < 1$

STRUCTURAL WOOD MEMBER DESIGN (NDS)


In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Project No. 23-283

Analysis results

Design moment in major axis $M_x = 195 \text{ lb_ft}$ Design axial compression P = 2289 lb

Sawn lumber section details

Nominal breadth of sections $b_{\text{nom}} = 2 \text{ in}$ Dressed breadth of sections b = 1.5 inNominal depth of sections $d_{\text{nom}} = 6 \text{ in}$ Dressed depth of sections d = 5.5 inNumber of sections in member N = 1

Overall breadth of member $b_b = N \times b = 1.5$ in

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\begin{array}{lll} \mbox{Bending parallel to grain} & \mbox{F_b = 900 lb/in}^2 \\ \mbox{Tension parallel to grain} & \mbox{F_t = 575 lb/in}^2 \\ \mbox{Compression parallel to grain} & \mbox{F_c = 1350 lb/in}^2 \\ \mbox{Compression perpendicular to grain} & \mbox{F_{c_perp} = 625 lb/in}^2 \\ \mbox{Shear parallel to grain} & \mbox{F_v = 180 lb/in}^2 \\ \mbox{Modulus of elasticity} & \mbox{E = 1600000 lb/in}^2 \\ \mbox{Modulus of elasticity, stability calculations} & \mbox{E_{min} = 580000 lb/in}^2 \\ \end{array}$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Effective length in x-axis $L_{ex} = L_x \times K_x = 7.72$ ft

Unbraced length in y-axis $L_y = 1$ ft Effective length factor in y-axis $K_y = 1$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

The beam is one of three or more repetitive members

Section properties

Cross sectional area of member $A = N \times b \times d = \textbf{8.25} \text{ in}^2$ Section modulus $S_x = N \times b \times d^2 / 6 = \textbf{7.56} \text{ in}^3$ $S_y = d \times (N \times b)^2 / 6 = \textbf{2.06} \text{ in}^3$ Second moment of area $I_x = N \times b \times d^3 / 12 = \textbf{20.80} \text{ in}^4$

 $I_y = d \times (N \times b)^3 / 12 = 1.55 \text{ in}^4$

Project No. 23-283

Adjustment factors

Load duration factor - Table 2.3.2	$C_D = 1.00$
Temperature factor - Table 2.3.3	$C_t = \textbf{1.00}$
Size factor for bending - Table 4A	CFb = 1.30
Size factor for tension - Table 4A	$C_{Ft} = 1.30$
Size factor for compression - Table 4A	CFc = 1.10
Flat use factor - Table 4A	$C_{fu} = 1.15$

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

Repetitive member factor - cl.4.3.9 $C_r = 1.15$ Bearing area factor - cl.3.10.4 $C_b = 1.00$

 $\label{eq:compression} \begin{tabular}{ll} Adjusted modulus of elasticity for column stability & $E_{min}' = E_{min} \times C_{ME} \times C_t \times C_{iE} = {\bf 580000} \; lb/in^2 $$ Reference compression design value & $F_{c^*} = F_c \times C_D \times C_{MC} \times C_t \times C_{Fc} \times C_i = {\bf 1485} \; lb/in^2 $$ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = {\bf 1680} \; lb/in^2 $$ $$ Adjusted modulus of elasticity for column stability & $F_{c^*} = C_{min} \times C_{ME} \times C_t \times C_{iE} = {\bf 580000} \; lb/in^2 $$ $$ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = {\bf 1680} \; lb/in^2 $$ $$ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = {\bf 1680} \; lb/in^2 $$ $$ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = {\bf 1680} \; lb/in^2 $$ $$ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = {\bf 1680} \; lb/in^2 $$ $$ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = {\bf 1680} \; lb/in^2 $$ $$ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = {\bf 1680} \; lb/in^2 $$ $$ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = {\bf 1680} \; lb/in^2 $$ $$ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = {\bf 1680} \; lb/in^2 $$ $$ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = {\bf 1680} \; lb/in^2 $$ $$ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = {\bf 1680} \; lb/in^2 $$ $$ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = {\bf 1680} \; lb/in^2 $$ $$ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = {\bf 1680} \; lb/in^2 $$ $$ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' / ($

c = 0.80

Column stability factor - eq.3.7-1

 $C_P = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{[((1 + (F_{cE} / F_{c^*})) / (2 \times c))^2 - (F_{cE} / F_{c^*}) / c]} = 0.73$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 3.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Strength in bending - cl.3.3.1

Design bending stress $F_b' = F_b \times C_D \times C_t \times C_L \times C_{Fb} \times C_i \times C_r = 1346 \text{ lb/in}^2$

Actual bending stress $f_b = M_x / S_x = 309 \text{ lb/in}^2$

 $f_b / F_{b'} = 0.230$

PASS - Design bending stress exceeds actual bending stress

Strength in compression parallel to grain - cl.3.6.3

Design compressive stress $F_c' = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = \textbf{1087 lb/in}^2$

Applied compressive stress $f_{\text{c}} = P \ / \ A = \textbf{277} \ \text{lb/in}^2$

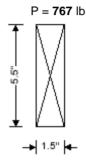
 $f_c / F_c' =$ **0.255**

PASS - Design compressive stress exceeds applied compressive stress

Bending and axial compression - cl.3.9.2

Critical buckling design value about x-x axis $F_{cE1} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 1680 \text{ lb/in}^2$ Bending and compression check - eq.3.9-3 $[f_c / F_c']^2 + f_{b1} / (F_{b1}' \times [1 - (f_c / F_{cE1})]) = 0.341 < 1$

STRUCTURAL WOOD MEMBER DESIGN (NDS)


In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Project No. 23-283

Analysis results

Design axial compression

Sawn lumber section details

Nominal breadth of sections $b_{nom} = 2$ in Dressed breadth of sections b = 1.5 in Nominal depth of sections $d_{nom} = 6$ in Dressed depth of sections d = 5.5 in Number of sections in member N = 1

Overall breadth of member $b_b = N \times b = 1.5$ in

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\begin{tabular}{lll} Bending parallel to grain & F_b = 900 \ lb/in^2 \\ Tension parallel to grain & F_t = 575 \ lb/in^2 \\ Compression parallel to grain & F_c = 1350 \ lb/in^2 \\ Compression perpendicular to grain & F_c_perp = 625 \ lb/in^2 \\ Shear parallel to grain & F_v = 180 \ lb/in^2 \\ Modulus of elasticity & E = 1600000 \ lb/in^2 \\ Modulus of elasticity, stability calculations & E_min = 580000 \ lb/in^2 \\ \end{tabular}$

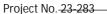
Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

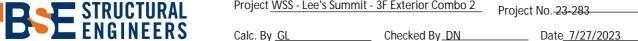
Member details

Service condition Dry
Load duration Ten years
Unbraced length in x-axis $L_x = 7.72$ ft
Effective length factor in x-axis $K_x = 1$

Effective length in x-axis $L_{ex} = L_x \times K_x = 7.72$ ft

 $L_y = \textbf{1} \ \text{ft}$ Effective length factor in y-axis $K_y = \textbf{1} \ \text{ft}$


Effective length in y-axis $L_{ey} = L_y \times K_y = 1 \text{ ft}$


The beam is one of three or more repetitive members

Section properties

Cross sectional area of member $A = N \times b \times d = \textbf{8.25} \text{ in}^2$ Section modulus $S_x = N \times b \times d^2 / 6 = \textbf{7.56} \text{ in}^3$ $S_y = d \times (N \times b)^2 / 6 = \textbf{2.06} \text{ in}^3$

Second moment of area $I_{x} = N \times b \times d^{3} / 12 = 20.80 \text{ in}^{4}$ $I_{y} = d \times (N \times b)^{3} / 12 = 1.55 \text{ in}^{4}$

Adjustment factors

Load duration factor - Table 2.3.2	$C_D = 1.00$
Temperature factor - Table 2.3.3	$C_t = 1.00$
Size factor for bending - Table 4A	CFb = 1.30
Size factor for tension - Table 4A	$C_{Ft} = 1.30$
Size factor for compression - Table 4A	CFc = 1.10
Flat use factor - Table 4A	$C_{fu} = 1.15$

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

Repetitive member factor - cl.4.3.9 $C_r = 1.15$ $C_b = 1.00$ Bearing area factor - cl.3.10.4

Adjusted modulus of elasticity for column stability $E_{min}' = E_{min} \times C_{ME} \times C_{t} \times C_{iE} = 580000 \text{ lb/in}^2$ Reference compression design value $F_c^* = F_c \times C_D \times C_{Mc} \times C_t \times C_{Fc} \times C_i = 1485 \text{ lb/in}^2$ $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 1680 lb/in^2$ Critical buckling design value for compression

c = 0.80

Column stability factor - eq.3.7-1

 $C_P = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{[((1 + (F_{cE} / F_{c^*})) / (2 \times c))^2 - (F_{cE} / F_{c^*}) / c]} = 0.73$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 3.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Strength in compression parallel to grain - cl.3.6.3

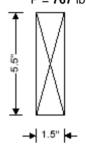
 $F_c{'} = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = \textbf{1087 lb/in}^2$ Design compressive stress

 $f_c = P / A = 93 \text{ lb/in}^2$ Applied compressive stress

 $f_c / F_{c'} = 0.086$

PASS - Design compressive stress exceeds applied compressive stress

STRUCTURAL WOOD MEMBER DESIGN (NDS)


In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Project No. 23-283

Analysis results

Design moment in major axis $M_x = 189 \text{ lb_ft}$ Design axial compression P = 767 lb

Sawn lumber section details

Nominal breadth of sections $b_{\text{nom}} = 2 \text{ in}$ Dressed breadth of sections b = 1.5 inNominal depth of sections $d_{\text{nom}} = 6 \text{ in}$ Dressed depth of sections d = 5.5 inNumber of sections in member N = 1

Overall breadth of member $b_b = N \times b = 1.5$ in

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\begin{array}{lll} \mbox{Bending parallel to grain} & \mbox{F_b = 900 lb/in}^2 \\ \mbox{Tension parallel to grain} & \mbox{F_t = 575 lb/in}^2 \\ \mbox{Compression parallel to grain} & \mbox{F_c = 1350 lb/in}^2 \\ \mbox{Compression perpendicular to grain} & \mbox{F_{c_perp} = 625 lb/in}^2 \\ \mbox{Shear parallel to grain} & \mbox{F_v = 180 lb/in}^2 \\ \mbox{Modulus of elasticity} & \mbox{E = 1600000 lb/in}^2 \\ \mbox{Modulus of elasticity, stability calculations} & \mbox{E_{min} = 580000 lb/in}^2 \\ \end{array}$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Effective length in x-axis $L_{ex} = L_x \times K_x = 7.72$ ft

Unbraced length in y-axis $L_y = \textbf{1} \ \text{ft}$ Effective length factor in y-axis $K_y = \textbf{1}$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

The beam is one of three or more repetitive members

Section properties

Cross sectional area of member $A = N \times b \times d = \textbf{8.25} \text{ in}^2$ Section modulus $S_x = N \times b \times d^2 / 6 = \textbf{7.56} \text{ in}^3$ $S_y = d \times (N \times b)^2 / 6 = \textbf{2.06} \text{ in}^3$ Second moment of area $I_x = N \times b \times d^3 / 12 = \textbf{20.80} \text{ in}^4$

 $I_V = d \times (N \times b)^3 / 12 = 1.55 \text{ in}^4$

BE STRUCTURAL ENGINEERS

Adjustment factors

Load duration factor - Table 2.3.2	$C_D = 1.00$
Temperature factor - Table 2.3.3	$C_t = \textbf{1.00}$
Size factor for bending - Table 4A	$C_{Fb} = 1.30$
Size factor for tension - Table 4A	$C_{Ft} = 1.30$
Size factor for compression - Table 4A	$C_{Fc} = 1.10$
Flat use factor - Table 4A	$C_{fu} = 1.15$

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

Repetitive member factor - cl.4.3.9 $C_r = 1.15$ Bearing area factor - cl.3.10.4 $C_b = 1.00$

 $\label{eq:compression} \begin{tabular}{ll} Adjusted modulus of elasticity for column stability & $E_{min}' = E_{min} \times C_{ME} \times C_t \times C_{iE} = {\bf 580000} \ lb/in^2 \\ Reference compression design value & $F_{c^*} = F_c \times C_D \times C_{MC} \times C_t \times C_{Fc} \times C_i = {\bf 1485} \ lb/in^2 \\ Reference compression & $F_{cE} = 0.822 \times E_{min}' \ / \ (L_{ex} \ / \ d)^2 = {\bf 1680} \ lb/in^2 \\ \end{tabular}$

c = 0.80

Column stability factor - eq.3.7-1

 $C_P = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{[((1 + (F_{cE} / F_{c^*})) / (2 \times c))^2 - (F_{cE} / F_{c^*}) / c]} = 0.73$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 3.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Strength in bending - cl.3.3.1

Design bending stress $F_b' = F_b \times C_D \times C_t \times C_L \times C_{Fb} \times C_i \times C_r = 1346 \text{ lb/in}^2$

Actual bending stress $f_b = M_x / S_x = 300 \text{ lb/in}^2$

 $f_b / F_{b'} = 0.223$

PASS - Design bending stress exceeds actual bending stress

Strength in compression parallel to grain - cl.3.6.3

Design compressive stress $F_c{}^{\prime} = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = \textbf{1087 lb/in}^2$

Applied compressive stress $f_c = P / A = 93 lb/in^2$

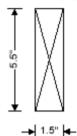
 $f_c / F_c' = 0.086$

PASS - Design compressive stress exceeds applied compressive stress

Bending and axial compression - cl.3.9.2

Critical buckling design value about x-x axis $F_{cE1} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 1680 \text{ lb/in}^2$ Bending and compression check - eq.3.9-3 $[f_c / F_c']^2 + f_{b1} / (F_{b1}' \times [1 - (f_c / F_{cE1})]) = 0.243 < 1$

STRUCTURAL WOOD MEMBER DESIGN (NDS)


In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Project No. 23-283

Analysis results

Design moment in major axis $M_x = 141 \text{ lb_ft}$ Design axial compression P = 1026 lb

Sawn lumber section details

 $\begin{array}{lll} \mbox{Nominal breadth of sections} & \mbox{b}_{\mbox{nom}} = 2 \mbox{ in} \\ \mbox{Dressed breadth of sections} & \mbox{b} = 1.5 \mbox{ in} \\ \mbox{Nominal depth of sections} & \mbox{d}_{\mbox{nom}} = 6 \mbox{ in} \\ \mbox{Dressed depth of sections} & \mbox{d} = 5.5 \mbox{ in} \\ \mbox{Number of sections in member} & \mbox{N} = 1 \end{array}$

Overall breadth of member $b_b = N \times b = 1.5$ in

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\begin{array}{lll} \mbox{Bending parallel to grain} & \mbox{F_b = 900 lb/in}^2 \\ \mbox{Tension parallel to grain} & \mbox{F_t = 575 lb/in}^2 \\ \mbox{Compression parallel to grain} & \mbox{F_c = 1350 lb/in}^2 \\ \mbox{Compression perpendicular to grain} & \mbox{F_{c_perp} = 625 lb/in}^2 \\ \mbox{Shear parallel to grain} & \mbox{F_v = 180 lb/in}^2 \\ \mbox{Modulus of elasticity} & \mbox{E = 1600000 lb/in}^2 \\ \mbox{Modulus of elasticity, stability calculations} & \mbox{E_{min} = 580000 lb/in}^2 \\ \end{array}$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Effective length in x-axis $L_{ex} = L_x \times K_x = 7.72$ ft

Unbraced length in y-axis $L_y = \textbf{1} \ \text{ft}$ Effective length factor in y-axis $K_y = \textbf{1}$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

The beam is one of three or more repetitive members

Section properties

Cross sectional area of member $A = N \times b \times d = \textbf{8.25} \text{ in}^2$ Section modulus $S_x = N \times b \times d^2 / 6 = \textbf{7.56} \text{ in}^3$ $S_y = d \times (N \times b)^2 / 6 = \textbf{2.06} \text{ in}^3$ Second moment of area $I_x = N \times b \times d^3 / 12 = \textbf{20.80} \text{ in}^4$

 $I_y = d \times (N \times b)^3 / 12 = 1.55 \text{ in}^4$

Adjustment factors

Load duration factor - Table 2.3.2	C _D = 1.00
Temperature factor - Table 2.3.3	$C_t = 1.00$
Size factor for bending - Table 4A	C _{Fb} = 1.30
Size factor for tension - Table 4A	$C_{Ft} = 1.30$
Size factor for compression - Table 4A	CFc = 1.10
Flat use factor - Table 4A	$C_{\text{fu}} = 1.15$

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

Repetitive member factor - cl.4.3.9 $C_r = 1.15$ Bearing area factor - cl.3.10.4 $C_b = 1.00$

 $\label{eq:compression} \begin{tabular}{ll} Adjusted modulus of elasticity for column stability & $E_{min}' = E_{min} \times C_{ME} \times C_t \times C_{iE} = {\bf 580000} \ lb/in^2 \\ Reference compression design value & $F_{c^*} = F_c \times C_D \times C_{MC} \times C_t \times C_{Fc} \times C_i = {\bf 1485} \ lb/in^2 \\ Reference compression & $F_{cE} = 0.822 \times E_{min}' \ / \ (L_{ex} \ / \ d)^2 = {\bf 1680} \ lb/in^2 \\ \end{tabular}$

c = 0.80

Column stability factor - eq.3.7-1

 $C_P = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{[((1 + (F_{cE} / F_{c^*})) / (2 \times c))^2 - (F_{cE} / F_{c^*}) / c]} = 0.73$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 3.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Strength in bending - cl.3.3.1

Design bending stress $F_b' = F_b \times C_D \times C_t \times C_L \times C_{Fb} \times C_i \times C_r = 1346 \text{ lb/in}^2$

Actual bending stress $f_b = M_x / S_x = 224 \text{ lb/in}^2$

 $f_b / F_{b'} = 0.166$

PASS - Design bending stress exceeds actual bending stress

Strength in compression parallel to grain - cl.3.6.3

Design compressive stress $F_c{}^{\prime} = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = \textbf{1087 lb/in}^2$

Applied compressive stress $f_c = P \ / \ A = \textbf{124} \ lb/in^2$

 $f_c / F_c' =$ **0.114**

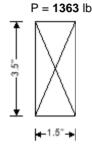
PASS - Design compressive stress exceeds applied compressive stress

Bending and axial compression - cl.3.9.2

Critical buckling design value about x-x axis $F_{cE1} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 1680 \text{ lb/in}^2$ Bending and compression check - eq.3.9-3 $[f_c / F_c']^2 + f_{b1} / (F_{b1}' \times [1 - (f_c / F_{cE1})]) = 0.193 < 1$

PASS - Combined compressive and bending stresses are within permissible limits

STRUCTURAL WOOD MEMBER DESIGN (NDS)


In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Project No. 23-283

Analysis results

Design axial compression

Sawn lumber section details

 $\begin{array}{lll} \mbox{Nominal breadth of sections} & b_{\mbox{nom}} = 2 \mbox{ in} \\ \mbox{Dressed breadth of sections} & b = 1.5 \mbox{ in} \\ \mbox{Nominal depth of sections} & d_{\mbox{nom}} = 4 \mbox{ in} \\ \mbox{Dressed depth of sections} & d = 3.5 \mbox{ in} \\ \mbox{Number of sections in member} & N = 1 \end{array}$

Overall breadth of member $b_b = N \times b = 1.5$ in

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\begin{array}{lll} \mbox{Bending parallel to grain} & \mbox{F_b = 900 lb/in}^2 \\ \mbox{Tension parallel to grain} & \mbox{F_t = 575 lb/in}^2 \\ \mbox{Compression parallel to grain} & \mbox{F_c = 1350 lb/in}^2 \\ \mbox{Compression perpendicular to grain} & \mbox{F_{c_perp} = 625 lb/in}^2 \\ \mbox{Shear parallel to grain} & \mbox{F_{v} = 180 lb/in}^2 \\ \mbox{Modulus of elasticity} & \mbox{E = 1600000 lb/in}^2 \\ \mbox{Modulus of elasticity, stability calculations} & \mbox{E_{min} = 580000 lb/in}^2 \\ \mbox{} \end{array}$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Service condition Dry
Load duration Ten years
Unbraced length in x-axis $L_x = 9.55$ ft
Effective length factor in x-axis $K_x = 1$

Effective length in x-axis $L_{ex} = L_x \times K_x = 9.55$ ft

Unbraced length in y-axis $L_y = 1$ ft Effective length factor in y-axis $K_y = 1$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

The beam is one of three or more repetitive members

Section properties

Cross sectional area of member $A = N \times b \times d = \textbf{5.25} \text{ in}^2$ Section modulus $S_x = N \times b \times d^2 / 6 = \textbf{3.06} \text{ in}^3$ $S_y = d \times (N \times b)^2 / 6 = \textbf{1.31} \text{ in}^3$ Second moment of area $I_x = N \times b \times d^3 / 12 = \textbf{5.36} \text{ in}^4$

 $I_y = d \times (N \times b)^3 / 12 = 0.98 \text{ in}^4$

Project No. 23-283

Adjustment factors

Load duration factor - Table 2.3.2	$C_D = 1.00$
Temperature factor - Table 2.3.3	$C_t = \textbf{1.00}$
Size factor for bending - Table 4A	$C_{Fb} = 1.50$
Size factor for tension - Table 4A	$C_{Ft} = 1.50$
Size factor for compression - Table 4A	$C_{Fc} = 1.15$
Flat use factor - Table 4A	$C_{fu} = 1.10$

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

Repetitive member factor - cl.4.3.9 $C_r = 1.15$ Bearing area factor - cl.3.10.4 $C_b = 1.00$

Adjusted modulus of elasticity for column stability $E_{min}' = E_{min} \times C_{ME} \times C_t \times C_{iE} = 580000 \text{ lb/in}^2$ Reference compression design value $F_{c^*} = F_c \times C_D \times C_{MC} \times C_t \times C_{Fc} \times C_i = 1552 \text{ lb/in}^2$ Critical buckling design value for compression $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 445 \text{ lb/in}^2$

c = 0.80

Column stability factor - eq.3.7-1

 $C_P = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{[((1 + (F_{cE} / F_{c^*})) / (2 \times c))^2 - (F_{cE} / F_{c^*}) / c]} = 0.27$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 2.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

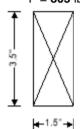
Strength in compression parallel to grain - cl.3.6.3

Design compressive stress $F_c' = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = \textbf{415 lb/in}^2$

Applied compressive stress $f_c = P / A = 260 \text{ lb/in}^2$

 $f_c / F_c' = 0.626$

STRUCTURAL WOOD MEMBER DESIGN (NDS)


In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Project No. 23-283

Analysis results

Design moment in major axis $M_x = 45 \text{ lb_ft}$ Design axial compression P = 803 lb

Sawn lumber section details

 $\begin{array}{lll} \mbox{Nominal breadth of sections} & \mbox{b}_{\mbox{nom}} = 2 \mbox{ in} \\ \mbox{Dressed breadth of sections} & \mbox{b} = 1.5 \mbox{ in} \\ \mbox{Nominal depth of sections} & \mbox{d}_{\mbox{nom}} = 4 \mbox{ in} \\ \mbox{Dressed depth of sections} & \mbox{d} = 3.5 \mbox{ in} \\ \mbox{Number of sections in member} & \mbox{N} = 1 \end{array}$

Overall breadth of member $b_b = N \times b = 1.5$ in

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\begin{tabular}{lll} Bending parallel to grain & F_b = 900 \ lb/in^2 \\ Tension parallel to grain & F_t = 575 \ lb/in^2 \\ Compression parallel to grain & F_c = 1350 \ lb/in^2 \\ Compression perpendicular to grain & F_{c_perp} = 625 \ lb/in^2 \\ Shear parallel to grain & F_v = 180 \ lb/in^2 \\ Modulus of elasticity & E = 1600000 \ lb/in^2 \\ Modulus of elasticity, stability calculations & E_{min} = 580000 \ lb/in^2 \\ \end{tabular}$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Service condition Dry
Load duration Ten years
Unbraced length in x-axis $L_x = 9.55$ ft
Effective length factor in x-axis $K_x = 1$

Effective length in x-axis $L_{ex} = L_x \times K_x = 9.55$ ft

Unbraced length in y-axis $L_y = 1$ ft Effective length factor in y-axis $K_y = 1$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

The beam is one of three or more repetitive members

Section properties

Cross sectional area of member $A = N \times b \times d = \textbf{5.25} \text{ in}^2$ Section modulus $S_x = N \times b \times d^2 / 6 = \textbf{3.06} \text{ in}^3$ $S_y = d \times (N \times b)^2 / 6 = \textbf{1.31} \text{ in}^3$

Second moment of area $I_x = N \times b \times d^3 / 12 = 5.36 \text{ in}^4$

 $I_y = d \times (N \times b)^3 / 12 = 0.98 \text{ in}^4$

Project No. 23-283

Adjustment factors

Load duration factor - Table 2.3.2	$C_D = 1.00$
Temperature factor - Table 2.3.3	$C_{\rm t}=\textbf{1.00}$
Size factor for bending - Table 4A	$C_{Fb} = 1.50$
Size factor for tension - Table 4A	$C_{Ft} = 1.50$
Size factor for compression - Table 4A	CFc = 1.15
Flat use factor - Table 4A	$C_{fu} = 1.10$

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

Repetitive member factor - cl.4.3.9 $C_r = 1.15$ Bearing area factor - cl.3.10.4 $C_b = 1.00$

Adjusted modulus of elasticity for column stability $E_{min}' = E_{min} \times C_{ME} \times C_t \times C_{iE} = 580000 \text{ lb/in}^2$ Reference compression design value $F_{c^*} = F_c \times C_D \times C_{MC} \times C_t \times C_{Fc} \times C_i = 1552 \text{ lb/in}^2$ Critical buckling design value for compression $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 445 \text{ lb/in}^2$

c = 0.80

Column stability factor - eq.3.7-1

 $C_P = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{[((1 + (F_{cE} / F_{c^*})) / (2 \times c))^2 - (F_{cE} / F_{c^*}) / c]} = 0.27$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 2.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Strength in bending - cl.3.3.1

Design bending stress $F_b' = F_b \times C_D \times C_t \times C_L \times C_{Fb} \times C_i \times C_r = 1552 \text{ lb/in}^2$

Actual bending stress $f_b = M_x / S_x = 176 \text{ lb/in}^2$

 $f_b / F_{b'} = 0.114$

PASS - Design bending stress exceeds actual bending stress

Strength in compression parallel to grain - cl.3.6.3

Design compressive stress $F_c' = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = \textbf{415 lb/in}^2$

Applied compressive stress $f_c = P / A = 153 \text{ lb/in}^2$

 $f_c / F_{c'} = 0.369$

PASS - Design compressive stress exceeds applied compressive stress

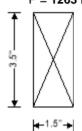
Bending and axial compression - cl.3.9.2

Critical buckling design value about x-x axis $F_{cE1} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 445 \text{ lb/in}^2$

Bending and compression check - eq.3.9-3 $[f_c / F_c']^2 + f_{b1} / (F_{b1}' \times [1 - (f_c / F_{cE1})]) = 0.309 < 1$

PASS - Combined compressive and bending stresses are within permissible limits

STRUCTURAL WOOD MEMBER DESIGN (NDS)


In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Project No. 23-283

Analysis results

Design moment in major axis $M_x = 34 \text{ lb_ft}$ Design axial compression P = 1263 lb

Sawn lumber section details

 $\begin{array}{lll} \mbox{Nominal breadth of sections} & \mbox{b}_{\mbox{nom}} = 2 \mbox{ in} \\ \mbox{Dressed breadth of sections} & \mbox{b} = 1.5 \mbox{ in} \\ \mbox{Nominal depth of sections} & \mbox{d}_{\mbox{nom}} = 4 \mbox{ in} \\ \mbox{Dressed depth of sections} & \mbox{d} = 3.5 \mbox{ in} \\ \mbox{Number of sections in member} & \mbox{N} = 1 \end{array}$

Overall breadth of member $b_b = N \times b = \textbf{1.5} \text{ in}$

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\begin{tabular}{lll} Bending parallel to grain & F_b = 900 \ lb/in^2 \\ Tension parallel to grain & F_t = 575 \ lb/in^2 \\ Compression parallel to grain & F_c = 1350 \ lb/in^2 \\ Compression perpendicular to grain & F_{c_perp} = 625 \ lb/in^2 \\ Shear parallel to grain & F_v = 180 \ lb/in^2 \\ Modulus of elasticity & E = 1600000 \ lb/in^2 \\ Modulus of elasticity, stability calculations & E_{min} = 580000 \ lb/in^2 \\ \end{tabular}$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Service condition Dry
Load duration Ten years
Unbraced length in x-axis $L_x = 9.55$ ft
Effective length factor in x-axis $K_x = 1$

Effective length in x-axis $L_{ex} = L_x \times K_x = 9.55$ ft

Unbraced length in y-axis $L_y = 1$ ft Effective length factor in y-axis $K_y = 1$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

The beam is one of three or more repetitive members

Section properties

Second moment of area

Cross sectional area of member $A = N \times b \times d = \textbf{5.25} \text{ in}^2$ Section modulus $S_x = N \times b \times d^2 / 6 = \textbf{3.06} \text{ in}^3$ $S_y = d \times (N \times b)^2 / 6 = \textbf{1.31} \text{ in}^3$

 $I_x = N \times b \times d^3 / 12 = 5.36 \text{ in}^4$

 $I_y = d \times (N \times b)^3 / 12 = 0.98 \text{ in}^4$

Project No. 23-283

Adjustment factors

Load duration factor - Table 2.3.2	C _D = 1.00
Temperature factor - Table 2.3.3	Ct = 1.00
Size factor for bending - Table 4A	CFb = 1.50
Size factor for tension - Table 4A	CFt = 1.50
Size factor for compression - Table 4A	CFc = 1.15
Flat use factor - Table 4A	$C_{fu} = 1.10$

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

Repetitive member factor - cl.4.3.9 $C_r = 1.15$ Bearing area factor - cl.3.10.4 $C_b = 1.00$

 $\label{eq:continuous} \begin{tabular}{ll} Adjusted modulus of elasticity for column stability & $E_{min}' = E_{min} \times C_{ME} \times C_t \times C_{iE} = {\bf 580000} \; lb/in^2$ \\ Reference compression design value & $F_{c^*} = F_c \times C_D \times C_{Mc} \times C_t \times C_{Fc} \times C_i = {\bf 1552} \; lb/in^2$ \\ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' \; / \; (L_{ex} \; / \; d)^2 = {\bf 445} \; lb/in^2$ \\ \end{tabular}$

c = 0.80

Column stability factor - eq.3.7-1

 $C_P = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{[((1 + (F_{cE} / F_{c^*})) / (2 \times c))^2 - (F_{cE} / F_{c^*}) / c]} = 0.27$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 2.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Strength in bending - cl.3.3.1

Design bending stress $F_b' = F_b \times C_D \times C_t \times C_L \times C_{Fb} \times C_i \times C_r = 1552 \text{ lb/in}^2$

Actual bending stress $f_b = M_x / S_x = 133 \text{ lb/in}^2$

 $f_b / F_{b'} = 0.086$

PASS - Design bending stress exceeds actual bending stress

Strength in compression parallel to grain - cl.3.6.3

Design compressive stress $F_c' = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = \textbf{415 lb/in}^2$

Applied compressive stress $f_c = P / A = 241 \text{ lb/in}^2$

 $f_c / F_c' = 0.580$

PASS - Design compressive stress exceeds applied compressive stress

Bending and axial compression - cl.3.9.2

Critical buckling design value about x-x axis $F_{cE1} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 445 \text{ lb/in}^2$ Bending and compression check - eq.3.9-3 $[f_c / F_c']^2 + f_{b1} / (F_{b1}' \times [1 - (f_c / F_{cE1})]) = 0.524 < 1$

PASS - Combined compressive and bending stresses are within permissible limits

Level			
Member Name	Results	Current Solution	Comments
Guest Room Door Header	Passed	2 piece(s) 2 x 8 DF No.2	
Cross Stair	Passed	2 piece(s) 2 x 8 DF No.2	
Exterior Hallway Window	Passed	3 piece(s) 2 x 8 DF No.2	
Exterior Windows 4'	Passed	3 piece(s) 2 x 8 DF No.2	
Elevator Lobby	Passed	3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
Vestibule Entrance	Passed	1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
Vestibule Window	Passed	2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
Long Corridor Opening	Passed	3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
Vestibule to Lobby Entrance	Passed	3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
room windows -(3) 2x10 4'	Passed	3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
Elevator Lobby F1	Passed	4 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
Lobby to Corridor Door	Passed	3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
Lobby to Corridor Window	Passed	3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL	
Staff Laundry Door	Passed	3 piece(s) 2 x 8 DF No.1	

ForteWEB Software Operator	Job Notes
George Luetje BSE Structural Engineers (913) 492-7400 gluetje@bsestructural.com	

Level, Guest Room Door Header 2 piece(s) 2 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2095 @ 1 1/2"	5625 (3.00")	Passed (37%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1073 @ 10 1/4"	2610	Passed (41%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1581 @ 1' 9"	2365	Passed (67%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.013 @ 1' 9"	0.108	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.020 @ 1' 9"	0.162	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

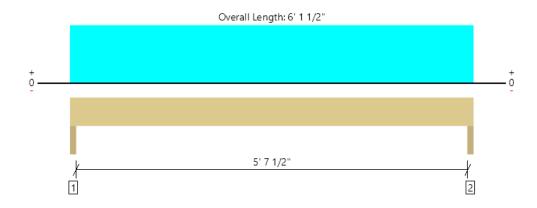
System: Wall
Member Type: Header
Building Use: Commercial
Building Code: IBC 2018
Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - DF	3.00"	3.00"	1.50"	698	1397	2095	None
2 - Trimmer - DF	3.00"	3.00"	1.50"	698	1397	2095	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 6" o/c	
Bottom Edge (Lu)	3' 6" o/c	

[•]Maximum allowable bracing intervals based on applied load.


Vertical Loads	Location	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 6"	N/A	5.5		
1 - Uniform (PSF)	0 to 3' 6"	12' 11 1/8"	25.0	40.0	Default Load
2 - Uniform (PSF)	0 to 3' 6"	2' 9 3/4"	25.0	100.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Level, Cross Stair 2 piece(s) 2 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	782 @ 1 1/2"	5625 (3.00")	Passed (14%)		1.0 D + 1.0 Lr (All Spans)
Shear (lbs)	564 @ 10 1/4"	3263	Passed (17%)	1.25	1.0 D + 1.0 Lr (All Spans)
Moment (Ft-lbs)	1102 @ 3' 3/4"	2957	Passed (37%)	1.25	1.0 D + 1.0 Lr (All Spans)
Live Load Defl. (in)	0.022 @ 3' 3/4"	0.196	Passed (L/999+)		1.0 D + 1.0 Lr (All Spans)
Total Load Defl. (in)	0.045 @ 3' 3/4"	0.294	Passed (L/999+)		1.0 D + 1.0 Lr (All Spans)

System: Wall
Member Type: Header
Building Use: Commercial
Building Code: IBC 2018
Design Methodology: ASD

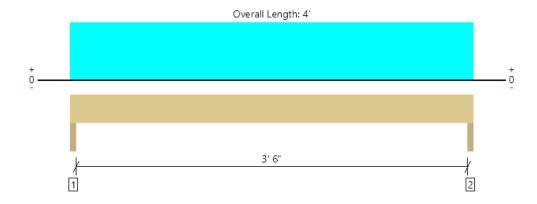
- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Roof Live	Factored	Accessories
1 - Trimmer - DF	3.00"	3.00"	1.50"	400	383	782	None
2 - Trimmer - DF	3.00"	3.00"	1.50"	400	383	782	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 2" o/c	
Bottom Edge (Lu)	6' 2" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	
Vertical Loads	Location	Tributary Width	(0.90)	(non-snow: 1.25)	Comments
0 - Self Weight (PLF)	0 to 6' 1 1/2"	N/A	5.5		
1 - Uniform (PSF)	0 to 6' 1 1/2"	5'	25.0	25.0	


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Level, Exterior Hallway Window 3 piece(s) 2 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1067 @ 1 1/2"	8438 (3.00")	Passed (13%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	611 @ 10 1/4"	3915	Passed (16%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	937 @ 2'	3548	Passed (26%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.008 @ 2'	0.075	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.010 @ 2'	0.188	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

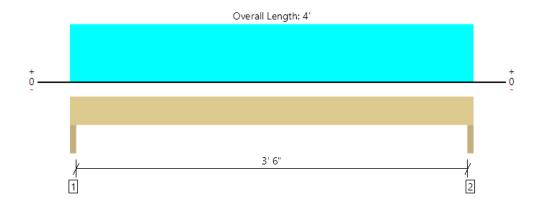
System: Wall
Member Type: Header
Building Use: Commercial
Building Code: IBC 2018
Design Methodology: ASD

- Deflection criteria: LL (L/600) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Roof Live	Factored	Accessories
1 - Trimmer - DF	3.00"	3.00"	1.50"	267	800	40	1067	None
2 - Trimmer - DF	3.00"	3.00"	1.50"	267	800	40	1067	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' o/c	
Bottom Edge (Lu)	4' o/c	

[•]Maximum allowable bracing intervals based on applied load.


Vertical Loads	Location	Tributary Width	Dead (0.90)	Floor Live (1.00)	Roof Live (non-snow: 1.25)	Comments
0 - Self Weight (PLF)	0 to 4'	N/A	8.3			
1 - Uniform (PSF)	0 to 4'	1'	100.0	300.0	20.0	default
2 - Uniform (PSF)	0 to 4'	1'	25.0	100.0	-	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Level, Exterior Windows 4' 3 piece(s) 2 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1652 @ 1 1/2"	8438 (3.00")	Passed (20%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	947 @ 10 1/4"	3915	Passed (24%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1452 @ 2'	3548	Passed (41%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.010 @ 2'	0.125	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.016 @ 2'	0.075	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System: Wall
Member Type: Header
Building Use: Commercial
Building Code: IBC 2018
Design Methodology: ASD

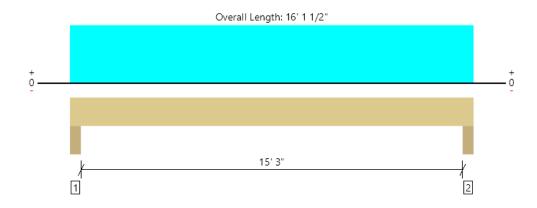
- . Deflection criteria: LL (L/360) and TL (L/600).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - DF	3.00"	3.00"	1.50"	646	1007	1652	None
2 - Trimmer - DF	3.00"	3.00"	1.50"	646	1007	1652	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' o/c	
Bottom Edge (Lu)	4' o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 4'	N/A	8.3		
1 - Uniform (PSF)	0 to 4'	12' 7"	25.0	40.0	Default Load


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Level, Elevator Lobby 3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	11724 @ 3 3/4"	20672 (5.25")	Passed (57%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	9149 @ 1' 9 1/4"	15960	Passed (57%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	43671 @ 8' 3/4"	46671	Passed (94%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.462 @ 8' 3/4"	0.517	Passed (L/403)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.587 @ 8' 3/4"	0.775	Passed (L/317)		1.0 D + 1.0 L (All Spans)

System: Wall
Member Type: Header
Building Use: Commercial
Building Code: IBC 2018
Design Methodology: ASD

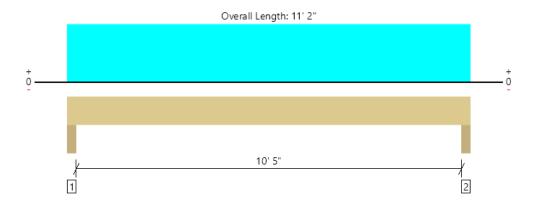
- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Roof Live	Factored	Accessories
1 - Trimmer - DF	5.25"	5.25"	2.98"	2503	9221	615	11724	None
2 - Trimmer - DF	5.25"	5.25"	2.98"	2503	9221	615	11724	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 8" o/c	
Bottom Edge (Lu)	16' 2" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Roof Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(non-snow: 1.25)	Comments
0 - Self Weight (PLF)	0 to 16' 1 1/2"	N/A	24.5			
1 - Uniform (PSF)	0 to 16' 1 1/2"	3' 9 3/4"	75.0	300.0	20.0	Default Load
2 - Uniform (PSF)	0 to 16' 1 1/2"	2' 9 3/4"	-	-	-	


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Level, Vestibule Entrance 1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5593 @ 3"	5906 (4.50")	Passed (95%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	3800 @ 1' 8 1/2"	5320	Passed (71%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	13946 @ 5' 7"	15557	Passed (90%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.058 @ 5' 7"	0.356	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.303 @ 5' 7"	0.533	Passed (L/423)		1.0 D + 0.75 L + 0.75 S (All Spans)

System: Wall
Member Type: Header
Building Use: Commercial
Building Code: IBC 2018
Design Methodology: ASD

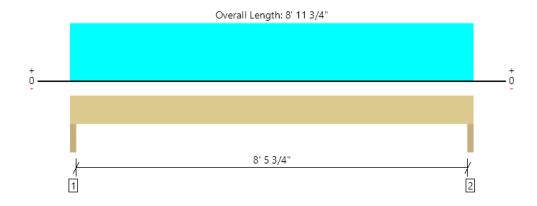
- . Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

	В	earing Lengt	th		Loads				
Supports	Total	Available	Required	Dead	Floor Live	Roof Live	Snow	Factored	Accessories
1 - Trimmer - DF	4.50"	4.50"	4.26"	4526	949	475	475	5593	None
2 - Trimmer - DF	4.50"	4.50"	4.26"	4526	949	475	475	5593	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	2' 10" o/c	
Bottom Edge (Lu)	11' 2" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Roof Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 11' 2"	N/A	8.2				
1 - Uniform (PSF)	0 to 11' 2"	4' 3"	92.8	40.0	20.0	20.0	Three Floors and Roof
2 - Uniform (PLF)	0 to 11' 2"	N/A	408.0	-	-	-	34' of exterior wall


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Level, Vestibule Window 2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4028 @ 1 1/2"	7875 (3.00")	Passed (51%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2607 @ 1' 7"	12236	Passed (21%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	8545 @ 4' 5 7/8"	35781	Passed (24%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.019 @ 4' 5 7/8"	0.291	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.067 @ 4' 5 7/8"	0.436	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

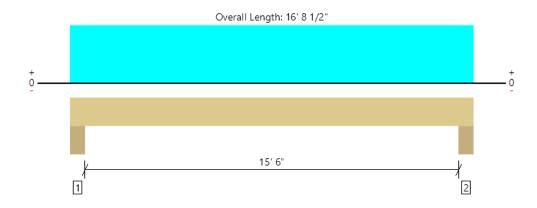
System: Wall
Member Type: Header
Building Use: Commercial
Building Code: IBC 2018
Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Trimmer - DF	3.00"	3.00"	1.53"	2898	1130	1130	4028	None
2 - Trimmer - DF	3.00"	3.00"	1.53"	2898	1130	1130	4028	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	9' o/c	
Bottom Edge (Lu)	9' o/c	

•Maximum allowable bracing intervals based on applied load.


			Dead	Roof Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 11 3/4"	N/A	16.3			
1 - Uniform (PSF)	0 to 8' 11 3/4"	12' 7"	50.0	20.0	20.0	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Level, Long Corridor Opening 3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	12377 @ 5 3/4"	28547 (7.25")	Passed (43%)	- 1	1.0 D + 1.0 L (All Spans)
Shear (lbs)	9506 @ 1' 11 1/4"	15960	Passed (60%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	45939 @ 8' 4 1/4"	46671	Passed (98%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.500 @ 8' 4 1/4"	0.525	Passed (L/378)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.635 @ 8' 4 1/4"	0.788	Passed (L/297)		1.0 D + 1.0 L (All Spans)

System: Wall
Member Type: Header
Building Use: Commercial
Building Code: IBC 2018
Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

	В	earing Lengt	th		Loads				
Supports	Total	Available	Required	Dead	Floor Live	Roof Live	Snow	Factored	Accessories
1 - Trimmer - DF	7.25"	7.25"	3.14"	2639	9738	649	649	12377	None
2 - Trimmer - DF	7.25"	7.25"	3.14"	2639	9738	649	649	12377	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	1' 10" o/c	
Bottom Edge (Lu)	16' 9" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead Floor Live		Roof Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 16' 8 1/2"	N/A	24.5				
1 - Uniform (PSF)	0 to 16' 8 1/2"	3' 10 5/8"	75.0	300.0	20.0	20.0	Two floors and roof


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Level, Vestibule to Lobby Entrance 3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	11430 @ 3"	17719 (4.50")	Passed (65%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	6967 @ 1' 8 1/2"	15960	Passed (44%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	22228 @ 4' 4 1/2"	46671	Passed (48%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.062 @ 4' 4 1/2"	0.275	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.106 @ 4' 4 1/2"	0.412	Passed (L/930)		1.0 D + 1.0 L (All Spans)

System: Wall
Member Type: Header
Building Use: Commercial
Building Code: IBC 2018
Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

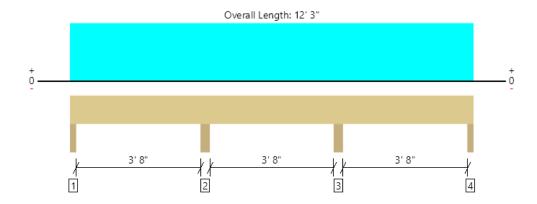
	Bearing Length Loads to Supports (lbs)							
Supports	Total	Available	Required	Dead	Dead Floor Live R		Factored	Accessories
1 - Trimmer - DF	4.50"	4.50"	2.90"	4748	6683	371	11430	None
2 - Trimmer - DF	4.50"	4.50"	2.90"	4748	6683	371	11430	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 9" o/c	
Bottom Edge (Lu)	8' 9" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Roof Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(non-snow: 1.25)	Comments
0 - Self Weight (PLF)	0 to 8' 9"	N/A	24.5			
1 - Uniform (PSF)	0 to 8' 9"	12' 8 3/4"	75.0	120.0	-	Default Load
2 - Uniform (PSF)	0 to 8' 9"	4' 2 7/8"	25.0	-	20.0	

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

FORTEWEB°

Level, room windows -(3) 2x10 4' 3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	14478 @ 4' 1 1/4"	17128 (4.50")	Passed (85%)		1.0 D + 1.0 L (Adj Spans)
Shear (lbs)	2845 @ 2' 7"	15960	Passed (18%)	1.00	1.0 D + 1.0 L (Adj Spans)
Moment (Ft-lbs)	-5452 @ 8' 1 3/4"	46671	Passed (12%)	1.00	1.0 D + 1.0 L (Adj Spans)
Live Load Defl. (in)	0.006 @ 10' 2 5/16"	0.133	Passed (L/999+)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.012 @ 10' 2 7/8"	0.080	Passed (L/999+)		1.0 D + 1.0 L (Alt Spans)

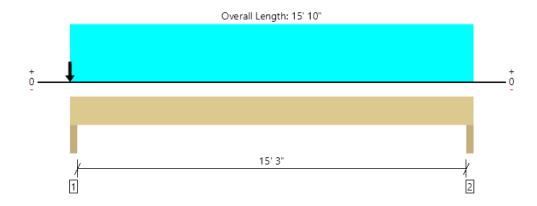
System: Wall
Member Type: Header
Building Use: Commercial
Building Code: IBC 2018
Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/600).
- Allowed moment does not reflect the adjustment for the beam stability factor.

	В	earing Leng	th		Loads to Su			
Supports	Total	Available	Required	Dead	Floor Live	Roof Live	Factored	Accessories
1 - Trimmer - DF	3.00"	3.00"	1.50"	2800	2895/-312	571	5695	None
2 - Trimmer - SPF	4.50"	4.50"	3.80"	7222	7256	1450	14478	None
3 - Trimmer - SPF	4.50"	4.50"	3.80"	7222	7256	1450	14478	None
4 - Trimmer - DF	3.00"	3.00"	1.50"	2800	2895/-312	571	5695	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	12' 3" o/c	
Bottom Edge (Lu)	12' 3" o/c	

[•]Maximum allowable bracing intervals based on applied load.


Vertical Loads	Location	Tributary Width	Dead (0.90)	Floor Live (1.00)	Roof Live (non-snow: 1.25)	Comments
0 - Self Weight (PLF)	0 to 12' 3"	N/A	24.5			
1 - Uniform (PSF)	0 to 12' 3"	12' 7"	92.8	120.0	25.0	Three floors and roof
2 - Uniform (PLF)	0 to 12' 3"	N/A	444.0	-	-	37' exterior wall

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Level, Elevator Lobby F1 4 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	15904 @ 2"	18375 (3.50")	Passed (87%)	- 1	1.0 D + 1.0 L (All Spans)
Shear (lbs)	12314 @ 1' 7 1/2"	21280	Passed (58%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	58776 @ 7' 11"	62228	Passed (94%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.466 @ 7' 11"	0.517	Passed (L/399)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.592 @ 7' 11"	0.775	Passed (L/314)		1.0 D + 1.0 L (All Spans)

System: Wall
Member Type: Header
Building Use: Commercial
Building Code: IBC 2018
Design Methodology: ASD

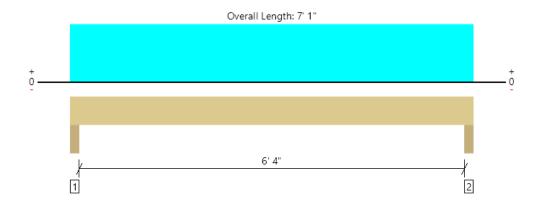
- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

	В	earing Lengt	th		Loads				
Supports	Total	Available	Required	Dead	Floor Live	Roof Live	Snow	Factored	Accessories
1 - Trimmer - DF	3.50"	3.50"	3.03"	3716	12188	328	459	15904	None
2 - Trimmer - DF	3.50"	3.50"	2.95"	3306	12188	-	-	15494	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 3" o/c	
Bottom Edge (Lu)	15' 10" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Roof Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 15' 10"	N/A	32.7				
1 - Uniform (PSF)	0 to 15' 10"	12' 7"	25.0	100.0	-	-	Default Load
2 - Uniform (PSF)	0 to 15' 10"	2' 9 3/4"	25.0	100.0	-	-	
3 - Point (PLF)	0	16' 4 3/4"	25.0	-	20.0	28.0	(1) H5 Roof Load


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Level, Lobby to Corridor Door 3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	15041 @ 3"	17719 (4.50")	Passed (85%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	7786 @ 1' 8 1/2"	15960	Passed (49%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	23007 @ 3' 6 1/2"	46671	Passed (49%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.046 @ 3' 6 1/2"	0.219	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.082 @ 3' 6 1/2"	0.329	Passed (L/968)		1.0 D + 1.0 L (All Spans)

System: Wall
Member Type: Header
Building Use: Commercial
Building Code: IBC 2018
Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Floor Live	Roof Live	Factored	Accessories
1 - Trimmer - DF	4.50"	4.50"	3.82"	6569	8471	1105	15041	None
2 - Trimmer - DF	4.50"	4.50"	3.82"	6569	8471	1105	15041	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	7' 1" o/c	
Bottom Edge (Lu)	7' 1" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Roof Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(non-snow: 1.25)	Comments
0 - Self Weight (PLF)	0 to 7' 1"	N/A	24.5			
1 - Uniform (PSF)	0 to 7' 1"	12' 8 5/8"	100.0	120.0	20.0	
2 - Uniform (PSF)	0 to 7' 1"	2' 10 5/8"	100.0	300.0	20.0	
3 - Uniform (PLF)	0 to 7' 1"	N/A	270.0	-		

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Level, Lobby to Corridor Window 3 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	17518 @ 3"	17719 (4.50")	Passed (99%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	10263 @ 1' 8 1/2"	15960	Passed (64%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	31884 @ 4' 1 1/2"	46671	Passed (68%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.079 @ 4' 1 1/2"	0.258	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.140 @ 4' 1 1/2"	0.155	Passed (L/665)		1.0 D + 1.0 L (All Spans)

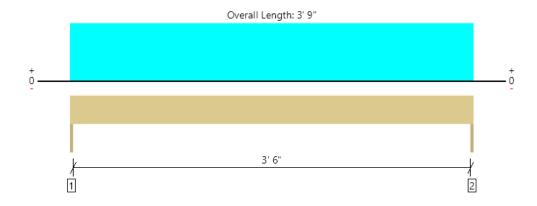
System: Wall
Member Type: Header
Building Use: Commercial
Building Code: IBC 2018
Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/600).
- Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Floor Live	Roof Live	Factored	Accessories
1 - Trimmer - DF	4.50"	4.50"	4.45"	7652	9866	1287	17518	None
2 - Trimmer - DF	4.50"	4.50"	4.45"	7652	9866	1287	17518	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 3" o/c	
Bottom Edge (Lu)	8' 3" o/c	

•Maximum allowable bracing intervals based on applied load.


			Dead	Floor Live	Roof Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(non-snow: 1.25)	Comments
0 - Self Weight (PLF)	0 to 8' 3"	N/A	24.5			
1 - Uniform (PSF)	0 to 8' 3"	12' 8 5/8"	100.0	120.0	20.0	Three Floors and Roof
2 - Uniform (PSF)	0 to 8' 3"	2' 10 5/8"	100.0	300.0	20.0	3 floors hallway
3 - Uniform (PLF)	0 to 8' 3"	N/A	270.0	-	-	

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Level, Staff Laundry Door 3 piece(s) 2 x 8 DF No.1

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2307 @ 0	4219 (1.50")	Passed (55%)		1.0 D + 0.75 L + 0.75 Lr (All Spans)
Shear (lbs)	1370 @ 8 3/4"	3915	Passed (35%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2102 @ 1' 10 1/2"	3942	Passed (53%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.015 @ 1' 10 1/2"	0.125	Passed (L/999+)		1.0 D + 0.75 L + 0.75 Lr (All Spans)
Total Load Defl. (in)	0.023 @ 1' 10 1/2"	0.188	Passed (L/999+)		1.0 D + 0.75 L + 0.75 Lr (All Spans)

System: Wall
Member Type: Header
Building Use: Commercial
Building Code: IBC 2018
Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

	Bearing Length				Loads to Su			
Supports	Total	Available	Required	Dead	Floor Live	Roof Live	Factored	Accessories
1 - Trimmer - DF	1.50"	1.50"	1.50"	747	1495	585	2307	None
2 - Trimmer - DF	1.50"	1.50"	1.50"	747	1495	585	2307	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 9" o/c	
Bottom Edge (Lu)	3' 9" o/c	

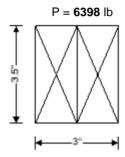
[•]Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead (0.90)	Floor Live (1.00)	Roof Live (non-snow: 1.25)	Comments
0 - Self Weight (PLF)	0 to 3' 9"	N/A	8.3			
1 - Uniform (PSF)	0 to 3' 9"	12' 8 5/8"	25.0	40.0	20.0	Guest room load
2 - Uniform (PSF)	0 to 3' 9"	2' 10 5/8"	25.0	100.0	20.0	Corridor Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

STRUCTURAL WOOD MEMBER DESIGN (NDS)


In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Project No. 23-283

Analysis results

Design axial compression

Sawn lumber section details

 $\begin{array}{lll} \mbox{Nominal breadth of sections} & b_{\mbox{nom}} = 2 \mbox{ in} \\ \mbox{Dressed breadth of sections} & b = 1.5 \mbox{ in} \\ \mbox{Nominal depth of sections} & d_{\mbox{nom}} = 4 \mbox{ in} \\ \mbox{Dressed depth of sections} & d = 3.5 \mbox{ in} \\ \mbox{Number of sections in member} & N = 2 \\ \end{array}$

Overall breadth of member $b_b = N \times b = 3 \text{ in}$

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\label{eq:bending_parallel} Bending parallel to grain & F_b = 900 \text{ lb/in}^2 \\ Tension parallel to grain & F_t = 575 \text{ lb/in}^2 \\ Compression parallel to grain & F_c = 1350 \text{ lb/in}^2 \\ Compression perpendicular to grain & F_{c_perp} = 625 \text{ lb/in}^2 \\ Shear parallel to grain & F_v = 180 \text{ lb/in}^2 \\ \end{cases}$

Modulus of elasticity $E = 1600000 \text{ lb/in}^2$ Modulus of elasticity, stability calculations $E_{min} = 580000 \text{ lb/in}^2$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Service condition Dry
Load duration Ten years
Unbraced length in x-axis $L_x = 7$ ft
Effective length factor in x-axis $K_x = 1$

Effective length in x-axis $L_{ex} = L_x \times K_x = \textbf{7} \text{ ft}$

Unbraced length in y-axis $L_y = \mathbf{1}$ ft Effective length factor in y-axis $K_y = \mathbf{1}$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

Section properties

Cross sectional area of member $A = N \times b \times d = \textbf{10.50} \text{ in}^2$ Section modulus $S_x = N \times b \times d^2 / 6 = \textbf{6.12} \text{ in}^3$ $S_y = d \times (N \times b)^2 / 6 = \textbf{5.25} \text{ in}^3$ Second moment of area $I_x = N \times b \times d^3 / 12 = \textbf{10.72} \text{ in}^4$

 $I_V = d \times (N \times b)^3 / 12 = 7.87 \text{ in}^4$

Adjustment factors

Load duration factor - Table 2.3.2 $C_D = 1.00$

Project WSS - Lee's Summit, MO - Header 1 Bearing Project No. 23-283

Calc. By GL Checked By DN Date_7/18/2023

Temperature factor - Table 2.3.3 $C_t = 1.00$ $C_{Fb} = 1.50$ Size factor for bending - Table 4A Size factor for tension - Table 4A $C_{Ft} = 1.50$ Size factor for compression - Table 4A $C_{Fc} = 1.15$ Flat use factor - Table 4A $C_{fu} = 1.10$

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

Incising factor for perpendicular compression - Table 4.3.8

Cic_perp = **1.00**

Repetitive member factor - cl.4.3.9 $C_r = 1.00$ $C_b = 1.00$ Bearing area factor - cl.3.10.4 Column stability coefficient - cl.15.3.2 $K_f = 1.00$

Adjusted modulus of elasticity for column stability $E_{min}' = E_{min} \times C_{ME} \times C_{t} \times C_{iE} = 580000 \text{ lb/in}^2$ Reference compression design value $F_{c}{}^{*} = F_{c} \times C_{D} \times C_{Mc} \times C_{t} \times C_{Fc} \times C_{i} = \textbf{1552 lb/in}^{2}$ Critical buckling design value for compression $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 828 \text{ lb/in}^2$

c = 0.80

Column stability factor - eq.15.3-1

 $C_P = K_f \times [(1 + (F_{cE} / F_{c^*})) / (2 \times C) - \sqrt{[((1 + (F_{cE} / F_{c^*})) / (2 \times C))^2 - (F_{cE} / F_{c^*}) / C]]} = 0.46$

 $d_{nom} / (N \times b_{nom}) = 1.00$ Depth-to-breadth ratio

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

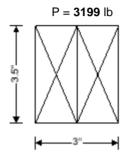
Strength in compression parallel to grain - cl.3.6.3

Design compressive stress $F_c' = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = 709 \text{ lb/in}^2$

Applied compressive stress $f_c = P / A = 609 lb/in^2$

 $f_c / F_c' = 0.860$

STRUCTURAL WOOD MEMBER DESIGN (NDS)


In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Project No. 23-283

Analysis results

Design axial compression

Sawn lumber section details

 $\begin{array}{lll} \mbox{Nominal breadth of sections} & \mbox{b}_{\mbox{nom}} = 2 \mbox{ in} \\ \mbox{Dressed breadth of sections} & \mbox{b} = 1.5 \mbox{ in} \\ \mbox{Nominal depth of sections} & \mbox{d}_{\mbox{nom}} = 4 \mbox{ in} \\ \mbox{Dressed depth of sections} & \mbox{d} = 3.5 \mbox{ in} \\ \mbox{Number of sections in member} & \mbox{N} = 2 \\ \end{array}$

Overall breadth of member $b_b = N \times b = 3$ in

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\label{eq:bending_parallel} \begin{tabular}{ll} Bending parallel to grain & F_b = 900 lb/in^2 \\ Tension parallel to grain & F_t = 575 lb/in^2 \\ Compression parallel to grain & F_c = 1350 lb/in^2 \\ Compression perpendicular to grain & F_c_perp = 625 lb/in^2 \\ Shear parallel to grain & F_v = 180 lb/in^2 \\ \end{tabular}$

Modulus of elasticity $E = 1600000 \text{ lb/in}^2$ Modulus of elasticity, stability calculations $E_{min} = 580000 \text{ lb/in}^2$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Service condition Dry
Load duration Ten years
Unbraced length in x-axis $L_x = 7$ ft
Effective length factor in x-axis $K_x = 1$

Effective length in x-axis $L_{ex} = L_x \times K_x = 7$ ft

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

Section properties

Cross sectional area of member $A = N \times b \times d = \textbf{10.50} \text{ in}^2$ Section modulus $S_x = N \times b \times d^2 / 6 = \textbf{6.12} \text{ in}^3$ $S_y = d \times (N \times b)^2 / 6 = \textbf{5.25} \text{ in}^3$ Second moment of area $I_x = N \times b \times d^3 / 12 = \textbf{10.72} \text{ in}^4$

 $I_y = d \times (N \times b)^3 / 12 = 7.87 \text{ in}^4$

Adjustment factors

Load duration factor - Table 2.3.2 $C_D = 1.00$

Project WSS - Lee's Summit, MO - Header 2 Bearing Project No. 23-283

Calc. By GL Checked By DN Date 7/10/2023

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

 $\label{eq:continuous} \begin{array}{ll} \text{Repetitive member factor - cl.4.3.9} & \text{$C_{\text{r}} = 1.00$} \\ \text{Bearing area factor - cl.3.10.4} & \text{$C_{\text{b}} = 1.00$} \\ \text{Column stability coefficient - cl.15.3.2} & \text{$K_{\text{f}} = 1.00$} \\ \end{array}$

Adjusted modulus of elasticity for column stability $E_{min}' = E_{min} \times C_{ME} \times C_t \times C_{IE} = 580000 \text{ lb/in}^2$ Reference compression design value $F_{c^*} = F_c \times C_D \times C_{MC} \times C_t \times C_{Fc} \times C_i = 1552 \text{ lb/in}^2$ Critical buckling design value for compression $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 828 \text{ lb/in}^2$

c = 0.80

Column stability factor - eq.15.3-1

 $C_P = K_f \times [(1 + (F_{cE} / F_{c^*})) / (2 \times C) - \sqrt{[((1 + (F_{cE} / F_{c^*})) / (2 \times C))^2 - (F_{cE} / F_{c^*}) / C]]} = 0.46$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 1.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

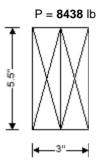
Strength in compression parallel to grain - cl.3.6.3

Design compressive stress $F_c' = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = \textbf{709} \text{ lb/in}^2$

Applied compressive stress fc = P / A = 305 lb/in^2

 $f_c / F_c' = 0.430$

Calc. By <u>GL</u> Checked By <u>DN</u> Date <u>7/24/2023</u>


STRUCTURAL WOOD MEMBER DESIGN (NDS)

In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Analysis results

Design axial compression

Sawn lumber section details

 $\begin{array}{lll} \mbox{Nominal breadth of sections} & \mbox{b}_{\mbox{nom}} = 2 \mbox{ in} \\ \mbox{Dressed breadth of sections} & \mbox{b} = 1.5 \mbox{ in} \\ \mbox{Nominal depth of sections} & \mbox{d}_{\mbox{nom}} = 6 \mbox{ in} \\ \mbox{Dressed depth of sections} & \mbox{d} = 5.5 \mbox{ in} \\ \mbox{Number of sections in member} & \mbox{N} = 2 \\ \end{array}$

Overall breadth of member $b_b = N \times b = \textbf{3} \text{ in}$

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\label{eq:bending_parallel} Bending parallel to grain & F_b = 900 \text{ lb/in}^2 \\ Tension parallel to grain & F_t = 575 \text{ lb/in}^2 \\ Compression parallel to grain & F_c = 1350 \text{ lb/in}^2 \\ Compression perpendicular to grain & F_c_perp = 625 \text{ lb/in}^2 \\ Shear parallel to grain & F_v = 180 \text{ lb/in}^2 \\ \end{array}$

Modulus of elasticity $E = 1600000 \text{ lb/in}^2$ Modulus of elasticity, stability calculations $E_{min} = 580000 \text{ lb/in}^2$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Service condition Dry
Load duration Ten years
Unbraced length in x-axis $L_x = 7$ ft
Effective length factor in x-axis $K_x = 1$

Effective length in x-axis $L_{ex} = L_x \times K_x = \textbf{7} \text{ ft}$

Unbraced length in y-axis $L_y = 1$ ft Effective length factor in y-axis $K_y = 1$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

Section properties

Cross sectional area of member $A = N \times b \times d = 16.50 \text{ in}^2$ Section modulus $S_x = N \times b \times d^2 / 6 = 15.12 \text{ in}^3$

Section modulus $S_x = N \times b \times a^2 / 6 = 13.12 \text{ in}^3$ $S_y = d \times (N \times b)^2 / 6 = 8.25 \text{ in}^3$

Second moment of area $I_x = N \times b \times d^3 / 12 = \textbf{41.59} \text{ in}^4$ $I_y = d \times (N \times b)^3 / 12 = \textbf{12.37} \text{ in}^4$

Adjustment factors

Load duration factor - Table 2.3.2	C _D = 1.00
Temperature factor - Table 2.3.3	$C_t = 1.00$
Size factor for bending - Table 4A	CFb = 1.30
Size factor for tension - Table 4A	$C_{Ft} = 1.30$
Size factor for compression - Table 4A	CFc = 1.10
Flat use factor - Table 4A	$C_{fu} = 1.15$

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

Repetitive member factor - cl.4.3.9 $C_r = 1.00$ $C_b = 1.00$ Bearing area factor - cl.3.10.4 $K_f =$ **0.60** Column stability coefficient – cl.15.3.2

Adjusted modulus of elasticity for column stability $E_{min}' = E_{min} \times C_{ME} \times C_{t} \times C_{iE} = 580000 \text{ lb/in}^2$ Reference compression design value $F_c^* = F_c \times C_D \times C_{Mc} \times C_t \times C_{Fc} \times C_i = 1485 \text{ lb/in}^2$ Critical buckling design value for compression $F_{cE} = 0.822 \times E_{min}' / (L_{ey} / b_b)^2 = 29797 \text{ lb/in}^2$

c = 0.80

Column stability factor - eq.15.3-1

 $C_{P} = K_{f} \times [(1 + (F_{cE} / F_{c}^{*})) / (2 \times C) - \sqrt{[((1 + (F_{cE} / F_{c}^{*})) / (2 \times C))^{2} - (F_{cE} / F_{c}^{*}) / C]]} = 0.59$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 1.50$

- Beam is fully restrained

 $C_L = 1.00$ Beam stability factor - cl.3.3.3

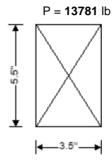
Strength in compression parallel to grain - cl.3.6.3

 $F_c' = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = 882 \text{ lb/in}^2$ Design compressive stress

 $f_c = P / A = 511 \text{ lb/in}^2$ Applied compressive stress

 $f_c / F_c' = 0.580$

STRUCTURAL WOOD MEMBER DESIGN (NDS)


In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Project No. 23-283

Analysis results

Design axial compression

Sawn lumber section details

Nominal breadth of sections $b_{nom} = 4$ in Dressed breadth of sections b = 3.5 in Nominal depth of sections $d_{nom} = 6$ in Dressed depth of sections d = 5.5 in Number of sections in member N = 1

Overall breadth of member $b_b = N \times b = 3.5$ in

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

Bending parallel to grain $F_b = 900 \text{ lb/in}^2$ Tension parallel to grain $F_t = 575 \text{ lb/in}^2$ Compression parallel to grain $F_c = 1350 \text{ lb/in}^2$ Compression perpendicular to grain $F_{c_perp} = 625 \text{ lb/in}^2$ Shear parallel to grain $F_{c_perp} = 625 \text{ lb/in}^2$

 $\begin{array}{ll} \mbox{Shear parallel to grain} & \mbox{$F_v = 180 \ lb/in^2$} \\ \mbox{Modulus of elasticity} & \mbox{$E = 1600000 \ lb/in^2$} \\ \mbox{Modulus of elasticity, stability calculations} & \mbox{$E_{min} = 580000 \ lb/in^2$} \\ \end{array}$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Effective length in x-axis $L_{ex} = L_x \times K_x = 7.72 \text{ ft}$

Unbraced length in y-axis $L_y = 1$ ft Effective length factor in y-axis $K_y = 1$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

Section properties

Cross sectional area of member $A = N \times b \times d = 19.25 \text{ in}^2$

Section modulus $S_x = N \times b \times d^2 / 6 = 17.65 \text{ in}^3$

 $S_y = d \times (N \times b)^2 / 6 = 11.23 \text{ in}^3$

Second moment of area $I_x = N \times b \times d^3 / 12 = 48.53 \text{ in}^4$

 $I_y = d \times (N \times b)^3 / 12 = 19.65 \text{ in}^4$

Adjustment factors

Load duration factor - Table 2.3.2	$C_D = 1.00$
Temperature factor - Table 2.3.3	$C_t = \textbf{1.00}$
Size factor for bending - Table 4A	$C_{Fb} = 1.30$
Size factor for tension - Table 4A	$C_{Ft} = 1.30$
Size factor for compression - Table 4A	$C_{Fc} = 1.10$
Flat use factor - Table 4A	$C_{\text{fu}} = \textbf{1.05}$

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

Repetitive member factor - cl.4.3.9 $C_r = 1.00$ Bearing area factor - cl.3.10.4 $C_b = 1.00$

 $\label{eq:compression} \begin{tabular}{ll} Adjusted modulus of elasticity for column stability & $E_{min}' = E_{min} \times C_{ME} \times C_t \times C_{iE} = {\bf 580000} \ lb/in^2 \\ Reference compression design value & $F_{c^*} = F_c \times C_D \times C_{MC} \times C_t \times C_{Fc} \times C_i = {\bf 1485} \ lb/in^2 \\ Reference compression & $F_{cE} = 0.822 \times E_{min}' \ / \ (L_{ex} \ / \ d)^2 = {\bf 1680} \ lb/in^2 \\ \end{tabular}$

c = 0.80

Column stability factor - eq.3.7-1

 $C_P = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{[((1 + (F_{cE} / F_{c^*})) / (2 \times c))^2 - (F_{cE} / F_{c^*}) / c]} = 0.73$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 1.50$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

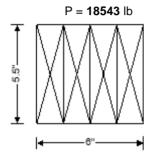
Strength in compression parallel to grain - cl.3.6.3

Design compressive stress $F_c' = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = \textbf{1087 lb/in}^2$

Applied compressive stress $f_c = P / A = 716 \text{ lb/in}^2$

 $f_c / F_c' = 0.659$

STRUCTURAL WOOD MEMBER DESIGN (NDS)


In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Project No. 23-283

Analysis results

Design axial compression

Sawn lumber section details

 $\begin{array}{lll} \mbox{Nominal breadth of sections} & \mbox{b}_{\mbox{nom}} = 2 \mbox{ in} \\ \mbox{Dressed breadth of sections} & \mbox{b} = 1.5 \mbox{ in} \\ \mbox{Nominal depth of sections} & \mbox{d}_{\mbox{nom}} = 6 \mbox{ in} \\ \mbox{Dressed depth of sections} & \mbox{d} = 5.5 \mbox{ in} \\ \mbox{Number of sections in member} & \mbox{N} = 4 \end{array}$

Overall breadth of member $b_b = N \times b = 6$ in

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\label{eq:bending parallel to grain} F_b = 900 \text{ lb/in}^2$ Tension parallel to grain $F_t = 575 \text{ lb/in}^2$ Compression parallel to grain $F_c = 1350 \text{ lb/in}^2$ Compression perpendicular to grain $F_{c_perp} = 625 \text{ lb/in}^2$ Shear parallel to grain $F_v = 180 \text{ lb/in}^2$

Modulus of elasticity $E = 180 \text{ lb/ln}^2$ Modulus of elasticity, stability calculations $E_{\text{min}} = 580000 \text{ lb/in}^2$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Effective length in x-axis $L_{ex} = L_x \times K_x = \textbf{8.22} \text{ ft}$

Unbraced length in y-axis $L_y = 1$ ft Effective length factor in y-axis $K_y = 1$

Effective length in y-axis $L_{ey} = L_y \times K_y = \textbf{1} \text{ ft}$

Section properties

Cross sectional area of member $A = N \times b \times d = \textbf{33.00} \text{ in}^2$ Section modulus $S_x = N \times b \times d^2 / 6 = \textbf{30.25} \text{ in}^3$ $S_y = d \times (N \times b)^2 / 6 = \textbf{33.00} \text{ in}^3$

Second moment of area $I_{x} = N \times b \times d^{3} / 12 = 83.19 \text{ in}^{4}$ $I_{y} = d \times (N \times b)^{3} / 12 = 99.00 \text{ in}^{4}$

Adjustment factors

Load duration factor - Table 2.3.2 $C_D = 1.00$

Project WSS - Lee's Summit - Vestibule Entrance

Project No. 23-283

Calc. By GL Checked By DN

Date 8/1/2023

Temperature factor - Table 2.3.3 $C_t = 1.00$ $C_{Fb} = 1.30$ Size factor for bending - Table 4A Size factor for tension - Table 4A C_{Ft} = **1.30** CFc = 1.10 Size factor for compression - Table 4A Flat use factor - Table 4A $C_{fu} = 1.15$

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

Repetitive member factor - cl.4.3.9 $C_r = 1.15$ $C_b = 1.00$ Bearing area factor - cl.3.10.4 Column stability coefficient - cl.15.3.2 $K_f =$ **0.60**

Adjusted modulus of elasticity for column stability $E_{min}' = E_{min} \times C_{ME} \times C_{t} \times C_{iE} = 580000 \text{ lb/in}^2$ Reference compression design value $F_{c}{}^{*} = F_{c} \times C_{D} \times C_{Mc} \times C_{t} \times C_{Fc} \times C_{i} = \textbf{1485 lb/in}^{2}$ Critical buckling design value for compression $F_{cE} = 0.822 \times E_{min}' / (L_{ey} / b_b)^2 = 119190 lb/in^2$

c = 0.80

Column stability factor - eq.15.3-1

 $C_P = K_f \times [(1 + (F_{cE} / F_{c^*})) / (2 \times C) - \sqrt{[((1 + (F_{cE} / F_{c^*})) / (2 \times C))^2 - (F_{cE} / F_{c^*}) / C]]} = 0.60$

 $d_{nom} / (N \times b_{nom}) = 0.75$ Depth-to-breadth ratio

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

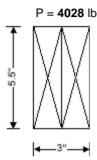
Strength in compression parallel to grain - cl.3.6.3

Design compressive stress $F_c' = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = 889 \text{ lb/in}^2$

Applied compressive stress $f_c = P / A = 562 lb/in^2$

 $f_c / F_c' = 0.632$

STRUCTURAL WOOD MEMBER DESIGN (NDS)


In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Project No. 23-283

Analysis results

Design axial compression

Sawn lumber section details

 $\begin{array}{lll} \mbox{Nominal breadth of sections} & \mbox{b}_{\mbox{nom}} = 2 \mbox{ in} \\ \mbox{Dressed breadth of sections} & \mbox{b} = 1.5 \mbox{ in} \\ \mbox{Nominal depth of sections} & \mbox{d}_{\mbox{nom}} = 6 \mbox{ in} \\ \mbox{Dressed depth of sections} & \mbox{d} = 5.5 \mbox{ in} \\ \mbox{Number of sections in member} & \mbox{N} = 2 \end{array}$

Overall breadth of member $b_b = N \times b = \textbf{3} \text{ in}$

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\label{eq:bending_parallel} Bending parallel to grain & F_b = 900 \text{ lb/in}^2 \\ Tension parallel to grain & F_t = 575 \text{ lb/in}^2 \\ Compression parallel to grain & F_c = 1350 \text{ lb/in}^2 \\ Compression perpendicular to grain & F_c_perp = 625 \text{ lb/in}^2 \\ Shear parallel to grain & F_v = 180 \text{ lb/in}^2 \\ \end{cases}$

Modulus of elasticity $E = 1600000 \text{ lb/in}^2$ Modulus of elasticity, stability calculations $E_{min} = 580000 \text{ lb/in}^2$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Service condition Dry
Load duration Ten years
Unbraced length in x-axis $L_x = 7$ ft
Effective length factor in x-axis $K_x = 1$

Effective length in x-axis $L_{ex} = L_x \times K_x = 7$ ft

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

Section properties

Cross sectional area of member $A = N \times b \times d = 16.50 \text{ in}^2$

Section modulus $S_{x} = N \times b \times d^{2} / 6 = 15.12 \text{ in}^{3}$ $S_{y} = d \times (N \times b)^{2} / 6 = 8.25 \text{ in}^{3}$

Second moment of area $I_x = N \times b \times d^3 / 12 = 41.59 \text{ in}^4$

 $I_y = d \times (N \times b)^3 / 12 = 12.37 \text{ in}^4$

Calc. By GL Checked By DN

Date 7/26/2023

Adjustment factors

BE STRUCTURAL ENGINEERS

Load duration factor - Table 2.3.2	C _D = 1.00
Temperature factor - Table 2.3.3	$C_t = 1.00$
Size factor for bending - Table 4A	CFb = 1.30
Size factor for tension - Table 4A	$C_{Ft} = 1.30$
Size factor for compression - Table 4A	CFc = 1.10
Flat use factor - Table 4A	$C_{fu} = 1.15$

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

Repetitive member factor - cl.4.3.9 $C_r = 1.00$ $C_b = 1.00$ Bearing area factor - cl.3.10.4 $K_f =$ **0.60** Column stability coefficient – cl.15.3.2

Adjusted modulus of elasticity for column stability $E_{min}' = E_{min} \times C_{ME} \times C_{t} \times C_{iE} = 580000 \text{ lb/in}^2$ Reference compression design value $F_c^* = F_c \times C_D \times C_{Mc} \times C_t \times C_{Fc} \times C_i = 1485 \text{ lb/in}^2$ Critical buckling design value for compression $F_{cE} = 0.822 \times E_{min}' / (L_{ey} / b_b)^2 = 29797 \text{ lb/in}^2$

c = 0.80

Column stability factor - eq.15.3-1

 $C_{P} = K_{f} \times [(1 + (F_{cE} / F_{c}^{*})) / (2 \times C) - \sqrt{[((1 + (F_{cE} / F_{c}^{*})) / (2 \times C))^{2} - (F_{cE} / F_{c}^{*}) / C]]} = 0.59$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 1.50$

- Beam is fully restrained

 $C_L = 1.00$ Beam stability factor - cl.3.3.3

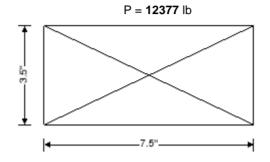
Strength in compression parallel to grain - cl.3.6.3

 $F_c' = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = 882 \text{ lb/in}^2$ Design compressive stress

 $f_c = P / A = 244 \text{ lb/in}^2$ Applied compressive stress

 $f_c / F_c' = 0.277$

STRUCTURAL WOOD MEMBER DESIGN (NDS)


In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Project No. 23-283

Analysis results

Design axial compression

Sawn lumber section details

 $\begin{array}{lll} \mbox{Nominal breadth of sections} & \mbox{b}_{\mbox{nom}} = 8 \mbox{ in} \\ \mbox{Dressed breadth of sections} & \mbox{b} = 7.5 \mbox{ in} \\ \mbox{Nominal depth of sections} & \mbox{d}_{\mbox{nom}} = 4 \mbox{ in} \\ \mbox{Dressed depth of sections} & \mbox{d} = 3.5 \mbox{ in} \\ \mbox{Number of sections in member} & \mbox{N} = 1 \end{array}$

Overall breadth of member $b_b = N \times b = \textbf{7.5} \text{ in}$

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\label{eq:bending parallel to grain} F_b = 900 \text{ lb/in}^2$ Tension parallel to grain $F_t = 575 \text{ lb/in}^2$ Compression parallel to grain $F_c = 1350 \text{ lb/in}^2$ Compression perpendicular to grain $F_{c_perp} = 625 \text{ lb/in}^2$ Shear parallel to grain $F_v = 180 \text{ lb/in}^2$

Shear parallel to grain $F_v = 180 \text{ lb/in}^2$ Modulus of elasticity $E = 1600000 \text{ lb/in}^2$ Modulus of elasticity, stability calculations $E_{min} = 580000 \text{ lb/in}^2$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Service condition Dry
Load duration Ten years
Unbraced length in x-axis $L_x = 7.79 \text{ ft}$ Effective length factor in x-axis $K_x = 1$

Effective length in x-axis $L_{ex} = L_x \times K_x = 7.79 \text{ ft}$

Unbraced length in y-axis $L_y = 1$ ft Effective length factor in y-axis $K_y = 1$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

Section properties

Cross sectional area of member $A = N \times b \times d = 26.25 \text{ in}^2$

Section modulus $S_x = N \times b \times d^2 / 6 = 15.31 \text{ in}^3$

 $S_y = d \times (N \times b)^2 / 6 = 32.81 \text{ in}^3$

Second moment of area $I_x = N \times b \times d^3 / 12 = 26.80 \text{ in}^4$

 $I_y = d \times (N \times b)^3 / 12 = 123.05 \text{ in}^4$

Calc. By GL Checked By DN Date 8/1/2023

Project No. 23-283

Adjustment factors

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

Repetitive member factor - cl.4.3.9 $C_r = 1.00$ Bearing area factor - cl.3.10.4 $C_b = 1.00$

Adjusted modulus of elasticity for column stability $E_{min}' = E_{min} \times C_{ME} \times C_t \times C_{iE} = 580000 \text{ lb/in}^2$ Reference compression design value $F_{c^*} = F_c \times C_D \times C_{MC} \times C_t \times C_{Fc} \times C_i = 1552 \text{ lb/in}^2$ Critical buckling design value for compression $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 668 \text{ lb/in}^2$

c = 0.80

Column stability factor - eq.3.7-1

 $C_P = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{[((1 + (F_{cE} / F_{c^*})) / (2 \times c))^2 - (F_{cE} / F_{c^*}) / c]} = 0.38$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 0.50$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Strength in compression parallel to grain - cl.3.6.3

Design compressive stress $F_c{}' = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = \textbf{595} \text{ lb/in}^2$

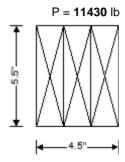
Applied compressive stress $f_c = P / A = 472 \text{ lb/in}^2$

 $f_c / F_c' = 0.793$

PASS - Design compressive stress exceeds applied compressive stress

Calc. By GL Checked By DN Date 7/25/2023

STRUCTURAL WOOD MEMBER DESIGN (NDS)


In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Project No. 23-283

Analysis results

Design axial compression

Sawn lumber section details

 $\begin{array}{lll} \mbox{Nominal breadth of sections} & \mbox{b}_{\mbox{nom}} = 2 \mbox{ in} \\ \mbox{Dressed breadth of sections} & \mbox{b} = 1.5 \mbox{ in} \\ \mbox{Nominal depth of sections} & \mbox{d}_{\mbox{nom}} = 6 \mbox{ in} \\ \mbox{Dressed depth of sections} & \mbox{d} = 5.5 \mbox{ in} \\ \mbox{Number of sections in member} & \mbox{N} = 3 \end{array}$

Overall breadth of member $b_b = N \times b = 4.5$ in

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

Bending parallel to grain $F_b = 900 \text{ lb/in}^2$ Tension parallel to grain $F_t = 575 \text{ lb/in}^2$ Compression parallel to grain $F_c = 1350 \text{ lb/in}^2$ Compression perpendicular to grain $F_{c_perp} = 625 \text{ lb/in}^2$

Shear parallel to grain $F_{v} = 180 \text{ lb/in}^{2}$ Modulus of elasticity $E = 1600000 \text{ lb/in}^{2}$ Modulus of elasticity, stability calculations $E_{min} = 580000 \text{ lb/in}^{2}$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Service condition Dry
Load duration Ten years
Unbraced length in x-axis $L_x = 7$ ft
Effective length factor in x-axis $K_x = 1$

Effective length in x-axis $L_{ex} = L_x \times K_x = \textbf{7} \text{ ft}$

Unbraced length in y-axis $L_y = \mathbf{1}$ ft Effective length factor in y-axis $K_y = \mathbf{1}$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

Section properties

Cross sectional area of member $A = N \times b \times d = 24.75 \text{ in}^2$

Section modulus $S_x = N \times b \times d^2 / 6 = 22.69 \text{ in}^3$ $S_y = d \times (N \times b)^2 / 6 = 18.56 \text{ in}^3$

Second moment of area $I_x = N \times b \times d^3 / 12 = 62.39 \text{ in}^4$

 $I_y = d \times (N \times b)^3 / 12 = 41.77 \text{ in}^4$

Calc. By GL Checked By DN Date 7/25/2023

Adjustment factors

Load duration factor - Table 2.3.2	C _D = 1.00
Temperature factor - Table 2.3.3	$C_t = 1.00$
Size factor for bending - Table 4A	CFb = 1.30
Size factor for tension - Table 4A	$C_{Ft} = 1.30$
Size factor for compression - Table 4A	CFc = 1.10
Flat use factor - Table 4A	$C_{\text{fu}} = \textbf{1.15}$

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

 $\label{eq:continuous} \begin{array}{lll} \text{Repetitive member factor - cl.4.3.9} & C_r = \textbf{1.15} \\ \text{Bearing area factor - cl.3.10.4} & C_b = \textbf{1.00} \\ \text{Column stability coefficient - cl.15.3.2} & K_f = \textbf{0.60} \\ \end{array}$

 $\label{eq:continuous} \begin{tabular}{ll} Adjusted modulus of elasticity for column stability & $E_{min}' = E_{min} \times C_{ME} \times C_t \times C_{iE} = {\bf 580000} \ lb/in^2$ \\ Reference compression design value & $F_{c^*} = F_c \times C_D \times C_{MC} \times C_t \times C_{Fc} \times C_i = {\bf 1485} \ lb/in^2$ \\ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' \ / \ (L_{ey} \ / \ b_b)^2 = {\bf 67044} \ lb/in^2$ \\ \end{tabular}$

c = 0.80

Column stability factor - eq.15.3-1

 $C_{P} = K_{f} \times [(1 + (F_{cE} / F_{c}^{*})) / (2 \times C) - \sqrt{[((1 + (F_{cE} / F_{c}^{*})) / (2 \times C))^{2} - (F_{cE} / F_{c}^{*}) / C]]} = 0.60$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 1.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Strength in compression parallel to grain - cl.3.6.3

Design compressive stress $F_c' = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = \textbf{887 lb/in}^2$

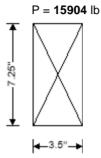
Applied compressive stress $f_c = P / A = 462 \text{ lb/in}^2$

 $f_c / F_{c'} = 0.521$

PASS - Design compressive stress exceeds applied compressive stress

Calc. By GL Checked By DN Date 8/1/2023

STRUCTURAL WOOD MEMBER DESIGN (NDS)


In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Project No. 23-283

Analysis results

Design axial compression

Sawn lumber section details

 $\begin{array}{lll} \mbox{Nominal breadth of sections} & b_{\mbox{nom}} = 4 \mbox{ in} \\ \mbox{Dressed breadth of sections} & b = 3.5 \mbox{ in} \\ \mbox{Nominal depth of sections} & d_{\mbox{nom}} = 8 \mbox{ in} \\ \mbox{Dressed depth of sections} & d = 7.25 \mbox{ in} \\ \mbox{Number of sections in member} & N = 1 \end{array}$

Overall breadth of member $b_b = N \times b = 3.5$ in

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\label{eq:bending_parallel} Bending parallel to grain & F_b = 900 \text{ lb/in}^2 \\ Tension parallel to grain & F_t = 575 \text{ lb/in}^2 \\ Compression parallel to grain & F_c = 1350 \text{ lb/in}^2 \\ Compression perpendicular to grain & F_c_perp = 625 \text{ lb/in}^2 \\ Shear parallel to grain & F_v = 180 \text{ lb/in}^2 \\ \end{cases}$

Modulus of elasticity $E = 1600000 \; lb/in^2$ Modulus of elasticity, stability calculations $E_{min} = 580000 \; lb/in^2$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Service condition Dry
Load duration Ten years
Unbraced length in x-axis $L_x = 7$ ft
Effective length factor in x-axis $K_x = 1$

Effective length in x-axis $L_{ex} = L_x \times K_x = 7$ ft

Unbraced length in y-axis $L_y = 1$ ft Effective length factor in y-axis $K_y = 1$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

Section properties

Cross sectional area of member $A = N \times b \times d = 25.37 \text{ in}^2$

Section modulus $S_x = N \times b \times d^2 / 6 = 30.66 \text{ in}^3$

 $S_y = d \times (N \times b)^2 / 6 = 14.80 \text{ in}^3$

Second moment of area $I_x = N \times b \times d^3 / 12 = 111.15 \text{ in}^4$

 $I_y = d \times (N \times b)^3 / 12 = 25.90 \text{ in}^4$

Calc. By GL Checked By DN Date 8/1/2023

Project No. 23-283

Adjustment factors

Load duration factor - Table 2.3.2	$C_D = 1.00$
Temperature factor - Table 2.3.3	$C_t = \textbf{1.00}$
Size factor for bending - Table 4A	$C_{Fb} = 1.30$
Size factor for tension - Table 4A	$C_{Ft} = \textbf{1.20}$
Size factor for compression - Table 4A	$C_{Fc} = 1.05$
Flat use factor - Table 4A	$C_{\text{fu}} = \textbf{1.05}$

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

Repetitive member factor - cl.4.3.9 $C_r = 1.00$ Bearing area factor - cl.3.10.4 $C_b = 1.00$

 $\label{eq:compression} \begin{tabular}{ll} Adjusted modulus of elasticity for column stability & $E_{min}' = E_{min} \times C_{ME} \times C_t \times C_{iE} = {\bf 580000} \; lb/in^2$ \\ Reference compression design value & $F_{c^*} = F_c \times C_D \times C_{MC} \times C_t \times C_{Fc} \times C_i = {\bf 1418} \; lb/in^2$ \\ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' \; / \; (L_{ex} \; / \; d)^2 = {\bf 3552} \; lb/in^2$ \\ \end{tabular}$

c = 0.80

Column stability factor - eq.3.7-1

 $C_P = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{[((1 + (F_{cE} / F_{c^*})) / (2 \times c))^2 - (F_{cE} / F_{c^*}) / c]} = 0.90$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 2.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Strength in compression parallel to grain - cl.3.6.3

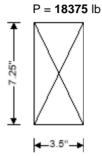
Design compressive stress $F_c' = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = \textbf{1275 lb/in}^2$

Applied compressive stress $f_c = P / A = 627 \text{ lb/in}^2$

 $f_c / F_c' = 0.492$

PASS - Design compressive stress exceeds applied compressive stress

Calc. By GL Checked By DN Date 7/26/2023


STRUCTURAL WOOD MEMBER DESIGN (NDS)

In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Analysis results

Design axial compression

Sawn lumber section details

 $\begin{array}{lll} \mbox{Nominal breadth of sections} & b_{\mbox{nom}} = 4 \mbox{ in} \\ \mbox{Dressed breadth of sections} & b = 3.5 \mbox{ in} \\ \mbox{Nominal depth of sections} & d_{\mbox{nom}} = 8 \mbox{ in} \\ \mbox{Dressed depth of sections} & d = 7.25 \mbox{ in} \\ \mbox{Number of sections in member} & N = 1 \end{array}$

Overall breadth of member $b_b = N \times b = 3.5$ in

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\label{eq:bending_parallel} \begin{tabular}{ll} Bending parallel to grain & F_b = 900 lb/in^2 \\ Tension parallel to grain & F_t = 575 lb/in^2 \\ Compression parallel to grain & F_c = 1350 lb/in^2 \\ Compression perpendicular to grain & F_c_perp = 625 lb/in^2 \\ Shear parallel to grain & F_v = 180 lb/in^2 \\ \end{tabular}$

Modulus of elasticity $E = 1600000 \text{ lb/in}^2$ Modulus of elasticity, stability calculations $E_{min} = 580000 \text{ lb/in}^2$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Effective length in x-axis $L_{ex} = L_x \times K_x = 7.79 \text{ ft}$

Unbraced length in y-axis $L_y = 1$ ft Effective length factor in y-axis $K_y = 1$

Effective length in y-axis $L_{ey} = L_y \times K_y = 1$ ft

Section properties

Cross sectional area of member $A = N \times b \times d = 25.37 \text{ in}^2$ Section modulus $S_x = N \times b \times d^2 / 6 = 30.66 \text{ in}^3$

 $S_y = d \times (N \times b)^2 / 6 = 14.80 \text{ in}^3$

Second moment of area $I_x = N \times b \times d^3 / 12 = \textbf{111.15} \text{ in}^4$ $I_y = d \times (N \times b)^3 / 12 = \textbf{25.90} \text{ in}^4$

Calc. By GL Checked By DN Date 7/26/2023

Adjustment factors

Load duration factor - Table 2.3.2	C _D = 1.00
Temperature factor - Table 2.3.3	$C_t = 1.00$
Size factor for bending - Table 4A	C _{Fb} = 1.30
Size factor for tension - Table 4A	C _{Ft} = 1.20
Size factor for compression - Table 4A	$C_{Fc} = 1.05$
Flat use factor - Table 4A	$C_{\text{fu}} = \textbf{1.05}$

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

 $C_{ic_perp} = 1.00$

Repetitive member factor - cl.4.3.9 $C_r = 1.00$ Bearing area factor - cl.3.10.4 $C_b = 1.00$

 $\label{eq:compression} \begin{tabular}{ll} Adjusted modulus of elasticity for column stability & $E_{min}' = E_{min} \times C_{ME} \times C_t \times C_{iE} = {\bf 580000} \; lb/in^2$ \\ Reference compression design value & $F_{c^*} = F_c \times C_D \times C_{MC} \times C_t \times C_{Fc} \times C_i = {\bf 1418} \; lb/in^2$ \\ Critical buckling design value for compression & $F_{cE} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = {\bf 2868} \; lb/in^2$ \\ \end{tabular}$

c = 0.80

Column stability factor - eq.3.7-1

 $C_P = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{[((1 + (F_{cE} / F_{c^*})) / (2 \times c))^2 - (F_{cE} / F_{c^*}) / c]} = 0.87$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 2.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

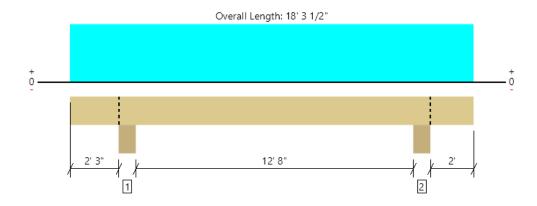
Strength in compression parallel to grain - cl.3.6.3

Design compressive stress $F_c' = F_c \times C_D \times C_t \times C_{Fc} \times C_i \times C_P = \textbf{1232 lb/in}^2$

Applied compressive stress $f_c = P / A = 724 \text{ lb/in}^2$

 $f_c / F_c' = 0.588$

PASS - Design compressive stress exceeds applied compressive stress



		19- 1	
Level			
Member Name	Results	Current Solution	Comments
2x10	Passed	1 piece(s) 2 x 10 DF No.1 @ 24" OC	
2x10 Cant	Passed	1 piece(s) 2 x 10 DF No.1 @ 24" OC	
Canopy Girder 1	Passed	1 piece(s) 8 3/4" x 16 1/2" 24F-V4 DF Glulam	
Canopy Girder 2	Passed	1 piece(s) 8 3/4" x 16 1/2" 24F-V4 DF Glulam	

ForteWEB Software Operator	Job Notes
George Luetje BSE Structural Engineers (913) 492-7400 gluetje@bsestructural.com	

Level, 2x10 1 piece(s) 2 x 10 DF No.1 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	843 @ 2' 7 1/8"	7734 (8.25")	Passed (11%)		1.0 D + 1.0 S (Adj Spans)
Shear (lbs)	509 @ 3' 8 1/2"	1915	Passed (27%)	1.15	1.0 D + 1.0 S (Adj Spans)
Moment (Ft-lbs)	1792 @ 9' 3 11/16"	2593	Passed (69%)	1.15	1.0 D + 1.0 S (Alt Spans)
Live Load Defl. (in)	0.156 @ 9' 3 3/8"	0.334	Passed (L/999+)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.334 @ 9' 3 7/16"	0.668	Passed (L/480)		1.0 D + 1.0 S (Alt Spans)
TJ-Pro™ Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Overhang deflection criteria: LL (2L/480) and TL (2L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- · No composite action between deck and joist was considered in analysis.

	В	earing Lengt	th	Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Beam - DF	8.25"	8.25"	1.50"	466	377	377	843	Blocking
2 - Beam - DF	8.25"	8.25"	1.50"	449	364	364	813	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

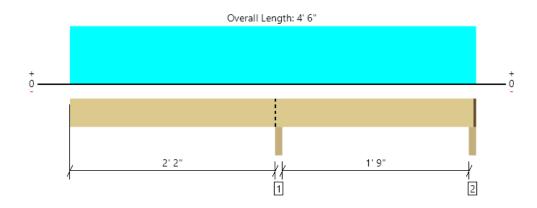
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 10" o/c	
Bottom Edge (Lu)	18' 4" o/c	

 $[\]bullet \mbox{Maximum allowable bracing intervals based on applied load.} \\$

			Dead	Roof Live	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(non-snow: 1.25)	(1.15)	Comments
1 - Uniform (PSF)	0 to 18' 3 1/2"	24"	25.0	20.0	20.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
George Luetje BSE Structural Engineers (913) 492-7400 gluetje@bsestructural.com	

MEMBER REPORT

Level, 2x10 Cant 1 piece(s) 2 x 10 DF No.1 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	419 @ 2' 3 3/4"	3281 (3.50")	Passed (13%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	128 @ 3' 2 3/4"	1915	Passed (7%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	-241 @ 2' 3 3/4"	2593	Passed (9%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.003 @ 0	0.200	Passed (2L/999+)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.007 @ 0	0.231	Passed (2L/999+)		1.0 D + 1.0 S (Alt Spans)
TJ-Pro™ Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Overhang deflection criteria: LL (0.2") and TL (2L/240).
- Left cantilever length exceeds 1/3 member length or 1/2 back span length. Additional bracing should be considered.
- · Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

	В	earing Lengt	th	Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Beam - DF	3.50"	3.50"	1.50"	233	186	186	419	Blocking
2 - Beam - DF	3.50"	2.25"	1.50"	-8	21/-28	21/-28	13/-36	1 1/4" Rim Board

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

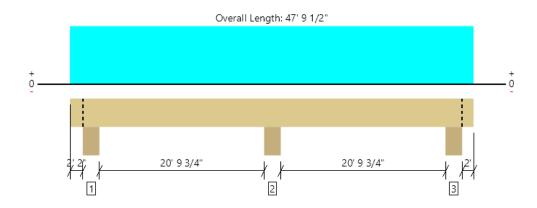
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 5" o/c	
Bottom Edge (Lu)	4' 5" o/c	

•Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(non-snow: 1.25)	(1.15)	Comments
1 - Uniform (PSF)	0 to 4' 6"	24"	25.0	20.0	20.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
George Luetje BSE Structural Engineers (913) 492-7400 gluetje@bsestructural.com	

MEMBER REPORT

Level, Canopy Girder 1 1 piece(s) 8 3/4" x 16 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	11076 @ 23' 11 3/4"	45500 (8.00")	Passed (24%)		1.0 D + 1.0 S (Adj Spans)
Shear (lbs)	4828 @ 25' 8 1/4"	29332	Passed (16%)	1.15	1.0 D + 1.0 S (Adj Spans)
Pos Moment (Ft-lbs)	14146 @ 36' 11 5/8"	85914	Passed (16%)	1.15	1.0 D + 1.0 S (Alt Spans)
Neg Moment (Ft-Ibs)	-23596 @ 23' 11 3/4"	69163	Passed (34%)	1.15	1.0 D + 1.0 S (Adj Spans)
Live Load Defl. (in)	0.077 @ 35' 8 7/16"	0.537	Passed (L/999+)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.157 @ 36' 7/16"	1.074	Passed (L/999+)		1.0 D + 1.0 S (Alt Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Overhang deflection criteria: LL (2L/480) and TL (2L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 0.94 that was calculated using length L = 16' 5 9/16".
- Critical negative moment adjusted by a volume/size factor of 0.98 that was calculated using length L = 10' 8".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Column - SPF	8.00"	8.00"	1.50"	2666	1945	1945	4611	Blocking
2 - Column - SPF	8.00"	8.00"	1.95"	6546	4530	4530	11076	None
3 - Column - SPF	8.00"	8.00"	1.50"	2620	1913	1913	4533	Blocking

· Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

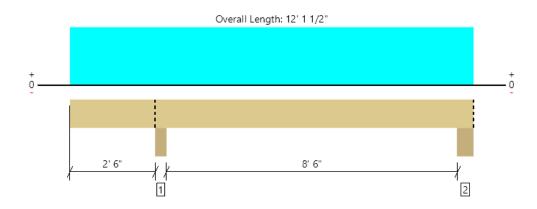
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	47' 10" o/c	
Bottom Edge (Lu)	47' 10" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 47' 9 1/2"	N/A	35.1			
1 - Uniform (PSF)	0 to 47' 9 1/2" (Front)	8' 6"	25.0	20.0	20.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes	
George Luetje BSE Structural Engineers (913) 492-7400 gluetje@bsestructural.com		

MEMBER REPORT

Level, Canopy Girder 2 1 piece(s) 8 3/4" x 16 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1630 @ 2' 8 3/4"	31281 (5.50")	Passed (5%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	698 @ 4' 4"	29332	Passed (2%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	1794 @ 7' 6"	91317	Passed (2%)	1.15	1.0 D + 1.0 S (Alt Spans)
Neg Moment (Ft-Ibs)	-801 @ 2' 8 3/4"	70390	Passed (1%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.002 @ 7' 2 11/16"	0.221	Passed (L/999+)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.004 @ 7' 3 5/16"	0.443	Passed (L/999+)		1.0 D + 1.0 S (Alt Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2015 Design Methodology : ASD

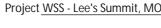
- Deflection criteria: LL (L/480) and TL (L/240).
- Overhang deflection criteria: LL (2L/480) and TL (2L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 8' 2 1/16".
- Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 3' 6 7/8".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Column - DF	5.50"	5.50"	1.50"	1024	606	606	1630	Blocking
2 - Column - DF	8.00"	8.00"	1.50"	614	381	381	995	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	12' 2" o/c	
Bottom Edge (Lu)	12' 2" o/c	

•Maximum allowable bracing intervals based on applied load.


			Dead	Roof Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 12' 1 1/2"	N/A	35.1			
1 - Uniform (PSF)	0 to 12' 1 1/2" (Top)	4'	25.0	20.0	20.0	Default Load

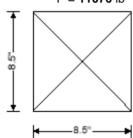
Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
George Luetje BSE Structural Engineers (913) 492-7400 gluetje@bsestructural.com		

Calc. by GL Chk'd by DN Date 7/28/2023

STRUCTURAL GLUED LAMINATED TIMBER (GLULAM) MEMBER DESIGN (NDS)


In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Analysis results

BE STRUCTURAL FINGINFERS

Design moment in major axis $M_x = 9450 \text{ lb ft}$ Design axial compression P = 11076 lb

Glulam section details

Net finished breadth of sections b = 8.5 inNet finished depth of sections d = 8.5 inNumber of sections in member N = 1

Overall breadth of member $b_b = N \times b = 8.5 \text{ in}$

Alignment of laminations Horizontal Stress class 24F-V4 DF/DF Tension parallel to grain $F_t = 1100 \text{ lb/in}^2$ Compression parallel to grain $F_c = 1650 \text{ lb/in}^2$

Bending about X-X axis properties (loaded perpendicular to wide faces of laminations):

Positive bending $F_{bx_pos} = 2400 \text{ lb/in}^2$ $F_{bx_neg} = 1850 \text{ lb/in}^2$ Negative bending $F_{c_perp} = 650 \text{ lb/in}^2$ Compression perpendicular to grain Shear parallel to grain $F_v = 265 \text{ lb/in}^2$ Modulus of elasticity E = 1800000 lb/in² Modulus of elasticity, stability calculations $E_{min} = 950000 \text{ lb/in}^2$

Mean shear modulus $G_{def} = E / 16 = 112500 \text{ lb/in}^2$ Bending about Y-Y axis properties (loaded parallel to wide faces of laminations):

Bending $F_{by} = 1450 \text{ lb/in}^2$ Modulus of elasticity stability calculations $E_{ymin} = 850000 \text{ lb/in}^2$

Member details

Service condition Dry Load duration Ten years Unbraced length in x-axis $L_x = 8 \text{ ft}$ $K_x = 1$ Effective length factor in x-axis

 $L_{ex} = L_x \times K_x = 8 \text{ ft}$ Effective length in x-axis

Unbraced length in y-axis $L_v = 8 \text{ ft}$ Effective length factor in y-axis $K_v = 1$

 $L_{ey} = L_y \times K_y = 8 \text{ ft}$ Effective length in y-axis

Section properties

Cross sectional area of member $A = N \times b \times d = 72.25 \text{ in}^2$ $S_x = N \times b \times d^2 / 6 = 102.35 \text{ in}^3$ Section modulus

Calc. by <u>GL</u> Chk'd by DN Date_7/28/2023

 $S_y = d \times (N \times b)^2 / 6 = 102.35 \text{ in}^3$

Second moment of area $I_x = N \times b \times d^3 / 12 = 435.01 \text{ in}^4$

 $I_V = d \times (N \times b)^3 / 12 = 435.01 \text{ in}^4$

Adjustment factors

Volume factor - eq.5.3-1 $C_V = \min((21 \text{ ft } / \text{ L}_0)^{1/x} \times (12 \text{ in } / \text{ d})^{1/x} \times (5.125 \text{ in } / \text{ b})^{1/x}, 1) = \textbf{0.98}$

Adjusted modulus of elasticity for column stability $E_{ymin}' = E_{ymin} \times C_{ME} \times C_t = 850000 \text{ lb/in}^2$ Reference compression design value $F_c^* = F_c \times C_D \times C_{Mc} \times C_t = 1650 \text{ lb/in}^2$ Critical buckling design value for compression $F_c = 0.822 \times E_{ymin}' / (L_{ey} / b)^2 = 5478 \text{ lb/in}^2$

c = 0.90

Column stability factor - eq.3.7-1

 $C_{P} = (1 + (F_{cE} / F_{c}^{*})) / (2 \times c) - \sqrt{[((1 + (F_{cE} / F_{c}^{*})) / (2 \times c))^{2} - (F_{cE} / F_{c}^{*}) / c]} = 0.96$

Depth-to-breadth ratio $d / (N \times b) = 1.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Strength in bending - cl.3.3.1

Design bending stress $F_{b'} = F_{bx_pos} \times C_D \times C_t \times min(C_L, C_V) \times C_c = 2362 \ lb/in^2$

Actual bending stress $f_b = M_x / S_x = 1108 \text{ lb/in}^2$

 $f_b / F_{b'} =$ **0.469**

PASS - Design bending stress exceeds actual bending stress

Strength in compression parallel to grain - cl.3.6.3

Design compressive stress $F_c' = F_c \times C_D \times C_t \times C_P = 1585 \text{ lb/in}^2$

Applied compressive stress $f_c = P / A = 153 \text{ lb/in}^2$

 $f_c / F_c' = 0.097$

PASS - Design compressive stress exceeds applied compressive stress

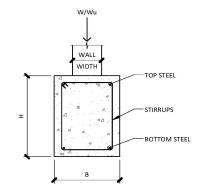
Bending and axial compression - cl.3.9.2

Critical buckling design value about x-x axis $F_{cE1} = 0.822 \times E_{min}' / (L_{ex} / d)^2 = 6122 \text{ lb/in}^2$ Bending and compression check - eq.3.9-3 $[f_c / F_c']^2 + f_{b1} / (F_{b1}' \times [1 - (f_c / F_{cE1})]) = 0.491 < 1$

PASS - Combined compressive and bending stresses are within permissible limits

FOUNDATIONS

Project_	WSS LEE'S		Proje	ect No	23-283	
Calc Rv	GL	Checked By	DN	Date	7/28/2023	


(H - 3 in - 1.5*Bar Dia.)

Grade Beam Design

Grade Beam Location: Exterior Grade Beam

General Information:

Footing Width, B = 18 in Footing Depth, H = 36 in Steel Depth, d = 31.875 in Wall Width = 5.5 in Soil Bearing Pressure = 4 ksf Allowable or Effective SBC? Allowable Footing Concrete Strength = 3.5 ksi Wall Concrete Strength = 4 ksi

Loading:

Vertical Loads: LRFD Factors: (ASCE 7 Combo)

Applied Dead Load = 2.26 klf Footing Weight = 0.675 klf Dead = 1.2 Applied Live Load = 1.55 klf Live = 1.6 ASD Total Load, W = 4.48 klf LRFD Total Load. Wu = 6.00 klf

ASD Soil Pressures:

Is Footing Width Adequate?

Required Footing Width = 1.120365625 ft (Footing Width = W / Soil Bearing Pressure) Actual Soil Bearing Pressure = 2987.641667 psf (Actual Soil Bearing Pressure = W / Footing Width) Chosen Footing Width = 1.5 ft Assumed Footing Span = 4 ft

Plain Concrete Shear Check: Cantilevered Side of Footing

YES

LRFD Bearing Pressure = 3998.61 psf 34 in (h = H - 2 in.)Cantilever = 6.25 (Cantilever = B/2 - Wall Width/2) in 2.08 (LRFD Bearing Pressure* Cantilever) Vu1 = k/ft 25.80 k/ft (ACI 318-11 Equation 22-9, ΦVn = 0.75*(4/3)*sqrt(f'c)* Φ\/n = Adequate in One-Way Shear? YES

Plain Concrete Flexure Check: Cantilevered Side of Footing

34 (h = H - 2 in.)h= Cantilever = 6.25 in (Cantilever = B/2 - Wall Width/2) Mu = 0.54 k-ft/ft (Actual Soil Bearing Pressure* Cantilever) 3468.00 S= in^3 $(S = 12*h^2 / 4)$ (ACI 318-11 Equation 22-2, ΦMn = 0.9*5*sgrt(f'c)*S / 1 ΦMn = 76.94 k-ft/ft Adequate in Flexure? YES

One-Way Shear Check: For Spanning "X" Distance Listed

Vu1 = 12.00 klf (Wu*Assumed Footing Span / 2) ΦVn = 50.92 klf (ACI 318-11 Equation 11-5, ΦVn = 0.75*2*sqrt(f'c)*B*d Adequate in One-Way Shear? YES Are Stirrups Req'd? NO (ACI 318-11 Section 11.4.6.1 If ΦVn/2 >Vu1 "No", Othe

Use #3 Stirrups at 18 in. O.C. (Provide minimum stirrups to support steel)

Project	WSS LEE'S		Proje	ct No	23-283	_
Calc Rv	GL	Chacked Ry	DN	Date	7/28/2023	

Wall Bearing Check:

ΦPn = 145.86 klf (ACI 318-11 Section 10.14.1 ΦPn = 0.65*0.85*f'c*Wall

Adequate in Bearing? YES

Bottom Steel Design for Flexure : For Spanning "X" Distance Listed

in²

(Wu*Assumed Footing Span^2 / 8) 12.00 20.168 (m = fy/(0.85*f'c))m = Ru = 0.009 ksi $(Ru = Mu/(0.9*B*d^2))$ ρ Req'd = 0.0001 $(\rho = (1/m)*(1-sqrt(1-2*Ru*m/fy)))$ (ACI 318-11 Equation 10-3, Smaller of: 3*sqrt(f'c)/fy & 2 ρ Min. = 0.0030 $4/3*Mu \rho Req'd =$ $(\rho = (1/m)^*(1-sqrt(1-2^*1.33^*Ru^*m/fy)))$ 0.0002 Governing ρ = 0.0002 (If ρ Req'd < 4/3*Mu ρ Req'd < ρ Min, Use 4/3*Mu ρ Re A's Required = 0.111 (As = Governing ρ^*B^*d) Bar # = 6 Number of Bars = 5 bars

As Provided = 2.20 Is Steel Adequate? YES

Top Steel:

Bar # = $\frac{6}{5}$ Number of Bars = $\frac{5}{5}$ bars As Provided = $\frac{2.20}{5}$

Temperature & Shrinkage Steel:

T&S Steel Provided?

Minimum Steel = 1.1664 in 2 /ft (ACI 318-11 Section 7.12.2.1 T&S Steel = 0.0018*12 in As Provided Top = 2.20 in 2 /ft As Provided Bott = 2.20 in 2 /ft As Provided Total = 4.40 in 2 /ft

Final Footing Design:

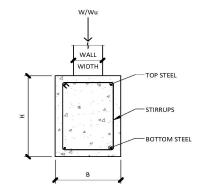
Footing Width, B = 18 in Footing Depth, H = 36 in

Top Steel = (5) #6 bars
Bottom Steel = (5) #6 bars
Stirrups = #3 Stirrups at 18 in. O.C.

YES

C3 of 55

SHT. NO. OF


Project WSS LEE'S		Project	No	23-283	
Calc. By GL	Checked By	GL	Date_	7/28/2023	

Grade Beam Design

Grade Beam Location: Corridor Thickened Slab

General Information:

Footing Width, B = 18 in Footing Depth, H = 16 in Steel Depth, d = 12.0625 Wall Width = 5.5 in Soil Bearing Pressure = 4 ksf Allowable or Effective SBC? Effective Footing Concrete Strength = 3.5 ksi Wall Concrete Strength = 4 ksi

Loading:

Vertical Loads:

Applied Dead Load = 1.98 klf Footing Weight = 0.3 klf Applied Live Load = 2.39 klf ASD Total Load, W = 4.37 klf LRFD Total Load. Wu = 6.20 klf

LRFD Factors: (ASCE 7 Combo)

Dead = 1.2 Live = 1.6

(H - 3 in - 1.5*Bar Dia.)

ASD Soil Pressures:

Required Footing Width = 1.092396875 ft Actual Soil Bearing Pressure = 2913.058333 psf Chosen Footing Width = 1.5 ft Assumed Footing Span = 3 ft Is Footing Width Adequate? YES

(Footing Width = W / Soil Bearing Pressure) (Actual Soil Bearing Pressure = W / Footing Width)

Plain Concrete Shear Check: Cantilevered Side of Footing

LRFD Bearing Pressure = 4134.11 psf 14 in Cantilever = 6.25 in Vu1 = 2.15 k/ft Φ\/n = 10.63 k/ft

(h = H - 2 in.)(Cantilever = B/2 - Wall Width/2) (LRFD Bearing Pressure* Cantilever)

Adequate in One-Way Shear? YES (ACI 318-11 Equation 22-9, ΦVn = 0.75*(4/3)*sqrt(f'c)*

Plain Concrete Flexure Check: Cantilevered Side of Footing

14 h= Cantilever = 6.25 in Mu = 0.56 k-ft/ft 588.00 S= in^3 ΦMn = 13.04 k-ft/ft Adequate in Flexure? YES

(h = H - 2 in.)(Cantilever = B/2 - Wall Width/2) (Actual Soil Bearing Pressure* Cantilever) $(S = 12*h^2 / 4)$

One-Way Shear Check: For Spanning "X" Distance Listed

Vu1 = 9.30 klf ΦVn = 19.27 klf Adequate in One-Way Shear? YES NO

(Wu*Assumed Footing Span / 2) (ACI 318-11 Equation 11-5, ΦVn = 0.75*2*sqrt(f'c)*B*d

Are Stirrups Req'd? Use #3 Stirrups at 18 in. O.C. (ACI 318-11 Section 11.4.6.1 If ΦVn/2 >Vu1 "No", Othe

(ACI 318-11 Equation 22-2, ΦMn = 0.9*5*sgrt(f'c)*S / 1

(Provide minimum stirrups to support steel)

OF

C4	of	55

SHT. NO.

Project WSS LEE'S	i	Projec	t No	23-283	
Calc By GL	Checked By	GL	Date	7/28/2023	

Wall Bearing Check:

ΦPn = 145.86 klf (ACI 318-11 Section 10.14.1 ΦPn = 0.65*0.85*f'c*Wall

Adequate in Bearing? YES

Bottom Steel Design for Flexure : For Spanning "X" Distance Listed

YES

(Wu*Assumed Footing Span^2 / 8) 6.98 20.168 (m = fy/(0.85*f'c))m = Ru = 0.036 ksi $(Ru = Mu/(0.9*B*d^2))$ ρ Req'd = 0.0006 $(\rho = (1/m)*(1-sqrt(1-2*Ru*m/fy)))$ (ACI 318-11 Equation 10-3, Smaller of: 3*sqrt(f'c)/fy & 2 ρ Min. = 0.0030 $4/3*Mu \rho Req'd =$ $(\rho = (1/m)^*(1-sqrt(1-2^*1.33^*Ru^*m/fy)))$ 0.0008 Governing ρ = 0.0008 (If ρ Req'd < 4/3*Mu ρ Req'd < ρ Min, Use 4/3*Mu ρ Re A's Required = 0.172 (As = Governing ρ^*B^*d) Bar # = 5 Number of Bars = 3 bars As Provided = 0.93 in²

Top Steel:

Bar # = 5 Number of Bars = 3 bars As Provided = 0.93 in²

Temperature & Shrinkage Steel:

Is Steel Adequate?

 $\begin{array}{lll} \mbox{Minimum Steel} = & 0.5184 & \mbox{in}^2/\mbox{ft} & \mbox{(ACI 318-11 Section 7.12.2.1 T\&S Steel} = 0.0018*12 \mbox{in} \\ \mbox{As Provided Top} = & 0.93 & \mbox{in}^2/\mbox{ft} \\ \mbox{As Provided Bott} = & 0.93 & \mbox{in}^2/\mbox{ft} \\ \mbox{As Provided Total} = & 1.86 & \mbox{in}^2/\mbox{ft} \\ \mbox{T\&S Steel Provided?} & \mbox{YES} \end{array}$

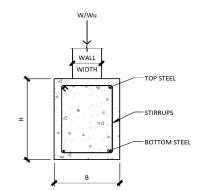
Final Footing Design:

Footing Width, B = 18 in Footing Depth, H = 16 in

Top Steel = (3) #5 bars
Bottom Steel = (3) #5 bars
Stirrups = #3 Stirrups at 18 in. O.C.

C5 of 55

Project	WSS LEE'S		Proj	ect No	23-283	
Cala Du	GI	Charlend Du	GI	Data	7/28/2023	


(H - 3 in - 1.5*Bar Dia.)

Grade Beam Design

Grade Beam Location: Shear Wall Thickened Slab

General Information:

Footing Width, B =	18	ın
Footing Depth, H =	16	in
Steel Depth, d =	12.0625	in
Wall Width =	5.5	in
Soil Bearing Pressure =	4	ksf
Allowable or Effective SBC?	Effective	
Footing Concrete Strength =	3.5	ksi
Wall Concrete Strength =	4	ksi

Loading:

Vertical Loads: LRFD Factors: (ASCE 7 Combo)

Applied Dead Load =	0.60	klf		
Footing Weight =	0.3	klf	Dead =	1.2
Applied Live Load =	0.42	klf	Live =	1.6
ASD Total Load, W =	1.02	klf		
LRFD Total Load, Wu =	1.39	klf		

ASD Soil Pressures:

Is Footing Width Adequate?

Required Footing Width =	0.255546875	ft	(Footing Width = W / Soil Bearing Pressure)
Actual Soil Bearing Pressure =	681.4583333	psf	(Actual Soil Bearing Pressure = W / Footing Width)
Chosen Footing Width =	1.5	ft	
Assumed Footing Span =	4	ft	

Plain Concrete Shear Check: Cantilevered Side of Footing

YES

LRFD Bearing Pressure =	929.75	pst	
h=	14	in	(h = H - 2 in.)
Cantilever =	6.25	in	(Cantilever = B/2 - Wall Width/2)
Vu1 =	0.48	k/ft	(LRFD Bearing Pressure* Cantilever)
ΦVn =	10.63	k/ft	(ACI 318-11 Equation 22-9, ΦVn = 0.75*(4/3)*sqrt(f'c)*
Adequate in One-Way Shear?	YES		

Plain Concrete Flexure Check: Cantilevered Side of Footing

14	in	(h = H - 2 in.)
6.25	in	(Cantilever = B/2 - Wall Width/2)
0.13	k-ft/ft	(Actual Soil Bearing Pressure* Cantilever)
588.00	in^3	$(S = 12*h^2 / 4)$
13.04	k-ft/ft	(ACI 318-11 Equation 22-2, ΦMn = 0.9*5*sqrt(f'c)*S / 1
YES		
	6.25 0.13 588.00 13.04	6.25 in 0.13 k-ft/ft 588.00 in^3 13.04 k-ft/ft

One-Way Shear Check: For Spanning "X" Distance Listed

Olie-way Silear Cileck. FC	n Spailling	A Distance Listeu	
Vu1 =	2.79	klf	(Wu*Assumed Footing Span / 2)
ΦVn =	19.27	klf	(ACI 318-11 Equation 11-5, ΦVn = 0.75*2*sqrt(f'c)*B*d
Adequate in One-Way Shear?	YES		
Are Stirrups Req'd?	NO		(ACI 318-11 Section 11.4.6.1 If ΦVn/2 >Vu1 "No", Othe
	Use #3 Stirru	ps at 18 in. O.C.	(Provide minimum stirrups to support steel)

Project	WSS LEE'S		Proje	ct No	23-283	
Calc By	GL	Checked Ry	GL	Date	7/28/2023	

Wall Bearing Check:

ΦPn = 145.86 klf (ACI 318-11 Section 10.14.1 ΦPn = 0.65*0.85*f'c*Wall

Adequate in Bearing? YES

Bottom Steel Design for Flexure: For Spanning "X" Distance Listed

(Wu*Assumed Footing Span^2 / 8) 2.79 20.168 (m = fy/(0.85*f'c))m = Ru = 0.014 $(Ru = Mu/(0.9*B*d^2))$ ρ Req'd = 0.0002 $(\rho = (1/m)*(1-sqrt(1-2*Ru*m/fy)))$

(ACI 318-11 Equation 10-3, Smaller of: 3*sqrt(f'c)/fy & 2 ρ Min. = 0.0030 $4/3*Mu \rho Req'd =$ $(\rho = (1/m)^*(1-sqrt(1-2^*1.33^*Ru^*m/fy)))$ 0.0003 Governing ρ = 0.0003 (If ρ Req'd < 4/3*Mu ρ Req'd < ρ Min, Use 4/3*Mu ρ Re (As = Governing ρ^*B^*d)

 in^2 A's Required = 0.069 Bar # = 5

Number of Bars = 3 bars As Provided = 0.93 in² Is Steel Adequate? YES

Top Steel:

Bar # = 5 Number of Bars = 3 bars As Provided = 0.93 in^2

Temperature & Shrinkage Steel:

in²/ft Minimum Steel = 0.5184 (ACI 318-11 Section 7.12.2.1 T&S Steel = 0.0018*12 in As Provided Top = in²/ft 0.93 in²/ft 0.93 As Provided Bott = in²/ft As Provided Total = 1.86 T&S Steel Provided? YES

Final Footing Design:

Footing Width, B = 18 in Footing Depth, H = 16 in

> (3) #5 bars Top Steel = Bottom Steel = (3) #5 bars Stirrups = #3 Stirrups at 18 in. O.C.

> > C7 of 55

SHT. NO.	OF	

Project WSS LEE'S SUMMIT Project No. 23-283

GL Date 7/28/2023 Calc. By GL Checked By_

(B*L)

Footing Designation: F1

Footing Location: Lobby

General Information:

Footing Length, L = ft Footing Width, B = 3 ft Footing Depth, H = 36 in Location = Edge in Steel Depth, d = 32.0625 in Typical Slab Depth = in 4

Slab Depth Above Footing = 8 in Area of Footing = 9 ft^2 Soil Bearing Pressure = 4 ksf

Allowable or Effective SBC? Allowable Concrete Strength = 3.5

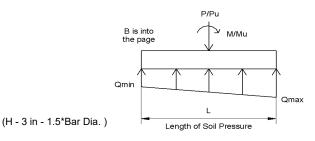
B Direction Column Size = 5.50 in Base Plate Size = 11.00 in

Χ 5.50 in Χ 11.00 in 8.25 in Χ 8.25 in Critical Section =

ksi

Loading:

Vertical Loads: Applied Dead Load = 9.4625 k Slab + Wall +Footing Weight = 4.5 k Applied Live Load = 11.925 k ASD Total Load, P = 25.8875 k LRFD Total Load, Pu = 35.835 k ASD Uplift Load = 0 k LRFD Uplift Load = 0 k


Moments: Dead Load Moment = 0 k-ft Live Load Moment = 0 k-ft ASD Total Moment, M = 0 k-ft LRFD Total Moment, Mu = 0 k-ft

ASD Soil Pressures:

0.000 e = ft 0.500 Kern = ft e > = < Kern ?Less Than Length of Pressure = ft 3 000 Minimum Pressure, Qmin = 2.876 ksf Maximum Pressure, Qmax = 2.876 ksf Is Qmax<SBC? YES

LRFD Soil Pressures:

0.000 ft e = Kern = 0.500 ft Less Than e > = < Kern ?Length of Pressure = 3.000 ft Minimum Pressure, Qmin = 3.982 ksf Maximum Pressure, Qmax = 3.982 ksf Qcritical = 3.982 ksf Critical Length = -0.180 ft

L Direction

LRFD Factors: Dead = 1.2 (ASCE 7 Combo) Live = 1.6 Uplift= 1.67

*Note: Uplift Pressure check below is for ASD pressures. Adjust loads accor

LRFD Factors: Dead =

1.2 (ASCE 7 Combo) Wind = 1.67

> (ASDM/P) (L/6)

("Greater Than", Length = 3*(L/2 -e); Otherwise = L) ("Less Than",Qmin = $(P/L*B) - (6*M/B*L^2)$, Otherwise = 0) ("Less Than",Qmax = $(P/L*B) + (6*M / B*L^2)$,

"Equal To", Qmax = (2*P) / (L*B)

"Greater Than", Qmax = (4*P) / (3*B*(L - 2*e))

(Mu / Pu) (L/6)

("Greater Than", Length = 3*(L/2 -e); Otherwise = L) ("Less Than",Qmin = (Pu/L*B) - $(6*Mu/B*L^2)$, Otherwise = 0)

("Less Than",Qmax = (Pu/L*B) + (6*Mu / B*L^2),

"Equal To", Qmax = (2*Pu) / (L*B)

"Greater Than", Qmax = (4*Pu) / (3*B*(L - 2*e))(Qcritical = pressure @ critical section of footing) (Critical Length = L/2 - Critical Section/2-d/2)

> C8 of 55 SHT. NO. OF

One-Way Shear Check: Vu1 = -2.15 (Qcrit*Crit.L + (Qmax-Qcrit)*Crit L*0.5) k (ACI 318-08 Equation 11-5, ΦVn = 0.75*2*sqrt(f'c)*B*d / 1000) 102.43 ΦVn = k Adequate in One-Way Shear? YES Two-Way Shear Check: 40.31 in (Critical Section B + d) (Column Height L + d) h2 = 40.31 in b0 =161.25 in (2*b1 + 2*b2)(Vu2 = (Qmax+Qmin)/2 * (Ftg Area - b1*b2)) Vu2 = -9.10 k 30 (ACI 318-11 Section 11.11.2.1) α = (ACI 318-11 Section 11.11.2.1, Larger Ftg Dim / Smaller Ftg Dim) β= 1 ΦVn = 1376.40 (ACI 318-11 Eq 11-32, $\Phi Vn = 0.75 * sqrt(f'c)* bo*d*(2+4/Beta))$ k ΦVn = 1827 19 (ACI 318-11 Eq 11-32, $\Phi Vn = 0.75 * sqrt(f'c)*bo*d*(2+Alpha*d/bo))$ k 917.60 k (ACI 318-11 Eq 11-33, $\Phi Vn = 0.75*4*sqrt(f'c)*bo*d$) ΦVn = Adequate in Two-Way Shear? YES Column Bearing Check: ΦPn = 467.9675 (ACI 318-11 Section 10.14.1 ΦPn = 0.65*0.85*f'c*Plate Area*2)) Adequate in Bearing? YES **Uplift Check:** ASD Combo for Uplift = 0.6D + Uplift (ASCE 7) Uplift Force = Ω (From Above) Required Dead Load = 0.00 k (Uplift / 0.6) Applied Dead Load + Slab + Ftg = 13.9625 k Additional Slab Used = (Length of Additional Slab Past Edge of Footing in Each Direction ft ft^2 Additional Slab Area = 0 From Each Edge of Footing) Additional Slab Weight = 0 k Wall Weight Over Footing = 0 klf Applied Wall Load on Footing = 0 k Length Parallel to Slab Edge = 0 ft (B or L Depending on the Case) Length Perpendicular to Slab Edge = 0 ft (B or L Depending on the Case) Area of Cont. Footing = ft^2 0 Length of Cont. Footing/Wall Used = 0 ft This is TOTAL length of wall and continuous footing. Wall + Cont. Footing Load = 0 k 13.96 Total Dead Load = k (Applied Dead + Slab + Wall Weight + Add. Slab + Cont. Ftg) Adequate for Uplift? Footing is Adequate to Resist Uplift (Calculation assumes wall is above the cont. ftg.) Top Steel: Mu = 0.00 k-ft / ft $(Mu = (Pu/A)*0.5*Crit. L^2)$ 20.168 (m = fy/(0.85*f'c))m = Ru = 0.000 ksi $(Ru = Mu/(0.9*12 inches*d^2))$ ρ Req'd = 0.0000 $(\rho = (1/m)*(1-sqrt(1-2*Ru*m/fy)))$ (ACI 318-11 Equation 10-3, Smaller of: 3*sqrt(f'c)/fy & 200/fy) 0.0030 ρ Min. = $4/3*Mu \rho Req'd =$ 0.0000 $(\rho = (1/m)*(1-sqrt(1-2*1.33*Ru*m/fy)))$ Governing ρ = 0.0000 (If ρ Reg'd < 4/3*Mu ρ Reg'd < ρ Min, Use 4/3*Mu ρ Reg'd A's Required = 0.000 in²/ft (As = Governing ρ *12 inches*d) Bar # = 5 Bar Spacing = 6 As Provided = 0.62 in²/ft 7 Bars in B Direction 7 Bars in L Direction **Bottom Steel:** Mu = 0.06 k-ft / ft (Mu= Qcrit*0.5*Lcrit^2 + (Qmax-Qcrit)*0.5*(2/3)*Lcrit^2) 20.168 (m = fy/(0.85*f'c))m = Ru = 0.000 $(Ru = Mu/(0.9*12 inches*d^2))$ ksi ρ Req'd = 0.0000 $(\rho = (1/m)*(1-sqrt(1-2*Ru*m/fy)))$ (ACI 318-11 Equation 10-3, Smaller of: 3*sqrt(f'c)/fy & 200/fy) ρ Min. = 0.0030 $4/3*Mu \rho Req'd =$ 0.0000 $(\rho = (1/m)*(1-sqrt(1-2*1.33*Ru*m/fy)))$ Governing ρ = 0.0000 (If ρ Req'd < 4/3*Mu ρ Req'd < ρ Min, Use 4/3*Mu ρ Req'd A's Required = 0.001 in²/ft (As = Governing ρ *12 inches*d) Bar # = 5 Bar Spacing = 6 As Provided = 0.62 in²/ft 7 Bars in B Direction 7 Bars in L Direction

Project WSS LEE'S SUMMIT

Calc. By GL

Project No. 23-283

Date 7/28/2023

GL

Checked By____

C9 of 55

 Project
 WSS LEE'S SUMMIT
 Project No.
 23-283

 Calc. By
 GL
 Date
 7/28/2023

Temperature & Shrinkage Steel:

Minimum Steel = 0.7128 in 2 /ft (ACI 318-11 Section 7.12.2.1 T&S Steel = 0.0018*12 inches*H)

As Provided Top = 0.62 in 2 /ft

As Provided Bott = 0.62 in 2 /ft

As Provided Total = 1.24 in 2 /ft

T&S Steel Provided?

Final Footing Design: Footing Width, B =

Footing Width, B = 3 ft Footing Length L = 3 ft Footing Depth, H = 36 in

Top Steel = #5 bars @6 inches O.C.

Bottom Steel = #5 bars @6 inches O.C.

Project WSS LEE'S SUMMIT Project No. 23-283

Calc. By GL Checked By GL Date 7/28/2023

(B*L)

Footing Designation: F2

Footing Location: Post

General Information:

Footing Length, L = 3 ft Footing Width, B = 3 ft Footing Depth, H = 36 in Location = Edge in Steel Depth, d = 32.0625 Typical Slab Depth = in 4 Slab Depth Above Footing = 8 in

Area of Footing = 9
Soil Bearing Pressure = 4
Allowable or Effective SBC?
Allowable

Concrete Strength = 3.5

B Direction

 B Direction
 L Direction

 Column Size = 5.50 in
 X 5.50 in

 Base Plate Size = 11.00 in
 X 11.00 in

 Critical Section = 8.25 in
 X 8.25 in

ft^2

ksf

ksi

Loading:

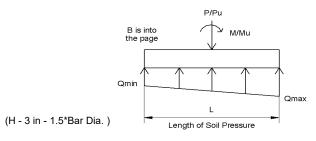
Vertical Loads: Applied Dead Load = 3.375 k Slab + Wall +Footing Weight = 4.5 k Applied Live Load = 2.7 k ASD Total Load, P = 10.575 k LRFD Total Load, Pu = k 13.77 ASD Uplift Load = 2.0231 k LRFD Uplift Load = 3.371833333 k

 Moments:

 Dead Load Moment =
 0
 k-ft

 Live Load Moment =
 0
 k-ft

 ASD Total Moment, M =
 0
 k-ft


 LRFD Total Moment, Mu =
 0
 k-ft

ASD Soil Pressures:

0.000 e = ft 0.500 Kern = ft e > = < Kern ?Less Than Length of Pressure = ft 3.000 Minimum Pressure, Qmin = 1.175 ksf Maximum Pressure, Qmax = 1.175 ksf Is Qmax<SBC? YES

LRFD Soil Pressures:

0.000 ft e = Kern = 0.500 ft Less Than e > = < Kern ?Length of Pressure = 3.000 ft Minimum Pressure, Qmin = 1.530 ksf Maximum Pressure, Qmax = 1.530 ksf Qcritical = 1.530 ksf Critical Length = -0.180 ft

LRFD Factors:

Dead = 1.2 (ASCE 7 Combo)
Live = 1.6
Uplift= 1.67

*Note: Uplift Pressure check below is for ASD pressures. Adjust loads accor

LRFD Factors: Dead =

Dead = 1.2 (ASCE 7 Combo) Wind = 1.67

> (ASDM/P) (L/6)

("Greater Than", Length = 3*(L/2 - e); Otherwise = L) ("Less Than",Qmin = $(P/L*B) - (6*M / B*L^2)$, Otherwise = 0) ("Less Than",Qmax = $(P/L*B) + (6*M / B*L^2)$,

("Less Than",Qmax = (P/L*B) + (6*M / B*L^2 "Equal To", Qmax = (2*P) / (L*B)

"Greater Than", Qmax = (4*P) / (3*B*(L - 2*e))

(Mu / Pu) (L / 6)

("Greater Than", Length = 3*(L/2 - e); Otherwise = L) ("Less Than", Qmin = $(Pu/L*B) - (6*Mu / B*L^2)$, Otherwise = 0)

("Less Than",Qmax = (Pu/L*B) + (6*Mu / B*L^2), "Equal To", Qmax = (2*Pu) / (L*B)

"Equal To", Qmax = (2*Pu) / (L*B) "Greater Than", Qmax = (4*Pu) / (3*B*(L - 2*e))

(Qcritical = pressure @ critical section of footing)
(Critical Length = L/2 - Critical Section/2-d/2)

C11 of 55

One-Way Shear Check: Vu1 = -0.82 (Qcrit*Crit.L + (Qmax-Qcrit)*Crit L*0.5) k (ACI 318-08 Equation 11-5, ΦVn = 0.75*2*sqrt(f'c)*B*d / 1000) 102.43 ΦVn = k Adequate in One-Way Shear? YES Two-Way Shear Check: 40.31 in (Critical Section B + d) (Column Height L + d) h2 = 40.31 in b0 =161.25 in (2*b1 + 2*b2)(Vu2 = (Qmax+Qmin)/2 * (Ftg Area - b1*b2)) Vu2 = -3.50k 30 (ACI 318-11 Section 11.11.2.1) α = (ACI 318-11 Section 11.11.2.1, Larger Ftg Dim / Smaller Ftg Dim) β= 1 ΦVn = 1376.40 (ACI 318-11 Eq 11-32, $\Phi Vn = 0.75 * sqrt(f'c)* bo*d*(2+4/Beta))$ k ΦVn = 1827 19 (ACI 318-11 Eq 11-32, $\Phi Vn = 0.75 * sqrt(f'c)*bo*d*(2+Alpha*d/bo))$ k 917.60 k (ACI 318-11 Eq 11-33, $\Phi Vn = 0.75*4*sqrt(f'c)*bo*d$) ΦVn = Adequate in Two-Way Shear? YES Column Bearing Check: ΦPn = 467.9675 (ACI 318-11 Section 10.14.1 ΦPn = 0.65*0.85*f'c*Plate Area*2)) Adequate in Bearing? YES **Uplift Check:** ASD Combo for Uplift = 0.6D + Uplift (ASCE 7) Uplift Force = 2.0231 (From Above) Required Dead Load = 3.37 k (Uplift / 0.6) Applied Dead Load + Slab + Ftg = 7.875 k Additional Slab Used = (Length of Additional Slab Past Edge of Footing in Each Direction 0 ft ft^2 Additional Slab Area = 0 From Each Edge of Footing) Additional Slab Weight = 0 k Wall Weight Over Footing = 0 klf Applied Wall Load on Footing = 0 k Length Parallel to Slab Edge = 0 ft (B or L Depending on the Case) Length Perpendicular to Slab Edge = 0 ft (B or L Depending on the Case) Area of Cont. Footing = 0 ft^2 Length of Cont. Footing/Wall Used = 0 ft This is TOTAL length of wall and continuous footing. Wall + Cont. Footing Load = 0 k Total Dead Load = 7.88 k (Applied Dead + Slab + Wall Weight + Add. Slab + Cont. Ftg) Adequate for Uplift? Footing is Adequate to Resist Uplift (Calculation assumes wall is above the cont. ftg.) Top Steel: Mu = 0.01 k-ft / ft $(Mu = (Pu/A)*0.5*Crit. L^2)$ 20.168 (m = fy/(0.85*f'c))m = Ru = 0.000 ksi $(Ru = Mu/(0.9*12 inches*d^2))$ ρ Req'd = 0.0000 $(\rho = (1/m)*(1-sqrt(1-2*Ru*m/fy)))$ (ACI 318-11 Equation 10-3, Smaller of: 3*sqrt(f'c)/fy & 200/fy) ρ Min. = 0.0030 $4/3*Mu \rho Req'd =$ 0.0000 $(\rho = (1/m)*(1-sqrt(1-2*1.33*Ru*m/fy)))$ Governing ρ = 0.0000 (If ρ Reg'd < 4/3*Mu ρ Reg'd < ρ Min, Use 4/3*Mu ρ Reg'd A's Required = 0.000 in²/ft (As = Governing ρ *12 inches*d) Bar # = 5 Bar Spacing = 6 As Provided = 0.62 in²/ft 7 Bars in B Direction 7 Bars in L Direction **Bottom Steel:** Mu = 0.02 k-ft / ft (Mu= Qcrit*0.5*Lcrit^2 + (Qmax-Qcrit)*0.5*(2/3)*Lcrit^2) 20.168 (m = fy/(0.85*f'c))m = Ru = 0.000 $(Ru = Mu/(0.9*12 inches*d^2))$ ksi ρ Req'd = 0.0000 $(\rho = (1/m)*(1-sqrt(1-2*Ru*m/fy)))$ (ACI 318-11 Equation 10-3, Smaller of: 3*sqrt(f'c)/fy & 200/fy) ρ Min. = 0.0030 $4/3*Mu \rho Req'd =$ 0.0000 $(\rho = (1/m)*(1-sqrt(1-2*1.33*Ru*m/fy)))$ Governing ρ = 0.0000 (If ρ Req'd < 4/3*Mu ρ Req'd < ρ Min, Use 4/3*Mu ρ Req'd A's Required = 0.000 in²/ft (As = Governing ρ *12 inches*d) Bar # = 5 Bar Spacing = 6 in 7 Bars in B Direction As Provided = 0.62 in²/ft 7 Bars in L Direction

Project WSS LEE'S SUMMIT

Calc. Bv GL

Project No. 23-283

Date 7/28/2023

GL

Checked By____

C12 of 55

 Project
 WSS LEE'S SUMMIT
 Project No.
 23-283

 Calc. By
 GL
 Date
 7/28/2023

Temperature & Shrinkage Steel:

Minimum Steel = 0.7128 in 2 /ft (ACI 318-11 Section 7.12.2.1 T&S Steel = 0.0018*12 inches*H)

As Provided Top = 0.62 in 2 /ft

As Provided Bott = 0.62 in 2 /ft

As Provided Total = 1.24 in 2 /ft

T&S Steel Provided?

Final Footing Design: Footing Width, B =

Footing Width, B = 3 ft Footing Length L = 3 ft Footing Depth, H = 36 in

Top Steel = #5 bars @6 inches O.C.

Bottom Steel = #5 bars @6 inches O.C.

Project WSS LEE'S SUMMIT Project No. 23-283

Calc. By GL GL Date 7/28/2023 Checked By_

Footing Designation: F3

Footing Location: Shear Wall Footing at Grid J and Elevator Header

General Information:

Footing Length, L = ft Footing Width, B = 3 ft Footing Depth, H = 16 in Location = Edge in Steel Depth, d = 12.0625 in

Typical Slab Depth = 4 in Slab Depth Above Footing = 8 in Area of Footing = 9 ft^2

Soil Bearing Pressure = 4 Allowable or Effective SBC? Allowable Concrete Strength = 3.5

ksi **B** Direction

L Direction Column Size = 5.50 in Χ 3.50 in Base Plate Size = 11.00 in Χ 11.00 in 8.25 in Χ 7.25 in Critical Section =

ksf

Loading:

Vertical Loads: Applied Dead Load = 12.415 k Slab + Wall +Footing Weight = 2.25 k Applied Wind/Seismic Load = 11.183 k ASD Total Load, P = 25.848 k LRFD Total Load, Pu = 35.4908 k ASD Uplift Load = 8.751 k LRFD Uplift Load = 14.585 k

Moments:

LRFD Factors:

LRFD Factors:

Dead =

Wind =

Dead = 1.2 (ASCE 7 Combo) Live = 1.60 Uplift= 1.67

1.2

1.67

(H - 3 in - 1.5*Bar Dia.)

(B*L)

*Note: Uplift Pressure check below is for ASD pressures. Adjust loads accor

(ASCE 7 Combo)

B is into

Qmin

P/Pu

Length of Soil Pressure

M/Mu

Qmax

ASD Total Moment, M = LRFD Total Moment, Mu =

Dead Load Moment =

Live Load Moment =

0.500 Kern = ft e > = < Kern ?Less Than Length of Pressure = ft 3 000 2.872 ksf 2 872 ksf

0.000 e = ft

0

0

0

0

k-ft

k-ft

k-ft

k-ft

Minimum Pressure, Qmin = Maximum Pressure, Qmax = Is Qmax<SBC? YES

(ASDM/P) (L/6)

("Greater Than", Length = 3*(L/2 -e); Otherwise = L) ("Less Than",Qmin = $(P/L*B) - (6*M/B*L^2)$, Otherwise = 0) ("Less Than",Qmax = $(P/L*B) + (6*M / B*L^2)$, "Equal To", Qmax = (2*P) / (L*B) "Greater Than", Qmax = (4*P) / (3*B*(L - 2*e))

LRFD Soil Pressures:

ASD Soil Pressures:

0.000 ft e = Kern = 0.500 ft Less Than e > = < Kern ?Length of Pressure = 3.000 ft Minimum Pressure, Qmin = 3.943 ksf Maximum Pressure, Qmax = 3.943 ksf Qcritical = 3.943 ksf Critical Length = 0.695 ft

(Mu/Pu) (L/6)

("Less Than",Qmin = (Pu/L*B) - $(6*Mu/B*L^2)$, Otherwise = 0) ("Less Than",Qmax = (Pu/L*B) + (6*Mu / B*L^2), "Equal To", Qmax = (2*Pu) / (L*B) "Greater Than", Qmax = (4*Pu) / (3*B*(L - 2*e))(Qcritical = pressure @ critical section of footing) (Critical Length = L/2 - Critical Section/2-d/2)

("Greater Than", Length = 3*(L/2 -e); Otherwise = L)

SHT. NO.

One-Way Shear Check: Vu1 = 8.23 (Qcrit*Crit.L + (Qmax-Qcrit)*Crit L*0.5) k (ACI 318-08 Equation 11-5, ΦVn = 0.75*2*sqrt(f'c)*B*d / 1000) 38.54 ΦVn = k Adequate in One-Way Shear? YES Two-Way Shear Check: 20.31 in (Critical Section B + d) (Column Height L + d) h2 = 19.31 in b0 =79.25 in (2*b1 + 2*b2)(Vu2 = (Qmax+Qmin)/2 * (Ftg Area - b1*b2)) Vu2 = 24.75 k 30 (ACI 318-11 Section 11.11.2.1) α = (ACI 318-11 Section 11.11.2.1, Larger Ftg Dim / Smaller Ftg Dim) β= 1 ΦVn = 254.50 (ACI 318-11 Eq 11-32, $\Phi Vn = 0.75 * sqrt(f'c)* bo*d*(2+4/Beta))$ k ΦVn = 278.52 (ACI 318-11 Eq 11-32, $\Phi Vn = 0.75 * sqrt(f'c) * bo*d*(2+Alpha*d/bo))$ k 169.66 k (ACI 318-11 Eq 11-33, $\Phi Vn = 0.75*4*sqrt(f'c)*bo*d$) ΦVn = Adequate in Two-Way Shear? YES Column Bearing Check: (ACI 318-11 Section 10.14.1 ΦPn = 0.65*0.85*f'c*Plate Area*2)) ΦPn = 467.9675 Adequate in Bearing? YES **Uplift Check:** ASD Combo for Uplift = 0.6D + Uplift (ASCE 7) Uplift Force = 8.751 (From Above) Required Dead Load = 14.59 k (Uplift / 0.6) Applied Dead Load + Slab + Ftg = 14.665 k Additional Slab Used = (Length of Additional Slab Past Edge of Footing in Each Direction 0 ft ft^2 Additional Slab Area = 0 From Each Edge of Footing) Additional Slab Weight = 0 k Wall Weight Over Footing = 0 klf Applied Wall Load on Footing = 0 k Length Parallel to Slab Edge = 0 ft (B or L Depending on the Case) Length Perpendicular to Slab Edge = 0 ft (B or L Depending on the Case) Area of Cont. Footing = 0 ft² Length of Cont. Footing/Wall Used = 0 ft This is TOTAL length of wall and continuous footing. Wall + Cont. Footing Load = 0 k 14.67 Total Dead Load = k (Applied Dead + Slab + Wall Weight + Add. Slab + Cont. Ftg) Adequate for Uplift? Footing is Adequate to Resist Uplift (Calculation assumes wall is above the cont. ftg.) Top Steel: Mu = 0.39 k-ft / ft $(Mu = (Pu/A)*0.5*Crit. L^2)$ 20.168 (m = fy/(0.85*f'c))m = Ru = 0.003 ksi $(Ru = Mu/(0.9*12 inches*d^2))$ ρ Req'd = 0.0000 $(\rho = (1/m)*(1-sqrt(1-2*Ru*m/fy)))$ (ACI 318-11 Equation 10-3, Smaller of: 3*sqrt(f'c)/fy & 200/fy) ρ Min. = 0.0030 $4/3*Mu \rho Req'd =$ 0.0001 $(\rho = (1/m)*(1-sqrt(1-2*1.33*Ru*m/fy)))$ Governing ρ = 0.0001 (If ρ Reg'd < 4/3*Mu ρ Reg'd < ρ Min, Use 4/3*Mu ρ Reg'd A's Required = 0.010 in²/ft (As = Governing ρ *12 inches*d) Bar # = 5 Bar Spacing = 12 As Provided = 0.31 in²/ft 4 Bars in B Direction 4 Bars in L Direction **Bottom Steel:** Mu = 0.95 k-ft / ft (Mu= Qcrit*0.5*Lcrit^2 + (Qmax-Qcrit)*0.5*(2/3)*Lcrit^2) 20.168 (m = fy/(0.85*f'c))m = Ru = 0.007 $(Ru = Mu/(0.9*12 inches*d^2))$ ksi ρ Req'd = 0.0001 $(\rho = (1/m)*(1-sqrt(1-2*Ru*m/fy)))$ (ACI 318-11 Equation 10-3, Smaller of: 3*sqrt(f'c)/fy & 200/fy) ρ Min. = 0.0030 $4/3*Mu \rho Req'd =$ 0.0002 $(\rho = (1/m)*(1-sqrt(1-2*1.33*Ru*m/fy)))$ Governing ρ = 0.0002 (If ρ Req'd < 4/3*Mu ρ Req'd < ρ Min, Use 4/3*Mu ρ Req'd A's Required = 0.023 in²/ft (As = Governing ρ *12 inches*d) Bar # = 5 Bar Spacing = 12 in As Provided = 0.31 in²/ft 4 Bars in B Direction 4 Bars in L Direction

Project WSS LEE'S SUMMIT

Calc. Bv GL

Project No. 23-283

Date 7/28/2023

GL

Checked By____

C15 of 55

 Project
 WSS LEE'S SUMMIT
 Project No.
 23-283

 Calc. By
 GL
 Date
 7/28/2023

Temperature & Shrinkage Steel:

Minimum Steel = 0.2808 in 2 /ft (ACI 318-11 Section 7.12.2.1 T&S Steel = 0.0018*12 inches*H)

As Provided Top = 0.31 in 2 /ft

As Provided Bott = 0.31 in 2 /ft

As Provided Total = 0.62 in 2 /ft

T&S Steel Provided?

Final Footing Design: Footing Width, B =

Footing Width, B = 3 ft Footing Length L = 3 ft Footing Depth, H = 16 in

Top Steel = #5 bars @12 inches O.C.
Bottom Steel = #5 bars @12 inches O.C.

SHT. NO.

Project WSS LEE'S SUMMIT Project No. 23-283

Calc. Bv GL GL Date 7/28/2023 Checked By

(B*L)

Footing Designation: F4

Footing Location: Shear Wall Footing Typical

General Information:

Footing Length, L = ft Footing Width, B = 1.5 ft Footing Depth, H = 36 in Location = Edge in Steel Depth, d = 31.875 in Typical Slab Depth = 4 in Slab Depth Above Footing =

8 in Area of Footing = 7.5 ft^2 Soil Bearing Pressure = 4 ksf Allowable or Effective SBC? Allowable

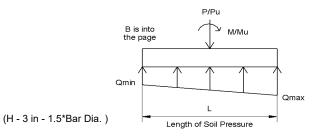
> Concrete Strength = 3.5 ksi **B** Direction

L Direction Column Size = 5.50 in Χ 5.50 in Base Plate Size = 11.00 in Χ 11.00 in Critical Section = 8.25 in Χ 8.25 in

Loading:

Vertical Loads: Applied Dead Load = 6.059 k Slab + Wall +Footing Weight = 6.75 k Applied Wind/Seismic Load = 15.589 k ASD Total Load, P = 28.398 k LRFD Total Load, Pu = 41.35246667 k ASD Uplift Load = 9353.4 k LRFD Uplift Load =

15589 k Moments:


Dead Load Moment = 0 k-ft Live Load Moment = 0 k-ft ASD Total Moment, M = 0 k-ft LRFD Total Moment, Mu = 0 k-ft

ASD Soil Pressures:

0.000 e = ft 0.833 Kern = ft e > = < Kern ?Less Than Length of Pressure = ft 5 000 Minimum Pressure, Qmin = 3.786 ksf Maximum Pressure, Qmax = 3.786 ksf Is Qmax<SBC? YES

LRFD Soil Pressures:

0.000 ft e = Kern = 0.833 ft Less Than e > = < Kern ?Length of Pressure = 5.000 ft Minimum Pressure, Qmin = 5.514 ksf Maximum Pressure, Qmax = 5.514 ksf Qcritical = 5.514 ksf Critical Length = 0.828 ft

LRFD Factors:

Dead = 1.2 (ASCE 7 Combo) Live = 1.67 Uplift= 1.67

*Note: Uplift Pressure check below is for ASD pressures. Adjust loads accor

LRFD Factors:

Dead = 1.2 (ASCE 7 Combo) Wind = 1.67

> (ASDM/P) (L/6)

("Greater Than", Length = 3*(L/2 -e); Otherwise = L) ("Less Than",Qmin = $(P/L*B) - (6*M/B*L^2)$, Otherwise = 0) ("Less Than",Qmax = $(P/L*B) + (6*M / B*L^2)$,

"Equal To", Qmax = (2*P) / (L*B)

"Greater Than", Qmax = (4*P) / (3*B*(L - 2*e))

(Mu / Pu) (L/6)

("Greater Than", Length = 3*(L/2 -e); Otherwise = L) ("Less Than",Qmin = (Pu/L*B) - $(6*Mu/B*L^2)$, Otherwise = 0)

("Less Than",Qmax = (Pu/L*B) + (6*Mu / B*L^2),

"Equal To", Qmax = (2*Pu) / (L*B)

"Greater Than", Qmax = (4*Pu) / (3*B*(L - 2*e))

(Qcritical = pressure @ critical section of footing)

(Critical Length = L/2 - Critical Section/2-d/2)

SHT. NO. OF

One-Way Shear Check: Vu1 = 6.85 (Qcrit*Crit.L + (Qmax-Qcrit)*Crit L*0.5) k (ACI 318-08 Equation 11-5, ΦVn = 0.75*2*sqrt(f'c)*B*d / 1000) 50.92 ΦVn = k Adequate in One-Way Shear? YES Two-Way Shear Check: 40.13 in (Critical Section B + d) (Column Height L + d) h2 = 40.13 in b0 =160.50 in (2*b1 + 2*b2)(Vu2 = (Qmax+Qmin)/2 * (Ftg Area - b1*b2)) -20.29 Vu2 = k 30 (ACI 318-11 Section 11.11.2.1) α = (ACI 318-11 Section 11.11.2.1, Larger Ftg Dim / Smaller Ftg Dim) β= 3 ΦVn = 726.39 (ACI 318-11 Eq 11-32, $\Phi Vn = 0.75 * sqrt(f'c)* bo*d*(2+4/Beta))$ k ΦVn = 1806.43 (ACI 318-11 Eq 11-32, $\Phi Vn = 0.75 * sqrt(f'c) * bo*d*(2+Alpha*d/bo))$ k 907.99 k (ACI 318-11 Eq 11-33, $\Phi Vn = 0.75*4*sqrt(f'c)*bo*d$) ΦVn = Adequate in Two-Way Shear? YES Column Bearing Check: ΦPn = 467.9675 (ACI 318-11 Section 10.14.1 ΦPn = 0.65*0.85*f'c*Plate Area*2)) Adequate in Bearing? YES **Uplift Check:** ASD Combo for Uplift = 0.6D + Uplift (ASCE 7) Uplift Force = 9353.4 (From Above) Required Dead Load = 15589.00 k (Uplift / 0.6) Applied Dead Load + Slab + Ftg = 9.809 k Additional Slab Used = (Length of Additional Slab Past Edge of Footing in Each Direction 5 ft ft² Additional Slab Area = 82.5 From Each Edge of Footing) Additional Slab Weight = 4.125 k Wall Weight Over Footing = klf Applied Wall Load on Footing = 3 k Length Parallel to Slab Edge = 0 ft (B or L Depending on the Case) Length Perpendicular to Slab Edge = 5 ft (B or L Depending on the Case) Area of Cont. Footing = ft² 4.5 Length of Cont. Footing/Wall Used = 5 ft This is TOTAL length of wall and continuous footing. Wall + Cont. Footing Load = 13.375 k Total Dead Load = 30.31 (Applied Dead + Slab + Wall Weight + Add. Slab + Cont. Ftg) Adequate for Uplift? More Dead Load is Req'd (Calculation assumes wall is above the cont. ftg.) Top Steel: Mu = 712.72 k-ft / ft $(Mu = (Pu/A)*0.5*Crit. L^2)$ 20.168 (m = fy/(0.85*f'c))m = Ru = 0.779 ksi $(Ru = Mu/(0.9*12 inches*d^2))$ ρ Req'd = 0.0154 $(\rho = (1/m)*(1-sqrt(1-2*Ru*m/fy)))$ (ACI 318-11 Equation 10-3, Smaller of: 3*sqrt(f'c)/fy & 200/fy) ρ Min. = 0.0030 $4/3*Mu \rho Req'd =$ 0.0223 $(\rho = (1/m)*(1-sqrt(1-2*1.33*Ru*m/fy)))$ Governing ρ = (If ρ Reg'd < 4/3*Mu ρ Reg'd < ρ Min, Use 4/3*Mu ρ Reg'd 0.0154 A's Required = 5.881 in²/ft (As = Governing ρ *12 inches*d) Bar # = 6 Bar Spacing = 6 As Provided = 0.88 in²/ft 4 Bars in B Direction 11 Bars in L Direction **Bottom Steel:** Mu = 1.89 k-ft / ft (Mu= Qcrit*0.5*Lcrit^2 + (Qmax-Qcrit)*0.5*(2/3)*Lcrit^2) 20.168 (m = fy/(0.85*f'c))m = Ru = 0.002 $(Ru = Mu/(0.9*12 inches*d^2))$ ksi ρ Req'd = 0.0000 $(\rho = (1/m)*(1-sqrt(1-2*Ru*m/fy)))$ (ACI 318-11 Equation 10-3, Smaller of: 3*sqrt(f'c)/fy & 200/fy) ρ Min. = 0.0030 $4/3*Mu \rho Req'd =$ 0.0000 $(\rho = (1/m)*(1-sqrt(1-2*1.33*Ru*m/fy)))$ Governing ρ = 0.0000 (If ρ Req'd < 4/3*Mu ρ Req'd < ρ Min, Use 4/3*Mu ρ Req'd A's Required = 0.018 in²/ft (As = Governing ρ *12 inches*d) Bar # = 6 Bar Spacing = 6 in As Provided = 0.88 in²/ft 4 Bars in B Direction 11 Bars in L Direction

Project WSS LEE'S SUMMIT

Calc. By GL

Project No. 23-283

Date 7/28/2023

GL

Checked By____

C18 of 55

 Project
 WSS LEE'S SUMMIT
 Project No.
 23-283

 Calc. By
 GL
 Date
 7/28/2023

Temperature & Shrinkage Steel:

Minimum Steel = 0.7128 in 2 /ft (ACI 318-11 Section 7.12.2.1 T&S Steel = 0.0018*12 inches*H)

As Provided Top = 0.88 in 2 /ft

As Provided Bott = 0.88 in 2 /ft

As Provided Total = 1.76 in 2 /ft

T&S Steel Provided?

Final Footing Design: Footing Width, B =

Footing Width, B = 1.5 ft Footing Length L = 5 ft Footing Depth, H = 36 in

Top Steel = #6 bars @6 inches O.C.

Bottom Steel = #6 bars @6 inches O.C.

Project WSS LEE'S SUMMIT Project No. 23-283

GL Date 7/28/2023 Calc. By GL Checked By

(B*L)

Footing Designation: F4

Footing Location: Shear Wall Footing Typical

General Information:

Footing Length, L = ft Footing Width, B = 1.5 ft Footing Depth, H = 16 in Location = Interior in Steel Depth, d = 12.0625 in Typical Slab Depth = 4 in

Slab Depth Above Footing = 8 in Area of Footing = 7.5 ft^2 Soil Bearing Pressure = 4 ksf

Allowable or Effective SBC? Allowable Concrete Strength = 3.5

B Direction L Direction Column Size = 5.50 in Χ 5.50 in Base Plate Size = 11.00 in Χ 11.00 in 8.25 in Χ 8.25 in Critical Section =

ksi

Loading:

Vertical Loads: Applied Dead Load = 6.059 k Slab + Wall +Footing Weight = 2.25 k Applied Wind/Seismic Load = 9.3534 k ASD Total Load, P = 17.6624 k LRFD Total Load, Pu = 25.5598 k ASD Uplift Load = 9.3534 k LRFD Uplift Load = 15.589 k

Moments: Dead Load Moment = 0 k-ft

Live Load Moment = 0 k-ft ASD Total Moment, M = k-ft 0 LRFD Total Moment, Mu = 0 k-ft

ASD Soil Pressures:

0.000 e = ft Kern = 0.833 ft e > = < Kern ?Less Than Length of Pressure = ft 5 000 Minimum Pressure, Qmin = 2.355 ksf Maximum Pressure, Qmax = 2.355 ksf Is Qmax<SBC? YES

LRFD Soil Pressures:

0.000 ft e = Kern = 0.833 ft Less Than e > = < Kern ?Length of Pressure = 5.000 ft Minimum Pressure, Qmin = 3.408 ksf Maximum Pressure, Qmax = 3.408 ksf Qcritical = 3.408 ksf Critical Length = 1.654 ft

P/Pu B is into M/Mu Qmin Qmax (H - 3 in - 1.5*Bar Dia.) Length of Soil Pressure

LRFD Factors:

Dead = 1.2 (ASCE 7 Combo) Live = 1.67 Uplift= 1.67

*Note: Uplift Pressure check below is for ASD pressures. Adjust loads accor

LRFD Factors: Dead =

1.2 (ASCE 7 Combo) Wind = 1.67

> (ASDM/P) (L/6)

("Greater Than", Length = 3*(L/2 -e); Otherwise = L) ("Less Than",Qmin = $(P/L*B) - (6*M/B*L^2)$, Otherwise = 0) ("Less Than",Qmax = $(P/L*B) + (6*M / B*L^2)$,

"Equal To", Qmax = (2*P) / (L*B) "Greater Than", Qmax = (4*P) / (3*B*(L - 2*e))

(Mu/Pu) (L/6)

("Greater Than", Length = 3*(L/2 -e); Otherwise = L) ("Less Than",Qmin = (Pu/L*B) - $(6*Mu/B*L^2)$, Otherwise = 0)

("Less Than",Qmax = (Pu/L*B) + (6*Mu / B*L^2), "Equal To", Qmax = (2*Pu) / (L*B)

"Greater Than", Qmax = (4*Pu) / (3*B*(L - 2*e))(Qcritical = pressure @ critical section of footing) (Critical Length = L/2 - Critical Section/2-d/2)

> C20 of 55 SHT. NO. OF

One-Way Shear Check: Vu1 = 8.45 (Qcrit*Crit.L + (Qmax-Qcrit)*Crit L*0.5) k (ACI 318-08 Equation 11-5, ΦVn = 0.75*2*sqrt(f'c)*B*d / 1000) ΦVn = 19.27 k Adequate in One-Way Shear? YES Two-Way Shear Check: 20.31 in (Critical Section B + d) (Column Height L + d) h2 = 20.31 in b0 =81.25 in (2*b1 + 2*b2)(Vu2 = (Qmax+Qmin)/2 * (Ftg Area - b1*b2)) 15.80 Vu2 = k 40 (ACI 318-11 Section 11.11.2.1) α = (ACI 318-11 Section 11.11.2.1, Larger Ftg Dim / Smaller Ftg Dim) β= 3 ΦVn = 139.16 (ACI 318-11 Eq 11-32, $\Phi Vn = 0.75 * sqrt(f'c)* bo*d*(2+4/Beta))$ k ΦVn = 345 22 (ACI 318-11 Eq 11-32, $\Phi Vn = 0.75 * sqrt(f'c) * bo*d*(2+Alpha*d/bo))$ k 173.95 k (ACI 318-11 Eq 11-33, $\Phi Vn = 0.75*4*sqrt(f'c)*bo*d$) ΦVn = Adequate in Two-Way Shear? YES Column Bearing Check: ΦPn = 467.9675 (ACI 318-11 Section 10.14.1 ΦPn = 0.65*0.85*f'c*Plate Area*2)) Adequate in Bearing? YES **Uplift Check:** ASD Combo for Uplift = 0.6D + Uplift (ASCE 7) Uplift Force = 9.3534 (From Above) Required Dead Load = 15 59 k (Uplift / 0.6) Applied Dead Load + Slab + Ftg = 8.309 k Additional Slab Used = (Length of Additional Slab Past Edge of Footing in Each Direction 5 ft ft² Additional Slab Area = 165 From Each Edge of Footing) Additional Slab Weight = 8.25 k Wall Weight Over Footing = klf 2 Applied Wall Load on Footing = 0 k Length Parallel to Slab Edge = 5 ft (B or L Depending on the Case) Length Perpendicular to Slab Edge = 5 ft (B or L Depending on the Case) Area of Cont. Footing = 2 ft² Length of Cont. Footing/Wall Used = 2 ft This is TOTAL length of wall and continuous footing. Wall + Cont. Footing Load = 4.6 k Total Dead Load = 21.16 k (Applied Dead + Slab + Wall Weight + Add. Slab + Cont. Ftg) Adequate for Uplift? Footing is Adequate to Resist Uplift (Calculation assumes wall is above the cont. ftg.) Top Steel: Mu = 2.84 k-ft / ft $(Mu = (Pu/A)*0.5*Crit. L^2)$ 20.168 (m = fy/(0.85*f'c))m = Ru = 0.022 ksi $(Ru = Mu/(0.9*12 inches*d^2))$ ρ Req'd = 0.0004 $(\rho = (1/m)*(1-sqrt(1-2*Ru*m/fy)))$ (ACI 318-11 Equation 10-3, Smaller of: 3*sqrt(f'c)/fy & 200/fy) ρ Min. = 0.0030 $4/3*Mu \rho Req'd =$ 0.0005 $(\rho = (1/m)*(1-sqrt(1-2*1.33*Ru*m/fy)))$ Governing ρ = 0.0005 (If ρ Reg'd < 4/3*Mu ρ Reg'd < ρ Min, Use 4/3*Mu ρ Reg'd A's Required = 0.070 in²/ft (As = Governing ρ *12 inches*d) Bar # = 5 Bar Spacing = 12 As Provided = 0.31 in²/ft 3 Bars in B Direction 6 Bars in L Direction **Bottom Steel:** Mu = 4.66 k-ft / ft (Mu= Qcrit*0.5*Lcrit^2 + (Qmax-Qcrit)*0.5*(2/3)*Lcrit^2) 20.168 (m = fy/(0.85*f'c))m = Ru = 0.036 $(Ru = Mu/(0.9*12 inches*d^2))$ ksi ρ Req'd = 0.0006 $(\rho = (1/m)*(1-sqrt(1-2*Ru*m/fy)))$ (ACI 318-11 Equation 10-3, Smaller of: 3*sqrt(f'c)/fy & 200/fy) ρ Min. = 0.0030 $4/3*Mu \rho Req'd =$ 0.0008 $(\rho = (1/m)*(1-sqrt(1-2*1.33*Ru*m/fy)))$ Governing ρ = 0.0008 (If ρ Req'd < 4/3*Mu ρ Req'd < ρ Min, Use 4/3*Mu ρ Req'd A's Required = 0.115 in²/ft (As = Governing ρ *12 inches*d) Bar # = 5 Bar Spacing = 12 in As Provided = 0.31 in²/ft 3 Bars in B Direction 6 Bars in L Direction

Project WSS LEE'S SUMMIT

Calc. By GL

Project No. 23-283

Date 7/28/2023

GL

Checked By____

C21 of 55

 Project
 WSS LEE'S SUMMIT
 Project No.
 23-283

 Calc. By
 GL
 Date
 7/28/2023

Temperature & Shrinkage Steel:

Minimum Steel = 0.2808 in 2 /ft (ACI 318-11 Section 7.12.2.1 T&S Steel = 0.0018*12 inches*H)

As Provided Top = 0.31 in 2 /ft

As Provided Bott = 0.31 in 2 /ft

As Provided Total = 0.62 in 2 /ft

T&S Steel Provided?

Final Footing Design:

Footing Width, B = 1.5 ft Footing Length L = 5 ft Footing Depth, H = 16 in

Top Steel = #5 bars @12 inches O.C.

Bottom Steel = #5 bars @12 inches O.C.

Project_WSS LEE'S SUMMIT Project No. 23-283

Calc. By_GL Checked By_DN Date_7/28/2023

Sill Plate Anchor Design

LRFD ASD

Wind Load Factor: 1 0.6
Seismic Load Factor: 1 0.7

Overstrength, $\Omega = 1$ (1 indicates not required)

Anchor	Max Wind	Max Seismic			Shear per Ar	nchor (lb)
Anchor	(lb/ft _{sw})	(lb/ft _{sw})	Corr. Co	Anchor Spa. (in)	Capacity	Demand
	299.61	64.36				
5/8"Ø SCREW ANCHOR w/	300	64	1.00	32	3800.00	798.95
3-1/4" EMBED					PAS	S

Sill Plate Screw Design

4th Floor

Anakan	Max Wind	Max Seismic			Shear per Al	nchor (lb)	Amahan	Max Wind	Max Seismic		Anchor	Shear per An	chor (lb)
Anchor	(lb/ft _{sw})	(lb/ft _{sw})	Corr. Co	Anchor Spa. (in)	Capacity	Demand	Anchor	(lb/ft _{sw})	(lb/ft _{sw})	Corr. Co	Spa. (in)	Capacity I	Demand
	168.8	26.5						168.8	26.5	1.00			
CDC25500							5/8"Ø THRU						
SDS25500	168.8	26.5	1.00	24	560.00	337.58	BOLT	168.8	26.5	1.00	48	960.00	675.17
					PAS	S						PAS	S
3rd Floor													
Anchor	Max Wind	Max Seismic			Shear per Al	nchor (lb)	Anchor	Max Wind	Max Seismic		Anchor	Shear per An	nchor (lb)
Anchor	(lb/ft _{sw})	(lb/ft _{sw})	Corr. Co	Anchor Spa. (in)	Capacity	Demand	Anchor	(lb/ft _{sw})	(lb/ft _{sw})	Corr. Co	Spa. (in)	Capacity I	Demand
	221.1	46.5						221.1	46.5	1.00			
SDS25500							5/8"Ø THRU						
3D323300	221.1	46.5	1.00	24	560.00	442.24	BOLT	221.1	46.5	1.00	48	960.00	884.47
					PAS	S						PAS	S
2nd Floor								_				1	
Anchor	Max Wind	Max Seismic		<u></u>	Shear per Al	nchor (Ib)	Anchor	Max Wind	Max Seismic		Anchor	Shear per An	
Tirenor	(lb/ft _{sw})	(lb/ft _{sw})	Corr. Co	Anchor Spa. (in)	Capacity	Demand	Turchor	(lb/ft _{SW})	(lb/ft _{sw})	Corr. Co	Spa. (in)	Capacity I	Demand
	273.4	59.4						273.4	59.4	1.00000			
SDS25500							5/8"Ø THRU						
30323300	273.4	59.4	1.00	24	560.00	546.89	BOLT	273.4	59.4	1.00000	32	960.00	729.18
					PAS	S						PAS	S

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Concrete - Jul 19, 2023 (1) Date: 7/28/2023
Fastening point:

Specifier's comments:

1 Input data

Anchor type and diameter: HIT-HY 200 V3 + HAS-V-36 (ASTM F1554 Gr.36) 1

Item number: 2198033 HAS-V-36 1"x12" (element) / 2334276 HIT-HY

200-R V3 (adhesive)

Effective embedment depth: $h_{ef,act} = 9.000 \text{ in. } (h_{ef,limit} = - \text{ in.})$

Material: ASTM F1554 Grade 36

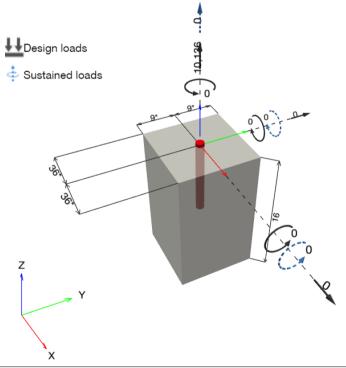
Evaluation Service Report: ESR-4868

Issued I Valid: 11/1/2022 | 11/1/2024

Proof: Design Method ACI 318-19 / Chem

Stand-off installation:

Profile:


Base material: cracked concrete, Custom, f_c' = 3,500 psi; h = 16.000 in., Temp. short/long: 32/32 °F

Installation: hammer drilled hole, Installation condition: Dry

Reinforcement: tension: not present, shear: not present; no supplemental splitting reinforcement present

edge reinforcement: none or < No. 4 bar

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2023 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Concrete - Jul 19, 2023 (1) Date: 7/28/2023

Fastening point:

2 Load case/Resulting anchor forces

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y

1 10,136 0 0 0

 $\begin{tabular}{ll} max. concrete compressive strain: & - [\%] \\ max. concrete compressive stress: & - [psi] \\ resulting tension force in (x/y)=(0.000/0.000): & 0 [lb] \\ resulting compression force in (x/y)=(0.000/0.000): & 0 [lb] \\ \end{tabular}$

3 Tension load

	Load N _{ua} [lb]	Capacity • N _n [lb]	Utilization $\beta_N = N_{ua}/\Phi N_n$	Status
Steel Strength*	10,136	26,348	39	OK
Bond Strength**	10,136	13,991	73	OK
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	10,136	10,590	96	OK

^{*} highest loaded anchor **anchor group (anchors in tension)

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Concrete - Jul 19, 2023 (1) Date: 7/28/2023

Fastening point:

3.1 Steel Strength

 $\begin{array}{ll} {\rm N_{sa}} & = {\rm ESR} \ {\rm value} & {\rm refer} \ {\rm to} \ {\rm ICC\text{-}ES} \ {\rm ESR\text{-}4868} \\ \phi \ {\rm N_{sa}} \ge {\rm N_{ua}} & {\rm ACI} \ {\rm 318\text{-}19} \ {\rm Table} \ {\rm 17.5.2} \end{array}$

Variables

A_{se,N} [in.²] f_{uta} [psi] 0.61 58,000

Calculations

N_{sa} [lb] 35,130

Results

 $\frac{N_{sa} [lb]}{35,130}$ $\frac{\phi}{steel}$ $\frac{\phi}{N_{sa} [lb]}$ $\frac{N_{ua} [lb]}{10,136}$

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Concrete - Jul 19, 2023 (1) Date: 7/28/2023

Fastening point:

3.2 Bond Strength

 $N_a = \left(\frac{A_{Na}}{A_{Na0}}\right) \psi_{ed,Na} \psi_{cp,Na} N_{ba}$ ACI 318-19 Eq. (17.6.5.1a) $\phi N_a > N_{us}$ ACI 318-19 Table 17.5.2

A_{Na} see ACI 318-19, Section 17.6.5.1, Fig. R 17.6.5.1(b)

1.000

 $A_{Na0} = (2 c_{Na})^2$ ACI 318-19 Eq. (17.6.5.1.2a) $c_{Na} = 10 d_a \sqrt{\frac{\tau_{uncr}}{1100}}$ ACI 318-19 Eq. (17.6.5.1.2b)

 $\psi_{\text{ed,Na}} = 0.7 + 0.3 \left(\frac{c_{\text{a,min}}}{c_{\text{Na}}} \right) \leq 1.0 \\ \text{ACI 318-19 Eq. (17.6.5.4.1b)}$

 $\psi_{cp,Na} = MAX \left(\frac{c_{a,min}}{c_{ac}}, \frac{c_{Na}}{c_{ac}} \right) \le 1.0$ $N_{ba} = \lambda_a \cdot \tau_{k,c} \cdot \pi \cdot d_a \cdot h_{ef}$ ACI 318-19 Eq. (17.6.5.2.1)

Variables

τ _{k,c,uncr} [psi]	d _a [in.]	h _{ef} [in.]	c _{a,min} [in.]	$lpha_{ m overhead}$	τ _{k,c} [psi]
2,296	1.000	9.000	9.000	1.000	1,370
c _{ac} [in.]	λ				
Cac [III.]	· a				

Calculations

17.775

c _{Na} [in.]	A _{Na} [in. ²]	A _{Na0} [in. ²]	$\psi_{\text{ ed,Na}}$
14.382	517.75	827.38	0.888
$\psi_{cp,Na}$	N _{ba} [lb]		
1.000	38,745		

Results

N _a [lb]	ф _{bond}	φ N _a [lb]	N _{ua} [lb]
21,524	0.650	13,991	10,136

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: E-Mail:

Design: Concrete - Jul 19, 2023 (1) Date: 7/28/2023

Fastening point:

3.3 Concrete Breakout Failure

 $N_{\text{cb}} = \left(\frac{A_{\text{Nc}}}{A_{\text{Nc0}}}\right) \; \psi_{\; \text{ed}, N} \; \psi_{\text{c}, N} \; \psi_{\text{cp}, N} \; N_{\text{b}} \label{eq:Ncb}$ ACI 318-19 Eq. (17.6.2.1a)

 $\phi \ \ N_{cb} \geq N_{ua}$ $A_{Nc} \ \ \ see \ ACI \ 318-19, \ Section \ 17.6.2.1, \ Fig. \ R \ 17.6.2.1(b)$ ACI 318-19 Table 17.5.2

 $A_{Nc0} = 9 h_{ef}^2$

ACI 318-19 Eq. (17.6.2.1.4)

$$\begin{split} \psi_{\text{ed,N}} &= 0.7 + 0.3 \left(\frac{c_{a,\text{min}}}{1.5h_{\text{ef}}}\right) \leq 1.0 \\ \psi_{\text{cp,N}} &= \text{MAX} \left(\frac{c_{a,\text{min}}}{c_{\text{ac}}}, \frac{1.5h_{\text{ef}}}{c_{\text{ac}}}\right) \leq 1.0 \\ N_b &= k_c \ \lambda_a \ \sqrt{f_c} \ h_{\text{ef}}^{1.5} \end{split}$$
ACI 318-19 Eq. (17.6.2.4.1b)

ACI 318-19 Eq. (17.6.2.6.1b)

ACI 318-19 Eq. (17.6.2.2.1)

Variables

h _{ef} [in.]	c _{a,min} [in.]	$\Psi_{\text{c,N}}$	c _{ac} [in.]	k _c	λ _a	f _c [psi]
9.000	9.000	1.000	17.775	17	1.000	3,500

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\psi_{\text{ ed,N}}$	$\Psi_{\text{cp,N}}$	N _b [lb]	
486.00	729.00	0.900	1.000	27.155	

Results

N _{cb} [lb]	φ concrete	φ N _{cb} [lb]	N _{ua} [lb]
16,293	0.650	10,590	10,136

www.hilti.com

Company:		Page:	6
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Jul 19, 2023 (1)	Date:	7/28/2023
Fastening point:	,		

4 Shear load

	Load V _{ua} [lb]	Capacity ♥ V _n [lb]	Utilization $\beta_V = V_{ua}/\Phi V_n$	Status
Steel Strength*	N/A	N/A	N/A	N/A
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Bond Strength controls)*	N/A	N/A	N/A	N/A
Concrete edge failure in direction **	N/A	N/A	N/A	N/A

^{*} highest loaded anchor **anchor group (relevant anchors)

5 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-19, Section 26.7.

Fastening meets the design criteria!

www.hilti.com

Fastening point:

Company:
Address:
Phone I Fax:
Design:
Concrete - Jul 19, 2023 (1)

Page: Specifier: E-Mail: Date:

7/28/2023

6 Installation data

Profile: -

Hole diameter in the fixture: - Plate thickness (input): -

Drilling method: Hammer drilled

Cleaning: Compressed air cleaning of the drilled hole according to instructions for use is required

1 Hilti HAS Carbon steel threaded rod with Hilti HIT-HY 200 V3 Safe Set System

Anchor type and diameter: HIT-HY 200 V3 + HAS-V-36

(ASTM F1554 Gr.36) 1

Item number: 2198033 HAS-V-36 1"x12" (element) /

2334276 HIT-HY 200-R V3 (adhesive)

Maximum installation torque: 1,800 in.lb

Hole diameter in the base material: 1.125 in.

Hole depth in the base material: 9.000 in.

Minimum thickness of the base material: 11.250 in.

6.1 Recommended accessories

Drilling Cleaning Setting

Suitable Rotary Hammer
 Properly sized drill bit
 Compressed air with required accessories to blow from the bottom of the hole

· Proper diameter wire brush

- · Dispenser including cassette and mixer
- · Torque wrench

Coordinates Anchor in.

Anchor	X	У	C _{-x}	C _{+x}	C _{-y}	c _{+y}	
1	0.000	0.000	36.000	36.000	9.000	9.000	

www	hi	lti	റവ	m

Company:		Page:	3
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Jul 19, 2023 (1)	Date:	7/28/2023
Fastening point:			

7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Concrete - Jul 19, 2023 Date: 7/28/2023
Fastening point:

Specifier's comments:

1 Input data

Anchor type and diameter: HIT-HY 200 V3 + HAS-E-55 (ASTM F1554 Gr.55) 1

Item number: 2198009 HAS-E-55 1"x12" (element) / 2334276 HIT-HY

200-R V3 (adhesive)

Effective embedment depth: $h_{ef,act} = 7.500 \text{ in. } (h_{ef,limit} = - \text{ in.})$

Material: ASTM F1554 Grade 55

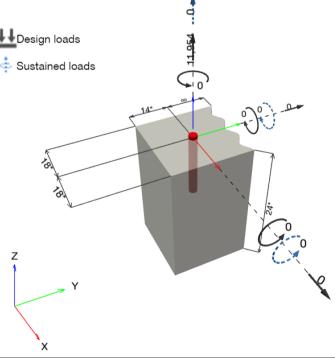
Evaluation Service Report: ESR-4868

Issued I Valid: 11/1/2022 | 11/1/2024

Proof: Design Method ACI 318-19 / Chem

Stand-off installation:

Profile:


Base material: cracked concrete, Custom, f_c' = 3,500 psi; h = 24.000 in., Temp. short/long: 32/32 °F

Installation: hammer drilled hole, Installation condition: Dry

Reinforcement: tension: not present, shear: not present; no supplemental splitting reinforcement present

edge reinforcement: > No. 4 bar with stirrups

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2023 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: | E-Mail:

Design: Concrete - Jul 19, 2023 Date: 7/28/2023
Fastening point:

1.1 Design results

2 Load case/Resulting anchor forces

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y

1 11.954 0 0 0

 $\begin{tabular}{ll} max. concrete compressive strain: & - [\%] \\ max. concrete compressive stress: & - [psi] \\ resulting tension force in (x/y)=(0.000/0.000): & 0 [lb] \\ resulting compression force in (x/y)=(0.000/0.000): & 0 [lb] \\ \end{tabular}$

3 Tension load

	Load N _{ua} [lb]	Capacity P N _n [lb]	Utilization $\beta_N = N_{ua}/\Phi N_n$	Status
Steel Strength*	11,954	34,072	36	OK
Bond Strength**	11,954	20,543	59	OK
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	11,954	13,427	90	OK

^{*} highest loaded anchor **anchor group (anchors in tension)

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Concrete - Jul 19, 2023 Date: 7/28/2023

Fastening point:

3.1 Steel Strength

 N_{sa} = ESR value refer to ICC-ES ESR-4868 ϕ $N_{sa} \ge N_{ua}$ ACI 318-19 Table 17.5.2

Variables

A_{se,N} [in.²] f_{uta} [psi]
0.61 75,000

Calculations

N_{sa} [lb] 45,430

Results

 $\frac{N_{sa} [lb]}{45,430}$ $\frac{\phi}{0.750}$ $\frac{\phi}{34,072}$ $\frac{\phi}{11,954}$

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: E-Mail:

Design: Concrete - Jul 19, 2023 Date: 7/28/2023

Fastening point:

3.2 Bond Strength

N_{a}	$= \left(\frac{A_{\text{Na}}}{A_{\text{Na0}}}\right) \psi_{\text{ed,Na}} \psi_{\text{cp,Na}} N_{\text{ba}}$	ACI 318-19 Eq. (17.6.5.1a)
ϕ N_a	$\geq N_{ua}$	ACI 318-19 Table 17.5.2
A_{Na}	see ACI 318-19, Section 17.6.5.1, Fig. R 17.6.5.1(b)	
A_{Na0}	$= (2 c_{Na})^2$	ACI 318-19 Eq. (17.6.5.1.2a)
c _{Na}	$= (2 c_{Na})^{2}$ $= 10 d_{a} \sqrt{\frac{\tau_{uncr}}{1100}}$	ACI 318-19 Eq. (17.6.5.1.2b)

$$\psi_{\text{ed,Na}} = 0.7 + 0.3 \left(\frac{c_{\text{a,min}}}{c_{\text{o}}} \right) \le 1.0$$
 ACI 318-19 Eq. (17.6.5.4.1b)

$$\begin{split} \psi_{\text{ed,Na}} &= 0.7 + 0.3 \left(\frac{c_{\text{a,min}}}{c_{\text{Na}}}\right) \leq 1.0 \\ \psi_{\text{cp,Na}} &= \text{MAX} \left(\frac{c_{\text{a,min}}}{c_{\text{ac}}}, \frac{c_{\text{Na}}}{c_{\text{ac}}}\right) \leq 1.0 \\ N_{\text{ba}} &= \lambda_{\text{a}} \cdot \tau_{\text{k,c}} \cdot \pi \cdot d_{\text{a}} \cdot h_{\text{ef}} \end{split} \qquad \qquad \begin{aligned} &\text{ACI 318-19 Eq. (17.6.5.2.1)} \\ &\text{ACI 318-19 Eq. (17.6.5.2.1)} \end{aligned}$$

Variables

τ _{k,c,uncr} [psi]	d _a [in.]	h _{ef} [in.]	c _{a,min} [in.]	$lpha_{ ext{overhead}}$	τ _{k,c} [psi]
2,296	1.000	7.500	14.000	1.000	1,370
c _{ac} [in.]	λ _a				

Calculations

10.776

c _{Na} [in.]	A _{Na} [in. ²]	A _{Na0} [in. ²]	Ψ _{ed,Na}
14.382	816.39	827.38	0.992
Ψ cp,Na	N _{ba} [lb]	_	
1.000	32,288		

1.000

Results

N _a [lb]	ϕ_{bond}	φ N _a [lb]	N _{ua} [lb]	
31,605	0.650	20,543	11,954	

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: E-Mail:

Design: Concrete - Jul 19, 2023 Date: 7/28/2023

Fastening point:

3.3 Concrete Breakout Failure

 $N_{\text{cb}} = \left(\frac{A_{\text{Nc}}}{A_{\text{Nc0}}}\right) \; \psi_{\; \text{ed}, N} \; \psi_{\text{c}, N} \; \psi_{\text{cp}, N} \; N_{\text{b}} \label{eq:Ncb}$ ACI 318-19 Eq. (17.6.2.1a) ACI 318-19 Table 17.5.2

 $\phi \ \ N_{cb} \geq N_{ua}$ $A_{Nc} \ \ \ see \ ACI \ 318-19, \ Section \ 17.6.2.1, \ Fig. \ R \ 17.6.2.1(b)$

 $A_{Nc0} = 9 h_{ef}^2$

ACI 318-19 Eq. (17.6.2.1.4)

ACI 318-19 Eq. (17.6.2.4.1b)

$$\begin{split} \psi_{\text{ed,N}} &= 0.7 + 0.3 \left(\frac{c_{a,\text{min}}}{1.5h_{\text{ef}}}\right) \leq 1.0 \\ \psi_{\text{cp,N}} &= \text{MAX} \left(\frac{c_{a,\text{min}}}{c_{\text{ac}}}, \frac{1.5h_{\text{ef}}}{c_{\text{ac}}}\right) \leq 1.0 \\ N_b &= k_c \ \lambda_a \ \sqrt{f_c} \ h_{\text{ef}}^{1.5} \end{split}$$
ACI 318-19 Eq. (17.6.2.6.1b) ACI 318-19 Eq. (17.6.2.2.1)

Variables

h _{ef} [in.]	c _{a,min} [in.]	$\psi_{c,N}$	c _{ac} [in.]	k _c	λ _a	f _c [psi]
7.500	14.000	1.000	10.776	17	1.000	3.500

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\psi_{\text{ ed},N}$	$\psi_{\text{cp,N}}$	N _b [lb]
506.25	506.25	1.000	1.000	20.657

Results

N _{cb} [lb]	φ concrete	φ N _{cb} [lb]	N _{ua} [lb]
20,657	0.650	13,427	11,954

www.hi	IITI	.co	m
--------	------	-----	---

 Company:
 Page:
 6

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 Concrete - Jul 19, 2023
 Date:
 7/28/2023

 Fastening point:
 7/28/2023

4 Shear load

	Load V _{ua} [lb]	Capacity ♥ V _n [lb]	Utilization $\beta_V = V_{ua}/\Phi V_n$	Status
Steel Strength*	N/A	N/A	N/A	N/A
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Bond Strength controls)*	N/A	N/A	N/A	N/A
Concrete edge failure in direction **	N/A	N/A	N/A	N/A

^{*} highest loaded anchor **anchor group (relevant anchors)

5 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-19, Section 26.7.

Fastening meets the design criteria!

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Concrete - Jul 19, 2023 Date: 7/28/2023
Fastening point:

6 Installation data

Profile: -

Hole diameter in the fixture: - Plate thickness (input): -

Drilling method: Hammer drilled

Cleaning: Compressed air cleaning of the drilled hole according to instructions for use is required

1 Hilti HAS Carbon steel threaded rod with Hilti HIT-HY 200 V3 Safe Set System

Anchor type and diameter: HIT-HY 200 V3 + HAS-E-55

(ASTM F1554 Gr.55) 1

Item number: 2198009 HAS-E-55 1"x12" (element) /

2334276 HIT-HY 200-R V3 (adhesive)

Maximum installation torque: 1,800 in.lb

Hole diameter in the base material: 1.125 in.

Hole depth in the base material: 7.500 in.

Minimum thickness of the base material: 9.750 in.

6.1 Recommended accessories

Drilling Cleaning Setting

Suitable Rotary Hammer
 Compressed air with required accessories
 Properly sized drill bit
 Compressed air with required accessories to blow from the bottom of the hole

• Proper diameter wire brush

· Dispenser including cassette and mixer

· Torque wrench

Coordinates Anchor in.

Anchor	X	У	C _{-x}	C _{+x}	С _{-у}	c _{+y}
1	0.000	0.000	18.000	18.000	14.000	-

www	hi	lti	ററ	m

Company:		Page:	3
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Jul 19, 2023	Date:	7/28/2023
Fastening point:			

7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Concrete - Jul 19, 2023 Date: 7/28/2023

Fastening point:

Specifier's comments:

1 Input data

Anchor type and diameter: HIT-HY 200 V3 + HAS-E-55 (ASTM F1554 Gr.55) 7/8

Item number: 2198007 HAS-E-55 7/8"x10" (element) / 2334276 HIT-HY

200-R V3 (adhesive)

Effective embedment depth: $h_{ef,act} = 7.500 \text{ in. } (h_{ef,limit} = - \text{ in.})$

Material: ASTM F1554 Grade 55

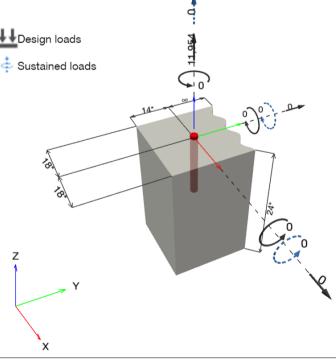
Evaluation Service Report: ESR-4868

Issued I Valid: 11/1/2022 | 11/1/2024

Proof: Design Method ACI 318-19 / Chem

Stand-off installation:

Profile:


Base material: cracked concrete, Custom, f_c' = 3,500 psi; h = 24.000 in., Temp. short/long: 32/32 °F

Installation: hammer drilled hole, Installation condition: Dry

Reinforcement: tension: not present, shear: not present; no supplemental splitting reinforcement present

edge reinforcement: > No. 4 bar with stirrups

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2023 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: E-Mail:

Design: Concrete - Jul 19, 2023 Date: 7/28/2023

Fastening point:

1.1 Design results

Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	$N = 11,954; V_x = 0; V_v = 0;$	no	90
		$M = 0 \cdot M = 0 \cdot M = 0$		

2 Load case/Resulting anchor forces

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y

1 11,954 0 0 0

 $\begin{tabular}{ll} max. concrete compressive strain: & - [\%] \\ max. concrete compressive stress: & - [psi] \\ resulting tension force in (x/y)=(0.000/0.000): & 0 [lb] \\ resulting compression force in (x/y)=(0.000/0.000): & 0 [lb] \\ \end{tabular}$

3 Tension load

	Load N _{ua} [lb]	Capacity ♥ N _n [lb]	Utilization $\beta_N = N_{ua}/\Phi N_n$	Status
Steel Strength*	11,954	25,973	47	OK
Bond Strength**	11,954	17,879	67	OK
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	11,954	13,427	90	OK

^{*} highest loaded anchor **anchor group (anchors in tension)

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Concrete - Jul 19, 2023 Date: 7/28/2023

Fastening point:

3.1 Steel Strength

 N_{sa} = ESR value refer to ICC-ES ESR-4868 ϕ $N_{sa} \ge N_{ua}$ ACI 318-19 Table 17.5.2

Variables

A_{se,N} [in.²] f_{uta} [psi]
0.46 75,000

Calculations

N_{sa} [lb] 34,630

Results

 $\frac{N_{sa} [lb]}{34,630}$ $\frac{\phi}{s_{teel}}$ $\frac{\phi}{s_{sa}} [lb]$ $\frac{N_{ua} [lb]}{11,954}$

www.hilti.com

Company: Page: Specifier: Phone I Fax: | E-Mail:

Design: Concrete - Jul 19, 2023 Date: 7/28/2023
Fastening point:

3.2 Bond Strength

 $N_a = \left(\frac{A_{Na}}{A_{Na0}}\right) \psi_{ed,Na} \psi_{cp,Na} N_{ba}$ ACI 318-19 Eq. (17.6.5.1a) $\phi N_a > N_{ba}$ ACI 318-19 Table 17.5.2

A_{Na} see ACI 318-19, Section 17.6.5.1, Fig. R 17.6.5.1(b)

 $A_{Na0} = (2 c_{Na})^2$ ACI 318-19 Eq. (17.6.5.1.2a) $c_{Na} = 10 d_a \sqrt{\frac{\tau_{uncr}}{1100}}$ ACI 318-19 Eq. (17.6.5.1.2b)

 $\psi_{\text{ed,Na}} = 0.7 + 0.3 \left(\frac{c_{\text{a,min}}}{c_{\text{Na}}} \right) \leq 1.0$ ACI 318-19 Eq. (17.6.5.4.1b)

 $\psi_{cp,Na} = MAX \left(\frac{c_{a,min}}{c_{ac}}, \frac{c_{Na}}{c_{ac}} \right) \le 1.0$ $N_{ba} = \lambda_a \cdot \tau_{k,c} \cdot \pi \cdot d_a \cdot h_{ef}$ ACI 318-19 Eq. (17.6.5.2.1)

Variables

τ _{k,c,uncr} [psi]	d _a [in.]	h _{ef} [in.]	c _{a,min} [in.]	$\alpha_{ ext{overhead}}$	τ _{k,c} [psi]
2,296	0.875	7.500	14.000	1.000	1,334
c _{ac} [in.]	λ_a				
11.367	1.000	_			

Calculations

c _{Na} [in.]	A _{Na} [in. ²]	A _{Na0} [in. ²]	Ψ _{ed,Na}
12.584	633.46	633.46	1.000
Ψ _{cp,Na}	N _{ba} [lb]	_	
1.000	27,506	-	

Results

N _a [lb]	ϕ_{bond}	φ N _a [lb]	N _{ua} [lb]
27,506	0.650	17,879	11,954

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: E-Mail:

Design: Concrete - Jul 19, 2023 Date: 7/28/2023

Fastening point:

3.3 Concrete Breakout Failure

 $N_{cb} = \left(\frac{A_{Nc}}{A_{Nc0}}\right) \; \psi_{\; ed,N} \; \psi_{c,N} \; \psi_{cp,N} \; N_b \label{eq:Ncb}$ ACI 318-19 Eq. (17.6.2.1a) ACI 318-19 Table 17.5.2

 $\phi \ \ N_{cb} \geq N_{ua}$ $A_{Nc} \ \ \ see \ ACI \ 318-19, \ Section \ 17.6.2.1, \ Fig. \ R \ 17.6.2.1(b)$

 $A_{Nc0} = 9 h_{ef}^2$

ACI 318-19 Eq. (17.6.2.1.4)

ACI 318-19 Eq. (17.6.2.4.1b)

$$\begin{split} \psi_{\text{ed,N}} &= 0.7 + 0.3 \left(\frac{c_{a,\text{min}}}{1.5h_{\text{ef}}}\right) \leq 1.0 \\ \psi_{\text{cp,N}} &= \text{MAX} \left(\frac{c_{a,\text{min}}}{c_{\text{ac}}}, \frac{1.5h_{\text{ef}}}{c_{\text{ac}}}\right) \leq 1.0 \\ N_b &= k_c \ \lambda_a \ \sqrt{f_c} \ h_{\text{ef}}^{1.5} \end{split}$$
ACI 318-19 Eq. (17.6.2.6.1b) ACI 318-19 Eq. (17.6.2.2.1)

Variables

h _{ef} [in.]	c _{a,min} [in.]	$\psi_{c,N}$	c _{ac} [in.]	k _c	λ _a	f _c [psi]
7.500	14.000	1.000	11.367	17	1.000	3,500

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\psi_{\text{ ed},N}$	$\psi_{\text{cp,N}}$	N _b [lb]
506.25	506.25	1.000	1.000	20.657

Results

N _{cb} [lb]	φ concrete	φ N _{cb} [lb]	N _{ua} [lb]
20,657	0.650	13,427	11,954

www.hi	IITI	.co	m
--------	------	-----	---

Company:		Page:	
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Jul 19, 2023	Date:	7/28/2023
Fastening point:			

4 Shear load

	Load V _{ua} [lb]	Capacity V _n [lb]	Utilization $\beta_V = V_{ua}/\Phi V_n$	Status
Steel Strength*	N/A	N/A	N/A	N/A
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Bond Strength controls)*	N/A	N/A	N/A	N/A
Concrete edge failure in direction **	N/A	N/A	N/A	N/A

^{*} highest loaded anchor **anchor group (relevant anchors)

5 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-19, Section 26.7.

Fastening meets the design criteria!

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Concrete - Jul 19, 2023 Date: 7/28/2023
Fastening point:

6 Installation data

Profile: -

Hole diameter in the fixture: Plate thickness (input): -

Drilling method: Hammer drilled Cleaning: Compressed air cleaning of the drilled hole according to instructions

7/8 Hilti HAS Carbon steel threaded rod with Hilti HIT-HY 200 V3 Safe Set System

6.1 Recommended accessories

Drilling Cleaning Setting

- Suitable Rotary Hammer
 Properly sized drill bit
 Compressed air with required accessories to blow from the bottom of the hole
 - Proper diameter wire brush
- · Dispenser including cassette and mixer
- · Torque wrench

Anchor type and diameter: HIT-HY 200 V3 + HAS-E-55

Item number: 2198007 HAS-E-55 7/8"x10" (element) /

(ASTM F1554 Gr.55) 7/8

2334276 HIT-HY 200-R V3 (adhesive)

Maximum installation torque: 1,500 in.lb

Hole diameter in the base material: 1.000 in. Hole depth in the base material: 7.500 in.

Minimum thickness of the base material: 9.500 in.

Coordinates Anchor in.

for use is required

Anchor	X	У	C _{-x}	C _{+x}	С _{-у}	c _{+y}
1	0.000	0.000	18.000	18.000	14.000	-

www	hi	lti	ററ	m

Company:		Page:	3
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Jul 19, 2023	Date:	7/28/2023
Fastening point:			

7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Concrete - Jul 19, 2023 (1) Date: 7/28/2023
Fastening point:

51

Specifier's comments:

1 Input data

Anchor type and diameter: HIT-HY 200 V3 + HAS-V-36 (ASTM F1554 Gr.36) 7/8

Item number: not available (element) / 2334276 HIT-HY 200-R V3

(adhesive)

Effective embedment depth: $h_{ef,act} = 9.000 \text{ in. } (h_{ef,limit} = - \text{ in.})$

Material: ASTM F1554 Grade 36

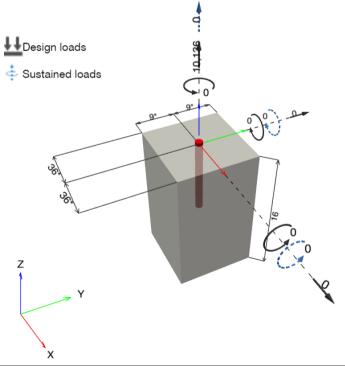
Evaluation Service Report: ESR-4868

Issued I Valid: 11/1/2022 | 11/1/2024

Proof: Design Method ACI 318-19 / Chem

Stand-off installation:

Profile:


Base material: cracked concrete, Custom, f_c' = 3,500 psi; h = 16.000 in., Temp. short/long: 32/32 °F

Installation: hammer drilled hole, Installation condition: Dry

Reinforcement: tension: not present, shear: not present; no supplemental splitting reinforcement present

edge reinforcement: none or < No. 4 bar

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2023 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: | E-Mail:

Design: Concrete - Jul 19, 2023 (1) Date: 7/28/2023

Fastening point:

1.1 Design results

Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	$N = 10,136; V_x = 0; V_y = 0;$	no	96
		$M_x = 0$; $M_y = 0$; $M_z = 0$;		

2 Load case/Resulting anchor forces

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y

1 10,136 0 0 0

 $\begin{tabular}{ll} max. concrete compressive strain: & - [\%] \\ max. concrete compressive stress: & - [psi] \\ resulting tension force in (x/y)=(0.000/0.000): & 0 [lb] \\ resulting compression force in (x/y)=(0.000/0.000): & 0 [lb] \\ \end{tabular}$

3 Tension load

	Load N _{ua} [lb]	Capacity P N _n [lb]	Utilization $\beta_N = N_{ua}/\Phi N_n$	Status
Steel Strength*	10,136	20,085	51	OK
Bond Strength**	10,136	14,033	73	OK
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	10,136	10,590	96	OK

^{*} highest loaded anchor **anchor group (anchors in tension)

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: E-Mail:

Design: Concrete - Jul 19, 2023 (1) Date: 7/28/2023

Fastening point:

3.1 Steel Strength

 N_{sa} = ESR value refer to ICC-ES ESR-4868 ϕ $N_{sa} \geq N_{ua}$ ACI 318-19 Table 17.5.2

Variables

A_{se,N} [in.²] f_{uta} [psi] 0.46 58,000

Calculations

N_{sa} [lb] 26,780

Results

 $\frac{N_{sa}[lb]}{26,780}$ $\frac{\phi}{0.750}$ $\frac{\phi}{0.085}$ $\frac{N_{ua}[lb]}{10,136}$

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: E-Mail:

Design: Concrete - Jul 19, 2023 (1) Date: 7/28/2023

Fastening point:

3.2 Bond Strength

N_a	$= \left(\frac{A_{\text{Na}}}{A_{\text{Na0}}}\right) \psi_{\text{ed,Na}} \psi_{\text{cp,Na}} N_{\text{ba}}$	ACI 318-19 Eq. (17.6.5.1a)
ϕ N_a	≥ N _{ua}	ACI 318-19 Table 17.5.2
A_{Na}	see ACI 318-19, Section 17.6.5.1, Fig. R 17.6.5.1(b)	
Α	$= (2 c_{ij})^2$	ACI 318-19 Eq. (17.6.5.1.2a)

$$A_{Na0} = (2 c_{Na})^2$$
 ACI 318-19 Eq. (17.6.5.1.2a)
 $c_{Na} = 10 d_a \sqrt{\frac{\tau_{uncr}}{1100}}$ ACI 318-19 Eq. (17.6.5.1.2b)

$$\begin{split} \psi_{\text{ed},\text{Na}} &= 0.7 + 0.3 \left(\frac{c_{\text{a,min}}}{c_{\text{Na}}}\right) \leq 1.0 \\ \psi_{\text{cp,Na}} &= \text{MAX} \left(\frac{c_{\text{a,min}}}{c_{\text{ac}}}, \frac{c_{\text{Na}}}{c_{\text{ac}}}\right) \leq 1.0 \\ N_{\text{ba}} &= \lambda_{\text{a}} \cdot \tau_{\text{k,c}} \cdot \pi \cdot d_{\text{a}} \cdot h_{\text{ef}} \end{split} \qquad \qquad \text{ACI 318-19 Eq. (17.6.5.2.1)}$$

$$\psi_{cp,Na} = \text{MAX} \left(\frac{c_{a,min}}{c_{ac}}, \frac{c_{Na}}{c_{ac}} \right) \leq 1.0$$
 ACI 318-19 Eq. (17.6.5.5.1b)
$$N_{ba} = \lambda_a \cdot \tau_{k,c} \cdot \pi \cdot d_a \cdot h_{ef}$$
 ACI 318-19 Eq. (17.6.5.2.1)

Variables

τ _{k,c,uncr} [psi]	d _a [in.]	h _{ef} [in.]	c _{a,min} [in.]	$lpha_{ ext{overhead}}$	τ _{k,c} [psi]
2,296	0.875	9.000	9.000	1.000	1,334
c _{ac} [in.]	λ _a				

Calculations

18.751

c _{Na} [in.]	A _{Na} [in. ²]	A _{Na0} [in. ²]	Ψ _{ed,Na}
12.584	453.04	633.46	0.915
$\Psi_{cp,Na}$	N _{ba} [lb]	_	
1.000	33,007	-	

1.000

Results

N _a [lb]	ϕ_{bond}	φ N _a [lb]	N _{ua} [lb]
21,589	0.650	14,033	10,136

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: E-Mail:

Design: Concrete - Jul 19, 2023 (1) Date: 7/28/2023

Fastening point:

3.3 Concrete Breakout Failure

 $N_{cb} = \left(\frac{A_{Nc}}{A_{Nc0}}\right) \; \psi_{\; ed,N} \; \psi_{c,N} \; \psi_{cp,N} \; N_b \label{eq:Ncb}$ ACI 318-19 Eq. (17.6.2.1a)

 $\phi \ \ N_{cb} \geq N_{ua}$ $A_{Nc} \ \ \ see \ ACI \ 318-19, \ Section \ 17.6.2.1, \ Fig. \ R \ 17.6.2.1(b)$ ACI 318-19 Table 17.5.2

 $A_{Nc0} = 9 h_{ef}^2$ ACI 318-19 Eq. (17.6.2.1.4)

ACI 318-19 Eq. (17.6.2.4.1b)

$$\begin{split} \psi_{\text{ed,N}} &= 0.7 + 0.3 \left(\frac{c_{a,\text{min}}}{1.5h_{\text{ef}}}\right) \leq 1.0 \\ \psi_{\text{cp,N}} &= \text{MAX} \left(\frac{c_{a,\text{min}}}{c_{\text{ac}}}, \frac{1.5h_{\text{ef}}}{c_{\text{ac}}}\right) \leq 1.0 \\ N_b &= k_c \ \lambda_a \ \sqrt{f_c} \ h_{\text{ef}}^{1.5} \end{split}$$
ACI 318-19 Eq. (17.6.2.6.1b)

ACI 318-19 Eq. (17.6.2.2.1)

Variables

h _{ef} [in.]	c _{a,min} [in.]	$\psi_{c,N}$	c _{ac} [in.]	k _c	λ _a	f _c [psi]
9.000	9.000	1.000	18.751	17	1.000	3.500

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\psi_{\text{ ed},N}$	$\psi_{\text{cp,N}}$	N _b [lb]
486.00	729.00	0.900	1.000	27.155

Results

N _{cb} [lb]	φ concrete	φ N _{cb} [lb]	N _{ua} [lb]
16,293	0.650	10,590	10,136

www.hi	IITI	.co	m
--------	------	-----	---

Company:		Page:	6
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Jul 19, 2023 (1)	Date:	7/28/2023
Fastening point:	. ,		

4 Shear load

	Load V _{ua} [lb]	Capacity V _n [lb]	Utilization $\beta_V = V_{ua}/\Phi V_n$	Status
Steel Strength*	N/A	N/A	N/A	N/A
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Bond Strength controls)*	N/A	N/A	N/A	N/A
Concrete edge failure in direction **	N/A	N/A	N/A	N/A

^{*} highest loaded anchor **anchor group (relevant anchors)

5 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-19, Section 26.7.

Fastening meets the design criteria!

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Concrete - Jul 19, 2023 (1) Date: 7/28/2023
Fastening point:

6 Installation data

Profile:
Hole diameter in the fixture:
Plate thickness (input): -

Drilling method: Hammer drilled

Cleaning: Compressed air cleaning of the drilled hole according to instructions

for use is required

7/8 Hilti HAS Carbon steel threaded rod with Hilti HIT-HY 200 V3 Safe Set System

Anchor type and diameter: HIT-HY 200 V3 + HAS-V-36

(ASTM F1554 Gr.36) 7/8

Item number: not available (element) / 2334276 HIT-HY

200-R V3 (adhesive)

Maximum installation torque: 1,500 in.lb Hole diameter in the base material: 1.000 in. Hole depth in the base material: 9.000 in.

Minimum thickness of the base material: 11.000 in.

6.1 Recommended accessories

Drilling
Cleaning
Setting

Clumber Compressed air with required accessories
Properly sized drill bit
Drilling
Cleaning
Cleaning
Drilling
Cleaning
Drilling
Cleaning
Drilling
D

Coordinates Anchor in.

Anchor	X	У	С _{-х}	C _{+x}	C _{-y}	C _{+y}	
1	0.000	0.000	36.000	36.000	9.000	9.000	

www	hi	lti	റവ	m

Company:		Page:	3
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Jul 19, 2023 (1)	Date:	7/28/2023
Fastening point:			

7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

LATERAL STABILITY

 Project
 WSS LEE'S SUMMIT
 Project No. 23-283

 Calc. By
 GL
 Checked By
 DN
 Date7/28/2023

Lateral Loads - Wind

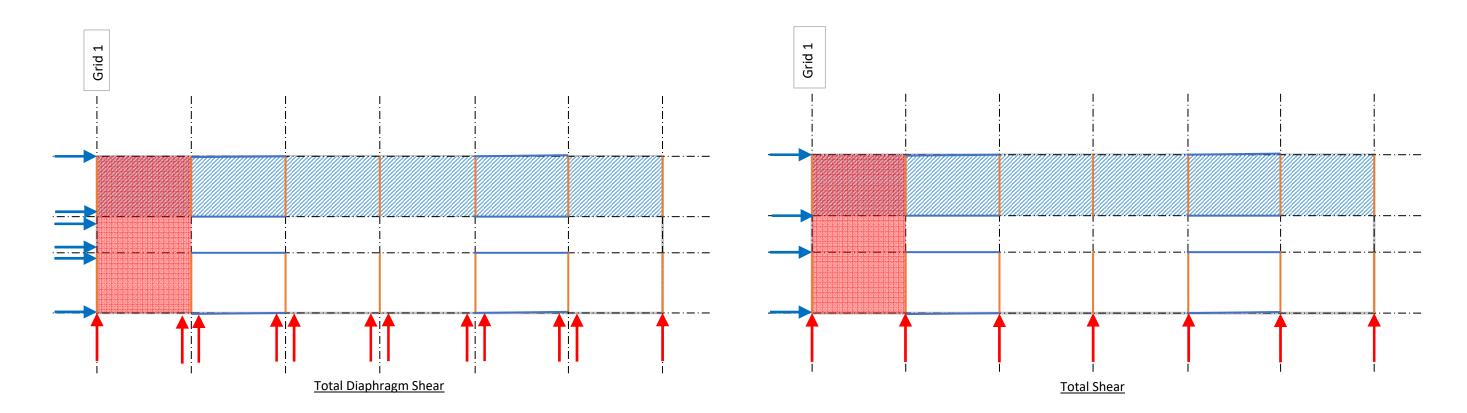
V= 109 mph ASCE 7-16 Zone Combined Windward Leeward Zone 1E/4E (psf) 26.7 6.4 20.3 Zone 1/4 (psf) 17.6 5.6 12.0 65.6 Parapet (psf) 39.4 26.2

Wind diaphragm pressures Trib. Height (ft) w endzone (plf) Level w (plf) 127 84 Foundation 4.74 2nd floor 167 9.49 253 3rd floor 253 167 9.49 4th floor 8.79 235 155 Roof 5.05 135 89 4.50 295 295 Parapet

430

Envelope Wind Pressures

N-S Wind Direction

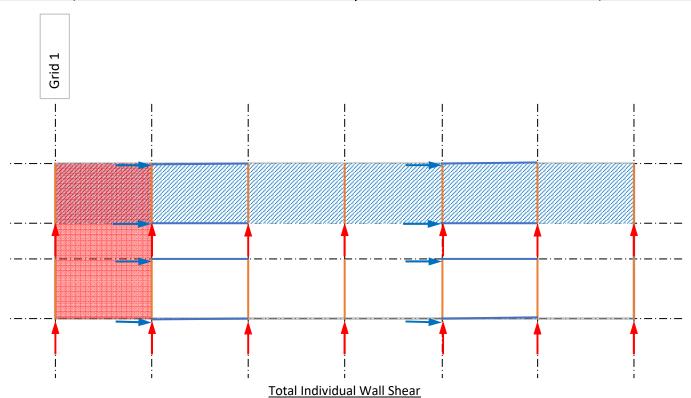

Roof total

(orientation of building may change - for analysis purposes Up is north)

384

Diaphragm Loads (lbs)

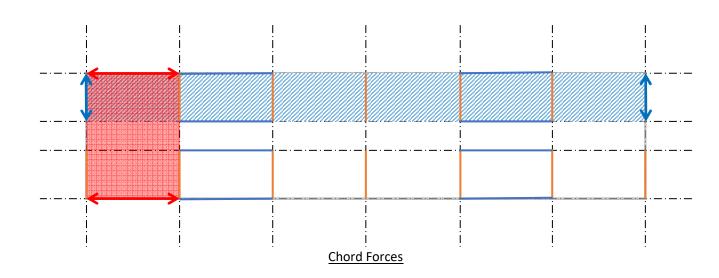
		Tributary Width		Total Diaphragm Shea	ar (lbs)					
Grids		End Zone	Middle Zone	Foundation	2nd floor	3rd floor	4th floor	Roof	Roof Parapet	Total Base Shear
A to B&B.2	A east	6.77	0.00	858	1715	1715	1589	912	1999	8788
	B/B.2 west	6.39	0.38	841	1683	1683	1559	895	1999	8658
B/B.2 to D/I	D. B east	0.00	13.66	1141	2281	2281	2114	1213	4032	13063
	D west	0.00	13.66	1141	2281	2281	2114	1213	4032	13063
D to F	D east	0.00	6.75	564	1127	1127	1044	600	1993	6455
	F west	0.00	6.75	564	1127	1127	1044	600	1993	6455
F to G	F east	0.00	6.75	564	1127	1127	1044	600	1993	6455
	G west	0.00	6.75	564	1127	1127	1044	600	1993	6455
G to H.2	G east	0.00	6.75	564	1127	1127	1044	600	1993	6455
	H west	0.00	6.75	564	1127	1127	1044	600	1993	6455
H.2 to J	H.2 east	0.00	13.50	1127	2255	2255	2089	1199	3985	12910
	J west	0.00	13.50	1127	2255	2255	2089	1199	3985	12910
J to L	J east	12.93	0.00	1638	3276	3276	3035	1742	3817	16785
	L west	0.23	12.70	1090	2179	2179	2019	1159	3817	12444
L left to L rig	gh L east	0.00	2.81	235	469	469	435	250	830	2687
	L west	0.00	2.81	235	469	469	435	250	830	2687
L right to N	L east	0.23	12.70	1090	2179	2179	2019	1159	3817	12444
_	N west	12.93	0.00	1638	3276	3276	3035	1742	3817	16785



Total Shear at each grid (lbs

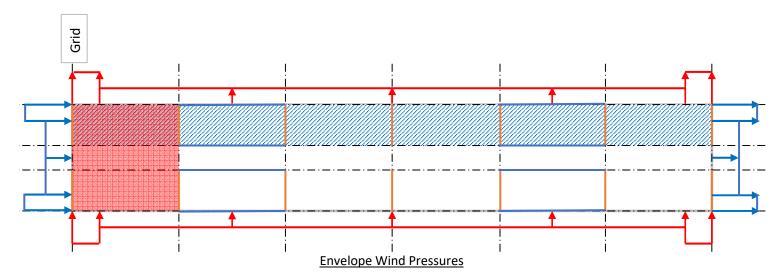
Grid	Foundation	2nd floor	3rd floor	4th floor	Roof	Parapet	Total Base Shear
Α	858	1715	1715	1589	912	1999	8788
B/B.2	1982	3964	3964	3672	2108	6031	21721
D	1704	3409	3409	3158	1813	6025	19518
F	1127	2255	2255	2089	1199	3985	12910
G	1127	2255	2255	2089	1199	3985	12910
Н	1691	3382	3382	3133	1799	5978	19365
J	2765	5531	5531	5124	2941	7802	29695
L	1324	2649	2649	2454	1409	4646	15131
L Left	1324	2649	2649	2454	1409	4646	15131
L Right	1638	3276	3276	3035	1742	3817	16785
	0	0	0	0	0	0	0
	0	0	0	0	0	0	0

Shearwall lengths - *USER INPUT*


	Wall 1 (longer) length (ft)	Wall 2 (shorter) length (ft)	Total Perforated
Grid	Length	Length	Wall Length
Α	20.00	0.00	20.00
B/B.2	24.33	20.00	44.33
D	25.85	25.85	51.70
F	25.85	0.00	25.85
G	25.85	0.00	25.85
Н	25.85	25.85	51.70
J	40.50	24.35	132.35
	67.50	0.00	
L	118.15	20.35	138.50
L Left	118.15	20.35	138.50
L Right	81.00	53.00	134.00
	0		0.00
	0		0.00
	0		0.00
	0	İ	0.00
	0		0.00
	0		0.00
			0.00

Individual Wall Cumulative Shearwall Shear (lbs)

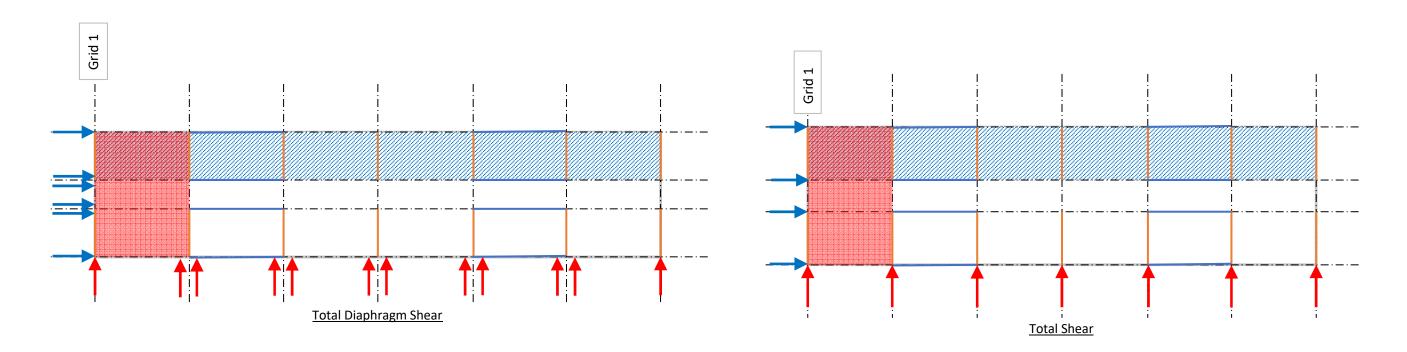
	Shearwall 1 (longer of 2	cases)					Shearwall 2 (short	ter of 2 cases)				
Grid	Foundation (FG)	2nd floor (F2)	3rd floor (F3)	4th floor (F4)	Roof	Parapet	Foundation (FG)	2nd floor (F2)	3rd floor (F3)	4th floor (F4)	Roof	Parapet
A	8788	7931	6215	4500	2911	1999	0	0	0	0	0	0
B/B.2	11922	10834	8658	6483	4467	3310	9800	8906	7117	5329	3672	2721
D	9760	8908	7203	5498	3919	3013	9758	8906	7202	5498	3919	3012
F	12910	11783	9528	7273	5184	3985	0	0	0	0	0	0
G	12910	11783	9528	7273	5184	3985	0	0	0	0	0	0
Н	9683	8838	7147	5455	3889	2989	9682	8836	7145	5455	3888	2989
J	9087	8240	6548	4855	3288	2387	5464	4955	3937	2920	1977	1436
	7717	7041	5690	4340	3088	2370						
L	12907	11777	9518	7259	5165	3964	2224	2029	1640	1250	890	683
L Left	12907	11777	9518	7259	5165	3964	2224	2029	1640	1250	890	683
L Right	10146	9156	7175	5195	3360	2307	6639	5991	4695	3399	2199	1510
(#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!


Project WSS LEE'S SUMMIT Project No. 23-283

Calc. By GL Checked By DN Date 7/28/2023

Lateral Loads - Wind

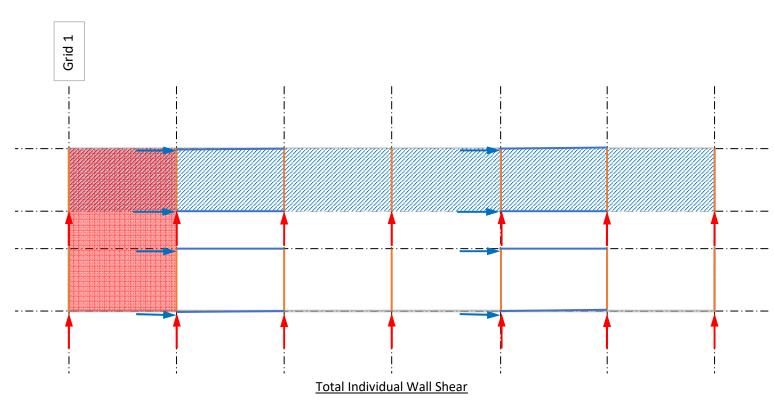
ASCE 7-16 V= 109 mph Zone Leeward Combined Windward 26.7 20.3 Zone 1E/4E (psf) 6.4 Zone 1/4 (psf) 17.6 5.6 12.0 Parapet (psf) 65.6 39.4 26.2

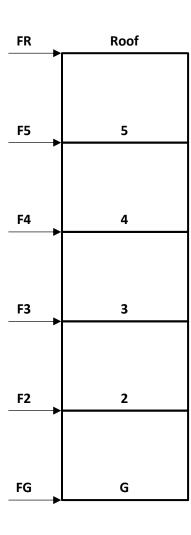

Wind diaphragm pressures w endzone (plf) w (plf) Level trib ht. (ft) 84 Foundation 4.74 127 2nd floor 9.49 253 167 3rd floor 9.49 253 167 4th floor 8.79 235 155 Roof 5.05 135 89 4.50 295 295 Parapet Roof total 430 384

E-W Wind Direction
Diaphragm Loads (lbs)

(orientation of building may change - for analysis purposes Up is north)

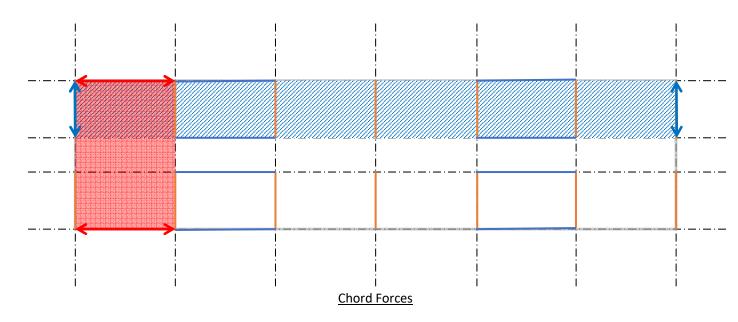
Diaphragh	i Loads (ibs)									
		Tributary Width		Total Diaphragm She	ear (lbs)					
Grids		End Zone	Middle Zone	Foundation	2nd floor	3rd floor	4th floor Ro	oof R	Roof Parapet	Total Base Shear
0 to 1	1 South	0.00	0.00	(0	0	0	0	0	0
1 to 2	1 North	4.89	0.00	619	1238	1238	1147	658	1442	6341
	2 South	4.77	0.00	605	1210	1210	1121	643	1409	6198
2 to 3	2 North	0.11	13.39	1132	2 2264	2264	2098	1204	3985	12948
	3 South	0.00	13.50	1127	2255	2255	2089	1199	3985	12910
3 to 4	3 North	0.00	13.50	1127	2255	2255	2089	1199	3985	12910
	4 South	0.00	13.50	1127	2255	2255	2089	1199	3985	12910
4 to 7	4 North	0.00	13.50	1127	2255	2255	2089	1199	3985	12910
	7 South	0.00	13.50	1127	2255	2255	2089	1199	3985	12910
7 to 10	7 North	0.00	13.50	1127	2255	2255	2089	1199	3985	12910
	10 South	3.19	13.50	1531	3062	3062	2837	1629	4926	17048
10 to 11	10 North	0.00	2.89	241	482	482	446	256	852	2759
	11 South	0.00	2.89	241	482	482	446	256	852	2759
11 to 12,13	3,111 North	0.23	12.69	1090	2179	2179	2019	1159	3816	12442
	12.13.14 South	12.93	0.00	1638	3275	3275	3034	1742	3816	16781




Total Shear at each grid (lbs)

Grid	Foundation	2nd floor	3rd floor	4th floor	Roof	Parap	oet	Total Base Shear
	1	619	1238	1238	1147	658	1442	6341
	2	1737	3474	3474	3219	1848	5395	19146
	3	2255	4509	4509	4178	2398	7970	25820
	4	2255	4509	4509	4178	2398	7970	25820
	7	2255	4509	4509	4178	2398	7970	25820
	10	1772	3544	3544	3284	1885	5778	19807
	11	1331	2661	2661	2465	1415	4668	15201
12,13,	14	1638	3275	3275	3034	1742	3816	16781
		0	0	0	0	0	0	0

Shearwall lengths - *USER INPUT*


Grid	Wall 1 (longer) length (f	ft)	Wall 2 (shorter) le	ngth (ft)	Total Perforated
	Total	Full Height Length	Total	Full Height Length	Wall Length
1	22	19	0	0	22
2	22	22	20	20	42
3	20	20	20	20	40
4	20	20	20	20	40
7	25	25	24	24	48
10	108	84	25	25	133
11	162.10	129.10	0.00	0.00	162.10
12,13,14	54.00	38.00	41.13	25.13	95.13

Individual Wall Cumulative Shearwall Shear (lbs)

	Shearwall 1 (longer of	1 (longer of 2 cases)						Shearwall 2 (shorter of 2 cases)				
Grid	Foundation (FG)	2nd floor (F2)	3rd floor (F3)	4th floor (F4)	Roof	Parapet	Foundation (F2	2nd floor (F2)	3rd floor (F3)	4th floor (F4)	Roof F	arapet
1	634	1 572	2 4485	3247	2100	1442	0	0	0	0	0	0
2	1002	911	6 7297	5478	3793	2825	8237	7409	5754	4100	2567	1686
3	1291	1178	3 9528	7273	5184	3985	12910	11783	9528	7273	5184	3985
4	1291	1178	3 9528	7273	5184	3985	12910	11783	9528	7273	5184	3985
7	1318	3 1203	2 9729	7427	5294	4069	12637	11534	9327	7120	5075	3901
10	1611	9 1467	7 11793	8908	6236	4702	3688	3358	2698	2038	1427	1076
11	1520	1 1387	1 11209	8548	6083	4668	0	0	0	0	0	0
12,13,14	952	859	6 6737	4878	3155	2166	5113	4601	3577	2553	1605	1060

Project_WSS LEE'S SUMMIT			Project No	23-283	
Calc. By GL	Checked By_	DN	Date_	7/28/2023	
•					

Seismic Weights

Floor Areas

Level	Floor Area	Roof Area	Total Area (sf)	W (lb)	Roof Snow Load (psf)
Roof	0	12941.93	12941.93	323548.25	20
4th	12941.93	0	12941.93	323548.25	
3rd	12941.93	0	12941.93	323548.25	
2nd	12941.93	880.617	13822.547	345563.675	

Interior Walls

Location	Length		Quantity
Short - Grid 1-6, 14-18	20'	4.250"	16
Med Grid 6-9, 12-14	24'	4.250"	12
Long - Grid 9-12	25'	10.250"	5
Corridor	162'	8.000"	3
	0'	0.000"	
Total	1235'	2.250"	

Miscellaneous Walls

Stair E	<u>xterior</u>	<u>Stair Interior</u>		Elev	<u>ator</u>
22'	1.500"	22'	1.500"	10'	2.125"
10'	1.750"	10'	1.750"	10'	2.125"
22'	1.500"	22'	1.750"	8'	2.125"
10'	1.750"	10'	1.075"	8'	2.125"
0'	0.000"				
65'	6.500"	65'	6.075"	37'	8.500"

Exterior Walls

Perimeter

Short - Grid 1-6, 14-18 Med Grid 6-9, 12-14	Long - Grid 9-12	End Walls - Grid 1, 20
---	------------------	------------------------

 Project WSS LEE'S SUMMIT
 Project No. 23-283

 Calc. By GL
 Checked By DN
 Date 7/28/2023

Total	288'	0.000"	153'	0.000"	75'	0.000"	56'	0.000"
			0'					
			4'					
	68'		27'					
	54'		14'					
	81'		27'					
	27'		27'					
	4'		27'		41'		28'	
	54'		27'		34'		28'	

Project_WSS_LEE'S_SUMMIT_			Project No	23-283
Calc. By GL	_ Checked By_	DN	Date_	7/28/2023

Short - Grid	1-6 & 14-18	}		Ext. Wall	Ext. Wall		
Elevations			H (ft)	Weight (psf)	Weight (plf)	L (ft)	W (lb)
136.56	138.56	Roof	2.00 '	25	151.17	288.13 '	43556.4
128.47	136.56	4 th FLR	8.09 '	25	219.79	288.13 '	63327.5
118.98	128.47	3 rd FLR	9.49 '	25	237.24	288.13 '	68354.7
109.49	118.98	2 nd FLR	9.49 '	25	237.24	288.13 '	68354.7
100.00	109.49	1 st FLR	9.49 '	25			

Medium - Grid 6-9 & 12-14				Ext. Wall	Ext. Wall		
Elevations			H (ft)	Weight (psf)	Weight (plf)	L (ft)	W (lb)
136.56	138.56	Roof	2.00 '	25	151.17	152.81 '	23101.0
128.47	136.56	4 th FLR	8.09 '	25	219.79	152.81 '	33586.9
118.98	128.47	3 rd FLR	9.49 '	25	237.24	152.81 '	36253.2
109.49	118.98	2 nd FLR	9.49 '	25	237.24	152.81 '	36253.2
100.00 109.49 1 st FLR		9.49 '	25				

Long - Grid 9	9- <u>12</u>			Ext. Wall	Wall		
Elevations			H (ft)	Weight (psf)	Weight (plf)	L (ft)	W (lb)
136.56	136.56 138.56 Roof		2.00 '	25	151.17	74.75 '	11300.1
128.47	136.56	4 th FLR	8.09 '	25	219.79	74.75 '	16429.4
118.98	128.47	3 rd FLR	9.49 '	25	237.24	74.75 '	17733.7
109.49	118.98	2 nd FLR	9.49 '	25	237.24	74.75 '	17733.7
100.00	109.49	1 st FLR	9.49 '	25			_

Ends - Grid 1, 20 Elevations

	Ext. Wall	Wall		
H (ft)	Weight (psf)	Weight (plf)	L (ft)	W (lb)

Project_WSS_LEE'S SUMMIT			23-283	-	
Calc. By_ GL	Checked By_	DN	Date_	7/28/2023	
		_		_	

			_	_		_	
136.56	138.56	Roof	2.00 '	12	72.56	56.00 '	4063.5
128.47	136.56	4 th FLR	8.09 '	12	105.50	56.00 '	5908.0
118.98	128.47	3 rd FLR	9.49 '	12	113.88	56.00 '	6377.0
109.49	118.98	2 nd FLR	9.49 '	12	113.88	56.00 '	6377.0
100.00	109.49	1 st FLR	9.49 '	12			

Stair Exterio	<u>or</u>			Ext. Wall	Wall		
Elevations			H (ft)	Weight (psf)	Weight (plf)	L (ft)	W (lb)
136.56	138.56	Roof	2.00 '	12	72.56	65.31 '	4739.2
128.47	136.56	4 th FLR	8.09 '	12	105.50	65.31 '	6890.4
118.98	128.47	3 rd FLR	9.49 '	12	113.88	65.31 '	7437.3
109.49	118.98	2 nd FLR	9.49 '	12	113.88	65.31 '	7437.3
100.00	109.49	1 st FLR	9.49 '	12			

Project_WSS LEE'S SUMMIT			Project No	23-283	
Calc Ry Cl	Charlead By	DN	Data	7/28/2023	

Stair Interio	<u>r</u>			Int. Wall	Wall		
Elevations			H (ft)	Weight (psf)	Weight (plf)	L (ft)	W (lb)
136.56	136.56		2.00 '	11	66.52	65.28 '	4341.9
128.47	136.56	4 th FLR	8.09 '	11	96.71	65.28 '	6312.8
118.98	128.47	3 rd FLR	9.49 '	11	104.39	65.28 '	6814.0
109.49	118.98	2 nd FLR	9.49 '	11	104.39	65.28 '	6814.0
100.00	109.49	1 st FLR	9.49 '	11			

Masonry/W	ood Elevato	<u>r</u>		Wall	Wall		
Elevations			H (ft)	Weight (psf)	Weight (plf)	L (ft)	W (lb)
136.56	138.56	Roof	2.00 '	60.00	362.81	37.44	13582.7
128.47	136.56	4 th FLR	8.09 '	60.00	527.50	37.44	19748.2
118.98	128.47	3 rd FLR	9.49 '	60.00	569.38	37.44	21315.9
109.49	118.98	2 nd FLR	9.49 '	60.00	569.38	37.44	21315.9
100.00	109.49	1 st FLR	9.49 '	60.00			

Interior Wal	<u>ls</u>			Int. Wall	Wall		
Elevations			H (ft)	Weight (psf)	Weight (plf)	L (ft)	W (lb)
136.56	136.56	Roof	0.00 '	11	44.52	1235.19 '	54985.1
128.47	136.56	4 th FLR	8.09 '	11	96.71	1235.19 '	119452.9
118.98	128.47	3 rd FLR	9.49 '	11	104.39	1235.19 '	128935.6
109.49	118.98	2 nd FLR	9.49 '	11	104.39	1235.19 '	128935.6
100.00	109.49	1 st FLR	9.49 '	11			

Total Weight

Project_WSS LEE'S SUMMIT_			Project No	23-283
Calc. By_GL	_ Checked By_	DN	Date_	7/28/2023
FIUUI "				

FIUUI	(kips)
Roof	483.22
4 th FLR	595.20
3 rd FLR	616.77
2 nd FLR	638.78

Project WSS LEE'S SUMMIT Project No. 23-283

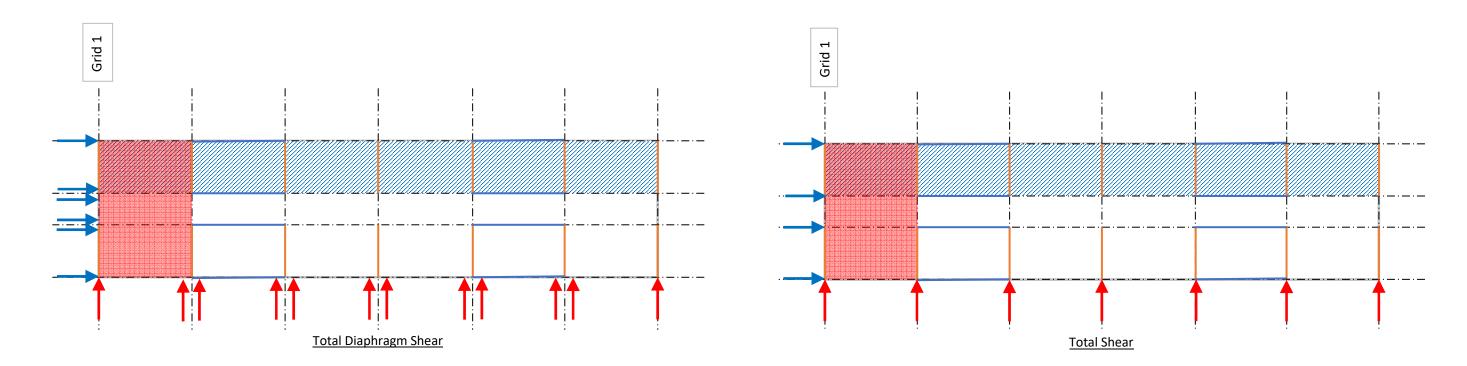
Calc. By GL Checked By DN Date 7/28/2023

Lateral Loads - Seismic

 Ω (overstrength factor)= 1.0

Irregularity Factor = 1.0 (1.0 if non-irregular)

Seismic Force Distribution (all including irregularity factor)

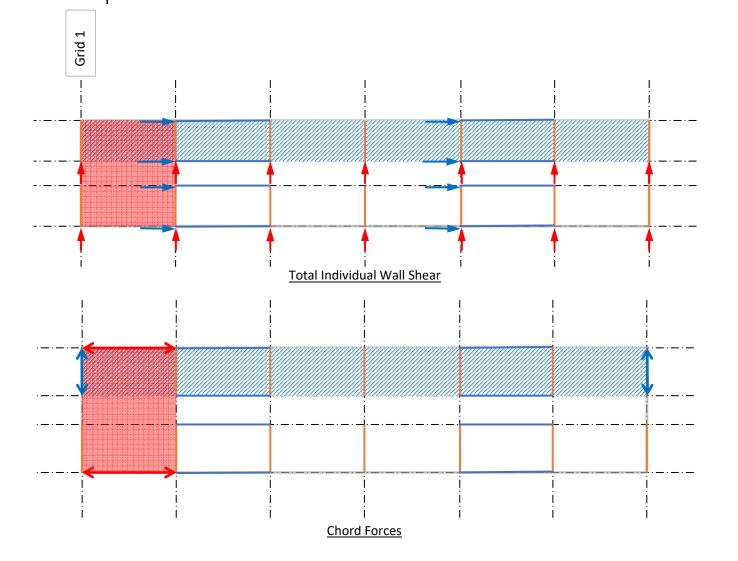

Level	Lateral Force (lbs)	Floor Area (sf)	Distributed Force (psf	
	-			
Roof	15,600	12,942	1.21	
4th floor	11,800	12,942	0.91	
3rd floor	7,600	12,942	0.59	
2nd floor	3,100	13,823	0.22	
Total	38,100			

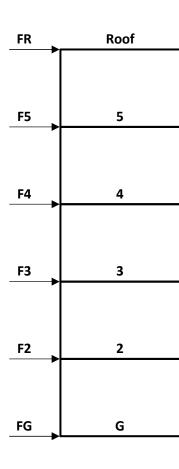
N-S Seismic
Diaphragm Loads (lbs)

(orientation of building may change - for analysis purposes North is up)

(orientation of bank	aning inay change	c joi amarysis	purposes non	11 13 up

Tributary Length Total Diaphragm Shear (lbs) Tributary Width 2nd Floor 3rd Floor 4th Floor Roof **Total Base Shear** Grids Parapet A to B&B.2 A east 37 97 150 6.77 24.35 199 0 483 6.77 B/B.2 west 24.35 37 97 150 199 483 B/B.2 to D/D.B east 13.66 75 195 303 401 974 24.35 0 195 303 974 D west 13.66 24.35 75 401 D to F 6.75 25.85 39 102 159 210 511 D east F west 6.75 25.85 39 102 159 210 0 511 6.75 39 102 159 210 511 F to G F east 25.85 0 6.75 91 238 370 489 G west 60.13 0 1189 G to H.2 G east 6.75 60.13 91 238 370 489 1189 6.75 48.85 397 H west 74 194 301 966 13.50 795 48.85 148 387 601 1932 H.2 to J H.2 east 13.50 20.35 62 161 251 331 0 805 J west 59 J to L J east 12.93 20.35 155 240 317 0 771 L west 12.93 20.35 59 155 240 317 0 771 52 L left to L righ L east 2.81 20.35 13 34 69 0 168 33 88 L west 2.81 53.06 136 180 0 437 12.93 81.00 235 615 955 1262 3067 L right to N L east 313 820 1273 1683 4090 N west 12.93 108.00 0.00 0 0.00 108.00 0 0 0 0 0 0.00 0 0 0 0.00 81.00 0 0 0




Total Shear at each grid (lbs) Grid 2nd Floor

Grid	2nd Floor	3rd Floor	4th Floor	Roof	Parapet	Total	Base Shear
A		37	97	150	199	0	483
B/B.2		112	292	454	600	0	1457
D		114	298	462	611	0	1485
F		78	205	318	421	0	1022
G		182	477	740	978	0	2377
Н		222	581	902	1192	0	2897
J		121	316	490	648	0	1575
L		72	188	292	386	0	938
L Left		268	703	1091	1442	0	3504
L Right		313	820	1273	1683	0	4090
	0	0	0	0	0	0	0

Shearwall lengths -

Grid	Wall 1 (longer) length (ft)		Wall 2 (shorter) I	ength (ft)	Total Shear Wall
	Tributary Width	Shear Wall Length	Tributary Width	Shear Wall Length	Length
Α	6.77	20.00	6.77	0.00	20.00
B/B.2	20.43	24.33	20.43	20.00	44.33
D	20.41	25.85	20.41	25.85	51.70
F	13.50	25.85	13.50	0.00	25.85
G	13.50	25.85	13.50	0.00	25.85
Н	20.25	25.85	20.25	25.85	51.70
J	26.43	40.50	26.43	24.35	64.85
L	15.74	118.15	15.74	20.35	138.50
L Left	15.74	118.15	15.74	20.35	138.50
L Right	12.93	81.00	12.93	53.00	134.00
	0.00	0.00	0.00	0.00	0.00
	0				
	0				
	0				

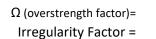
W/O OVERSTRENGTH

Individual Wall Cumulative Shearwall Shear (lbs)

	Shearwall 1 (longer of 2 cases)						Shearwall 2 (sl	norter of 2 case	s)		
Grid	2nd floor (F2)	3rd floor (F3)	4th	n floor (F4)	Roof	Parapet	2nd floor (F2)	3rd floor (F3)	4th floor (F4)	5th floor (F5)	Roof (FR)
Α		483	446	349	199	0	0	0	0		0
B/B.2		800	739	578	329	0	657	607	475	27:	L 0
D		743	686	537	306	0	743	686	537	300	5 0
F		.022	944	739	421	0	0	0	0		0
G		2377	2195	1718	978	0	0	0	0	(0
Н		.449	1338	1047	596	0	1449	1338	1047	590	5 0
J		984	909	711	405	0	592	546	428	24	1 0
L		800	739	579	329	0	138	127	100	5	7 0
L Left		1989	2760	2161	1230	0	515	476	372	213	2 0
L Right		2472	2283	1787	1017	0	1618	1494	1169	660	5 0
(DIV/0!	#DIV/0!		#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!

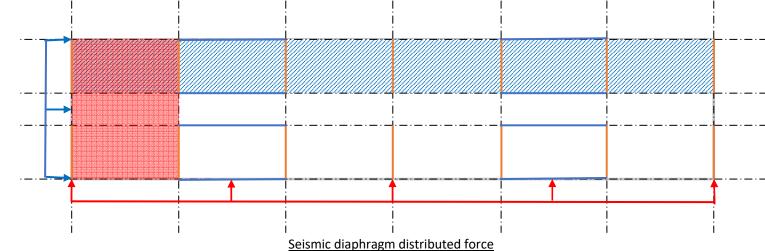
W/ OVERSTRENGTH

Individual Wall Cumulative Shearwall Shear (lbs)


	Shearwall 1 (longer of 2 cases)						arwall 2 (shorter of 2 cases)			
Grid	2nd floor (F2)	3rd floor (F3)	4th floor (F4)	Roof	Parapet	2nd floor (F2)	3rd floor (F3)	4th floor (F4)	Roof	Parapet
Α	4	83 44	16 349	199	0	0	0	0	0	0
B/B.2	8	00 73	578	329	0	657	607	475	271	0
D	-	43 68	36 537	306	0	743	686	537	306	0
F	10	22 9	14 739	421	0	0	0	0	0	0
G	23	77 219	95 1718	978	0	0	0	0	0	0
Н	14	49 133	38 1047	596	0	1449	1338	1047	596	0
J		84 90	9 711	405	0	592	546	428	244	0
L	8	00 7:	579	329	0	138	127	100	57	0
L Left	29	89 270	50 2161	1230	0	515	476	372	212	0
L Right	24	72 228	33 1787	1017	0	1618	1494	1169	666	0
0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!

 Project_WSS LEE'S SUMMIT
 Project No.__23-283

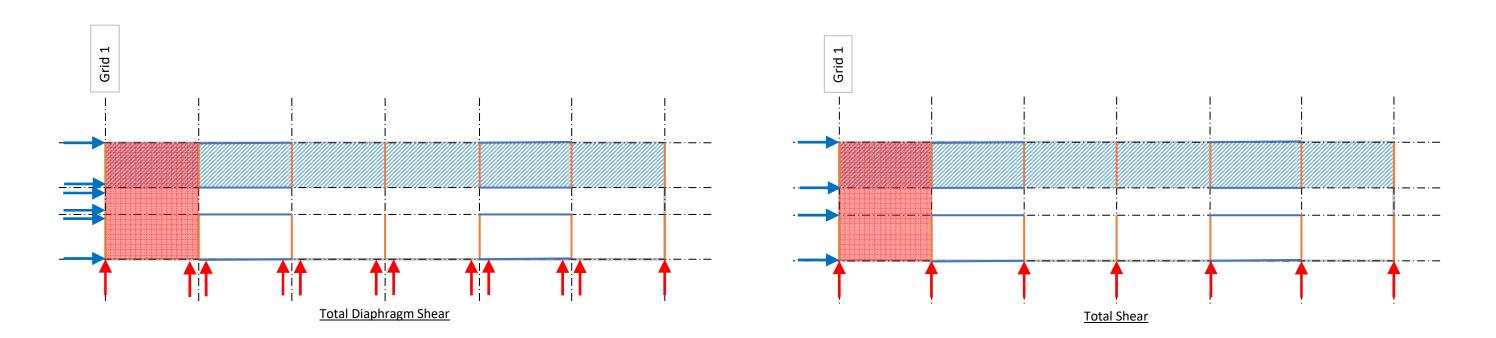
 Calc. By_GL
 Checked By_DN
 Date 7/28/2023


Lateral Loads - Seismic

1.0 1.0 (1.0 if non-irregular) --- Grid

Seismic Force Distribution (all including irregularity factor)

level	Lateral Force (lbs)	Floor Area (sf)	Distributed Force (psf)
Roof 4th floor 3rd floor	15,600 11,800 7,600	12,942 12,942 12,942	1.21 0.91 0.59
2nd floor Total	3,100 38,100	13,823	0.22

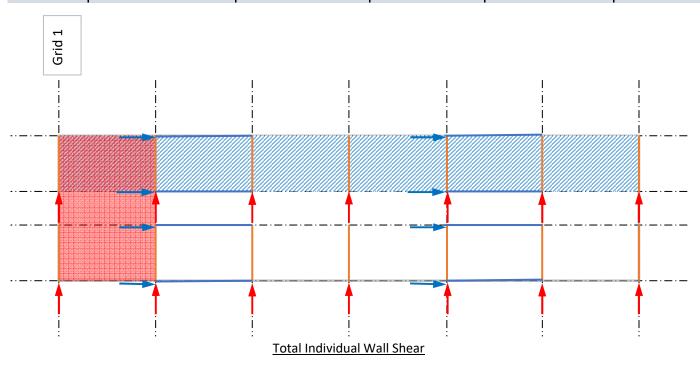


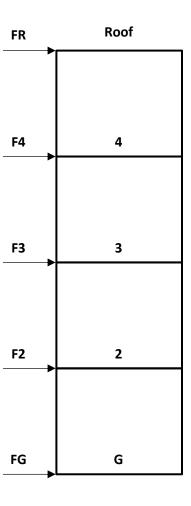
E-W Seismic

(orientation of building may change - for analysis purposes North is up)

Diaphragm Loads (lbs)

		Tributary Width Tr	ibutary Length Tota	al Diaphragm Shear (lbs)					
Grids			2nd	Floor 3rd Floor	4th I	Floor Roof	Parapet	Tota	l Base Shear
0 to 1	1 South	0.00	0.00	0	0	0	0	0	0
1 to 2	1 North	4.89	18.67	20	54	83	110	0	267
	2 South	4.89	22.13	24	63	99	130	0	317
2 to 3	2 North	13.50	22.13	67	175	272	360	0	875
	3 South	13.50	20.13	61	160	248	327	0	796
3 to 4	3 North	13.50	20.13	61	160	248	327	0	796
	4 South	13.50	20.13	61	160	248	327	0	796
4 to 7	4 North	13.50	20.13	61	160	248	327	0	796
	7 South	13.50	24.71	75	196	304	402	0	977
7 to 10	7 North	13.50	24.71	75	196	304	402	0	977
	10 South	13.50	132.83	402	1053	1635	2162	0	5252
				0	0	0	0	0	0
10 to 11	10 North	2.89	132.83	86	225	349	462	0	1122
	11 South	2.89	149.10	96	253	392	519	0	1260
11 to 12,1	3,111 North	12.93	149.10	432	1132	1757	2323	0	5645
	12,13,14 South	12.93	149.10	432	1132	1757	2323	0	5645
	12,13,14 North	0.00	0.00	0	0	0	0	0	0
				0	0	0	0	0	0
				0	0	0	0	0	0
				0	0	0	0	0	0




Total Shear at each grid (lbs)

Grid	2nd Floor	3rd Floor	4th Floor	Roof	Parapet	Total Base Shea
1	20	54	83	110	0	267
2	91	L 239	371	490	0	1191
3	122	319	495	655	0	1591
4	122	319	495	655	0	1591
7	150	392	608	804	0	1954
10	488	3 1278	1984	2624	0	6374
11	529	1385	2150	2842	0	6905
12,13,14	432	2 1132	1757	2323	0	5645

Shearwall lengths -

Grid	Wall 1 (longer) length (f	ft)	Wall 2 (shorter) le	Total Shear Wall		
	Shear Wall Length	Tributary Length	Shear Wall Length	Shear Wall Length Tributary Length		
1	22	50	0	0	22	
2	22	22	20	20	42	
3	20	20	20	20	40	
4	20	20	20	20	40	
7	25	25	24	24	48	
10	108	133	25	25	133	
11	162	129	0	0	162	
12,13,14	54	38	41	25	95	
	0	0	0	0	0	
	0	0	0	0	0	
	0	0	0	0	0	
	0	0	0	0	0	

W/O OVERSTRENGTH

Individual Wall Cumulative Shearwall Shear (lbs)

	Shearwall 1 (longer o	Shearwall 2 (shorter of 2 cases)								
Grid	2nd floor (F2)	3rd floor (F3)	4th floor (F4)	Roof	Parapet	2nd floor (F2)	3rd floor (F3)	4th floor (F4)	5th floor (F5)	Roof (FR)
1	. 20	57 24	7 193	110	0	0	0	0	C	0
2	6	24 57	6 451	257	0	567	524	410	234	0
3	7:	93 73	2 573	326	0	798	737	577	329	0
4	. 79	96 73	5 575	327	0	796	735	575	327	0
7	9:	92	1 721	411	0	956	883	691	394	0
10	530	56 495	5 3879	2208	0	1009	931	729	415	0
11	. 690)5 637	6 4992	2842	0	0	0	0	C	0
12,13,14	339	98 313	8 2457	1399	0	2247	2075	1624	925	0

W/ OVERSTRENGTH

Individual Wall Cumulative Shearwall Shear (lbs)

	Shearwall 1 (longer of 2 cases)							Shearwall 2 (shorter of 2 cases)				
Grid	2nd floor (F2)	3rd floor (F3)	4th f	loor (F4) Roof	Parapet		2nd floor (F2) 3rd	floor (F3) 4th f	floor (F4) Roof	Parap	et	
	1	267	247	193	110	0	0	0	0	0	0	
	2	624	576	451	257	0	567	524	410	234	0	
	3	793	732	573	326	0	798	737	577	329	0	
	4	796	735	575	327	0	796	735	575	327	0	
	7	998	921	721	411	0	956	883	691	394	0	
1	.0	5366	4955	3879	2208	0	1009	931	729	415	0	

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
	23-283				
Section	Sheet no./rev.				
			1		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/21/2023	DN			

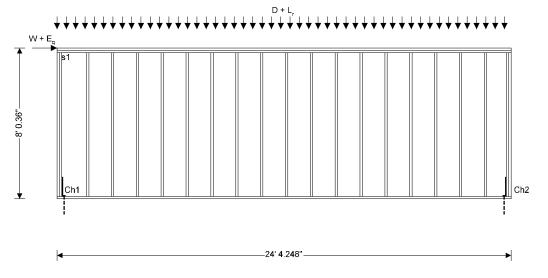
WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10

Design summary


Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	8889	2680	0.302	PASS
Chord capacity	lb/in ²	1265	63	0.100	PASS
Deflection	in	0.268	0.099	0.371	PASS

Panel details

Structural wood panel sheathing on one side

Panel height; h = 8.03 ftPanel length; b = 24.354 ft

Total area of wall; $A = h \times b = 195.563 \text{ ft}^2$

Panel construction

2" x 6" Nominal stud size; Dressed stud size; 1.5" x 5.5" Cross-sectional area of studs; $A_s = 8.25 \text{ in}^2$ s = **16** in Stud spacing; 2 x 2" x 6" Nominal end post size; Dressed end post size; 2 x 1.5" x 5.5" Cross-sectional area of end posts; $A_e = 16.5 \text{ in}^2$ Dia = 1 in Hole diameter; Net cross-sectional area of end posts; $A_{en} = 13.5 in^2$ Nominal collector size: 2 x 2" x 6" Dressed collector size; 2 x 1.5" x 5.5"

Service condition; Dry

11320 West 79th Street Lenexa, Kansas 66214

Project					Job Ref.	
	WSS - Lee's	23-283				
Section		Sheet no./rev.				
			2			
Calc. by	Date	Chk'd by	Date		App'd by	Date
GL	7/21/202	3 DN				

Temperature; 100 degF or less Vertical anchor stiffness; $k_a = 34943$ lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

Specific gravity; G = 0.50Tension parallel to grain; $F_t = 575 \text{ lb/in}^2$ Compression parallel to grain; $F_c = 1350 \text{ lb/in}^2$ Compression perpendicular to grain; $F_{c_perp} = 625 \text{ lb/in}^2$ Modulus of elasticity; $E = 1600000 \text{ lb/in}^2$ Minimum modulus of elasticity; $E_{min} = 580000 \text{ lb/in}^2$

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 6"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 520 \text{ lb/ft}$ Nominal unit shear capacity for wind design; $v_w = 730 \text{ lb/ft}$ Apparent shear wall shear stiffness; $G_a = 15 \text{ kips/in}$

Loading details

Dead load acting on top of panel; D = 25 lb/ft Roof live load acting on top of panel; $L_r = 20 \text{ lb/ft}$ Self weight of panel; $S_{wt} = 25 \text{ lb/ft}^2$ In plane wind load acting at head of panel; W = 4467 lbs Wind load serviceability factor; $f_{wserv} = 1.00$ In plane seismic load acting at head of panel; $E_q = 329 \text{ lbs}$ Design spectral response accel. par., short periods; $S_{DS} = 0.106$

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.1; D + 0.6WLoad combination no.2; D + 0.7E

Load combination no.3; D + 0.45W + 0.75 L_f + 0.75(L_r or S or R)

Load combination no.4; $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6WLoad combination no.6; 0.6D + 0.7E

Adjustment factors

Wet service factor for modulus of elasticity - Table 4A

 $C_{ME} = 1.00$

Temperature factor for tension – Table 2.3.3; $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

11320 West 79th Street Lenexa, Kansas 66214

Project					Job Ref.	
	WSS - Lee's	23-283				
Section		Sheet no./rev.				
			3			
Calc. by	Date	Chk'd by	Date		App'd by	Date
GL	7/21/2023	DN				

Temperature factor for modulus of elasticity - Table 2.3.3

 $C_{tE} = 1.00$

 $\label{eq:continuous} \begin{array}{ll} \text{Incising factor} - \text{cl.4.3.8}; & C_i = \textbf{1.00} \\ \text{Buckling stiffness factor} - \text{cl.4.4.2}; & C_T = \textbf{1.00} \\ \text{Bearing area factor} - \text{cl. 3.10.4}; & C_b = \textbf{1.0} \\ \end{array}$

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 580000 \text{ psi}$

Critical buckling design value; $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 1553 \text{ psi}$

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = 2376$ psi

For sawn lumber; c = 0.8

Column stability factor – eqn.3.7-1; $C_P = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (F_{cE} / F_c^*) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (F_{cE} / F_c^*) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (F_{cE} / F_c^*) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (F_{cE} / F_c^*) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (F_{cE} / F_c^*) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (F_{cE} / F_c^*) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (F_{cE} / F_c^*) / (2 \times c) + (F_{cE} / F_c^*) / (2 \times c)) / (2 \times c) = (F_{cE} / F_c^*) / (2 \times c) + (F_{cE} / F_c^*) / (2 \times c) = (F_{cE} / F_c^*) / (2 \times c)) / (2 \times c) = (F_{cE} / F_c^*) / (2 \times c) + (F_{cE} / F_c^*) / (2 \times c) = (F_{cE} / F_c^*) / (2 \times$

0.53

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio; 3.5

Shear wall length; b = 24.354 ft Shear wall aspect ratio; h / b = 0.33

Segmented shear wall capacity

Maximum shear force under wind loading; $V_{w_max} = 0.6 \times W = 2.68$ kips Shear capacity for wind loading; $V_{w} = v_{w} \times b / 2 = 8.889$ kips

 $V_{w \text{ max}} / V_{w} = 0.302$

PASS - Shear capacity for wind load exceeds maximum shear force

Maximum shear force under seismic loading; $V_{s_max} = 0.7 \times E_q = 0.23$ kips Shear capacity for seismic loading; $V_s = v_s \times b / 2 = 6.332$ kips

 $V_{s max} / V_{s} = 0.036$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chords 1 and 2

Shear wall aspect ratio; h / b = 0.33

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 2.68 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 = 1.649$ kips

Maximum tensile force in chord; $T = V \times h / b - P = -0.766$ kips

Maximum applied tensile stress; $f_t = T / A_{en} = -57 \text{ lb/in}^2$

Design tensile stress; $F_{t}' = F_{t} \times C_{D} \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_{i} = \textbf{1196} \text{ lb/in}^{2}$

 $f_t / F_t' = -0.047$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 2.68 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 = 0.15 \text{ kips}$

Maximum compressive force in chord; $C = V \times h / b + P = 1.034 \text{ kips}$

Maximum applied compressive stress; $f_c = C / A_e = 63 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_f \times C_P = 1265 \text{ lb/in}^2$

 $f_c / F_c' = 0.050$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
	WSS - Lee's Su	23-283			
Section		Sheet no./rev.			
			4		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/21/2023	DN			

 $f_c / F_{c perp}' = 0.100$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Wind load deflection

Design shear force; $V_{\delta w} = f_{Wserv} \times W = \textbf{4.467 kips}$ Deflection limit; $\Delta_{w_allow} = h / 360 = \textbf{0.268 in}$ Induced unit shear; $v_{\delta w} = V_{\delta w} / b = \textbf{183.42 lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000 kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Shear wall deflection – Eqn. 4.3-1; $\delta_{\text{SWW}} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.099} \text{ in}$

 $\delta_{\text{sww}} / \Delta_{\text{w_allow}} = 0.371$

PASS - Shear wall deflection is less than deflection limit

Seismic deflection

Design shear force; $V_{\delta s} = E_q = 0.329 \text{ kips}$

Deflection limit; $\Delta_{\text{s allow}} = 0.020 \times \text{h} = 1.927 \text{ in}$

Induced unit shear; $v_{\delta s} = V_{\delta s} / b = 13.51 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

 $Shear \ wall \ elastic \ deflection - Eqn. \ 4.3-1; \\ \delta_{swse} = 2 \times v_{\delta s} \times h^3 \ / \ (3 \times E \times A_e \times b) \ + \ v_{\delta s} \times h \ / \ (G_a) \ + \ h \times \Delta_a \ / \ b = \textbf{0.007} \ in$

Deflection ampification factor; $C_{d\delta}$ = 4 Seismic importance factor; I_e = 1

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws} = C_{d\delta} \times \delta_{swse} / I_e = 0.029$ in

 $\delta_{\text{sws}} / \Delta_{\text{s_allow}} = 0.015$

PASS - Shear wall deflection is less than deflection limit

11320 West 79th Street Lenexa, Kansas 66214

Р	roject				Job Ref.	
		WSS - Lee's Su	23-283			
S	Section	Sheet no./rev.				
			5			
С	Calc. by	Date	Chk'd by	Date	App'd by	Date
	GL	7/21/2023	DN			

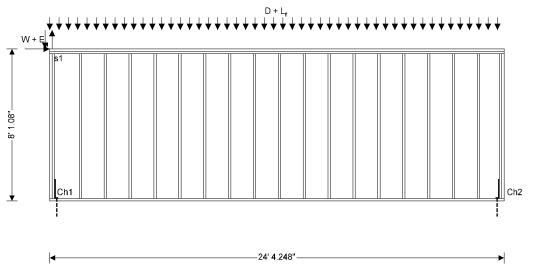
WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10

Design summary


Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	8889	3890	0.438	PASS
Chord capacity	lb/in ²	1252	150	0.240	PASS
Deflection	in	0.270	0.148	0.550	PASS

Panel details

Structural wood panel sheathing on one side

Panel height; h = 8.09 ftPanel length; b = 24.354 ft

Total area of wall; $A = h \times b = 197.024 \text{ ft}^2$

Panel construction

2" x 6" Nominal stud size; Dressed stud size; 1.5" x 5.5" Cross-sectional area of studs; $A_s = 8.25 \text{ in}^2$ Stud spacing; s = 16 in2 x 2" x 6" Nominal end post size; Dressed end post size; 2 x 1.5" x 5.5" Cross-sectional area of end posts; $A_e = 16.5 \text{ in}^2$ Hole diameter; Dia = 1 in Net cross-sectional area of end posts; $A_{en} = 13.5 in^2$

11320 West 79th Street Lenexa, Kansas 66214

	Project		Job Ref.			
		WSS - Lee's Su	23-283			
Ī	Section	Sheet no./rev.				
			6			
Ī	Calc. by	Date	Chk'd by	Date	App'd by	Date
	GL	7/21/2023	DN			

Nominal collector size; $2 \times 2" \times 6"$ Dressed collector size; $2 \times 1.5" \times 5.5"$

Service condition; Dry

Temperature; 100 degF or less Vertical anchor stiffness; $k_a = 34943$ lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

 $\label{eq:specific gravity;} G = \textbf{0.50}$ Tension parallel to grain; $F_t = \textbf{575 lb/in}^2$ Compression parallel to grain; $F_c = \textbf{1350 lb/in}^2$ Compression perpendicular to grain; $F_{c_perp} = \textbf{625 lb/in}^2$ Modulus of elasticity; $E = \textbf{1600000 lb/in}^2$ Minimum modulus of elasticity; $E_{min} = \textbf{580000 lb/in}^2$

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 6"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 520 \text{ lb/ft}$ Nominal unit shear capacity for wind design; $v_w = 730 \text{ lb/ft}$ Apparent shear wall shear stiffness; $G_a = 15 \text{ kips/in}$

Loading details

Dead load acting on top of panel; D = 25 lb/ft Floor live load acting on top of panel; L_f = 40 lb/ft Self weight of panel; S_{wt} = 25 lb/ft² In plane wind load acting at head of panel; W = 6483 lbs Wind load serviceability factor; f_{Wserv} = 1.00 In plane seismic load acting at head of panel; E_q = 578 lbs Design spectral response accel. par., short periods; S_{DS} = 0.106

Chord forces from shear walls above

Chord	W _{ch[i]} (lbs)	Eq_ch[i] (lbs)	Dc_ch[i] (lbs)	D _{T_ch[i]} (lbs)	L _{f_ch[i]} (lbs)	L _{r_ch[i]} (lbs)	S _{ch[i]} (lbs)	R _{ch[i]} (Ibs)
Ch1;	-1473;	-108;	150;	2749;	0;	13;	0;	0;
Ch2;	1473;	108;	150;	2749;	0;	13;	0;	0;

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.3; $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or S or R})$

Load combination no.4; $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6WLoad combination no.6; 0.6D + 0.7E

Adjustment factors

Load duration factor – Table 2.3.2; $C_D = 1.60$ Size factor for tension – Table 4A; $C_{Ft} = 1.30$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
	23-283				
Section	Sheet no./rev.				
		7			
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/21/2023	DN			

Size factor for compression – Table 4A; C_{Fc} = **1.10** Wet service factor for tension – Table 4A; C_{Mt} = **1.00** Wet service factor for compression – Table 4A; C_{Mc} = **1.00**

Wet service factor for modulus of elasticity - Table 4A

 $C_{ME} = 1.00$

Temperature factor for tension – Table 2.3.3; $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

Temperature factor for modulus of elasticity - Table 2.3.3

 $C_{tE} = 1.00$

 $\begin{array}{ll} \mbox{Incising factor} - \mbox{cl.4.3.8}; & \mbox{C_i} = \mbox{1.00} \\ \mbox{Buckling stiffness factor} - \mbox{cl.4.4.2}; & \mbox{C_T} = \mbox{1.00} \\ \mbox{Bearing area factor} - \mbox{cl. 3.10.4}; & \mbox{C_b} = \mbox{1.0} \\ \end{array}$

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 580000$ psi

Critical buckling design value; $F_{CE} = 0.822 \times E_{min}' / (h / d)^2 = 1530 \text{ psi}$

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = 2376$ psi

For sawn lumber; c = 0.8

Column stability factor – eqn.3.7-1; $C_P = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - (F_{cE} / F_c^*) / (2 \times c)) = (1 + (F_{cE} / F_c^*)) / (2 \times c) - (F_{cE} / F_c^*) / (2 \times c)) = (1 + (F_{cE} / F_c^*)) / (2 \times c) - (F_{cE} / F_c^*) / (2 \times c) = (1 + (F_{cE} / F_c^*)) / (2 \times c) = (1 + (F$

0.53

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio; 3.5

Shear wall length; b = 24.354 ftShear wall aspect ratio; h / b = 0.332

Segmented shear wall capacity

Maximum shear force under wind loading; $V_{w_max} = 0.6 \times W = 3.89 \text{ kips}$ Shear capacity for wind loading; $V_w = v_w \times b / 2 = 8.889 \text{ kips}$

 $V_{w_{max}} / V_{w} = 0.438$

PASS - Shear capacity for wind load exceeds maximum shear force

Maximum shear force under seismic loading; $V_{s_max} = 0.7 \times E_q = 0.405$ kips Shear capacity for seismic loading; $V_s = v_s \times b / 2 = 6.332$ kips

 $V_{s max} / V_{s} = 0.064$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chord 1

Shear wall aspect ratio; h / b = 0.332

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 3.89 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + 0.6 \times W_{ch1} + 0.6 \times D_{T_ch1} = 2.426 \text{ kips}$

Maximum tensile force in chord; $T = V \times h / b - P = -1.134 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = -84 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = -0.070$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.		
	WSS - Lee's Summit, MO - GL 2				23-283	
Section				Sheet no./rev.		
					8	
Calc. by	Date	Chk'd by	Date	App'd by	Date	
GL	7/21/2023	DN				

Shear force for maximum compression; $V = 0.6 \times W = 3.89 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + -1 \times 0.6 \times W_{ch1} + D_{C_ch1} = 1.186 \text{ kips}$

Maximum compressive force in chord; $C = V \times h / b + P = 2.478 \text{ kips}$

Maximum applied compressive stress; $f_c = C / A_e = 150 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 1252 \text{ lb/in}^2$

 $f_c / F_c' = 0.120$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp'} = 0.240$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 2

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 3.89 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + -1 \times 0.6 \times W_{ch2} + 0.6 \times D_{T_ch2} = 2.426$

kips

Maximum tensile force in chord; $T = V \times h / b - P = -1.134 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = -84 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_F \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = -0.070$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 3.89$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + 0.6 \times W_{ch2} + D_{C_ch2} = 1.186 \text{ kips}$

Maximum compressive force in chord; $C = V \times h / b + P = 2.478$ kips

Maximum applied compressive stress; $f_c = C / A_e = 150 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{fc} \times C_F \times C_I \times C_P = 1252 \text{ lb/in}^2$

 $f_c / F_c' = 0.120$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perb}' = F_{c perb} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp}' = 0.240$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Wind load deflection

Design shear force; $V_{\delta w} = f_{Wserv} \times W = 6.483 \text{ kips}$

Deflection limit; $\Delta_{\text{W_allow}} = \text{h / 360} = \textbf{0.27} \text{ in}$ Induced unit shear; $v_{\delta w} = V_{\delta w} / \text{b} = \textbf{266.2} \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2 - 0.6 \times \min(D_{T_ch1}, D_{T_ch2})$

+ $max(abs(W_{ch1}), abs(W_{ch2}))) = 0.317 kips$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.009$ in

Shear wall deflection – Eqn. 4.3-1; $\delta_{sww} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.148} \text{ in}$

 $\delta_{\text{sww}} / \Delta_{\text{w}}$ allow = **0.55**

PASS - Shear wall deflection is less than deflection limit

11320 West 79th Street Lenexa, Kansas 66214

F	Project				Job Ref.	
	WSS - Lee's Summit, MO - GL 2			23-283		
5	Section				Sheet no./rev.	
						9
C	Calc. by	Date	Chk'd by	Date	App'd by	Date
	GL	7/21/2023	DN			

Seismic deflection

Design shear force; $V_{\delta s} = E_q = 0.578 \text{ kips}$

Deflection limit; $\Delta_{s \text{ allow}} = 0.020 \times h = 1.942 \text{ in}$

Induced unit shear; $v_{\delta s} = V_{\delta s}$ / b = 23.73 lb/ft

Anchor tension force; $T_{\delta} = \max(0 \text{ kips,} v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times$

 $S_{DS}) \times min(D_{T_ch1},D_{T_ch2}) + max(abs(E_{q_ch1}),abs(E_{q_ch2}))) \ = \textbf{0.000} \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Shear wall elastic deflection – Eqn. 4.3-1; $\delta_{swse} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.013} \text{ in}$

Deflection ampification factor; $C_{d\delta}$ = **4** Seismic importance factor; I_e = **1**

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws} = C_{d\delta} \times \delta_{swse} / I_e = 0.052$ in

 δ_{sws} / $\Delta_{\text{s_allow}}$ = **0.027**

PASS - Shear wall deflection is less than deflection limit

11320 West 79th Street Lenexa, Kansas 66214

Project					Job Ref.	
WSS - Lee's Summit, MO - GL 2					23	-283
Section					Sheet no./rev.	
						10
Calc. by	Date	Chk'd by	Date		App'd by	Date
GL	7/21/2023	DN				

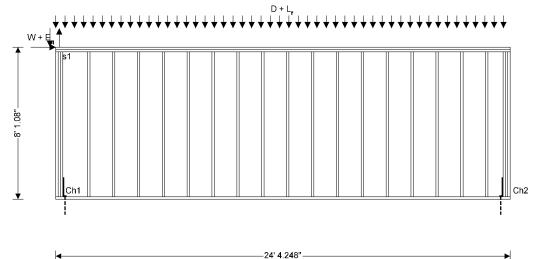
WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10

Design summary


Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	8889	5195	0.584	PASS
Chord capacity	lb/in ²	1252	176	0.282	PASS
Deflection	in	0.270	0.204	0.755	PASS

Panel details

Structural wood panel sheathing on one side

Panel height; h = 8.09 ftPanel length; b = 24.354 ft

Total area of wall; $A = h \times b = 197.024 \text{ ft}^2$

Panel construction

Nominal stud size; 2" x 6" 1.5" x 5.5" Dressed stud size; Cross-sectional area of studs; $A_s = 8.25 in^2$ Stud spacing; s = 16 inNominal end post size; 3 x 2" x 6" Dressed end post size; 3 x 1.5" x 5.5" Cross-sectional area of end posts; $A_e = 24.75 \text{ in}^2$ Dia = **1** in Hole diameter; Net cross-sectional area of end posts; $A_{en} = 20.25 in^2$ Nominal collector size; 2 x 2" x 6" Dressed collector size; 2 x 1.5" x 5.5" Service condition; Dry

D33 of 294

11320 West 79th Street Lenexa, Kansas 66214

Project					Job Ref.	
WSS - Lee's Summit, MO - GL 2					23	-283
Section					Sheet no./rev.	
						11
Calc. by	Date	Chk'd by	Date		App'd by	Date
GL	7/21/2023	DN				

Temperature; 100 degF or less Vertical anchor stiffness; $k_a = 49087$ lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

Specific gravity; G = 0.50Tension parallel to grain; $F_t = 575 \text{ lb/in}^2$ Compression parallel to grain; $F_c = 1350 \text{ lb/in}^2$ Compression perpendicular to grain; $F_{c_perp} = 625 \text{ lb/in}^2$ Modulus of elasticity; $E = 1600000 \text{ lb/in}^2$ Minimum modulus of elasticity; $E_{min} = 580000 \text{ lb/in}^2$

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 6"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 520 \text{ lb/ft}$ Nominal unit shear capacity for wind design; $v_w = 730 \text{ lb/ft}$ Apparent shear wall shear stiffness; $G_a = 15 \text{ kips/in}$

Loading details

Dead load acting on top of panel; D = 25 lb/ft Floor live load acting on top of panel; $L_f = 40 \text{ lb/ft}$ Self weight of panel; $S_{wt} = 25 \text{ lb/ft}^2$ In plane wind load acting at head of panel; W = 8658 lbs Wind load serviceability factor; $f_{Wserv} = 1.00$ In plane seismic load acting at head of panel; $E_q = 739 \text{ lbs}$ Design spectral response accel. par., short periods; $S_{DS} = 0.106$

Chord forces from shear walls above

Chord	W _{ch[i]} (lbs)	E _{q_ch[i]} (lbs)	Dc_ch[i] (lbs)	D _{T_ch[i]} (lbs)	L _{f_ch[i]} (lbs)	L _{r_ch[i]} (lbs)	S _{ch[i]} (lbs)	R _{ch[i]} (lbs)
Ch1;	-3626;	-300;	302;	5516;	27;	13;	0;	0;
Ch2;	3626;	300;	302;	5516;	27;	13;	0;	0;

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.1; D + 0.6WLoad combination no.2; D + 0.7E

Load combination no.3; $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or S or R})$

Load combination no.4; $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6WLoad combination no.6; 0.6D + 0.7E

Adjustment factors

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
	WSS - Lee's Summit, MO - GL 2			23-283	
Section				Sheet no./rev.	
					12
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/21/2023	DN			

Wet service factor for modulus of elasticity - Table 4A

 $C_{ME} = 1.00$

Temperature factor for tension – Table 2.3.3; $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

Temperature factor for modulus of elasticity - Table 2.3.3

 $C_{tE} = 1.00$

 $\label{eq:continuous} \begin{array}{ll} \text{Incising factor} - \text{cl.4.3.8}; & \text{$C_i = 1.00$} \\ \text{Buckling stiffness factor} - \text{cl.4.4.2}; & \text{$C_T = 1.00$} \\ \text{Bearing area factor} - \text{cl. 3.10.4}; & \text{$C_b = 1.0$} \\ \end{array}$

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 580000 \text{ psi}$

Critical buckling design value; $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 1530 \text{ psi}$

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = 2376 \text{ psi}$

For sawn lumber; c = 0.8

Column stability factor – eqn.3.7-1; $C_P = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - (F_{cE} / F_c^*) / (2 \times c)) = (1 + (F_{cE} / F_c^*)) / (2 \times c) - (F_{cE} / F_c^*) / (2 \times c)) = (1 + (F_{cE} / F_c^*)) / (2 \times c) - (F_{cE} / F_c^*) / (2 \times c) = (1 + (F_{cE} / F_c^*)) / (2 \times c) = (1 + (F$

0.53

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio; 3.5

Shear wall length; b = 24.354 ftShear wall aspect ratio; h / b = 0.332

Segmented shear wall capacity

Maximum shear force under wind loading; $V_{w_max} = 0.6 \times W =$ **5.195** kips Shear capacity for wind loading; $V_{w} = v_{w} \times b / 2 =$ **8.889** kips

 $V_{w \text{ max}} / V_{w} = 0.584$

PASS - Shear capacity for wind load exceeds maximum shear force

Maximum shear force under seismic loading; $V_{s_max} = 0.7 \times E_q = 0.517$ kips Shear capacity for seismic loading; $V_s = v_s \times b / 2 = 6.332$ kips

 $V_{s max} / V_{s} = 0.082$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chord 1

Shear wall aspect ratio; h / b = 0.332

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.195 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + 0.6 \times W_{ch1} + 0.6 \times D_{T_ch1} = 2.794 \text{ kips}$

Maximum tensile force in chord; $T = V \times h / b - P = -1.069$ kips

Maximum applied tensile stress; $f_t = T / A_{en} = -53 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = -0.044$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 5.195 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + -1 \times 0.6 \times W_{ch1} + D_{C ch1} = 2.629 \text{ kips}$

Maximum compressive force in chord; $C = V \times h / b + P = 4.355$ kips

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS - Lee's Summit, MO - GL 2			23-283		
Section				Sheet no./rev.	
					13
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/21/2023	DN			

Maximum applied compressive stress; $f_c = C / A_e = 176 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 1252 \text{ lb/in}^2$

 $f_c / F_c' = 0.141$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = \textbf{625 lb/in}^{2}$

 $f_c / F_{c perp'} = 0.282$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 2

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.195 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + -1 \times 0.6 \times W_{ch2} + 0.6 \times D_{T_ch2} = 2.794$

kips

Maximum tensile force in chord; $T = V \times h / b - P = -1.069$ kips

Maximum applied tensile stress; $f_t = T / A_{en} = -53 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = -0.044$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 5.195$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + 0.6 \times W_{ch2} + D_{C_ch2} = 2.629 \text{ kips}$

Maximum compressive force in chord; $C = V \times h / b + P = 4.355$ kips

Maximum applied compressive stress; $f_c = C / A_e = 176 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 1252 \text{ lb/in}^2$

 $f_c / F_c' = 0.141$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp} = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp'} = 0.282$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Wind load deflection

Design shear force; $V_{\delta w} = f_{Wserv} \times W = 8.658 \text{ kips}$ Deflection limit; $\Delta_{W_allow} = h / 360 = 0.27 \text{ in}$ Induced unit shear; $v_{\delta w} = V_{\delta w} / b = 355.51 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips,} v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2 - 0.6 \times \min(D_{T_ch1}, D_{T_ch2})$

+ $max(abs(W_{ch1}), abs(W_{ch2}))) = 1.532 kips$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.031$ in

Shear wall deflection – Eqn. 4.3-1; $\delta_{sww} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.204} \text{ in}$

 $\delta_{\text{sww}} / \Delta_{\text{w allow}} = 0.755$

PASS - Shear wall deflection is less than deflection limit

Seismic deflection

Design shear force; $V_{\delta s} = E_q = 0.739 \text{ kips}$

Deflection limit; $\Delta_{\text{s allow}} = 0.020 \times \text{h} = 1.942 \text{ in}$

Induced unit shear; $v_{\delta s} = V_{\delta s} / b = 30.34 \text{ lb/ft}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS - Lee's Summit, MO - GL 2			23-283		
Section				Sheet no./rev.	
					14
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/21/2023	DN			

Anchor tension force;	$T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - ($	$0.6 - 0.2 \times S_{DS}) \times$	$(D + S_{wt} \times h) \times b / 2$	2 - (0.6 - 0.2 ×
-----------------------	---	-----------------------------------	--------------------------------------	------------------

 $S_{DS}) \times min(D_{T_ch1}, D_{T_ch2}) + max(abs(E_{q_ch1}), abs(E_{q_ch2}))) \ = \textbf{0.000} \text{ kips}$

Vertical elongation at anchor; $\Delta_{a} = T_{\delta} / k_{a} = \textbf{0.000} \text{ in}$

Shear wall elastic deflection – Eqn. 4.3-1; $\delta_{\text{swse}} = 2 \times v_{\delta s} \times h^3 / \left(3 \times E \times A_e \times b\right) + v_{\delta s} \times h / \left(G_a\right) + h \times \Delta_a / b = \textbf{0.016} \text{ in}$

Deflection ampification factor; $C_{d\delta}$ = **4** Seismic importance factor; I_e = **1**

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws}} = C_{\text{d}\delta} \times \delta_{\text{swse}} \, / \, I_{\text{e}} = \textbf{0.066} \text{ in}$

 δ_{sws} / Δ_{s} allow = **0.034**

PASS - Shear wall deflection is less than deflection limit

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
	WSS - Lee's Summit, MO - GL 2			23-283	
Section				Sheet no./rev.	
					15
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/21/2023	DN			

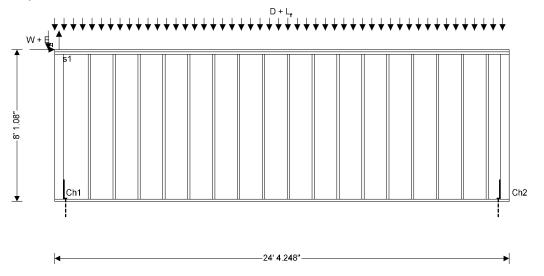
WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10

Design summary


Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	8889	6500	0.731	PASS
Chord capacity	lb/in ²	1252	220	0.353	PASS
Deflection	in	0.270	0.258	0.957	PASS

Panel details

Structural wood panel sheathing on one side

Panel height; h = 8.09 ftPanel length; b = 24.354 ft

Total area of wall; $A = h \times b = 197.024 \text{ ft}^2$

Panel construction

2" x 6" Nominal stud size: Dressed stud size; 1.5" x 5.5" Cross-sectional area of studs; $A_s = 8.25 \text{ in}^2$ Stud spacing; s = 16 inNominal end post size; 6" x 6" Dressed end post size; 5.5" x 5.5" Cross-sectional area of end posts; $A_e = 30.25 \text{ in}^2$ Dia = **1** in Hole diameter; Net cross-sectional area of end posts; $A_{en} = 24.75 \text{ in}^2$ Nominal collector size; 2 x 2" x 6" Dressed collector size; 2 x 1.5" x 5.5"

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
	WSS - Lee's Su	23-283			
Section				Sheet no./rev.	
					16
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/21/2023	DN			

Service condition; Dry

Temperature; 100 degF or less
Vertical anchor stiffness; ka = **69464** lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

 $\label{eq:specific gravity;} Specific gravity; G = 0.50$ Tension parallel to grain; $F_t = 575 \text{ lb/in}^2$ Compression parallel to grain; $F_c = 1350 \text{ lb/in}^2$ Compression perpendicular to grain; $F_{c_perp} = 625 \text{ lb/in}^2$ Modulus of elasticity; $E = 1600000 \text{ lb/in}^2$ Minimum modulus of elasticity; $E_{min} = 580000 \text{ lb/in}^2$

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 6"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 520 \text{ lb/ft}$ Nominal unit shear capacity for wind design; $v_w = 730 \text{ lb/ft}$ Apparent shear wall shear stiffness; $G_a = 15 \text{ kips/in}$

Loading details

Dead load acting on top of panel; D = 25 lb/ft Floor live load acting on top of panel; L_f = 40 lb/ft Self weight of panel; S_{wt} = 25 lb/ft² In plane wind load acting at head of panel; W = 10834 lbs Wind load serviceability factor; f_{Wserv} = 1.00 In plane seismic load acting at head of panel; E_q = 815 lbs Design spectral response accel. par., short periods; S_{DS} = 0.106

Chord forces from shear walls above

Chord	W _{ch[i]} (lbs)	Eq_ch[i] (lbs)	Dc_ch[i] (lbs)	D _{T_ch[i]} (lbs)	L _{f_ch[i]} (lbs)	L _{r_ch[i]} (lbs)	S _{ch[i]} (Ibs)	R _{ch[i]} (lbs)
Ch1;	-6502;	-546;	453;	8283;	53;	13;	0;	0;
Ch2;	6502;	546;	453;	8283;	53;	13;	0;	0;

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.3; $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or S or R})$

Load combination no.4; $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6WLoad combination no.6; 0.6D + 0.7E

Adjustment factors

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.	Job Ref.			
	WSS - Lee's Summit, MO - GL 2				3-283	
Section	Section			Sheet no./rev.	Sheet no./rev.	
				17		
Calc. by	Date	Chk'd by	Date	App'd by	Date	
GL	7/21/2023	DN				

Wet service factor for compression – Table 4A; $C_{Mc} = 1.00$

Wet service factor for modulus of elasticity - Table 4A

 $C_{ME} = 1.00$

Temperature factor for tension – Table 2.3.3; $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

Temperature factor for modulus of elasticity – Table 2.3.3

 $C_{tE} = 1.00$

Incising factor – cl.4.3.8; C_i = **1.00** Buckling stiffness factor – cl.4.4.2; C_T = **1.00** Bearing area factor - cl. 3.10.4; C_b = **1.0**

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 580000 \text{ psi}$

Critical buckling design value; $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 1530 \text{ psi}$

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = 2376 \text{ psi}$

For sawn lumber; c = 0.8

Column stability factor - eqn.3.7-1; $C_P = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c^*})) / (2 \times c)]^2 - (F_{cE} / F_{c^*}) / c)} = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c^*})) / (2 \times c))^2 - (F_{cE} / F_{c^*}) / c)} = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c^*})) / (2 \times c))^2 - (F_{cE} / F_{c^*}) / c)} = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c^*})) / (2 \times c))^2 - (F_{cE} / F_{c^*}) / c)} = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - (F_{cE} / F_{c^*}) / c) = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - (F_{cE} / F_{c^*})) / (2 \times c) = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - (F_{cE} / F_{c^*}) / c) = (1 + (F_{cE} / F_{c^*})) / (2 \times c) = (1$

0.53

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio; 3.5

Shear wall length; b = 24.354 ft Shear wall aspect ratio; h / b = 0.332

Segmented shear wall capacity

Maximum shear force under wind loading; $V_{w_max} = 0.6 \times W = 6.5 \text{ kips}$ Shear capacity for wind loading; $V_w = v_w \times b / 2 = 8.889 \text{ kips}$

 $V_{w \text{ max}} / V_{w} = 0.731$

PASS - Shear capacity for wind load exceeds maximum shear force

Maximum shear force under seismic loading; $V_{s_max} = 0.7 \times E_q = 0.571$ kips

Shear capacity for seismic loading; $V_s = v_s \times b / 2 = 6.332$ kips

 $V_{s_{max}} / V_{s} = 0.09$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chord 1

Shear wall aspect ratio; h / b = 0.332

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 6.5$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + 0.6 \times W_{ch1} + 0.6 \times D_{T_{ch1}} = 2.729 \text{ kips}$

Maximum tensile force in chord; $T = V \times h / b - P = -0.570$ kips

Maximum applied tensile stress; $f_t = T / A_{en} = -23 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = -0.019$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 6.5$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + -1 \times 0.6 \times W_{ch1} + D_{C_ch1} = 4.506 \text{ kips}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
	23-	283			
Section				Sheet no./rev.	
					18
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/21/2023	DN			

Maximum compressive force in chord; $C = V \times h / b + P = 6.666$ kips

Maximum applied compressive stress; $f_c = C / A_e = 220 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_f \times C_P = 1252 \text{ lb/in}^2$

 $f_c / F_c' = 0.176$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp}' = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp'} = 0.353$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 2

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 6.5$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + -1 \times 0.6 \times W_{ch2} + 0.6 \times D_{T_ch2} = 2.729$

kips

Maximum tensile force in chord; $T = V \times h / b - P = -0.570$ kips

Maximum applied tensile stress; $f_t = T / A_{en} = -23 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \ lb/in^2$

 $f_t / F_t' = -0.019$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 6.5$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + 0.6 \times W_{ch2} + D_{C_ch2} = 4.506 \text{ kips}$

Maximum compressive force in chord; $C = V \times h / b + P = 6.666$ kips

Maximum applied compressive stress; $f_c = C / A_e = 220 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 1252 \text{ lb/in}^2$

 $f_c / F_c' = 0.176$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c_perp'} = 0.353$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Wind load deflection

Design shear force; $V_{\delta W} = f_{Wserv} \times W = 10.834 \text{ kips}$

Deflection limit; $\Delta_{\text{W_allow}} = \text{h / 360 = 0.27 in}$ Induced unit shear; $v_{\delta \text{w}} = V_{\delta \text{w}} / \text{b = 444.86 lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips,} v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2 - 0.6 \times \min(D_{T_ch1}, D_{T_ch2})$

+ $max(abs(W_{ch1}), abs(W_{ch2}))) = 3.471 \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.050$ in

Shear wall deflection – Eqn. 4.3-1; $\delta_{sww} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b = \mathbf{0.258} \text{ in}$

 $\delta_{\text{sww}} / \Delta_{\text{w}}$ allow = **0.957**

PASS - Shear wall deflection is less than deflection limit

Seismic deflection

Design shear force; $V_{\delta s} = E_q = 0.815 \text{ kips}$

Deflection limit; $\Delta_{s_allow} = 0.020 \times h = 1.942$ in

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS - Lee's Summit, MO - GL 2				23-283	
Section			Sheet no./rev.		
				•	19
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/21/2023	DN			

Induced unit shear; $v_{\delta s} = V_{\delta s} / b = 33.46 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips,} v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times$

 $S_{DS}) \times min(D_{T_ch1},D_{T_ch2}) + max(abs(E_{q_ch1}),abs(E_{q_ch2}))) \ = \textbf{0.000} \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Shear wall elastic deflection – Eqn. 4.3-1; $\delta_{swse} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.018} \text{ in}$

Deflection ampification factor; $C_{d\delta}$ = **4** Seismic importance factor; I_e = **1**

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws}} = C_{\text{d}\delta} \times \delta_{\text{swse}} \ / \ I_{\text{e}} = \textbf{0.073} \ \text{in}$

 δ_{sws} / $\Delta_{\text{s_allow}}$ = 0.037

PASS - Shear wall deflection is less than deflection limit

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
W	SS - Lee's Sumi	23-	283		
Section		Sheet no./rev.			
					1
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/18/2023	DN			

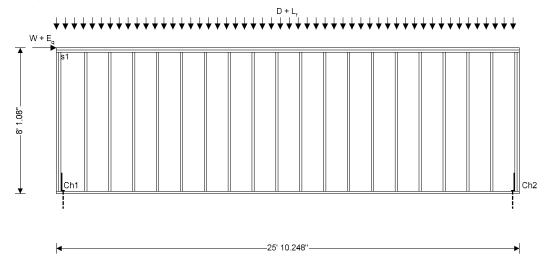
WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10

Design summary


Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	9437	2333	0.247	PASS
Chord capacity	lb/in ²	584	78	0.134	PASS
Deflection	in	0.270	0.084	0.311	PASS

Panel details

Structural wood panel sheathing on one side

Panel height; h = 8.09 ftPanel length; b = 25.854 ft

Total area of wall; $A = h \times b = 209.159 \text{ ft}^2$

Panel construction

Nominal stud size: 2" x 4" 1.5" x 3.5" Dressed stud size; Cross-sectional area of studs; $A_s = 5.25 in^2$ s = **16** in Stud spacing; Nominal end post size; 2 x 2" x 4" Dressed end post size; 2 x 1.5" x 3.5" $A_e = 10.5 \text{ in}^2$ Cross-sectional area of end posts; Hole diameter; Dia = 1 in Net cross-sectional area of end posts; $A_{en} = 7.5 \text{ in}^2$ 2 x 2" x 4" Nominal collector size; Dressed collector size; 2 x 1.5" x 3.5"

Service condition; Dry

Temperature; 100 degF or less

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
V	VSS - Lee's Sum	23-283			
Section		Sheet no./rev.			
				2	
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/18/2023	DN			

Vertical anchor stiffness; k_a = **34943** lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

Specific gravity; G = 0.50Tension parallel to grain; $F_t = 575 \text{ lb/in}^2$ Compression parallel to grain; $F_c = 1350 \text{ lb/in}^2$ Compression perpendicular to grain; $F_{c_perp} = 625 \text{ lb/in}^2$ Modulus of elasticity; $E = 1600000 \text{ lb/in}^2$ Minimum modulus of elasticity; $E_{min} = 580000 \text{ lb/in}^2$

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 6"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 520 \text{ lb/ft}$ Nominal unit shear capacity for wind design; $v_w = 730 \text{ lb/ft}$ Apparent shear wall shear stiffness; $G_a = 15 \text{ kips/in}$

Loading details

Dead load acting on top of panel; D = 50 lb/ft Roof live load acting on top of panel; L_r = 40 lb/ft Self weight of panel; S_{wt} = 11 lb/ft² In plane wind load acting at head of panel; W = 3889 lbs Wind load serviceability factor; f_{Wserv} = 1.00 In plane seismic load acting at head of panel; E_q = 596 lbs Design spectral response accel. par., short periods; S_{DS} = 0.106

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.1; D + 0.6WLoad combination no.2; D + 0.7E

Load combination no.3; $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or S or R})$

Load combination no.4; $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6W Load combination no.6; 0.6D + 0.7E

Adjustment factors

Wet service factor for modulus of elasticity - Table 4A

 $C_{ME} = 1.00$

Temperature factor for tension – Table 2.3.3; $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

Temperature factor for modulus of elasticity - Table 2.3.3

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WS	SS - Lee's Sumr	23-283			
Section	ection			Sheet no./rev.	
					3
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/18/2023	DN			

 $C_{tE} = 1.00$

 $\label{eq:continuous} \begin{array}{ll} \text{Incising factor} - \text{cl.4.3.8}; & \text{$C_i = 1.00$} \\ \text{Buckling stiffness factor} - \text{cl.4.4.2}; & \text{$C_T = 1.00$} \\ \text{Bearing area factor} - \text{cl. 3.10.4}; & \text{$C_b = 1.0$} \\ \end{array}$

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 580000$ psi

Critical buckling design value; $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 620 \text{ psi}$

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = 2484 \text{ psi}$

For sawn lumber; c = 0.8

Column stability factor – eqn.3.7-1; $C_P = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - (F_{cE} / F_c^*) / c)$

0.24

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio; 3.5

Shear wall length; b = 25.854 ft Shear wall aspect ratio; h / b = 0.313

Segmented shear wall capacity

 $\label{eq:w_max} \mbox{Maximum shear force under wind loading;} \qquad \mbox{$V_{w_max} = 0.6 \times W = \textbf{2.333}$ kips} \\ \mbox{Shear capacity for wind loading;} \qquad \mbox{$V_{w} = v_{w} \times b \ / \ 2 = \textbf{9.437}$ kips} \\ \mbox{}$

 $V_{w_{max}} / V_{w} = 0.247$

PASS - Shear capacity for wind load exceeds maximum shear force

 $\label{eq:Vs_max} \mbox{Maximum shear force under seismic loading;} \qquad \mbox{$V_{s_max} = 0.7 \times E_q = \textbf{0.417}$ kips} \\ \mbox{Shear capacity for seismic loading;} \qquad \mbox{$V_{s} = v_{s} \times b \ / \ 2 = \textbf{6.722}$ kips} \\ \mbox{}$

 $V_{s_{max}} / V_{s} = 0.062$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chords 1 and 2

Shear wall aspect ratio; h / b = 0.313

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 2.333$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 = 1.078 \text{ kips}$

Maximum tensile force in chord; $T = V \times h / b - P = -0.348$ kips

Maximum applied tensile stress; $f_t = T / A_{en} = -46 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{1380 lb/in}^2$

 $f_t / F_t' = -0.034$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 2.333$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 = 0.093 \text{ kips}$

Maximum compressive force in chord; $C = V \times h / b + P = 0.823$ kips

Maximum applied compressive stress; $f_c = C / A_e = 78 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 584 \text{ lb/in}^2$

 $f_c / F_c' = 0.134$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp}' = 0.125$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WS	SS - Lee's Sumr	23-283			
Section		Sheet no./rev.			
					4
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/18/2023	DN			

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Wind load deflection

Design shear force; $V_{\delta w} = f_{Wserv} \times W = 3.889 \text{ kips}$ Deflection limit; $\Delta_{w_allow} = h / 360 = 0.27 \text{ in}$ Induced unit shear; $v_{\delta w} = V_{\delta w} / b = 150.42 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.139 kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.004$ in

Shear wall deflection – Eqn. 4.3-1; $\delta_{sww} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.084} \text{ in}$

 δ_{sww} / Δ_{w} allow = **0.311**

PASS - Shear wall deflection is less than deflection limit

Seismic deflection

Design shear force; $V_{\delta s} = E_q = 0.596 \text{ kips}$

Deflection limit; $\Delta_{s_allow} = 0.020 \times h = 1.942$ in

Induced unit shear; $v_{\delta s} = V_{\delta s} / b = 23.05 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Shear wall elastic deflection – Eqn. 4.3-1; $\delta_{\text{swse}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.013} \text{ in}$

Deflection ampification factor; $C_{d\delta}$ = **4** Seismic importance factor; I_e = **1**

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws} = C_{d\delta} \times \delta_{swse} / I_e = \textbf{0.051} \text{ in}$

 δ_{sws} / $\Delta_{\text{s_allow}}$ = 0.026

PASS - Shear wall deflection is less than deflection limit

WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

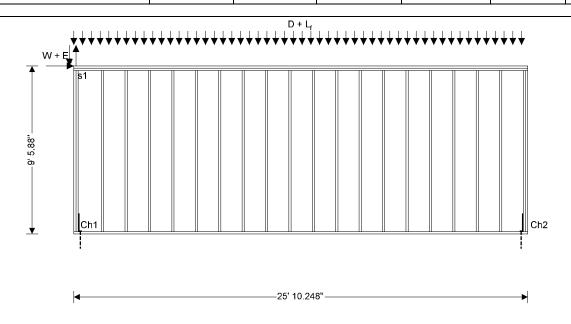
Tedds calculation version 1.2.10

Design summary

Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	9437	3273	0.347	PASS
Chord capacity	lb/in ²	432	203	0.469	PASS
Deflection	in	0.316	0.147	0.464	PASS

Panel details

Structural wood panel sheathing on one side


Panel height; h = 9.49 ftPanel length; b = 25.854 ft

Total area of wall; $A = h \times b = 245.354 \text{ ft}^2$

11320 West 79th Street Lenexa, Kansas 66214

	Project				Job Ref.	
	WS	SS - Lee's Sumr	23-283			
ĺ	Section				Sheet no./rev.	
						5
ĺ	Calc. by	Date	Chk'd by	Date	App'd by	Date
	GL	7/18/2023	DN			

Panel construction

Dressed collector size;

2" x 4" Nominal stud size; Dressed stud size; 1.5" x 3.5" Cross-sectional area of studs; $A_s = 5.25 in^2$ Stud spacing; s = 16 in2 x 2" x 4" Nominal end post size; Dressed end post size; 2 x 1.5" x 3.5" Cross-sectional area of end posts; $A_e = 10.5 \text{ in}^2$ Dia = 1 in Hole diameter; $A_{en} = 7.5 in^2$ Net cross-sectional area of end posts; 2 x 2" x 4" Nominal collector size;

Service condition; Dry

Temperature; 100 degF or less Vertical anchor stiffness; $k_a = 34943$ lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

2 x 1.5" x 3.5"

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

Specific gravity; G = 0.50Tension parallel to grain; $F_t = 575 \text{ lb/in}^2$ Compression parallel to grain; $F_c = 1350 \text{ lb/in}^2$ Compression perpendicular to grain; $F_{c_perp} = 625 \text{ lb/in}^2$ Modulus of elasticity; $E = 1600000 \text{ lb/in}^2$

Minimum modulus of elasticity; $E_{min} = 580000 \text{ lb/in}^2$

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 6"centers

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
V	VSS - Lee's Sum	23-	283		
Section		Sheet no./rev.			
				6	
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/18/2023	DN			

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 520 \text{ lb/ft}$ $v_w = 730 \text{ lb/ft}$ Nominal unit shear capacity for wind design; Apparent shear wall shear stiffness; Ga = 15 kips/in

Loading details

Dead load acting on top of panel; D = 50 lb/ftFloor live load acting on top of panel; $L_f = 80 \text{ lb/ft}$ Self weight of panel; $S_{wt} = 11 \text{ lb/ft}^2$ In plane wind load acting at head of panel; W = 5455 lbsWind load serviceability factor; $f_{Wserv} = 1.00$ In plane seismic load acting at head of panel; $E_q = 1047 lbs$ Design spectral response accel. par., short periods; S_{DS} = **0.106**

Chord forces from shear walls above

Chord	W _{ch[i]} (lbs)	Eq_ch[i] (lbs)	Dc_ch[i] (lbs)	D _{T_ch[i]} (lbs)	L _{f_ch[i]} (lbs)	L _{r_ch[i]} (lbs)	S _{ch[i]} (lbs)	R _{ch[i]} (lbs)
Ch1;	-1217;	-186;	93;	1797;	0;	27;	0;	0;
Ch2;	1217;	186;	93;	1797;	0;	27;	0;	0;

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.1; D + 0.6WLoad combination no.2; D + 0.7E

Load combination no.3: $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or } S \text{ or } R)$

Load combination no.4: $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6WLoad combination no.6; 0.6D + 0.7E

Adjustment factors

Load duration factor – Table 2.3.2; $C_D = 1.60$ $C_{Ft} = 1.50$ Size factor for tension – Table 4A; Size factor for compression – Table 4A; $C_{Fc} = 1.15$ $C_{Mt} = 1.00$ Wet service factor for tension – Table 4A; Wet service factor for compression – Table 4A; $C_{Mc} = 1.00$

Wet service factor for modulus of elasticity - Table 4A

 $C_{ME} = 1.00$

Temperature factor for tension – Table 2.3.3; $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

Temperature factor for modulus of elasticity - Table 2.3.3

 $C_{tE} = 1.00$

Incising factor – cl.4.3.8; $C_i = 1.00$ Buckling stiffness factor – cl.4.4.2; $C_T = 1.00$ Bearing area factor - cl. 3.10.4; $C_b = 1.0$

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 580000 \text{ psi}$

Critical buckling design value; $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 450 psi$

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = 2484 \text{ psi}$

For sawn lumber; c = 0.8

11320 West 79th Street Lenexa, Kansas 66214

Project					Job Ref.	
WSS - Lee's Summit, MO - GL 3.6,4,7					23-283	
Section					Sheet no./rev.	
					7	
Calc. by	Date	Chk'd by	Date	App'd by	Date	
GL	7/18/2023	DN				

Column stability factor – eqn.3.7-1; $C_P = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - (F_{cE} / F_c^*) / c)$

0.17

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio; 3.5

Shear wall length; b = 25.854 ftShear wall aspect ratio; h / b = 0.367

Segmented shear wall capacity

 $\label{eq:wmax} \mbox{Maximum shear force under wind loading;} \qquad \mbox{$V_{w_max} = 0.6 \times W = \textbf{3.273}$ kips} \\ \mbox{Shear capacity for wind loading;} \qquad \mbox{$V_{w} = v_{w} \times b \ / \ 2 = \textbf{9.437}$ kips} \\ \mbox{}$

 $V_{w_{max}} / V_{w} = 0.347$

PASS - Shear capacity for wind load exceeds maximum shear force

Maximum shear force under seismic loading; $V_{s_max} = 0.7 \times E_q = 0.733$ kips Shear capacity for seismic loading; $V_s = v_s \times b / 2 = 6.722$ kips

 $V_{s max} / V_{s} = 0.109$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chord 1

Shear wall aspect ratio; h/b = 0.367

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 3.273$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + 0.6 \times W_{ch1} + 0.6 \times D_{T ch1} = 1.545 \text{ kips}$

Maximum tensile force in chord; $T = V \times h / b - P = -0.344 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = -46 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.033$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 3.273 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + -1 \times 0.6 \times W_{ch1} + D_{C_ch1} = 0.926 \text{ kips}$

Maximum compressive force in chord; $C = V \times h / b + P = 2.127$ kips

Maximum applied compressive stress; $f_c = C / A_e = 203 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.469$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp} = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp}' = 0.324$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 2

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 3.273 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + -1 \times 0.6 \times W_{ch2} + 0.6 \times D_{T ch2} = 1.545$

kips

Maximum tensile force in chord; $T = V \times h / b - P = -0.344 \text{ kips}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WS	23-283				
Section	Sheet no./rev.				
					8
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/18/2023	DN			

Maximum applied tensile stress; $f_t = T / A_{en} = -46 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.033$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 3.273 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + 0.6 \times W_{ch2} + D_{C_ch2} = 0.926 \text{ kips}$

Maximum compressive force in chord; $C = V \times h / b + P = 2.127$ kips

Maximum applied compressive stress; $f_c = C / A_e = 203 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.469$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = \textbf{625 lb/in}^2$

 $f_c / F_{c perp'} = 0.324$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Wind load deflection

Design shear force; $V_{\delta w} = f_{Wserv} \times W =$ **5.455** kips Deflection limit; $\Delta_{w_allow} = h / 360 =$ **0.316** in

Induced unit shear; $v_{\delta w} = V_{\delta w} / b = 210.99 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips,} v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2 - 0.6 \times \min(D_{T \text{ ch1}}, D_{T \text{ ch2}})$

+ $max(abs(W_{ch1}),abs(W_{ch2}))) = 0.944 kips$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.027$ in

Shear wall deflection – Eqn. 4.3-1; $\delta_{sww} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.147} \text{ in}$

 $\delta_{\text{sww}} / \Delta_{\text{w_allow}} = 0.464$

PASS - Shear wall deflection is less than deflection limit

Seismic deflection

Design shear force; $V_{\delta s} = E_q = 1.047 \text{ kips}$

Deflection limit; $\Delta_{s_allow} = 0.020 \times h = 2.278$ in

Induced unit shear; $v_{\delta s} = V_{\delta s} / b = 40.5 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \text{max}(0 \text{ kips,} v_{\delta s} \times \text{h} - (0.6 - 0.2 \times \text{S}_{DS}) \times (\text{D} + \text{S}_{wt} \times \text{h}) \times \text{b} \ / \ 2 - (0.6 - 0.2 \times \text{S}_{DS}) \times (0.6 - 0.2$

 S_{DS}) × min($D_{T ch1}$, $D_{T ch2}$) + max(abs($E_{q ch1}$),abs($E_{q ch2}$))) = **0.000** kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Shear wall elastic deflection – Eqn. 4.3-1; $\delta_{swse} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.026} \text{ in}$

Deflection ampification factor; $C_{d\delta}$ = **4** Seismic importance factor; I_e = **1**

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws}} = C_{\text{d}\delta} \times \delta_{\text{swse}} \, / \, I_{\text{e}} = \textbf{0.105} \text{ in}$

 $\delta_{\text{sws}} / \Delta_{\text{s_allow}} = 0.046$

PASS - Shear wall deflection is less than deflection limit

11320 West 79th Street Lenexa, Kansas 66214

Project					Job Ref.		
,	WSS - Lee's Sum	23-283					
Section		Sheet no./rev.					
						9	
Calc. by	Date	Chk'd by	Date		App'd by	Date	
GL	7/18/2023	DN					

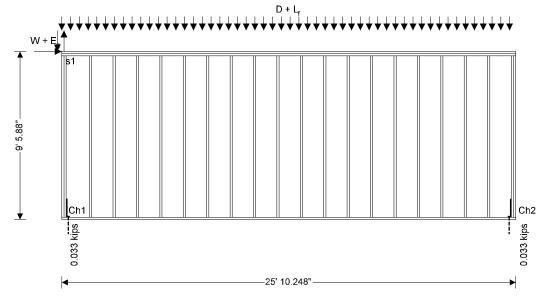
WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10

Design summary


Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	9437	4288	0.454	PASS
Chord capacity	lb/in ²	432	362	0.838	PASS
Deflection	in	0.316	0.204	0.645	PASS

Panel details

Structural wood panel sheathing on one side

Panel height; h = 9.49 ftPanel length; b = 25.854 ft

Total area of wall; $A = h \times b = 245.354 \text{ ft}^2$

Panel construction

Nominal stud size; 2" x 4" 1.5" x 3.5" Dressed stud size; $A_s = 5.25 in^2$ Cross-sectional area of studs; Stud spacing; s = **16** in 2 x 2" x 4" Nominal end post size; Dressed end post size; 2 x 1.5" x 3.5" Cross-sectional area of end posts; $A_e = 10.5 \text{ in}^2$ Dia = **1** in Hole diameter; $A_{en} = 7.5 in^2$ Net cross-sectional area of end posts; Nominal collector size; 2 x 2" x 4" Dressed collector size; 2 x 1.5" x 3.5"

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
w	'SS - Lee's Sumi	23-283			
Section		Sheet no./rev.			
			10		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/18/2023	DN			

Service condition; Dry

Temperature; 100 degF or less
Vertical anchor stiffness; k_a = **34943** lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

 $\label{eq:specific gravity;} Specific gravity; G = 0.50$ Tension parallel to grain; $F_t = 575 \text{ lb/in}^2$ Compression parallel to grain; $F_c = 1350 \text{ lb/in}^2$ Compression perpendicular to grain; $F_{c_perp} = 625 \text{ lb/in}^2$ Modulus of elasticity; $E = 1600000 \text{ lb/in}^2$ Minimum modulus of elasticity; $E_{min} = 580000 \text{ lb/in}^2$

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 6"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 520 \text{ lb/ft}$ Nominal unit shear capacity for wind design; $v_w = 730 \text{ lb/ft}$ Apparent shear wall shear stiffness; $G_a = 15 \text{ kips/in}$

Loading details

Dead load acting on top of panel; D = 50 lb/ft Floor live load acting on top of panel; $L_f = 80 \text{ lb/ft}$ Self weight of panel; $S_{wt} = 11 \text{ lb/ft}^2$ In plane wind load acting at head of panel; W = 7147 lbs Wind load serviceability factor; $f_{Wserv} = 1.00 \text{ ln plane seismic load acting at head of panel;}$ $E_q = 1338 \text{ lbs}$ Design spectral response accel. par., short periods; $S_{DS} = 0.106 \text{ lb/ft}$

Chord forces from shear walls above

Chord	W _{ch[i]} (lbs)	Eq_ch[i] (lbs)	Dc_ch[i] (lbs)	D _{T_ch[i]} (lbs)	L _{f_ch[i]} (lbs)	L _{r_ch[i]} (lbs)	S _{ch[i]} (Ibs)	R _{ch[i]} (lbs)
Ch1;	-3219;	-571;	196;	3793;	53;	27;	0;	0;
Ch2;	3219;	571;	196;	3793;	53;	27;	0;	0;

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.1; D + 0.6WLoad combination no.2; D + 0.7E

Load combination no.3; $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or S or R})$

Load combination no.4; $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6WLoad combination no.6; 0.6D + 0.7E

Adjustment factors

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.				
	W	23-283				
Section					Sheet no./rev.	
						11
Calc. by		Date	Chk'd by	Date	App'd by	Date
GI	L	7/18/2023	DN			

Wet service factor for compression – Table 4A; $C_{Mc} = 1.00$

Wet service factor for modulus of elasticity - Table 4A

 $C_{ME} = 1.00$

Temperature factor for tension – Table 2.3.3; $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

Temperature factor for modulus of elasticity – Table 2.3.3

 $C_{tE} = 1.00$

 $\begin{array}{ll} \mbox{Incising factor} - \mbox{cl.4.3.8}; & \mbox{C}_{i} = \mbox{1.00} \\ \mbox{Buckling stiffness factor} - \mbox{cl.4.4.2}; & \mbox{C}_{T} = \mbox{1.00} \\ \mbox{Bearing area factor} - \mbox{cl. 3.10.4}; & \mbox{C}_{b} = \mbox{1.0} \\ \end{array}$

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 580000 \text{ psi}$

Critical buckling design value; $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 450 \text{ psi}$

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = 2484 \text{ psi}$

For sawn lumber; c = 0.8

Column stability factor – eqn.3.7-1; $C_P = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c)]^2 - (F_{cE} / F_{c}^*) / c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*) / c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*))} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*))} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*))} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*))} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*))} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*)) / (2 \times c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*)) / (2 \times c) = (1 + (F_{cE} / F$

0.17

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio; 3.5

Shear wall length; b = 25.854 ft Shear wall aspect ratio; h / b = 0.367

Segmented shear wall capacity

Maximum shear force under wind loading; $V_{w_max} = 0.6 \times W = 4.288$ kips Shear capacity for wind loading; $V_w = v_w \times b / 2 = 9.437$ kips

 $V_{w \text{ max}} / V_{w} = 0.454$

PASS - Shear capacity for wind load exceeds maximum shear force

Maximum shear force under seismic loading; $V_{s_max} = 0.7 \times E_q = 0.937$ kips

Shear capacity for seismic loading; $V_s = v_s \times b / 2 = 6.722$ kips

 $V_{s_{max}} / V_{s} = 0.139$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chord 1

Shear wall aspect ratio; h / b = 0.367

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 4.288 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + 0.6 \times W_{ch1} + 0.6 \times D_{T_ch1} = 1.541 \text{ kips}$

Maximum tensile force in chord; $T = V \times h / b - P = 0.033$ kips

Maximum applied tensile stress; $f_t = T / A_{en} = 4 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{1380 lb/in}^2$

 $f_t / F_t' = 0.003$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 4.288 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + -1 \times 0.6 \times W_{ch1} + D_{C_ch1} = 2.23 \text{ kips}$

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
W	SS - Lee's Sumi	23-283			
Section		Sheet no./rev.			
					12
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/18/2023	DN			

Maximum compressive force in chord; $C = V \times h / b + P = 3.804 \text{ kips}$

Maximum applied compressive stress; $f_c = C / A_e = 362 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.838$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp}' = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{t} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp'} = 0.580$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 2

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 4.288 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + -1 \times 0.6 \times W_{ch2} + 0.6 \times D_{T_ch2} = \textbf{1.541}$

kips

Maximum tensile force in chord; $T = V \times h / b - P = 0.033$ kips

Maximum applied tensile stress; $f_t = T / A_{en} = 4 lb/in^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{1380 lb/in}^2$

 $f_t / F_t' = 0.003$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 4.288$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + 0.6 \times W_{ch2} + D_{C_ch2} = 2.23 \text{ kips}$

Maximum compressive force in chord; $C = V \times h / b + P = 3.804 \text{ kips}$

Maximum applied compressive stress; $f_c = C / A_e = 362 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.838$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp}' = 0.580$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Hold down force

Chord 1; $T_1 = 0.033$ kips Chord 2; $T_2 = 0.033$ kips

Chord reactions by load type

Chord	W _{ch[i]R} (lbs)	E _{q_ch[i]R} (lbs)	D _{C_ch[i]R} (lbs)	D _{T_ch[i]R} (lbs)	L _{f_ch[i]R} (lbs)	L _{r_ch[i]R} (lbs)	S _{ch[i]R} (lbs)	R _{ch[i]R} (lbs)
Ch1;	-5843;	-1062;	299;	5788;	107;	27;	0;	0;
Ch2;	5843;	1062;	299;	5788;	107;	27;	0;	0;

Wind load deflection

Design shear force; $V_{\delta w} = f_{Wserv} \times W = 7.147 \text{ kips}$ Deflection limit; $\Delta_{w_allow} = h / 360 = 0.316 \text{ in}$ Induced unit shear; $v_{\delta w} = V_{\delta w} / b = 276.44 \text{ lb/ft}$

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
W	SS - Lee's Sumr	23-	283		
Section		Sheet no./rev.			
			13		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/18/2023	DN			

Anchor tension force; $T_{\delta} = \max(0 \text{ kips,} v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2 - 0.6 \times \min(D_{T_ch1}, D_{T_ch2})$

+ max(abs(W_{ch1}),abs(W_{ch2}))) = **2.370** kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.068$ in

Shear wall deflection – Eqn. 4.3-1; $\delta_{sww} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.204} \text{ in}$

 $\delta_{\text{sww}} / \Delta_{\text{w}}$ allow = **0.645**

PASS - Shear wall deflection is less than deflection limit

Seismic deflection

Design shear force; $V_{\delta s} = E_q = 1.338 \text{ kips}$

Deflection limit; $\Delta_{s_allow} = 0.020 \times h = 2.278$ in

Induced unit shear; $v_{\delta s} = V_{\delta s} / b = 51.75 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 \times$

 $S_{DS}) \times min(D_{T_ch1},D_{T_ch2}) + max(abs(E_{q_ch1}),abs(E_{q_ch2}))) \ = \textbf{0.000} \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Shear wall elastic deflection – Eqn. 4.3-1; $\delta_{swse} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.034} \text{ in}$

Deflection ampification factor; $C_{d\delta} = 4$ Seismic importance factor; $I_e = 1$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws} = C_{d\delta} \times \delta_{swse} / I_e = 0.134$ in

 $\delta_{\text{sws}} / \Delta_{\text{s_allow}} = 0.059$

PASS - Shear wall deflection is less than deflection limit

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
V	VSS - Lee's Sum	23-283			
Section		Sheet no./rev.			
			14		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/18/2023	DN			

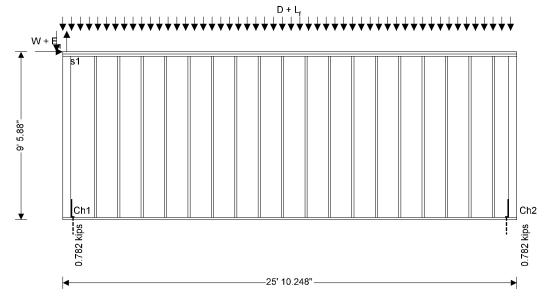
WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10

Design summary


Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	9437	5303	0.562	PASS
Chord capacity	lb/in ²	432	304	0.704	PASS
Deflection	in	0.316	0.242	0.767	PASS

Panel details

Structural wood panel sheathing on one side

Panel height; h = 9.49 ftPanel length; b = 25.854 ft

Total area of wall; $A = h \times b = 245.354 \text{ ft}^2$

Panel construction

2" x 4" Nominal stud size; 1.5" x 3.5" Dressed stud size; Cross-sectional area of studs; $A_s = 5.25 in^2$ Stud spacing; s = 16 in6" x 4" Nominal end post size; Dressed end post size; 5.5" x 3.5" $A_e = 19.25 \text{ in}^2$ Cross-sectional area of end posts; Hole diameter; Dia = 1 in Net cross-sectional area of end posts; $A_{en} = 13.75 \text{ in}^2$ Nominal collector size; 2 x 2" x 4"

11320 West 79th Street Lenexa, Kansas 66214

Project					Job Ref.		
,	WSS - Lee's Sum	23-283					
Section					Sheet no./rev.		
						15	
Calc. by	Date	Chk'd by	Date		App'd by	Date	
GL	7/18/2023	DN					

Dressed collector size; 2 x 1.5" x 3.5"

Service condition; Dry

Temperature; 100 degF or less Vertical anchor stiffness; $k_a = 69646$ lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

 $\label{eq:specific gravity;} G = 0.50$ Tension parallel to grain; $F_t = 575 \text{ lb/in}^2$ Compression parallel to grain; $F_c = 1350 \text{ lb/in}^2$ Compression perpendicular to grain; $F_{c_perp} = 625 \text{ lb/in}^2$ Modulus of elasticity; $E = 1600000 \text{ lb/in}^2$ Minimum modulus of elasticity; $E_{min} = 580000 \text{ lb/in}^2$

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 6"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 520 \text{ lb/ft}$ Nominal unit shear capacity for wind design; $v_w = 730 \text{ lb/ft}$ Apparent shear wall shear stiffness; $G_a = 15 \text{ kips/in}$

Loading details

Dead load acting on top of panel; D = 50 lb/ft Floor live load acting on top of panel; $L_f = 80$ lb/ft Self weight of panel; $S_{wt} = 11$ lb/ft² In plane wind load acting at head of panel; W = 8838 lbs Wind load serviceability factor; $f_{Wserv} = 1.00$ In plane seismic load acting at head of panel; $E_q = 1449$ lbs Design spectral response accel. par., short periods; $S_{DS} = 0.106$

Chord forces from shear walls above

Chord	W _{ch[i]} (lbs)	E _{q_ch[i]} (lbs)	D _{C_ch[i]} (lbs)	D _{T_ch[i]} (lbs)	L _{f_ch[i]} (lbs)	L _{r_ch[i]} (lbs)	S _{ch[i]} (lbs)	R _{ch[i]} (lbs)
Ch1;	-5843;	-1062;	299;	5788;	107;	27;	0;	0;
Ch2;	5843;	1062;	299;	5788;	107;	27;	0;	0;

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.1; D + 0.6WLoad combination no.2; D + 0.7E

Load combination no.3; $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or S or R})$

Load combination no.4; $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6WLoad combination no.6; 0.6D + 0.7E

Adjustment factors

11320 West 79th Street Lenexa, Kansas 66214

Project					Job Ref.		
	W	SS - Lee's Sumr	23-283				
Section	Section					Sheet no./rev.	
						16	
Calc. by	у	Date	Chk'd by	Date	App'd by	Date	
	GL	7/18/2023	DN				

 $C_{Mt} = 1.00$ Wet service factor for tension – Table 4A; $C_{Mc} = 1.00$ Wet service factor for compression – Table 4A;

Wet service factor for modulus of elasticity - Table 4A

 $C_{ME} = 1.00$

Temperature factor for tension – Table 2.3.3;

 $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

Temperature factor for modulus of elasticity - Table 2.3.3

 $C_{tF} = 1.00$

Incising factor – cl.4.3.8; $C_i = 1.00$ Buckling stiffness factor – cl.4.4.2; $C_T = 1.00$ Bearing area factor - cl. 3.10.4; $C_b = 1.0$

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 580000 \text{ psi}$

Critical buckling design value; $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 450 psi$

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i =$ 2484 psi

For sawn lumber;

Column stability factor – eqn.3.7-1; $C_P = (1 + (F_{cE} / F_{c^*})) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c^*})) / (2 \times c)]^2 - (F_{cE} / F_{c^*}) / c)} = (1 + (F_{cE} / F_{c^*})) / (2 \times c)$

0.17

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio; 3.5

Shear wall length; b = 25.854 ftShear wall aspect ratio; h/b = 0.367

Segmented shear wall capacity

Maximum shear force under wind loading; $V_{w \text{ max}} = 0.6 \times W = 5.303 \text{ kips}$ $V_w = v_w \times b / 2 = 9.437 \text{ kips}$ Shear capacity for wind loading;

 $V_{w \text{ max}} / V_{w} = 0.562$

PASS - Shear capacity for wind load exceeds maximum shear force

Maximum shear force under seismic loading; $V_{s max} = 0.7 \times E_{q} = 1.014 \text{ kips}$ Shear capacity for seismic loading; $V_s = v_s \times b / 2 = 6.722 \text{ kips}$

 $V_{s max} / V_{s} = 0.151$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chord 1

Shear wall aspect ratio; h/b = 0.367

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.303 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + 0.6 \times W_{ch1} + 0.6 \times D_{T ch1} = 1.165 \text{ kips}$

Maximum tensile force in chord; $T = V \times h / b - P = 0.782 \text{ kips}$

 $f_t = T / A_{en} = 57 \text{ lb/in}^2$ Maximum applied tensile stress;

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = 0.041$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 5.303 \text{ kips}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
W	SS - Lee's Sumi	23-283			
Section		Sheet no./rev.			
					17
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/18/2023	DN			

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + -1 \times 0.6 \times W_{ch1} + D_{C ch1} = 3.907 \text{ kips}$

Maximum compressive force in chord; $C = V \times h / b + P = 5.853$ kips

Maximum applied compressive stress; $f_c = C / A_e = 304 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{fc} \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.704$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp}' = 0.487$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 2

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.303$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + -1 \times 0.6 \times W_{ch2} + 0.6 \times D_{T_ch2} = 1.165$

kips

Maximum tensile force in chord; $T = V \times h / b - P = 0.782$ kips

Maximum applied tensile stress; $f_t = T / A_{en} = 57 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = 0.041$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 5.303$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + 0.6 \times W_{ch2} + D_{C_ch2} = 3.907 \text{ kips}$

Maximum compressive force in chord; $C = V \times h / b + P = 5.853$ kips

Maximum applied compressive stress; $f_c = C / A_e = 304 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.704$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp}' = 0.487$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Hold down force

Chord 1; $T_1 = 0.782 \text{ kips}$ Chord 2; $T_2 = 0.782 \text{ kips}$

Chord reactions by load type

Chord	W _{ch[i]R} (lbs)	E _{q_ch[i]R} (lbs)	D _{C_ch[i]R} (lbs)	D _{T_ch[i]R} (lbs)	L _{f_ch[i]R} (lbs)	L _{r_ch[i]R} (lbs)	S _{ch[i]R} (lbs)	R _{ch[i]R} (lbs)
Ch1;	-9087;	-1594;	401;	7784;	160;	27;	0;	0;
Ch2;	9087;	1594;	401;	7784;	160;	27;	0;	0;

Wind load deflection

Design shear force; $V_{\delta w} = f_{Wserv} \times W = 8.838 \text{ kips}$ Deflection limit; $\Delta_{w_allow} = h / 360 = 0.316 \text{ in}$ Induced unit shear; $v_{\delta w} = V_{\delta w} / b = 341.84 \text{ lb/ft}$

D59 of 294

11320 West 79th Street Lenexa, Kansas 66214

	Project				Job Ref.	
	WS	SS - Lee's Sumr	23-283			
ĺ	Section		Sheet no./rev.			
				18		
ĺ	Calc. by	Date	Chk'd by	Date	App'd by	Date
	GL	7/18/2023	DN			

Anchor tension force; $T_{\delta} = \max(0 \text{ kips,} v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2 - 0.6 \times \min(D_{T_ch1}, D_{T_ch2})$

+ max(abs(W_{ch1}),abs(W_{ch2}))) = **4.416** kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.063$ in

Shear wall deflection – Eqn. 4.3-1; $\delta_{sww} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.242} \text{ in}$

 $\delta_{\text{sww}} / \Delta_{\text{w}}$ allow = **0.767**

PASS - Shear wall deflection is less than deflection limit

Seismic deflection

Design shear force; $V_{\delta s} = E_q = 1.449 \text{ kips}$

Deflection limit; $\Delta_{s_allow} = 0.020 \times h = 2.278$ in

Induced unit shear; $v_{\delta s} = V_{\delta s} / b = 56.05 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2

 $S_{DS}) \times min(D_{T_ch1},D_{T_ch2}) + max(abs(E_{q_ch1}),abs(E_{q_ch2}))) \ = \textbf{0.000} \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Shear wall elastic deflection – Eqn. 4.3-1; $\delta_{\text{swse}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.036} \text{ in}$

Deflection ampification factor; $C_{d\delta}$ = **4** Seismic importance factor; I_e = **1**

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws}} = C_{\text{d}\delta} \times \delta_{\text{swse}} / I_{\text{e}} = \textbf{0.144} \text{ in}$

 δ_{sws} / $\Delta_{\text{s_allow}}$ = **0.063**

PASS - Shear wall deflection is less than deflection limit

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
,	WSS - Lee's Sui	23-	283		
Section		Sheet no./rev.			
					1
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/18/2023	DN			

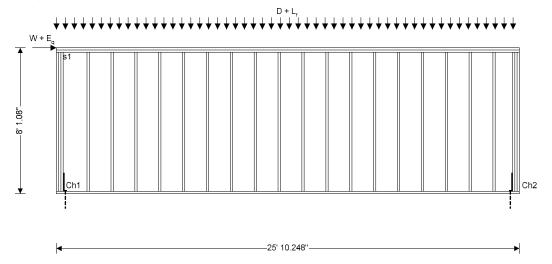
WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10

Design summary


Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	9437	3115	0.330	PASS
Chord capacity	lb/in ²	584	68	0.116	PASS
Deflection	in	0.270	0.113	0.419	PASS

Panel details

Structural wood panel sheathing on one side

Panel height; h = 8.09 ftPanel length; b = 25.854 ft

Total area of wall; $A = h \times b = 209.159 \text{ ft}^2$

Panel construction

Nominal stud size: 2" x 4" 1.5" x 3.5" Dressed stud size; Cross-sectional area of studs; $A_s = 5.25 in^2$ Stud spacing; s = 16 inNominal end post size; 3 x 2" x 4" Dressed end post size; 3 x 1.5" x 3.5" Cross-sectional area of end posts; $A_e = 15.75 \text{ in}^2$ Hole diameter; Dia = 1 in Net cross-sectional area of end posts; $A_{en} = 11.25 \text{ in}^2$ 2 x 2" x 4" Nominal collector size; Dressed collector size; 2 x 1.5" x 3.5" Dry

Service condition;

Temperature: 100 degF or less

11320 West 79th Street Lenexa, Kansas 66214

	Project				Job Ref.	
	V	VSS - Lee's Sur	23-	283		
	Section			Sheet no./rev.		
						2
ſ	Calc. by	Date	Chk'd by	Date	App'd by	Date
	GL	7/18/2023	DN			

Vertical anchor stiffness: $k_a = 49087 \text{ lb/in}$

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

G = 0.50Specific gravity; $F_t = 575 \text{ lb/in}^2$ Tension parallel to grain; Compression parallel to grain; $F_c = 1350 \text{ lb/in}^2$ Compression perpendicular to grain; $F_{c perp} = 625 \text{ lb/in}^2$ E = 1600000 lb/in² Modulus of elasticity; Emin = 580000 lb/in2 Minimum modulus of elasticity;

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

8d common nails at 6"centers Fastener type;

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 520 \text{ lb/ft}$ $v_w = 730 \text{ lb/ft}$ Nominal unit shear capacity for wind design; Apparent shear wall shear stiffness; Ga = 15 kips/in

Loading details

D = 50 lb/ftDead load acting on top of panel; Roof live load acting on top of panel; $L_r = 40 \text{ lb/ft}$ Self weight of panel; $S_{wt} = 11 \text{ lb/ft}^2$ In plane wind load acting at head of panel; W = 5191 lbs $f_{Wserv} = 1.00$ Wind load serviceability factor; In plane seismic load acting at head of panel; $E_0 = 978 lbs$ Design spectral response accel. par., short periods; S_{DS} = **0.106**

From IBC 2018 cl.1605.3.1 Basic load combinations

D + 0.6WLoad combination no.1; Load combination no.2; D + 0.7E

Load combination no.3; $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or } S \text{ or } R)$

Load combination no.4; D + 0.525E + 0.75Lf + 0.75S

Load combination no.5; 0.6D + 0.6W0.6D + 0.7ELoad combination no.6;

Adjustment factors

 $C_D = 1.60$ Load duration factor – Table 2.3.2; Size factor for tension - Table 4A; $C_{Ft} = 1.50$ Size factor for compression – Table 4A; $C_{Fc} = 1.15$ $C_{Mt} = 1.00$ Wet service factor for tension – Table 4A; $C_{Mc} = 1.00$ Wet service factor for compression – Table 4A;

Wet service factor for modulus of elasticity - Table 4A

 $C_{ME} = 1.00$

Temperature factor for tension – Table 2.3.3;

 $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

Temperature factor for modulus of elasticity - Table 2.3.3

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
V	23-283				
Section		Sheet no./rev.			
					3
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/18/2023	DN			

 $C_{tE} = 1.00$

 $\label{eq:continuous} \begin{array}{ll} \text{Incising factor} - \text{cl.4.3.8}; & \text{$C_i = 1.00$} \\ \text{Buckling stiffness factor} - \text{cl.4.4.2}; & \text{$C_T = 1.00$} \\ \text{Bearing area factor} - \text{cl. 3.10.4}; & \text{$C_b = 1.0$} \\ \end{array}$

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 580000$ psi

Critical buckling design value; $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 620 \text{ psi}$

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = 2484 \text{ psi}$

For sawn lumber; c = 0.8

Column stability factor – eqn.3.7-1; $C_P = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - (F_{cE} / F_c^*) / c)$

0.24

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio; 3.5

Shear wall length; b = 25.854 ft Shear wall aspect ratio; h / b = 0.313

Segmented shear wall capacity

 $\label{eq:wmax} \begin{tabular}{ll} Maximum shear force under wind loading; & $V_{w_max} = 0.6 \times W = \textbf{3.115} \ kips \\ \begin{tabular}{ll} Shear capacity for wind loading; & $V_{w} = v_{w} \times b \ / \ 2 = \textbf{9.437} \ kips \\ \end{tabular}$

 $V_{w_{max}} / V_{w} = 0.33$

PASS - Shear capacity for wind load exceeds maximum shear force

 $\label{eq:Vs_max} \mbox{Maximum shear force under seismic loading;} \qquad \mbox{$V_{s_max} = 0.7 \times E_q = 0.685$ kips} \\ \mbox{Shear capacity for seismic loading;} \qquad \mbox{$V_{s} = v_{s} \times b \ / \ 2 = 6.722$ kips} \\ \mbox{}$

 $V_{s_{max}} / V_{s} = 0.102$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chords 1 and 2

Shear wall aspect ratio; h / b = 0.313

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 3.115 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 = 1.078 \text{ kips}$

Maximum tensile force in chord; $T = V \times h / b - P = -0.103$ kips

Maximum applied tensile stress; $f_t = T / A_{en} = -9 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{1380 lb/in}^2$

 $f_t / F_t' = -0.007$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 3.115 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 = 0.093 \text{ kips}$

Maximum compressive force in chord; $C = V \times h / b + P = 1.067$ kips

Maximum applied compressive stress; $f_c = C / A_e = 68 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 584 \text{ lb/in}^2$

 $f_c / F_c' = 0.116$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp}' = 0.108$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
\	NSS - Lee's Sur	23-	283		
Section		Sheet no./rev.			
			4		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/18/2023	DN			

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Wind load deflection

Design shear force; $V_{\delta w} = f_{Wserv} \times W = \textbf{5.191 kips}$ Deflection limit; $\Delta_{w_allow} = h / 360 = \textbf{0.27 in}$ Induced unit shear; $v_{\delta w} = V_{\delta w} / b = \textbf{200.78 lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips,} v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.546} \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.011$ in

Shear wall deflection – Eqn. 4.3-1; $\delta_{sww} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.113} \text{ in}$

 δ_{sww} / Δ_{w} allow = **0.419**

PASS - Shear wall deflection is less than deflection limit

Seismic deflection

Design shear force; $V_{\delta s} = E_q = 0.978 \text{ kips}$

Deflection limit; $\Delta_{s_allow} = 0.020 \times h = 1.942$ in

Induced unit shear; $v_{\delta s} = V_{\delta s} \, / \, b = \textbf{37.83} \, \text{lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Shear wall elastic deflection – Eqn. 4.3-1; $\delta_{swse} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.021} \text{ in}$

Deflection ampification factor; $C_{d\delta}$ = **4** Seismic importance factor; I_e = **1**

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws}} = C_{\text{d}\delta} \times \delta_{\text{swse}} / I_{\text{e}} = \textbf{0.083} \text{ in}$

 δ_{sws} / $\Delta_{\text{s_allow}}$ = **0.043**

PASS - Shear wall deflection is less than deflection limit

11320 West 79th Street Lenexa, Kansas 66214

Project					Job Ref.	
	WSS - Lee's Su	23	3-283			
Section				Sheet no./rev.		
						5
Calc. by	Date	Chk'd by	Date		App'd by	Date
GL	7/18/2023	DN				

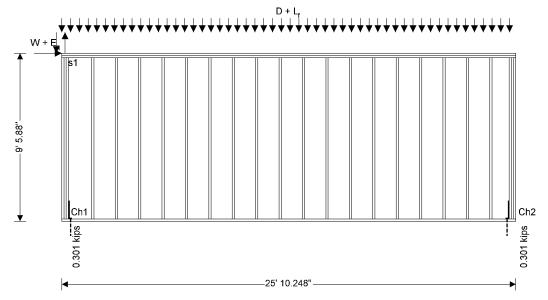
WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10

Design summary


Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	9437	4364	0.462	PASS
Chord capacity	lb/in ²	432	176	0.407	PASS
Deflection	in	0.316	0.196	0.620	PASS

Panel details

Structural wood panel sheathing on one side

Panel height; h = 9.49 ftPanel length; b = 25.854 ft

Total area of wall; $A = h \times b = 245.354 \text{ ft}^2$

Panel construction

2" x 4" Nominal stud size; 1.5" x 3.5" Dressed stud size; Cross-sectional area of studs; $A_s = 5.25 \text{ in}^2$ Stud spacing; s = 16 in3 x 2" x 4" Nominal end post size; 3 x 1.5" x 3.5" Dressed end post size; Cross-sectional area of end posts; $A_e = 15.75 \text{ in}^2$ Hole diameter; Dia = 1 in

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.	Job Ref.			
	WSS - Lee's	2	23-283			
Section		Sheet no./rev.	Sheet no./rev.			
					6	
Calc. by	Date	Chk'd by	Date	App'd by	Date	
GL	7/18/2023	B DN				

Net cross-sectional area of end posts; $A_{en} = 11.25 \text{ in}^2$ Nominal collector size; $2 \times 2'' \times 4''$ Dressed collector size; $2 \times 1.5'' \times 3.5''$

Service condition; Dry

Temperature; 100 degF or less Vertical anchor stiffness; $k_a = 49087$ lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

 $\label{eq:specific gravity;} Specific gravity; G = 0.50$ Tension parallel to grain; $F_t = 575 \text{ lb/in}^2$ Compression parallel to grain; $F_c = 1350 \text{ lb/in}^2$ Compression perpendicular to grain; $F_{c_perp} = 625 \text{ lb/in}^2$ Modulus of elasticity; $E = 1600000 \text{ lb/in}^2$ Minimum modulus of elasticity; $E_{min} = 580000 \text{ lb/in}^2$

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 6"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 520 \text{ lb/ft}$ Nominal unit shear capacity for wind design; $v_w = 730 \text{ lb/ft}$ Apparent shear wall shear stiffness; $G_a = 15 \text{ kips/in}$

Loading details

Dead load acting on top of panel; D = 50 lb/ft Floor live load acting on top of panel; $L_f = 80 \text{ lb/ft}$ Self weight of panel; $S_{wt} = 11 \text{ lb/ft}^2$ In plane wind load acting at head of panel; W = 7273 lbs Wind load serviceability factor; $f_{Wserv} = 1.00$ In plane seismic load acting at head of panel; $E_q = 1718 \text{ lbs}$ Design spectral response accel. par., short periods; $S_{DS} = 0.106$

Chord forces from shear walls above

Chord	W _{ch[i]} (lbs)	E _{q_ch[i]} (lbs)	D _{C_ch[i]} (lbs)	D _{T_ch[i]} (lbs)	L _{f_ch[i]} (lbs)	L _{r_ch[i]} (lbs)	S _{ch[i]} (lbs)	R _{ch[i]} (lbs)
Ch1;	-1624;	-306;	93;	1797;	0;	27;	0;	0;
Ch2;	1624;	306;	93;	1797;	0;	27;	0;	0;

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.1; D + 0.6WLoad combination no.2; D + 0.7E

Load combination no.3; $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or S or R})$

Load combination no.4; $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6WLoad combination no.6; 0.6D + 0.7E

Adjustment factors

Load duration factor – Table 2.3.2; $C_D = 1.60$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
V	VSS - Lee's Sur	23-283			
Section		Sheet no./rev.			
					7
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/18/2023	DN			

C_{Ft} = **1.50** Size factor for tension – Table 4A;

 $C_{Fc} = 1.15$ Size factor for compression - Table 4A; $C_{Mt} = 1.00$ Wet service factor for tension – Table 4A; Wet service factor for compression – Table 4A; $C_{Mc} = 1.00$

Wet service factor for modulus of elasticity - Table 4A

 $C_{ME} = 1.00$

Temperature factor for tension – Table 2.3.3; $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

Temperature factor for modulus of elasticity - Table 2.3.3

 $C_{tE} = 1.00$

Incising factor - cl.4.3.8; $C_i = 1.00$ Buckling stiffness factor – cl.4.4.2; $C_T = 1.00$ $C_b = 1.0$ Bearing area factor - cl. 3.10.4;

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 580000 \text{ psi}$

 $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 450 psi$ Critical buckling design value;

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = 2484 \text{ psi}$

For sawn lumber: c = 0.8

Column stability factor – eqn.3.7-1; $C_P = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} =$

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio; 3.5

Shear wall length; b = 25.854 ftShear wall aspect ratio; h/b = 0.367

Segmented shear wall capacity

Maximum shear force under wind loading; $V_{w \text{ max}} = 0.6 \times W = 4.364 \text{ kips}$ $V_w = v_w \times b / 2 = 9.437 \text{ kips}$ Shear capacity for wind loading;

 $V_{w \text{ max}} / V_{w} = 0.462$

PASS - Shear capacity for wind load exceeds maximum shear force

Maximum shear force under seismic loading; $V_{s max} = 0.7 \times E_{q} = 1.203 \text{ kips}$

Shear capacity for seismic loading; $V_s = v_s \times b / 2 = 6.722 \text{ kips}$

 $V_{s max} / V_{s} = 0.179$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chord 1

Shear wall aspect ratio; h/b = 0.367

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 4.364 \text{ kips}$

Axial force for maximum tension; P = $(0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + 0.6 \times W_{ch1} + 0.6 \times D_{T_ch1} = 1.301$ kips

Maximum tensile force in chord; $T = V \times h / b - P = 0.301 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = 27 lb/in^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = 0.019$

PASS - Design tensile stress exceeds maximum applied tensile stress

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
V	VSS - Lee's Sur	23-283			
Section		Sheet no./rev.			
			8		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/18/2023	DN			

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 4.364$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + -1 \times 0.6 \times W_{ch1} + D_{C_ch1} = 1.17 \text{ kips}$

Maximum compressive force in chord; $C = V \times h / b + P = 2.772$ kips

Maximum applied compressive stress; $f_c = C / A_e = 176 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_f \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.407$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp}' = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp}' = 0.282$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 2

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 4.364 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + -1 \times 0.6 \times W_{ch2} + 0.6 \times D_{T_ch2} = 1.301$

kips

Maximum tensile force in chord; $T = V \times h / b - P = 0.301$ kips

Maximum applied tensile stress; $f_t = T / A_{en} = 27 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_F \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = 0.019$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 4.364 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + 0.6 \times W_{ch2} + D_{C_ch2} = 1.17 \text{ kips}$

Maximum compressive force in chord; $C = V \times h / b + P = 2.772$ kips

Maximum applied compressive stress; $f_c = C / A_e = 176 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = \textbf{432 lb/in}^2$

 $f_c / F_c' = 0.407$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c_perp}' = 0.282$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Hold down force

Chord 1; $T_1 = 0.301 \text{ kips}$ Chord 2; $T_2 = 0.301 \text{ kips}$

Chord reactions by load type

Chord	W _{ch[i]R}	Eq_ch[i]R	Dc_ch[i]R	D _{T_ch[i]R}	L _{f_ch[i]R}	L _{r_ch[i]R}	S _{ch[i]R}	R _{ch[i]R}		
	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)		
Ch1;	-4294;	-937;	196;	3793;	53;	27;	0;	0;		
Ch2;	4294;	937;	196;	3793;	53;	27;	0;	0;		

Wind load deflection

Design shear force; $V_{\delta w} = f_{Wserv} \times W = 7.273 \text{ kips}$

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
	WSS - Lee's Su	23-283			
Section		Sheet no./rev.			
			9		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/18/2023	DN			

Deflection limit; $\Delta_{\text{W_allow}} = \text{h} / 360 = \textbf{0.316} \text{ in}$

Induced unit shear; $v_{\delta w} = V_{\delta w} / b = 281.31 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips,} v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2 - 0.6 \times \min(D_{T_ch1}, D_{T_ch2})$

+ max(abs(W_{ch1}),abs(W_{ch2}))) = **2.018** kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.041$ in

Shear wall deflection – Eqn. 4.3-1; $\delta_{\text{sww}} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.196} \text{ in}$

 $\delta_{\text{sww}} / \Delta_{\text{w_allow}} = \mathbf{0.62}$

PASS - Shear wall deflection is less than deflection limit

Seismic deflection

Design shear force; $V_{\delta s} = E_q = 1.718 \text{ kips}$

Deflection limit; $\Delta_{\text{s allow}} = 0.020 \times \text{h} = 2.278 \text{ in}$

Induced unit shear; $v_{\delta s} = V_{\delta s} / b = 66.45 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2

 $S_{DS}) \times min(D_{T_ch1},D_{T_ch2}) + max(abs(E_{q_ch1}),abs(E_{q_ch2}))) \ = \textbf{0.000} \ kips$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Shear wall elastic deflection – Eqn. 4.3-1; $\delta_{\text{swse}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.043} \text{ in}$

Deflection ampification factor; $C_{d\delta}$ = **4** Seismic importance factor; I_e = **1**

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws}} = C_{\text{d}\delta} \times \delta_{\text{swse}} \, / \, I_{\text{e}} = \textbf{0.171} \text{ in}$

 δ_{sws} / $\Delta_{\text{s_allow}}$ = **0.075**

PASS - Shear wall deflection is less than deflection limit

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
V	VSS - Lee's Sur	23-283			
Section		Sheet no./rev.			
			10		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/18/2023	DN			

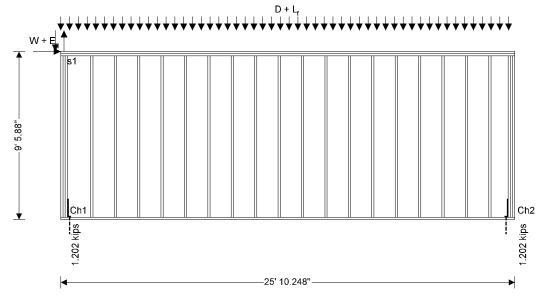
WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10

Design summary


Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	9437	5717	0.606	PASS
Chord capacity	lb/in ²	432	316	0.731	PASS
Deflection	in	0.316	0.269	0.851	PASS

Panel details

Structural wood panel sheathing on one side

Panel height; h = 9.49 ftPanel length; b = 25.854 ft

Total area of wall; $A = h \times b = 245.354 \text{ ft}^2$

Panel construction

Nominal stud size; 2" x 4" 1.5" x 3.5" Dressed stud size; $A_s = 5.25 in^2$ Cross-sectional area of studs; Stud spacing; s = **16** in 3 x 2" x 4" Nominal end post size; Dressed end post size; 3 x 1.5" x 3.5" Cross-sectional area of end posts; $A_e = 15.75 \text{ in}^2$ Dia = **1** in Hole diameter; $A_{en} = 11.25 \text{ in}^2$ Net cross-sectional area of end posts; Nominal collector size; 2 x 2" x 4" Dressed collector size; 2 x 1.5" x 3.5"

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.	Job Ref.		
	WSS - Lee's Su	2	23-283		
Section		Sheet no./rev.	Sheet no./rev.		
					11
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/18/2023	DN			

Service condition; Dry

Temperature; 100 degF or less Vertical anchor stiffness; $k_a = 49087$ lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

 $\label{eq:specific gravity;} Specific gravity; G = 0.50$ Tension parallel to grain; $F_t = 575 \text{ lb/in}^2$ Compression parallel to grain; $F_c = 1350 \text{ lb/in}^2$ Compression perpendicular to grain; $F_{c_perp} = 625 \text{ lb/in}^2$ Modulus of elasticity; $E = 1600000 \text{ lb/in}^2$ Minimum modulus of elasticity; $E_{min} = 580000 \text{ lb/in}^2$

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 6"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 520 \text{ lb/ft}$ Nominal unit shear capacity for wind design; $v_w = 730 \text{ lb/ft}$ Apparent shear wall shear stiffness; $G_a = 15 \text{ kips/in}$

Loading details

Dead load acting on top of panel; D = 50 lb/ft Floor live load acting on top of panel; $L_f = 80 \text{ lb/ft}$ Self weight of panel; $S_{wt} = 11 \text{ lb/ft}^2$ In plane wind load acting at head of panel; W = 9528 lbs Wind load serviceability factor; $f_{Wserv} = 1.00$ In plane seismic load acting at head of panel; $E_q = 2195 \text{ lbs}$ Design spectral response accel. par., short periods; $S_{DS} = 0.106$

Chord forces from shear walls above

(Chord	W _{ch[i]} (lbs)	Eq_ch[i] (lbs)	Dc_ch[i] (lbs)	D _{T_ch[i]} (lbs)	L _{f_ch[i]} (lbs)	L _{r_ch[i]} (lbs)	S _{ch[i]} (lbs)	R _{ch[i]} (lbs)
	Ch1;	-4294;	-937;	196;	3793;	53;	27;	0;	0;
	Ch2;	4294;	937;	196;	3793;	53;	27;	0;	0;

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.1; D + 0.6WLoad combination no.2; D + 0.7E

Load combination no.3; $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or S or R})$

Load combination no.4; $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6WLoad combination no.6; 0.6D + 0.7E

Adjustment factors

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
,	WSS - Lee's Sui	23-	283		
Section		Sheet no./rev.			
			12		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/18/2023	DN			

Wet service factor for compression – Table 4A; $C_{Mc} = 1.00$

Wet service factor for modulus of elasticity - Table 4A

 $C_{ME} = 1.00$

Temperature factor for tension – Table 2.3.3; $C_{tt} = 1.00$

- Table 2.5.5, Ou -

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

Temperature factor for modulus of elasticity – Table 2.3.3

 $C_{tE} = 1.00$

 $\begin{array}{ll} \mbox{Incising factor} - \mbox{cl.4.3.8}; & \mbox{C}_{i} = \mbox{1.00} \\ \mbox{Buckling stiffness factor} - \mbox{cl.4.4.2}; & \mbox{C}_{T} = \mbox{1.00} \\ \mbox{Bearing area factor} - \mbox{cl. 3.10.4}; & \mbox{C}_{b} = \mbox{1.0} \\ \end{array}$

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 580000 \text{ psi}$

Critical buckling design value; $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 450 \text{ psi}$

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = 2484 \text{ psi}$

For sawn lumber; c = 0.8

Column stability factor – eqn.3.7-1; $C_P = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - (F_{cE} / F_c^*) / c)$

0.17

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio; 3.5

Shear wall length; b = 25.854 ft Shear wall aspect ratio; h / b = 0.367

Segmented shear wall capacity

Maximum shear force under wind loading; $V_{w_max} = 0.6 \times W = 5.717$ kips Shear capacity for wind loading; $V_{w} = v_{w} \times b / 2 = 9.437$ kips

 $V_{w \text{ max}} / V_{w} = 0.606$

PASS - Shear capacity for wind load exceeds maximum shear force

Maximum shear force under seismic loading; $V_{s_max} = 0.7 \times E_q = 1.537$ kips

Shear capacity for seismic loading; $V_s = v_s \times b / 2 = 6.722$ kips

 $V_{s_{max}} / V_{s} = 0.229$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chord 1

Shear wall aspect ratio; h / b = 0.367

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.717$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + 0.6 \times W_{ch1} + 0.6 \times D_{T_{ch1}} = 0.897 \text{ kips}$

Maximum tensile force in chord; $T = V \times h / b - P = 1.202$ kips

Maximum applied tensile stress; $f_t = T / A_{en} = 107 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{1380 lb/in}^2$

 $f_t / F_t' = 0.077$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 5.717$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + -1 \times 0.6 \times W_{ch1} + D_{C_ch1} = 2.875 \text{ kips}$

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
,	NSS - Lee's Sur	23-283			
Section				Sheet no./rev.	
					13
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/18/2023	DN			

Maximum compressive force in chord; $C = V \times h / b + P = 4.973$ kips

Maximum applied compressive stress; $f_c = C / A_e = 316 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = \textbf{432 lb/in}^2$

 $f_c / F_c' = 0.731$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp}' = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp'} = 0.505$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 2

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.717$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + -1 \times 0.6 \times W_{ch2} + 0.6 \times D_{T_ch2} = 0.897$

kips

Maximum tensile force in chord; $T = V \times h / b - P = 1.202$ kips

Maximum applied tensile stress; $f_t = T / A_{en} = 107 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{1380 lb/in}^2$

 $f_t / F_t' = 0.077$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 5.717$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + 0.6 \times W_{ch2} + D_{C_ch2} = 2.875 \text{ kips}$

Maximum compressive force in chord; $C = V \times h / b + P = 4.973$ kips

Maximum applied compressive stress; $f_c = C / A_e = 316 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{fc} \times C_f \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.731$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c_perp'} = 0.505$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Hold down force

Chord 1; $T_1 = 1.202 \text{ kips}$ Chord 2; $T_2 = 1.202 \text{ kips}$

Chord reactions by load type

Chord	W _{ch[i]R} (Ibs)	E _{q_ch[i]R} (lbs)	D _{C_ch[i]R} (lbs)	D _{T_ch[i]R} (lbs)	L _{f_ch[i]R} (lbs)	L _{r_ch[i]R} (lbs)	S _{ch[i]R} (lbs)	R _{ch[i]R} (lbs)
Ch1;	-7791;	-1742;	299;	5788;	107;	27;	0;	0;
Ch2;	7791;	1742;	299;	5788;	107;	27;	0;	0;

Wind load deflection

Design shear force; $V_{\delta w} = f_{Wserv} \times W = 9.528 \text{ kips}$ Deflection limit; $\Delta_{w_allow} = h / 360 = 0.316 \text{ in}$ Induced unit shear; $v_{\delta w} = V_{\delta w} / b = 368.53 \text{ lb/ft}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS - Lee's Summit, MO - GL 5,6				23-283	
Section			Sheet no./rev.		
					14
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/18/2023	DN			

Anchor tension force; $T_{\delta} = \max(0 \text{ kips,} v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2 - 0.6 \times \min(D_{T_ch1}, D_{T_ch2})$

+ max(abs(W_{ch1}),abs(W_{ch2}))) = **4.318** kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.088$ in

Shear wall deflection – Eqn. 4.3-1; $\delta_{sww} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.269} \text{ in}$

 $\delta_{\text{sww}} / \Delta_{\text{w}}$ allow = **0.851**

PASS - Shear wall deflection is less than deflection limit

Seismic deflection

Design shear force; $V_{\delta s} = E_q = 2.195 \text{ kips}$

Deflection limit; $\Delta_{\text{s allow}} = 0.020 \times \text{h} = 2.278 \text{ in}$

Induced unit shear; $v_{\delta s} = V_{\delta s} / b = 84.9 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips,} v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times$

 $S_{DS}) \times min(D_{T_ch1},D_{T_ch2}) + max(abs(E_{q_ch1}),abs(E_{q_ch2}))) \ = \textbf{0.000} \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Shear wall elastic deflection – Eqn. 4.3-1; $\delta_{\text{swse}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.055} \text{ in}$

Deflection ampification factor; $C_{d\delta}$ = **4** Seismic importance factor; I_e = **1**

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws}} = C_{\text{d}\delta} \times \delta_{\text{swse}} / I_{\text{e}} = \textbf{0.218}$ in

 δ_{sws} / $\Delta_{\text{s_allow}}$ = **0.096**

PASS - Shear wall deflection is less than deflection limit

11320 West 79th Street Lenexa, Kansas 66214

Project	Project				Job Ref.	
\	NSS - Lee's Sur	23-283				
Section				Sheet no./rev.		
				15		
Calc. by	Date	Chk'd by	Date	App'd by	Date	
GL	7/18/2023	DN				

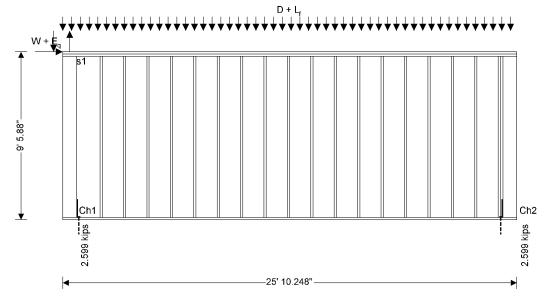
WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10

Design summary


Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	13767	7070	0.514	PASS
Chord capacity	lb/in ²	432	231	0.534	PASS
Deflection	in	0.316	0.227	0.719	PASS

Panel details

Structural wood panel sheathing on one side

Panel height; h = 9.49 ftPanel length; b = 25.854 ft

Total area of wall; $A = h \times b = 245.354 \text{ ft}^2$

Panel construction

2" x 4" Nominal stud size; 1.5" x 3.5" Dressed stud size; Cross-sectional area of studs; $A_s = 5.25 in^2$ Stud spacing; s = 16 inNominal end post size; 10" x 4" Dressed end post size; 9.5" x 3.5" $A_e = 33.25 \text{ in}^2$ Cross-sectional area of end posts; Hole diameter; Dia = 1 in Net cross-sectional area of end posts; $A_{en} = 23.75 in^2$ Nominal collector size; 2 x 2" x 4"

11320 West 79th Street Lenexa, Kansas 66214

Project					Job Ref.		
WSS - Lee's Summit, MO - GL 5,6					23-	283	
Section	Section				Sheet no./rev.		
				16			
Calc. by	Date	Chk'd by	Date	A	App'd by	Date	
GL	7/18/2023	DN					

Dressed collector size; 2 x 1.5" x 3.5"

Service condition; Dry

Temperature; 100 degF or less Vertical anchor stiffness; $k_a = 95741$ lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

 $\label{eq:specific gravity;} G = 0.50$ Tension parallel to grain; $F_t = 575 \text{ lb/in}^2$ Compression parallel to grain; $F_c = 1350 \text{ lb/in}^2$ Compression perpendicular to grain; $F_{c_perp} = 625 \text{ lb/in}^2$ Modulus of elasticity; $E = 1600000 \text{ lb/in}^2$ Minimum modulus of elasticity; $E_{min} = 580000 \text{ lb/in}^2$

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 4"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 760 \text{ lb/ft}$ Nominal unit shear capacity for wind design; $v_w = 1065 \text{ lb/ft}$ Apparent shear wall shear stiffness; $G_a = 22 \text{ kips/in}$

Loading details

Dead load acting on top of panel; D = 50 lb/ft Floor live load acting on top of panel; $L_f = 80 \text{ lb/ft}$ Self weight of panel; $S_{wt} = 11 \text{ lb/ft}^2$ In plane wind load acting at head of panel; W = 11783 lbs Wind load serviceability factor; $f_{Wserv} = 1.00$ In plane seismic load acting at head of panel; $E_q = 2377 \text{ lbs}$ Design spectral response accel. par., short periods; $S_{DS} = 0.106$

Chord forces from shear walls above

Chord	W _{ch[i]} (lbs)	E _{q_ch[i]} (lbs)	D _{C_ch[i]} (lbs)	D _{T_ch[i]} (lbs)	L _{f_ch[i]} (lbs)	L _{r_ch[i]} (lbs)	S _{ch[i]} (lbs)	R _{ch[i]} (lbs)
Ch1;	-7791;	-1742;	299;	5788;	107;	27;	0;	0;
Ch2;	7791;	1742;	299;	5788;	107;	27;	0;	0;

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.1; D + 0.6WLoad combination no.2; D + 0.7E

Load combination no.3; $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or S or R})$

Load combination no.4; $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6WLoad combination no.6; 0.6D + 0.7E

Adjustment factors

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
	WSS - Lee's Su	23-	283		
Section				Sheet no./rev.	
			17		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/18/2023	DN			

Wet service factor for tension – Table 4A; $C_{Mt} = 1.00$ Wet service factor for compression – Table 4A; $C_{Mc} = 1.00$

Wet service factor for modulus of elasticity - Table 4A

 $C_{ME} = 1.00$

Temperature factor for tension – Table 2.3.3; $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

Temperature factor for modulus of elasticity - Table 2.3.3

2.3.3 C_{tF} = **1.00**

 $\begin{array}{ll} \mbox{Incising factor} - \mbox{cl.4.3.8}; & \mbox{C}_{i} = \mbox{1.00} \\ \mbox{Buckling stiffness factor} - \mbox{cl.4.4.2}; & \mbox{C}_{T} = \mbox{1.00} \\ \mbox{Bearing area factor} - \mbox{cl. 3.10.4}; & \mbox{C}_{b} = \mbox{1.0} \\ \end{array}$

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 580000$ psi

Critical buckling design value; $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 450 \text{ psi}$

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = \textbf{2484 psi}$

For sawn lumber; c = 0.8

Column stability factor – eqn.3.7-1; $C_P = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c)]^2 - (F_{cE} / F_{c}^*) / (c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*)) / (2 \times c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*)) / (2 \times c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*)) / (2 \times c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*)) / (2 \times c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*)) / (2 \times c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*)) / (2 \times c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*)) / (2 \times c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*)) / (2 \times c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*)) / (2 \times c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*)) / (2 \times c) = (1 + (F_{cE} / F_{c}^*)) /$

0.17

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio; 3.5

Shear wall length; b = 25.854 ftShear wall aspect ratio; h / b = 0.367

Segmented shear wall capacity

Maximum shear force under wind loading; $V_{w_max} = 0.6 \times W = \textbf{7.07} \text{ kips}$ Shear capacity for wind loading; $V_{w} = v_{w} \times b / 2 = \textbf{13.767} \text{ kips}$

 $V_{w_{max}} / V_{w} = 0.514$

PASS - Shear capacity for wind load exceeds maximum shear force

Maximum shear force under seismic loading; $V_{s_max} = 0.7 \times E_q = 1.664$ kips Shear capacity for seismic loading; $V_s = v_s \times b / 2 = 9.825$ kips

 $V_{s_{max}} / V_{s} = 0.169$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chord 1

Shear wall aspect ratio; h / b = 0.367

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 7.07$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + 0.6 \times W_{ch1} + 0.6 \times D_{T ch1} = -0.004 \text{ kips}$

Maximum tensile force in chord; $T = V \times h / b - P = 2.599$ kips Maximum applied tensile stress; $f_t = T / A_{en} = 109$ lb/in²

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = 0.079$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 7.07$ kips

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
,	WSS - Lee's Sui	23-	283		
Section				Sheet no./rev.	
			18		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/18/2023	DN			

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + -1 \times 0.6 \times W_{ch1} + D_{C ch1} = 5.076 \text{ kips}$

Maximum compressive force in chord; $C = V \times h / b + P = 7.671$ kips

Maximum applied compressive stress; $f_c = C / A_e = 231 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.534$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp'} = 0.369$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 2

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 7.07$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + -1 \times 0.6 \times W_{ch2} + 0.6 \times D_{T_ch2} = -0.004$

kips

Maximum tensile force in chord; $T = V \times h / b - P = 2.599$ kips

Maximum applied tensile stress; $f_t = T / A_{en} = 109 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = 0.079$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 7.07$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + 0.6 \times W_{ch2} + D_{C_ch2} = 5.076 \text{ kips}$

Maximum compressive force in chord; $C = V \times h / b + P = 7.671$ kips

Maximum applied compressive stress; $f_c = C / A_e = 231 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.534$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c_perp}' = 0.369$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Hold down force

Chord 1; $T_1 = 2.599 \text{ kips}$ Chord 2; $T_2 = 2.599 \text{ kips}$

Chord reactions by load type

Chord	W _{ch[i]R} (lbs)	E _{q_ch[i]R} (lbs)	D _{C_ch[i]R} (lbs)	D _{T_ch[i]R} (lbs)	L _{f_ch[i]R} (lbs)	L _{r_ch[i]R} (lbs)	S _{ch[i]R} (lbs)	R _{ch[i]R} (lbs)
Ch1;	-12116;	-2615;	401;	7784;	160;	27;	0;	0;
Ch2;	12116;	2615;	401;	7784;	160;	27;	0;	0;

Wind load deflection

Design shear force; $V_{\delta w} = f_{Wserv} \times W = 11.783 \text{ kips}$ Deflection limit; $\Delta_{w_allow} = h / 360 = 0.316 \text{ in}$ Induced unit shear; $v_{\delta w} = V_{\delta w} / b = 455.75 \text{ lb/ft}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
V	VSS - Lee's Sur	23-	283		
Section		Sheet no./rev.			
			19		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/18/2023	DN			

Anchor tension force; $T_{\delta} = \max(0 \text{ kips,} v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2 - 0.6 \times \min(D_{T_ch1}, D_{T_ch2})$

+ max(abs(W_{ch1}),abs(W_{ch2}))) = **7.446** kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.078$ in

Shear wall deflection – Eqn. 4.3-1; $\delta_{sww} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.227} \text{ in}$

 $\delta_{\text{sww}} / \Delta_{\text{w}}$ allow = **0.719**

PASS - Shear wall deflection is less than deflection limit

Seismic deflection

Design shear force; $V_{\delta s} = E_q = 2.377 \text{ kips}$

Deflection limit; $\Delta_{s_allow} = 0.020 \times h = 2.278$ in

Induced unit shear; $v_{\delta s} = V_{\delta s} / b = 91.94 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2

 $S_{DS}) \times min(D_{T_ch1},D_{T_ch2}) + max(abs(E_{q_ch1}),abs(E_{q_ch2}))) \ = \textbf{0.000} \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Shear wall elastic deflection – Eqn. 4.3-1; $\delta_{swse} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.04} \text{ in}$

Deflection ampification factor; $C_{d\delta}$ = **4** Seismic importance factor; I_e = **1**

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws}} = C_{\text{d}\delta} \times \delta_{\text{swse}} / I_e = \textbf{0.16}$ in

 δ_{sws} / $\Delta_{\text{s_allow}}$ = **0.07**

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
	WSS - Lee's Su	23-	283		
Section				Sheet no./rev.	
			1		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

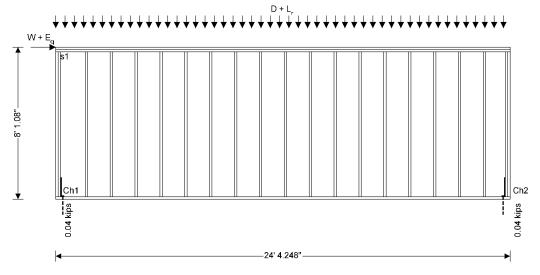
WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10

Design summary


Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	8889	3176	0.357	PASS
Chord capacity	lb/in ²	584	109	0.187	PASS
Deflection	in	0.270	0.127	0.469	PASS

Panel details

Structural wood panel sheathing on one side

Panel height; h = 8.09 ftPanel length; b = 24.354 ft

Total area of wall; $A = h \times b = 197.024 \text{ ft}^2$

Panel construction

Nominal stud size; 2" x 4" Dressed stud size; 1.5" x 3.5" $A_s = 5.25 \text{ in}^2$ Cross-sectional area of studs; Stud spacing; s = 16 inNominal end post size; 2 x 2" x 4" 2 x 1.5" x 3.5" Dressed end post size; $A_e = 10.5 \text{ in}^2$ Cross-sectional area of end posts; Hole diameter; Dia = 1 in $A_{en} = 7.5 in^2$ Net cross-sectional area of end posts; 2 x 2" x 4" Nominal collector size; Dressed collector size; 2 x 1.5" x 3.5"

Service condition; Dry

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.		
	WSS - Lee's Su	23-	283			
Section	Section				Sheet no./rev.	
			2			
Calc. by	Date	Chk'd by	Date	App'd by	Date	
GL	7/25/2023	DN				

Temperature; 100 degF or less Vertical anchor stiffness; $k_a = 34943$ lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

Specific gravity; G = 0.50Tension parallel to grain; $F_t = 575 \text{ lb/in}^2$ Compression parallel to grain; $F_c = 1350 \text{ lb/in}^2$ Compression perpendicular to grain; $F_{c_perp} = 625 \text{ lb/in}^2$ Modulus of elasticity; $E = 1600000 \text{ lb/in}^2$ Minimum modulus of elasticity; $E_{min} = 580000 \text{ lb/in}^2$

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 6"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 520 \text{ lb/ft}$ Nominal unit shear capacity for wind design; $v_w = 730 \text{ lb/ft}$ Apparent shear wall shear stiffness; $G_a = 15 \text{ kips/in}$

Loading details

Dead load acting on top of panel; D = 50 lb/ft Roof live load acting on top of panel; L_r = 40 lb/ft Self weight of panel; S_{wt} = 11 lb/ft² In plane wind load acting at head of panel; W = 5294 lbs Wind load serviceability factor; W_{werv} = 1.00 In plane seismic load acting at head of panel; E_q = 411 lbs Design spectral response accel. par., short periods; S_{DS} = 0.106

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.1; D + 0.6WLoad combination no.2; D + 0.7E

Load combination no.3; $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or S or R})$

Load combination no.4; $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6WLoad combination no.6; 0.6D + 0.7E

Adjustment factors

Wet service factor for modulus of elasticity - Table 4A

 $C_{ME} = 1.00$

Temperature factor for tension – Table 2.3.3; $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

11320 West 79th Street Lenexa, Kansas 66214

Project					Job Ref.		
		WSS - Lee's Su	23-	283			
Section	Section					Sheet no./rev.	
			3				
Calc. b	у	Date	Chk'd by	Date	App'd by	Date	
	GL	7/25/2023	DN				

Temperature factor for modulus of elasticity – Table 2.3.3

C_{tE} = 1.00

 $\label{eq:continuous} \begin{array}{ll} \text{Incising factor} - \text{cl.4.3.8}; & \text{C_i = 1.00} \\ \text{Buckling stiffness factor} - \text{cl.4.4.2}; & \text{C_T = 1.00} \\ \text{Bearing area factor} - \text{cl. 3.10.4}; & \text{C_b = 1.0} \\ \end{array}$

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 580000$ psi

Critical buckling design value; $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 620 \text{ psi}$

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = 2484 \text{ psi}$

For sawn lumber; c = 0.8

Column stability factor – eqn.3.7-1; $C_P = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - (F_{cE} / F_c^*) / c)$

0.24

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio; 3.5

Shear wall length; b = 24.354 ft Shear wall aspect ratio; h / b = 0.332

Segmented shear wall capacity

Maximum shear force under wind loading; $V_{w_max} = 0.6 \times W = 3.176 \text{ kips}$ Shear capacity for wind loading; $V_w = v_w \times b / 2 = 8.889 \text{ kips}$

 $V_{w \text{ max}} / V_{w} = 0.357$

PASS - Shear capacity for wind load exceeds maximum shear force

Maximum shear force under seismic loading; $V_{s_max} = 0.7 \times E_q = 0.288$ kips Shear capacity for seismic loading; $V_s = v_s \times b / 2 = 6.332$ kips

 $V_{s_{max}} / V_{s} = 0.045$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chords 1 and 2

Shear wall aspect ratio; h / b = 0.332

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 3.176 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 = 1.015$ kips

Maximum tensile force in chord; $T = V \times h / b - P = 0.040$ kips

Maximum applied tensile stress; $f_t = T / A_{en} = 5 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = 0.004$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 3.176 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 = 0.093 \text{ kips}$

Maximum compressive force in chord; $C = V \times h / b + P = 1.148$ kips

Maximum applied compressive stress; $f_c = C / A_e = 109 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{fc} \times C_f \times C_P = 584 \text{ lb/in}^2$

 $f_c / F_c' = 0.187$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
,	WSS - Lee's Su	23-283			
Section		Sheet no./rev.			
		4			
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

 $f_c / F_{c perp}' = 0.175$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Hold down force

Chord 1; $T_1 = 0.04 \text{ kips}$ Chord 2; $T_2 = 0.04 \text{ kips}$

Chord reactions by load type

Chord	W _{ch[i]R} (lbs)	E _{q_ch[i]R} (lbs)	D _{C_ch[i]R} (lbs)	D _{T_ch[i]R} (lbs)	L _{f_ch[i]R} (lbs)	L _{r_ch[i]R} (lbs)	S _{ch[i]R} (lbs)	R _{ch[i]R} (lbs)
Ch1;	-1759;	-137;	93;	1692;	0;	27;	0;	0;
Ch2;	1759;	137;	93;	1692;	0;	27;	0;	0;

Wind load deflection

Design shear force; $V_{\delta w} = f_{Wserv} \times W =$ **5.294** kips Deflection limit; $\Delta_{W_allow} = h / 360 =$ **0.27** in Induced unit shear; $v_{\delta w} = V_{\delta w} / b =$ **217.38** lb/ft

Anchor tension force; $T_{\delta} = \max(0 \text{ kips,} v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.743} \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.021$ in

Shear wall deflection – Eqn. 4.3-1; $\delta_{sww} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.127} \text{ in}$

 δ_{sww} / $\Delta_{\text{w_allow}}$ = **0.469**

PASS - Shear wall deflection is less than deflection limit

Seismic deflection

Design shear force: $V_{\delta s} = E_{\alpha} = 0.411 \text{ kips}$

Deflection limit; $\Delta_{s_allow} = 0.020 \times h = 1.942$ in

Induced unit shear; $v_{\delta s} = V_{\delta s} / b = 16.88 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Shear wall elastic deflection – Eqn. 4.3-1; $\delta_{\text{swse}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.009} \text{ in}$

Deflection ampification factor; $C_{d\delta} = 4$ Seismic importance factor; $I_e = 1$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws} = C_{d\delta} \times \delta_{swse} / I_e = 0.037$ in

 δ_{sws} / $\Delta_{\text{s_allow}}$ = 0.019

11320 West 79th Street Lenexa, Kansas 66214

	Project				Job Ref.	
	,	WSS - Lee's Su	23-283			
	Section		Sheet no./rev.			
				5		
Г	Calc. by	Date	Chk'd by	Date	App'd by	Date
	GL	7/25/2023	DN			

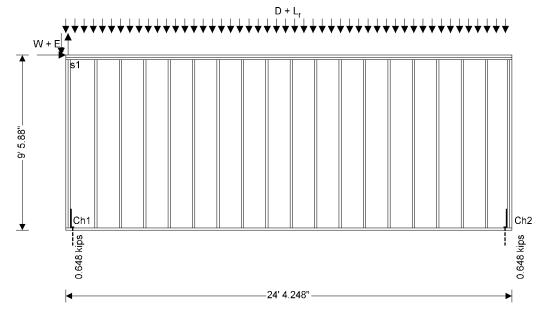
WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10

Design summary


Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	8889	4456	0.501	PASS
Chord capacity	lb/in ²	432	284	0.658	PASS
Deflection	in	0.316	0.226	0.714	PASS

Panel details

Structural wood panel sheathing on one side

Panel height; h = 9.49 ftPanel length; b = 24.354 ft

Total area of wall; $A = h \times b = 231.119 \text{ ft}^2$

Panel construction

Nominal stud size; 2" x 4"

Dressed stud size; 1.5" x 3.5"

Cross-sectional area of studs; $A_s = 5.25 \text{ in}^2$ Stud spacing; s = 16 inNominal end post size; 2×2 " x 4"

Dressed end post size; 2×1.5 " x 3.5"

Cross-sectional area of end posts; $A_e = 10.5 \text{ in}^2$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.		
,	WSS - Lee's Su	mmit, MO - GL	Н	23-283		
Section				Sheet no./rev.		
					6	
Calc. by	Date	Chk'd by	Date	App'd by	Date	
GL	7/25/2023	DN				

Hole diameter; Dia = 1 in Net cross-sectional area of end posts; $A_{en} = 7.5 \text{ in}^2$

Nominal collector size; 2 x 2" x 4"

Dressed collector size; 2 x 1.5" x 3.5"

Service condition; Dry

Temperature; 100 degF or less Vertical anchor stiffness; $k_a = 34943$ lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

Specific gravity; G = 0.50Tension parallel to grain; $F_t = 575 \text{ lb/in}^2$ Compression parallel to grain; $F_c = 1350 \text{ lb/in}^2$ Compression perpendicular to grain; $F_{c_perp} = 625 \text{ lb/in}^2$ Modulus of elasticity; $E = 1600000 \text{ lb/in}^2$ Minimum modulus of elasticity; $E_{min} = 580000 \text{ lb/in}^2$

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 6"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 520 \text{ lb/ft}$ Nominal unit shear capacity for wind design; $v_w = 730 \text{ lb/ft}$ Apparent shear wall shear stiffness; $G_a = 15 \text{ kips/in}$

Loading details

Dead load acting on top of panel; D = 50 lb/ft Floor live load acting on top of panel; L_f = 80 lb/ft Self weight of panel; S_{wt} = 11 lb/ft² In plane wind load acting at head of panel; W = 7427 lbs Wind load serviceability factor; fwerv = 1.00 In plane seismic load acting at head of panel; E_q = 721 lbs Design spectral response accel. par., short periods; S_{DS} = 0.106

Chord forces from shear walls above

Chord	W _{ch[i]} (lbs)	E _{q_ch[i]} (lbs)	D _{C_ch[i]} (lbs)	D _{T_ch[i]} (lbs)	L _{f_ch[i]} (lbs)	L _{r_ch[i]} (lbs)	S _{ch[i]} (lbs)	R _{ch[i]} (lbs)
Ch1;	-1759;	-137;	93;	1692;	0;	27;	0;	0;
Ch2;	1759;	137;	93;	1692;	0;	27;	0;	0;

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.1; D + 0.6WLoad combination no.2; D + 0.7E

Load combination no.3; $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or S or R})$

Load combination no.4; $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6WLoad combination no.6; 0.6D + 0.7E

11320 West 79th Street Lenexa, Kansas 66214

-	Project				Job Ref.	
	,	WSS - Lee's Su	23-283			
;	Section		Sheet no./rev.			
						7
(Calc. by	Date	Chk'd by	Date	App'd by	Date
	GL	7/25/2023	DN			

Adjustment factors

 $C_{ME} = 1.00$

Temperature factor for tension – Table 2.3.3; $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

Temperature factor for modulus of elasticity - Table 2.3.3

 $C_{tE} = 1.00$

 $\begin{array}{ll} \mbox{Incising factor} - \mbox{cl.4.3.8}; & \mbox{C_i} = \mbox{1.00} \\ \mbox{Buckling stiffness factor} - \mbox{cl.4.4.2}; & \mbox{C_T} = \mbox{1.00} \\ \mbox{Bearing area factor} - \mbox{cl. 3.10.4}; & \mbox{C_b} = \mbox{1.0} \\ \end{array}$

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 580000$ psi

Critical buckling design value; $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 450 \text{ psi}$

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = 2484 \text{ psi}$

For sawn lumber; c = 0.8

Column stability factor – eqn.3.7-1; $C_P = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - (F_{cE} / F_c^*) / (2 \times c)) = (1 + (F_{cE} / F_c^*)) / (2 \times c) - (F_{cE} / F_c^*) / (2 \times c)) = (1 + (F_{cE} / F_c^*)) / (2 \times c) - (F_{cE} / F_c^*) / (2 \times c) = (1 + (F_{cE} / F_c^*)) / (2 \times c) = (1 + (F$

0.17

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio; 3.5

Shear wall length; b = 24.354 ft Shear wall aspect ratio; h / b = 0.39

Segmented shear wall capacity

Maximum shear force under wind loading; $V_{w_max} = 0.6 \times W = 4.456$ kips Shear capacity for wind loading; $V_{w} = v_{w} \times b / 2 = 8.889$ kips

 $V_{w \text{ max}} / V_{w} = 0.501$

PASS - Shear capacity for wind load exceeds maximum shear force

Maximum shear force under seismic loading; $V_{s_max} = 0.7 \times E_q = 0.505$ kips Shear capacity for seismic loading; $V_s = v_s \times b / 2 = 6.332$ kips

 $V_{s_{max}} / V_{s} = 0.08$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chord 1

Shear wall aspect ratio; h / b = 0.39

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 4.456 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + 0.6 \times W_{ch1} + 0.6 \times D_{T_{ch1}} = 1.088 \text{ kips}$

Maximum tensile force in chord; $T = V \times h / b - P = 0.648$ kips

Maximum applied tensile stress; $f_t = T / A_{en} = 86 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
	WSS - Lee's S	23-283			
Section		Sheet no./rev.			
			8		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

 $f_t / F_t' = 0.063$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 4.456 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + -1 \times 0.6 \times W_{ch1} + D_{C ch1} = 1.251 \text{ kips}$

Maximum compressive force in chord; $C = V \times h / b + P = 2.987$ kips

Maximum applied compressive stress; $f_c = C / A_e = 284 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.658$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp'} = 0.455$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 2

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 4.456 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + -1 \times 0.6 \times W_{ch2} + 0.6 \times D_{T ch2} = 1.088$

kips

Maximum tensile force in chord; $T = V \times h / b - P = 0.648$ kips

Maximum applied tensile stress; $f_t = T / A_{en} = 86 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{1380 lb/in}^2$

 $f_t / F_t' = 0.063$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 4.456 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + 0.6 \times W_{ch2} + D_{C_ch2} = 1.251 \text{ kips}$

Maximum compressive force in chord; $C = V \times h / b + P = 2.987$ kips

Maximum applied compressive stress; $f_c = C / A_e = 284 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{fc} \times C_f \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.658$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp}' = 0.455$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Hold down force

Chord 1; $T_1 = 0.648 \text{ kips}$ Chord 2; $T_2 = 0.648 \text{ kips}$

Chord reactions by load type

Chord	W _{ch[i]R} (lbs)	E _{q_ch[i]R} (lbs)	D _{C_ch[i]R} (lbs)	D _{T_ch[i]R} (lbs)	L _{f_ch[i]R} (lbs)	L _{r_ch[i]R} (lbs)	S _{ch[i]R} (lbs)	R _{ch[i]R} (lbs)
Ch1;	-4653;	-417;	196;	3572;	53;	27;	0;	0;
Ch2;	4653;	417;	196;	3572;	53;	27;	0;	0;

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.		
	WSS - Lee's Su	23-	283			
Section	Section				Sheet no./rev.	
					9	
Calc. by	Date	Chk'd by	Date	App'd by	Date	
GL	7/25/2023	DN				

Wind load deflection

Design shear force; $V_{\delta w} = f_{Wserv} \times W = 7.427 \text{ kips}$ Deflection limit; $\Delta_{w \text{ allow}} = h / 360 = 0.316 \text{ in}$

Induced unit shear; $v_{\delta w} = V_{\delta w} / b = 304.96 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips,} v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2 - 0.6 \times \min(D_{T_ch1}, D_{T_ch2})$

+ $max(abs(W_{ch1}),abs(W_{ch2}))) = 2.509 kips$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.072$ in

Shear wall deflection – Eqn. 4.3-1; $\delta_{sww} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.226} \text{ in}$

 δ_{sww} / $\Delta_{\text{w_allow}}$ = **0.714**

PASS - Shear wall deflection is less than deflection limit

Seismic deflection

Design shear force; $V_{\delta s} = E_q = 0.721 \text{ kips}$

Deflection limit; $\Delta_{s_allow} = 0.020 \times h = 2.278$ in

Induced unit shear; $v_{\delta s} = V_{\delta s} / b = 29.6 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips,} v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times$

 S_{DS}) × min(D_{T_ch1} , D_{T_ch2}) + max(abs(E_{q_ch1}),abs(E_{q_ch2}))) = **0.000** kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Shear wall elastic deflection – Eqn. 4.3-1; $\delta_{\text{swse}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.019} \text{ in}$

Deflection ampification factor; $C_{d\delta}$ = **4** Seismic importance factor; I_e = **1**

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws}} = C_{d\delta} \times \delta_{\text{swse}} / I_e = \textbf{0.077}$ in

 δ_{sws} / $\Delta_{\text{s_allow}}$ = 0.034

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
,	WSS - Lee's Su	23-283			
Section		Sheet no./rev.			
			10		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

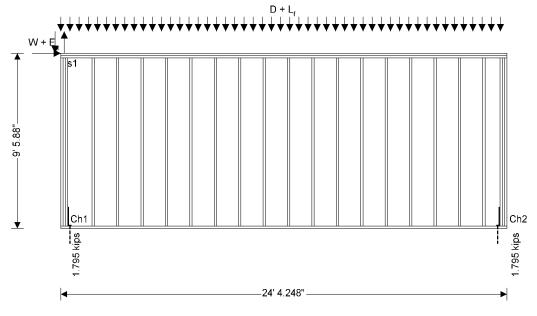
WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10

Design summary


Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	8889	5837	0.657	PASS
Chord capacity	lb/in ²	432	341	0.788	PASS
Deflection	in	0.316	0.298	0.943	PASS

Panel details

Structural wood panel sheathing on one side

Panel height; h = 9.49 ftPanel length; b = 24.354 ft

Total area of wall; A = $h \times b$ = 231.119 ft²

Panel construction

2" x 4" Nominal stud size; Dressed stud size; 1.5" x 3.5" Cross-sectional area of studs; $A_s = 5.25 in^2$ Stud spacing; s = 16 inNominal end post size; 3 x 2" x 4" Dressed end post size; 3 x 1.5" x 3.5" Cross-sectional area of end posts; $A_e = 15.75 \text{ in}^2$ Dia = **1** in Hole diameter; Net cross-sectional area of end posts; $A_{en} = 11.25 \text{ in}^2$ 2 x 2" x 4" Nominal collector size;

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.		
	WSS - Lee's S	ummit, MO - 0	GL H	2	23-283	
Section		Sheet no./rev.	Sheet no./rev.			
			11			
Calc. by	Date	Chk'd by	Date	App'd by	Date	
GL	7/25/2023	DN				

Dressed collector size; 2 x 1.5" x 3.5"

Service condition; Dry

Temperature; 100 degF or less Vertical anchor stiffness; $k_a = 49087$ lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

 $\label{eq:specific gravity;} G = 0.50$ Tension parallel to grain; $F_t = 575 \text{ lb/in}^2$ Compression parallel to grain; $F_c = 1350 \text{ lb/in}^2$ Compression perpendicular to grain; $F_{c_perp} = 625 \text{ lb/in}^2$ Modulus of elasticity; $E = 1600000 \text{ lb/in}^2$ Minimum modulus of elasticity; $E_{min} = 580000 \text{ lb/in}^2$

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 6"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 520 \text{ lb/ft}$ Nominal unit shear capacity for wind design; $v_w = 730 \text{ lb/ft}$ Apparent shear wall shear stiffness; $G_a = 15 \text{ kips/in}$

Loading details

Dead load acting on top of panel; D = 50 lb/ft Floor live load acting on top of panel; $L_f = 80 \text{ lb/ft}$ Self weight of panel; $S_{wt} = 11 \text{ lb/ft}^2$ In plane wind load acting at head of panel; W = 9729 lbs Wind load serviceability factor; $f_{Wserv} = 1.00$ In plane seismic load acting at head of panel; $E_q = 921 \text{ lbs}$ Design spectral response accel. par., short periods; $S_{DS} = 0.106$

Chord forces from shear walls above

Chord	W _{ch[i]} (lbs)	E _{q_ch[i]} (lbs)	Dc_ch[i] (lbs)	D _{T_ch[i]} (lbs)	L _{f_ch[i]} (lbs)	L _{r_ch[i]} (lbs)	S _{ch[i]} (lbs)	R _{ch[i]} (lbs)
Ch1;	-4653;	-417;	196;	3572;	53;	27;	0;	0;
Ch2;	4653;	417;	196;	3572;	53;	27;	0;	0;

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.1; D + 0.6WLoad combination no.2; D + 0.7E

Load combination no.3; $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or S or R})$

Load combination no.4; $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6WLoad combination no.6; 0.6D + 0.7E

Adjustment factors

11320 West 79th Street Lenexa, Kansas 66214

Project			Job Ref.		
	WSS - Lee's Su	23-283			
Section		Sheet no./rev.			
			12		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Wet service factor for tension – Table 4A; $C_{Mt} = 1.00$ Wet service factor for compression – Table 4A; $C_{Mc} = 1.00$

Wet service factor for modulus of elasticity - Table 4A

 $C_{ME} = 1.00$

Temperature factor for tension – Table 2.3.3; $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

Temperature factor for modulus of elasticity - Table 2.3.3

2.3.3 C_{tF} = **1.00**

 $\label{eq:continuous} \begin{array}{ll} \text{Incising factor} - \text{cl.4.3.8}; & \text{$C_i = 1.00$} \\ \text{Buckling stiffness factor} - \text{cl.4.4.2}; & \text{$C_T = 1.00$} \\ \text{Bearing area factor} - \text{cl. 3.10.4}; & \text{$C_b = 1.0$} \\ \end{array}$

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 580000 \text{ psi}$

Critical buckling design value; $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 450 \text{ psi}$

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = \textbf{2484 psi}$

For sawn lumber; c = 0.8

Column stability factor – eqn.3.7-1; $C_P = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - (F_{cE} / F_c^*) / (2 \times c)) = (1 + (F_{cE} / F_c^*)) / (2 \times c) - (F_{cE} / F_c^*) / (2 \times c)) = (1 + (F_{cE} / F_c^*)) / (2 \times c) - (F_{cE} / F_c^*) / (2 \times c) = (1 + (F_{cE} / F_c^*)) / (2 \times c) = (1 + (F$

0.17

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio; 3.5

Shear wall length; b = 24.354 ftShear wall aspect ratio; h / b = 0.39

Segmented shear wall capacity

Maximum shear force under wind loading; $V_{w_max} = 0.6 \times W = \textbf{5.837} \text{ kips}$ Shear capacity for wind loading; $V_{w} = v_{w} \times b \ / \ 2 = \textbf{8.889} \text{ kips}$

 $V_{w_{max}} / V_{w} = 0.657$

PASS - Shear capacity for wind load exceeds maximum shear force

Maximum shear force under seismic loading; $V_{s_max} = 0.7 \times E_q = 0.645$ kips Shear capacity for seismic loading; $V_s = v_s \times b / 2 = 6.332$ kips

 $V_{s_{max}} / V_{s} = 0.102$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chord 1

Shear wall aspect ratio; h / b = 0.39

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.837$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + 0.6 \times W_{ch1} + 0.6 \times D_{T ch1} = 0.48 \text{ kips}$

Maximum tensile force in chord; $T = V \times h / b - P = 1.795$ kips Maximum applied tensile stress; $f_t = T / A_{en} = 160$ lb/in²

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = 0.116$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 5.837$ kips

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
	WSS - Lee's Su	23-283			
Section		Sheet no./rev.			
			13		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + -1 \times 0.6 \times W_{ch1} + D_{C ch1} = 3.09 \text{ kips}$

Maximum compressive force in chord; $C = V \times h / b + P = 5.365$ kips

Maximum applied compressive stress; $f_c = C / A_e = 341 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{fc} \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.788$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp}' = 0.545$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 2

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.837$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + -1 \times 0.6 \times W_{ch2} + 0.6 \times D_{T_ch2} = 0.48 \text{ kips}$

Maximum tensile force in chord; $T = V \times h / b - P = 1.795$ kips

Maximum applied tensile stress; $f_t = T / A_{en} = 160 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' =$ **0.116**

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 5.837$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + 0.6 \times W_{ch2} + D_{C ch2} = 3.09 \text{ kips}$

Maximum compressive force in chord; $C = V \times h / b + P = 5.365$ kips

Maximum applied compressive stress; $f_c = C / A_e = 341 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{fc} \times C_f \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.788$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c_perp'} = 0.545$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Hold down force

Chord 1; $T_1 = 1.795 \text{ kips}$ Chord 2; $T_2 = 1.795 \text{ kips}$

Chord reactions by load type

Chord	W _{ch[i]R} (lbs)	E _{q_ch[i]R} (lbs)	D _{C_ch[i]R} (lbs)	D _{T_ch[i]R} (lbs)	L _{f_ch[i]R} (lbs)	L _{r_ch[i]R} (lbs)	S _{ch[i]R} (lbs)	R _{ch[i]R} (lbs)
Ch1;	-8444;	-776;	299;	5452;	107;	27;	0;	0;
Ch2;	8444;	776;	299;	5452;	107;	27;	0;	0;

Wind load deflection

Design shear force; $V_{\delta w} = f_{Wserv} \times W = \textbf{9.729 kips}$ Deflection limit; $\Delta_{w_allow} = h / 360 = \textbf{0.316 in}$ Induced unit shear; $v_{\delta w} = V_{\delta w} / b = \textbf{399.48 lb/ft}$

11320 West 79th Street Lenexa, Kansas 66214

Project			Job Ref.		
	WSS - Lee's Su	23-283			
Section		Sheet no./rev.			
			14		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Anchor tension force; $T_{\delta} = \max(0 \text{ kips,} v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2 - 0.6 \times \min(D_{T_ch1}, D_{T_ch2})$

+ max(abs(W_{ch1}),abs(W_{ch2}))) = **5.172** kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.105$ in

Shear wall deflection – Eqn. 4.3-1; $\delta_{sww} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.298} \text{ in}$

 $\delta_{\text{sww}} / \Delta_{\text{w}}$ allow = **0.943**

PASS - Shear wall deflection is less than deflection limit

Seismic deflection

Design shear force; $V_{\delta s} = E_q = 0.921 \text{ kips}$

Deflection limit; $\Delta_{s_allow} = 0.020 \times h = 2.278$ in

Induced unit shear; $v_{\delta s} = V_{\delta s} / b = 37.82 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2

 $S_{DS}) \times min(D_{T_ch1},D_{T_ch2}) + max(abs(E_{q_ch1}),abs(E_{q_ch2}))) \ = \textbf{0.000} \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Shear wall elastic deflection – Eqn. 4.3-1; $\delta_{swse} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.024} \text{ in}$

Deflection ampification factor; $C_{d\delta}$ = **4** Seismic importance factor; I_e = **1**

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws} = C_{d\delta} \times \delta_{swse} / I_e = 0.097$ in

 δ_{sws} / $\Delta_{\text{s_allow}}$ = **0.043**

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
,	WSS - Lee's Su	23-283			
Section		Sheet no./rev.			
		15			
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

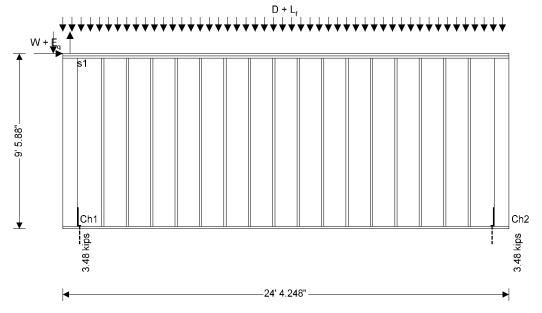
WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10

Design summary


Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	12969	7219	0.557	PASS
Chord capacity	lb/in ²	432	249	0.576	PASS
Deflection	in	0.316	0.251	0.794	PASS

Panel details

Structural wood panel sheathing on one side

Panel height; h = 9.49 ftPanel length; b = 24.354 ft

Total area of wall; $A = h \times b = 231.119 \text{ ft}^2$

Panel construction

Nominal stud size; 2" x 4" Dressed stud size; 1.5" x 3.5" Cross-sectional area of studs; $A_s = 5.25 \text{ in}^2$ Stud spacing; s = 16 in Nominal end post size; 10" x 4" 9.5" x 3.5" Dressed end post size; $A_e = 33.25 \text{ in}^2$ Cross-sectional area of end posts; Hole diameter; Dia = **1** in Net cross-sectional area of end posts; $A_{en} = 23.75 \text{ in}^2$

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
,	WSS - Lee's Su	mmit, MO - GL	Н	23-283	
Section		Sheet no./rev.			
			16		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Nominal collector size; $2 \times 2" \times 4"$ Dressed collector size; $2 \times 1.5" \times 3.5"$

Service condition; Dry

Temperature; 100 degF or less Vertical anchor stiffness; $k_a = 95741$ lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

 $\label{eq:specific gravity;} G = \textbf{0.50}$ Tension parallel to grain; $F_t = \textbf{575 lb/in}^2$ Compression parallel to grain; $F_c = \textbf{1350 lb/in}^2$ Compression perpendicular to grain; $F_{c_perp} = \textbf{625 lb/in}^2$ Modulus of elasticity; $E = \textbf{1600000 lb/in}^2$ Minimum modulus of elasticity; $E_{min} = \textbf{580000 lb/in}^2$

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 4"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 760 \text{ lb/ft}$ Nominal unit shear capacity for wind design; $v_w = 1065 \text{ lb/ft}$ Apparent shear wall shear stiffness; $G_a = 22 \text{ kips/in}$

Loading details

Dead load acting on top of panel; D = 50 lb/ft Floor live load acting on top of panel; L_f = 80 lb/ft Self weight of panel; S_{wt} = 11 lb/ft² In plane wind load acting at head of panel; W = 12032 lbs Wind load serviceability factor; f_{Wserv} = 1.00 In plane seismic load acting at head of panel; E_q = 998 lbs Design spectral response accel. par., short periods; S_{DS} = 0.106

Chord forces from shear walls above

	Chord	W _{ch[i]} (lbs)	Eq_ch[i] (lbs)	Dc_ch[i] (lbs)	D _{T_ch[i]} (lbs)	L _{f_ch[i]} (lbs)	L _{r_ch[i]} (lbs)	S _{ch[i]} (lbs)	R _{ch[i]} (lbs)
Ī	Ch1;	-8444;	-776;	299;	5452;	107;	27;	0;	0;
Ī	Ch2;	8444;	776;	299;	5452;	107;	27;	0;	0;

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.1; D + 0.6WLoad combination no.2; D + 0.7E

Load combination no.3; $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or S or R})$

Load combination no.4; $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6WLoad combination no.6; 0.6D + 0.7E

Adjustment factors

Load duration factor – Table 2.3.2; $C_D = 1.60$ Size factor for tension – Table 4A; $C_{Ft} = 1.50$

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
	WSS - Lee's Su	23-283			
Section		Sheet no./rev.			
			17		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Size factor for compression – Table 4A; C_{Fc} = **1.15** Wet service factor for tension – Table 4A; C_{Mt} = **1.00** Wet service factor for compression – Table 4A; C_{Mc} = **1.00**

Wet service factor for modulus of elasticity - Table 4A

 $C_{ME} = 1.00$

Temperature factor for tension – Table 2.3.3; $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

Temperature factor for modulus of elasticity - Table 2.3.3

 $C_{tE} = 1.00$

 $\begin{aligned} &\text{Incising factor} - \text{cl.4.3.8}; & & & & & & & & & & \\ &\text{Buckling stiffness factor} - \text{cl.4.4.2}; & & & & & & & \\ &\text{Bearing area factor} - \text{cl. 3.10.4}; & & & & & & \\ &\text{C}_{\text{b}} = \textbf{1.0} & & & & & \\ \end{aligned}$

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 580000 \text{ psi}$

Critical buckling design value; $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 450 \text{ psi}$

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = 2484$ psi

For sawn lumber; c = 0.8

Column stability factor – eqn.3.7-1; $C_P = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c)]^2 - (F_{cE} / F_{c}^*) / c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*) / c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*))} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*))} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) = (1 + (F_{cE} / F_{c}^*$

0.17

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio; 3.5

Shear wall length; b = 24.354 ftShear wall aspect ratio; h / b = 0.39

Segmented shear wall capacity

Maximum shear force under wind loading; $V_{w_max} = 0.6 \times W = 7.219 \text{ kips}$ Shear capacity for wind loading; $V_w = v_w \times b / 2 = 12.969 \text{ kips}$

 $V_{w_{max}} / V_{w} = 0.557$

PASS - Shear capacity for wind load exceeds maximum shear force

Maximum shear force under seismic loading; $V_{s_max} = 0.7 \times E_q = 0.699$ kips Shear capacity for seismic loading; $V_s = v_s \times b / 2 = 9.255$ kips

 $V_{s max} / V_{s} = 0.075$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chord 1

Shear wall aspect ratio; h / b = 0.39

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 7.219$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + 0.6 \times W_{ch1} + 0.6 \times D_{T_ch1} = -0.667 \text{ kips}$

Maximum tensile force in chord; $T = V \times h / b - P = 3.480$ kips Maximum applied tensile stress; $f_t = T / A_{en} = 147$ lb/in²

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = 0.106$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

11320 West 79th Street Lenexa, Kansas 66214

Project			Job Ref.		
,	WSS - Lee's Su	23-283			
Section		Sheet no./rev.			
			18		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Shear force for maximum compression; $V = 0.6 \times W = 7.219$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + -1 \times 0.6 \times W_{ch1} + D_{C ch1} = 5.468 \text{ kips}$

Maximum compressive force in chord; $C = V \times h / b + P = 8.281$ kips

Maximum applied compressive stress; $f_c = C / A_e = 249 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{fc} \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.576$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp}' = 0.398$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 2

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 7.219$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + -1 \times 0.6 \times W_{ch2} + 0.6 \times D_{T_ch2} = -0.667$

kips

Maximum tensile force in chord; $T = V \times h / b - P = 3.480$ kips

Maximum applied tensile stress; $f_t = T / A_{en} = 147 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{1380 lb/in}^2$

 $f_t / F_t' = 0.106$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 7.219 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + 0.6 \times W_{ch2} + D_{C_ch2} = 5.468 \text{ kips}$

Maximum compressive force in chord; $C = V \times h / b + P = 8.281$ kips

Maximum applied compressive stress; $f_c = C / A_e = 249 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_f \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.576$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

f_c / F_{c_perp}' = **0.398**

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Hold down force

Chord 1; $T_1 = 3.48 \text{ kips}$ Chord 2; $T_2 = 3.48 \text{ kips}$

Chord reactions by load type

	Chord	W _{ch[i]R} (lbs)	E _{q_ch[i]R} (lbs)	D _{C_ch[i]R} (lbs)	D _{T_ch[i]R} (lbs)	L _{f_ch[i]R} (lbs)	L _{r_ch[i]R} (lbs)	S _{ch[i]R} (lbs)	R _{ch[i]R} (lbs)
	Ch1;	-13132;	-1165;	401;	7333;	160;	27;	0;	0;
Ī	Ch2;	13132;	1165;	401;	7333;	160;	27;	0;	0;

Wind load deflection

Design shear force; $V_{\delta W} = f_{Wserv} \times W = 12.032 \text{ kips}$ Deflection limit; $\Delta_{W \text{ allow}} = h / 360 = 0.316 \text{ in}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
	WSS - Lee's Su	23-283			
Section		Sheet no./rev.			
		19			
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Induced unit shear; $v_{\delta w} = V_{\delta w} / b = 494.05 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips,} v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2 - 0.6 \times \min(D_{T \text{ ch1}}, D_{T \text{ ch2}})$

+ $max(abs(W_{ch1}), abs(W_{ch2}))) = 8.733 \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.091$ in

Shear wall deflection – Eqn. 4.3-1; $\delta_{sww} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.251} \text{ in}$

 δ_{sww} / $\Delta_{\text{w_allow}}$ = **0.794**

PASS - Shear wall deflection is less than deflection limit

Seismic deflection

Design shear force; $V_{\delta s} = E_q = 0.998 \text{ kips}$

Deflection limit; $\Delta_{s_allow} = 0.020 \times h = 2.278$ in

Induced unit shear; $v_{\delta s} = V_{\delta s} / b = 40.98 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times$

 $S_{DS}) \times min(D_{T_ch1},D_{T_ch2}) + max(abs(E_{q_ch1}),abs(E_{q_ch2}))) \ = \textbf{0.000} \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Shear wall elastic deflection – Eqn. 4.3-1; $\delta_{swse} = 2 \times v_{\delta s} \times h^3 / \left(3 \times E \times A_e \times b\right) + v_{\delta s} \times h / \left(G_a\right) + h \times \Delta_a / b = \textbf{0.018} \text{ in}$

Deflection ampification factor; $C_{d\delta}$ = **4** Seismic importance factor; I_e = **1**

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws}} = C_{\text{d}\delta} \times \delta_{\text{swse}} \, / \, I_{\text{e}} = \textbf{0.072} \, \text{in}$

 δ_{sws} / Δ_{s} allow = **0.031**

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
WSS	- Lee's Summit	23-	283		
Section		Sheet no./rev.			
					1
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

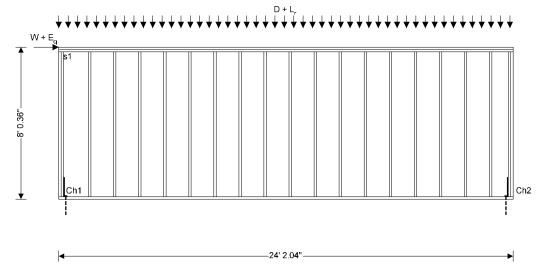
WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10

Design summary


Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	8822	856	0.097	PASS
Chord capacity	lb/in ²	592	39	0.066	PASS
Deflection	in	0.268	0.032	0.120	PASS

Panel details

Structural wood panel sheathing on one side

Panel height; h = 8.03 ftPanel length; b = 24.17 ft

Total area of wall; $A = h \times b = 194.085 \text{ ft}^2$

Panel construction

Nominal stud size; 2" x 4" Dressed stud size; 1.5" x 3.5" $A_s = 5.25 \text{ in}^2$ Cross-sectional area of studs; Stud spacing; s = 16 inNominal end post size; 2 x 2" x 4" 2 x 1.5" x 3.5" Dressed end post size; $A_e = 10.5 \text{ in}^2$ Cross-sectional area of end posts; Hole diameter; Dia = 1 in Net cross-sectional area of end posts; $A_{en} = 7.5 in^2$ 2 x 2" x 4" Nominal collector size; Dressed collector size; 2 x 1.5" x 3.5"

Service condition; Dry

11320 West 79th Street Lenexa, Kansas 66214

Project					Job Ref.	
	WSS	- Lee's Summit	23-	283		
Section			Sheet no./rev.			
						2
Calc. by		Date	Chk'd by	Date	App'd by	Date
Gl	=	7/25/2023	DN			

Temperature; 100 degF or less Vertical anchor stiffness; $k_a = 34943$ lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

Specific gravity; G = 0.50Tension parallel to grain; $F_t = 575 \text{ lb/in}^2$ Compression parallel to grain; $F_c = 1350 \text{ lb/in}^2$ Compression perpendicular to grain; $F_{c_perp} = 625 \text{ lb/in}^2$ Modulus of elasticity; $E = 1600000 \text{ lb/in}^2$ Minimum modulus of elasticity; $E_{min} = 580000 \text{ lb/in}^2$

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 6"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 520 \text{ lb/ft}$ Nominal unit shear capacity for wind design; $v_w = 730 \text{ lb/ft}$ Apparent shear wall shear stiffness; $G_a = 15 \text{ kips/in}$

Loading details

Dead load acting on top of panel; D = 97.14 lb/ft Roof live load acting on top of panel; L_r = 77.708 lb/ft Self weight of panel; S_{wt} = 11 lb/ft² In plane wind load acting at head of panel; W = 1427 lbs Wind load serviceability factor; W = 1.00 In plane seismic load acting at head of panel; E_q = 415 lbs Design spectral response accel. par., short periods; S_{DS} = 0.106

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.1; D + 0.6WLoad combination no.2; D + 0.7E

Load combination no.3; $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or S or R})$

Load combination no.4; $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6WLoad combination no.6; 0.6D + 0.7E

Adjustment factors

Wet service factor for modulus of elasticity - Table 4A

 $C_{ME} = 1.00$

Temperature factor for tension – Table 2.3.3; $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WS	SS - Lee's Summit	23-	283		
Section		Sheet no./rev.			
			3		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Temperature factor for modulus of elasticity - Table 2.3.3

 $C_{tE} = 1.00$

 $\label{eq:continuous} \begin{array}{ll} \text{Incising factor} - \text{cl.4.3.8}; & C_i = \textbf{1.00} \\ \text{Buckling stiffness factor} - \text{cl.4.4.2}; & C_T = \textbf{1.00} \\ \text{Bearing area factor} - \text{cl. 3.10.4}; & C_b = \textbf{1.0} \\ \end{array}$

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 580000$ psi

Critical buckling design value; $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 629 \text{ psi}$

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = 2484 \text{ psi}$

For sawn lumber; c = 0.8

Column stability factor – eqn.3.7-1; $C_P = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - (F_{cE} / F_c^*) / (2 \times c)) = (1 + (F_{cE} / F_c^*)) / (2 \times c) - (F_{cE} / F_c^*) / (2 \times c)) = (1 + (F_{cE} / F_c^*)) / (2 \times c) - (F_{cE} / F_c^*) / (2 \times c) = (1 + (F_{cE} / F_c^*)) / (2 \times c) = (1 + (F$

0.24

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio; 3.5

Shear wall length; b = 24.17 ftShear wall aspect ratio; h / b = 0.332

Segmented shear wall capacity

Maximum shear force under wind loading; $V_{w_max} = 0.6 \times W = 0.856$ kips Shear capacity for wind loading; $V_w = v_w \times b / 2 = 8.822$ kips

 $V_{w \text{ max}} / V_{w} = 0.097$

PASS - Shear capacity for wind load exceeds maximum shear force

Maximum shear force under seismic loading; $V_{s_max} = 0.7 \times E_q = 0.291$ kips Shear capacity for seismic loading; $V_s = v_s \times b / 2 = 6.284$ kips

 $V_{s max} / V_{s} = 0.046$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chords 1 and 2

Shear wall aspect ratio; h / b = 0.332

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 0.856$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 = 1.345$ kips

Maximum tensile force in chord; $T = V \times h / b - P = -1.060$ kips

Maximum applied tensile stress; $f_t = T / A_{en} = -141 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.102$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 0.856$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 = 0.124 \text{ kips}$

Maximum compressive force in chord; $C = V \times h / b + P = 0.408$ kips

Maximum applied compressive stress; $f_c = C / A_e = 39 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 592 \text{ lb/in}^2$

 $f_c / F_c' = 0.066$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WS	S - Lee's Summit	23-	283		
Section		Sheet no./rev.			
					4
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

 $f_c / F_{c perp}' = 0.062$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Wind load deflection

Design shear force; $V_{\delta w} = f_{Wserv} \times W = \textbf{1.427 kips}$ Deflection limit; $\Delta_{W_allow} = h \ / \ 360 = \textbf{0.268 in}$ Induced unit shear; $v_{\delta w} = V_{\delta w} \ / \ b = \textbf{59.04 lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000 kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Shear wall deflection – Eqn. 4.3-1; $\delta_{\text{SWW}} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.032} \text{ in}$

 δ_{sww} / $\Delta_{\text{w_allow}}$ = **0.12**

PASS - Shear wall deflection is less than deflection limit

Seismic deflection

Design shear force; $V_{\delta s} = E_q = 0.415 \text{ kips}$

Deflection limit; $\Delta_{\text{s allow}} = 0.020 \times \text{h} = 1.927 \text{ in}$

Induced unit shear; $v_{\delta s} = V_{\delta s} / b = 17.17 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Shear wall elastic deflection – Eqn. 4.3-1; $\delta_{\text{swse}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.009} \text{ in}$

Deflection ampification factor; $C_{d\delta}$ = 4 Seismic importance factor; I_e = 1

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws}} = C_{\text{d}\delta} \times \delta_{\text{swse}} \, / \, I_{\text{e}} = \textbf{0.037} \text{ in}$

 $\delta_{\text{sws}} / \Delta_{\text{s_allow}} = 0.019$

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
WS	SS - Lee's Summit	23-	283		
Section		Sheet no./rev.			
			5		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

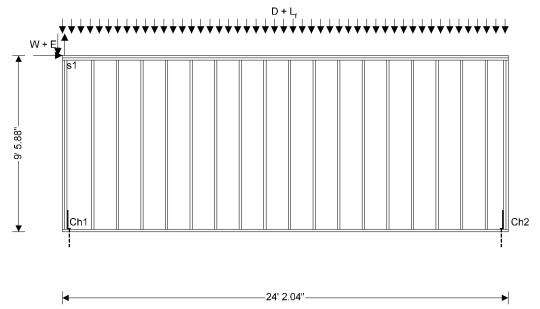
WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10

Design summary


Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	8822	1223	0.139	PASS
Chord capacity	lb/in ²	432	99	0.228	PASS
Deflection	in	0.316	0.055	0.173	PASS

Panel details

Structural wood panel sheathing on one side

Panel height; h = 9.49 ftPanel length; b = 24.17 ft

Total area of wall; $A = h \times b = 229.373 \text{ ft}^2$

Panel construction

Nominal stud size; 2" x 4"

Dressed stud size; 1.5" x 3.5"

Cross-sectional area of studs; $A_s = 5.25 \text{ in}^2$ Stud spacing; s = 16 inNominal end post size; $2 \times 2" \times 4"$ Dressed end post size; $2 \times 1.5" \times 3.5"$ Cross-sectional area of end posts; $A_e = 10.5 \text{ in}^2$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WS	SS - Lee's Summi	23	3-283		
Section		Sheet no./rev.			
					6
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Hole diameter; Dia = 1 in Net cross-sectional area of end posts; $A_{en} = 7.5 \text{ in}^2$

Nominal collector size; 2 x 2" x 4"

Dressed collector size; 2 x 1.5" x 3.5"

Service condition; Dry

Temperature; 100 degF or less Vertical anchor stiffness; $k_a = 34943$ lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

Specific gravity; G = 0.50Tension parallel to grain; $F_t = 575 \text{ lb/in}^2$ Compression parallel to grain; $F_c = 1350 \text{ lb/in}^2$ Compression perpendicular to grain; $F_{c_perp} = 625 \text{ lb/in}^2$ Modulus of elasticity; $E = 1600000 \text{ lb/in}^2$ Minimum modulus of elasticity; $E_{min} = 580000 \text{ lb/in}^2$

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 6"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 520 \text{ lb/ft}$ Nominal unit shear capacity for wind design; $v_w = 730 \text{ lb/ft}$ Apparent shear wall shear stiffness; $G_a = 15 \text{ kips/in}$

Loading details

Dead load acting on top of panel; D = 97.14 lb/ft Floor live load acting on top of panel; L_f = 328.54 lb/ft Self weight of panel; S_{wt} = 11 lb/ft² In plane wind load acting at head of panel; W = 2038 lbs Wind load serviceability factor; W = 1.00 In plane seismic load acting at head of panel; W = 729 lbs Design spectral response accel. par., short periods; W = 0.106

Chord forces from shear walls above

Chord	W _{ch[i]} (lbs)	E _{q_ch[i]} (lbs)	D _{C_ch[i]} (lbs)	D _{T_ch[i]} (lbs)	L _{f_ch[i]} (lbs)	L _{r_ch[i]} (lbs)	S _{ch[i]} (lbs)	R _{ch[i]} (lbs)
Ch1;	-474;	-138;	124;	2241;	0;	52;	0;	0;
Ch2;	474;	138;	124;	2241;	0;	52;	0;	0;

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.1; D + 0.6WLoad combination no.2; D + 0.7E

Load combination no.3; $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or S or R})$

Load combination no.4; $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6WLoad combination no.6; 0.6D + 0.7E

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	- Lee's Summit	, MO - GL J Sho	rt Wall	23-	283
Section		Sheet no./rev.			
					7
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Adjustment factors

 $C_{ME} = 1.00$

Temperature factor for tension – Table 2.3.3; $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

Temperature factor for modulus of elasticity - Table 2.3.3

 $C_{tE} = 1.00$

 $\begin{array}{ll} \mbox{Incising factor} - \mbox{cl.4.3.8}; & \mbox{C_i} = \mbox{1.00} \\ \mbox{Buckling stiffness factor} - \mbox{cl.4.4.2}; & \mbox{C_T} = \mbox{1.00} \\ \mbox{Bearing area factor} - \mbox{cl. 3.10.4}; & \mbox{C_b} = \mbox{1.0} \\ \end{array}$

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 580000$ psi

Critical buckling design value; $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 450 \text{ psi}$

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = 2484 \text{ psi}$

For sawn lumber; c = 0.8

Column stability factor – eqn.3.7-1; $C_P = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - (F_{cE} / F_c^*) / (2 \times c)) = (1 + (F_{cE} / F_c^*)) / (2 \times c) - (F_{cE} / F_c^*) / (2 \times c)) = (1 + (F_{cE} / F_c^*)) / (2 \times c) - (F_{cE} / F_c^*) / (2 \times c) = (1 + (F_{cE} / F_c^*)) / (2 \times c) = (1 + (F$

0.17

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio; 3.5

Shear wall length; b = 24.17 ftShear wall aspect ratio; h / b = 0.393

Segmented shear wall capacity

Maximum shear force under wind loading; $V_{w_max} = 0.6 \times W = 1.223$ kips Shear capacity for wind loading; $V_{w} = v_{w} \times b / 2 = 8.822$ kips

 $V_{w \text{ max}} / V_{w} = 0.139$

PASS - Shear capacity for wind load exceeds maximum shear force

Maximum shear force under seismic loading; $V_{s_max} = 0.7 \times E_q = 0.51$ kips Shear capacity for seismic loading; $V_s = v_s \times b / 2 = 6.284$ kips

 $V_{s max} / V_{s} = 0.081$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chord 1

Shear wall aspect ratio; h / b = 0.393

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 1.223$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + 0.6 \times W_{ch1} + 0.6 \times D_{T ch1} = 2.522 \text{ kips}$

Maximum tensile force in chord; $T = V \times h / b - P = \textbf{-2.042} \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = -272 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
WS	S - Lee's Summit	23-	283		
Section		Sheet no./rev.			
					8
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

 $f_t / F_t' = -0.197$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 0.917$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + 0.75 \times U_{ch1} + 0.75 \times U_{ch1$

 $L_{r ch1} = 0.674 \text{ kips}$

Maximum compressive force in chord; $C = V \times h / b + P = 1.035$ kips

Maximum applied compressive stress; $f_c = C / A_e = 99 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = \textbf{432 lb/in}^2$

 $f_c / F_c' = 0.228$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp}' = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp}' = 0.158$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 2

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 1.223$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + -1 \times 0.6 \times W_{ch2} + 0.6 \times D_{T_ch2} = 2.522$

kips

Maximum tensile force in chord; $T = V \times h / b - P = -2.042$ kips

Maximum applied tensile stress; $f_t = T / A_{en} = -272 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.197$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 0.917$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 + 0.45 \times W_{ch2} + D_{C_ch2} + 0.75 \times L_{r_ch2} = 0.00 \times L_{r_ch2} + 0.00 \times L_{r_c$

0.674 kips

Maximum compressive force in chord; $C = V \times h / b + P = 1.035$ kips

Maximum applied compressive stress; $f_c = C / A_e = 99 \text{ lb/in}^2$

Design compressive stress; $F_{c}' = F_{c} \times C_{D} \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_{i} \times C_{P} = \textbf{432 lb/in}^{2}$

 $f_c / F_c' = 0.228$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp} = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp}' = 0.158$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Wind load deflection

Design shear force; $V_{\delta w} = f_{Wserv} \times W = \textbf{2.038 kips}$ Deflection limit; $\Delta_{w_allow} = h / 360 = \textbf{0.316 in}$ Induced unit shear; $v_{\delta w} = V_{\delta w} / b = \textbf{84.32 lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2 - 0.6 \times \min(D_{T_ch1}, D_{T_ch2})$

+ $max(abs(W_{ch1}),abs(W_{ch2}))) = 0.000 \text{ kips}$

11320 West 79th Street Lenexa, Kansas 66214

Project					Job Ref.	
	WSS	- Lee's Summit	23-	283		
Section					Sheet no./rev.	
						9
Calc. by		Date	Chk'd by	Date	App'd by	Date
GL		7/25/2023	DN			

Vertical elongation at anchor;

 $\Delta_a = T_{\delta} / k_a = 0.000 \text{ in}$

Shear wall deflection - Eqn. 4.3-1;

 $\delta_{sww} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.055} \text{ in}$

 δ_{sww} / $\Delta_{\text{w_allow}}$ = 0.173

PASS - Shear wall deflection is less than deflection limit

Seismic deflection

Design shear force; $V_{\delta s} = E_q = 0.729 \text{ kips}$

Deflection limit; $\Delta_{s_allow} = 0.020 \times h = 2.278$ in

Induced unit shear; $v_{\delta s} = V_{\delta s} / b = 30.16 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2

 S_{DS}) × min(D_{T_ch1} , D_{T_ch2}) + max(abs(E_{q_ch1}),abs(E_{q_ch2}))) = **0.000** kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Shear wall elastic deflection – Eqn. 4.3-1; $\delta_{swse} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.02} \text{ in}$

Deflection ampification factor; $C_{d\delta}$ = **4** Seismic importance factor; I_e = **1**

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws}} = C_{\text{d}\delta} \times \delta_{\text{swse}} \, / \, I_{\text{e}} = \textbf{0.078} \text{ in}$

 δ_{sws} / $\Delta_{\text{s_allow}}$ = **0.034**

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
WS	S - Lee's Summit	23-283			
Section		Sheet no./rev.			
			10		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

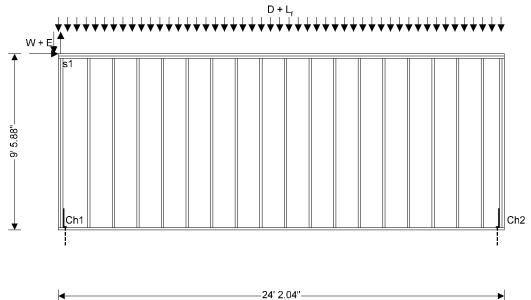
WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10

Design summary


Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	8822	1619	0.183	PASS
Chord capacity	lb/in ²	432	172	0.399	PASS
Deflection	in	0.316	0.073	0.229	PASS

Panel details

Structural wood panel sheathing on one side

Panel height; h = 9.49 ftPanel length; b = 24.17 ft

Total area of wall; $A = h \times b = 229.373 \text{ ft}^2$

Panel construction

Nominal stud size; 2" x 4" Dressed stud size; 1.5" x 3.5" Cross-sectional area of studs; $A_s = 5.25 \text{ in}^2$ Stud spacing; s = **16** in 2 x 2" x 4" Nominal end post size; Dressed end post size; 2 x 1.5" x 3.5" Cross-sectional area of end posts; $A_e = 10.5 \text{ in}^2$ Dia = **1** in Hole diameter; Net cross-sectional area of end posts; $A_{en} = 7.5 in^2$ Nominal collector size; 2 x 2" x 4"

11320 West 79th Street Lenexa, Kansas 66214

Project					Job Ref.		
WSS - Lee's Summit, MO - GL J Short Wall					23-283		
Section	Section					Sheet no./rev.	
						11	
Calc. by		Date	Chk'd by	Date	App'd by	Date	
G	L	7/25/2023	DN				

Dressed collector size; 2 x 1.5" x 3.5"

Service condition; Dry

Temperature; 100 degF or less Vertical anchor stiffness; $k_a = 34943$ lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

 $\label{eq:specific gravity;} G = 0.50$ Tension parallel to grain; $F_t = 575 \text{ lb/in}^2$ Compression parallel to grain; $F_c = 1350 \text{ lb/in}^2$ Compression perpendicular to grain; $F_{c_perp} = 625 \text{ lb/in}^2$ Modulus of elasticity; $E = 1600000 \text{ lb/in}^2$ Minimum modulus of elasticity; $E_{min} = 580000 \text{ lb/in}^2$

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 6"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 520 \text{ lb/ft}$ Nominal unit shear capacity for wind design; $v_w = 730 \text{ lb/ft}$ Apparent shear wall shear stiffness; $G_a = 15 \text{ kips/in}$

Loading details

Dead load acting on top of panel; D = 97.135 lb/ft Floor live load acting on top of panel; $L_f = 328.54 \text{ lb/ft}$ Self weight of panel; $S_{wt} = 11 \text{ lb/ft}^2$ In plane wind load acting at head of panel; W = 2698 lbs Wind load serviceability factor; $f_{Wserv} = 1.00$ In plane seismic load acting at head of panel; $E_q = 931 \text{ lbs}$ Design spectral response accel. par., short periods; $S_{DS} = 0.106$

Chord forces from shear walls above

Chord	W _{ch[i]} (lbs)	E _{q_ch[i]} (lbs)	Dc_ch[i] (lbs)	D _{T_ch[i]} (lbs)	L _{f_ch[i]} (lbs)	L _{r_ch[i]} (lbs)	S _{ch[i]} (lbs)	R _{ch[i]} (lbs)
Ch1;	-1274;	-424;	258;	4677;	219;	52;	0;	0;
Ch2;	1274;	424;	258;	4677;	219;	52;	0;	0;

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.1; D + 0.6WLoad combination no.2; D + 0.7E

Load combination no.3; $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or S or R})$

Load combination no.4; $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6WLoad combination no.6; 0.6D + 0.7E

Adjustment factors

11320 West 79th Street Lenexa, Kansas 66214

Project	Job Ref.				
WSS	23-283				
Section	Sheet no./rev.				
		12			
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Wet service factor for tension – Table 4A; $C_{Mt} = 1.00$ Wet service factor for compression – Table 4A; $C_{Mc} = 1.00$

Wet service factor for modulus of elasticity - Table 4A

 $C_{ME} = 1.00$

Temperature factor for tension – Table 2.3.3; $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

Temperature factor for modulus of elasticity - Table 2.3.3

2.3.3 C_{tF} = **1.00**

 $\begin{array}{ll} \mbox{Incising factor} - \mbox{cl.4.3.8}; & \mbox{C}_{i} = \mbox{1.00} \\ \mbox{Buckling stiffness factor} - \mbox{cl.4.4.2}; & \mbox{C}_{T} = \mbox{1.00} \\ \mbox{Bearing area factor} - \mbox{cl. 3.10.4}; & \mbox{C}_{b} = \mbox{1.0} \\ \end{array}$

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 580000 \text{ psi}$

Critical buckling design value; $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 450 \text{ psi}$

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = \textbf{2484 psi}$

For sawn lumber; c = 0.8

Column stability factor – eqn.3.7-1; $C_P = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c)]^2 - (F_{cE} / F_{c}^*) / (c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*)) / (2 \times c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*)) / (2 \times c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*)) / (2 \times c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*)) / (2 \times c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*)) / (2 \times c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*)) / (2 \times c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*)) / (2 \times c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*)) / (2 \times c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*)) / (2 \times c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*)) / (2 \times c) = (1 + (F_{cE} / F_{c}^*)) /$

0.17

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio; 3.5

Shear wall length; b = 24.17 ftShear wall aspect ratio; h / b = 0.393

Segmented shear wall capacity

 $\label{eq:w_max} \mbox{Maximum shear force under wind loading;} \qquad \mbox{$V_{w_max} = 0.6 \times W = 1.619$ kips} \\ \mbox{Shear capacity for wind loading;} \qquad \mbox{$V_{w} = v_{w} \times b \ / \ 2 = 8.822$ kips} \\ \mbox{}$

 $V_{w_{max}} / V_{w} = 0.183$

PASS - Shear capacity for wind load exceeds maximum shear force

Maximum shear force under seismic loading; $V_{s_max} = 0.7 \times E_q = 0.652$ kips Shear capacity for seismic loading; $V_s = v_s \times b / 2 = 6.284$ kips

 $V_{s_max} / V_s = 0.104$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chord 1

Shear wall aspect ratio; h/b = 0.393

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 1.619$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + 0.6 \times W_{ch1} + 0.6 \times D_{T ch1} = 3.503 \text{ kips}$

Maximum tensile force in chord; $T = V \times h / b - P = -2.867$ kips Maximum applied tensile stress; $f_t = T / A_{en} = -382$ lb/in²

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.277$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 1.214 \text{ kips}$

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
WSS	6 - Lee's Summit	23-283			
Section		Sheet no./rev.			
			13		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + 0.75 \times U_{ch1} + 0.75 \times U_{ch1$

 $L_{f ch1} + 0.75 \times L_{r ch1} = 1.333 \text{ kips}$

Maximum compressive force in chord; $C = V \times h / b + P = 1.810$ kips

Maximum applied compressive stress; $f_c = C / A_e = 172 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.399$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp'} = 0.276$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 2

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 1.619$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + -1 \times 0.6 \times W_{ch2} + 0.6 \times D_{T_ch2} = 3.503$

kips

Maximum tensile force in chord; $T = V \times h / b - P = -2.867$ kips

Maximum applied tensile stress; $f_t = T / A_{en} = -382 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_F \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.277$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 1.214 \text{ kips}$

 $\text{Axial force for maximum compression;} \qquad \qquad P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 + 0.45 \times W_{ch2} + D_{C_ch2} + 0.75 \times L_{f_ch2} + 0.75$

 $0.75 \times L_{r_ch2} = 1.333$ kips

Maximum compressive force in chord; $C = V \times h / b + P = 1.810$ kips

Maximum applied compressive stress; $f_c = C / A_e = 172 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.399$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = \textbf{625 lb/in}^{2}$

 $f_c / F_{c perp}' = 0.276$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Wind load deflection

Design shear force; $V_{\delta w} = f_{Wserv} \times W = 2.698 \text{ kips}$ Deflection limit; $\Delta_{w_allow} = h / 360 = 0.316 \text{ in}$ Induced unit shear; $v_{\delta w} = V_{\delta w} / b = 111.63 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2 - 0.6 \times \min(D_{T \text{ ch1}}, D_{T \text{ ch2}})$

+ $max(abs(W_{ch1}), abs(W_{ch2}))) = 0.000 \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Shear wall deflection – Eqn. 4.3-1; $\delta_{sww} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.073} \text{ in}$

 δ_{sww} / Δ_{w} allow = **0.229**

11320 West 79th Street Lenexa, Kansas 66214

Project			Job Ref.			
	WSS	- Lee's Summit	23-283			
Section			Sheet no./rev.			
				14		
Calc. by		Date	Chk'd by	Date	App'd by	Date
GL		7/25/2023	DN			

Seismic deflection

Design shear force; $V_{\delta s} = E_q = 0.931 \text{ kips}$

Deflection limit; $\Delta_{s \text{ allow}} = 0.020 \times h = 2.278 \text{ in}$

Induced unit shear; $v_{\delta s} = V_{\delta s}$ / b = 38.52 lb/ft

Anchor tension force; $T_{\delta} = \max(0 \text{ kips,} v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times$

 S_{DS}) × min(D_{T_ch1} , D_{T_ch2}) + max(abs(E_{q_ch1}),abs(E_{q_ch2}))) = **0.000** kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Shear wall elastic deflection – Eqn. 4.3-1; $\delta_{swse} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.025} \text{ in}$

Deflection ampification factor; $C_{d\delta}$ = **4** Seismic importance factor; I_e = **1**

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws} = C_{d\delta} \times \delta_{swse} / I_e = 0.1$ in

 δ_{sws} / $\Delta_{\text{s_allow}}$ = 0.044

PASS - Shear wall deflection is less than deflection limit

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
WS	S - Lee's Summit	23-283			
Section		Sheet no./rev.			
			15		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

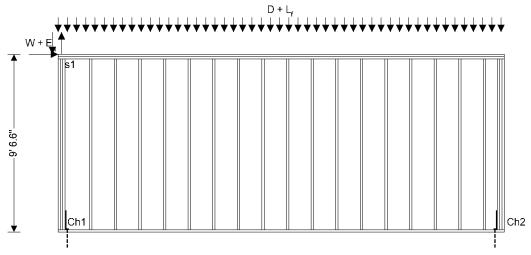
WOOD SHEAR WALL DESIGN (NDS)

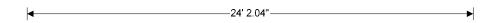
WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10

Design summary


Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	8822	2015	0.228	PASS
Chord capacity	lb/in ²	427	173	0.405	PASS
Deflection	in	0.318	0.090	0.283	PASS


Panel details

Structural wood panel sheathing on one side

Panel height; h = 9.55 ftPanel length; b = 24.17 ft

Total area of wall; $A = h \times b = 230.824 \text{ ft}^2$

Panel construction

Nominal stud size; 2" x 4" 1.5" x 3.5" Dressed stud size; Cross-sectional area of studs; $A_s = 5.25 \text{ in}^2$ Stud spacing; s = 16 in3 x 2" x 4" Nominal end post size; 3 x 1.5" x 3.5" Dressed end post size; Cross-sectional area of end posts; $A_e = 15.75 \text{ in}^2$ Hole diameter; Dia = **1** in Net cross-sectional area of end posts; $A_{en} = 11.25 \text{ in}^2$

11320 West 79th Street Lenexa, Kansas 66214

Project	Job Ref.				
WSS	- Lee's Summit	23-283			
Section	Sheet no./rev.				
		16			
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Nominal collector size; $2 \times 2" \times 4"$ Dressed collector size; $2 \times 1.5" \times 3.5"$

Service condition; Dry

Temperature; 100 degF or less Vertical anchor stiffness; $k_a = 40044$ lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

 $\label{eq:specific gravity;} G = \textbf{0.50}$ Tension parallel to grain; $F_t = \textbf{575} \text{ lb/in}^2$ Compression parallel to grain; $F_c = \textbf{1350} \text{ lb/in}^2$ Compression perpendicular to grain; $F_{c_perp} = \textbf{625} \text{ lb/in}^2$ Modulus of elasticity; $E = \textbf{1600000} \text{ lb/in}^2$ Minimum modulus of elasticity; $E_{min} = \textbf{580000} \text{ lb/in}^2$

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 6"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 520 \text{ lb/ft}$ Nominal unit shear capacity for wind design; $v_w = 730 \text{ lb/ft}$ Apparent shear wall shear stiffness; $G_a = 15 \text{ kips/in}$

Loading details

Dead load acting on top of panel; D = 97.135 lb/ft Floor live load acting on top of panel; $L_f = 328.54$ lb/ft Self weight of panel; $S_{wt} = 11$ lb/ft² In plane wind load acting at head of panel; W = 3358 lbs Wind load serviceability factor; $S_{wt} = 1.00$ ln plane seismic load acting at head of panel; $S_{wt} = 1.00$ lbs Design spectral response accel. par., short periods; $S_{DS} = 0.106$

Chord forces from shear walls above

	Chord	W _{ch[i]} (lbs)	E _{q_ch[i]} (lbs)	Dc_ch[i] (lbs)	D _{T_ch[i]} (lbs)	L _{f_ch[i]} (lbs)	L _{r_ch[i]} (lbs)	S _{ch[i]} (lbs)	R _{ch[i]} (lbs)
Ī	Ch1;	-2334;	-790;	392;	7112;	438;	52;	0;	0;
	Ch2;	2334;	790;	392;	7112;	438;	52;	0;	0;

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.1; D + 0.6WLoad combination no.2; D + 0.7E

Load combination no.3; $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or S or R})$

Load combination no.4; $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6WLoad combination no.6; 0.6D + 0.7E

Adjustment factors

Load duration factor – Table 2.3.2; $C_D = 1.60$ Size factor for tension – Table 4A; $C_{Ft} = 1.50$

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
WSS	- Lee's Summit	23-283			
Section		Sheet no./rev.			
		17			
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Size factor for compression – Table 4A; C_{Fc} = **1.15** Wet service factor for tension – Table 4A; C_{Mt} = **1.00** Wet service factor for compression – Table 4A; C_{Mc} = **1.00**

Wet service factor for modulus of elasticity - Table 4A

 $C_{ME} = 1.00$

Temperature factor for tension – Table 2.3.3; $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

Temperature factor for modulus of elasticity - Table 2.3.3

 $C_{tE} = 1.00$

 $\begin{aligned} &\text{Incising factor} - \text{cl.4.3.8}; & & & & & & & & & & \\ &\text{Buckling stiffness factor} - \text{cl.4.4.2}; & & & & & & & \\ &\text{Bearing area factor} - \text{cl. 3.10.4}; & & & & & & \\ &\text{C}_{\text{b}} = \textbf{1.0} & & & & & \\ \end{aligned}$

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 580000$ psi

Critical buckling design value; $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 445 \text{ psi}$

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = 2484$ psi

For sawn lumber; c = 0.8

Column stability factor - eqn.3.7-1; $C_P = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c)]^2 - (F_{cE} / F_{c}^*) / c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c)]^2 - (F_{cE} / F_{c}^*) / c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c)]^2 - (F_{cE} / F_{c}^*) / c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c)]^2 - (F_{cE} / F_{c}^*) / c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*)) / (2 \times c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*)) / (2 \times c) = (1 + (F_{cE} / F_{c}^*$

0.17

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio; 3.5

Shear wall length; b = 24.17 ftShear wall aspect ratio; h / b = 0.395

Segmented shear wall capacity

Maximum shear force under wind loading; $V_{w_max} = 0.6 \times W = 2.015$ kips Shear capacity for wind loading; $V_{w} = v_{w} \times b / 2 = 8.822$ kips

 $V_{w_{max}} / V_{w} = 0.228$

PASS - Shear capacity for wind load exceeds maximum shear force

Maximum shear force under seismic loading; $V_{s_max} = 0.7 \times E_q = 0.706$ kips Shear capacity for seismic loading; $V_s = v_s \times b / 2 = 6.284$ kips

 $V_{s max} / V_{s} = 0.112$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chord 1

Shear wall aspect ratio; h / b = 0.395

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 2.015$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + 0.6 \times W_{ch1} + 0.6 \times D_{T_ch1} = 4.333 \text{ kips}$

Maximum tensile force in chord; $T = V \times h / b - P = -3.537$ kips Maximum applied tensile stress; $f_t = T / A_{en} = -314$ lb/in²

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.228$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
WSS	- Lee's Summit	23-283			
Section		Sheet no./rev.			
			18		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Shear force for maximum compression; $V = 0.6 \times W = 2.015 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + -1 \times 0.6 \times W_{ch1} + D_{C ch1} = 1.927 \text{ kips}$

Maximum compressive force in chord; $C = V \times h / b + P = 2.723$ kips

Maximum applied compressive stress; $f_c = C / A_e = 173 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 427 \text{ lb/in}^2$

 $f_c / F_c' = 0.405$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp'} = 0.277$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 2

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 2.015 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + -1 \times 0.6 \times W_{ch2} + 0.6 \times D_{T_ch2} = 4.333$

kips

Maximum tensile force in chord; $T = V \times h / b - P = -3.537$ kips

Maximum applied tensile stress; $f_t = T / A_{en} = -314 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_F \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.228$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 2.015 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + 0.6 \times W_{ch2} + D_{C ch2} = 1.927 \text{ kips}$

Maximum compressive force in chord; $C = V \times h / b + P = 2.723$ kips

Maximum applied compressive stress; $f_c = C / A_e = 173 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_f \times C_P = 427 \text{ lb/in}^2$

 $f_c / F_c' = 0.405$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perb}' = F_{c perb} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp}' = 0.277$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Wind load deflection

Design shear force; $V_{\delta w} = f_{Wserv} \times W = 3.358 \text{ kips}$

Deflection limit; $\Delta_{\text{w_allow}} = \text{h / 360} = \textbf{0.318} \text{ in}$ Induced unit shear; $v_{\delta w} = V_{\delta w} / \text{b} = \textbf{138.93} \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2 - 0.6 \times \min(D_{T_ch1}, D_{T_ch2})$

+ $max(abs(W_{ch1}), abs(W_{ch2}))) = 0.000 \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Shear wall deflection – Eqn. 4.3-1; $\delta_{sww} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.09} \text{ in}$

 $\delta_{\text{sww}} / \Delta_{\text{w}}$ allow = **0.283**

PASS - Shear wall deflection is less than deflection limit

11320 West 79th Street Lenexa, Kansas 66214

Project			Job Ref.			
	WSS	- Lee's Summit	23-283			
Section			Sheet no./rev.			
				19		
Calc. by		Date	Chk'd by	Date	App'd by	Date
GI	L	7/25/2023	DN			

Seismic deflection

Design shear force; $V_{\delta s} = E_q = 1.009 \text{ kips}$

Deflection limit; $\Delta_{s \text{ allow}} = 0.020 \times h = 2.292 \text{ in}$

Induced unit shear; $v_{\delta s} = V_{\delta s}$ / b = 41.75 lb/ft

Anchor tension force; $T_{\delta} = \max(0 \text{ kips,} v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times$

 $S_{DS}) \times min(D_{T_ch1},D_{T_ch2}) + max(abs(E_{q_ch1}),abs(E_{q_ch2}))) \ = \textbf{0.000} \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Shear wall elastic deflection – Eqn. 4.3-1; $\delta_{swse} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b = \textbf{0.027} \text{ in}$

Deflection ampification factor; $C_{d\delta}$ = **4** Seismic importance factor; I_e = **1**

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws}} = C_{\text{d}\delta} \times \delta_{\text{swse}} \, / \, I_{\text{e}} = \textbf{0.108} \text{ in}$

 δ_{sws} / $\Delta_{\text{s_allow}}$ = **0.047**

PASS - Shear wall deflection is less than deflection limit

11320 West 79th Street Lenexa, Kansas 66214

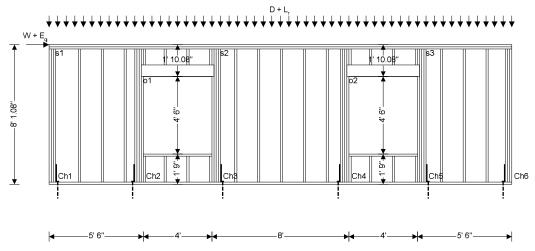
Project		Job Ref.			
,	WSS - Lee's Sui	23-283			
Section		Sheet no./rev.			
			1		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10


Design summary

Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	6525	1893	0.290	PASS
Chord capacity	lb/in ²	1252	46	0.074	PASS
Collector capacity	lb/in ²	1196	10	0.008	PASS
Deflection	in	0.270	0.092	0.343	PASS

Panel details

Structural wood panel sheathing on one side

Panel height; h = 8.09 ftPanel length; b = 27 ft

Panel opening details

 $w_{01} = 4 ft$ Width of opening; Height of opening; $h_{o1} = 4.5 \text{ ft}$ Height to underside of lintel over opening; $I_{o1} = 6.25 \text{ ft}$ Position of opening; $P_{o1} = 5.5 \text{ ft}$ Width of opening; $w_{o2} = 4 \text{ ft}$ Height of opening; $h_{o2} = 4.5 \text{ ft}$ Height to underside of lintel over opening; $I_{o2} = 6.25 \text{ ft}$ Position of opening; P_{o2} = **17.5** ft

Total area of wall: $A = h \times b - w_{01} \times h_{01} - w_{02} \times h_{02} = 182.43 \text{ ft}^2$

Panel construction

Nominal stud size; 2" x 6" Dressed stud size; 1.5" x 5.5" Cross-sectional area of studs; $A_s = 8.25 \text{ in}^2$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
,	WSS - Lee's Su	23-283			
Section		Sheet no./rev.			
			2		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Stud spacing; s = 16 in Nominal end post size; $3 \times 2'' \times 6''$ Dressed end post size; $3 \times 1.5'' \times 5.5''$ Cross-sectional area of end posts; $A_e = 24.75$ in² Hole diameter; Dia = 1 in Net cross-sectional area of end posts; $A_{en} = 20.25$ in² Nominal collector size: $2 \times 2'' \times 6''$

Dressed collector size: 2 x 1.5" x 5.5"

Service condition; Dry

Temperature; 100 degF or less Vertical anchor stiffness; $k_a = 49087$ lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

Specific gravity; G = 0.50Tension parallel to grain; $F_t = 575 \text{ lb/in}^2$ Compression parallel to grain; $F_c = 1350 \text{ lb/in}^2$ Compression perpendicular to grain; $F_{c_perp} = 625 \text{ lb/in}^2$ Modulus of elasticity; $E = 1600000 \text{ lb/in}^2$ Minimum modulus of elasticity; $E_{min} = 580000 \text{ lb/in}^2$

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 6"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 520 \text{ lb/ft}$ Nominal unit shear capacity for wind design; $v_w = 730 \text{ lb/ft}$ Apparent shear wall shear stiffness; $G_a = 15 \text{ kips/in}$

Loading details

Dead load acting on top of panel; D = 304.425 lb/ft Roof live load acting on top of panel; L_r = 243.54 lb/ft Self weight of panel; S_{wt} = 25 lb/ft² In plane wind load acting at head of panel; W = 3155 lbs Wind load serviceability factor; f_{Wserv} = 1.00 In plane seismic load acting at head of panel; E_q = 699.5 lbs Design spectral response accel. par., short periods; S_{DS} = 0.106

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.1; D + 0.6WLoad combination no.2; D + 0.7E

Load combination no.3; $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or S or R})$

Load combination no.4; $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6WLoad combination no.6; 0.6D + 0.7E

Adjustment factors

Load duration factor – Table 2.3.2; $C_D = 1.60$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
V	23-283				
Section	Sheet no./rev.				
		3			
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Size factor for tension – Table 4A; C_{Ft} = **1.30**

 $\label{eq:continuous} \begin{array}{lll} \text{Size factor for compression} - \text{Table 4A}; & \text{C_{Fc} = 1.10} \\ \text{Wet service factor for tension} - \text{Table 4A}; & \text{C_{Mt} = 1.00} \\ \text{Wet service factor for compression} - \text{Table 4A}; & \text{C_{Mc} = 1.00} \\ \end{array}$

Wet service factor for modulus of elasticity - Table 4A

 $C_{ME} = 1.00$

Temperature factor for tension – Table 2.3.3; $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

Temperature factor for modulus of elasticity - Table 2.3.3

 $C_{tE} = 1.00$

 $\begin{array}{ll} \mbox{Incising factor} - \mbox{cl.4.3.8}; & \mbox{C_i} = \mbox{1.00} \\ \mbox{Buckling stiffness factor} - \mbox{cl.4.4.2}; & \mbox{C_T} = \mbox{1.00} \\ \mbox{Bearing area factor} - \mbox{cl. 3.10.4}; & \mbox{C_b} = \mbox{1.0} \\ \end{array}$

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 580000 \text{ psi}$

Critical buckling design value; $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 1530 \text{ psi}$

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = 2376$ psi

For sawn lumber; c = 0.8

Column stability factor - eqn.3.7-1; $C_P = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c)]^2 - (F_{cE} / F_{c}^*) / c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c)]^2 - (F_{cE} / F_{c}^*)) / (2 \times c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c)]^2 - (F_{cE} / F_{c}^*))} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) = (1 + (F$

0.53

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Segmented shear wall capacity - Equal deflection method

Wind loading:

Shear wall aspect ratio;

Segment 2 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_2) = 0.021$ in/kip

Segment 2 stiffness; $k_2 = 1/(2 \times h^3/(3 \times E \times A_e \times b_2^2) + h/(G_a \times b_2) + h \times \Delta_{a1}/b_2) = 11.121$

 $h/b_3 = 1.471$

kips/in

Unit shear capacity, widest segment; $v_{sww2} = v_w / 2 = 365$ plf

Vertical deflction under capacity load; $\Delta_{a_Cap} = h \times v_{sww2} / k_a = 0.060$ in

Deflection under capacity load; $\delta_{\text{Cap}} = 2 \times v_{\text{sww2}} \times h^3 / (3 \times E \times A_{\text{e}} \times b_2) + v_{\text{sww2}} \times h / (G_{\text{a}}) + h \times \Delta_{\text{a Cap}} / b_2 = 0$

0.263 in

Segment 1 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_1) = 0.030$ in/kip

Segment 1 stiffness; $k_1 = 1/(2 \times h^3/(3 \times E \times A_e \times b_1^2) + h/(G_a \times b_1) + h \times \Delta_{a1}/b_1) = 6.865$

kips/in

Segment 1 unit shear at δ_{Cap} ; $v_{dsww1} = \delta_{Cap} \times k_1 / b_1 = 327.72$ plf

Segment 1 shear capacity; $v_{sww1} = v_w / 2 = 365$ plf

 $V_{dsww1} / V_{sww1} = 0.898$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
\	23-283				
Section		Sheet no./rev.			
					4
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

Segment 3 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_3) = 0.030$ in/kip

Segment 3 stiffness; $k_3 = 1/(2 \times h^3/(3 \times E \times A_e \times b_3^2) + h/(G_a \times b_3) + h \times \Delta_{a1}/b_3) = 6.865$

kips/in

Segment 3 unit shear at δ_{Cap} ; $v_{dsww3} = \delta_{Cap} \times k_3 / b_3 = 327.72$ plf

Segment 3 shear capacity; $v_{sww3} = v_w / 2 = 365 \text{ plf}$ $v_{dsww3} / v_{sww3} = 0.898$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

Maximum shear force under wind loading; $V_{w max} = 0.6 \times W = 1.893$ kips

Shear capacity for wind loading; $V_w = \min(v_{sww1}, v_{dsww1}) \times b_1 + v_{sww2} \times b_2 + \min(v_{sww3}, v_{dsww3}) \times b_3 = 6.525 \text{ kips}$

 $V_{w_{max}} / V_{w} = 0.29$

PASS - Shear capacity for wind load exceeds maximum shear force

Seismic loading:

Segment 2 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_2) = 0.021$ in/kip

Segment 2 stiffness; $k_2 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_2^2) + h / (G_a \times b_2) + h \times \Delta_{a1} / b_2) = 11.121$

kips/in

Unit shear capacity, widest segment; $v_{sws2} = v_s / 2 = 260$ plf

Vertical deflction under capacity load; $\Delta_{a_Cap} = h \times v_{sws2} / k_a = 0.043$ in

Deflection under capacity load; $\delta_{\text{Cap}} = 2 \times v_{\text{sws2}} \times h^3 / (3 \times E \times A_e \times b_2) + v_{\text{sws2}} \times h / (G_a) + h \times \Delta_{a \text{ Cap}} / b_2 = 0$

0.187 in

Segment 1 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_1) = 0.030$ in/kip

Segment 1 stiffness; $k_1 = 1/(2 \times h^3/(3 \times E \times A_e \times b_1^2) + h/(G_a \times b_1) + h \times \Delta_{a1}/b_1) = 6.865$

kips/in

Segment 1 unit shear at δ_{Cap} ; $V_{dsws1} = \delta_{Cap} \times k_1 / b_1 = 233.44 \text{ plf}$

Segment 1 shear capacity; $v_{sws1} = v_s / 2 = 260 \text{ plf}$

 $V_{dsws1} / V_{sws1} = 0.898$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

Segment 3 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_3) = 0.030$ in/kip

Segment 3 stiffness; $k_3 = 1/(2 \times h^3/(3 \times E \times A_e \times b_3^2) + h/(G_a \times b_3) + h \times \Delta_{a1}/b_3) = 6.865$

kips/in

Segment 3 unit shear at δ_{Cap} ; $v_{dsws3} = \delta_{Cap} \times k_3 / b_3 = 233.44$ plf

Segment 3 shear capacity; $v_{sws3} = v_s / 2 = 260 \text{ plf}$

 $V_{dsws3} / V_{sws3} = 0.898$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ ext{Cap}}$

Maximum shear force under seismic loading; $V_{s_max} = 0.7 \times E_q = 0.49$ kips

Shear capacity for seismic loading; $V_s = min(v_{sws1}, v_{dsws1}) \times b_1 + v_{sws2} \times b_2 + min(v_{sws3}, v_{dsws3}) \times b_3 = \textbf{4.648} \text{ kips}$

 $V_{s max} / V_{s} = 0.105$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chords 1 and 2

Shear wall aspect ratio; $h / b_1 = 1.471$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 1.893$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 = 0.836 \text{ kips}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
	WSS - Lee's Su	23-	283		
Section		Sheet no./rev.			
			5		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Maximum tensile force in chord; $T = V \times (k_1 / sum(k_1, k_2, k_3)) \times h / b_1 - P = -0.033 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = -2 lb/in^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = -0.001$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 1.893$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 = 0.338$ kips

Maximum compressive force in chord; $C = V \times (k_1 / sum(k_1, k_2, k_3)) \times h / b_1 + P = 1.141 \text{ kips}$

Maximum applied compressive stress; $f_c = C / A_e = 46 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 1252 \text{ lb/in}^2$

 $f_c / F_c' = 0.037$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp}' = 0.074$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chords 3 and 4

Shear wall aspect ratio; $h / b_2 = 1.011$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 1.893$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_2 / 2 = 1.216 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_2 / sum(k_1, k_2, k_3)) \times h / b_2 - P = -0.406 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = -20 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = -0.017$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 1.893$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 = 0.338$ kips

Maximum compressive force in chord; $C = V \times (k_2 / sum(k_1, k_2, k_3)) \times h / b_2 + P = 1.147$ kips

Maximum applied compressive stress; $f_c = C / A_e = 46 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_f \times C_P = 1252 \text{ lb/in}^2$

 $f_c / F_c' = 0.037$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp} = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp}' = 0.074$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chords 5 and 6

Shear wall aspect ratio; $h / b_3 = 1.471$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 1.893$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_3 / 2 = 0.836 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_3 / sum(k_1, k_2, k_3)) \times h / b_3 - P = -0.033 \text{ kips}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
V	23-	283			
Section	Sheet no./rev.				
			6		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Maximum applied tensile stress; $f_t = T / A_{en} = -2 lb/in^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = -0.001$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 1.893$ kips

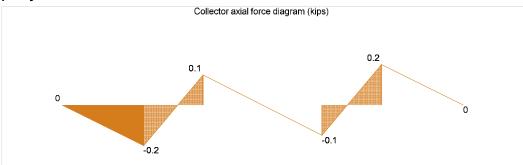
Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 = 0.338 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_3 / sum(k_1, k_2, k_3)) \times h / b_3 + P = 1.141$ kips

Maximum applied compressive stress; $f_c = C / A_e = 46 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 1252 \text{ lb/in}^2$

 $f_c / F_c' = 0.037$


PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp'} = 0.074$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Collector capacity

Collector seismic design force factor; $F_{Coll} = 1$

Maximum shear force on wall; $V_{max} = max(F_{Coll} \times V_{s_max}, V_{w_max}) = 1.893 \text{ kips}$

Maximum force in collector; $P_{coll} = 0.161$ kips

Maximum applied tensile stress; $f_t = P_{coll} / (2 \times A_s) = 10 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{1196} \text{ lb/in}^2$

 $f_t / F_t' = 0.008$

PASS - Design tensile stress exceeds maximum applied tensile stress

Maximum applied compressive stress; $f_c = P_{coll} / (2 \times A_s) = 10 \text{ lb/in}^2$

Column stability factor; $C_P = 1.00$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_f \times C_p = \textbf{2376 lb/in}^2$

 $f_c / F_c' = 0.004$

PASS - Design compressive stress exceeds maximum applied compressive stress

Wind load deflection

Design shear force; $V_{\delta w} = f_{Wserv} \times W = 3.155 \text{ kips}$ Deflection limit; $\Delta_{w \text{ allow}} = h / 360 = 0.27 \text{ in}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
	WSS - Lee's Su	23-	283		
Section		Sheet no./rev.			
			7		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Segment 1

Induced unit shear; $v_{\delta w} = V_{\delta w} \times (k_1 / sum(k_1, k_2, k_3)) / b_1 = 165.52 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 1 deflection – Eqn. 4.3-1; $\delta_{\text{sww1}} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_1) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_1 = 0.092 \text{ in}$

 $\delta_{\text{sww1}} / \Delta_{\text{w_allow}} = \mathbf{0.343}$

PASS - Shear wall deflection is less than deflection limit

Segment 2

Induced unit shear; $V_{\delta w} = V_{\delta w} \times (k_2 / sum(k_1, k_2, k_3)) / b_2 = 166.79 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000 kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 2 deflection – Eqn. 4.3-1; $\delta_{\text{Sww}2} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_2) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_2 = \textbf{0.092} \text{ in}$

 $\delta_{\text{sww2}} / \Delta_{\text{w allow}} = \mathbf{0.342}$

PASS - Shear wall deflection is less than deflection limit

Segment 3

Induced unit shear; $v_{\delta w} = V_{\delta w} \times (k_3 / sum(k_1, k_2, k_3)) / b_3 = 165.52 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 3 deflection – Eqn. 4.3-1; $\delta_{sww3} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_3) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_3 = \textbf{0.092} \text{ in}$

 $\delta_{\text{sww3}} / \Delta_{\text{w_allow}} = 0.343$

PASS - Shear wall deflection is less than deflection limit

Seismic deflection

Design shear force; $V_{\delta s} = E_q = 0.7 \text{ kips}$

Deflection limit; $\Delta_{s_allow} = 0.020 \times h = 1.942$ in

Deflection ampification factor; $C_{d\delta}$ = **4** Seismic importance factor; I_e = **1**

Segment 1

Induced unit shear; $v_{\delta s} = V_{\delta s} \times (k_1 / sum(k_1,k_2,k_3)) / b_1 = 36.7 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = 0.000$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 1 deflection – Eqn. 4.3-1; $\delta_{\text{swse1}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_1) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_1 = \textbf{0.021} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws1}} = C_{\text{d}\delta} \times \delta_{\text{swse1}} / I_e = 0.082$ in

 $\delta_{\text{sws1}} / \Delta_{\text{s}}$ allow = **0.042**

PASS - Shear wall deflection is less than deflection limit

Segment 2

Induced unit shear; $v_{\delta s} = V_{\delta s} \times (k_2 / sum(k_1, k_2, k_3)) / b_2 = 36.98 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 2 deflection – Eqn. 4.3-1; $\delta_{swse2} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_2) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_2 = \textbf{0.02} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws2}} = C_{\text{d}\delta} \times \delta_{\text{swse2}} / I_{\text{e}} = \textbf{0.082} \text{ in}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
	WSS - Lee's Su	23-	283		
Section		Sheet no./rev.			
			8		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

 $\delta_{\text{sws2}} / \Delta_{\text{s allow}} = 0.042$

PASS - Shear wall deflection is less than deflection limit

Segment 3

Induced unit shear; $v_{\delta s} = V_{\delta s} \times (k_3 / sum(k_1,k_2,k_3)) / b_3 = 36.7 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips,} v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

 $Segment \ 3 \ deflection - Eqn. \ 4.3-1; \\ \delta_{swse3} = 2 \times v_{\delta s} \times h^3 \ / \ (3 \times E \times A_e \times b_3) \ + \ v_{\delta s} \times h \ / \ (G_a) \ + \ h \times \Delta_a \ / \ b_3 = \textbf{0.021} \ in$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws3} = C_{d\delta} \times \delta_{swse3} / I_e = 0.082$ in

 $\delta_{\text{sws3}} / \Delta_{\text{s allow}} = 0.042$

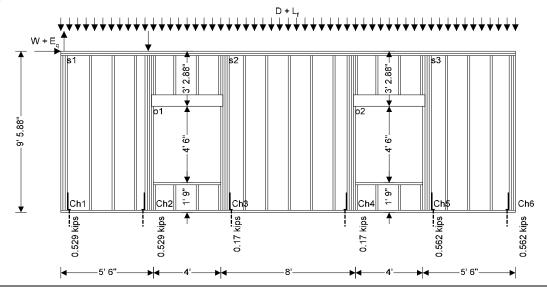
PASS - Shear wall deflection is less than deflection limit

WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10


Design summary

Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	6476	2927	0.452	PASS
Chord capacity	lb/in ²	976	120	0.191	PASS
Collector capacity	lb/in ²	1196	15	0.013	PASS
Deflection	in	0.316	0.170	0.537	PASS

Panel details

Structural wood panel sheathing on one side

Panel height; h = 9.49 ftPanel length; b = 27 ft

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
	WSS - Lee's Su	23-	283		
Section		Sheet no./rev.			
			9		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Panel opening details

 $w_{o1} = 4 ft$ Width of opening; $h_{o1} = 4.5 \text{ ft}$ Height of opening; Height to underside of lintel over opening; $I_{o1} = 6.25 \text{ ft}$ Position of opening; $P_{o1} = 5.5 \text{ ft}$ Width of opening; $w_{o2} = 4 ft$ Height of opening; $h_{02} = 4.5 \text{ ft}$ Height to underside of lintel over opening; $I_{o2} = 6.25 \text{ ft}$ Position of opening; $P_{o2} = 17.5 \text{ ft}$

Total area of wall; $A = h \times b - w_{01} \times h_{01} - w_{02} \times h_{02} = 220.23 \text{ ft}^2$

Panel construction

2" x 6" Nominal stud size; 1.5" x 5.5" Dressed stud size; Cross-sectional area of studs; $A_s = 8.25 \text{ in}^2$ Stud spacing; s = 16 inNominal end post size; 3 x 2" x 6" Dressed end post size; 3 x 1.5" x 5.5" $A_e = 24.75 \text{ in}^2$ Cross-sectional area of end posts; Dia = 1 in Hole diameter; Net cross-sectional area of end posts; A_{en} = **20.25** in² 2 x 2" x 6" Nominal collector size; Dressed collector size; 2 x 1.5" x 5.5"

Service condition; Dry

Temperature; 100 degF or less Vertical anchor stiffness; $k_a = 49087$ lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

 $\label{eq:specific gravity;} G = \textbf{0.50}$ Tension parallel to grain; $F_t = \textbf{575} \text{ lb/in}^2$ Compression parallel to grain; $F_c = \textbf{1350} \text{ lb/in}^2$ Compression perpendicular to grain; $F_{c_perp} = \textbf{625} \text{ lb/in}^2$ Modulus of elasticity; $E = \textbf{1600000} \text{ lb/in}^2$ Minimum modulus of elasticity; $E_{min} = \textbf{580000} \text{ lb/in}^2$

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 6"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 520 \text{ lb/ft}$ Nominal unit shear capacity for wind design; $v_w = 730 \text{ lb/ft}$ Apparent shear wall shear stiffness; $G_a = 15 \text{ kips/in}$

Loading details

Dead load acting on top of panel; D = **304.425** lb/ft

11320 West 79th Street Lenexa, Kansas 66214

	Project				Job Ref.	
	V	23-	283			
	Section	Sheet no./rev.				
				10		
ſ	Calc. by	Date	Chk'd by	Date	App'd by	Date
	GL	7/25/2023	DN			

Floor live load acting on top of panel; $L_f = 487.08 \text{ lb/ft}$

Self weight of panel; $S_{wt} = 25 \text{ lb/ft}^2$ In plane wind load acting at head of panel; W = 4878 lbsWind load serviceability factor; $f_{Wserv} = 1.00$ In plane seismic load acting at head of panel; $E_q = 1228.5 \text{ lbs}$

Design spectral response accel. par., short periods; S_{DS} = **0.106**

Chord forces from shear walls above

Chord	W _{ch[i]} (lbs)	E _{q_ch[i]} (lbs)	D _{C_ch[i]} (lbs)	D _{T_ch[i]} (lbs)	L _{f_ch[i]} (lbs)	L _{r_ch[i]} (lbs)	S _{ch[i]} (lbs)	R _{ch[i]} (lbs)
Ch1;	-1339;	-297;	338;	1393;	0;	162;	0;	0;
Ch2;	1339;	297;	338;	1393;	0;	162;	0;	0;
Ch3;	0;	0;	0;	0;	0;	0;	0;	0;
Ch4;	0;	0;	0;	0;	0;	0;	0;	0;
Ch5;	0;	0;	0;	0;	0;	0;	0;	0;
Ch6;	0;	0;	0;	0;	0;	0;	0;	0;

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.1; D + 0.6WLoad combination no.2; D + 0.7E

Load combination no.3; $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or S or R})$

Load combination no.4; $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6WLoad combination no.6; 0.6D + 0.7E

Adjustment factors

 $\label{eq:continuous_continuous$

 $C_{ME} = 1.00$

Temperature factor for tension – Table 2.3.3; $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

Wet service factor for modulus of elasticity - Table 4A

 $C_{tc} = 1.00$

Temperature factor for modulus of elasticity – Table 2.3.3

C_{tE} = **1.00**

 $\begin{array}{ll} \mbox{Incising factor} - \mbox{cl.4.3.8}; & \mbox{C}_i = \mbox{1.00} \\ \mbox{Buckling stiffness factor} - \mbox{cl.4.4.2}; & \mbox{C}_T = \mbox{1.00} \\ \mbox{Bearing area factor} - \mbox{cl. 3.10.4}; & \mbox{C}_b = \mbox{1.0} \\ \end{array}$

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 580000$ psi

Critical buckling design value; $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 1112 \text{ psi}$

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = 2376$ psi

For sawn lumber; c = 0.8

Column stability factor – eqn.3.7-1; $C_P = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*) / (c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*) / (c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*) / (c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*) / (c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*) / (c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*) / (c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*) / (c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / (c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / (c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / (c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / (c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / (c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*)) / (2 \times c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / (2 \times c) - (F_{cE} / F_{c}^*)) / (2 \times c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / (2 \times c) - (F_{cE} / F_{c}^*)) / (2 \times c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / (2 \times c) - (F_{cE} / F_{c}^*)) / (2 \times c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / (2 \times c) - (F_{cE} / F_{c}^*)) / (2 \times c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / (2 \times c) - (F_{cE} / F_{c}^*) / (2 \times c) - (F_{cE} / F_{c}^*)) / (2 \times c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / (2 \times c) - (F_{cE} / F_{c}^*)) / (2 \times c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / (2 \times c) - (F_{cE} / F_{c}^*)) / (2 \times c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) + (F_{cE} / F_{c}^*) / (2 \times c) + (F_{cE} / F_{c}^*) / (2 \times c) + (F_{cE} / F_{c}^*))$

0.41

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
,	WSS - Lee's Sui	23-	283		
Section		Sheet no./rev.			
			11		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio; 3.5

Segment 1 wall length; $b_1 = 5.5 \text{ ft}$ Shear wall aspect ratio; $h / b_1 = 1.725$ Segment 2 wall length; $b_2 = 8 \text{ ft}$ Shear wall aspect ratio; $h / b_2 = 1.186$ Segment 3 wall length; $b_3 = 5.5 \text{ ft}$ Shear wall aspect ratio; $h / b_3 = 1.725$

Segmented shear wall capacity - Equal deflection method

Wind loading:

Segment 2 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_2) = 0.024$ in/kip

Segment 2 stiffness; $k_2 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_2^2) + h / (G_a \times b_2) + h \times \Delta_{a1} / b_2) = 9.054$

kips/in

Unit shear capacity, widest segment; $v_{sww2} = v_w / 2 = 365$ plf

Vertical deflction under capacity load; $\Delta_{a_Cap} = h \times v_{sww2} / k_a = 0.071$ in

Deflection under capacity load; $\delta_{\text{Cap}} = 2 \times v_{\text{sww2}} \times h^3 / (3 \times E \times A_{\text{e}} \times b_2) + v_{\text{sww2}} \times h / (G_{\text{a}}) + h \times \Delta_{\text{a} \text{ Cap}} / b_2 = 0$

0.323 in

Segment 1 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_1) = 0.035$ in/kip

Segment 1 stiffness; $k_1 = 1/(2 \times h^3/(3 \times E \times A_e \times b_1^2) + h/(G_a \times b_1) + h \times \Delta_{a1}/b_1) = 5.513$

kins/in

Segment 1 unit shear at δ_{Cap} ; $v_{dsww1} = \delta_{Cap} \times k_1 / b_1 = 323.27 \text{ plf}$

Segment 1 shear capacity; $v_{sww1} = v_w / 2 = 365 \text{ plf}$

 $v_{dsww1} / v_{sww1} = 0.886$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

Segment 3 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_3) = 0.035$ in/kip

Segment 3 stiffness; $k_3 = 1/(2 \times h^3/(3 \times E \times A_e \times b_3^2) + h/(G_a \times b_3) + h \times \Delta_{a1}/b_3 = 5.513$

kips/in

Segment 3 unit shear at δ_{Cap} ; $v_{dsww3} = \delta_{Cap} \times k_3 / b_3 = 323.27$ plf

Segment 3 shear capacity; $v_{sww3} = v_w / 2 = 365$ plf

 $V_{dsww3} / V_{sww3} = 0.886$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{\sf Cap}$

Maximum shear force under wind loading; $V_{w max} = 0.6 \times W = 2.927$ kips

Shear capacity for wind loading; $V_w = \min(v_{sww1}, v_{dsww1}) \times b_1 + v_{sww2} \times b_2 + \min(v_{sww3}, v_{dsww3}) \times b_3 = 6.476 \text{ kips}$

 $V_{w \text{ max}} / V_{w} = 0.452$

PASS - Shear capacity for wind load exceeds maximum shear force

Seismic loading:

Segment 2 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_2) = 0.024$ in/kip

Segment 2 stiffness; $k_2 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_2^2) + h / (G_a \times b_2) + h \times \Delta_{a1} / b_2) = 9.054$

kips/in

Unit shear capacity, widest segment; $v_{sws2} = v_s / 2 = 260 \text{ plf}$

Vertical deflction under capacity load; $\Delta_{a \text{ Cap}} = h \times v_{sws2} / k_a = 0.050 \text{ in}$

Deflection under capacity load; $\delta_{Cap} = 2 \times v_{sws2} \times h^3 / (3 \times E \times A_e \times b_2) + v_{sws2} \times h / (G_a) + h \times \Delta_{a \ Cap} / b_2 = 0$

0.23 in

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
,	WSS - Lee's Sur	23-	283		
Section		Sheet no./rev.			
			12		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Segment 1 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_1) = 0.035$ in/kip

Segment 1 stiffness; $k_1 = 1/(2 \times h^3/(3 \times E \times A_e \times b_1^2) + h/(G_a \times b_1) + h \times \Delta_{a1}/b_1) = 5.513$

kips/in

Segment 1 unit shear at δ_{Cap} ; $v_{dsws1} = \delta_{Cap} \times k_1 / b_1 = 230.28 \text{ plf}$

Segment 1 shear capacity; $v_{sws1} = v_s / 2 = 260 \text{ plf}$

 $V_{dsws1} / V_{sws1} = 0.886$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Segment 3 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_3) = 0.035$ in/kip

Segment 3 stiffness; $k_3 = 1/(2 \times h^3/(3 \times E \times A_e \times b_3^2) + h/(G_a \times b_3) + h \times \Delta_{a1}/b_3) = 5.513$

kips/in

Segment 3 unit shear at δ_{Cap} ; $v_{dsws3} = \delta_{Cap} \times k_3 / b_3 = 230.28 \text{ plf}$

Segment 3 shear capacity; $v_{sws3} = v_s / 2 = 260 \text{ plf}$

 $v_{dsws3} / v_{sws3} = 0.886$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Maximum shear force under seismic loading; $V_{s_max} = 0.7 \times E_q = 0.86$ kips

Shear capacity for seismic loading; $V_s = min(v_{sws1}, v_{dsws1}) \times b_1 + v_{sws2} \times b_2 + min(v_{sws3}, v_{dsws3}) \times b_3 = \textbf{4.613} \text{ kips}$

 $V_{s max} / V_{s} = 0.186$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chord 1

Shear wall aspect ratio; $h / b_1 = 1.725$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 2.927$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + 0.6 \times W_{ch1} + 0.6 \times D_{T ch1} = 0.926 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_1 / \text{sum}(k_1, k_2, k_3)) \times h / b_1 - P = 0.529 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = 26 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_F \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = 0.022$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 2.927$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + -1 \times 0.6 \times W_{ch1} + D_{C ch1} = 1.502 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_1 / sum(k_1, k_2, k_3)) \times h / b_1 + P = 2.958$ kips

Maximum applied compressive stress; $f_c = C / A_e = 120 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{fc} \times C_f \times C_P = 976 \text{ lb/in}^2$

 $f_c / F_c' = 0.122$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp'} = 0.191$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 2

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 2.927$ kips

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
,	NSS - Lee's Sur	23-	283		
Section		Sheet no./rev.			
			13		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + -1 \times 0.6 \times W_{ch2} + 0.6 \times D_{T_ch2} = 0.926$

kips

Maximum tensile force in chord; $T = V \times (k_1 / \text{sum}(k_1, k_2, k_3)) \times h / b_1 - P = 0.529 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = 26 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = 0.022$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 2.927$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + 0.6 \times W_{ch2} + D_{C ch2} = 1.502 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_1 / sum(k_1, k_2, k_3)) \times h / b_1 + P = 2.958$ kips

Maximum applied compressive stress; $f_c = C / A_e = 120 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = \textbf{976} \text{ lb/in}^2$

 $f_c / F_c' = 0.122$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp}' = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp}' = 0.191$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 3

Shear wall aspect ratio; $h / b_2 = 1.186$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 2.927$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_2 / 2 = 1.3 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_2 / \text{sum}(k_1, k_2, k_3)) \times h / b_2 - P = \textbf{0.170 kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = 8 lb/in^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = 0.007$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 2.927$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 = 0.361 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_2 / sum(k_1,k_2,k_3)) \times h / b_2 + P = \textbf{1.831} \text{ kips}$

Maximum applied compressive stress; $f_c = C / A_e = 74 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = \textbf{976 lb/in}^2$

 $f_c / F_c' = 0.076$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = \textbf{625 lb/in}^{2}$

 $f_c / F_{c perp}' = 0.118$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 4

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 2.927$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_2 / 2 = 1.3 \text{ kips}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
,	WSS - Lee's Sur	23-	283		
Section		Sheet no./rev.			
					14
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Maximum tensile force in chord; $T = V \times (k_2 / \text{sum}(k_1, k_2, k_3)) \times h / b_2 - P = 0.170 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = 8 lb/in^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = 0.007$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 2.927$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 = 0.361 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_2 / sum(k_1, k_2, k_3)) \times h / b_2 + P = 1.831 \text{ kips}$

Maximum applied compressive stress; $f_c = C / A_e = 74 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = \textbf{976 lb/in}^2$

 $f_c / F_c' = 0.076$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp'} = 0.118$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 5

Shear wall aspect ratio; $h / b_3 = 1.725$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 2.927 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_3 / 2 = \mathbf{0.894} \text{ kips}$ Maximum tensile force in chord; $T = V \times (k_3 / \text{sum}(k_1, k_2, k_3)) \times h / b_3 - P = \mathbf{0.562} \text{ kips}$

With the fine force in choice, $1 - \sqrt{(\kappa_3 / 3 \sin(\kappa_1, \kappa_2, \kappa_3))} \times 11 / 3 - 1 - 0.0$

Maximum applied tensile stress; $f_t = T / A_{en} = 28 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \ lb/in^2$

 $f_t / F_t' = 0.023$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 2.927$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 = 0.361$ kips

Maximum compressive force in chord; $C = V \times (k_3 / sum(k_1, k_2, k_3)) \times h / b_3 + P = 1.817$ kips

Maximum applied compressive stress; $f_c = C / A_e = 73 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 976 \text{ lb/in}^2$

 $f_c / F_c' = 0.075$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp} = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp}' = 0.117$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 6

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 2.927$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_3 / 2 = \textbf{0.894} \text{ kips}$ Maximum tensile force in chord; $T = V \times (k_3 / \text{sum}(k_1, k_2, k_3)) \times h / b_3 - P = \textbf{0.562} \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = 28 \text{ lb/in}^2$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
,	WSS - Lee's Sur	23-	283		
Section		Sheet no./rev.			
			15		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = 0.023$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 2.927$ kips

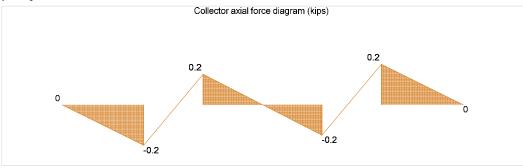
Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 = 0.361 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_3 / sum(k_1, k_2, k_3)) \times h / b_3 + P = 1.817$ kips

Maximum applied compressive stress; $f_c = C / A_e = 73 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = \textbf{976 lb/in}^2$

 $f_c / F_c' = 0.075$


PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c_perp'} = 0.117$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Collector capacity

Collector seismic design force factor; $F_{Coll} = 1$

Maximum shear force on wall; $V_{max} = max(F_{Coll} \times V_{s_max}, V_{w_max}) = 2.927 \text{ kips}$

Maximum force in collector; $P_{coll} = 0.248 \text{ kips}$

Maximum applied tensile stress; $f_t = P_{coll} / (2 \times A_s) = 15 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = 0.013$

PASS - Design tensile stress exceeds maximum applied tensile stress

Maximum applied compressive stress; $f_c = P_{coll} / (2 \times A_s) = 15 \text{ lb/in}^2$

Column stability factor; $C_P = 1.00$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 2376 \text{ lb/in}^2$

 $f_c / F_c' = 0.006$

PASS - Design compressive stress exceeds maximum applied compressive stress

Hold down force

Chord 1; $T_1 = 0.529 \text{ kips}$ Chord 2; $T_2 = 0.529 \text{ kips}$ Chord 3; $T_3 = 0.17 \text{ kips}$ Chord 4; $T_4 = 0.17 \text{ kips}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
V	23-	283			
Section	Sheet no./rev.				
					16
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Chord 5; $T_5 = 0.562 \text{ kips}$ Chord 6; $T_6 = 0.562 \text{ kips}$

Chord reactions by load type

Chord	W _{ch[i]R}	E _{q_ch[i]R}	D _{C_ch[i]R}	D _{T_ch[i]R}	L _{f_ch[i]R}	L _{r_ch[i]R}	S _{ch[i]R}	R _{ch[i]R}
	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
Ch1;	-3765;	-908;	699;	2883;	325;	162;	0;	0;
Ch2;	3765;	908;	699;	2883;	325;	162;	0;	0;
Ch3;	-2450;	-617;	361;	2167;	325;	0;	0;	0;
Ch4;	2450;	617;	361;	2167;	325;	0;	0;	0;
Ch5;	-2426;	-611;	361;	1490;	325;	0;	0;	0;
Ch6;	2426;	611;	361;	1490;	325;	0;	0;	0;

Wind load deflection

Design shear force; $V_{\delta w} = f_{Wserv} \times W = \textbf{4.878}$ kips Deflection limit; $\Delta_{w \text{ allow}} = h / 360 = \textbf{0.316}$ in

Segment 1

Induced unit shear; $v_{\delta w} = V_{\delta w} \times (k_1 / sum(k_1, k_2, k_3)) / b_1 = 255.67 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2 - 0.6 \times \min(D_{T_ch1}, D_{T_ch2})$

+ $max(abs(W_{ch1}), abs(W_{ch2}))) = 0.000 \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 1 deflection – Eqn. 4.3-1; $\delta_{\text{sww1}} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_1) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_1 = \textbf{0.17} \text{ in}$

 $\delta_{\text{sww1}} / \Delta_{\text{w allow}} = 0.537$

PASS - Shear wall deflection is less than deflection limit

Segment 2

Induced unit shear; $v_{\delta w} = V_{\delta w} \times (k_2 / sum(k_1, k_2, k_3)) / b_2 = 258.21 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips,} v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000} \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 2 deflection – Eqn. 4.3-1; $\delta_{\text{sww2}} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_2) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_2 = \textbf{0.169} \text{ in}$

 $\delta_{\text{sww2}} / \Delta_{\text{w_allow}} = 0.534$

PASS - Shear wall deflection is less than deflection limit

Segment 3

Induced unit shear; $v_{\delta w} = V_{\delta w} \times (k_3 / sum(k_1, k_2, k_3)) / b_3 = 255.67 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 3 deflection – Eqn. 4.3-1; $\delta_{sww3} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_3) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_3 = \textbf{0.17} \text{ in } h \times \Delta_a / b_3$

 δ_{sww3} / $\Delta_{\text{w allow}}$ = **0.537**

PASS - Shear wall deflection is less than deflection limit

Seismic deflection

Design shear force; $V_{\delta s} = E_q = 1.229 \text{ kips}$

Deflection limit; $\Delta_{\text{s allow}} = 0.020 \times \text{h} = 2.278 \text{ in}$

Deflection ampification factor; $C_{d\delta}$ = 4 Seismic importance factor; I_e = 1

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
	WSS - Lee's Su	23-	283		
Section		Sheet no./rev.			
				,	17
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Segment 1

Induced unit shear; $v_{\delta s} = V_{\delta s} \times (k_1 / sum(k_1, k_2, k_3)) / b_1 = 64.39 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2

 S_{DS}) × min(D_{T_ch1} , D_{T_ch2}) + max(abs(E_{q_ch1}),abs(E_{q_ch2}))) = **0.000** kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 1 deflection – Eqn. 4.3-1; $\delta_{\text{swse1}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_1) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_1 = \textbf{0.043} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws1} = C_{d\delta} \times \delta_{swse1} / I_e = 0.171$ in

 δ_{sws1} / Δ_{s} allow = **0.075**

PASS - Shear wall deflection is less than deflection limit

Segment 2

Induced unit shear; $v_{\delta s} = V_{\delta s} \times (k_2 / sum(k_1, k_2, k_3)) / b_2 = 65.03 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 2 deflection – Eqn. 4.3-1; $\delta_{\text{swse2}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_2) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_2 = \textbf{0.043} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws2} = C_{d\delta} \times \delta_{swse2} / I_e = \textbf{0.17} \text{ in}$

 δ_{sws2} / Δ_{s} allow = **0.075**

PASS - Shear wall deflection is less than deflection limit

Segment 3

Induced unit shear; $v_{\delta s} = V_{\delta s} \times \left(k_3 / \text{sum}(k_1, k_2, k_3)\right) / b_3 = \textbf{64.39} \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

 $Segment \ 3 \ deflection - Eqn. \ 4.3-1; \\ \delta_{swse3} = 2 \times v_{\delta s} \times h^3 \ / \ (3 \times E \times A_e \times b_3) \ + \ v_{\delta s} \times h \ / \ (G_a) \ + \ h \times \Delta_a \ / \ b_3 = \textbf{0.043} \ in$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws3} = C_{d\delta} \times \delta_{swse3}$ / $I_e = 0.171$ in

 δ_{sws3} / $\Delta_{\text{s_allow}}$ = **0.075**

PASS - Shear wall deflection is less than deflection limit

11320 West 79th Street Lenexa, Kansas 66214

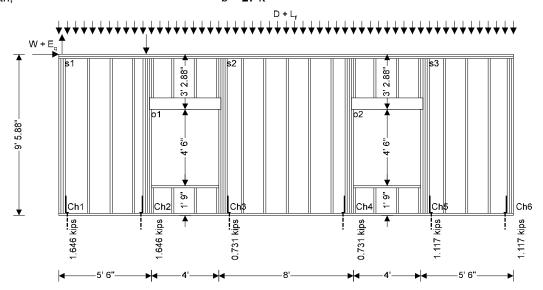
Project				Job Ref.	
,	WSS - Lee's Sui	23-	283		
Section		Sheet no./rev.			
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10


Design summary

Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	6476	4042	0.624	PASS
Chord capacity	lb/in ²	976	215	0.345	PASS
Collector capacity	lb/in ²	1196	21	0.017	PASS
Deflection	in	0.285	0.270	0.947	PASS

Panel details

Structural wood panel sheathing on one side

Panel height; h = 9.49 ftPanel length; b = 27 ft

Panel opening details

Width of opening; $w_{o1} = 4 ft$ Height of opening; $h_{o1} = 4.5 \text{ ft}$ Height to underside of lintel over opening; $I_{o1} = 6.25 \text{ ft}$ Position of opening; $P_{o1} = 5.5 \text{ ft}$ Width of opening; $w_{o2} = 4 ft$ Height of opening; $h_{o2} = 4.5 \text{ ft}$ Height to underside of lintel over opening; $I_{o2} = 6.25 \text{ ft}$ Position of opening; P_{o2} = **17.5** ft

Total area of wall; $A = h \times b - w_{01} \times h_{01} - w_{02} \times h_{02} = 220.23 \text{ ft}^2$

Panel construction

Nominal stud size; 2" x 6"

Dressed stud size; 1.5" x 5.5"

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
	WSS - Lee's Su	23-	283		
Section		Sheet no./rev.			
					19
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Cross-sectional area of studs; $A_s = 8.25 \text{ in}^2$ Stud spacing; s = 16 in Nominal end post size; 3 x 2" x 6" Dressed end post size; 3 x 1.5" x 5.5" $A_e = 24.75 \text{ in}^2$ Cross-sectional area of end posts; Dia = 1 in Hole diameter; Net cross-sectional area of end posts; $A_{en} = 20.25 \text{ in}^2$ Nominal collector size; 2 x 2" x 6" Dressed collector size; 2 x 1.5" x 5.5"

Service condition; Dry

Temperature; 100 degF or less Vertical anchor stiffness; $k_a = 49087$ lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

 $\label{eq:specific gravity;} G = \textbf{0.50}$ Tension parallel to grain; $F_t = \textbf{575} \text{ lb/in}^2$ Compression parallel to grain; $F_c = \textbf{1350} \text{ lb/in}^2$ Compression perpendicular to grain; $F_{c_perp} = \textbf{625} \text{ lb/in}^2$ Modulus of elasticity; $E = \textbf{1600000} \text{ lb/in}^2$ Minimum modulus of elasticity; $E_{min} = \textbf{580000} \text{ lb/in}^2$

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 6"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 520 \text{ lb/ft}$ Nominal unit shear capacity for wind design; $v_w = 730 \text{ lb/ft}$ Apparent shear wall shear stiffness; $G_a = 15 \text{ kips/in}$

Loading details

Dead load acting on top of panel; D = 304.425 lb/ft Floor live load acting on top of panel; $L_f = 487.08 \text{ lb/ft}$ Self weight of panel; $S_{wt} = 25 \text{ lb/ft}^2$ In plane wind load acting at head of panel; W = 6737 lbs Wind load serviceability factor; $f_{Wserv} = 1.00$ In plane seismic load acting at head of panel; $E_q = 1569 \text{ lbs}$ Design spectral response accel. par., short periods; $S_{DS} = 0.106$

Chord forces from shear walls above

Chord	W _{ch[i]} (lbs)	Eq_ch[i] (lbs)	Dc_ch[i] (lbs)	D _{T_ch[i]} (lbs)	L _{f_ch[i]} (lbs)	L _{r_ch[i]} (lbs)	S _{ch[i]} (lbs)	R _{ch[i]} (lbs)
Ch1;	-3765;	-908;	699;	2883;	325;	162;	0;	0;
Ch2;	3765;	908;	699;	2883;	325;	162;	0;	0;
Ch3;	0;	0;	0;	0;	0;	0;	0;	0;
Ch4;	0;	0;	0;	0;	0;	0;	0;	0;
Ch5;	0;	0;	0;	0;	0;	0;	0;	0;
Ch6;	0;	0;	0;	0;	0;	0;	0;	0;

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
,	WSS - Lee's Sui	23-	283		
Section		Sheet no./rev.			
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.1; D + 0.6WLoad combination no.2; D + 0.7E

Load combination no.3; $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or S or R})$

Load combination no.4; $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6WLoad combination no.6; 0.6D + 0.7E

Adjustment factors

C_{ME} = **1.00**

Temperature factor for tension – Table 2.3.3; $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

Temperature factor for modulus of elasticity - Table 2.3.3

 $C_{tE} = 1.00$

 $\begin{array}{ll} \mbox{Incising factor} - \mbox{cl.4.3.8}; & \mbox{C_i} = \mbox{1.00} \\ \mbox{Buckling stiffness factor} - \mbox{cl.4.4.2}; & \mbox{C_T} = \mbox{1.00} \\ \mbox{Bearing area factor} - \mbox{cl. 3.10.4}; & \mbox{C_b} = \mbox{1.0} \\ \end{array}$

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 580000$ psi

Critical buckling design value; $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 1112 \text{ psi}$

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = 2376 \text{ psi}$

For sawn lumber; c = 0.8

Column stability factor - eqn.3.7-1; $C_P = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c)]^2 - (F_{cE} / F_{c}^*) / c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c)]^2 - (F_{cE} / F_{c}^*) / c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c)]^2 - (F_{cE} / F_{c}^*) / c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c)]^2 - (F_{cE} / F_{c}^*) / c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*)) / (2 \times c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*)) / (2 \times c) = (1 + (F_{cE} / F_{c}^*$

0.41

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio; 3.5
Segment 1 wall length; $b_1 = 5.5$ ft
Shear wall aspect ratio; $h / b_1 = 1.725$ Segment 2 wall length; $b_2 = 8$ ft
Shear wall aspect ratio; $h / b_2 = 1.186$ Segment 3 wall length; $b_3 = 5.5$ ft
Shear wall aspect ratio; $h / b_3 = 1.725$

Segmented shear wall capacity - Equal deflection method

Wind loading:

Segment 2 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_2) = 0.024 \text{ in/kip}$

Segment 2 stiffness; $k_2 = 1/(2 \times h^3/(3 \times E \times A_e \times b_2^2) + h/(G_a \times b_2) + h \times \Delta_{a1}/b_2) = 9.054$

kips/in

Unit shear capacity, widest segment; $v_{sww2} = v_w / 2 = 365 \text{ plf}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
\	NSS - Lee's Sur	23-	283		
Section		Sheet no./rev.			
				2	21
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Vertical deflction under capacity load; $\Delta_{a_Cap} = h \times v_{sww2} / k_a = 0.071$ in

Deflection under capacity load; $\delta_{Cap} = 2 \times v_{sww2} \times h^3 / (3 \times E \times A_e \times b_2) + v_{sww2} \times h / (G_a) + h \times \Delta_{a_Cap} / b_2 = 0$

0.323 in

Segment 1 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_1) = 0.035$ in/kip

Segment 1 stiffness; $k_1 = 1/(2 \times h^3/(3 \times E \times A_e \times b_1^2) + h/(G_a \times b_1) + h \times \Delta_{a1}/b_1) = 5.513$

kips/in

Segment 1 unit shear at δ_{Cap} ; $v_{dsww1} = \delta_{Cap} \times k_1 / b_1 = 323.27$ plf

Segment 1 shear capacity; $v_{sww1} = v_w / 2 = 365 \text{ plf}$

 $V_{dsww1} / V_{sww1} = 0.886$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

Segment 3 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_3) = 0.035$ in/kip

Segment 3 stiffness; $k_3 = 1/(2 \times h^3/(3 \times E \times A_e \times b_3^2) + h/(G_a \times b_3) + h \times \Delta_{a1}/b_3) = 5.513$

kips/in

Segment 3 unit shear at δ_{Cap} ; $v_{dsww3} = \delta_{Cap} \times k_3 / b_3 = 323.27$ plf

Segment 3 shear capacity; $v_{sww3} = v_w / 2 = 365 \text{ plf}$

 $v_{dsww3} / v_{sww3} = 0.886$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{\! ext{Cap}}$

Maximum shear force under wind loading; $V_{w_{max}} = 0.6 \times W = 4.042 \text{ kips}$

Shear capacity for wind loading; $V_w = min(v_{sww1}, v_{dsww1}) \times b_1 + v_{sww2} \times b_2 + min(v_{sww3}, v_{dsww3}) \times b_3 = \textbf{6.476 kips}$

 $V_{w \text{ max}} / V_{w} = 0.624$

PASS - Shear capacity for wind load exceeds maximum shear force

Seismic loading:

Segment 2 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_2) = 0.024$ in/kip

Segment 2 stiffness; $k_2 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_2^2) + h / (G_a \times b_2) + h \times \Delta_{a1} / b_2) = 9.054$

kips/in

Unit shear capacity, widest segment; $v_{sws2} = v_s / 2 = 260 \text{ plf}$

Vertical deflction under capacity load; $\Delta_{a_Cap} = h \times v_{sws2} / k_a = 0.050$ in

Deflection under capacity load; $\delta_{\text{Cap}} = 2 \times v_{\text{sws2}} \times h^3 / \left(3 \times E \times A_e \times b_2\right) + v_{\text{sws2}} \times h / \left(G_a\right) + h \times \Delta_{a_\text{Cap}} / b_2 = 0$

0.23 in

Segment 1 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_1) = 0.035$ in/kip

Segment 1 stiffness; $k_1 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_1^2) + h / (G_a \times b_1) + h \times \Delta_{a1} / b_1) = 5.513$

kips/in

Segment 1 unit shear at δ_{Cap} ; $V_{dsws1} = \delta_{Cap} \times k_1 / b_1 = 230.28 \text{ plf}$

Segment 1 shear capacity; $v_{sws1} = v_s / 2 = 260 \text{ plf}$

 $v_{dsws1} / v_{sws1} =$ **0.886**

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Segment 3 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_3) = 0.035$ in/kip

Segment 3 stiffness; $k_3 = 1/(2 \times h^3/(3 \times E \times A_e \times b_3^2) + h/(G_a \times b_3) + h \times \Delta_{a1}/b_3) = 5.513$

kips/in

Segment 3 unit shear at δ_{Cap} ; $v_{dsws3} = \delta_{Cap} \times k_3 / b_3 = 230.28 \text{ plf}$

Segment 3 shear capacity; $v_{sws3} = v_s / 2 = 260 \text{ plf}$

 $v_{dsws3} / v_{sws3} =$ **0.886**

PASS - Segment shear capacity exceeds segment unit shear at δc_{ap}

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
,	WSS - Lee's Sui	23-	283		
Section		Sheet no./rev.			
					22
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Maximum shear force under seismic loading; $V_{s max} = 0.7 \times E_{q} = 1.098$ kips

Shear capacity for seismic loading; $V_s = min(v_{sws1}, v_{dsws1}) \times b_1 + v_{sws2} \times b_2 + min(v_{sws3}, v_{dsws3}) \times b_3 = 4.613 \text{ kips}$

 $V_{s max} / V_{s} = 0.238$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chord 1

Shear wall aspect ratio; $h / b_1 = 1.725$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 4.042 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + 0.6 \times W_{ch1} + 0.6 \times D_{T ch1} = 0.364 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_1 / sum(k_1, k_2, k_3)) \times h / b_1 - P = 1.646 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = 81 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{1196 lb/in}^2$

 $f_t / F_t' = 0.068$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 4.042$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + -1 \times 0.6 \times W_{ch1} + D_{C ch1} = 3.319 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_1 / sum(k_1,k_2,k_3)) \times h / b_1 + P = 5.330 \text{ kips}$

Maximum applied compressive stress; $f_c = C / A_e = 215 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 976 \text{ lb/in}^2$

 $f_c / F_c' = 0.221$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mo}$

 $F_{\text{c_perp}}\text{'} = F_{\text{c_perp}} \times C_{\text{Mc}} \times C_{\text{tc}} \times C_{\text{i}} \times C_{\text{b}} = \textbf{625 lb/in}^2$

 $f_c / F_{c_perp}' = 0.345$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 2

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 4.042$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + -1 \times 0.6 \times W_{ch2} + 0.6 \times D_{T_ch2} = 0.364$

kips

Maximum tensile force in chord; $T = V \times (k_1 / sum(k_1, k_2, k_3)) \times h / b_1 - P = 1.646 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = 81 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = 0.068$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 4.042 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + 0.6 \times W_{ch2} + D_{C_ch2} = 3.319 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_1 / sum(k_1,k_2,k_3)) \times h / b_1 + P = 5.330 \text{ kips}$

Maximum applied compressive stress; $f_c = C / A_e = 215 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 976 \text{ lb/in}^2$

 $f_c / F_c' = 0.221$

PASS - Design compressive stress exceeds maximum applied compressive stress

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
,	WSS - Lee's Su	mmit, MO - GL I	_&	23-	283
Section				Sheet no./rev.	
				:	23
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Design bearing compr. stress, bottom plate; $F_{c perp} = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp'} = 0.345$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 3

Shear wall aspect ratio; $h / b_2 = 1.186$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 4.042 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_2 / 2 = 1.3 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_2 / sum(k_1, k_2, k_3)) \times h / b_2 - P = 0.731 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = 36 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = 0.030$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 4.042$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 = 0.361 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_2 / sum(k_1, k_2, k_3)) \times h / b_2 + P = 2.392$ kips

Maximum applied compressive stress; $f_c = C / A_e = 97 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 976 \text{ lb/in}^2$

 $f_c / F_c' = 0.099$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp} = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp'} = 0.155$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 4

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 4.042 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_2 / 2 = 1.3 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_2 / sum(k_1, k_2, k_3)) \times h / b_2 - P = 0.731 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = 36 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = 0.030$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 4.042 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 = 0.361 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_2 / sum(k_1, k_2, k_3)) \times h / b_2 + P = 2.392 \text{ kips}$

Maximum applied compressive stress; $f_c = C / A_e = 97 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 976 \text{ lb/in}^2$

 $f_c / F_c' = 0.099$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp}' = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp}' = 0.155$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
V	WSS - Lee's Sur	mmit, MO - GL L	.&	23-	283
Section				Sheet no./rev.	
				2	24
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 5

Shear wall aspect ratio; $h / b_3 = 1.725$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 4.042$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_3 / 2 = \textbf{0.894} \text{ kips}$ Maximum tensile force in chord; $T = V \times (k_3 / \text{sum}(k_1, k_2, k_3)) \times h / b_3 - P = \textbf{1.117} \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = 55 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = 0.046$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 4.042$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 = 0.361 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_3 / sum(k_1, k_2, k_3)) \times h / b_3 + P = 2.372 \text{ kips}$

Maximum applied compressive stress; $f_c = C / A_e = 96 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{fc} \times C_f \times C_P = \textbf{976 lb/in}^2$

 $f_c / F_c' = 0.098$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate;

 $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c_perp}' = 0.153$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 6

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 4.042$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_3 / 2 = \textbf{0.894} \text{ kips}$ Maximum tensile force in chord; $T = V \times (k_3 / \text{sum}(k_1, k_2, k_3)) \times h / b_3 - P = \textbf{1.117} \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = 55 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \ lb/in^2$

 $f_t / F_t' = 0.046$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 4.042$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 = 0.361 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_3 / sum(k_1, k_2, k_3)) \times h / b_3 + P = 2.372$ kips

Maximum applied compressive stress; $f_c = C / A_e = 96 \text{ lb/in}^2$

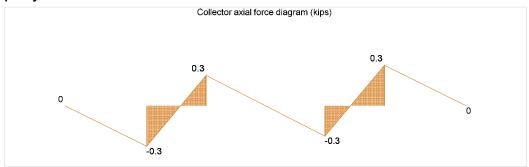
Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 976 \text{ lb/in}^2$

 $f_c / F_c' = 0.098$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c_perp}' = 0.153$


PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
,	WSS - Lee's Sui	mmit, MO - GL L	.&	23-	283
Section				Sheet no./rev.	
					25
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Collector capacity

Collector seismic design force factor; $F_{Coll} = 1$

Maximum shear force on wall; $V_{max} = max(F_{Coll} \times V_{s_max}, V_{w_max}) = 4.042 \text{ kips}$

Maximum force in collector; $P_{coll} = 0.342 \text{ kips}$

Maximum applied tensile stress; $f_t = P_{coll} / (2 \times A_s) = 21 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_F \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = 0.017$

PASS - Design tensile stress exceeds maximum applied tensile stress

Maximum applied compressive stress; $f_c = P_{coll} / (2 \times A_s) = 21 \text{ lb/in}^2$

Column stability factor; $C_P = 1.00$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_f \times C_P = 2376 \text{ lb/in}^2$

 $f_c / F_c' = 0.009$

PASS - Design compressive stress exceeds maximum applied compressive stress

Hold down force

Chord reactions by load type

Chord	W _{ch[i]R}	E _{q_ch[i]R}	Dc_ch[i]R	D _{T_ch[i]R}	L _{f_ch[i]R}	L _{r_ch[i]R}	S _{ch[i]R}	R _{ch[i]R}
	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
Ch1;	-7116;	-1688;	1060;	4373;	649;	162;	0;	0;
Ch2;	7116;	1688;	1060;	4373;	649;	162;	0;	0;
Ch3;	-3384;	-788;	361;	2167;	325;	0;	0;	0;
Ch4;	3384;	788;	361;	2167;	325;	0;	0;	0;
Ch5;	-3351;	-780;	361;	1490;	325;	0;	0;	0;
Ch6;	3351;	780;	361;	1490;	325;	0;	0;	0;

Wind load deflection

Design shear force; $V_{\delta w} = f_{Wserv} \times W = 6.737 \text{ kips}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
	WSS - Lee's Su	mmit, MO - GL L	_&	23-	283
Section				Sheet no./rev.	
				2	26
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Deflection limit;

 $\Delta_{\text{w_allow}} = h / 400 = 0.285 \text{ in}$

Segment 1

Induced unit shear; $v_{\delta w} = V_{\delta w} \times (k_1 / sum(k_1, k_2, k_3)) / b_1 = 353.1 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2 - 0.6 \times \min(D_{T \text{ ch1}}, D_{T \text{ ch2}})$

+ $max(abs(W_{ch1}), abs(W_{ch2}))) = 0.999 kips$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.020$ in

Segment 1 deflection – Eqn. 4.3-1; $\delta_{sww1} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_1) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_1 = \textbf{0.27} \text{ in}$

 $\delta_{\text{sww1}} / \Delta_{\text{w_allow}} = 0.947$

PASS - Shear wall deflection is less than deflection limit

Segment 2

Induced unit shear; $v_{\delta w} = V_{\delta w} \times (k_2 / sum(k_1, k_2, k_3)) / b_2 = 356.61 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000 kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 2 deflection – Eqn. 4.3-1; $\delta_{\text{sww}2} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_2) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_2 = \textbf{0.233} \text{ in}$

 $\delta_{\text{sww2}} / \Delta_{\text{w allow}} = 0.819$

PASS - Shear wall deflection is less than deflection limit

Segment 3

Induced unit shear; $v_{\delta w} = V_{\delta w} \times (k_3 / sum(k_1, k_2, k_3)) / b_3 = 353.1 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000 kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 3 deflection – Eqn. 4.3-1; $\delta_{\text{sww}3} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_3) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_3 = \textbf{0.234} \text{ in}$

 δ_{sww3} / $\Delta_{\text{w_allow}}$ = **0.824**

PASS - Shear wall deflection is less than deflection limit

Seismic deflection

Design shear force; $V_{\delta s} = E_q = 1.569 \text{ kips}$

Deflection limit; $\Delta_{s_allow} = 0.020 \times h = 2.278$ in

Deflection ampification factor; $C_{d\delta}$ = **4** Seismic importance factor; I_e = **1**

Segment 1

Induced unit shear; $v_{\delta s} = V_{\delta s} \times (k_1 / sum(k_1, k_2, k_3)) / b_1 = 82.24 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 \times b /$

 $S_{DS}) \times min(D_{T_ch1},D_{T_ch2}) + max(abs(E_{q_ch1}),abs(E_{q_ch2}))) = \textbf{0.000} \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 1 deflection – Eqn. 4.3-1; $\delta_{\text{swse1}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_1) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_1 = \textbf{0.055} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws1}} = C_{d\delta} \times \delta_{\text{swse1}} / I_e = \textbf{0.218}$ in

 $\delta_{\text{sws1}} / \Delta_{\text{s}}$ allow = **0.096**

PASS - Shear wall deflection is less than deflection limit

Segment 2

Induced unit shear; $v_{\delta s} = V_{\delta s} \times (k_2 / sum(k_1, k_2, k_3)) / b_2 = 83.05 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
,	NSS - Lee's Sur	mmit, MO - GL L	-&	23-	283
Section				Sheet no./rev.	
				2	27
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Segment 2 deflection – Eqn. 4.3-1; $\delta_{swse2} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_2) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_2 = \textbf{0.054} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws2} = C_{d\delta} \times \delta_{swse2} / I_e = \textbf{0.217} \text{ in}$

 δ_{sws2} / $\Delta_{\text{s_allow}}$ = 0.095

PASS - Shear wall deflection is less than deflection limit

Segment 3

Induced unit shear; $v_{\delta s} = V_{\delta s} \times \left(k_3 \, / \, \text{sum}(k_1, k_2, k_3)\right) \, / \, b_3 = \textbf{82.24} \, \text{lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 3 deflection – Eqn. 4.3-1; $\delta_{swse3} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_3) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_3 = \textbf{0.055} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws3}} = C_{\text{d}\delta} \times \delta_{\text{swse3}} \, / \, I_{\text{e}} = \textbf{0.218} \text{ in}$

 δ_{sws3} / $\Delta_{\text{s_allow}}$ = 0.096

PASS - Shear wall deflection is less than deflection limit

11320 West 79th Street Lenexa, Kansas 66214

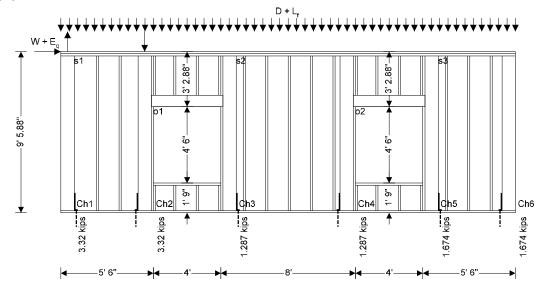
Project				Job Ref.	
,	WSS - Lee's Sui	mmit, MO - GL L	.&	23-	283
Section				Sheet no./rev.	
					28
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10


Design summary

Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	9566	5158	0.539	PASS
Chord capacity	lb/in ²	976	158	0.253	PASS
Collector capacity	lb/in ²	1196	27	0.022	PASS
Deflection	in	0.316	0.280	0.886	PASS

Panel details

Structural wood panel sheathing on one side

Panel height; h = 9.49 ftPanel length; b = 27 ft

Panel opening details

Width of opening; $w_{o1} = 4 \text{ ft}$ Height of opening; $h_{o1} = 4.5 \text{ ft}$ Height to underside of lintel over opening; $l_{o1} = 6.25 \text{ ft}$ Position of opening; $p_{o1} = 5.5 \text{ ft}$ Width of opening; $p_{o2} = 4 \text{ ft}$ Height of opening; $p_{o2} = 4.5 \text{ ft}$ Height to underside of lintel over opening; $p_{o2} = 6.25 \text{ ft}$

Position of opening; $P_{o2} = 17.5 \text{ ft}$

Total area of wall; $A = h \times b - w_{01} \times h_{01} - w_{02} \times h_{02} = 220.23 \text{ ft}^2$

Panel construction

Nominal stud size; 2" x 6"

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
V	VSS - Lee's Sur	mmit, MO - GL L	.&	23-	283
Section				Sheet no./rev.	
				2	29
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

1.5" x 5.5" Dressed stud size: $A_s = 8.25 \text{ in}^2$ Cross-sectional area of studs; s = 16 inStud spacing; Nominal end post size; 10" x 6" Dressed end post size; 9.5" x 5.5" Cross-sectional area of end posts; $A_e = 52.25 \text{ in}^2$ Hole diameter; Dia = 1 in $A_{en} = 42.75 in^2$ Net cross-sectional area of end posts;

Nominal collector size; $2 \times 2'' \times 6''$ Dressed collector size; $2 \times 1.5'' \times 5.5''$

Service condition; Dry

Temperature; 100 degF or less Vertical anchor stiffness; $k_a = 95741$ lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

 $\label{eq:specific gravity;} G = \textbf{0.50}$ Tension parallel to grain; $F_t = \textbf{575 lb/in}^2$ Compression parallel to grain; $F_c = \textbf{1350 lb/in}^2$ Compression perpendicular to grain; $F_{c_perp} = \textbf{625 lb/in}^2$ Modulus of elasticity; $E = \textbf{1600000 lb/in}^2$ Minimum modulus of elasticity; $E_{min} = \textbf{580000 lb/in}^2$

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 4"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 760 \text{ lb/ft}$ Nominal unit shear capacity for wind design; $v_w = 1065 \text{ lb/ft}$ Apparent shear wall shear stiffness; $G_a = 22 \text{ kips/in}$

Loading details

Dead load acting on top of panel; D = 304.425 lb/ft Floor live load acting on top of panel; $L_f = 487.08 \text{ lb/ft}$ Self weight of panel; $S_{wt} = 25 \text{ lb/ft}^2$ In plane wind load acting at head of panel; W = 8596 lbs Wind load serviceability factor; $f_{Wserv} = 1.00$ In plane seismic load acting at head of panel; $E_q = 1699 \text{ lbs}$ Design spectral response accel. par., short periods; $S_{DS} = 0.106$

Chord forces from shear walls above

Chord	W _{ch[i]} (lbs)	E _{q_ch[i]} (lbs)	D _{C_ch[i]} (lbs)	D _{T_ch[i]} (lbs)	L _{f_ch[i]} (lbs)	L _{r_ch[i]} (lbs)	S _{ch[i]} (lbs)	R _{ch[i]} (lbs)
Ch1;	-7116;	-1688;	1060;	4373;	649;	162;	0;	0;
Ch2;	7116;	1688;	1060;	4373;	649;	162;	0;	0;
Ch3;	0;	0;	0;	0;	0;	0;	0;	0;
Ch4;	0;	0;	0;	0;	0;	0;	0;	0;
Ch5;	0;	0;	0;	0;	0;	0;	0;	0;

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
V	NSS - Lee's Sur	mmit, MO - GL L	.&	23-	283
Section				Sheet no./rev.	
				(30
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Ch6; 0; 0; 0; 0; 0; 0; 0; 0; 0;

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.1; D + 0.6WLoad combination no.2; D + 0.7E

Load combination no.3; $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or S or R})$

Load combination no.4; $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6WLoad combination no.6; 0.6D + 0.7E

Adjustment factors

 $\label{eq:continuous_continuous$

Wet service factor for modulus of elasticity – Table 4A

Temperature factor for tension – Table 2.3.3; $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

 $C_{ME} = 1.00$

Temperature factor for modulus of elasticity - Table 2.3.3

 $C_{tE} = 1.00$

 $\label{eq:continuous} \begin{array}{ll} \text{Incising factor} - \text{cl.4.3.8}; & \text{$C_i = 1.00$} \\ \text{Buckling stiffness factor} - \text{cl.4.4.2}; & \text{$C_T = 1.00$} \\ \text{Bearing area factor} - \text{cl. 3.10.4}; & \text{$C_b = 1.0$} \\ \end{array}$

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 580000$ psi

Critical buckling design value; $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 1112 \text{ psi}$

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{fc} \times C_i = 2376 \text{ psi}$

For sawn lumber; c = 0.8

Column stability factor – eqn.3.7-1; $C_P = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*)) / (2 \times c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*)) / (2 \times c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*)) / (2 \times c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*))} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*))} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - (F_{cE} / F_c^*)) / (2 \times c) = (1 + (F_{cE} / F_c^*))$

0.41

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio; 3.5
Segment 1 wall length; $b_1 = 5.5 \text{ ft}$ Shear wall aspect ratio; $h / b_1 = 1.725$ Segment 2 wall length; $b_2 = 8 \text{ ft}$ Shear wall aspect ratio; $h / b_2 = 1.186$ Segment 3 wall length; $b_3 = 5.5 \text{ ft}$ Shear wall aspect ratio; $h / b_3 = 1.725$

Segmented shear wall capacity - Equal deflection method

Wind loading:

Segment 2 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_2) = 0.012$ in/kip

Segment 2 stiffness; $k_2 = 1/(2 \times h^3/(3 \times E \times A_e \times b_2^2) + h/(G_a \times b_2) + h \times \Delta_{a1}/b_2) = 14.307$

kips/in

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
V	23-283				
Section	Sheet no./rev.				
	;	31			
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Unit shear capacity, widest segment;

Vertical deflction under capacity load;

Deflection under capacity load;

Segment 1 vertical unit deflection;

Segment 1 stiffness;

Segment 1 unit shear at δ_{Cap} ;

Segment 1 shear capacity;

Segment 3 vertical unit deflection;

Segment 3 stiffness;

Segment 3 unit shear at δ_{Cap} ;

Segment 3 shear capacity;

Maximum shear force under wind loading;

Shear capacity for wind loading;

Seismic loading:

Segment 2 vertical unit deflection;

Segment 2 stiffness;

Unit shear capacity, widest segment;

Vertical deflction under capacity load;

Deflection under capacity load;

Segment 1 vertical unit deflection;

Segment 1 stiffness;

Segment 1 unit shear at $\delta_{\text{Cap}};$

Segment 1 shear capacity;

Segment 3 vertical unit deflection;

Segment 3 unit shear at δ_{Cap} ;

Segment 3 shear capacity;

Segment 3 stiffness;

 $v_{sww2} = v_w / 2 = 532.5 plf$

 $\Delta_{a_Cap} = h \times v_{sww2} / k_a = 0.053$ in

 $\delta_{Cap} = 2 \times v_{sww2} \times h^3 / (3 \times E \times A_e \times b_2) + v_{sww2} \times h / (G_a) + h \times \Delta_a C_{ap} / b_2 =$

0.298 in

 $\Delta_{a1} = h / (k_a \times b_1) = 0.018 in/kip$

 $k_1 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_1^2) + h / (G_a \times b_1) + h \times \Delta_{a1} / b_1) = 8.91$

kips/in

 $v_{dsww1} = \delta_{Cap} \times k_1 / b_1 = 482.38 \text{ plf}$

 $v_{sww1} = v_w / 2 = 532.5 \text{ plf}$

 $V_{dsww1} / V_{sww1} = 0.906$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

 $\Delta_{a1} = h / (k_a \times b_3) =$ **0.018** in/kip

 $k_3 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_3^2) + h / (G_a \times b_3) + h \times \Delta_{a1} / b_3) = 8.91$

kips/in

 $v_{dsww3} = \delta_{Cap} \times k_3 / b_3 = 482.38 \text{ plf}$

 $v_{sww3} = v_w / 2 = 532.5 \text{ plf}$

 $V_{dsww3} / V_{sww3} = 0.906$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ ext{Cap}}$

 $V_{w_{max}} = 0.6 \times W = 5.158 \text{ kips}$

 $V_w = min(v_{sww1}, v_{dsww1}) \times b_1 + v_{sww2} \times b_2 + min(v_{sww3}, v_{dsww3}) \times b_3 = 9.566 \text{ kips}$

 $V_{w \text{ max}} / V_{w} = 0.539$

PASS - Shear capacity for wind load exceeds maximum shear force

 $\Delta_{a1} = h / (k_a \times b_2) = 0.012 in/kip$

 $k_2 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_2^2) + h / (G_a \times b_2) + h \times \Delta_{a1} / b_2) = 14.307$

kips/in

 $v_{sws2} = v_s / 2 = 380 \text{ plf}$

 $\Delta_{\text{a Cap}} = \text{h} \times \text{v}_{\text{sws2}} / \text{k}_{\text{a}} = \textbf{0.038} \text{ in}$

 $\delta_{\text{Cap}} = 2 \times v_{\text{sws2}} \times h^3 / (3 \times E \times A_e \times b_2) + v_{\text{sws2}} \times h / (G_a) + h \times \Delta_a C_{\text{ap}} / b_2 =$

0.212 in

 $\Delta_{a1} = h / (k_a \times b_1) = 0.018 in/kip$

 $k_1 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_1^2) + h / (G_a \times b_1) + h \times \Delta_{a1} / b_1) = 8.91$

kips/in

 $v_{dsws1} = \delta_{Cap} \times k_1 / b_1 = 344.24 \text{ plf}$

 $v_{sws1} = v_s / 2 = 380 \text{ plf}$

 $V_{dsws1} / V_{sws1} = 0.906$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

 $\Delta_{a1} = h / (k_a \times b_3) = 0.018 in/kip$

 $k_3 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_3^2) + h / (G_a \times b_3) + h \times \Delta_{a1} / b_3) = \textbf{8.91}$

kips/in

 $v_{dsws3} = \delta_{Cap} \times k_3 / b_3 = 344.24 \text{ plf}$

 $v_{sws3} = v_s / 2 = 380 \text{ plf}$

 $v_{dsws3} / v_{sws3} = 0.906$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
\	23-	283			
Section		Sheet no./rev.			
		;	32		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

Maximum shear force under seismic loading; $V_{s max} = 0.7 \times E_{q} = 1.189$ kips

Shear capacity for seismic loading; $V_s = min(v_{sws1}, v_{dsws1}) \times b_1 + v_{sws2} \times b_2 + min(v_{sws3}, v_{dsws3}) \times b_3 = \textbf{6.827} \text{ kips}$

 $V_{s max} / V_{s} =$ **0.174**

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chord 1

Shear wall aspect ratio; $h / b_1 = 1.725$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.158$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + 0.6 \times W_{ch1} + 0.6 \times D_{T ch1} = -0.752 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_1 / \text{sum}(k_1, k_2, k_3)) \times h / b_1 - P = 3.320 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = 78 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = 0.065$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 5.158$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + -1 \times 0.6 \times W_{ch1} + D_{C_ch1} = 5.691 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_1 / sum(k_1, k_2, k_3)) \times h / b_1 + P = 8.259$ kips

Maximum applied compressive stress; $f_c = C / A_e = 158 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = \textbf{976 lb/in}^2$

 $f_c / F_c' = 0.162$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp}' = 0.253$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 2

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.158$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + -1 \times 0.6 \times W_{ch2} + 0.6 \times D_{T_ch2} = -0.752$

kips

Maximum tensile force in chord; $T = V \times (k_1 / sum(k_1, k_2, k_3)) \times h / b_1 - P = 3.320 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = 78 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = 0.065$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 5.158$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 + 0.6 \times W_{ch2} + D_{C_ch2} = 5.691 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_1 / sum(k_1, k_2, k_3)) \times h / b_1 + P = 8.259$ kips

Maximum applied compressive stress; $f_c = C / A_e = 158 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{fc} \times C_f \times C_P = 976 \text{ lb/in}^2$

 $f_c / F_c' = 0.162$

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
	WSS - Lee's Su	23-283			
Section		Sheet no./rev.			
				;	33
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate;

 $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp'} = 0.253$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 3

Shear wall aspect ratio; $h / b_2 = 1.186$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.158$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_2 / 2 = 1.3 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_2 / \text{sum}(k_1, k_2, k_3)) \times h / b_2 - P = 1.287 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = 30 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = 0.025$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 5.158$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 = 0.361 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_2 / sum(k_1, k_2, k_3)) \times h / b_2 + P = 2.948 \text{ kips}$

Maximum applied compressive stress; $f_c = C / A_e = 56 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = \textbf{976 lb/in}^2$

 $f_c / F_c' = 0.058$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate;

 $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 f_c / F_{c_perp} ' = 0.090

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 4

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.158$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_2 / 2 = 1.3 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_2 / \text{sum}(k_1, k_2, k_3)) \times h / b_2 - P = 1.287 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = 30 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = 0.025$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 5.158$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 = 0.361$ kips

Maximum compressive force in chord; $C = V \times (k_2 / sum(k_1, k_2, k_3)) \times h / b_2 + P = 2.948$ kips

Maximum applied compressive stress; $f_c = C / A_e = 56 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{fc} \times C_i \times C_P = 976 \text{ lb/in}^2$

 $f_c / F_c' = 0.058$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
V	23-283				
Section		Sheet no./rev.			
		;	34		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

 $f_c / F_{c perp'} = 0.090$

 $h / b_3 = 1.725$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

 $P = (0.6 \times (D + S_{wt} \times h)) \times b_3 / 2 = 0.894 \text{ kips}$ $T = V \times (k_3 / sum(k_1, k_2, k_3)) \times h / b_3 - P = 1.674 kips$

 $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

Chord capacity for chord 5

Shear wall aspect ratio;

Load combination 5

Shear force for maximum tension;

Maximum tensile force in chord;

Design tensile stress;

Axial force for maximum tension:

Maximum applied tensile stress;

Load combination 1

Shear force for maximum compression;

Axial force for maximum compression;

Maximum compressive force in chord;

Maximum applied compressive stress;

Design compressive stress;

Design bearing compr. stress, bottom plate;

Chord capacity for chord 6

Load combination 5 Shear force for maximum tension;

Axial force for maximum tension; Maximum tensile force in chord;

Maximum applied tensile stress;

Design tensile stress;

Load combination 1

Shear force for maximum compression; Axial force for maximum compression;

Maximum compressive force in chord;

Maximum applied compressive stress; Design compressive stress;

Design bearing compr. stress, bottom plate;

 $F_{\text{c_perp'}} = F_{\text{c_perp}} \times C_{\text{Mc}} \times C_{\text{tc}} \times C_{\text{i}} \times C_{\text{b}} = \text{625 lb/in}^2$

 $f_t / F_t' = 0.033$ PASS - Design tensile stress exceeds maximum applied tensile stress

 $V = 0.6 \times W = 5.158 \text{ kips}$

 $V = 0.6 \times W = 5.158 \text{ kips}$

 $f_t = T / A_{en} = 39 \text{ lb/in}^2$

 $P = ((D + S_{wt} \times h)) \times s / 2 = 0.361 \text{ kips}$

 $C = V \times (k_3 / sum(k_1, k_2, k_3)) \times h / b_3 + P = 2.929 \text{ kips}$

 $f_c = C / A_e = 56 \text{ lb/in}^2$

 $F_{\text{c}}\text{'} = F_{\text{c}} \times C_{\text{D}} \times C_{\text{Mc}} \times C_{\text{tc}} \times C_{\text{Fc}} \times C_{\text{i}} \times C_{\text{P}} = \textbf{976} \text{ lb/in}^2$ $f_c / F_c' = 0.057$

PASS - Design compressive stress exceeds maximum applied compressive stress $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c_perp'} = 0.090$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

 $V = 0.6 \times W = 5.158 \text{ kips}$

 $P = (0.6 \times (D + S_{wt} \times h)) \times b_3 / 2 = 0.894 \text{ kips}$

 $T = V \times (k_3 / sum(k_1, k_2, k_3)) \times h / b_3 - P = 1.674 kips$ $f_t = T / A_{en} = 39 \text{ lb/in}^2$

 $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = 0.033$

PASS - Design tensile stress exceeds maximum applied tensile stress

 $V = 0.6 \times W = 5.158 \text{ kips}$

 $f_c = C / A_e = 56 \text{ lb/in}^2$

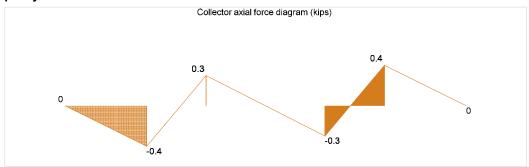
 $P = ((D + S_{wt} \times h)) \times s / 2 = 0.361 \text{ kips}$

 $C = V \times (k_3 / sum(k_1, k_2, k_3)) \times h / b_3 + P = 2.929 \text{ kips}$

 $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 976 \text{ lb/in}^2$

 $f_c / F_c' = 0.057$ PASS - Design compressive stress exceeds maximum applied compressive stress

 $f_c / F_{c perp}' = 0.090$


PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
,	23-283				
Section		Sheet no./rev.			
		;	35		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Collector capacity

Collector seismic design force factor; $F_{Coll} = 1$

Maximum shear force on wall; $V_{max} = max(F_{Coll} \times V_{s_max}, V_{w_max}) = 5.158 \text{ kips}$

Maximum force in collector; $P_{coll} = 0.438 \text{ kips}$

Maximum applied tensile stress; $f_t = P_{coll} / (2 \times A_s) = 27 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_F \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = 0.022$

PASS - Design tensile stress exceeds maximum applied tensile stress

Maximum applied compressive stress; $f_c = P_{coll} / (2 \times A_s) = 27 \text{ lb/in}^2$

Column stability factor; $C_P = 1.00$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 2376 \text{ lb/in}^2$

 $f_c / F_c' = 0.011$

PASS - Design compressive stress exceeds maximum applied compressive stress

Hold down force

 $\begin{array}{lll} \text{Chord 1;} & T_1 = \textbf{3.32 kips} \\ \text{Chord 2;} & T_2 = \textbf{3.32 kips} \\ \text{Chord 3;} & T_3 = \textbf{1.287 kips} \\ \text{Chord 4;} & T_4 = \textbf{1.287 kips} \\ \text{Chord 5;} & T_5 = \textbf{1.674 kips} \\ \text{Chord 6;} & T_6 = \textbf{1.674 kips} \\ \end{array}$

Chord reactions by load type

Chord	W _{ch[i]R}	Eq_ch[i]R	Dc_ch[i]R	D _{T_ch[i]R}	L _{f_ch[i]R}	L _{r_ch[i]R}	S _{ch[i]R}	R _{ch[i]R}
	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)	(lbs)
Ch1;	-11396;	-2534;	1421;	5862;	974;	162;	0;	0;
Ch2;	11396;	2534;	1421;	5862;	974;	162;	0;	0;
Ch3;	-4312;	-852;	361;	2167;	325;	0;	0;	0;
Ch4;	4312;	852;	361;	2167;	325;	0;	0;	0;
Ch5;	-4280;	-846;	361;	1490;	325;	0;	0;	0;
Ch6;	4280;	846;	361;	1490;	325;	0;	0;	0;

Wind load deflection

Design shear force; $V_{\delta w} = f_{Wserv} \times W = 8.596 \text{ kips}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
V	NSS - Lee's Sur	23-283			
Section	Sheet no./rev.				
				36	
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Deflection limit;

 $\Delta_{\text{w_allow}} = h / 360 = 0.316 \text{ in}$

Segment 1

Induced unit shear; $v_{\delta w} = V_{\delta w} \times (k_1 / sum(k_1, k_2, k_3)) / b_1 = 450.98 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2 - 0.6 \times \min(D_{T \text{ ch1}}, D_{T \text{ ch2}})$

+ $max(abs(W_{ch1}), abs(W_{ch2}))) = 4.385 kips$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.046$ in

Segment 1 deflection – Eqn. 4.3-1; $\delta_{sww1} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_1) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_1 = \textbf{0.28} \text{ in}$

 δ_{sww1} / $\Delta_{\text{w_allow}}$ = **0.886**

PASS - Shear wall deflection is less than deflection limit

Segment 2

Induced unit shear; $v_{\delta w} = V_{\delta w} \times (k_2 / sum(k_1, k_2, k_3)) / b_2 = 454.4 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000 kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 2 deflection – Eqn. 4.3-1; $\delta_{\text{sww2}} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_2) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_2 = \textbf{0.201} \text{ in}$

 δ_{sww2} / $\Delta_{\text{w_allow}}$ = **0.634**

PASS - Shear wall deflection is less than deflection limit

Segment 3

Induced unit shear; $v_{\delta w} = V_{\delta w} \times (k_3 / \text{sum}(k_1, k_2, k_3)) / b_3 = 450.98 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000 kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 3 deflection – Eqn. 4.3-1; $\delta_{\text{sww}3} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_3) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_3 = \textbf{0.201} \text{ in}$

 δ_{sww3} / $\Delta_{\text{w_allow}}$ = **0.636**

PASS - Shear wall deflection is less than deflection limit

Seismic deflection

Design shear force; $V_{\delta s} = E_q = 1.699 \text{ kips}$

Deflection limit; $\Delta_{s_allow} = 0.020 \times h = 2.278$ in

Deflection ampification factor; $C_{d\delta}$ = **4** Seismic importance factor; I_e = **1**

Segment 1

Induced unit shear; $v_{\delta s} = V_{\delta s} \times (k_1 / sum(k_1, k_2, k_3)) / b_1 = 89.14 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 \times b /$

 $S_{DS}) \times min(D_{T_ch1},D_{T_ch2}) + max(abs(E_{q_ch1}),abs(E_{q_ch2}))) = \textbf{0.000} \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 1 deflection – Eqn. 4.3-1; $\delta_{swse1} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_1) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_1 = \textbf{0.04} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws1}} = C_{d\delta} \times \delta_{\text{swse1}} / I_e = \textbf{0.159}$ in

 $\delta_{\text{sws1}} / \Delta_{\text{s allow}} = 0.07$

PASS - Shear wall deflection is less than deflection limit

Segment 2

Induced unit shear; $v_{\delta s} = V_{\delta s} \times (k_2 / sum(k_1, k_2, k_3)) / b_2 = 89.81 lb/ft$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

11320 West 79th Street Lenexa, Kansas 66214

	Project				Job Ref.	
	\	NSS - Lee's Sur	23-283			
ĺ	Section		Sheet no./rev.			
			(37		
ĺ	Calc. by	Date	Chk'd by	Date	App'd by	Date
	GL	7/25/2023	DN			

Segment 2 deflection – Eqn. 4.3-1;

 δ_{swse2} = $2\times v_{\delta s}\times h^3$ / $(3\times E\times A_e\times b_2)$ + $v_{\delta s}\times h$ / (G_a) + $h\times \Delta_a$ / b_2 = 0.04 in

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws2} = C_{d\delta} \times \delta_{swse2} / I_e = \textbf{0.159} \text{ in}$

 δ_{sws2} / $\Delta_{\text{s_allow}}$ = 0.07

PASS - Shear wall deflection is less than deflection limit

Segment 3

Induced unit shear; $v_{\delta s} = V_{\delta s} \times \left(k_3 / \text{sum}(k_1, k_2, k_3)\right) / b_3 = \textbf{89.14} \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 3 deflection – Eqn. 4.3-1; $\delta_{swse3} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_3) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_3 = \textbf{0.04} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws3} = C_{d\delta} \times \delta_{swse3} / I_e = \textbf{0.159} \text{ in}$

 δ_{sws3} / $\Delta_{\text{s_allow}}$ = **0.07**

PASS - Shear wall deflection is less than deflection limit

11320 West 79th Street Lenexa, Kansas 66214

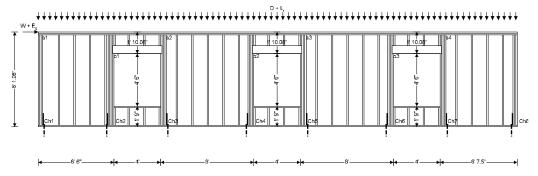
Project				Job Ref.	
	WSS - Lee's Su	23-283			
Section		Sheet no./rev.			
				1	
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10


Design summary

Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	10382	963	0.093	PASS
Chord capacity	lb/in ²	1252	27	0.043	PASS
Collector capacity	lb/in ²	1196	4	0.003	PASS
Deflection	in	0.270	0.031	0.116	PASS

Panel details

Structural wood panel sheathing on one side

Panel height; h = 8.09 ftPanel length; b = 41.125 ft

Panel opening details

Width of opening; $w_{o1} = 4 ft$ $h_{o1} = 4.5 \text{ ft}$ Height of opening; Height to underside of lintel over opening; $I_{o1} = 6.25 \text{ ft}$ Position of opening; $P_{o1} = 6.5 \text{ ft}$ $w_{o2} = 4 \text{ ft}$ Width of opening; $h_{o2} = 4.5 \text{ ft}$ Height of opening; Height to underside of lintel over opening; I_{o2} = **6.25** ft $P_{02} = 18.5 \text{ ft}$ Position of opening; Width of opening; $w_{o3} = 4 \text{ ft}$ Height of opening; $h_{o3} = 4.5 \text{ ft}$ $I_{o3} = 6.25 \text{ ft}$ Height to underside of lintel over opening; Position of opening; $P_{03} = 30.5 \text{ ft}$

Total area of wall; $A = h \times b - w_{01} \times h_{01} - w_{02} \times h_{02} - w_{03} \times h_{03} = 278.701 \text{ ft}^2$

Panel construction

Nominal stud size; 2" x 6" Dressed stud size; 1.5" x 5.5" Cross-sectional area of studs; $A_s = 8.25 \text{ in}^2$

11320 West 79th Street Lenexa, Kansas 66214

Project	Job Ref.				
,	WSS - Lee's Su	23-283			
Section	Sheet no./rev.				
		2			
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

 $\begin{array}{lll} \text{Stud spacing;} & \text{s} = \textbf{16} \text{ in} \\ \text{Nominal end post size;} & 3 \times 2" \times 6" \\ \text{Dressed end post size;} & 3 \times 1.5" \times 5.5" \\ \text{Cross-sectional area of end posts;} & A_e = \textbf{24.75} \text{ in}^2 \\ \text{Hole diameter;} & \text{Dia} = \textbf{1} \text{ in} \\ \text{Net cross-sectional area of end posts;} & A_{\text{en}} = \textbf{20.25} \text{ in}^2 \\ \text{Nominal collector size;} & 2 \times 2" \times 6" \end{array}$

Dressed collector size; 2 x 1.5" x 5.5"

Temperature; 100 degF or less Vertical anchor stiffness; $k_a = 49087$ lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Dry

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

 $\label{eq:specific gravity;} Specific gravity; G = 0.50$ Tension parallel to grain; $F_t = 575 \text{ lb/in}^2$ Compression parallel to grain; $F_c = 1350 \text{ lb/in}^2$ Compression perpendicular to grain; $F_{c_perp} = 625 \text{ lb/in}^2$ Modulus of elasticity; $E = 1600000 \text{ lb/in}^2$ Minimum modulus of elasticity; $E_{min} = 580000 \text{ lb/in}^2$

Sheathing details

Service condition;

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 6"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 520 \text{ lb/ft}$ Nominal unit shear capacity for wind design; $v_w = 730 \text{ lb/ft}$ Apparent shear wall shear stiffness; $G_a = 15 \text{ kips/in}$

Loading details

Dead load acting on top of panel; D = 304.425 lb/ft Roof live load acting on top of panel; $L_r = 243.54$ lb/ft Self weight of panel; $S_{wt} = 25$ lb/ft² In plane wind load acting at head of panel; W = 1605 lbs Wind load serviceability factor; W = 100 ln plane seismic load acting at head of panel; W = 100 lbs Design spectral response accel. par., short periods; W = 100 lbs

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.1; D + 0.6WLoad combination no.2; D + 0.7E

Load combination no.3; $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or S or R})$

Load combination no.4; $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6WLoad combination no.6; 0.6D + 0.7E

Adjustment factors

Load duration factor – Table 2.3.2; $C_D = 1.60$

11320 West 79th Street Lenexa, Kansas 66214

Projec	t				Job Ref.	
WSS - Lee's Summit, MO - GL M					23-283	
Sectio	n		Sheet no./rev.			
				3		
Calc. b	ру	Date	Chk'd by	Date	App'd by	Date
	GL	7/25/2023	DN			

C_{Ft} = 1.30 Size factor for tension – Table 4A;

 $C_{Fc} = 1.10$ Size factor for compression - Table 4A; Wet service factor for tension - Table 4A; $C_{Mt} = 1.00$ Wet service factor for compression – Table 4A; $C_{Mc} = 1.00$

Wet service factor for modulus of elasticity - Table 4A

 $C_{ME} = 1.00$

Temperature factor for tension – Table 2.3.3; $C_{tt} = 1.00$

Temperature factor for compression - Table 2.3.3

 $C_{tc} = 1.00$

Temperature factor for modulus of elasticity - Table 2.3.3

 $C_{tF} = 1.00$

Incising factor - cl.4.3.8; $C_i = 1.00$ Buckling stiffness factor – cl.4.4.2; $C_T = 1.00$ $C_b = 1.0$ Bearing area factor - cl. 3.10.4;

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 580000 \text{ psi}$

 $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 1530 psi$ Critical buckling design value;

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = 2376 \text{ psi}$

For sawn lumber: c = 0.8

 $C_P = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} =$ Column stability factor – eqn.3.7-1;

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio; 3.5

Segment 1 wall length; $b_1 = 6.5 \text{ ft}$ Shear wall aspect ratio; $h/b_1 = 1.245$ Segment 2 wall length; $b_2 = 8 \text{ ft}$ Shear wall aspect ratio: $h / b_2 = 1.011$ Segment 3 wall length; $b_3 = 8 \text{ ft}$ Shear wall aspect ratio; $h/b_3 = 1.011$ Segment 4 wall length; $b_4 = 6.625 \text{ ft}$ Shear wall aspect ratio; $h / b_4 = 1.221$

Segmented shear wall capacity - Equal deflection method

Wind loading:

Segment 3 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_3) = 0.021 in/kip$

 $k_3 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_3^2) + h / (G_a \times b_3) + h \times \Delta_{a1} / b_3) = 11.121$ Segment 3 stiffness;

Unit shear capacity, widest segment; $v_{sww3} = v_w / 2 = 365 plf$

 $\Delta_{a_Cap} = h \times v_{sww3} / k_a = 0.060 in$ Vertical deflction under capacity load;

Deflection under capacity load; $\delta_{Cap} = 2 \times v_{sww3} \times h^3 / (3 \times E \times A_e \times b_3) + v_{sww3} \times h / (G_a) + h \times \Delta_a C_{ap} / b_3 = 0$

0.263 in

 $\Delta_{a1} = h / (k_a \times b_1) = 0.025 in/kip$ Segment 1 vertical unit deflection;

 $k_1 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_1^2) + h / (G_a \times b_1) + h \times \Delta_{a1} / b_1) = 8.542$ Segment 1 stiffness;

Segment 1 unit shear at δ_{Cap} ; $v_{dsww1} = \delta_{Cap} \times k_1 / b_1 = 345.07 \text{ plf}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
,	WSS - Lee's Su	23-283			
Section	Sheet no./rev.				
					4
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Segment 1 shear capacity;

 $v_{sww1} = v_w / 2 = 365 \text{ plf}$

 $V_{dsww1} / V_{sww1} = 0.945$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

Segment 2 vertical unit deflection;

 $\Delta_{a1} = h / (k_a \times b_2) = 0.021 in/kip$

Segment 2 stiffness;

 $k_2 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_2^2) + h / (G_a \times b_2) + h \times \Delta_{a1} / b_2) = 11.121$

kips/in

Segment 2 unit shear at δ_{Cap} ;

 $v_{dsww2} = \delta_{Cap} \times k_2 / b_2 = 365 \text{ plf}$

Segment 2 shear capacity;

 $v_{sww2} = v_w / 2 = 365 \text{ plf}$ $v_{dsww2} / v_{sww2} = 1.000$

Segment 4 vertical unit deflection;

 $\Delta_{a1} = h / (k_a \times b_4) = 0.025$ in/kip

Segment 4 stiffness;

 $k_4 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_4^2) + h / (G_a \times b_4) + h \times \Delta_{a1} / b_4) = 8.755$

kips/in

Segment 4 unit shear at δ_{Cap} ;

 $V_{dsww4} = \delta_{Cap} \times k_4 / b_4 = 346.98 \text{ plf}$

Segment 4 shear capacity; $v_{sww4} = v_w / 2 = 365 \text{ plf}$

 $V_{dsww4} / V_{sww4} = 0.951$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap} $V_{w\ max} = 0.6 \times W = 0.963$ kips

Maximum shear force under wind loading;

Shear capacity for wind loading;

 $V_w = min(v_{sww1}, v_{dsww1}) \times b_1 + min(v_{sww2}, v_{dsww2}) \times b_2 + v_{sww3} \times b_3 + c_3 + c_4 + c_5 +$

 $min(v_{sww4}, v_{dsww4}) \times b_4 = 10.382 \text{ kips}$

 $V_{w \text{ max}} / V_{w} = 0.093$

PASS - Shear capacity for wind load exceeds maximum shear force

Seismic loading:

Segment 3 vertical unit deflection;

 $\Delta_{a1} = h / (k_a \times b_3) = 0.021 in/kip$

Segment 3 stiffness;

 $k_3 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_3^2) + h / (G_a \times b_3) + h \times \Delta_{a1} / b_3) = 11.121$

kips/in

Unit shear capacity, widest segment;

 $v_{sws3} = v_s / 2 = 260 plf$

Vertical deflction under capacity load;

 $\Delta_{a_Cap} = h \times v_{sws3} / k_a = 0.043$ in

Deflection under capacity load;

 $\delta_{Cap} = 2 \times v_{sws3} \times h^3 / (3 \times E \times A_e \times b_3) + v_{sws3} \times h / (G_a) + h \times \Delta_a C_{ap} / b_3 =$

0.187 in

Segment 1 vertical unit deflection;

 $\Delta_{a1} = h / (k_a \times b_1) = 0.025 in/kip$

Segment 1 stiffness;

 $k_1 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_1^2) + h / (G_a \times b_1) + h \times \Delta_{a1} / b_1) = 8.542$

kips/in

Segment 1 unit shear at δ_{Cap} ;

 $v_{dsws1} = \delta_{Cap} \times k_1 / b_1 = 245.8 \text{ plf}$

Segment 1 shear capacity;

 $v_{sws1} = v_s / 2 = 260 \text{ plf}$

 $V_{dsws1} / V_{sws1} = 0.945$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

Segment 2 vertical unit deflection;

 $\Delta_{a1} = h / (k_a \times b_2) = 0.021 in/kip$

Segment 2 stiffness;

 $k_2 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_2^2) + h / (G_a \times b_2) + h \times \Delta_{a1} / b_2) = 11.121$

kips/in

Segment 2 unit shear at δ_{Cap} ;

 $v_{dsws2} = \delta_{Cap} \times k_2 / b_2 =$ **260**plf

Segment 2 shear capacity;

 $v_{sws2} = v_s / 2 = 260 plf$

 $v_{dsws2} / v_{sws2} = 1.000$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
	23-283				
Section		Sheet no./rev.			
			5		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

Segment 4 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_4) = 0.025$ in/kip

Segment 4 stiffness; $k_4 = 1/(2 \times h^3/(3 \times E \times A_e \times b_4^2) + h/(G_a \times b_4) + h \times \Delta_{a1}/b_4) = 8.755$

kips/in

Segment 4 unit shear at δ_{Cap} ; $v_{dsws4} = \delta_{Cap} \times k_4 / b_4 = 247.16$ plf

Segment 4 shear capacity; $v_{sws4} = v_s / 2 = 260 \text{ plf}$ $v_{dsws4} / v_{sws4} = 0.951$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{\sf Cap}$

Maximum shear force under seismic loading; $V_{s max} = 0.7 \times E_{q} = 0.648$ kips

Shear capacity for seismic loading; $V_s = \min(v_{sws1}, v_{dsws1}) \times b_1 + \min(v_{sws2}, v_{dsws2}) \times b_2 + v_{sws3} \times b_3 + v_{dsws2} \times b_3 + v_{d$

 $min(v_{sws4},v_{dsws4}) \times b_4 = 7.395 \text{ kips}$

 $V_{s max} / V_{s} = 0.088$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chords 1 and 2

Shear wall aspect ratio; $h / b_1 = 1.245$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 0.963$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 = \textbf{0.988} \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_1 / sum(k_1, k_2, k_3, k_4)) \times h / b_1 - P = -0.729 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = -36 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = -0.030$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 0.722 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + +0.75 \times L_r) \times s / 2 = \textbf{0.46 kips}$ Maximum compressive force in chord; $C = V \times (k_1 / sum(k_1, k_2, k_3, k_4)) \times h / b_1 + P = \textbf{0.654 kips}$

Maximum applied compressive stress; $f_c = C / A_e = 26 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_f \times C_P = 1252 \text{ lb/in}^2$

 $f_c / F_c' = 0.021$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp} = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp'} = 0.042$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chords 3 and 4

Shear wall aspect ratio; $h / b_2 = 1.011$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 0.963$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_2 / 2 = 1.216 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_2 / \text{sum}(k_1, k_2, k_3, k_4)) \times h / b_2 - P = -0.942 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = -47 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = -0.039$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
,	WSS - Lee's Su	23-283			
Section		Sheet no./rev.			
			6		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 0.722$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + +0.75 \times L_r) \times s / 2 = \textbf{0.46} \text{ kips}$ Maximum compressive force in chord; $C = V \times (k_2 / \text{sum}(k_1, k_2, k_3, k_4)) \times h / b_2 + P = \textbf{0.665} \text{ kips}$

Maximum applied compressive stress; $f_c = C / A_e = 27 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 1252 \text{ lb/in}^2$

 $f_c / F_c' = 0.021$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate;

 $F_{c perp'} = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp}' = 0.043$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chords 5 and 6

Shear wall aspect ratio; $h / b_3 = 1.011$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 0.963$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_3 / 2 = 1.216 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_3 / sum(k_1, k_2, k_3, k_4)) \times h / b_3 - P = -0.942 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = -47 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = -0.039$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 0.722$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + +0.75 \times L_r) \times s / 2 = \textbf{0.46} \text{ kips}$ Maximum compressive force in chord; $C = V \times (k_3 / \text{sum}(k_1, k_2, k_3, k_4)) \times h / b_3 + P = \textbf{0.665} \text{ kips}$

Maximum applied compressive stress; $f_c = C / A_e = 27 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_f \times C_P = 1252 \text{ lb/in}^2$

 $f_c / F_c' = 0.021$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp}' = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp}' = 0.043$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chords 7 and 8

Shear wall aspect ratio; $h / b_4 = 1.221$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 0.963$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_4 / 2 = 1.007 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_4 / sum(k_1, k_2, k_3, k_4)) \times h / b_4 - P = -0.747 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = -37 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = -0.031$

PASS - Design tensile stress exceeds maximum applied tensile stress

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
	WSS - Lee's Su	23-283			
Section		Sheet no./rev.			
			7		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Load combination 3

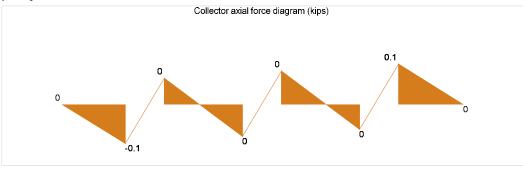
Shear force for maximum compression; $V = 0.45 \times W = 0.722$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + + 0.75 \times L_r) \times s / 2 = \textbf{0.46} \text{ kips}$ Maximum compressive force in chord; $C = V \times (k_4 / \text{sum}(k_1, k_2, k_3, k_4)) \times h / b_4 + P = \textbf{0.655} \text{ kips}$

Maximum applied compressive stress; $f_c = C / A_e = 26 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_I \times C_P = 1252 \text{ lb/in}^2$

 $f_c / F_c' = 0.021$


PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp'} = 0.042$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Collector capacity

Collector seismic design force factor; $F_{Coll} = 1$

Maximum shear force on wall; $V_{max} = max(F_{Coll} \times V_{s_max}, V_{w_max}) = 0.963 \text{ kips}$

Maximum force in collector; $P_{coll} = 0.058 \text{ kips}$

Maximum applied tensile stress; $f_t = P_{coll} / (2 \times A_s) = 4 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = 0.003$

PASS - Design tensile stress exceeds maximum applied tensile stress

Maximum applied compressive stress; $f_c = P_{coll} / (2 \times A_s) = 4 \text{ lb/in}^2$

Column stability factor; $C_P = 1.00$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_f \times C_i \times C_P = \textbf{2376 lb/in}^2$

 $f_c / F_c' = 0.001$

PASS - Design compressive stress exceeds maximum applied compressive stress

Wind load deflection

Design shear force; $V_{\delta w} = f_{Wserv} \times W = 1.605 \text{ kips}$ Deflection limit; $\Delta_{w \text{ allow}} = h / 360 = 0.27 \text{ in}$

Segment 1

Induced unit shear; $v_{\delta w} = V_{\delta w} \times (k_1 / sum(k_1, k_2, k_3, k_4)) / b_1 = 53.35 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
,	WSS - Lee's Su	23-283			
Section	Sheet no./rev.				
			8		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Segment 1 deflection – Eqn. 4.3-1;

 δ_{sww1} = 2 × $v_{\delta w}$ × h^3 / (3 × E × A_e × b_1) + $v_{\delta w}$ × h / (G_a) + h × Δ_a / b_1 = **0.03** in

 δ_{sww1} / $\Delta_{\text{w allow}}$ = **0.11**

PASS - Shear wall deflection is less than deflection limit

Segment 2

Induced unit shear; $v_{\delta w} = V_{\delta w} \times (k_2 / sum(k_1, k_2, k_3, k_4)) / b_2 = 56.43 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 2 deflection – Eqn. 4.3-1; $\delta_{sww2} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_2) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_2 = \textbf{0.031} \text{ in}$

 $\delta_{\text{sww2}} / \Delta_{\text{w allow}} = 0.116$

PASS - Shear wall deflection is less than deflection limit

Segment 3

Induced unit shear; $v_{\delta w} = V_{\delta w} \times (k_3 / sum(k_1, k_2, k_3, k_4)) / b_3 = 56.43 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips,} v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000} \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 3 deflection – Eqn. 4.3-1; $\delta_{\text{Sww3}} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_3) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_3 = \textbf{0.031} \text{ in}$

 δ_{sww3} / Δ_{w} allow = **0.116**

PASS - Shear wall deflection is less than deflection limit

Segment 4

Induced unit shear; $v_{\delta w} = V_{\delta w} \times (k_4 / sum(k_1, k_2, k_3, k_4)) / b_4 = 53.64 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 4 deflection – Eqn. 4.3-1; $\delta_{sww4} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_4) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_4 = \textbf{0.03} \text{ in}$

 δ_{sww4} / $\Delta_{\text{w_allow}}$ = **0.11**

PASS - Shear wall deflection is less than deflection limit

Seismic deflection

Design shear force; $V_{\delta s} = E_q = 0.925 \text{ kips}$

Deflection limit; $\Delta_{s_allow} = 0.020 \times h = 1.942$ in

Deflection ampification factor; $C_{d\delta}$ = 4 Seismic importance factor; I_e = 1

Segment 1

Induced unit shear; $V_{\delta s} = V_{\delta s} \times (k_1 / sum(k_1, k_2, k_3, k_4)) / b_1 = 30.75 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 1 deflection – Eqn. 4.3-1; $\delta_{\text{swse1}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_1) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_1 = \textbf{0.017} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws1}} = C_{\text{d}\delta} \times \delta_{\text{swse1}} / I_{\text{e}} = \textbf{0.068} \text{ in}$

 $\delta_{\text{sws1}} / \Delta_{\text{s_allow}} = 0.035$

PASS - Shear wall deflection is less than deflection limit

Segment 2

Induced unit shear; $v_{\delta s} = V_{\delta s} \times (k_2 / sum(k_1, k_2, k_3, k_4)) / b_2 = 32.52 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } V_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
,	23-283				
Section		Sheet no./rev.			
			9		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Vertical elongation at anchor;

 $\Delta_a = T_{\delta} / k_a = 0.000$ in

Segment 2 deflection - Eqn. 4.3-1;

 δ_{swse2} = 2 \times $v_{\delta s}$ \times h^3 / (3 \times E \times A_e \times $b_2)$ + $v_{\delta s}$ \times h / (Ga) + h \times Δ_a / b_2 = 0.018 in

Amp. seis. deflection - ASCE7 Eqn. 12.8-15;

 δ_{sws2} = $C_{\text{d}\delta} \times \delta_{\text{swse2}}$ / I_{e} = **0.072** in

 $\delta_{\text{sws2}} / \Delta_{\text{s_allow}} = \mathbf{0.037}$

PASS - Shear wall deflection is less than deflection limit

Segment 3

Induced unit shear;

 $v_{\delta s} = V_{\delta s} \times (k_3 / sum(k_1, k_2, k_3, k_4)) / b_3 = 32.52 lb/ft$

Anchor tension force;

 $T_{\delta} = max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = 0.000$

kips

Vertical elongation at anchor;

 $\Delta_a = T_{\delta} / k_a = 0.000 \text{ in}$

Segment 3 deflection – Eqn. 4.3-1;

 δ_{swse3} = $2\times v_{\delta s}\times h^3$ / $(3\times E\times A_e\times b_3)$ + $v_{\delta s}\times h$ / (G_a) + $h\times \Delta_a$ / b_3 = 0.018 in

Amp. seis. deflection – ASCE7 Eqn. 12.8-15;

 δ_{sws3} = $C_{\text{d}\delta} \times \delta_{\text{swse3}}$ / I_{e} = 0.072 in

 $\delta_{\text{sws3}} / \Delta_{\text{s allow}} = 0.037$

PASS - Shear wall deflection is less than deflection limit

Segment 4

Induced unit shear;

 $v_{\delta s} = V_{\delta s} \times (k_4 / sum(k_1, k_2, k_3, k_4)) / b_4 = 30.92 lb/ft$

Anchor tension force:

 $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = 0.000$

kips

Vertical elongation at anchor;

 $\Delta_{a} = T_{\delta} / k_{a} = 0.000 \text{ in}$

Segment 4 deflection – Eqn. 4.3-1;

 $\delta_{swse4} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_4) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_4 = 0.017$ in

Amp. seis. deflection – ASCE7 Eqn. 12.8-15;

 $\delta_{sws4} = C_{d\delta} \times \delta_{swse4} \ / \ I_e = \textbf{0.069} \ in$ $\delta_{sws4} \ / \ \Delta_{s \ allow} = \textbf{0.035}$

PASS - Shear wall deflection is less than deflection limit

WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

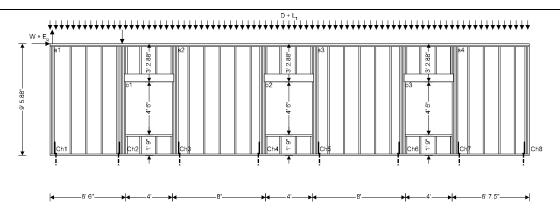
In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10

Design summary

Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	7373	1137	0.154	PASS
Chord capacity	lb/in ²	976	67	0.106	PASS
Collector capacity	lb/in ²	1196	6	0.005	PASS
Deflection	in	0.316	0.059	0.186	PASS

Panel details


Structural wood panel sheathing on one side

Panel height; h = 9.49 ftPanel length; b = 41.125 ft

11320 West 79th Street Lenexa, Kansas 66214

	Project				Job Ref.	
	,	23-283				
ĺ	Section		Sheet no./rev.			
				10		
ĺ	Calc. by	Date	Chk'd by	Date	App'd by	Date
	GL	7/25/2023	DN			

Panel opening details

Width of opening; $w_{o1} = 4 \text{ ft}$ Height of opening; $h_{o1} = 4.5 \text{ ft}$ Height to underside of lintel over opening; $I_{o1} = 6.25 \text{ ft}$ $P_{o1} = 6.5 \text{ ft}$ Position of opening; Width of opening; $w_{02} = 4 \text{ ft}$ Height of opening; $h_{o2} = 4.5 \text{ ft}$ Height to underside of lintel over opening; $l_{02} = 6.25 \text{ ft}$ Position of opening; $P_{o2} = 18.5 \text{ ft}$ $w_{o3} = 4 \text{ ft}$ Width of opening; Height of opening; $h_{o3} = 4.5 \text{ ft}$ Height to underside of lintel over opening; $l_{03} = 6.25 \text{ ft}$

Total area of wall; $A = h \times b - w_{01} \times h_{01} - w_{02} \times h_{02} - w_{03} \times h_{03} = 336.276 \text{ ft}^2$

 $P_{o3} = 30.5 \text{ ft}$

Panel construction

Position of opening;

2" x 6" Nominal stud size; Dressed stud size: 1.5" x 5.5" Cross-sectional area of studs; $A_s = 8.25 \text{ in}^2$ Stud spacing; s = 16 inNominal end post size; 3 x 2" x 6" Dressed end post size; 3 x 1.5" x 5.5" Cross-sectional area of end posts; $A_e = 24.75 \text{ in}^2$ Hole diameter; Dia = 1 in $A_{en} = 20.25 in^2$ Net cross-sectional area of end posts; Nominal collector size; 2 x 2" x 6"

Dressed collector size; 2 x 1.5" x 5.5" Service condition; Dry

Temperature; 100 degF or less Vertical anchor stiffness; $k_a = 49087$ lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

Specific gravity; G = 0.50

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.				
	,	23-283				
Section			Sheet no./rev.			
			11			
Calc. by		Date	Chk'd by	Date	App'd by	Date
	GL	7/25/2023	DN			

Tension parallel to grain; $F_t = 575 \text{ lb/in}^2$ Compression parallel to grain; $F_c = 1350 \text{ lb/in}^2$ Compression perpendicular to grain; $F_{c_perp} = 625 \text{ lb/in}^2$ Modulus of elasticity; $E = 1600000 \text{ lb/in}^2$ Minimum modulus of elasticity; $E_{min} = 580000 \text{ lb/in}^2$

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 6"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 520 \text{ lb/ft}$ Nominal unit shear capacity for wind design; $v_w = 730 \text{ lb/ft}$ Apparent shear wall shear stiffness; $G_a = 15 \text{ kips/in}$

Loading details

Dead load acting on top of panel; D = 323.175 lb/ft Floor live load acting on top of panel; $L_f = 517.08 \text{ lb/ft}$ Self weight of panel; $S_{wt} = 25 \text{ lb/ft}^2$ In plane wind load acting at head of panel; W = 2553 lbs Wind load serviceability factor; W = 2553 lbs fwserv = 1.00 In plane seismic load acting at head of panel; $E_q = 1624 \text{ lbs}$ Design spectral response accel. par., short periods; $S_{DS} = 0.106$

Chord forces from shear walls above

Chord	W _{ch[i]} (lbs)	Eq_ch[i] (lbs)	Dc_ch[i] (lbs)	D _{T_ch[i]} (lbs)	L _{f_ch[i]} (lbs)	L _{r_ch[i]} (lbs)	S _{ch[i]} (lbs)	R _{ch[i]} (lbs)
Ch1;	-432;	-249;	338;	1647;	0;	162;	0;	0;
Ch2;	432;	249;	338;	1647;	0;	162;	0;	0;
Ch3;	0;	0;	0;	0;	0;	0;	0;	0;
Ch4;	0;	0;	0;	0;	0;	0;	0;	0;
Ch5;	0;	0;	0;	0;	0;	0;	0;	0;
Ch6;	0;	0;	0;	0;	0;	0;	0;	0;
Ch7;	0;	0;	0;	0;	0;	0;	0;	0;
Ch8;	0;	0;	0;	0;	0;	0;	0;	0;

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.1; D + 0.6WLoad combination no.2; D + 0.7E

Load combination no.3; $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or S or R})$

Load combination no.4; $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6WLoad combination no.6; 0.6D + 0.7E

Adjustment factors

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
	23-283				
Section		Sheet no./rev.			
			12		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Wet service factor for modulus of elasticity - Table 4A

 $C_{ME} = 1.00$

Temperature factor for tension – Table 2.3.3; $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

Temperature factor for modulus of elasticity - Table 2.3.3

 $C_{tE} = 1.00$

 $\label{eq:continuous} \begin{array}{ll} \text{Incising factor} - \text{cl.4.3.8}; & \text{$C_i = 1.00$} \\ \text{Buckling stiffness factor} - \text{cl.4.4.2}; & \text{$C_T = 1.00$} \\ \text{Bearing area factor} - \text{cl. 3.10.4}; & \text{$C_b = 1.0$} \\ \end{array}$

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 580000 \text{ psi}$

Critical buckling design value; $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 1112 \text{ psi}$

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = \textbf{2376 psi}$

For sawn lumber; c = 0.8

Column stability factor – eqn.3.7-1; $C_P = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - (F_{cE} / F_c^*) / (2 \times c)) = (1 + (F_{cE} / F_c^*)) / (2 \times c) - (F_{cE} / F_c^*) / (2 \times c)) = (1 + (F_{cE} / F_c^*)) / (2 \times c) - (F_{cE} / F_c^*) / (2 \times c) = (1 + (F_{cE} / F_c^*)) / (2 \times c) = (1 + (F$

0.41

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio; 3.5

Segment 1 wall length; $b_1 = 6.5 \text{ ft}$ Shear wall aspect ratio; $h / b_1 = 1.46$ $b_2 = 8 \text{ ft}$ Segment 2 wall length; Shear wall aspect ratio; $h/b_2 = 1.186$ Segment 3 wall length; $b_3 = 8 \text{ ft}$ Shear wall aspect ratio; $h / b_3 = 1.186$ Segment 4 wall length; $b_4 = 6.625 \text{ ft}$ Shear wall aspect ratio: $h / b_4 = 1.432$

Segmented shear wall capacity - Equal deflection method

Wind loading:

Segment 3 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_3) = 0.024$ in/kip

Segment 3 stiffness; $k_3 = 1/(2 \times h^3/(3 \times E \times A_e \times b_3^2) + h/(G_a \times b_3) + h \times \Delta_{a1}/b_3) = 9.054$

kips/in

Unit shear capacity, widest segment; $v_{sww3} = v_w / 2 = 365$ plf

Vertical deflction under capacity load; $\Delta_{a_Cap} = h \times v_{sww3} / k_a = 0.071$ in

Deflection under capacity load; $\delta_{Cap} = 2 \times v_{sww3} \times h^3 / (3 \times E \times A_e \times b_3) + v_{sww3} \times h / (G_a) + h \times \Delta_{a_Cap} / b_3 = 0$

0.323 in

Segment 1 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_1) = 0.030$ in/kip

Segment 1 stiffness; $k_1 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_1^2) + h / (G_a \times b_1) + h \times \Delta_{a1} / b_1) = \textbf{6.904}$

kips/in

Segment 1 unit shear at δ_{Cap} ; $v_{dsww1} = \delta_{Cap} \times k_1 / b_1 = 342.55 \text{ plf}$

Segment 1 shear capacity; $v_{sww1} = v_w / 2 = 365 \text{ plf}$

 $v_{dsww1} / v_{sww1} = 0.938$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

Segment 2 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_2) = 0.024$ in/kip

11320 West 79th Street Lenexa, Kansas 66214

Р	roject				Job Ref.	
	,	23-283				
S	Section		Sheet no./rev.			
				13		
С	Calc. by	Date	Chk'd by	Date	App'd by	Date
	GL	7/25/2023	DN			

Segment 2 stiffness; $k_2 = 1/(2 \times h^3/(3 \times E \times A_e \times b_2^2) + h/(G_a \times b_2) + h \times \Delta_{a1}/b_2 = 9.054$

kips/in

Segment 2 unit shear at δ_{Cap} ; $v_{dsww2} = \delta_{Cap} \times k_2 / b_2 = 365$ plf

Segment 2 shear capacity; $v_{sww2} = v_w / 2 = 365 \text{ plf}$ $v_{dsww2} / v_{sww2} = 1.000$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

Segment 4 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_4) = 0.029$ in/kip

Segment 4 stiffness; $k_4 = 1/(2 \times h^3/(3 \times E \times A_e \times b_4^2) + h/(G_a \times b_4) + h \times \Delta_{a1}/b_4) = 7.081$

kips/in

Segment 4 unit shear at δ_{Cap} ; $v_{dsww4} = \delta_{Cap} \times k_4 / b_4 = 344.68$ plf

Segment 4 shear capacity; $v_{sww4} = v_w / 2 = 365 \text{ plf}$

 $V_{dsww4} / V_{sww4} = 0.944$

PASS - Segment shear capacity exceeds segment unit shear at δc_{ap}

Maximum shear force under wind loading; $V_{w_{max}} = 0.6 \times W = 1.532 \text{ kips}$

Shear capacity for wind loading; $V_w = min(v_{sww1}, v_{dsww1}) \times b_1 + min(v_{sww2}, v_{dsww2}) \times b_2 + v_{sww3} \times b_3 + min(v_{sww2}, v_{dsww2}) \times b_2 + v_{sww3} \times b_3 + min(v_{sww1}, v_{dsww1}) \times b_1 + min(v_{sww2}, v_{dsww2}) \times b_2 + v_{sww3} \times b_3 + min(v_{sww2}, v_{dsww2}) \times b_2 + v_{sww3} \times b_3 + min(v_{sww2}, v_{dsww2}) \times b_2 + v_{sww3} \times b_3 + min(v_{sww2}, v_{dsww2}) \times b_2 + v_{sww3} \times b_3 + min(v_{sww2}, v_{dsww2}) \times b_2 + v_{sww3} \times b_3 + min(v_{sww2}, v_{dsww2}) \times b_2 + v_{sww3} \times b_3 + min(v_{sww2}, v_{dsww2}) \times b_2 + v_{sww3} \times b_3 + min(v_{sww2}, v_{dsww2}) \times b_2 + v_{sww3} \times b_3 + min(v_{sww2}, v_{dsww2}) \times b_2 + v_{sww3} \times b_3 + min(v_{sww2}, v_{dsww2}) \times b_2 + v_{sww3} \times b_3 + min(v_{sww2}, v_{dsww2}) \times b_2 + v_{sww3} \times b_3 + min(v_{sww2}, v_{dsww2}) \times b_2 + v_{sww3} \times b_3 + min(v_{sww2}, v_{dsww2}) \times b_2 + v_{sww3} \times b_3 + min(v_{sww2}, v_{dsww2}) \times b_2 + min(v_{sww2}, v_{sww2}) \times b_2 + min(v_{sww2}, v_{sww2}, v_{sww2}) \times b_2 + min(v_{sww2}, v_{sww2}, v_{sww2}, v_{sww2}, v_{sww2}, v_{sww2}) \times b_2 + min(v_{sww2}, v_{sww2},

 $min(v_{sww4}, v_{dsww4}) \times b_4 = 10.35 \text{ kips}$

 $V_{w_{max}} / V_{w} = 0.148$

PASS - Shear capacity for wind load exceeds maximum shear force

Seismic loading:

Segment 3 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_3) = 0.024$ in/kip

Segment 3 stiffness; $k_3 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_3^2) + h / (G_a \times b_3) + h \times \Delta_{a1} / b_3) = 9.054$

kips/in

Unit shear capacity, widest segment; $v_{sws3} = v_s / 2 = 260 \text{ plf}$

Vertical deflction under capacity load; $\Delta_{a_Cap} = h \times v_{sws3} / k_a = 0.050$ in

Deflection under capacity load; $\delta_{Cap} = 2 \times v_{sws3} \times h^3 / (3 \times E \times A_e \times b_3) + v_{sws3} \times h / (G_a) + h \times \Delta_{a_Cap} / b_3 = 0$

0.23 in

Segment 1 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_1) = 0.030$ in/kip

Segment 1 stiffness; $k_1 = 1/(2 \times h^3/(3 \times E \times A_e \times b_1^2) + h/(G_a \times b_1) + h \times \Delta_{a1}/b_1) = 6.904$

kips/in

Segment 1 unit shear at δ_{Cap} ; $V_{dsws1} = \delta_{Cap} \times k_1 / b_1 = 244.01$ plf

Segment 1 shear capacity; $v_{sws1} = v_s / 2 = 260 \text{ plf}$

 $V_{dsws1} / V_{sws1} = 0.938$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Segment 2 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_2) = 0.024$ in/kip

Segment 2 stiffness; $k_2 = 1/(2 \times h^3/(3 \times E \times A_e \times b_2^2) + h/(G_a \times b_2) + h \times \Delta_{a1}/b_2) = 9.054$

ips/in

Segment 2 unit shear at δ_{Cap} ; $v_{dsws2} = \delta_{Cap} \times k_2 / b_2 = 260$ plf

Segment 2 shear capacity; $v_{sws2} = v_s / 2 = 260 \text{ plf}$

 $V_{dsws2} / V_{sws2} = 1.000$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Segment 4 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_4) = 0.029$ in/kip

Segment 4 stiffness; $k_4 = 1/(2 \times h^3/(3 \times E \times A_e \times b_4^2) + h/(G_a \times b_4) + h \times \Delta_{a1}/b_4) = 7.081$

kips/in

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
,	23-283				
Section	Sheet no./rev.				
			14		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Segment 4 unit shear at δ_{Cap} ; $v_{dsws4} = \delta_{Cap} \times k_4 / b_4 = 245.53$ plf

Segment 4 shear capacity; $v_{sws4} = v_s / 2 = 260 \text{ plf}$

 $V_{dsws4} / V_{sws4} = 0.944$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

Maximum shear force under seismic loading; $V_{s_max} = 0.7 \times E_q = 1.137$ kips

Shear capacity for seismic loading; $V_s = \min(v_{sws1}, v_{dsws1}) \times b_1 + \min(v_{sws2}, v_{dsws2}) \times b_2 + v_{sws3} \times b_3 + v_{dsws2} \times b_3 + v_{d$

 $min(v_{sws4}, v_{dsws4}) \times b_4 = 7.373 \text{ kips}$

 $V_{s max} / V_{s} = 0.154$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chord 1

Shear wall aspect ratio; $h / b_1 = 1.46$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 1.532$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + 0.6 \times W_{ch1} + 0.6 \times D_{T_ch1} = 1.822 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_1 / sum(k_1, k_2, k_3, k_4)) \times h / b_1 - P = -1.341 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = -66 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \ lb/in^2$

 $f_t / F_t' = -0.055$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 1.149$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + 0.75 \times U_{ch1} + 0.75 \times U_{ch1$

 $L_{r_ch1} = 1.286 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_1 / sum(k_1, k_2, k_3, k_4)) \times h / b_1 + P = 1.647$ kips

Maximum applied compressive stress; $f_c = C / A_e = 67 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_f \times C_P = 976 \text{ lb/in}^2$

 $f_c / F_c' = 0.068$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c_perp}' = 0.106$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 2

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 1.532$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + -1 \times 0.6 \times W_{ch2} + 0.6 \times D_{T_ch2} = 1.822$

kips

Maximum tensile force in chord; $T = V \times (k_1 / sum(k_1, k_2, k_3, k_4)) \times h / b_1 - P = -1.341 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = -66 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = -0.055$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 1.149$ kips

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
	23-	283			
Section		Sheet no./rev.			
					15
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 + 0.45 \times W_{ch2} + D_{C ch2} + 0.75 \times L_{r ch2} = 0.00 \times L_{r ch2} + 0.00 \times L_{r c$

1.286 kips

Maximum compressive force in chord; $C = V \times (k_1 / sum(k_1,k_2,k_3,k_4)) \times h / b_1 + P = 1.647$ kips

Maximum applied compressive stress; $f_c = C / A_e = 67 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = \textbf{976 lb/in}^2$

 $f_c / F_c' = 0.068$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp'} = 0.106$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 3

Shear wall aspect ratio; $h / b_2 = 1.186$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 1.532$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_2 / 2 = 1.345 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_2 / sum(k_1, k_2, k_3, k_4)) \times h / b_2 - P = -0.832 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = -41 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = -0.034$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 1.149$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = \textbf{0.632} \text{ kips}$ Maximum compressive force in chord; $C = V \times (k_2 / \text{sum}(k_1, k_2, k_3, k_4)) \times h / b_2 + P = \textbf{1.017} \text{ kips}$

Maximum applied compressive stress; $f_c = C / A_e = 41 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 976 \text{ lb/in}^2$

 $f_c / F_c' = 0.042$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp}' = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp'} = 0.066$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 4

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 1.532 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_2 / 2 = 1.345 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_2 / sum(k_1, k_2, k_3, k_4)) \times h / b_2 - P = -0.832 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = -41 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_F \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = -0.034$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 1.149 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.632 \text{ kips}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
	23-	283			
Section		Sheet no./rev.			
					16
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Maximum compressive force in chord; $C = V \times (k_2 / sum(k_1, k_2, k_3, k_4)) \times h / b_2 + P = 1.017$ kips

Maximum applied compressive stress; $f_c = C / A_e = 41 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 976 \text{ lb/in}^2$

 $f_c / F_c' = 0.042$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp}' = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp'} = 0.066$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 5

Shear wall aspect ratio; $h / b_3 = 1.186$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 1.532$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_3 / 2 = 1.345 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_3 / \text{sum}(k_1, k_2, k_3, k_4)) \times h / b_3 - P = -0.832 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = -41 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = -0.034$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 1.149 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = \textbf{0.632} \text{ kips}$ Maximum compressive force in chord; $C = V \times (k_3 / \text{sum}(k_1, k_2, k_3, k_4)) \times h / b_3 + P = \textbf{1.017} \text{ kips}$

Maximum applied compressive stress; $f_c = C / A_e = 41 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 976 \text{ lb/in}^2$

 $f_c / F_c' = 0.042$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c_perp'} = 0.066$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 6

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 1.532$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_3 / 2 = 1.345 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_3 / sum(k_1, k_2, k_3, k_4)) \times h / b_3 - P = -0.832 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = -41 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = -0.034$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 1.149$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = \textbf{0.632} \text{ kips}$ Maximum compressive force in chord; $C = V \times (k_3 / \text{sum}(k_1, k_2, k_3, k_4)) \times h / b_3 + P = \textbf{1.017} \text{ kips}$

Maximum applied compressive stress; $f_c = C / A_e = 41 \text{ lb/in}^2$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
	23-	283			
Section		Sheet no./rev.			
					17
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 976 \text{ lb/in}^2$

 $f_c / F_c' = 0.042$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp}' = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp'} = 0.066$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 7

Shear wall aspect ratio; $h / b_4 = 1.432$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 1.532$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_4 / 2 = 1.114 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_4 / \text{sum}(k_1, k_2, k_3, k_4)) \times h / b_4 - P = -0.630 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = -31 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = -0.026$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 1.149$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.632 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_4 / sum(k_1,k_2,k_3,k_4)) \times h / b_4 + P = \textbf{0.995} \text{ kips}$

Maximum applied compressive stress; $f_c = C / A_e = 40 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 976 \text{ lb/in}^2$

 $f_c / F_c' = 0.041$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c_perp}' = 0.064$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 8

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 1.532$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_4 / 2 = 1.114 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_4 / \text{sum}(k_1, k_2, k_3, k_4)) \times h / b_4 - P = -0.630 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = -31 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{1196} \text{ lb/in}^2$

 $f_t / F_t' = -0.026$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 1.149$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = \textbf{0.632} \text{ kips}$ Maximum compressive force in chord; $C = V \times (k_4 / \text{sum}(k_1, k_2, k_3, k_4)) \times h / b_4 + P = \textbf{0.995} \text{ kips}$

Maximum applied compressive stress; $f_c = C / A_e = 40 \text{ lb/in}^2$

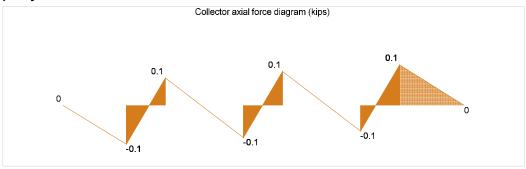
Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_f \times C_P = 976 \text{ lb/in}^2$

 $f_c / F_c' = 0.041$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
	WSS - Lee's Su	23-	283		
Section		Sheet no./rev.			
					18
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

PASS - Design compressive stress exceeds maximum applied compressive stress


Design bearing compr. stress, bottom plate;

$$F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$$

 $f_c / F_{c_perp'} = 0.064$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Collector capacity

Collector seismic design force factor; $F_{Coll} = 1$

Maximum shear force on wall; $V_{max} = max(F_{Coll} \times V_{s_max}, V_{w_max}) = 1.532 \text{ kips}$

Maximum force in collector; $P_{coll} = 0.091$ kips

Maximum applied tensile stress; $f_t = P_{coll} / (2 \times A_s) = 6 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_F \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = 0.005$

PASS - Design tensile stress exceeds maximum applied tensile stress

Maximum applied compressive stress; $f_c = P_{coll} / (2 \times A_s) = 6 \text{ lb/in}^2$

Column stability factor; $C_P = 1.00$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{fc} \times C_F \times C_P = 2376 \text{ lb/in}^2$

 $f_c / F_c' = 0.002$

PASS - Design compressive stress exceeds maximum applied compressive stress

Wind load deflection

Design shear force; $V_{\delta w} = f_{Wserv} \times W = 2.553 \text{ kips}$

Deflection limit; $\Delta_{\text{W_allow}} = \text{h} / 360 = \textbf{0.316} \text{ in}$

Segment 1

Induced unit shear; $v_{\delta w} = V_{\delta w} \times (k_1 / sum(k_1, k_2, k_3, k_4)) / b_1 = 84.5 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips,} v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2 - 0.6 \times \min(D_{T_ch1}, D_{T_ch2})$

+ $max(abs(W_{ch1}), abs(W_{ch2}))) = 0.000 \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 1 deflection – Eqn. 4.3-1; $\delta_{sww1} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_1) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_1 = \textbf{0.056} \text{ in}$

 δ_{sww1} / $\Delta_{\text{w allow}}$ = **0.176**

PASS - Shear wall deflection is less than deflection limit

Segment 2

Induced unit shear; $v_{\delta w} = V_{\delta w} \times (k_2 / \text{sum}(k_1, k_2, k_3, k_4)) / b_2 = 90.03 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000} \text{ kips}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
,	23-	283			
Section	Sheet no./rev.				
		,	19		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Vertical elongation at anchor;

 $\Delta_a = T_{\delta} / k_a = 0.000 \text{ in}$

Segment 2 deflection - Eqn. 4.3-1;

 δ_{sww2} = 2 \times $v_{\delta w}$ \times h^3 / (3 \times E \times A_e \times $b_2)$ + $v_{\delta w}$ \times h / (Ga) + h \times Δ_a / b_2 = 0.059 in

 δ_{sww2} / $\Delta_{\text{w_allow}}$ = **0.186**

PASS - Shear wall deflection is less than deflection limit

Segment 3

Induced unit shear; $v_{\delta w} = V_{\delta w} \times (k_3 / \text{sum}(k_1, k_2, k_3, k_4)) / b_3 = 90.03 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000} \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 3 deflection – Eqn. 4.3-1; $\delta_{\text{Swwy3}} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_3) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_3 = \textbf{0.059} \text{ in}$

 $\delta_{\text{sww3}} / \Delta_{\text{w allow}} = 0.186$

PASS - Shear wall deflection is less than deflection limit

Segment 4

Induced unit shear; $v_{\delta w} = V_{\delta w} \times (k_4 / \text{sum}(k_1, k_2, k_3, k_4)) / b_4 = 85.02 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000 kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 4 deflection – Eqn. 4.3-1; $\delta_{\text{Sww4}} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_4) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_4 = \textbf{0.056} \text{ in}$

 δ_{sww4} / Δ_{w} allow = **0.177**

PASS - Shear wall deflection is less than deflection limit

Seismic deflection

Design shear force; $V_{\delta s} = E_{\alpha} = 1.624 \text{ kips}$

Deflection limit; $\Delta_{s_allow} = 0.020 \times h = 2.278$ in

Deflection ampification factor; $C_{d\delta}$ = **4** Seismic importance factor; I_e = **1**

Segment 1

Induced unit shear; $V_{\delta s} = V_{\delta s} \times (k_1 / sum(k_1, k_2, k_3, k_4)) / b_1 = 53.75 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2

 S_{DS}) × min(D_{T_ch1} , D_{T_ch2}) + max(abs(E_{q_ch1}),abs(E_{q_ch2}))) = **0.000** kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 1 deflection – Eqn. 4.3-1; $\delta_{\text{swse1}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_1) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_1 = \textbf{0.035} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws1} = C_{d\delta} \times \delta_{swse1} / I_e = 0.142$ in

 $\delta_{\text{sws1}} / \Delta_{\text{s allow}} = 0.062$

PASS - Shear wall deflection is less than deflection limit

Segment 2

Induced unit shear; $v_{\delta s} = V_{\delta s} \times (k_2 / sum(k_1, k_2, k_3, k_4)) / b_2 = 57.27 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 2 deflection – Eqn. 4.3-1; $\delta_{\text{swse2}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_2) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_2 = \textbf{0.037} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws2} = C_{d\delta} \times \delta_{swse2} / I_e = \textbf{0.15} \text{ in}$

 $\delta_{\text{sws2}} / \Delta_{\text{s allow}} = 0.066$

PASS - Shear wall deflection is less than deflection limit

Segment 3

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
	WSS - Lee's Su	mmit, MO - GL	M	23-	283
Section		Sheet no./rev.			
				2	20
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Induced unit shear; $v_{\delta s} = V_{\delta s} \times (k_3 / sum(k_1, k_2, k_3, k_4)) / b_3 = 57.27 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 3 deflection – Eqn. 4.3-1; $\delta_{swse3} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_3) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_3 = \textbf{0.037} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws3} = C_{d\delta} \times \delta_{swse3} / I_e = 0.15$ in

 $\delta_{\text{sws3}} / \Delta_{\text{s allow}} = 0.066$

PASS - Shear wall deflection is less than deflection limit

Segment 4

Induced unit shear; $v_{\delta s} = V_{\delta s} \times (k_4 / sum(k_1, k_2, k_3, k_4)) / b_4 =$ **54.08** lb/ft

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 4 deflection – Eqn. 4.3-1; $\delta_{\text{swse4}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_4) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_4 = \textbf{0.036} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws4}} = C_{\text{d}\delta} \times \delta_{\text{swse4}} / I_{\text{e}} = \textbf{0.143} \text{ in}$

 $\delta_{\text{sws4}} / \Delta_{\text{s allow}} = 0.063$

PASS - Shear wall deflection is less than deflection limit

11320 West 79th Street Lenexa, Kansas 66214

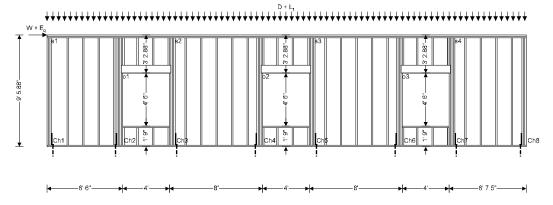
Project				Job Ref.	
	WSS - Lee's Su	23-	283		
Section		Sheet no./rev.			
			21		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10


Design summary

Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	10350	2146	0.207	PASS
Chord capacity	lb/in ²	976	47	0.076	PASS
Collector capacity	lb/in ²	1196	8	0.006	PASS
Deflection	in	0.285	0.083	0.290	PASS

Panel details

Structural wood panel sheathing on one side

Panel height; h = 9.49 ftPanel length; b = 41.125 ft

Panel opening details

 $w_{o1} = 4 ft$ Width of opening; $h_{o1} = 4.5 \text{ ft}$ Height of opening; Height to underside of lintel over opening; $I_{01} = 6.25 \text{ ft}$ Position of opening; $P_{o1} = 6.5 \text{ ft}$ Width of opening; $w_{o2} = 4 \text{ ft}$ Height of opening; $h_{o2} = 4.5 \text{ ft}$ Height to underside of lintel over opening; $I_{o2} = 6.25 \text{ ft}$ Position of opening; $P_{02} = 18.5 \text{ ft}$ Width of opening; $w_{03} = 4 \text{ ft}$ Height of opening; $h_{o3} = 4.5 \text{ ft}$ Height to underside of lintel over opening; $I_{o3} = 6.25 \text{ ft}$ Position of opening; $P_{03} = 30.5 \text{ ft}$

Total area of wall; $A = h \times b - w_{01} \times h_{01} - w_{02} \times h_{02} - w_{03} \times h_{03} = 336.276 \text{ ft}^2$

Panel construction

Nominal stud size; 2" x 6"

Dressed stud size; 1.5" x 5.5"

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
	WSS - Lee's Su	ımmit, MO - GL	M	23-	283
Section		Sheet no./rev.			
		;	22		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Cross-sectional area of studs; $A_s = 8.25 \text{ in}^2$ Stud spacing; s = 16 in Nominal end post size; 3 x 2" x 6" Dressed end post size; 3 x 1.5" x 5.5" $A_e = 24.75 \text{ in}^2$ Cross-sectional area of end posts; Dia = 1 in Hole diameter; Net cross-sectional area of end posts; $A_{en} = 20.25 \text{ in}^2$ Nominal collector size; 2 x 2" x 6" Dressed collector size; 2 x 1.5" x 5.5"

Service condition; Dry

Temperature; 100 degF or less Vertical anchor stiffness; $k_a = 49087$ lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

 $\label{eq:specific gravity;} G = \textbf{0.50}$ Tension parallel to grain; $F_t = \textbf{575} \text{ lb/in}^2$ Compression parallel to grain; $F_c = \textbf{1350} \text{ lb/in}^2$ Compression perpendicular to grain; $F_{c_perp} = \textbf{625} \text{ lb/in}^2$ Modulus of elasticity; $E = \textbf{1600000} \text{ lb/in}^2$ Minimum modulus of elasticity; $E_{min} = \textbf{580000} \text{ lb/in}^2$

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 6"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 520 \text{ lb/ft}$ Nominal unit shear capacity for wind design; $v_w = 730 \text{ lb/ft}$ Apparent shear wall shear stiffness; $G_a = 15 \text{ kips/in}$

Loading details

Dead load acting on top of panel; D = 323.175 lb/ft Floor live load acting on top of panel; L_f = 517.08 lb/ft Self weight of panel; S_{wt} = 25 lb/ft² In plane wind load acting at head of panel; W = 3577 lbs Wind load serviceability factor; W = 1.00 In plane seismic load acting at head of panel; E_q = 2075 lbs Design spectral response accel. par., short periods; S_{DS} = 0.106

Chord forces from shear walls above

Chord	W _{ch[i]} (lbs)	Eq_ch[i] (lbs)	Dc_ch[i] (lbs)	D _{T_ch[i]} (lbs)	L _{f_ch[i]} (lbs)	L _{r_ch[i]} (lbs)	S _{ch[i]} (lbs)	R _{ch[i]} (lbs)
Ch1;	0;	0;	0;	0;	0;	0;	0;	0;
Ch2;	0;	0;	0;	0;	0;	0;	0;	0;
Ch3;	0;	0;	0;	0;	0;	0;	0;	0;
Ch4;	0;	0;	0;	0;	0;	0;	0;	0;
Ch5;	0;	0;	0;	0;	0;	0;	0;	0;
Ch6;	0;	0;	0;	0;	0;	0;	0;	0;

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.		
	WSS - Lee's St	ummit, MO - 0	GL M	2	23-283	
Section	Section				Sheet no./rev.	
					23	
Calc. by	Date	Chk'd by	Date	App'd by	Date	
GL	7/25/2023	DN				

Ch7;	0;	0;	0;	0;	0;	0;	0;	0;
Ch8;	0;	0;	0;	0;	0;	0;	0;	0;

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.1; D + 0.6WLoad combination no.2; D + 0.7E

Load combination no.3; $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or S or R})$

Load combination no.4; $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6WLoad combination no.6; 0.6D + 0.7E

Adjustment factors

Wet service factor for modulus of elasticity – Table 4A

 $C_{ME} = 1.00$

Temperature factor for tension – Table 2.3.3; $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

Temperature factor for modulus of elasticity – Table 2.3.3

 $C_{tE} = 1.00$

 $\label{eq:continuous} \begin{array}{ll} \text{Incising factor} - \text{cl.4.3.8}; & \text{$C_i = 1.00$} \\ \text{Buckling stiffness factor} - \text{cl.4.4.2}; & \text{$C_T = 1.00$} \\ \text{Bearing area factor} - \text{cl. 3.10.4}; & \text{$C_b = 1.0$} \\ \end{array}$

 $\label{eq:emin} \mbox{Adjusted modulus of elasticity;} \qquad \qquad \mbox{E}_{\mbox{min}'} = \mbox{E}_{\mbox{min}} \times \mbox{C}_{\mbox{ME}} \times \mbox{C}_{\mbox{tE}} \times \mbox{C}_{\mbox{i}} \times \mbox{C}_{\mbox{T}} = \mbox{\bf 580000} \mbox{ psi}$

Critical buckling design value; $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 1112$ psi

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = 2376 \text{ psi}$

For sawn lumber; c = 0.8

Column stability factor – eqn.3.7-1; $C_P = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c)]^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_c^*)) / (2 \times c))^2 - (F_{cE} / F_c^*) / c)} = (1 + (F_{cE} / F_c^*)) / (2 \times c) - (F_{cE} / F_c^*) / c)$

0.41

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

 $\label{eq:maximum shear wall aspect ratio;} \qquad \qquad 3.5$ Segment 1 wall length; $\qquad \qquad b_1 = \textbf{6.5} \text{ ft}$

Shear wall aspect ratio; $h / b_1 = 1.46$ Segment 2 wall length; $b_2 = 8$ ft Shear wall aspect ratio; $h / b_2 = 1.186$ Segment 3 wall length; $b_3 = 8$ ft Shear wall aspect ratio; $h / b_3 = 1.186$ Segment 4 wall length; $b_4 = 6.625$ ft Shear wall aspect ratio; $h / b_4 = 1.432$

Segmented shear wall capacity - Equal deflection method

Wind loading:

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
,	WSS - Lee's Su	23-283			
Section		Sheet no./rev.			
		2	24		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Segment 3 vertical unit deflection;

 $\Delta_{a1} = h / (k_a \times b_3) = 0.024 in/kip$

Segment 3 stiffness;

 $k_3 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_3^2) + h / (G_a \times b_3) + h \times \Delta_{a1} / b_3) = 9.054$

kips/in

Unit shear capacity, widest segment;

 $v_{sww3} = v_w / 2 = 365 \text{ plf}$

Vertical deflction under capacity load;

 Δ_{a_Cap} = h × v_{sww3} / k_a = **0.071** in

Deflection under capacity load;

 $\delta_{Cap} = 2 \times v_{sww3} \times h^3 / (3 \times E \times A_e \times b_3) + v_{sww3} \times h / (G_a) + h \times \Delta_{a_Cap} / b_3 = 0$

0.323 in

Segment 1 vertical unit deflection;

 $\Delta_{a1} = h / (k_a \times b_1) = 0.030 in/kip$

Segment 1 stiffness;

 $k_1 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_1^2) + h / (G_a \times b_1) + h \times \Delta_{a1} / b_1) = 6.904$

kips/in

Segment 1 unit shear at δ_{Cap} ; Segment 1 shear capacity; $v_{dsww1} = \delta_{Cap} \times k_1 / b_1 = 342.55 \text{ plf}$

 $v_{sww1} = v_w / 2 = 365 plf$

 $V_{dsww1} / V_{sww1} = 0.938$

Segment 2 vertical unit deflection;

 $\Delta_{a1} = h / (k_a \times b_2) = 0.024 in/kip$

ginerit 2 vertical unit deflection, $\Delta a_1 = 117 (ka \times b_2) = 0.024 \ln k$

Segment 2 stiffness; $k_2 = 1/(2 \times h^3/(3 \times E \times A_e \times b_2^2) + h/(G_a \times b_2) + h \times \Delta_{a1}/b_2 = 9.054$

kips/in

Segment 2 unit shear at δ_{Cap} ;

 $v_{dsww2} = \delta_{Cap} \times k_2 / b_2 = 365 \text{ plf}$

Segment 2 shear capacity;

 $v_{sww2} = v_w / 2 = 365 \text{ plf}$

 $v_{dsww2} / v_{sww2} = 1.000$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Segment 4 vertical unit deflection;

 $\Delta_{a1} = h / (k_a \times b_4) = 0.029 in/kip$

Segment 4 stiffness;

 $k_4 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_4^2) + h / (G_a \times b_4) + h \times \Delta_{a1} / b_4) = 7.081$

kips/in

Segment 4 unit shear at δ_{Cap} ;

 $v_{dsww4} = \delta_{Cap} \times k_4 / b_4 = 344.68 \text{ plf}$

Segment 4 shear capacity;

 $v_{sww4} = v_w / 2 = 365 \text{ plf}$ $v_{dsww4} / v_{sww4} = 0.944$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{\sf Cap}$

Maximum shear force under wind loading;

 $V_{w \text{ max}} = 0.6 \times W = 2.146 \text{ kips}$

Shear capacity for wind loading;

 $V_w = min(v_{sww1}, v_{dsww1}) \times b_1 + min(v_{sww2}, v_{dsww2}) \times b_2 + v_{sww3} \times b_3 +$

 $min(v_{sww4}, v_{dsww4}) \times b_4 = 10.35 \text{ kips}$

 $V_{w \text{ max}} / V_{w} = 0.207$

PASS - Shear capacity for wind load exceeds maximum shear force

Seismic loading:

Segment 3 vertical unit deflection;

 $\Delta_{a1} = h / (k_a \times b_3) = 0.024 in/kip$

Segment 3 stiffness:

 $k_3 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_3^2) + h / (G_a \times b_3) + h \times \Delta_{a1} / b_3) = 9.054$

kips/in

Unit shear capacity, widest segment;

 $v_{sws3} = v_s / 2 = 260 plf$

Vertical deflction under capacity load;

 $\Delta_{a_Cap} = h \times v_{sws3} / k_a = 0.050$ in

Deflection under capacity load;

 $\delta_{Cap} = 2 \times v_{sws3} \times h^3 / (3 \times E \times A_e \times b_3) + v_{sws3} \times h / (G_a) + h \times \Delta_a C_{ap} / b_3 =$

0.23 in

Segment 1 vertical unit deflection;

 $\Delta_{a1} = h / (k_a \times b_1) = 0.030 in/kip$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
,	WSS - Lee's Su	23-283			
Section		Sheet no./rev.			
		2	25		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Segment 1 stiffness; $k_1 = 1/(2 \times h^3/(3 \times E \times A_e \times b_1^2) + h/(G_a \times b_1) + h \times \Delta_{a1}/b_1) = 6.904$

kips/in

Segment 1 unit shear at δ_{Cap} ; $v_{dsws1} = \delta_{Cap} \times k_1 / b_1 = 244.01$ plf

Segment 1 shear capacity; $v_{sws1} = v_s / 2 = 260 \text{ plf}$ $v_{dsws1} / v_{sws1} = 0.938$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Segment 2 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_2) = 0.024$ in/kip

Segment 2 stiffness; $k_2 = 1/(2 \times h^3/(3 \times E \times A_e \times b_2^2) + h/(G_a \times b_2) + h \times \Delta_{a1}/b_2) = 9.054$

kips/in

Segment 2 unit shear at δ_{Cap} ; $v_{dsws2} = \delta_{Cap} \times k_2 / b_2 = 260$ plf

Segment 2 shear capacity; $v_{sws2} = v_s / 2 = 260 \text{ plf}$

 $V_{dsws2} / V_{sws2} = 1.000$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Segment 4 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_4) = 0.029$ in/kip

Segment 4 stiffness; $k_4 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_4^2) + h / (G_a \times b_4) + h \times \Delta_{a1} / b_4) = 7.081$

kips/in

Segment 4 unit shear at δ_{Cap} ; $v_{dsws4} = \delta_{Cap} \times k_4 / b_4 = 245.53$ plf

Segment 4 shear capacity; $v_{sws4} = v_s / 2 = 260 \text{ plf}$

 $V_{dsws4} / V_{sws4} = 0.944$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

Maximum shear force under seismic loading; $V_{s max} = 0.7 \times E_{g} = 1.453$ kips

Shear capacity for seismic loading; $V_s = min(v_{sws1}, v_{dsws1}) \times b_1 + min(v_{sws2}, v_{dsws2}) \times b_2 + v_{sws3} \times b_3 + min(v_{sws1}, v_{dsws1}) \times b_1 + min(v_{sws2}, v_{dsws2}) \times b_2 + v_{sws3} \times b_3 + min(v_{sws1}, v_{dsws1}) \times b_1 + min(v_{sws2}, v_{dsws2}) \times b_2 + v_{sws3} \times b_3 + min(v_{sws1}, v_{dsws1}) \times b_1 + min(v_{sws2}, v_{dsws2}) \times b_2 + v_{sws3} \times b_3 + min(v_{sws2}, v_{dsws2}) \times b_2 + v_{sws3} \times b_3 + min(v_{sws2}, v_{dsws2}) \times b_2 + v_{sws3} \times b_3 + min(v_{sws2}, v_{dsws2}) \times b_2 + v_{sws3} \times b_3 + min(v_{sws2}, v_{dsws2}) \times b_2 + v_{sws3} \times b_3 + min(v_{sws2}, v_{dsws2}) \times b_2 + v_{sws3} \times b_3 + min(v_{sws2}, v_{dsws2}) \times b_2 + v_{sws3} \times b_3 + min(v_{sws2}, v_{dsws2}) \times b_2 + v_{sws3} \times b_3 + min(v_{sws2}, v_{dsws2}) \times b_2 + min(v_{sws2}, v_{dsws2}) \times b_2 + min(v_{sws2}, v_{dsws2}) \times b_3 + min(v_{sws2}, v_{sws2}) \times b_3 + min(v_{sws2}, v_{$

 $min(v_{sws4}, v_{dsws4}) \times b_4 = 7.373 \text{ kips}$

 $V_{s max} / V_{s} = 0.197$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chord 1

Shear wall aspect ratio; $h / b_1 = 1.46$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 2.146 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 = 1.093 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_1 / sum(k_1, k_2, k_3, k_4)) \times h / b_1 - P = -0.419 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = -21 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \ lb/in^2$

 $f_t / F_t' = -0.017$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 1.61$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = \textbf{0.632} \text{ kips}$ Maximum compressive force in chord; $C = V \times (k_1 / sum(k_1, k_2, k_3, k_4)) \times h / b_1 + P = \textbf{1.138} \text{ kips}$

Maximum applied compressive stress; $f_c = C / A_e = 46 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{fc} \times C_f \times C_P = 976 \text{ lb/in}^2$

 $f_c / F_c' = 0.047$

PASS - Design compressive stress exceeds maximum applied compressive stress

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
	WSS - Lee's Su	23-283			
Section		Sheet no./rev.			
		26			
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp'} = 0.074$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 2

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 2.146 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 = 1.093 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_1 / \text{sum}(k_1, k_2, k_3, k_4)) \times h / b_1 - P = -0.419 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = -21 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = -0.017$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 1.61$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = \textbf{0.632} \text{ kips}$ Maximum compressive force in chord; $C = V \times (k_1 / \text{sum}(k_1, k_2, k_3, k_4)) \times h / b_1 + P = \textbf{1.138} \text{ kips}$

Maximum applied compressive stress; $f_c = C / A_e = 46 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 976 \text{ lb/in}^2$

 $f_c / F_c' = 0.047$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp'} = 0.074$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 3

Shear wall aspect ratio; $h / b_2 = 1.186$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 2.146 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_2 / 2 = 1.345 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_2 / sum(k_1, k_2, k_3, k_4)) \times h / b_2 - P = -0.627 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = -31 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = -0.026$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 1.61$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = \textbf{0.632} \text{ kips}$ Maximum compressive force in chord; $C = V \times (k_2 / \text{sum}(k_1, k_2, k_3, k_4)) \times h / b_2 + P = \textbf{1.171} \text{ kips}$

Maximum applied compressive stress; $f_c = C / A_e = 47 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 976 \text{ lb/in}^2$

 $f_c / F_c' = 0.048$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp}' = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp}' = 0.076$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
	WSS - Lee's Su	23-283			
Section		Sheet no./rev.			
		2	27		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 4

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 2.146 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_2 / 2 = 1.345 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_2 / sum(k_1, k_2, k_3, k_4)) \times h / b_2 - P = -0.627 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = -31 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = -0.026$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 1.61$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = \textbf{0.632} \text{ kips}$ Maximum compressive force in chord; $C = V \times (k_2 / \text{sum}(k_1, k_2, k_3, k_4)) \times h / b_2 + P = \textbf{1.171} \text{ kips}$

Maximum applied compressive stress; $f_c = C / A_e = 47 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 976 \text{ lb/in}^2$

 $f_c / F_c' = 0.048$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp} = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp'} = 0.076$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 5

Shear wall aspect ratio; $h / b_3 = 1.186$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 2.146 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_3 / 2 = 1.345 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_3 / \text{sum}(k_1, k_2, k_3, k_4)) \times h / b_3 - P = -0.627 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = -31 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = -0.026$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 1.61$ kips

 $\begin{aligned} &\text{Axial force for maximum compression;} & P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s \ / \ 2 = \textbf{0.632} \ \text{kips} \\ &\text{Maximum compressive force in chord;} & C = V \times (k_3 \ / \ \text{sum}(k_1, k_2, k_3, k_4)) \times h \ / \ b_3 + P = \textbf{1.171} \ \text{kips} \end{aligned}$

Maximum applied compressive stress; $f_c = C / A_e = 47 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 976 \text{ lb/in}^2$

 $f_c / F_c' = 0.048$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c_perp}' = 0.076$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.				
	WSS - Lee's Si	23-283				
Section		Sheet no./rev.				
			28			
Calc. by	Date	Chk'd by	Date		App'd by	Date
GL	7/25/2023	DN				

Chord capacity for chord 6

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 2.146 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_3 / 2 = 1.345 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_3 / \text{sum}(k_1, k_2, k_3, k_4)) \times h / b_3 - P = -0.627 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = -31 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = -0.026$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 1.61$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = \textbf{0.632} \text{ kips}$ Maximum compressive force in chord; $C = V \times (k_3 / \text{sum}(k_1, k_2, k_3, k_4)) \times h / b_3 + P = \textbf{1.171} \text{ kips}$

Maximum applied compressive stress; $f_c = C / A_e = 47 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 976 \text{ lb/in}^2$

 $f_c / F_c' = 0.048$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; Fc perp

 $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c_perp'} = 0.076$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 7

Shear wall aspect ratio; $h / b_4 = 1.432$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 2.146 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_4 / 2 = 1.114 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_4 / \text{sum}(k_1, k_2, k_3, k_4)) \times h / b_4 - P = -0.436 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = -22 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = -0.018$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 1.61$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = \textbf{0.632} \text{ kips}$ Maximum compressive force in chord; $C = V \times (k_4 / \text{sum}(k_1, k_2, k_3, k_4)) \times h / b_4 + P = \textbf{1.141} \text{ kips}$

Maximum applied compressive stress; $f_c = C / A_e = 46 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{fc} \times C_f \times C_P = 976 \text{ lb/in}^2$

 $f_c / F_c' = 0.047$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^2$

 $f_c / F_{c perp}' = 0.074$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 8

Load combination 5

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
	WSS - Lee's Su	23-283			
Section		Sheet no./rev.			
		2	29		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Shear force for maximum tension; $V = 0.6 \times W = 2.146 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_4 / 2 = 1.114 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_4 / sum(k_1, k_2, k_3, k_4)) \times h / b_4 - P = -0.436 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = -22 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_F \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = -0.018$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

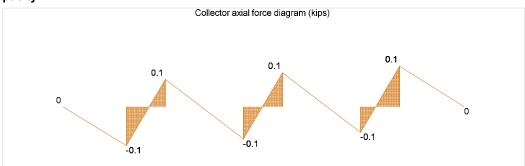
Shear force for maximum compression; $V = 0.45 \times W = 1.61$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = \textbf{0.632} \text{ kips}$ Maximum compressive force in chord; $C = V \times (k_4 / sum(k_1, k_2, k_3, k_4)) \times h / b_4 + P = \textbf{1.141} \text{ kips}$

Maximum applied compressive stress; $f_c = C / A_e = 46 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{fc} \times C_f \times C_P = 976 \text{ lb/in}^2$

 $f_c / F_c' = 0.047$


PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp}' = 0.074$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Collector capacity

Collector seismic design force factor; $F_{Coll} = 1$

Maximum shear force on wall; $V_{max} = max(F_{Coll} \times V_{s_max}, V_{w_max}) = 2.146 \text{ kips}$

Maximum force in collector; $P_{coll} = 0.128 \text{ kips}$

Maximum applied tensile stress; $f_t = P_{coll} / (2 \times A_s) = 8 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_F \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = 0.006$

PASS - Design tensile stress exceeds maximum applied tensile stress

Maximum applied compressive stress; $f_c = P_{coll} / (2 \times A_s) = 8 \text{ lb/in}^2$

Column stability factor; $C_P = 1.00$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 2376 \text{ lb/in}^2$

 $f_c / F_c' = 0.003$

PASS - Design compressive stress exceeds maximum applied compressive stress

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
	WSS - Lee's Su	23-	283		
Section		Sheet no./rev.			
		;	30		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Wind load deflection

Design shear force; $V_{\delta w} = f_{Wserv} \times W = 3.577 \text{ kips}$ Deflection limit; $\Delta_{w \text{ allow}} = h / 400 = 0.285 \text{ in}$

Segment 1

Induced unit shear; $v_{\delta w} = V_{\delta w} \times (k_1 / sum(k_1, k_2, k_3, k_4)) / b_1 = 118.39 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000} \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 1 deflection – Eqn. 4.3-1; $\delta_{sww1} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_1) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_1 = \textbf{0.078} \text{ in}$

 δ_{sww1} / $\Delta_{\text{w allow}}$ = **0.274**

PASS - Shear wall deflection is less than deflection limit

Segment 2

Induced unit shear; $v_{\delta w} = V_{\delta w} \times (k_2 / sum(k_1, k_2, k_3, k_4)) / b_2 = 126.14 lb/ft$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000 kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 2 deflection – Eqn. 4.3-1; $\delta_{\text{Sww2}} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_2) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_2 = \textbf{0.083} \text{ in}$

 $\delta_{\text{sww2}} / \Delta_{\text{w_allow}} = 0.29$

PASS - Shear wall deflection is less than deflection limit

Segment 3

Induced unit shear; $v_{\delta w} = V_{\delta w} \times (k_3 / sum(k_1, k_2, k_3, k_4)) / b_3 = 126.14 lb/ft$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000 kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 3 deflection – Eqn. 4.3-1; $\delta_{\text{Swwx}3} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_3) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_3 = \textbf{0.083} \text{ in}$

 δ_{sww3} / $\Delta_{\text{w_allow}}$ = **0.29**

PASS - Shear wall deflection is less than deflection limit

Segment 4

Induced unit shear; $V_{\delta w} = V_{\delta w} \times (k_4 / sum(k_1, k_2, k_3, k_4)) / b_4 = 119.12 lb/ft$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000 kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 4 deflection – Eqn. 4.3-1; $\delta_{sww4} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_4) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_4 = \textbf{0.078} \text{ in}$

 δ_{sww4} / Δ_{w} allow = **0.276**

PASS - Shear wall deflection is less than deflection limit

Seismic deflection

Design shear force; $V_{\delta s} = E_q = 2.075 \text{ kips}$

Deflection limit; $\Delta_{s \text{ allow}} = 0.020 \times h = 2.278 \text{ in}$

Deflection ampification factor; $C_{d\delta} = 4$ Seismic importance factor; $I_e = 1$

Segment 1

Induced unit shear: $v_{\delta s} = V_{\delta s} \times (k_1 / \text{sum}(k_1, k_2, k_3, k_4)) / b_1 = 68.67 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
	23-	283			
Section		Sheet no./rev.			
	;	31			
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023				

Segment 1 deflection – Eqn. 4.3-1;

 $\delta_{swse1} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_1) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_1 = 0.045$ in

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; δ_s

 δ_{sws1} = $C_{\text{d}\delta} \times \delta_{\text{swse1}}$ / I_{e} = **0.181** in

 $\delta_{\text{sws1}} / \Delta_{\text{s_allow}} = 0.08$

PASS - Shear wall deflection is less than deflection limit

Segment 2

Induced unit shear; $v_{\delta s} = V_{\delta s} \times (k_2 / sum(k_1, k_2, k_3, k_4)) / b_2 = 73.18 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 2 deflection – Eqn. 4.3-1; $\delta_{swse2} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_2) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_2 = \textbf{0.048} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws2} = C_{d\delta} \times \delta_{swse2} / I_e = 0.192$ in

 δ_{sws2} / $\Delta_{\text{s_allow}}$ = 0.084

PASS - Shear wall deflection is less than deflection limit

Segment 3

Induced unit shear; $v_{\delta s} = V_{\delta s} \times (k_3 / sum(k_1, k_2, k_3, k_4)) / b_3 = 73.18 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 3 deflection – Eqn. 4.3-1; $\delta_{\text{swse3}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_3) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_3 = \textbf{0.048} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws3} = C_{d\delta} \times \delta_{swse3} / I_e = 0.192$ in

 $\delta_{\text{sws3}} / \Delta_{\text{s allow}} = 0.084$

PASS - Shear wall deflection is less than deflection limit

Segment 4

Induced unit shear; $v_{\delta s} = V_{\delta s} \times (k_4 / \text{sum}(k_1, k_2, k_3, k_4)) / b_4 = \textbf{69.1} \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 4 deflection – Eqn. 4.3-1; $\delta_{swse4} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_4) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_4 = \textbf{0.046} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws4} = C_{d\delta} \times \delta_{swse4} / I_e = 0.182$ in

 δ_{sws4} / $\Delta_{\text{s_allow}}$ = **0.08**

PASS - Shear wall deflection is less than deflection limit

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
	23-	283			
Section		Sheet no./rev.			
	;	32			
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

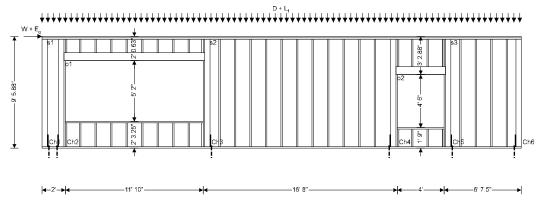
WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10

Design summary


Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	8130	2761	0.340	PASS
Chord capacity	lb/in ²	976	52	0.083	PASS
Collector capacity	lb/in ²	1196	56	0.047	PASS
Deflection	in	0.316	0.132	0.419	PASS

DESIGN WARNING - External chord forces are applied to a segment that exceeds the maximum aspect ratio permitted. The segment chords are not designed.

Panel details

Structural wood panel sheathing on one side

Panel height; h = 9.49 ftPanel length; b = 41.125 ft

Panel opening details

 $w_{o1} = 11.833 \text{ ft}$ Width of opening; Height of opening; $h_{o1} = 5.167 \text{ ft}$ Height to underside of lintel over opening; $I_{o1} = 7.438 \text{ ft}$ $P_{o1} = 2 ft$ Position of opening; Width of opening; $w_{o2} = 4 ft$ $h_{o2} = 4.5 \text{ ft}$ Height of opening; Height to underside of lintel over opening; $I_{o2} = 6.25 \text{ ft}$ Position of opening; $P_{o2} = 30.5 \text{ ft}$

Total area of wall; $A = h \times b - w_{01} \times h_{01} - w_{02} \times h_{02} = 311.137 \text{ ft}^2$

Panel construction

Nominal stud size; 2" x 6"

Dressed stud size; 1.5" x 5.5"

Cross-sectional area of studs; $A_s = 8.25 \text{ in}^2$ Stud spacing; s = 16 in

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.	Job Ref.		
	WSS - Lee's Si	23	3-283		
Section		Sheet no./rev.	Sheet no./rev.		
			33		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Nominal end post size; 6" x 6"

Dressed end post size; 5.5" x 5.5"

Cross-sectional area of end posts; $A_e = 30.25 \text{ in}^2$ Hole diameter; Dia = 1 inNet cross-sectional area of end posts; $A_{en} = 24.75 \text{ in}^2$

Nominal collector size; 2 x 2" x 6"

Dressed collector size; 2 x 1.5" x 5.5"

Service condition; Dry

Temperature; 100 degF or less Vertical anchor stiffness; $k_a = 69646 \text{ lb/in}$

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

 $\label{eq:specific gravity;} G = 0.50$ Tension parallel to grain; $F_t = 575 \text{ lb/in}^2$ Compression parallel to grain; $F_c = 1350 \text{ lb/in}^2$ Compression perpendicular to grain; $F_{c_perp} = 625 \text{ lb/in}^2$ Modulus of elasticity; $E = 1600000 \text{ lb/in}^2$ Minimum modulus of elasticity; $E_{min} = 580000 \text{ lb/in}^2$

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 6"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 520 \text{ lb/ft}$ Nominal unit shear capacity for wind design; $v_w = 730 \text{ lb/ft}$ Apparent shear wall shear stiffness; $G_a = 15 \text{ kips/in}$

Loading details

Dead load acting on top of panel; D = 353.175 lb/ft Floor live load acting on top of panel; $L_f = 517.08 \text{ lb/ft}$ Self weight of panel; $S_{wt} = 25 \text{ lb/ft}^2$ In plane wind load acting at head of panel; W = 4601 lbs Wind load serviceability factor; $f_{Wserv} = 1.00$ In plane seismic load acting at head of panel; $E_q = 2247 \text{ lbs}$ Design spectral response accel. par., short periods; $S_{DS} = 0.106$

Chord forces from shear walls above

Chord	W _{ch[i]} (lbs)	E _{q_ch[i]} (lbs)	D _{C_ch[i]} (lbs)	D _{T_ch[i]} (lbs)	L _{f_ch[i]} (lbs)	L _{r_ch[i]} (lbs)	S _{ch[i]} (lbs)	R _{ch[i]} (lbs)
Ch1;	0;	0;	0;	0;	0;	0;	0;	0;
Ch2;	0;	0;	0;	0;	0;	0;	0;	0;
Ch3;	0;	0;	0;	0;	0;	0;	0;	0;
Ch4;	0;	0;	0;	0;	0;	0;	0;	0;
Ch5;	0;	0;	0;	0;	0;	0;	0;	0;
Ch6;	0;	0;	0;	0;	0;	0;	0;	0;

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.1; D + 0.6W

11320 West 79th Street Lenexa, Kansas 66214

F	Project		Job Ref.			
	,	WSS - Lee's Su	23-283			
5	Section		Sheet no./rev.			
		;	34			
(Calc. by	Date	Chk'd by	Date	App'd by	Date
	GL	7/25/2023	DN			

D + 0.7E

Load combination no.3; $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or S or R})$

Load combination no.4; $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6WLoad combination no.6; 0.6D + 0.7E

Adjustment factors

Load combination no.2:

C_{ME} = **1.00**

Temperature factor for tension – Table 2.3.3; $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

Temperature factor for modulus of elasticity - Table 2.3.3

 $C_{tE} = 1.00$

Incising factor – cl.4.3.8; C_i = **1.00** Buckling stiffness factor – cl.4.4.2; C_T = **1.00** Bearing area factor - cl. 3.10.4; C_b = **1.0**

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = \textbf{580000 psi}$

Critical buckling design value; $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 1112 \text{ psi}$

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = 2376$ psi

For sawn lumber; c = 0.8

Column stability factor – eqn.3.7-1; $C_P = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*) / (c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*) / (c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*))} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*))} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*))} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*))} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c))^2 - (F_{cE} / F_{c}^*))} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*)) / (2 \times c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*)) / (2 \times c) = (1 + (F_{cE} /$

0.41

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Segmented shear wall capacity - Equal deflection method

Wind loading:

Segment 2 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_2) = 0.008$ in/kip

Segment 2 stiffness; $k_2 = 1/(2 \times h^3/(3 \times E \times A_e \times b_2^2) + h/(G_a \times b_2) + h \times \Delta_{a1}/b_2) = 23.189$

kips/in

Unit shear capacity, widest segment; $v_{sww2} = v_w / 2 = 365 \text{ plf}$

Vertical deflction under capacity load; $\Delta_{a \text{ Cap}} = h \times v_{sww2} / k_a = 0.050 \text{ in}$

11320 West 79th Street Lenexa, Kansas 66214

Proje	ct		Job Ref.			
WSS - Lee's Summit, MO - GL M					23-	283
Secti	on		Sheet no./rev.			
						35
Calc.	by	Date	Chk'd by	Date	App'd by	Date
	GL	7/25/2023	DN			

Deflection under capacity load; $\delta_{\text{Cap}} = 2 \times v_{\text{sww2}} \times h^3 / (3 \times E \times A_e \times b_2) + v_{\text{sww2}} \times h / (G_a) + h \times \Delta_{a \text{ Cap}} / b_2 = 0$

0.262 in

Segment 3 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_3) = 0.021$ in/kip

Segment 3 stiffness; $k_3 = 1/(2 \times h^3/(3 \times E \times A_e \times b_3^2) + h/(G_a \times b_3) + h \times \Delta_{a1}/b_3 = 7.802$

kips/in

Segment 3 unit shear at δ_{Cap} ; $v_{dsww3} = \delta_{Cap} \times k_3 / b_3 = 308.93$ plf

Segment 3 shear capacity; $v_{sww3} = v_w / 2 = 365 \text{ plf}$

 $V_{dsww3} / V_{sww3} = 0.846$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Maximum shear force under wind loading; $V_{w max} = 0.6 \times W = 2.761$ kips

Shear capacity for wind loading; $V_w = v_{sww2} \times b_2 + min(v_{sww3}, v_{dsww3}) \times b_3 = 8.13 \text{ kips}$

 $V_{w_{max}} / V_{w} = 0.34$

PASS - Shear capacity for wind load exceeds maximum shear force

Seismic loading:

Segment 2 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_2) = 0.008$ in/kip

Segment 2 stiffness; $k_2 = 1/(2 \times h^3/(3 \times E \times A_e \times b_2^2) + h/(G_a \times b_2) + h \times \Delta_{a1}/b_2) = 23.189$

kips/in

Unit shear capacity, widest segment; $v_{sws2} = v_s / 2 = 260 \text{ plf}$

Vertical deflction under capacity load; $\Delta_{a_Cap} = h \times v_{sws2} / k_a = 0.035$ in

Deflection under capacity load; $\delta_{\text{Cap}} = 2 \times v_{\text{sws2}} \times h^3 / (3 \times E \times A_{\text{e}} \times b_2) + v_{\text{sws2}} \times h / (G_{\text{a}}) + h \times \Delta_{\text{a_Cap}} / b_2 = 0$

0.187 in

Segment 3 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_3) = 0.021$ in/kip

Segment 3 stiffness; $k_3 = 1/(2 \times h^3/(3 \times E \times A_e \times b_3^2) + h/(G_a \times b_3) + h \times \Delta_{a1}/b_3) = 7.802$

kips/in

Segment 3 unit shear at δ_{Cap} ; $v_{dsws3} = \delta_{Cap} \times k_3 / b_3 = 220.06$ plf

Segment 3 shear capacity; $v_{sws3} = v_s / 2 = 260 \text{ plf}$ $v_{dsws3} / v_{sws3} = 0.846$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

Maximum shear force under seismic loading; $V_{s max} = 0.7 \times E_{q} = 1.573$ kips

Shear capacity for seismic loading; $V_s = v_{sws2} \times b_2 + min(v_{sws3}, v_{dsws3}) \times b_3 = 5.791$ kips

 $V_{s max} / V_{s} = 0.272$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chord 1

Shear wall aspect ratio; $h / b_1 = 4.745$

Segment not considered, shear wall aspect ratio exceeds maximum allowable.

Chord capacity for chord 3

Shear wall aspect ratio; $h / b_2 = 0.569$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 2.761$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_2 / 2 = \textbf{2.952} \text{ kips}$ Maximum tensile force in chord; $T = V \times (k_2 / \text{sum}(k_2, k_3)) \times h / b_2 - P = \textbf{-1.776} \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = -72 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

11320 West 79th Street Lenexa, Kansas 66214

	Project		Job Ref.			
WSS - Lee's Summit, MO - GL M					23-	283
	Section		Sheet no./rev.			
		;	36			
	Calc. by	Date	Chk'd by	Date	App'd by	Date
	GL	7/25/2023	DN			

 $f_t / F_t' = -0.060$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 2.761$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 = 0.394 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_2 / sum(k_2, k_3)) \times h / b_2 + P = 1.570$ kips

Maximum applied compressive stress; $f_c = C / A_e = 52 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 976 \text{ lb/in}^2$

 $f_c / F_c' = 0.053$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp'} = 0.083$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 4

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 2.761$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_2 / 2 = 2.952 \text{ kips}$ Maximum tensile force in chord; $T = V \times (k_2 / \text{sum}(k_2, k_3)) \times h / b_2 - P = -1.776 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = -72 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = -0.060$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 1

Shear force for maximum compression; $V = 0.6 \times W = 2.761$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h)) \times s / 2 = 0.394 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_2 / sum(k_2, k_3)) \times h / b_2 + P = 1.570$ kips

Maximum applied compressive stress; $f_c = C / A_e = 52 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 976 \text{ lb/in}^2$

 $f_c / F_c' = 0.053$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp}' = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp}' = 0.083$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 5

Shear wall aspect ratio; $h / b_3 = 1.432$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 2.761$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_3 / 2 = 1.173 \text{ kips}$ Maximum tensile force in chord; $T = V \times (k_3 / \text{sum}(k_2, k_3)) \times h / b_3 - P = -0.178 \text{ kips}$

Maximum applied tensile stress; $f_t = T / A_{en} = -7 lb/in^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = -0.006$

PASS - Design tensile stress exceeds maximum applied tensile stress

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
	23-	283			
Section		Sheet no./rev.			
		;	37		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 2.07$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = \textbf{0.652} \text{ kips}$ Maximum compressive force in chord; $C = V \times (k_3 / \text{sum}(k_2, k_3)) \times h / b_3 + P = \textbf{1.399} \text{ kips}$

Maximum applied compressive stress; $f_c = C / A_e = 46 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 976 \text{ lb/in}^2$

 $f_c / F_c' = 0.047$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp'} = 0.074$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 6

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 2.761$ kips

 $\begin{aligned} &\text{Axial force for maximum tension;} & &P = (0.6 \times (D + S_{wt} \times h)) \times b_3 \ / \ 2 = \textbf{1.173} \ \text{kips} \\ &\text{Maximum tensile force in chord;} & &T = V \times (k_3 \ / \ \text{sum}(k_2,k_3)) \times h \ / \ b_3 \ - \ P = \textbf{-0.178} \ \text{kips} \end{aligned}$

Maximum applied tensile stress; $f_t = T / A_{en} = -7 lb/in^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = -0.006$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

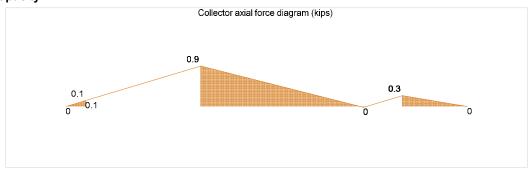
Shear force for maximum compression; $V = 0.45 \times W = 2.07$ kips

 $\begin{aligned} &\text{Axial force for maximum compression;} & &P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s \: / \: 2 = \textbf{0.652} \text{ kips} \\ &\text{Maximum compressive force in chord;} & &C = V \times (k_3 \: / \: \text{sum}(k_2,k_3)) \times h \: / \: b_3 \: + \: P = \textbf{1.399} \text{ kips} \end{aligned}$

Maximum applied compressive stress; $f_c = C / A_e = 46 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{fc} \times C_f \times C_P = 976 \text{ lb/in}^2$

 $f_c / F_c' = 0.047$


PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c_perp'} = 0.074$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Collector capacity

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
,	WSS - Lee's Su	23-283			
Section		Sheet no./rev.			
				;	38
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Collector seismic design force factor; $F_{Coll} = 1$

Maximum shear force on wall; $V_{max} = max(F_{Coll} \times V_{s_max}, V_{w_max}) = 2.761 \text{ kips}$

Maximum force in collector; P_{coll} = **0.929** kips

Maximum applied tensile stress; $f_t = P_{coll} / (2 \times A_s) = 56 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1196 \text{ lb/in}^2$

 $f_t / F_t' = 0.047$

PASS - Design tensile stress exceeds maximum applied tensile stress

Maximum applied compressive stress; $f_c = P_{coll} / (2 \times A_s) = 56 \text{ lb/in}^2$

Column stability factor; $C_P = 1.00$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_I \times C_P = 2376 \text{ lb/in}^2$

 $f_c / F_c' = 0.024$

PASS - Design compressive stress exceeds maximum applied compressive stress

Hold down force

Chord 3; $T_3 = -1.776 \text{ kips}$ Chord 4; $T_4 = -1.776 \text{ kips}$ Chord 5; $T_5 = -0.178 \text{ kips}$ Chord 6; $T_6 = -0.178 \text{ kips}$

Chord reactions by load type

Chord	W _{ch[i]R} (lbs)	E _{q_ch[i]R} (lbs)	D _{C_ch[i]R} (lbs)	D _{T_ch[i]R} (lbs)	L _{f_ch[i]R} (lbs)	L _{r_ch[i]R} (lbs)	S _{ch[i]R} (lbs)	R _{ch[i]R} (lbs)
Ch1;	0;	0;	394;	590;	345;	0;	0;	0;
Ch2;	0;	0;	394;	590;	345;	0;	0;	0;
Ch3;	-1960;	-957;	394;	4920;	345;	0;	0;	0;
Ch4;	1960;	957;	394;	4920;	345;	0;	0;	0;
Ch5;	-1659;	-810;	394;	1956;	345;	0;	0;	0;
Ch6;	1659;	810;	394;	1956;	345;	0;	0;	0;

Wind load deflection

Design shear force; $V_{\delta w} = f_{Wserv} \times W = 4.601$ kips Deflection limit; $\Delta_{w \text{ allow}} = h / 360 = 0.316$ in

Segment 2

Induced unit shear; $V_{\delta w} = V_{\delta w} \times (k_2 / \text{sum}(k_2, k_3)) / b_2 = 206.56 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

 $Segment \ 2 \ deflection - Eqn. \ 4.3-1; \\ \delta_{sww2} = 2 \times v_{\delta w} \times h^3 \ / \ (3 \times E \times A_e \times b_2) + v_{\delta w} \times h \ / \ (G_a) + h \times \Delta_a \ / \ b_2 = \textbf{0.132} \ in$

 $\delta_{\text{sww2}} / \Delta_{\text{w_allow}} = 0.419$

PASS - Shear wall deflection is less than deflection limit

Segment 3

Induced unit shear; $v_{\delta w} = V_{\delta w} \times (k_3 / sum(k_2, k_3)) / b_3 = 174.83 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000 kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 3 deflection – Eqn. 4.3-1; $\delta_{\text{sww3}} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_3) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_3 = \textbf{0.114} \text{ in}$

 δ_{sww3} / $\Delta_{\text{w_allow}}$ = **0.361**

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
	23-	283			
Section		Sheet no./rev.			
		;	39		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

PASS - Shear wall deflection is less than deflection limit

Seismic deflection

Design shear force; $V_{\delta s} = E_q = 2.247 \text{ kips}$

Deflection limit; $\Delta_{s_allow} = 0.020 \times h = 2.278$ in

Deflection ampification factor; $C_{d\delta}$ = **4** Seismic importance factor; I_e = **1**

Segment 2

Induced unit shear; $v_{\delta s} = V_{\delta s} \times (k_2 / sum(k_2,k_3)) / b_2 = 100.88$ lb/ft

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 2 deflection – Eqn. 4.3-1; $\delta_{\text{swse2}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_2) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_2 = \textbf{0.065} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws2} = C_{d\delta} \times \delta_{swse2} / I_e = \textbf{0.259} \text{ in}$

 $\delta_{\text{sws2}} / \Delta_{\text{s allow}} = 0.114$

PASS - Shear wall deflection is less than deflection limit

Segment 3

Induced unit shear; $v_{\delta s} = V_{\delta s} \times (k_3 / sum(k_2, k_3)) / b_3 = 85.38 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 3 deflection – Eqn. 4.3-1; $\delta_{\text{swse3}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_3) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_3 = \textbf{0.056} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws3} = C_{d\delta} \times \delta_{swse3}$ / $I_e = 0.223$ in

 $\delta_{sws3} / \Delta_{s_allow} = 0.098$

PASS - Shear wall deflection is less than deflection limit

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WS	S - Lee's Summit	2	23-283		
Section		Sheet no./rev.			
			1		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10

Design summary

Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	31692	3650	0.115	PASS
Chord capacity	lb/in ²	584	70	0.120	PASS
Collector capacity	lb/in ²	1380	31	0.022	PASS
Deflection	in	0.270	0.039	0.144	PASS

Panel details

Structural wood panel sheathing on one side

Panel height; h = 8.09 ftPanel length; b = 162.104 ft

Panel opening details

 $w_{o1} = 3 \text{ ft}$ Width of opening; $h_{o1} = 7 ft$ Height of opening; Height to underside of lintel over opening; $I_{o1} = 7 \text{ ft}$ Position of opening; $P_{o1} = 16.5 \text{ ft}$ $w_{02} = 3 \text{ ft}$ Width of opening; $h_{o2} = 7 ft$ Height of opening; $I_{o2} = 7 \text{ ft}$ Height to underside of lintel over opening; $P_{02} = 30 \text{ ft}$ Position of opening; Width of opening; $w_{o3} = 3 \text{ ft}$ Height of opening; $h_{o3} = 7 \text{ ft}$ $I_{o3} = 7 \text{ ft}$ Height to underside of lintel over opening; Position of opening; $P_{o3} = 43.5 \text{ ft}$ $w_{o4} = 3 \text{ ft}$ Width of opening; $h_{04} = 7 ft$ Height of opening; Height to underside of lintel over opening; $I_{04} = 7 \text{ ft}$ $P_{o4} = 57 \text{ ft}$ Position of opening; Width of opening; $w_{05} = 3 \text{ ft}$ Height of opening; $h_{05} = 7 \text{ ft}$ Height to underside of lintel over opening; $I_{05} = 7 \text{ ft}$ $P_{o5} = 70.5 \text{ ft}$ Position of opening; $w_{06} = 3 \text{ ft}$ Width of opening; Height of opening; $h_{06} = 7 ft$ Height to underside of lintel over opening; $I_{06} = 7 \text{ ft}$ $P_{06} = 84 \text{ ft}$ Position of opening;

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	- Lee's Summit	, MO - GL K Lon	ıg Wall	23-	283
Section				Sheet no./rev.	
					2
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Width of opening; $w_{07} = 3 \text{ ft}$ $h_{o7} = 7 ft$ Height of opening; Height to underside of lintel over opening; $I_{07} = 7 \text{ ft}$ Position of opening; $P_{o7} = 97.5 \text{ ft}$ $w_{08} = 3 \text{ ft}$ Width of opening; $h_{08} = 7 ft$ Height of opening; Height to underside of lintel over opening; $l_{08} = 7 ft$ $P_{08} = 111 \text{ ft}$ Position of opening;

Width of opening; $w_{09} = 3 \text{ ft}$ Height of opening; $h_{09} = 7 \text{ ft}$ Height to underside of lintel over opening; $h_{09} = 7 \text{ ft}$ Position of opening; $h_{09} = 7 \text{ ft}$ Position of opening; $h_{09} = 7 \text{ ft}$

 $\begin{array}{ll} \mbox{Height of opening;} & h_{010} = 7 \mbox{ ft} \\ \mbox{Height to underside of lintel over opening;} & l_{010} = 7 \mbox{ ft} \\ \mbox{Position of opening;} & P_{010} = 138 \mbox{ ft} \\ \mbox{Width of opening;} & w_{011} = 3 \mbox{ ft} \\ \mbox{Height of opening;} & h_{011} = 7 \mbox{ ft} \\ \mbox{Height to underside of lintel over opening;} & l_{011} = 7 \mbox{ ft} \\ \end{array}$

Position of opening; $P_{o11} = 151.5 \text{ ft}$

Total area of wall; $A = h \times b - w_{o1} \times h_{o1} - w_{o2} \times h_{o2} - w_{o3} \times h_{o3} - w_{o4} \times h_{o4} - w_{o5} \times h_{o5} - w_{o6} \times h_{o6} - w_{o6} \times h_{o6$

 $W_{010} = 3 \text{ ft}$

 $w_{o7} \times h_{o7}$ - $w_{o8} \times h_{o8}$ - $w_{o9} \times h_{o9}$ - $w_{o10} \times h_{o10}$ - $w_{o11} \times h_{o11}$ = **1080.423** ft²

Panel construction

Width of opening;

2" x 4" Nominal stud size; Dressed stud size: 1.5" x 3.5" $A_s = 5.25 \text{ in}^2$ Cross-sectional area of studs; s = **16** in Stud spacing; 2 x 2" x 4" Nominal end post size; 2 x 1.5" x 3.5" Dressed end post size; Cross-sectional area of end posts; $A_e = 10.5 \text{ in}^2$ Dia = 1 in Hole diameter; Net cross-sectional area of end posts; $A_{en} = 7.5 in^2$ Nominal collector size: 2 x 2" x 4" 2 x 1.5" x 3.5" Dressed collector size;

Service condition; Dry

Temperature; 100 degF or less Vertical anchor stiffness; $k_a = 1$ lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

Specific gravity; G = 0.50Tension parallel to grain; $F_t = 575 \text{ lb/in}^2$ Compression parallel to grain; $F_c = 1350 \text{ lb/in}^2$ Compression perpendicular to grain; $F_{c_perp} = 625 \text{ lb/in}^2$ Modulus of elasticity; $E = 1600000 \text{ lb/in}^2$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WS	SS - Lee's Summi	2	3-283		
Section		Sheet no./rev.	Sheet no./rev.		
					3
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Minimum modulus of elasticity; $E_{min} = 580000 \text{ lb/in}^2$

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 6"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 520 \text{ lb/ft}$ Nominal unit shear capacity for wind design; $v_w = 730 \text{ lb/ft}$ Apparent shear wall shear stiffness; $G_a = 15 \text{ kips/in}$

Loading details

Dead load acting on top of panel; D = 395.31 lb/ft Roof live load acting on top of panel; $L_r = 316.248$ lb/ft Self weight of panel; $S_{wt} = 11$ lb/ft² In plane wind load acting at head of panel; W = 6083 lbs Wind load serviceability factor; $f_{Wserv} = 1.00$ In plane seismic load acting at head of panel; $E_q = 2842$ lbs Design spectral response accel. par., short periods; $S_{DS} = 0.106$

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.1; D + 0.6WLoad combination no.2; D + 0.7E

Load combination no.3; $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or S or R})$

Load combination no.4; $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6WLoad combination no.6; 0.6D + 0.7E

Adjustment factors

Wet service factor for modulus of elasticity – Table 4A

 $C_{ME} = 1.00$

Temperature factor for tension – Table 2.3.3; $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

Temperature factor for modulus of elasticity – Table 2.3.3

 $C_{tE} = 1.00$

 $\label{eq:continuous} \begin{array}{ll} \text{Incising factor} - \text{cl.4.3.8}; & \text{$C_i = 1.00$} \\ \text{Buckling stiffness factor} - \text{cl.4.4.2}; & \text{$C_T = 1.00$} \\ \text{Bearing area factor} - \text{cl. 3.10.4}; & \text{$C_b = 1.0$} \\ \end{array}$

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 580000 \text{ psi}$

Critical buckling design value; $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 620 \text{ psi}$

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = 2484 \text{ psi}$

For sawn lumber; c = 0.8

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	- Lee's Summit	23-	283		
Section		Sheet no./rev.			
				4	
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Column stability factor – eqn.3.7-1;

 $C_{P} = (1 + (F_{cE} / F_{c}^{*})) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) / (2 \times c)]^{2} - (F_{cE} / F_{c}^{*}) / c)} = (1 + (F_{cE} / F_{c}^{*})) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) / (2 \times c))^{2} - (F_{cE} / F_{c}^{*}) / c)} = (1 + (F_{cE} / F_{c}^{*})) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) / (2 \times c))^{2} - (F_{cE} / F_{c}^{*}) / c)} = (1 + (F_{cE} / F_{c}^{*})) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) / (2 \times c))^{2} - (F_{cE} / F_{c}^{*}) / c)} = (1 + (F_{cE} / F_{c}^{*})) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) / (2 \times c))^{2} - (F_{cE} / F_{c}^{*}) / c)} = (1 + (F_{cE} / F_{c}^{*})) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) / (2 \times c))^{2} - (F_{cE} / F_{c}^{*}) / c)} = (1 + (F_{cE} / F_{c}^{*})) / (2 \times c) - (F_{cE} / F_{c}^{*}) / c)$

0.24

 $b_6 = 10.5 \text{ ft}$

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio; 3.5

Segment 1 wall length; $b_1 = 16.5 \text{ ft}$ Shear wall aspect ratio; $h / b_1 = 0.49$ Segment 2 wall length; $b_2 = 10.5 \text{ ft}$ Shear wall aspect ratio; $h / b_2 = 0.77$ Segment 3 wall length; $b_3 = 10.5 \text{ ft}$

Shear wall aspect ratio; $h / b_3 = 0.77$ Segment 4 wall length; $b_4 = 10.5$ ft Shear wall aspect ratio; $h / b_4 = 0.77$ Segment 5 wall length; $b_5 = 10.5$ ft Shear wall aspect ratio; $h / b_5 = 0.77$

Shear wall aspect ratio; $h / b_6 = 0.77$ Segment 7 wall length; $b_7 = 10.5 \text{ ft}$ Shear wall aspect ratio; $h / b_7 = 0.77$ Segment 8 wall length; $b_8 = 10.5 \text{ ft}$ Shear wall aspect ratio; $h / b_8 = 0.77$

Segment 9 wall length; $b_9 = 10.5 \text{ ft}$ Shear wall aspect ratio; $h / b_9 = 0.77$ Segment 10 wall length; $b_{10} = 10.5 \text{ ft}$ Shear wall aspect ratio; $h / b_{10} = 0.77$ Segment 11 wall length; $b_{11} = 10.5 \text{ ft}$

Shear wall aspect ratio; $h / b_{11} = 0.77$ Segment 12 wall length; $b_{12} = 7.604$ ft Shear wall aspect ratio; $h / b_{12} = 1.064$

Segmented shear wall capacity - Equal deflection method

Wind loading:

Segment 6 wall length;

Segment 1 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_1) = 490.303$ in/kip

Segment 1 stiffness; $k_1 = 1/(2 \times h^3/(3 \times E \times A_e \times b_1^2) + h/(G_a \times b_1) + h \times \Delta_{a1}/b_1) = 0.004$

kips/in

Unit shear capacity, widest segment; $v_{sww1} = v_w / 2 = 365$ plf

Vertical deflction under capacity load; $\Delta_{a \text{ Cap}} = h \times v_{sww1} / k_a = 2952.850 \text{ in}$

Deflection under capacity load; $\delta_{Cap} = 2 \times v_{sww1} \times h^3 / (3 \times E \times A_e \times b_1) + v_{sww1} \times h / (G_a) + h \times \Delta_{a \ Cap} / b_1 = 0$

1447.994 in

Segment 2 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_2) = 770.476$ in/kip

Segment 2 stiffness; $k_2 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_2^2) + h / (G_a \times b_2) + h \times \Delta_{a1} / b_2) = 0.002$

kips/in

Segment 2 unit shear at δ_{Cap} ; $v_{dsww2} = \delta_{Cap} \times k_2 / b_2 = 232.28$ plf

Segment 2 shear capacity; $v_{sww2} = v_w / 2 = 365 \text{ plf}$

 $V_{dsww2} / V_{sww2} =$ **0.636**

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	- Lee's Summit	23-	283		
Section		Sheet no./rev.			
			5		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

PASS - Segment shear capacity exceeds segment unit shear at & cap

Segment 3 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_3) = 770.476$ in/kip

Segment 3 stiffness; $k_3 = 1/(2 \times h^3/(3 \times E \times A_e \times b_3^2) + h/(G_a \times b_3) + h \times \Delta_{a1}/b_3) = 0.002$

kips/in

Segment 3 unit shear at δ_{Cap} ; $v_{dsww3} = \delta_{Cap} \times k_3 / b_3 = 232.28 \text{ plf}$

Segment 3 shear capacity; $v_{sww3} = v_w / 2 = 365 \text{ plf}$ $v_{dsww3} / v_{sww3} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta\!c_{\mathsf{ap}}$

Segment 4 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_4) = 770.476$ in/kip

Segment 4 stiffness; $k_4 = 1/(2 \times h^3/(3 \times E \times A_e \times b_4^2) + h/(G_a \times b_4) + h \times \Delta_{a1}/b_4) = 0.002$

kips/in

Segment 4 unit shear at δ_{Cap} ; $v_{dsww4} = \delta_{Cap} \times k_4 / b_4 = 232.28 \text{ plf}$

Segment 4 shear capacity; $v_{sww4} = v_w / 2 = 365 \text{ plf}$

 $V_{dsww4} / V_{sww4} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta\!c_{\mathsf{ap}}$

Segment 5 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_5) = 770.476$ in/kip

Segment 5 stiffness; $k_5 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_5^2) + h / (G_a \times b_5) + h \times \Delta_{a1} / b_5) = \textbf{0.002}$

kips/in

Segment 5 unit shear at δ_{Cap} ; $v_{dsww5} = \delta_{Cap} \times k_5 / b_5 = 232.28 \text{ plf}$

Segment 5 shear capacity; $v_{sww5} = v_w / 2 = 365 \text{ plf}$ $v_{dsww5} / v_{sww5} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{\! extsf{Cap}}$

Segment 6 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_6) = 770.476$ in/kip

Segment 6 stiffness; $k_6 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_6^2) + h / (G_a \times b_6) + h \times \Delta_{a1} / b_6) = \textbf{0.002}$

kips/in

Segment 6 unit shear at δ_{Cap} ; $v_{dsww6} = \delta_{Cap} \times k_6 / b_6 = 232.28 \text{ plf}$

Segment 6 shear capacity; $v_{sww6} = v_w / 2 = 365 \text{ plf}$

 $v_{dsww6} / v_{sww6} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta\!c_{\! ext{ap}}$

Segment 7 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_7) = 770.476$ in/kip

Segment 7 stiffness; $k_7 = 1/(2 \times h^3/(3 \times E \times A_e \times b_7^2) + h/(G_a \times b_7) + h \times \Delta_{a1}/b_7) = 0.002$

kips/in

Segment 7 unit shear at δ_{Cap} ; $v_{dsww7} = \delta_{Cap} \times k_7 / b_7 = 232.28 \text{ plf}$

Segment 7 shear capacity; $v_{sww7} = v_w / 2 = 365 \text{ plf}$

 $v_{dsww7} / v_{sww7} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Segment 8 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_8) = 770.476$ in/kip

Segment 8 stiffness; $k_8 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_8^2) + h / (G_a \times b_8) + h \times \Delta_{a1} / b_8) = \textbf{0.002}$

kips/in

Segment 8 unit shear at δ_{Cap} ; $v_{dsww8} = \delta_{Cap} \times k_8 / b_8 = 232.28 \text{ plf}$

Segment 8 shear capacity; $v_{sww8} = v_w / 2 = 365 \text{ plf}$

 $V_{dsww8} / V_{sww8} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
٧	VSS - Lee's Summ	it, MO - GL K	Long Wall	2	23-283
Section				Sheet no./rev.	
					6
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Segment 9 vertical unit deflection;

 $\Delta_{a1} = h / (k_a \times b_9) = 770.476 in/kip$

Segment 9 stiffness;

 $k_9 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_9^2) + h / (G_a \times b_9) + h \times \Delta_{a1} / b_9) = 0.002$

kips/in

Segment 9 unit shear at $\delta_{\text{Cap}};$

 $v_{dsww9} = \delta_{Cap} \times k_9 / b_9 = 232.28 \text{ plf}$

Segment 9 shear capacity;

 $V_{sww9} = V_w / 2 = 365 \text{ plf}$ $V_{dsww9} / V_{sww9} = 0.636$

Segment 10 vertical unit deflection;

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap} $\Delta_{a1} = h / (k_a \times b_{10}) = 770.476$ in/kip

Segment 10 stiffness;

 $k_{10} = 1 \ / \ (2 \times h^3 \ / \ (3 \times E \times A_e \times b_{10}^2) + h \ / \ (G_a \times b_{10}) + h \times \Delta_{a1} \ / \ b_{10}) = \textbf{0.002}$

kips/in

Segment 10 unit shear at δ_{Cap} ; Segment 10 shear capacity; $v_{dsww10} = \delta_{Cap} \times k_{10} / b_{10} = 232.28 \text{ plf}$

 $v_{sww10} = v_w / 2 = 365 \text{ plf}$

V_{dsww10} / V_{sww10} = **0.636**

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Segment 11 vertical unit deflection;

 $\Delta_{a1} = h / (k_a \times b_{11}) = 770.476 in/kip$

Segment 11 stiffness;

 $k_{11} = 1 \ / \ (2 \times h^3 \ / \ (3 \times E \times A_e \times b_{11}^2) + h \ / \ (G_a \times b_{11}) + h \times \Delta_{a1} \ / \ b_{11}) = \textbf{0.002}$

kips/in

Segment 11 unit shear at δ_{Cap} ;

 $v_{dsww11} = \delta_{Cap} \times k_{11} / b_{11} = 232.28 \text{ plf}$

Segment 11 shear capacity;

 $V_{sww11} = V_w / 2 = 365 \text{ plf}$ $V_{dsww11} / V_{sww11} = 0.636$

Segment 12 vertical unit deflection;

 $\Delta_{a1} = h / (k_a \times b_{12}) = 1063.886 in/kip$

Segment 12 stiffness;

 $k_{12} = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_{12}^2) + h / (G_a \times b_{12}) + h \times \Delta_{a1} / b_{12}) = 0.001$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

kips/in

Segment 12 unit shear at δ_{Cap} ;

 $v_{dsww12} = \delta_{Cap} \times k_{12} / b_{12} = 168.23 \text{ plf}$

Segment 12 shear capacity;

 $V_{sww12} = V_w / 2 = 365 \text{ plf}$ $V_{dsww12} / V_{sww12} = 0.461$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

Maximum shear force under wind loading;

 $V_{w_{max}} = 0.6 \times W = 3.65 \text{ kips}$

Shear capacity for wind loading;

 $V_w = v_{sww1} \times b_1 + min(v_{sww2}, v_{dsww2}) \times b_2 + min(v_{sww3}, v_{dsww3}) \times b_3 + min(v_{sww3}, v_{sww3}) \times b_3 + min(v_{sww3}, v_{sww3}, v_{sww3}) \times b_3 + min(v_{sww3}, v_{sww3}, v_{sww3}, v_{sww3}, v_{sww3}, v_{sww3}) \times b_3 + min(v_{$

 $min(v_{\text{sww4}},v_{\text{dsww4}}) \times b_4 + min(v_{\text{sww5}},v_{\text{dsww5}}) \times b_5 + min(v_{\text{sww6}},v_{\text{dsww6}}) \times b_6 + min(v_{\text{sww4}},v_{\text{dsww6}}) \times b_6 + min(v_{\text{sww4}},v_{\text{dsww4}}) \times b_6 + min(v_{\text{sww4}},v_{\text{dsww4}}) \times b_6 + min(v_{\text{sww4}},v_{\text{dsww6}}) \times b_6 + min(v_{\text{sww6}},v_{\text{dsww6}}) \times b_6 + min(v_{\text{sww6}},v_{\text{dsw6}}) \times b_6 + min(v_{\text{sww6}},v_{\text{dsw6}}) \times b_6 + min(v_{\text{swe6}},v_{\text{dsw6}}) \times b_6 + min(v_{\text{sw6}},v_{\text{dsw6}})

 $\begin{aligned} & min(v_{sww7}, v_{dsww7}) \times b_7 + min(v_{sww8}, v_{dsww8}) \times b_8 + min(v_{sww9}, v_{dsww9}) \times b_9 + \\ & min(v_{sww10}, v_{dsww10}) \times b_{10} + min(v_{sww11}, v_{dsww11}) \times b_{11} + min(v_{sww12}, v_{dsww12}) \times \end{aligned}$

 b_{12} = **31.692** kips $V_{w \text{ max}} / V_{w}$ = **0.115**

PASS - Shear capacity for wind load exceeds maximum shear force

Seismic loading:

Segment 1 vertical unit deflection;

 $\Delta_{a1} = h / (k_a \times b_1) = 490.303 in/kip$

Segment 1 stiffness;

 $k_1 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_1^2) + h / (G_a \times b_1) + h \times \Delta_{a1} / b_1) = 0.004$

kips/in

Unit shear capacity, widest segment;

 $v_{sws1} = v_s / 2 = 260 plf$

Vertical deflction under capacity load;

 $\Delta_{a \text{ Cap}} = h \times v_{sws1} / k_a = 2103.400 \text{ in}$

D199 of 294

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	S - Lee's Summit	, MO - GL K Lor	ng Wall	23-	283
Section				Sheet no./rev.	
					7
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Deflection under capacity load; $\delta_{Cap} = 2 \times v_{sws1} \times h^3 / (3 \times E \times A_e \times b_1) + v_{sws1} \times h / (G_a) + h \times \Delta_{a_Cap} / b_1 = 0$

1031.448 in

Segment 2 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_2) = 770.476$ in/kip

Segment 2 stiffness; $k_2 = 1/(2 \times h^3/(3 \times E \times A_e \times b_2^2) + h/(G_a \times b_2) + h \times \Delta_{a1}/b_2 = 0.002$

kips/in

Segment 2 unit shear at δ_{Cap} ; $v_{dsws2} = \delta_{Cap} \times k_2 / b_2 = 165.46$ plf

Segment 2 shear capacity; $v_{sws2} = v_s / 2 = 260 \text{ plf}$

 $V_{dsws2} / V_{sws2} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Segment 3 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_3) = 770.476$ in/kip

Segment 3 stiffness; $k_3 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_3^2) + h / (G_a \times b_3) + h \times \Delta_{a1} / b_3) = 0.002$

kips/in

Segment 3 unit shear at δ_{Cap} ; $v_{dsws3} = \delta_{Cap} \times k_3 / b_3 = 165.46$ plf

Segment 3 shear capacity; $v_{sws3} = v_s / 2 = 260 \text{ plf}$

 $v_{dsws3} / v_{sws3} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at δc_{ap}

Segment 4 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_4) = 770.476 \text{ in/kip}$

Segment 4 stiffness; $k_4 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_4^2) + h / (G_a \times b_4) + h \times \Delta_{a1} / b_4) = \textbf{0.002}$

kips/in

Segment 4 unit shear at δ_{Cap} ; $v_{dsws4} = \delta_{Cap} \times k_4 / b_4 = 165.46$ plf

Segment 4 shear capacity; $v_{sws4} = v_s / 2 = 260 \text{ plf}$

 $V_{dsws4} / V_{sws4} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{\! ext{ cap}}$

Segment 5 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_5) = 770.476$ in/kip

Segment 5 stiffness; $k_5 = 1/(2 \times h^3/(3 \times E \times A_e \times b_5^2) + h/(G_a \times b_5) + h \times \Delta_{a1}/b_5) = 0.002$

kips/in

Segment 5 unit shear at δ_{Cap} ; $v_{dsws5} = \delta_{Cap} \times k_5 / b_5 =$ **165.46** plf

Segment 5 shear capacity; $v_{sws5} = v_s / 2 = 260 \text{ plf}$

 $V_{dsws5} / V_{sws5} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

Segment 6 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_6) = 770.476$ in/kip

Segment 6 stiffness; $k_6 = 1/(2 \times h^3/(3 \times E \times A_e \times b_6^2) + h/(G_a \times b_6) + h \times \Delta_{a1}/b_6) = 0.002$

kips/in

Segment 6 unit shear at δ_{Cap} ; $V_{dsws6} = \delta_{Cap} \times k_6 / b_6 = 165.46$ plf

Segment 6 shear capacity; $v_{sws6} = v_s / 2 = 260 \text{ plf}$

 $v_{dsws6} / v_{sws6} =$ **0.636**

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Segment 7 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_7) = 770.476$ in/kip

Segment 7 stiffness; $k_7 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_7^2) + h / (G_a \times b_7) + h \times \Delta_{a1} / b_7) = \textbf{0.002}$

kips/in

Segment 7 unit shear at δ_{Cap} ; $v_{dsws7} = \delta_{Cap} \times k_7 / b_7 =$ **165.46** plf

Segment 7 shear capacity; $v_{sws7} = v_s / 2 = 260 \text{ plf}$

 $V_{dsws7} / V_{sws7} = 0.636$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	- Lee's Summit	23-	283		
Section		Sheet no./rev.			
					8
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

Segment 8 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_8) = 770.476$ in/kip

Segment 8 stiffness;

 $k_8 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_8^2) + h / (G_a \times b_8) + h \times \Delta_{a1} / b_8) =$ **0.002** kips/in

Segment 8 unit shear at δ_{Cap} ;

Segment 8 shear capacity;

 $v_{dsws8} = \delta_{Cap} \times k_8 / b_8 =$ **165.46** plf

 $v_{sws8} = v_s / 2 = 260 \text{ plf}$ $v_{dsws8} / v_{sws8} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Segment 9 vertical unit deflection;

Segment 9 stiffness;

 $\Delta_{a1} = h / (k_a \times b_9) = 770.476 \text{ in/kip}$

 $k_9 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_9^2) + h / (G_a \times b_9) + h \times \Delta_{a1} / b_9) = 0.002$

kips/in

Segment 9 unit shear at δ_{Cap} ;

Segment 9 shear capacity;

 $v_{dsws9} = \delta_{Cap} \times k_9 / b_9 =$ **165.46** plf

 $v_{sws9} = v_s / 2 = 260 \text{ plf}$

 $V_{dsws9} / V_{sws9} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at δc_{ap}

Segment 10 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_{10}) = 770.476$ in/kip

Segment 10 stiffness; $k_{10} = 1/(2 \times h^3/(3 \times E \times A_e \times b_{10}^2) + h/(G_a \times b_{10}) + h \times \Delta_{a1}/b_{10}) = 0.002$

kips/in

Segment 10 unit shear at δ_{Cap} ; $v_{dsws10} = \delta_{Cap} \times k_{10} / b_{10} = 165.46$ plf

Segment 10 shear capacity; $v_{sws10} = v_s / 2 = 260 \text{ plf}$ $v_{dsws10} / v_{sws10} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{\! ext{Cap}}$

Segment 11 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_{11}) = 770.476$ in/kip

Segment 11 stiffness; $k_{11} = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_{11}^2) + h / (G_a \times b_{11}) + h \times \Delta_{a1} / b_{11}) = \textbf{0.002}$

kips/in

Segment 11 unit shear at δ_{Cap} ; $v_{dsws11} = \delta_{Cap} \times k_{11} / b_{11} = 165.46$ plf

Segment 11 shear capacity; $v_{sws11} = v_s / 2 = 260 \text{ plf}$

 $V_{dsws11} / V_{sws11} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Segment 12 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_{12}) = 1063.886$ in/kip

Segment 12 stiffness; $k_{12} = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_{12}^2) + h / (G_a \times b_{12}) + h \times \Delta_{a1} / b_{12}) = \textbf{0.001}$

kips/in

Segment 12 unit shear at δ_{Cap} ; $V_{dsws12} = \delta_{Cap} \times k_{12} / b_{12} = 119.83$ plf

Segment 12 shear capacity; $v_{sws12} = v_s / 2 = 260 \text{ plf}$

 $V_{dsws12} / V_{sws12} = 0.461$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Maximum shear force under seismic loading; $V_{s_{max}} = 0.7 \times E_{q} = 1.989$ kips

Shear capacity for seismic loading; $V_s = v_{sws1} \times b_1 + min(v_{sws2}, v_{dsws2}) \times b_2 + min(v_{sws3}, v_{dsws3}) \times b_3 + min(v$

 $min(v_{sws4},v_{dsws4}) \times b_4 + min(v_{sws5},v_{dsws5}) \times b_5 + min(v_{sws6},v_{dsws6}) \times b_6 + min(v_{sws4},v_{dsws4}) \times b_4 + min(v_{sws5},v_{dsws5}) \times b_5 + min(v_{sws6},v_{dsws6}) \times b_6 + min(v_{sws6},v_{dsws6}) \times b_$

 $min(v_{sws7}, v_{dsws7}) \times b_7 + min(v_{sws8}, v_{dsws8}) \times b_8 + min(v_{sws9}, v_{dsws9}) \times b_9 + min(v_{sws9}, v_{dsws9}) \times b_8 + min(v_{sws9}, v_{dsws9}) \times b_9 + min(v_{sws9}, v_{sws9}) \times b_9 + min(v_{s$

 $min(v_{sws10}, v_{dsws10}) \times b_{10} + min(v_{sws11}, v_{dsws11}) \times b_{11} + min(v_{sws12}, v_{dsws12}) \times b_{12}$

= 22.575 kips

 $V_{s max} / V_{s} = 0.088$

D201 of 294

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	- Lee's Summit	23-	283		
Section		Sheet no./rev.			
			9		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chords 1 and 2

Shear wall aspect ratio; $h / b_1 = 0.49$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 3.65 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 = 2.397 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_1 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_1 - P = -2.057$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -274 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.199$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 2.737$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + + 0.75 \times L_r) \times s / 2 = 0.481 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_1 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_1 + P = 0.736$

kips

Maximum applied compressive stress; $f_c = C / A_e = 70 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 584 \text{ lb/in}^2$

 $f_c / F_c' = 0.120$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c_perp}' = 0.112$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chords 3 and 4

Shear wall aspect ratio; $h / b_2 = 0.77$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 3.65 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_2 / 2 = 1.526 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_2 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_2 - P = -1.309$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -175 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_F \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.126$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 2.737$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + + 0.75 \times L_r) \times s / 2 = 0.481 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_2 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_2 + P = 0.643$

kips

Maximum applied compressive stress; $f_c = C / A_e = 61 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 584 \text{ lb/in}^2$

 $f_c / F_c' = 0.105$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.		
W	WSS - Lee's Summit, MO - GL K Long Wall				23-283	
Section		Sheet no./rev.	Sheet no./rev.			
					10	
Calc. by	Date	Chk'd by	Date	App'd by	Date	
GL	7/25/2023	DN				

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate;

 $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp'} = 0.098$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chords 5 and 6

Shear wall aspect ratio; $h / b_3 = 0.77$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 3.65$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_3 / 2 = 1.526 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_3 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_3 - P = -1.309$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -175 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.126$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 2.737$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + + 0.75 \times L_r) \times s / 2 = 0.481 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_3 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_3 + P = 0.643$

kips

Maximum applied compressive stress; $f_c = C / A_e = 61 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 584 \text{ lb/in}^2$

 $f_c / F_c' = 0.105$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp}' = 0.098$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chords 7 and 8

Shear wall aspect ratio; $h / b_4 = 0.77$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 3.65$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_4 / 2 = 1.526 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_4 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_4 - P = -1.309$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -175 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.126$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 2.737$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + + 0.75 \times L_r) \times s / 2 = 0.481 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_4 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_4 + P = \textbf{0.643}$

kips

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
WSS - Lee's Summit, MO - GL K Long Wall				23-	283
Section		Sheet no./rev.			
			11		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Maximum applied compressive stress; $f_c = C / A_e = 61 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 584 \text{ lb/in}^2$

 $f_c / F_c' = 0.105$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp'} = 0.098$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chords 9 and 10

Shear wall aspect ratio; $h / b_5 = 0.77$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 3.65$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_5 / 2 = 1.526 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_5 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_5 - P = -1.309$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -175 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.126$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 2.737$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + + 0.75 \times L_r) \times s / 2 = 0.481 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_5 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_5 + P = 0.643$

kips

Maximum applied compressive stress; $f_c = C / A_e = 61 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 584 \text{ lb/in}^2$

 $f_c / F_c' = 0.105$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c_perp'} = 0.098$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chords 11 and 12

Shear wall aspect ratio; $h / b_6 = 0.77$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 3.65$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_6 / 2 = 1.526 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_6 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_6 - P = -1.309$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -175 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.126$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 2.737$ kips

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.		
	WSS - Lee's Sum	2	3-283			
Section		Sheet no./rev.	Sheet no./rev.			
					12	
Calc. by	Date	Chk'd by	Date	App'd by	Date	
GL	7/25/2023	B DN				

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + + 0.75 \times L_r) \times s / 2 = 0.481 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_6 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_6 + P = 0.643$

kips

Maximum applied compressive stress; $f_c = C / A_e = 61 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 584 \text{ lb/in}^2$

 $f_c / F_c' = 0.105$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp'} = 0.098$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chords 13 and 14

Shear wall aspect ratio; $h / b_7 = 0.77$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 3.65$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_7 / 2 = 1.526 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_7 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_7 - P = -1.309$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -175 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.126$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 2.737$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + + 0.75 \times L_r) \times s / 2 = 0.481 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_7 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_7 + P = 0.643$

kips

Maximum applied compressive stress; $f_c = C / A_e = 61 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = \textbf{584 lb/in}^2$

 $f_c / F_c' = 0.105$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp}' = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp}' = 0.098$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chords 15 and 16

Shear wall aspect ratio; $h / b_8 = 0.77$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 3.65 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_8 / 2 = 1.526 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_8 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_8 - P = -1.309$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -175 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_F t \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.126$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	6 - Lee's Summit	23-	283		
Section		Sheet no./rev.			
			13		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 2.737$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + + 0.75 \times L_r) \times s / 2 = 0.481 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_8 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_8 + P = 0.643$

kips

Maximum applied compressive stress; $f_c = C / A_e = 61 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 584 \text{ lb/in}^2$

 $f_c / F_c' = 0.105$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp'} = 0.098$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chords 17 and 18

Shear wall aspect ratio; $h / b_9 = 0.77$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 3.65$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_9 / 2 = 1.526 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_9 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_9 - P = -1.309$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -175 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.126$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 2.737$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + + 0.75 \times L_r) \times s / 2 = 0.481 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_9 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_9 + P = 0.643$

kips

Maximum applied compressive stress; $f_c = C / A_e = 61 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_f \times C_P = 584 \text{ lb/in}^2$

 $f_c / F_c' = 0.105$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c_perp}' = 0.098$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chords 19 and 20

Shear wall aspect ratio; $h / b_{10} = 0.77$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 3.65 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_{10} / 2 = 1.526 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_{10} / \text{sum}(k_{10}, k_{11}, k_{12}, k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9})) \times h / b_{10} - P = -1.309$

kips

11320 West 79th Street Lenexa, Kansas 66214

Project	Job Ref.				
WSS	- Lee's Summit	23-	283		
Section		Sheet no./rev.			
					14
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Maximum applied tensile stress; $f_t = T / A_{en} = -175 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.126$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 2.737$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + + 0.75 \times L_r) \times s / 2 = 0.481 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_{10} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{10} + P = 0.643$

kips

Maximum applied compressive stress; $f_c = C / A_e = 61 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 584 \text{ lb/in}^2$

 $f_c / F_c' = 0.105$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp'} = 0.098$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chords 21 and 22

Shear wall aspect ratio; $h / b_{11} = 0.77$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 3.65$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_{11} / 2 = 1.526 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_{11} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{11} - P = -1.309$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -175 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.126$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 2.737$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + + 0.75 \times L_r) \times s / 2 = 0.481 \text{ kips}$

 $C = V \times (k_{11} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{11} + P = \textbf{0.643}$

kips

Maximum applied compressive stress; $f_c = C / A_e = 61 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 584 \text{ lb/in}^2$

 $f_c / F_c' = 0.105$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp}' = 0.098$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chords 23 and 24

Shear wall aspect ratio; $h / b_{12} = 1.064$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 3.65 \text{ kips}$

11320 West 79th Street Lenexa, Kansas 66214

Project	Job Ref.				
WSS	- Lee's Summit	23-	283		
Section		Sheet no./rev.			
		15			
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_{12} / 2 = 1.105 \text{ kips}$

 $T = V \times (k_{12} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{12} - P = \textbf{-0.948}$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -126 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.092$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 2.737$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + + 0.75 \times L_r) \times s / 2 = 0.481 \text{ kips}$

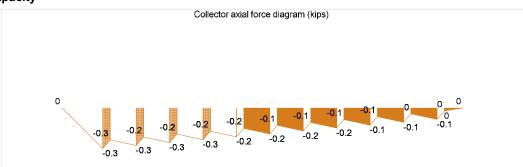
Maximum compressive force in chord; $C = V \times (k_{12} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{12} + P = 0.599$

kips

Maximum applied compressive stress; $f_c = C / A_e = 57 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 584 \text{ lb/in}^2$

 $f_c / F_c' = 0.098$


PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp}' = 0.091$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Collector capacity

Collector seismic design force factor; $F_{Coll} = 1$

Maximum shear force on wall; $V_{max} = max(F_{Coll} \times V_{s_max}, V_{w_max}) = 3.65 \text{ kips}$

Maximum force in collector; $P_{coll} = 0.322$ kips

Maximum applied tensile stress; $f_t = P_{coll} / (2 \times A_s) = 31 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = 0.022$

PASS - Design tensile stress exceeds maximum applied tensile stress

Maximum applied compressive stress; $f_c = P_{coll} / (2 \times A_s) = 31 \text{ lb/in}^2$

Column stability factor; $C_P = 1.00$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 2484 \text{ lb/in}^2$

 $f_c / F_c' = 0.012$

PASS - Design compressive stress exceeds maximum applied compressive stress

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	- Lee's Summit	23-	283		
Section		Sheet no./rev.			
			16		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Wind load deflection

Design shear force;

Deflection limit;

Segment 1

Induced unit shear;

Anchor tension force;

Vertical elongation at anchor;

Segment 1 deflection - Eqn. 4.3-1;

Segment 2

Induced unit shear;

Anchor tension force;

Vertical elongation at anchor;

Segment 2 deflection – Eqn. 4.3-1;

Segment 3

Induced unit shear;

Anchor tension force;

Vertical elongation at anchor;

Segment 3 deflection – Eqn. 4.3-1;

Segment 4

Induced unit shear;

Anchor tension force;

Vertical elongation at anchor;

Segment 4 deflection – Eqn. 4.3-1;

Segment 5

Induced unit shear;

Anchor tension force:

Vertical elongation at anchor;

Segment 5 deflection - Eqn. 4.3-1;

Segment 6

Induced unit shear;

Anchor tension force;

Vertical elongation at anchor;

 $V_{\delta w} = f_{Wserv} \times W = 6.083 \text{ kips}$

 $\Delta_{\text{w allow}} = h / 360 = 0.27 \text{ in}$

 $v_{\delta w} = V_{\delta w} \times (k_1 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_1 = 70.06 lb/ft$

 $T_{\delta} = \max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

 $\Delta_{a} = T_{\delta} / k_{a} = 0.000 \text{ in}$

 $\delta_{sww1} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_1) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_1 = 0.039$ in

 δ_{sww1} / $\Delta_{\text{w allow}}$ = **0.144**

PASS - Shear wall deflection is less than deflection limit

 $v_{\delta w} = V_{\delta w} \times (k_2 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_2 = 44.59 lb/ft$

 T_{δ} = max(0 kips, $v_{\delta w} \times h$ - 0.6 × (D + S_{wt} × h) × b / 2) = **0.000** kips

 $\Delta_a = T_{\delta} / k_a = 0.000 in$

 δ_{sww2} = 2 × $v_{\delta w}$ × h^3 / (3 × E × A_e × b_2) + $v_{\delta w}$ × h / (G_a) + h × Δ_a / b_2 = **0.025** in

 δ_{sww2} / $\Delta_{\text{w_allow}}$ = **0.093**

PASS - Shear wall deflection is less than deflection limit

 $v_{\delta w} = V_{\delta w} \times (k_3 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_3 = 44.59 lb/ft$

 $T_{\delta} = max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

 Δ_a = T_{δ} / k_a = **0.000** in

 $\delta_{\text{sww3}} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_3) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_3 = 0.025 \text{ in}$

 δ_{sww3} / $\Delta_{\text{w_allow}}$ = **0.093**

PASS - Shear wall deflection is less than deflection limit

 $v_{\delta w} = V_{\delta w} \times (k_4 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_4 = 44.59 lb/ft$

 $T_{\delta} = max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

 $\Delta_a = T_\delta / k_a = 0.000$ in

 $\delta_{sww4} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_4) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_4 = 0.025$ in

 $\delta_{\text{sww4}} / \Delta_{\text{w allow}} = 0.093$

PASS - Shear wall deflection is less than deflection limit

 $v_{\delta w} = V_{\delta w} \times \left(k_5 \, / \, sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)\right) / \, b_5 = \textbf{44.59} \, \, lb/ft$

 T_{δ} = max(0 kips, $v_{\delta w} \times h$ - 0.6 × (D + S_{wt} × h) × b / 2) = **0.000** kips

 $\Delta_{\rm a} = T_{\rm \delta} / k_{\rm a} = 0.000 \text{ in}$

 δ_{sww5} = 2 × $v_{\delta w}$ × h^3 / (3 × E × A_e × b_5) + $v_{\delta w}$ × h / (G_a) + h × Δ_a / b_5 = **0.025** in

 δ_{sww5} / $\Delta_{\text{w_allow}}$ = **0.093**

PASS - Shear wall deflection is less than deflection limit

 $v_{\delta w} = V_{\delta w} \times (k_6 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_6 = 44.59 lb/ft$

 $T_{\delta} = max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

 $\Delta_a = T_{\delta} / k_a = 0.000 \text{ in}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	- Lee's Summit	23-	283		
Section		Sheet no./rev.			
					17
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

PASS - Shear wall deflection is less than deflection limit

Segment 7

 $\text{Induced unit shear;} \hspace{1cm} v_{\delta w} = V_{\delta w} \times \left(k_7 \, / \, \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)\right) \, / \, \, b_7 = \textbf{44.59} \, \, \text{lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000} \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 7 deflection – Eqn. 4.3-1; $\delta_{sww7} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_7) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_7 = \textbf{0.025} \text{ in}$

 δ_{sww7} / Δ_{w} allow = **0.093**

PASS - Shear wall deflection is less than deflection limit

Segment 8

Induced unit shear; $V_{\delta w} = V_{\delta w} \times (k_8 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_8 = \textbf{44.59 lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000 kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 8 deflection – Eqn. 4.3-1; $\delta_{sww8} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_8) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_8 = \textbf{0.025} \text{ in}$

 δ_{sww8} / Δ_{w} allow = **0.093**

PASS - Shear wall deflection is less than deflection limit

Segment 9

Induced unit shear; $V_{\delta w} = V_{\delta w} \times \left(k_9 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9) \right) / \ b_9 = \textbf{44.59 lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000 kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 9 deflection – Eqn. 4.3-1; $\delta_{\text{sww}9} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_9) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_9 = \textbf{0.025} \text{ in}$

 δ_{sww9} / $\Delta_{\text{w_allow}}$ = **0.093**

PASS - Shear wall deflection is less than deflection limit

Segment 10

 $\text{Induced unit shear;} \qquad \qquad v_{\delta w} = V_{\delta w} \times \left(k_{10} \, / \, \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)\right) \, / \, \, b_{10} = \textbf{44.59} \, \, \text{lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000 kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 10 deflection – Eqn. 4.3-1; $\delta_{sww10} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{10}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{10} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{10}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{10} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{10}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{10} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{10}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{10} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{10}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{10} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{10}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{10} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{10}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{10} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{10}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{10} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{10}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{10} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{10}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{10} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{10}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{10} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{10}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{10} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{10}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{10} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{10}) + h \times \Delta_a / b_{10} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{10}) + h \times \Delta_a / b_{10} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{10}) + h \times \Delta_a / b_{10} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{10}) + h \times \Delta_a / b_{10} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{10}) + h \times \Delta_a / b_{10} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times b_{10}) + h \times \Delta_a / b_{10} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times b_{10}) + h \times \Delta_a / b_{10} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times b_{10}) + h \times \Delta_a / b_{10} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times b_{10}) + h \times \Delta_a / b_{10} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times b_{10}) + h \times \Delta_a / b_{10} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times b_{10}) + h \times \Delta_a / b_{10} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times b_{10}) + h \times \Delta_a / b_{10} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times b_{10}) + h \times \Delta_a / b_{10} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times b_{10}) + h \times \Delta_a / b_{10} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times b_{10})$

0.025 in

 δ_{sww10} / $\Delta_{\text{w_allow}}$ = **0.093**

PASS - Shear wall deflection is less than deflection limit

Segment 11

Induced unit shear; $v_{\delta w} = V_{\delta w} \times \left(k_{11} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)\right) / b_{11} = \textbf{44.59} \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 11 deflection – Eqn. 4.3-1; $\delta_{sww11} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{11}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{11} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{11}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{11} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{11}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{11} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{11}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{11} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{11}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{11} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{11}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{11} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{11}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{11} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{11}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{11} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{11}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{11} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{11}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{11} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{11}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{11} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{11}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{11} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{11}) + v_{\delta w} \times h / (3 \times E \times$

0.025 in

 δ_{sww11} / $\Delta_{\text{w_allow}}$ = **0.093**

PASS - Shear wall deflection is less than deflection limit

Segment 12

Induced unit shear; $V_{\delta w} = V_{\delta w} \times \left(k_{12} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)\right) / b_{12} = \textbf{32.29} \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times \text{h} - 0.6 \times (\text{D} + \text{S}_{wt} \times \text{h}) \times \text{b} / 2) = \textbf{0.000} \text{ kips}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.		
	WSS - Lee's Sum	2	3-283			
Section		Sheet no./rev.	Sheet no./rev.			
					18	
Calc. by	Date	Chk'd by	Date	App'd by	Date	
GL	7/25/2023	3 DN				

Vertical elongation at anchor;

 $\Delta_a = T_{\delta} / k_a = 0.000 \text{ in}$

Segment 12 deflection – Eqn. 4.3-1;

 $\delta_{sww12} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{12}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{12} = 0$

0.018 in

 $\delta_{\text{sww12}} / \Delta_{\text{w allow}} = 0.069$

PASS - Shear wall deflection is less than deflection limit

Seismic deflection

Design shear force; $V_{\delta s} = E_q = 2.842 \text{ kips}$

Deflection limit; $\Delta_{s_allow} = 0.020 \times h = 1.942$ in

Deflection ampification factor; $C_{d\delta} = 4$ Seismic importance factor; $I_e = 1$

Segment 1

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

 $Segment \ 1 \ deflection - Eqn. \ 4.3-1; \\ \delta_{swse1} = 2 \times v_{\delta s} \times h^3 \ / \ (3 \times E \times A_e \times b_1) \ + \ v_{\delta s} \times h \ / \ (G_a) \ + \ h \times \Delta_a \ / \ b_1 = \textbf{0.018} \ in$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws1} = C_{d\delta} \times \delta_{swse1} / I_e = 0.073$ in

 $\delta_{\text{sws1}} / \Delta_{\text{s allow}} = 0.037$

PASS - Shear wall deflection is less than deflection limit

Segment 2

Induced unit shear; $V_{\delta s} = V_{\delta s} \times (k_2 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_2 = \textbf{20.83} \text{ lb/ft}$

Anchor tension force; $T_{\delta} = max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 2 deflection – Eqn. 4.3-1; $\delta_{\text{swse2}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_2) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_2 = \textbf{0.012} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws2} = C_{d\delta} \times \delta_{swse2} / I_e = \textbf{0.047} \text{ in}$

 δ_{sws2} / $\Delta_{\text{s_allow}}$ = **0.024**

PASS - Shear wall deflection is less than deflection limit

Segment 3

Induced unit shear; $V_{\delta s} = V_{\delta s} \times \left(k_3 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)\right) / b_3 = \textbf{20.83} \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 3 deflection – Eqn. 4.3-1; $\delta_{\text{swse3}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_3) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_3 = \textbf{0.012} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws3} = C_{d\delta} \times \delta_{swse3} / I_e = 0.047$ in

 δ_{sws3} / $\Delta_{\text{s_allow}}$ = **0.024**

PASS - Shear wall deflection is less than deflection limit

Segment 4

Induced unit shear; $v_{\delta s} = V_{\delta s} \times \left(k_4 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)\right) / b_4 = \textbf{20.83} \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	- Lee's Summit	23-	283		
Section		Sheet no./rev.			
					19
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Segment 4 deflection – Eqn. 4.3-1;

 $\delta_{swse4} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_4) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_4 = 0.012$ in

Amp. seis. deflection – ASCE7 Eqn. 12.8-15;

 δ_{sws4} = $C_{\text{d}\delta} \times \delta_{\text{swse4}}$ / I_{e} = **0.047** in

 $\delta_{\text{sws4}} / \Delta_{\text{s allow}} = 0.024$

PASS - Shear wall deflection is less than deflection limit

Segment 5

Induced unit shear;
Anchor tension force;

 $v_{\delta s} = V_{\delta s} \times (k_5 \, / \, sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \, / \, b_5 = \textbf{20.83} \, \, lb/ft$

 $T_{\delta} = max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor;

 $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 5 deflection - Eqn. 4.3-1;

 $\delta_{swse5} = 2 \times v_{\delta s} \times h^3 \ / \ (3 \times E \times A_e \times b_5) \ + \ v_{\delta s} \times h \ / \ (G_a) \ + \ h \times \Delta_a \ / \ b_5 = \textbf{0.012} \ in$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws5}} = C_{\text{d}\delta} \times \delta_{\text{swse5}} / I_{\text{e}} = \textbf{0.047} \text{ in}$

 δ_{sws5} / $\Delta_{\text{s_allow}}$ = 0.024

PASS - Shear wall deflection is less than deflection limit

Segment 6

Induced unit shear; Anchor tension force; $v_{\delta s} = V_{\delta s} \times (k_6 \, / \, sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \, / \, \, b_6 = \textbf{20.83} \, \, lb/ft$

 $T_{\delta} = max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = 0.000$

kips

Vertical elongation at anchor;

Segment 6 deflection - Eqn. 4.3-1;

Amp. seis. deflection - ASCE7 Eqn. 12.8-15;

 $\delta_{\text{swse6}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_6) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_6 = 0.012 \text{ in}$

 δ_{sws6} = $C_{\text{d}\delta} \times \delta_{\text{swse6}}$ / I_{e} = **0.047** in

 $\delta_{\text{sws6}} / \Delta_{\text{s allow}} = 0.024$

 $\Delta_a = T_{\delta} / k_a = 0.000 in$

PASS - Shear wall deflection is less than deflection limit

Segment 7

Induced unit shear;

Anchor tension force;

 $v_{\delta s} = V_{\delta s} \times (k_7 \ / \ sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \ / \ b_7 = \textbf{20.83} \ lb/ft$

 $T_{\delta} = max(0 \text{ kips,} v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b \ / \ 2) = \textbf{0.000}$

kips

Vertical elongation at anchor;

 $\Delta_a = T_\delta / k_a = 0.000 \text{ in}$

Segment 7 deflection – Eqn. 4.3-1; $\delta_{\text{swse7}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_7) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_7 = \textbf{0.012} \text{ in}$

Amp. seis. deflection - ASCE7 Eqn. 12.8-15;

 δ_{sws7} = $C_{\text{d}\delta} \times \delta_{\text{swse7}}$ / I_{e} = **0.047** in

 δ_{sws7} / $\Delta_{\text{s_allow}}$ = **0.024**

PASS - Shear wall deflection is less than deflection limit

Segment 8

Induced unit shear; Anchor tension force; $v_{\delta s} = V_{\delta s} \times (k_8 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_8 = 20.83 lb/ft$

 $T_{\delta} = max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = 0.000$

kips

Vertical elongation at anchor;

 $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 8 deflection – Eqn. 4.3-1;

Amp. seis. deflection – ASCE7 Eqn. 12.8-15;

 $\delta_{\text{swse8}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_8) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_8 = 0.012$ in

 δ_{sws8} = $C_{\text{d}\delta} \times \delta_{\text{swse8}}$ / I_{e} = **0.047** in

 $\delta_{\text{sws8}} / \Delta_{\text{s allow}} = 0.024$

PASS - Shear wall deflection is less than deflection limit

Segment 9

Induced unit shear;

 $v_{\delta s} = V_{\delta s} \times (k_9 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_9 = 20.83 lb/ft$

11320 West 79th Street Lenexa, Kansas 66214

Project					Job Ref.	
	WSS - Lee's Summit, MO - GL K Long Wall				23-	283
Section	Section				Sheet no./rev.	
					2	20
Calc. by		Date	Chk'd by	Date	App'd by	Date
GL		7/25/2023	DN			

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 9 deflection – Eqn. 4.3-1; $\delta_{\text{swse9}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_9) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_9 = \textbf{0.012} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws9} = C_{d\delta} \times \delta_{swse9} / I_e = 0.047$ in

 $\delta_{\text{sws9}} / \Delta_{\text{s_allow}} = 0.024$

PASS - Shear wall deflection is less than deflection limit

Segment 10

 $\text{Induced unit shear;} \qquad \qquad v_{\delta s} = V_{\delta s} \times \left(k_{10} \ / \ \text{sum}(k_{10}, k_{11}, k_{12}, k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9})\right) \ / \ b_{10} = \textbf{20.83} \ \text{lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 10 deflection – Eqn. 4.3-1; $\delta_{\text{swse}_{10}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_{10}) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_{10} = \textbf{0.012}$

in

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws10} = C_{d\delta} \times \delta_{swse10} / I_e = 0.047$ in

 δ_{sws10} / $\Delta_{\text{s allow}}$ = **0.024**

PASS - Shear wall deflection is less than deflection limit

Segment 11

 $\text{Induced unit shear;} \qquad \qquad v_{\delta s} = V_{\delta s} \times \left(k_{11} \, / \, \text{sum}(k_{10}, k_{11}, k_{12}, k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9})\right) \, / \, \, b_{11} = \textbf{20.83} \, \, \text{lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 11 deflection – Eqn. 4.3-1; $\delta_{\text{swse}11} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_{11}) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_{11} = \textbf{0.012}$

in

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws11} = C_{d\delta} \times \delta_{swse11} / I_e = \textbf{0.047} \text{ in}$

 $\delta_{\text{sws11}} / \Delta_{\text{s allow}} = 0.024$

PASS - Shear wall deflection is less than deflection limit

Segment 12

 $\text{Induced unit shear;} \qquad \qquad v_{\delta s} = V_{\delta s} \times \left(k_{12} \, / \, \text{sum}(k_{10}, k_{11}, k_{12}, k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9})\right) \, / \, \, b_{12} = \textbf{15.09} \, \, \text{lb/ft}$

Anchor tension force; $T_{\delta} = max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta \, / \, k_a = \textbf{0.000} \text{ in}$

 $Segment \ 12 \ deflection - Eqn. \ 4.3-1; \\ \delta_{swse12} = 2 \times v_{\delta s} \times h^3 \ / \ (3 \times E \times A_e \times b_{12}) \ + \ v_{\delta s} \times h \ / \ (G_a) \ + \ h \times \Delta_a \ / \ b_{12} = \textbf{0.009}$

in

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws12}} = C_{\text{d}\delta} \times \delta_{\text{swse12}} \, / \, I_{\text{e}} = \textbf{0.035} \text{ in}$

 $\delta_{\text{sws}12} / \Delta_{\text{s}}$ allow = **0.018**

PASS - Shear wall deflection is less than deflection limit

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
WSS	- Lee's Summit	23-	283		
Section		Sheet no./rev.			
		:	21		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10

Design summary

Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	31691	5129	0.162	PASS
Chord capacity	lb/in ²	432	180	0.417	PASS
Collector capacity	lb/in ²	1380	43	0.031	PASS
Deflection	in	0.316	0.065	0.205	PASS

Panel details

Structural wood panel sheathing on one side

Panel height; h = 9.49 ftPanel length; b = 162.104 ft

Panel opening details

Width of opening; $w_{o1} = 3 \text{ ft}$ $h_{o1} = 7 ft$ Height of opening; Height to underside of lintel over opening; $I_{o1} = 7 \text{ ft}$ $P_{o1} = 16.5 \text{ ft}$ Position of opening; Width of opening; $w_{o2} = 3 \text{ ft}$ $h_{o2} = 7 ft$ Height of opening; Height to underside of lintel over opening; $I_{02} = 7 \text{ ft}$ $P_{02} = 30 \text{ ft}$ Position of opening; Width of opening; $w_{o3} = 3 \text{ ft}$ $h_{03} = 7 \text{ ft}$ Height of opening; Height to underside of lintel over opening; $I_{o3} = 7 \text{ ft}$ Position of opening; $P_{03} = 43.5 \text{ ft}$ $w_{04} = 3 \text{ ft}$ Width of opening; $h_{o4} = 7 ft$ Height of opening; Height to underside of lintel over opening; $I_{04} = 7 \text{ ft}$ $P_{o4} = 57 \text{ ft}$ Position of opening; Width of opening; $w_{o5} = 3 ft$ Height of opening; $h_{05} = 7 \text{ ft}$ Height to underside of lintel over opening; $I_{05} = 7 \text{ ft}$ $P_{o5} = 70.5 \text{ ft}$ Position of opening; Width of opening; $w_{o6} = 3 \text{ ft}$

11320 West 79th Street Lenexa, Kansas 66214

Project			Job Ref.			
	WSS	23-283				
Section			Sheet no./rev.			
			:	22		
Calc. by		Date	Chk'd by	Date	App'd by	Date
GI	L	7/25/2023	DN			

 $h_{06} = 7 \text{ ft}$ Height of opening; $I_{06} = 7 \text{ ft}$ Height to underside of lintel over opening; $P_{06} = 84 \text{ ft}$ Position of opening; Width of opening; $w_{07} = 3 \text{ ft}$ Height of opening; $h_{07} = 7 ft$ Height to underside of lintel over opening; $I_{07} = 7$ ft Position of opening; $P_{07} = 97.5 \text{ ft}$ $w_{08} = 3 \text{ ft}$ Width of opening; $h_{08} = 7 ft$ Height of opening; $I_{08} = 7 \text{ ft}$ Height to underside of lintel over opening; $P_{08} = 111 \text{ ft}$ Position of opening; Width of opening; $w_{09} = 3 \text{ ft}$ Height of opening; $h_{09} = 7 \text{ ft}$ Height to underside of lintel over opening; $I_{09} = 7 \text{ ft}$ $P_{09} = 124.5 \text{ ft}$ Position of opening; Width of opening; $w_{o10} = 3 \text{ ft}$ Height of opening; $h_{o10} = 7 ft$ Height to underside of lintel over opening; $I_{o10} = 7 \text{ ft}$ Position of opening; $P_{o10} = 138 \text{ ft}$ $w_{o11} = 3 \text{ ft}$ Width of opening; Height of opening; $h_{o11} = 7 \text{ ft}$

Total area of wall; $A = h \times b - w_{o1} \times h_{o1} - w_{o2} \times h_{o2} - w_{o3} \times h_{o3} - w_{o4} \times h_{o4} - w_{o5} \times h_{o5} - w_{o6} \times h_{o6} - w_{o6} \times h_{o6$

 $I_{o11} = 7 \text{ ft}$ $P_{o11} = 151.5 \text{ ft}$

 $w_{o7} \times h_{o7} - w_{o8} \times h_{o8} - w_{o9} \times h_{o9} - w_{o10} \times h_{o10} - w_{o11} \times h_{o11} = \textbf{1307.369} \ ft^2$

Panel construction

Position of opening;

Height to underside of lintel over opening;

Nominal stud size; 2" x 4" 1.5" x 3.5" Dressed stud size; $A_s = 5.25 \text{ in}^2$ Cross-sectional area of studs; Stud spacing; s = 16 in2 x 2" x 4" Nominal end post size; 2 x 1.5" x 3.5" Dressed end post size; Cross-sectional area of end posts; $A_e = 10.5 \text{ in}^2$ Hole diameter; Dia = 1 in Net cross-sectional area of end posts; $A_{en} = 7.5 \text{ in}^2$ Nominal collector size; 2 x 2" x 4" 2 x 1.5" x 3.5" Dressed collector size;

Service condition; Dry

Temperature; 100 degF or less Vertical anchor stiffness; $k_a = 1$ lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

Specific gravity; G = 0.50Tension parallel to grain; $F_t = 575 \text{ lb/in}^2$

11320 West 79th Street Lenexa, Kansas 66214

Project	Job Ref.				
WSS	- Lee's Summit	23-283			
Section		Sheet no./rev.			
		2	23		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

 $\label{eq:compression} \begin{tabular}{ll} Compression parallel to grain; & F_c = 1350 \ lb/in^2 \\ Compression perpendicular to grain; & F_c_perp = 625 \ lb/in^2 \\ Modulus of elasticity; & E = 1600000 \ lb/in^2 \\ Minimum modulus of elasticity; & E_min = 580000 \ lb/in^2 \\ \end{tabular}$

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 6"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 520 \text{ lb/ft}$ Nominal unit shear capacity for wind design; $v_w = 730 \text{ lb/ft}$ Apparent shear wall shear stiffness; $G_a = 15 \text{ kips/in}$

Loading details

Dead load acting on top of panel; D = 395.31 lb/ft Floor live load acting on top of panel; L_f = 805.622 lb/ft Self weight of panel; S_{wt} = 11 lb/ft² In plane wind load acting at head of panel; W = 8548 lbs Wind load serviceability factor; f_{Wserv} = 1.00 In plane seismic load acting at head of panel; E_q = 4992 lbs Design spectral response accel. par., short periods; S_{DS} = 0.106

Chord forces from shear walls above

Chord	W _{ch[i]} (lbs)	Eq_ch[i] (lbs)	Dc_ch[i] (lbs)	D _{T_ch[i]} (lbs)	L _{f_ch[i]} (lbs)	L _{r_ch[i]} (lbs)	S _{ch[i]} (lbs)	R _{ch[i]} (lbs)
Ch1;	-567;	-265;	323;	3995;	0;	211;	0;	0;
Ch2;	567;	265;	323;	3995;	0;	211;	0;	0;
Ch3;	0;	0;	0;	0;	0;	0;	0;	0;
Ch4;	0;	0;	0;	0;	0;	0;	0;	0;
Ch5;	0;	0;	0;	0;	0;	0;	0;	0;
Ch6;	0;	0;	0;	0;	0;	0;	0;	0;
Ch7;	0;	0;	0;	0;	0;	0;	0;	0;
Ch8;	0;	0;	0;	0;	0;	0;	0;	0;
Ch9;	0;	0;	0;	0;	0;	0;	0;	0;
Ch10;	0;	0;	0;	0;	0;	0;	0;	0;
Ch11;	0;	0;	0;	0;	0;	0;	0;	0;
Ch12;	0;	0;	0;	0;	0;	0;	0;	0;
Ch13;	0;	0;	0;	0;	0;	0;	0;	0;
Ch14;	0;	0;	0;	0;	0;	0;	0;	0;
Ch15;	0;	0;	0;	0;	0;	0;	0;	0;
Ch16;	0;	0;	0;	0;	0;	0;	0;	0;
Ch17;	0;	0;	0;	0;	0;	0;	0;	0;
Ch18;	0;	0;	0;	0;	0;	0;	0;	0;
Ch19;	0;	0;	0;	0;	0;	0;	0;	0;
Ch20;	0;	0;	0;	0;	0;	0;	0;	0;
Ch21;	0;	0;	0;	0;	0;	0;	0;	0;

11320 West 79th Street Lenexa, Kansas 66214

Project			Job Ref.			
	WSS -	- Lee's Summit	23-283			
Section			Sheet no./rev.			
			:	24		
Calc. by		Date	Chk'd by	Date	App'd by	Date
GL		7/25/2023	DN			

Ch22;	0;	0;	0;	0;	0;	0;	0;	0;
Ch23;	0;	0;	0;	0;	0;	0;	0;	0;
Ch24;	0;	0;	0;	0;	0;	0;	0;	0;

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.1; D + 0.6WLoad combination no.2; D + 0.7E

Load combination no.3; $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or S or R})$

Load combination no.4; $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6WLoad combination no.6; 0.6D + 0.7E

Adjustment factors

Сме = **1.00**

Temperature factor for tension – Table 2.3.3; $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

Temperature factor for modulus of elasticity – Table 2.3.3

 $C_{tE} = 1.00$

 $\label{eq:continuous} \begin{array}{ll} \text{Incising factor} - \text{cl.4.3.8}; & \text{$C_i = 1.00$} \\ \text{Buckling stiffness factor} - \text{cl.4.4.2}; & \text{$C_T = 1.00$} \\ \text{Bearing area factor} - \text{cl. 3.10.4}; & \text{$C_b = 1.0$} \\ \end{array}$

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 580000$ psi

Critical buckling design value; $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 450 \text{ psi}$

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = 2484 \text{ psi}$

For sawn lumber; c = 0.8

Column stability factor – eqn.3.7-1; $C_P = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c)]^2 - (F_{cE} / F_{c}^*) / c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c)]^2 - (F_{cE} / F_{c}^*) / c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c)]^2 - (F_{cE} / F_{c}^*) / c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c)]^2 - (F_{cE} / F_{c}^*) / c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*)) / (2 \times c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*)) / (2 \times c) = (1 + (F_{cE} / F_{c}^*))$

0.17

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio; 3.5

Segment 1 wall length; $b_1 = 16.5 \text{ ft}$ Shear wall aspect ratio; $h / b_1 = 0.575$ Segment 2 wall length; $b_2 = 10.5 \text{ ft}$ Shear wall aspect ratio; $h / b_2 = 0.904$ Segment 3 wall length; $b_3 = 10.5 \text{ ft}$ Shear wall aspect ratio; $h / b_3 =$ **0.904** Segment 4 wall length; $b_4 = 10.5 \text{ ft}$ Shear wall aspect ratio; $h / b_4 = 0.904$ Segment 5 wall length; $b_5 = 10.5 \text{ ft}$

11320 West 79th Street Lenexa, Kansas 66214

Project	Job Ref.				
WSS	- Lee's Summit	23-283			
Section		Sheet no./rev.			
		2	25		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Shear wall aspect ratio; $h / b_5 = 0.904$ Segment 6 wall length; $b_6 = 10.5 \text{ ft}$ $h / b_6 =$ **0.904** Shear wall aspect ratio; Segment 7 wall length; $b_7 = 10.5 \text{ ft}$ Shear wall aspect ratio; $h/b_7 = 0.904$ Segment 8 wall length; $b_8 = 10.5 \text{ ft}$ Shear wall aspect ratio; $h / b_8 = 0.904$ $b_9 = 10.5 \text{ ft}$ Segment 9 wall length; Shear wall aspect ratio; $h / b_9 = 0.904$ Segment 10 wall length; $b_{10} = 10.5 \text{ ft}$ Shear wall aspect ratio; $h / b_{10} = 0.904$ Segment 11 wall length; $b_{11} = 10.5 \text{ ft}$ Shear wall aspect ratio; $h/b_{11} = 0.904$ $b_{12} = 7.604 \text{ ft}$ Segment 12 wall length; Shear wall aspect ratio; $h / b_{12} = 1.248$

Segmented shear wall capacity - Equal deflection method

Wind loading:

Segment 1 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_1) = 575.152$ in/kip

Segment 1 stiffness; $k_1 = 1/(2 \times h^3/(3 \times E \times A_e \times b_1^2) + h/(G_a \times b_1) + h \times \Delta_{a1}/b_1) = 0.003$

kips/in

Unit shear capacity, widest segment; $v_{sww1} = v_w / 2 = 365$ plf

Vertical deflction under capacity load; $\Delta_a \text{ Cap} = h \times v_{\text{sww1}} / k_a = 3463.850 \text{ in}$

Deflection under capacity load; $\delta_{Cap} = 2 \times v_{sww1} \times h^3 / (3 \times E \times A_e \times b_1) + v_{sww1} \times h / (G_a) + h \times \Delta_a_{Cap} / b_1 = 0$

1992.479 in

Segment 2 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_2) = 903.810$ in/kip

Segment 2 stiffness; $k_2 = 1/(2 \times h^3/(3 \times E \times A_e \times b_2^2) + h/(G_a \times b_2) + h \times \Delta_{a1}/b_2) = 0.001$

kips/in

Segment 2 unit shear at δ_{Cap} ; $v_{dsww2} = \delta_{Cap} \times k_2 / b_2 = 232.28$ plf

Segment 2 shear capacity; $v_{sww2} = v_w / 2 = 365 \text{ plf}$

 $v_{dsww2} / v_{sww2} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta\!c_{\! ext{ap}}$

Segment 3 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_3) = 903.810$ in/kip

Segment 3 stiffness; $k_3 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_3^2) + h / (G_a \times b_3) + h \times \Delta_{a1} / b_3) = \textbf{0.001}$

kips/in

Segment 3 unit shear at δ_{Cap} ; $v_{dsww3} = \delta_{Cap} \times k_3 / b_3 = 232.28 \text{ plf}$

Segment 3 shear capacity; $v_{sww3} = v_w / 2 = 365$ plf

 $v_{dsww3} / v_{sww3} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Segment 4 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_4) = 903.810$ in/kip

Segment 4 stiffness; $k_4 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_4^2) + h / (G_a \times b_4) + h \times \Delta_{a1} / b_4) = 0.001$

kips/in

Segment 4 unit shear at δ_{Cap} ; $v_{dsww4} = \delta_{Cap} \times k_4 / b_4 = 232.28 \text{ plf}$

Segment 4 shear capacity; $v_{sww4} = v_w / 2 = 365 \text{ plf}$

11320 West 79th Street Lenexa, Kansas 66214

Project	Job Ref.				
WSS	- Lee's Summit	23-283			
Section			Sheet no./rev.		
			2	26	
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

 $V_{dsww4} / V_{sww4} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Segment 5 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_5) = 903.810$ in/kip

Segment 5 stiffness; $k_5 = 1/(2 \times h^3/(3 \times E \times A_e \times b_5^2) + h/(G_a \times b_5) + h \times \Delta_{a1}/b_5) = 0.001$

kips/in

Segment 5 unit shear at δ_{Cap} ; $v_{dsww5} = \delta_{Cap} \times k_5 / b_5 = 232.28 \text{ plf}$

Segment 5 shear capacity; $v_{sww5} = v_w / 2 = 365 \text{ plf}$

 $V_{dsww5} / V_{sww5} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta\!c_{\mathsf{ap}}$

Segment 6 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_6) = 903.810$ in/kip

Segment 6 stiffness; $k_6 = 1/(2 \times h^3/(3 \times E \times A_e \times b_6^2) + h/(G_a \times b_6) + h \times \Delta_{a1}/b_6) = \textbf{0.001}$

kips/in

Segment 6 unit shear at δ_{Cap} ; $v_{dsww6} = \delta_{Cap} \times k_6 / b_6 = 232.28 \text{ plf}$

Segment 6 shear capacity; $v_{sww6} = v_w / 2 = 365 \text{ plf}$

 $v_{dsww6} / v_{sww6} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta\!c_{\mathsf{ap}}$

Segment 7 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_7) = 903.810 \text{ in/kip}$

Segment 7 stiffness; $k_7 = 1/(2 \times h^3/(3 \times E \times A_e \times b_7^2) + h/(G_a \times b_7) + h \times \Delta_{a1}/b_7) = 0.001$

kips/in

Segment 7 unit shear at δ_{Cap} ; $v_{dsww7} = \delta_{Cap} \times k_7 / b_7 = 232.28$ plf

Segment 7 shear capacity; $v_{sww7} = v_w / 2 = 365$ plf

 $v_{dsww7} / v_{sww7} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at δc_{ap}

Segment 8 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_8) = 903.810$ in/kip

Segment 8 stiffness; $k_8 = 1/(2 \times h^3/(3 \times E \times A_e \times b_8^2) + h/(G_a \times b_8) + h \times \Delta_{a1}/b_8) = 0.001$

kips/in

Segment 8 unit shear at δ_{Cap} ; $V_{dsww8} = \delta_{Cap} \times k_8 / b_8 = 232.28 \text{ plf}$

Segment 8 shear capacity; $v_{sww8} = v_w / 2 = 365 \text{ plf}$

 $V_{dsww8} / V_{sww8} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

Segment 9 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_9) = 903.810 \text{ in/kip}$

Segment 9 stiffness; $k_9 = 1/(2 \times h^3/(3 \times E \times A_e \times b_9^2) + h/(G_a \times b_9) + h \times \Delta_{a1}/b_9) = 0.001$

kips/in

Segment 9 unit shear at δ_{Cap} ; $v_{dsww9} = \delta_{Cap} \times k_9 / b_9 = 232.28 \text{ plf}$

Segment 9 shear capacity; $v_{sww9} = v_w / 2 = 365$ plf

 $v_{dsww9} / v_{sww9} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

Segment 10 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_{10}) = 903.810$ in/kip

Segment 10 stiffness; $k_{10} = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_{10}^2) + h / (G_a \times b_{10}) + h \times \Delta_{a1} / b_{10}) = \textbf{0.001}$

kips/in

Segment 10 unit shear at δ_{Cap} ; $v_{dsww10} = \delta_{Cap} \times k_{10} / b_{10} = 232.28 \text{ plf}$

Segment 10 shear capacity; $v_{sww10} = v_w / 2 = 365 \text{ plf}$

 $V_{dsww10} / V_{sww10} = 0.636$

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
WSS	23-283				
Section		Sheet no./rev.			
		2	27		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

PASS - Segment shear capacity exceeds segment unit shear at & cap

Segment 11 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_{11}) = 903.810$ in/kip

Segment 11 stiffness; $k_{11} = 1/(2 \times h^3/(3 \times E \times A_e \times b_{11}^2) + h/(G_a \times b_{11}) + h \times \Delta_{a1}/b_{11}) = 0.001$

kips/in

Segment 11 unit shear at δ_{Cap} ; $v_{dsww11} = \delta_{Cap} \times k_{11} / b_{11} = 232.28 \text{ plf}$

Segment 11 shear capacity; $v_{sww11} = v_w / 2 = 365 \text{ plf}$ $v_{dsww11} / v_{sww11} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ ext{Cap}}$

Segment 12 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_{12}) = 1247.995$ in/kip

Segment 12 stiffness; $k_{12} = 1/(2 \times h^3/(3 \times E \times A_e \times b_{12}^2) + h/(G_a \times b_{12}) + h \times \Delta_{a1}/b_{12}) = 0.001$

kips/in

Segment 12 unit shear at δ_{Cap} ; $v_{dsww12} = \delta_{Cap} \times k_{12} / b_{12} = 168.22$ plf

Segment 12 shear capacity; $v_{sww12} = v_w / 2 = 365$ plf

 $V_{dsww12} / V_{sww12} =$ **0.461**

PASS - Segment shear capacity exceeds segment unit shear at $\delta\!c^{ap}$

Maximum shear force under wind loading; $V_{w_max} = 0.6 \times W = 5.129 \text{ kips}$

Shear capacity for wind loading; $V_w = v_{sww1} \times b_1 + min(v_{sww2}, v_{dsww2}) \times b_2 + min(v_{sww3}, v_{dsww3}) \times b_3 + min(v_{sww2}, v_{dsww2}) \times b_2 + min(v_{sww3}, v_{dsww3}) \times b_3 + min(v_{sww2}, v_{dsww2}) \times b_2 + min(v_{sww3}, v_{dsww3}) \times b_3 + min(v_{sww3}, v_{sww3})

 $min(v_{sww4},v_{dsww4}) \times b_4 + min(v_{sww5},v_{dsww5}) \times b_5 + min(v_{sww6},v_{dsww6}) \times b_6 + \cdots + min(v_{sww4},v_{dsww6}) \times b_6 + \cdots + min(v_{sww4},v_{dsww4}) \times b_8 + \cdots + min(v_{sww5},v_{dsww5}) \times b_8 + \cdots + min(v_{sww6},v_{dsww6}) \times b_8 + \cdots + min(v_{sww6},v_{dsw6},v_{dsw6}) \times b_8 + \cdots + min(v_{sww6},v_{dsw6},v_{dsw6}) \times b_8 + \cdots + min(v_{sww6},v_{dsw6$

 $min(v_{sww10},v_{dsww10}) \times b_{10} + min(v_{sww11},v_{dsww11}) \times b_{11} + min(v_{sww12},v_{dsww12}) \times \cdots \times b_{10} + min(v_{sww10},v_{dsww10}) \times b_{10} + min(v_{sww11},v_{dsww11}) \times b_{11} + min(v_{sww12},v_{dsww12}) \times b_{10} + min(v_{sww11},v_{dsww11}) \times b_{11} + min(v_{sww12},v_{dsww12}) \times b_{11} + min(v_{sww10},v_{dsww10}) \times b_{12} + min(v_{sww10},v_{dsw10}) \times b_{12} + min(v_$

 b_{12} = **31.691** kips $V_{w_{max}} / V_{w}$ = **0.162**

PASS - Shear capacity for wind load exceeds maximum shear force

Seismic loading:

Segment 1 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_1) = 575.152$ in/kip

Segment 1 stiffness; $k_1 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_1^2) + h / (G_a \times b_1) + h \times \Delta_{a1} / b_1) = \textbf{0.003}$

kips/in

Unit shear capacity, widest segment; $v_{sws1} = v_s / 2 = 260 \text{ plf}$

Vertical deflction under capacity load; $\Delta_{a \text{ Cap}} = h \times v_{sws1} / k_a = 2467.400 \text{ in}$

Deflection under capacity load; $\delta_{\text{Cap}} = 2 \times v_{\text{sws1}} \times h^3 / (3 \times E \times A_{\text{e}} \times b_1) + v_{\text{sws1}} \times h / (G_{\text{a}}) + h \times \Delta_{\text{a} \text{ Cap}} / b_1 = 0$

1419.3 in

Segment 2 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_2) = 903.810$ in/kip

Segment 2 stiffness; $k_2 = 1/(2 \times h^3/(3 \times E \times A_e \times b_2^2) + h/(G_a \times b_2) + h \times \Delta_{a1}/b_2) = 0.001$

kips/in

Segment 2 unit shear at δ_{Cap} ; $v_{dsws2} = \delta_{Cap} \times k_2 / b_2 = 165.46$ plf

Segment 2 shear capacity; $v_{sws2} = v_s / 2 = 260 \text{ plf}$ $v_{dsws2} / v_{sws2} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Segment 3 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_3) = 903.810$ in/kip

Segment 3 stiffness; $k_3 = 1/(2 \times h^3/(3 \times E \times A_e \times b_3^2) + h/(G_a \times b_3) + h \times \Delta_{a1}/b_3) = 0.001$

kips/in

Segment 3 unit shear at δ_{Cap} ; $v_{dsws3} = \delta_{Cap} \times k_3 / b_3 = 165.46$ plf

Segment 3 shear capacity; $v_{sws3} = v_s / 2 = 260 \text{ plf}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	23-283				
Section		Sheet no./rev.			
		2	28		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

 $V_{dsws3} / V_{sws3} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Segment 4 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_4) = 903.810$ in/kip

Segment 4 stiffness; $k_4 = 1/(2 \times h^3/(3 \times E \times A_e \times b_4^2) + h/(G_a \times b_4) + h \times \Delta_{a1}/b_4) = 0.001$

kips/in

Segment 4 unit shear at δ_{Cap} ; $v_{dsws4} = \delta_{Cap} \times k_4 / b_4 = 165.46$ plf

Segment 4 shear capacity; $v_{sws4} = v_s / 2 = 260 \text{ plf}$

 $V_{dsws4} / V_{sws4} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Segment 5 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_5) = 903.810$ in/kip

Segment 5 stiffness; $k_5 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_5^2) + h / (G_a \times b_5) + h \times \Delta_{a1} / b_5) = 0.001$

kips/in

Segment 5 unit shear at δ_{Cap} ; $v_{dsws5} = \delta_{Cap} \times k_5 / b_5 =$ **165.46** plf

Segment 5 shear capacity; $v_{sws5} = v_s / 2 = 260 \text{ plf}$

 $v_{dsws5} / v_{sws5} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at δc_{ap}

Segment 6 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_6) = 903.810 \text{ in/kip}$

Segment 6 stiffness; $k_6 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_6^2) + h / (G_a \times b_6) + h \times \Delta_{a1} / b_6) = \textbf{0.001}$

kips/in

Segment 6 unit shear at δ_{Cap} ; $v_{dsws6} = \delta_{Cap} \times k_6 / b_6 =$ **165.46** plf

Segment 6 shear capacity; $v_{sws6} = v_s / 2 = 260 \text{ plf}$

 $V_{dsws6} / V_{sws6} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{\! ext{ cap}}$

Segment 7 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_7) = 903.810$ in/kip

Segment 7 stiffness; $k_7 = 1/(2 \times h^3/(3 \times E \times A_e \times b_7^2) + h/(G_a \times b_7) + h \times \Delta_{a1}/b_7) = 0.001$

kips/in

Segment 7 unit shear at δ_{Cap} ; $v_{dsws7} = \delta_{Cap} \times k_7 / b_7 =$ **165.46** plf

Segment 7 shear capacity; $v_{sws7} = v_s / 2 = 260 \text{ plf}$

 $V_{dsws7} / V_{sws7} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Segment 8 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_8) = 903.810$ in/kip

Segment 8 stiffness; $k_8 = 1/(2 \times h^3/(3 \times E \times A_e \times b_8^2) + h/(G_a \times b_8) + h \times \Delta_{a1}/b_8) = 0.001$

kips/in

Segment 8 unit shear at δ_{Cap} ; $v_{dsws8} = \delta_{Cap} \times k_8 / b_8 = 165.46$ plf

Segment 8 shear capacity; $v_{sws8} = v_s / 2 = 260$ plf

 $v_{dsws8} / v_{sws8} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

Segment 9 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_9) = 903.810$ in/kip

Segment 9 stiffness; $k_9 = 1/(2 \times h^3/(3 \times E \times A_e \times b_g^2) + h/(G_a \times b_g) + h \times \Delta_{a1}/b_g) = 0.001$

kips/in

Segment 9 unit shear at δ_{Cap} ; $v_{dsws9} = \delta_{Cap} \times k_9 / b_9 = 165.46$ plf

Segment 9 shear capacity; $v_{sws9} = v_s / 2 = 260 \text{ plf}$

 $V_{dsws9} / V_{sws9} = 0.636$

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
WSS	23-283				
Section		Sheet no./rev.			
	2	29			
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

PASS - Segment shear capacity exceeds segment unit shear at & cap

Segment 10 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_{10}) = 903.810$ in/kip

Segment 10 stiffness; $k_{10} = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_{10}^2) + h / (G_a \times b_{10}) + h \times \Delta_{a1} / b_{10}) = \textbf{0.001}$

kips/in

Segment 10 unit shear at δ_{Cap} ; $V_{dsws10} = \delta_{Cap} \times k_{10} / b_{10} = 165.46$ plf

Segment 10 shear capacity; $v_{sws10} = v_s / 2 = 260 \text{ plf}$ $v_{dsws10} / v_{sws10} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{\sf Cap}$

Segment 11 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_{11}) = 903.810$ in/kip

Segment 11 stiffness; $k_{11} = 1/(2 \times h^3/(3 \times E \times A_e \times b_{11}^2) + h/(G_a \times b_{11}) + h \times \Delta_{a1}/b_{11}) = 0.001$

kips/in

Segment 11 unit shear at δ_{Cap} ; $V_{dsws11} = \delta_{Cap} \times k_{11} / b_{11} = 165.46$ plf

Segment 11 shear capacity; $v_{sws11} = v_s / 2 = 260 \text{ plf}$

 $V_{dsws11} / V_{sws11} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Segment 12 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_{12}) = 1247.995$ in/kip

Segment 12 stiffness; $k_{12} = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_{12}^2) + h / (G_a \times b_{12}) + h \times \Delta_{a1} / b_{12}) = \textbf{0.001}$

kips/in

Segment 12 unit shear at δ_{Cap} ; $v_{dsws12} = \delta_{Cap} \times k_{12} / b_{12} = 119.83$ plf

Segment 12 shear capacity; $v_{sws12} = v_s / 2 = 260 \text{ plf}$ $v_{dsws12} / v_{sws12} = 0.461$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

Maximum shear force under seismic loading; $V_{s_{max}} = 0.7 \times E_{q} = 3.494 \text{ kips}$

Shear capacity for seismic loading; $V_s = v_{sws1} \times b_1 + min(v_{sws2}, v_{dsws2}) \times b_2 + min(v_{sws3}, v_{dsws3}) \times b_3 +$

$$\begin{split} & min(v_{sws4},v_{dsws4}) \times b_4 + min(v_{sws5},v_{dsws5}) \times b_5 + min(v_{sws6},v_{dsws6}) \times b_6 + \\ & min(v_{sws7},v_{dsws7}) \times b_7 + min(v_{sws8},v_{dsws8}) \times b_8 + min(v_{sws9},v_{dsws9}) \times b_9 + \\ & min(v_{sws10},v_{dsws10}) \times b_{10} + min(v_{sws11},v_{dsws11}) \times b_{11} + min(v_{sws12},v_{dsws12}) \times b_{12} \end{split}$$

= 22.575 kips $V_{s_max} / V_s = 0.155$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chord 1

Shear wall aspect ratio; $h / b_1 = 0.575$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.129$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + 0.6 \times W_{ch1} + 0.6 \times D_{T_ch1} = \textbf{4.531} \text{ kips}$ Maximum tensile force in chord; $T = V \times (k_1 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_1 - P = \textbf{-3.970}$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -529 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.384$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 3.847$ kips

11320 West 79th Street Lenexa, Kansas 66214

Project					Job Ref.		
	WSS - Lee's Summit, MO - GL K Long Wall					23-283	
Section	Section					Sheet no./rev.	
						30	
Calc. by		Date	Chk'd by	Date	App'd by	Date	
GI	L	7/25/2023	DN				

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + 0.75 \times U_{ch1} + 0.75 \times U_{ch1$

 $L_{r_ch1} = 1.472 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_1 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_1 + P = 1.892$

kips

Maximum applied compressive stress; $f_c = C / A_e = 180 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.417$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp'} = 0.288$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 2

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.129$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + -1 \times 0.6 \times W_{ch2} + 0.6 \times D_{T_ch2} = 4.531$

kips

Maximum tensile force in chord; $T = V \times (k_1 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_1 - P = -3.970$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -529 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_F \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.384$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 3.847$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 + 0.45 \times W_{ch2} + Dc_{_ch2} + 0.75 \times L_{r_ch2} = 0.00 \times L_{r_ch2} + 0.00 \times L_{r_c$

1.472 kips

Maximum compressive force in chord; $C = V \times (k_1 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_1 + P = 1.892$

kips

Maximum applied compressive stress; $f_c = C / A_e = 180 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.417$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp}' = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp}' = 0.288$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 3

Shear wall aspect ratio; $h / b_2 = 0.904$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.129 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_2 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_2 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_2 - P = -1.217$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -162 \text{ lb/in}^2$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	- Lee's Summit	23-	283		
Section		Sheet no./rev.			
		;	31		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.118$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 3.847$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_2 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_2 + P = \textbf{1.004}$

kips

Maximum applied compressive stress; $f_c = C / A_e = 96 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.221$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^2$

 $f_c / F_{c perp'} = 0.153$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 4

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.129 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_2 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_2 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_2 - P = -1.217$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -162 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.118$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 3.847$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_2 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_2 + P = 1.004$

kips

Maximum applied compressive stress; $f_c = C / A_e = 96 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = \textbf{432 lb/in}^2$

 $f_c / F_c' = 0.221$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp'} = 0.153$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 5

Shear wall aspect ratio; $h / b_3 = 0.904$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.129 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_3 / 2 = 1.574 \text{ kips}$

11320 West 79th Street Lenexa, Kansas 66214

Project	Job Ref.				
WSS	- Lee's Summit	23-283			
Section		Sheet no./rev.			
		;	32		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Maximum tensile force in chord;

 $T = V \times (k_3 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_3 - P = -1.217$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -162 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.118$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 3.847$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_3 / sum(k_{10}, k_{11}, k_{12}, k_{11}, k_{12}, k_{13}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9})) \times h / b_3 + P = 1.004$

kips

Maximum applied compressive stress; $f_c = C / A_e = 96 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_f \times C_p = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.221$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate;

 $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp}' = 0.153$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 6

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.129 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_3 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_3 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_3 - P = -1.217$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -162 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.118$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 3.847$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_3 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_3 + P = 1.004$

kips

Maximum applied compressive stress; $f_c = C / A_e = 96 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = \textbf{432 lb/in}^2$

 $f_c / F_c' = 0.221$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp} = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp}' = 0.153$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 7

Shear wall aspect ratio; $h / b_4 = 0.904$

Load combination 5

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.				
WSS - Lee's Summit, MO - GL K Long Wall					23	-283
Section					Sheet no./rev.	
			33			
Calc. by	Date	Chk'd by	Date		App'd by	Date
GL	7/25/2023	DN				

Shear force for maximum tension; $V = 0.6 \times W = 5.129 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_4 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_4 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_4 - P = -1.217$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -162 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.118$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 3.847$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_4 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_4 + P = 1.004$

kips

Maximum applied compressive stress; $f_c = C / A_e = 96 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.221$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp'} = 0.153$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 8

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.129 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_4 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_4 / sum(k_{10}, k_{11}, k_{12}, k_{11}, k_{21}, k_{13}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9})) \times h / b_4 - P = -1.217$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -162 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.118$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 3.847$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_4 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_4 + P = \textbf{1.004}$

kips

Maximum applied compressive stress; $f_c = C / A_e = 96 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.221$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp'} = 0.153$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
WSS	S - Lee's Summit	23-	283		
Section		Sheet no./rev.			
		;	34		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Chord capacity for chord 9

Shear wall aspect ratio; $h / b_5 = 0.904$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.129 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_5 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_5 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_5 - P = -1.217$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -162 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.118$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 3.847$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_5 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_5 + P = 1.004$

kips

Maximum applied compressive stress; $f_c = C / A_e = 96 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.221$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp'} = 0.153$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 10

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.129 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_5 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_5 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_5 - P = -1.217$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -162 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{1380 lb/in}^2$

 $f_t / F_t' = -0.118$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 3.847$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = \textbf{0.736} \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_5 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_5 + P = 1.004$

kips

Maximum applied compressive stress; $f_c = C / A_e = 96 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = \textbf{432 lb/in}^2$

 $f_c / F_c' = 0.221$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

11320 West 79th Street Lenexa, Kansas 66214

Project					Job Ref.		
	WSS - Lee's Summit, MO - GL K Long Wall					23-283	
Section	Section					Sheet no./rev.	
			;	35			
Calc. by		Date	Chk'd by	Date	App'd by	Date	
GL	_	7/25/2023	DN				

 $f_c / F_{c perp}' = 0.153$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 11

Shear wall aspect ratio; $h / b_6 = 0.904$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.129 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_6 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_6 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_6 - P = -1.217$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -162 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_F \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.118$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 3.847$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_6 / \text{sum}(k_{10}, k_{11}, k_{12}, k_{11}, k_{12}, k_{13}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9})) \times h / b_6 + P = 1.004$

kips

Maximum applied compressive stress; $f_c = C / A_e = 96 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.221$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp}' = 0.153$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 12

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.129 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_6 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_6 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_6 - P = -1.217$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -162 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_F \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.118$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 3.847$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = \textbf{0.736} \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_6 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_6 + P = 1.004$

kips

Maximum applied compressive stress; $f_c = C / A_e = 96 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.221$

11320 West 79th Street Lenexa, Kansas 66214

Project					Job Ref.		
	WSS - Lee's Summit, MO - GL K Long Wall					23-283	
Section	Section					Sheet no./rev.	
			;	36			
Calc. by		Date	Chk'd by	Date	App'd by	Date	
Gl	_	7/25/2023	DN				

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate;

 $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp'} = 0.153$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 13

Shear wall aspect ratio; $h/b_7 = 0.904$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.129 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_7 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_7 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_7 - P = -1.217$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -162 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.118$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 3.847$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_7 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_7 + P = 1.004$

kips

Maximum applied compressive stress; $f_c = C / A_e = 96 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.221$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp}' = 0.153$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 14

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.129 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_7 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_7 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_7 - P = -1.217$

kins

Maximum applied tensile stress; $f_t = T / A_{en} = -162 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{1380 lb/in}^2$

 $f_t / F_t' = -0.118$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 3.847$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_7 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_7 + P = 1.004$

kips

Maximum applied compressive stress; $f_c = C / A_e = 96 \text{ lb/in}^2$

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
WSS	- Lee's Summit	23-283			
Section		Sheet no./rev.			
		37			
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.221$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp}' = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{t} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp'} = 0.153$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 15

Shear wall aspect ratio; $h / b_8 = 0.904$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.129 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_8 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_8 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_8 - P = -1.217$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -162 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.118$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 3.847$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_8 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_8 + P = \textbf{1.004}$

kips

Maximum applied compressive stress; $f_c = C / A_e = 96 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.221$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp'} = 0.153$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 16

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.129$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_8 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_8 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_8 - P = \textbf{-1.217}$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -162 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.118$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 3.847$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
WSS	- Lee's Summit	23-283			
Section		Sheet no./rev.			
		;	38		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Maximum compressive force in chord;

 $C = V \times (k_8 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_8 + P = 1.004$

kips

Maximum applied compressive stress; $f_c = C / A_e = 96 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{fc} \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.221$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c_perp'} = 0.153$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 17

Shear wall aspect ratio; $h / b_9 = 0.904$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.129 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_9 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_9 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_9 - P = -1.217$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -162 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.118$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 3.847$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_9 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_9 + P = 1.004$

kips

Maximum applied compressive stress; $f_c = C / A_e = 96 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = \textbf{432 lb/in}^2$

 $f_c / F_c' = 0.221$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp}' = 0.153$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 18

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.129 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_9 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_9 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_9 - P = -1.217$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -162 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.118$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

11320 West 79th Street Lenexa, Kansas 66214

Project	Job Ref.				
WSS	- Lee's Summit	23-283			
Section		Sheet no./rev.			
		;	39		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Shear force for maximum compression; $V = 0.45 \times W = 3.847$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_9 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_9 + P = 1.004$

kips

Maximum applied compressive stress; $f_c = C / A_e = 96 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{fc} \times C_f \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.221$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c_perp'} = 0.153$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 19

Shear wall aspect ratio; $h / b_{10} = 0.904$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.129 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_{10} / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_{10} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{10} - P = -1.217$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -162 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_F \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.118$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 3.847$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_{10} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{10} + P = 1.004$

kips

Maximum applied compressive stress; $f_c = C / A_e = 96 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{fc} \times C_f \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.221$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp}' = 0.153$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 20

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.129$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_{10} / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_{10} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{10} - P = -1.217$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -162 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.118$

11320 West 79th Street Lenexa, Kansas 66214

Project					Job Ref.	
	WSS	- Lee's Summit	23-283			
Section			Sheet no./rev.			
					4	40
Calc. by		Date	Chk'd by	Date	App'd by	Date
Gl	L	7/25/2023	DN			

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 3.847$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_{10} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{10} + P = 1.004$

kips

Maximum applied compressive stress; $f_c = C / A_e = 96 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.221$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp'} = 0.153$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 21

Shear wall aspect ratio; $h / b_{11} = 0.904$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.129 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_{11} / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_{11} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{11} - P = -1.217$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -162 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.118$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 3.847$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_{11} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{11} + P = 1.004$

kips

Maximum applied compressive stress; $f_c = C / A_e = 96 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = \textbf{432 lb/in}^2$

 $f_c / F_c' = 0.221$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c_perp}' = 0.153$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 22

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.129 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_{11} / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_{11} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{11} - P = -1.217$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -162 \text{ lb/in}^2$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	- Lee's Summit	23-283			
Section		Sheet no./rev.			
				4	1 1
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.118$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 3.847$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_{11} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{11} + P = \textbf{1.004}$

kips

Maximum applied compressive stress; $f_c = C / A_e = 96 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{fc} \times C_f \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.221$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perb}' = F_{c perb} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp'} = 0.153$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 23

Shear wall aspect ratio; $h / b_{12} = 1.248$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.129$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_{12} / 2 = 1.14 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_{12} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{12} - P = -0.882$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -118 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.085$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 3.847$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_{12} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{12} + P = 0.930$

kips

Maximum applied compressive stress; $f_c = C / A_e = 89 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = \textbf{432 lb/in}^2$

 $f_c / F_c' = 0.205$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp}' = 0.142$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 24

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 5.129 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_{12} / 2 = 1.14 \text{ kips}$

11320 West 79th Street Lenexa, Kansas 66214

Project	Job Ref.				
WSS	- Lee's Summit	23-283			
Section	Sheet no./rev.				
		4	12		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Maximum tensile force in chord;

 $T = V \times (k_{12} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{12} - P = -0.882$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -118 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.085$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 3.847$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

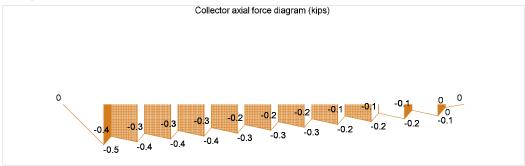
Maximum compressive force in chord; $C = V \times (k_{12} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{12} + P = \textbf{0.930}$

kips

Maximum applied compressive stress; $f_c = C / A_e = 89 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_f \times C_p = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.205$


PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp'} = 0.142$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Collector capacity

Collector seismic design force factor; $F_{Coll} = 1$

Maximum shear force on wall; $V_{max} = max(F_{Coll} \times V_{s_max}, V_{w_max}) = 5.129 \text{ kips}$

Maximum force in collector; $P_{coll} = 0.453 \text{ kips}$

Maximum applied tensile stress; $f_t = P_{coll} / (2 \times A_s) = 43 \text{ lb/in}^2$

 $\text{Design tensile stress;} \qquad \qquad F_{t}' = F_{t} \times C_{D} \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_{i} = \textbf{1380 lb/in}^{2}$

 $f_t / F_t' = 0.031$

PASS - Design tensile stress exceeds maximum applied tensile stress

Maximum applied compressive stress; $f_c = P_{coll} / (2 \times A_s) = 43 \text{ lb/in}^2$

Column stability factor; $C_P = 1.00$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 2484 \text{ lb/in}^2$

 $f_c / F_c' = 0.017$

PASS - Design compressive stress exceeds maximum applied compressive stress

11320 West 79th Street Lenexa, Kansas 66214

Project	_	Job Ref.			
W	SS - Lee's Summi	23-	283		
Section		Sheet no./rev.			
			43		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Wind load deflection

Design shear force; $V_{\delta w} = f_{Wserv} \times W = 8.548 \text{ kips}$ Deflection limit; $\Delta_{w \text{ allow}} = h / 360 = 0.316 \text{ in}$

Segment 1

Induced unit shear; $v_{\delta w} = V_{\delta w} \times \left(k_1 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)\right) / b_1 = \textbf{98.45} \ lb/ft$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2 - 0.6 \times \min(D_{T \text{ ch1}}, D_{T \text{ ch2}})$

+ $max(abs(W_{ch1}),abs(W_{ch2}))) = 0.000 \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 1 deflection – Eqn. 4.3-1; $\delta_{sww1} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_1) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_1 = \textbf{0.065} \text{ in}$

 δ_{sww1} / Δ_{w} allow = **0.205**

PASS - Shear wall deflection is less than deflection limit

Segment 2

Induced unit shear; $V_{\delta w} = V_{\delta w} \times \left(k_2 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9) \right) / b_2 = \textbf{62.65} \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000} \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 2 deflection – Eqn. 4.3-1; $\delta_{sww2} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_2) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_2 = \textbf{0.042} \text{ in}$

 $\delta_{\text{sww2}} / \Delta_{\text{w_allow}} = 0.133$

PASS - Shear wall deflection is less than deflection limit

Segment 3

Induced unit shear; $V_{\delta w} = V_{\delta w} \times (k_3 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_3 = 62.65 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips,} v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000} \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta \, / \, k_a = \textbf{0.000} \text{ in}$

Segment 3 deflection – Eqn. 4.3-1; $\delta_{\text{sww3}} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_3) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_3 = 0.042 \text{ in}$

 δ_{sww3} / $\Delta_{\text{w allow}}$ = **0.133**

PASS - Shear wall deflection is less than deflection limit

Segment 4

Induced unit shear; $V_{\delta w} = V_{\delta w} \times \left(k_4 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9) \right) / b_4 = \textbf{62.65} \ lb/ft$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 4 deflection – Eqn. 4.3-1; $\delta_{sww4} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_4) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_4 = \textbf{0.042} \text{ in}$

 δ_{sww4} / Δ_{w} allow = **0.133**

PASS - Shear wall deflection is less than deflection limit

Segment 5

Induced unit shear; $V_{\delta w} = V_{\delta w} \times (k_5 / \text{sum}(k_{10}, k_{11}, k_{12}, k_{11}, k_{12}, k_{13}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9})) / b_5 = 62.65 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000 kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

 $Segment \ 5 \ deflection - Eqn. \ 4.3-1; \\ \delta_{sww5} = 2 \times v_{\delta w} \times h^3 \ / \ (3 \times E \times A_e \times b_5) \ + \ v_{\delta w} \times h \ / \ (G_a) \ + \ h \times \Delta_a \ / \ b_5 = \textbf{0.042} \ in$

 δ_{sww5} / Δ_{w} allow = **0.133**

PASS - Shear wall deflection is less than deflection limit

Segment 6

Induced unit shear; $V_{\delta w} = V_{\delta w} \times (k_6 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_6 = \textbf{62.65} \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000} \text{ kips}$

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
WSS	- Lee's Summit	23-283			
Section		Sheet no./rev.			
		4	14		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Vertical elongation at anchor;

Segment 6 deflection – Eqn. 4.3-1;

 $\Delta_a = T_{\delta} / k_a = 0.000 \text{ in}$

 $\delta_{sww6} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_6) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_6 = 0.042$ in

 δ_{sww6} / $\Delta_{\text{w_allow}}$ = **0.133**

PASS - Shear wall deflection is less than deflection limit

Segment 7

Induced unit shear:

Anchor tension force;

Vertical elongation at anchor;

Segment 7 deflection – Eqn. 4.3-1;

 $v_{\delta w} = V_{\delta w} \times (k_7 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_7 = 62.65 lb/ft$

 $T_{\delta} = \max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

 $\Delta_a = T_{\delta} / k_a = 0.000 \text{ in}$

 $\delta_{\text{sww7}} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_7) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_7 = 0.042 \text{ in}$

 $\delta_{\text{sww7}} / \Delta_{\text{w allow}} = 0.133$

PASS - Shear wall deflection is less than deflection limit

Segment 8

Induced unit shear;

Anchor tension force;

Vertical elongation at anchor;

Segment 8 deflection – Eqn. 4.3-1;

 $v_{\delta w} = V_{\delta w} \times (k_8 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_8 = 62.65 lb/ft$

 $T_{\delta} = \max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

 $\Delta_a = T_{\delta} / k_a = 0.000 \text{ in}$

 $\delta_{sww8} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_8) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_8 = 0.042$ in

 δ_{sww8} / Δ_{w} allow = **0.133**

PASS - Shear wall deflection is less than deflection limit

Segment 9

Induced unit shear;

Anchor tension force;

Vertical elongation at anchor;

 $v_{\delta w} = V_{\delta w} \times (k_9 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_9 = 62.65 lb/ft$

 $T_{\delta} = max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

 $\Delta_{a} = T_{\delta} / k_{a} = 0.000 \text{ in}$

Segment 9 deflection - Eqn. 4.3-1;

 $\delta_{sww9} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_9) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_9 = 0.042$ in

 $\delta_{\text{sww9}} / \Delta_{\text{w allow}} = 0.133$

PASS - Shear wall deflection is less than deflection limit

Segment 10

Induced unit shear;

Anchor tension force;

Vertical elongation at anchor;

Segment 10 deflection – Eqn. 4.3-1;

 $v_{\delta w} = V_{\delta w} \times (k_{10} / sum(k_{10}, k_{11}, k_{12}, k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9})) / b_{10} = 62.65 \text{ lb/ft}$

 $T_{\delta} = max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

 $\Delta_a = T_{\delta} / k_a = 0.000 \text{ in}$

 $\delta_{sww10} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{10}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{10} =$

0.042 in

 $\delta_{\text{sww10}} / \Delta_{\text{w allow}} = 0.133$

PASS - Shear wall deflection is less than deflection limit

Segment 11

Induced unit shear:

Anchor tension force;

Vertical elongation at anchor;

Segment 11 deflection – Eqn. 4.3-1;

 $v_{\delta w} = V_{\delta w} \times (k_{11} / sum(k_{10}, k_{11}, k_{12}, k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9})) / b_{11} = 62.65 lb/ft$

 $T_{\delta} = max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

 $\Delta_a = T_\delta / k_a = 0.000$ in

 $\delta_{sww11} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{11}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{11} =$

0.042 in

 $\delta_{\text{sww11}} / \Delta_{\text{w allow}} = 0.133$

PASS - Shear wall deflection is less than deflection limit

Segment 12

Induced unit shear;

 $v_{\delta w} = V_{\delta w} \times (k_{12} / sum(k_{10}, k_{11}, k_{12}, k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9})) / b_{12} = 45.37 lb/ft$

D237 of 294

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
WSS	- Lee's Summit	23-283			
Section		Sheet no./rev.			
		4	15		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

 $\Delta_a = T_{\delta} / k_a = 0.000 \text{ in}$ Vertical elongation at anchor;

Segment 12 deflection - Eqn. 4.3-1; δ_{sww12} = 2 × $v_{\delta w}$ × h^3 / (3 × E × A_e × b_{12}) + $v_{\delta w}$ × h / (G_a) + h × Δ_a / b_{12} =

0.031 in

 $\delta_{\text{sww12}} / \Delta_{\text{w allow}} = 0.098$

PASS - Shear wall deflection is less than deflection limit

Seismic deflection

 $V_{\delta s} = E_q = 4.992 \text{ kips}$ Design shear force;

Deflection limit; $\Delta_{s \text{ allow}} = 0.020 \times h = 2.278 \text{ in}$

Deflection ampification factor; $C_{d\delta} = 4$ le = 1 Seismic importance factor;

Segment 1

Induced unit shear; $v_{\delta s} = V_{\delta s} \times (k_1 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_1 = 57.49 lb/ft$

 $T_{\delta} = max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 + (0.6 \times h) \times b / 2 + (0.6 \times h) \times b / 2 + (0.6 \times h) \times b /$ Anchor tension force;

 S_{DS}) × min(D_{T_ch1} , D_{T_ch2}) + max(abs(E_{q_ch1}),abs(E_{q_ch2}))) = **0.000** kips

Vertical elongation at anchor; $\Delta_a = T_{\delta} / k_a = 0.000 \text{ in}$

Segment 1 deflection - Eqn. 4.3-1; δ_{swse1} = 2 \times $v_{\delta s}$ \times h^3 / (3 \times E \times A_e \times $b_1)$ + $v_{\delta s}$ \times h / (Ga) + h \times Δ_a / b_1 = 0.038 in

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws1}} = C_{\text{d}\delta} \times \delta_{\text{swse1}} / I_e = \textbf{0.151} \text{ in}$

 $\delta_{\text{sws1}} / \Delta_{\text{s_allow}} = 0.066$

PASS - Shear wall deflection is less than deflection limit

Segment 2

Induced unit shear; $v_{\delta s} = V_{\delta s} \times (k_2 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_2 = 36.59 lb/ft$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = 0.000$

kips

 $\Delta_a = T_{\delta} / k_a = 0.000 \text{ in}$ Vertical elongation at anchor;

Segment 2 deflection – Eqn. 4.3-1; δ_{swse2} = 2 × $v_{\delta s}$ × h^3 / (3 × E × A_e × b_2) + $v_{\delta s}$ × h / (G_a) + h × Δ_a / b_2 = **0.025** in

Amp. seis. deflection - ASCE7 Eqn. 12.8-15; δ_{sws2} = $C_{\text{d}\delta} \times \delta_{\text{swse2}}$ / I_{e} = **0.098** in

 $\delta_{\text{sws2}} / \Delta_{\text{s_allow}} = 0.043$

PASS - Shear wall deflection is less than deflection limit

Segment 3

Induced unit shear; $v_{\delta s} = V_{\delta s} \times (k_3 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_3 = 36.59 lb/ft$

Anchor tension force; $T_{\delta} = max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = 0.000$

kips

Vertical elongation at anchor; $\Delta_a = T_{\delta} / k_a = 0.000 \text{ in}$

Segment 3 deflection – Eqn. 4.3-1; δ_{swse3} = 2 \times $v_{\delta s}$ \times h^3 / (3 \times E \times A_e \times b_3) + $v_{\delta s}$ \times h / (Ga) + h \times Δ_a / b_3 = 0.025 in

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; δ_{sws3} = $C_{\text{d}\delta} \times \delta_{\text{swse3}}$ / I_e = **0.098** in

 $\delta_{\text{sws3}} / \Delta_{\text{s_allow}} = 0.043$

PASS - Shear wall deflection is less than deflection limit

Segment 4

Induced unit shear; $v_{\delta s} = V_{\delta s} \times (k_4 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_4 = 36.59 lb/ft$

 $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = 0.000$ Anchor tension force;

kips

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
WSS	23-283				
Section		Sheet no./rev.			
				4	46
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Vertical elongation at anchor;

.

 $\Delta_a = T_{\delta} / k_a = 0.000 in$

Segment 4 deflection – Eqn. 4.3-1;

 $\delta_{\text{swse4}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_4) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_4 = 0.025$ in

 $\label{eq:Amp. Seis. deflection - ASCE7 Eqn. 12.8-15;} Amp. seis. deflection - ASCE7 Eqn. 12.8-15;$

 δ_{sws4} = $C_{\text{d}\delta} \times \delta_{\text{swse4}}$ / I_{e} = 0.098 in

 δ_{sws4} / $\Delta_{\text{s_allow}}$ = **0.043**

PASS - Shear wall deflection is less than deflection limit

Segment 5

Induced unit shear;

 $v_{\delta s} = V_{\delta s} \times (k_5 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \ / \ b_5 = \textbf{36.59} \ lb/ft$

Anchor tension force;

 $T_{\delta} = max(0 \text{ kips}, v_{\delta s} \times h \text{ - } (0.6 \text{ - } 0.2 \times S_{DS}) \times (D \text{ + } S_{wt} \times h) \times b \text{ / } 2) = \textbf{0.000}$

kips

Vertical elongation at anchor;

 $\Delta_a = T_{\delta} / k_a = 0.000 in$

Segment 5 deflection – Eqn. 4.3-1;

Amp. seis. deflection – ASCE7 Eqn. 12.8-15;

 $\delta_{\text{swse5}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_5) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_5 = \textbf{0.025} \text{ in}$

 δ_{sws5} = $C_{\text{d}\delta} \times \delta_{\text{swse5}}$ / I_{e} = 0.098 in

 δ_{sws5} / Δ_{s} allow = **0.043**

PASS - Shear wall deflection is less than deflection limit

Segment 6

Induced unit shear;
Anchor tension force:

 $v_{\delta s} = V_{\delta s} \times (k_6 \ / \ sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \ / \ b_6 = \textbf{36.59} \ lb/ft$

 $T_{\delta} = max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = 0.000$

kips

Vertical elongation at anchor;

 Δ_a = T_{δ} / k_a = **0.000** in

Segment 6 deflection - Eqn. 4.3-1;

Amp. seis. deflection – ASCE7 Eqn. 12.8-15;

 $\delta_{swse6} = 2 \times v_{\delta s} \times h^3 \ / \ (3 \times E \times A_e \times b_6) \ + \ v_{\delta s} \times h \ / \ (G_a) \ + \ h \times \Delta_a \ / \ b_6 = \textbf{0.025} \ in$

 δ_{sws6} = $C_{\text{d}\delta} \times \delta_{\text{swse6}}$ / I_{e} = **0.098** in

 δ_{sws6} / Δ_{s} allow = **0.043**

PASS - Shear wall deflection is less than deflection limit

Segment 7

Induced unit shear;
Anchor tension force;

 $v_{\delta s} = V_{\delta s} \times (k_7 \ / \ sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \ / \ b_7 = \textbf{36.59} \ lb/ft$

 $T_{\delta} = max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor;

 $\Delta_a = T_{\delta} / k_a = 0.000 \text{ in}$

Segment 7 deflection – Eqn. 4.3-1;

Amp. seis. deflection – ASCE7 Eqn. 12.8-15;

 $\delta_{\text{swse7}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_7) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_7 = 0.025$ in

 $\delta_{\text{sws7}} = C_{\text{d}\delta} \times \delta_{\text{swse7}} / I_{\text{e}} = 0.098 \text{ in}$

 $\delta_{\text{sws7}} / \Delta_{\text{s_allow}} = 0.043$

PASS - Shear wall deflection is less than deflection limit

Segment 8

Induced unit shear;
Anchor tension force:

 $v_{\delta s} = V_{\delta s} \times \left(k_8 \ / \ sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)\right) \ / \ b_8 = \textbf{36.59} \ lb/ft$

 $T_{\delta} = max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor;

 $\Delta_a = T_\delta / k_a = 0.000 \text{ in}$

Segment 8 deflection – Eqn. 4.3-1;

 δ_{swse8} = $2\times v_{\delta s}\times h^3$ / $(3\times E\times A_e\times b_8)$ + $v_{\delta s}\times h$ / (G_a) + $h\times \Delta_a$ / b_8 = 0.025 in

Amp. seis. deflection - ASCE7 Eqn. 12.8-15;

 δ_{sws8} = $C_{\text{d}\delta} \times \delta_{\text{swse8}}$ / I_{e} = 0.098 in

 $\delta_{\text{sws8}} / \Delta_{\text{s allow}} = 0.043$

PASS - Shear wall deflection is less than deflection limit

Segment 9

Induced unit shear;

 $v_{\delta s} = V_{\delta s} \times (k_9 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_9 = 36.59 lb/ft$

D239 of 294

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
WSS	23-283				
Section		Sheet no./rev.			
		4	17		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Anchor tension force; $T_{\delta} = \max(0 \text{ kips,} v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 9 deflection – Eqn. 4.3-1; $\delta_{\text{swse9}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_9) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_9 = \textbf{0.025} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws9} = C_{d\delta} \times \delta_{swse9} / I_e = 0.098$ in

 $\delta_{\text{sws9}} / \Delta_{\text{s_allow}} = 0.043$

PASS - Shear wall deflection is less than deflection limit

Segment 10

Induced unit shear; $v_{\delta s} = V_{\delta s} \times (k_{10} / sum(k_{10}, k_{11}, k_{12}, k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9})) / b_{10} = \textbf{36.59} \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 10 deflection – Eqn. 4.3-1; $\delta_{swse10} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_{10}) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_{10} = \textbf{0.025}$

in

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws10} = C_{d\delta} \times \delta_{swse10} / I_e = 0.098$ in

 δ_{sws10} / Δ_{s} allow = **0.043**

PASS - Shear wall deflection is less than deflection limit

Segment 11

Induced unit shear; $v_{\delta s} = V_{\delta s} \times \left(k_{11} / \text{sum}(k_{10}, k_{11}, k_{12}, k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9})\right) / b_{11} = \textbf{36.59 lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 11 deflection – Eqn. 4.3-1; $\delta_{\text{swse}11} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_{11}) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_{11} = \textbf{0.025}$

in

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws11} = C_{d\delta} \times \delta_{swse11} / I_e = \textbf{0.098} \text{ in}$

 δ_{sws11} / Δ_{s} allow = **0.043**

PASS - Shear wall deflection is less than deflection limit

Segment 12

Induced unit shear; $V_{\delta s} = V_{\delta s} \times \left(k_{12} / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)\right) / b_{12} = \textbf{26.5} \text{ lb/ft}$

Anchor tension force; $T_{\delta} = max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

 $Segment \ 12 \ deflection - Eqn. \ 4.3-1; \\ \delta_{swse12} = 2 \times v_{\delta s} \times h^3 \ / \ (3 \times E \times A_e \times b_{12}) + v_{\delta s} \times h \ / \ (G_a) + h \times \Delta_a \ / \ b_{12} = \textbf{0.018}$

in

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws12}} = C_{\text{d}\delta} \times \delta_{\text{swse12}} \, / \, I_{\text{e}} = \textbf{0.073} \text{ in}$

 $\delta_{\text{sws}12} / \Delta_{\text{s}}$ allow = **0.032**

PASS - Shear wall deflection is less than deflection limit

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.				
WS	SS - Lee's Summi	23-283				
Section		Sheet no./rev.				
			48			
Calc. by	Date	Chk'd by	Date		App'd by	Date
GL	7/25/2023	DN				

WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10

Design summary

Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	31691	6725	0.212	PASS
Chord capacity	lb/in ²	432	303	0.701	PASS
Collector capacity	lb/in ²	1380	57	0.041	PASS
Deflection	in	0.316	0.085	0.268	PASS

Panel details

Structural wood panel sheathing on one side

Panel height; h = 9.49 ftPanel length; b = 162.104 ft

Panel opening details

Width of opening; $w_{o1} = 3 \text{ ft}$ Height of opening; $h_{o1} = 7 ft$ Height to underside of lintel over opening; $I_{01} = 7 \text{ ft}$ Position of opening; $P_{o1} = 16.5 \text{ ft}$ $w_{02} = 3 \text{ ft}$ Width of opening; Height of opening; $h_{o2} = 7 ft$ Height to underside of lintel over opening; $l_{02} = 7 \text{ ft}$ Position of opening; $P_{02} = 30 \text{ ft}$ Width of opening; $w_{o3} = 3 \text{ ft}$ $h_{o3} = 7 \text{ ft}$ Height of opening; Height to underside of lintel over opening; $I_{03} = 7 \text{ ft}$ Position of opening; $P_{o3} = 43.5 \text{ ft}$ $w_{04} = 3 \text{ ft}$ Width of opening; Height of opening; $h_{o4} = 7 ft$ Height to underside of lintel over opening; $I_{04} = 7 \text{ ft}$ $P_{o4} = 57 \text{ ft}$ Position of opening; Width of opening; $w_{05} = 3 \text{ ft}$ Height of opening; $h_{05} = 7 ft$ Height to underside of lintel over opening; $I_{05} = 7 \text{ ft}$ Position of opening; $P_{o5} = 70.5 \text{ ft}$ Width of opening; $w_{06} = 3 \text{ ft}$ Height of opening; $h_{o6} = 7 \text{ ft}$ Height to underside of lintel over opening; $I_{06} = 7 \text{ ft}$ Position of opening; $P_{06} = 84 \text{ ft}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	23-283				
Section		Sheet no./rev.			
				4	19
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Width of opening; $w_{07} = 3 \text{ ft}$ $h_{o7} = 7 ft$ Height of opening; Height to underside of lintel over opening; $I_{07} = 7 \text{ ft}$ Position of opening; $P_{o7} = 97.5 \text{ ft}$ $w_{08} = 3 \text{ ft}$ Width of opening; $h_{08} = 7 ft$ Height of opening; Height to underside of lintel over opening; $l_{08} = 7 ft$ $P_{08} = 111 \text{ ft}$ Position of opening; Width of opening; $w_{09} = 3 \text{ ft}$ Height of opening; $h_{09} = 7 \text{ ft}$ Height to underside of lintel over opening; $I_{09} = 7 \text{ ft}$ $P_{09} = 124.5 \text{ ft}$

Position of opening; Width of opening; $W_{010} = 3 \text{ ft}$ $h_{o10} = 7 ft$ Height of opening; Height to underside of lintel over opening; $I_{o10} = 7 \text{ ft}$ Position of opening; $P_{o10} = 138 \text{ ft}$ Width of opening; $W_{011} = 3 \text{ ft}$ Height of opening; $h_{o11} = 7 ft$ Height to underside of lintel over opening; $I_{o11} = 7 \text{ ft}$ Position of opening; P_{o11} = **151.5** ft

Total area of wall; $A = h \times b - w_{o1} \times h_{o1} - w_{o2} \times h_{o2} - w_{o3} \times h_{o3} - w_{o4} \times h_{o4} - w_{o5} \times h_{o5} - w_{o6} \times h_{o6} - w_{o5} \times h_{o5} - w_{o6} \times h_{o6} - w_{o5} \times h_{o5} - w_{o6} \times h_{o6} - w_{o6} - w_{o6} \times h_{o6} - w_{o6} \times h_{o6} - w_{o6} - w_{o6} \times h_{o6} - w_{o6} - w_{o6} \times h_{o6} - w_{o6} - w_{o6$

 $w_{o7} \times h_{o7}$ - $w_{o8} \times h_{o8}$ - $w_{o9} \times h_{o9}$ - $w_{o10} \times h_{o10}$ - $w_{o11} \times h_{o11}$ = **1307.369** ft²

Panel construction

2" x 4" Nominal stud size; Dressed stud size: 1.5" x 3.5" $A_s = 5.25 \text{ in}^2$ Cross-sectional area of studs; s = **16** in Stud spacing; 2 x 2" x 4" Nominal end post size; 2 x 1.5" x 3.5" Dressed end post size; Cross-sectional area of end posts; $A_e = 10.5 \text{ in}^2$ Dia = 1 inHole diameter; Net cross-sectional area of end posts; $A_{en} = 7.5 in^2$ Nominal collector size: 2 x 2" x 4" 2 x 1.5" x 3.5" Dressed collector size;

Service condition; Dry

Temperature; 100 degF or less Vertical anchor stiffness; $k_a = 1$ lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

Specific gravity; G = 0.50Tension parallel to grain; $F_t = 575 \text{ lb/in}^2$ Compression parallel to grain; $F_c = 1350 \text{ lb/in}^2$ Compression perpendicular to grain; $F_{c_perp} = 625 \text{ lb/in}^2$ Modulus of elasticity; $E = 1600000 \text{ lb/in}^2$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.		
WSS - Lee's Summit, MO - GL K Long Wall					23-283	
Section				Sheet no./rev.	Sheet no./rev.	
					50	
Calc. by	Date	Chk'd by	Date	App'd by	Date	
GL	7/25/2023	DN				

Minimum modulus of elasticity; $E_{min} = 580000 \text{ lb/in}^2$

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 6"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 520 \text{ lb/ft}$ Nominal unit shear capacity for wind design; $v_w = 730 \text{ lb/ft}$ Apparent shear wall shear stiffness; $G_a = 15 \text{ kips/in}$

Loading details

Dead load acting on top of panel; D = 395.31 lb/ft Floor live load acting on top of panel; $L_f = 805.622$ lb/ft Self weight of panel; $S_{wt} = 11$ lb/ft² In plane wind load acting at head of panel; W = 11209 lbs Wind load serviceability factor; $f_{Wserv} = 1.00$ In plane seismic load acting at head of panel; $E_q = 6376$ lbs Design spectral response accel. par., short periods; $S_{DS} = 0.106$

Chord forces from shear walls above

Chord	W _{ch[i]} (lbs)	Eq_ch[i] (lbs)	Dc_ch[i] (lbs)	D _{T_ch[i]} (lbs)	L _{f_ch[i]} (lbs)	L _{r_ch[i]} (lbs)	S _{ch[i]} (lbs)	R _{ch[i]} (lbs)
Ch1;	-1501;	-810;	656;	8118;	537;	211;	0;	0;
Ch2;	1501;	810;	656;	8118;	537;	211;	0;	0;
Ch3;	0;	0;	0;	0;	0;	0;	0;	0;
Ch4;	0;	0;	0;	0;	0;	0;	0;	0;
Ch5;	0;	0;	0;	0;	0;	0;	0;	0;
Ch6;	0;	0;	0;	0;	0;	0;	0;	0;
Ch7;	0;	0;	0;	0;	0;	0;	0;	0;
Ch8;	0;	0;	0;	0;	0;	0;	0;	0;
Ch9;	0;	0;	0;	0;	0;	0;	0;	0;
Ch10;	0;	0;	0;	0;	0;	0;	0;	0;
Ch11;	0;	0;	0;	0;	0;	0;	0;	0;
Ch12;	0;	0;	0;	0;	0;	0;	0;	0;
Ch13;	0;	0;	0;	0;	0;	0;	0;	0;
Ch14;	0;	0;	0;	0;	0;	0;	0;	0;
Ch15;	0;	0;	0;	0;	0;	0;	0;	0;
Ch16;	0;	0;	0;	0;	0;	0;	0;	0;
Ch17;	0;	0;	0;	0;	0;	0;	0;	0;
Ch18;	0;	0;	0;	0;	0;	0;	0;	0;
Ch19;	0;	0;	0;	0;	0;	0;	0;	0;
Ch20;	0;	0;	0;	0;	0;	0;	0;	0;
Ch21;	0;	0;	0;	0;	0;	0;	0;	0;
Ch22;	0;	0;	0;	0;	0;	0;	0;	0;
Ch23;	0;	0;	0;	0;	0;	0;	0;	0;
Ch24;	0;	0;	0;	0;	0;	0;	0;	0;

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WS	S - Lee's Summit	23-	283		
Section		Sheet no./rev.			
			51		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.1; D + 0.6WLoad combination no.2; D + 0.7E

Load combination no.3; $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or S or R})$

Load combination no.4; $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6WLoad combination no.6; 0.6D + 0.7E

Adjustment factors

Wet service factor for modulus of elasticity - Table 4A

 $C_{ME} = 1.00$

Temperature factor for tension – Table 2.3.3; $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

Temperature factor for modulus of elasticity - Table 2.3.3

 $C_{tE} = 1.00$

 $\label{eq:continuous} \begin{array}{ll} \text{Incising factor} - \text{cl.4.3.8}; & \text{C_{i} = 1.00} \\ \text{Buckling stiffness factor} - \text{cl.4.4.2}; & \text{C_{T} = 1.00} \\ \text{Bearing area factor} - \text{cl. 3.10.4}; & \text{C_{b} = 1.0} \\ \end{array}$

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 580000$ psi

Critical buckling design value; $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 450 \text{ psi}$

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i = 2484 \text{ psi}$

For sawn lumber; c = 0.8

Column stability factor - eqn.3.7-1; $C_P = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c)]^2 - (F_{cE} / F_{c}^*) / c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c)]^2 - (F_{cE} / F_{c}^*) / c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c)]^2 - (F_{cE} / F_{c}^*) / c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c)]^2 - (F_{cE} / F_{c}^*) / c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / c)$

0.17

 $h / b_6 =$ **0.904** $b_7 =$ **10.5**ft

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio; 3.5

Shear wall aspect ratio;

Segment 7 wall length;

Segment 1 wall length; $b_1 = 16.5 \text{ ft}$ Shear wall aspect ratio; $h / b_1 = 0.575$ Segment 2 wall length; $b_2 = 10.5 \text{ ft}$ Shear wall aspect ratio; $h/b_2 = 0.904$ Segment 3 wall length; $b_3 = 10.5 \text{ ft}$ Shear wall aspect ratio; $h / b_3 = 0.904$ Segment 4 wall length; $b_4 = 10.5 \text{ ft}$ Shear wall aspect ratio; $h / b_4 = 0.904$ Segment 5 wall length; $b_5 = 10.5 \text{ ft}$ Shear wall aspect ratio; $h / b_5 = 0.904$ Segment 6 wall length; $b_6 = 10.5 \text{ ft}$

11320 West 79th Street Lenexa, Kansas 66214

Project	_	_	_	Job Ref.	
WSS - Lee's Summit, MO - GL K Long Wall				23-	283
Section		Sheet no./rev.			
			52		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Shear wall aspect ratio; $h / b_7 = 0.904$ Segment 8 wall length; $b_8 = 10.5 \text{ ft}$ $h / b_8 =$ **0.904** Shear wall aspect ratio: Segment 9 wall length; $b_9 = 10.5 \text{ ft}$ Shear wall aspect ratio; $h / b_9 = 0.904$ Segment 10 wall length; $b_{10} = 10.5 \text{ ft}$ Shear wall aspect ratio; $h/b_{10} = 0.904$ Segment 11 wall length; $b_{11} = 10.5 \text{ ft}$ Shear wall aspect ratio; $h / b_{11} = 0.904$ Segment 12 wall length; $b_{12} = 7.604 \text{ ft}$ Shear wall aspect ratio; $h / b_{12} = 1.248$

Segmented shear wall capacity - Equal deflection method

Wind loading:

Segment 1 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_1) = 575.152$ in/kip

Segment 1 stiffness; $k_1 = 1/(2 \times h^3/(3 \times E \times A_e \times b_1^2) + h/(G_a \times b_1) + h \times \Delta_{a1}/b_1) = 0.003$

kips/in

Unit shear capacity, widest segment; $v_{sww1} = v_w / 2 = 365$ plf

Vertical deflction under capacity load; $\Delta_{a \text{ Cap}} = h \times v_{sww1} / k_a = 3463.850 \text{ in}$

Deflection under capacity load; $\delta_{Cap} = 2 \times v_{sww1} \times h^3 / (3 \times E \times A_e \times b_1) + v_{sww1} \times h / (G_a) + h \times \Delta_a \ _{Cap} / \ b_1 = 1 \times (1 + c_a) + c_a

1992.479 in

Segment 2 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_2) = 903.810$ in/kip

Segment 2 stiffness; $k_2 = 1/(2 \times h^3/(3 \times E \times A_e \times b_2^2) + h/(G_a \times b_2) + h \times \Delta_{a1}/b_2) = 0.001$

kips/in

Segment 2 unit shear at δ_{Cap} ; $v_{dsww2} = \delta_{Cap} \times k_2 / b_2 = 232.28 \text{ plf}$

Segment 2 shear capacity; $v_{sww2} = v_w / 2 = 365 \text{ plf}$

 $v_{dsww2} / v_{sww2} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ ext{Cap}}$

Segment 3 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_3) = 903.810$ in/kip

Segment 3 stiffness; $k_3 = 1/(2 \times h^3/(3 \times E \times A_e \times b_3^2) + h/(G_a \times b_3) + h \times \Delta_{a1}/b_3) = 0.001$

kips/in

Segment 3 unit shear at δ_{Cap} ; $v_{dsww3} = \delta_{Cap} \times k_3 / b_3 = 232.28 \text{ plf}$

Segment 3 shear capacity; $v_{sww3} = v_w / 2 = 365 \text{ plf}$

 $v_{dsww3} / v_{sww3} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Segment 4 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_4) = 903.810$ in/kip

Segment 4 stiffness; $k_4 = 1/(2 \times h^3/(3 \times E \times A_e \times b_4^2) + h/(G_a \times b_4) + h \times \Delta_{a1}/b_4) = 0.001$

kips/in

Segment 4 unit shear at δ_{Cap} ; $v_{dsww4} = \delta_{Cap} \times k_4 / b_4 = 232.28 \text{ plf}$

Segment 4 shear capacity; $v_{sww4} = v_w / 2 = 365 \text{ plf}$ $v_{dsww4} / v_{sww4} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Segment 5 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_5) = 903.810$ in/kip

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	6 - Lee's Summit	23-283			
Section		Sheet no./rev.			
		į	53		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Segment 5 stiffness; $k_5 = 1/(2 \times h^3/(3 \times E \times A_e \times b_5^2) + h/(G_a \times b_5) + h \times \Delta_{a1}/b_5) = 0.001$

kips/in

Segment 5 unit shear at δ_{Cap} ; $v_{dsww5} = \delta_{Cap} \times k_5 / b_5 = 232.28$ plf

Segment 5 shear capacity; $v_{sww5} = v_w / 2 = 365 \text{ plf}$ $v_{dsww5} / v_{sww5} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{\! extsf{Cap}}$

Segment 6 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_6) = 903.810 \text{ in/kip}$

Segment 6 stiffness; $k_6 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_6^2) + h / (G_a \times b_6) + h \times \Delta_{a1} / b_6) = 0.001$

kips/in

Segment 6 unit shear at δ_{Cap} ; $v_{dsww6} = \delta_{Cap} \times k_6 / b_6 = 232.28 \text{ plf}$

Segment 6 shear capacity; $v_{sww6} = v_w / 2 = 365 \text{ plf}$

 $v_{dsww6} / v_{sww6} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta\!c_{\! ext{ap}}$

Segment 7 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_7) = 903.810$ in/kip

Segment 7 stiffness; $k_7 = 1/(2 \times h^3/(3 \times E \times A_e \times b_7^2) + h/(G_a \times b_7) + h \times \Delta_{a1}/b_7) = 0.001$

kips/in

Segment 7 unit shear at δ_{Cap} ; $v_{dsww7} = \delta_{Cap} \times k_7 / b_7 = 232.28 \text{ plf}$

Segment 7 shear capacity; $v_{sww7} = v_w / 2 = 365$ plf

 $v_{dsww7} / v_{sww7} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta\!c_{ap}$

Segment 8 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_8) = 903.810$ in/kip

Segment 8 stiffness; $k_8 = 1/(2 \times h^3/(3 \times E \times A_e \times b_8^2) + h/(G_a \times b_8) + h \times \Delta_{a1}/b_8) = 0.001$

kips/in

Segment 8 unit shear at δ_{Cap} ; $v_{dsww8} = \delta_{Cap} \times k_8 / b_8 = 232.28 \text{ plf}$

Segment 8 shear capacity; $v_{sww8} = v_w / 2 = 365 \text{ plf}$ $v_{dsww8} / v_{sww8} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

Segment 9 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_9) = 903.810$ in/kip

Segment 9 stiffness; $k_9 = 1/(2 \times h^3/(3 \times E \times A_e \times b_g^2) + h/(G_a \times b_g) + h \times \Delta_{a1}/b_g) = 0.001$

kips/in

Segment 9 unit shear at δ_{Cap} ; $v_{dsww9} = \delta_{Cap} \times k_9 / b_9 = 232.28$ plf

Segment 9 shear capacity; $v_{sww9} = v_w / 2 = 365 \text{ plf}$

 $V_{dsww9} / V_{sww9} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta\!c_{\! ext{ap}}$

Segment 10 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_{10}) = 903.810$ in/kip

Segment 10 stiffness; $k_{10} = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_{10}^2) + h / (G_a \times b_{10}) + h \times \Delta_{a1} / b_{10}) = \textbf{0.001}$

kips/in

Segment 10 unit shear at δ_{Cap} ; $V_{dsww10} = \delta_{Cap} \times k_{10} / b_{10} = 232.28 \text{ plf}$

Segment 10 shear capacity; $v_{sww10} = v_w / 2 = 365 \text{ plf}$ $v_{dsww10} / v_{sww10} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Segment 11 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_{11}) = 903.810$ in/kip

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	23-283				
Section		Sheet no./rev.			
	į	54			
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Segment 11 stiffness; $k_{11} = 1/(2 \times h^3/(3 \times E \times A_e \times b_{11}^2) + h/(G_a \times b_{11}) + h \times \Delta_{a1}/b_{11}) = 0.001$

kips/in

Segment 11 unit shear at δ_{Cap} ; $v_{dsww11} = \delta_{Cap} \times k_{11} / b_{11} = 232.28 \text{ plf}$

Segment 11 shear capacity; $V_{sww11} = V_w / 2 = 365 \text{ plf}$ $V_{dsww11} / V_{sww11} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Segment 12 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_{12}) = 1247.995$ in/kip

Segment 12 stiffness; $k_{12} = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_{12}^2) + h / (G_a \times b_{12}) + h \times \Delta_{a1} / b_{12}) = 0.001$

kips/in

Segment 12 unit shear at δ_{Cap} ; $v_{dsww12} = \delta_{Cap} \times k_{12} / b_{12} = 168.22$ plf

Segment 12 shear capacity; $v_{sww12} = v_w / 2 = 365 \text{ plf}$ $v_{dsww12} / v_{sww12} = 0.461$

PASS - Segment shear capacity exceeds segment unit shear at $\delta\!c_{\! ext{ap}}$

Maximum shear force under wind loading; $V_{w_{max}} = 0.6 \times W = 6.725 \text{ kips}$

Shear capacity for wind loading; $V_w = v_{sww1} \times b_1 + min(v_{sww2}, v_{dsww2}) \times b_2 + min(v_{sww3}, v_{dsww3}) \times b_3 + min(v_{sww3}, v_{dsww3}) \times b_3 + min(v_{sww3}, v_{dsww3}) \times b_3 + min(v_{sww2}, v_{dsww3}) \times b_3 + min(v_{sww3}, v_{dsww3}, v_{dsww3}, v_{dsww3}) \times b_3 + min(v_{sww3}, v_{dsww3}, v_{dsww3}, v_{dsww3}, v_{dsww3}, v_{dsww3}, v_{dsww3}) \times b_3 + min(v_{sww3}, v_{dsww3}, v_{ds$

 $\begin{aligned} & min(v_{sww4},v_{dsww4}) \times b_4 + min(v_{sww5},v_{dsww5}) \times b_5 + min(v_{sww6},v_{dsww6}) \times b_6 + \\ & min(v_{sww7},v_{dsww7}) \times b_7 + min(v_{sww8},v_{dsww8}) \times b_8 + min(v_{sww9},v_{dsww9}) \times b_9 + \\ & min(v_{sww10},v_{dsww10}) \times b_{10} + min(v_{sww11},v_{dsww11}) \times b_{11} + min(v_{sww12},v_{dsww12}) \times b_{10} + \\ & min(v_{sww10},v_{dsww10}) \times b_{10} + min(v_{sww11},v_{dsww11}) \times b_{11} + min(v_{sww12},v_{dsww12}) \times b_{10} + \\ & min(v_{sww10},v_{dsww10}) \times b_{10} + min(v_{sww11},v_{dsww11}) \times b_{11} + min(v_{sww12},v_{dsww12}) \times b_{10} + \\ & min(v_{sww10},v_{dsww10}) \times b_{10} + min(v_{sww11},v_{dsww11}) \times b_{11} + min(v_{sww12},v_{dsww12}) \times b_{10} + \\ & min(v_{sww10},v_{dsww10}) \times b_{10} + min(v_{sww11},v_{dsww11}) \times b_{11} + min(v_{sww12},v_{dsww12}) \times b_{10} + \\ & min(v_{sww10},v_{dsww10}) \times b_{10} + min(v_{sww11},v_{dsww11}) \times b_{11} + min(v_{sww12},v_{dsww12}) \times b_{10} + \\ & min(v_{sww10},v_{dsww10}) \times b_{10} + min(v_{sww11},v_{dsww11}) \times b_{11} + min(v_{sww12},v_{dsww12}) \times b_{10} + \\ & min(v_{sww10},v_{dsww10}) \times b_{10} + min(v_{sww11},v_{dsww11}) \times b_{11} + min(v_{sww11},v_{dsww12}) \times b_{11} +$

 b_{12} = **31.691** kips $V_{w \text{ max}} / V_{w}$ = **0.212**

PASS - Shear capacity for wind load exceeds maximum shear force

Seismic loading:

Segment 1 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_1) = 575.152$ in/kip

Segment 1 stiffness; $k_1 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_1^2) + h / (G_a \times b_1) + h \times \Delta_{a1} / b_1) = \textbf{0.003}$

kips/in

Unit shear capacity, widest segment; $v_{sws1} = v_s / 2 = 260 \text{ plf}$

Vertical deflction under capacity load; $\Delta_{a_Cap} = h \times v_{sws1} / k_a = 2467.400$ in

Deflection under capacity load; $\delta_{Cap} = 2 \times v_{sws1} \times h^3 / (3 \times E \times A_e \times b_1) + v_{sws1} \times h / (G_a) + h \times \Delta_{a_Cap} / b_1 = 0$

1419.3 in

Segment 2 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_2) = 903.810$ in/kip

 $\text{Segment 2 stiffness;} \qquad \qquad k_2 = 1 \, / \, (2 \times h^3 \, / \, (3 \times E \times A_e \times b_2^2) \, + \, h \, / \, (G_a \times b_2) \, + \, h \times \Delta_{a1} \, / \, b_2) = \textbf{0.001}$

kips/in

Segment 2 unit shear at δ_{Cap} ; $V_{dsws2} = \delta_{Cap} \times k_2 / b_2 = 165.46$ plf

Segment 2 shear capacity; $v_{sws2} = v_s / 2 = 260 \text{ plf}$

 $v_{dsws2} / v_{sws2} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

Segment 3 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_3) = 903.810 \text{ in/kip}$

Segment 3 stiffness; $k_3 = 1/(2 \times h^3/(3 \times E \times A_e \times b_3^2) + h/(G_a \times b_3) + h \times \Delta_{a1}/b_3) = 0.001$

kips/in

Segment 3 unit shear at δ_{Cap} ; $v_{dsws3} = \delta_{Cap} \times k_3 / b_3 = 165.46$ plf

Segment 3 shear capacity; $v_{sws3} = v_s / 2 = 260 \text{ plf}$

 $V_{dsws3} / V_{sws3} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at δc_{ap}

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	23-283				
Section		Sheet no./rev.			
		į	55		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Segment 4 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_4) = 903.810 \text{ in/kip}$

Segment 4 stiffness; $k_4 = 1/(2 \times h^3/(3 \times E \times A_e \times b_4^2) + h/(G_a \times b_4) + h \times \Delta_{a1}/b_4) = 0.001$

kips/in

Segment 4 unit shear at δ_{Cap} ; $v_{dsws4} = \delta_{Cap} \times k_4 / b_4 = 165.46$ plf

Segment 4 shear capacity; $v_{sws4} = v_s / 2 = 260 \text{ plf}$

 $V_{dsws4} / V_{sws4} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

Segment 5 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_5) = 903.810$ in/kip

Segment 5 stiffness; $k_5 = 1/(2 \times h^3/(3 \times E \times A_e \times b_5^2) + h/(G_a \times b_5) + h \times \Delta_{a1}/b_5) = 0.001$

kips/in

Segment 5 unit shear at δ_{Cap} ; $v_{dsws5} = \delta_{Cap} \times k_5 / b_5 = 165.46$ plf

Segment 5 shear capacity; $v_{sws5} = v_s / 2 = 260 \text{ plf}$

 $v_{dsws5} / v_{sws5} =$ **0.636**

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

Segment 6 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_6) = 903.810$ in/kip

Segment 6 stiffness; $k_6 = 1/(2 \times h^3/(3 \times E \times A_e \times b_e^2) + h/(G_a \times b_6) + h \times \Delta_{a1}/b_6) = 0.001$

kips/in

Segment 6 unit shear at δ_{Cap} ; $v_{dsws6} = \delta_{Cap} \times k_6 / b_6 = 165.46$ plf

Segment 6 shear capacity; $v_{sws6} = v_s / 2 = 260 \text{ plf}$

 $V_{dsws6} / V_{sws6} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta\!c_{\! ext{ap}}$

Segment 7 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_7) = 903.810$ in/kip

Segment 7 stiffness; $k_7 = 1/(2 \times h^3/(3 \times E \times A_e \times b_7^2) + h/(G_a \times b_7) + h \times \Delta_{a1}/b_7) = 0.001$

kips/in

Segment 7 unit shear at δ_{Cap} ; $v_{dsws7} = \delta_{Cap} \times k_7 / b_7 =$ **165.46** plf

Segment 7 shear capacity; $v_{sws7} = v_s / 2 = 260 \text{ plf}$ $v_{dsws7} / v_{sws7} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap} Segment 8 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_8) = 903.810$ in/kip

Segment 8 stiffness; $k_8 = 1/(2 \times h^3/(3 \times E \times A_e \times b_8^2) + h/(G_a \times b_8) + h \times \Delta_{a1}/b_8) = 0.001$

kips/in

Segment 8 unit shear at δ_{Cap} ; $v_{dsws8} = \delta_{Cap} \times k_8 / b_8 = 165.46$ plf

Segment 8 shear capacity; $v_{sws8} = v_s / 2 = 260 \text{ plf}$

 $V_{dsws8} / V_{sws8} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at δc_{ap}

Segment 9 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_9) = 903.810$ in/kip

Segment 9 stiffness; $k_9 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_9^2) + h / (G_a \times b_9) + h \times \Delta_{a1} / b_9) = \textbf{0.001}$

kips/in

Segment 9 unit shear at δ_{Cap} ; $v_{dsws9} = \delta_{Cap} \times k_9 / b_9 = 165.46$ plf

Segment 9 shear capacity; $v_{sws9} = v_s / 2 = 260 \text{ plf}$

 $v_{dsws9} / v_{sws9} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Segment 10 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_{10}) = 903.810$ in/kip

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	23-283				
Section	Sheet no./rev.				
	į	56			
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Segment 10 stiffness; $k_{10} = 1/(2 \times h^3/(3 \times E \times A_e \times b_{10}^2) + h/(G_a \times b_{10}) + h \times \Delta_{a1}/b_{10}) = 0.001$

kips/in

Segment 10 unit shear at δ_{Cap} ; $v_{dsws10} = \delta_{Cap} \times k_{10} / b_{10} = 165.46$ plf

Segment 10 shear capacity; $v_{sws10} = v_s / 2 = 260 \text{ plf}$ $v_{dsws10} / v_{sws10} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

Segment 11 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_{11}) = 903.810$ in/kip

Segment 11 stiffness; $k_{11} = 1/(2 \times h^3/(3 \times E \times A_e \times b_{11}^2) + h/(G_a \times b_{11}) + h \times \Delta_{a1}/b_{11}) = 0.001$

kips/in

Segment 11 unit shear at δ_{Cap} ; $v_{dsws11} = \delta_{Cap} \times k_{11} / b_{11} = 165.46$ plf

Segment 11 shear capacity; $v_{sws11} = v_s / 2 = 260 \text{ plf}$ $v_{dsws11} / v_{sws11} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{\! extsf{Cap}}$

Segment 12 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_{12}) = 1247.995$ in/kip

Segment 12 stiffness; $k_{12} = 1/(2 \times h^3/(3 \times E \times A_e \times b_{12}^2) + h/(G_a \times b_{12}) + h \times \Delta_{a1}/b_{12}) = 0.001$

kips/in

Segment 12 unit shear at δ_{Cap} ; $v_{dsws12} = \delta_{Cap} \times k_{12} / b_{12} = 119.83$ plf

Segment 12 shear capacity; $v_{sws12} = v_s / 2 = 260 \text{ plf}$ $v_{dsws12} / v_{sws12} = 0.461$

PASS - Segment shear capacity exceeds segment unit shear at $\delta\!c_{\mathsf{ap}}$

Maximum shear force under seismic loading; $V_{s max} = 0.7 \times E_{g} = 4.463$ kips

Shear capacity for seismic loading; $V_s = v_{sws1} \times b_1 + min(v_{sws2}, v_{dsws2}) \times b_2 + min(v_{sws3}, v_{dsws3}) \times b_3 + min(v_{sws2}, v_{dsws2}) \times b_2 + min(v_{sws3}, v_{dsws3}) \times b_3 + min(v_{sws2}, v_{dsws3}) \times b_3 + min(v_{sws3}, v_{dsws3}) \times b_3 + min(v$

$$\begin{split} & min(v_{sws4},v_{dsws4}) \times b_4 + min(v_{sws5},v_{dsws5}) \times b_5 + min(v_{sws6},v_{dsws6}) \times b_6 + \\ & min(v_{sws7},v_{dsws7}) \times b_7 + min(v_{sws8},v_{dsws8}) \times b_8 + min(v_{sws9},v_{dsws9}) \times b_9 + \\ & min(v_{sws10},v_{dsws10}) \times b_{10} + min(v_{sws11},v_{dsws11}) \times b_{11} + min(v_{sws12},v_{dsws12}) \times b_{12} \end{split}$$

= 22.575 kips $V_{s_max} / V_s = 0.198$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chord 1

Shear wall aspect ratio; $h / b_1 = 0.575$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 6.725$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + 0.6 \times W_{ch1} + 0.6 \times D_{T_ch1} = \textbf{6.444} \text{ kips}$ Maximum tensile force in chord; $T = V \times (k_1 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_1 - P = \textbf{-5.709}$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -761 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_F \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.552$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 5.044 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + 0.75 \times U_{ch1} + 0.75 \times U$

 L_{f_ch1} + 0.75 × L_{r_ch1} = **2.628** kips

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	23-283				
Section	Sheet no./rev.				
	į	57			
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Maximum compressive force in chord;

 $C = V \times (k_1 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_1 + P = 3.180$

kips

Maximum applied compressive stress; $f_c = C / A_e = 303 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.701$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp'} = 0.485$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 2

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 6.725$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + -1 \times 0.6 \times W_{ch2} + 0.6 \times D_{T_ch2} = 6.444$

kips

Maximum tensile force in chord; $T = V \times (k_1 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_1 - P = -5.709$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -761 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{1380 lb/in}^2$

 $f_t / F_t' = -0.552$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 5.044$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 + 0.45 \times W_{ch2} + Dc_{_ch2} + 0.75 \times L_{f_ch2} + 0.75 \times L_{f_c$

 $0.75 \times L_{r ch2} = 2.628 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_1 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_1 + P = 3.180$

kips

Maximum applied compressive stress; $f_c = C / A_e = 303 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = \textbf{432 lb/in}^2$

 $f_c / F_c' = 0.701$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp}' = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp}' = 0.485$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 3

Shear wall aspect ratio; $h / b_2 = 0.904$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 6.725 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_2 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_2 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_2 - P = -1.106$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -148 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.107$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS - Lee's Summit, MO - GL K Long Wall				23-	283
Section		Sheet no./rev.			
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 5.044 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_2 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_2 + P = \textbf{1.087}$

kips

Maximum applied compressive stress; $f_c = C / A_e = 104 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.240$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp'} = 0.166$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 4

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 6.725$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_2 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_2 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_2 - P = \textbf{-1.106}$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -148 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_F \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.107$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 5.044 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_2 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_2 + P = 1.087$

kips

Maximum applied compressive stress; $f_c = C / A_e = 104 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.240$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = \textbf{625} \text{ lb/in}^{2}$

 $f_c / F_{c perp'} = 0.166$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 5

Shear wall aspect ratio; $h / b_3 = 0.904$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 6.725$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_3 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_3 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_3 - P = -1.106$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -148 \text{ lb/in}^2$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	23-283				
Section		Sheet no./rev.			
	59				
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.107$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 5.044$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_3 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_3 + P = \textbf{1.087}$

kips

Maximum applied compressive stress; $f_c = C / A_e = 104 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{fc} \times C_f \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.240$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^2$

 $f_c / F_{c perp'} = 0.166$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 6

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 6.725 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_3 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_3 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_3 - P = -1.106$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -148 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.107$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 5.044 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_3 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_3 + P = 1.087$

kips

Maximum applied compressive stress; $f_c = C / A_e = 104 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = \textbf{432 lb/in}^2$

 $f_c / F_c' = 0.240$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp'} = 0.166$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 7

Shear wall aspect ratio; $h / b_4 = 0.904$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 6.725$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_4 / 2 = 1.574 \text{ kips}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	23-283				
Section		Sheet no./rev.			
	60				
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Maximum tensile force in chord;

 $T = V \times (k_4 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_4 - P = -1.106$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -148 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.107$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 5.044 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_4 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_4 + P = 1.087$

kips

Maximum applied compressive stress; $f_c = C / A_e = 104 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.240$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate;

 $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp}' = 0.166$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 8

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 6.725$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_4 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_4 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_4 - P = -1.106$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -148 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_F \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.107$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 5.044$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_4 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_4 + P = 1.087$

kips

Maximum applied compressive stress; $f_c = C / A_e = 104 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = \textbf{432 lb/in}^2$

 $f_c / F_c' = 0.240$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp} = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp'} = 0.166$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 9

Shear wall aspect ratio; $h / b_5 = 0.904$

Load combination 5

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
WSS	- Lee's Summit	23-283			
Section			Sheet no./rev.		
			61		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Shear force for maximum tension; $V = 0.6 \times W = 6.725 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_5 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_5 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_5 - P = -1.106$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -148 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.107$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 5.044$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_5 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_5 + P = 1.087$

kips

Maximum applied compressive stress; $f_c = C / A_e = 104 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.240$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c_perp'} = 0.166$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 10

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 6.725$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_5 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_5 / \text{sum}(k_{10}, k_{11}, k_{12}, k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9})) \times h / b_5 - P = -1.106$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -148 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.107$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 5.044$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_5 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_5 + P = 1.087$

kips

Maximum applied compressive stress; $f_c = C / A_e = 104 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = \textbf{432 lb/in}^2$

 $f_c / F_c' = 0.240$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp'} = 0.166$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

11320 West 79th Street Lenexa, Kansas 66214

	Project		Job Ref.			
	WSS	- Lee's Summit	ng Wall	23-283		
Ī	Section		Sheet no./rev.			
			62			
Ī	Calc. by	Date	Chk'd by	Date	App'd by	Date
	GL	7/25/2023	DN			

Chord capacity for chord 11

Shear wall aspect ratio; $h / b_6 = 0.904$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 6.725 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_6 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_6 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_6 - P = -1.106$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -148 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.107$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 5.044 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_6 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_6 + P = 1.087$

kips

Maximum applied compressive stress; $f_c = C / A_e = 104 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.240$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^2$

 $f_c / F_{c_perp'} = 0.166$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 12

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 6.725 \text{ kips}$

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_6 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_6 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_6 - P = -1.106$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -148 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{1380 lb/in}^2$

 $f_t / F_t' = -0.107$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 5.044$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_6 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_6 + P = 1.087$

kips

Maximum applied compressive stress; $f_c = C / A_e = 104 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.240$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	- Lee's Summit	23-283			
Section		Sheet no./rev.			
				(63
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

 $f_c / F_{c perp'} = 0.166$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 13

Shear wall aspect ratio; $h / b_7 = 0.904$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 6.725$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_7 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_7 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_7 - P = -1.106$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -148 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_F \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.107$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 5.044$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_7 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_7 + P = 1.087$

kips

Maximum applied compressive stress; $f_c = C / A_e = 104 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = \textbf{432 lb/in}^2$

 $f_c / F_c' = 0.240$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp}' = 0.166$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 14

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 6.725$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_7 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_7 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_7 - P = -1.106$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -148 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_F \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.107$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 5.044$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_7 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_7 + P = 1.087$

kips

Maximum applied compressive stress; $f_c = C / A_e = 104 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.240$

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
WSS	- Lee's Summit	23-283			
Section		Sheet no./rev.	Sheet no./rev.		
				(64
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate;

 $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp'} = 0.166$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 15

Shear wall aspect ratio; $h / b_8 = 0.904$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 6.725$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_8 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_8 / \text{sum}(k_{10}, k_{11}, k_{12}, k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9})) \times h / b_8 - P = -1.106$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -148 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_F \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.107$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 5.044 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_8 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_8 + P = 1.087$

kips

Maximum applied compressive stress; $f_c = C / A_e = 104 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.240$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp}' = 0.166$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 16

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 6.725$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_8 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_8 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_8 - P = -1.106$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -148 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{1380 lb/in}^2$

 $f_t / F_t' = -0.107$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 5.044 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_8 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_8 + P = 1.087$

kips

Maximum applied compressive stress; $f_c = C / A_e = 104 \text{ lb/in}^2$

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.				
WSS	- Lee's Summit	23-283				
Section		Sheet no./rev.				
				(65	
Calc. by	Date	Chk'd by	Date	App'd by	Date	
GL	7/25/2023	DN				

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = \textbf{432 lb/in}^2$

 $f_c / F_c' = 0.240$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp}' = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{t} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp'} = 0.166$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 17

Shear wall aspect ratio; $h / b_9 = 0.904$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 6.725$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_9 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_9 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_9 - P = -1.106$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -148 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_F \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.107$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 5.044$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_9 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_9 + P = 1.087$

kips

Maximum applied compressive stress; $f_c = C / A_e = 104 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.240$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp'} = 0.166$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 18

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 6.725$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_9 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_9 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_9 - P = -1.106$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -148 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.107$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 5.044 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
WSS	- Lee's Summit	23-283			
Section				Sheet no./rev.	
				(66
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Maximum compressive force in chord;

 $C = V \times (k_9 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_9 + P = 1.087$

kips

Maximum applied compressive stress; $f_c = C / A_e = 104 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{fc} \times C_f \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.240$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate;

 $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c_perp'} = 0.166$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 19

Shear wall aspect ratio; $h / b_{10} = 0.904$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 6.725$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_{10} / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_{10} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{10} - P = -1.106$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -148 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.107$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 5.044$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_{10} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{10} + P = 1.087$

kips

Maximum applied compressive stress; $f_c = C / A_e = 104 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = \textbf{432 lb/in}^2$

 $f_c / F_c' = 0.240$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^2$

 $f_c / F_{c perp}' = 0.166$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 20

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 6.725$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_{10} / 2 = 1.574 \text{ kips}$

 $T = V \times (k_{10} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{10} - P = -1.106$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -148 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.107$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

11320 West 79th Street Lenexa, Kansas 66214

Project					Job Ref.		
	WSS - Lee's Summit, MO - GL K Long Wall					23-283	
Section			Sheet no./rev.				
						67	
Calc. by		Date	Chk'd by	Date	App'd by	Date	
GI	L	7/25/2023	DN				

Shear force for maximum compression; $V = 0.45 \times W = 5.044 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_{10} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{10} + P = 1.087$

kips

Maximum applied compressive stress; $f_c = C / A_e = 104 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_f \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.240$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c_perp'} = 0.166$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 21

Shear wall aspect ratio; $h / b_{11} = 0.904$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 6.725$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_{11} / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_{11} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{11} - P = -1.106$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -148 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_F \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.107$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 5.044 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_{11} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{11} + P = 1.087$

kips

Maximum applied compressive stress; $f_c = C / A_e = 104 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{fc} \times C_f \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.240$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp'} = 0.166$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 22

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 6.725$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_{11} / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_{11} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{11} - P = -1.106$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -148 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.107$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	6 - Lee's Summit	23-283			
Section		Sheet no./rev.			
		(68		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 5.044 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_{11} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{11} + P = \textbf{1.087}$

kips

Maximum applied compressive stress; $f_c = C / A_e = 104 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.240$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp'} = 0.166$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 23

Shear wall aspect ratio; $h / b_{12} = 1.248$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 6.725$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_{12} / 2 = 1.14 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_{12} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{12} - P = -0.801$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -107 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.077$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 5.044 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_{12} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{12} + P = 0.990$

kips

Maximum applied compressive stress; $f_c = C / A_e = 94 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_f \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.218$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp'} = 0.151$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 24

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 6.725$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_{12} / 2 = 1.14 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_{12} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{12} - P = -0.801$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -107 \text{ lb/in}^2$

11320 West 79th Street Lenexa, Kansas 66214

Project	Job Ref.				
WSS	23-283				
Section		Sheet no./rev.			
		(69		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.077$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 5.044$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

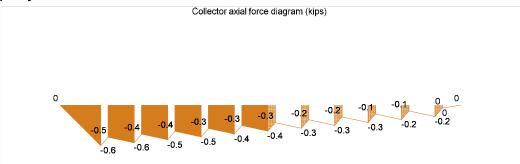
Maximum compressive force in chord; $C = V \times (k_{12} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{12} + P = 0.990$

kips

Maximum applied compressive stress; $f_c = C / A_e = 94 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.218$


PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp}' = 0.151$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Collector capacity

Collector seismic design force factor; $F_{Coll} = 1$

Maximum shear force on wall; $V_{max} = max(F_{Coll} \times V_{s_max}, V_{w_max}) = 6.725 \text{ kips}$

Maximum force in collector; $P_{coll} = 0.594 \text{ kips}$

Maximum applied tensile stress; $f_t = P_{coll} / (2 \times A_s) = 57 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{1380 lb/in}^2$

 $f_t / F_t' = 0.041$

PASS - Design tensile stress exceeds maximum applied tensile stress

Maximum applied compressive stress; $f_c = P_{coll} / (2 \times A_s) = 57 \text{ lb/in}^2$

Column stability factor; $C_P = 1.00$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 2484 \text{ lb/in}^2$

 $f_c / F_c' = 0.023$

PASS - Design compressive stress exceeds maximum applied compressive stress

Wind load deflection

Design shear force; $V_{\delta w} = f_{Wserv} \times W = 11.209 \text{ kips}$ Deflection limit; $\Delta_{w \text{ allow}} = h / 360 = 0.316 \text{ in}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	- Lee's Summit	23-283			
Section		Sheet no./rev.			
				-	70
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Segment 1

Induced unit shear; $v_{\delta w} = V_{\delta w} \times \left(k_1 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)\right) / b_1 = \textbf{129.1} \ lb/ft$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips,} v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2 - 0.6 \times \min(D_{T_ch1}, D_{T_ch2})$

+ $max(abs(W_{ch1}), abs(W_{ch2}))) = 0.000 \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 1 deflection – Eqn. 4.3-1; $\delta_{\text{Sww1}} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_1) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_1 = 0.085 \text{ in}$

 $\delta_{\text{sww1}} / \Delta_{\text{w allow}} = 0.268$

PASS - Shear wall deflection is less than deflection limit

Segment 2

 $\text{Induced unit shear;} \qquad \qquad v_{\delta w} = V_{\delta w} \times \left(k_2 \, / \, \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)\right) \, / \, \, b_2 = \textbf{82.16} \, \, \text{lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000 kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 2 deflection – Eqn. 4.3-1; $\delta_{\text{sww2}} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_2) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_2 = \textbf{0.055} \text{ in}$

 δ_{sww2} / $\Delta_{\text{w allow}}$ = **0.174**

PASS - Shear wall deflection is less than deflection limit

Segment 3

Induced unit shear; $V_{\delta w} = V_{\delta w} \times (k_3 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_3 = 82.16 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000 kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 3 deflection – Eqn. 4.3-1; $\delta_{\text{sww3}} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_3) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_3 = \textbf{0.055} \text{ in}$

 $\delta_{\text{sww3}} / \Delta_{\text{w allow}} = 0.174$

PASS - Shear wall deflection is less than deflection limit

Segment 4

Induced unit shear; $V_{\delta w} = V_{\delta w} \times (k_4 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_4 = \textbf{82.16} \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000} \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta \, / \, k_a = \textbf{0.000} \text{ in}$

Segment 4 deflection – Eqn. 4.3-1; $\delta_{sww4} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_4) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_4 = \textbf{0.055} \text{ in}$

 $\delta_{\text{sww4}} / \Delta_{\text{w_allow}} = 0.174$

PASS - Shear wall deflection is less than deflection limit

Segment 5

Induced unit shear; $V_{\delta w} = V_{\delta w} \times (k_5 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_5 = \textbf{82.16} \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000 kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 5 deflection – Eqn. 4.3-1; $\delta_{sww5} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_5) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_5 = \textbf{0.055} \text{ in}$

 $\delta_{\text{sww5}} / \Delta_{\text{w allow}} = 0.174$

PASS - Shear wall deflection is less than deflection limit

Segment 6

Induced unit shear; $V_{\delta w} = V_{\delta w} \times (k_6 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_6 = \textbf{82.16} \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000} \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 6 deflection – Eqn. 4.3-1; $\delta_{\text{Sww6}} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_6) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_6 = \textbf{0.055} \text{ in}$

 δ_{sww6} / $\Delta_{\text{w_allow}}$ = 0.174

PASS - Shear wall deflection is less than deflection limit

11320 West 79th Street Lenexa, Kansas 66214

Project	Job Ref.					
WSS	- Lee's Summit	, MO - GL K Lor	ng Wall	23-283		
Section				Sheet no./rev.		
				-	71	
Calc. by	Date	Chk'd by	Date	App'd by	Date	
GL	7/25/2023	DN				

Segment 7

Induced unit shear;

Anchor tension force;

Vertical elongation at anchor;

Segment 7 deflection – Eqn. 4.3-1;

Segment 8

Induced unit shear;

Anchor tension force;

Vertical elongation at anchor;

Segment 8 deflection - Eqn. 4.3-1;

Segment 9

Induced unit shear;

Anchor tension force;

Vertical elongation at anchor;

Segment 9 deflection – Eqn. 4.3-1;

Segment 10

Induced unit shear;

Anchor tension force;

Vertical elongation at anchor;

Segment 10 deflection - Eqn. 4.3-1;

Segment 11

Induced unit shear;

Anchor tension force;

\/--#:--|-|-|----#:-----

Vertical elongation at anchor;

Segment 11 deflection - Eqn. 4.3-1;

Segment 12

Induced unit shear;

Anchor tension force;

Vertical elongation at anchor;

Segment 12 deflection - Eqn. 4.3-1;

 $v_{\delta w} = V_{\delta w} \times (k_7 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_7 = 82.16 lb/ft$

 $T_{\delta} = \max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

 $\Delta_a = T_{\delta} / k_a = 0.000 \text{ in}$

 δ_{sww7} = 2 × $v_{\delta w}$ × h^3 / (3 × E × A_e × b_7) + $v_{\delta w}$ × h / (G_a) + h × Δ_a / b_7 = **0.055** in

 δ_{sww7} / $\Delta_{\text{w_allow}}$ = **0.174**

PASS - Shear wall deflection is less than deflection limit

 $v_{\delta w} = V_{\delta w} \times (k_8 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_8 = 82.16 lb/ft$

 $T_{\delta} = \max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

 $\Delta_a = T_{\delta} / k_a = 0.000 \text{ in}$

 $\delta_{sww8} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_8) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_8 = 0.055$ in

 $\delta_{\text{sww8}} / \Delta_{\text{w allow}} = 0.174$

PASS - Shear wall deflection is less than deflection limit

 $v_{\delta w} = V_{\delta w} \times (k_9 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_9 = 82.16 lb/ft$

 $T_{\delta} = max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

 $\Delta_a = T_{\delta} / k_a = 0.000 \text{ in}$

 $\delta_{\text{sww9}} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_9) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_9 = 0.055$ in

 $\delta_{\text{sww9}} / \Delta_{\text{w_allow}} = 0.174$

PASS - Shear wall deflection is less than deflection limit

 $v_{\delta w} = V_{\delta w} \times \left(k_{10} \: / \: sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)\right) \: / \: b_{10} = \textbf{82.16} \: lb/ft$

 $T_{\delta} = max(0 \text{ kips,} v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b \ / \ 2) = \textbf{0.000} \text{ kips}$

 $\Delta_a = T_\delta / k_a =$ **0.000** in

 δ_{sww10} = 2 × $v_{\delta w}$ × h^3 / (3 × E × A_e × b_{10}) + $v_{\delta w}$ × h / (G_a) + h × Δ_a / b_{10} =

0.055 in

 δ_{sww10} / $\Delta_{\text{w_allow}}$ = **0.174**

PASS - Shear wall deflection is less than deflection limit

 $v_{\delta w} = V_{\delta w} \times (k_{11} / sum(k_{10}, k_{11}, k_{12}, k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9})) / b_{11} = 82.16 lb/ft$

 $T_{\delta} = \max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

 $\Delta_{a} = T_{\delta} / k_{a} = 0.000 \text{ in}$

 $\delta_{sww11} = 2 \times v_{\delta w} \times h^3 \ / \ (3 \times E \times A_e \times b_{11}) + v_{\delta w} \times h \ / \ (G_a) + h \times \Delta_a \ / \ b_{11} = 0$

0.055 in

 $\delta_{\text{sww11}} / \Delta_{\text{w_allow}} = \mathbf{0.174}$

PASS - Shear wall deflection is less than deflection limit

 $v_{\delta w} = V_{\delta w} \times (k_{12} / sum(k_{10}, k_{11}, k_{12}, k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9})) / b_{12} = 59.5 lb/ft$

 $T_{\delta} = \max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

 $\Delta_a = T_\delta / k_a = 0.000$ in

 $\delta_{\text{sww12}} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{12}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{12} = 0$

0.041 in

11320 West 79th Street Lenexa, Kansas 66214

	Project				Job Ref.	
	WSS	- Lee's Summit	23-	283		
ĺ	Section		Sheet no./rev.			
			-	72		
ĺ	Calc. by	Date	Chk'd by	Date	App'd by	Date
	GL	7/25/2023	DN			

 δ_{sww12} / Δ_{w} allow = **0.129**

PASS - Shear wall deflection is less than deflection limit

Seismic deflection

Design shear force; $V_{\delta s} = E_q = 6.376 \text{ kips}$

Deflection limit; $\Delta_{s \text{ allow}} = 0.020 \times h = 2.278 \text{ in}$

Deflection ampification factor; $C_{d\delta}$ = **4** Seismic importance factor; I_e = **1**

Segment 1

Induced unit shear; $V_{\delta s} = V_{\delta s} \times (k_1 / sum(k_{10}, k_{11}, k_{12}, k_{11}, k_{12}, k_{11}, k_{12}, k_{13}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9})) / b_1 = 73.43 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times$

 $S_{DS}) \times min(D_{T_ch1},D_{T_ch2}) + max(abs(E_{q_ch1}),abs(E_{q_ch2}))) = \textbf{0.000} \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

 $Segment \ 1 \ deflection - Eqn. \ 4.3-1; \\ \delta_{swse1} = 2 \times v_{\delta s} \times h^3 \ / \ (3 \times E \times A_e \times b_1) \ + \ v_{\delta s} \times h \ / \ (G_a) \ + \ h \times \Delta_a \ / \ b_1 = \textbf{0.048} \ in$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws1}} = C_{d\delta} \times \delta_{\text{swse1}} / I_e = \textbf{0.193}$ in

 $\delta_{\text{sws1}} / \Delta_{\text{s allow}} = 0.085$

PASS - Shear wall deflection is less than deflection limit

Segment 2

 $\text{Induced unit shear;} \qquad \qquad v_{\delta s} = V_{\delta s} \times \left(k_2 \, / \, \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)\right) \, / \, \, b_2 = \textbf{46.73} \, \, \text{lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

 $Segment \ 2 \ deflection - Eqn. \ 4.3-1; \\ \delta_{swse2} = 2 \times v_{\delta s} \times h^3 \ / \ (3 \times E \times A_e \times b_2) \ + \ v_{\delta s} \times h \ / \ (G_a) \ + \ h \times \Delta_a \ / \ b_2 = \textbf{0.031} \ in$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws2} = C_{d\delta} \times \delta_{swse2} / I_e = 0.126$ in

 δ_{sws2} / Δ_{s} allow = **0.055**

PASS - Shear wall deflection is less than deflection limit

Segment 3

 $\text{Induced unit shear;} \qquad \qquad v_{\delta s} = V_{\delta s} \times \left(k_3 \ / \ \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)\right) \ / \ b_3 = \textbf{46.73} \ \text{lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 3 deflection – Eqn. 4.3-1; $\delta_{\text{swse3}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_3) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_3 = \textbf{0.031} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws3} = C_{d\delta} \times \delta_{swse3} / I_e = 0.126$ in

 δ_{sws3} / $\Delta_{\text{s_allow}}$ = **0.055**

PASS - Shear wall deflection is less than deflection limit

Segment 4

Induced unit shear; $V_{\delta s} = V_{\delta s} \times (k_4 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_4 = 46.73 \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 4 deflection – Eqn. 4.3-1; $\delta_{\text{swse4}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_4) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_4 = \textbf{0.031} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws4} = C_{d\delta} \times \delta_{swse4} / I_e = 0.126$ in

 $\delta_{\text{sws4}} / \Delta_{\text{s_allow}} = 0.055$

11320 West 79th Street Lenexa, Kansas 66214

Pro	ject				Job Ref.	
WSS - Lee's Summit, MO - GL K Long Wall					23-283	
Sec	ction		Sheet no./rev.			
					-	73
Cal	c. by	Date	Chk'd by	Date	App'd by	Date
	GL	7/25/2023	DN			

PASS - Shear wall deflection is less than deflection limit

Segment 5

Induced unit shear; $V_{\delta s} = V_{\delta s} \times \left(k_5 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)\right) / b_5 = \textbf{46.73} \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

 $\Delta_{a} = T_{\delta} / k_{a} = 0.000 \text{ in}$

kips

Vertical elongation at anchor;

Segment 5 deflection – Eqn. 4.3-1; $\delta_{\text{swse5}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_5) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_5 = \textbf{0.031} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws5} = C_{d\delta} \times \delta_{swse5} / I_e = 0.126$ in

 δ_{sws5} / Δ_{s} allow = **0.055**

PASS - Shear wall deflection is less than deflection limit

Segment 6

Induced unit shear; $v_{\delta s} = V_{\delta s} \times \left(k_6 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)\right) / b_6 = \textbf{46.73} \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 6 deflection – Eqn. 4.3-1; $\delta_{\text{swse6}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_6) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_6 = \textbf{0.031} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws6}} = C_{\text{d}\delta} \times \delta_{\text{swse6}}$ / $I_{\text{e}} = 0.126$ in

 δ_{sws6} / $\Delta_{\text{s_allow}}$ = 0.055

PASS - Shear wall deflection is less than deflection limit

Segment 7

 $\text{Induced unit shear;} \qquad \qquad \text{$v_{\delta s} = V_{\delta s} \times \left(k_7 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)\right) / \ b_7 = \textbf{46.73} \ \text{lb/ft} }$

Anchor tension force; $T_{\delta} = max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 7 deflection – Eqn. 4.3-1; $\delta_{\text{swse7}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_7) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_7 = \textbf{0.031} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws7} = C_{d\delta} \times \delta_{swse7} / I_e = 0.126$ in

 δ_{sws7} / $\Delta_{\text{s_allow}}$ = **0.055**

PASS - Shear wall deflection is less than deflection limit

Segment 8

Induced unit shear; $V_{\delta s} = V_{\delta s} \times \left(k_8 / \text{sum}(k_{10}, k_{11}, k_{12}, k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9})\right) / b_8 = \textbf{46.73} \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta \, / \, k_a = \textbf{0.000} \text{ in}$

Segment 8 deflection – Eqn. 4.3-1; $\delta_{\text{swse8}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_8) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_8 = \textbf{0.031} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; δ_{sws8} = $C_{d\delta} \times \delta_{swse8}$ / I_e = **0.126** in

 $\delta_{\text{sws8}} / \Delta_{\text{s allow}} = 0.055$

PASS - Shear wall deflection is less than deflection limit

Segment 9

Induced unit shear; $v_{\delta s} = V_{\delta s} \times \left(k_9 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)\right) / b_9 = \textbf{46.73} \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 9 deflection – Eqn. 4.3-1; $\delta_{\text{swse9}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_9) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_9 = \textbf{0.031} \text{ in}$

11320 West 79th Street Lenexa, Kansas 66214

	Project				Job Ref.	
	WSS	- Lee's Summit	23-	283		
ĺ	Section		Sheet no./rev.			
			-	74		
ĺ	Calc. by	Date	Chk'd by	Date	App'd by	Date
	GL	7/25/2023	DN			

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws9}} = C_{\text{d}\delta} \times \delta_{\text{swse9}} / I_{\text{e}} = \textbf{0.126} \text{ in}$

 $\delta_{\text{sws9}} / \Delta_{\text{s allow}} = 0.055$

PASS - Shear wall deflection is less than deflection limit

Segment 10

 $v_{\delta s} = V_{\delta s} \times (k_{10} \ / \ sum(k_{10}, k_{11}, k_{12}, k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9})) \ / \ b_{10} = \textbf{46.73} \ lb/ft$ Induced unit shear; Anchor tension force: $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = 0.000$

kips

Vertical elongation at anchor; $\Delta_{a} = T_{\delta} / k_{a} = 0.000 \text{ in}$

Segment 10 deflection – Eqn. 4.3-1; $\delta_{swse10} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_{10}) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_{10} = 0.031$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; δ_{sws10} = $C_{\text{d}\delta} \times \delta_{\text{swse10}}$ / I_{e} = 0.126 in

 δ_{sws10} / Δ_{s} allow = **0.055**

PASS - Shear wall deflection is less than deflection limit

Segment 11

Induced unit shear; $v_{\delta s} = V_{\delta s} \times (k_{11} / sum(k_{10}, k_{11}, k_{12}, k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9})) / b_{11} = 46.73 lb/ft$ Anchor tension force;

 $T_{\delta} = max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = 0.000$

kips

Vertical elongation at anchor; $\Delta_a = T_{\delta} / k_a = 0.000 in$

Segment 11 deflection – Eqn. 4.3-1; $\delta_{swse11} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_{11}) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_{11} = 0.031$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; δ_{sws11} = $C_{\text{d}\delta} \times \delta_{\text{swse11}}$ / I_{e} = 0.126 in

 $\delta_{\text{sws11}} / \Delta_{\text{s allow}} = 0.055$

PASS - Shear wall deflection is less than deflection limit

Segment 12

Induced unit shear; $v_{\delta s} = V_{\delta s} \times (k_{12} / sum(k_{10}, k_{11}, k_{12}, k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9})) / b_{12} = 33.85 \text{ lb/ft}$

Anchor tension force: $T_{\delta} = max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = 0.000$

kips

Vertical elongation at anchor; $\Delta_a = T_{\delta} / k_a = 0.000 \text{ in}$

Segment 12 deflection – Eqn. 4.3-1; $\delta_{swse12} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_{12}) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_{12} = 0.023$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws12}} = C_{\text{d}\delta} \times \delta_{\text{swse12}} / I_e = 0.093 \text{ in}$

 $\delta_{\text{sws12}} / \Delta_{\text{s}}$ allow = **0.041**

PASS - Shear wall deflection is less than deflection limit

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
WS	S - Lee's Summit	23-283			
Section		Sheet no./rev.			
			75		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

WOOD SHEAR WALL DESIGN (NDS)

WOOD SHEAR WALL DESIGN (NDS)

In accordance with NDS2018 and SDPWS2015 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.10

Design summary

Description	Unit	Provided	Required	Utilization	Result
Shear capacity	lbs	31691	8323	0.263	PASS
Chord capacity	lb/in ²	432	292	0.676	PASS
Collector capacity	lb/in ²	1380	70	0.051	PASS
Deflection	in	0.316	0.104	0.328	PASS

Panel details

Structural wood panel sheathing on one side

Panel height; h = 9.49 ftPanel length; b = 162.104 ft

Panel opening details

Width of opening; $w_{01} = 3 \text{ ft}$ Height of opening; $h_{o1} = 7 ft$ Height to underside of lintel over opening; $I_{o1} = 7 \text{ ft}$ $P_{o1} = 16.5 \text{ ft}$ Position of opening; Width of opening; $w_{o2} = 3 \text{ ft}$ $h_{02} = 7 \text{ ft}$ Height of opening; $I_{02} = 7 \text{ ft}$ Height to underside of lintel over opening; Position of opening; $P_{o2} = 30 \text{ ft}$ Width of opening; $w_{o3} = 3 \text{ ft}$ $h_{03} = 7 ft$ Height of opening; Height to underside of lintel over opening; $l_{03} = 7 \text{ ft}$ $P_{03} = 43.5 \text{ ft}$ Position of opening; Width of opening; $w_{o4} = 3 \text{ ft}$ Height of opening; $h_{04} = 7 \text{ ft}$ Height to underside of lintel over opening; $I_{04} = 7 \text{ ft}$ Position of opening; $P_{04} = 57 \text{ ft}$ Width of opening; $w_{05} = 3 \text{ ft}$ $h_{o5} = 7 ft$ Height of opening; Height to underside of lintel over opening; $I_{05} = 7 \text{ ft}$ Position of opening; $P_{05} = 70.5 \text{ ft}$ Width of opening; $w_{06} = 3 \text{ ft}$ Height of opening; $h_{06} = 7 ft$ Height to underside of lintel over opening; $I_{06} = 7 \text{ ft}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	- Lee's Summit	, MO - GL K Lon	ıg Wall	23-	283
Section				Sheet no./rev.	
		-	76		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Position of opening; $P_{06} = 84 \text{ ft}$ $w_{07} = 3 \text{ ft}$ Width of opening; $h_{07} = 7 \text{ ft}$ Height of opening; Height to underside of lintel over opening; $I_{07} = 7$ ft P₀₇ = **97.5** ft Position of opening; Width of opening; $w_{08} = 3 ft$ Height of opening; $h_{08} = 7 ft$ Height to underside of lintel over opening; $I_{08} = 7 \text{ ft}$ $P_{08} = 111 \text{ ft}$ Position of opening; Width of opening; $w_{09} = 3 \text{ ft}$

 $h_{09} = 7 \text{ ft}$ Height of opening; Height to underside of lintel over opening; $I_{09} = 7 \text{ ft}$ Position of opening; $P_{09} = 124.5 \text{ ft}$ $w_{o10} = 3 \text{ ft}$ Width of opening; $h_{o10} = 7 ft$ Height of opening; Height to underside of lintel over opening; $I_{o10} = 7 \text{ ft}$ Position of opening; $P_{o10} = 138 \text{ ft}$ Width of opening; $w_{o11} = 3 \text{ ft}$ $h_{o11} = 7 ft$ Height of opening;

Height to underside of lintel over opening; $I_{o11} = 7$ ft Position of opening; $P_{o11} = 151.5$ ft

Total area of wall; $A = h \times b - w_{o1} \times h_{o1} - w_{o2} \times h_{o2} - w_{o3} \times h_{o3} - w_{o4} \times h_{o4} - w_{o5} \times h_{o5} - w_{o6} \times h_{o6} - w_{o6} - w_{o6} \times h_{o6} - w_{o6} - w_{o6} \times h_{o6} - w_{o6} \times h_{o6} - w_{o6} \times h_{o6} - w_{o6} \times h_{o6} - w_{o6} - w_{o6} \times h_{o6} - w_{o6} \times h_{o6} - w_{o6} - w_{o6} - w_{o6} - w_{o6} \times h_{o6} - w_{o6} - w_{o6$

 $w_{o7} \times h_{o7}$ - $w_{o8} \times h_{o8}$ - $w_{o9} \times h_{o9}$ - $w_{o10} \times h_{o10}$ - $w_{o11} \times h_{o11}$ = 1307.369 ft^2

Panel construction

2" x 4" Nominal stud size; 1.5" x 3.5" Dressed stud size; Cross-sectional area of studs; $A_s = 5.25 \text{ in}^2$ s = 16 in Stud spacing; 3 x 2" x 4" Nominal end post size; Dressed end post size; 3 x 1.5" x 3.5" $A_e = 15.75 \text{ in}^2$ Cross-sectional area of end posts; Dia = 1 in Hole diameter; Net cross-sectional area of end posts; $A_{en} = 11.25 \text{ in}^2$ 2 x 2" x 4" Nominal collector size; Dressed collector size: 2 x 1.5" x 3.5"

Service condition; Dry

Temperature; 100 degF or less Vertical anchor stiffness; $k_a = 1$ lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2" - 4" thick)

Species, grade and size classification; Douglas Fir-Larch, no.2 grade, 2" & wider

Specific gravity; G = 0.50Tension parallel to grain; $F_t = 575 \text{ lb/in}^2$ Compression parallel to grain; $F_c = 1350 \text{ lb/in}^2$ Compression perpendicular to grain; $F_c = 625 \text{ lb/in}^2$

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.	Job Ref.			
	WSS - Lee's Sum	mit, MO - GL K	Long Wall	2	23-283	
Section		Sheet no./rev.	Sheet no./rev.			
			77			
Calc. by	Date	Chk'd by	Date	App'd by	Date	
GL	7/25/2023	3 DN				

Modulus of elasticity; $E = 1600000 \text{ lb/in}^2$ Minimum modulus of elasticity; $E_{min} = 580000 \text{ lb/in}^2$

Sheathing details

Sheathing material; 7/16" wood panel oriented strandboard sheathing

Fastener type; 8d common nails at 6"centers

From SDPWS Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls - Wood-based Panels

Nominal unit shear capacity for seismic design; $v_s = 520 \text{ lb/ft}$ Nominal unit shear capacity for wind design; $v_w = 730 \text{ lb/ft}$ Apparent shear wall shear stiffness; $G_a = 15 \text{ kips/in}$

Loading details

Dead load acting on top of panel; D = 395.31 lb/ft Floor live load acting on top of panel; L_f = 805.622 lb/ft Self weight of panel; S_{wt} = 11 lb/ft² In plane wind load acting at head of panel; W = 13871 lbs Wind load serviceability factor; f_{Wserv} = 1.00 In plane seismic load acting at head of panel; E_q = 6905 lbs Design spectral response accel. par., short periods; S_{DS} = 0.106

Chord forces from shear walls above

Chord	W _{ch[i]} (lbs)	Eq_ch[i] (lbs)	Dc_ch[i] (lbs)	D _{T_ch[i]} (lbs)	L _{f_ch[i]} (lbs)	L _{r_ch[i]} (lbs)	S _{ch[i]} (lbs)	R _{ch[i]} (lbs)
Ch1;	-2726;	-1507;	989;	12241;	1074;	211;	0;	0;
Ch2;	2726;	1507;	989;	12241;	1074;	211;	0;	0;
Ch3;	0;	0;	0;	0;	0;	0;	0;	0;
Ch4;	0;	0;	0;	0;	0;	0;	0;	0;
Ch5;	0;	0;	0;	0;	0;	0;	0;	0;
Ch6;	0;	0;	0;	0;	0;	0;	0;	0;
Ch7;	0;	0;	0;	0;	0;	0;	0;	0;
Ch8;	0;	0;	0;	0;	0;	0;	0;	0;
Ch9;	0;	0;	0;	0;	0;	0;	0;	0;
Ch10;	0;	0;	0;	0;	0;	0;	0;	0;
Ch11;	0;	0;	0;	0;	0;	0;	0;	0;
Ch12;	0;	0;	0;	0;	0;	0;	0;	0;
Ch13;	0;	0;	0;	0;	0;	0;	0;	0;
Ch14;	0;	0;	0;	0;	0;	0;	0;	0;
Ch15;	0;	0;	0;	0;	0;	0;	0;	0;
Ch16;	0;	0;	0;	0;	0;	0;	0;	0;
Ch17;	0;	0;	0;	0;	0;	0;	0;	0;
Ch18;	0;	0;	0;	0;	0;	0;	0;	0;
Ch19;	0;	0;	0;	0;	0;	0;	0;	0;
Ch20;	0;	0;	0;	0;	0;	0;	0;	0;
Ch21;	0;	0;	0;	0;	0;	0;	0;	0;
Ch22;	0;	0;	0;	0;	0;	0;	0;	0;
Ch23;	0;	0;	0;	0;	0;	0;	0;	0;

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.		
,	WSS - Lee's Summ	it, MO - GL K	Long Wall	2	23-283	
Section				Sheet no./rev.	Sheet no./rev.	
			78			
Calc. by	Date	Chk'd by	Date	App'd by	Date	
GL	7/25/2023	DN				

Ch24; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0;

From IBC 2018 cl.1605.3.1 Basic load combinations

Load combination no.1; D + 0.6WLoad combination no.2; D + 0.7E

Load combination no.3; $D + 0.45W + 0.75L_f + 0.75(L_r \text{ or S or R})$

Load combination no.4; $D + 0.525E + 0.75L_f + 0.75S$

Load combination no.5; 0.6D + 0.6WLoad combination no.6; 0.6D + 0.7E

Adjustment factors

Wet service factor for modulus of elasticity - Table 4A

 $C_{ME} = 1.00$

Temperature factor for tension – Table 2.3.3; $C_{tt} = 1.00$

Temperature factor for compression – Table 2.3.3

 $C_{tc} = 1.00$

Temperature factor for modulus of elasticity - Table 2.3.3

 $C_{tE} = 1.00$

 $\label{eq:continuous} \begin{array}{ll} \text{Incising factor} - \text{cl.4.3.8}; & \text{$C_i = 1.00$} \\ \text{Buckling stiffness factor} - \text{cl.4.4.2}; & \text{$C_T = 1.00$} \\ \text{Bearing area factor} - \text{cl. 3.10.4}; & \text{$C_b = 1.0$} \\ \end{array}$

Adjusted modulus of elasticity; $E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_{i} \times C_{T} = 580000$ psi

Critical buckling design value; $F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 450 \text{ psi}$

Reference compression design value; $F_c^* = F_c \times C_D \times C_{Mc} \times C_{fc} \times C_i = 2484 \text{ psi}$

For sawn lumber; c = 0.8

Column stability factor - eqn.3.7-1; $C_P = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c)]^2 - (F_{cE} / F_{c}^*) / c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c)]^2 - (F_{cE} / F_{c}^*) / c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c)]^2 - (F_{cE} / F_{c}^*) / c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^*)) / (2 \times c)]^2 - (F_{cE} / F_{c}^*) / c)} = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*) / c) = (1 + (F_{cE} / F_{c}^*)) / (2 \times c) - (F_{cE} / F_{c}^*$

0.17

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio; 3.5

Segment 1 wall length; $b_1 = 16.5 \text{ ft}$ Shear wall aspect ratio; $h / b_1 = 0.575$ Segment 2 wall length; $b_2 = 10.5 \text{ ft}$ Shear wall aspect ratio; $h / b_2 =$ **0.904** $b_3 = 10.5 \text{ ft}$ Segment 3 wall length; Shear wall aspect ratio; $h / b_3 = 0.904$ Segment 4 wall length; $b_4 = 10.5 \text{ ft}$ $h / b_4 = 0.904$ Shear wall aspect ratio; $b_5 = 10.5 \text{ ft}$ Segment 5 wall length; $h / b_5 = 0.904$

Shear wall aspect ratio; $h / b_5 = 0.90$ Segment 6 wall length; $b_6 = 10.5$ ft

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	- Lee's Summit	, MO - GL K Lon	ıg Wall	23-283	
Section				Sheet no./rev.	
		-	79		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Shear wall aspect ratio; $h / b_6 = 0.904$ Segment 7 wall length; $b_7 = 10.5 \text{ ft}$ $h/b_7 = 0.904$ Shear wall aspect ratio: Segment 8 wall length; $b_8 = 10.5 \text{ ft}$ Shear wall aspect ratio; $h / b_8 = 0.904$ $b_9 = 10.5 \text{ ft}$ Segment 9 wall length; Shear wall aspect ratio; $h / b_9 = 0.904$ Segment 10 wall length; $b_{10} = 10.5 \text{ ft}$ Shear wall aspect ratio; $h / b_{10} = 0.904$ Segment 11 wall length; $b_{11} = 10.5 \text{ ft}$ Shear wall aspect ratio; $h/b_{11} = 0.904$ Segment 12 wall length; $b_{12} = 7.604 \text{ ft}$ Shear wall aspect ratio; $h/b_{12} = 1.248$

Segmented shear wall capacity - Equal deflection method

Wind loading:

Segment 1 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_1) = 575.152$ in/kip

Segment 1 stiffness; $k_1 = 1/(2 \times h^3/(3 \times E \times A_e \times b_1^2) + h/(G_a \times b_1) + h \times \Delta_{a1}/b_1) = 0.003$

kips/in

Unit shear capacity, widest segment; $v_{sww1} = v_w / 2 = 365$ plf

Vertical deflction under capacity load; $\Delta_{a_Cap} = h \times v_{sww1} / k_a = 3463.850$ in

Deflection under capacity load; $\delta_{Cap} = 2 \times v_{sww1} \times h^3 / (3 \times E \times A_e \times b_1) + v_{sww1} \times h / (G_a) + h \times \Delta_a \ cap / b_1 = 0$

1992.476 in

Segment 2 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_2) = 903.810$ in/kip

Segment 2 stiffness; $k_2 = 1/(2 \times h^3/(3 \times E \times A_e \times b_2^2) + h/(G_a \times b_2) + h \times \Delta_{a1}/b_2) = 0.001$

kips/in

Segment 2 unit shear at δ_{Cap} ; $v_{dsww2} = \delta_{Cap} \times k_2 / b_2 = 232.28$ plf

Segment 2 shear capacity; $v_{sww2} = v_w / 2 = 365$ plf

 $v_{dsww2} / v_{sww2} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

Segment 3 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_3) = 903.810$ in/kip

Segment 3 stiffness; $k_3 = 1/(2 \times h^3/(3 \times E \times A_e \times b_3^2) + h/(G_a \times b_3) + h \times \Delta_{a1}/b_3 = 0.001$

kips/in

Segment 3 unit shear at δ_{Cap} ; $v_{dsww3} = \delta_{Cap} \times k_3 / b_3 = 232.28 \text{ plf}$

Segment 3 shear capacity; $v_{sww3} = v_w / 2 = 365 \text{ plf}$

Vdsww3 / Vsww3 = 0.636

PASS - Segment shear capacity exceeds segment unit shear at $\delta\!c_{\!\scriptscriptstyle ap}$

Segment 4 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_4) = 903.810$ in/kip

Segment 4 stiffness; $k_4 = 1/(2 \times h^3/(3 \times E \times A_e \times b_4^2) + h/(G_a \times b_4) + h \times \Delta_{a1}/b_4) = 0.001$

kips/in

Segment 4 unit shear at δ_{Cap} ; $V_{dsww4} = \delta_{Cap} \times k_4 / b_4 = 232.28 \text{ plf}$

Segment 4 shear capacity; $v_{sww4} = v_w / 2 = 365$ plf

 $V_{dsww4} / V_{sww4} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	- Lee's Summit	, MO - GL K Lor	ng Wall	23-	283
Section				Sheet no./rev.	
				8	30
Calc. by	Date	Chk'd by	Date	App'd by	Date
GI	7/25/2023	DN			

Segment 5 vertical unit deflection;

 $\Delta_{a1} = h / (k_a \times b_5) = 903.810 in/kip$

Segment 5 stiffness;

 $k_5 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_5^2) + h / (G_a \times b_5) + h \times \Delta_{a1} / b_5) = 0.001$

kips/in

Segment 5 unit shear at δ_{Cap} ;

 $v_{dsww5} = \delta_{Cap} \times k_5 / b_5 = 232.28 \text{ plf}$

Segment 5 shear capacity;

 $v_{sww5} = v_w / 2 = 365 plf$

 $V_{dsww5} / V_{sww5} = 0.636$

Segment 6 vertical unit deflection;

 $\Delta_{a1} = h / (k_a \times b_6) = 903.810 in/kip$

Segment 6 stiffness;

 $k_6 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_6^2) + h / (G_a \times b_6) + h \times \Delta_{a1} / b_6) = 0.001$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

kips/in

Segment 6 unit shear at δ_{Cap} ; Segment 6 shear capacity;

 $v_{dsww6} = \delta_{Cap} \times k_6 / b_6 = 232.28 \text{ plf}$

 $v_{sww6} = v_w / 2 = 365 \text{ plf}$

 $V_{dsww6} / V_{sww6} = 0.636$

Segment 7 vertical unit deflection;

 $\Delta_{a1} = h / (k_a \times b_7) = 903.810 in/kip$

Segment 7 stiffness;

 $k_7 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_7^2) + h / (G_a \times b_7) + h \times \Delta_{a1} / b_7) = 0.001$

kips/in

Segment 7 unit shear at δ_{Cap} ;

 $v_{dsww7} = \delta_{Cap} \times k_7 / b_7 = 232.28 \text{ plf}$

Segment 7 shear capacity;

 $v_{sww7} = v_w / 2 = 365 plf$ $V_{dsww7} / V_{sww7} = 0.636$

Segment 8 vertical unit deflection;

 $\Delta_{a1} = h / (k_a \times b_8) = 903.810 in/kip$

Segment 8 stiffness;

 $k_8 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_8^2) + h / (G_a \times b_8) + h \times \Delta_{a1} / b_8) = 0.001$

kips/in

Segment 8 unit shear at δ_{Cap} ;

 $v_{dsww8} = \delta_{Cap} \times k_8 / b_8 = 232.28 \text{ plf}$

Segment 8 shear capacity;

 $v_{sww8} = v_w / 2 = 365 plf$ $v_{dsww8} / v_{sww8} = 0.636$

Segment 9 vertical unit deflection;

 $\Delta_{a1} = h / (k_a \times b_9) = 903.810 in/kip$

Segment 9 stiffness;

Segment 10 stiffness;

 $k_9 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_9^2) + h / (G_a \times b_9) + h \times \Delta_{a1} / b_9) = 0.001$

kips/in

Segment 9 unit shear at δ_{Cap} ; Segment 9 shear capacity;

 $v_{dsww9} = \delta_{Cap} \times k_9 / b_9 = 232.28 \text{ plf}$

 $v_{sww9} = v_w / 2 = 365 plf$

 $V_{dsww9} / V_{sww9} = 0.636$

Segment 10 vertical unit deflection;

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

 $\Delta_{a1} = h / (k_a \times b_{10}) = 903.810 in/kip$

 $k_{10} = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_{10}^2) + h / (G_a \times b_{10}) + h \times \Delta_{a1} / b_{10}) = 0.001$

kips/in

Segment 10 unit shear at δ_{Cap} ; Segment 10 shear capacity;

 $v_{dsww10} = \delta_{Cap} \times k_{10} / b_{10} = 232.28 \text{ plf}$

 $v_{sww10} = v_w / 2 = 365 plf$

 $V_{dsww10} / V_{sww10} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Segment 11 vertical unit deflection;

 $\Delta_{a1} = h / (k_a \times b_{11}) = 903.810 in/kip$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	- Lee's Summit	, MO - GL K Lon	ıg Wall	23-	283
Section				Sheet no./rev.	
		8	31		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Segment 11 stiffness; $k_{11} = 1/(2 \times h^3/(3 \times E \times A_e \times b_{11}^2) + h/(G_a \times b_{11}) + h \times \Delta_{a1}/b_{11}) = 0.001$

kips/in

Segment 11 unit shear at δ_{Cap} ; $v_{dsww11} = \delta_{Cap} \times k_{11} / b_{11} = 232.28 \text{ plf}$

Segment 11 shear capacity; $V_{sww11} = V_w / 2 = 365 \text{ plf}$ $V_{dsww11} / V_{sww11} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Segment 12 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_{12}) = 1247.995$ in/kip

Segment 12 stiffness; $k_{12} = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_{12}^2) + h / (G_a \times b_{12}) + h \times \Delta_{a1} / b_{12}) = 0.001$

kips/in

Segment 12 unit shear at δ_{Cap} ; $v_{dsww12} = \delta_{Cap} \times k_{12} / b_{12} = 168.22$ plf

Segment 12 shear capacity; $v_{sww12} = v_w / 2 = 365 \text{ plf}$ $v_{dsww12} / v_{sww12} = 0.461$

PASS - Segment shear capacity exceeds segment unit shear at $\delta\!c_{\! ext{ap}}$

Maximum shear force under wind loading; $V_{w_{max}} = 0.6 \times W = 8.323$ kips

Shear capacity for wind loading; $V_w = v_{sww1} \times b_1 + min(v_{sww2}, v_{dsww2}) \times b_2 + min(v_{sww3}, v_{dsww3}) \times b_3 + min(v_{sww3}, v_{sww3}, v_{sww3}) \times b_3 + min(v_{sww3}, v_{sww3}, v_{sww3}) \times b_3 + min(v_{sww3}, v_{sww3}, v_{sww3}) \times b_3 + min(v_{sww3}, v_{sww3}, v_{sww3}, v_{sww3}) \times b_3 + min(v_{sww3}, v_{sww3}, v_{sww3}, v_{sww3}, v_{sww3}) \times b_3 + min(v_{sww3}, v_{sww3}, v_{$

 $\begin{aligned} & min(v_{sww4},v_{dsww4}) \times b_4 + min(v_{sww5},v_{dsww5}) \times b_5 + min(v_{sww6},v_{dsww6}) \times b_6 + \\ & min(v_{sww7},v_{dsww7}) \times b_7 + min(v_{sww8},v_{dsww8}) \times b_8 + min(v_{sww9},v_{dsww9}) \times b_9 + \\ & min(v_{sww10},v_{dsww10}) \times b_{10} + min(v_{sww11},v_{dsww11}) \times b_{11} + min(v_{sww12},v_{dsww12}) \times b_{10} + min(v_{sww11},v_{dsww11}) \times b_{11} + min(v_{sww12},v_{dsww12}) \times b_{10} + min(v_{sww11},v_{dsww11}) \times b_{11} + min(v_{sww12},v_{dsww12}) \times b_{11} + min(v_{sww12},v_{dsww12}) \times b_{12} + min(v_{sww12},v_{dsww12}) \times b_{13} + min(v_{sww12},v_{dsww12}) \times b_{14} + min(v_{sww12},v_{dsww12}) \times b_{15} + min(v_{sww12},v_{dsww12}) \times$

 b_{12} = **31.691** kips $V_{w \text{ max}} / V_{w}$ = **0.263**

PASS - Shear capacity for wind load exceeds maximum shear force

Seismic loading:

Segment 1 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_1) = 575.152$ in/kip

Segment 1 stiffness; $k_1 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_1^2) + h / (G_a \times b_1) + h \times \Delta_{a1} / b_1) = \textbf{0.003}$

kips/in

Unit shear capacity, widest segment; $v_{sws1} = v_s / 2 = 260 \text{ plf}$

Vertical deflction under capacity load; $\Delta_{a_Cap} = h \times v_{sws1} / k_a = 2467.400$ in

Deflection under capacity load; $\delta_{Cap} = 2 \times v_{sws1} \times h^3 / (3 \times E \times A_e \times b_1) + v_{sws1} \times h / (G_a) + h \times \Delta_{a \ Cap} / b_1 = 0$

1419.298 in

Segment 2 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_2) = 903.810$ in/kip

 $\text{Segment 2 stiffness;} \qquad \qquad k_2 = 1 \, / \, (2 \times h^3 \, / \, (3 \times E \times A_e \times b_2^2) \, + \, h \, / \, (G_a \times b_2) \, + \, h \times \Delta_{a1} \, / \, b_2) = \textbf{0.001}$

kips/in

Segment 2 unit shear at δ_{Cap} ; $V_{dsws2} = \delta_{Cap} \times k_2 / b_2 = 165.46$ plf

Segment 2 shear capacity; $v_{sws2} = v_s / 2 = 260 \text{ plf}$

 $v_{dsws2} / v_{sws2} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Segment 3 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_3) = 903.810$ in/kip

Segment 3 stiffness; $k_3 = 1/(2 \times h^3/(3 \times E \times A_e \times b_3^2) + h/(G_a \times b_3) + h \times \Delta_{a1}/b_3) = 0.001$

kips/in

Segment 3 unit shear at δ_{Cap} ; $v_{dsws3} = \delta_{Cap} \times k_3 / b_3 = 165.46$ plf

Segment 3 shear capacity; $v_{sws3} = v_s / 2 = 260 \text{ plf}$

 $V_{dsws3} / V_{sws3} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at δc_{ap}

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	- Lee's Summit	, MO - GL K Lon	ng Wall	23-	283
Section				Sheet no./rev.	
				8	32
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Segment 4 vertical unit deflection;

 $\Delta_{a1} = h / (k_a \times b_4) = 903.810 in/kip$

Segment 4 stiffness;

 $k_4 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_4^2) + h / (G_a \times b_4) + h \times \Delta_{a1} / b_4) = 0.001$

kips/in

Segment 4 unit shear at δ_{Cap} ;

 $v_{dsws4} = \delta_{Cap} \times k_4 / b_4 = 165.46 \text{ plf}$

Segment 4 shear capacity;

 $v_{sws4} = v_s / 2 = 260 plf$

 $V_{dsws4} / V_{sws4} = 0.636$

Segment 5 vertical unit deflection;

 $\Delta_{a1} = h / (k_a \times b_5) = 903.810 in/kip$

Segment 5 stiffness;

 $k_5 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_5^2) + h / (G_a \times b_5) + h \times \Delta_{a1} / b_5) = 0.001$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

kips/in

Segment 5 unit shear at δ_{Cap} ; Segment 5 shear capacity;

 $v_{dsws5} = \delta_{Cap} \times k_5 / b_5 =$ **165.46** plf

 $v_{sws5} = v_s / 2 = 260 plf$

 $V_{dsws5} / V_{sws5} = 0.636$

Segment 6 vertical unit deflection;

 $\Delta_{a1} = h / (k_a \times b_6) = 903.810 in/kip$

Segment 6 stiffness;

 $k_6 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_6^2) + h / (G_a \times b_6) + h \times \Delta_{a1} / b_6) = 0.001$

kips/in

Segment 6 unit shear at δ_{Cap} ;

 $v_{dsws6} = \delta_{Cap} \times k_6 / b_6 = 165.46 \text{ plf}$

Segment 6 shear capacity;

 $v_{sws6} = v_s / 2 = 260 plf$ $V_{dsws6} / V_{sws6} = 0.636$

Segment 7 vertical unit deflection;

 $\Delta_{a1} = h / (k_a \times b_7) = 903.810 in/kip$

Segment 7 stiffness;

 $k_7 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_7^2) + h / (G_a \times b_7) + h \times \Delta_{a1} / b_7) = 0.001$

kips/in

Segment 7 unit shear at δ_{Cap} ;

 $v_{dsws7} = \delta_{Cap} \times k_7 / b_7 = 165.46 \text{ plf}$

 $v_{sws7} = v_s / 2 = 260 plf$ Segment 7 shear capacity;

 $v_{dsws7} / v_{sws7} = 0.636$

Segment 8 vertical unit deflection;

 $\Delta_{a1} = h / (k_a \times b_8) = 903.810 in/kip$

Segment 8 stiffness;

Segment 9 stiffness;

 $k_8 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_8^2) + h / (G_a \times b_8) + h \times \Delta_{a1} / b_8) = 0.001$

kips/in

Segment 8 unit shear at δ_{Cap} ; Segment 8 shear capacity;

 $v_{dsws8} = \delta_{Cap} \times k_8 / b_8 = 165.46 \text{ plf}$

 $v_{sws8} = v_s / 2 = 260 \text{ plf}$

 $V_{dsws8} / V_{sws8} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at $\delta\!c_{ap}$

Segment 9 vertical unit deflection;

 $\Delta_{a1} = h / (k_a \times b_9) = 903.810 in/kip$

 $k_9 = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_9^2) + h / (G_a \times b_9) + h \times \Delta_{a1} / b_9) = 0.001$

kips/in

Segment 9 unit shear at δ_{Cap} ; Segment 9 shear capacity;

 $v_{dsws9} = \delta_{Cap} \times k_9 / b_9 = 165.46 \text{ plf}$

 $v_{sws9} = v_s / 2 = 260 \text{ plf}$

 $V_{dsws9} / V_{sws9} = 0.636$

Segment 10 vertical unit deflection;

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

 $\Delta_{a1} = h / (k_a \times b_{10}) = 903.810 in/kip$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	- Lee's Summit	, MO - GL K Lon	ıg Wall	23-283	
Section				Sheet no./rev.	
		8	33		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Segment 10 stiffness; $k_{10} = 1/(2 \times h^3/(3 \times E \times A_e \times b_{10}^2) + h/(G_a \times b_{10}) + h \times \Delta_{a1}/b_{10}) = 0.001$

kips/in

Segment 10 unit shear at δ_{Cap} ; $v_{dsws10} = \delta_{Cap} \times k_{10} / b_{10} = 165.46$ plf

Segment 10 shear capacity; $v_{sws10} = v_s / 2 = 260 \text{ plf}$ $v_{dsws10} / v_{sws10} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at δ_{Cap}

Segment 11 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_{11}) = 903.810$ in/kip

Segment 11 stiffness; $k_{11} = 1/(2 \times h^3/(3 \times E \times A_e \times b_{11}^2) + h/(G_a \times b_{11}) + h \times \Delta_{a1}/b_{11}) = 0.001$

kips/in

Segment 11 unit shear at δ_{Cap} ; $v_{dsws11} = \delta_{Cap} \times k_{11} / b_{11} = 165.46$ plf

Segment 11 shear capacity; $v_{sws11} = v_s / 2 = 260 \text{ plf}$ $v_{dsws11} / v_{sws11} = 0.636$

PASS - Segment shear capacity exceeds segment unit shear at δc_{ap}

Segment 12 vertical unit deflection; $\Delta_{a1} = h / (k_a \times b_{12}) = 1247.995$ in/kip

Segment 12 stiffness; $k_{12} = 1 / (2 \times h^3 / (3 \times E \times A_e \times b_{12}^2) + h / (G_a \times b_{12}) + h \times \Delta_{a1} / b_{12}) = 0.001$

kips/in

Segment 12 unit shear at δ_{Cap} ; $v_{dsws12} = \delta_{Cap} \times k_{12} / b_{12} = 119.83$ plf

Segment 12 shear capacity; $v_{sws12} = v_s / 2 = 260 \text{ plf}$ $v_{dsws12} / v_{sws12} = 0.461$

PASS - Segment shear capacity exceeds segment unit shear at $\delta_{ extsf{Cap}}$

Maximum shear force under seismic loading; $V_{s max} = 0.7 \times E_{g} = 4.834$ kips

Shear capacity for seismic loading; $V_s = v_{sws1} \times b_1 + min(v_{sws2}, v_{dsws2}) \times b_2 + min(v_{sws3}, v_{dsws3}) \times b_3 + min(v_{sws2}, v_{dsws2}) \times b_2 + min(v_{sws3}, v_{dsws3}) \times b_3 + min(v_{sws2}, v_{dsws3}) \times b_3 + min(v_{sws3}, v_{dsws3}) \times b_3 + min(v$

$$\begin{split} & min(v_{sws4},v_{dsws4}) \times b_4 + min(v_{sws5},v_{dsws5}) \times b_5 + min(v_{sws6},v_{dsws6}) \times b_6 + \\ & min(v_{sws7},v_{dsws7}) \times b_7 + min(v_{sws8},v_{dsws8}) \times b_8 + min(v_{sws9},v_{dsws9}) \times b_9 + \\ & min(v_{sws10},v_{dsws10}) \times b_{10} + min(v_{sws11},v_{dsws11}) \times b_{11} + min(v_{sws12},v_{dsws12}) \times b_{12} \end{split}$$

= 22.575 kips $V_{s_max} / V_s = 0.214$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chord 1

Shear wall aspect ratio; $h / b_1 = 0.575$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 8.323$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + 0.6 \times W_{ch1} + 0.6 \times D_{T_ch1} = \textbf{8.182} \text{ kips}$ Maximum tensile force in chord; $T = V \times (k_1 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_1 - P = \textbf{-7.272}$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -646 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_F \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.468$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 6.242$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + D_{C_ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + 0.75 \times L_f) \times s / 2 + -1 \times 0.45 \times W_{ch1} + 0.75 \times U_{ch1} + 0.75 \times U$

 $L_{f_ch1} + 0.75 \times L_{r_ch1} = \textbf{3.916} \; kips$

11320 West 79th Street Lenexa, Kansas 66214

Project					Job Ref.	
WSS - Lee's Summit, MO - GL K Long Wall					23-	283
Section			Sheet no./rev.			
					8	84
Calc. by		Date	Chk'd by	Date	App'd by	Date
G	L	7/25/2023	DN			

Maximum compressive force in chord;

 $C = V \times (k_1 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_1 + P = 4.598$

kips

Maximum applied compressive stress; $f_c = C / A_e = 292 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{fc} \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.676$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c_perp}' = 0.467$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 2

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 8.323$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_1 / 2 + -1 \times 0.6 \times W_{ch2} + 0.6 \times D_{T_ch2} = 8.182$

kips

Maximum tensile force in chord; $T = V \times (k_1 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_1 - P = -7.272$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -646 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.468$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 6.242$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 + 0.45 \times W_{ch2} + Dc_{_ch2} + 0.75 \times L_{f_ch2} + 0.75 \times L_{f_c$

 $0.75 \times L_{r_ch2}$ = **3.916** kips

Maximum compressive force in chord; $C = V \times (k_1 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_1 + P = 4.598$

kips

Maximum applied compressive stress; $f_c = C / A_e = 292 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = \textbf{432 lb/in}^2$

 $f_c / F_c' = 0.676$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp}' = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp}' = 0.467$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 3

Shear wall aspect ratio; $h / b_2 = 0.904$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 8.323$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_2 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_2 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_2 - P = -0.995$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -88 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.064$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	- Lee's Summit	23-283			
Section		Sheet no./rev.			
	8	35			
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 6.242$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_2 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_2 + P = \textbf{1.170}$

kips

Maximum applied compressive stress; $f_c = C / A_e = 74 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.172$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp'} = 0.119$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 4

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 8.323$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_2 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_2 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_2 - P = \textbf{-0.995}$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -88 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.064$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 6.242$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_2 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_2 + P = 1.170$

kips

Maximum applied compressive stress; $f_c = C / A_e = 74 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.172$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = \textbf{625} \text{ lb/in}^{2}$

 $f_c / F_{c perp}' = 0.119$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 5

Shear wall aspect ratio; $h / b_3 = 0.904$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 8.323$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_3 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_3 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_3 - P = -0.995$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -88 \text{ lb/in}^2$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	- Lee's Summit	23-283			
Section		Sheet no./rev.			
	8	36			
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.064$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 6.242$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_3 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_3 + P = 1.170$

kips

Maximum applied compressive stress; $f_c = C / A_e = 74 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.172$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perb}' = F_{c perb} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp'} = 0.119$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 6

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 8.323$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_3 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_3 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_3 - P = -0.995$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -88 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.064$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 6.242$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_3 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_3 + P = 1.170$

kips

Maximum applied compressive stress; $f_c = C / A_e = 74 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = \textbf{432 lb/in}^2$

 $f_c / F_c' = 0.172$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp'} = 0.119$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 7

Shear wall aspect ratio; $h / b_4 = 0.904$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 8.323$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_4 / 2 = 1.574 \text{ kips}$

11320 West 79th Street Lenexa, Kansas 66214

Project					Job Ref.	
WSS - Lee's Summit, MO - GL K Long Wall					23-283	
Section			Sheet no./rev.			
					8	37
Calc. by		Date	Chk'd by	Date	App'd by	Date
GI	L	7/25/2023	DN			

Maximum tensile force in chord;

 $T = V \times (k_4 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_4 - P = -0.995$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -88 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.064$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 6.242$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_4 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_4 + P =$ **1.170**

kips

Maximum applied compressive stress; $f_c = C / A_e = 74 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{fc} \times C_f \times C_p = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.172$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate;

 $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp}' = 0.119$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 8

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 8.323$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_4 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_4 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_4 - P = -0.995$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -88 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_F \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.064$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 6.242$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = \textbf{0.736} \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_4 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_4 + P =$ **1.170**

kips

Maximum applied compressive stress; $f_c = C / A_e = 74 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = \textbf{432 lb/in}^2$

 $f_c / F_c' = 0.172$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp} = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp}' = 0.119$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 9

Shear wall aspect ratio; $h / b_5 = 0.904$

Load combination 5

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	- Lee's Summit	23-283			
Section		Sheet no./rev.			
				8	38
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Shear force for maximum tension; $V = 0.6 \times W = 8.323$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_5 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_5 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_5 - P = \textbf{-0.995}$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -88 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.064$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 6.242$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_5 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_5 + P = \textbf{1.170}$

kips

Maximum applied compressive stress; $f_c = C / A_e = 74 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.172$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c_perp'} = 0.119$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 10

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 8.323$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_5 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_5 / \text{sum}(k_{10}, k_{11}, k_{12}, k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9})) \times h / b_5 - P = -0.995$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -88 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.064$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 6.242$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_5 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_5 + P = \textbf{1.170}$

kips

Maximum applied compressive stress; $f_c = C / A_e = 74 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = \textbf{432 lb/in}^2$

 $f_c / F_c' = 0.172$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp}' = 0.119$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WS	SS - Lee's Summit	23-283			
Section		Sheet no./rev.			
					39
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Chord capacity for chord 11

Shear wall aspect ratio; $h / b_6 = 0.904$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 8.323$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_6 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_6 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_6 - P = -0.995$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -88 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.064$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 6.242 \text{ kips}$

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_6 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_6 + P = 1.170$

kips

Maximum applied compressive stress; $f_c = C / A_e = 74 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.172$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp'} = 0.119$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 12

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 8.323$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_6 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_6 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_6 - P = \textbf{-0.995}$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -88 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{1380 lb/in}^2$

 $f_t / F_t' = -0.064$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 6.242$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = \textbf{0.736} \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_6 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_6 + P =$ **1.170**

kips

Maximum applied compressive stress; $f_c = C / A_e = 74 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = \textbf{432 lb/in}^2$

 $f_c / F_c' = 0.172$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

11320 West 79th Street Lenexa, Kansas 66214

Project					Job Ref.	
WSS - Lee's Summit, MO - GL K Long Wall					23-	283
Section			Sheet no./rev.			
					(90
Calc. by		Date	Chk'd by	Date	App'd by	Date
G	L	7/25/2023	DN			

 $f_c / F_{c perp}' = 0.119$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 13

Shear wall aspect ratio; $h / b_7 = 0.904$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 8.323$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_7 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_7 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_7 - P = -0.995$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -88 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.064$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 6.242$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_7 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_7 + P =$ **1.170**

kips

Maximum applied compressive stress; $f_c = C / A_e = 74 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = \textbf{432 lb/in}^2$

 $f_c / F_c' = 0.172$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c_perp}' = 0.119$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 14

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 8.323$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_7 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_7 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_7 - P = -0.995$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -88 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{1380 lb/in}^2$

 $f_t / F_t' = -0.064$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 6.242$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = \textbf{0.736} \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_7 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_7 + P = 1.170$

kips

Maximum applied compressive stress; $f_c = C / A_e = 74 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.172$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	- Lee's Summit	23-283			
Section		Sheet no./rev.			
	(91			
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate;

 $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp'} = 0.119$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 15

Shear wall aspect ratio; $h / b_8 = 0.904$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 8.323$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_8 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_8 / \text{sum}(k_{10}, k_{11}, k_{12}, k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9})) \times h / b_8 - P = -0.995$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -88 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.064$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 6.242$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_8 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_8 + P =$ **1.170**

kips

Maximum applied compressive stress; $f_c = C / A_e = 74 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.172$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp}' = 0.119$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 16

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 8.323$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_8 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_8 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_8 - P = -0.995$

kins

Maximum applied tensile stress; $f_t = T / A_{en} = -88 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{1380 lb/in}^2$

 $f_t / F_t' = -0.064$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 6.242$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_8 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_8 + P = 1.170$

kips

Maximum applied compressive stress; $f_c = C / A_e = 74 \text{ lb/in}^2$

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.			
WSS	- Lee's Summit	23-283			
Section		Sheet no./rev.			
				,	92
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.172$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp}' = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{t} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp'} = 0.119$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 17

Shear wall aspect ratio; $h / b_9 = 0.904$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 8.323$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_9 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_9 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_9 - P = -0.995$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -88 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.064$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 6.242$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_9 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_9 + P = 1.170$

kips

Maximum applied compressive stress; $f_c = C / A_e = 74 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.172$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp'} = 0.119$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 18

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 8.323$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_9 / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_9 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_9 - P = \textbf{-0.995}$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -88 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.064$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 6.242$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS - Lee's Summit, MO - GL K Long Wall				23-283	
Section		Sheet no./rev.			
				,	93
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

Maximum compressive force in chord;

 $C = V \times (k_9 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_9 + P =$ **1.170**

kips

Maximum applied compressive stress; $f_c = C / A_e = 74 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_f \times C_f \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.172$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; F

 $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp'} = 0.119$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 19

Shear wall aspect ratio; $h / b_{10} = 0.904$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 8.323$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_{10} / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_{10} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{10} - P = -0.995$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -88 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.064$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 6.242$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_{10} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{10} + P = 1.170$

kips

Maximum applied compressive stress; $f_c = C / A_e = 74 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = \textbf{432 lb/in}^2$

 $f_c / F_c' =$ **0.172**

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp}' = 0.119$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 20

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 8.323$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_{10} / 2 = 1.574 \text{ kips}$

 $T = V \times (k_{10} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{10} - P = \textbf{-0.995}$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -88 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.064$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

11320 West 79th Street Lenexa, Kansas 66214

Project						Job Ref.		
	WSS - Lee's Summit, MO - GL K Long Wall					23-283		
Section	Section						Sheet no./rev.	
							94	
Calc. by		Date	Chk'd by	Date		App'd by	Date	
GI	L	7/25/2023	DN					

Shear force for maximum compression; $V = 0.45 \times W = 6.242$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_{10} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{10} + P = 1.170$

kips

Maximum applied compressive stress; $f_c = C / A_e = 74 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{fc} \times C_f \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.172$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c_perp'} = 0.119$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 21

Shear wall aspect ratio; $h / b_{11} = 0.904$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 8.323$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_{11} / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_{11} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{11} - P = -0.995$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -88 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_F \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.064$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 6.242$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_{11} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{11} + P = 1.170$

kips

Maximum applied compressive stress; $f_c = C / A_e = 74 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = \textbf{432 lb/in}^2$

 $f_c / F_c' = 0.172$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c_perp}' = 0.119$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 22

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 8.323$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_{11} / 2 = 1.574 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_{11} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{11} - P = -0.995$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -88 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.064$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
W	SS - Lee's Summi	23-283			
Section		Sheet no./rev.			
				,	95
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 6.242$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_{11} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{11} + P =$ **1.170**

kips

Maximum applied compressive stress; $f_c = C / A_e = 74 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.172$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp} = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_i \times C_b = 625 \text{ lb/in}^2$

 $f_c / F_{c perp'} = 0.119$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 23

Shear wall aspect ratio; $h / b_{12} = 1.248$

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 8.323$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_{12} / 2 = 1.14 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_{12} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{12} - P = -0.721$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -64 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.046$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 6.242$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

Maximum compressive force in chord; $C = V \times (k_{12} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{12} + P = 1.050$

kips

Maximum applied compressive stress; $f_c = C / A_e = 67 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_f \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.154$

PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c perp} = F_{c perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = 625 \text{ lb/in}^{2}$

 $f_c / F_{c perp'} = 0.107$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Chord capacity for chord 24

Load combination 5

Shear force for maximum tension; $V = 0.6 \times W = 8.323$ kips

Axial force for maximum tension; $P = (0.6 \times (D + S_{wt} \times h)) \times b_{12} / 2 = 1.14 \text{ kips}$

Maximum tensile force in chord; $T = V \times (k_{12} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{12} - P = -0.721$

kips

Maximum applied tensile stress; $f_t = T / A_{en} = -64 \text{ lb/in}^2$

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.				
WSS	WSS - Lee's Summit, MO - GL K Long Wall				23-283	
Section		Sheet no./rev.				
					96	
Calc. by	Date	Chk'd by	Date	App'd by	Date	
GL	7/25/2023	DN				

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1380 \text{ lb/in}^2$

 $f_t / F_t' = -0.046$

PASS - Design tensile stress exceeds maximum applied tensile stress

Load combination 3

Shear force for maximum compression; $V = 0.45 \times W = 6.242$ kips

Axial force for maximum compression; $P = ((D + S_{wt} \times h) + 0.75 \times L_f) \times s / 2 = 0.736 \text{ kips}$

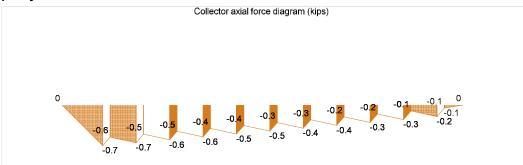
Maximum compressive force in chord; $C = V \times (k_{12} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) \times h / b_{12} + P = 1.050$

kips

Maximum applied compressive stress; $f_c = C / A_e = 67 \text{ lb/in}^2$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_F \times C_i \times C_P = 432 \text{ lb/in}^2$

 $f_c / F_c' = 0.154$


PASS - Design compressive stress exceeds maximum applied compressive stress

Design bearing compr. stress, bottom plate; $F_{c_perp}' = F_{c_perp} \times C_{Mc} \times C_{tc} \times C_{i} \times C_{b} = \textbf{625 lb/in}^{2}$

 $f_c / F_{c_perp}' = 0.107$

PASS - Design bearing compressive stress exceeds maximum applied bearing compressive stress

Collector capacity

Collector seismic design force factor; $F_{Coll} = 1$

Maximum shear force on wall; $V_{max} = max(F_{Coll} \times V_{s_max}, V_{w_max}) = 8.323 \text{ kips}$

Maximum force in collector; $P_{coll} = 0.734 \text{ kips}$

Maximum applied tensile stress; $f_t = P_{coll} / (2 \times A_s) = 70 \text{ lb/in}^2$

Design tensile stress; $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{1380 lb/in}^2$

 $f_t / F_t' = 0.051$

PASS - Design tensile stress exceeds maximum applied tensile stress

Maximum applied compressive stress; $f_c = P_{coll} / (2 \times A_s) = 70 \text{ lb/in}^2$

Column stability factor; $C_P = 1.00$

Design compressive stress; $F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 2484 \text{ lb/in}^2$

 $f_c / F_c' = 0.028$

PASS - Design compressive stress exceeds maximum applied compressive stress

Wind load deflection

Design shear force; $V_{\delta w} = f_{Wserv} \times W = 13.871 \text{ kips}$ Deflection limit; $\Delta_{w \text{ allow}} = h / 360 = 0.316 \text{ in}$

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.		
WSS	WSS - Lee's Summit, MO - GL K Long Wall				23-283	
Section					Sheet no./rev.	
					97	
Calc. by	Date	Chk'd by	Date	App'd by	Date	
GL	7/25/2023	DN				

Segment 1

Induced unit shear; $V_{\delta w} = V_{\delta w} \times (k_1 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_1 = \textbf{159.76} \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2 - 0.6 \times \min(D_{T_ch1}, D_{T_ch2})$

+ $max(abs(W_{ch1}), abs(W_{ch2}))) = 0.000 \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 1 deflection – Eqn. 4.3-1; $\delta_{\text{sww1}} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_1) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_1 = 0.104 \text{ in}$

 $\delta_{\text{sww1}} / \Delta_{\text{w allow}} = 0.328$

PASS - Shear wall deflection is less than deflection limit

Segment 2

Induced unit shear; $v_{\delta w} = V_{\delta w} \times \left(k_2 \, / \, \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)\right) \, / \, \, b_2 = \textbf{101.67} \, \, \text{lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 2 deflection – Eqn. 4.3-1; $\delta_{sww2} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_2) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_2 = 0.067 \text{ in}$

 δ_{sww2} / $\Delta_{\text{w allow}}$ = **0.212**

PASS - Shear wall deflection is less than deflection limit

Segment 3

Induced unit shear; $V_{\delta w} = V_{\delta w} \times (k_3 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_3 = \textbf{101.67} \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000 kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 3 deflection – Eqn. 4.3-1; $\delta_{sww3} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_3) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_3 = \textbf{0.067} \text{ in}$

 δ_{sww3} / $\Delta_{\text{w allow}}$ = **0.212**

PASS - Shear wall deflection is less than deflection limit

Segment 4

Induced unit shear; $V_{\delta w} = V_{\delta w} \times (k_4 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_4 = \textbf{101.67} \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000} \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta \, / \, k_a = \textbf{0.000} \text{ in}$

Segment 4 deflection – Eqn. 4.3-1; $\delta_{sww4} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_4) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_4 = \textbf{0.067} \text{ in}$

 δ_{sww4} / $\Delta_{\text{w_allow}}$ = **0.212**

PASS - Shear wall deflection is less than deflection limit

Segment 5

Induced unit shear; $v_{\delta w} = V_{\delta w} \times (k_5 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_5 = \textbf{101.67} \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 5 deflection – Eqn. 4.3-1; $\delta_{sww5} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_5) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_5 = \textbf{0.067} \text{ in}$

 $\delta_{\text{sww5}} / \Delta_{\text{w allow}} = \mathbf{0.212}$

PASS - Shear wall deflection is less than deflection limit

Segment 6

Induced unit shear; $V_{\delta w} = V_{\delta w} \times (k_6 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_6 = \textbf{101.67} \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000} \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 6 deflection – Eqn. 4.3-1; $\delta_{\text{Sww6}} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_6) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_6 = 0.067 \text{ in}$

 $\delta_{\text{sww6}} / \Delta_{\text{w_allow}} = 0.212$

PASS - Shear wall deflection is less than deflection limit

11320 West 79th Street Lenexa, Kansas 66214

Project		Job Ref.				
WSS	WSS - Lee's Summit, MO - GL K Long Wall				23-283	
Section				Sheet no./rev.		
					98	
Calc. by	Date	Chk'd by	Date	App'd by	Date	
GL	7/25/2023	DN				

Seament 7

Induced unit shear;

Anchor tension force;

Vertical elongation at anchor;

Segment 7 deflection – Eqn. 4.3-1;

Segment 8

Induced unit shear;

Anchor tension force;

Vertical elongation at anchor;

Segment 8 deflection – Eqn. 4.3-1;

Segment 9

Induced unit shear;

Anchor tension force:

Vertical elongation at anchor;

Segment 9 deflection - Eqn. 4.3-1;

Segment 10

Induced unit shear;

Anchor tension force;

Vertical elongation at anchor;

Segment 10 deflection - Eqn. 4.3-1;

Segment 11

Induced unit shear;

Anchor tension force;

Vertical elongation at anchor;

Segment 11 deflection - Eqn. 4.3-1;

Segment 12

Induced unit shear;

Anchor tension force:

Vertical elongation at anchor;

Segment 12 deflection – Eqn. 4.3-1;

 $v_{\delta w} = V_{\delta w} \times (k_7 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_7 = 101.67 lb/ft$

 $T_{\delta} = max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

 $\Delta_a = T_{\delta} / k_a = 0.000 \text{ in}$

 δ_{sww7} = 2 × $v_{\delta w}$ × h^3 / (3 × E × A_e × b_7) + $v_{\delta w}$ × h / (G_a) + h × Δ_a / b_7 = **0.067** in

 δ_{sww7} / $\Delta_{\text{w_allow}}$ = **0.212**

PASS - Shear wall deflection is less than deflection limit

 $v_{\delta w} = V_{\delta w} \times (k_8 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_8 = 101.67 lb/ft$

 $T_{\delta} = max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

 $\Delta_a = T_{\delta} / k_a = 0.000 \text{ in}$

 $\delta_{sww8} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_8) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_8 = 0.067$ in

 δ_{sww8} / Δ_{w} allow = **0.212**

PASS - Shear wall deflection is less than deflection limit

 $v_{\delta w} = V_{\delta w} \times (k_9 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_9 =$ **101.67**lb/ft

 $T_{\delta} = \max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

 $\Delta_a = T_{\delta} / k_a = 0.000 \text{ in}$

 $\delta_{\text{sww9}} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_9) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_9 = 0.067$ in

 $\delta_{\text{sww9}} / \Delta_{\text{w_allow}} = 0.212$

PASS - Shear wall deflection is less than deflection limit

 $v_{\delta w} = V_{\delta w} \times (k_{10} / sum(k_{10}, k_{11}, k_{12}, k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9})) / b_{10} = 101.67 lb/ft$

 $T_{\delta} = \max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

 $\Delta_a = T_\delta / k_a = 0.000 \text{ in}$

 δ_{sww10} = 2 × $v_{\delta w}$ × h^3 / (3 × E × A_e × b_{10}) + $v_{\delta w}$ × h / (G_a) + h × Δ_a / b_{10} =

0.067 in

 δ_{sww10} / Δ_{w} allow = **0.212**

PASS - Shear wall deflection is less than deflection limit

 $v_{\delta w} = V_{\delta w} \times (k_{11} / sum(k_{10}, k_{11}, k_{12}, k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9})) / b_{11} = 101.67 lb/ft$

 $T_{\delta} = \max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

 $\Delta_a = T_{\delta} / k_a = 0.000 \text{ in}$

 $\delta_{sww11} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{11}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{11} =$

0.067 in

 $\delta_{\text{sww11}} / \Delta_{\text{w allow}} = \mathbf{0.212}$

PASS - Shear wall deflection is less than deflection limit

 $v_{\delta w} = V_{\delta w} \times (k_{12} / sum(k_{10}, k_{11}, k_{12}, k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9})) / b_{12} = 73.63 lb/ft$

 $T_{\delta} = \max(0 \text{ kips}, v_{\delta w} \times h - 0.6 \times (D + S_{wt} \times h) \times b / 2) = 0.000 \text{ kips}$

 $\Delta_a = T_{\delta} / k_a = 0.000 in$

 $\delta_{sww12} = 2 \times v_{\delta w} \times h^3 / (3 \times E \times A_e \times b_{12}) + v_{\delta w} \times h / (G_a) + h \times \Delta_a / b_{12} = 0$

0.049 in

BSE Structural Engineers

11320 West 79th Street Lenexa, Kansas 66214

Project				Job Ref.	
WSS	- Lee's Summit	23-283			
Section				Sheet no./rev.	
		,	99		
Calc. by	Date	Chk'd by	Date	App'd by	Date
GL	7/25/2023	DN			

 $\delta_{\text{sww12}} / \Delta_{\text{w allow}} = 0.156$

PASS - Shear wall deflection is less than deflection limit

Seismic deflection

Design shear force; $V_{\delta s} = E_q = 6.905 \text{ kips}$

Deflection limit; $\Delta_{s \text{ allow}} = 0.020 \times h = 2.278 \text{ in}$

Deflection ampification factor; $C_{d\delta}$ = **4** Seismic importance factor; I_e = **1**

Segment 1

Induced unit shear; $V_{\delta s} = V_{\delta s} \times (k_1 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_1 = \textbf{79.53} lb/ft$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2 - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times$

 $S_{DS}) \times min(D_{T_ch1},D_{T_ch2}) + max(abs(E_{q_ch1}),abs(E_{q_ch2}))) = \textbf{0.000} \text{ kips}$

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 1 deflection – Eqn. 4.3-1; $\delta_{swse1} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_1) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_1 = \textbf{0.052} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws1}} = C_{\text{d}\delta} \times \delta_{\text{swse1}} / I_e = \textbf{0.206}$ in

 $\delta_{\text{sws1}} / \Delta_{\text{s allow}} = \mathbf{0.091}$

PASS - Shear wall deflection is less than deflection limit

Segment 2

 $\text{Induced unit shear;} \qquad \qquad v_{\delta s} = V_{\delta s} \times \left(k_2 \, / \, \text{sum} (k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9) \right) \, / \, \, b_2 = \textbf{50.61} \, \, \text{lb/ft}$

Anchor tension force; $T_{\delta} = max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor: $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 2 deflection – Eqn. 4.3-1; $\delta_{\text{swse2}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_2) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_2 = \textbf{0.033} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws2} = C_{d\delta} \times \delta_{swse2} / I_e = 0.133$ in

 δ_{sws2} / $\Delta_{\text{s allow}}$ = **0.059**

PASS - Shear wall deflection is less than deflection limit

Segment 3

 $\text{Induced unit shear;} \qquad \qquad v_{\delta s} = V_{\delta s} \times \left(k_3 \ / \ \text{sum} \left(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9\right)\right) \ / \ b_3 = \textbf{50.61} \ \text{lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips, } v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 3 deflection – Eqn. 4.3-1; $\delta_{\text{swse3}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_3) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_3 = \textbf{0.033} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws3} = C_{d\delta} \times \delta_{swse3} / I_e = 0.133$ in

 δ_{sws3} / $\Delta_{\text{s_allow}}$ = **0.059**

PASS - Shear wall deflection is less than deflection limit

Segment 4

Induced unit shear; $V_{\delta s} = V_{\delta s} \times (k_4 / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_4 =$ **50.61** lb/ft

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 4 deflection – Eqn. 4.3-1; $\delta_{\text{swse4}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_4) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_4 = \textbf{0.033} \text{ in}$

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws4} = C_{d\delta} \times \delta_{swse4} / I_e = 0.133$ in

 $\delta_{\text{sws4}} / \Delta_{\text{s_allow}} = \textbf{0.059}$

BSE Structural Engineers

11320 West 79th Street Lenexa, Kansas 66214

Project		_	_		Job Ref.	
WSS - Lee's Summit, MO - GL K Long Wall					23-	283
Section				Sheet no./rev.		
					1	00
Calc. by		Date	Chk'd by	Date	App'd by	Date
GL		7/25/2023	DN			

PASS - Shear wall deflection is less than deflection limit

Segment 5

 $v_{\delta s} = V_{\delta s} \times (k_5 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_5 = 50.61 lb/ft$ Induced unit shear;

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = 0.000$

kips

Vertical elongation at anchor;

 $\Delta_{a} = T_{\delta} / k_{a} = 0.000 \text{ in}$ Segment 5 deflection – Eqn. 4.3-1; δ_{swse5} = 2 × $v_{\delta s}$ × h^3 / (3 × E × A_e × b_5) + $v_{\delta s}$ × h / (G_a) + h × Δ_a / b_5 = **0.033** in

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; δ_{sws5} = $C_{\text{d}\delta} \times \delta_{\text{swse5}}$ / I_{e} = **0.133** in

 δ_{sws5} / Δ_{s} allow = **0.059**

PASS - Shear wall deflection is less than deflection limit

Segment 6

Induced unit shear; $v_{\delta s} = V_{\delta s} \times (k_6 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_6 = \textbf{50.61} \text{ lb/ft}$

Anchor tension force; $T_{\delta} = max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = 0.000$

kips

Vertical elongation at anchor; $\Delta_a = T_{\delta} / k_a = 0.000 \text{ in}$

 δ_{swse6} = 2 × $v_{\delta s}$ × h^3 / (3 × E × A_e × b_6) + $v_{\delta s}$ × h / (G_a) + h × Δ_a / b_6 = 0.033 in Segment 6 deflection – Eqn. 4.3-1;

Amp. seis. deflection - ASCE7 Eqn. 12.8-15; δ_{sws6} = $C_{\text{d}\delta} \times \delta_{\text{swse6}}$ / I_{e} = 0.133 in

 $\delta_{\text{sws6}} / \Delta_{\text{s_allow}} = 0.059$

PASS - Shear wall deflection is less than deflection limit

Segment 7

Induced unit shear; $v_{\delta s} = V_{\delta s} \times (k_7 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_7 = 50.61 lb/ft$

 $T_{\delta} = max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = 0.000$ Anchor tension force;

kips

Vertical elongation at anchor; $\Delta_a = T_{\delta} / k_a = 0.000 \text{ in}$

Segment 7 deflection - Eqn. 4.3-1; δ_{swse7} = 2 × $v_{\delta s}$ × h^3 / (3 × E × A_e × b_7) + $v_{\delta s}$ × h / (G_a) + h × Δ_a / b_7 = **0.033** in

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; δ_{sws7} = $C_{\text{d}\delta} \times \delta_{\text{swse7}}$ / I_{e} = 0.133 in

 $\delta_{\text{sws7}} / \Delta_{\text{s allow}} = 0.059$

PASS - Shear wall deflection is less than deflection limit

Segment 8

Induced unit shear; $v_{\delta s} = V_{\delta s} \times \left(k_8 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)\right) / b_8 = \textbf{50.61} \text{ lb/ft}$

Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = 0.000$

kips

 $\Delta_a = T_{\delta} / k_a = 0.000 in$ Vertical elongation at anchor;

Segment 8 deflection - Eqn. 4.3-1; $\delta_{\text{swse8}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_8) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_8 = 0.033$ in

Amp. seis. deflection - ASCE7 Eqn. 12.8-15; δ_{sws8} = $C_{\text{d}\delta} \times \delta_{\text{swse8}}$ / I_{e} = **0.133** in

 $\delta_{\text{sws8}} / \Delta_{\text{s}}$ allow = **0.059**

PASS - Shear wall deflection is less than deflection limit

Segment 9

Induced unit shear: $v_{\delta s} = V_{\delta s} \times (k_9 / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_9 = 50.61 lb/ft$

 $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = 0.000$ Anchor tension force;

kips

Vertical elongation at anchor; $\Delta_a = T_{\delta} / k_a = 0.000 \text{ in}$

Segment 9 deflection - Eqn. 4.3-1; δ_{swse9} = 2 \times $v_{\delta s}$ \times h^3 / (3 \times E \times A_e \times $b_9)$ + $v_{\delta s}$ \times h / (Ga) + h \times Δ_a / b_9 = 0.033 in

BSE Structural Engineers

11320 West 79th Street Lenexa, Kansas 66214

	Project				Job Ref.	
	WSS	- Lee's Summit	23-283			
Ī	Section				Sheet no./rev.	
			1	01		
Ī	Calc. by	Date	Chk'd by	Date	App'd by	Date
	GL	7/25/2023	DN			

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws9} = C_{d\delta} \times \delta_{swse9} / I_e = 0.133$ in

 $\delta_{\text{sws9}} / \Delta_{\text{s allow}} = 0.059$

PASS - Shear wall deflection is less than deflection limit

Segment 10

Induced unit shear; $v_{\delta s} = V_{\delta s} \times \left(k_{10} / \text{sum}(k_{10}, k_{11}, k_{12}, k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9})\right) / b_{10} = \textbf{50.61} \text{ lb/ft}$ Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 10 deflection – Eqn. 4.3-1; $\delta_{\text{swse}_{10}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_{10}) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_{10} = \textbf{0.033}$

in

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{sws10} = C_{d\delta} \times \delta_{swse10} / I_e = 0.133$ in

 δ_{sws10} / Δ_{s} allow = **0.059**

PASS - Shear wall deflection is less than deflection limit

Segment 11

Induced unit shear; $v_{\delta s} = V_{\delta s} \times \left(k_{11} / \text{sum}(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)\right) / b_{11} = \textbf{50.61} \text{ lb/ft}$ Anchor tension force; $T_{\delta} = \max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 11 deflection – Eqn. 4.3-1; $\delta_{\text{swse}11} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_{11}) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_{11} = \textbf{0.033}$

in

Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws11}} = C_{\text{d}\delta} \times \delta_{\text{swse11}} \ / \ I_{\text{e}} = \textbf{0.133} \ \text{in}$

 δ_{sws11} / $\Delta_{\text{s_allow}}$ = **0.059**

PASS - Shear wall deflection is less than deflection limit

Segment 12

Induced unit shear; $v_{\delta s} = V_{\delta s} \times (k_{12} / sum(k_{10}, k_{11}, k_{12}, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9)) / b_{12} = \textbf{36.65} \text{ lb/ft}$ Anchor tension force; $T_{\delta} = max(0 \text{ kips,} v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h) \times b / 2) = \textbf{0.000}$

kips

Vertical elongation at anchor; $\Delta_a = T_\delta / k_a = 0.000$ in

Segment 12 deflection – Eqn. 4.3-1; $\delta_{\text{swse12}} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b_{12}) + v_{\delta s} \times h / (G_a) + h \times \Delta_a / b_{12} = \textbf{0.024}$

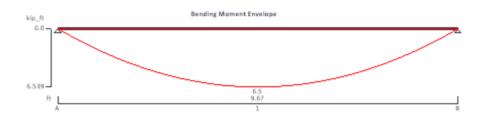
in

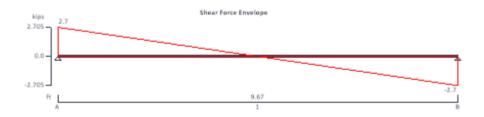
Amp. seis. deflection – ASCE7 Eqn. 12.8-15; $\delta_{\text{sws12}} = C_{\text{d}\delta} \times \delta_{\text{swse12}} / I_e = \textbf{0.098}$ in

 δ_{sws12} / Δ_{s} allow = **0.043**

PASS - Shear wall deflection is less than deflection limit

STAIRS


Calc. by <u>GL</u> Chk'd by DN_ Date_7/28/2023


STRUCTURAL WOOD MEMBER ANALYSIS & DESIGN (NDS)

In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.09

Applied loading

Beam loads

Dead self weight of beam \times 1 Dead full UDL 67 lb/ft Live full UDL 476 lb/ft

Load combinations

Load combination 1	Support A	Dead × 1.00
		Live \times 1.00
	Span 1	$\text{Dead} \times 1.00$
		Live \times 1.00
	Support B	$\text{Dead} \times 1.00$
		Live \times 1.00

Analysis results

Allalysis results			
Maximum moment	$M_{max} = 6539 lb_ft$	$M_{min} = 0 lb_ft$	
Design moment	$M = max(abs(M_{max}), abs(M_{min}))$	$M = max(abs(M_{max}), abs(M_{min})) = 6539 lb_ft$	
Maximum shear	$F_{max} = 2705 \text{ lb}$	$F_{min} = -2705 lb$	
Design shear	$F = max(abs(F_{max}), abs(F_{min})$) = 2705 lb	
Total load on member	$W_{tot} = 5409 lb$		

Reaction at support A $R_{A_max} = 2705 \text{ lb}$ $R_{A_min} = 2705 \text{ lb}$

Chk'd by DN_____ Date 7/28/2023

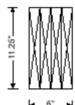
—— Job Ref. 23-283

 $R_{B_{min}} = 2705 \text{ lb}$

Unfactored dead load reaction at support A Unfactored live load reaction at support A

Reaction at support B

Unfactored dead load reaction at support B


Unfactored live load reaction at support B

RA Dead = 403 lb Ra_Live = **2301** lb

 $R_{B \text{ max}} = 2705 \text{ lb}$

R_B Dead = **403** lb

R_{B_Live} = **2301** lb

Sawn lumber section details

Nominal breadth of sections $b_{nom} = 2 in$ Dressed breadth of sections b = 1.5 in $d_{nom} = 12 in$ Nominal depth of sections Dressed depth of sections d = 11.25 in N = 4

Number of sections in member

Overall breadth of member $b_b = N \times b = 6$ in

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

Bending parallel to grain $F_b = 900 \text{ lb/in}^2$ Tension parallel to grain $F_t = 575 \text{ lb/in}^2$ Compression parallel to grain $F_c = 1350 \text{ lb/in}^2$ Compression perpendicular to grain $F_{c_perp} = 625 \text{ lb/in}^2$ $F_v = 180 \text{ lb/in}^2$ Shear parallel to grain

E = 1600000 lb/in² Modulus of elasticity Modulus of elasticity, stability calculations $E_{min} = 580000 \text{ lb/in}^2$

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Service condition Dry Length of span $L_{s1} = 9.67 \text{ ft}$ Length of bearing $L_b = 1.5 in$ Load duration Ten years

Section properties

Cross sectional area of member $A = N \times b \times d = 67.50 \text{ in}^2$ $S_x = N \times b \times d^2 / 6 = 126.56 \text{ in}^3$ Section modulus $S_y = d \times (N \times b)^2 / 6 = 67.50 \text{ in}^3$

 $I_x = N \times b \times d^3 / 12 = 711.91 \text{ in}^4$ Second moment of area $I_y = d \times (N \times b)^3 / 12 = 202.50 \text{ in}^4$

Adjustment factors

Load duration factor - Table 2.3.2 $C_D = 1.00$ $C_t = 1.00$ Temperature factor - Table 2.3.3 Size factor for bending - Table 4A CFb = 1.00 Size factor for tension - Table 4A $C_{Ft} = 1.00$ Size factor for compression - Table 4A CFc = 1.00 Flat use factor - Table 4A $C_{fu} = 1.20$

Project WSS - Lee's Summit, MO	loh Pof 22 282	

Calc. by GL Chk'd by DN Date 7/28/2023

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

Cic_perp = **1.00**

Repetitive member factor - cl.4.3.9 $C_r = 1.15$ Bearing area factor - cl.3.10.4 $C_b = 1.00$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 1.50$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Bearing perpendicular to grain - cl.3.10.2

Design compression perpendicular to grain $F_{c_perp}' = F_{c_perp} \times C_t \times C_{ic_perp} \times C_b = 625 \text{ lb/in}^2$

Applied compression stress perpendicular to grain $f_{c perp} = R_{A max} / (N \times b \times L_b) = 301 \text{ lb/in}^2$

 $f_{c_perp} / F_{c_perp'} = 0.481$

PASS - Design compressive stress exceeds applied compressive stress at bearing

Strength in bending - cl.3.3.1

Design bending stress $F_b' = F_b \times C_D \times C_t \times C_L \times C_{Fb} \times C_i \times C_r = 1035 \ lb/in^2$

Actual bending stress $f_b = M / S_x = 620 \text{ lb/in}^2$

 $f_b / F_{b'} = 0.599$

PASS - Design bending stress exceeds actual bending stress

Strength in shear parallel to grain - cl.3.4.1

Design shear stress $F_{v}{}^{'} = F_{v} \times C_{D} \times C_{t} \times C_{i} = \textbf{180} \text{ lb/in}^{2}$

Actual shear stress - eq.3.4-2 $f_V = 3 \times F / (2 \times A) = \textbf{60} \text{ lb/in}^2$

 $f_{\scriptscriptstyle V}\,/\,F_{\scriptscriptstyle V}{}'=\textbf{0.334}$

PASS - Design shear stress exceeds actual shear stress

Deflection - cl.3.5.1

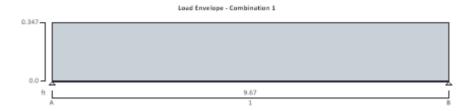
Modulus of elasticity for deflection $E' = E \times C_{ME} \times C_{t} \times C_{iE} = 1600000 \text{ lb/in}^{2}$

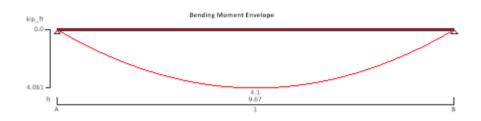
Design deflection $\delta_{\text{adm}} = 0.003 \times L_{\text{s1}} = \textbf{0.348} \text{ in}$

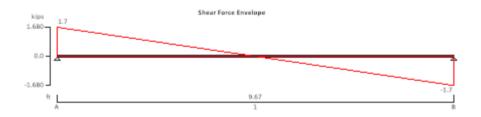
Total deflection $\delta_{b_s1} = 0.097$ in

 δ_{b_s1} / δ_{adm} = **0.278**

PASS - Total deflection is less than design deflection




Calc. by <u>GL</u> Chk'd by DN Date <u>7/28/2023</u>


STRUCTURAL WOOD MEMBER ANALYSIS & DESIGN (NDS)

In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.10

Applied loading

Beam loads

Dead self weight of beam \times 1 Dead full UDL 44 lb/ft Live full UDL 287 lb/ft

Load combinations

Load combination 1	Support A	Dead × 1.00
		Live \times 1.00
	Span 1	Dead × 1.00
		Live \times 1.00
	Support B	Dead × 1.00
		Live × 1.00

Analysis results

Alialysis lesults		
Maximum moment	M _{max} = 4061 lb_ft	$M_{min} = 0 \ lb_ft$
Design moment	$M = max(abs(M_{max}), abs(M_{min})) = 40$)61 lb_ft
Maximum shear	$F_{max} = 1680 \text{ lb}$	Fmin = -1680 lb
Design shear	$F = max(abs(F_{max}), abs(F_{min})) = 168$	80 lb
Total load on member	$W_{tot} = 3359 \text{ lb}$	

Reaction at support A $R_{A_max} = 1680 \text{ lb}$ $R_{A_min} = 1680 \text{ lb}$

_____ Chk'd by DN______ Date 7/28/2023

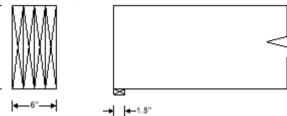
— Job Ref. 23-283

 $R_{B \text{ min}} = 1680 \text{ lb}$

Unfactored dead load reaction at support A Unfactored live load reaction at support A

Reaction at support B

Unfactored dead load reaction at support B


Unfactored live load reaction at support B

RA Dead = 292 lb Ra_Live = **1388** lb

 $R_{B \text{ max}} = 1680 \text{ lb}$

RB Dead = 292 lb

R_{B_Live} = **1388** lb

Sawn lumber section details

Nominal breadth of sections $b_{nom} = 2 in$ b = 1.5 inDressed breadth of sections dnom = **12** in Nominal depth of sections Dressed depth of sections d = 11.25 in N = 4

Number of sections in member

Overall breadth of member $b_b = N \times b = 6$ in

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider $F_b = 900 \text{ lb/in}^2$ Bending parallel to grain

Tension parallel to grain $F_t = 575 \text{ lb/in}^2$ $F_c = 1350 \text{ lb/in}^2$ Compression parallel to grain $F_{c_perp} = 625 \text{ lb/in}^2$ Compression perpendicular to grain

Shear parallel to grain $F_v = 180 \text{ lb/in}^2$ E = 1600000 lb/in² Modulus of elasticity $E_{min} = 580000 \text{ lb/in}^2$ Modulus of elasticity, stability calculations

Mean shear modulus $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

Member details

Service condition Dry Length of span $L_{s1} = 9.67 \text{ ft}$ Length of bearing $L_b = 1.5 in$ Load duration Ten years

Section properties

Cross sectional area of member $A = N \times b \times d = 67.50 \text{ in}^2$ $S_x = N \times b \times d^2 / 6 = 126.56 \text{ in}^3$ Section modulus

 $S_y = d \times (N \times b)^2 / 6 = 67.50 \text{ in}^3$ Second moment of area $I_x = N \times b \times d^3 / 12 = 711.91 \text{ in}^4$

 $I_y = d \times (N \times b)^3 / 12 = 202.50 \text{ in}^4$

Adjustment factors

Load duration factor - Table 2.3.2 $C_D = 1.00$ Temperature factor - Table 2.3.3 $C_t = 1.00$ CFb = 1.00 Size factor for bending - Table 4A Size factor for tension - Table 4A $C_{Ft} = 1.00$ Size factor for compression - Table 4A $C_{Fc} = 1.00$ Flat use factor - Table 4A $C_{fu} = 1.20$

Project WSS - Lee's Summit, MO	loh Pof 22 222	

Calc. by GL Chk'd by DN Date 7/28/2023

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

Cic_perp = **1.00**

Repetitive member factor - cl.4.3.9 $C_r = 1.15$ Bearing area factor - cl.3.10.4 $C_b = 1.00$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 1.50$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Bearing perpendicular to grain - cl.3.10.2

Design compression perpendicular to grain $F_{c_perp} = F_{c_perp} \times C_t \times C_{ic_perp} \times C_b = 625 \text{ lb/in}^2$

Applied compression stress perpendicular to grain $f_{c_perp} = R_{A_max} / (N \times b \times L_b) = 187 \text{ lb/in}^2$

 $f_{c_perp} / F_{c_perp'} = 0.299$

PASS - Design compressive stress exceeds applied compressive stress at bearing

Strength in bending - cl.3.3.1

Design bending stress $F_b' = F_b \times C_D \times C_t \times C_L \times C_{Fb} \times C_i \times C_r = 1035 \ lb/in^2$

Actual bending stress $f_b = M / S_x = 385 \text{ lb/in}^2$

 $f_b / F_{b'} = 0.372$

PASS - Design bending stress exceeds actual bending stress

Strength in shear parallel to grain - cl.3.4.1

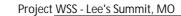
Design shear stress $F_{v}{}^{\prime} = F_{v} \times C_{D} \times C_{t} \times C_{i} = \textbf{180} \text{ lb/in}^{2}$

Actual shear stress - eq.3.4-2 $f_V = 3 \times F / (2 \times A) = 37 \text{ lb/in}^2$

 $f_v / F_{v'} = 0.207$

PASS - Design shear stress exceeds actual shear stress

Deflection - cl.3.5.1

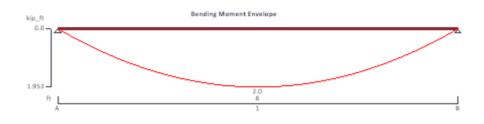

Modulus of elasticity for deflection $E' = E \times C_{ME} \times C_{t} \times C_{iE} = 1600000 \text{ lb/in}^{2}$

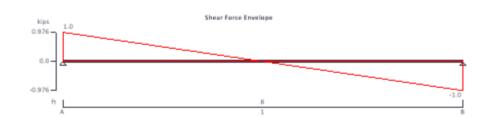
Design deflection $\delta_{\text{adm}} = 0.003 \times L_{\text{s1}} = \textbf{0.348} \text{ in}$

Total deflection $\delta_{b_s1} = 0.060$ in

 $\delta_{b_s1} / \delta_{adm} = 0.172$

PASS - Total deflection is less than design deflection


Calc. by <u>GL</u> Chk'd by DN Date 7/28/2023


STRUCTURAL WOOD MEMBER ANALYSIS & DESIGN (NDS)

In accordance with the ANSI/AF&PA NDS-2018 using the ASD method

Tedds calculation version 1.7.09

Applied loading

Beam loads

Dead self weight of beam \times 1 Dead full UDL 40 lb/ft Live full UDL 200 lb/ft

Load combinations

Loud Combinations		
Load combination 1	Support A	Dead × 1.00
		Live \times 1.00
	Span 1	Dead × 1.00
		Live \times 1.00
	Support B	Dead × 1.00
		Live \times 1.00

Analysis results

· ········ y ··························		
Maximum moment	M _{max} = 1953 lb_ft	$M_{min} = 0 \ lb_ft$
Design moment	$M = max(abs(M_{max}), abs(M_{min})) = 1953 lb_ft$	
Maximum shear	F _{max} = 976 lb	$F_{min} = -976 lb$
Design shear	$F = max(abs(F_{max}), abs(F_{min})) = 97$	6 lb
Total load on member	$W_{tot} = 1953 \text{ lb}$	
Reaction at support A	$R_{A_{max}} = 976 \text{ lb}$	$R_{A_min} = 976 \text{ lb}$

Calc. by <u>GL</u> Chk'd by DN_ Date_7/28/2023

—— Job Ref. 23-283

 $R_{B \text{ min}} = 976 \text{ lb}$

Unfactored dead load reaction at support A Unfactored live load reaction at support A

Reaction at support B

Unfactored dead load reaction at support B

Unfactored live load reaction at support B

Ra_Dead = **176** lb Ra_Live = **800** lb

 $R_{B_{max}} = 976 \text{ lb}$

 $R_{B_Dead} = 176 lb$

 $R_{B_Live} = 800 lb$

 $b_b = N \times b = 1.5 \text{ in}$

 $G_{def} = E / 16 = 100000 \text{ lb/in}^2$

 $I_y = d \times (N \times b)^3 / 12 = 3.16 in^4$

Sawn lumber section details

Nominal breadth of sections $b_{nom} = 2$ in Dressed breadth of sections b = 1.5 in Nominal depth of sections $d_{nom} = 12$ in Dressed depth of sections d = 11.25 in Number of sections in member N = 1

Overall breadth of member

Species, grade and size classification Douglas Fir-Larch, No.2 grade, 2" & wider

 $\begin{array}{lll} \mbox{Bending parallel to grain} & \mbox{F_b} = 900 \mbox{ lb/in}^2 \\ \mbox{Tension parallel to grain} & \mbox{F_t} = 575 \mbox{ lb/in}^2 \\ \mbox{Compression parallel to grain} & \mbox{F_c} = 1350 \mbox{ lb/in}^2 \\ \mbox{Compression perpendicular to grain} & \mbox{F_{c_perp}} = 625 \mbox{ lb/in}^2 \\ \end{array}$

 $\begin{array}{lll} \mbox{Shear parallel to grain} & \mbox{F}_{v} = 180 \ \mbox{lb/in}^{2} \\ \mbox{Modulus of elasticity} & \mbox{E} = 1600000 \ \mbox{lb/in}^{2} \\ \mbox{Modulus of elasticity, stability calculations} & \mbox{E}_{min} = 580000 \ \mbox{lb/in}^{2} \\ \mbox{E}_{min} = 580000 \ \mbox{E}_{min} = 580$

Mean shear modulus

Member details

Section properties

Cross sectional area of member $A = N \times b \times d = \textbf{16.87} \text{ in}^2$ Section modulus $S_x = N \times b \times d^2 / 6 = \textbf{31.64} \text{ in}^3$ $S_y = d \times (N \times b)^2 / 6 = \textbf{4.22} \text{ in}^3$ Second moment of area $I_x = N \times b \times d^3 / 12 = \textbf{177.98} \text{ in}^4$

Adjustment factors

Project WSS - Lee's Summit, MO

_____ Job Ref. 23-283_

Calc. by GL Chk'd by DN Date 7/28/2023

Incising factor for modulus of elasticity - Table 4.3.8

CiE = 1.00

Incising factor for bending, shear, tension & compression - Table 4.3.8

 $C_i = 1.00$

Incising factor for perpendicular compression - Table 4.3.8

Cic_perp = **1.00**

Repetitive member factor - cl.4.3.9 $C_r = 1.00$ Bearing area factor - cl.3.10.4 $C_b = 1.00$

Depth-to-breadth ratio $d_{nom} / (N \times b_{nom}) = 6.00$

- Beam is fully restrained

Beam stability factor - cl.3.3.3 $C_L = 1.00$

Bearing perpendicular to grain - cl.3.10.2

Design compression perpendicular to grain $F_{c_perp} = F_{c_perp} \times C_t \times C_{ic_perp} \times C_b = 625 \text{ lb/in}^2$

Applied compression stress perpendicular to grain $f_{c_perp} = R_{B_max} / (N \times b \times L_b) = 434 \text{ lb/in}^2$

 $f_{c_perp} / F_{c_perp'} = 0.694$

PASS - Design compressive stress exceeds applied compressive stress at bearing

Strength in bending - cl.3.3.1

Design bending stress $F_b{}' = F_b \times C_D \times C_t \times C_L \times C_{Fb} \times C_i \times C_r = \textbf{900 lb/in}^2$

Actual bending stress $f_b = M / S_x = 741 \ lb/in^2$

 $f_b / F_{b'} = 0.823$

PASS - Design bending stress exceeds actual bending stress

Strength in shear parallel to grain - cl.3.4.1

Design shear stress $F_{v'} = F_{v} \times C_{D} \times C_{t} \times C_{i} = \textbf{180} \text{ lb/in}^{2}$

Actual shear stress - eq.3.4-2 $f_V = 3 \times F / (2 \times A) = 87 \text{ lb/in}^2$

 $f_v / F_{v'} = \textbf{0.482}$

PASS - Design shear stress exceeds actual shear stress

Deflection - cl.3.5.1

Modulus of elasticity for deflection $E' = E \times C_{ME} \times C_{t} \times C_{iE} = 1600000 \text{ lb/in}^{2}$

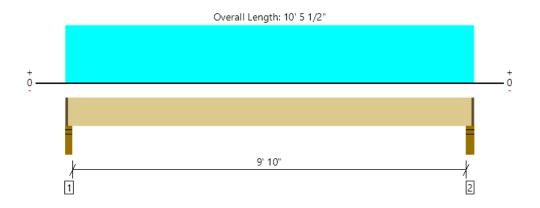
Design deflection $\delta_{\text{adm}} = 0.003 \times L_{\text{s1}} = \textbf{0.288} \text{ in}$

Total deflection $\delta_{b_s1} = 0.079$ in

 $\delta_{b_s1} / \delta_{adm} = 0.274$

PASS - Total deflection is less than design deflection

Level				
Member Name	Results	Current Solution	Comments	
Floor: Joist	Passed	1 piece(s) 1 3/4" x 11 1/4" 2.0E Microllam® LVL @ 16" OC		


ForteWEB Software Operator	Job Notes
George Luetje BSE Structural Engineers (913) 492-7400 gluetje@bsestructural.com	

MEMBER REPORT

Level, Floor: Joist 1 piece(s) 1 3/4" x 11 1/4" 2.0E Microllam® LVL @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	834 @ 2 1/2"	2461 (2.25")	Passed (34%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	650 @ 1' 2 3/4"	3741	Passed (17%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2043 @ 5' 2 1/2"	8391	Passed (24%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.075 @ 5' 2 1/2"	0.250	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.092 @ 5' 2 1/2"	0.500	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	66	40	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2021 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 4% increase in the moment capacity has been added to account for repetitive member usage
- · A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro™ Rating include: None.

	В	earing Lengt	th	Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	3.50"	2.25"	1.50"	157	694	851	1 1/4" Rim Board
2 - Stud wall - DF	4.00"	2.75"	1.50"	158	700	858	1 1/4" Rim Board

• Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	10' 3" o/c	
Bottom Edge (Lu)	10' 3" o/c	

 $\bullet \mbox{Maximum allowable bracing intervals based on applied load.}$

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 10' 5 1/2"	16"	22.6	100.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
George Luetje BSE Structural Engineers (913) 492-7400 gluetje@bsestructural.com		

CONNECTIONS

HDU/DTT

C-C-2021 @ 2021 SIMPSON STRONG-TIE COMPANY INC.

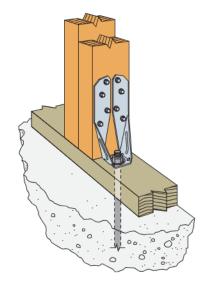
SIMPSON Strong-Tie

Holdowns (cont.)

These products are available with additional corrosion protection. For more information, see p. 14.

For stainless-steel fasteners, see p. 21.

Many of these products are approved for installation with Strong-Drive® SD Connector screws.


See pp. 348–352 for more information.

	Model			Di	mensio (in.)	ns			Fasteners (in.)	Minimum Wood	All	owable Tension (160)	n Loads	- Code
	No.	Ga.	W	Н	В	CL	S0	Anchor Bolt Dia. (in.)	Wood Fasteners	Member Size (in.)	DF/SP	SPF/HF	Deflection at Allowable Load (in.)	Ref.
									(6) #9 x 11/2" SD		840	840	0.17	
	DTT1Z	14	11/2	71/8	1 1/16	3/4	3/16	3/8	(6) 0.148 x 1½	1½ x 3½	910	640	0.167	
									(8) 0.148 x 1½		910	850	0.167	
SS	DTT2Z								(8) 1/4 x 1 1/2 SDS	1½ x 3½	1,825	1,800	0.105	
90	UTTZZ	14	31/4	615/16	1%	13/16	3/16	1/2	(8) 1/4 x 1 1/2 SDS	3 x 31⁄2	2,145	1,835	0.128	
SS	DTT2Z-SDS2.5								(8) 1/4 x 2 1/2 SDS	3 x 31⁄2	2,145	2,105	0.128	
	HDU2-SDS2.5	14	3	811/16	31/4	15/16	1%	5/8	(6) 1/4 x 21/2 SDS	3 x 31⁄2	3,075	2,215	0.088	IBC,
	HDU4-SDS2.5	14	3	1015/16	31/4	15/16	13/8	5/8	(10) 1/4 x 21/2 SDS	3 x 31⁄2	4,565	3,285	0.114	FL, LA
	HDU5-SDS2.5	14	3	13¾6	31/4	15/16	1%	5/8	(14) 1/4 x 21/2 SDS	3 x 3½	5,645	4,340	0.115	
										3 x 3½	6,765	5,820	0.11	
	HDU8-SDS2.5	10	3	16%	3½	1%	1 1/2	7/8	(20) 1/4 x 2 1/2 SDS	31/2 x 31/2	6,970	5,995	0.116	
										31/2 x 41/2	7,870	6,580	0.113	
	HDU11-SDS2.5	10	3	221/4	31/2	13/8	11/2	1	(30) 1/4 x 21/2 SDS	3½ x 5½	9,535	8,030	0.137	
	HDU11-3D32.3	10	0	2274	3 72	198	1 72	'	(30) 74 X Z 72 3D3	31/2 x 71/4	11,175	9,610	0.137	
										31/2 x 51/2	10,770	9,260	0.122	_
	HDU14-SDS2.5	7	3	2511/16	31/2	19/16	1%6	1	(36) 1/4 x 2 1/2 SDS	31/2 x 71/4	14,390	12,375	0.177	IBC,
										51/2 x 51/2	14,445	12,425	0.172	FL, LA

- 1. HDU14 requires heavy-hex anchor nut to achieve tabulated loads (supplied with holdown).
- 2. HDU14 loads on 4x6 post are applicable to installation on either the narrow or the wide face of the post.
- 3. Fasteners: Nail dimensions are listed diameter by length. SD and SDS screws are Simpson Strong-Tie® Strong-Drive SD Connector and SDS Heavy-Duty Connector screws. See pp. 21–22 for fastener information.

Typical HDU Tie Between Floors

Typical DTT2Z Installation

SIMPSON Strong-Tie

Holdowns (cont.)

These products are available with additional corrosion protection. For more information, see p. 14.

	Mat	erial			Di	mension (in.)	ns				eners n.)	Minimum Wood	Allowable Tension Loads (160)		Deflection																							
Model No.	Base (in.)	Body (ga.)	НВ	SB	w	Н	В	CL	S0	Anchor Dia. Bolt	Stud Bolts	Member Size (in.)	DF/SP	SPF/HF	at Highest Allowable Load	Code Ref.																						
												1½ x 3½	1,895	1,610	0.156																							
HD3B	_	12	43/4	2½	21/2	8%	21/4	15/16	3.6	3/8 5/8	(2) %	2½ x 3½	2,525	2,145	0.169																							
пизв	_	12	474	2 72	2 72	0 78	274	4 1716	1716	78	78	(2) 78	3 x 31⁄2	3,130	3,050	0.12																						
												3½ x 3½	3,130	3,050	0.12																							
													1½ x 3½	2,405	2,070	0.153																						
HD5B	3/16	10	51/4	3	2½	9%	21/2	11/4	2	5/8	(2) 3/4	2½ x 3½	3,750	3,190	0.129																							
пров	916	10	374	3	2 72	378	21/2	Z 1/2	1 7/4		78	(2) 94	3 x 31⁄2	4,505	3,785	0.156																						
													3½ x 3½	4,935	4,195	0.15																						
				3			2½		11/4 2			3 x 3½	6,645	5,650	0.142																							
HD7B	3/16	10	51/4		21/2	12%		21/2 11/4		7/8	7/8 (3) 3/4	3½ x 3½	7,310	6,215	0.154																							
													3½ x 4½	7,345	6,245	0.155																						
					21/8								3½ x 3½	7,740	6,580	0.159																						
HD9B	2/	7	C1/	01/		21/8	21/8	21/8	21/8	21/8	21/8	276	276	276	27/6	27%	27%	27/9	14	21/2	41/	02/	7/	/0\ 7/	31/2 x 41/2	9,920	8,430	0.178	IBC,									
нрав	3∕8	,	61/8	31/2								14	2 1/2	2 1/2	11/4	1/2 1 //4	2%	7/8	(3) 1/8	3½ x 5½	9,920	8,430	0.178	FL, LA														
																	3½ x 7¼	10,035	8,530	0.179																		
												3½ x 3½	11,350	9,215	0.171																							
										1	(4) 1	31/2 x 41/2	12,665	10,765	0.171																							
												5½ x 5½	14,220	12,085	0.162																							
HD12	3/8	3	7	4	3½	205/16	41/4	21/8	3%			3½ x 3½	11,775	9,215	0.171																							
										41/	/A\ 4	31/2 x 41/2	13,335	11,055	0.177																							
										11/8	(4) 1	3½ x 7¼	15,435	13,120	0.194																							
												5½ x 5½	15,510	12,690	0.162																							
										447	/E\ 4	3½ x 7¼	16,735	14,225	0.191																							
LIDAO	24		_	, ,	047	0447	447	04/	0.57	1 1/8	(5) 1	51/2 x 51/2	16,775	12,690	0.2																							
HD19	3/8	3	7	4	3½	241/2	41/4	21/8	21/8	21/8	21/8	21/8	21/8	21/8	21/8	21/8	21/8	21/8	21/8	21/8	21/8	21/8	21/8	21/8 35/8	3%	3%	3%	3%	3% -	3%	3%	447	/E) 4	3½ x 7¼	19,360	15,270	0.18	
										11/4	(5) 1	5½ x 5½	19,070	16,210	0.137																							

To achieve published loads, machine bolts shall be installed with the nut on the opposite side of the holdown. If this orientation is reversed, the designer shall reduce the allowable loads shown per NDS requirements when bolt threads are in the shear plane.

All references to bolts are for structural quality through bolts (not lag screw or carriage bolts) equal to or better than ASTM A307, Grade A.

^{3.} HD19 with 1 1/4" anchor rod requires No.1 post (or better) to achieve published loads.

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Concrete - Jul 19, 2023 (1) Date: 7/28/2023
Fastening point:

Specifier's comments:

1 Input data

Anchor type and diameter: HIT-HY 200 V3 + HAS-V-36 (ASTM F1554 Gr.36) 7/8

Item number: not available (element) / 2334276 HIT-HY 200-R V3

(adhesive)

Effective embedment depth: $h_{ef,act} = 9.000 \text{ in. } (h_{ef,limit} = - \text{ in.})$

Material: ASTM F1554 Grade 36

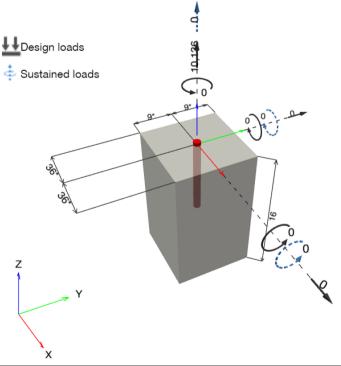
Evaluation Service Report: ESR-4868

Issued I Valid: 11/1/2022 | 11/1/2024

Proof: Design Method ACI 318-19 / Chem

Stand-off installation:

Profile:


Base material: cracked concrete, Custom, f_c' = 3,500 psi; h = 16.000 in., Temp. short/long: 32/32 °F

Installation: hammer drilled hole, Installation condition: Dry

Reinforcement: tension: not present, shear: not present; no supplemental splitting reinforcement present

edge reinforcement: none or < No. 4 bar

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2023 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: E-Mail:

Design: Concrete - Jul 19, 2023 (1) Date: 7/28/2023

Fastening point:

1.1 Design results

Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	$N = 10,136; V_x = 0; V_y = 0;$	no	96
		$M_{} = 0$: $M_{} = 0$: $M_{-} = 0$:		

2 Load case/Resulting anchor forces

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y

1 10,136 0 0 0

 $\begin{tabular}{ll} max. concrete compressive strain: & - [\%] \\ max. concrete compressive stress: & - [psi] \\ resulting tension force in (x/y)=(0.000/0.000): & 0 [lb] \\ resulting compression force in (x/y)=(0.000/0.000): & 0 [lb] \\ \end{tabular}$

3 Tension load

	Load N _{ua} [lb]	Capacity P N _n [lb]	Utilization $\beta_N = N_{ua}/\Phi N_n$	Status
Steel Strength*	10,136	20,085	51	OK
Bond Strength**	10,136	14,033	73	OK
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	10,136	10,590	96	OK

^{*} highest loaded anchor **anchor group (anchors in tension)

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: E-Mail:

Design: Concrete - Jul 19, 2023 (1) Date: 7/28/2023

Fastening point:

3.1 Steel Strength

 N_{sa} = ESR value refer to ICC-ES ESR-4868 ϕ $N_{sa} \ge N_{ua}$ ACI 318-19 Table 17.5.2

Variables

A_{se,N} [in.²] f_{uta} [psi] 0.46 58,000

Calculations

N_{sa} [lb] 26,780

Results

 $\frac{N_{sa} [lb]}{26,780}$ $\frac{\phi}{steel}$ $\frac{\phi}{N_{sa} [lb]}$ $\frac{N_{ua} [lb]}{10,136}$

www.hilti.com

 Company:
 Page:
 4

 Address:
 Specifier:

 Phone I Fax:
 E-Mail:

Design: Concrete - Jul 19, 2023 (1) Date: 7/28/2023

Fastening point:

3.2 Bond Strength

N_a	$=\left(\frac{A_{Na}}{A_{Na0}}\right)$	$\psi_{\text{ed,Na}} \; \psi_{\text{cp,Na}} \; \textbf{N}_{\text{ba}}$	ACI 318-19 Eq. (17.6.5.1a)
φN			ΔCI 318-10 Table 17.5.2

A_{Na} see ACI 318-19, Section 17.6.5.1, Fig. R 17.6.5.1(b)

1.000

$$A_{Na0} = (2 c_{Na})^2$$
 ACI 318-19 Eq. (17.6.5.1.2a)
 $c_{Na} = 10 d_a \sqrt{\frac{\tau_{uncr}}{1100}}$ ACI 318-19 Eq. (17.6.5.1.2b)

$$\psi_{\text{ed,Na}} = 0.7 + 0.3 \left(\frac{c_{\text{a,min}}}{c_{\text{Na}}} \right) \leq 1.0 \tag{17.6.5.4.1b}$$

$$\psi_{cp,Na} = \text{MAX} \left(\frac{c_{a,min}}{c_{ac}}, \frac{c_{Na}}{c_{ac}} \right) \leq 1.0$$

$$N_{ba} = \lambda_a \cdot \tau_{k,c} \cdot \pi \cdot d_a \cdot h_{ef}$$
ACI 318-19 Eq. (17.6.5.5.1b)
$$ACI 318-19 \text{ Eq. (17.6.5.2.1)}$$

Variables

τ _{k,c,uncr} [psi]	d _a [in.]	h _{ef} [in.]	c _{a,min} [in.]	$lpha_{ ext{overhead}}$	τ _{k,c} [psi]
2,296	0.875	9.000	9.000	1.000	1,334
c _{ac} [in.]	λ				

Calculations

18.751

c _{Na} [in.]	A _{Na} [in. ²]	${\sf A_{Na0}}$ [in. 2]	ψ _{ed,Na}
12.584	453.04	633.46	0.915
$\Psi_{cp,Na}$	N _{ba} [lb]	_	
1.000	33,007	-	

Results

N _a [lb]	ϕ_{bond}	φ N _a [lb]	N _{ua} [lb]
21,589	0.650	14,033	10,136

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: E-Mail:

Design: Concrete - Jul 19, 2023 (1) Date: 7/28/2023

Fastening point:

3.3 Concrete Breakout Failure

 $N_{cb} = \left(\frac{A_{Nc}}{A_{Nc0}}\right) \; \psi_{\; ed,N} \; \psi_{c,N} \; \psi_{cp,N} \; N_b \label{eq:Ncb}$ ACI 318-19 Eq. (17.6.2.1a)

 $\phi \ \ N_{cb} \geq N_{ua}$ $A_{Nc} \ \ \ see \ ACI \ 318-19, \ Section \ 17.6.2.1, \ Fig. \ R \ 17.6.2.1(b)$ ACI 318-19 Table 17.5.2

 $A_{Nc0} = 9 h_{ef}^2$ ACI 318-19 Eq. (17.6.2.1.4)

ACI 318-19 Eq. (17.6.2.4.1b)

$$\begin{split} \psi_{\text{ed,N}} &= 0.7 + 0.3 \left(\frac{c_{a,\text{min}}}{1.5h_{\text{ef}}}\right) \leq 1.0 \\ \psi_{\text{cp,N}} &= \text{MAX} \left(\frac{c_{a,\text{min}}}{c_{\text{ac}}}, \frac{1.5h_{\text{ef}}}{c_{\text{ac}}}\right) \leq 1.0 \\ N_b &= k_c \ \lambda_a \ \sqrt{f_c} \ h_{\text{ef}}^{1.5} \end{split}$$
ACI 318-19 Eq. (17.6.2.6.1b)

ACI 318-19 Eq. (17.6.2.2.1)

Variables

h _{ef} [in.]	c _{a,min} [in.]	$\psi_{c,N}$	c _{ac} [in.]	k _c	λ _a	f _c [psi]
9.000	9.000	1.000	18.751	17	1.000	3.500

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\psi_{\text{ ed,N}}$	$\Psi_{\text{cp,N}}$	N _b [lb]
486.00	729.00	0.900	1.000	27.155

Results

N _{cb} [lb]	φ concrete	φ N _{cb} [lb]	N _{ua} [lb]
16,293	0.650	10,590	10,136

v	v	w	w	ŀ	۱iI	ti	c	om
¥	A.	٧V	٧v			u.	v	,,,,

 Company:
 Page:
 6

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 Concrete - Jul 19, 2023 (1)
 Date:
 7/28/2023

 Fastening point:
 7/28/2023

4 Shear load

	Load V _{ua} [lb]	Capacity V _n [lb]	Utilization $\beta_V = V_{ua}/\Phi V_n$	Status
Steel Strength*	N/A	N/A	N/A	N/A
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Bond Strength controls)*	N/A	N/A	N/A	N/A
Concrete edge failure in direction **	N/A	N/A	N/A	N/A

^{*} highest loaded anchor **anchor group (relevant anchors)

5 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-19, Section 26.7.

Fastening meets the design criteria!

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Concrete - Jul 19, 2023 (1) Date: 7/28/2023

Anchor type and diameter: HIT-HY 200 V3 + HAS-V-36

Item number: not available (element) / 2334276 HIT-HY

(ASTM F1554 Gr.36) 7/8

Maximum installation torque: 1,500 in.lb

200-R V3 (adhesive)

Fastening point:

6 Installation data

Profile:
Hole diameter in the fixture: -

Plate thickness (input):
Hole diameter in the base material: 1.000 in.

Hole depth in the base material: 9.000 in.

Drilling method: Hammer drilled

Minimum thickness of the base material: 11.000 in.

Cleaning: Compressed air cleaning of the drilled hole according to instructions

for use is required

7/8 Hilti HAS Carbon steel threaded rod with Hilti HIT-HY 200 V3 Safe Set System

6.1 Recommended accessories

Drilling
Cleaning
Setting

Clumpressed air with required accessories
Dispenser including cassette and mixer
Dispenser including cassette and mixer
Dispenser including cassette and mixer
Torque wrench
Proper diameter wire brush

Coordinates Anchor in.

Anchor	X	У	С _{-х}	C _{+x}	C _{-y}	C _{+y}	
1	0.000	0.000	36.000	36.000	9.000	9.000	

www	hi	lti	ററ	m

Company:		Page:	3
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Jul 19, 2023 (1)	Date:	7/28/2023
Fastening point:			

7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

www.hilti.com

Company: Page: Specifier: Address: Phone I Fax: E-Mail:

Design: Concrete - Jul 19, 2023 Date: 7/28/2023

Fastening point:

Specifier's comments:

1 Input data

Anchor type and diameter: HIT-HY 200 V3 + HAS-E-55 (ASTM F1554 Gr.55) 7/8

Item number: 2198007 HAS-E-55 7/8"x10" (element) / 2334276 HIT-HY

200-R V3 (adhesive)

 $h_{ef.act}$ = 7.500 in. ($h_{ef,limit}$ = - in.) Effective embedment depth:

Material: ASTM F1554 Grade 55

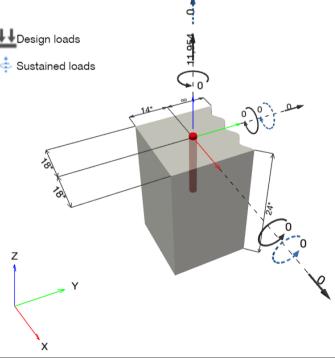
Evaluation Service Report: ESR-4868

Issued I Valid: 11/1/2022 | 11/1/2024

Proof: Design Method ACI 318-19 / Chem

Stand-off installation:

Profile:


Base material: cracked concrete, Custom, f_c' = 3,500 psi; h = 24.000 in., Temp. short/long: 32/32 °F

Installation: hammer drilled hole, Installation condition: Dry

Reinforcement: tension: not present, shear: not present; no supplemental splitting reinforcement present

edge reinforcement: > No. 4 bar with stirrups

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2023 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Concrete - Jul 19, 2023 Date: 7/28/2023

Fastening point:

1.1 Design results

Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	$N = 11,954; V_x = 0; V_y = 0;$	no	90
		$M_x = 0$; $M_y = 0$; $M_z = 0$;		

2 Load case/Resulting anchor forces

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor	Tension force	Shear force	Shear force x	Shear force y
1	11,954	0	0	0

 $\begin{tabular}{ll} max. concrete compressive strain: & - [\%] \\ max. concrete compressive stress: & - [psi] \\ resulting tension force in (x/y)=(0.000/0.000): & 0 [lb] \\ resulting compression force in (x/y)=(0.000/0.000): & 0 [lb] \\ \end{tabular}$

3 Tension load

	Load N _{ua} [lb]	Capacity • N _n [lb]	Utilization $\beta_N = N_{ua}/\Phi N_n$	Status
Steel Strength*	11,954	25,973	47	OK
Bond Strength**	11,954	17,879	67	OK
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	11,954	13,427	90	OK

^{*} highest loaded anchor **anchor group (anchors in tension)

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Concrete - Jul 19, 2023 Date: 7/28/2023

Fastening point:

3.1 Steel Strength

 $\begin{array}{ll} {\rm N_{sa}} & = {\rm ESR} \ {\rm value} & {\rm refer} \ {\rm to} \ {\rm ICC\text{-}ES} \ {\rm ESR\text{-}4868} \\ \phi \ {\rm N_{sa}} \ge {\rm N_{ua}} & {\rm ACI} \ {\rm 318\text{-}19} \ {\rm Table} \ {\rm 17.5.2} \end{array}$

Variables

A_{se,N} [in.²] f_{uta} [psi] 0.46 75,000

Calculations

N_{sa} [lb] 34,630

Results

 $\frac{N_{sa} [lb]}{34,630}$ $\frac{\phi}{steel}$ $\frac{\phi}{N_{sa} [lb]}$ $\frac{N_{ua} [lb]}{11,954}$

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: E-Mail:

Design: Concrete - Jul 19, 2023 Date: 7/28/2023

Fastening point:

3.2 Bond Strength

N_a	$= \left(\frac{A_{\text{Na}}}{A_{\text{Na0}}}\right) \psi_{\text{ed,Na}} \psi_{\text{cp,Na}} N_{\text{ba}}$	ACI 318-19 Eq. (17.6.5.1a)
	≥ N _{ua}	ACI 318-19 Table 17.5.2

see ACI 318-19, Section 17.6.5.1, Fig. R 17.6.5.1(b)

$$A_{Na0} = (2 c_{Na})^2$$
 ACI 318-19 Eq. (17.6.5.1.2a)
 $c_{Na} = 10 d_a \sqrt{\frac{\tau_{uncr}}{1100}}$ ACI 318-19 Eq. (17.6.5.1.2b)

$$\psi_{\text{ed,Na}} = 0.7 + 0.3 \left(\frac{c_{\text{a,min}}}{c_{\text{Na}}} \right) \le 1.0$$
 ACI 318-19 Eq. (17.6.5.4.1b)

$$\begin{split} \psi_{\text{ed,Na}} &= 0.7 + 0.3 \left(\frac{c_{\text{a,min}}}{c_{\text{Na}}}\right) \leq 1.0 \\ \psi_{\text{cp,Na}} &= \text{MAX} \left(\frac{c_{\text{a,min}}}{c_{\text{ac}}}, \frac{c_{\text{Na}}}{c_{\text{ac}}}\right) \leq 1.0 \\ N_{\text{ba}} &= \lambda_{\text{a}} \cdot \tau_{\text{k,c}} \cdot \pi \cdot d_{\text{a}} \cdot h_{\text{ef}} \end{split} \qquad \qquad \begin{aligned} &\text{ACI 318-19 Eq. (17.6.5.2.1)} \\ &\text{ACI 318-19 Eq. (17.6.5.2.1)} \end{aligned}$$

Variables

τ _{k,c,uncr} [psi]	d _a [in.]	h _{ef} [in.]	c _{a,min} [in.]	$\alpha_{ m overhead}$	τ _{k,c} [psi]
2,296	0.875	7.500	14.000	1.000	1,334
c _{ac} [in.]	λ_a				
11.367	1.000	_			

Calculations

c _{Na} [in.]	A _{Na} [in. ²]	A _{Na0} [in. ²]	Ψ _{ed,Na}
12.584	633.46	633.46	1.000
$\Psi_{\text{cp,Na}}$	N _{ba} [lb]	_	
1.000	27,506		

Results

N _a [lb]	ϕ_{bond}	φ N _a [lb]	N _{ua} [lb]
27,506	0.650	17,879	11,954

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: E-Mail:

Design: Concrete - Jul 19, 2023 Date: 7/28/2023

Fastening point:

3.3 Concrete Breakout Failure

 $N_{\text{cb}} = \left(\frac{A_{\text{Nc}}}{A_{\text{Nc0}}}\right) \; \psi_{\; \text{ed}, N} \; \psi_{\text{c}, N} \; \psi_{\text{cp}, N} \; N_{\text{b}} \label{eq:Ncb}$ ACI 318-19 Eq. (17.6.2.1a) ACI 318-19 Table 17.5.2

 $\phi \ \ N_{cb} \geq N_{ua}$ $A_{Nc} \ \ \ see \ ACI \ 318-19, \ Section \ 17.6.2.1, \ Fig. \ R \ 17.6.2.1(b)$

 $A_{Nc0} = 9 h_{ef}^2$ ACI 318-19 Eq. (17.6.2.1.4)

$$\begin{split} \psi_{\text{ed,N}} &= 0.7 + 0.3 \left(\frac{c_{a,\text{min}}}{1.5h_{\text{ef}}}\right) \leq 1.0 \\ \psi_{\text{cp,N}} &= \text{MAX} \left(\frac{c_{a,\text{min}}}{c_{\text{ac}}}, \frac{1.5h_{\text{ef}}}{c_{\text{ac}}}\right) \leq 1.0 \\ N_b &= k_c \ \lambda_a \ \sqrt{f_c} \ h_{\text{ef}}^{1.5} \end{split}$$
ACI 318-19 Eq. (17.6.2.4.1b)

ACI 318-19 Eq. (17.6.2.6.1b)

ACI 318-19 Eq. (17.6.2.2.1)

Variables

h _{ef} [in.]	c _{a,min} [in.]	$\psi_{c,N}$	c _{ac} [in.]	k _c	λ _a	f _c [psi]
7.500	14.000	1.000	11.367	17	1.000	3,500

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\psi_{\text{ ed},N}$	$\psi_{\text{cp,N}}$	N _b [lb]
506.25	506.25	1.000	1.000	20.657

Results

N _{cb} [lb]	φ concrete	φ N _{cb} [lb]	N _{ua} [lb]
20,657	0.650	13,427	11,954

www.	hilti.	com

 Company:
 Page:
 6

 Address:
 Specifier:

 Phone I Fax:
 |
 E-Mail:

 Design:
 Concrete - Jul 19, 2023
 Date:
 7/28/2023

 Fastening point:
 Transport
 7/28/2023

4 Shear load

	Load V _{ua} [lb]	Capacity ϕ V _n [lb]	Utilization $\beta_V = V_{ua}/\Phi V_n$	Status
Steel Strength*	N/A	N/A	N/A	N/A
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Bond Strength controls)*	N/A	N/A	N/A	N/A
Concrete edge failure in direction **	N/A	N/A	N/A	N/A

^{*} highest loaded anchor **anchor group (relevant anchors)

5 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-19, Section 26.7

Fastening meets the design criteria!

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Concrete - Jul 19, 2023 Date: 7/28/2023
Fastening point:

Anchor type and diameter: HIT-HY 200 V3 + HAS-E-55

Item number: 2198007 HAS-E-55 7/8"x10" (element) /

(ASTM F1554 Gr.55) 7/8

2334276 HIT-HY 200-R V3 (adhesive)

Maximum installation torque: 1,500 in.lb

Hole diameter in the base material: 1.000 in. Hole depth in the base material: 7.500 in.

Minimum thickness of the base material: 9.500 in.

6 Installation data

Profile: -

Hole diameter in the fixture: Plate thickness (input): -

Drilling method: Hammer drilled Cleaning: Compressed air cleaning of the drilled hole according to instructions

for use is required

7/8 Hilti HAS Carbon steel threaded rod with Hilti HIT-HY 200 V3 Safe Set System

6.1 Recommended accessories

Drilling
Cleaning
Setting

• Suitable Rotary Hammer
• Properly sized drill bit
Cleaning
Cleaning
Setting
• Dispenser including cassette and mixer
• Dispenser including cassette and mixer
• Torque wrench
• Proper diameter wire brush

Coordinates Anchor in.

Anchor	X	У	С _{-х}	C _{+x}	С _{-у}	C _{+y}
1	0.000	0.000	18.000	18.000	14.000	-

www	hi	lti	ററ	m

Company:		Page:	3
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Jul 19, 2023	Date:	7/28/2023
Fastening point:			

7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Concrete - Jul 19, 2023 (1) Date: 7/28/2023
Fastening point:

Specifier's comments:

1 Input data

Anchor type and diameter: HIT-HY 200 V3 + HAS-V-36 (ASTM F1554 Gr.36) 1

Item number: 2198033 HAS-V-36 1"x12" (element) / 2334276 HIT-HY

200-R V3 (adhesive)

Effective embedment depth: $h_{ef,act} = 9.000 \text{ in. } (h_{ef,limit} = - \text{ in.})$

Material: ASTM F1554 Grade 36

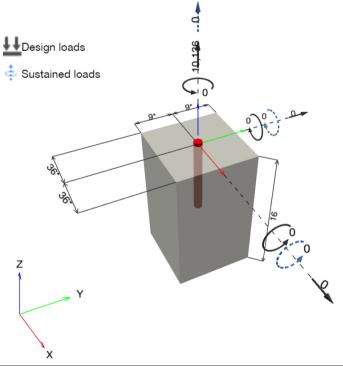
Evaluation Service Report: ESR-4868

Issued I Valid: 11/1/2022 | 11/1/2024

Proof: Design Method ACI 318-19 / Chem

Stand-off installation:

Profile:


Base material: cracked concrete, Custom, f_c' = 3,500 psi; h = 16.000 in., Temp. short/long: 32/32 °F

Installation: hammer drilled hole, Installation condition: Dry

Reinforcement: tension: not present, shear: not present; no supplemental splitting reinforcement present

edge reinforcement: none or < No. 4 bar

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2023 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Concrete - Jul 19, 2023 (1) Date: 7/28/2023
Fastening point:

1.1 Design results

2 Load case/Resulting anchor forces

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y

1 10,136 0 0 0

 $\begin{tabular}{ll} max. concrete compressive strain: & - [\%] \\ max. concrete compressive stress: & - [psi] \\ resulting tension force in (x/y)=(0.000/0.000): & 0 [lb] \\ resulting compression force in (x/y)=(0.000/0.000): & 0 [lb] \\ \end{tabular}$

3 Tension load

	Load N _{ua} [lb]	Capacity ♥ N _n [lb]	Utilization $\beta_N = N_{ua}/\Phi N_n$	Status
Steel Strength*	10,136	26,348	39	OK
Bond Strength**	10,136	13,991	73	OK
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	10,136	10,590	96	OK

^{*} highest loaded anchor **anchor group (anchors in tension)

www.hilti.com

Company:
Address:
Phone I Fax:

Page:
Specifier:
E-Mail:

Design: Concrete - Jul 19, 2023 (1) Date: 7/28/2023

Fastening point:

3.1 Steel Strength

 $m N_{sa} = ESR \ value \qquad refer \ to \ ICC-ES \ ESR-4868 \ \\ \phi \ N_{sa} \geq N_{ua} \qquad ACI \ 318-19 \ Table \ 17.5.2 \$

Variables

A_{se,N} [in.²] f_{uta} [psi] 0.61 58,000

Calculations

N_{sa} [lb] 35,130

Results

 $\frac{N_{sa} \text{ [lb]}}{35,130}$ $\frac{\phi}{\text{steel}}$ $\frac{\phi}{\text{N}_{sa} \text{ [lb]}}$ $\frac{N_{ua} \text{ [lb]}}{10,136}$

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: E-Mail:

Design: Concrete - Jul 19, 2023 (1) Date: 7/28/2023

Fastening point:

3.2 Bond Strength

N_a	$= \left(\frac{A_{Na}}{A_{Na0}}\right) \psi_{ed,Na} \psi_{cp,Na} N_{ba}$	ACI 318-19 Eq. (17.6.5.1a)
	$\geq N_{ua}$	ACI 318-19 Table 17.5.2
A_{Na}	see ACI 318-19, Section 17.6.5.1, Fig. R 17.6.5.1(b)	
	2	

$$\begin{array}{lll} A_{\text{Na}} & \text{see Act 316-19}, \text{ Section 17.0.5.1, Fig. 17.10.5.1(b)} \\ A_{\text{Na}0} & = \left(2 \, c_{\text{Na}}\right)^2 & \text{ACI 318-19 Eq. (17.6.5.1.2a)} \\ c_{\text{Na}} & = 10 \, d_{\text{a}} \, \sqrt{\frac{\tau_{\text{uncr}}}{1100}} & \text{ACI 318-19 Eq. (17.6.5.1.2b)} \\ \psi_{\text{ed,Na}} & = 0.7 + 0.3 \left(\frac{c_{\text{a,min}}}{c_{\text{Na}}}\right) \leq 1.0 & \text{ACI 318-19 Eq. (17.6.5.4.1b)} \\ \psi_{\text{cp,Na}} & = \text{MAX} \left(\frac{c_{\text{a,min}}}{c_{\text{ac}}}, \frac{c_{\text{Na}}}{c_{\text{ac}}}\right) \leq 1.0 & \text{ACI 318-19 Eq. (17.6.5.5.1b)} \\ N_{\text{ba}} & = \lambda_{\text{a}} \cdot \tau_{\text{k,c}} \cdot \pi \cdot d_{\text{a}} \cdot h_{\text{ef}} & \text{ACI 318-19 Eq. (17.6.5.2.1)} \end{array}$$

$$\psi_{\text{ed,Na}} = 0.7 + 0.3 \left(\frac{c_{\text{a,min}}}{c_{\text{Na}}} \right) \le 1.0$$
 ACI 318-19 Eq. (17.6.5.4.1b)

$$\psi_{cp,Na} = \text{MAX} \left(\frac{c_{a,min}}{c_{ac}}, \frac{c_{Na}}{c_{ac}} \right) \leq 1.0$$
 ACI 318-19 Eq. (17.6.5.5.1b)
$$N_{ba} = \lambda_a \cdot \tau_{k,c} \cdot \pi \cdot d_a \cdot h_{ef}$$
 ACI 318-19 Eq. (17.6.5.2.1)

Variables

τ _{k,c,uncr} [psi]	d _a [in.]	h _{ef} [in.]	c _{a,min} [in.]	$lpha_{ ext{overhead}}$	τ _{k,c} [psi]
2,296	1.000	9.000	9.000	1.000	1,370
c _{ac} [in.]	λ _a				
17.775	1.000	_			

Calculations

c _{Na} [in.]	A _{Na} [in. ²]	A_{Na0} [in. ²]	Ψ _{ed,Na}
14.382	517.75	827.38	0.888
ψ _{cp,Na}	N _{ba} [lb]		
1.000	38,745		

Results

N _a [lb]	ϕ_{bond}	φ N _a [lb]	N _{ua} [lb]	
21,524	0.650	13,991	10,136	

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: E-Mail:

Design: Concrete - Jul 19, 2023 (1) Date: 7/28/2023

Fastening point:

3.3 Concrete Breakout Failure

 $N_{\text{cb}} = \left(\frac{A_{\text{Nc}}}{A_{\text{Nc0}}}\right) \; \psi_{\; \text{ed}, N} \; \psi_{\text{c}, N} \; \psi_{\text{cp}, N} \; N_{\text{b}} \label{eq:Ncb}$ ACI 318-19 Eq. (17.6.2.1a)

 $\phi \ \ N_{cb} \geq N_{ua}$ $A_{Nc} \ \ \ see \ ACI \ 318-19, \ Section \ 17.6.2.1, \ Fig. \ R \ 17.6.2.1(b)$ ACI 318-19 Table 17.5.2

 $A_{Nc0} = 9 h_{ef}^2$ ACI 318-19 Eq. (17.6.2.1.4)

$$\begin{split} \psi_{\text{ed,N}} &= 0.7 + 0.3 \left(\frac{c_{a,\text{min}}}{1.5h_{\text{ef}}}\right) \leq 1.0 \\ \psi_{\text{cp,N}} &= \text{MAX} \left(\frac{c_{a,\text{min}}}{c_{\text{ac}}}, \frac{1.5h_{\text{ef}}}{c_{\text{ac}}}\right) \leq 1.0 \\ N_b &= k_c \ \lambda_a \ \sqrt{f_c} \ h_{\text{ef}}^{1.5} \end{split}$$
ACI 318-19 Eq. (17.6.2.4.1b)

ACI 318-19 Eq. (17.6.2.6.1b)

ACI 318-19 Eq. (17.6.2.2.1)

Variables

h _{ef} [in.]	c _{a,min} [in.]	$\Psi_{\text{c,N}}$	c _{ac} [in.]	k _c	λ _a	f _c [psi]
9.000	9.000	1.000	17.775	17	1.000	3,500

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\psi_{\text{ ed,N}}$	$\Psi_{\text{cp,N}}$	N _b [lb]
486.00	729.00	0.900	1.000	27.155

Results

N _{cb} [lb]	φ concrete	φ N _{cb} [lb]	N _{ua} [lb]
16,293	0.650	10,590	10,136

www.hi	IITI	.co	m
--------	------	-----	---

Company:		Page:	6
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Jul 19, 2023 (1)	Date:	7/28/2023
Fastening point:	,		

4 Shear load

	Load V _{ua} [lb]	Capacity ♥ V _n [lb]	Utilization $\beta_V = V_{ua}/\Phi V_n$	Status
Steel Strength*	N/A	N/A	N/A	N/A
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Bond Strength controls)*	N/A	N/A	N/A	N/A
Concrete edge failure in direction **	N/A	N/A	N/A	N/A

^{*} highest loaded anchor **anchor group (relevant anchors)

5 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-19, Section 26.7.

Fastening meets the design criteria!

www.hilti.com

Fastening point:

Company:
Address:
Phone I Fax:

Design: Concrete - Jul 19, 2023 (1)

Page: Specifier: E-Mail: Date:

7/28/2023

6 Installation data

Profile: -

Hole diameter in the fixture: - Plate thickness (input): -

Drilling method: Hammer drilled

Cleaning: Compressed air cleaning of the drilled hole according to instructions

for use is required

Anchor type and diameter: HIT-HY 200 V3 + HAS-V-36

(ASTM F1554 Gr.36) 1

Item number: 2198033 HAS-V-36 1"x12" (element) /

2334276 HIT-HY 200-R V3 (adhesive)

Maximum installation torque: 1,800 in.lb

Hole diameter in the base material: 1.125 in.

Hole depth in the base material: 9.000 in.

Minimum thickness of the base material: 11.250 in.

1 Hilti HAS Carbon steel threaded rod with Hilti HIT-HY 200 V3 Safe Set System

6.1 Recommended accessories

Drilling
Cleaning
Setting

Cleaning
Cleaning
Cleaning
Drilling
Cleaning
Cleaning
Cleaning
Drilling
Drilling
Cleaning
Cleaning
Dispenser including cassette and mixer
Dispenser including cassette and mixer
Torque wrench
Proper diameter wire brush

Coordinates Anchor in.

Anchor	X	У	C _{-x}	C _{+x}	c _{-y}	c _{+y}	
1	0.000	0.000	36.000	36.000	9.000	9.000	

www	hi	lti	റവ	m

Company:		Page:	3
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Jul 19, 2023 (1)	Date:	7/28/2023
Fastening point:	. ,		

7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Concrete - Jul 19, 2023 Date: 7/28/2023
Fastening point:

Specifier's comments:

1 Input data

Anchor type and diameter: HIT-HY 200 V3 + HAS-E-55 (ASTM F1554 Gr.55) 1

Item number: 2198009 HAS-E-55 1"x12" (element) / 2334276 HIT-HY

200-R V3 (adhesive)

Effective embedment depth: $h_{ef,act} = 7.500 \text{ in. } (h_{ef,limit} = - \text{ in.})$

Material: ASTM F1554 Grade 55

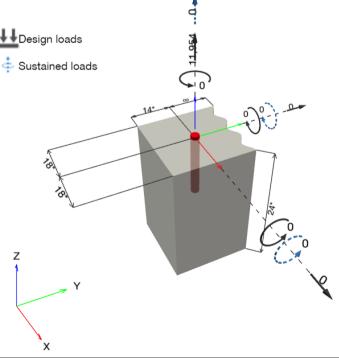
Evaluation Service Report: ESR-4868

Issued I Valid: 11/1/2022 | 11/1/2024

Proof: Design Method ACI 318-19 / Chem

Stand-off installation:

Profile:


Base material: cracked concrete, Custom, f_c' = 3,500 psi; h = 24.000 in., Temp. short/long: 32/32 °F

Installation: hammer drilled hole, Installation condition: Dry

Reinforcement: tension: not present, shear: not present; no supplemental splitting reinforcement present

edge reinforcement: > No. 4 bar with stirrups

Geometry [in.] & Loading [lb, in.lb]

Input data and results must be checked for conformity with the existing conditions and for plausibility! PROFIS Engineering (c) 2003-2023 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: E-Mail:

Design: Concrete - Jul 19, 2023 Date: 7/28/2023

Fastening point:

1.1 Design results

2 Load case/Resulting anchor forces

Anchor reactions [lb]

Tension force: (+Tension, -Compression)

Anchor Tension force Shear force Shear force x Shear force y

1 11.954 0 0 0

 $\begin{tabular}{ll} max. concrete compressive strain: & - [\%] \\ max. concrete compressive stress: & - [psi] \\ resulting tension force in (x/y)=(0.000/0.000): & 0 [lb] \\ resulting compression force in (x/y)=(0.000/0.000): & 0 [lb] \\ \end{tabular}$

3 Tension load

	Load N _{ua} [lb]	Capacity P N _n [lb]	Utilization $\beta_N = N_{ua}/\Phi N_n$	Status
Steel Strength*	11,954	34,072	36	OK
Bond Strength**	11,954	20,543	59	OK
Sustained Tension Load Bond Strength*	N/A	N/A	N/A	N/A
Concrete Breakout Failure**	11,954	13,427	90	OK

^{*} highest loaded anchor **anchor group (anchors in tension)

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Concrete - Jul 19, 2023 Date: 7/28/2023

Fastening point:

3.1 Steel Strength

 $\begin{array}{ll} {\rm N_{sa}} & = {\rm ESR} \ {\rm value} & {\rm refer} \ {\rm to} \ {\rm ICC\text{-}ES} \ {\rm ESR\text{-}4868} \\ \phi \ {\rm N_{sa}} \ge {\rm N_{ua}} & {\rm ACI} \ {\rm 318\text{-}19} \ {\rm Table} \ {\rm 17.5.2} \end{array}$

Variables

A_{se,N} [in.²] f_{uta} [psi] 0.61 75,000

Calculations

N_{sa} [lb] 45,430

Results

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:

Design: Concrete - Jul 19, 2023 Date: 7/28/2023

Fastening point:

3.2 Bond Strength

N_a	$= \left(\frac{A_{\text{Na}}}{A_{\text{Na0}}}\right) \Psi_{\text{ed,Na}} \Psi_{\text{cp,Na}} N_{\text{ba}}$	ACI 318-19 Eq. (17.6.5.1a)
	≥ N _{ua}	ACI 318-19 Table 17.5.2
A_{Na}	see ACI 318-19, Section 17.6.5.1, Fig. R 17.6.5.1(b)	

$$A_{\text{Na0}} = (2 \text{ c}_{\text{Na}})^2$$
 ACI 318-19 Eq. (17.6.5.1.2a)
$$c_{\text{Na}} = 10 \text{ d}_{\text{a}} \sqrt{\frac{\tau_{\text{uncr}}}{1100}}$$
 ACI 318-19 Eq. (17.6.5.1.2b)

$$\psi_{\text{ed,Na}} = 0.7 + 0.3 \left(\frac{c_{\text{a,min}}}{c_{\text{Na}}} \right) \le 1.0$$
 ACI 318-19 Eq. (17.6.5.4.1b)

$$\psi_{cp,Na} = \text{MAX} \left(\frac{c_{a,min}}{c_{ac}}, \frac{c_{Na}}{c_{ac}} \right) \leq 1.0$$
 ACI 318-19 Eq. (17.6.5.5.1b)
$$N_{ba} = \lambda_a \cdot \tau_{k,c} \cdot \pi \cdot d_a \cdot h_{ef}$$
 ACI 318-19 Eq. (17.6.5.2.1)

Variables

τ _{k,c,uncr} [psi]	d _a [in.]	h _{ef} [in.]	c _{a,min} [in.]	$\alpha_{\sf overhead}$	τ _{k,c} [psi]
2,296	1.000	7.500	14.000	1.000	1,370
c _{ac} [in.]	λ_{a}				

Calculations

10.776

c _{Na} [in.]	A _{Na} [in. ²]	A _{Na0} [in. ²]	$\psi_{\text{ ed,Na}}$
14.382	816.39	827.38	0.992
$\psi_{cp,Na}$	N _{ba} [lb]	_	
1.000	32,288	-	

1.000

Results

N _a [lb]	ϕ_{bond}	φ N _a [lb]	N _{ua} [lb]	
31,605	0.650	20,543	11,954	

www.hilti.com

Company: Page: Address: Specifier: Phone I Fax: E-Mail:

Design: Concrete - Jul 19, 2023 Date: 7/28/2023 Fastening point:

3.3 Concrete Breakout Failure

 $N_{\text{cb}} = \left(\frac{A_{\text{Nc}}}{A_{\text{Nc0}}}\right) \; \psi_{\; \text{ed}, N} \; \psi_{\text{c}, N} \; \psi_{\text{cp}, N} \; N_{\text{b}} \label{eq:Ncb}$ ACI 318-19 Eq. (17.6.2.1a) $\langle N_{co} \rangle$ $\langle N_{cb} \rangle N_{ua}$ $\langle N_{cb} \rangle N_{ua}$ $\langle N_{cb} \rangle N_{cb}$ see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b) ACI 318-19 Table 17.5.2

 $A_{Nc0} = 9 h_{ef}^2$ ACI 318-19 Eq. (17.6.2.1.4)

ACI 318-19 Eq. (17.6.2.4.1b)

$$\begin{split} \psi_{\text{ed,N}} &= 0.7 + 0.3 \left(\frac{c_{a,\text{min}}}{1.5h_{\text{ef}}}\right) \leq 1.0 \\ \psi_{\text{cp,N}} &= \text{MAX} \left(\frac{c_{a,\text{min}}}{c_{\text{ac}}}, \frac{1.5h_{\text{ef}}}{c_{\text{ac}}}\right) \leq 1.0 \\ N_b &= k_c \ \lambda_a \ \sqrt{f_c} \ h_{\text{ef}}^{1.5} \end{split}$$
ACI 318-19 Eq. (17.6.2.6.1b)

ACI 318-19 Eq. (17.6.2.2.1)

Variables

h _{ef} [in.]	c _{a,min} [in.]	$\psi_{c,N}$	c _{ac} [in.]	k _c	λ _a	f _c [psi]
7.500	14.000	1.000	10.776	17	1.000	3,500

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\psi_{\text{ ed},N}$	$\psi_{\text{cp,N}}$	N _b [lb]
506.25	506.25	1.000	1.000	20.657

Results

N _{cb} [lb]	φ concrete	φ N _{cb} [lb]	N _{ua} [lb]
20,657	0.650	13,427	11,954

www.hi	IITI	.co	m
--------	------	-----	---

Company:		Page:	
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Jul 19, 2023	Date:	7/28/2023
Fastening point:			

4 Shear load

	Load V _{ua} [lb]	Capacity V _n [lb]	Utilization $\beta_V = V_{ua}/\Phi V_n$	Status
Steel Strength*	N/A	N/A	N/A	N/A
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength (Bond Strength controls)*	N/A	N/A	N/A	N/A
Concrete edge failure in direction **	N/A	N/A	N/A	N/A

^{*} highest loaded anchor **anchor group (relevant anchors)

5 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- Design Strengths of adhesive anchor systems are influenced by the cleaning method. Refer to the INSTRUCTIONS FOR USE given in the Evaluation Service Report for cleaning and installation instructions.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/
- Installation of Hilti adhesive anchor systems shall be performed by personnel trained to install Hilti adhesive anchors. Reference ACI 318-19, Section 26.7.

Fastening meets the design criteria!

www.hilti.com

Company: Page:
Address: Specifier:
Phone I Fax: | E-Mail:
Design: Concrete - Jul 19, 2023 Date:

Design: Concrete - Jul 19, 2023 Date: 7/28/2023
Fastening point:

6 Installation data

Profile: -

Hole diameter in the fixture: -Plate thickness (input): -

Drilling method: Hammer drilled

Cleaning: Compressed air cleaning of the drilled hole according to instructions for use is required

1 Hilti HAS Carbon steel threaded rod with Hilti HIT-HY 200 V3 Safe Set System

Anchor type and diameter: HIT-HY 200 V3 + HAS-E-55

(ASTM F1554 Gr.55) 1

Item number: 2198009 HAS-E-55 1"x12" (element) /

2334276 HIT-HY 200-R V3 (adhesive)

Maximum installation torque: 1,800 in.lb

Hole diameter in the base material: 1.125 in.

Hole depth in the base material: 7.500 in.

Minimum thickness of the base material: 9.750 in.

6.1 Recommended accessories

Drilling Cleaning Setting

• Suitable Rotary Hammer
• Properly sized drill bit

Cleaning Setting

• Dispenser including cassette and mixer
• Dispenser including cassette and mixer
• Torque wrench

· Proper diameter wire brush

Coordinates Anchor in.

Anchor	X	У	C _{-x}	C+x	c _{-y}	C _{+y}
1	0.000	0.000	18.000	18.000	14.000	-

www	hi	lti	റവ	m

Company:		Page:	3
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Jul 19, 2023	Date:	7/28/2023
Fastening point:			

7 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

CMU

Current Date: 8/1/2023 11:54 AM

Units system: English

File name: G:\2023\23-283 Wood Spring Suites - Lee's Summit, MO\Calculations\G - CMU\cmu elevator wall-door.msw

Design Results

Masonry wall

GENERAL INFORMATION:

Global status : OK

Design code : TMS 402-11 ASD

Geometry:

Total height : 516.38 [in]
Total length : 119.25 [in]
Base support type : Continuous
Wall bottom restraint : Pinned
Column bottom restraint : Pinned
Rigidity elements : Columns

Materials:

CMU 1.5-60 Material Mortar type Port/Mort - M/S Grouting type Partial grouting Mortar bed type Full bed Masonry compression strength (F`m) 216000 [Lb/ft2] Steel tension strength (fy) 8.64E06 [Lb/ft2] Steel allowable tension strength (Fs) 4.608E06 [Lb/ft2] Joint reinforcement allowable tension strength (Fs) 4.32E06 [Lb/ft2] Steel elasticity modulus (Es) 4.176E09 [Lb/ft2] Masonry elasticity modulus (Em) 1.944E08 [Lb/ft2] Masonry unit weight 135 [Lb/ft3]

Number of stories: 5

Story	Story height [in]	Wall thickness [in]	Effective unit weight [Lb/ft3]
1	48.00	7.63	98.80
2	114.62	7.63	98.80
3	113.88	7.63	98.80
4	113.88	7.63	98.80
5	120.00	5.63	100.18

Openings:

Reference	X Coordinate [in]	Y Coordinate [in]	Width [in]	Height [in]
Lower left	18.12	48.00	47.04	92.04
Lower left	18.12	162.60	47.04	92.04
Lower left	18.12	276.48	47.04	92.04
Lower left	18.12	390.36	47.04	92.04

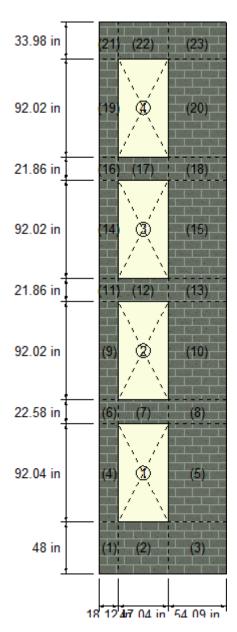
Load conditions:

ID	Comb.	Category	Description
DL	No	 DL	Dead Load
LL	No	LL	Live Load
W	No	WIND	Wind Load
S	No	SNOW	Snow Load
E	No	EARTH	Earth Pressure Load
EQ	No	EQ	Seismic
D1	Yes		DL
D2	Yes		DL+LL
D3	Yes		DL+LL+E
D4	Yes		DL+LL+0.6E
D5	Yes		DL+S
D6	Yes		DL+0.75LL
D7	Yes		DL+0.75S
D8	Yes		DL+0.75LL+0.75S
D9	Yes		DL+0.6W
D10	Yes		DL+0.7EQ
D11	Yes		DL+0.75LL+0.45W+0.75S
D12	Yes		DL+0.525EQ
D13	Yes		DL+0.75S
D14	Yes		DL+0.525EQ+0.75S
D15	Yes		0.6DL+0.6W
D16	Yes		0.6DL+0.6W+E
D17	Yes		0.6DL+0.6W+0.6E
D18	Yes		0.6DL+0.7EQ
D19	Yes		0.6DL+0.7EQ+E
D20	Yes		0.6DL+0.7EQ+0.6E
S1	Yes		DL SINE WAS SIDE
S2	Yes		DL+LL
S3	Yes		DL+LL+E
S4	Yes		DL+LL+0.6E
S5	Yes		DL+S
S6	Yes		DL+0.75LL
S7	Yes		DL+0.75S
S8	Yes		DL+0.75LL+0.75S
S9	Yes		DL+0.6W
S10	Yes		DL+0.7EQ
S11	Yes		DL+0.75LL+0.45W+0.75S
S12	Yes		DL+0.525EQ
S13	Yes		DL+0.75S
S14	Yes		DL+0.525EQ+0.75S
S15	Yes		0.6DL+0.6W
S16	Yes		0.6DL+0.6W+E
S17	Yes		0.6DL+0.6W+0.6E
S18	Yes		0.6DL+0.7EQ
S19	Yes		0.6DL+0.7EQ+E
S20	Yes		0.6DL+0.7EQ+0.6E
520	100		0.02E · 0.1 E Q · 0.0E

Distributed loads:

Consider self weight : DL

Story	Condition	Direction	Magnitude [Lb/ft]	Eccentricity [in]
1	DL	Vertical	135.00	3.81
1	LL	Vertical	375.00	3.81
2	DL	Vertical	135.00	3.81
2	LL	Vertical	375.00	3.81
3	DL	Vertical	135.00	3.81
3	LL	Vertical	375.00	3.81
4	DL	Vertical	135.00	3.81


4	LL	Vertical	375.00	3.81	
5	DL	Vertical	135.00	3.81	
5	LL	Vertical	375.00	3.81	
2	W	Horizontal	6.00	0.00	
3	W	Horizontal	13.00	0.00	
4	W	Horizontal	20.00	0.00	
5	W	Horizontal	27.00	0.00	

Out-of-plane loads:

Story	Condition	Magnitude [Kip/ft2]
1	E	0.41
2	W	-0.01
3	W	-0.01
4	W	-0.01
5	W	-0.01
Parapet	W	-0.01

BEARING WALL DESIGN:

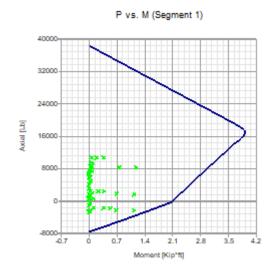
Status : OK

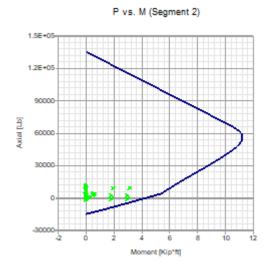
Geometry:

Segment	X Coordinate [in]	Y Coordinate [in]	Width [in]	Height [in]
1	0.00	0.00	18.12	48.00
2	18.12	0.00	47.04	48.00
3	65.16	0.00	54.09	48.00
4	0.00	48.00	18.12	92.04
5	65.16	48.00	54.09	92.04
6	0.00	140.04	18.12	22.58
7	18.12	140.04	47.04	22.58
8	65.16	140.04	54.09	22.58
9	0.00	162.62	18.12	92.02
10	65.16	162.62	54.09	92.02
11	0.00	254.64	18.12	21.86
12	18.12	254.64	47.04	21.86
13	65.16	254.64	54.09	21.86
14	0.00	276.50	18.12	92.02
15	65.16	276.50	54.09	92.02
16	0.00	368.52	18.12	21.86

17	18.12	368.52	47.04	21.86
18	65.16	368.52	54.09	21.86
19	0.00	390.38	18.12	92.02
20	65.16	390.38	54.09	92.02
21	0.00	482.40	18.12	27.98
22	18.12	482.40	47.04	27.98
23	65.16	482.40	54.09	27.98

Vertical reinforcement:


Segment	Bars	Spacing [in]	Ld [in]
1	1-#5	24.00	39.33
2	2-#5	32.00	39.33
3	2-#5	32.00	39.33
4	2-#5	8.00	39.33
5	2-#5	32.00	39.33
6	2-#5	8.00	39.33
7	2-#5	32.00	39.33
8	2-#5	32.00	39.33
9	2-#5	8.00	39.33
10	2-#5	32.00	39.33
11	2-#5	8.00	39.33
12	2-#5	32.00	39.33
13	2-#5	32.00	39.33
14	1-#5	32.00	39.33
15	2-#5	32.00	39.33
16	1-#5	32.00	39.33
17	2-#5	32.00	39.33
18	2-#5	32.00	39.33
19	1-#5	32.00	39.33
20	2-#5	32.00	39.33
21	1-#5	32.00	39.33
22	2-#5	32.00	39.33
23	2-#5	32.00	39.33


Results: Combined axial flexure

Segment	Condition	P [Lb]	M [Kip*ft]	Ma [Kip*ft]	Ratio
1	D19(Max)	-2213.46	-1.13	1.52	0.74
2	D19(Max)	-723.57	-2.96	4.00	0.74
3	D16(Max)	9737.16	-3.22	6.78	0.48
4	D19(Max)	-1731.04	0.60	2.86	0.21
5	D19(Max)	14199.45	1.63	7.34	0.22
6	D3(Bottom)	9788.61	-0.23	3.79	0.06
7	D3(Max)	2655.15	-0.62	4.93	0.13
8	D16(Max)	7506.20	-0.49	6.50	0.08
9	D10(Max)	1088.43	0.23	3.06	0.07
10	D10(Bottom)	14001.41	0.60	7.32	0.08
11	D19(Max)	699.47	0.16	3.03	0.05
12	D2(Max)	1344.02	-0.06	4.57	0.01
13	D19(Max)	6039.19	0.43	6.32	0.07
14	D19(Bottom)	406.43	0.20	1.73	0.11
15	D19(Bottom)	5626.42	0.55	6.27	0.09
16	D18(Top)	337.77	0.18	1.71	0.10
17	D3(Top)	2064.56	-0.60	4.77	0.13
18	D18(Max)	3137.91	0.48	5.69	0.08
19	D3(Top)	2056.13	-0.33	1.31	0.25

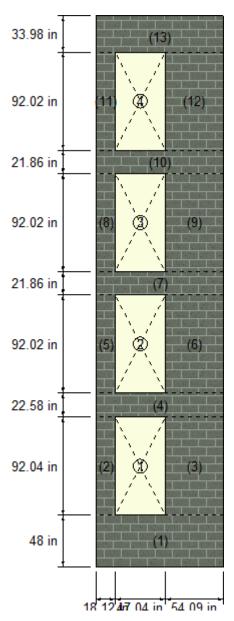
20	D3(Top)	3945.38	-0.70	3.74	0.19
21	D3(Max)	2056.08	-0.33	1.31	0.25
22	D3(Max)	1961.17	-0.62	3.14	0.20
23	D2(Top)	2587.82	-0.75	3.63	0.21

Interaction diagrams, P vs. M:

Results: Axial compression

Segment	Condition	P [Lb]	Pa [Lb]	Ratio	
1	D4(Top)	10739.44	20876.51	0.51	•
2	D4(Bottom)	11581.08	73767.10	0.16	•
3	D2(Top)	24655.30	84822.75	0.29	•
4	D2(Max)	10399.76	44455.16	0.23	
5	D4(Bottom)	22829.06	77960.58	0.29	
6	D4(Bottom)	9788.61	44455.16	0.22	
7	D4(Max)	2655.15	67799.32	0.04	
8	D2(Max)	20840.76	77960.58	0.27	
9	D2(Max)	7806.20	44547.39	0.18	
10	D2(Max)	16694.29	78068.25	0.21	
11	D2(Bottom)	7065.95	44547.39	0.16	
12	D2(Max)	1344.02	67892.97	0.02	
13	D4(Bottom)	14536.14	78068.25	0.19	
14	D4(Bottom)	5812.73	19253.28	0.30	
15	D4(Bottom)	11732.28	78068.25	0.15	
16	D4(Bottom)	4571.34	19253.28	0.24	
17	D4(Max)	2064.56	67892.97	0.03	
18	D4(Bottom)	9096.92	78068.25	0.12	
19	D2(Max)	2904.67	13373.89	0.22	
20	D2(Max)	5585.13	52892.95	0.11	•
21	D4(Bottom)	2056.08	13373.89	0.15	
22	D4(Max)	1961.17	45998.98	0.04	•
23	D2(Bottom)	3945.33	52892.95	0.07	

Results: Axial tension


Segment	Condition	ft [Lb/ft2]	Fs [Lb/ft2]	Ratio	
1	D20(Bottom)	1614104.00	4608000.00	0.35	•
2	D20(Max)	228645.90	4608000.00	0.05	
3	D1(Top)	0.00	4608000.00	0.00	
4	D18(Max)	369046.70	4608000.00	0.08	•
5	D1(Top)	0.00	4608000.00	0.00	
6	D20(Bottom)	350045.50	4608000.00	0.08	•
7	D1(Top)	0.00	4608000.00	0.00	
8	D1(Top)	0.00	4608000.00	0.00	
9	D19(Max)	149039.60	4608000.00	0.03	
10	D1(Top)	0.00	4608000.00	0.00	
11	D20(Bottom)	127398.40	4608000.00	0.03	
12	D1(Top)	0.00	4608000.00	0.00	
13	D1(Top)	0.00	4608000.00	0.00	
14	D1(Top)	0.00	4608000.00	0.00	
15	D1(Top)	0.00	4608000.00	0.00	
16	D1(Top)	0.00	4608000.00	0.00	
17	D1(Top)	0.00	4608000.00	0.00	
18	D1(Top)	0.00	4608000.00	0.00	
19	D1(Top)	0.00	4608000.00	0.00	
20	D1(Top)	0.00	4608000.00	0.00	
21	D1(Top)	0.00	4608000.00	0.00	
22	D1(Top)	0.00	4608000.00	0.00	
23	D1(Top)	0.00	4608000.00	0.00	

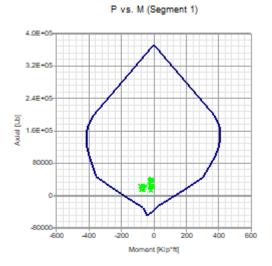
Results: Shear

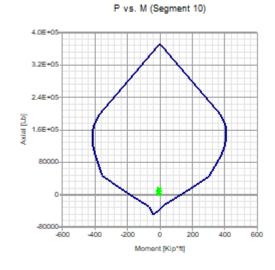
Segment	Condition	fv [Lb/ft2]	Fv [Lb/ft2]	Ratio	
1	D19(Top)	3180.505	6274.233	0.51	
2	D19(Max)	1521.761	6274.233	0.24	
3	D19(Top)	2695.143	8904.033	0.30	
4	D19(Bottom)	415.885	6274.233	0.07	
5	D19(Bottom)	338.345	8751.441	0.04	
6	D18(Max)	325.645	6274.233	0.05	
7	D2(Max)	264.814	6806.869	0.04	
8	D18(Top)	230.633	8126.631	0.03	
9	D18(Bottom)	226.472	6274.233	0.04	
10	D18(Max)	201.328	7990.612	0.03	
11	D19(Top)	239.913	6638.497	0.04	
12	D2(Max)	46.808	6543.850	0.01	
13	D19(Top)	204.085	7327.818	0.03	
14	D19(Bottom)	211.889	6485.892	0.03	
15	D19(Max)	190.565	7255.807	0.03	
16	D10(Max)	385.099	6811.068	0.06	
17	D2(Max)	312.122	6688.392	0.05	
18	D18(Max)	234.406	6821.666	0.03	
19	D10(Bottom)	355.055	6936.273	0.05	
20	D10(Bottom)	294.312	7194.871	0.04	•
21	D2(Bottom)	263.489	7725.361	0.03	
22	D3(Bottom)	344.145	6872.098	0.05	
23	D2(Bottom)	174.562	7207.038	0.02	

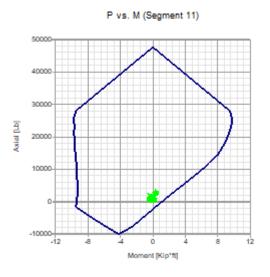
SHEAR WALL DESIGN:

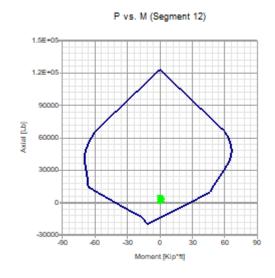
Geometry:

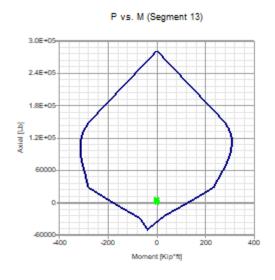
Segment	X Coordinate [in]	Y Coordinate [in]	Width [in]	Height [in]
1	0.00	0.00	119.25	48.00
2	0.00	48.00	18.12	92.04
3	65.16	48.00	54.09	92.04
4	0.00	140.04	119.25	22.58
5	0.00	162.62	18.12	92.02
6	65.16	162.62	54.09	92.02
7	0.00	254.64	119.25	21.86
8	0.00	276.50	18.12	92.02
9	65.16	276.50	54.09	92.02
10	0.00	368.52	119.25	21.86
11	0.00	390.38	18.12	92.02
12	65.16	390.38	54.09	92.02
13	0.00	482.40	119.25	27.98


Reinforcement:

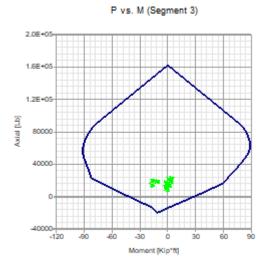

	Vei	rtical reinforcem	ent	Hori	zontal reinforce	ment
Segment	Bars	Spacing	Ld [in]	Bars	Spacing [in]	Ld
		[in] 	[in] 		[!!!] 	[in]
1	1-#5	24.00	0.00		0.00	0.00
	2-#5	32.00	0.00		0.00	0.00
	2-#5	32.00	0.00		0.00	0.00
2	2-#5	8.00	0.00		0.00	0.00
3	2-#5	32.00	0.00		0.00	0.00
4	2-#5	8.00	0.00		0.00	0.00
	2-#5	32.00	0.00		0.00	0.00
	2-#5	32.00	0.00		0.00	0.00
5	2-#5	8.00	0.00		0.00	0.00
6	2-#5	32.00	0.00		0.00	0.00
7	2-#5	8.00	0.00		0.00	0.00
	2-#5	32.00	0.00		0.00	0.00
	2-#5	32.00	0.00		0.00	0.00
8	1-#5	32.00	0.00		0.00	0.00
9	2-#5	32.00	0.00		0.00	0.00
10	1-#5	32.00	0.00		0.00	0.00
	2-#5	32.00	0.00		0.00	0.00
	2-#5	32.00	0.00		0.00	0.00
11	1-#5	32.00	0.00		0.00	0.00
12	2-#5	32.00	0.00		0.00	0.00
13	1-#5	32.00	0.00		0.00	0.00
	2-#5	32.00	0.00		0.00	0.00
	2-#5	32.00	0.00		0.00	0.00

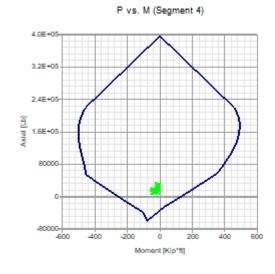

Results: Combined axial flexure

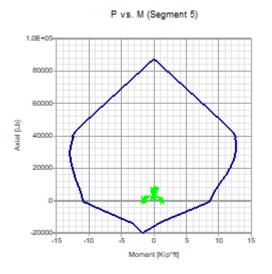

Segment	Condition	P [Lb]	M [Kip*ft]	Ma [Kip*ft]	Ratio
1	D18(Bottom)	 14578.38	-76.14	237.12	0.32
2	D18(Bottom)	-1727.85	-1.55	10.17	0.15
3	D20(Bottom)	14194.00	-17.28	66.78	0.26
4	D20(Bottom)	10700.76	-42.52	294.20	0.14
5	D20(Bottom)	-692.77	-1.74	10.73	0.16
6	D18(Bottom)	9832.50	-6.48	59.11	0.11
7	D10(Bottom)	12236.94	-23.97	299.95	0.08
8	D20(Top)	318.65	0.71	1.54	0.46
9	D18(Top)	3706.93	3.04	35.22	0.09
10	D10(Max)	6653.99	-7.88	207.54	0.04
11	D18(Top)	247.70	0.33	1.23	0.27
12	D10(Top)	2009.95	2.69	31.48	0.09
13	D20(Bottom)	1630.67	-0.56	183.75	0.00

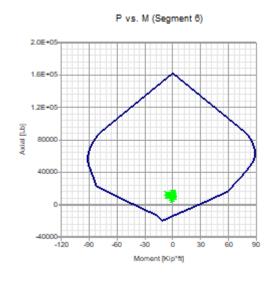

Interaction diagrams, P vs. M:

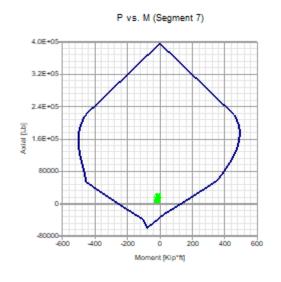


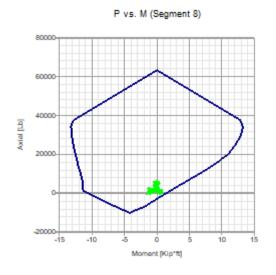


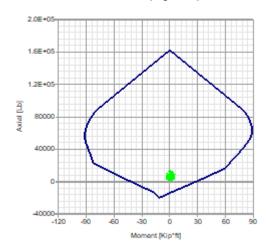










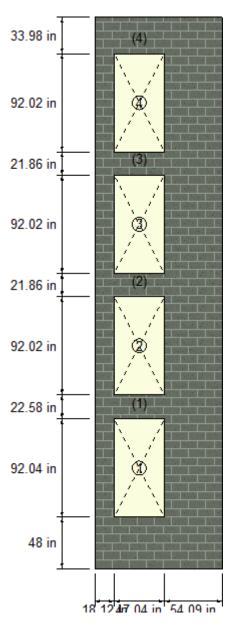


P vs. M (Segment 9)

Results: Axial compression

Segment	Condition	P [Lb]	Pa [Lb]	Ratio	
1 2 3 4 5 6 7 8 9	D2(Bottom) D2(Max) D2(Bottom) D4(Bottom) D4(Bottom) D4(Bottom) D2(Bottom) D2(Bottom) D2(Bottom) D2(Bottom)	41343.59 10547.25 22834.65 30687.53 7807.49 16695.71 22146.95 5813.25 11732.79 14534.01	202750.10 42022.73 80993.65 196430.10 42106.51 81109.07 196732.30 31335.44 81109.07 185664.40	0.20 0.25 0.28 0.16 0.19 0.21 0.11 0.19 0.14	
11 12 13	D2(Bottom) D2(Bottom) D2(Bottom)	2904.30 5585.25 6504.10	20569.65 54587.05 124137.30	0.14 0.10 0.05	

Results: Axial tension


Segment	Condition	ft [Lb/ft2]	Fs [Lb/ft2]	Ratio	
1	D1(Top)	0.00	4608000.00	0.00	
2	D18(Bottom)	401306.70	4608000.00	0.09	•
3	D1(Top)	0.00	4608000.00	0.00	
4	D1(Top)	0.00	4608000.00	0.00	
5	D18(Bottom)	160900.30	4608000.00	0.03	•
6	D1(Top)	0.00	4608000.00	0.00	
7	D1(Top)	0.00	4608000.00	0.00	
8	D1(Top)	0.00	4608000.00	0.00	
9	D1(Top)	0.00	4608000.00	0.00	
10	D1(Top)	0.00	4608000.00	0.00	
11	D1(Top)	0.00	4608000.00	0.00	
12	D1(Top)	0.00	4608000.00	0.00	
13	D1(Top)	0.00	4608000.00	0.00	

Results: Shear

Segment	Condition	fv [Lb/ft2]	Fv [Lb/ft2]	Ratio	
1	D20(Bottom)	940.504	7258.377	0.13	
2	D10(Max)	654.046	6529.748	0.10	
3	D18(Max)	1644.997	8540.369	0.19	•
4	D20(Max)	627.887	6931.954	0.09	•
5	D20(Max)	694.861	6274.233	0.11	•
6	D18(Bottom)	1061.570	7899.738	0.13	•
7	D20(Max)	451.637	6702.997	0.07	•
8	D20(Bottom)	685.021	6457.204	0.11	•
9	D10(Max)	666.502	8266.079	0.08	•
10	D10(Max)	249.167	7147.605	0.03	
11	D20(Max)	422.201	6497.396	0.06	•
12	D10(Max)	399.179	6860.318	0.06	•
13	D18(Bottom)	77.632	9962.625	0.01	

LINTEL DESIGN:

Status : OK

Geometry:

Lintel	X Coordinate [in]	Y Coordinate [in]	Length [in]	Depth [in]
1	18.12	48.00	47.04	16.00
2	18.12	162.60	47.04	16.00
3	18.12	276.48	47.04	16.00
4	18.12	390.36	47.04	16.00

Reinforcement:

	Top long. r	einforcement	Bottom lo	ng. reinforcement	Transverse	reinforcement	
Lintel	Bars	Extent	Bars	Extent	Bars	Spacing	Ld
		[in]		[in]		[in]	[in]
1	1-#4	15.00	1-#4	6.50	#4	16.00	8.31
2	1-#4	9.00	1-#4	4.50		0.00	0.00
3	1-#4	3.50	1-#4	0.50		0.00	0.00
4	1-#4	0.00	1-#4	1.00		0.00	0.00

Results: Bending

Lintel	Condition	M [Kip*ft]	Ma [Kip*ft]	Ratio
1	D10(Bottom)	-4.15	5.97	0.70
2	D18(Bottom)	-3.15	5.79	0.54
3	D18(Bottom)	-1.81	5.79	0.31
4	D2(Top)	0.63	5.79	0.11

Results: Shear

Lintel	Condition	fv [Lb/ft2]	Fv [Lb/ft2]	Ratio	
1	D10(Bottom)	8117.635	11154.192	0.73	
2	D10(Bottom)	5536.018	6274.233	0.88	
3	D10(Bottom)	4248.860	6274.233	0.68	
4	D4(Bottom)	3047.858	6274.233	0.49	

Results: Deflection

Lintel	Condition	δ s [in]	δ max [in]	Ratio	
1 2 3 4		0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	

Notes:

^{*} P = Axial load

^{*} Pa = Allowable compressive force due to axial load.

 $^{^{\}star}$ M = Moment at the section under consideration.

^{*} Ma = Wall allowable moment due to axial force or lintel pure flexure allowable moment

^{*} fa = Calculated compressive stress due to axial load only

^{*} fb = Calculated compressive stress due to axial flexure only

^{*} ft = Calculated axial tension

^{*} Fa = Allowable compressive stress due to axial load only

^{*} Fb = Allowable compressive stress due to axial flexure only

^{*} fv = Calculated shear stress

^{*} Fs = Allowable tensile or compressive stress

^{*} Fv = Allowable shear stress

^{*} Id = Embedment length

^{*} As = Effective cross sectional area of reinforcement

^{*} δ s = Calculated deflection

^{*} δ max = Maximum allowable deflection

Current Date: 8/1/2023 12:00 PM

Units system: English

File name: G:\2023\23-283 Wood Spring Suites - Lee's Summit, MO\Calculations\G - CMU\cmu elevator wall-solid.msw

Design Results

Masonry wall

GENERAL INFORMATION:

Global status : OK

Design code : TMS 402-16 SD

Geometry:

Total height : 490.34 [in]
Total length : 119.25 [in]
Base support type : Continuous
Wall bottom restraint : Pinned
Column bottom restraint : Pinned
Rigidity elements : Columns

Materials:

CMU 1.5-60 Material Mortar type Port/Mort - M/S Grouting type Partial grouting Mortar bed type Full bed Masonry compression strength (F`m) 216000 [Lb/ft2] Steel tension strength (fy) 8.64E06 [Lb/ft2] Steel allowable tension strength (Fs) 3.456E06 [Lb/ft2] Joint reinforcement allowable tension strength (Fs) 4.32E06 [Lb/ft2] Steel elasticity modulus (Es) 4.176E09 [Lb/ft2] Masonry elasticity modulus (Em) 1.944E08 [Lb/ft2] Masonry unit weight 135 [Lb/ft3]

Number of stories: 5

Story	Story height [in]	Wall thickness [in]	Effective unit weight [Lb/ft3]
1	48.00	7.63	79.93
2	114.62	7.63	79.93
3	113.88	7.63	79.93
4	113.88	7.63	79.93
5	93.96	5.63	82.97

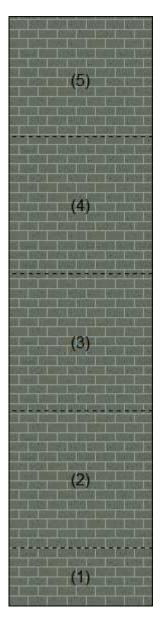
Load conditions:

ID	Comb.	Category	Description
DL	 No	 DL	Dead Load
LL	No	LL	Live Load
W	No	WIND	Wind Load
S	No	SNOW	Snow Load
E	No	EARTH	Earth Pressure Load
EQ	No	EQ	Seismic
D1	Yes		DL
D2	Yes		DL+LL
D3	Yes		DL+LL+E
D4	Yes		DL+LL+0.6E

D5	Yes	DL+S
D6	Yes	DL+0.75LL
D7	Yes	DL+0.75S
D8	Yes	DL+0.75LL+0.75S
D9	Yes	DL+0.6W
D10	Yes	DL+0.7EQ
D11	Yes	DL+0.75LL+0.45W+0.75S
D12	Yes	DL+0.525EQ
D13	Yes	DL+0.75S
D14	Yes	DL+0.525EQ+0.75S
D15	Yes	0.6DL+0.6W
D16	Yes	0.6DL+0.6W+E
D17	Yes	0.6DL+0.6W+0.6E
D18	Yes	0.6DL+0.7EQ
D19	Yes	0.6DL+0.7EQ+E
D20	Yes	0.6DL+0.7EQ+0.6E
S1	Yes	DL
S2	Yes	DL+LL
S3	Yes	DL+LL+E
S4	Yes	DL+LL+0.6E
S5	Yes	DL+S
S6	Yes	DL+0.75LL
S7	Yes	DL+0.75S
S8	Yes	DL+0.75LL+0.75S
S9	Yes	DL+0.6W
S10	Yes	DL+0.7EQ
S11	Yes	DL+0.75LL+0.45W+0.75S
S12	Yes	DL+0.525EQ
S13	Yes	DL+0.75S
S14	Yes	DL+0.525EQ+0.75S
S15	Yes	0.6DL+0.6W
S16	Yes	0.6DL+0.6W+E
S17	Yes	0.6DL+0.6W+0.6E
S18	Yes	0.6DL+0.7EQ
S19	Yes	0.6DL+0.7EQ+E
S20	Yes	0.6DL+0.7EQ+0.6E

Distributed loads:

Consider self weight : DL


Story	Condition	Direction	Magnitude [Lb/ft]	Eccentricity [in]
1	DL	Vertical	135.00	3.81
1	LL	Vertical	375.00	3.81
2	DL	Vertical	135.00	3.81
2	LL	Vertical	375.00	3.81
3	DL	Vertical	135.00	3.81
3	LL	Vertical	375.00	3.81
4	DL	Vertical	135.00	3.81
4	LL	Vertical	375.00	3.81
5	DL	Vertical	135.00	3.81
5	LL	Vertical	375.00	3.81
2	W	Horizontal	6.00	0.00
3	W	Horizontal	13.00	0.00
4	W	Horizontal	20.00	0.00
5	W	Horizontal	27.00	0.00

Out-of-plane loads:

Story	Condition	Magnitude [Kip/ft2]
1	E	0.41
2	W	-0.01
3	W	-0.01
4	W	-0.01
5	W	-0.01
Parapet	W	-0.01

BEARING WALL DESIGN:

Status : OK

Geometry:

Segment	X Coordinate [in]	Y Coordinate [in]	Width [in]	Height [in]
1	0.00	0.00	119.25	48.00
2	0.00	48.00	119.25	114.62
3	0.00	162.62	119.25	113.88
4	0.00	276.50	119.25	113.88
5	0.00	390.38	119.25	93.96

Vertical reinforcement:

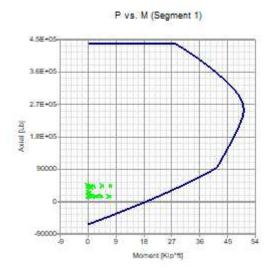
Segment	Bars	Spacing [in]	Ld [in]
1	4-#5	32.00	39.33
2	4-#5	32.00	39.33
3	4-#5	32.00	39.33
4	4-#5	32.00	39.33
5	4-#5	32.00	39.33

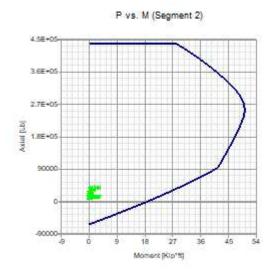
Results: Combined axial flexure

Segment	Condition	Pu [Lb]	Mua [Kip*ft]	Mu [Kip*ft]	φMn [Kip*ft]	Ratio	
1	D16(Max)	15449.45	6.89	6.90	22.78	0.30	•
2	D19(Max)	14015.36	3.27	3.29	22.40	0.15	
3	D10(Bottom)	17001.27	1.02	1.03	23.20	0.04	
4	D19(Bottom)	6416.40	1.07	1.07	20.34	0.05	
5	D3(Top)	5355.21	1.61	1.61	14.40	0.11	

Results: Flexural reinforcement area

Segment	Condition	Pu [Lb]	As [in2]	Asmax [in2]	Ratio
1	D1(Top)	0.00	1.16	2.65	0.44
2	D1(Top)	0.00	1.16	2.65	0.44
3	D1(Top)	0.00	1.16	2.65	0.44
4	D1(Top)	0.00	1.16	2.65	0.44
5	D1(Top)	0.00	1.16	2.05	0.56


Intermediate results for axial-bending


Segment	Condition	c [in]	d [in]	Mcr [Kip*ft] 	
1	D16(Max)	0.76	3.81	1.05	
2	D19(Max)	0.74	3.81	1.02	
3	D10(Bottom)	0.77	3.81	0.96	
4	D19(Bottom)	0.67	3.81	0.90	
5	D3(Top)	0.66	2.81	0.48	

Inertias

Segment	Condition	lg [in4] 	Icr [in4]	
1	D16(Max)	355.60	33.19	
2	D19(Max)	355.60	32.71	
3	D10(Bottom)	355.60	33.70	
4	D19(Bottom)	355.60	30.20	
5	D3(Top)	147.06	15.55	

Interaction diagrams, P vs. M:

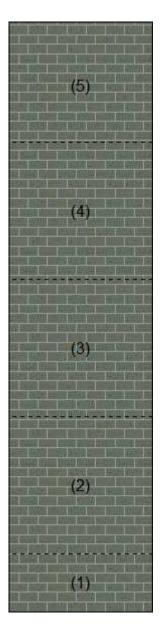
Results: Axial compression

Segment	Condition	Pu [Lb]	φPn [Lb]	Ratio	
1	D4(Bottom)	45278.44	430860.10	0.11	
2	D2(Max)	38233.45	396003.40	0.10	
3	D4(Bottom)	28152.35	396550.30	0.07	
4	D4(Bottom)	18126.42	396550.30	0.05	
5	D2(Bottom)	8176.91	293804.90	0.03	

Axial stress

Segment	Condition	Pu [Lb]	Pu/Ag [Lb/ft2]	Fn [Lb/ft2]	Ratio	
1	D4(Bottom)	45278.44	12824.36	43200.00	0.30	
2	D2(Max)	38233.45	10828.98	43200.00	0.25	
3	D4(Bottom)	28152.35	7973.68	43200.00	0.18	
4	D4(Bottom)	18126.42	5134.01	43200.00	0.12	
5	D4(Bottom)	8176.91	3040.20	43200.00	0.07	

Results: Shear


Segment	Condition	Vu [Lb]	φVn [Lb]	Ratio	
1	D19(Top)	793.51	3492.80	0.23	•
2	D19(Max)	85.17	3473.56	0.02	
3	D19(Top)	51.51	3339.86	0.02	
4	D19(Max)	52.09	3320.63	0.02	
5	D10(Bottom)	44.44	2444.69	0.02	

Deflection

Segment	Condition	δs [in]	δmax [in]	δs/δmax
1 2 3 4 5	S3(Max) S3(Bottom) S10(Bottom) S19(Bottom) S2(Top)	0.00 0.01 0.00 0.00 0.00	0.34 0.80 0.80 0.80 0.80 0.66	0.01

SHEAR WALL DESIGN:

Status : OK

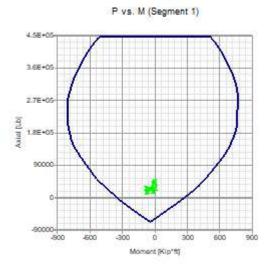
Geometry:

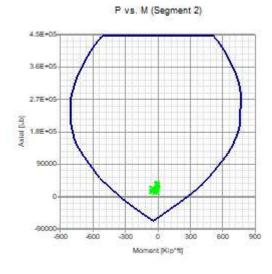
Segment	X Coordinate [in]	Y Coordinate [in]	Width [in]	Height [in]
1	0.00	0.00	119.25	48.00
2	0.00	48.00	119.25	114.62
3	0.00	162.62	119.25	113.88
4	0.00	276.50	119.25	113.88
5	0.00	390.38	119.25	93.96

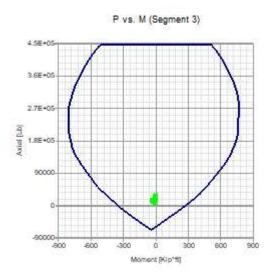
Reinforcement:

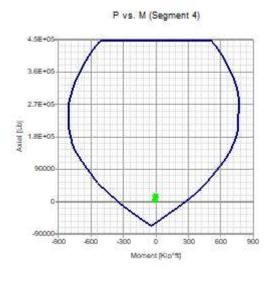
	Ve	rtical reinforcem	ent	t Horizontal reinforcement			
Segment	Bars	Spacing [in]	Ld [in]	Bars	Spacing [in]	Ld [in]	
1	4-#5	32.00	0.00		0.00	0.00	
2	4-#5	32.00	0.00		0.00	0.00	
3	4-#5	32.00	0.00		0.00	0.00	
4	4-#5	32.00	0.00		0.00	0.00	

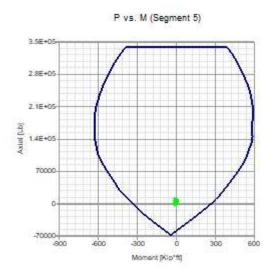
5	4-#5	32.00	0.00	 0.00	0.00


Results: Combined axial flexure


Segment	Condition	Pu [Lb]	Mu [Kip*ft]	φMn [Kip*ft]	Ratio
1	D18(Bottom)	16035.54	-74.21	407.20	0.18
2	D20(Bottom)	14015.32	-60.16	399.60	0.15
3	D18(Bottom)	10200.80	-31.69	385.37	0.08
4	D18(Bottom)	6416.44	-12.54	371.31	0.03
5	D20(Bottom)	2676.08	-2.46	342.28	0.01


Results: Flexural reinforcement area


Segment	Condition	Pu [Lb]	As [in2]	Asmax [in2]	Ratio
1	D20(Bottom)	0.00	1.24	 15.15	0.08
2	D20(Bottom)	0.00	1.24	15.15	0.08
3	D20(Bottom)	0.00	1.24	15.15	0.08
4	D17(Bottom)	0.00	1.24	15.15	0.08
5	D1(Top)	0.00	1.24	25.64	0.00


Interaction diagrams, P vs. M:

Results: Axial compression

Segment	Condition	Pu [Lb]	φPn [Lb]	Ratio	
1	D2(Bottom)	45280.21	437280.20	0.10	•
2	D4(Bottom)	38233.33	401531.10	0.10	
3	D2(Bottom)	28152.47	402092.00	0.07	
4	D2(Bottom)	18126.55	402092.00	0.05	
5	D2(Bottom)	8176.97	297501.90	0.03	

Results: Shear

Segment	Condition	Vu [Lb]	φVn [Lb]	Ratio	
1	D18(Bottom)	3856.82	28410.33	0.14	•
2	D20(Bottom)	3445.76	28107.29	0.12	
3	D18(Bottom)	2485.93	27535.12	0.09	•
4	D18(Bottom)	1534.35	29515.65	0.05	•
5	D18(Bottom)	590.99	28673.27	0.02	

Notes:

- * Pu = Factored axial load
- * Pn = Nominal compression strength
- * δ = Moment magnification factor
- * Mu = Factored total flexural moment
- * Mua = Factored flexural moment from analysis
- * Mn = Nominal moment strength
- * Mcr = Nominal cracking moment
- * ft = Stress due to flexural tension
- * fc = Stress due to flexural compression
- * Fn = Nominal stress
- * Vu = Factored shear force
- * Vn = Nominal shear strength
- * Vf = Nominal shear friction strength
- * δ s = Calculated deflection
- * δ max = Maximum allowable deflection
- * Id = Embedment length
- * Ag = Gross cross sectional area of a member
- * As = Effective cross sectional area of reinforcement
- * c = Distance from the fiber of maximum compressive strain to the neutral axis
- * d = Distance from the extreme compression fiber to centroid of tension reinforcement

Current Date: 8/1/2023 12:02 PM

Units system: English

File name: G:\2023\23-283 Wood Spring Suites - Lee's Summit, MO\Calculations\G - CMU\Trash Enclosure Wall.msw

Design Results

Masonry wall

GENERAL INFORMATION:

Global status : OK

Design code : TMS 402-16 SD

Geometry:

Total height : 96.00 [in]
Total length : 168.00 [in]
Base support type : Continuous
Wall bottom restraint : Fixed
Column bottom restraint : Fixed
Rigidity elements : Flanges

Materials:

CMU 1.5-60 Material Port/Mort - M/S Mortar type Grouting type Full grouting Masonry compression strength (F`m) 216000 [Lb/ft2] Steel tension strength (fy) 8.64E06 [Lb/ft2] Steel allowable tension strength (Fs) 3.456E06 [Lb/ft2] Steel elasticity modulus (Es) 4.176E09 [Lb/ft2] Masonry elasticity modulus (Em) 1.944E08 [Lb/ft2] Masonry unit weight 135 [Lb/ft3]

Number of stories:

Story	Story height [in]	Wall thickness [in]	Effective unit weight [Lb/ft3]
1	96.00	7.63	135.00

Load conditions:

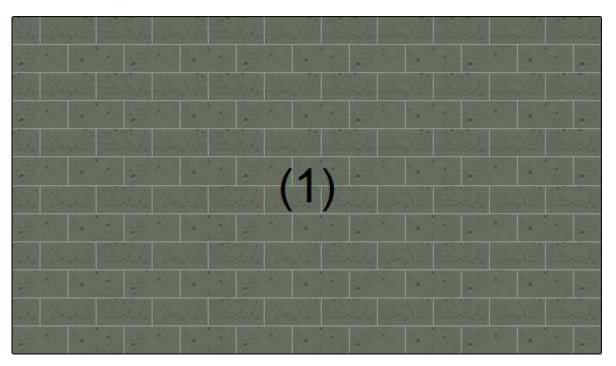
ID	Comb.	Category	Description
DL	No	DL	Dead Load
WL	No	WIND	Wind Load
SM1	Yes		DL
DM1	Yes		DL
D1	Yes		DL
D2	Yes		DL+0.6WL
D3	Yes		0.6DL+0.6WL

Concentrated loads:

Story	Condition	Direction	Magnitude [Lb]	Eccentricity [in]	Distance [in]
1	WL	Horizontal	3000.00	0.00	0.00

Distributed loads:

Consider self weight : DL


Story	Condition	Direction	Magnitude [Lb/ft]	Eccentricity [in]	
1	DL	Vertical	13.40	0.00	

Out-of-plane loads:

Story	Condition	Magnitude [Kip/ft2]
1 Parapet	WL WL	0.02 0.02

BEARING WALL DESIGN:

Status : OK

Geometry:

Segment	X Coordinate	Y Coordinate	Width	Height
	[in]	[in]	[in]	[in]
1	0.00	0.00	168.00	96.00

Vertical reinforcement:

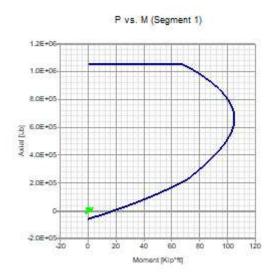
Segment	Bars	Spacing [in]	Ld [in]
1	4-#5	48.00	39.33

Results: Combined axial flexure

Segment	Condition	Pu [Lb]	Mua [Kip*ft]	Mu [Kip*ft]	φMn [Kip*ft]	Ratio
1	D3(Bottom)	7575.26	2.12	2.12	19.98	0.11

Results: Flexural reinforcement area

Segment	Condition	Pu [Lb]	As [in2]	Asmax [in2]	Ratio
1	DM1(Max)	0.00	1.09	4.31	0.25


Intermediate results for axial-bending

Segment	Condition	c [in]	d [in]	Mcr [Kip*ft]
1	D3(Bottom)	0.48	3.81	1.64

Inertias

Segment	Condition	lg [in4]	Icr [in4]
1	D3(Bottom)	444.19	22.36

Interaction diagrams, P vs. M:

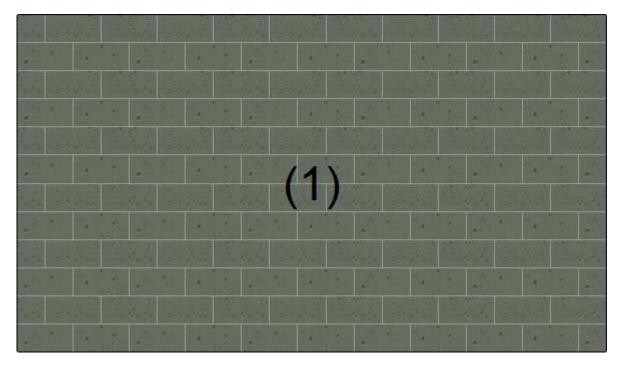
Results: Axial compression

Segment	Condition	Pu [Lb]	φΡn [Lb]	Ratio	
1	D2(Bottom)	11309.01	999281.00	0.01	

Axial stress

Segment	Condition	Pu [Lb]	Pu/Ag [Lb/ft2]	Fn [Lb/ft2]	Ratio
1	D2(Max)	11309.01	1270.44	43200.00	0.03

Results: Shear


Segment	Condition	Vu [Lb]	φVn [Lb]	Ratio	
1	D3(Bottom)	70.95	3299.71	0.02	

Deflection

Segment	Condition	δs [in]	δmax [in]	δs/δmax
1	SM1(Max)	0.00	0.67	0.00

SHEAR WALL DESIGN:

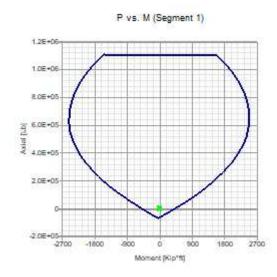
Status : OK

Geometry:

Segment	X Coordinate	Y Coordinate	Width	Height
	[in]	[in]	[in]	[in]
1	0.00	0.00	168.00	96.00

Reinforcement:

	Vertical reinforcement			Horizontal reinforcement		
Segment	Bars	Spacing [in]	Ld [in]	Bars	Spacing [in]	Ld [in]
1	4-#5	48.00	0.00		0.00	0.00


Results: Combined axial flexure

Segment	Condition	Pu [Lb]	Mu [Kip*ft]	φMn [Kip*ft]	Ratio
1	D3(Bottom)	7578.54	-11.17	535.92	0.02

Results: Flexural reinforcement area

Segment	Condition	Pu [Lb]	As [in2]	Asmax [in2]	Ratio
1	DM1(Top)	0.00	1.24	88.30	0.00

Interaction diagrams, P vs. M:

Results: Axial compression

Segment	Condition	Pu [Lb]	φΡn [Lb]	Ratio	
1	D2(Bottom)	11312.57	999201.10	0.01	

Results: Shear

Segment	Condition	Vu [Lb]	φVn [Lb]	Ratio	
1	D3(Bottom)	1805.97	123042.90	0.01	

Notes:

- * Pu = Factored axial load
- * Pn = Nominal compression strength
- * δ = Moment magnification factor
- * Mu = Factored total flexural moment
- * Mua = Factored flexural moment from analysis
- * Mn = Nominal moment strength
- * Mcr = Nominal cracking moment
- * ft = Stress due to flexural tension
- * fc = Stress due to flexural compression
- * Fn = Nominal stress
- * Vu = Factored shear force
- * Vn = Nominal shear strength
- * Vf = Nominal shear friction strength
- * δ s = Calculated deflection
- * δ max = Maximum allowable deflection
- * Id = Embedment length
- * Ag = Gross cross sectional area of a member
- * As = Effective cross sectional area of reinforcement
- * c = Distance from the fiber of maximum compressive strain to the neutral axis
- * d = Distance from the extreme compression fiber to centroid of tension reinforcement