

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

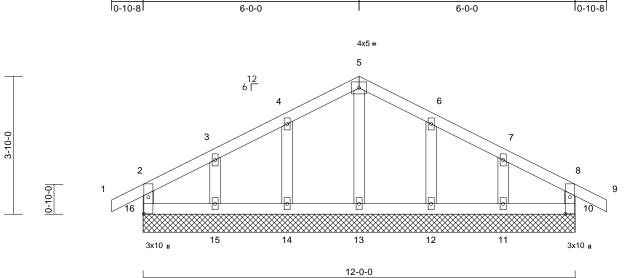
Re: B230093 Lot 183 HM

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Wheeler - Waverly.

Pages or sheets covered by this seal: I59019862 thru I59019900

My license renewal date for the state of Missouri is December 31, 2024.

Missouri COA: Engineering 001193



June 20,2023

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

RE EASE FOR CONST NUCTIO NOTED ON PLANS REVIEW A DEXELOPMENT SERVICES eler Lumber Waverly, KS - 66871, 26/2023 4:29:13

		-			
	Truss Type	Qty	Ply	Lot 183 HM	
	Common Supported Gable	1	1	Job Reference (optional)	159019862
				2022 MiTek Industries, Inc. Mon Jun 19 09: PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J	6
-0-10-8	6-0-0			12-0-0	12-10-8

Scale = 1:32

Plate Offsets (X,	Y):	[10:0-5-9,0-1-8],	[16:0-5-9,0-1-8]

	7, 1). [10.0-3-3,0-1-	0], [10.0 0 0,0 1 0]											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.07	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.02	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.03	Horz(CT)	0.00	10	n/a	n/a		
BCDL	10.0	Code	IRC201	B/TPI2014	Matrix-R							Weight: 44 lb	FT = 10%
	6-0-0 oc purlins, e Rigid ceiling directl bracing. (size) 10=12-0 13=12-0 16=12-0 Max Horiz 16=-67 (Max Uplift 10=-25 (15=-67 (Max Grav 10=159 12=195	y applied or 6-0-0 oc -0, 11=12-0-0, 12=12- -0, 14=12-0-0, 15=12- -0	4) 5) 0-0, 6) 7) 8) 9) 1),	Vasd=91mpl II; Exp C; En cantilever lef right expose Truss desig only. For stu see Standarr or consult qu All plates are Gable requir Truss to be f braced agair Gable studs This truss ha chord live loa * This truss to on the bottor 3-06-00 tall b chord and ar	7-16; Vult=115mp h; TCDL=6.0psf; B closed; MWFRS (t and right expose d; Lumber DOL=1 ned for wind loads uds exposed to win d Industry Gable E alified building de e 2x4 MT20 unless es continuous bott ully sheathed from st lateral moveme spaced at 2-0-0 o is been designed n chord in all area by 2-00-00 wide win y other members.	CDL=6. enveloped d; end v. .60 plates in the p nd (norm and Deta signer as otherwittom chorn a one fac ont (i.e. c c. for a 10. with any d for a liv s where ill fit betw.	Opsf; h=25ft; a) exterior zo: vertical left ar grip DOL=1. lane of the tri al to the face ils as applica s per ANSI/TI be or securely liagonal web) Opsf bottom other live loa e load of 20.0 a rectangle veen the bott	ne; nd 60 Jss), ble, PI 1. ,					
FORCES	16=159 (Ib) - Maximum Cor	(LC 21) npression/Maximum		capacity of 4				to					
	Tension				e capable of withst								an
TOP CHORD	2-16=-142/36, 1-2= 3-4=-27/70, 4-5=-3 6-7=-27/64, 7-8=-3 8-10=-142/40	3/96, 5-6=-33/90,	12	uplift at joint joint 11.	ift at joint 10, 55 lb 15, 56 lb uplift at j designed in accor	oint 12 a	nd 64 lb uplif				A	STATE OF	MISSOL
BOT CHORD		5=-24/40, 13-14=-24/ 2=-24/40, 10-11=-24/	40,	ÍInternational	Residential Code nd referenced star	sections	s R502.11.1 a	and			A	S NATH	X X
WEBS	5-13=-130/0, 4-14= 6-12=-155/81, 7-11	-155/81, 3-15=-125/8 =-125/82	^{4,} LC	LOAD CASE(S) Standard									
NOTES											NE	wyan	ter (MAY)

1) Unbalanced roof live loads have been considered for this design.

OFFESSIONAL ET June 20,2023

PE-2022042259

RE ASE FOR CONS **NOTED ON PLANS** Δ EXELOPMENT SE SHMMIT 02

3-10-0

REVIEW		Truss Type	Qty	Ply	Lot 183 HM		
VICES		Common	4	1	Job Reference (optiona	al)	159019863
9:13					6 2022 MiTek Industries, Inc. I PsB70Hq3NSgPqnL8w3uITXb		Page: 1
	-0-10-8 0-10-8	<u>6-0-0</u> 6-0-0			<u>12-0-0</u> 6-0-0	12-10-8 0-10-8	
			4x5 =	-			
		6 ¹²	3		5-7-4		
0-10-0	2	5-7-4			0.4-5	4 5	
		5x8 II	2x4 i	I		5x8 II	
	ŀ	<u>6-0-0</u> 6-0-0			12-0-0 6-0-0		
						-	

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.45	Vert(LL)	-0.03	6-7	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.25	Vert(CT)	-0.06	6-7	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.01	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	7-8	>999	240	Weight: 35 lb	FT = 10%

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

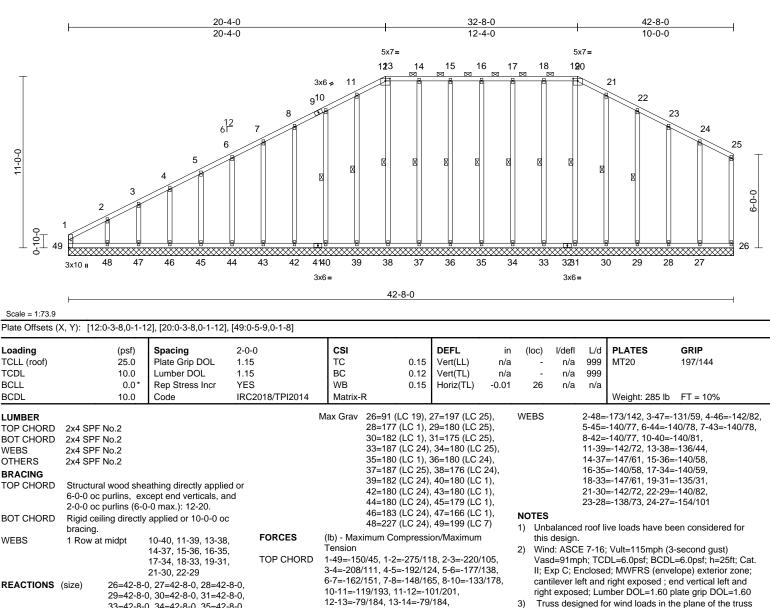
Scale = 1:33.4

LUIVIDER	
TOP CHORD	2x4 SPF No.2
BOT CHORD	2x4 SPF No.2
WEBS	2x4 SPF No.2 *Except* 7-3:2x3 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(size) 6=0-3-8, 8=0-3-8
	Max Horiz 8=-67 (LC 6)
	Max Uplift 6=-88 (LC 9), 8=-88 (LC 8)
	Max Grav 6=598 (LC 1), 8=598 (LC 1)
FORCES	(Ib) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/32, 2-3=-624/91, 3-4=-624/91,
	4-5=0/32, 2-8=-537/129, 4-6=-537/129
BOT CHORD	7-8=-14/465, 6-7=-14/465
WEBS	3-7=0/242

WEBS

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 2) II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 crushing 5) capacity of 425 psi.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 88 lb uplift at joint 8 and 88 lb uplift at joint 6.



RF NOTED ON PLANS REVIEW EXELOPMENT SER VICES 29:13 34:

Truss Type	Qty	Ply	Lot 183 HM	
Piggyback Base Supported Gable	1	1	Job Reference (optional)	159019864

Run: 8 43 S. Jan. 6 2022 Print: 8 430 S. Jan. 6 2022 MiTek Industries. Inc. Mon. Jun 19 09:17:07 ID:FS74FyIdFq8H6yvK7z59uJyyQKb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

14-15=-79/184, 15-16=-79/184,

16-17=-79/184, 17-18=-79/184,

18-19=-79/184, 19-20=-79/184,

20-21=-97/196, 21-22=-98/173,

22-23=-98/144, 23-24=-95/114,

48-49=-83/63, 47-48=-83/63, 46-47=-83/63,

45-46=-83/63, 44-45=-83/63, 43-44=-83/63,

42-43=-83/63, 40-42=-83/63, 39-40=-83/63,

38-39=-83/63, 37-38=-83/63, 36-37=-83/63,

35-36=-83/63. 34-35=-83/63. 33-34=-83/63.

31-33=-83/63, 30-31=-83/63, 29-30=-83/63

28-29=-83/63, 27-28=-83/63, 26-27=-83/63

24-25=-107/94, 25-26=-96/63

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated. 5)

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to less only with with twe commendations. This besign is based only upon parameters and properly incorporate this design into the overall a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

33=42-8-0, 34=42-8-0, 35=42-8-0,

36=42-8-0, 37=42-8-0, 38=42-8-0,

39=42-8-0, 40=42-8-0, 42=42-8-0,

43=42-8-0, 44=42-8-0, 45=42-8-0,

46=42-8-0, 47=42-8-0, 48=42-8-0,

28=-54 (LC 9), 29=-56 (LC 9),

30=-49 (LC 9), 31=-4 (LC 5),

33=-37 (LC 5), 34=-35 (LC 4),

35=-34 (LC 5), 36=-34 (LC 4),

37=-37 (LC 4), 38=-18 (LC 5),

39=-48 (LC 8), 40=-57 (LC 8), 42=-53 (LC 8), 43=-54 (LC 8),

44=-55 (LC 8), 45=-52 (LC 8),

46=-63 (LC 8), 47=-19 (LC 8),

48=-170 (LC 8), 49=-44 (LC 4)

49=42-8-0

Max Uplift 26=-36 (LC 8), 27=-58 (LC 9),

Max Horiz 49=301 (LC 5)

RELEASE FOR CONSTRUCTION AS MOTED ON PLANS REVIEW DE2550 GPMENT SERVICES LEE'S SUMMIT, MISSOURI Where Lumber Wavery, KS - 66971 06/26/2023 4:29:14

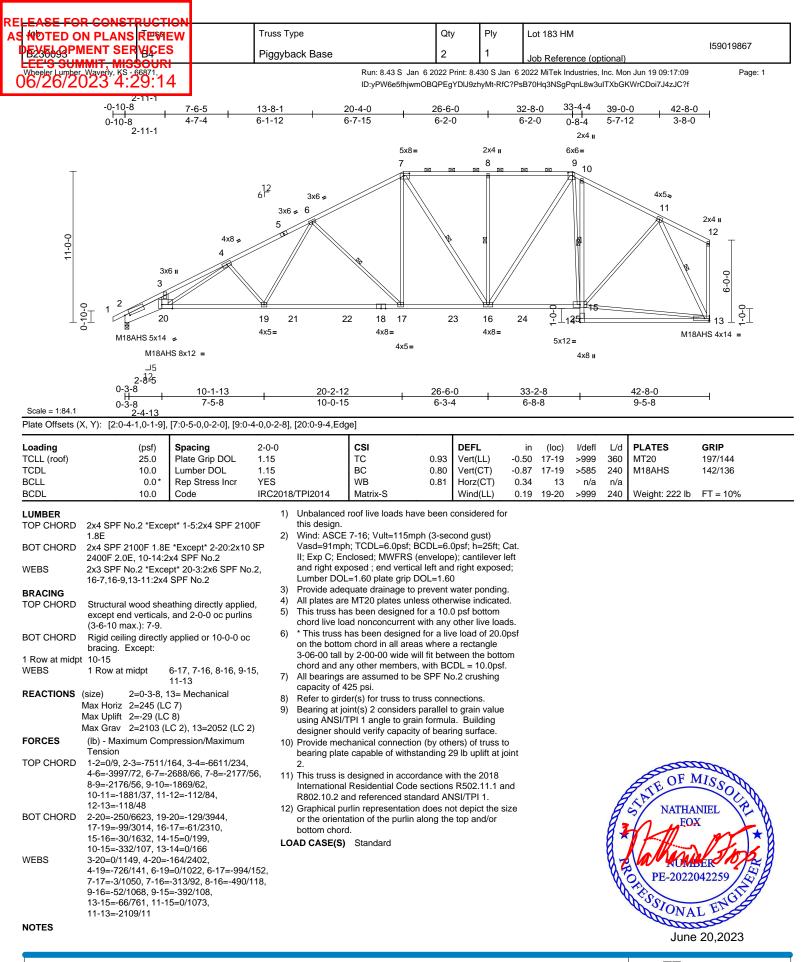
6) Gable requires continuous bottom chord bearing.

- 7) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
 2) Only and a second of 0.0 on an effective second
- B) Gable studs spaced at 2-0-0 oc.
 9) This truss has been designed for a 10.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 10) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 44 lb uplift at joint 49, 36 lb uplift at joint 26, 170 lb uplift at joint 48, 19 lb uplift at joint 47, 63 lb uplift at joint 46, 52 lb uplift at joint 45, 55 lb uplift at joint 44, 54 lb uplift at joint 43, 53 lb uplift at joint 42, 57 lb uplift at joint 40, 48 lb uplift at joint 39, 18 lb uplift at joint 38, 37 lb uplift at joint 37, 34 lb uplift at joint 36, 34 lb uplift at joint 31, 49 lb uplift at joint 30, 56 lb uplift at joint 39, 48 lb uplift at joint 34, 37 lb uplift at joint 34, 37 lb uplift at joint 35, 35 lb uplift at joint 36, 36 lb uplift at joint 36, 36 lb uplift at joint 31, 49 lb uplift at joint 30, 56 lb uplift at joint 28, 54 lb uplift at joint 27.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Truss Type	Qty	Ply	Lot 183 HM	
Piggyback Base Supported Gable	1	1	Job Reference (optional)	159019864

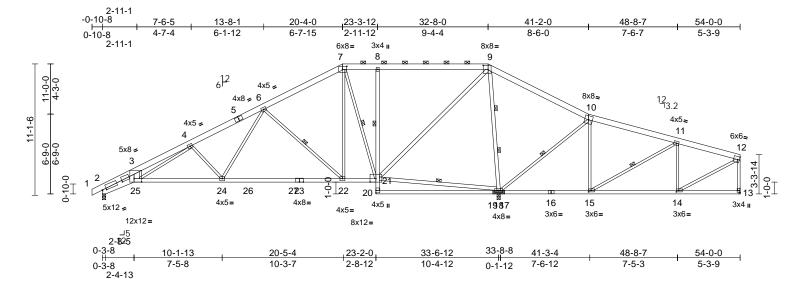
Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Mon Jun 19 09:17:07 ID:FS74FyIdFq8H6yvK7z59uJyyQKb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2



Construction Construction<										
Programmer Program Programmer Programme	S NOTED O		Т	russ Type		Qty	Ply	Lot 183 HM		150010205
Image: Note of the second se	DEXELOPN	MENT SERVICES	F	Piggyback Base		3	1	Job Reference (opt	ional)	159019865
2111 274 6.12 6.7.15 6.2.0 0.2.0 0.2.0 0.2.0 0.2.0 5.1.10 1	Wheeler Lumber	Waverly, KS - 66871, 023 4:29:14								Ū
$\frac{1}{24} \int_{1}^{24} \int_{1}^{24} \int_{1}^{2} \int_{$		2-11-1								
$\frac{1}{12} \int_{1}^{2} \frac{1}{12} \int_{1}^{2} \frac{1}{1} \int_{1}^{2} $		2-11-1	4-7-4	6-1-12 6-		6-2-0			5-1-10	
Scale 1381/2 15-12 15-12 Plate Offsets (X, Y): [1:0-4:10;19; [6:0-5:0,0-2:0], [8:0-4:0,0-2:8], [1:0-2:8, Edge], [1:1:0-3:8, Edge], [1:0-2:8, Edge], [1:		→ → → → → → → → → → → → → →	6x6 = 3 3 = 5 8x12 = 10-1-13	3x6 = 45 6^{12} 45 21 27 $284x5 = 18-8-5$	6 8 20 19 4x5= 20-2-12	26-6-0	28-5-8	8 8 16 16 16 31 3x4= 2x4 II 34-2x4 I	9 6x6 10 15 6x6= 12 2x4 II 2x4 II 2x4 II 2x4 II 2x4= 42:5-8 40-11-12 6 40-10-11-12 6 6 3-4-2	
Loading TCLL (root) (part Not of plant of the off and plant o			-5-0 0-2-01 [8:0-4-0	0-2-8] [10:0-2-8 Eda	e] [11:0-3-8 Ed	ne] [15:0-2-8	3 0-3-01 [22:0	1-4-0	1-5-12	8
19-21=-352/3023, 18-19=-200/323, 16-19=-200/323, 16-19=-200/323, 16-19=-200/323, 16-19=-200/323, 16-19=-12/131, 14-15=-97/17, 13-14=-97/17, 11-12=0/0 or the orientation of the purlin along the top and/or bottom chord. WEBS 12-14=0/28, 2-22=-23/1124, 3-22=-524/2412, 3-21=-726/272, 4-21=-102/1006, 4-19=-971/326, 6-19=-121/1042, 6-18=-330/121, 7-18=-491/207, 8-18=-161/1036, 8-16=-415/150, 9-16=-101/686, 9-15=-1027/129, 10-15=-87/1783 LOAD CASE(S) Standard	TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD	25.0 Pia 10.0 Lu 0.0* Re 10.0 Co 10.0 Co 2x4 SPF No.2 *Except* - 2.0E, 22-20,17-20:2x4 S 2x3 SPF No.2 *Except* 23-24,25-26,18-6,18-8:2 22-2:2x6 SPF No.2 Structural wood sheathir except end verticals, and (3-5-13 max.): 6-8. Rigid ceiling directly app bracing. 10 1 Row at midpt 4-19 10- (size) 1=0-3-8, 11=0 Max Horiz 1=300 (LC 7) Max Uplift 1=-230 (LC 8) Max Grav 1=2050 (LC 2 (lb) - Maximum Compres Tension 1-2=-7568/1020, 2-3=-66 3-4=-4015/481, 4-6=-270 6-7=-2190/270, 7-8=-218 8-9=-1927/211, 9-10=-11 1-13=-2072/11, 9-10=-11 1-13=-207/2141, 10-13 1-22=-1073/6673, 21-22 19-21=-352/3032, 18-19 16-18=-179/1664, 15-16 14-15=-97/77, 13-14=-97 12-14=0/28, 2-22=-23/11 3-21=-726/272, 4-21=-10 3-21=-726/272, 4-21=-10 4-19=-971/326, 6-19=-12	ate Grip DOL 1 mber DOL 1 p Stress Incr Y ide IF -5:2x4 SPF 2100F -22:2x10 SP 2400F PF 2100F 1.8E v4 SPF No.2, ig directly applied, 2-0-0 oc purlins lied or 10-0-0 oc 0, 6-18, 7-18, 8-16, 1, 9-15 -3-8 , 11=-134 (LC 9) , 11=2104 (LC 2) sion/Maximum 885/1032, 0/270, 22/142, =-2002/153 =-567/3963, =-266/2323, =122/1313, //77, 11-12=0/0 24, 3-22=-524/2412 2/1006, 2/1042,	 15 15 ES RC2018/TPI2014 NOTES Unbalanced r this design. Wind: ASCE Vasd=91mph II; Exp C; Enc cantilever left right exposed Provide adeq All plates are All plates are All plates are All plates are This truss has chord live load * This truss has capacity of 42 Bearing at joi using ANSI/T designer shoi Provide mech bearing plate joint 11 and 2 This truss is of linternational R802.10.2 ar CAD CASE(S) 	TC BC WB Matrix-S oof live loads ha 7-16; Vult=115m ; TCDL=6.0psf; closed; MWFRS and right expose I; Lumber DOLe uate drainage to MT20 plates un 2x4 MT20 unles s been designed d nonconcurre as been designed o chord in all are y 2-00-00 wide v y other member of 25 psi. nt(s) 1 consider: Pl 1 angle to gra uld verify capaci capable of with 30 lb uplift at joi designed in acco Residential Cod dr referenced sta tin representatic tion of the purlir	0.92 0.81 0.83 4 0.83 4 0.83 4 4 4 4 4 4 4 4 4 4 4 4 4	Yert(LL) - Yert(CT) - Iorz(CT) - Iorz(CT) - Iorz(CT) - Vind(LL) - Assidered for Id gust) sf; h=25ft; Car exterior zone; tical left and ip DOL=1.60 ip DOL=1.60 indicated. sf bottom her live loads. oad of 20.0ps rectangle an the bottom her live loads. oad of 20.0psf. crushing grain value Building surface. s) of truss to ib uplift at the 2018 502.11.1 and /TPI 1.	0.50 19-21 >999 0.87 19-21 >584 0.35 11 n/a 0.27 21-22 >999 t.	360 MT20 240 M18AHS n/a MT18HS 240 Weight: 210	197/144 142/136 197/144 Ib FT = 10%

		шети								
AS NOTED O	N PLANS	REVIE	N	Truss Type		Qty	Ply	Lot 183 HM		
DEXELOPN	MENT SER			Piggyback Base		3	1	Job Reference	(optional)	159019866
Wheeler Lumber	Waverly, KS - 6 023 4:2								es, Inc. Mon Jun 19 09:′ w3uITXbGKWrCDoi7J4z	-
	2-1	1-1	7-6-5			<u>6-6-0</u>		-8-0 33-4-4		2-8-0
	2-1	1-1	4-7-4	6-1-12 6-	/-15 t	6-2-0	6-	2-0 0-8-4 2x4 "	5-7-12 3	3-8-0
					5x8= 6		2x4 II 7	6x6=		
Т	-			3x6 ≠		X X		<u>8</u> 9	<	
				3x6 =					4x5.	
				6 ¹² 4 ⁵					10	2x4 II
11-0-0			6x6 =			Ø	ø	1		
Ę		040 -	3		R .			/		
		3x6 II 2								0-0-9
	o_ 1	<u>I</u>		¥			₩/	<u> </u>		
		19		18 20 21 4x5=	17 16 4x8=	22	15 23 4x8=			12 ⊥ ♀⊥ M18AHS 4x14 =
		3 5x14 _≠ M18AHS 8	x12 =		4x5=			5x12= 4x8 I I		
	2-8	_15 12_						470 1		
	2-8 0-3-8	3=5 	10-1-13	20-2-12		6-6-0		3-2-8	42-8-0	
Scale = 1:84.1	0-3-8 2-4		7-5-8	10-0-15		-3-4	6	5-8-8	9-5-8	
Plate Offsets ()	X, Y): [1:0-4-1	,0-1-9], [6	8:0-5-0,0-2-0], [8:0-	4-0,0-2-8], [19:0-9-4,Edg	ge]					
Loading TCLL (roof)		" / I	Spacing Plate Grip DOL	2-0-0 1.15	TC (0.91 Vert		in (loc) l/de .50 16-18 >99		GRIP 197/144
TCDL BCLL			Lumber DOL Rep Stress Incr	1.15 YES).81 Vert).83 Horz	. ,	.87 16-18 >58 .34 12 n/		142/136
BCDL			Code	IRC2018/TPI2014	Matrix-S	Wind	. ,	.19 18-19 >99		21 lb FT = 10%
LUMBER TOP CHORD	2x4 SPF No.:	2 *Except	* 1-5:2x4 SPF 210	·	roof live loads have b	een consid	lered for			
BOT CHORD	1.8E 2x4 SPF 210	0F 1.8E *	Except* 1-19:2x10	·	7-16; Vult=115mph (h; TCDL=6.0psf; BCD					
WEBS	2400F 2.0E,	9-13:2x4		II; Exp C; Er	closed; MWFRS (env bosed ; end vertical le					
BRACING	15-6,15-8,12-			Lumber DOI	_=1.60 plate grip DOL quate drainage to prev		ponding.			
TOP CHORD			hing directly applie and 2-0-0 oc purling	u, () This trues he	e MT20 plates unless as been designed for a					
BOT CHORD	(3-6-10 max.): 6-8.	oplied or 10-0-0 oc	chord live lo	ad nonconcurrent with nas been designed for					
1 Row at midpt	bracing. Exc			on the botto	m chord in all areas w by 2-00-00 wide will fit					
WEBS	1 Row at mid		·16, 6-15, 7-15, 8-1)-12		ny other members, wit are assumed to be SF					
REACTIONS	. ,	0-3-8, 12	= Mechanical	capacity of 4 8) Refer to gird	25 psi. er(s) for truss to truss	connectior	ıs.			
	Max Horiz 1= Max Uplift 1=	-18 (LC 8)	using ANSI/	int(s) 1 considers par TPI 1 angle to grain fo					
FORCES			2), 12=2052 (LC 2 ression/Maximum	 designer sho 	ould verify capacity of hanical connection (b	bearing su	rface.			
TOP CHORD	Tension 1-2=-7546/17	71, 2-3=-6	666/244,		e capable of withstand					Aller
			90/67, 6-7=-2178/ 970/62, 9-10=-1882		designed in accordan Residential Code sec				SATE	OF MISSOL
BOT CHORD	10-11=-112/8 1-19=-252/66			R802.10.2 a	nd referenced standa	rd ANSI/TP	9I 1.		E ANNI	ATHANIEL
	16-18=-100/3 14-15=-30/16				ation of the purlin alor					FOX
WEBS	9-14=-333/10 2-19=0/1120			LOAD CASE(S)					87 AL	FI
	3-18=-726/14 4-16=-1000/1								1 - 1a (ray	NUBER 9
	6-15=-313/92 8-15=-52/106								N.S.	2022042259
	10-14=0/107- 10-12=-2110		-66/761,						WSSIC SIC	NAL ENG
NOTES										June 20,2023
										00110 20,2020

Kitek° 16023 Swingley Ridge Rd Chesterfield, MO 63017



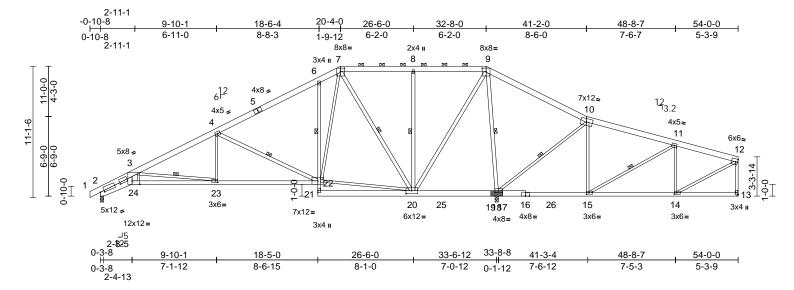
NITEK* 16023 Swingley Ridge Rd Chesterfield, MO 63017

Truss Type	Qty	Ply	Lot 183 HM							
Piggyback Base	1	1	Job Reference (optional)	159019869						
Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Mon Jun 19 09:17:10										
ID:yPW6e5fhjwmOBQPEgYDIJ9zhyMt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f										

Scale = 1:97.5

Plate Offsets (X, Y): [2:0-4-5,0-1-4], [2:1-10-1,0-0-2], [7:0-4-4,0-3-0], [9:0-5-0,0-4-0], [13:Edge,0-2-8], [14:0-2-8,0-1-8], [15:0-2-8,0-1-8], [25:0-7-11,Edge]													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.67	Vert(LL)	-0.37	22-24	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.91	Vert(CT)	-0.65	22-24	>619	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.97	Horz(CT)	0.14	18	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S		Wind(LL)	0.10	24-25	>999	240	Weight: 291 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD	2x4 SPF No.2 *Exce 2.0E, 25-23:2x4 SPF	2100F 1.8E,			3-25=0/830, 4-25 6-24=0/971, 6-22 7-21=-984/26, 18 9-21=-42/1873, 1	=-963/15 -21=-116 0-18=-97	2, 7-22=0/992 7/46, 4/125,	2,	or t		tation o rd.	of the purlin along	s not depict the size the top and/or
	20-16,19-17:2x4 SP				10-15=0/671, 11-			9/329,					
WEBS	2x3 SPF No.2 *Exce				12-14=-289/481,	9-18=-25	18/73						
	18-21,21-9,9-18:2x4	SPF No.2		DTES									
BRACING	.		,		0F 2.0E bearing								
TOP CHORD	Structural wood she 2-11-4 oc purlins, e 2-0-0 oc purlins (6-0	xcept end verticals,	and	nails spaced assumed to	ached to front face with 2 rows of 10d (0.131"x3") ils spaced 3" o.c. 8 Total fasteners. Bearing is sumed to be DF No.2.								
BOT CHORD	Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 15		c 2) 3)	this design.		oads have been considered for It=115mph (3-second gust)							
1 Row at midpt 8-21				Vasd=91mp	h; TCDL=6.0psf;	BCDL=6.	Opsf; h=25ft;	Cat.					
WEBS	1 Row at midpt	6-22, 7-21, 18-21, 1 11-15	0-18,	and right exp	closed; MWFRS oosed ; end vertic	al left and	d right expose						
WEBS	2 Rows at 1/3 pts	9-18			=1.60 plate grip								
REACTIONS	· · · ·	13= Mechanical, 18= pearing block), (req.	5)	chord live load nonconcurrent with any other live loads.									
	Max Horiz 2=120 (LC Max Uplift 2=-30 (LC Max Grav 2=1277 (L 18=3588	2 8), 13=-138 (LC 22 LC 24), 13=520 (LC 2) 23),	 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7) All bearings are assumed to be DF No.2 crushing capacity of 625 psi. 								ALSO	
FORCES	(lb) - Maximum Com Tension	. ,	,	capacity of 6							6	ATE OF M	A 3000
TOP CHORD	1-2=0/9, 2-3=-4156/ 4-6=-2030/75, 6-7=- 8-9=-368/135, 9-10= 11-12=-464/275, 12-	750/74, 7-8=-364/13 =0/1535, 10-11=-54/8	34, 802,	Bearing at jo using ANSI/ designer sho	er(s) for truss to t int(s) 2 considers IPI 1 angle to gra ould verify capacit hanical connectio	parallel in formul y of bear	to grain value a. Building ing surface.					NATHA	
BOT CHORD	2-25=-220/3620, 24- 22-24=-16/1271, 21- 8-21=-594/143, 18-2	-22=0/595, 20-21=0/	185,	bearing plate 2 and 138 lb	e capable of withs uplift at joint 13.	standing	80 lb uplift at j				NT.	PE-2022	ER (1978) 042259
	15-18=-764/128, 14- 13-14=-32/26		11	International	designed in acco Residential Code nd referenced sta	e sections	8 R502.11.1 a	and			Q	FESSIONA	L ENGILE
												lune e	20,2022

June 20,2023


16023 Swingley Ridge Rd Chesterfield, MO 63017

A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RE FASE FOR CONST NOTED ON PLANS REVIEW Δ DEXELOPMENT SERVICES S SUMMIT, MISSOURI er Lumber, Waverly, KS - 66871, 26/2023 4:29:15

	Truss Type	Qty	Ply	Lot 183 HM	
	Piggyback Base	2	1	Job Reference (optional)	159019870
	Page: 1				

ID:yPW6e5fhjwmOBQPEgYDIJ9zhyMt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale	= 1	·97	5

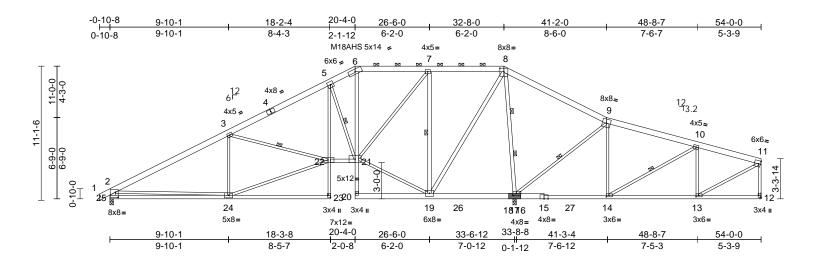
^{[2:0-4-5,0-1-4], [2:1-10-1,0-0-2], [7:0-4-0,0-3-8], [9:0-4-0,0-3-8], [13:}Edge,0-2-8], [14:0-2-8,0-1-8], [15:0-2-8,0-1-8], [18:0-3-8,0-2-0], [20:0-5-12,0-3-0], [23:0-2-8,0-1-8], [13:0-3-8,0-2-0], [20:0-5-12,0-3-0], [23:0-2-8,0-1-8], [13:0-3-8,0-2-0], [20:0-5-12,0-3-0], [20:0-5-12 Plate Offsets (X, Y): [24:0-7-11,Edge]

Plate Offsets (X, Y): [24:0-7-11,Edg	ej										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.74 0.64 0.87	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.23 -0.44 0.16 0.10	22-23 18	l/defl >999 >922 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 319 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS	2x6 SPF No.2 2x6 SP 2400F 2.0E 2400F 2.0E, 24-22:2 6-21:2x3 SPF No.2, 2x3 SPF No.2 *Exce 22-4,20-7,8-20,20-9: SPF 2100F 1.8E	2x4 SPF 2100F 1.8E, 16-13:2x4 SPF No.2 pt* 24-3:2x6 SPF No	.2,	3-24=-31/1499, 3-2 4-22=-1217/134, 2 7-22=-130/1187, 7 8-20=-475/119, 9-2 10-18=-987/120, 1 11-15=-834/77, 11 12-14=-392/422, 9	0-22=0/- -20=-12 20=-36/1 0-15=0/ -14=-71	444, 12/68, 1875, 708, /375,	473,	or t	ne orient om chor	ation o d.	of the purlin along	is not depict the size the top and/or
BRACING TOP CHORD BOT CHORD	Structural wood she 3-2-15 oc purlins, e 2-0-0 oc purlins (10- Rigid ceiling directly bracing. Except:	xcept end verticals, a 0-0 max.): 7-9.	1) 2x6 SP 24(d or attached to nails space assumed to 2) Unbalance this design		ws of 10 steners. e been	Od (0.131"x3") Bearing is considered for						
1 Row at midpt 6-22 WEBS 1 Row at midpt 3-23, 4-22, 7-20, 8-20, 10-18, 11-15, 9-18 REACTIONS (size) 2=0-3-8, 13= Mechanical, 18= (0-3-8 + bearing block), (req. 0-4-0) Max Horiz Max Horiz 2=120 (LC 7) Max Uplift 2=-27 (LC 8), 13=-212 (LC 22)			0, Vasd=91m II; Exp C; E and right e: -4-0) Lumber DC 4) Provide ad 5) This truss f chord live I	 Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 								
FORCES TOP CHORD BOT CHORD	Max Grav 2=1206 (LC 24), 13=477 (LC 23), 18=3737 (LC 2) (lb) - Maximum Compression/Maximum Tension 1-2=0/9, 2-3=-4131/174, 3-4=-1940/52, 4-6=-897/59, 6-7=-798/143, 7-8=0/304, 8-9=0/302, 9-10=-11/1714, 10-11=-67/950, 11-12=-411/368, 12-13=-438/249 2-24=-249/3628, 23-24=-223/2970,		 a) a finis truss on the botting 3-06-00 tal chord and a chord and a finis capacity of 0, b) Refer to ging 9) Bearing at 	 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7) All bearings are assumed to be DF No.2 crushing capacity of 625 psi. 8) Refer to girder(s) for truss to truss connections. 								
	22-23=-53/1717, 21- 6-22=-392/167, 20-2 18-20=-1181/130, 11 14-15=-338/374, 13-	21=-42/26, 5-18=-908/142,	10) Provide me bearing pla 2 and 212 l 11) This truss i	nould verify capacity chanical connectior te capable of withsta b uplift at joint 13. s designed in accord al Residential Code	n (by oth anding 2 dance w	ers) of truss to 27 lb uplift at joi ith the 2018	int			A A A A A A A A A A A A A A A A A A A	PE-2022	124

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

June 20,2023

ann


MiTek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

RE FOR CONST LICTIO NOTED ON PLANS REVIEW Α DEXELOPMENT SERVICES SUMMIT Waverly, KS - 66871, 023 4:29:15 0 0/

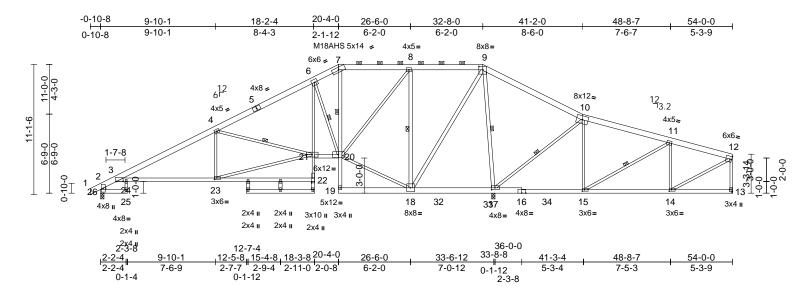
	Truss Type	Qty	Ply	Lot 183 HM	
	Piggyback Base	1	1	Job Reference (optional)	159019871
	Page: 1				

ID:yPW6e5fhjwmOBQPEgYDIJ9zhyMt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page

Blote Offecte ((V V), [0,0 4 0 0 2 0	1 [12:Edgo 0 2 9] [12:0	29010	01 14.0 2 0 0		0 2 01 [22		125.0.2	12054	1			
Plate Olisets ((X, Y): [8:0-4-0,0-3-8], [12:Edge,0-2-8], [13:0	-2-8,0-1-8	5], [14:0-2-8,0	J-1-8], [17:0-3-8,	0-2-0], [23	Euge,0-2-8],	[25:0-2-	-12,0-5-4	·]			
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-S	0.57 0.80 0.91	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.19 -0.40 0.10 0.06	(loc) 24-25 24-25 17 23	I/defl >999 >994 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18AHS Weight: 318 lb	GRIP 197/144 142/136 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS	20-15,18-16:2x6 SF	ept* 7-19,19-8,8-17:2x4			3-22=-439/112, 19-21=-27/200, 7-19=-1379/105 9-17=-983/120, 10-13=-139/234 8-17=-2421/35, 22-24=-90/1669	7-21=-5/11 , 8-19=-36 9-14=0/60 , 11-13=-1 3-24=-387	193, /1706, 3, 10-14=-636 16/559, /146,	6/70,	or t	ne orient om chor	ation (of the purlin along	s not depict the size the top and/or
BRACING TOP CHORD BOT CHORD	4-9-13 oc purlins, 2-0-0 oc purlins (6-	eathing directly applied except end verticals, an 0-0 max.): 6-8. y applied or 10-0-0 oc	••	TES 2x6 SP 2400 attached to f	DF 2.0E bearing front face with 3 I 3" o.c. 12 Total	block 12" rows of 10	ong at jt. 17 0d (0.131"x3")						
BOTCHORD	bracing, Except: 6-0-0 oc bracing: 1		2)	assumed to			0	r					
WEBS	1 Row at midpt	3-22, 5-21, 7-19, 9-17, 10-14			7-16; Vult=115								
	bearing b 25=0-3-8 Max Horiz 25=126 (Max Uplift 12=-58 (hanical, 17=(0-3-8 + block), (req. 0-3-10), 3 (LC 5) LC 9), 25=-45 (LC 8) (LC 23), 17=3388 (LC 2)	5)), 6)	5) All plates are MT20 plates unless otherwise indicated.									~~~
FORCES	(lb) - Maximum Cor Tension	mpression/Maximum	7)	on the botto	has been design m chord in all are by 2-00-00 wide	eas where	a rectangle					THE OF M	AISS
TOP CHORD	5-6=-1071/123, 6-7	0/71, 3-5=-1527/99, =-898/108, 7-8=-187/14 140/534, 10-11=-535/1 5=-1238/98	18, 8)	chord and and All bearings capacity of 6	ny other membe are assumed to \$25 psi.	rs, with BC be DF No	CDL = 10.0psf. .2 crushing			,		ST NATHA	NIEL YOY
BOT CHORD	24-25=-207/1054, 2 5-22=-7/806, 21-22 6-21=-48/284, 19-2	23-24=0/34, 22-23=0/13 =0/1235, 20-21=0/105, 0=0/8, 17-19=-780/76, 14=-98/493, 12-13=-31/	^{3,} 10)	Provide med bearing plate 25 and 58 lb This truss is International	ler(s) for truss to chanical connect e capable of with o uplift at joint 12 designed in acc I Residential Coo nd referenced st	ion (by oth istanding 4 ordance w de sections	ers) of truss to 15 lb uplift at jo vith the 2018 s R502.11.1 at	oint		,		PE-20220	ENGINE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



June 20,2023

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEVELOPMENT SERVICES LEE'S SUMMIT, MISSOURI 06/26/2023 4:29:16

	Truss Type	Qty	Ply	Lot 183 HM	
	Piggyback Base	1	1	Job Reference (optional)	159019872
	Page: 1				

ID:yPW6e5fhjwmOBQPEgYDIJ9zhyMt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:98.5

Ocale = 1.30.5													
Plate Offsets (X, Y): [3:0-6-12,Ec	lge], [9:0-4-0,0-3-8], [1:	3:Edge,0-	2-8], [14:0-2-8	8,0-1-8], [15:0-2-8,	0-1-8], [17	:0-3-8,0-2-0],	[22:0-5	-0,0-0-8]	, [23:0-2	-8,0-1-	-8]	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.69	Vert(LL)	-0.33	23-24	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.96	Vert(CT)	-0.60	23-24	>666	240	M18AHS	142/136
BCLL	0.0	* Rep Stress Incr	YES		WB	0.87	Horz(CT)	0.27	17	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S		Wind(LL)	0.17	23-24	>999	240	Weight: 317 lb	FT = 10%
LUMBER			\	VEBS	24-25=-3/66, 4-2	23=-140/17	73.		LOAD	CASE(S) Sta	Indard	
TOP CHORD	2x6 SPF No.2 *E	cept* 1-5:2x6 SP 240			4-21=-1023/151					\			
	2.0E				18-20=-484/147	, 8-20=0/1	137,						
BOT CHORD	2x4 SPF No.2 *E	cept* 22-6:2x3 SPF N	o.2,		8-18=-1340/104	, 9-18=-46	/1940,						
	19-16:2x6 SPF N	0.2			10-15=0/766, 11			3/455,					
WEBS	2x3 SPF No.2 *E				12-14=-554/343								
		2-29,30-31:2x4 SPF N			10-17=-992/119	, 21-23=-6	7/1583						
		00F 1.8E, 26-2:2x6 SP		IOTES									
BRACING	No.2		1) Unbalance this design	ed roof live loads h	ave been	considered fo	or					
TOP CHORD	Structural wood s	heathing directly applie	ad or a		CE 7-16; Vult=115	mph (3-co	cond quet)						
		except end verticals,		Vasd=91n	nph; TCDL=6.0psf Enclosed; MWFRS	; BCDL=6.	0psf; h=25ft;						
BOT CHORD		tly applied or 2-2-0 oc			exposed ; end vert	• •							
BOT CHORD	bracing. Except:				OL=1.60 plate grip			Ju,					
1 Row at midp			3) Provide ad	lequate drainage t	o prevent	water ponding	g.					
	10-0-0 oc bracing	: 22-23	2) All plates	are MT20 plates u	nless othe	rwise indicate	d.					
WEBS	1 Row at midpt	4-21, 6-20, 8-18, 11	-15, 5) The Fabric	cation Tolerance a	t joint 22 =	6%						
		9-17, 10-17	6		has been designe								
REACTIONS	(size) 13= Me	echanical, 17=0-3-8, (r			load nonconcurrer								
		26=0-3-8	7		s has been design			Opsf					
	Max Horiz 26=126				tom chord in all ar Il by 2-00-00 wide			om					
		0 (LC 22), 26=-21 (LC			any other membe								The second
) (LC 23), 17=3916 (LC	C2),		B: Required bearin							OF I	MIGH
		46 (LC 24)			bearing size.	g 0120 at je	Jint(0) 11 groc					ALEUTI	MISSO
FORCES	()	ompression/Maximum	ç		s are assumed to	be DF No	2 crushing				A		
	Tension	45/30 0 4 4300/00		capacity o			0				R	S/ NATHA	NIEL VEN
TOP CHORD	,	45/76, 3-4=-1799/38,	1	0) Refer to g	rder(s) for truss to	truss coni	nections.			1		FO	X
		=-480/116, 7-8=-379/10 -32/1984, 10-11=-87/1			echanical connect						04	HT1	THE REAL
	11-12=-340/514,	,	134,		ate capable of with		21 lb uplift at j	oint			17	After	all Hall
	2-26=-1144/48	12 10- 00 1/000,			0 lb uplift at joint 1						A L	A Kant	al Slick
BOT CHORD		-52/1601, 23-24=-52/1	601. ¹		is designed in acc						183		ER EA
		2=0/138, 6-21=0/761,	,		al Residential Co			and			N.	O PE-2022	042259
	20-21=0/685, 19-	20=0/103, 7-20=-113/1	6,		and referenced s						Y V	No.	154
	18-19=0/4, 17-18	,	1	/	purlin representati ntation of the purli			ы∠е			8	W SION	TEN
	15-17=-1144/161	, 14-15=-480/305,		bottom ch		n along th						SIONA	L
	13-14=-32/26			Sottom on								and and	
												June	e 20,2023

16023 Swingley Ridge Rd Chesterfield, MO 63017

RF NOTED ON PLANS REVIEW EXELOPMENT SERVICES Lumber Waverly, KS - 66871, 6/2023 4:29:16

-0-10-8

0-10-8

11-1-6 11-0-0

Loading

TCDL

BCLL

BCDL

WEBS

BRACING

WEBS

LUMBER

TCLL (roof)

9-10-0

9-10-0

20-4-0

10-6-0

	Truss Type	Qty	Ply	Lot 183 HM	
	Piggyback Base	1	1	Job Reference (optional)	159019873
	Page: 1				

8x8=

32-8-0

6-2-0

4x5=

ID:yPW6e5fhjwmOBQPEgYDIJ9zhyMt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

39-1-14

6-5-14

47-1-15

8-0-0

54-0-0

6-10-1

54-0-0

6-10-1

GRIP

197/144

FT = 10%

4x10

6 8 7 × 4x8 6¹² 4x5 4x8 🞜 910 5 4x5 -4 4x5👟 11 0-10-0 23 ŹR 1876 1.00-36-0-0-0 3x6= 25 220 19 31 13 14 4x8 ¤ 14-7-8 8x12= 8x8= 3x6= 3440⁸72 6x6= 2-3-8 14-5-12 20-5-12 12-7-4 33-8-8 2-1-12 12-5-8_{II} 19-10-8 20-4-0 33-6-12 9-10-0 26-6-0 33-0-12 39-1-14 47-1-15 7-6-8 2-7-8 5-3-0 6-0-4 6-6-12 3-1-14 8-0-0 2-1-12 0-5-8 0-6-0 0-1-12 0-1-12 0-1-12 0-1-12 1-10-8 0 - 4 - 40-1-12 . 1-11-4 Scale = 1:94.6 Plate Offsets (X, Y): [3:0-1-4,Edge], [8:0-4-0,0-3-8], [10:0-3-8,0-2-0], [12:Edge,0-2-9], [14:0-2-8,0-1-8], [17:0-3-8,0-2-0], [22:0-5-8,0-2-8] Spacing 2-0-0 CSI DEFL l/defl L/d PLATES (psf) in (loc) Plate Grip DOL 25.0 1.15 тс 0.62 Vert(LL) -0.32 22-23 >999 360 MT20 10.0 Lumber DOL 1.15 BC 0.68 Vert(CT) -0.67 22-23 >598 240 Rep Stress Incr WB Horz(CT) 0.22 0.0 NO 0.91 17 n/a n/a 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.15 23-24 >999 240 Weight: 299 lb WEBS 24-25=0/73, 21-22=-152/0, 4-23=0/489, LOAD CASE(S) Standard 4-22=-1520/175, 20-22=0/273, 6-22=-325/84, TOP CHORD 2x6 SPF No.2 *Except* 1-5,10-12:2x6 SP 19-22=-351/112, 7-19=-1408/98, 2400F 2.0E 8-19=-7/1925, 8-17=-2732/17, 2x4 SPF No.2 *Except* 3-22,21-15,18-16:2x4 BOT CHORD 9-17=-973/132, 9-14=0/610, 11-14=-924/109, SPF 2400F 2.0E 11-13=0/329, 7-22=-55/1205 2x4 SPF No.2 *Except* 22-21,4-23,19-22,17-9,9-14,14-11,11-13:2x3 NOTES SPF No.2, 17-8:2x4 SPF 2100F 1.8E, 2x4 SPF 2400F 2.0E bearing block 12" long at jt. 17 1) 26-2:2x6 SPF No.2 attached to front face with 2 rows of 10d (0.131"x3") nails spaced 3" o.c. 8 Total fasteners. Bearing is assumed to be DF No.2. Structural wood sheathing directly applied or TOP CHORD Unbalanced roof live loads have been considered for 5-6-13 oc purlins, except end verticals, and 2) 2-0-0 oc purlins (6-0-0 max.): 6-8. this design. 3) Wind: ASCE 7-16; Vult=115mph (3-second gust) BOT CHORD Rigid ceiling directly applied or 5-9-15 oc bracing. Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left 4-22, 6-20, 7-19, 8-17, 1 Row at midpt and right exposed ; end vertical left and right exposed; 9-17.11-14 Lumber DOL=1.60 plate grip DOL=1.60 **REACTIONS** (size) 12= Mechanical, 17=(0-3-8 + Provide adequate drainage to prevent water ponding. 4) bearing block), (req. 0-4-1), 5)

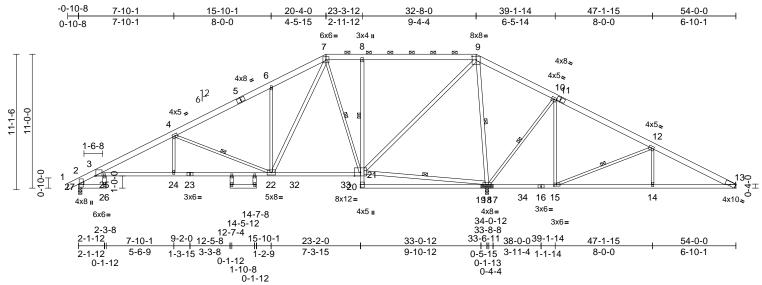
26-6-0

6-2-0

6x8=

- 26=0-3-8 Max Horiz 26=-130 (LC 6) Max Uplift 12=-178 (LC 22), 26=-30 (LC 8) Max Grav 12=453 (LC 23), 17=3758 (LC 2), 26=1231 (LC 24) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/35, 2-3=-465/98, 3-4=-2088/62, 4-6=-782/108, 6-7=-524/106, 7-8=0/329, 8-9=0/1723, 9-11=-56/1142, 11-12=-547/667, 2-26=-1243/53 BOT CHORD 25-26=0/0, 3-24=-70/1858, 23-24=-70/1858, 22-23=-70/1858, 20-21=0/51, 19-20=0/91, 17-19=-1213/122, 14-17=-945/128, 13-14=-562/436, 12-13=-562/436
- All plates are 2x4 MT20 unless otherwise indicated. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be DF No.2 crushing capacity of 625 psi. Refer to girder(s) for truss to truss connections. 10) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 30 lb uplift at joint 26 and 178 lb uplift at joint 12.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


6)

7)

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEVELOPMENT SERVICES LEE'S SUMMIT, MISSOURI Weeker Lumber Wavery, KS - 6687 06/26/2023 4:29:16

	Truss Type	Qty	Ply	Lot 183 HM	
	Piggyback Base	2	1	Job Reference (optional)	159019874
	Page: 1				

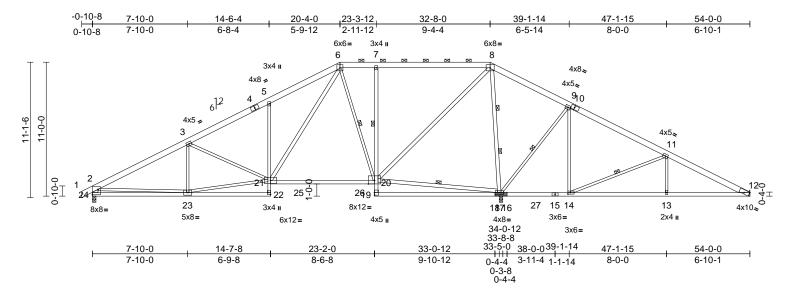
ID:yPW6e5fhjwmOBQPEgYDIJ9zhyMt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:94.6

Plate Offsets (X, Y): [3:0-1-0,Edge], [9:0-4-0,0-3-8], [11:0-3-8,0-2-0], [13:Edge,0-2-9], [15:0-2-8,0-1-8]

	(Question			0.01	-	DEEL	1	(1)	1/-1-41	1.74		
Loading	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.58	DEFL Vert(LL)	in	(loc) 21-22	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144
FCLL (roof)		1 1							18-20			MI 20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.93	Vert(CT)			>877	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.80	Horz(CT)	0.20		n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S	-	Wind(LL)	0.11	24-25	>999	240	Weight: 300 lb	FT = 10%
UMBER				EBS	25-26=0/73, 4-24	,		16,	LOAD	CASE(S) Sta	ndard	
TOP CHORD	2x6 SPF No.2 *Exc 2400F 2.0E	ept* 1-5,11-13:2x6 S	5		6-22=-445/156, 7 7-21=-825/71, 18		,						
BOT CHORD		ept* 3-23:2x4 SPF 2	00F		9-21=-19/1980, 9								
WEBS	2x3 SPF No.2 *Exc	2x4 SPF 2400F 2.0E			12-15=-933/107,								
	26-25,22-7,18-21,2	1-9,28-30,29-31:2x4	SPF NO	OTES									
	No.2, 18-9:2x4 SPF	F 2100F 1.8E, 27-2:22	(6 1)	2x4 SPF 24	400F 2.0E bearing	block 12	' long at jt. 18						
	SPF No.2		,	attached to	front face with 2	rows of 1	0.131"x3")					
BRACING				nails space	ed 3" o.c. 8 Total fa	asteners.	Bearing is						
TOP CHORD		eathing directly applie			be DF No.2.								
		xcept end verticals, a	nd 2)		d roof live loads h	ave been	considered fo	r					
	2-0-0 oc purlins (6-	,	0	this design.		1 (0							
BOT CHORD		y applied or 5-8-9 oc	3)		E 7-16; Vult=115r ph; TCDL=6.0psf;			Cot					
1 Dour of mide	bracing. Except:				inclosed; MWFRS								
1 Row at midp WEBS	1 Row at midpt	4-22, 7-21, 18-21, 9	10		xposed ; end verti								
WEB3	T Row at miupt	10-18, 12-15	-10,		DL=1.60 plate grip			,,					
REACTIONS	(size) 13= Med	hanical, 18=(0-3-8 +	4)		equate drainage to			g.					
		block), (req. 0-4-1),	5)		re 2x4 MT20 unle								
	27=0-3-8	3	6)		has been designed								
	Max Horiz 27=-130	(LC 6)			oad nonconcurrer								
		(LC 22), 27=-33 (LC	o) '		has been design om chord in all are			Jpst					Th
	Max Grav 13=436 27=1235	(LC 23), 18=3761 (LC	2),		by 2-00-00 wide			om				TATE OF M	Ala
		()		chord and a	any other member	s, with BC	DL = 10.0psf	ŧ.			9	BAE	1350
FORCES	(ID) - Maximum Col Tension	mpression/Maximum	8)	All bearings capacity of	s are assumed to	be DF No	.2 crushing				A	NATUA	
TOP CHORD	1-2=0/35, 2-3=-466	6/99, 3-4=-2267/76,	9)		der(s) for truss to	truss con	nections				A	S NATHA	
	,	-1168/157, 7-8=-284	157, ₁ 0		chanical connecti			0			-81		A LAN
)=0/1744, 10-12=-50/	181,		te capable of with						Wr	ATT	1 PAG
	12-13=-513/692, 2-		200	27 and 191	Ib uplift at joint 13	3.						Alkani	
BOT CHORD)9/2033, 24-25=-99/2 1-22=-9/473, 20-21=0		I) This truss is	s designed in acc	ordance w	ith the 2018				W	A CAKANA	BER /
	8-21=-625/147, 18-		109,		al Residential Cod			ind			N	O PE-2022	042259 JSA
	15-18=-989/122, 14			R802.10.2 and referenced standard ANSI/TPI 1.							N V	The second second	12A
	13-14=-585/406		12	12) Graphical purlin representation does not depict the size							X	A Ser	NO'A
					tation of the purlir	along the	e top and/or					C'SSIONA	LEL
				bottom cho	ra.							an	DEC .
													00.0000

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



June 20,2023

RE EASE FOR CONST RICTIO NOTED ON PLANS REVIEW A DEXELOPMENT SERVICES E<mark>'S SUMMIT, MISSOURI</mark> Jeler Lumber, Waverly, KS - 66871, 26/2023 4:29:16 06/

	Truss Type	Qty	Ply	Lot 183 HM				
	Piggyback Base	1	1	Job Reference (optional)	159019875			
Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Mon Jun 19 09:17:14								

ID:yPW6e5fhjwmOBQPEgYDIJ9zhyMt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

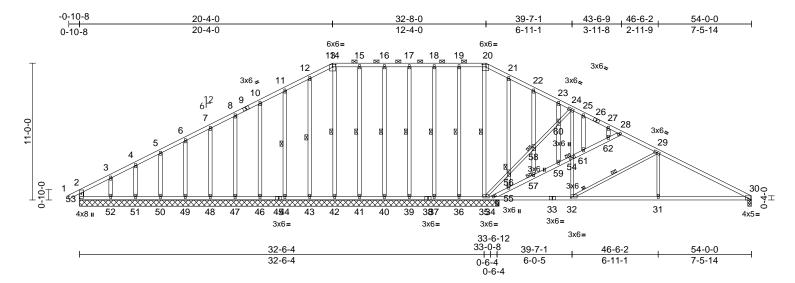

Scale = 1:94.6

Plate Offsets (2	X, Y): [10:0-3-8,0-2-0	0], [12:Edge,0-2-9], [14:0	-2-8,0-1-8], [22:Edg	e,0-2-8], [24:Edge	,0-5-4]							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	-0-0 .15 .15 IO RC2018/TPI2014	CSI TC BC WB Matrix-S	0.53 0.58 0.86	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.30 -0.52 0.05 0.07	(loc) 20-21 20-21 12 5-21	l/defl >999 >773 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 289 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x6 SPF No.2 2x4 SPF No.2 *Exc 21-20,19-15,18-16:2 2x3 SPF No.2 *Exc 21-6,17-20,20-8,17- 24-2:2x6 SPF No.2	ept* 22-5:2x3 SPF No.2 2x4 SPF 2100F 1.8E ept* -8:2x4 SPF No.2,	WEBS NOTES 1) 2x4 SPF 2	3-23=-168/146, 2 3-21=-396/164, 6 6-20=-641/178, 1 8-20=-181/1850, 9-14=-29/580, 11 2-23=-14/973, 8-	5-21=-333 7-20=-74 9-17=-92 -14=-908 17=-2237 block 12'	7/1812, /1285, 8/246, 4/303, /256, 11-13=0/ /194		LOAD				
TOP CHORD		eathing directly applied of except end verticals, and 0-0 max.): 6-8.	nails space assumed to	front face with 2 d 3" o.c. 8 Total fa be DF No.2.	steners.	Bearing is						
	bracing. Except: tr 7-20 1 Row at midpt 2 Rows at 1/3 pts (size) 12= Mecl bearing b 24=0-3-8 Max Horiz 24=-180 Max Uplift 12=-144 24=-216	hanical, 17=(0-3-8 + plock), (req. 0-4-4), (LC 9) (LC 9), 17=-187 (LC 9), (LC 8) LC 25), 17=3365 (LC 2)	 this design Wind: ASC Vasd=91m II; Exp C; E cantilever I right expose Provide ad This truss I chord live I * This truss on the bott 3-06-00 tal 	d roof live loads ha E 7-16; Vult=115n ph; TCDL=6.0psf; inclosed; MWFRS eft and right expose ed; Lumber DOL= equate drainage to as been designed bas been designed om chord in all are by 2-00-00 wide v any other member	nph (3-see BCDL=6. (envelope ded ; end v 1.60 plate prevent f for a 10. t with any ed for a liv as where will fit betw	cond gust) Opsf; h=25ft; C e) exterior zon vertical left anc grip DOL=1.6 water ponding. 0 psf bottom other live load re load of 20.0 a rectangle veen the botto	cat. e; J 60 Is. psf m				5 OF L	
FORCES	Tension 1-2=0/35, 2-3=-208 5-6=-1710/448, 6-7 8-9=0/1156, 9-11=-2	npression/Maximum 5/303, 3-5=-1701/305, =-657/238, 7-8=-658/24 25/589, 11-12=-785/248	 All bearing: capacity of Refer to gir 9) Provide me 	s are assumed to I	truss coni on (by oth	2 crushing nections. ers) of truss to					STR OF I STATE OF I NATHA	THE IN N
BOT CHORD	5-21=-470/250, 20-2	-614/254, 17-19=-50/28	joint 24, 18 1, 12. 10) This truss i Internationa R802.10.2 11) Graphical p	7 lb uplift at joint 1 s designed in acco al Residential Cod and referenced sta burlin representatio tation of the purlir	7 and 144 ordance w e sections andard AN on does n	4 lb uplift at joir ith the 2018 s R502.11.1 ar NSI/TPI 1. ot depict the si	nd				PE-2022	ENGINE

Course June 20,2023

	Truss Type	Qty	Ply	Lot 183 HM				
	Piggyback Base Structural Gable	1	1	Job Reference (optional)	159019876			
Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Mon Jun 19 09:17:14								

Scale = 1:92.6

Plate Offsets (X, Y): [13:0-3-0,0-2-0], [20:0-3-8,0-2-4], [32:0-2-8,0-1-8]

Loading		(psf)	Spacing	2-0-0)	CSI			DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC		0.86	Vert(LL)	-0.09		>999	360	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC		0.55	Vert(CT)	-0.20		>999	240		
BCLL		0.0*	Rep Stress Incr	YES		WB		0.42	Horz(CT)	0.02	35	n/a	n/a		
BCDL		10.0	Code	IRC2	2018/TPI2014	Matrix-	S		Wind(LL)	0.07	30-31	>999	240	Weight: 334 lb	FT = 10%
	0.4 005					Max Grav			4=481 (LC 3 36=190 (LC		WEBS			=-858/255, 56-58 =-842/245, 24-60	,
TOP CHORD BOT CHORD	2x4 SPF 2x4 SPF								9=181 (LC 2					=-042/243, 24-00 =-18/494, 24-54=	,
WEBS		No.2 *Exce	nt*						41=186 (LC					=-721/210, 29-31	,
WEBO			-34:2x4 SPF No.2						3=195 (LC 1					=-392/38, 54-61=	
OTHERS	2x4 SPF								46=181 (LC					=-113/55, 28-62=	
BRACING							47=180 (L	.C 24),	48=181 (LC	1),					-95/46, 57-59=-69/31
TOP CHORD	Structura	l wood she	athing directly applie	ed.					50=190 (LC						16/138, 4-51=-128/60
			, and 2-0-0 oc purlin						52=310 (LC	1),				,	39/77, 7-48=-140/78,
	(10-0-0 m	nax.): 13-20).				53=111 (L	'						-140/78, 10-46=-1	,
BOT CHORD			applied or 6-0-0 oc		FORCES		imum Com	pressio	on/Maximum					=-138/82, 12-43= =-256/0, 15-41=-´	
	bracing,					Tension	0.0.040/		4 4 4 6 / 9 9 9					=-139/58, 17-39=	
		•	4-35,32-34,31-32,30		TOP CHORD			,	4=-146/306, 6-7=-15/314	1				=-145/60, 19-36=	
WEBS	1 Row at	midpt	29-32, 20-35, 11-44				4, 8-10=0/3			+,			21-56	=-69/35, 55-56=-7	76/39, 22-58=-88/50,
			12-43, 14-42, 15-41	,					13-14=0/29	1			57-58	=-58/32, 23-60=-4	41/79, 59-60=-29/59,
			16-40, 17-39, 18-37 19-36	,			,		16-17=0/29	,			25-61	=-49/100, 27-62=	-89/50
JOINTS	1 Brace a	at Jt(s): 54,	19-50			17-18=0/2	291, 18-19=	=0/291	19-20=0/29	1,	NOTES	;			
	56, 57, 58					20-21=0/3	365, 21-22=	=0/333,	22-23=0/30	В,	1) Unb	balanced	d roof li	ve loads have be	en considered for
REACTIONS			, 34=0-3-8, 35=33-8-	8			238, 24-25=		,		this	design.			
	(0120)		8, 37=33-8-8, 39=33·				12/196, 27-								
			8, 41=33-8-8, 42=33-	,			78/195, 29-	30=-13	02/260,						
		43=33-8-8	8, 44=33-8-8, 46=33-	-8-8,		2-53=-82		FO 05	5/050						
			8, 48=33-8-8, 49=33-		BOT CHORD		55/259, 51- 55/259, 49-							Con	alle
		50=33-8-8 53=33-8-8	8, 51=33-8-8, 52=33∙ 8	-8-8,		48-49=-2	55/259, 47-	48=-25	5/259,					STATE OF M	AISSO
	Max Horiz	53=-182 ((LC 9)				55/259, 44- 55/259, 42-						A	S	Ne
	Max Uplift	30=-157 (LC 9), 35=-277 (LC	9),			55/259, 42- 55/259, 40-		,				H	s/ NATHA	NIEL / C V
	-	36=-30 (L	C 5), 37=-38 (LC 4),				55/259, 40- 55/259, 37-						-	FO	X
			.C 5), 40=-34 (LC 5),				55/259, 35-							11	1 134
			.C 4), 43=-46 (LC 8),				350, 32-34=		,				XT		V APLA
			.C 8), 46=-53 (LC 8),			31-32=-1	42/1066, 30	0-31=-1	42/1066				MU	Xnande	RER ULEV
			.C 8), 48=-54 (LC 8), .C 8), 50=-61 (LC 8),										17	PE-20220	042259
			.C 8), 50=-61 (LC 8), .C 8), 52=-148 (LC 8)										N.	FE-20220	042235 JOB
		53=-146 (/,									Y	PE-20220	ISN'B
														SIONA	LENA
														A TIA	
														alter	- CC

Continued on page 2 WARNING - Verify

WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

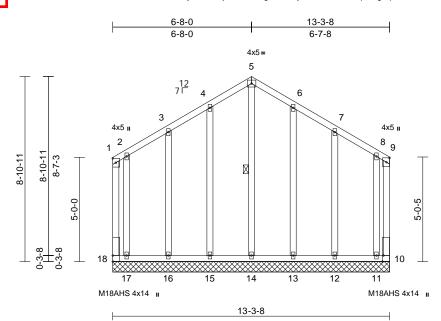
June 20,2023

RELEASE FOR CONSTRUCTION AS MOTED ON PLANS REVIEW DE25509PMENT SERVICES LEE'S SUMMIT, MISSOURI Wheeler Lumber Wavery, KS - 66871 Wheeler Lumber Wavery, KS - 66871 06/26/2023 4:29:17

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 146 lb uplift at joint 53, 277 lb uplift at joint 35, 157 lb uplift at joint 30, 148 lb uplift at joint 52, 25 lb uplift at joint 51, 61 lb uplift at joint 50, 52 lb uplift at joint 49, 54 lb uplift at joint 47, 53 lb uplift at joint 46, 58 lb uplift at joint 44, 46 lb uplift at joint 43, 37 lb uplift at joint 41, 34 lb uplift at joint 40, 33 lb uplift at joint 36.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Truss Type	Qty	Ply	Lot 183 HM	
Piggyback Base Structural Gable	1	1	Job Reference (optional)	159019876


Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Mon Jun 19 09:17:14 ID:yPW6e5fhjwmOBQPEgYDLJ9zhyMt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEXEMOPMENT SERVICES LEE'S SUMMIT, MISSOURI Wheeler Lumber, Waverly, KS - 66871 OG/26/2023 4:29:17

Truss Type	Qty	Ply	Lot 183 HM	
Common Supported Gable	1	1	Job Reference (optional)	159019877

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Mon Jun 19 09:17:15 ID:yPW6e5fhjwmOBQPEgYDIJ9zhyMt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:55.3

Plate Offsets (X, Y): [10:0-3-8,Edge]

Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.54	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999 999	PLATES M18AHS	GRIP 142/136
TCDL BCLL	10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES		BC WB	0.37 0.15	Vert(TL) Horiz(TL)	n/a 0.00	- 10	n/a n/a	999 n/a	MT20	197/144
BCDL	10.0	Code	IRC2018/		Matrix-R	0.15	HOHZ(TL)	0.00	10	n/a	n/a	Weight: 94 lb	FT = 10%
BCDL	10.0	Code	IKC2010/	1 F12014	watrix-R							weight. 94 lb	FI = 10%
	6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 10=13-3 13=13-3 16=13-3 Max Horiz 18=282 (Max Uplift 10=-955 12=-71 (l 15=-59 (l 17=-880 Max Grav 10=944 (12=200 (14=167 (l)	y applied or 10-0-0 oc 5-14 8, 11=13-3-8, 12=13-3 8, 14=13-3-8, 15=13-3 1, 12=13-3-8, 18=13-3 1, 12=13-3-8, 18=13-3 1, 12=59 (LC 5) (LC 7), 11=-919 (LC 4), (LC 5), 18=-903 (LC 6), (LC 5), 18=-903 (LC 6), (LC 1), 15=190 (LC 18), LC 18), 17=972 (LC 6), 1, 12=100 (LC 18), 1, 13=100 (LC 18), 1, 13=100 (LC 18), 1, 14=100 (LC 18), 1, 15=100 (LC 18), 1,	2) l or 3) l-8, 4) l-8, 5) l-8, 6) l-8, 7) l, 8) g) l, 10) l, 10) l, 10)	this design. Wind: ASCE Vasd=91mph II; Exp C; Enr cantilever left right exposed Truss design only. For stu see Standarco or consult qu All plates are Gable require Truss to be fi braced again Gable studs : This truss ha chord live loa * This truss h on the botton 3-06-00 tall b thearings a	roof live loads hav 7-16; Vult=115m ;; TCDL=6.0psf; E closed; MWFRS (it and right expose d; Lumber DOL=1 hed for wind loads ds exposed to win 4 Industry Gable E alfied building de IMT20 plates unlu- 2x4 MT20 unless as continuous bot s been designed id nonconcurrent ias been designed id nonconcurrent ias been designed id nonconcurrent ias been designed y 2-00-00 wide w yy other members are assumed to bo 5 are in the state of the s	bh (3-sec 3CDL=6.0 (envelope d ; end v 60 plate s in the pl nd (norm End Deta signer as sess other to chorwith to chor for a 10.0 with any d for a liv s where ill fit betw	cond gust) Dps; h=25ft; (e) exterior zor ertical left an grip DOL=1. lane of the tru al to the face) ils as applicat s per ANSI/TF wise indicate se indicated. d bearing. e or securely iagonal web). D psf bottom other live load e load of 20.0 a rectangle ween the botto	Cat. ne; d 60 sss), ole, PI1. d. ds. opsf				0000	
FORCES		npression/Maximum	12)		hanical connectio						6	TATE OF I	MISSO
TOP CHORD	1-18=-374/354, 1-2 3-4=-69/108, 4-5=-6	=-251/229, 2-3=-94/80 62/137, 5-6=-61/137, 95/81, 8-9=-252/231,	,	joint 18, 955 Ib uplift at joir	capable of withs Ib uplift at joint 10 nt 16, 880 lb uplift o uplift at joint 12), 59 lb uj t at joint 1	olift at joint 15 I 7, 59 lb uplift	i, 71 ∶at				S NATHA FO	THEL IS A
BOT CHORD	17-18=-163/146, 16 15-16=-163/146, 14 13-14=-163/146, 12 11-12=-163/146, 10	l-15=-163/146, 2-13=-163/146,	13)	This truss is International R802.10.2 ar	designed in accor Residential Code nd referenced sta	sections	R502.11.1 a	nd			N.	PE-2022	042259
WEBS	5-14=-127/3, 4-15=	-149/84, 3-16=-172/93 3=-149/84, 7-12=-177/	,	AD CASE(S)	Standard						Ŵ	FESSIONA	LENGING
NOTES												1000	555

June 20,2023


Page: 1

RF CONSI NOTED ON PLANS REVIEW EXELOPMENT SERVES SUMMIT, MISSOURI Lumber, Waverly, KS - 66871, 6/2023 4:29:17

	Truss Type	Qty	Ply	Lot 183 HM	
	Common	5	1	Job Reference (optional)	159019878

Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries. Inc. Mon Jun 19 09:17:15 ID:yPW6e5fhjwmOBQPEgYDIJ9zhyMt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [1:Edge,0-2-9], [3:0-2-8,Edge]

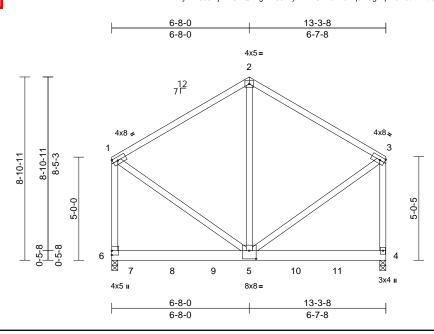
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.68	Vert(LL)	-0.04	5-6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.33	Vert(CT)	-0.09	5-6	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.13	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	-0.01	5-6	>999	240	Weight: 60 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly	cept end verticals.	bearing pla 6 and 76 lb 7) This truss is Internationa R802.10.2 i LOAD CASE(S	chanical connect e capable of with uplift at joint 4. designed in act l Residential Co and referenced Standard	thstanding 7 cordance wordersections	76 lb uplift at 1 ith the 2018 3 R502.11.1 a	joint					

bracing. WEBS 1 Row at midpt 2-5 **REACTIONS** (size) 4=0-3-8, 6=0-3-8 Max Horiz 6=282 (LC 5) Max Uplift 4=-76 (LC 9), 6=-76 (LC 8) Max Grav 4=589 (LC 1), 6=589 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-404/104, 2-3=-403/105, 3-4=-534/104, 1-6=-533/104

BOT CHORD 5-6=-255/248, 4-5=-64/48 WEBS 3-5=-61/344, 1-5=-61/342, 2-5=-197/78

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 crushing 5) capacity of 425 psi.



RE EASE FOR CONSTR RICTIO NOTED ON PLANS REVIEW A DEVELOPMENT SERVICES LEE'S SUMMIT, MISSOURI Vheeler Limber Wavery KS 66871 06/26/2023 4:29:18

Truss Type	Qty	Ply	Lot 183 HM	
Common Girder	1	3	Job Reference (optional)	159019879

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries, Inc. Mon Jun 19 09:17:16 ID:yPW6e5fhjwmOBQPEgYDIJ9zhyMt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:55.9

Plate Offsets (X, Y): [5:0-4-0,0-4-12]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.41	Vert(LL)	-0.11	5-6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.68	Vert(CT)	-0.18	5-6	>863	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.32	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	-0.01	5-6	>999	240	Weight: 257 lb	FT = 10%
BOT CHORD 6-0-0 oc p BOT CHORD Rigid ceilin bracing. REACTIONS (size) Max Horiz Max Grav FORCES (lb) - Maxi Tension TOP CHORD 1-2=-4139 3-4=-4691 3-4=-4691 BOT CHORD 5-6=-209/2	00F 2.0E lo.2 wood she urlins, ex ng directly 4=0-3-8, 6 6=279 (LC 4=8377 (L mum Corr /0, 2-3=-4 /0 293, 4-5=- 5, 2-5=0/3 cted toge lows: as follows: ted as foll ows: 2x4 - cd equally t (F) or ba o ply conr nly loads ated. bads have t=115mph 5.0psf; BC	C 5) C 15), 6=7719 (LC 1) pression/Maximum 137/0, 1-6=-4643/0, 39/108 714, 3-5=0/4251 ther with 10d s: 2x4 - 1 row at 0-9-0 ows: 2x6 - 3 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LOA nections have been noted as (F) or (B), been considered for (3-second gust) DL=6.0psf; h=25ft; Ca velope) exterior zone	7) 8) 6) 9) 6) 1)	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings capacity of 6 This truss is International R802.10.2 at Hanger(s) or provided suff Ib down at 7 at 11-6-4, 2' 15-6-4, and 2 at 19-8-12 o such connect DAD CASE(S) Dead + Roo Plate Increa Uniform Loc Vert: 1-2 Concentratic	designed in accor Residential Code nd referenced star other connection ficient to support of -6-4, 2144 lb down 143 lb down at 13 2143 lb down at 13 2143 lb down at 1 n bottom chord. ∃ tion device(s) is th Standard of Live (balanced): ase=1.15	with any d for a liv s where ill fit betv e DF No. dance w sections ndard AN device(s concentra n at 9-6 -6-4, an 7-6-4, an 7-6-4, an 7-6-4, an Fhe design se respon	other live loa e load of 20. a rectangle ween the bott 2 crushing ith the 2018 i R502.11.1 i SI/TPI 1.) shall be ated load(s) 2 -4, 2144 lb d 13 lb down a d 2151 lb do gn/selection nsibility of ott Increase=1.	ads. .0psf tom and 2146 own t own of hers. .15,			P	STIE OF I NATHA FO PE-2022	BER 042259

II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

June 20,2023

REL EASE FOR CON **NOTED ON PLAN** A DEXELOPMENT S 26/2023 M

0-6-9

p-11-q

	IGHON ₽₩FW	Truss Type	Qty	Ply	Lot 183 HM		
	CES	Common Supported Gable	1	1	Job Reference (optional)	15901	9880
4:29	:18				6 2022 MiTek Industries, Inc. Mon Jun 19 09:17:1 ?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC		Page: 1
	-0-10-8	10-0-0	1		20-0-0	20-10-8	
	0-10-8	10-0-0			10-0-0	0-10-8	
	2 1 24	¹² 6 5 4 3 12 6 5	7	8	9 10 11	12 13	i
	8		*********			\otimes	

18

19

20-0-0

17

15

16

Scale = 1:44.8

Loading		(psf)	Spacing	2-0-0		CSI	0.07	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.05	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.11	Horz(CT)	0.00	14	n/a	n/a		FT 400/
BCDL		10.0	Code	IRC2	018/TPI2014	Matrix-R	-						Weight: 90 lb	FT = 10%
LUMBER					WEBS	7-19=-157/0, 6-2	20=-154/85	5, 5-21=-143/8	88,					
TOP CHORD	2x4 SPF I	No.2				4-22=-144/80, 3-			53/84,					
BOT CHORD	2x4 SPF I	No.2				9-17=-143/88, 10	0-16=-144	/81,						
WEBS	2x4 SPF I	No.2				11-15=-149/104								
OTHERS	2x4 SPF I	No.2			NOTES									
BRACING					1) Unbalanced	roof live loads ha	ave been	considered fo	or					
TOP CHORD	Structural	l wood she	athing directly applied	d or	this design.									
	6-0-0 oc p	ourlins, ex	cept end verticals.			7-16; Vult=115r								
BOT CHORD	Rigid ceili	ing directly	applied or 6-0-0 oc			n; TCDL=6.0psf;								
	bracing.					closed; MWFRS								
REACTIONS	(size)	14=20-0-0	0, 15=20-0-0, 16=20-0	0-0,		t and right expos								
		17=20-0-0	0, 18=20-0-0, 19=20-0	0-0,		d; Lumber DOL=								
		20=20-0-0	0, 21=20-0-0, 22=20-0	0-0,		ned for wind load								
			0, 24=20-0-0			ids exposed to w								
	Max Horiz					d Industry Gable alified building c								
	Max Uplift		_C 5), 15=-98 (LC 9),			2x4 MT20 unle			-11.					
			_C 9), 17=-65 (LC 9),			es continuous bo								
			_C 9), 20=-61 (LC 8),		 Truss to be f 				,					
			_C 8), 22=-51 (LC 8),			ist lateral moven								
			(LC 8), 24=-65 (LC 4)			spaced at 2-0-0		lagonal web)	•					
	Max Grav		LC 22), 15=203 (LC 1	0),		s been designed		nsf hottom						
			LC 22), 17=184 (LC 1	0),		ad nonconcurren			ds					
			LC 16), 19=197 (LC 1 LC 15), 21=184 (LC 1			as been design								
			LC 13), 21=184 (LC 1 LC 21), 23=215 (LC 1	5),		n chord in all are			000					~
		24=183 (L		5),		y 2-00-00 wide			om				and	all
FORCES			,			y other member							B.C. OF I	MISSO
FORCES	(ID) - Max Tension		npression/Maximum		10) All bearings			o.2 crushing				4	TATE OF I	NSON
TOP CHORD		1/56 1 2 0	0/36, 2-3=-121/113,		capacity of 4	25 psi.		Ū				B	NATHA	NIFI XA
)/124, 5-6=-67/156,		11) Provide mec							R	S/ NATHA	
			7/175, 8-9=-43/141,			capable of with						a	d la ^r	^ ALL
			1=-64/77, 11-12=-84/7	76.		ft at joint 14, 61						81		1 1 1
		36, 12-14 ≕	,	σ,		21, 51 lb uplift a						8	MAR	
BOT CHORD		,	3=-83/93, 21-22=-83/9	93.		o uplift at joint 18			52			17	W YUME	BER
_ 3. 0.10ND		,	0=-83/93, 18-19=-83/9	วร่		nt 16 and 98 lb u						N	PE-2022	
			7=-83/93, 15-16=-83/9		12) This truss is							NY.	11-2022	20120
	14-15=-83		,			Residential Cod			Ind			Y	A CR	IN B
						nd referenced st	andard AN	NSI/TPI 1.					C'SSIONA	TENA
					LOAD CASE(S)	Standard							A INA	- A

NAL CONAL June 20,2023

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

22

23

 \vdash

21

20

-EASE FOR CONSTRUCTION NOTED ON PLANS REL A DEXELOPMENT SERVICES USC 18230093 LEE'S SUMMIT, MISSOURI Wheeler Lumber Wavery, KS - 66871 06/26/2023 4:29:18

EW	Truss Typ	е		Qty	Ply	Lot 183 HM			
s	Common	Girder		1	2	Job Reference	e (optional)		159019881
8			Run: 8.43 S Jan 6 ID:yPW6e5fhjwmOE						Page: 1
-0-10-8	5-1-4	I.	10-0-0	1	14-10-12	1	20-0-0	2ρ-10-8	
0-10-8	5-1-4	1	4-10-12	I	4-10-12		5-1-4	0-10-8	
				4x5 =					
				4					
		12 7 □							
		3x6 🛩				3x6 ≈			

5

4x5=

Plate Offsets (X, Y): [8:Edge,0-6-0], [12:Edge,0-6-0]

<u>р-11-</u>0

2

 \mathbb{Z}

8x8=

13

5-1-4

5-1-4

(12

0-6-9

	(X, T). [0.Euge,0-0-0],	[12.Edge,0 0 0]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.40 0.21 0.32	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.10 0.02	(loc) 10-11 10-11 8 10-11	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 228 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE BOT CHORE REACTIONS	 2x6 SP 2400F 2.0E 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing. 	applied or 6-0-0 oc 12=0-3-8 _C 7) C 9), 12=-521 (LC 29	4) 1 or 5) 6)	this design. Wind: ASCE Vasd=91mpl II; Exp C; En cantilever lef right expose This truss ha chord live loa * This truss the on the bottor 3-06-00 tall b chord and ar	7-16; Vult=115mp n; TCDL=6.0psf; E closed; MWFRS (t and right expose d; Lumber DOL=1 as been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w hy other members.	bh (3-see 3CDL=6. enveloped; end v .60 plate for a 10. with any d for a liv s where ill fit betv	cond gust) Opsf; h=25ft; ; e) exterior zou vertical left an g grip DOL=1. 0 psf bottom other live loa re load of 20.0 a rectangle veen the botto	Cat. ne; nd .60 ads. 0psf		15=-45	7 (B), 1	(B), 13=-500 (B), 6=-558 (B), 17=- 0=-537 (B)	14=-457 (B), 433 (B), 18=-416 (B),
FORCES	(lb) - Maximum Com Tension	8)	 All bearings are assumed to be SPF No.2 crushing capacity of 425 psi. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 521 lb uplift at joint 12 and 607 lb uplift at joint 8. 										
BOT CHORE WEBS	2-12=-2605/465, 6-8 11-12=-268/1005, 10 9-10=-586/3385, 8-9 4-10=-690/2591, 5-1 5-9=-337/864, 3-10= 3-11=-452/967, 2-11 6-9=-571/2506	D-11=-659/3482, D=-225/897 0=-1128/376, 1214/283,	9) 10	 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 500 Ib down and 211 lb up at 1-11-4. 457 lb down and 270 									an the second se
 NOTES 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 				585 lb down 370 lb up at 11-11-4, 424 lb down and 156 lb up at selection of s responsibility DAD CASE(S) Dead + Roo Plate Increa Uniform Lo. Vert: 1-2	Standard of Live (balanced): ase=1.15	7-11-4, 4 wn and 2 Ib up at 1-4, and n chord. evice(s) : Lumber	400 lb down a 235 lb up at 13-11-4, and 555 lb down The design/ is the Increase=1.	and 1 424 and 15,				S NATHA FOI	A DA2259

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3

14

11 15

4x5=

16

10-0-0

4-10-12

10

3x10=

17

14-10-12

4-10-12

18 9 19

6

8

ľ

X

8x8 =

20

20-0-0

5-1-4

7

RELEASE FOR CONSTRUCTION AS WOTED ON PLANS REVIEW DEVELOPMENT SERVICES LEE'S SUMMIT, MISSOURI Weeler Limber Wavery, KS - 6687 06/26/2023 4:29:19

N PLANS	REVIEW		Truss Type		Qty	Ply	Lot 183 HM	
MENT SEI			Common Supp	orted Gable	1	1	Job Reference (optional)	159019882
MIT, MIS Waverly, KS 023 4:	29:19						2022 MiTek Industries, Inc. Mon Jun 19 B70Hq3NSgPqnL8w3uITXbGKWrCDoi	•
	-0-10-8 0-10-8		10-3- 10-3-				20-7-0 10-3-8	21-5-8 0-10-8
					4x5 =			
0.4		3 23 x4 = 23	4 4 22	6 5 6 5 0 0 0 0 0 0 0 0	7	8	9 10 10 10 10 10 10 10 10 10 10 10 10 10	11 12 13 14 3x4=
							3x4 =	

Scale = 1:42.6

5-5-12

5-10-15

20-7-0

TCLL (root) 25.0 Plate Gip DOL 1.15 TC 0.05 Vert(1) r/a 999 MT20 197/144 BCLL 0.00 Rep Stress Incr YES WB 0.06 Horz(CT) r/a n/a 999 MT20 197/144 BCLL 0.00 Code IRC2018/TPI2014 Matrix-S Matrix-S Weight: 80 lb FT = 10% LUMBER TOP CHORD 2x4 SPF No.2 Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Streature in the second pust is design. Streatur				· · · · · · · · · · · · · · · · · · ·			·							·	
TCDL 10.0 Iumber DOL 1.15 BC 0.03 Veri(CT) n/a - n/a 980 BCDL 10.0 Code TYES BC 0.03 Veri(CT) 0.00 12 n/a n/a BCDL 10.0 Code TYES Matrix-S BC 0.03 Veri(CT) 0.00 12 n/a n/a <td< td=""><td>Loading</td><td>(</td><td>(psf)</td><td>Spacing</td><td>2-0-0</td><td></td><td>csi</td><td></td><td>DEFL</td><td>in</td><td>(loc)</td><td>l/defl</td><td>L/d</td><td>PLATES</td><td>GRIP</td></td<>	Loading	((psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
BCLL 0.0° Resp Stress incr YES WB 0.06 Horz(CT) 0.00 12 n/a n/a LUMBER TOP CHORD 2x4 SPF No.2 100 Lobalanced root live loads have been considered for this design. 100 Nuclear and right sposed i red venicle loads have been considered for this design. 100 Nuclear and right sposed i red venicle loads have been considered for this design. 100 Nuclear and right sposed i red venicle loads have been considered for this design. 100 Nuclear and right sposed i red venicle loads have been considered for this design. 100 Nuclear and right sposed i red venicle loads have been considered for this design. 100 Nuclear and right sposed i red veniclear and right sposed i red venich baston ride right sposed i red veniclear and ride ride right	TCLL (roof)	:	25.0	Plate Grip DOL	1.15		TC		Vert(LL)	n/a	-	n/a	999	MT20	197/144
BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Weight: 80 lb FT = 10% LUMBER TOP CHORD 2x4 SPF No.2	TCDL			Lumber DOL	1.15		BC	0.03	Vert(CT)	n/a	-	n/a	999		
 LUMBER TOP CHORD Zx4 SPF No.2 LOT CHORD Zx4 SPF No.2 Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been designed roof live loads have been designed of the loads have been designed for a 10.0 pst bottom chord and any other members. Unbalanced compression/Maximum Tension TOP CHORD Unbalanced to Chorpers of truss to bearing plate capable of withstanding 19 bupifit at joint 12. Unbalanced compression function theor description 21.5 bit upfifit at joint 22.60 bupifit at joint 21. Unbalanced compression/Maximum Tension TOP CHORD Unbalanced compression/Maximum Tension TOP CHORD 12-2026, 23-a-108/55, 34-a-73/65, 4-5-a-44/17, 6-7-a-71/14, 7-4-228, 12-13-026, 2-a-119/85, 5-21-a-139/79, 2-22-a-79/2, 22-2-79/2, 22-3-79/2, 22-2-79/2, 22-2-79/2, 22-2-79/2, 22-2-79/2, 22-2-79/2, 22-2-79/2, 22-2-79/2, 22-2-79/2, 22-2-79/2, 22-2-79/2, 22-2-79/2, 22-2-79/2, 22-2-79/2, 22-2-79/2, 22-2-79/2, 22-2-79/2, 22-2-79/2, 22-2-79/2, 22-79/2	BCLL		0.0*				WB	0.06	Horz(CT)	0.00	12	n/a	n/a		
 TOP CHORD 2x4 SPF No.2 Structural wood cheathing directly applied or T0P CHORD Structural wood cheathing directly applied or T0P CHORD Group Charles 2x4 SPF No.2 BOT CHORD Structural wood cheathing directly applied or T0P-00 c bracing. BOT CHORD Size 2x2 SPF No.2 Structural wood cheathing directly applied or T0P-00 c bracing. Structural wood cheathing directly applied or T0P-00 c bracing. Structural wood cheathing directly applied or T0P-00 c bracing. Structural wood cheathing directly applied or T0P-00 c bracing. Structural wood cheathing directly applied or T0P-00 c bracing. Structural wood cheathing directly applied or T0P-00 c bracing. Structural wood cheathing directly applied or T0P-00 c bracing. Structural wood cheathing directly applied or T0P-00 c bracing. Structural wood cheathing directly applied or T0P-00 c bracing. Structural wood cheathing directly applied or T0P-00 c bracing. Structural wood cheathing directly applied or T0P-00 c bracing. Structural wood cheathing directly applied or T0P-00 c bracing. Structural wood cheathing directly applied or T0P-00 c bracing. Structural wood cheathing directly applied or T0P-00 c bracing. Structural wood cheathing directly applied or T0P-00 c bracing. Structural wood cheathing directly applied or T0P-00 c bracing. Structural wood cheathing directly applied or T0P-00 c bracing. Structural wood cheathing directly applied or T0P-00 c bracing. Structural wood cheathing directly applied or T0P-00 c bracing. Structural wood cheathing directly applied or T0P-00 c bracing. Structural wood cheathing directly applied or T0P-00 c bracing. Structural wood cheathing directly applied or T0P-00 c bracing. Structural wood cheathing directly applied or T0P-00 c bracing. Structural wood cheathing directly applied or T0P-00 c bra	BCDL		10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 80 lb	FT = 10%
FORCES (lb) - Maximum Compression/Maximum Tension 18, 55 lb uplift at joint 16, 53 lb uplift at joint 15, 59 lb uplift at joint 12. TOP CHORD 1-2=0/26, 2-3=-108/55, 3-4=-75/65, 4-5=-54/90, 5-6=-44/117, 6-7=-47/141, 7-8=-47/133, 8-9=-44/87, 9-10=-44/48, 10-11=-46/28, 11-12=-73/29, 12-13=0/26 18, 55 lb uplift at joint 16, 53 lb uplift at joint 12. BOT CHORD 2-23=-7/92, 21-22=-7/92, 20-21=-7/92, 19-20=-7/92, 12-13=0/26, 12-14=-7/92 11. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. WEBS 7-19=-128/0, 6-20=-151/81, 5-21=-139/79, 4-22=-136/76, 3-23=-154/86, 8-18=-151/80, 9-16=-139/79, 10-15=-136/76, 11-14=-154/86 Standard	BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 Structural wo 6-0-0 oc purli Rigid ceiling u bracing. (size) 2= 15 19 22 Max Horiz 2= Max Uplift 2= 14 16 20 22 Max Grav 2= 14. 16 16 21 21	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	applied or 10-0-0 oc 12=20-7-0, 14=20-7-0 , 16=20-7-0, 18=20-7-0 , 20=20-7-0, 21=20-7-0 13) 9), 12=-13 (LC 9), C 9), 15=-53 (LC 9), C 9), 18=-56 (LC 9), C 9), 18=-56 (LC 9), C 8), 21=-54 (LC 8), C 1), 12=165 (LC 1), C 1), 18=190 (LC 22), C 1), 20=190 (LC 21), C 1), 22=174 (LC 21),	2) or 3) ,0, 4) 0, 5) 6) 7) 8) 8)), 9)	this design. Wind: ASCE Vasd=91mpl II; Exp C; En cantilever lef right expose Truss desig only. For stu see Standari or consult qu All plates are Gable requir Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss a chord live loa * This truss ha chord and ar All bearings capacity of 4 D) Provide mec bearing plate 2, 57 lb uplifi	7-16; Vult=115mp n; TCDL=6.0psf; B (closed; MWFRS (it and right expose d; Lumber DOL=1. ned for wind loads uds exposed to wird d Industry Gable E ualified building det e 2x4 MT20 unless es continuous bott spaced at 2-0-0 or is been designed fad nonconcurrent has been designed n chord in all area by 2-00-00 wide wi yo other members. are assumed to be 25 psi. hanical connectior e capable of withst t at joint 20, 54 lb t	ch (3-sec iCDL=6. iCDL=6. iCDL=6. iCDL=6. iCDL=6. iCDL=6. iCDL=6. in the p and (norm ind Deta signer a: ind peta signer a: is otherwit itom chor c. for a 10. with any d for a liv s where ill fit betw is SPF Norm n (by oth anding 1 uplift at ju	cond gust) Opsf; h=25ft; a) exterior zo vertical left ar grip DOL=1 lane of the tr al to the face is as applica s per ANSI/T se indicated. d bearing. D psf bottom other live loa e load of 20. a rectangle veen the bott b.2 crushing ers) of truss 9 lb uplift at bint 21, 53 lb	Cat. ne; nd .60 uss .), bble, PI 1. ads. Opsf om					æ
TOP CHORD 1-2=0/26, 2-3=-108/55, 3-4=-75/65, 4-5=-54/90, 5-6=-44/117, 6-7=-47/141, 7-8=-47/133, 8-9=-44/87, 9-10=-44/48, 10-11=-46/28, 11-12=-73/29, 12-13=0/26 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. BOT CHORD 2-23=-7/92, 22-23=-7/92, 21-22=-7/92, 20-21=-7/92, 19-20=-7/92, 18-19=-7/92, 16-18=-7/92, 15-16=-7/92, 14-15=-7/92, 12-14=-7/92 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. WEBS 7-19=-128/0, 6-20=-151/81, 5-21=-139/79, 4-22=-136/76, 3-23=-154/86, 8-18=-151/80, 9-16=-139/79, 10-15=-136/76, 11-14=-154/86 NATHANIEL International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.	FORCES		ım Com	pression/Maximum		18, 55 lb upl	ift at joint 16, 53 lb	uplift at	joint 15, 59 l				G	TE OF I	MISSO
BOT CHORD 2-23=-7/92, 22-23=-7/92, 21-22=-7/92, 20-21=-7/92, 19-20=-7/92, 18-19=-7/92, 16-18=-7/92, 15-16=-7/92, 14-15=-7/92, 12-14=-7/92 WEBS 7-19=-128/0, 6-20=-151/81, 5-21=-139/79, 4-22=-136/76, 3-23=-154/86, 8-18=-151/80, 9-16=-139/79, 10-15=-136/76, 11-14=-154/86	TOP CHORD	4-5=-54/90, 5 7-8=-47/133,	5-6=-44/ 8-9=-44	/117, 6-7=-47/141, 4/87, 9-10=-44/48,		11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and									NIEL
WEBS 7-19=-128/0, 6-20=-151/81, 5-21=-139/79, 4-22=-136/76, 3-23=-154/86, 8-18=-151/80, 9-16=-139/79, 10-15=-136/76, 11-14=-154/86	BOT CHORD	DRD 2-23=-7/92, 22-23=-7/92, 21-22=-7/92, 20-21=-7/92, 19-20=-7/92, 18-19=-7/92, 16-18=-7/92, 15-16=-7/92, 14-15=-7/92, 14													
NOTES	WEBS	7-19=-128/0, 4-22=-136/76	5, 3-23=	-154/86, 8-18=-151/80	,								Ø	THESSION A	LENGT
	NOTES													Cont	and the second s

June 20,2023

RE	EASE FOR CONSTI	RUCTION
	NOTED ON PLANS	
0	EXELOPMENT SER	VICES
(HEE'S SUMMIT, MIS Wheeler Lumber, Waverly, KS - 6 06/26/2023 4:2	9:19

		Common		4	1	Job Reference (optional)		159019883		
E <mark>E'S SUMMIT, MISSO</mark> /heeler Lumber, Waverly, KS - 6683 5/26/2023 4:29	:19	Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries, Inc. Mon Jun 19 09:17:17 ID:yPW6e5fhjwmOBQPEgYDIJ9zhyMt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f								
	-0-10-8	4-7-5	10-3-8			i-11-11	20-7-0	21-5-8		
	0-10-8	4-7-5	5-8-3	, I	:	5-8-3	4-7-5	0-10-8		
				4x8 = 4						
\top \top				·						
		6	12 D		$\langle \rangle$	<				
		2x4	*	// ``	$\langle \rangle$	2x4 🌶				
5-5-12		3	// //	/		5				
ب ب										
	2							6		
	1	/			¢					
<u> </u>	✓ ⊠ 3x€	5=	10		9	8		⊠		
			3x4 =		3x4 =	3x4 =				
	-	<u> </u>		<u>13-9-11</u> 7-0-6		6-9				
cale = 1:43.1						· · · · · · · · ·				

Qty

Ply

Lot 183 HM

150010002

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.39	Vert(LL)	-0.06	8-10	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.48	Vert(CT)	-0.14	8-10	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.17	Horz(CT)	0.04	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.04	8-10	>999	240	Weight: 67 lb	FT = 10%

LU	М	BB	ER
	-	~ .	

LOWIDER	
TOP CHORD	2x4 SPF No.2
BOT CHORD	2x4 SPF No.2
WEBS	2x3 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 4-3-11 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
REACTIONS	(size) 2=0-3-8, 6=0-3-8
	Max Horiz 2=-98 (LC 13)
	Max Uplift 2=-138 (LC 8), 6=-138 (LC 9)
	Max Grav 2=985 (LC 1), 6=985 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/27, 2-3=-1653/228, 3-4=-1403/194,
	4-5=-1403/195, 5-6=-1653/228, 6-7=0/27
BOT CHORD	2-10=-236/1417, 8-10=-46/903,
	6-8=-138/1417
WEBS	4-8=-74/489, 5-8=-367/209, 4-10=-73/489,

3=-74/489, 5-8=-367/209, 4-10=-73/489, WEBS 3-10=-367/209

NOTES

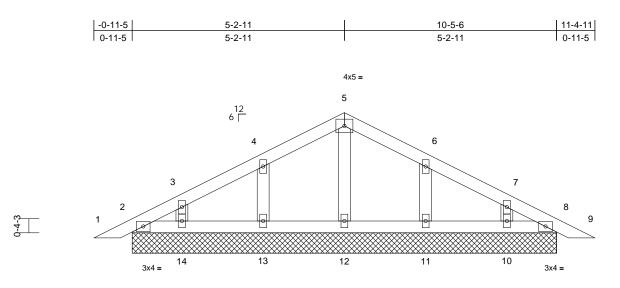
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 crushing 5) capacity of 425 psi.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 138 lb uplift at joint 2 and 138 lb uplift at joint 6.

- This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and
- R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Truss Type



RE NOTED ON PLANS REVIEW Δ EXELOPMENT SERVICES eler Lumber Waverly, KS - 66871, 26/2023 4:29:19

2-11-8

3-1-0

Truss Type	Qty	Ply	Lot 183 HM		
Piggyback		2 1 Job Reference (optional)		159019884	
			2022 MiTek Industries, Inc. Mon Jun 19 09:17:17 B70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1	

10-5-6

PLATES

Weight: 34 lb

MT20

GRIP

197/144

FT = 10%

Scale = 1	1:28.4
-----------	--------

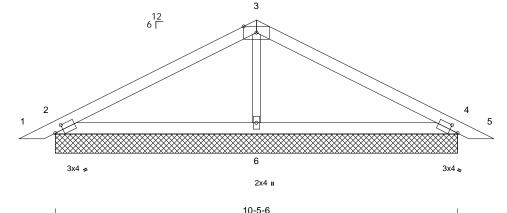
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.05	- ()	n/a	-	n/a	999	
TCDL		10.0	Lumber DOL	1.15		BC	0.02		n/a	-	n/a	999	
BCLL		0.0*	Rep Stress Incr	YES		WB	0.02	Horz(CT)	0.00	8	n/a	n/a	
BCDL		10.0	Code	IRC2	018/TPI2014	Matrix-S							
LUMBER						ned for wind loa							
TOP CHORD	2x4 SPF					ids exposed to v							
BOT CHORD	2x4 SPF					d Industry Gable							
OTHERS	2x4 SPF	No.2				alified building							
BRACING						2x4 MT20 unle							
TOP CHORD			athing directly applie	d or		es continuous b spaced at 2-0-0		rd bearing.					
	6-0-0 oc					s been designe		0 pcf bottom					
BOT CHORD		ling directly	applied or 10-0-0 oc			ad nonconcurrer			ids.				
	bracing.			•		as been design							
REACTIONS	(size)		8=10-5-6, 10=10-5-		on the botto	n chord in all are	eas where	a rectangle					
		14=10-5-6	6, 12=10-5-6, 13=10∙	·ɔ-o,		y 2-00-00 wide		veen the bott	om				
	Max Horiz	2=51 (LC				y other membe							
			4), 8=-12 (LC 9), 10)=-42		are assumed to	be SPF N	o.2 crushing					
	max opint		=-61 (LC 9), 13=-61		capacity of 4								
		8), 14=-43		、 -	10) Provide med	nanical connect capable of with							
	Max Grav	2=98 (LC	1), 8=98 (LC 1), 10=	144		at joint 8, 61 lb							
		(LC 1), 11	=198 (LC 22), 12=1	52		1 lb uplift at joint							
		(LC 1), 13	=198 (LC 21), 14=1	44	10.				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
		(LC 1)			11) This truss is	designed in acc	ordance w	ith the 2018					
FORCES	(lb) - Max	kimum Com	pression/Maximum			Residential Co			and				
	Tension				R802.10.2 a	nd referenced st	tandard Al	NSI/TPI 1.					
TOP CHORD), 3-4=-46/46,		12) See Standar	d Industry Piggy	/back Trus	s Connectior					
			65, 6-7=-42/29,		Detail for Co	nnection to base	e truss as	applicable, or					
		14, 8-9=0/17			consult qual	fied building des	signer.						
BOT CHORD		2-14=-2/46, 13-14=-2/46, 12-13=-2/46, 11-12=-2/46, 10-11=-2/46, 8-10=-2/46				LOAD CASE(S) Standard							
WEBS		2/0, 4-13=-´ 6/85, 7-10=	156/86, 3-14=-112/6 -112/65	5,								A	
NOTES												R	
1) Unbalance	ed roof live	loads have	been considered for									91	

- this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

FOX MINNER OFFESSIONAL ET PE-2022042259 June 20,2023

TE


OF MISSO


NATHANIEL

EASE FOR CONSTRUCTION NOTED ON PLANS REL A DEXELOPMENT SERVICES LEE'S SUMMIT, MISSOURI Vheeler Lumber Wavery, KS - 66871 06/26/2023 4:29:19

ION							
	Truss Type	Qty	Ply	Lot 183 HM	159019		
EW S	Piggyback	Piggyback 19 1 Job Reference (optional)					
9				3 2022 MiTek Industries, Inc. Mon Jun PsB70Hq3NSgPqnL8w3uITXbGKWrC		Page: 1	
	<u>-0-11-5</u> <u>5-2</u> -	-11		10-5-6	11-4-11		
	0-11-5 5-2	11		5-2-11	0-11-5		
	1. 6 [3	4x8 =				

	10-5-0	
0 / / / / / / / / / / / / / / / / / / /		
Scale = 1:29.9		
Plate Offsets (X, Y): [2:0-2-10,0-1-8], [4:0-2-10,0-1-8]		
[4.0-2-10,0-1-0]		

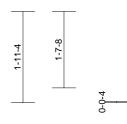
	(X, 1). [2.0-2-10,0-1-0	j, [4.0-2-10,0-1-0]											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.36	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.23	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.08	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S							Weight: 30 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. 	applied or 10-0-0 o 4=10-5-6, 6=10-5-6 3 (13) (13) (13) (13) (14) (10) (10) (10) (10) (10) (10) (10) (10	ed or s c 1 5 1 =-26 1 2),	 on the botto 3-06-00 tall chord and a All bearings capacity of 4 Provide met bearing plat 2, 70 lb uplif This truss is Internationa R802.10.2 a See Standa Detail for Co 	chanical connecti e capable of with ft at joint 4 and 20 designed in acc I Residential Coo und referenced st rd Industry Piggy ponnection to base lified building des	eas where will fit betw rs. be SPF No ion (by oth histanding 6 6 Ib uplift a cordance w de sections tandard AN yback Trus e truss as a	a rectangle veen the bott c.2 crushing ers) of truss t i0 lb uplift at j it joint 6. ith the 2018 is R502.11.1 <i>a</i> ISI/TPI 1. s Connection	om to toint and					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	-		olandara								
TOP CHORD	0 1-2=0/17, 2-3=-136/ 4-5=0/17	71, 3-4=-136/51,											
BOT CHORD WEBS	2-6=0/60, 4-6=0/60 3-6=-330/82												
NOTES													
 Unbalance this designed 	ced roof live loads have	been considered fo	or									CONTRACTOR OF	A DE
 Wind: AS Vasd=91n II; Exp C; cantileven right expo Truss de only. For 	SCE 7-16; Vult=115mph mph; TCDL=6.0psf; BC ; Enclosed; MWFRS (er r left and right exposed osed; Lumber DOL=1.6 esigned for wind loads ir r studs exposed to wind dard Industry Gable En	DL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an 0 plate grip DOL=1. h the plane of the tru (normal to the face	ne; id 60 uss),							-		STATE OF STATE OF NATH	

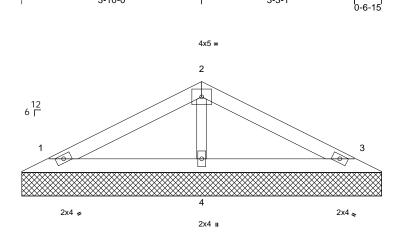
see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)

Gable studs spaced at 4-0-0 oc. 5)

This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads. PE-20-June 20,2023

GI


PE-2022042259



	HOTED ON PLANS	
1	EVELOPMENT SER	
C	LEE'S SUMMIT, MIS Wheeler Lumber, Waverly, KS - 6)6/26/2023 4:2	9:20

Truss Type	Qty	Ply	Lot 183 HM	
Valley	1	1	Job Reference (optional)	159019886
Run: 8.43 S Jan 6 2) 22 Print: 8.4	30 S Jan 62	2022 MiTek Industries, Inc. Mon Jun 19 09:17:18	Page: 1

7-1-1 3-3-1 7-8-0

7-8-0

Scale	 1.01 E

30ale = 1.24.3													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ²	18/TPI2014	CSI TC BC WB Matrix-P	0.19 0.09 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=7-8-0, Max Horiz 1=29 (LC Max Uplift 1=-35 (LC (LC 8) Max Grav 1=153 (L (LC 1)	eathing directly applied / applied or 10-0-0 oc 3=7-8-0, 4=7-8-0 : 8) C 8), 3=-40 (LC 9), 4=- C 1), 3=153 (LC 1), 4=- npression/Maximum	9 1 ^{.4} L	 on the bottor 3-06-00 tall b chord and ar All bearings capacity of 4 Provide mec bearing plate 1, 40 lb upliff This truss is International 	hanical connect capable of wit t at joint 3 and designed in ac Residential Co nd referenced	reas where e will fit betw ers. b be SPF N ction (by oth thstanding 3 4 lb uplift at cordance w ode sections	a rectangle veen the bott o.2 crushing ers) of truss 35 lb uplift at joint 4. ith the 2018 \$ R502.11.1 a	om to joint					
	Tension												

3-10-0

3-10-0

WEBS

TOP CHORD

BOT CHORD

NOTES

1) Unbalanced roof live loads have been considered for this design.

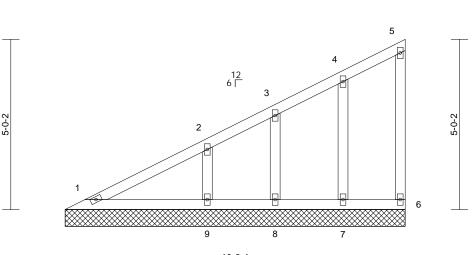
1-2=-73/41, 2-3=-73/29

1-4=-1/32, 3-4=-1/32

2-4=-198/52

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

June 20,2023



RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEVELOPMENT SERVICES LEE'S SUMMIT, MISSOURI Vicepler Lumber Vizyariy, KS -66871 06/26/2023 4:29:20

Truss Type	Qty	Ply	Lot 183 HM					
Valley	1	1	Job Reference (optional)	159019887				
Run: 8.43 S Jan 6 2022 Print: 8.430 S Jan 6 2022 MiTek Industries. Inc. Mon Jun 19 09:17:18 Page: 1								

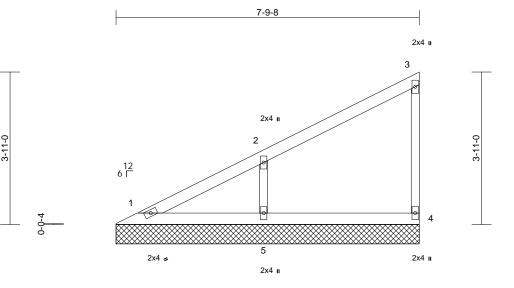
ID:yPW6e5fhjwmOBQPEgYDIJ9zhyMt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-0-4

10-0-4

Scale = 1:33.9

Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.15 0.08 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S							Weight: 37 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=10-0-4 8=10-0-4 Max Horiz 1=193 (L Max Uplift 6=-25 (LG (LC 8), 9: Max Grav 1=143 (L	/ applied or 10-0-0 oc , 6=10-0-4, 7=10-0-4 , 9=10-0-4 C 5) C 5), 7=-57 (LC 8), 8= =-98 (LC 8)	7 ed or 8 c 9 , , 1 =-37	 chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings capacity of 4 Provide mec bearing plate 98 lb upliff uplift at joint 10) This truss is International 	hanical connection e capable of withs at joint 9, 37 lb u 7. designed in acco Residential Code and referenced sta	with any ad for a liv as where vill fit betv s. be SPF No on (by oth standing 2 uplift at joi ordance w e sections	other live loa e load of 20.0 a rectangle veen the botto b.2 crushing ers) of truss t t5 lb uplift at j nt 8 and 57 lb ith the 2018 i R502.11.1 a	Opsf om oo oint o					
FORCES	(lb) - Maximum Con Tension	npression/Maximum											
TOP CHORD	1-2=-158/69, 2-3=-1 4-5=-79/48, 5-6=-45												
BOT CHORD	1-9=-66/50, 8-9=-66 6-7=-66/50												
WEBS		-101/61, 4-7=-149/67										Contra	alle
NOTES 1) Wind: ASC Vasd=91n II; Exp C; cantilever right expos	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (e left and right exposed sed; Lumber DOL=1.6	n (3-second gust) CDL=6.0psf; h=25ft; C nvelope) exterior zon ; end vertical left and 50 plate grip DOL=1.6	Cat. lie; d 50									STATE OF I	MISSOLAL


- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.

RF CONSI NOTED ON PLANS REVIEW EXELOPMENT SERVICES SUMMIT Lumber Waverly, KS - 66871, 6/2023 4:29:20

Truss Type	Qty	Ply	Lot 183 HM	
Valley	1	1	Job Reference (optional)	159019888
			2022 MiTek Industries, Inc. Mon Jun 19 09:17:18	Page: 1
ID:yPW6e5fhjwmOBG	QPEgYDIJ9zł	nyMt-RfC?Ps	B70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	

BRACING

TOP CHORD

BOT CHORD

REACTIONS (size)

Scale = 1:29.6			I						1			
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.21	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 22 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2		capacity of 8) Provide me bearing plat	are assumed to 425 psi. chanical connect ce capable of wito o uplift at joint 5.	ction (by oth thstanding 2	ers) of truss t						

7-9-8

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and Structural wood sheathing directly applied or R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc 1=7-9-8, 4=7-9-8, 5=7-9-8

Max Horiz 1=148 (LC 5) Max Uplift 4=-26 (LC 5), 5=-121 (LC 8) Max Grav 1=108 (LC 16), 4=138 (LC 1), 5=402 (LC 1) FORCES (Ib) - Maximum Compression/Maximum

bracing.

Tension TOP CHORD 1-2=-121/68, 2-3=-112/44, 3-4=-107/44 BOT CHORD 1-5=-50/38, 4-5=-50/38 WEBS 2-5=-313/174

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- 4) Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

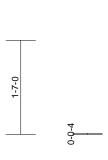
ELEASE FOR CONSTRUCTION						
AS NOTED ON PLANS REVIEW	Truss Typ	e	Qty	Ply	Lot 183 HM	
DEVELOPMENT SERVICES	Valley		1	1	Job Reference (optional)	159019889
UTERIA CONTRACT CONTR					2022 MiTek Industries, Inc. Mon Jun 19 09:17:18 sB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1
		5-	5-8			
					2x4 II	
2-9-0	0-0-4	6 T 1 2x4 =			2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
		5-	5-8			

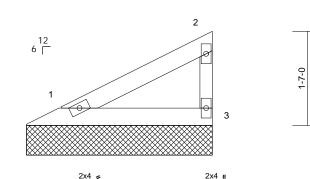
Scale = 1:23.9	
----------------	--

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.44	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.24	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-P							Weight: 14 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x3 SPF No.2 Structural wood she 5-6-0 oc purlins, exi Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 oc	LO	bearing plat 1 and 53 lb This truss is Internationa	chanical connect e capable of wit uplift at joint 3. designed in ac I Residential Co and referenced s Standard	thstanding 2 cordance w	28 lb uplift at 1 ith the 2018 3 R502.11.1 a	joint					
	(size) 1=5-5-8, 3 Max Horiz 1=99 (LC Max Uplift 1=-28 (LC Max Grav 1=214 (LC	5) 8), 3=-53 (LC 8)											
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD BOT CHORD	1-2=-91/60, 2-3=-16	7/81											

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members.7) All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.




RELEASE FOR CONSTRUCTION
AS NOTED ON PLANS REVIEW
DEXELOPMENT SERVICES
LEE'S SUMMIT, MISSOURI Wheeler Lumber, Waverly, KS - 66871.
Wheeler Lumber Waverly, KS - 66871 06/26/2023 4:29:21

Truss Type	Qty	Ply	Lot 183 HM	
Valley	1	1	Job Reference (optional)	159019890
Run: 8.43 S Jan 6 2)22 Print: 8.4	30 S Jan 62	2022 MiTek Industries, Inc. Mon Jun 19 09:17:18	Page: 1

2x4 II

3-1-8

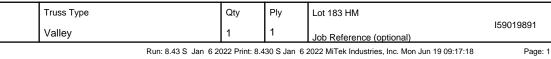
3-1-8

Scale = 1:19.4													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-P							Weight: 8 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she	athing directly appli	8) 9)	bearing pla 1 and 27 lb This truss is Internationa	chanical connec te capable of with uplift at joint 3. s designed in acc al Residential Co and referenced s	hstanding 1 cordance wi de sections	4 lb uplift at j th the 2018 R502.11.1 a	joint					

ΤС 3-2-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 1=3-1-8, 3=3-1-8 Max Horiz 1=51 (LC 5) Max Uplift 1=-14 (LC 8), 3=-27 (LC 8) Max Grav 1=109 (LC 1), 3=109 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-46/31, 2-3=-85/41 BOT CHORD 1-3=-17/13

NOTES


- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- 4) Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 crushing 7) capacity of 425 psi.

LOAD CASE(S) Standard

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

RELEASE FOR CONSTRUCTION				-	
AS NOTED ON PLANS REVIEW	Truss Typ	be	Qty	Ply	Lot 183 HM
DEXELOPMENT SERVICES	Valley		1	1	Job Reference
Wheeler Lumber, Waverly, KS-66871. 06/26/2023 4:29:21		Run: 8.43 S Jan 6 2 ID:yPW6e5fhjwmOB0			
		4-2-14		I	7-11-12
		4-2-14			3-8-15

4x5 = 2

L8w3uITXbGKWrCDoi7J4zJC?f

3

2x4 💊

12 7 Г 4 2x4 🍬 2x4 II 8-5-11

Scale = 1:26.8

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.26	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.12	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.04	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2	18/TPI2014	Matrix-P							Weight: 21 lb	FT = 10%
LUMBER				8) All bearings	are assumed t	o be SPF N	0.2 crushing						
TOP CHORD	2x4 SPF No.2			capacity of 4	25 psi.		0						
BOT CHORD	2x4 SPF No.2			9) Provide med	hanical conne	ction (by oth	ers) of truss t	o					
OTHERS	2x3 SPF No.2			bearing plate	e capable of wi	thstanding 4	11 lb uplift at j	oint					
BRACING				1 and 48 lb (uplift at joint 3.								
TOP CHORD	Structural wood she	athing directly applie	ed or	10) This truss is	designed in ad	cordance w	ith the 2018						
	6-0-0 oc purlins.	3 ,		International	Residential Co	ode sections	s R502.11.1 a	nd					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	С	R802.10.2 a	nd referenced	standard Al	NSI/TPI 1.						
	bracing.			LOAD CASE(S)	Standard								
REACTIONS	(size) 1=8-5-11,	3=8-5-11, 4=8-5-11											
	Max Horiz 1=57 (LC	5)											
	Max Uplift 1=-41 (LC	28), 3=-48 (LC 9)											
	Max Grav 1=182 (L0	C 1), 3=182 (LC 1), 4	4=308										
	(LC 1)												
FORCES	(lb) - Maximum Corr	pression/Maximum											
	Tension												
TOP CHORD	1-2=-103/54, 2-3=-9	9/39											
BOT CHORD	1-4=-11/47, 3-4=-11	/47											
WEBS	2-4=-214/55												
NOTES													

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 2) II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2-2-3

0-0-4

2-5-15

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

RELEASE FOR CONSTRUCTIO	N
AS NOTED ON PLANS REVIEW	1
DEXELOPMENT SERVICES	
Under Waverly, KS - 66871, Wheeler Lumber, Waverly, KS - 66871, 06/26/2023 4:29:21	

1-2-3

0-0-4

1-5-15

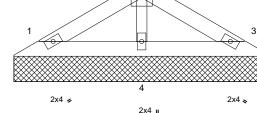
Truss Type	Qty	Ply	Lot 183 HM	
Valley	1	1	Job Reference (optional)	159019892

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries, Inc. Mon Jun 19 09:17:19 ID:yPW6e5fhjwmOBQPEgYDIJ9zhyMt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-6-10

2-0-6

5-0-9


0-5-15

Page: 1

4x5 = 2 12 7 ┌

2-6-5

2-6-5

5-0-9

Scale = 1:22.7

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.07 0.04 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 12 lb	GRIP 197/144 FT = 10%
	5-1-7 oc purlins. Rigid ceiling directly bracing.	28), 3=-26 (LC 9)	capacity of 9) Provide me bearing pla 1 and 26 lb 10) This truss i Internationa R802.10.2 LOAD CASE(S	chanical connection te capable of withsta uplift at joint 3. s designed in accord al Residential Code and referenced stan	n (by oth anding 2 dance w sections	ers) of truss t 22 lb uplift at j ith the 2018 5 R502.11.1 a	oint					
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Maximum Corr Tension 1-2=-56/29, 2-3=-54 1-4=-6/26, 3-4=-6/26 2-4=-116/30	/21										

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 2) II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

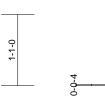
5) Gable studs spaced at 4-0-0 oc.

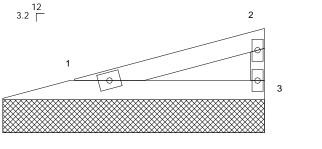
This truss has been designed for a 10.0 psf bottom 6)

chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


June 20,2023



RELEASE FOR CONSTRUCTION
AS NOTED ON PLANS REVIEW
DEXELOPMENT SERVICES
LEE'S SUMMIT, MISSOURI Wheeler Lumber, Waverly, KS - 66871 06/26/2023 4:29:21

Truss Type	Qty	Ply	Lot 183 HM	
Valley	1	1	Job Reference (optional)	159019893
Run: 8.43 S Jan 6 20	022 Print: 8.4	30 S Jan 62	2022 MiTek Industries, Inc. Mon Jun 19 09:17:19	Page: 1

2x4 🛛

3x4 =

3-11-11

Scale =	= 1:17.5
---------	----------

TOP CHORD

BOT CHORD

REACTIONS

Scale = 1:17.5												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.13	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 8 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING												

R802.10.2 and referenced standard ANSI/TPI 1. Structural wood sheathing directly applied or

LOAD CASE(S) Standard Rigid ceiling directly applied or 10-0-0 oc

ILE/IO HOILO	(0120)	1-0 11 11, 0-0 11 11
	Max Horiz	1=33 (LC 5)
	Max Uplift	1=-21 (LC 4), 3=-25 (LC 8)
	Max Grav	1=125 (LC 1), 3=125 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-30/2	0, 2-3=-97/42
BOT CHORD	1-3=-11/8	
NOTES		
1) Wind: AS	CE 7-16; Vu	lt=115mph (3-second gust)
		CONAL DODI CONAL & OFHIC

bracing.

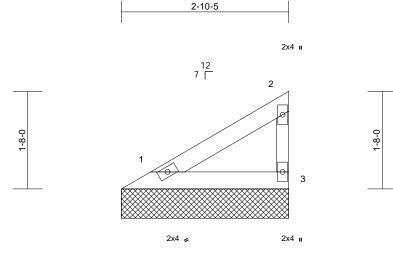
(size)

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

4-0-10 oc purlins, except end verticals.

1=3-11-11, 3=3-11-11

- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- 4) Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 crushing 7) capacity of 425 psi.



June 20,2023

RF	EASE FOR CONST	PLICTION	
	NOTED ON PLANS		
	EVELOPMENT SER	VIÇES	
	FE'S SHMMIT MIS	SOHRI	-
6	Wheeler Lumber, Waverly, KS -	66871.	
U	16/26/2023 4:2	29:22	

	Truss Type	Qty	Ply	Lot 183 HM	
	Valley	1	1	Job Reference (optional)	159019894
Run: 8.43 \$ Jan 6 2022 Print: 8.430 \$ Jan 6 2022 MiTek Industries, Inc. Mon Jun 19 09:17:19 Page: 1					

2-10-5

Scale =	1:19.7
---------	--------

Scale = 1.19.7												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 7 lb	FT = 10%
	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 2-10-5 oc purlins, e Rigid ceiling directly bracing. (size) 1=2-10-5, Max Horiz 1=51 (LC Max Grav 1=100 (LC Max Grav 1=100 (LC	xcept end verticals. applied or 10-0-0 or 3=2-10-5 5) 5 8), 3=-26 (LC 8)	bearing pla 1 and 26 lk 9) This truss Internation R802.10.2 LOAD CASE(\$	echanical connect te capable of wit uplift at joint 3. s designed in ac al Residential Co and referenced s S Standard	hstanding 1 cordance woode sections	1 lb uplift at j ith the 2018 s R502.11.1 a	joint					
FORCES	(lb) - Maximum Com	,, , , ,										

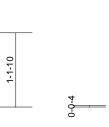
Tension TOP CHORD 1-2=-48/

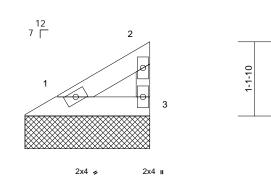
 TOP CHORD
 1-2=-48/39, 2-3=-83/40

 BOT CHORD
 1-3=-18/14

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 crushing capacity of 425 psi.




RELEASE FOR CONST	RUCTION
AS NOTED ON PLANS	REVIEW
DEVELOPMENT SER	VICES
FE'S SHMMIT MIS	SOLIRI
Wheeler Lumber Waverly, KS - 006/26/2023 4:2	29:22


	Truss Type	Qty	Lot 183 HM		
	Valley	1	1	Job Reference (optional)	159019895
	Page: 1				

2x4 II

1-10-14

Scale =	1:17.6
---------	--------

Scale = 1.17.0												
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.03	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.01	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 4 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 1-11-5 oc purlins, e Rigid ceiling directly bracing. (size) 1=1-10-14	xcept end verticals.	bearing pla and 16 b 9) This truss Internation R802.10.2 LOAD CASE(echanical connec tate capable of witi uplift at joint 3. is designed in ac al Residential Cc and referenced s 5) Standard	hstanding 6 cordance woode sections	b lb uplift at jo ith the 2018 5 R502.11.1 a	oint 1					
	Max Horiz 1=30 (LC Max Uplift 1=-6 (LC Max Grav 1=58 (LC (lb) - Maximum Com	8), 3=-16 (LC 8) 1), 3=61 (LC 15)										

	Tension
TOP CHORD	1-2=-28/23, 2-3=-48/23

BOT CHORD 1-3=-11/8

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- 4) Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. All bearings are assumed to be SPF No.2 crushing 7) capacity of 425 psi.

EASE FOR CONSTRUCTION RF **NOTED ON PLANS** EXELOPMENT SE <mark>'S SUMMIT</mark> ler Lumber, Wave 26/2023

ISREVIEW	Truss Type	Qty	Ply	Lot 183 HM	
ERVICES	Valley	1	1	Job Reference (optional)	159019896
29:22				2022 MiTek Industries, Inc. Mon Jun 19 09:17:19 B70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1
F	4-10-6 4-10-6		<u>13-6-2</u> 8-7-12	14-0-1 	
	4x5 II				
5.4-4 1 2.0-0 4-4-7 1 2.0-0 4-4-7 1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	2 3x4 = 2 x4 = 2 x4 x4 = 2 x4 x4 x4 x4 x4 x4 x4 x4 x4 x4 x4 x4 x4		2x4 II 3 5 2x4 II 14-0-1	4 3x4s	

		Г	4-10-6			9-	·1-11					
Scale = 1:40.9				_								
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.16	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.08	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weiaht: 39 lb	FT = 10%

BOT CHORD 2x4 SPF No.2 *Except* 2-6:2x3 SPF No.2 2x3 SPF No.2 OTHERS BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. **REACTIONS** (size) 1=14-0-1, 4=14-0-1, 5=14-0-1, 6=14-0-1, 7=14-0-1 Max Horiz 1=-147 (LC 9) 1=-91 (LC 9), 4=-56 (LC 9), 5=-159 Max Uplift (LC 9), 7=-7 (LC 5) Max Grav 1=190 (LC 21), 4=167 (LC 16), 5=482 (LC 16), 6=56 (LC 3), 7=341 (LC 15) FORCES (Ib) - Maximum Compression/Maximum

Tension TOP CHORD 1-2=-135/204, 2-3=-116/201, 3-4=-67/108 BOT CHORD 1-7=-6/26, 6-7=0/0, 2-7=-284/31, 5-6=-5/2,

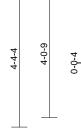
4-5=-5/2 WEBS 3-5=-365/212

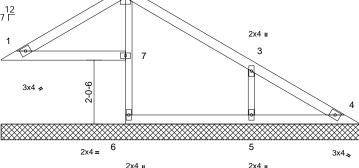
NOTES

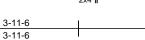
- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- Gable studs spaced at 4-0-0 oc. 5)
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 crushing 8) capacity of 425 psi.
- 9) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 91 lb uplift at joint 1, 56 lb uplift at joint 4, 7 lb uplift at joint 7 and 159 lb uplift at joint 5.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard




MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017


RF CONSI NOTED ON PLANS REVIEW Δ EXELOPMENT SER VICES Waverly, KS - 66871, 23 4:29:23

	_			
Truss Type	Qty	Ply	Lot 183 HM	
Valley	1	1	Job Reference (optional)	159019897
			2022 MiTek Industries, Inc. Mon Jun 19 09:17:20 B70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1
3-11-6 3-11-6		<u>10-10-9</u> 6-11-3	11-4-9 	
4x5 II 2				
712				

11-4-9

Scale = 1:36.6		3-11-6	7-5-2									
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	n/a	-	n/a	999	-	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.05	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 31 lb	FT = 10%

TOP CHORD	2x4 SPF I	No.2	
BOT CHORD	2x4 SPF N	No.2 *Except* 2-6:2x3 SPF No.2	
OTHERS	2x3 SPF N	No.2	
BRACING			8
TOP CHORD	Structural	wood sheathing directly applied or	
	6-0-0 oc p	ourlins.	ę
BOT CHORD	Rigid ceili	ing directly applied or 6-0-0 oc	
	bracing.		
REACTIONS	(size)	1=11-4-9, 4=11-4-9, 5=11-4-9,	
	()	6=11-4-9, 7=11-4-9	
	Max Horiz	1=-118 (LC 9)	
	Max Uplift	1=-68 (LC 9), 4=-28 (LC 9), 5=-126	
		(LC 9)	
	Max Grav	1=152 (LC 21), 4=89 (LC 16),	
		5=383 (LC 16), 6=65 (LC 3), 7=294	

(LC 1) FORCES (Ib) - Maximum Compression/Maximum

	Tension
TOP CHORD	1-2=-106/155, 2-3=-100/147, 3-4=-28/68
BOT CHORD	1-7=-4/25, 6-7=0/0, 2-7=-250/15, 5-6=-1/4,
	4-5=-1/4
WEBS	3-5=-295/173

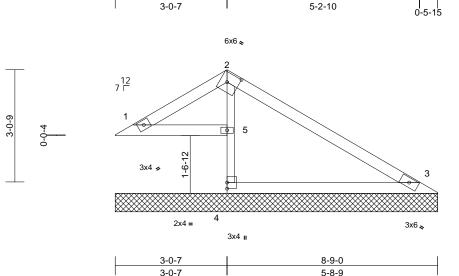
NOTES

- 1) Unbalanced roof live loads have been considered for this design
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- Gable studs spaced at 4-0-0 oc. 5)
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SPF No.2 crushing 8) capacity of 425 psi.
- 9) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 68 lb uplift at joint 1, 28 lb uplift at joint 4 and 126 lb uplift at joint 5.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

OF MISSO NATHANIEL FOX NUMBER PE-2022042259 SSIONAL E June 20,2023

2-0-6


RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEXELOPMENT SERVICES LEE'S SUMMIT, MISSOURI Weeker Lumber Wavery, KS - 68871 06/26/2023 4:29:23

	Truss Type	Qty	Ply	Lot 183 HM			
	Valley	1	1	Job Reference (optional)	159019898		
Run: 8.43 S. Jan. 6.2022 Print: 8.430 S. Jan. 6.2022 MiTek Industries. Inc. Mon. Jun 19.09:17:20							

8-3-1

ID:yPW6e5fhjwmOBQPEgYDIJ9zhyMt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-9-0

3-0-7

Plate Offsets (X, Y): [2:0-3-11,0-3-0]

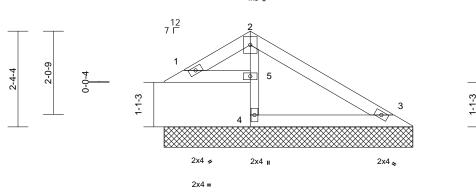
3-4-4

		.,					-							
Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.26	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.00	Horiz(TL)	0.00	4	n/a	n/a		
BCDL		10.0	Code	IRC2	018/TPI2014	Matrix-R		-					Weight: 22 lb	FT = 10%
UMBER						are assumed to	o be SPF No	o.2 crushing						
FOP CHORD	2x4 SPF No.				capacity of 4									
BOT CHORD	2x4 SPF No.:	2 *Exce	pt* 2-4:2x3 SPF No	.2		pint(s) 5 conside								
BRACING						TPI 1 angle to good to a contract the second								
TOP CHORD			athing directly applie	ed or	10) Provide med				0					
BOT CHORD	6-0-0 oc purl		applied or 10-0-0 or	<u> </u>		e capable of wi								
BOT CHORD	bracing.	unecuy	applied of 10-0-0 of	C		t at joint 3 and								
REACTIONS	•	8-9-0.3	3=8-9-0, 4=8-9-0, 5=	-8-9-0	11) Beveled plat			de full bearing	g					
	Max Horiz 1=	-90 (LC	; 9)			truss chord at								
	Max Uplift 1=	-22 (LC	9), 3=-61 (LC 9), 5	=-35	12) This truss is	designed in ac			nd					
		C 8)				nd referenced			nu					
			C 21), 3=219 (LC 16 C 3), 5=320 (LC 1)	i),	LOAD CASE(S)									
FORCES	(lb) - Maximu Tension	ım Com	pression/Maximum											
OP CHORD	1-2=-73/75, 2	2-3=-13	4/82											
BOT CHORD	1-5=0/52, 4-5	5=0/0, 2	-5=-304/45, 3-4=0/5	51										
NOTES														
1) Unbalance	ed roof live load	ds have	been considered for	r										
this desig														
,	,		(3-second gust)	. .										
			DL=6.0psf; h=25ft; (velope) exterior zor										South	aller
			; end vertical left an										E.F. OF	MISS
			0 plate grip DOL=1.0									4	TATE OF	NSON
			3p = 00 =									Q	N	N 6 V

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

ATHANIEL FOX PE-2022042259 June 20,2023

> MITEK° 16023 Swingley Ridge Rd Chesterfield, MO 63017


RF NOTED ON PLANS REVIEW 46649PMENT SERVICES Waverly, KS - 66871,)23 4:29:23

	Truss Type	Qty	Ply	Lot 183 HM	
	Valley	1	1	Job Reference (optional)	159019899
	Page: 1				

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries, Inc. Mon Jun 19 09:17:20 ID:yPW6e5fhjwmOBQPEgYDIJ9zhyMt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:28.3

FORCES

NOTES

1)

2)

3)

4) 5)

6)

7)

TOP CHORD

BOT CHORD

this design.

(LC 8)

1-2=-48/49, 2-3=-88/56

Unbalanced roof live loads have been considered for

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and

right exposed; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss

see Standard Industry Gable End Details as applicable,

or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.

only. For studs exposed to wind (normal to the face),

This truss has been designed for a 10.0 psf bottom

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf

Wind: ASCE 7-16; Vult=115mph (3-second gust)

(LC 3), 5=210 (LC 1)

(Ib) - Maximum Compression/Maximum

1-5=0/32, 4-5=0/0, 2-5=-200/28, 3-4=0/30

Max Grav

Tension

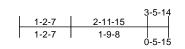
Gable studs spaced at 4-0-0 oc.

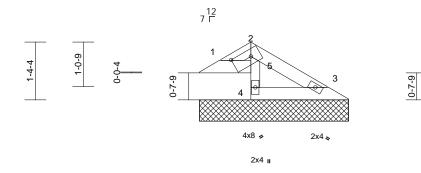
chord and any other members.

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.13	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.11	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.00	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018	/TPI2014	Matrix-R							Weight: 15 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 *Exce Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	athing directly applie	ed or 10) c	capacity of 4 Bearing at jo using ANSI/ designer sho Provide mec bearing plate 1, 40 lb uplif	are assumed to 25 psi. int(s) 5 conside TPI 1 angle to g build verify capa chanical connecc e capable of with t at joint 3 and 2 e or shim requi	ers parallel f grain formula city of bear tion (by oth hstanding 1 21 lb uplift a	o grain value a. Building ng surface. ers) of truss t 4 Ib uplift at j t joint 5.	o oint					
	(size) 1=6-1-7, 3 Max Horiz 1=-61 (LC Max Uplift 1=-14 (LC	,	^ ۱-۱-۵ (12	surface with This truss is	truss chord at j designed in ac Residential Co	oint(s) ['] 1. cordance w	ith the 2018	0					

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 1=73 (LC 21), 3=146 (LC 16), 4=73

LOAD CASE(S) Standard



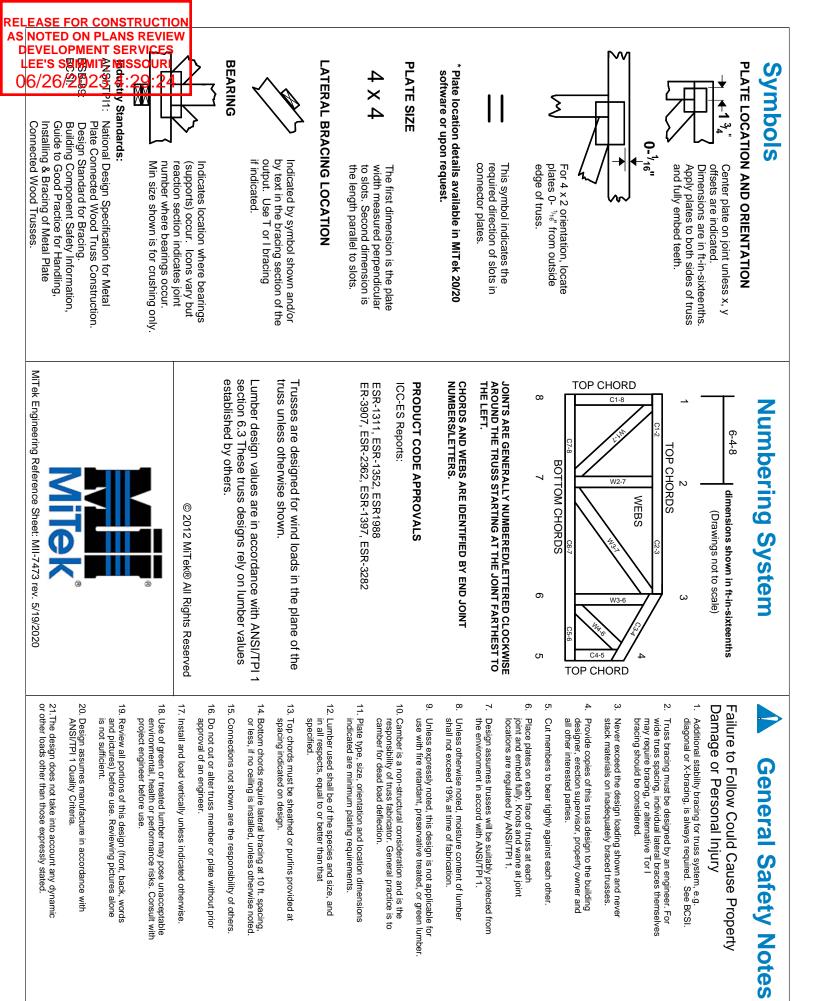

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

RELEASE FOR CONST	RUCTION
AS NOTED ON PLANS	REVIEW
DEVELOPMENT SER	VIGES
FF'S SHMMIT MIS	
Wheeler Lumber, Waverly, KS - 6 06/26/2023 4:2	9:23

Truss Type	Qty	Ply	Lot 183 HM	
Valley	1	1	Job Reference (optional)	159019900

Run: 8,43 S Jan 6 2022 Print: 8,430 S Jan 6 2022 MiTek Industries, Inc. Mon Jun 19 09:17:20 ID:yPW6e5fhjwmOBQPEgYDIJ9zhyMt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:27


Plate Offsets (X, Y): [1:0-5-5,0-1-15]

	s (x, 1): [1:0 0 0,0 1 10											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.03	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TF	Pl2014 Matrix-R	-				-		Weight: 8 lb	FT = 10%
LUMBER			8) Al	l bearings are assumed to	be SPF N	o.2 crushing						
TOP CHORE	D 2x4 SPF No.2			pacity of 425 psi.								
BOT CHORE	D 2x4 SPF No.2 *Exce	ept* 2-4:2x3 SPF No		ovide mechanical connecti								
BRACING				aring plate capable of with			int					
TOP CHORE		athing directly appli		20 lb uplift at joint 3 and 4 eveled plate or shim require		,	~					
	3-6-12 oc purlins.		,	rface with truss chord at jo		ue fuil bearing	y					
BOT CHORE	0 0 7	applied or 6-0-0 oc	,	his truss is designed in acc	· · ·	ith the 2018						
DEACTIONS	bracing.		Íln	ternational Residential Cod			ind					
REACTIONS	()	3=3-5-14, 4=3-5-14	4 R	302.10.2 and referenced st	tandard AN	ISI/TPI 1.						
	Max Horiz 1=-33 (LC Max Uplift 1=-7 (LC			CASE(S) Standard								
	9)	0), 3=-20 (LC 3), 4-	4 (LO	.,								
	Max Grav 1=36 (LC	21), 3=75 (LC 16),	4=116									
	(LC 1)											
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORE	Tension	100										
BOT CHORE			0/16									
NOTES	D 1-3=0/24, 4-3=-30/1	0, 2-3=-00/14, 3-4=	0/10									
	ced roof live loads have	been considered fo	Nr.									
this desi		been considered ic	7									
	SCE 7-16; Vult=115mph	(3-second gust)										
	1mph; TCDL=6.0psf; BC		Cat.								000	an
	; Enclosed; MWFRS (er										TATE OF	MIG
	er left and right exposed									9	BIE	N.OSCIM
	osed; Lumber DOL=1.6									B	N	NSY
	esigned for wind loads in									B	S/ NATH	ANIEL YC Y
	or studs exposed to wind ndard Industry Gable En-								4	D.	A AFO	X
	It qualified building desig									11	LH.	
	equires continuous botto									W.	T IK	4.19
,	tuds spaced at 4-0-0 oc.									M-	MUUM	KER SAD

- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6)
- chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

