

Site In Projec	formation t Customer ock: 56		•	ect Na	me: Twin ubdivision:	Cobalt - Custo Osage	om	MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200
Addre	ss: 2134/2	136 SW Osa	ge Dr	-				
	_ee's Sumn al Truss Er		riteria &		ate: MO n Loads (I	ndividual Tru	ıss Design	
	•	Special Load	-	ditions	•	· D		20.0.4
		C2018/TPI20 E 7-16 Wind S		5 mph		esign Program esign Method:		nvelope)/C-C hybrid Wind ASCE 7-16
Roof L	oad: 45.0 ps	sf			F	loor Load: N/A	A psf	
Mean I	Roof Height	(feet): 35			E	Exposure Categ	ory: C	
No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date	
123456789011234567890122345678901234	159477251 159477252 159477253 159477253 159477256 159477257 159477256 159477257 159477257 159477256 159477260 159477261 159477263 159477264 159477265 159477266 159477267 159477268 159477270 159477273 159477273 159477275 159477275 159477275 159477275 159477275 159477275 159477275 159477276 159477277 159477276 159477276 159477277 159477280 159477281 159477284 159477284 159477284	A1 A2 A3 A5 A5 A6 A7 A8 A10 A11 A12 A14 A15 A14 A15 A16 A17 A18 A20 A21 C23 C1 D2 D23 D5	7/12/23 7/12/23	35 3367 3390 412 444 445 447 890	159477285 159477286 159477287 159477289 159477290 159477292 159477293 159477293 159477295 159477295 159477298 159477298 159477298 159477299 159477300	E7 E8 E9 GR1 HG1 HG2 HG3 HG4 J1 T1 V1 V1 V2 V3 V4	7/12/23 7/12/23 7/12/23 7/12/23 7/12/23 7/12/23 7/12/23 7/12/23 7/12/23 7/12/23 7/12/23 7/12/23 7/12/23 7/12/23 7/12/23	

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Premier Building Supply (Springhill, KS)20300 W 207th Street.

Truss Design Engineer's Name: Nathan Fox

159477283 159477284

My license renewal date for the state of Missouri is December 31, 2024.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Nathan Fox

NOTED	N PLAN	SREW	EW	Т	uss Type				Qty	Ply	Roof -	Osage Lot	56			
PE2355-9RA	IENT SE			F	at Girder				1	2	loh D	oforonoo (or	tional)		159	477251
	Supply (Sprin 233		Spring Hills, KS	- 66083,				•		: 8.630 S Apr	6 2023 MiT		Inc. Wed	Jul 12 07:06:3 VrCDoi7J4zJC		Page: 1
	200						12.111201		(our tri	102_072 1110	1 00/01/00			10201104200		
F		<u>8-5</u> 8-5				<u>16-9-4</u> 8-4-0				<u>25-</u> 8-4					-6-7 5-4	
												NAILED	NAILED)		
NAIL	ED NAIL	ED NAII	ED NAILED	NAILED	NAILED	NAILED	NAILED	NAILED	NAILED	D NAILED	NAILED	Зх		NAILED	NAILED	NAILED
7	×8=			3x8 II			4x6 =	3x8=				4x6=				7x8
	1: 	; 1 ×	6 <u>17</u>	²	18	19	320	214	≥22 □	23	_⊠ 24	525 6		27	28	
					u					u	u		<u> </u>	U		
4-9-6																
4													/			
	1															
			_						0							
	l 30 6 II) 3	1 32	13 6x12=	12 33	34	35	3611 3x4 u	37	10 38 4x6=	39	40 9	41 2=	42	43	44 43
	NAIL	ED NAIL	ED NAILED		4x6=	NAILED	NAILED		NAILED		NAILED	NAILED	NAILED	NAILED	NAILED	NAILED
				NAILED	NAILED											
1		8-5	-4	1		16-9-4		1		25-	1-3	1		33-	-6-7	
Scolo - 1:55 7		8-5	-4	I		8-4-0		1		8-4	-0	I		8-	5-4	
Scale = 1:55.7 Plate Offsets (2	K, Y): [1:Ed	lge,0-4-4]	, [7:Edge,0-4-	4], [8:Edge,	0-2-8]											
oading		(psf)	Spacing	2-	0-0		CSI			EFL	in (I	oc) l/defl	L/d	PLATES	GRI	2
TCLL (roof)		25.0	Plate Grip I		15		TC	0.		ert(LL)	0.20	11 >999		MT20	197/	
FCDL BCLL		10.0 0.0	Lumber DC		15		BC WB			ert(CT)	-0.33 11		180			
BCLL BCDL		10.0	Rep Stress Code		J C2018/TP	12014	Matrix-SF		89 H	orz(CT)	0.05	8 n/a	n/a	Weight: 330)lb FT=	20%
		10.0	Loge	IR	3) W	ind: ASCE	7-16; Vult=	=115mph (3-						vveight: 330		20%
TOP CHORD BOT CHORD	2x6 SPF 1 2x6 SPF 1							0psf; BCDL Enclosed; I			e)					
WEBS	2x3 SPF 1				ex	terior zone	and C-C C	Corner (3) zo	one; ca	ntilever left						
	0.0.0							vertical left ers and forc								
TOP CHORD	2-0-0 oc p end vertic)-0 max.): 1-7	, except	rea	actions sho		er DOL=1.6								
BOT CHORD	Rigid ceili		applied or 10)-0-0 oc		DL=1.60 ovide adeq	uate drain	age to preve	ent wat	er ponding						
REACTIONS	bracing.	8- Mach	anical, 14=0-3	-8	5) Th	is truss ha	s been des	igned for a	10.0 ps	sf bottom						
	Max Horiz		,					urrent with a			s.					
	Max Uplift	8=-1006	(LC 9), 14=-9	32 (LC 8)				o be: Joint		∙ No.∠ No.3 crushii	na					

- Max Grav 8=2836 (LC 1), 14=2795 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension 1-14=-2668/1133, 1-2=-4341/1776, TOP CHORD 2-4=-4341/1776, 4-6=-4350/1780, 6-7=-4350/1780, 7-8=-2690/1210 BOT CHORD 13-14=-227/261, 11-13=-2382/5655, 9-11=-2382/5655, 8-9=-74/110 1-13=-1966/4851, 2-13=-1211/848, WEBS 4-13=-1481/636, 4-11=0/614, 4-9=-1470/629, 6-9=-1219/854, 7-9=-1971/4861 NOTES
- 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x3 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Web connected as follows: 2x3 - 1 row at 0-9-0 oc.
- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

- crushing capacity of 425 psi, Joint 8 SPF No.3 crushing capacity of 425 psi.
- 7) Refer to girder(s) for truss to truss connections.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) "NAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails per NDS guidelines.
- LOAD CASE(S) Standard
- Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
 Uniform Loade (Ib (*))
 - Uniform Loads (lb/ft)
 - Vert: 1-7=-70, 8-14=-20
 - Concentrated Loads (lb) Vert: 1=-47 (B), 13=-38 (B), 2=-124 (B), 15=-124 (B), 16=-124 (B), 17=-124 (B), 18=-124 (B), 19=-124 (B), 20=-124 (B), 21=-124 (B), 22=-124 (B), 23=-124 (B), 24=-124 (B), 25=-124 (B), 26=-124 (B), 27=-124 (B), 28=-124 (B), 29=-124 (B), 30=-38 (B), 31=-38 (B), 32=-38 (B), 33=-38 (B), 34=-38 (B), 35=-38 (B),
 - 36=-38 (B), 37=-38 (B), 38=-38 (B), 39=-38 (B), 40=-38 (B), 41=-38 (B), 42=-38 (B), 43=-38 (B), 44=-38 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Mitek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

RELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof - Osage Lot 56	
DEXELOBMENT SERVICES	Roof Special	1	1	Job Reference (optional)	159477252
Premier Building Supply (Springhill, KS), Spring I 08/03/2023 3:36:04			•	2023 MiTek Industries, Inc. Wed Jul 12 07:06:33 sB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

Scale = 1:62

Plate Offsets (X, Y): [7:0-4-4,0-2-0], [9:Edge,0-2-8], [10:0-2-8,0-3-0]

	,, ,, ,, [1.0 + 1,0 2 0],	[0.20g0,0 2 0], [10.	0 2 0,0 0	~1	-								
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.74	Vert(LL)	-0.15	15-16	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.92	Vert(CT)		15-16	>999	180		
BCLL	0.0	Rep Stress Incr	NO		WB	0.90	Horz(CT)	0.09	9	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-SH							Weight: 164 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exce Structural wood she	athing directly applie	ed or	Vasd=91mpl Ke=0.96; Ca exterior zone Interior (1) 5 29-0-14, Inte	7-16; Vult=115mp h; TCDL=6.0psf; B t. II; Exp C; Enclos e and C-C Exterior -1-4 to 25-2-8, Extu- prior (1) 29-0-14 to	CDL=6. sed; MW (2E) 0-1 erior(2E 33-5-3	Opsf; h=35ft; FRS (envelop -4 to 5-1-4,) 25-2-8 to zone; cantilev						
BOT CHORD	4-2-11 oc purlins, e. 2-0-0 oc purlins (3-6 Rigid ceiling directly bracing.	-2 max.): 1-6, 7-8.		exposed;C-C	exposed ; end ver c for members and own; Lumber DOL:	forces	& MWFRS for	r					
WEBS		2-16, 5-11	3)		quate drainage to p			g.					
	(size) 9= Mecha Max Horiz 16=-232 (Max Uplift 9=-276 (L Max Grav 9=1500 (L	C 9), 16=-309 (LC 8	,	chord live loa Bearings are	as been designed f ad nonconcurrent v assumed to be: Ju 65 psi, Joint 9 SPF	with any oint 16 \$	other live loa SP No.2 crusł	ning					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	6)	Refer to gird	er(s) for truss to tru								
TOP CHORD	1-16=-183/84, 1-2=- 3-5=-2202/438, 5-6= 6-7=-1809/317, 7-8= 8-9=-1451/295	-1636/310,	/354, (354, 8)	International R802.10.2 a Graphical pu	designed in accord Residential Code nd referenced stan Irlin representation ation of the purlin a	sections Idard AN I does no	R502.11.1 a SI/TPI 1. ot depict the s						
BOT CHORD	15-16=-368/1391, 13 11-13=-493/2195, 10 9-10=-77/91	,	L	bottom chore DAD CASE(S)	d.	along the						0000	an a
WEBS NOTES	7-10=-1252/284, 8-1 6-11=0/353, 7-11=-8 2-16=-1857/408, 3-1 3-13=-17/220, 5-13=	36/493, 2-15=-57/803 5=-711/211,	,									SINTE OF M	

Ν

1) Unbalanced roof live loads have been considered for this design.

PE-2022042259 C ASSIONAL ET

July 12,2023

NOTED ON P		w	Truss Type		Qty	Ply	Roof - Osa	age Lot 56		
EXEL ORMEN			Roof Special		1	1	Joh Defer	nna (antiona	-1)	159477253
EE'S SUMMI Premier Building Supp	F, MISSOUR	pring Hills, KS - 66083	, ·	Run: 8.63 S Apr	6 2023 Print: 8	3.630 S Apr		ence (optiona dustries, Inc. V	Ved Jul 12 07:06:33	Page: 1
8/03/202	3 3:36:04	4		ID:JZZwT90GtE8	BsnM?mDp0b_p	z_mbU-Rf	C?PsB70Hq3NSg	PqnL8w3uITX	bGKWrCDoi7J4zJC?	f
							00.0.0			00.07
		7-1-4 7-1-4	14-3-8		<u>21-5-12</u> 7-2-4			27-1-11 5-1-10	32-3-5	33-6-7
				3	3x4=		8x8=		0 1 10	
	4x8=		3x4=	1.5x4 u			3x6=			
	1 ⊠ ⊠	⊠ 20	2		4 21 🛱 🕅		5 6 °		12 15	
-0 -1				8	<u> • </u>				3x4 👟	
7-3-13 4-1-8									7	
					//					1.5x4 II 8x10=
7-5-10	×		4				困			د ۲ 8 9
-μ -Υ										
3-0-8			ah in							
, y y		17		<u> </u>						
			L d	16						
	19			16 3x8=		1	14		12	11
	19		7x8=			1	14 13 3x4 II		12 4x4=	11 1.5x4 II
⊥ ⊥ ⊥	×					1 12x14	13 3х4 и			11
	×	7-2-8	7x8= 3x4 II 14-3-8		21-4-8		13 3x4 II 4 II 8x8= 22-1-6	27-1-11	4x4 = 32-2-1	11 1.5x4 II 4x4= 33-6-7
	×	7-2-8 7-2-8	7x8= 3x4 II		<u>21-4-8</u> 7-1-0		13 3x4 II 1 8x8=	27-1-11 5-0-6	4x4 =	11 1.5x4 u 4x4=
	⊠ 4x4=	7-2-8	7x8= 3x4 II <u>14-3-8</u> 7-1-0				13 3x4 II 4 II 8x8= 22-1-6		4x4 = 32-2-1	11 1.5x4 II 4x4= 33-6-7
late Offsets (X, Y)	⊠ 4x4= ⊢ : [8:0-4-5,Edge],	7-2-8 [17:0-4-8,0-3-8], [18	7x8= 3x4 II <u>14-3-8</u> 7-1-0 3:Edge,0-2-8]	3x8 =	7-1-0	12x14	13 3x4 II 4 II 8x8= 22-1-6 0-8-14	5-0-6	4x4 = 32-2-1 5-0-6	11 1.5x4 u 4x4= <u>33-6-7</u> 1-4-6
ate Offsets (X, Y) pading CLL (roof)	 ₩ 4x4= [8:0-4-5,Edge], (psf) 25.0 	7-2-8 [17:0-4-8,0-3-8], [18 Spacing Plate Grip DOL	7x8= 3x4 II <u>14-3-8</u> 7-1-0 3:Edge,0-2-8] 2-0-0 1.15	3x8=	7-1-0 0.90 Ver	12x14	13 3x4 II 3x4 II 3x4 II 3x4 II 22-1-6 -0-8-14 in (loc) -0.22 15-16	5-0-6 I/defl L/a >999 240	4x4 = <u>32-2-1</u> 5-0-6 d PLATES 0 MT20	11 1.5x4 ။ 4x4= 33-6-7
late Offsets (X, Y) oading CLL (roof) CDL	⊠ 4x4= : [8:0-4-5,Edge], (psf)	7-2-8 [17:0-4-8,0-3-8], [18 Spacing Plate Grip DOL Lumber DOL	7x8= 3x4 II 14-3-8 7-1-0 3:Edge,0-2-8] 2-0-0	3x8=	7-1-0 0.90 0.82 Ver	12x14 FL t(LL) t(CT)	13 3x4 u 4 u 8x8= 22-1-6 0-8-14 in (loc) -0.22 15-16 -0.45 15-16	5-0-6 l/defl L/a >999 244 >896 180	4x4 = <u>32-2-1</u> 5-0-6 d PLATES MT20 0	11 1.5x4 II 4x4= 33-6-7 1-4-6 GRIP
late Offsets (X, Y) oading CLL (roof) CDL CLL		7-2-8 [17:0-4-8,0-3-8], [18 Spacing Plate Grip DOL	7x8= 3x4 II <u>14-3-8</u> 7-1-0 3:Edge,0-2-8] 2-0-0 1.15 1.15	3x8=	7-1-0 0.90 0.82 Ver	12x14	13 3x4 u 4 u 8x8= 22-1-6 0-8-14 in (loc) -0.22 15-16 -0.45 15-16	5-0-6 I/defl L/a >999 240	4x4 = <u>32-2-1</u> 5-0-6 d PLATES MT20 0	11 1.5x4 II 4x4 = 33-6-7 1-4-6 GRIP 197/144
late Offsets (X, Y) oading CLL (roof) CDL CLL CDL UMBER		7-2-8 [17:0-4-8,0-3-8], [18 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	7x8= 3x4 II <u>14-3-8</u> 7-1-0 3:Edge,0-2-8] 2-0-0 1.15 1.15 1.15 NO IRC2018/TPI2014 1) Wind: ASC	3x8 =	7-1-0 0.90 DE 0.90 Ver 0.96 Hor 0.96 or 0.96 or 0.96 or 0.96 or 0.96 or 0.96 or 0.96 or 0.90 or 0.9	12x14 FL t(LL) t(CT) z(CT) gust)	13 3x4 u 4 u 8x8= 22-1-6 0-8-14 in (loc) -0.22 15-16 -0.45 15-16	5-0-6 l/defl L/a >999 244 >896 180	4x4 = 32-2-1 5-0-6 d PLATES MT20 a	11 1.5x4 II 4x4 = 33-6-7 1-4-6 GRIP 197/144
ate Offsets (X, Y) pading CLL (roof) CDL CDL CDL JMBER DP CHORD 2x4	8 4x4= (psf) 25.0 10.0 0.0 10.0	7-2-8 [17:0-4-8,0-3-8], [18 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	7x8= 3x4 II 14-3-8 7-1-0 3:Edge,0-2-8] 2-0-0 1.15 1.15 1.15 NO IRC2018/TPI2014 1) Wind: ASC Vasd=91m	3x8 =	7-1-0 0.90 DE 0.90 Ver 0.96 Hor bch (3-second - CDL=6.0psf;	12x14 FL t(LL) t(CT) z(CT) gust) h=35ft;	13 3x4 u 4 u 8x8= 22-1-6 0-8-14 in (loc) -0.22 15-16 -0.45 15-16 0.21 10	5-0-6 l/defl L/a >999 244 >896 180	4x4 = 32-2-1 5-0-6 d PLATES MT20 a	11 1.5x4 II 4x4= 33-6-7 1-4-6 GRIP 197/144
ate Offsets (X, Y) pading CLL (roof) CDL CLL CDL UMBER DP CHORD 2x4 DT CHORD 2x4 No.	 ₩ 4x4= (psf) 25.0 10.0 0.0 10.0 SP No.2 SP No.2 *Except 2, 14-10:2x4 SP 	7-2-8 [17:0-4-8,0-3-8], [18 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code * 18-2,5-14:2x3 SP 1650F 1.5E	7x8= 3x4 II 14-3-8 7-1-0 3:Edge,0-2-8] 2-0-0 1.15 1.15 1.15 1.15 NO IRC2018/TPI2014 1) Wind: ASC Vasd=91m F Ke=0.96; C exterior zo	3x8 =	7-1-0 0.90 Ver 0.82 Ver 0.96 Hor 0.96 CDL=6.0psf; sed; MWFRS (2E) 0-1-12 to	12x14 FL t(LL) t(CT) z(CT) gust) h=35ft; (envelope o 5-1-12,	13 3x4 u 4 u 8x8= 22-1-6 0-8-14 in (loc) -0.22 15-16 -0.45 15-16 0.21 10	5-0-6 l/defl L/a >999 244 >896 180	4x4 = 32-2-1 5-0-6 d PLATES MT20 a	11 1.5x4 II 4x4 = 33-6-7 1-4-6 GRIP 197/144
ate Offsets (X, Y) pading CLL (roof) CDL CLL CDL JMBER DP CHORD 2x4 No. YEBS 2x3	 ₩ 4x4= (psf) 25.0 10.0 0.0 10.0 SP No.2 SP No.2 *Except 2, 14-10:2x4 SP 	7-2-8 [17:0-4-8,0-3-8], [18 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	7x8= 3x4 II 14-3-8 7-1-0 3:Edge,0-2-8] 2-0-0 1.15 1.15 1.15 NO IRC2018/TPI2014 1) Wind: ASC Vasd=91m F Ke=0.96; C exterior z0 .1 Interior (1) 27-1-11, Ir	3x8 = CSI TC BC WB Matrix-SH E 7-16; Vult=115mp ph; TCDL=6.0psf; B iat. II; Exp C; Enclos ne and C-C Exterior 5-1-12 to 22-0-2, Es terior (1) 27-1-11 to	7-1-0 0.90 DE 0.90 Ver 0.96 Hor 0.96 CDL=6.0psf; sed; MWFRS (2E) 0-1-12 tk tkerior(2R) 22 33-5-3 zone;	12x14 FL t(LL) t(CT) z(CT) gust) h=35ft; (envelope 0 5-1-12, -0-2 to cantileve	13 3x4 u 4 u 8x8= 22-1-6 0-8-14 in (loc) -0.22 15-16 -0.45 15-16 0.21 10 =)	5-0-6 l/defl L/a >999 244 >896 180	4x4 = 32-2-1 5-0-6 d PLATES MT20 a	11 1.5x4 II 4x4 = 33-6-7 1-4-6 GRIP 197/144
ate Offsets (X, Y) oading CLL (roof) CDL CDL CDL UMBER OP CHORD 2x4 OT CHORD 2x4 No. YEBS 2x3 RACING OP CHORD Str	 ₩ 4x4= (psf) 25.0 10.0 0.0 10.0 SP No.2 *Except 2, 14-10:2x4 SP + SPF No.2 *Except SPF No.2 *Except SPF No.2 *Except 	7-2-8 [17:0-4-8,0-3-8], [18 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code * 18-2,5-14:2x3 SP 1650F 1.5E pt* 19-1:2x4 SP No. athing directly applie	7x8= 3x4 II 14-3-8 7-1-0 3:Edge,0-2-8] 2-0-0 1.15 1.15 1.15 NO IRC2018/TPI2014 1) Wind: ASC Vasd=91m F Ke=0.96; C vasd=91m F Ke=0.96; C 0 27-1-11, In left and rig	3x8 = CSI TC BC WB Matrix-SH E 7-16; Vult=115mp ph; TCDL=6.0psf; B cat. II; Exp C; Enclos ne and C-C Exterior 5-1-12 to 22-0-2, Ex	7-1-0 0.90 0.82 0.96 0.95 0.96 0.95 0.95 0.96 0.95 0.95 0.95 0.95 0.91 0	12x14 FL t(LL) t(CT) z(CT) gust) h=35ft; (envelope 0 5-1-12, -0-2 to cantileve right	13 3x4 u 4 u 8x8= 22-1-6 0-8-14 in (loc) -0.22 15-16 -0.45 15-16 0.21 10 =)	5-0-6 l/defl L/a >999 244 >896 180	4x4 = 32-2-1 5-0-6 d PLATES MT20 a	11 1.5x4 II 4x4 = 33-6-7 1-4-6 GRIP 197/144
late Offsets (X, Y) oading CLL (roof) CDL CDL CDL UMBER OP CHORD 2x4 OT CHORD 2x4 No. /EBS 2x3 RACING OP CHORD Str 4-C 2-0	 4x4= 4x4= (psf) 25.0 10.0 0.0 10.0 SP No.2 *Excepi 2, 14-10:2x4 SP * SPF No.2 *Excepi SPF No.2 *Excepi a c purlins, exc -0 oc purlins (2-10) 	7-2-8 [17:0-4-8,0-3-8], [18 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code * 18-2,5-14:2x3 SP 1650F 1.5E pt* 19-1:2x4 SP No. athing directly applie sept end verticals, a -4 max.): 1-6, 8-9.	7x8= 3x4 II 14-3-8 7-1-0 3:Edge,0-2-8] 2-0-0 1.15 1.15 1.15 NO IRC2018/TPI2014 1) Wind: ASC Vasd=91m F Ke=0.96; C exterior zo .2 Interior (1) 27-1-11, In ed or left and rig nd exposed; C reactions s	3x8 = CSI TC BC WB Matrix-SH E 7-16; Vult=115mp ph; TCDL=6.0psf; B cat. II; Exp C; Enclos ne and C-C Exterior 5-1-12 to 22-0-2; Es terior (1) 27-1-11 to nt exposed ; end veta	7-1-0 0.90 Ver 0.96 Ver 0.96 Hor 0.96 CDL=6.0psf; sed; MWFRS (2E) 0-1-12 to teterior(2R) 22 33-5-3 zone; tical left and forces & MW	12x14 FL t(LL) t(CT) z(CT) gust) h=35ft; (envelope o 5-1-12, -0-2 to cantileve right /FRS for	13 3x4 u 4 u 8x8= 22-1-6 0-8-14 in (loc) -0.22 15-16 -0.45 15-16 0.21 10 =)	5-0-6 l/defl L/a >999 244 >896 180	4x4 = 32-2-1 5-0-6 d PLATES MT20 a	11 1.5x4 II 4x4 = 33-6-7 1-4-6 GRIP 197/144
late Offsets (X, Y) oading CLL (roof) CDL CLL CDL UMBER OP CHORD 2x4 NO VEBS 2x3 RACING OP CHORD Str 4-0 2-0 OT CHORD Rig	 4x4= 4x4= (psf) 25.0 10.0 0.0 10.0 SP No.2 *Excepi 2, 14-10:2x4 SP * SPF No.2 *Excepi SPF No.2 *Excepi a c purlins, exc -0 oc purlins (2-10) 	7-2-8 [17:0-4-8,0-3-8], [18 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code * 18-2,5-14:2x3 SP 1650F 1.5E pot* 19-1:2x4 SP No. athing directly applie cept end verticals, a	7x8= 3x4 II 14-3-8 7-1-0 3:Edge,0-2-8] 2-0-0 1.15 1.15 1.15 NO IRC2018/TPI2014 1) Wind: ASC Vasd=91m F Ke=0.96; C vasd=91m F Ke=0.96; C vasd=91m C 2.0 1.15 1.15 NO IRC2018/TPI2014 27-1-1, Ir extrior 20 0 27-1-1, Ir extrior 20 0 27-1-1, Ir extrior 20 0 27-1-0 20 1.15 1.15 NO IRC2018/TPI2014 1) Wind: ASC Vasd=91m F Ke=0.96; C extrior 20 0 27-1-1, Ir 27-1-1, Ir 20-1, Ir	3x8 = CSI TC BC WB Matrix-SH E 7-16; Vult=115mp ph; TCDL=6.0psf; B cat. II; Exp C; Enclos ne and C-C Exterior 5-1-12 to 22-0-2, Es terior (1) 27-1-11 to nt exposed ; end ver -C for members and hown; Lumber DOL equate drainage to [7-1-0 0.90 0.82 0.96 Wer Ver Ver Ver OSE CDL=6.0psf; sed; MWFRS (2E) 0-1-12 tc tkerior(2R) 22 33-5-3 zone; ritical left and t forces & MW =1.60 plate g prevent water	12x14 FL t(LL) t(CT) z(CT) gust) h=35ft; (envelope 5-5-15 cantileve right /FRS for rip	13 3x4 u 4 u 8x8= 22-1-6 0-8-14 in (loc) -0.22 15-16 -0.45 15-16 0.21 10 =)	5-0-6 l/defl L/a >999 244 >896 180	4x4 = 32-2-1 5-0-6 d PLATES MT20 a	11 1.5x4 II 4x4= 33-6-7 1-4-6 GRIP 197/144
CLL (roof) CLL (roof) CDL SCLL SCDL COP CHORD 2x4 SOT CHORD 2x4 No. VEBS 2x3 SRACING COP CHORD Str 4-0 2-0 SOT CHORD Rig bra	 8 4x4= 4x4= (psf) 25.0 10.0 0.0 10.0 SP No.2 *Except SPF No.2 *Except 4 oc purlins, exc 0 oc purlins (2-11) id ceiling directly o oc bracing: 14- 	7-2-8 [17:0-4-8,0-3-8], [18 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code * 18-2,5-14:2x3 SP 1650F 1.5E ot* 19-1:2x4 SP No athing directly applie rept end verticals, a 0-4 max.): 1-6, 8-9. applied or 10-0-0 or	7x8= 3x4 II 14-3-8 7-1-0 3:Edge,0-2-8] 2-0-0 1.15 1.15 1.15 NO IRC2018/TPI2014 1) Wind: ASC Vasd=91m F Ke=0.96; C vasd=91m F Ke=0.96; C 2.10 1,12 1,12 1,15 NO IRC2018/TPI2014 2.00 1,15 1,15 NO IRC2018/TPI2014 2.00 1,15 1,15 NO IRC2018/TPI2014 2.00 1,15 1,15 NO IRC2018/TPI2014 2.00 1,15 1,15 NO IRC2018/TPI2014 2.00 1,15 1,15 NO IRC2018/TPI2014 2.00 2.2 1,15 1,15 NO IRC2018/TPI2014 2.00 2.2 1,15 1,15 NO IRC2018/TPI2014 2.00 2.2 1,15 1,15 NO IRC2018/TPI2014 2.00 2.2 1,15 1,15 NO IRC2018/TPI2014 2.00 2.2 1,15 1,15 NO IRC2018/TPI2014 2.00 2.2 1,15 1,15 NO IRC2018/TPI2014 2.2 1,15 1,15 NO IRC2018/TPI2014 2.2 1,27 1,11 2.7 1,11 1,15	3x8 = CSI TC BC WB Matrix-SH E 7-16; Vult=115mp ph; TCDL=6.0psf; B Cat. II; Exp C; Enclose ne and C-C Exterior 5-1-12 to 22-0-2, Est terior (1) 27-1-11 to ht exposed ; end ver -C for members and hown; Lumber DOL	7-1-0 0.90 0.82 0.96 0.97 0.92 33.5-3 zone; ritical left and 1 forces & MW =1.60 plate g prevent water for a 10.0 psf	12x14 FL t(LL) t(CT) z(CT) gust) h=35ft; (envelope 0 5-1-12, -0-2 to cantileve right /FRS for rip ponding. bottom	13 3x4 u 4 u 8x8= 22-1-6 0-8-14 in (loc) -0.22 15-16 -0.45 15-16 0.21 10 e)	5-0-6 l/defl L/a >999 244 >896 180	4x4 = 32-2-1 5-0-6 d PLATES MT20 a	11 1.5x4 II 4x4 = 33-6-7 1-4-6 GRIP 197/144

- capacity of 565 psi, Joint 10 SPF No.3 crushing capacity of 425 psi. Refer to girder(s) for truss to truss connections. 5)
 - This truss is designed in accordance with the 2018 6)
 - International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 - 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

REACTIONS (size)

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

10= Mechanical, 19=0-3-8

Max Uplift 10=-205 (LC 9), 19=-308 (LC 8)

Max Grav 10=1498 (LC 1), 19=1498 (LC 1)

(lb) - Maximum Compression/Maximum

7-8=-1750/257, 8-9=-60/62, 9-10=-21/14

18-19=-8/41, 17-18=0/141, 2-17=-1060/344, 16-17=-273/1466, 15-16=-329/1919, 14-15=-332/16, 5-15=-315/230,

7-12=-476/155, 8-12=-160/1048, 8-11=0/182

1-19=-1426/327, 1-2=-1462/356,

2-3=-2095/447, 3-5=-2095/447,

5-6=-1892/389, 6-7=-1847/347,

13-14=-72/218, 12-13=-265/1551, 11-12=-124/633, 10-11=-127/629

17-19=-279/352, 1-17=-360/1888, 2-16=-175/824, 3-16=-526/224, 5-16=-70/230, 8-10=-1637/230,

6-13=-1969/348, 13-15=-390/2743,

7-13=-28/179, 6-15=-494/2356,

Max Horiz 19=-302 (LC 10)

Tension

CICLL (root) 25.0 Plate Ginp DOL 1.15 TC 0.74 Vert(L1) -0.17 15.16 >999 240 MT20 244/190 SOLL 0.0 Rep Stress Incr NO Code IRC2018/TPI2014 Matrix-SH Wert(L1) -0.17 15.16 >999 120 Weight: 205 lb FT = 20% JUMBER VESS 2X4 SP No.2 *Except* 7-10:2x4 SP 1650F 6-16=-481/203, 7-16=-129/828, 6-16=-481/203, 7-16=-129/828, 6-16=-481/203, 7-16=-129/828, 999 16.0 Weight: 205 lb FT = 20% VESS 2X4 SP No.2 *Except* 12:11:2x4 SP No.2 STructural wood sheathing directly applied or 3-9-5 oc puritins, except and verticals, and 2-90 oc puritins, except and verticals, and 2-90 oc puritins, except end verticals, and 2-90 oc puritins, except and verticals, and 2-90 oc puritins, except and verticals, and 2-90 oc puritins, except and verticals, and 2-91 oc puriting, e21-31. 10. Unbalanced roof live loads have been considered for this design. 2.0 10.0 10.23-911 oc 3-411, 2009,			TION									
All relief (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	S NOTED OI		HEW		Truss Type		Qty	Ply	Roof - Osage Lot	56		
<page-header> Prove the series of the se</page-header>	PF2355-9RM		ES		Half Hip		1	1	Job Reference (or	tional)		159477254
<complex-block> Image: State of the state</complex-block>	Premier Building	Supply (Springhill, KS)) Spring H	ills, KS - 66083,		Run: 8.63 S Apr 6 20)23 Print: 8	630 S Apr 6			Jul 12 07:06:34	Page: 1
$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	08/03/20)23 3:30:0	04			ID:1qoqPe9sWQ6Nhy	/m0HGDsK	rz_ma?-RfC	?PsB70Hq3NSgPqnL8w	3ulTXbG	KWrCDoi7J4zJC	?f
<complex-block> 1.547 1.54</complex-block>		1-8-4	4 4-4-1	2 7-1-4							33-6-7	—
With the second seco				8 2-8-8	5-10-14	5-9-10	2-	8-1	8-3-4		3-9-7	
Image: Provide and the second provide			1.5X4 II	7x8= 4	x4= 3x4=	1 5x4 u	6x6=					
Image: state in the state	-9		2	3 23 4	5			1.5x4	u .			
 A statistic statisti statisti statistic statistic statistic statistic statistic sta	0-8 8	<u>-</u>	- B			1		-				
Image: space of the space									25 ¹² 15		2×4	
 a constraint of the second provide sec	7-13	7-13					//				-	
 I and a second se	-10 8-	\/ \/ ا					١	$\langle $		26	9	
 A second state of the second stat	6-8							\mathbb{N}		\geq	10	
 a. a. a		00	121									
1 10 10 4de 10<		0-022										
Jule 19 Jule J			8			16		14				
pde def issue issue issue issue issue issue 1.5.44 issue issue<				19		4x8=	:				13	- ·- ← ← ← ← ←
1544 17-70 4-412 7-28 13-02 21-48 29-0 33-67 1840 17-0 9-142 2-9-1 8-48 9-48 39-7 1840 1840 50-0 8-48 9-48 39-7 1840 1900 155 1000 8-48 9-48 39-7 1900 2001 100 155 1000 115 1000 9-47 1000 9-48 9-48 39-7 1900 100 100 115 100 004 100 9-47 9-44 9-47 9-44 9-44 9-47 9-44		7x8=						Зх6 н			5x8=	
Scale = 167.8 Fig. 0 8-4.6 8-4.6 8-4.8 3-9.7 Scale = 167.8 Spacing 2-9-0 CSI DEFL in 10:00 Viet (L1) 0.01 PLATES GRIP CICL 0:00 2:00 11:5 TC 0.74 Vert(L1) 0.01 Viet (SI) PLATES GRIP CICL 0:00 2:00 1:15 TC 0.74 Vert(L1) 0.01 Viet (SI) PLATES GRIP CICL 0:00 Code Immed Tool (Viet (L1) 0.01 Viet (SI) 0.03 Viet (SI) 0.04 Vert (SI) 0.04 Vert (SI) 0.04 Vert (SI) 0.04 Vert (SI) 0.07 Viet (SI) 0.01 Viet (SI) 0.01 Viet (SI) 0.01 Viet (SI) 0.02 Viet (SI) 0.		1	1.5x4 ॥									
State 1:17:8 Pace Offsets (X, Y): [15:0-3:0-2-4], [17:0-4:0-2-4], [21:0-3:12.Edge] Could press (X, Y): [15:0-3:0-2-4], [17:0-4:0-2-4], [21:0-3:12.Edge] Could press (X, Y): [15:0-3:0-2-4], [17:0-4:0-2-4], [21:0-3:12.Edge] Could press (X, Y): [15:0-3:0-2-4], [17:0-4:0-2-4], [17:0-4:0-2-4], [17:0-4:10, [21:0-3:12.Edge] Citcl, (roop) 10:0 [1:0:0 Cds [1:0:0 C3:0 0.4 Vert(I, I) 0.40 [1:6:-3:99], 180, [3:0:0 State [1:0:0] Code [I:0:0:1:0:0] Code [I:0:0:0:0:0:0] [I:0:0:0:0:0:0:0:0] [I:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0		1-7-0) ₁ 4-4-1	2 7-2-8	13-0-2	21-4-	8	1	29-9-0		33-6-7	1
Coding (pet) (pet) Plate Grip DOL Lumber DOL SCLL Spacing (pet) 2-0-0 Plate Grip DOL L1.15 CSI TC 0.74 Ver(L1) Ver(L1) DEFL (ver(L1) in (toc) I/det L/d PLATES GRIP C3-04 SCLL 0.0 0.0 Rep Stress Inc NO UMBER (C2018/TPI2014) 0.64 Hor2(CT) 0.0.0 12 n/a NZ JUMBER OF CHORD 2x4 SP No.2 Except 17.10:2x4 SP 1050 1.21=-267/1406, 4-16=-129/828, 0-16=-481/203, 7-16=-18/208, 0-16=-481/203, 7-16=-18/2016, 0-160 Ver(L) Ve	Scale = 1:67.8	1-7-0) 2-9-1	2 2-9-12	5-9-10	8-4-6	6		8-4-8		3-9-7	
CICLL (roof) 2 s.o Piste Gip DOL 1.15 TC 0.74 Ver(T) -0.17 15-16 See Structure MT20 24/190 SCDL 0.0 Code Rop Struss Inor NO NO Ver(T) -0.04 15-6 See Struss Inor NO Ver(T) -0.04 15-7 No Ver(T) -0.04 15-7 No Ver(T) -0.04 15-6 See Struss Inor NO	Plate Offsets (X	(, Y): [15:0-3-0,0-2	2-4], [17:0)-4-8,0-2-0], [21:	0-3-12,Edge]							
CDL 0.0 Lumber DOL 1.15 CC 0.68 Weight: 205 lb FT = 20% JUMBER OP CHORD 10.0 Code NO Rep Stress Incr NO Rep Stress Incr NO Matrix-SH Weight: 205 lb FT = 20% JUMBER OP CHORD 2x4 SP No.2 *Except 7-10:2x4 SP 1600F 1.5E Stress 2x4 SP No.2 *Except 12-11:2x4 SP No.2 WEIS 1.21=-287/1406, 4-16=-129/328, 6-16=-43/203, 7-16=-63/358, 9-15=-615/37, 9-15=-889/252, 1-15=-220/1286, 3-15=-220/1286, 3-15=-220/1286, 3-15=-220/1286, 3-15=-220/1286, 3-15=-220/1286, 3-15=-220/1286, 3-15=-220/1286, 3-15=-220/1286, 3-15=-220/1286, 3-15=-220/1286, 3-15=-220/1286, 3-15=-220/1286, 3-15=-20/1	Loading	(psf)	Spac	cing	2-0-0	CSI	DEF	ïL	in (loc) l/defl	L/d	PLATES	GRIP
SCLL 0.0 Rep Stress Incr NO WB 0.64 Hor2(CT) 0.09 12 n/a Weight: 205 lb FT = 20% SCDL 10.0 Code IRC2018/TPI2014 MarksSH MarksSH Weight: 205 lb FT = 20% UMBER COP CHOR 2x4 SP No.2 "Except" 7-10:2x4 SP 1650" KES 5:16 = -427(20), 7:16 = -82/09, 7:16 = -220/1286, 5:16 = -220/1286, 5:16 = -220/1286, 5:16 = -220/1286, 5:16 = -220/1286, 5:16 = -220/1286, 5:16 = -220/1286, 5:16 = -220/1286, 5:16 = -220/1286, 5:16 = -220/1286, 5:16 = -20/1286, 5:16 = -20/1286, 5:16 = -20/1286, 5:16 = -20/1286, 5:16 = -20/1286, 5:16 = -20/1286, 5:16 = -20/1286, 5:10 = -80/873, 5:13 = -80/133, 5; 3:17 = -216/389, 13.25 = -80/3336, 3:17 = -216/389, 13.25 = -80/3336, 3:17 = -20/48, 13.25 = -80/3336, 3:17 = -20/48, 13.25 = -80/3336, 3:17 = -20/48, 13.25 = -80/3336, 3:17 = -20/48, 13.25 = -80/3336, 3:17 = -20/48, 14.15 = -20/128, 19.25 = -10.298, 19.26 = -16/3336, 19.2 = -10.298, 19.26 = -16/3336, 19.2 = -10.298, 19.26 = -16/3336, 19.2 = -10.298, 19.26 = -16/3336, 19.2 = -10.298, 19.26 = -16/3336, 19.2 = -11.20.298, 10.20 = -11.20.29	TCLL (roof)							. ,			MT20	244/190
 UMBER TOP CHORD 2x4 SP No.2 "Except" 7-10:2x4 SP 1650F 15E OT CHORD 2x4 SP No.2 "Except" 2-20.18-4.8-14:2x3 SPF No.2 "Except" 2-20.18-4.8-14:2x3 SPF No.2 "Except" 12-11:2x4 SP No.2 WEBS 1:21=-287/1406, 4-16=-129/828, 6-16=-481/203, 7-16=-13209, 7-15=-218/589, 13-16-2201286, 9-15=-61/537, 9-13=-898/135, 3-17=-219/136, 3-21=-603/395, 19-21=-103/986, 17-19=-63/889 NOTES NOTES	BCLL	0.0	Rep	Stress Incr	NO	WB 0		. ,		n/a		
COP C-IORD 15E 2:4: SP No.2 "Except" 7-10:2x4 SP 1650F 15E 6-16412/03, 7-1612209. (3-152201/286, 9-15216/581, 9-152201/286, 9-15216/581, 9-152201/286, 9-	BCDL	10.0	Code	9	IRC2018/TPI2014	Matrix-SH					Weight: 205 lb	FT = 20%
1.5E 7-15=-218/580, 13-15=-2201/286, 23-2-201/286, 23-	LUMBER TOP CHORD	2x4 SP No 2 *Exc	ent* 7-10									
 MES 223 SPF No.2 Zuckeyt 12-11:2x4 SP No.2 2x4 SP No.2 2x		1.5E				,		6,				
 19-21=-103/986, 17-19=-63/689 MAT La Control 19-21=-103/986, 17-19=-63/689 NOTES 19-21=-103/986, 17-19=-63/689 NOTES 19-21=-103/986, 17-19=-63/689 NOTES 10-10-00 cb parting: 62-10-10 cb parts grave to this design. 10-10-00 cb parting: 12-13. 18 cont at midpt 4-17 18 cont at midpt 4-17 18 control 19-11-18 12 methanical, 22=-3-38 Max Lipitit 12=-196 (LC 13), 22=-274 (LC 8) Max Cirav 12=-1496 (LC 13), 22=-274 (LC 8) Max Cirav 12=-1496 (LC 13), 22=-274 (LC 8) Max Cirav 12=-1496 (LC 13), 22=-274 (LC 8) Max Cirav 12=-1469 (LC 13), 22=-274 (LC 8) Max Cirav 12=-1468 (LC 3), 22=-274 (LC 8) Max Cirav 12=-1468 (LC 13), 22=-274 (LC 8) Max Cirav 12=-1468 (LC 13), 22=-274 (LC 8) Max Lipitit 12=-196 (LC 13), 22=-274 (LC 8) Max Cirav 12=-1468 (LC 13), 22=-274 (LC 8) Max Cirav 12=-1468 (LC 13), 22=-1498 (LC 10) Provide adequate drainage to prevent water ponding. This trues has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Bearings are assumed to be: Joint 22 SP No.2 crushing capacity of 555 psi, Joint 12 SP No.3 crushing capacity of 525 psi. Provide adequate drainage to prevent water ponding. This trues is designed in accordance with the 2018 International Residential Code sections RS02.111 and R802.102 and referenced standard ANSI/PT 1. Graphical purine representation does not depict the size or the orientation of the purin along the top and/or bottom chord. LOAD CASE(S) Standard 		SPF No.2			1	1-13=-226/1605, 3-19	=-888/13					
 Index and the provided in the provide	WEBS OTHERS		cept* 12-	-11:2x4 SP No.2								
 3-9-5 co purtins, exception verticals, and 2-0-0 co purtins (3-11-4 max): 1-7. 3OT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. Exception (2-1) (2-1		Structural wood of	hoothing	directly applied		roof live loads have be	on consid	lered for				
 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing; 12-13. I Row at midpt 4-17 Verss 1 Row at midpt 3-19 REACTIONS (size) 12= Mechanical, 22=0-38 Max Horiz 22=-312 (LC 8) Max Dupit 12=-196 (LC 13), 22=-274 (LC 8) Max Grav 12=1496 (LC 1), 22=1496 (LC 1) OPOCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-22=-399/166, 2-3=-403/167, 3-4=-1130/283, 4-6=-1653/354, 6-7=-1656/356, 7-8=-2046/431, 8-9=-2100/360, 9-11=-1453/3220, 11-12=-1483/215, 1-22=-198/202 BOT CHORD 21-22=-298/401, 20-21=-038, 2-21=-113/92, 19-20=-1715, 18-19=-11/29, 17-18=0/38, 4-17=-947/226, 16-17=-146/1135, 8-15=-427/255, 13-14=-6/61, 12-13=-49/52 CHORD 21-22=-298/401, 20-21=-038, 2-21=-143/92, 19-20=-1715, 18-19=-11/29, 17-18=0/38, 4-17=-947/226, 16-17=-146/1135, 8-15=-427/255, 13-14=-6/61, 12-13=-49/52 CHORD 21-22=-298/401, 20-21=-038, 2-21=-143/92, 19-20=-1715, 18-19=-11/29, 17-18=0/38, 4-17=-947/226, 16-17=-146/1135, 8-15=-427/255, 13-14=-6/61, 12-13=-49/52 CHORD 21-22=-698/401, 20-21=-038, 2-21=-113/92, 19-20=-1715, 18-19=-0/153, 8-15=-427/255, 13-14=-6/61, 12-13=-49/52 CHORD 21-22=-698/401, 20-21=-038, 2-21=-113/92, 19-20=-1715, 18-19=-11/29, 17-18=0/38, 4-17=-947/226, 16-17=-146/1135, 8-15=-427/255, 13-14=-6/61, 12-13=-49/52 CHORD 21-22=-698/401, 20-21=-038, 2-21=-113/92, 19-20=-1715, 13-14=-6/61, 12-13=-49/52 CHORD 21-22=-789/401, 20-21=-038, 2-21=-113/92, 19-20=-1715, 13-14=-6/61, 12-13=-49/52 CHORD 22-21-21-213-213-213-213-213-213-213-213	TOP CHORD	3-9-5 oc purlins, e	except er	nd verticals, and	this design.							
 6-0-0 or bracing: 12-13. I Row at midpt 4-17 VEES ReACTIONS (size) 12= Mechanical, 22=0-3-8 Max Horiz 22=-312 (LC 8) Max Grav 12=1496 (LC 1), 22=-274 (LC 8) Max Grav 12=1496 (LC 1), 22=-1480 (LC 1) (b) - Maximum Compression/Maximum Tension TOP CHORD 12=-399/166, 2-3=-403/167, 3-4=-1130/283, 4-6=-1653/354, 6-7=-1656/356, 7-8=-2046/431, 8-9=-2108/360, 9-11=-1453/220, 11-12=-1483/215, 1-22=-1282/192, 11-12=-1483/215, 1-22=-269/401, 20-21=-01/28, 2-21=-113/92, 19-20=-11/5, 18-19=-11/28, 12-113-2483/215, 15-16=-225/1643, 14-15=0/153, 8-15=-4227/255, 13-14=-6/61, 12-13=-49/52 exterior zone and C-C E kterior/2E) 0-1-12 to 15-1-12. exterior zone and C-C E kterior/2R) 10-13-2 to 138-9-11 to 239-911, Interior (1) 23-9-11 to 33-4-11 zone; cantilever left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Bearings are assumed to be: Joint 22 SP No.2 crushing capacity of 565 psi, Joint 12 SPF No.3 crushing capacity of 425 psi. Refer to gridder(s) for truss to truss connections. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. Bottom chord. LOAD CASE(S) Standard 	BOT CHORD				Vasd=91mph	n; TCDL=6.0psf; BCDL	.=6.0psf; I	n=35ft;				
 I Row at midpt 4-17 I Row at midpt 4-17 I Row at midpt 3-19 I Row at midpt 3-11 I Row a												
 REACTIONS (size) 12= Mechanical, 22=0-3-8 Max Horiz 22=-312 (LC 8) Max Uplit 12=-196 (LC 1), 22=-274 (LC 8) Max Grav 12=1496 (LC 1), 22=-1496 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-399/166, 2-3=-403/167, 3-4=-1130/283, 4-6=-1653/354, 6-7=-1656/356, 7-8=-2046/431, 8-9=-2108/360, 9-11=-1453/220, 11-12=-1483/215, 1-22=-1428/292 3OT CHORD 21-22=-299/401, 20-21=0/38, 2-21=-113/92, 19-20=-11/5, 18-19=-11/29, 17-18=0/38, 4-17=-947/226, 16-17=-146/1135, 8-15=-427/255, 13-14=-6/61, 12-13=-49/52 Kef et to grider(\$) for truss to trus to trus connections. This truss is designed in accordance with the 2018 International Residential Code sections R502, 11.1 and R802, 10.2 and referenced standard ANSI/TP1 1. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(\$) Standard 		4-17			Interior (1) 5-	1-12 to 18-9-11, Exter	ior(2R) 18	3-9-11 to				
 Max Upilit 12=-192 (UC 3) Max Grav 12=1496 (LC 1), 22=-274 (LC 8) Max Grav 12=1496 (LC 1), 22=-1496 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-399/166, 2-3=-403/167, 3-4=-1130/283, 4-6=-1653/354, 6-7=-1656/356, 7-8=-2046/431, 8-9=-2108/360, 9-11=-1453/220, 11-12=-1483/215, 1-22=-1428/292 BOT CHORD 21-22=-269/401, 20-21=0/38, 2-21=-113/92, 19-20=-1/15, 18-19=-11/29, 17-18=0/38, 4-17=-947/226, 16-17=-146/1135, 15-16=-225/1643, 14-15=0/153, 8-15=-427/255, 13-14=-6/61, 12-13=-49/52 Bot CHORD 21-22=-269/401, 20-21=0/38, 2-21=-113/92, 19-20=-1/15, 18-19=-11/29, 17-18=0/38, 4-17=-947/226, 16-17=-146/1135, 15-16=-225/1643, 14-15=0/153, 8-15=-427/255, 13-14=-6/61, 12-13=-49/52 Chor CHORD 21-22=-740/38, 12-113-92, 10-21=0/38, 2-21=-113/92, 19-20=-1/15, 18-19=-11/29, 17-18=0/38, 4-17=-947/226, 16-17=-146/1135, 15-16=-225/1643, 14-15=0/153, 8-15=-427/255, 13-14=-6/61, 12-13=-49/52 Chor CHORD 21-22=-740/38, 12-11-13-92, 19-20=-1/15, 18-19=-11/29, 17-18=0/38, 11-15=0/258, 11-12=-1428/212, 11-13=-49/52 Chor CHORD 21-22=-740/38, 12-11-13-92, 19-20=-1/15, 18-19=-11/29, 17-18=0/38, 11-15=0/153, 8-15=-427/255, 13-14=-6/61, 12-13=-49/52 Chor Chord. LOAD CASE(S) Standard 				, 22=0-3-8	left and right	exposed ; end vertical	left and r	ight				
 Max Grav 12=1496 (LC 1), 22=1496 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-399/166, 2-3=-403/167, 3-4=-1130/283, 4-6=-1653/354, 6-7=-1656/356, 7-8=-2046/431, 8-9=-2108/360, 9-11=-1453/220, 11-12=-1483/215, 1-22=-1428/292 BOT CHORD 21-22=-269/401, 20-21=0/38, 2-21=-113/92, 19-20=-1/15, 18-19=-11/29, 17-18=0/38, 4-17=-947/226, 16-17=-146/1135, 15-16=-225/1643, 14-15=0/153, 8-15=-427/255, 13-14=-6/61, 12-13=-49/52 Max Grav 12=1496 (LC 1), 22=1498 (LC 1), 22=1498 (LC 1) Provide adequate drainage to prevent water ponding. Provide adequate drainage to				22=-274 (I C 8	reactions abo							
 FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-399/166, 2-3=-403/167, 3-4=-1130/283, 4-6=-1653/354, 6-7=-1656/356, 7-8=-2046/431, 8-9=-2108/360, 9-11=-1453/220, 11-12=-1483/215, 1-22=-269/401, 20-21=0/38, 2-21=-113/92, 19-20=-1/15, 18-19=-11/29, 17-18=0/38, 4-17=-947/226, 16-17=-146/1135, 15-16=-225/1643, 14-15=0/153, 8-15=-4277/255, 13-14=-6/61, 12-13=-49/52 This truss has been designed for a 10.0 psf bottom chord like load nonconcurrent with any other like loads. Bearings are assumed to be: Joint 22 SP No.2 crushing capacity of 565 psi, Joint 12 SPF No.3 crushing capacity of 425 psi. Refer to girder(s) for truss to truss connections. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 			· ,		DOL=1.60	uate drainage to prev	ent water	pondina				
 TOP CHORD 1-2=-399/166, 2-3=-403/167, 3-4=-1130/283, 4-6=-1653/354, 6-7=-1656/356, 7-8=-2046/431, 8-9=-2108/360, 9-11=-1453/220, 11-12=-1483/215, 1-22=-1428/292 BOT CHORD 21-22=-269/401, 20-21=0/38, 2-21=-113/92, 19-20=-1/15, 18-19=-11/29, 17-18=0/38, 4-17=-947/226, 16-17=-146/1135, 15-16=-225/1643, 14-15=0/153, 8-15=-427/255, 13-14=-6/61, 12-13=-49/52 Bot CHORD 21-22=-269/401, 20-21=0/38, 2-21=-113/92, 19-20=-11/135, 15-16=-225/1643, 14-15=0/153, 8-15=-427/255, 13-14=-6/61, 12-13=-49/52 Chord CASE(S) Standard 	FORCES		ompressio	on/Maximum	4) This truss ha	s been designed for a	10.0 psf l	ottom				
 7-8=-2046/431, 8-9=-2108/360, 9-11=-1453/220, 11-12=-1483/215, 1-22=-1428/292 3OT CHORD 21-22=-269/401, 20-21=0/38, 2-21=-113/92, 19-20=-1/15, 18-19=-11/29, 17-18=0/38, 4-17=-947/226, 16-17=-146/1135, 15-16=-225/1643, 14-15=0/153, 8-15=-427/255, 13-14=-6/61, 12-13=-49/52 Capabical pure of the pure sentation does not depict the size or the orientation of the pure sentation does not depict the size or the orientation of the pure sentation does not depict the size or the orientation of the pure sentation does not depict the size or the orientation of the pure sentation does not depict the size or the orientation of the pure sentation does not depict the size or the orientation of the pure sentation does not depict the size or the orientation of the pure sentation does not depict the size or the orientation of the pure sentation does not depict the size or the orientation of the pure sentation does not depict the size or the orientation of the pure sentation does not depict the size or the orientation of the pure sentation does not depict the size or the orientation of the pure sentation does not depict the size or the orientation of the pure sentation does not depict the size or the orientation of the pure sentation does not depict the size or the orientation of the pure sentation does not depict the size or the orientation of the pure sentation does not depict the size or the orientation of the pure sentation does not depict the size or the orientation of the pure sentation does not depict the size or the orientation of the pure sentation does not depict the size or the orientation of the pure sentation does not depict the size or the orientation of the pure sentation does not depict the size or the orientation of the pure sentation does not depict the size or the orientation of the pure sentation does not depict the size or the orientation does not depict	TOP CHORD	1-2=-399/166, 2-3			^{33,} 5) Bearings are	assumed to be: Joint	22 SP No	.2 crushing	g		000	100
 6) Refer to girder(s) for truss to truss connections. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 		7-8=-2046/431, 8-	-9=-2108/	/360,		65 psi, Joint 12 SPF N	lo.3 crush	ing capacit	ty		F. OF	MISS
 30T CHORD 21-22=269/401, 20-21=0/38, 2-21=-113/92, 19-20=-1/15, 18-19=-11/29, 17-18=0/38, 4-17=-947/226, 16-17=-146/1135, 15-16=-225/1643, 14-15=0/153, 8-15=-427/255, 13-14=-6/61, 12-13=-49/52 (a) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. (b) CAD CASE(S) Standard (c) CAD CASE(S) Standard 			11-12=-14	483/215,	 Refer to girde 					B	A	W.S.
 4-17=-947/226, 16-17=-146/1135, 15-16=-225/1643, 14-15=0/153, 8-15=-427/255, 13-14=-6/61, 12-13=-49/52 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 	BOT CHORD	21-22=-269/401, 2			^{2,} International	Residential Code sect	tions R502	2.11.1 and		g o	2/ NAIT	
15-16=:225/1643, 14-15=U/153, 8-15=-427/255, 13-14=-6/61, 12-13=-49/52 or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard PE-2022042259		4-17=-947/226, 16	6-17=-146	6/1135,					9	A	41	10 mg
LOAD CASE(S) Standard PE-2022042259					or the orienta	ation of the purlin along				AL.	There	to that
TESSIONAL ENGLISH										N.F	PE-2020	2042259 A
April 1										S	E.	15A
April 1										X	SIONA	L EN
											alle	000

July 12,2023

LEASE FOR CONST	PLICTION				
S NOTED ON PLANS	REVIEW	Truss Type	Qty Ply	Roof - Osage Lot 56	
DEVELORMENT SEI		Half Hip Girder	1 2	Job Reference (optional)	159477255
Premier Building Supply (Spring 08/03/2023 3	SOURI hill, KS), Spring Hills, KS - 6608	3, Run: 8.63 S	• •	6 2023 MiTek Industries, Inc. Wed Jul 12 07:06	-
08/03/2023 3:	36:05	ID:IkXHPRU	nAQGINLGmql6q4dzaidp-RfC	?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJ	
ł	<u>1-8-4 4-4-12 7-1-4</u> 1-8-4 2-8-8 2-8-8	11-11-6 16-9-8	24-8-12		38-9-8 - <u>8-14</u>
	1-8-4' 2-8-8 ' 2-8-8 ' 3x4 II	4-10-2 4-10-2	7-11-4	4-0-5 4-1-11 2-1-4 3-	8-140-0-10
	x6= 5x8= 3x4				
9-7-11 0-1-13			=		
			5x5 ≈		
4 4 4	$\mathbb{N} \parallel \mathbb{A} \parallel \mathbb{N} \parallel \mathbb{A}$		29 8	12 15	
မှ မှ မှ				6x6≈ MT18HS 5x8 ≈	
9-7-15 9- 6-				9 4x8=	
				10 1130 5x52	_
Q 33	4 1			12	0-0- 0-0-
ං 3 ං 7 ස් 7	x8=				13 u 0 0
\perp \perp	24	$23 \stackrel{\circ}{\leftarrow} 21$ 20 4x4= $4x4=$	19 18 Ix8= 5x5	17 [∟6 ∰ → ∏ = MT18HS 5x8 = 15 313214 33	
	3x4 II 24 3x4 4x8=			10010214 00	6x12= 28 LUS24
		7x8=		MT18HS 9x18 =	
				10x10= Special	
	-7-0, 4-4-12 , 7-2-8 ,	11-11-6 16-10-12 ¹⁸⁻⁸⁻	24-8-12	LUS28 28-9-1 _ 32-8-0 _ 35-0-0 _ 38-	-8-14
5 Scale = 1:77.1	-7-0 4-4-12 7-2-8 -7-0 2-9-12 2-9-12	4-8-14 4-11-6 1-9-4			8-14
Plate Offsets (X, Y): [10:0-	4-0,Edge], [11:0-2-12,0-2-4	, [14:0-2-8,0-5-0], [15:0-7-4,0-1-8], [16:0-	11-8,0-4-8], [17:0-4-0,0-2-4	4], [22:0-3-12,0-4-12], [23:Edge,0-2-8], [26	5:0-3-12,0-4-8]
Loading	(psf) Spacing	1-0-0 CSI	DEFL	in (loc) l/defl L/d PLATES	GRIP
TCLL (roof) TCDL	25.0 Plate Grip DOL 10.0 Lumber DOL	1.15 TC 1.15 BC	0.92 Vert(LL) 0.57 Vert(CT)	-0.29 16-17 >999 240 MT20 -0.52 16-17 >886 180 MT18HS	197/144 244/190
BCLL	0.0 Rep Stress Incr	NO WB	0.98 Horz(CT)	0.14 13 n/a n/a	244/190
BCDL	10.0 Code	IRC2018/TPI2014 Matrix-SH		Weight: 55	1 lb FT = 20%
LUMBER TOP CHORD 2x4 SP No.	2 *Except* 10-13:2x6 SP 24		41, 11-16=-1561/8187, 6, 7-20=-319/1766,	 This truss has been designed the chord live load nonconcurrent 	
2.0E	·	8-20=-3195/67	4, 8-18=-466/2626,	Bearings are assumed to be: J	loint 27 SPF No.2
	b.2 *Except* 2-25,23-4:2x3 :1 1/2" x 9 1/4" 2.0E Microl	am® 3-24=-898/67,	6, 7-21=-1076/241, 3-22=-262/1619,	crushing capacity of 425 psi, J 2.0 E crushing capacity of 750	
	2x6 SP 2400F 2.0E 0.2 *Except* 20-8,11-17:2x4		, 24-26=-58/1050, , 12-14=-3389/660,	 This truss is designed in accor International Residential Code 	
No.2, 14-16	:2x6 SP 2400F 2.0E, 16-12	:2x6 9-18=-3999/79	4, 11-17=-11544/2282,	R802.10.2 and referenced star	ndard ANSI/TPI 1.
SPF No.2 OTHERS 2x6 SP 240	0F 2.0E		0, 14-16=-2249/11995, 37, 6-21=-180/991	 Graphical purlin representation or the orientation of the purlin a 	
BRACING TOP CHORD Structural v	rood sheathing directly app	NOTES lied or 1) 2-ply truss to be connected	together with 10d	bottom chord. 11) Use Simpson Strong-Tie LUS2	28 (6-10d Girder, 3-10d
2-6-11 oc p	urlins, except end verticals	, and (0.131"x3") nails as follows		Truss, Single Ply Girder) or eq oc max. starting at 34-3-4 from	
	rlins (6-0-0 max.): 1-7. g directly applied or 10-0-0	Top chords connected as f oc oc, 2x4 - 1 row at 0-9-0 oc,		connect truss(es) to back face	of bottom chord.
bracing, E 6-0-0 oc br	xcept: acing: 25-26,22-23.	0-9-0 oc. Bottom chords connected a	s follows: 2x6 - 2 rows	 Use Simpson Strong-Tie LUS2 Truss, Single Ply Girder) or eq 	
1 Row at midpt 4-22	. .	staggered at 0-9-0 oc, 2x3 rows staggered at 0-4-0 oc		5 the left end to connect truss(es chord.	s) to back face of bottom
WEBS 1 Row at m REACTIONS (size)	idpt 8-20 3=0-9-0, 27=0-3-8	Web connected as follows:	2x3 - 1 row at 0-9-0 oc, 2x		is in contact with lumber.
	7=-190 (LC 34) 3=-1284 (LC 13), 27=-289	1 row at 0-9-0 oc, 2x6 - 2 r (I C 9) 2) All loads are considered ed			
Max Grav 1	3=7019 (LC 1), 27=1598 (L	C 1) except if noted as front (F) CASE(S) section Ply to ply		AD	
FORCES (Ib) - Maxin Tension	num Compression/Maximun	provided to distribute only		550	F MISSO
TOP CHORD 1-27=-1529	/285, 1-2=-387/71, 2-3=-39 257, 4-6=-1243/257,	3) Unbalanceu tuur ilve luaus	have been considered for	HAVE	
6-7=-1957/	380, 7-8=-2783/497,	this design. 4) Wind: ASCE 7-16; Vult=11	5mph (3-second aust)	A ST NA	THANIEL TE
	1040, 9-11=-8983/1667, 65/3708, 12-13=-14407/27	Vasd=91mph: TCDL=6.0ps	f; BCDL=6.0psf; h=35ft;	BA IN	FOX
BOT CHORD 26-27=-72/	191, 25-26=-37/10, 2-26=-3 4, 23-24=-9/59, 22-23=-38/	5/43, exterior zone and C-C Exte	rior(2E) 0-1-4 to 5-1-4,		The factor
4-22=-121/	52, 21-22=-243/1955,	Interior (1) 5-1-4 to 16-9-8, 23-10-6, Interior (1) 23-10-		er ABAXU M	MARKER 1
	/2503, 18-20=-857/5227, 3/8331, 16-17=-3627/1922	left and right exposed : end	vertical right exposed;C-C		022042259
	/2192, 13-14=-2486/13230	Lumber DOL=1.60 plate gr	p DOL=1.60	SSIC.	NUL ENGIL
		 Frovide adequate drainage All plates are MT20 plates 	to prevent water ponding. unless otherwise indicated		July 12,2023

RFI	FASE FOR CONSTRUCTION						
AS	NOTED ON PLANS REVIEW		Truss Type	Qty	Ply	Roof - Osage Lot 56	
4	EXELORMENT SERVICES		Half Hip Girder	1	2	Job Reference (optional)	159477255
C	EE'S SUMMIT, MISSOURI Premier Building Supply (Springhill, KS), Spring 8/03/2023 3:36:05	lills, KS - 66083,				2023 MiTek Industries, Inc. Wed Jul 12 07:06:35 B70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 2
	 Hanger(s) or other connection device(sprovided sufficient to support concentrills down and 1070 lb up at 33-8-0 on bidesign/selection of such connection deresponsibility of others. DAD CASE(S) Standard Dead + Roof Live (balanced): Lumbe Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-7=-35, 7-13=-35, 26-27=-10 16-22=-10, 13-15=-10 	ated load(s) 52(bottom chord. T evice(s) is the r Increase=1.15	he				

Concentrated Loads (lb)

33=-562 (B)

Vert: 13=-564 (B), 31=-5205 (B), 32=-562 (B),

NOTED ON PLANS	REVIEW		Truss Type		Qty	Ply	Roof - Osage Lot 56	
EXELORMENT SER	VAIGAES		Common Girder		1	2	Job Reference (optional)	159477256
Premier Building Supply (Springh 98/03/2023 3:3	ill KS) Spring I	lills, KS - 66083,					6 2023 MiTek Industries, Inc. Wed Jul 12 07:06:35 C?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJ	•
			3-6-13 3-6-13	6-8-0 3-1-3	9-9-3 3-1-3		<u>13-0-14</u> 3-3-11	
				6x6	6 H			
	-4-7 0-11-2	1 4x8=	81 ² 4x12 3x4 10 9 3x6	11 8	12 10=	3x6 s 4 7 3x12	4x6 x 5 6 13 4x8 =	
Scale = 1:41.6		 	<u>3-6-13</u> 3-6-13	HHUS28-2 6-8-0 3-1-3	LUS28 <u>9-9-3</u> 3-1-3	LUS28	3 LUS28 <u>13-0-14</u> 3-3-11	

LUMBER

TCDL

BCLL

BCDL

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x8 SP 2400F 2.0E 2x3 SPF No.2 WEBS SLIDER Left 2x4 SP No.2 -- 3-9-0, Right 2x4 SP No.2 -- 1-10-8 BRACING TOP CHORD Sheathed or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 1=0-3-8, 6= Mechanical Max Horiz 1=-130 (LC 10) Max Uplift 1=-796 (LC 12), 6=-1051 (LC 13) Max Grav 1=3160 (LC 1), 6=5246 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension 1-2=-4809/1312, 2-3=-4497/1255, TOP CHORD 3-4=-4460/1248, 4-6=-5813/1350 BOT CHORD 1-9=-976/3658, 8-9=-977/3660, 7-8=-981/4538, 6-7=-980/4523 WFBS 3-8=-1222/4434, 4-8=-1062/134, 2-8=-112/253, 2-9=-117/369, 4-7=-186/1791 NOTES

10.0

0.0

10.0

Lumber DOL

Code

Rep Stress Incr

1.15

NO

IRC2018/TPI2014

- 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x8 - 3 rows staggered at 0-5-0 oc. Web connected as follows: 2x3 - 1 row at 0-9-0 oc, Except member 4-7 2x3 - 1 row at 0-2-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 5-1-12, Interior (1) 5-1-12 to 6-8-0, Exterior(2R) 6-8-0 to 11-8-0, Interior (1) 11-8-0 to 13-0-2 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

0.23 Vert(CT)

0.76

Horz(CT)

-0.06

0.01

7-8

6

>999

n/a n/a

180

BC

WB

Matrix-SH

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 Bearings are assumed to be: Joint 1 SP 2400F 2.0E
- Bearings are assumed to be: Joint 1 SP 2400F 2.0E crushing capacity of 805 psi, Joint 6 SPF No.3 crushing capacity of 425 psi.
- 7) Refer to girder(s) for truss to truss connections.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Use Simpson Strong-Tie HHUS28-2 (22-10d Girder, 8-10d Truss, Single Ply Girder) or equivalent at 6-0-13 from the left end to connect truss(es) to back face of bottom chord.
- 10) Use Simpson Strong-Tie LUS28 (6-SD9112 Girder, 4-SD9212 Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 8-0-0 from the left end to 12-0-0 to connect truss(es) to back face of bottom chord.
- 11) Fill all nail holes where hanger is in contact with lumber.
- 12) WARNING: The following hangers are manually applied but fail due to geometric and/or loading considerations: HHUS28-2 on back face at 6-0-13 from the left end.
- LOAD CASE(S) Standard
- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft)
 - Vert: 1-3=-70, 3-6=-70, 1-6=-20 Concentrated Loads (lb)
 - Vert: 7=-1485 (B), 11=-2806 (B), 12=-1480 (B), 13=-1478 (B)

Weight: 182 lb FT = 20%

16023 Swingley Ridge Rd Chesterfield, MO 63017

Entrop Div Provide Bit Provide Bit		D CONST										
$\frac{ \mathbf{r} _{0}}{ \mathbf{r} _{0}} \frac{ \mathbf{r} _{0}}{ \mathbf{r} _{0}} \frac{ \mathbf{r} _{0}}{ \mathbf{r} _{0}} \frac$	S NOTED O	N PLANS	REVIEV	v	Truss Type		Qty	Ply	Roof - Osa	age Lot 56		150477057
$\frac{1}{9} + \frac{1}{9} + \frac{1}$	PEXEL-9RM	MENT SER			Half Hip		1	1	Job Refere	ence (optional)		159477257
Image: State = 17.4 Image: State = 17.4 State = 17.4 <th< td=""><td>Premier Building</td><td>Supply (Springhi</td><td>II (KS) Sprii 6:05</td><td>ng Ilills, KS - 66083,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Premier Building	Supply (Springhi	II (KS) Sprii 6:05	ng I l ills, KS - 66083,								
$\frac{1}{10^{2} \text{ cm}^{2}} = \frac{1}{10^{2} c$										1.5x4 u		 6x6=
1/2 0-3-3-3-3-3-4 9-10-15 13-0-8 19-3-8 22-8-4 24-4-0 30-5-8 38-4-0 State = 17.44 Plane Grap (13-4-0.04-12) (4-0-31-20-50) (9-Edge.0-3-8) (15-0-2-6.02-2) (16-0-3-4.0-2-4) Leading (ps) Spacing 2-0-0 CSI 0.5-8	10-4-8 10-0-2 10-0-2 0-1	8	8-6-6-1	17 3	7x8 = 4 15 14	185	13				20 💌 💌	6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
TCLL (foor) 25.0 Piate Grip DOL 1.15 TC 0.80 Vert(L) -0.40 15-fe >>999 240 MT20 197/144 BCDL 10.0 Lumber DOL 11.5 BC 0.80 Vert(L) -0.40 15-fe >>521 MT20 197/144 BCDL 10.0 Code NO Rob Stress Incr NO			4 12 3-3-8 3-0-0	<u>9-10-15</u> 6-7-7	3-1-9	6-3-0	3-4-	12 1-7-12				
TOP CHORD2x4 SP No.2 "Except" 6-8:2x4 SP 1600FVasd=91mph; TCDL=6.0psf; h=35ft; Structural vool \$26 SP 2400F 2.0EBOT CHORD2x6 SP 2400F 2.0EExcept" 10-6,3-16:2x4 SP No.2WEBS2x3 SPF No.2 "Except" 10-6,3-16:2x4 SP No.2No.2BRACINGStructural wood sheathing directly applied or 2-6-3 oc purlins, except 2-0-0 oc purlins (5-23 max.): 6-8.BOT CHORDRigid ceiling directly applied or 7-3-0 oc bracing.BRACINGStructural wood sheathing directly applied or 7-3-0 oc bracing.BOT CHORD(size) 2-0-38, 9=0-38.REACTIONS(size) 2-2-36, cpurlins, except 2-0-0 oc purlins (5-23 max.): 6-8.BRACING1 Row at midpt 6-10, 7-10, 8-10, 8-9. 5-12, 3-15REACTIONS(size) 2-0-38, 9=0-38.Max Horiz 2-416 (LC 12) Max Moriz 2-416 (LC 12) Max Grav 2-1787 (LC 1), 9=-304 (LC 8) 1-2-0011, 2-3-888991774, 3-5=-4132/658, 5-6=-2078/299, 6-7=-1283/225, 10-12=-3081832, 9, 10-515FORCES(b) - Maximum Compression/Maximum TensionTOP CHORD1-2-0011, 2-3-888991774, 3-5=-4132/658, 5-6=-2078/299, 6-7=-1283/225, 10-12=-3081832, 9, 10-515WEBS6-12=-151/346, 6-10=-835/228, 7-10=-642/278, 8-10=-337/1897, 5-12=-1087/385, 4-15=-88441, 4-14=-1080/347, 5-14=-162/376, 5-15WEBS6-12=-151/346, 6-10=-357/2887, 7-10=-642/278, 8-10=-337/1897, 5-12=-1087/385, 4-15=-884481, 4-14=-1080/347, 5-14=-162/376, 5-15WEBS6-12=-151/346, 6-10=-357/2887, 7-10=-642/278, 8-10=-337/1897, 5-12=-1087/385, 4-15=-884481, 4-14=-1080/347, 5-14=-162/376, 5-15WEBS6-12=-151/346, 6-10=-357/2887, 7-10=-642/278, 8-10=-337/1897, 5-	Loading TCLL (roof) TCDL BCLL		(psf) S 25.0 F 10.0 L 0.0 F	pacing late Grip DOL umber DOL ep Stress Incr	2-0-0 1.15 1.15 NO	CSI TC BC WB	0.85 0.80	DEFL Vert(LL) Vert(CT)	-0.40 15-16 -0.74 15-16	>999 240 >621 180	MT20 MT18HS	197/144 244/190
	TOP CHORD BOT CHORD WEBS DTHERS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD	1.5E, 4-1:2x6 2x6 SP 2400 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x4 SP No.2 2x4 SP No.2 Structural wc 2-6-3 oc purl 2-0-0 oc purl Rigid ceiling bracing. 1 Row at mic (size) 2= Max Horiz 2= Max Horiz 2= Max Uplift 2= Max Grav 2= (lb) - Maximu Tension 1-2=0/11, 2-3 5-6=-2079/22 2-16=-2036/8 14-15=-882/3 10-12=-308/1 6-12=-151/9/2 7-10=-642/27 5-12=-1087/3 4-14=-1080/3	SP 24001 F 2.0E *Ex 2 *Except* 2 *Except* 3 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 *	 2.0E 2.0E 2.0E 2.0ept* 11-9,13-11:2 10-6,3-16:2x4 SP 10-6,3-16:2x4 SP 10-6,3-16:2x4 SP 2.0 and the second second	Vasd=91mph Ke=0.96; Cat exterior zone Interior (1) 4- 29-10-6, Inter- left and right members and Lumber DOL umber DOL 1 or 3) Provide adeq 4) All plates are 5) This truss ha chord live loa 6) Bearings are crushing cap- capacity of 42 7) Bearing at joi using ANSI/T designer sho 8) This truss is of International R802.10.2 ar 9) Graphical pur or the orienta bottom chord	h; TCDL=6.0psf; B t. II; Exp C; Enclos and C-C Exterior 1-0 to 22-9-8, Ext rior (1) 29-10-6 to exposed ; end vei d forces & MWFR =1.60 plate grip D juate drainage to j MT20 plates unle s been designed f d nonconcurrent assumed to be: J acity of 805 psi, Jr 25 psi. int(s) 2 considers PI 1 angle to grai uld verify capacity designed in accor Residential Code nd referenced star rlin representation ation of the purlin a I.	CDL=6.0 sed; MWR (2E) -0-1 erior(2R) 38-2-4 z; rtical left of S for read OL=1.60 prevent w ses othen- tion a 10.0 with any of oint 2 SP parallel to n formular of bearin dance wir sections dada AN o does no	psf; h=35ft; FRS (envelope 1-0 to 4-1-0, 22-9-8 to one; cantilever exposed;C-C fic- ctions shown; vater ponding. wise indicated. psf bottom other live loads 2400F 2.0E F No.2 crushin o grain value a. Building ng surface. th the 2018 R502.11.1 and SI/TPI 1. t depict the siz	or 5. 9		SY NATHA	ANIEL YE VA

July 12,2023

TCLL (roof) 25.0 Pite Grip DOL 1.15 TC 0.80 0.75 Vert(L) 0.04 15-16 997 240 MT20 197/144 BCL 10.0 Code ILumber DOL 1.15 BC 0.75 Vert(L) 0.04 15-16 997 240 MT20 197/144 BCDL 10.0 Code IRC2018/TPI2014 Matrix-SH Vert(L) 0.04 15-16 997 240 MT20 197/144 MIT0HS Code IRC2018/TPI2014 Matrix-SH Vert(L) 0.04 15-16 997 240 MT20 197/144 MIT0HS Code IRC2018/TPI2014 Matrix-SH Vert(L) 0.04 15-16 997 240 MT20 197/144 MIT0HS Code IRC2018/TPI2014 Matrix-SH Vert(L) 0.04 16-16												
The state is a second state is second state is a second state is a second state is a second st					Truss Type		Qty	Ply	Roof - Os	age Lot 56		150477050
Image: space of the space					Roof Special		1	1	Job Refer	ence (optiona	al)	159477258
Image: space of the space	Premier Building	Supply (Springh	ill KS) Spring	Hills, KS - 66083,				•				
0 0			0	•) . 14-3-14	10-8-11		24-6-5	27-10-4	32-11-14	38-4-0	
Image: the state is the s			1012						3-3-15	5-1-10		———————————————————————————————————————
Control of the state of the		2						_	8	i=		
Image: space of the state of the s	-10-3- -13- -13-	-+-				+-13 H	6x6=		x5=			
under the def under unde	8-1-0				12	4x6 =		t				5x5≈
	n				10	3 A						
	10-5-1 3-13 3-13								× //	ľ		4
Image: Section 1 Image: Section 2 Image: Section 2 Image: Section 2 Image: Section 2 Image: Section 2 Image: Section 2 Image: Section 2 Image: Section 2 Image: Section 2 Image: Section 2 Image: Section 2 Image: Section 2 Image: Section 2 Image: Section 2 Image: Section 2 Image:				2						//		-10-1
MT1946 6u12 * Dist Mith Mate Dist MT1946 6u12 * Dist Mith Mith Dist Dist MT1946 for 1 * Dist Mith Dist Dist Dist Dist MT1946 for 1 * Dist Dis <dis<dist< td=""> Dis<dis<dist< td=""> <t< td=""><td></td><td>2</td><td>8</td><td></td><td></td><td></td><td>V.</td><td></td><td>Ľ</td><td></td><td></td><td></td></t<></dis<dist<></dis<dist<>		2	8				V.		Ľ			
MT1946 6u12 * Dist Mith Mate Dist MT1946 6u12 * Dist Mith Mith Dist Dist MT1946 for 1 * Dist Mith Dist Dist Dist Dist MT1946 for 1 * Dist Dis <dis<dist< td=""> Dis<dis<dist< td=""> <t< td=""><td></td><td></td><td>16</td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Ų Ų</td></t<></dis<dist<></dis<dist<>			16	3								Ų Ų
1/2 0/3/3/3/3/0 1/16-2/1 1/2-7/1 2/2-7-9/1 3/2-11-14/1 3/8-40/1 Note - 17.3 Price Grees (X, Y): [2/0-3-9.Edge], [4/0-3-12.0-50] Section (X, Y): [2/0-3-9.Edge], [4/0-3-12.0-50] Section (X, Y): [2/0-3-9.Edge], [4/0-3-12.0-50] Section (X, Y): [2/0-3-9.Edge], [4/0-3-12.0-50] Note Offsets (X, Y): [2/0-3-9.Edge], [4/0-3-12.0-50] Section (X, Y): [2/0-3-9.Edge], [4/0-3-12.0-50] Section (X, Y): [2/0-3-9.Edge], [4/0-3-12.0-50] Section (X, Y): [2/0-3-9.Edge], [4/0-3-12.0-50] Section (Y, Y): [2/0-3-9.Edge], [4/0-3-12.0-50] Section (X, Y): [2/0-3-9.Edge], [4/0-12.0-5] Section (X, Y): [2/0-3-9.Edge], [4/0-12.0-5] Section (X, Y): [2/0-3-9.Edge], [4/0-12.0-5] DFO PUNDR Section (Y, Y): [2/0-3-9.Edge], [4/0-12.0-5] Section (Y, Y): [4/0-12.0-5] Section (Y, Y): [4/0-12.0-5] Section (Y, Y): [4/0-12.0-5] DFO PUNDR Section (Y, Y): [2/0-12.0-5] Section (Y, Y): [4/0-12.0-5] Section (Y, Y): [4/0-12.0-5] Section (Y, Y): [4/0-12.0-5] Section (Y, Y): [4/0-12.0-5] DFO PUNDR Section (Y, Y): [4/0-12.0-5] Section (Y, Y): [4/0-12.0-5] Section (Y, Y): [4/0-12.0-5] Section (Y, Y): [4/0-12.0-5] DFO PUNDR Section (Y, Y): [4/0-12.0-5] Section (Y, Y): [4/0-12.0-5] Section (Y, Y): [4/0-12.0-5] Section (Y, Y): [4/0-12.0-5]					5x5=		4x4=	7	x8=		5x8=	
Understand 11-6-2 19-7.7 24.7-9 32-11-14 38-4-0 State - 175.3 5-0-2 8-4-5 5-0-2 8-4-5 5-0-2 Plate Offsetis (X, Y): [2:0-3-9, Edge], [4:0-3+12, 0-5-0] CSI 0.0 Plate Sign DOL 1.15 CT 0.08 VerifL1, 0.04 4-4.5 5-5-4.2 100 CDL (not) 0.00 Rep Stress Incr NO CSI CT 0.08 VerifL1, 0.04 10.0 VerifL1, 0.04 10.0 VerifL1, 0.0 0.44 15-16 -987 240 MT20 197/14 197/14 197/14 197/14 197/1				1T18HS 5x18 =								
Scale 1:753 Place Offsets (X, Y): [2:0-3-5:204-6] Loading (rod) (rod) Spacing 2:5.0 Spacing Plate 6rg DOL 1:15 CSI C DEFL TC in (loc) (loc) Identify Info (loc) PLATES Plate 3rg DDL 1:15 GRIP (loc) SCDL 10.0 Code 1:15 EC 0.73 Hor(CT) 0.46 15:16 >637 100 MT1HS 24/4190 SCDL 10.0 Code Inc2018/TPI2014 Marris-SH Hor(CT) 0.48 15:16 >637 100 MT1HS 24/4190 SCDL 10.0 Code Inc2018/TPI2014 Marris-SH Hor(CT) 0.48 11:15:0 EC 0.73 Hor(CT) 0.48 11:15:0 EC 0.75 Hor(CT) 0.43 11:15:0 EC 0.75 Hor(CT) 0.43 11:15:0 EC 0.75 Hor(CT)		0-3	12 3-8 3-3-8	11-6-	-2 .	19-7-7		24-7-9	. 32	-11-14	. 38-4-0	
Plate Offiseis (X, Y): [2:0-3-9.Edge]. [4:0-3-12.0-5-0] Loading (rsf) Plate Gin pDOL 115 TCL (rooh) 2500 Plate Gin pDOL 115 TCD 200 Plate Gin pDOL 200 Plate Gin pDOL 201 00 Code Plate Gin pDOL 202	Scale - 1:75 3	-3 0-3	3-8 3-0-0									
CTCLL (roof) 25 of (100) Piate Gip DOL (115) TC 0.88 Wert(CT) -0.46 15:6 997 240 MT20 197/144 BCDL 10.0 Code IRC2018/TPI2014 Weil (CT) -0.38 Vert(CT) -0.34 15:1 r/s Piate Gip DOL 1:15 BC 0.75 Vert(CT) -0.33 11 r/s r/s N/s Piate Gip DOL 1:15 BC 0.75 Vert(CT) -0.33 11 r/s n/s N/s N/s Vert(CT) -0.34 15:1 n/s	-	K, Y): [2:0-3-9	9,Edge], [4:0-	3-12,0-5-0]								
TCDL 10.0 Lumber DOL 1.1.5 BC 0.78 Werg(T) -0.84 15-16 5-543 160 MT18HS 24/4/190 BCDL 10.0 Code NO Rep Stress Incr Rep Stres	Loading			-			0.00		. ,			
BCDL 10.0 Code IRC2018/TTP12014 Matrix-SH Weight: 237 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 "Except" 4-12x6 SP 2400F 2.0E Wind: ASCE 7-16; Vull=115mpl (3second yus) (Vasd=91mpl; TDD=-60pt; EOL=6.0ps; h=35t; K=0.08; Cal. II; Exp. C; Enclosed; MWFRS (sevelope) exterior zone and oC C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 44-6 to 19-8-11, Exterior(2E) 19-8-11 to 142-65, Interior (1) 44-6 to 19-8-11, Exterior(2E) 19-8-11 to 142-65, Interior (1) 44-10 to 19-8-11 to 24-65, Interior (1) 44-6 to 19-8-11, Exterior(2E) No.2 20 Structural wood sheathing directly applied or 7-7-7 or braing; 2-16, 7-7-7 or braing; 2-16, 7-7-2021(LC 12) Max Holiz 2-321 (LC 12) Max Grav 2-1787 (LC 1), 11=711 (LC 12) Max Grav 2-1787 (LC 1), 11=717 (LC 12) Max Grav	TCDL		10.0 Lun	nber DOL	1.15	BC	0.75	Vert(CT)	-0.84 15-16	>543 18	0 MT18HS	
 Vice Subsection of the set of the s	BCLL BCDL		·				0.79	Horz(CT)	0.33 11	n/a n/		FT = 20%
 Additional and the second se		2x4 SP No 2	*Excent* 4-1	·2x6 SP 2400F								
 WEBS 23 SPF No.2 *Except 11-10,3-16:2x4 SP No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 22-10 oc purlins, except end verticals, and 2-00 oc purling (6-13, -113, 6-10, 8-10, 0-100 except end verticals, end 2-2010 except end verticals, end 2-2010 except end verticals, end 2-2010 except end end end end oc purling to grain of 0.0 pairs grain end 2-2010 except end end end end oc purling to grain formula. Building designer should vertif or pacing to previous pacing of 760 psi. Mark Horiz 2-321 (LC 12) Max Grav 2-1787 (LC 11), 11=-171 (LC 11) Max Grav 2-1787 (LC 11), 11=-1711 (LC 12) Max Grav 2-1787 (LC 11), 11=-1711 (LC 12) Max Grav 2-1787 (LC 12), 11=-1711 (LC 12) Max Grav 2-1287 (LC 12), 11=-1711 (LC 12) Max Grav 2-128 (2-2010 (-11, 1-127) (LC 12) Max Grav 2-128 (-11, 1-12-7118 (-12, 0-11, 1-2-71		2.0E	-		Ke=0.96;	Cat. II; Exp C; Enclos	ed; MWF	RS (envelope	e)			
 BRACING TOP CHORD Structural wood sheathing directly applied 2-0:0 oc purlins, except end verticals, and 2-0:0 oc purlins, except end verticals, and 2-0:0 oc purlins (3-6-1 max.): 6-7. BOT CHORD Bracing, Except: 7-7: oc bracing; 2-16. MEBS 1 Row at midpt 6-13, 7-13, 8-12, 5-14. Max Horiz 2-321 (LC 12) Max Uplit 2-342 (LC 12) Max Horiz 2-321 (LC 12) Max Grav 2-1478 (LC 1), 11=-1711 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 9-100-1338/224, 10-11=-1671/275 800T CHORD 9-100-1338/224, 10-11=-1671/275 800T CHORD 9-100-1338/224, 10-11=-1671/275 800T CHORD 9-110-1338/224, 10-11=-671/275 800T CHORD 9-110-12-204/158, 4-15-1030/366, 5-14-200/1643, 8-15-807/1643, 8-15-807/1643, 8-15-807/1643, 8-15-807/1643, 8-15-807/1643, 8-15-807/1643, 8-15-807/1643, 8-15-807/1643, 8-15-807/1643, 8-15-807/1643, 8-15-807/1643, 8-15-807/1643, 8-15-807/1643, 8-16-800/217, 3-16-809/217, 3-16-809/217, 3-16-809/21	WEBS	1/2" 2.0E Mie	crollam® LVL		Interior (1)							
 Child of Note Note of Note of Note of Note Note Note of Note Note Note Note Note Note Note Note	BRACING	No.2			cantilever	left and right expose	d; end ve	ertical left	е;			
 2-0-0 cc puritins (3-6-1 max): 6-7. BOT CHORD Rigid ceiling directly applied or 10-0-0 cc bracing. Except: 7-7-7 oc bracing: 2-16. WEBS 1 Row at midpt 6-13, 7-13, 8-12, 5-14 REACTIONS (size) 2-0-3-8, 11=0-3-8 Max Horiz 2-321 (LC 12) Max Grav 2-1787 (LC 1, 11=217 (LC 12) Max Grav 2-1787 (LC 1, 11=1711 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension - Boot CHORD 1-2-e0/11, 2-3-8-8207/1683, 3-5=-6440/1487, 5-6=-2460/490, 6-7=-2023/406, 7-8=-2232/480, 8-9=-1356/318, 9-10=-r138/2024, 1-011-1-671/275 BOT CHORD 2-16=-1835/7573, 15-16=-1008/4124, 14-15=-671/2927, 13-14=-442/2201, 12-13=-234/1464, 11-22-7718 WEES 6-14=-145/601, 6-13=-407/141, 7-13=-123608, 8-13=-387/1643, 8-12=-614/156, 9-12=-417/226, 10-12=-204/1549, 4-15=-1003/366, 5-15=-18771058, 5-14=-1006/320, 4-16=-660/2174, 3-16=-239/1733 NOTES 1) Unbalanced roof live loads have been considered for this design. 					nd reactions	shown; Lumber DOL						
 billing, Exception billing, Exception cite 2 co-3-8, 11=0-3-8 max Horiz 2=321 (LC 12) Max Horiz 2=321 (LC 12), 11=217 (LC 12) Max Grav 2=1787 (LC 1), 11=1711 (LC 1) For CES (b) - Maximum Compression/Maximum Tension TOP CHOR D 1-2=0711, 2-3=-8207/1683, 3-5=-6440/1487, 5-6=-2460/490, 6-7=-2023/406, 7-8=-2232/408, 8-9=-1366/18, 9=10=-1338/224, 10-11=-1671/275 BOT CHOR D 2-16=-1835/7573, 15-16=-1008/4124, 11-12=-7/184, 8-122-201, 12-13=-234/1446, 11-12=-7/14=-442/2201, 12-13=-234/1446, 11-12=-7/14=-442/2201, 12-13=-234/1446, 11-12=-7/144, 8-12-201, 12-13=-234/1446, 11-12=-7/144, 8-12-201, 12-13=-234/1446, 11-12=-7/143, 8-12=-614/156, 9-12=-417/226, 5-15=-107/1058, 5-14=-1008/320, 4-16=-660/2174, 3-16=-239/1793 NOTES 1) Unbalanced roof live loads have been considered for this design. 	BOT CHORD	2-0-0 oc pur	lins (3-6-1 ma	ax.): 6-7.	DOL=1.60 3) Provide ad	lequate drainage to p						
 WEBS 1 Row at midp² 6-13, 7-13, 8-12, 5-14 REACTIONS (size) 2-0-38, 11=0-3-8 Max Horiz 2=321 (LC 12) Max Uplift 2=-314 (LC 12), 11=-217 (LC 12) Max Grav 2=1787 (LC 1), 11=-1711 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/11, 2-3=-8207/1683, 3-5=-6440/1487, 5-6=-2460/1487, 5-6=-2460/1487, 5-6=-2460/1487, 5-6=-2460/1490, 6-7=-2023/406, 5-8=-2023/406, 5-8=-108/1727, 13-14=-442/2201, 12-13=-234/1446, 11-12=-7/18 WEBS 6-14a-145/801, 6-13a=-407/141, 7-13a=-136/308, 8-13a=-367/1643, 8-13a=-367/					5) This truss	has been designed f	or a 10.0	psf bottom				
 Max Horiz 2=321 (LC 12) Max Upift 2=-314 (LC 12), 11=-217 (LC 12) Max Grav 2=1787 (LC 1), 11=-1711 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/11, 2-3=-8207/1683, 3-5=-6440/1487, 5-6=-2480/490, 6-7=-2023/406, 7-8=-2232/480, 8-9=-1356/318, 9-10=-1338/224, 10-11=-1671/275 BOT CHORD 2-16=-1835/7573, 15-16=-1008/4124, 14-15=-671/2927, 13-14=-442/2201, 12-13=-234/1446, 11-12=-77/168, 6-14=-145/801, 6-13=-407/141, 7-13=-1136/308, 8-13=-387/1643, 8-12==614/156, 9-12=-417/226, 10-12=-204/1549, 4-15=-1030/366, 5-15=-187/1058, 5-14=-1006/320, 4-16=-660/2174, 3-16=-239/1793 NOTES 1) Unbalanced roof live loads have been considered for this design. 	WEBS REACTIONS				6) Bearings a	are assumed to be: J	oint 2 SP	2400F 2.0E				
Max Grav 2=1787 (LC 1), 11=1711 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1.2=0/11, 2-3=-8207/1683, 3-5=-6440/1487, 5-6=-2460/490, 6-7=-2023/406, 7-8=-2232/480, 8-9=-1356/318, 9-10=-1338/224, 10-11=-1671/275 BOT CHORD 2-16=-1835/7573, 15-16=-1008/4124, 12-13=-234/1446, 11-12=-7/18 WEBS 6-14=-145/801, 6-13=-407/141, 7-13=-1136/308, 8-13=-367/1643, 8-12=-614/156, 9-12=-417/226, 10-12=-204/1549, 4-15=-1030/366, 5-15=-187/1058, 5-14=-1006/320, 4-16=-660/2174, 3-16=-239/1793 NOTES 1) Unbalanced roof live loads have been considered for this design.	I	Max Horiz 2=	=321 (LC 12)		2.0 E crus	hing capacity of 750	psi.		-			
Tension Tension TOP CHORD 1-2=0/11, 2-3=-8207/1683, 3-5=-6440/1487, 5-6=-2460/490, 6-7=-2023/406, 9-10=-1338/224, 10-11=-1671/275 BOT CHORD 2-16=-1835/7573, 15-16=-1008/4124, 14-15=-671/2927, 13-14=-442/2201, 12-13=-234/1446, 11-12=-7/18 WEBS 6-14=-145/801, 6-13=-407/141, 7-13=-1136/308, 8-13=-367/1643, 8-12=-614/156, 9-12=-417/264, 8-12=-660/2174, 3-16=-203/1793 NOTES 1) Unbalanced roof live loads have been considered for this design. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/ITP1 1. 9 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard VOTES 1) Unbalanced roof live loads have been considered for this design.	I	Max Grav 2=	=1787 (LC 1),	11=1711 (LC 1)	using ANS	I/TPI 1 angle to grain	n formula	. Building				
 5-6=-2460/490, 6-7=-2023/406, 7-8=-2232/480, 8-9=-1356/318, 9-10=-1338/224, 10-11=-1671/275 BOT CHORD 2-16=-1038/7573, 15-16=-1008/4124, 14-15=-671/2927, 13-14=-442/2201, 12-13=-234/1446, 11-12=-7/18 WEBS 6-14=-145/801, 6-13=-407/141, 7-13=-1136/308, 8-13=-367/1643, 8-12=-614/156, 9-12=-417/226, 10-12=-204/1549, 4-15=-1030/366, 5-15=-187/1058, 5-14=-1006/320, 4-16=-660/2174, 3-16=-239/1793 NOTES 1) Unbalanced roof live loads have been considered for this design. 		Tension			8) This truss	is designed in accord	dance wit	h the 2018				
12-13=-234/1446, 11-12=-7/18 LOAD CASE(S) Shandard WEBS 6-14=-145/801, 6-13=-407/141, 7-13=-1136/308, 8-13=-367/1643, 8-12=-614/156, 9-12=-417/226, 10-12=-204/1549, 4-15=-1030/366, 5-15=-187/1058, 5-14=-1006/320, 4-16=-660/2174, 3-16=-239/1793 NATHANIEL FOX NOTES I) Unbalanced roof live loads have been considered for this design. PE-2022042259		5-6=-2460/4	90, 6-7=-2023	3/406,	R802.10.2	and referenced star	dard AN	SI/TPI 1.			000	ADC.
12-13=-234/1446, 11-12=-7/18 LOAD CASE(S) Shandard WEBS 6-14=-145/801, 6-13=-407/141, 7-13=-1136/308, 8-13=-367/1643, 8-12=-614/156, 9-12=-417/226, 10-12=-204/1549, 4-15=-1030/366, 5-15=-187/1058, 5-14=-1006/320, 4-16=-660/2174, 3-16=-239/1793 NATHANIEL FOX NOTES I) Unbalanced roof live loads have been considered for this design. PE-2022042259	BOT CHORD	9-10=-1338/2	224, 10-11=-	1671/275	or the orie	ntation of the purlin a			26		FE OF I	MISSO
WEBS 6-14=-145/801, 6-13=-407/141, 7-13=-1136/308, 8-13=-367/1643, 8-12=-614/156, 9-12=-417/226, 10-12=-204/1549, 4-15=-1030/366, 5-15=-187/1058, 5-14=-1006/320, 4-16=-660/2174, 3-16=-239/1793 NOTES 1) Unbalanced roof live loads have been considered for this design.		14-15=-671/2	2927, 13-14=	-442/2201,						F	NATHA	NIEL
8-12=-614/156, 9-12=-417/226, 10-12=-204/1549, 4-15=-1030/366, 5-15=-187/1058, 5-14=-1006/320, 4-16=-660/2174, 3-16=-239/1793 NOTES 1) Unbalanced roof live loads have been considered for this design.	WEBS	6-14=-145/8	01, 6-13=-40	7/141,						-		
5-15=-187/1058, 5-14=-1006/320, 4-16=-660/2174, 3-16=-239/1793 NOTES 1) Unbalanced roof live loads have been considered for this design.		8-12=-614/1	56, 9-12=-41	7/226,						K.	THE ST	1 th
NOTES 1) Unbalanced roof live loads have been considered for this design.		5-15=-187/1	058, 5-14=-10	006/320,								
	NOTES									Y	N TON	120
			us nave been								SIONA	LENS
											and and	

Index Disk Disk <t< th=""><th></th><th>D CONCTRUCT</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>		D CONCTRUCT									
Event space Event Space Image of the second space	HOTED O	N PLANS REVIE	W	Truss Type		Qty	Ply	Roof - Osa	age Lot 56		
$\frac{1}{200020203} + \frac{1}{200000000000000000000000000000000000$	PF2365-9RA			Roof Special		1	1	Job Refere	ence (optional))	159477259
Image: space of the s	Premier Building	Supply (Springhill, KS), Sp	pring Hills, KS - 66083,	-							
0 0 57-2 10-1 5-6-7 4-8-10 6-6-8 5-1-10 5-1-2 0	50/00/20		,		ID:WCRIdZXS?DG3G	KNQZQHUF	10215CIN-R	IC (PSB/0Hq3Na	sgPqnL8w3u11Xi	DGKWICD0I7J42JC?	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $						<u>⊦</u>					———————————————————————————————————————
Image: Second		0 11 0		1010							
$\begin{array}{c} \frac{14}{12} \\ \frac{1}{12} \\ \frac{1}{2} \\ \frac{1}{2$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		8x8 = 3	12 4x4 = 204 5 204 11 18		7 15 1/ = 3x4=		13		9 21	11
Loading (ps) Spacing 2-0-0 TCLL (root) 250 PLATES GRIP TCDL 10.0 Test Grip DOL 1.15 Test Grip DOL 1.15 BCL 0.0 Rep Stress Incr NO Rep Stress Incr NO BCDL 10.0 Code IRC2018/TP12014 Matrix-SH Horz(CT) 0.37 11 n/a n/a BCDL 10.0 Code IRC2018/TP12014 Matrix-SH Matrix-SH Horz(CT) 0.37 11 n/a n/a BCDL 10.0 Code IRC2018/TP12014 Matrix-SH Matrix-SH Horz(CT) 0.37 11 n/a n/a BCDL 10.0 Z4 SP No.2 Except 1-10.13-7.3-192.4 SP 2-13-23.4 SP TRO-2 SP 2-13-23.4 SP TRO-2 SP 2-13-23.4 SP TRO-2 SP 2-23.4 SP TRO-2 SP 2-23.4 SP TRO-2 SP 2-23.4 SP TRO-2 SP 2-13-23.4 SP TRO-2 SP 2-13-24.5 SP TRO-2 SP 2-13-23.4 SP TRO-2 SP 2-13-23.4	Scale = 1:74.4	4لـ 12	9-10-14		<u> </u>	<u>1-5-2</u> -1-10	<u>27</u> 5-				
TCLL (root) 25.0 Piare Grip DOL 1.15 TC 0.78 Vert(L) -0.44 18-19 -599 240 MT20 197/144 BCL 0.0 Rep Stress Incr NO BC 0.86 Vert(L) -0.44 18-19 -556.46 MT18HS 244/190 BCL 0.0 Rep Stress Incr NO Matrix-SH MS 0.86 Vert(L) -0.44 18-19 -556.46 MT20 197/144 BCDL 0.00 Rep Stress Incr NO Matrix-SH Matrix-SH MS	Plate Offsets ()	X, Y): [2:0-3-9,Edge],	3:0-4-0,0-4-12], [7:0)-4-0,0-1-13], [12:0-2-8,0	0-2-0], [18:0-2-8,0-1-8]					1	
TOP CHORD 2x4 SP No.2 * Except* 5-6:2x6 SPF No.2, Vasd=91mph; TCDL=6.0pst; fis:CDL=6.0pst; fis:CD	TCLL (roof) TCDL BCLL BCDL	25.0 10.0 0.0	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 NO IRC2018/TPI2014	TC C BC C WB C Matrix-SH	0.78 Ver 0.86 Ver 0.85 Hor	t(LL) t(CT) z(CT)	-0.44 18-19 -0.82 18-19	>999 240 >554 180	MT20 MT18HS	197/144 244/190
3-19=-770/3459, 3-18=-2036/603	TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD	7-8:2x4 SP 1650F 1. 2.0E 2x4 SP 2400F 2.0E * 2400F 2.0E, 16-14:2: 2x3 SPF No.2 *Excep SP No.2 Structural wood sheat 2-6-5 oc purlins, exc 2-0-0 oc purlins, exc 2-0-0 oc purlins (3-3- Rigid ceiling directly bracing, 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=321 (LC Max Uplift 2=-314 (LC Max Uplift 2=-314 (LC Max Grav 2=1787 (L (lb) - Maximum Comp Tension 1-2=0/11, 2-3=-8882/ 4-6=-2958/554, 6-7=- 7-8=-1689/333, 8-9=- 9-10=-1313/235, 10- 2-19=-2051/8236, 18 17-18=-906/3822, 15 13-15=-520/2627, 12 11-12=-5/19 4-18=0/418, 4-17=-1: 6-15=-73/88, 7-15=0, 8-13=-112/835, 9-133 7-13=-1604/401, 9-12	SE, 1-5:2x6 SP 2400 Except* 2-19:2x6 SI (4 SP No.2 tt* 11-10,13-7,3-19: thing directly applie ept end verticals, ar 7 max.): 6-7. applied or 6-9-5 oc 1-17, 7-13, 9-12, 3-1 1=0-3-8 12) C 12), 11=-217 (LC - C 1), 11=1711 (LC 1 pression/Maximum 1897, 3-4=-4107/76 2627/505, 1654/350, 11=-1661/294 -19=-1501/5827, -17=-561/2617, -13=-166/1155, 346/388, 6-17==-109, 221, 10-12=-216/15 =-118/573, 2=-917/212,	Vasd=91mp Ke=0.96; Ca exterior zon D Interior (1) 4 21-3-14, Inta 2x4 27-10-4 to 3 cantilever le exposed; C-1 d or reactions sh DOL=1.60 3) Provide ade 4) All plates ar 5) This truss his chord live lo 6) Bearings ar crushing cap crushing cap (12) 7) Bearing at jo using ANSI/ designer sh 8) This truss is Internationa R802.10.2 a 9) Graphical pu or the orient bottom chor LOAD CASE(S)	h; TCDL=6.0psf; BCD at. II; Exp C; Enclosed; e and C-C Exterior(2E ard C-C Exterior(2E erior (1) 21-3-14 to 27- 4-11-2, Interior (1) 34- ft and right exposed; C for members and for own; Lumber DOL=1.1 quate drainage to preve e MT20 plates unless; as been designed for a ad nonconcurrent with e assumed to be: Joint bacity of 805 psi, Joint activ o	L=6.0psf; MWFRS) -0-11-0 t or(2E) 16 10-4, Exte 11-2 to 38 and vertica ces & MW 30 plate gr vent water otherwise a 10.0 psf any other 2 SP 240 11 SP 24 allel to gra mrula. Bu bearing su ce with thi tions R50 d ANSI/T es not deg	h=35ft; (envelope o 4-3-12, 6-5 to brior(2R) -2-4 zone al left (FRS for ip ponding, indicated. bottom inveloads 0F 2.0E 00F 2.0E in value uilding urface. e 2018 2.11.1 ani -11. oict the siz	; ;	Ŵ	NATHA FOZ	NIEL PER

July 12,2023

		ристи	N							
		REVIE	v	Truss Type		Qty	Ply	Roof - Osage Lot 56		150477200
	INALT NALCO			Roof Special		1	1	Job Reference (option	al)	159477260
Premier Building	Supply (Springh	ill (KS) Spri	ng Hills, KS - 66083,					2023 MiTek Industries, Inc. \ ?PsB70Hq3NSgPqnL8w3uIT		Page: 1 f
	-0-11-0 	4-3-12 4-3-12	8-3-11 3-11-15	<u>13-3-14</u> 5-0-3	18-1-8 4-9-10	<u>23-0-6</u> 4-10-14		<u>10-4 32-11-14</u> 1-14 5-1-10	38-4-0 5-4-2	
								6x6=		
тт							0.0	8		
-10							6x6 = 7		1.5x4 n	
<u>10-3-4</u> 4-0-10				6x6=	12x12=	21	A		22	6×6 ≈
6-2-10 6-2-10 0-1-13				5 		~				10 -
10-5-13 6-2 0-1			8x8 ≠ 5 ∠	4x4 = 0	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓					
			20							4-10-14
6-0-13 6-0-13		4x6 -	3			/	\mathbb{N}			4
	$2 - 1^{2}$	E A				[<u>, W</u>			
		1		18 17 4x6= 3x4=	16 15 7x8=		4 13 x6= 5x5	=	12 5x8=	3x4 ∎ + + + + + + + + + + + + + + + + + + +
	MT18	HS 6x12 =			3х	6=				
		⊿4 12	「18HS 6x12 =							
	0-3-8	12 3 3-3-8	8-3-11	13-2-10	18-2-12 19-3-8	22-4-0	24-9-8	32-11-14	38-4-0	
Casta 4:74.4	0-3-8	3 <u>3-3-8</u> 3 3-0-0	5-0-3	4-10-15	5-0-2 1-0-12	22-4-0 3-0-8	2-5-8	8-2-6	5-4-2	
Scale = 1:74.4 Plate Offsets (2	K, Y): [2:0-3-9	9,Edge], [3	:0-4-0,0-4-12], [6:0)-4-5,Edge], [13:0-2-8,0-	1-12], [18:0-2-8,0-2-()]				
Loading		(psf)	Spacing	2-0-0	CSI	DE	FL	in (loc) l/defl L/	d PLATES	GRIP
TCLL (roof) TCDL		25.0 I	Plate Grip DOL	1.15 1.15			. ,	0.41 18-19 >999 24 0.75 18-19 >606 18	0 MT20	197/144 244/190
BCLL		0.0 F	Rep Stress Incr	NO	WB		. ,	1.34 11 n/a n/	a	
BCDL		10.0 (Code	IRC2018/TPI2014	Matrix-SH			· · · · · ·	Weight: 208 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.2	*Except*	1-5:2x6 SP 2400F	this design.	roof live loads have					
BOT CHORD	2.0E 2x4 SP 2400)F 2.0E *E	<pre>kcept* 2-19:2x6 SI</pre>	 Vasd=91mpl 	7-16; Vult=115mph n; TCDL=6.0psf; BCI	DL=6.0psf;	h=35ft;			
WEBS	2400F 2.0E, 2x3 SPF No.		SP No.2 11-10,3-19:2x4 S	. '	t. II; Exp C; Enclosed and C-C Exterior(2)					
BRACING	No.2	·	,	Interior (1) 4-	-3-12 to 13-3-14, Ext or (1) 18-1-8 to 27-1					
			ing directly applie	d or 27-10-4 to 34	4-11-2, Interior (1) 34 t and right exposed ;	-11-2 to 3	8-2-4 zone;			
	2-0-0 oc pur	lins (2-6-2		exposed;C-C	for members and for own; Lumber DOL=1	rces & MV	VFRS for			
BOT CHORD	Rigid ceiling bracing.	directly ap	plied or 6-9-14 oc	DOL=1.60						
WEBS REACTIONS	1 Row at mid (size) 2=	dpt 6- =0-3-8, 11:	16, 8-12, 7-13 ₌0-3-8	All plates are	uate drainage to pre MT20 plates unless	otherwise	indicated.			
	Max Horiz 2=	=321 (LC 1	2)	chord live los	s been designed for ad nonconcurrent wit					
			12), 11=-217 (LC ⁻ 1), 11=1711 (LC 1	bearings are	assumed to be: Joir acity of 805 psi, Joir					
FORCES	(lb) - Maximu Tension	um Compr	ession/Maximum		acity of 805 psi. int(s) 2 considers pa	rallel to or:	ain value			
TOP CHORD	1-2=0/11, 2-3 4-5=-3442/6		387, 3-4=-4400/83 365/616	6, using ANSI/	PI 1 angle to grain f	ormula. B	uilding			
	6-7=-3680/7	17, 7-8=-2	171/450,	8) This truss is	uld verify capacity o designed in accorda	nce with th	e 2018			M
	8-9=-1339/3 10-11=-1670)/285		R802.10.2 a	Residential Code se nd referenced standa	ard ANSI/T	PI 1.		F. OF M	AISSO
BOT CHORD	17-18=-991/-	4139, 16-1	9=-1476/5732, 7=-695/3092,		rlin representation d ation of the purlin alo				HAVI	NV N
	13-16=-441/2 11-12=-6/16		3=-232/1438,	bottom choro LOAD CASE(S)	I.			af	NATHA FO	
WEBS	4-18=-11/33 5-17=-106/6			LOAD CASE(S)	Standaru			B	# #	
	6-16=-1708/- 8-12=-634/1	408, 8-13=	-330/1545,					X	for name	
	10-12=-209/	1543, 7-13	=-1336/417,					y'	PE-2022	042259
	7-16=-419/1 3-18=-1642/-		-190/3452,						N. S.S.	ENGT
NOTES									SIONA	LE
										12,2023

	D CONST										
S NOTED O	N PLANS	REVIEV	ĩ	Truss Type		Qty	Ply	Roof - Os	age Lot 56		159477261
PE2353-9BA	MENT SER			Roof Special		1	1	Job Refe	rence (optiona	l)	159477261
Premier Building	Supply (Springh	ill KS) Sprir 6:06	ig Hills, KS - 66083,							/ed Jul 12 07:06:38 XbGKWrCDoi7J4zJC?	Page: 1 f
	-0-11-0	4-3-12	10-1-8	14-11-2	21-4-11		27-1	0-4	32-11-14	38-4-0	
	0-11-0	4-3-12	5-9-12	4-9-10	6-5-9		6-5	-9	5-1-10	5-4-2	———
10-5-13 + 4-8-13 4-10-10 -8-0 -8-0	MT18	_⊥4 12	18HS 6x12 =	17 4x8=		HS 3x10 = 4x6= 22-	113 4x6= 4-0	5x5 7 12 3x8	=	3x4 = 8 21 11 4x6 =	5x5x 9 10 10 3x4 II
Scale = 1:74.4	0-3-8 	3 <u>3-3-8</u> 3 3-0-0	<u>10-0-4</u> 6-8-12	15-0-6 5-0-2	19-3-8 4-3-2	21-4-11 2-1-3 0-1	5	-10-4 -6-4	<u>32-11-14</u> 5-1-10	<u>38-4-0</u> 5-4-2	——
-	X, Y): [2:0-3-9),Edge], [3:	0-4-0,0-4-12], [5:0-	-4-5,Edge], [11:0-2-8,0-2	2-0], [14:0-2-8,0-2-0						
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2.0E, 5-7:2x4 2x4 SP 2400 2400F 2.0E, 2x3 SPF No. 10-9,14-5,12 Structural wc 2-7-7 oc purl 2-0-0 oc purl Rigid ceiling bracing. 1 Row at mic (size) 2= Max Horiz 2= Max Uplift 2= Max Grav 2=	25.0 P 10.0 L 0.0 R 10.0 C *Except* 14 4 SP 16500 FF 2.0E *Ex 15-13:2x4 2 *Except* -6,3-18:2x4 bod sheath bins, except ins (2-4-2) directly ap dpt 5-1 =0-3-8, 10= =321 (LC 1: =-314 (LC 1)	cept* 2-18:2x6 SP SP 1650F 1.5E 4 SP No.2 ing directly applied t end verticals, and nax.): 4-5. plied or 6-8-0 oc 4, 6-12, 8-11, 3-17 0-3-8	Vasd=91mpf Ke=0.96; Cat exterior zone Interior (1) 4- 14-11-2, Inte 27-10-4 to 32 cantilever left or exposed; C-C reactions sho DOL=1.60 3) Provide adec 4) All plates are 5) This truss ha chord live loa 6) Bearings are crushing cap 7) Bearing at joi	CSI TC BC WB Matrix-SH 7-16; Vult=115mph a; TCDL=6.0psf; BC t. II; Exp C; Enclose and C-C Exterior(2 3-12 to 10-1-8, Exterior (1) 14-11-2 to 2 I-11-2, Interior (1) 3 t and right exposed for members and f own; Lumber DOL= utate drainage to pr MT20 plates unles s been designed for d nonconcurrent wi assumed to be; Joi acity of 805 psi, Join acity of 805 psi, int(s) 2 considers par	0.81 V/ 0.89 0.86 V/ 0.86 H (3-second DL=6.0ps d; MWFR E) -0-11-0 erior(2E) 1 7-10-4, Es 4-11-2 to 1 ; end verti orcces & M 1.60 plate event wat s otherwis r a 10.0 pp th any oth nt 2 SP 2- nt 10 SP 2 arallel to g	i; h=35ft; S (envelope to 4-3-12, 0-1-8 to terior(2R) 38-2-4 zone cal left WFRS for grip er ponding. er ponding. er loucated f bottom er live load 000F 2.0E 400F 2.0E rain value	»;	>958 240 >515 180	0 MT20 0 MT18HS	GRIP 197/144 244/190 FT = 20%
TOP CHORD	Tension 1-2=0/11, 2-3 4-5=-4429/79 6-7=-1673/32	3=-8995/19 98, 5-6=-29 26, 7-8=-16	41, 3-4=-4032/733)21/505,)49/341,	designer sho 8, 8) This truss is a International R802.10.2 ar	PI 1 angle to grain uld verify capacity of designed in accorda Residential Code so nd referenced stand	of bearing ance with t ections R5 ard ANSI/	surface. he 2018 02.11.1 an TPI 1.				m
BOT CHORD	8-9=-1313/2 2-18=-2097/8 16-17=-860/3 12-14=-526/2 10-11=-5/18	8351, 17-1 3716, 14-1	3=-1543/5924, 6=-922/4414,	, , ,				ze	Å	STATE OF M	AISSOLD NIEL
WEBS NOTES 1) Unbalance this design	4-17=-20/41 9-11=-210/19 5-14=-2045/4 7-12=-131/89 8-11=-919/20 3-17=-2230/0	529, 6-14= 450, 6-12= 52, 8-12=-1 08, 3-18=-7 692	1623/418, 13/564,	24,						PE-20220	BER HALLS

LEASE FO	R CONSTRUCTIC	N	Truss Type		Qt	y Pl		Roof - Oc	age Lot 56			
DEXELOR		v I	Roof Special (Girder	1	2					15947	7262
	ANT MODOUDI	ng Hills, KS - 66083.			B.63 S Apr 6 2023 I				ence (opti dustries, In)7:06:39	Page: 1
08/03/2	ound and a second				tAWrATVEtHh2UNc		•					0
	-0-11-0 <u>4-10-12</u> 0-11-0 <u>4-10-12</u>	<u>6-8-8 11-6-2</u> _9_12 4-9-10	<u>19-8-</u> 8-2-		<u>27-10-4</u> 8-2-1		<u>36-3</u> 8-5			<u>44-7-4</u> 8-3-14	48-0-0	l
10-5-13 3-4-53-5-9 3-4-50-1-4 0-8-0	MT18HS 5. ⁷ / ₅ 28 4 ⁶ / ₂ 23 ⁶ / ₂ 23 ⁶ / ₂ 23 ⁷ / ₅ 28 4 ⁶ / ₂ 23 ⁶ / ₂ 23 ⁶ / ₂ 4 ⁷ / ₅ 28 4 ⁶ / ₂ 23 ⁶ / ₂ 12 ⁷ / ₅ 28 4 ⁶ / ₂ 23 ⁶ / ₂ 12 ⁷ / ₅ 28 ⁶ / ₂ 23 ⁶ / ₂ 12 ⁸ / ₂ 23 ⁶ / ₂ 12 ⁸ / ₂ 3 ⁸ / ₂ 3 ⁹ / ₂ 12 ⁹ / ₂ 3 ⁹ / ₂	5 22 28 55x18 = 6x6=	18HS 5x8 = 6 21 4x4= M	4x6 = 3x6 = 8 7 11 20 19 T18HS 5x8 = 4x6=	26	5x5= 9 18 4x8=	17 4x6=	27	3x6≥ 10 16 4x4=		15 7x8= 4x1	- 0
Scale = 1:89.8 Plate Offsets (- <u>12</u> <u>11-7-6</u> <u>3</u> -4 <u>4-9-10</u> :0-0-8,0-2-4], [2:2-	<u>17-3-8</u> 5-8-2 9-5,0-2-8], [4:0-2-8	19-8-3 2-4-11 8,0-4-12], [5:0-3	27-10-4 8-2-1 5-0,Edge], [6:0-3-	30-8 2-10 8,0-2-8], [11)-4	<u>36-3-6</u> 5-6-14	0-2-8,0-4-	<u>44-8-8</u> 8-5-2 0]	+ 47-8-8 3-0-0 0-3	l
Loading TCLL (roof) TCDL BCLL	25.0 F 10.0 L	Spacing Plate Grip DOL Jumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO	CSI TC BC WB	0.96 1.00 0.92	DEFL Vert(LL) Vert(CT) Horz(CT)	-0.6 -1.1	3 19-21		L/d PLATE 240 MT20 180 MT18H n/a	197/14	
BCDL		Code	IRC2018/TPI201								t: 569 lb FT = 20)%
BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	(size) 2=0-3-8, 14- Max Horiz 2=193 (LC 1 Max Uplift 2=-554 (LC Max Grav 2=3231 (LC (lb) - Maximum Compr	3:2x4 SP No.2 ccept* 2-23:2x4 SF SPF No.2 4-13:2x4 SP No.2 -1 ing directly applied ind 2-0-0 oc purlins plied or 10-0-0 oc 19, 8-18 -0-3-8 2) 12), 14=-310 (LC 1 1), 14=2359 (LC 1	(0.131 Top ch stagge Botton (0.9-0.0 Web c 1 row 2) All loa except provid unless 3) Unbala this de 4) Wind: Vasd= Ke=0.1 3) exteric Interio Interio	"x3") nails as for ords connecte ered at 0-9-0 oc n chords conne oc, 2x6 - 2 rows connected as for at 0-9-0 oc, 2x6 ds are consider if noted as fro (S) section. Ply ed to distribute s otherwise indi anced roof live sign. ASCE 7-16; VL 91mph; TCDL= 96; Cat. II; Exp or zone and C-C r (1) 4-1-0 to 6- r (1) 11-6-2 to 2	d as follows: 2x6 ; 2x4 - 1 row at 0 cted as follows: 2 s staggered at 0-5 llows: 2x4 - 1 row 5 - 2 rows stagger red equally applie nt (F) or back (B) to ply connectior only loads noted cated. loads have been ult=115mph (3-ser =6.0psf; BCDL=6. C; Enclosed; MW C Exterior(2E) -0- 8-8, Exterior(2E) 27-10-4, Exterior(- 2 rows -9-0 oc. x4 - 1 row : -0 oc. at 0-9-0 oc ed at 0-9-0 d to all plie face in the s have bee as (F) or (E considered cond gust) 0psf; h=35f (FRS (enve 11-0 to 4-1- 6-8-8 to 11 2R) 27-10-4	c, 2x3 - 0 oc. s, LOAD en 3), l for ft; elope) -0, -6-2, 4 to	Internet R8 R8 11) Gravel R8 11) Gravel R8 11) Gravel R0 12) Us 12) Us 12) Us 12) Us 12) Is represented a second s	ernational 02.10.2 ar aphical pu the orienta tom chord e Simpsor ss(s) to b g.to the lef all nail ho CASE(S) ead + Roc late Increa- niform Loa Vert: 1-5- 15-23-2 oncentrate	Residential C dreferenced din represent ition of the pu Strong-Tie H ivalent at 8-5 ack face of b t, sloping 0.0 les where ha Standard f Live (baland se=1.15 ads (lb/ft)	nger is in contact (ced): Lumber Incre), 6-9=-70, 9-13=-7	2.11.1 and Pl 1. bict the size and/or rder, 4-10d d to connec ved 0.0 with lumber. case=1.15,
TOP CHORD	Tension 1-2=0/5, 2-4=-15647/2 5-6=-12740/2120, 6-8= 8-9=-3714/641, 9-10=- 10-12=-4507/681, 12-1 13-14=-134/39 2-23=-2725/14454, 22- 21-22=-1836/10021, 12-1 12-22=-1836/10021, 12-1 12-22=-1856/10021, 12-120000, 12-10000, 12-10000, 12-10000, 12-1000, 12-10000, 12-	-6293/981, 3718/657, 3=-195/74, 23=-1907/9968, 9-21=-2167/12689.	797, left an expose reactio DOL= 5) Provid 6) All pla	d right exposed ed;C-C for men ons shown; Lun 1.60 le adequate dra tes are MT20 p	12-10-4 to 47-10-4 l; end vertical left nbers and forces nber DOL=1.60 pl ainage to prevent lates unless othe designed for a 10.	and right & MWFRS ate grip water pond rwise indica	for ling. ated.			ALL STREET	OF MISS NATHANIEL FOX	A LIRI
WEBS	18-19=-878/5734, 16-1 15-16=-598/3814, 14-1 5-21=-377/2931, 6-21= 6-19=-7166/1328, 8-15 8-18=-2912/654, 9-18= 10-18=-953/321, 10-16 12-16=-44/384, 12-15= 12-14=-5029/755, 4-22 4-22=-142/207, 5-22=-	5=-633/4068 -957/335, =-238/2005, -283/2247, =0/333, -106/1271, =-1050/5846,	chord 8) Bearin crushin crushin 9) Bearin using	live load nonco ogs are assume ng capacity of a ng capacity of a og at joint(s) 2, ANSI/TPI 1 ang	ncurrent with any d to be: Joint 2 S 305 psi, Joint 14 S	other live I P 2400F 2. SPF No.2 Ilel to grain a. Building	oads. 0E value		l	S.S.S.	LACMBER E-2022042259 IONAL EN July 12,20	23

16023 Swingley Ridge Rd Chesterfield, MO 63017

RFL		CONS	TRUCTION								
· · – –	NOTED ON				Truss Type			Qty	Ply	Roof - Osage Lot 56	
P	FZ303/9-01				Roof Spec	ial		1	1	Job Reference (optional)	159477263
0	Premier Building Su 8/03/20	upply (Spr 23 3	inghill, KS), Spring I 36:06	lills, KS - 66083,			•			2023 MiTek Industries, Inc. Wed Jul 12 07:06 sB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJ	-
		⊢	<u>5-11-13</u> 5-11-13	12-4		<u>19-3-15</u> 6-11-3		<u>26-3-</u> 6-11-2		32-8-0 36-0-15 6-4-15 3-4-15	<u>39-5-11</u> 3-4-12
	ТТ						5x5=				
					5 ¹² 4	22			23	6	
	9-3-4 9-3-4		3x6 2 ²¹	3						7 ^{3x6} *	4x12≈

Scale = 1:72.4

Plate Offsets (X, Y): [11:0-2-11,Edge], [19:0-2-8,0-3-0]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.74	Vert(LL)	-0.23	. ,	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.89	Vert(CT)	-0.44	14-16	>999	180		
BCLL	0.0	Rep Stress Incr	NO		WB	0.84	Horz(CT)	0.22	11	n/a	n/a		
BCDL	10.0	Code	IRC201	3/TPI2014	Matrix-SH							Weight: 186 lb	FT = 20%
					•			-					
LUMBER			2)		7-16; Vult=115m								
TOP CHORD		*Except* 1-2,8-10:2:	x4 SP		h; TCDL=6.0psf; E								
	No.2				at. II; Exp C; Enclo e and C-C Exterio								
BOT CHORD		ant 11 10 20 1.2.1	00		-0-13 to 22-3-1, E			,					
WEBS	2x3 SPF No.2 *Exce No.2	ept 11-10,20-1:2x4	58		ior (1) 27-3-1 to 4			left					
	110.2				posed ; end vertic			ion					
BRACING	Structural wood abo	othing directly opply	ad ar		C for members and			r					
TOP CHORD	Structural wood she 2-8-7 oc purlins, ex		eu Or		own; Lumber DOL								
BOT CHORD			^	DOL=1.60			01						
bor onone	bracing.		3)	All plates are	e 3x4 MT20 unles	s otherwi	se indicated.						
WEBS	1 Row at midpt	9-11, 4-16, 6-16	4)	This truss ha	as been designed	for a 10.	0 psf bottom						
REACTIONS		, 20= Mechanical			ad nonconcurrent			ads.					
	Max Horiz 20=-116	,	5)		e assumed to be:								
	Max Uplift 11=-253 (· /	2 12)		pacity of 425 psi, J	loint 11 S	SP No.2 crus	hing					
	Max Grav 11=1763		1 1 1	capacity of 5									
FORCES	(lb) - Maximum Com		(1) 6) 7)		ler(s) for truss to to bint(s) 11 consider								
	Tension	iprocolori/maximum	()		TPI 1 angle to gra			le					
TOP CHORD		=-2790/442.			ould verify capacit								
	4-5=-2215/428, 5-6=		8)		designed in acco								
	6-7=-2878/457, 7-9=	=-3174/468,	0)		Residential Code			and					
	9-10=-166/82, 10-11	1=-195/65,			nd referenced sta								
	1-20=-1697/274		LC	DAD CASE(S)	Standard								-
BOT CHORD												A	all
	16-18=-318/2501, 1	,										THE OF N	IISS OF
	13-14=-393/2916, 1	2-13=-395/2602,									6	9.01	NUS
	11-12=-424/2788	0.400/400									B	S NATHA	NIFI XP.V
WEBS	9-12=-92/885, 9-11=	,	1/201								B	FO	
	1-19=-289/2455, 4-1 5-16=-137/1180, 6-1										74	1/ 100	
	3-18=-240/129, 3-19		1392,								8/7	-the	1 470
	7-14=-422/157, 7-13		364								N/		1 I may
NOTES	7 11- 122/101, 7 10	2 00/00, 0 10 20/0									100	wann	SER
	ed roof live loads have	boon considered fo	r								N.	O PE-2022	042259
this design			I								N	T	124
uno deolgi											Y	NºSe-	GIA
												SSIONA	LEFA
												and and	The second
													40.0000

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

July 12,2023

RELEASE FOR CONSTRUCTION			-		
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof - Osage Lot 56	
DEXELOBMENT SERVICES	Common Supported Gable	1	1	Job Reference (optional)	159477264
Premier Building Supply (Springhill, KS), Spring Hills, KS - 6 08/03/2023 3:36:06				2023 MiTek Industries, Inc. Wed Jul 12 07:06:40 PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

Scale = 1:68.6

Plate Offsets (X, Y): [5:0-2-8,0-3-0], [27:0-2-8,0-3-0]

	λ, Τ). [5.0-2-0,0-5-0], [27.0-2-0,0-0-0]										
Loading TCLL (roof) TCDL BCDL BCDL LUMBER TOP CHORD BOT CHORD	(psf) 25.0 10.0 0.0 10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 NO IRC2018/TPI2014	37 39	5=367 (LC 26), 7=145 (LC 26), 9=118 (LC 26),	38=110 (LC 40=116 (LC	-0.02 0.01 13), 1), 1),	(loc) 33-34 33-34 65 BOT CI	l/defl >999 >999 n/a	60-61: 57-58:	=-15/89, 59-60=- =-15/88, 56-57=-	15/89, 61-62=-15/89, 15/88, 58-59=-15/88, 15/88, 55-56=-15/88,
WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x3 SPF No.2 *Exc Structural wood sh 6-0-0 cc purlins, e Rigid ceiling directl bracing. 1 Row at midpt (size) 35=36-2	ept* 64-1:2x4 SP No.: ept* 32-31:2x4 SP No eathing directly applie xcept end verticals. y applied or 10-0-0 oc 16-48, 15-49, 17-47 -3, 36=36-2-3, 37=36- -3, 39=36-2-3, 40=36	o.2 d or 2-3,	43 46 48 50 53 55 57 59 61	1=116 (LC 26), 3=116 (LC 1), 2 5=119 (LC 26), 3=153 (LC 13), 0=118 (LC 25), 5=116 (LC 1), 5 5=116 (LC 25), 7=116 (LC 1), 5 0=119 (LC 1), 6 1=113 (LC 1	44=116 (LC 47=114 (LC 51=116 (LC 51=116 (LC 54=116 (LC 56=116 (LC 58=116 (LC 58=116 (LC 50=116 (LC 52=125 (LC	1), 1), 25), 1), 25), 1), 25), 25), 25), 1),	WEBS		50-51: 47-48: 43-44: 40-41: 37-38: 34-35: 16-48: 13-51: 10-55:	=-15/88, 49-50=- =-15/88, 46-47=- =-15/88, 42-43=- =-15/88, 39-40=- =-15/88, 39-40=- =-15/88, 33-34=- =-15/88, 33-34=- =-193/51, 15-49= =-90/56, 12-53=- =-90/55, 9-56=-9	15/88, 51-53=-15/88, 15/88, 48-49=-15/88, 15/88, 44-46=-15/88, 15/88, 41-42=-15/88, 15/88, 38-39=-15/88, 15/88, 35-36=-15/88, 15/88, 32-33=-17/87 -91/27, 14-50=-92/67, 90/55, 11-54=-90/55, 0/55, 8-57=-90/55,
	41=36-2 44=36-2 51=36-2 55=36-2 58=36-2 61=36-2 64=340 Max Horiz 64=-140 Max Uplift 35=-146	-3, 42=36-2-3, 43=36 -3, 46=36-2-3, 47=36 -3, 49=36-2-3, 50=36 -3, 53=36-2-3, 54=36 -3, 55=36-2-3, 57=36 -3, 59=36-2-3, 60=36 -3, 65=Mechanical (LC 17) (LC 13), 36=-15 (LC 2	2-3, 2-3, FORCES 2-3, TOP CHORD 2-3, 2-3, 2-3, 2-3, 2-3, 2-3, 2-3,	65 (lb) - Maximu Tension 1-2=-171/94, 4-6=-104/12i 8-9=-87/192, 11-12=-115/; 13-14=-134/; 15-16=-149/3	3=150 (LC 17), 5=144 (LC 1) um Compression , 2-3=-130/87, 8, 6-7=-77/143 , 9-10=-97/220 274, 12-13=-12 328, 14-15=-14 372, 16-17=-14 360, 18-19=-13	5n/Maximum 3-4=-117/10 5, 7-8=-78/16 5, 10-11=-106 25/301, 46/360, 49/372,	1, 5,	NOTES	5	4-61= 17-47: 20-43: 23-40: 26-37: 28-35: 30-33:	-89/83, 3-62=-94, 88/21, 18-46=- -90/55, 21-42=- -90/55, 24-39=- -98/58, 27-36=- -98/58, 27-36=- -197/165, 29-34 30/62, 31-65=-	l=-43/57, 153/33
	39=-34 (41=-33 43=-33 (46=-42 (49=-11 (51=-34 (54=-33 56=-33 (58=-33 (60=-35 (62=-27 (LC 13), 38=-31 (LC 1: LC 13), 40=-33 (LC 1: LC 13), 44=-34 (LC 1: LC 13), 47=-6 (LC 13) LC 12), 50=-40 (LC 1: LC 12), 53=-33 (LC 1: LC 12), 55=-33 (LC 1: LC 12), 57=-33 (LC 1: LC 12), 61=-31 (LC 1: LC 12), 63=-262 (LC 1: LC 12), 63=-15 (LC 1: LC 12), 65=-15 (LC 1: LC 12), 75=-15 (LC 1: LC 12), 75=-15 (LC 1:	3), 3), 3), 2), 2), 2), 2), 2), 2), 2), 2), 2), 2	19-20=-125/3 21-22=-106/3 23-24=-87/19 25-26=-68/13 28-29=-68/5	301, 20-21=-1 247, 22-23=-9 92, 24-25=-78, 38, 26-28=-83/ 1, 29-30=-88/3 2, 1-64=-149/7	15/274, 7/220, 165, 110, 8, 30-31=-11	16/26,				NATHA FOI PE-2022	BER DATE

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, eraction and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

July 12,2023

RELEASE FOR CONSTRUCTION AS ₩DTED ON PLANS REVIEW DEXEL ORMENT SERVICES LEE'S SUMMIT, MISSOURI Premier Building Suppy (Springtill KS) Spring 08/03/2023 3:36:06

3	lills, KS - 66083,	Run: 8.63 S Apr 6 20)23 Print: 8.6	30 S Apr 6 2	2023 MiTek Industries, Inc. Wed Jul 12 07:06:40	Page: 2
		Common Supported Gable	1	1	Job Reference (optional)	159477264
		Truss Type	Qty	Ply	Roof - Osage Lot 56	

ID:WcRfdZXs?bG3GRhQ2QHdPbz1SCN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

 Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-1-12 to 5-1-12, Exterior(2N) 5-1-12 to 19-3-15, Corner(3R) 19-3-15 to 24-3-15, Exterior(2N) 24-3-15 to 39-0-15 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 1.5x4 MT20 unless otherwise indicated.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
 Gable studs spaced at 1-4-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Bearings are assumed to be: Joint 64 SP No.2 crushing capacity of 565 psi, Joint 65 SPF No.3 crushing capacity of 425 psi.
- 9) Refer to girder(s) for truss to truss connections.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

		тристи	N										
S NOTED C	ON PLAN	IS REVIE	v	Truss Type			Qty	Ply	Roc	of - Osage L	ot 56.		150 177005
PE2363-9R				Roof Special Stru	ctural Gat	ole	1	1	Job	Reference	(optional)	159477265
Premier Building	g Supply (Spri	nghill (KS) Spr	ng Hills, KS - 66083,					•				ed Jul 12 07:06:41 bGKWrCDoi7J4z	-
00/00/2	3-4-				12.110		rting2		10.11 0.27	onqontogn qi		48-4-4	
	-0-11-0		1-5-12 8-1-0	19-8-0 8-2-4		10-4 2-4		<u>36-3-6</u> 8-5-2		<u>44-7</u> 8-3- ⁻		5-0-14	<u>55-8-8</u> 56-2-8
	0-11-0 3-4-	-12	010	024	0.	5	<5 =	002		00	ι τ (0-5-11 3-3-5	7-4-4 0-6-0
12-3-10 12-3-4 0-8-0	3x6 1 2 5x8 =	3x6 = 3x6 = 6 = 3495 3495 67 6x6=	6 5 5 81 80 79	$5^{1/2}$ 6x6 = 13 11 12 11 12 14 15 14 15 14 15 10 10 7 76 75 74 3x6 III 73 3x6 III 73	72 71 3×6 II 3×6 II 3×6 II 3 1 60 59 5	0 49 49 49 49 49 49 49 49 49 49 49 49 49	82 82 82 82 82 82 82	84 3×6 II 3×6 II 3×6 II 3×6 II 3×6 II 3×6 II 3×6 II		28 29 30 89 90 3 89 90 3	6x6 31 323 52 51 52 51 52 51 52 52 52 52 52 52 52 52 52 52 52 52 52	6x12= 4x6≈ 3x6=	3x6= 96383x6= 33- 0974x6 II
												MT18HS 4∟	5x8 u
	3-3 0-3-8		1 5 12	10.8.0	27	10.4		26.2.6		11 0	0	¹² 48-2-8	55-8-8
	0-3-8	1	1-5-12 8-2-4	19-8-0 8-2-4		10-4 2-4		<u>36-3-6</u> 8-5-2		<u>44-8</u> 8-5-		47-8-8 3-0-0 0-6-0	7-6-0
Scale = 1:97.3 Plate Offsets (3-0 (X, Y): [2:0·		0:0-3-0.Edael. [32]	:0-3-0,Edge], [39:0-4-3	3.Edae]. [42	2:0-4-13.0-0-	71. [49	9:0-2-8.0-1-8].	[61:0-2-	8.0-1-8]. [6	6:0-2-8.0·		
Loading			Spacing	1-11-4	CSI			DEFL	in	(loc) l/d	-	1	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15	тс		0.90	Vert(LL)	n/a	- r	/a 999	MT20	197/144
TCDL BCLL			umber DOL Rep Stress Incr	1.15 NO	BC WB).70).49	Vert(CT) Horz(CT)	n/a 0.02		/a 999 /a n/a		244/190
BCDL		10.0	Code	IRC2018/TPI2014	Matrix-	SH						Weight: 401	lb FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS JOINTS	1.5E 2x4 SP N 2.0E 2x3 SPF 2x3 SPF Left 2x4 S No.2 3- Structura 5-7-11 oc Rigid ceil bracing, 10-0 oc 5-8-7 oc l 5-8-7 oc l 1 Row at	o.2 *Except* No.2 No.2 SP No.2 3-2 11-2 I wood sheatt purlins. ing directly aj Except: bracing: 42-4 bracing: 42-4 bracing: 41-4 midpt 2: at Jt(s): 69, 5, 80, 83,	4	ĴF	·	44=-7 (LC 4 47=-19 (LC 50=-143 (LL 53=-34 (LC 56=-33 (LC 56=-33 (LC 60=-16 (LC 63=-35 (LC 44=327 (LC 44=327 (LC 44=327 (LC 44=327 (LC 50=-16 (LC 50=-16 (LC 50=-16 (LC 50=-18 (LC 50=-18 (LC 57=207 (LC 59=127 (LC 61=343 (LC 61=343 (LC 61=21 (LC 61=343 (LC 61=21 (LC 61=343 (LC 61=21 (LC 61=343 (LC 61=21 (LC 61=343 (LC 61=343) (LC 61=343 (LC 61=343) (LC 61	(3), (4: (13), (2), (2), (3), (3), (3), (4), (3), (4), (4), (4), (4), (4), (4), (4), (4	$\begin{array}{l} 42=-200 \ (LC 9) \\ 5=-41 \ (LC 0) \\ 5=-41 \ (LC 12) \\ 52=-36 \ (LC 13) \\ 54=-49 \ (LC 13) \\ 57=-51 \ (LC 12) \\ 59=-27 \ (LC 12) \\ 61=-64 \ (LC 12) \\ 64=-240 \ (LC 12) \\ 64=-240 \ (LC 12) \\ 55=138 \ (LC 26) \\ 5=138 \ (LC 26) \\ 5=21 \ (LC 1) \\ 49=279 \ (LC 3) \\ 51=66 \ (LC 3) \\ 56=377 \ (LC 1) \\ 56=377 \ (LC 1) \\ 58=91 \ (LC 25) \\ 63=457 \ (LC 25) \\ 65=-241 \ (LC 12) \\ 67=500 \ (LC 25) \\ 68=500 \ (LC 25) \ (LC 25) \ (LC 25) \\ 68=500 \ (LC 25) \ (LC 25) \ (LC 25) \\ 68=500 \ (LC 25) \ (LC$	3),),),),), 25), 2)), 1, , 5), 3),	OP CHOR	5-6= 8-9= 11-1: 13-14 15-11 17-11 19-2(21-2; 23-2 25-2(27-2; 27-2; 29-3(31-3; 34-3; 34-3; 36-3;		-13=-119/161, -15=-101/211, -17=-138/223, -19=-84/236, -11=-48/247, -23=-50/216, -25=-110/215, -27=-154/192, -29=-306/298, -31=-330/251, -34=-426/305, -36=-1098/877,
REACTIONS		45=48-0-0, 48=48-0-0, 51=48-0-0, 54=48-0-0, 58=48-0-0, 61=48-0-0,	2=48-0-0, 44=48-0 46=48-0-0, 47=48- 19=48-0-0, 50=48- 52=48-0-0, 53=48- 56=48-0-0, 57=48- 9=48-0-0, 60=48- 33=48-0-0, 64=48- 56=48-0-0, 67=48- 2)	D_O, D-O, D-O, D-O, D-O, D-O, D-O, D-O, D-O,	(lb) - Max Tension	imum Comp		,	, ,			S' NATH	MISSOLUTION

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property incorporate this design into the overall fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute. Ac70 Crain Highway, Suite 203 Waldorf, MD 20601

100 m July 12,2023

July '

S NOTED ON PL	ANS REVIEW		Truss Type	Qty	Ply	Roof - Osage Lot 56	
DE2555-GRMENT	100001001		Roof Special Structural Gable	1	1	Job Reference (optional)	159477265
Premier Building Supply 8/03/2023	(Springhill, KS), Spring	Hills, KS - 66083,				6 2023 MiTek Industries, Inc. Wed Jul 12 07:06:41 C?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?	Page: . Pf
BOT CHORD 2-67- 65-66 63-64 60-6 ⁻ 58-55 53-54 53-55 51-52 49-50 47-44 45-46 42-44 39-4 ⁴ 41-4 ² 43-44	168/220, 66-67=-1 5=-128/202, 64-65=- 1=-188/268, 59-60=- 9=-188/268, 57-58=- 7=-188/268, 57-58=- 2=-252/321, 50-51=- 0=-252/321, 48-49=- 3=-761/887, 44-47=- 4=-985/1343, 41-42=- 1=-620/861, 35-44=- 3=-360/153, 37-43=- 4=-531/220	128/202, 128/202, 188/268, 188/268, 252/321, 252/321, 252/321, 761/887, 761/887, 761/887, 817/929, -903/1240, 236/185, 341/176,	 10) This truss is designed in accord International Residential Code s R802.10.2 and referenced stand LOAD CASE(S) Standard 	ections R50	2.11.1 and	3	
WEBS 4-67= 80-87 80-87 8-78= 76-77 74-75 61-77 70-77 70-77 68-66 82-85 84-85 8	- 342/295, 4-81=-26 1=-263/186, 79-80=- 2=-263/186, 8-66=-4 =-104/150, 77-78=-7 7-86/139, 75-76=-6 5=-74/130, 73-74=-8 3=-81/138, 15-61=-2 2=-100/150, 71-72=- 1=-98/148, 69-70=-1 3=-85/142, 56-68=-1 5=-290/102, 56-82=- 3=-106/122, 83-84=- 5=-391/13, 85-86=-9 7=-109/122, 27-87=- 3=-55/263, 49-88=- 9=-355/263, 49-88=- 9=-355/263, 49-88=- 9=-355/263, 49-88=- 9=-35/778, 57-69=-1 9=-83/52, 58-70=-75 1=-90/58, 16-72=-24 3=-74/40, 7-79=-14/2 =-35/20, 22-82=-31/- 3=-74/40, 7-79=-14/2 =-36/144, 48-91=- 2=-86/69, 47-92=-30 4=-11/25	265/187, 06/165, 3/130, 7/123, 0/137, 19/70, 06/147, 04/151, 08/155, 96/109, 95/108, 7/110, 7/110, 7/110, 7/110, 7/4/98, 640/592, 625/582, 612/562, 638/591, 169/304, 35/19, 64/92, 1/2, 7, 12-75=-28/16, 360/214, 36/238, 19, 6-80=-34/22, 5, 23-83=-140/83 3/52, 53-84=-71/4 /56, 26-86=-46/24 /51, 28-88=-41/37 /52, 28-88=-41/37 /51, 28-88=-41/37 /52, 28-88=-41/37 /51, 28-88=-41/37 /51, 28-88=-41/37 /52, 53-84=-71/4 /56, 26-86=-46/24 /51, 28-88=-41/37 /53, 28-88=-41/37 /53, 28-88=-41/37 /54, 28-88=-41/37	2, 47, 5, 7,				

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-11-0 to 4-1-0, Exterior(2N) 4-1-0 to 27-10-4, Corner(3R) 27-10-4 to 32-10-4, Exterior(2N) 32-10-4 to 56-2-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) All plates are 3x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 1-4-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 All bearings are assumed to be SP No.2 crushing
- capacity of 565 psi.

9) N/A

RF	EASE FOR CONSTRUC					-	
	NOTED ON PLANS RE		Truss Type	Qty	Ply	Roof - Osage Lot 56	
1	DEXELORMENT SERVIC	ES	Roof Special	2	1	Job Reference (optional)	159477266
(Premier Building Supply (Springhill, KS 18/03/2023 3:36:	5) Spring Hills, KS - 66083,				5 2023 MiTek Industries, Inc. Wed Jul 12 13:30:53 9IaDd97K?3MrRP6RO2s6WPMKgT71FRYrqoyyoEX	Page: 1

Scale = 1:99.4

Plate Offsets (X, Y): [2:0-3-5,0-2-0], [3:0-4-0,0-4-12], [1	8:0-2-8,0-2	2-0], [23:0-2-8,0)-2-0], [24:0-2-8,0	-2-0]							
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO		CSI TC BC WB	0.83 0.96 0.91	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.48 -0.86 0.41	(loc) 23 21-23 16	l/defl >999 >660 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS	GRIP 197/144 244/190
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-SH							Weight: 335 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SPF No.2 *Exc 2.0E 2x6 SPF No.2 *Exc 2400F 2.0E, 16-14 2x3 SPF No.2 *Exc SP No.2 2x4 SP No.2 Structural wood sh 2-2-10 oc purlins. Rigid ceiling directl bracing. 1 Row at midpt (lb/size) 2=2149/ Max Horiz 2=222 (I Max Uplift 2=-357 ((lb) - Max. Comp.7) (lb) or less except	eept* 5-1:2x6 SP 240 eept* 2-25,25-22:2x8 :2x6 SP 2400F 2.0E eept* 21-6,20-8,3-25:: eathing directly appli y applied or 6-0-0 oc 6-21, 8-20, 10-20, 0-3-8, 16=2961/0-3-8 .C 16) LC 12), 16=-432 (LC <i>M</i> ax. Ten All forces when shown. 3-26=-10054/1828,	W SP 22x4 ed or 1) 2) (2-18 (13) 250	/EBS OTES) Unbalanced this design.) Wind: ASCE Vasd=91mpl Ke=0.96; Ca exterior zone Interior (1) 4 34-11-2, Inte left and right exposed;C-C reactions sh DOL=1.60	6-23=-56/747, 6-2 8-21=-62/789, 8-2 9-20=-174/1265, 10-18=-457/316, 12-17=-1560/510, 13-16=-2495/430, 4-24=-116/580, 3 3-24=-767/260 roof live loads ha 7-16; Vult=115m f, TCDL=6.0p5t and C-C Exterio -1-0 to 27-10-4, E srior (1) 34-11-2 to exposed; end ve C for members an own; Lumber DOI	20=-1442 10-20=-3 12-18=-4 , 13-17=- , 4-23=-1 -25=-679 ve been ph (3-sec BCDL=6- ssed; MW r(2E) -0 ixterior(2) 5-52-8 zertical left d forces d L=1.60 pl	 (413, 48/214, 97/1512, 201/2170, 397/315, /3690, considered for considered for cond gust) Dpsf; h=35ft; FRS (envelo 11-0 to 4-1-0 R) 27-10-4 to zone; cantilev and right & MWFRS fo ate grip 	ope) , ver or				vverginit. 333 ib	11 = 2076
BOT CHORD	3-4=6113/12/828, 6-7 5-6=-4872/828, 6-7 9-27=-2333/433, 9 10-28=-2456/424, 11-12=-2589/331, 13-29=-764/937, 1 2-25=-1877/9464, 1 23-24=-1081/5773 21-22=-807/4556, 1 19-20=-158/2295, 17-18=-72/921, 16 16-30=-748/759, 1	r=-3594/575, r7=-2453/399, r28=-2333/459, 10-11=-2487/359, 12-13=-1010/188, 4-29=-782/817 24-25=-1302/6405, r22-23=-807/4556, 20-21=-470/3225, 18-19=-158/2295, r17=-886/840,	3) 4) 5) 6) 7) L	 All plates are This truss ha chord live load Bearing at journame Bearing ANSI/ designer sho This truss is International 	MT20 plates unl 4x6 MT20 unles as been designed ad nonconcurrent int(s) 2 considers TPI 1 angle to gra Juld verify capacit designed in acco Residential Code nd referenced sta Standard	s otherwi for a 10. with any parallel in formul y of bear rdance w e sections	se indicated. D psf bottom other live loa to grain value a. Building ing surface. ith the 2018 \$ R502.11.1 a	ads. Ə			K	PE-2022	SER TRACE

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

S NOTED C	N PLANS	REVIEW	1	Truss Type		Qty	Ply	Roof - Osage L	ot 56		150 177007
PE2353-9B	MENT SER			Roof Special		3	1	Job Reference	(optional)		159477267
Premier Building	Supply (Spring	hill KS) Spring	Hills, KS - 66083,				•	6 2023 MiTek Industr C?PsB70Hq3NSgPqr			Page: 1
		-0-11-0 4-3		11-5-12	19-8-0		27-10-4	32-11-1		38-4-0	
		0-11-0 4-3		5-1-12	8-2-4	-	8-2-4	5-1-10		5-4-2	
5.7.2 2.7.2	ŢŢ	1 2 00 MT18HS 6x	MT18HS 12x20 = J4 2	3x4 = 5 17 3x4=	5.45 g		14 3x6=	5x5= 8 13 4x8=	4x4 _x 9 12 5x5=	20 6x6, 10 8 8 8 8 3x4	0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-
Scale = 1:83 Plate Offsets (X, Y): [2:0-3	0- <u>3-8</u> <u>3-3-8</u> 0- <u>3-8</u> 3-0-0 -9,Edge], [4:0) 8-2	5-12 1 2-4 5	7-3-8 19-8- 5-9-12 2-4-8	0 22-4-0 3 2-8-0	0 <u>27-10-</u> 5-6-4	1 <u>32-11-1</u> 5-1-10		38-4-0 5-4-2	
Loading TCLL (roof) TCDL BCLL BCDL		25.0 Pla 10.0 Lu 0.0 Re	acing ate Grip DOL mber DOL p Stress Incr de	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-SH		Vert(CT) -	in (loc) l/d 0.43 17-18 >9 0.83 17-18 >5 0.34 11 r	99 240	PLATES MT20 MT18HS Weight: 218 lb	GRIP 244/190 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	No.2, 1-4:2 2x6 SP 240 2400F 2.0E SP 1650F 1 2x3 SPF No SP No.2	x6 SP 2400F 0F 2.0E *Exc , 14-11:2x4 S .5E 0.2 *Except* 1	ept* 8-10:2x4 SP 2.0E ept* 18-16:2x4 S IP No.2, 16-14:2x 1-10,15-5,13-7:2 rlins, except end	Vasd=91m Ke=0.96; C P exterior zor 4 Interior (1) 34-11-2, Int x4 left and righ members a Lumber DC 3) All plates a	E 7-16; Vult=115mp bh; TCDL=6.0psf; E at. II; Exp C; Enclos le and C-C Exterior 4-3-4 to 27-10-4, E; erior (1) 34-11-2 to tt exposed ; end ve nd forces & MWFR vL=1.60 plate grip D re MT20 plates unle las been designed 1	CDL=6.0 sed; MWF (2E) -0-11 xterior(2R 38-2-4 zc rtical left e S for reac 00L=1.60 ess otherv	psf; h=35ft; RS (envelope) I-0 to 4-3-4,) 27-10-4 to one; cantilever exposed;C-C fo tions shown; vise indicated.				
BOT CHORD	Rigid ceiling bracing. 1 Row at m	idpt 10-1 9-12		5) Bearings an 13, crushing ca capacity of	bad nonconcurrent re assumed to be: J pacity of 805 psi, J 565 psi. oint(s) 2 considers	loint 2 SP oint 11 SF	2400F 2.0E PNo.2 crushing				
REACTIONS	Max Horiz 2 Max Uplift 2 Max Grav 2	=1787 (LC 1)) 2), 11=-236 (LC 12), 11=1711 (LC 1)	using ANSI designer sh 2) 7) This truss is	/TPI 1 angle to grai iould verify capacity s designed in accor al Residential Code	n formula of bearir dance wit	. Building og surface. h the 2018				
FORCES	Tension 1-2=0/11, 2 5-7=-2512/-			LOAD CASE(S	and referenced star) Standard	ndard ANS	SI/TPI 1.			- TIT	an
BOT CHORD	10-11=-166 2-18=-2080 15-17=-831	,	=-1312/4923, =-507/2226,						a.	NATH	
WEBS NOTES 1) Unbalance this design	4-17=-1655 7-15=-62/7 8-13=-75/5 9-12=-1034 4-18=-487/		290/363,)3/412, /649,						X	PE-202	DER 2042259

July 12,2023

		N						
NOTED O	-	۲ V	Truss Type		Qty	Ply	Roof - Osage Lot 56	159477269
	MENT SERVICES		Hip		1	1	Job Reference (optional)	159477269
Premier Building	Supply (Springhill, KS), Spri D23 3:36:07	ng Hills, KS - 66083,					2023 MiTek Industries, Inc. Wed Jul 1 ?PsB70Hq3NSgPqnL8w3uITXbGKWr	
	-0-11-0 4-3-12 0-11-0 4-3-12	6-1-1 9-10-1 1-9-5 3-9-13		22-9		27-1 5-0		38-4-0 5-5-0
	MT18HS 6x12 ≠ MT18HS 6x12 ≠ J4 12 0-3-8 3-3-8 0-3-8 3-0-0 X, Y): [2:0-3-9,Edge], [4	0 18HS 12x20 = <u>9-10-15</u> 6-7-7 0-4-0,0-3-4], [13:0-2	51 6 4x4 = 5 5 19 3x4 = 1 19 3x4 = 5 -4-9 -8,0-1-8]	3x4 = 217 217 $18 17$ $6x6 WB = 3x4 = 16-4-6$ $22-6$ $1-0-14$ $6-3-10$		6 x8= 27-1 5-2	-0 2-5-12 2-8-4	6x6 11 12 3x4 II 38-4-0 5-3-12
Loading TCLL (roof) TCDL BCLL BCDL	25.0 F 10.0 L 0.0 F	Plate Grip DOL 1 umber DOL 1 Rep Stress Incr N	2-0-0 .15 .15 NO RC2018/TPI2014	BC	0.90 Vert 1.00 Vert 0.82 Horz	(LL) -0 (CT) -0	.41 19-20 >999 240 MT2 .77 19-20 >594 180 MT1 .34 12 n/a n/a	ATES GRIP 20 197/144 18HS 244/190 ght: 219 lb FT = 20%
BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	5-	2-20:2x6 SP 2400F 200F 2.0E 13-9,12-11,3-20:2x4 ing directly applied of t end verticals, and i max.): 8-10. plied or 6-7-8 oc 13, 10-13, 11-12, 7-1 17 -0-3-8 2) 12), 12=-221 (LC 8) 1), 12=1711 (LC 1) sesion/Maximum 376, 3-5=-6413/1344 051/374, 390/224, 2=-1663/317 0=-1158/4900, 7=-525/2627, 5=-245/1499, 3/625, 9-15=0/191, =-66/147, =-1139/337, 129/310, 454/408,	 this design. Wind: ASCE 7 Vasd=91mph; Ke=0.96; Cat. exterior zone Interior (1) 4-3 29-10-6, Inter 32-11-0 to 38 mexposed; end and forces & I DOL=1.60 pla Provide adequ All plates are chord live load Bearings are crushing capa capacity of 56 Bearings are capacity of 56 Bearing at join using ANSI/TI designer shout This truss is d International F R802.10.2 an Graphical pur 	nt(s) 2 considers par PI 1 angle to grain for Ild verify capacity of Ilesigned in accordar Residential Code sed d referenced standa lin representation do tion of the purlin alor	3-second g L=6.0ps; f MWFRS () -0-11-0 tc ior(2R) 22- 11-0, Exte left and rig i;c-C for m s shown; L vent water otherwise i a 10.0 psf b a 10.0 psf b a 10.0 psf b a 2 SP 2400 12 SP No. allel to grai rmula. Bui bearing su ce with the ttions R502 rd ANSI/TF es not dep	ust) I=35ft; envelope) 4-3-12, 9-8 to rior(2E) ht umber sumber sumber sounding. ndicated. oottom live loads. JF 2.0E 2 crushing n value Iding face. 2018 1.1.1 and 1. ct the size	Mart	NATHANIEL FOX PE-2022042259 SJONAL ENGLISS
NULES								July 12,2023

S NOTED O	N PLANS	REVIE	N	Truss Type		Qty	Ply	Roof - Osage Lot 56
	IENT SER			Hip Girder		1	2	I59477270 Job Reference (optional)
Premier Building	Supply (Springh	SOURI jill, KS), Spr	ing Hills, KS - 66083				.630 S Apr 6	2023 MiTek Industries, Inc. Wed Jul 12 07:06:45 Page: 1
08/03/20	JZ3 3:3	80:08			ID:IkXHPRUnAQGI	NLGmql6q4d	Izaidp-RfC?Ps	sB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f
		1-8-4 1-8-4 2	4-2-0 10-	5-12 16-9		24-8-		9-1-3 35-0-0 38-9-8
				-12 6-3-	12 4-1-0	3-10	-4 4	-4-7 5-10-13 3-9-8
		1 51 4x6		1.5x4 u	6x6=			
-	0-1-13		2 3		5			
	0-10	2		Å		6x6 ≈ 6	1.5x4 I	
	8 4						3x6 ≈	
10	9-10-8 6-5-14 4-10-14							4x12 ≈ 3x4 II
10-0-5	4-1		/ ``					9 4x8= 10
-		6	25			N N		129 4x6×
	2-0-0							20-00
	. T	24 ⋿ 4x4=	23	22	21 20 19		18	
1	L	3x4	∎ 4x4=	4x8=	4x8= 4x8=		7x8=	$3x4$ \downarrow 15303114 32 \boxtimes \bigcirc \uparrow \uparrow
		5x8=			4x4=			MT18HS 9x18 = LUS24
								MT18HS 3x12 ॥ 7x8=
								HHUS210-2 LUS28 LUS28
		1-7-0 4 1-7-0 2	<u>-0-12 10-5</u> -5-12 6-5			<u>4-8-12</u> '-10-0		9-1-3 <u>32-8-0 35-0-0 38-9-8</u> 4-7 3-6-13 2-4-0 3-9-8
Scale = 1:81.5								
	K, Y): [3:0-5-0	J,U-1-11],	[9:0-4-14,0-1-8], [10:0-4-0,Edgej, [13:0-3-	1], [16:0-8-0,0-4-12], [25:0-4-8,0-3-12]
Loading TCLL (roof)			Spacing Plate Grip DOL	1-0-0 1.15	CSI TC	0.90 Vert		in (loc) l/defl L/d PLATES GRIP 0.29 16-17 >999 240 MT20 244/190
TCDL		10.0	Lumber DOL	1.15	BC	0.85 Vert	t(CT) -0	0.52 16-17 >884 180 MT18HS 113/123
BCLL BCDL			Rep Stress Incr Code	NO IRC2018/TPI2014	Matrix-SH	0.97 Hor	z(CT) 0	0.16 13 n/a n/a Weight: 505 lb FT = 20%
LUMBER				WEBS	23-25=-53/1015, 3-2	5=-707/231	,	7) This truss has been designed for a 10.0 psf bottom
TOP CHORD	2x4 SP No.2 2.0E, 7-10:22		10-13:2x6 SP 240 0F 2.0E	00F	3-23=-630/66, 3-22=- 4-22=-290/117, 5-22=			chord live load nonconcurrent with any other live loads.8) Bearings are assumed to be: Joint 26 SPF No.2
BOT CHORD	2x6 SPF No.	.2 *Except	* 2-24:2x3 SPF No .0E Microllam® L\		5-20=-354/1870, 2-20 6-20=-2083/463, 15-	6=-1628/25	9,	crushing capacity of 425 psi, Joint 13 Trus Joist® LVL 2.0 E crushing capacity of 750 psi.
WEBS	2x3 SPF No.	.2 *Except	*		11-16=-84/519, 8-18	=-91/94,		This truss is designed in accordance with the 2018
	26-1,12-14,1 16-9:2x4 SP		2:2x4 SP No.2, 5E		6-18=-648/3254, 9-18 9-16=-2190/11179, 1	2-14=-2477	7/485,	 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
OTHERS BRACING	2x8 SP 2400)F 2.0E		NOTES	14-16=-1484/7906, 1	2-16=-726/	3958	 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or
TOP CHORD			hing directly applie	ed or 1) 2-ply truss	to be connected toget	ner with 10	d	bottom chord. 11) Use Simpson Strong-Tie HHUS210-2 (30-10d Girder,
	2-0-0 oc pur	lins (6-0-0		Top chords	nails as follows: connected as follows			10-10d Truss) or equivalent at 33-8-0 from the left end
BOT CHORD	Rigid ceiling bracing, Ex	, ,	pplied or 10-0-0 or	c staggered a oc.	at 0-9-0 oc, 2x6 - 2 rov	vs staggere	ed at 0-9-0	to connect truss(es) to front face of bottom chord. 12) Use Simpson Strong-Tie LUS28 (6-10d Girder, 3-10d
DEACTIONS	6-0-0 oc bra	cing: 24-2			ords connected as follo at 0-9-0 oc, 2x3 - 1 rov			Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 34-3-4 from the left end to 36-3-4 to
	Max Horiz 26	· ·	C 13)	rows stagg	ered at 0-4-0 oc.			connect truss(es) to front face of bottom chord. 13) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d
			-C 13), 26=-263 (L C 1), 26=1623 (LC	1 row at 0-			,	Truss, Single Ply Girder) or equivalent at 38-3-4 from the left end to connect truss(es) to front face of bottom
FORCES	(lb) - Maximu		ession/Maximum	 All loads an 	e considered equally a oted as front (F) or bac			chord.
TOP CHORD			108, 3-4=-1790/37		ection. Ply to ply connection. Ply to ply connection of the section of the sectio			14) Fill all nail holes where hanger is in contact with lumber.
	4-5=-1791/3 6-8=-5761/1	,	,	unless othe	erwise indicated. d roof live loads have l			OF MISS
		9/3606, 11	-12=-16525/3147,	this design				TE OF MISSOL
BOT CHORD		2, 24-25=-	13/2, 2-25=-197/1	360, Vasd=91m	E 7-16; Vult=115mph ph; TCDL=6.0psf; BCI	DL=6.0psf;	h=35ft;	FOX NATHANIEL
	20-22=-343/2	2551, 18-2	20=-569/3655,		at. II; Exp C; Enclosed ne and C-C Exterior(28			The I a tak
			-17=-1614/9029, 14=-2086/11061	Exterior(2R	erior(2R) 16-9-8 to 23	erior (1) 11-	-2-14 to	Markanish Hort
				23-10-6 to	38-5-8 zone; cantileve	r left and rig	ght	PE-2022042259
				and forces	end vertical right expose & MWFRS for reaction			
					plate grip DOL=1.60 equate drainage to pre	event water	pondina.	Solonal ENGIS
					re MT20 plates unless			
								July 12,2023

MiTek* 16023 Swingley Ridge Rd Chesterfield, MO 63017

DEI	EASE FOR CONSTRUCTION					
	NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof - Osage Lot 56	
	EXELOBMENT SERVICES	Hip Girder	1	2	Job Reference (optional)	159477270
	Premier Building Supply (Springhill, KS), Spring 8/03/2023 3:36:08				2023 MiTek Industries, Inc. Wed Jul 12 07:06:45 B70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 2

15) N/A

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-3=-35, 3-5=-35, 5-13=-35, 25-26=-10, 16-24=-10, 13-15=-10 Concentrated Loads (lb)

Vert: 13=-645 (F), 30=-5236 (F), 31=-643 (F), 32=-643 (F)

EASE FO	k CONSTI N PLANS	RUCTIC REVIEV	N	Truss Type		Qty	Ply	Roof - Osa	ge Lot 56		
	IENT SER			Roof Special		1	1	Job Refere	nce (optional)		159477272
Premier Building	Supply (Springh	SOURI nill. KS). Spri	ng Hills, KS - 66083,		Run: 8.63 S Apr 62			6 2023 MiTek Inc	dustries, Inc. We		Page: 1
8/03/20)23 3:3	80:08			ID:Ff01tfBvnU4mnD	B0QsJEOiz_	IVY-RfC?P	sB70Hq3NSgPqn	L8w3uITXbGK\	VrCDoi7J4zJC?f	
	L		7-1-4	14-3-8		21-9-11		25-3-1	4 28-	10-7 3	2-5-11 33-6-7
	1		7-1-4	7-2-4	I	7-6-3		3-6-3	3 3-	6-9	3-7-4 1-0-12
					3x4	=					
	4x8 1	3=	20	3x4= 2	1.5x4 ∎ 3 4 ⊠ ⊠_ ⊠	21		6x6= 5℃ –––––––––––––––––––––––––––––––––––			
	T								^{3x4} ≈ 1	2 15	
									<u> </u>	22 3x4 ×	
7-4-13 4-3-8			\sim							7	5x5=
7-6-10	-4-13									- M	5x5=
	4-										
က် ကု											
3-1-5 3-1-5			17					-#\$			3-1
\perp \perp	⊥ 19 🗗				16 4x8=						
	4x4	=		7x8=				1413 1.5x4 µ	12 4x12=		11 7x8=
			:	3x4 II				4x8=			3x4 I
			7-2-8	14-3-8		21-4-8	2	21-10-15 ²¹ -9-11 ₂₅₋₃₋₁	14 .	32-4-7	33-6-7
	H		7-2-8	7-1-0		7-1-0		0-5-3 3-4-1		7-0-9	1-2-0
Scale = 1:61.7								0-1-4			
Plate Offsets ()	K, Y): [8:0-2-8	8,Edge], [9	:Edge,0-1-12], [10]	Edge,0-2-8], [15:0-5-0,0	-2-8], [17:0-4-8,0-3-8 T], [18:Edge	,0-2-8]			1	
.oading CLL (roof)			Spacing Plate Grip DOL	2-0-0 1.15	TC	0.99 Vert		in (loc) -0.15 15-16	l/defl L/d >999 240	PLATES MT20	GRIP 197/144
ICDL (10.0 L	umber DOL	1.15	BC	0.88 Vert	(CT) -	-0.35 15-16	>999 180	WIT20	137/144
BCLL BCDL			Rep Stress Incr Code	NO IRC2018/TPI2014	WB 0 Matrix-SH	0.99 Horz	z(CT)	0.11 10	n/a n/a	Weight: 182	b FT = 20%
BOT CHORD WEBS BRACING FOP CHORD BOT CHORD Row at midpt WEBS REACTIONS FORCES FOP CHORD BOT CHORD WEBS	1.5E 2x4 SP No.2 2x3 SPF No Structural w 3-9-13 oc pu 2-0-0 oc pur Rigid ceiling bracing. Ex 2-17 1 Row at min (size) 10 Max Horiz 19 Max Uplift 10 Max Grav 10 (lb) - Maximu Tension 1-19=-1430/ 2-3=-2081/4 5-6=-2080/3 7-8=-649/13 18-19=-5/43 16-17=-268/ 13-14=0/0, 1 10-11=-48/5 17-19=-283/ 2-16=-174/8 5-16==80/40 9-11=-170/1	2 *Except* .2 *Except* .2 *Except* unins, excu- lins (3-0-7) directly ap cept: dpt 1- 0= Mechan 9=-305 (LC 0=-1505 (LC 0=-150	hical, 19=0-3-8 2 10) 2 9), 19=-306 (LC & C 1), 19=1502 (LC & ession/Maximum 1445/350, 082/437, 805/287, 6/101, 9-10=-1521 141, 2-17=-1062/3 6=-317/1900, 2, 11-12=-250/138 352/1877, 569/243, 77/105, 1301/241, 20/371, 13-15=0/5	Ke=0.96; Ca exterior zone lnterior (1) 5: 26-9-11, Inte d or left and right DOL=1.60 3) Provide aded 4) This truss ha chord live loa 5) Bearings are capacity of 5 6) Refer to gird 1) 7) This truss is International R802.10.2 au 8) Graphical pu or the orienta bottom chord (151 LOAD CASE(S) 2,		; MWFRS () 0-1-12 to prior(2R) 2 ⁻ 5-3 zone; al left and r rces & MW 60 plate gr vent water a 10.0 psf to any other t 19 SP No No.3 crush connection ce with the ctions R502 rd ANSI/TF bes not dep	(envelope) 5-1-12, 1-9-11 to cantilever ight FRS for ip ponding. bottom live loads 0.2 crushin ing capaci ns. 2 2018 2.11.1 anc 11. ict the sizu	s. Ig ity		ST NATH	MISSOLD HANIEL OX
NOTES 1) Unbalance this design		ds have be	een considered for						Y		AL ENGLISH Ily 12,2023
										50	, _, ,
· · ·											

16023 Swingley Ridge Rd Chesterfield, MO 63017

RELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof - Osage Lot 56	
DEXELORMENT SERVICES	Roof Special	1	1	Job Reference (optional)	159477273
LEE'S SUMMIT, MISSOURI Premier Building Supply (Springbill, KS), Spring 08/03/2023 3:36:08		•	•	2023 MiTek Industries, Inc. Wed Jul 12 07:06:47 sB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

Scale = 1:62.7

Plate Offsets (X, Y): [9:0-2-8,0-3-0]

						-						-	
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.94	Vert(LL)	-0.15	14-15	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.93	Vert(CT)	-0.33	10-12	>999	180		
BCLL	0.0	Rep Stress Incr	NO		WB	0.78	Horz(CT)	0.07	8	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-SH							Weight: 158 lb	FT = 20%
LUMBER			2)	Wind: ASCE	7-16; Vult=115m	nh (3-ser	cond quet)						
TOP CHORD	2x4 SP No.2 *Excep	ot* 3-5-2v4 SP 1650F	,		h; TCDL=6.0psf;								
	1.5E, 3-1:2x4 SP 24				at. II; Exp C; Enclo		• • •	pe)					
BOT CHORD	2x4 SP No.2	2.02			e and C-C Exterio			/					
WEBS	2x3 SPF No.2				-1-4 to 25-0-2, Ex								
BRACING				29-3-5, Inter	ior (1) 29-3-5 to 3	33-5-3 zor	ne; cantilever	left					
TOP CHORD	Structural wood she	athing directly applie	ed or		posed ; end vertic								
	4-0-6 oc purlins, ex				C for members an			r					
	2-0-0 oc purlins (3-1				own; Lumber DO	L=1.60 pl	ate grip						
BOT CHORD	Rigid ceiling directly		c	DOL=1.60									
	bracing.		3)		quate drainage to			g.					
WEBS	1 Row at midpt	1-15, 4-10, 1-14, 4-	14 ⁴⁾		as been designed								
REACTIONS	(size) 8= Mecha	anical, 15=0-3-8	5		ad nonconcurrent								
	Max Horiz 15=-197 ((LC 10)	5)		e assumed to be: 565 psi, Joint 8 SF								
	Max Uplift 8=-266 (L	C 9), 15=-303 (LC 8)	of 425 psi.	boo psi, Joint o Sr	-F N0.5 C	rushing capa	City					
	Max Grav 8=1500 (I	LC 1), 15=1500 (LC	1) 6)		ler(s) for truss to t	truce con	actions						
FORCES	(lb) - Maximum Com	pression/Maximum	7 0)		designed in acco								
	Tension		')		Residential Code			ind					
TOP CHORD	1-15=-1427/340, 1-2	2=-1726/395,			nd referenced sta								
	2-4=-1726/395, 4-5=	=-1652/340,	8)		urlin representatio			size					
	5-6=-1839/345, 6-7=	=-1389/243	-,		ation of the purlin								
BOT CHORD	14-15=-106/148, 12	-14=-431/2254,		bottom chor									
	10-12=-431/2254, 9	-10=-234/1355, 8-9=	:0/0	DAD CASE(S)	Standard								~
WEBS	5-10=0/347, 7-8=-14		271,									STATE OF M	an
	2-14=-637/281, 4-12	,	90,									B. OF I	AIS C
	4-10=-832/180, 1-14										1	9 52	N.O.
	7-9=-331/1902, 4-14	4=-643/131									B	NATTIA	NIET XAN
NOTES											a	S/ NATHA	TATEL / Y

NOTES

 Unbalanced roof live loads have been considered for this design.

July 12,2023

DEVELODM		Truss Type	Qty	Ply	Roof - Osage Lot 56	159477274
P236379-01		Flat Girder	1	2	Job Reference (optional)	
Premier Building S 08/03/20	MIT, MISSOURI Supply (Springbill, KS) Spring Hills, KS - 660 123 3:36:08			•	3 2023 MiTek Industries, Inc. Wed Jul 12 07:06:49 sB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1
1	8-5-4	16-9-4		25-1-3	33-6-7	I.
	8-5-4	8-4-0		8-4-0	8-5-4	

Scale = 1:57.8

Plate Offsets (X, Y): [1:Edge,0-4-8], [7:Edge,0-4-8], [8:Edge,0-2-8]

Plate Offsets (X, Y): [28:0-2-8,0-3-0]

TCDL 10.0	Plate Grip DOL1Lumber DOL1Rep Stress IncrN	-11-4 .15 .15 IO RC2018/TPI2014	CSI TC BC WB Matrix-R	0.10 0.08 0.34	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 20	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 131 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2 OTHERS 2x3 SPF No.2 BRACING TOP CHORD Sheathed or 6-0-0 oc verticals. BOT CHORD Rigid ceiling directly a bracing. REACTIONS (size) 20=22-0-0, 23=22-0-0, 35=22-0-0, 35=22-0-0,	purlins, except end applied or 6-0-0 oc 21=22-0-0, 22=22-0-0 24=22-0-0, 25=22-0-0 30=22-0-0, 31=22-0-0 33=22-0-0, 34=22-0-0 36=22-0-0	BOT CHORD	2-36=-172/86, 1-2= 3-4=-117/112, 4-5=- 6-7=-86/154, 7-8=-1 9-10=-145/271, 10- 11-12=-133/248, 12 13-14=-82/154, 14- 15-16=-68/84, 16-12 17-18=-118/104, 18 35-36=-103/119, 32 31-32=-103/119, 32 31-32=-103/119, 32 24-25=-103/119, 27 24-25=-103/119, 21 20-21=-103/119, 21 20-21=-103/119	-111/11 06/198 11=-14 -13=-10 15=-58/ 7=-76/7 -19=0/2 -35=-10 -33=-10 -29=-10 -29=-10 -24=-10	5, 5-6=-98/13 , 8-9=-133/24 /271, /6/198, 111, 4, 10, 18-20=-14 /3/119, /3/119, /3/119, /3/119, /3/119, /3/119, /3/119, /3/119,	0, 8, 6/53	 Fruster brace brace cab choi choi cap cap 10) This 	ss to be ced again le studs truss h rd live lo bearings acity of truss is rnationa (2.10.2 a	fully sl inst late s space as bee bad nor s are as 425 ps s desig al Resid and ref	ntinuous bottom on neathed from one eral movement (i ed at 1-4-0 oc. en designed for a nconcurrent with ssumed to be SP i. ned in accordand dential Code sect erenced standard	chord bearing. e face or securely .e. diagonal web). 10.0 psf bottom any other live loads. F No.2 crushing ce with the 2018 tions R502.11.1 and
24=-47 (LC 26=-59 (LC 29=-21 (LC 31=-48 (LC 33=-53 (LC 35=-137 (L 22=120 (LC 24=121 (LC 24=121 (LC 28=192 (LC 30=122 (LC 32=121 (LC 32=121 (LC	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} 13 \\ \end{array} \\ \begin{array}{c} 23 \\ \end{array} \\ \begin{array}{c} 23 \\ \end{array} \\ \begin{array}{c} 13 \\ \end{array} \\ \begin{array}{c} 23 \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} 23 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 23 \\ \end{array} \\ \begin{array}{c} 23 \\ \end{array} \\ \begin{array}{c} 23 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 23 \\ \end{array} \\ \begin{array}{c} 23 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 23 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 23 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 23 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 23 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 23 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 23 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 23 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 23 \\ \end{array} \\ $	this design. 2) Wind: ASCI Vasd=91mg Ke=0.96; C exterior zor Exterior(2N 16-0-0, Ext left and righ exposed;C- reactions sh DOL=1.60 3) Truss desig only. For si see Standa	7-31=-95/63, 6-32=- 4-34=-94/73, 3-35=- 12-26=-97/77, 13-2! 15-23=-96/70, 16-2: d roof live loads have E 7-16; Vult=115mph ph; TCDL=6.0pst; BC at. II; Exp C; Enclose e and C-C Corner(3)) 4-4-0 to 11-0-0, Co prior(2N) 16-0-0 to 2: tt exposed ; end verti C for members and f hown; Lumber DOL= gned for wind loads i tuds exposed to wind rd Industry Gable En ualified building desi	123/11 5=-95/6 2=-94/7 been c DL=6.0 cDL=6.0 cd; MW cd; MW cd; MW cd; MW corces t 1.60 pla n the pla (norm id Detai	1, 11-27=-96/ 3, 14-24=-95/ 3, 17-21=-112 considered for ond gust) 0psf; h=35ft; FRS (envelop I-0 to 4-4-0, 1) 11-0-0 to cone; cantilevi and right AWFRS for ate grip ane of the tru: al to the face) Is as applicab	63, 2/104 e) er ss ,				PE-2022	X 042259

July 12,2023

RELEASE FOR CONSTRUCTION							
AS NOTED ON PLANS REVIEW	Tru	ss Type		Qty	Ply	Roof - Osage Lot 56	
DEVELORMENT SERVICES	Co	mmon		2	1	Job Reference (optional)	159477276
Premier Building Supply (Springhill, KS), Spring 08/03/2023 3:36:09	lills, KS - 66083,				•	2023 MiTek Industries, Inc. Wed Jul 12 07:06:50 PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?	Page: 1
		5-7-4	11-0-0	1	16-4-12	22-0-0 22-11-0	
	0-11-0	5-7-4	5-4-12	I	5-4-12	5-7-4 0-11-0	
Scale = 1:59.1	4x4 II 1 1 1 1 2 3x6 =	81 ² 3x4 • 3 ¹³ 13 13 13 13 14 11 3x4 7-4-13	10 $3x4 =$ 1	-7-3 2-5	9 3x4	$3x4 \times 145$ 145 $4x4 \parallel 67$ $3x6 = 3x6 =$	

Plate Offsets (X, Y): [2:0-2-0.0-1-12], [6:0-2-0.0-1-12]

Flate Olisets ((,, , ,). [2.0-2-0,0-1-12	2], [0.0-2-0,0-1-12]									-	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.48	Vert(LL)	-0.07	10-12	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.56	Vert(CT)	-0.14	10-12	>999	180		
BCLL	0.0	Rep Stress Incr	NO	WB	0.97	Horz(CT)	0.03	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-SH							Weight: 109 lb	FT = 20%
LUMBER	5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and											

BOT CHORD 2x4 SP No.2

WEBS

R802.10.2 and referenced standard ANSI/TPI 1.

2x3 SPF No.2 *Except* 12-2,8-6:2x4 SP No.2 LOAD CASE(S) Standard BRACING TOP CHORD Sheathed or 5-0-2 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 8=0-3-8, 12=0-3-8 Max Horiz 12=-243 (LC 10) Max Uplift 8=-149 (LC 13), 12=-149 (LC 12) Max Grav 8=1051 (LC 1), 12=1051 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/41, 2-3=-455/187, 3-4=-1129/268, 4-5=-1129/268, 5-6=-454/186, 6-7=0/41, 2-12=-456/193, 6-8=-456/193

10-12=-168/982, 9-10=-6/670, 8-9=-72/948 BOT CHORD 4-9=-152/467, 5-9=-302/250, 4-10=-152/467, WEBS 3-10=-302/250, 3-12=-844/63, 5-8=-844/63

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 11-0-0, Exterior(2R) 11-0-0 to 16-0-0, Interior (1) 16-0-0 to 22-11-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads. 4) All bearings are assumed to be SP No.2 crushing

capacity of 565 psi.

July 12,2023

RELEASE FOR CONSTRUCTION						
AS NOTED ON PLANS REVIEW	Truss Type		Qty	Ply	Roof - Osage Lot 56	
DEXELORMENT SERVICES	Common		1	1	Job Reference (optional)	159477277
Premier Building Supply (Springtill KS), Spring 08/03/2023 3:36:09	lills, KS - 66083,			30 S Apr 6 20	123 MiTek Industries, Inc. Wed Jul 12 07:06:51 B70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1
	-0-11-0 5-7-4	11-0-0		16-4-12	22-0-0 22-11-0	
	0-11-0 5-7-4	5-4-12	I	5-4-12	5-7-4 0-11-0	
			4x6 u			
т т			4			
		81 ²				
		3x4 🎜	/ \\ `	\mathbb{A}	3x4	
		3 ¹³			145	
8-3-9	/			\		
	4x4 II				4x4 II	
	2 1 म					
	(12) H	(†) <u>F</u>		<u> </u>		
	3x6=	11 10 3x4=		9 3x4=	3x6 =	
		3x4= 3x4=		384=		
	7-4-1		14-7-3	T	22-0-0	
	7-4-1		7-2-5		7-4-13	

Scale = 1:59.1 Plate Offsets (X, Y); [2:0-2-0.0-1-12], [6:0-2-0.0-1-12]

Plate Offsets (X	., Y): [2:0-2-0,0-1-12], [6:0-2-0,0-1-12]											
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.48	Vert(LL)	-0.07	10-12	>999	240	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.56	Vert(CT)	-0.14	10-12	>999	180			
BCLL	0.0	Rep Stress Incr	NO	WB	0.97	Horz(CT)	0.03	8	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-SH							Weight: 109 lb	FT = 20%	
	S) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and												

2x3 SPF No.2 *Except* 12-2,8-6:2x4 SP No.2 LOAD CASE(S) Standard WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 5-0-2 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 8=0-3-8, 12=0-3-8 Max Horiz 12=-243 (LC 10) Max Uplift 8=-149 (LC 13), 12=-149 (LC 12) Max Grav 8=1051 (LC 1), 12=1051 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/41, 2-3=-455/187, 3-4=-1129/268, 4-5=-1129/268, 5-6=-454/186, 6-7=0/41, 2-12=-456/193, 6-8=-456/193 BOT CHORD 10-12=-168/982, 9-10=-6/670, 8-9=-72/948 4-9=-152/467, 5-9=-302/250, 4-10=-152/467, WEBS

NOTES

 Unbalanced roof live loads have been considered for this design.

3-10=-302/250, 3-12=-844/63, 5-8=-844/63

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 11-0-0, Exterior(2R) 11-0-0 to 16-0-0, Interior (1) 16-0-0 to 22-11-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 All bearings are assumed to be SP No.2 crushing
- capacity of 565 psi.

NATHANIEL FOX PE-2022042259

RE ASE FOR CONST NOTED ON PLANS REVIEW Truss Type Δ EXELORMENT SERVICES Common Building Supply (Springhill, KS), Spring 3/2023 3:36:09 lills, KS - 66083,

Plate Offsets (X, Y): [5:0-2-0,0-1-12]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.51	Vert(LL)	-0.07	7-8	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.56	Vert(CT)	-0.14	7-8	>999	180		
BCLL	0.0	Rep Stress Incr	NO	WB	0.98	Horz(CT)	0.03	7	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-SH							Weight: 107 lb	FT = 20%

LUMBER

Scale = 1:59.1

LOWIDER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x3 SPF No.2 *Except* 11-1,7-5:2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	4-11-13 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
WEBS	1 Row at midpt 2-11
REACTIONS	(size) 7=0-3-8, 11=0-3-8
	Max Horiz 11=-236 (LC 8)
	Max Uplift 7=-148 (LC 13), 11=-123 (LC 12)
	Max Grav 7=1053 (LC 1), 11=975 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-388/135, 2-3=-1139/270,
	3-4=-1132/269, 4-5=-454/186, 5-6=0/41,
	1-11=-339/133, 5-7=-456/193
BOT CHORD	9-11=-170/993, 8-9=-6/672, 7-8=-72/950
WEBS	3-8=-153/468, 4-8=-302/250, 3-9=-155/477,

NOTES

Unbalanced roof live loads have been considered for 1) this design

2-9=-313/254, 2-11=-916/103, 4-7=-847/64

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 5-1-12, Interior (1) 5-1-12 to 11-0-0, Exterior(2R) 11-0-0 to 16-0-0, Interior (1) 16-0-0 to 22-11-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.

4) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

This truss is designed in accordance with the 2018 5)

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

HOTED O	R CONSTRUCT		Tru	iss Type		Qty	Ply	Roof - Osage L	ot 56		
F2355-9RA	IENT SERVICE	S	Co	mmon Structura	I Gable	1	1	Job Reference	(optional)		159477279
Premier Building	Supply (Springhill, KS) (023 3:36:0	oring Hills, KS	66083,			•	•	6 2023 MiTek Industri	es, Inc. We		Page: 1
10/03/20	023 3.30.0	9			ID:WcRfdZXs	2bG3GRhQ2C	HdPbz1SCN-Rf	C?PsB70Hq3NSgPqn	L8w3ulTXb	GKWrCDoi7J4zJ	0?ł
		-0-11-0 	<u>6-1-11</u> 6-1-11		14-0-0 7-10-5		<u>21-10-4</u> 7-10-4		<u>27-11-0</u> 6-0-12) 29-0-8	
		0-11-0	0 1 11		1 10 0	5x5=	1 10 1		0012	1-1-0	
	0-11-2 	4x4 ≠ 1 25	3x4 3 14	$8^{\frac{12}{35}}$ $3x4 =$ 24 $3x4 =$	5 5 8 8 23 3x4=	22	29 28	360 4x4 11 12 30 3x6 II 21 20 19 3x4=	13 14 2 33	15 4x6 16 34 18	0-11.21
Scale = 1:68.5		 	<u>6-1-11</u> 6-1-11		14-0-0 7-10-5		<u>21-10-4</u> 7-10-4	22-0-0 11 0-1-12	<u>27-11-(</u> 5-11-0		
Plate Offsets (2	X, Y): [2:0-1-0,0-1-12], [16:0-2-14	,0-2-0]		-					-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip Lumber DO Rep Stress Code	OL 1.1 s Incr NO	5 5	CSI TC BC WB Matrix-SH	0.79 0.58	Vert(CT) -	in (loc) l/de 0.11 21-22 >99 0.17 21-22 >99 0.01 19 n	9 240	PLATES MT20 Weight: 172 I	GRIP 244/190 PFT = 20%
	2x4 SP No.2 2x3 SPF No.2 *Exce No.2 2x3 SPF No.2 Sheathed or 5-4-1 c verticals. Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 28, 30, 33	c purlins, ex applied or 6 4-22, 6-22, 4 25=0-3-8 LC 10) LC 13), 25=- (LC 1), 25=9 (LC 1), 25=9	-0-0 oc 5-26 -150 (LC 12) 124 (LC 1) 124 (LC 1) 124 (LC 1) 124 (LC 1) 124 (LC 1) 124 (LC 1) 124 (LC 12) 124 (LC 12	NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=91mp Ke=0.96; Ca exterior zond Interior (1) 4 19-0-0, Inter and right exposed;C-0 reactions sh DOL=1.60 3) Truss desig only. For st see Standar or consult qu 4) All plates and 5) Truss to be braced agail 6) Gable studs 7) This truss ha	F-16; Vult=115 h; TCDL=6.0psf at. II; Exp C; Enc e and C-C Exter -1-0 to 14-0-0, F ior (1) 19-0-0 to posed ; end vert C for members a own; Lumber Dr ned for wind loa uds exposed to al Industry Gable Jalified building e 1.5x4 MT20 uf fully sheathed fr nst lateral move spaced at 1-4-C as been designe ad nonconcurre	, 16-34=-44 22-26=-592/ 2-27=-202/8 , 28-29=-19, , 28-29=-19, , 28-29=-19, , 12-19=-129 27=-36/89, 8 -30=-130/12 , 11-31=-80/ 3-32=-30/55 -24=0/605 ave been cc mph (3-seco ; BCDL=6.0; losed; MWF1 icr(2E) -0-11 29-0-8 zone ical left and md forces & DL=1.60 plat ds in the plat wind (normation the plat) ds in the p	1/445, 277, 4-24=0/2: 90, 4/864, 7/881, 97/274, -28=-39/24, 4, 62, , 14-33=-48/36 onsidered for and gust) osf; h=35ft; RS (envelope) -0 to 4-1-0, a; cantilever left right MWFRS for te grip ne of the truss I to the face), s as applicable per ANSI/TPI 1 ise indicated. or securely agonal web). psf bottom ther live loads.	Internati 34, R802.10 LOAD CASE	onal Resid .2 and ref	dential Code se erenced standa ndard	MISSOLUTION

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

July 12,2023

EASE FOR CONST			1			-					
NOTED ON PLANS	S REVIE\	v	Truss Type		Qty	Ply	Ro	of - Osag	je Lot 56		159477280
EXELORMENT SE	RVICES		Common		2	1	Job	o Referen	nce (optional)	159477280
Premier Building Supply (Sprin 8/03/2023 3:	ahill KS) Sor 36:09	ng Hills, KS - 66083,								ed Jul 12 07:06:5 bGKWrCDoi7J4z	
	-()-11-0 6-1-	11	14-0-0		21-10	-4	ī	27-11-	.0 29-0-	8
	(-11-0 6-1-		7-10-5	1	7-10-			6-0-1		1 8
10-4-9		4x6 = 2 45 1.5x4 II 6-1-	8^{12} 16 3x4 + 4 3x4 + 4 14 3x4 = 14	H 13 3x4= 14-0-0	12 3x8=	21-10	17	4x4 6 6 11 3x4= 22-0-0	3x4, 7	3x6 a 8 3x4 II	0-1-1-3 -1-1-3
Scale = 1:68.5 Plate Offsets (X, Y): [2:0-2	2-14,0-2-0]	6-1-		7-10-5	1	7-10-		0-1-12	20.00		
Loading TCLL (roof) TCDL BCLL	25.0 I 10.0 I	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-11-4 1.15 1.15 NO	CSI TC BC WB	0.69 0.59	DEFL Vert(LL) Vert(CT) Horz(CT)		12-14	l/defl L/d >999 240 >999 180 n/a n/a	MT20	GRIP 244/190

ICDL	10.0	Lumber DOL	1.15		ВС	0.59	ven(CT)	-0.14	12-14	>999	180		
BCLL	0.0	Rep Stress Incr	NO		WB	0.79	Horz(CT)	0.01	11	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-SH							Weight: 136 lb	FT = 20%
FORCES	No.2 Structural wood she 5-4-7 oc purlins, ex Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 11 1 Row at midpt (size) 11=0-3-8, Max Horiz 15=-290 (Max Uplift 11=-231 (Max Grav 11=1643 (lb) - Maximum Com Tension	ept* 15-2,10-8:2x4 Si eathing directly applie cept end verticals. / applied or 10-0-0 oc 1-12. (d or ; 3) 4) ; 12)	Vasd=91mpl Ke=0.96; Ca exterior zone Interior (1) 4 19-0-0, Inter and right exp exposed;C-C reactions shu DOL=1.60 This truss ha chord live loa All bearings capacity of 5 This truss is International	designed in ac Residential Co nd referenced s	f; BCDL=6. closed; MW rior(2E) -0 Exterior(2R > 29-0-8 zor tical left and and forces a OL=1.60 pl ed for a 10. ant with any b be SP No. cordance w de sections	Opsf; h=35ft; FRS (envelo 11-0 to 4-1-0) 14-0-0 to e; cantilever d right & MWFRS fo ate grip D psf bottom other live loa 2 crushing ith the 2018 s R502.11.1 a	, eft r ads.					
TOP CHORD	5-6=-606/204, 6-8=- 2-15=-872/178, 8-10	0=-126/89											
BOT CHORD	14-15=-251/394, 12 11-12=-348/329, 10											(COLOR)	alle
WEBS		584/270, 5-12=-56/21 426/435, 6-11=-1440									B	STATE OF M	MISSOLA
NOTES											R		V VV
 Unbalance 	ed roof live loads have	been considered for								· · · ·)	N	FO	

anced roof live loads have been considered for 1) this design.

> SSIONAL W11 July 12,2023

PE-2022042259

PE-2022042259

NOTED ON	PLANS	REVIE	W	Truss Ty	/pe		Qty	Ply	/ R	loof - Osa	ge Lot 5	6			
E2365-9RM	ENT SER	YIÇES		Commo	on		2	1	J	ob Refere	nce (opt	ional)		I	59477281
Premier Building S 8/03/20	upply (Springh 23 3:3	6:10	ring I lills, KS - 66083	•			Apr 6 2023 P (s?bG3GRhQ2		Apr 6 202	3 MiTek Ind	dustries, l	nc. Wea			Page: 1
			-0-11-0 6	-1-11	I	14-0-0		2	1-10-4		1	27-11	1-0		
			0-11-0 6	-1-11	ļ	7-10-5	1	7	'-10-4		1	6-0-1	12		
							4x6= 5								
	Т	Т													
								\mathcal{M}							
					12 8	15			1	6					
	0 0	u			3x4 #					4	x4				
	10-3-9 10-3-2			3x4 🍫	4		⊠				6	3x4💊			
				3					/			7			
			4x4 🕫										3x8.		
		N	2										8		
		0-11-2	1 14		_									₀÷⊥	
		0	⊠ 3x4 ∎		13		12 11				0		3x4	Ó II	
					3x4=	:	3x4= 3x8=			;	3x4 =				
			. 6	-1-11		14-0-0		2	1-10-4	22	-0-0	27-1	1-0 .		
Scale = 1:68.5				-1-11	1	7-10-5			'-10-4	0-1	 -12	5-11			
late Offsets (X,	Y): [2:0-1-4	,0-1-12]													
oading		(psf)	Spacing	2-0-0		CSI		DEFL	in	. ,	l/defl	L/d	PLATES		RIP
CLL (roof)		25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.70 0.61	Vert(LL) Vert(CT)	-0.07 -0.15	11-13 11-13	>999 >999	240 180	MT20	24	4/190
BCLL		0.0	Rep Stress Incr	NO		WB	0.76	Horz(CT)	0.01		n/a	n/a			
CDL		10.0	Code	IRC2018	/TPI2014	Matrix-SH							Weight: 134	lb FT	= 20%
UMBER	2v4 SP 1650	F 1 5F *	Except* 1-3,7-8:2x4	2) LSP		E 7-16; Vult=11 h; TCDL=6.0p			t:						
	No.2				Ke=0.96; C	at. II; Exp C; Ei	nclosed; MWI	RS (enve	lope)						
	2x4 SP No.2 2x3 SPF No.		ot* 14-2,9-8:2x4 SP	No 2		e and C-C Ext -1-0 to 14-0-0			0,						
RACING		2 27000	14 2,3 0.224 01	140.2	19-0-0, Inte	rior (1) 19-0-0	to 27-9-4 zon	e; cantileve	er left						
OP CHORD	Sheathed or verticals.	5-2-1 oc	purlins, except er	d		posed ; end ve C for members			for						
BOT CHORD	Rigid ceiling		applied or 10-0-0 o	•	reactions sh	own; Lumber I									
	bracing, Ex 6-0-0 oc bra		11	3)	DOL=1.60 All plates ar	e 3x4 MT20 ur	nless otherwis	e indicate	d.						
	1 Row at mic	•	i i. I-11, 5-11	4)	This truss h	as been desigr	ned for a 10.0	psf bottor	n						
REACTIONS (s	ize) 10)=0-3-8, ⁻	14=0-3-8	5)		ad nonconcurr are assumed									
	lax Horiz 14		C 9) .C 13), 14=-157 (L0	, 12)	capacity of	425 psi.			-						
IV			C 13), 14=-157 (LC C 1) 14=981 (LC		This truss is	designed in a	ccordance wi	th the 2018	3						

Max Grav 10=1580 (LC 1), 14=981 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-2=0/41, 2-4=-1171/186, 4-5=-669/186, 5-6=-671/214, 6-8=-248/425, 2-14=-927/186, 8-9=-130/93 13-14=-268/397, 11-13=-222/991, 10-11=-234/265, 9-10=-145/93 4-13=0/237, 4-11=-601/279, 5-11=-31/238,

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

FORCES TOP CHORD BOT CHORD WEBS 2-13=0/691, 8-10=-329/377, 6-10=-1386/416, 6-11=-122/763

NOTES

1) Unbalanced roof live loads have been considered for this design.

AS NOTED ON PLANS REVIEW		Truss Type		Qty	Ply	Roof - Osage Lot 56	
DEVELORMENT SERVICES		Common		4	1	Job Reference (optional)	159477282
LEE'S SUMMIT, MISSOURI Premier Building Supply (Springhill KS), Spring 08/03/2023 3:36:10	lills, KS - 66083,					2023 MiTek Industries, Inc. Wed Jul 12 07:06:53 ?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4z.	
	-0-11-0 	020	14-0-0 7-9-11			<u>22-0-0</u> 8-0-0	
ТТ				/	4x6= 5		
			8 ¹² 12			13	
10-3-9 10-3-2		3x4 #	3x4 •			5x5. 6	
	2	3 x4 .				4-11-2	
			10 9		8	₹7⊥	

	6-2-5	14-0-0	22-0-0
Г	6-2-5	7-9-11	8-0-0
Scale = 1:65.8			
Plate Offsets (X, Y): [2:0-1-4,0-1-8], [6:0-2-0,0-1-8]			

3x4=

3x4 II

Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	1.00	DEFL Vert(LL)	in -0.10	(loc) 7-8	l/defl >999	L/d 240	-	GRIP 244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.69	Vert(CT)	-0.19	7-8	>999	180		
BCLL	0.0	Rep Stress Incr	NO		WB	0.44	Horz(CT)	0.02	7	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-SH							Weight: 112 lb	FT = 20%
TOP CHORD BOT CHORD WEBS BRACING	2x4 SP No.2 *Excep 1.5E 2x4 SP No.2 2x3 SPF No.2 *Exce	ept* 11-2,7-6:2x4 SF	5) 9 No.2	Internationa	s designed in acco Il Residential Coc and referenced st	le sections	R502.11.1 a	and					
TOP CHORD BOT CHORD	Sheathed, except e Rigid ceiling directly		с										
WEBS	bracing.	4-8	-										

3x4=

3x8=

	bracing.	
WEBS	1 Row at	midpt 4-8
REACTIONS	(size)	7=0-3-8, 11=0-3-8
	Max Horiz	11=347 (LC 9)
	Max Uplift	7=-123 (LC 12), 11=-155 (LC 12)
	Max Grav	7=975 (LC 1), 11=1053 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/41,	2-4=-1278/194, 4-5=-792/226,
	5-6=-781/	207, 2-11=-997/196, 6-7=-905/192
BOT CHORD		37/436, 8-10=-324/1052,
	7-8=-80/1	10
WEBS	4-10=0/22	24, 4-8=-584/277, 5-8=-23/324,

NOTES

1) Unbalanced roof live loads have been considered for this design.

2-10=-23/755, 6-8=-87/587

Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 14-0-0, Exterior(2R) 14-0-0 to 19-0-0, Interior (1) 19-0-0 to 21-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3x4 II

RELEASE FOR CONSTRUCTION									
AS NOTED ON PLANS REVIEW		Truss Type				Qty	Ply	Roof - Osage Lot 56	
		Common	Girder			1	2	Job Reference (optional)	159477283
Premier Building Supply (Springhill, KS), Spring H 08/03/2023 3:36:10	ills, KS - 66083,							6 2023 MiTek Industries, Inc. Wed Jul 12 07:06:53 C?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC	Page: 1 C?f
		3-3-11 3-3-11		<u>6-4-14</u> 3-1-3		9-6-1 3-1-3		<u>13-0-14</u> <u>3-6-13</u>	
					6x6 II				
			12		3				
5-4-7	1	9	8 4x6 . 2				3x4 s	10	

5-4-7	1-1-3	9					10 5	0-11-2
		11	8	12	7 13	6	X	
		MT18HS 5x8 🔐	3x12 ш		10x10 =	3x6 II	5x8 =	
		LUS28	LUS28	LUS28	HHUS28-2			
		<u>3-3-11</u> 3-3-11		<u>6-4-14</u> 3-1-3	9-6-1 3-1-3	13-0	-13	

Scale = 1:41.6

Plate Offsets (X, Y): [7:0-5-0,0-6-0]

Loading	(psf) Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0) Plate Grip DOL	1.15		TC	0.60	Vert(LL)	-0.04	7-8	>999	240	MT20	197/144
TCDL	10.0) Lumber DOL	1.15		BC	0.43	Vert(CT)	-0.07	7-8	>999	180	MT18HS	197/144
BCLL	0.0	Rep Stress Incr	NO		WB	0.80	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0		IRC2018/TP	12014	Matrix-SH		- (-)					Weight: 166 lb	FT = 20%
			4) \\//	nd ASCE	7-16; Vult=115m	ah (2 aaa	and quat)			Vort: 0	1 1 70	(B), 11=-1476 (B) 12 1490 (P)
					; TCDL=6.0psf; E					13=-281		(D), 11=-1470 (D), 12=-1400 (Б),
TOP CHORD		0 F			. II; Exp C; Enclos			20)		13=-20	0 (В)		
BOT CHORD		UE			and C-C Exterior								
WEBS WEDGE	2x3 SPF No.2 Left: 2x4 SP No.:	`						,					
	Leit. 284 SP NO.	2		Interior (1) 5-0-12 to 6-4-14, Exterior(2R) 6-4-14 to 11-4-14, Interior (1) 11-4-14 to 12-11-2 zone; cantilever									
BRACING	0 4 4 6 6 6	o "		left and right exposed ; end vertical left and right									
TOP CHORD	Sheathed or 6-0		0.1	exposed;C-C for members and forces & MWFRS for									
BOT CHORD		ctly applied or 10-0-0 or		reactions shown; Lumber DOL=1.60 plate grip									
	bracing.			DL=1.60	,		0 1						
REACTIONS	· · ·	chanical, 5=0-3-8	5) All	plates are	MT20 plates unle	ess other	wise indicate	d.					
	Max Horiz 1=-13	· · · ·	6) Th	is truss ha	s been designed	or a 10.0) psf bottom						
		64 (LC 12), 5=-810 (LC	· CH	ord live loa	d nonconcurrent	with any	other live loa	ds.					
		5 (LC 1), 5=3193 (LC 1) 7) Be	· / =g									
FORCES	(lb) - Maximum (Tension	Compression/Maximum		capacity of 425 psi, Joint 5 SP 2400F 2.0E crushing capacity of 805 psi.									
TOP CHORD	1-2=-6210/1443,	2-3=-4557/1283.			er(s) for truss to tr	uss conr	nections						
	3-4=-4557/1282,				designed in accor								
BOT CHORD	1-8=-1064/4707,	7-8=-1066/4725,			Residential Code			ind					
	6-7=-967/3700,	5-6=-966/3697			d referenced star								
WEBS	2-8=-255/2131, 2	2-7=-1262/183,			Strong-Tie LUS2			4-					
	3-7=-1283/4633,	4-7=-115/245, 4-6=-102	2/326 SE	9212 Trus	s, Single Ply Gird	er) or eq	uivalent space	ced					
NOTES					ax. starting at 1-2								
1) 2-ply truss	to be connected to	ogether with 10d		5-2-6 to connect truss(es) to back face of bottom chord.									The
) nails as follows:			11) Use Simpson Strong-Tie HHUS28-2 (22-10d Girder, 8-10d Truss, Single Ply Girder) or equivalent at 7-0-1 from the left end to connect truss(es) to back face of bottom chord.								ALC D	
	s connected as foll	ows: 2x6 - 2 rows			Single Ply Girder							ALE OF T	NIS'S C
	at 0-9-0 oc.				end to connect tru	ss(es) to	back face of	t			4	TA	NS
		follows: 2x8 - 3 rows		ttom chord							H	S NATHA	NIEL YEN
	at 0-5-0 oc.				les where hanger	is in cor	itact with lum	ber.			y.	FO EO	
		x3 - 1 row at 0-9-0 oc,	13) N/	A							-NA	Land	" A CHAN
	ember 2-8 2x3 - 1 r										11	Tilling	11 Level
		ally applied to all plies,			a						N/		all Tint
		back (B) face in the LC			Standard						Mb	WUMAN	ER AR
	section. Ply to ply o		1) Dead + Roof Live (balanced): Lumber Increase=1.15,										
		ads noted as (F) or (B),		Plate increase=1.15							128		
	erwise indicated.	ave been considered for		Uniform Loads (lb/ft) Vert: 1-3=-70, 3-5=-70, 1-5=-20								JO B	
this design		ave been considered to			, ,	=-20						SSIONA	LENA
uns design	1.		C	oncentrate	ed Loads (lb)							UNA	-

July 12,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RELEASE FOR CONSTRUCTION	
AS NOTED ON PLANS REVIEW	
DEXELORMENT SERVECES	
Premier Building Supply (Springhill, KS), Spring 08/03/2023 3:36:10	lill:

5-4-14

 $\left| \right|$

STI	PUCTION			_				
NS	REVIEW	i l	Truss Type	Qty	Ply	Roof - Osage Lot 56		
ER	VICES		Common Supported Gable	2	1	Job Reference (optional)		159477284
ringt	aill KS), Spring	g Hills, KS - 66083,				6 2023 MiTek Industries, Inc. Wed Jul SB70Hq3NSgPqnL8w3uITXbGKWrC		Page: 1
		-0-11- 	6-8-0			<u>13-4-0</u> 6-8-0	14-3-0 	
_	0-11-2	- 1 - 24		4x4 = 7	8	9 10 11 11 11 11 11 11 11 17 16 15		3

13-4-0

Scale = 1:37.6

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.05	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	NO		WB	0.11	Horz(CT)	0.00	14	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-R							Weight: 70 lb	FT = 20%
LUMBER			N	OTES									
TOP CHORD	2x4 SP No.2		1)	Unbalanced	roof live loads ha	ve been o	considered for						
BOT CHORD			,	this design.									
WEBS	2x4 SP No.2		2)	Wind: ASCE	7-16; Vult=115m	ph (3-sec	cond gust)						
OTHERS	2x3 SPF No.2			Vasd=91mpl	n; TCDL=6.0psf; I	BCDL=6.	0psf; h=35ft;						
BRACING					t. II; Exp C; Enclo			e)					
TOP CHORD	Structural wood she	eathing directly applied	lor		and C-C Corner								
	6-0-0 oc purlins, ex			· · ·	4-0-0 to 6-8-0, C	()		,					
BOT CHORD	Rigid ceiling directly	y applied or 6-0-0 oc			11-8-0 to 14-3-0								
	bracing.				d; end vertical let								
REACTIONS	(size) 14=13-4-	-0, 15=13-4-0, 16=13-4	I- 0,		and forces & MV =1.60 plate grip I			wn;					
	17=13-4-	-0, 18=13-4-0, 19=13-4	I-O, 3)		ned for wind load			~~					
		-0, 21=13-4-0, 22=13-4	1-0, ³⁾		ids exposed to wi								
		-0, 24=13-4-0			d Industry Gable								
	Max Horiz 24=-164				alified building de								
		LC 9), 15=-88 (LC 13),	41		1.5x4 MT20 unle								
		LC 13), 17=-57 (LC 13		Gable requir	es continuous bo	ttom chor	d bearing.						
		LC 13), 20=-37 (LC 12 LC 12), 22=-39 (LC 12		Truss to be f	ully sheathed fror	m one fac	e or securely						
		LC 12), 22=-39 (LC 12 LC 12), 24=-76 (LC 8)			ist lateral movem		liagonal web).						
		(LC 19), 15=133 (LC 2)			spaced at 1-4-0 o								
		(LC 26), 17=126 (LC 20			s been designed								
		(LC 20), 19=146 (LC 2)	2)		ad nonconcurrent			ds.					
		(LC 19), 21=126 (LC 1	<u> </u>		are assumed to b	e SP No.	2 crushing						
	22=127 ((LC 25), 23=146 (LC 1	9),	capacity of 5	b5 psi. designed in acco		ith the 2010						all h
	24=172 ((LC 20)			Residential Code			hd				OFI	MIG
FORCES	(lb) - Maximum Cor	mpression/Maximum			nd referenced sta			iu				TATE OF	MISSO
	Tension		10	DAD CASE(S)			00/1111				A	7 AV	N.S
TOP CHORD	,		L\	SAD CASE(S)	Stanuaru						A	S NATHA	NIEL CA
	3-4=-69/74, 4-5=-60	, , ,									1	FO	
	,	-106/230, 8-9=-83/184	,							-	X A		
		1=-46/66, 11-12=-71/6	8,								K	FH-	11 112 10
	12-13=0/41, 12-14=		<u> </u>								K	t X // // // //	
BOT CHORD	,	23=-76/86, 21-22=-76/8 20=-76/86, 18-19=-76/8									14-	NOW WERE	BER
		7=-76/86, 15-16=-76/8									N	O PE-2022	042259
	14-15=-76/86	<i>i = 10/00</i> , 10-10 <i>=</i> -70/0	0,								V V	1 the	158
WEBS		=-105/64, 5-21=-98/10	6.									NºS Sim	TNU'S
	,	=-96/93, 8-18=-103/64	,									SIONA	LEY
		6=-100/110, 11-15=-90										A A A A A A A A A A A A A A A A A A A	STC .
	· · · · · ·												40.0000

July 12,2023

4

	9-17=-99/106, 10-16=-100/110, 11-15=-90/93
Design a truss building is alway fabricat	NING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing s required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the on, storage, delivery, erection and bracing of trusses and truss systems, see MSUTPH1 Quality Criteria, DSB-89 and BCSI Building Component information available from Truss Plate Institute. 2670 Crain Hindway. Suite 203 Valdorf. MD 20601

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEVELORMENT SERVICES LEE'S SUMMIT, MISSOURI Premier Building Supply (Springhill KS), Spring 08/03/2023 3:36:10

Truss Type			Qty	Ply	Roof - Osage Lot 56	
	Common	2	1	Job Reference (optional)	159477285	
ls, KS - 66083,		Run: 8.63 S Apr 6 20)23 Print: 8.6	30 S Apr 6 2	2023 MiTek Industries, Inc. Wed Jul 12 07:06:54	Page: 1
		ID:JsPfw3c_rizTUY71	?qauLyz_p6	6-RfC?PsB7)Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	

				6-8-0 6-8-0				<u>3-4-0</u> 3-8-0				
Scale = 1:42.7												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.71	Vert(LL)	-0.04	6-7	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.43	Vert(CT)	-0.08	6-7	>999	180		
BCLL	0.0	Rep Stress Incr	NO	WB	0.14	Horz(CT)	0.01	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-SH							Weight: 63 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2	ΓOΡ	CHORD	2x4 SP No.2
-----------------------	-----	-------	-------------

- BOT CHORD 2x4 SP No.2
- WEBS
 2x3 SPF No.2 *Except* 8-2,6-4:2x4 SP No.2

 BRACING
 TOP CHORD

 TOP CHORD
 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc
- bracing.

 REACTIONS
 (size)
 6=0-3-8, 8=0-3-8

 Max Horiz
 8=-164 (LC 10)

 Max Uplift
 6=-98 (LC 13), 8=-98 (LC 12)

 Max Grav
 6=661 (LC 1), 8=661 (LC 1)

 FORCES
 (lb) Maximum Compression/Maximum Tension

 TOP CHORD
 1-2=0/41, 2-3=-636/151, 3-4=-636/151,
- TOP CHORD
 1-2=0/41, 2-3=-636/151, 3-4=-636/151, 4-5=0/41, 2-8=-604/208, 4-6=-604/208

 BOT CHORD
 7-8=-263/504, 6-7=-199/387

 WEBS
 3-7=0/272, 2-7=-125/271, 4-7=-134/275

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 6-8-0, Exterior(2R) 6-8-0 to 11-8-0, Interior (1) 11-8-0 to 14-3-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) All bearings are assumed to be SP No.2 crushing capacity of 565 psi.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

July 12,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RFI	LEASE FOR CONSTRUCTION	
AS	NOTED ON PLANS REVIEW	
1	EVELORMENT SERVICES	
	EE'S SUMMIT, MISSOURI Premier Building Supply (Springhill, KS), Spring I 8/03/2023 - 3 - 36 - 10	lills

			2-4-14	6-8-0		1	11-2-0		13	3-4-0		
Scale = 1:42.7			2-4-14	4-3-2		I	4-6-0		2	-2-0	Ι	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	BC	0.32 0.63 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-12 10-11 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 68 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SP No.2		4) All bearing: capacity of 5) This truss i No.2 Internation	s are assumed to be S	ince w	ith the 2018 R502.11.1 a	and				Weight. 00 ib	11 - 2076
TOP CHORD BOT CHORD	Structural wood shea 6-0-0 oc purlins, exo Rigid ceiling directly bracing.	cept end verticals.	ed or LOAD CASE(S) Standard								
	0	LC 10) 13), 14=-98 (LC 12))									
FORCES	(lb) - Maximum Com	,, (,										
TOP CHORD	Tension 1-2=0/41, 2-3=-662/ ² 4-5=-646/166, 5-6=-6 2-14=-673/185, 6-8=	646/158, 6-7=0/41,										
BOT CHORD	,	13=-105/44, 164/805,	7/72,									
WEBS	5-11=-356/183, 2-13 4-11=-37/331, 3-11=		512,									
, this design	ed roof live loads have	been considered for								6	ATEOF	MISSOL

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 6-8-0, Exterior(2R) 6-8-0 to 11-8-0, Interior (1) 11-8-0 to 14-3-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NATHANIEL

FOX

MARKER

PE-2022042259

E

July 12,2023

SSIONAL

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEXELORMENT SERVICES LEE'S SUMMIT, MISSOURI Premier Building Supply (Seringhill, KS), Sering Kill 08/03/2023 3:36:11

NSTRUCTION						
ANS REVIEW		Truss Type	Qty	Ply	Roof - Osage Lot 56	
SERVICES		Roof Special	4	1	Job Reference (optional)	159477287
(Springhill, KS), Spring Hi 3:36:11	ills, KS - 66083,				023 MiTek Industries, Inc. Wed Jul 12 07:06:55 Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

			L	2-4-14	1	6-8-0			11-2-0		13-0	-14		
			I	2-4-14	I	4-3-2			4-6-0		1-10	-14		
Scale = 1:42.7						• · · · · · · · · · · · · · · · · · · ·								
Loading	(psf)	Spacing	2-0-0			csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15			TC 0.3	33	Vert(LL)	-0.03	10-11	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15			BC 0.0		Vert(CT)	-0.06	10-11	>999	180		
BCLL BCDL	0.0 10.0	Rep Stress Incr Code	NO	8/TPI2014		WB 0.1 Matrix-SH	18	Horz(CT)	0.06	7	n/a	n/a	Mainht CE lb	FT = 20%
BCDL	10.0	Code	IRC20	8/TPI2014		Matrix-SH							Weight: 65 lb	F1 = 20%
LUMBER TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2		4	capacity of 425 ps	of 5 i.	e assumed to be: Joint 1 65 psi, Joint 7 SPF No.	.3 c	rushing capa						
WEBS	2x3 SPF No.2 *Exce	ept* 13-2,7-6:2x4 SP	No.2 5			er(s) for truss to truss c								
BRACING	o		6			designed in accordance Residential Code secti			and					
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex		dor			nd referenced standard			ana					
BOT CHORD	Rigid ceiling directly bracing.		L	OAD CASE	(S)	Standard								
REACTIONS	()	anical, 13=0-3-8												
	Max Horiz 13=160 (I	,												
	Max Uplift 7=-70 (LC Max Grav 7=572 (LC)											
FORCES	(lb) - Maximum Corr Tension	,. , ,												
TOP CHORD	1-2=0/41, 2-3=-651/ 4-5=-630/176, 5-6=- 6-7=-598/140		189,											
BOT CHORD	12-13=-128/147, 11- 3-11=-81/66, 10-11= 9-10=-194/699, 8-9=	-225/781,	9,											
WEBS	7-8=-11/26 5-10=-306/182, 2-12 4-10=-46/317, 3-10=		492,											
this desigr 2) Wind: ASC	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC	(3-second gust)											STATE OF I	MISSOLUTION

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 6-8-0, Exterior(2R) 6-8-0 to 11-8-0, Interior (1) 11-8-0 to 12-11-2 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FOX

NUMBER C

July 12,2023

PE-2022042259

ESSIONAL ET

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEVELOPMENT SERVICES LEE'S SUMMIT, MISSOURI Premier Building Supply (Springhill, KS), Spring Hill 08/03/2023 3:36:11

	I 6-8-0	13-0-14	
	6-8-0	6-4-14	
Scale = 1:42.7			
Plate Offsets (X, Y): [4:Edge,0-1-12]			

						· · · ·					1	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.75	Vert(LL)	-0.04	6-7	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.41	Vert(CT)	-0.08	6-7	>999	180		
BCLL	0.0	Rep Stress Incr	NO	WB	0.14	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-SH		. ,					Weight: 61 lb	FT = 20%
LUMBER			This truss is	designed in accor	dance w	ith the 2018						
TOP CHORD	2x4 SP No.2			I Residential Code			and					
BOT CHORD	2x4 SP No.2		R802.10.2 a	and referenced star	ndard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2 *Exce	pt* 7-2,5-4:2x4 SP I	No.2 LOAD CASE(S	Standard								
BRACING												
TOP CHORD	Structural wood she	athing directly applie	ed or									
	6-0-0 oc purlins, ex											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o										
	bracing.											
REACTIONS	· · /	nical, 7=0-3-8										
	Max Horiz 7=160 (LC	,										
	Max Uplift 5=-70 (LC											
	Max Grav 5=572 (LC											
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORD	Tension 1-2=0/41, 2-3=-623/	151 2 4 607/149										
TOP CHORD	2-7=-594/210, 4-5=-	, , ,										
BOT CHORD	6-7=-274/492, 5-6=-											
WEBS	3-6=0/255, 2-6=-132											
NOTES		,										
	ed roof live loads have	been considered fo	r									
this design												
0	CE 7-16; Vult=115mph	(3-second gust)									0000	Th
2, 1110.7000											an	Alle

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 6-8-0, Exterior(2R) 6-8-0 to 11-8-0, Interior (1) 11-8-0 to 12-11-2 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Bearings are assumed to be: Joint 7 SP No.2 crushing capacity of 565 psi, Joint 5 SPF No.3 crushing capacity of 425 psi.
- 5) Refer to girder(s) for truss to truss connections.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RF	LEASE FOR CONSTI		
	NOTED ON PLANS		
	EXELORMENT SER		
	FFIS SHMMIT MIS		
C	Premier Building Supply (Springh) 8/03/2023	ill, KS), Spring I	lills

	Truss Type Roof Special Girder	Qty 1	Ply 1	Roof - Osage Lot 56	159477289
		•	-	Job Reference (optional)	
lills, KS - 66083,	Run: 8.63 S Apr 6 20	023 Print: 8.6	30 S Apr 6 2	2023 MiTek Industries, Inc. Wed Jul 12 07:06:55	Page: 1

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jul 12 07:06:55 ID:NiV?miVKh1pEzSCcKIa8o3yzVx0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

HUS28

LUS24

Scale = 1:34.3

Plate Offsets ((X, Y): [2:0-4-0,0-2-8]	[3:Edge,0-3-0]											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.08	Vert(LL)	-0.01	5	>999	240		197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.78	Vert(CT)	-0.03	5	>999	180		
BCLL	0.0	Rep Stress Incr	NO		WB	0.37	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-P							Weight: 20 lb	FT = 20%
LUMBER			(designed in acco								
TOP CHORD					Residential Code			and					
BOT CHORD	2x8 SPF No.2		_		and referenced sta								
WEBS	2x3 SPF No.2		-	, , ,	urlin representatio			size					
BRACING					ation of the purlin	along the	e top and/or						
TOP CHORD	Structural wood she	athing directly applie	ed or	bottom chor		00 (00 4)		40-1					
		xcept end verticals, a	and ²		n Strong-Tie HUS								
	2-0-0 oc purlins: 2-3				e Ply Girder) or e to connect truss(e								
BOT CHORD		applied or 10-0-0 oc	0	chord.	to connect truss(e	(5) 10 11011		om					
	bracing.				n Strong-Tie LUS	24 (4-100	Girder 2-1	Ъ					
REACTIONS	()	6= Mechanical	•		e Ply Girder) or e								
	Max Horiz 6=-78 (LC	,			to connect truss(e								
	Max Uplift 4=-190 (L				ed 0.0 deg.to the								
	Max Grav 4=1170 (I	LC 1), 6=1242 (LC 1))	down.	J	5 7 - 1	5 5						
FORCES	(lb) - Maximum Corr	pression/Maximum		0) Fill all nail h	oles where hange	er is in cor	ntact with lum	nber.					
	Tension			1) In the LOAD	CASE(S) section	n, loads a	oplied to the	face					
TOP CHORD	1-6=-76/87, 1-2=-80	/65, 2-3=-14/16,		of the truss	are noted as front	(F) or ba	ck (B).						
	3-4=-61/43		1	OAD CASE(S)	Standard								
BOT CHORD	5-6=-283/1578, 4-5=) Dead + Ro	of Live (balanced): Lumber	Increase=1	.15,					
WEBS	2-6=-1694/332, 2-5=	=-169/1084,		Plate Incre	ase=1.15	,							
	2-4=-1537/275			Uniform Lo	ads (lb/ft)								
NOTES				Vert: 1-2	2=-70, 2-3=-70, 4-	6=-20							
,	CE 7-16; Vult=115mph	· · · · ·		Concentrat	ted Loads (lb)								an
	nph; TCDL=6.0psf; BC			Vert: 5=	-2088 (F=-1743, E	3=-345)						TATE OF	MIG
	Cat. II; Exp C; Enclose		pe)									ASE	MISS W
	one and C-C Exterior(2										6	TAN'	N.S.
) 1-11-5 to 3-8-6 zone;										A	S NATHA	ANIEL VEN
	end vertical left and right										2	FO	
	and forces & MWFRS OL=1.60 plate grip DC		,								1	1 A	Do KEN
	dequate drainage to pr										R	T. All-	
	has been designed fo		j.								1	Va/Ikan	N/ No
	load nonconcurrent w		de								23	NUM	BER C

- chord live load nonconcurrent with any other live loads. Bearings are assumed to be: Joint 6 SPF No.3 crushing 4) capacity of 425 psi, Joint 4 SPF No.2 crushing capacity of 425 psi.
- 5) Refer to girder(s) for truss to truss connections.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PE-2022042259

July 12,2023

SSIONAL EN

RF	LEASE FOR CONST	PUCTION	
	NOTED ON PLANS	R E¥IEW	
1	EXELORMENT SER		
	Premier Building Supply (Springt	ill, KS), Spring I	lills

	Truss Type	Qty	Ply	Roof - Osage Lot 56	
	Lay-In Gable	1	1	Job Reference (optional)	159477290
lills, KS - 66083,	Run: 8.63 S Apr 6	2023 Print: 8.6	30 S Apr 62	2023 MiTek Industries, Inc. Wed Jul 12 07:06:56	Page: 1

ID:6n9QJPZ5TYuebLgCPhfu05yzVKB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [1:0-0-4,0-1-8], [10:0-2-2,0-0-12]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.54	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.50	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	NO	WB	0.25	Horiz(TL)	0.01	11	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 117 lb	FT = 20%
LUMBER			NOTES									

LUMBER					NC	ЭΤ
TOP CHORD	2x4 SP N	o.2			1)	١
BOT CHORD	2x4 SP N	o.2				١
WEBS	2x6 SPF I	No.2 *E>	cept* 10-1	1:2x4 SP No.2		ł
OTHERS	2x3 SPF I	No.2	•			e
BRACING						a
TOP CHORD	Structura	l wood s	heathing d	irectly applied or		e
			except end			r
BOT CHORD	Rigid ceil	ing direc	tly applied	or 8-7-12 oc		0
	bracing.	-			2)	
WEBS	1 Row at	midpt	1-20, 2-	19, 3-17, 4-16		0
REACTIONS	(size)	11=16-	6-0, 12=16	6-6-0, 13=16-6-0,		5
		14=16-	6-0, 15=16	6-6-0, 16=16-6-0,	2)	0
		17=16-	6-0, 19=16	6-6-0, 20=16-6-0	3)	
	Max Horiz	20=-52	0 (LC 8)		4)	
	Max Uplift	11=-18	2 (LC 11),	12=-250 (LC 13),	5)	٦ t
		13=-29	(LC 13), 1	4=-98 (LC 13),	6)	(
				6=-91 (LC 13),		1
		17=-72	(LC 13), 1	9=-95 (LC 13),	7)	C
			7 (LC 10)		8)	A
	Max Grav			2=332 (LC 20),	0)	6
				4=201 (LC 20),	9)	
				16=187 (LC 20),	3)	i
				19=159 (LC 1),		Ē
			2 (LC 9)		LC	
FORCES	· · /	imum C	ompressio	n/Maximum	20	~
	Tension					
TOP CHORD				2-3=-285/262,		
				, 5-6=-513/352,		
			=-647/401	, 9-10=-811/487,		
	10-11=-49					
BOT CHORD			17-19=-389			
			15-16=-389			
			13-14=-389			
			11-12=-389			
WEBS			-17=-154/1			
		,	-15=-150/1	,		
	6-14=-150	o/114, 7	-13=-126/7	9, 9-12=-232/240		

Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2R) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. All plates are 1.5x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. All bearings are assumed to be SP No.2 crushing
- capacity of 565 psi. This truss is designed in accordance with the 2018
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. AD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Plate Offsets (X, Y): [8:0-2-0,0-2-0], [16:Edge,0-1-8], [17:Edge,0-1-8], [25:0-2-8,0-3-0]

	λ, Υ): [8:0	-2-0,0-2-0],	[16:Edge,0-1-8], [17:	∟uge,	0-1-8], [25:0-2-8	,0-3-0]								
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2		CSI TC BC WB Matrix-R	0.65 0.34 0.19	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a -0.01	(loc) - - 17	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 173 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	2x3 SPF Structura 6-0-0 oc 2-0-0 oc Rigid ceil bracing. 1 Row at	lo.2 No.2 *Exce No.2 Il wood she purlins, ex purlins (6-0 ling directly midpt	apt* 16-17:2x4 SP No athing directly applied cept end verticals, an I-0 max.): 8-16. applied or 10-0-0 oc 16-17, 15-18, 14-19, 13-20, 12-21, 11-22, 10-23, 9-24, 7-25	d or	FORCES TOP CHORD BOT CHORD	(lb) - Maximum Cot Tension 1-31=-440/284, 1-2 3-4=-434/292, 4-5= 6-7=-221/207, 7-8= 9-10=-172/188, 10 11-12=-172/188, 10 11-12=-172/188, 12 30-31=-173/189, 22 28-29=-173/189, 22 23-24=-172/188, 22 21-22=-172/188, 21 19-20=-172/188, 21	2=-597/3 367/26 179/18 -11=-17 2-13=-1 4-15=-1 6-17=-1 9-30=-1 7-28=-1 4-26=-1 2-23=-1 0-21=-1	398, 2-3=-478 32, 5-6=-290/2 34, 8-9=-172/- 2/188, 72/188, 72/188, 72/189, 73/189, 73/189, 73/189, 72/188, 72/188,	3/321, 230, 188,	 5) Ga 6) Trubra bra 7) Ga 8) Thi cha 9) All cap 10) Thi Integration R8 11) Graving or 1 	ble requiss to be ced aga ble studs s truss h ord live lo bearings oacity of s truss is ernationa 02.10.2 (aphical p	ires co fully s inst lat s space bad no s are a 565 ps s desig al Resi and ref ourlin re tation	ntinuous bottom heathed from one eral movement (i ed at 2-0-0 oc. en designed for a nconcurrent with ssumed to be SP si. nned in accordance dential Code sect ferenced standard	e face or securely .e. diagonal web). 10.0 psf bottom any other live loads. No.2 crushing ce with the 2018 tions R502.11.1 and d ANSI/TPI 1. es not depict the size
REACTIONS		19=26-11 21=26-11 23=26-11 25=26-11 27=26-11 29=26-11 31=26-11			WEBS	17-18=-172/188 15-18=-157/116, 1- 13-20=-140/61, 12- 11-22=-140/61, 10- 9-24=-140/88, 7-25 6-26=-150/120, 5-2 4-28=-150/109, 3-2 2-30=-171/188	-21=-14 -23=-14 5=-159/1 ?7=-151	0/61, 0/70, 151, /107,			CASE(S		ndard	
	Max Horiz Max Uplift	17=-22 (L 19=-46 (L 21=-38 (L 23=-45 (L 25=-73 (L 27=-82 (L	C 9), 18=-50 (LC 8), C 9), 20=-41 (LC 8), C 9), 22=-37 (LC 9), C 8), 24=-64 (LC 9), C 9), 26=-95 (LC 12) C 12), 28=-88 (LC 12) C 12), 30=-266 (LC 1	2),	Vasd=91m Ke=0.96; C exterior zor Interior (1) 18-11-12, I	E 305 11 11 100 E 7-16; Vult=115mp bh; TCDL=6.0psf; Bi at. II; Exp C; Enclos he and C-C Exterior(4-11-12 to 11-8-9, E nterior (1) 18-11-12 oft and right exposed	CDL=6. ed; MW 2E) 0-1 xterior(to 26-10	0psf; h=35ft; /FRS (envelop -4 to 4-11-12, 2R) 11-8-9 to)-0 zone;	,				STATE OF I	
	Max Grav	17=70 (LC 19=181 (L 21=180 (L 23=180 (L 25=193 (L 27=190 (L	C 1), 18=186 (LC 1), _C 1), 20=180 (LC 1), _C 1), 22=180 (LC 1), _C 1), 24=179 (LC 1), _C 19), 26=192 (LC 1), _C 19), 28=191 (LC 1), _C 19), 30=261 (LC 1)	9), 9),	for reaction DOL=1.60 2) Truss desi only. For s see Standa or consult o	ed;C-C for members s shown; Lumber Do gned for wind loads tuds exposed to win rd Industry Gable Ei jualified building des equate drainage to p	OL=1.60 in the p d (norm nd Deta signer a	D plate grip lane of the tru lal to the face ils as applicat s per ANSI/TF	uss), ble, PI 1.				PE-2022	NOR

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RF	LEASE FOR CONST	PUCTION	
AS	NOTED ON PLANS	REVIEW	
1	EXELORMENT SER	YIGES	
(Premier Building Supply (Springe 8/03/2023	ill KS), Spring	lills

м				_		
1		Truss Type	Qty	Ply	Roof - Osage Lot 56	
		Lay-In Gable	1	1	Job Reference (optional)	159477292
g	lills, KS - 66083,	Run: 8.63 S Apr 6 2	023 Print: 8.6	30 S Apr 6 2	2023 MiTek Industries, Inc. Wed Jul 12 07:06:57	Page: 1

Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jul 12 07:06:57 ID:o5mP598CzdcZRIK_VeYp_SyzVwA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:74.9

Plate Offsets (X, Y): [10:0-2-0,0-2-0]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.04	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	NO		WB	0.04	Horiz(TL)	-0.01	13	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-SH							Weight: 89 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0	ept -0 max.): 10-13. applied or 10-0-0 oc	d or W	OT CHORD	1-23=-103/58, 22- 21-22=-139/90, 20 19-20=-139/88, 18 17-18=-139/88, 16 14-16=-139/88, 13 12-14=-143/65, 11 9-17=-146/94, 8-11 7-19=-150/107, 6- 5-21=-152/109, 4- 2-23=-165/114	-21=-13 -19=-13 -17=-13 -14=-13 -16=-13 3=-152/1 20=-150	9/87, 9/88, 9/88, 9/88, 3/80 5/39, 13, 13, 108,		Inte R80 12) Gra or tl	rnationa)2.10.2 phical p ne orien com cho	al Resid and ref ourlin re itation d rd.	erenced standar epresentation doe of the purlin alon	tions R502.11.1 and d ANSI/TPI 1. es not depict the size
REACTIONS	(size) 1=20-0-13 14=20-0- 17=20-0- 17=20-0- 21=20-0- 23=20-0- Max Horiz 1=497 (LC Max Uplift 1=-53 (LC 14=-43 (L 17=-70 (L 23=-96 (L 23=-96 (L 14=185 (L 14=185 (L 14=185 (L 14=185 (L 14=185 (L 14=185 (L 14=185 (L 19=191 (L 19=191 (L	8, 13=20-0-13, 13, 16=20-0-13, 13, 18=20-0-13, 13, 20=20-0-13, 13, 22=20-0-13, 13, 22=20-0-13, 13, 22=20-0-13, 13, 22=20-0-13, 13, 22=20-0-13, 13, 22=20-0-13, 12, 22=0, 12, 12, 12, 13=59 (LC 12), 12), 13=59 (LC 12), 13, 13=59 (LC 12), 13, 13=59 (LC 12), 14, 13=59 (LC 12), 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,	1 2), 2), 3,, 3,, 3,, 3,, 3,, 3,, 3,, 3,, 3,, 3	 Unbalanced this design. Wind: ASC Vasd=91m Ke=0.96; C exterior zor Interior (1) 20-0-15 zor vertical left forces & MI DOL=1.60 Truss desi only. For s see Standa or consult c Provide add All plates a Gable stud: 	d roof live loads have E 7-16; Vult=115mp ph; TCDL=6.0psf; B at. II; Exp C; Enclos he and C-C Exterior 5-5-4 to 16-0-11, En- re; cantilever left ar and right exposed; WFRS for reactions plate grip DOL=1.60 gned for wind loads tuds exposed to wir rd Industry Gable E ualified building de equate drainage to p re 1.5x4 MT20 unle a spaced at 2-0-0 on as been designed 1	oh (3-sec CDL=6. sed; MW (2E) 0-5 cterior(2) dright e C-C for r shown;) in the p dd (norm ind Deta signer a: prevent s ss other C.	ond gust) Dps; h=35ft; FRS (enveloy 4 to 5-5-4, E) 16-0-11 to xposed ; end nembers and Lumber ane of the tru al to the face Is as applica s per ANSI/TI water ponding wise indicated	be) I Juss), ble, PI 1. g.				STATE OF D	THEF IN N
FORCES	(lb) - Maximum Com Tension	pression/Maximum 377/209, 4-5=-296/1 137/79, 7-8=-69/39, 2/107, 10-11=-61/10	66, 9 5,	 chord live log All bearings capacity of Bearing at j value using 	bad nonconcurrent	with any e SP No. ders par o grain f	other live loa 2 crushing allel to grain ormula. Buile					PE-2022	042259

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

July 12,2023

RELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof - Osage Lot 56	
DEXELORMENT SERVICES	Lay-In Gable	1	1	Job Reference (optional)	159477293
Premier Building Supply (Springhill, KS), Spring Hills 08/03/2023 3:36:12	2023 MiTek Industries, Inc. Wed Jul 12 07:06:57 B70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1			

13-2-0

ID:?O2eWPMcPcH4cQtef1f39CyzV6F-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 10-5-0 -9-7-1 4x4 🖌 9.01¹² 1.5x4 u 7 1.5x4 **I** 6 1.5x4 II 0-3-15 H 1.5x4 **⊮** 5 8x8= Δ 1.5x4 u 3 3-2-0 12 MB 5-11-9 0-7-0 8 13 12 11 10 9 3x4= 7x8= 1.5x4 u 1.5x4 u ^{3x6}2-2-8 1.5x4 **I** 4x4 **I** 0-8-11 0-8-11 0-8-11 1-5-13 10-5-0 _ 8-2-8

Scale = 1:85.4

Plate Offsets (X, Y): [7:0-1-6,0-2-0], [12:0-2-8,Edge]

	X, Y): [7:0-1-6,0-2-0	j, [12.0-2-0,Edge]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-SH	0.56 0.49 0.63	Vert(TL)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 102 lb	GRIP 244/190 FT = 20%
	7-8:2x6 SPF No.2 2x3 SPF No.2 Structural wood sh 6-0-0 oc purlins, e 2-0-0 oc purlins, (6- Rigid ceiling directl bracing. 1 Row at midpt (size) 8=10-5-(11=10-5 14=10-5 Max Horiz 14=513 Max Uplift 8=-158 (10=-73 (12=-111: 14=-254 Max Grav 8=157 (L 10=196 (12=927 (14=315 (y applied or 6-7-0 oc 7-8, 6-9, 5-10, 4-11, 2-12 9, 9=10-5-0, 10=10-5 0, 12=10-5-0, 13=10- 0 (LC 9) LC 11), 9=-98 (LC 12] LC 12), 11=-102 (LC 12, 11=-102 (LC 13 (LC 9), 13=-661 (LC (LC 10), 13=996 (LC 9) (LC 10), 13=996 (LC 9)	d or 2) 2-13, 3) 4) 5, 5) 5-0, 6) 12), 9) 12), 9) 10), 10, (9), 11	Vasd=91mpł Ke=0.96; Ca exterior zone Interior (1) 0- right exposed for members Lumber DOL Truss design only. For stu see Standard or consult qu Provide aded All plates are Gable requirn Truss to be f braced again Gable studs This truss ha chord live loa All bearings a capacity of 5 0) This truss is International R802.10.2 ar 0) Graphical pu or the orienta bottom chord	designed in accord Residential Code nd referenced star Irlin representation ation of the purlin a d.	CDL=6. sed; MW (2E) 0-1 he; canti and rigil FRS for OL=1.6 in the p in the p in d near signer a prevent ss other or char or c	Opsf; h=35ft; (FRS (envelop, -12 to 0-9-15, lever left and it exposed;C- reactions sho D lane of the tru al to the face; ills as applicat s per ANSI/TF water ponding wise indicated d bearing. se or securely liagonal web). 0 psf bottom other live loa 2 crushing ith the 2018 s R502.11.1 a SI/TPI 1. ot depict the s	C wwn; iss), ole, Pl 1. J. ds. nd				STATE OF M	MISSOLA
TOP CHORD	1-14=-270/197, 1-2	2-13=-684/598,	2,	DAD CASE(S)	Standard						R	FO	
WEBS NOTES	9-10=-227/248, 8-9 6-9=-227/204, 5-10 4-11=-173/178, 3-1 2-13=-2030/1605, 2)=-156/153, 2=-157/106,									A.	PE-20220	LENGT

July 12,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RFI	LEASE FOR CONSTRUCTION	
	NOTED ON PLANS REVIEW	
		L
וו	EXELORMENT SERVICES	L
	LEE'S SUMMIT. MISSOURI	⊢
	Premier Building Supply (Springhill, KS), Spring	Hills
	18/03/2023 3:36:12	L

	Truss Type	Qty	Ply	Roof - Osage Lot 56					
	Jack-Open	34	1	Job Reference (optional)	159477294				
s, KS - 66083,	083, Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jul 12 07:06:58								
	ID:0?PEYEgUQ5Pu?ymPh0rLKaz_o82-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f								

Scale =	1:35.4
---------	--------

Scale = 1:35.4				<u> </u>	5-11-4							
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.84	Vert(LL)	-0.07	4-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.47	Vert(CT)	-0.13	4-5	>515	180		
BCLL	0.0	Rep Stress Incr	NO	WB	0.09	Horz(CT)	-0.01	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 27 lb	FT = 20%

LUMBER	
TOP CHORD	2x4 SP No.2

BOT CHORD	2x4 SP N	0.2						
WEBS	2x4 SP N	o.2 *Except* 4-2:2x3 SPF No.2						
BRACING								
TOP CHORD	Structural wood sheathing directly applied or							
	5-11-4 oc	purlins, except end verticals.						
BOT CHORD	Rigid ceili	Rigid ceiling directly applied or 10-0-0 oc						
	bracing.							
REACTIONS	(size)	3= Mechanical, 4= Mechanical,						
		5=0-3-8						
	Max Horiz	5=177 (LC 12)						
	Max Uplift	3=-136 (LC 12), 5=-6 (LC 12)						
	Max Grav	3=205 (LC 19), 4=116 (LC 3),						
		5=340 (LC 1)						
FORCES	(lb) - Max	imum Compression/Maximum						
	Tension							
TOP CHORD	2-5=-282/	(108, 1-2=0/41, 2-3=-146/96						
	1 5 075	100						

NOTES	
WEBS	2-4=-109/277
BOT CHORD	4-5=-275/108
TOP CHORD	2-5=-282/108, 1-2=0/41, 2-3=-146/96

- Interior (1) 4-1-0 to 5-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) Bearings are assumed to be: Joint 3 SPF No.3 crushing capacity of 425 psi, Joint 5 SP No.2 crushing capacity of 565 psi, Joint 4 SPF No.3 crushing capacity of 425 psi.
- Refer to girder(s) for truss to truss connections. 4) This truss is designed in accordance with the 2018 5) International Residential Code sections R502.11.1 and
- R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RELEASE FOR CONSTRUCTION							
AS NOTED ON PLANS REVIEW	Truss Type		Qty	Ply	Roof - Osage Lot 56		
DEXELORMENT SERVICES	Half Hip		1	1	Job Reference (optional)	159477295	
Premier Building Supply (Springhill, KS), Spring Hills, KS - 6608		Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jul 12 07:06:58 ID:gWMo5TAP2kP3DleQF7bpCNyzVxR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f					
		<u>3-8-11</u> 3-8-11		<u>8-4</u> 4-8			
		12 5 Г 3x4 ≠	5x5 =		1.5x4 ш		
2-3-0 2-0-13 2-2-10 2-0-13 0-1-13	2	€ 4 -0 3 7				_	
0-8-0		5x5 =	:		3x4 =	_	

T A

5x8 ≠

_ 4

12

Scale = 1:33.2

Plate Offsets (X, Y): [2:0-2-1,0-3-6]

Plate Offsets ((X, Y): [2:0-2-1,0-3-6]										-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.65 0.48 0.53	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.12 0.05	(loc) 7 6-7 6	l/defl >999 >788 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 36 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 2 Structural wood she 4-0-6 oc purlins, ex 2-0-0 oc purlins: 4-5 Rigid ceiling directly bracing.	athing directly applie cept end verticals, a applied or 7-2-15 or 6= Mechanical 9) : 8), 6=-71 (LC 9)	7) Bearing a using AN designer 8) This truss Internatio ed or R802.10. nd 9) Graphica or the ori c bottom cl	girder(s) for truss to tt joint(s) 2 consider: SI/TPI 1 angle to gr: should verify capaci is is designed in acco nal Residential Cod 2 and referenced sta I purlin representation entation of the purlin hord. (S) Standard	s parallel t ain formula ity of bear ordance w e sections andard AN on does no	o grain value a. Building ng surface. ith the 2018 s R502.11.1 a ISI/TPI 1. ot depict the s	and					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=-3/0, 2-4=-1378, 5-6=-160/119	pression/Maximum /635, 4-5=-15/17,										
this design 2) Wind: ASC Vasd=91n Ke=0.96; exterior zc and right e exposed; reactions : DOL=1.6C 3) Provide ac 4) This truss chord live 5) Bearings a	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I C-C for members and f shown; Lumber DOL=	been considered fo (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever l eft and right orces & MWFRS for 1.60 plate grip event water ponding r a 10.0 psf bottom th any other live loaa nt 2 SP No.2 crushin	be) left g. ds. ng								PE-2022	BER 042259

5) Bearings are assumed to be: Joint 2 SP No.2 crushing capacity of 565 psi, Joint 6 SPF No.3 crushing capacity of 425 psi.

CONAL CONAL

July 12,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

EASE FOR CONSTRUCTIO	NI									
NOTED ON PLANS REVIEV			Qty	Ply	Ro	of - Osa	ge Lot 5	56		150.177000
EVELORMENT SERVICES	Valley		1	1	Jol	b Refere	nce (op	tional)		159477296
Premier Building Supply (Springbill, KS), Sprin 18/03/2023 3:36:12	ng Hills, KS - 66083,	Run: 8.63 S Apr 6 ID:471104gVxhlKh 16-4	lvZGofXS	•						Page: 1
		10 -	0							
								1113	3x6 и	
6-10-0	3x4 ≤	5x5 = 5 324 324 2 21 20 19 x4=	6 18	7 25	8	9	10		13 4x6 =	
		16-4	-3							
Scale = 1:44.4									-1	
Plate Offsets (X, Y): [3:0-2-8,0-3-0]	pacing 2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCDL 10.0 L BCLL 0.0 R	Plate Grip DOL 1.15 umber DOL 1.15 Rep Stress Incr NO	BC WB	0.19	/ert(LL) /ert(TL) Horiz(TL)	n/a n/a 0.00	- - 13	n/a n/a n/a	999 999 n/a	MT20	197/144
BCDL 10.0 C	Code IRC2018/TPI2014	Matrix-SH							Weight: 84 lb	FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x3 SPF No.2 OTHERS 2x3 SPF No.2 BRACING X	WEBS NOTES 1) Wind: A ing directly applied or Vasd=9	2-23=-213/131, 3-21 5-19=-93/52, 6-18=-5 8-16=-93/59, 9-15=-5 11-13=-88/89 SCE 7-16; Vult=115mph	93/52, 7- 94/61, 10	17=-93/54,)-14=-100/1						

	bracing.	3
REACTIONS	(size)	1=16-4-3, 13=16-4-3, 14=16-4-3, 15=16-4-3, 16=16-4-3, 17=16-4-3, 18=16-4-3, 19=16-4-3, 20=16-4-3, 21=16-4-3, 23=16-4-3
	Max Horiz	1=293 (LC 9)
	Max Uplift	13=-51 (LC 11), 14=-54 (LC 12), 15=-25 (LC 12), 16=-38 (LC 12), 17=-33 (LC 12), 18=-34 (LC 12), 19=-34 (LC 12), 20=-38 (LC 12), 21=-12 (LC 12), 23=-87 (LC 12)
	Max Grav	1=145 (LC 20), 13=71 (LC 1), 14=132 (LC 1), 15=119 (LC 1), 16=120 (LC 1), 17=120 (LC 1), 18=121 (LC 1), 19=117 (LC 1), 20=136 (LC 1), 21=37 (LC 1), 23=303 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum

Rigid ceiling directly applied or 10-0-0 oc

BOT CHORD

Tension TOP CHORD 1-2=-387/225, 2-4=-328/188, 4-5=-283/176, 5-6=-256/166, 6-7=-230/156, 7-8=-203/146, 8-9=-175/136, 9-10=-147/128, 10-11=-116/112, 11-12=-88/95, 12-13=-74/77 BOT CHORD 1-23=-129/140, 21-23=-129/140, 18-19=-129/140, 17-18=-129/140, 16-17=-129/140, 15-16=-129/140,

14-15=-129/140, 13-14=-129/140

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-9-1 to 5-9-1, Interior (1) 5-9-1 to 16-3-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 All plates are 1.5x4 MT20 unless otherwise indicated.
 Gable requires continuous bottom chord bearing.
- Gable requires continuous bottom chord bea
 Gable studs spaced at 1-4-0 oc.
- 5) Gable studs spaced at 1-4-0 oc.6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.All bearings are assumed to be SP No.2 crushing
- capacity of 565 psi.8) This truss is designed in accordance with the 2018
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

July 12,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof - Osage Lot 56	
DEXELORMENT SERVICES	Valley	1	1	Job Reference (optional)	159477297
EEE'S SUMMIT, MISSOURI Premier Building Supply (Springhill, KS), Spring, Hills, KS - 66083, 08/03/2023 3:36:12	Run: 8.63 S ID:80RiXCsvF	•	•	6 2023 MiTek Industries, Inc. Wed Jul 12 07:06:59 PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1
		13-1-12			
				3x4 u	
				1.5x4 u	
0-0-4	512 3x4 = 9 1.5x4 = 10 2 3x4 = 9 1.5x4 = 10	1.5x4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		5 4 9 9 9 9 9 9 9 9 9 9 9 9 9	

 Scale = 1:43.7

 Plate Offsets (X, Y): [6:Edge,0-2-8]

Plate Offsets ((X, Y): [6:Edge,0-2-8]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-SH	0.32 0.12 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 50 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=13-1-1: 8=13-1-1: Max Horiz 1=233 (LC Max Uplift 6=-48 (LC 8=-106 (L Max Grav 1=127 (LC	cept end verticals. ² applied or 6-0-0 oc 2, 6=13-1-12, 7=13- 2, 9=13-1-12 C 9) 2 20), 7=-84 (LC 12) .C 12), 9=-103 (LC 1	 4) Gable si 5) This trus chord liv 6) All beari capacity Internati R802.10 LOAD CASI 1-12, , , 	equires continuous bo uds spaced at 4-0-0 is has been designed e load nonconcurren ngs are assumed to l of 565 psi. is is designed in acco onal Residential Cod .2 and referenced st E(S) Standard	oc. d for a 10. it with any be SP No ordance w le sections	0 psf bottom other live loa 2 crushing ith the 2018 5 R502.11.1 a						
FORCES	(lb) - Maximum Com Tension	npression/Maximum										
TOP CHORD	1-2=-333/198, 2-3=- 4-5=-104/103, 5-6=-		127,									
BOT CHORD	1-9=-103/111, 8-9=- 6-7=-103/111	103/111, 7-8=-103/1	111,								0000	alle
WEBS	2-9=-270/190, 3-8=-	293/199, 4-7=-230/2	209								G OF	MISSO
Vasd=91m Ke=0.96; (exterior zc Interior (1) exposed; members Lumber D 2) Truss des only. For see Stand	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 5-9-1 to 13-1-2 zone; end vertical left and ri and forces & MWFRS OL=1.60 plate grip DC signed for wind loads in studs exposed to wind lard Industry Gable En qualified building desi	EDL=6.0psf; h=35ft; cd; MWFRS (envelop 2E) 0-9-1 to 5-9-1, cantilever left and ri ght exposed;C-C for for reactions shown DL=1.60 n the plane of the tru I (normal to the face) d Details as applical	ight ; iss), ble,							Ø	PE-2022	ANIEL X DER 042259

3x4 II

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-9-1 to 5-9-1, Interior (1) 5-9-1 to 9-10-11 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 4-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BCDL		10.0	Code	IRC2018	3/TPI2014
LUMBER				6)	All bearin
TOP CHORD	2x4 SP N	0.2			capacity of
BOT CHORD	2x4 SP N	0.2		7)	This truss
WEBS	2x3 SPF I	No.2			Internatio
OTHERS	2x3 SPF I	No.2			R802.10.
BRACING				LO	AD CASE
TOP CHORD	Structura	l wood shea	athing directly applie	d or	
	6-0-0 oc p	ourlins, exc	cept end verticals.		
BOT CHORD	Rigid ceil	ing directly	applied or 10-0-0 oc		
	bracing.				
REACTIONS	(size)	1=6-8-15,	4=6-8-15, 5=6-8-15		
	Max Horiz	1=112 (LC	C 9)		
	Max Uplift	1=-9 (LC 1	12), 4=-12 (LC 11),		
		5=-106 (L	C 12)		
	Max Grav	1=148 (LC	C 1), 4=13 (LC 1), 5=	373	
		(LC 1)			
FORCES	(lb) - Max	imum Com	pression/Maximum		
	Tension				
TOP CHORD	1-2=-177/	/113, 2-3=-6	69/59, 3-4=-27/25		
BOT CHORD	1-5=-50/5	64, 4-5=-50/	/54		
WEBS	2-5=-290/	/286			

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-9-1 to 5-9-1, Interior (1) 5-9-1 to 6-8-5 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

 All bearings are assumed to be SP No.2 crushing capacity of 565 psi.

Matrix-P

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Weight: 23 lb

FT = 20%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			Truss Type		Qty	/ Ply	Б	oof - Osa		6		
NOTED ON PLANS							K	001 - Usa	ge Lot 5	00		159477300
FEIG CLIMANALT MAICO			Valley		1	1		b Refere				
Premier Building Supply (Springt 8/03/2023 3:3	ill (KS) S 6:1	pring Hills, KS - 66083,	Run: 8.63 S Apr 6 2023 Print: 8.630 S Apr 6 2023 MiTek Industries, Inc. Wed Jul 12 07:06:5 ID:osD5BxPmZQRgVg3HL6FqQcz_lbi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC									Page: 1
					3-6-9	1						
				1.5x4 u								
	_			12 5				2				
	((2		1				P			1-6-0	
		-0 	=		 ******			3				
				21				1.5x4 "				
				3x4				1.5x4 				
Scale = 1:19.1					3-6-9							
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO	CSI TC BC WB	0.18 0.09 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P	0.00	TION2(TE)	0.00	5	n/a	n/a	Weight: 11 lb	FT = 20%
BOT CHORD Rigid ceiling bracing. REACTIONS (size) 1: Max Horiz 1: Max Horiz 1: Max Grav 1: FORCES (lb) - Maxim Tension TOP CHORD 1-2=-68/46, BOT CHORD 1-3=-23/25 NOTES 1) Wind: ASCE 7-16; Vult= Vasd=91mph; TCDL=6.0 Ke=0.96; Cat. II; Exp C; exterior zone and C-C E and right exposed ; end exposed; c-C for member reactions shown; Lumber DOL=1.60 2) Truss designed for wind only. For studs exposed see Standard Industry G or consult qualified build 3) Gable requires continuou 4) Gable studs spaced at 2 5) This truss has been desi chord live load nonconct 5) This truss is designed in International Residential	2 bod shea lins, exc directly =3-6-9, 3 =52 (LC =-20 (LC =123 (LC um Com 2-3=-96/ 115mph lpsf; BCl Enclose kterior(2 vertical li rs and fr r DOL=1 loads in to wind able Enc ing desig us bottor -0-0 oc. gned for urrent wind d to be S accorda	9) 12), 3=-30 (LC 12) ; 1), 3=123 (LC 1) pression/Maximum 109 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope E) zone; cantilever le eft and right prces & MWFRS for .60 plate grip the plane of the trus (normal to the face), d Details as applicabl pner as per ANSI/TPI n chord bearing. a 10.0 psf bottom h any other live load: IP No.2 crushing nce with the 2018 ections R502.11.1 an	e) ft e, 1. s.						-		NATHA FO. PE-2022	BER 042259
R802.10.2 and reference			u								July	STATES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

