

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Re: 230580 Lot 10 TCR

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Wheeler - Waverly.

Pages or sheets covered by this seal: I59608219 thru I59608220 My license renewal date for the state of Kansas is April 30, 2024.

Kansas COA: E-943

July 19,2023

Garcia, Juan

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job Truss Truss Type Qty Ply Lot 10 TCR 159608219 230580 B2 Piggyback Base 6 Job Reference (optional) Waverly, KS - 66871, 8.430 s Jan 6 2022 MiTek Industries, Inc. Tue Jul 18 15:57:59 2023 Page 1 Wheeler Lumber, ID:OI7yi_rtN2ySSPxRboT4z7znZGK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 10-8-0 20-0-0 5-2-12

6x6 = 3x4 || BREAK IN MEMBER 3-7 LOCATED 4-0-0 FROM JOINT 7. BREAK IN MEMBER 4-6 LOCATED 6-0-0 FROM JOINT 6. 5 4 12.00 12 3x6 // 6x6 = **BREAK** BREAK 1-4-0 10 3x6 =7 8 6 ⁹3x4 || 3x4 = 3x4 = 10-8-0 20-0-0 5-2-12

> APPLY 2 X 4 X 4' SPE/DE/SP NO 2 SCAB TO ONE FACE OF TRUSS CENTERED ON DAMAGE/SPLICE OR AS SHOWN. ATTACH WITH (0.131" X 3") NAILS PER THE FOLLOWING NAIL SCHEDULE: 2 x 3"S - 1 ROW, 2 x 4"S - 2 ROWS, 2 x 6'S AND LARGER - 3 ROWS: SPACED @ 2" O.C. USE 2" MEMBER END DISTANCE.

> > **BRACING-**

TOP CHORD

BOT CHORD

WEBS

Plate Offsets (X,Y) [4:0-4-1	,0-3-0]							
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.4/20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.71	DEFL. Vert(LL)	in (loc) -0.30 6-7	l/defl >796	L/d 360	PLATES MT20	GRIP 197/144
TCDL 10.0	Lumber DOL 1.15	BC 0.49	Vert(CT)	-0.46 6-7	>509	240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.71	Horz(CT)	0.01 6	n/a	n/a		
BCDI 10.0	Code IBC2018/TPI2014	Matrix-S	Wind(LL)	0.01 7-8	>999	240	Weight: 117 lb	FT = 10%

LUMBER-TOP CHORD 2x4 SPF No.2 *Except*

4-5: 2x6 SPF No.2

BOT CHORD 2x4 SPF 2400F 2.0E 2x4 SPF No.2 *Except* WEBS

3-8 3-7 2-8: 2x3 SPF No 2

REACTIONS. (size) 6=0-3-8, 9=0-3-8

Max Horz 9=315(LC 10) Max Uplift 6=-68(LC 7)

Max Grav 6=975(LC 3), 9=1006(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-944/0, 3-4=-747/26, 5-6=-317/77, 2-9=-903/0 **BOT CHORD** 8-9=-354/250, 7-8=-182/649, 6-7=-70/455

3-7=-299/181, 4-7=-32/642, 4-6=-716/115, 2-8=0/496 **WEBS**

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

July 19,2023

Scale = 1:67.3

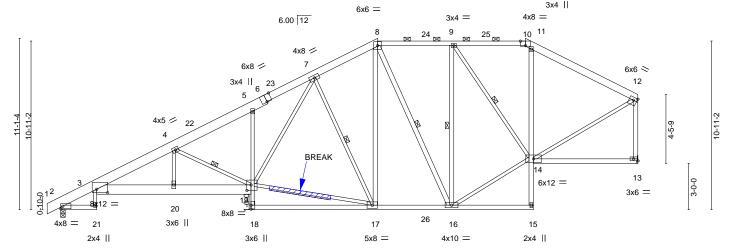
JUAN GARCIA

Structural wood sheathing directly applied or 5-9-15 oc purlins,

5-6, 3-7, 4-6

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-5.

Rigid ceiling directly applied or 10-0-0 oc bracing.


1 Row at midpt

Job Truss Truss Type Qty Ply Lot 10 TCR 159608220 230580 E5 diH Job Reference (optional) Wheeler Lumber, Waverly, KS - 66871, 8.430 s Jan 6 2022 MiTek Industries, Inc. Tue Jul 18 15:58:01 2023 Page 1 ID:OI7yi_rtN2ySSPxRboT4z7znZGK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

20-6-8 25-4-0 <u>30-1-</u>8 37-4-14 7-4-0 4-1-4 4-9-8 4-9-8 7-3-6

REPAIR: BREAK IN MEMBER 17-19 LOCATED 3-0-0 FROM JOINT 19.

Scale = 1:74.7

APPLY 2 X 4 X 5' SPF/DF/SP NO.2 SCAB(S) TO EACH FACE OF TRUSS CENTERED ON BREAK. ATTACH WITH (0.131" X 3") NAILS PER THE FOLLOWING NAIL SCHEDULE: 2 ROWS, SPACED @ 4" O.C. STAGGER NAIL SPACING FROM FRONT FACE AND BACK FACE FOR A NET 2" O.C SPACING IN THE TRUSS. USE 2" MEMBER END DISTANCE.

2-4-0 12-4-0 20-6-8 25-4-0 30-7-12 37-4-14 5-0-0 8-2-8 6-9-2 [3:0-8-8,0-2-10], [6:0-4-0,Edge], [10:0-4-0,Edge], [12:Edge,0-2-4], [13:Edge,0-1-8], [19:0-3-4,0-4-4]

LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.81 BC 0.65	DEFL. in (loc) l/defl L/d Vert(LL) -0.27 17-18 >999 360 Vert(CT) -0.53 17-18 >843 240	PLATES GRIP MT20 197/144
BCLL 0.0 *	Rep Stress Incr YES	WB 0.88	Horz(CT) 0.27 13 n/a n/a	Weight: 255 lb FT = 10%
BCDL 10.0	Code IBC2018/TPI2014	Matrix-S	Wind(LL) 0.13 5 >999 240	

BRACING-TOP CHORD

BOT CHORD

WEBS

LUMBER-TOP CHORD

2x6 SPF No.2 *Except* 8-10: 2x4 SPF No.2, 1-6: 2x8 SP DSS

BOT CHORD 2x4 SPF No.2 *Except*

3-19: 2x8 SP DSS, 5-18: 2x3 SPF No.2

WEBS 2x3 SPF No.2 *Except*

8-17,9-16,8-16,12-13: 2x4 SPF No.2

REACTIONS. (size) 2=0-3-8, 13=Mechanical

Max Horz 2=206(LC 9) Max Uplift 2=-31(LC 12)

Max Grav 2=1797(LC 3), 13=1744(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown

TOP CHORD 2-3=-1026/0, 3-4=-4032/106, 4-5=-3018/83, 5-7=-2933/148, 7-8=-1786/86, 8-9=-1357/68, 9-10=-1291/37, 10-11=-1277/39, 11-12=-1546/26, 12-13=-1625/0

3-20=-215/3746, 19-20=-213/3753, 5-19=-259/92, 16-17=-9/1534, 11-14=0/400 8-17=-47/1002, 17-19=-64/1739, 7-19=-112/1348, 7-17=-1083/160, 9-16=-384/86,

8-16=-544/58, 14-16=-14/1560, 4-19=-1333/135, 4-20=0/295, 12-14=0/1485

NOTES-

WEBS

BOT CHORD

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- 11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI

July 19,2023

except end verticals, and 2-0-0 oc purlins (4-10-5 max.): 8-10. Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 9-16, 8-16, 9-14, 4-15

WAN GARCIA
CENSES

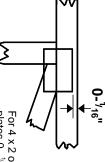
16952

MINSAS

ONALES 7-17, 9-16, 8-16, 9-14, 4-19

Structural wood sheathing directly applied or 2-10-13 oc purlins,

6-0-0 oc bracing: 2-21,15-16.


1 Row at midpt

Symbols

PLATE LOCATION AND ORIENTATION

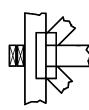
Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek 20/20 software or upon request.

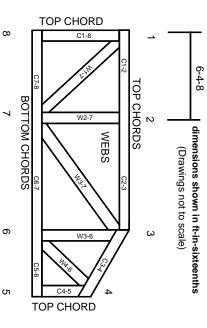
PLATE SIZE


The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING


Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur. Min size shown is for crushing only

Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction. Design Standard for Bracing.
Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-89:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- . Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.

Ģ

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21.The design does not take into account any dynamic or other loads other than those expressly stated.