

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Re: P230110-P230110-02

Roof

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Premier Building Supply (Springhill, KS)20300 W 207th Street.

Pages or sheets covered by this seal: I58211833 thru I58211833

My license renewal date for the state of Missouri is December 31, 2023.

Missouri COA: Engineering 001193

May 8,2023

Sevier, Scott

,Engineer

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job Truss Truss Type Qtv Ply Roof 158211833 P230110-P230110-02 B4 6 Piggyback Base Job Reference (optional) Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083 Run: 8.63 E Nov 21 2022 Print: 8.630 E Nov 21 2022 MiTek Industries, Inc. Mon May 08 11:07:59 Page: 1 ID:WcRfdZXs?bG3GRhQ2QHdPbz1SCN-ASYN7TKLoWjtMwWWCXz6xl8RYVWVaBDn1EYRzyzlaWU 9-3-15 17-7-4 22-8-7 27-9-10 33-6-7 5-1-3 1-1-15 8-2-0 8-3-4 5-1-3 5-8-13 MODIFY TRUSS PROFILE AS SHOWN 5x5= 3x4= 5x5= 5 20 21 ⊠ 7 LUMBER AND CONNECTOR PLATES (SHOWN DASHED) TO BE CUT CLEANLY AND ACCURATELY AND THE REMAINING PLATE(S) 22 MUST BE FULLY EMBEDDED AND UNDISTURBED. 5x5≈ _12 5□ 3x4 **=** 4x4 = 10-0-0 18 5x5= 4x12= 2 24"X60' 3-1-4 2-8-0 14 13 12 11 10 3x4 ı 3x6= 3x4= 3x4 II 5x5= 3x4= 3x8= 4x4= 4x6= ATTACH 1/2" PLYWOOD OR OSB GUSSET (15/32" RATED SHEATHING 32/16 EXP 1) TO EACH FACE OF TRUSS WITH (0.131" X 2.5" MIN.) NAILS PER THE FOLLOWING NAIL SCHEDULE: INSTALL 2 X 4 SPF/DF/SP NO.2 CUT TO FIT TIGHT. 2 X 4'S - 3 ROWS: SPACED @ 4" O.C. NAILS TO BE DRIVEN FROM BOTH FACES. STAGGER SPACING FROM FRONT TO BACK FACE FOR A NET 2" O.C. SPACING IN EACH COVERED TRUSS MEMBER. USE 2" MEMBER END DISTANCE. 1-1-15 9-3-15 17-6-0 22-8-7 27-10-14 33-6-7 Scale = 1:67.5 8-2-0 8-2-0 5-2-7 5-7-9 Plate Offsets (X, Y): [1:0-2-7,0-2-5], [3:0-2-0,Edge], [5:0-2-8,0-2-7], [10:0-2-8,0-2-0], [15:0-2-8,0-1-8], [16:0-2-0,0-1-8] Loading 2-0-0 CSI DEFL in I/defl L/d **PLATES** GRIP (psf) Spacing (loc) TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.81 Vert(LL) -0.10 13-15 >999 240 MT20 197/144 **TCDL** 10.0 Lumber DOL 1.15 BC 0.79 Vert(CT) -0.2513-15 >999 180

LUMBER

BCLL

BCDL

2x4 SP 1650F 1.5E *Except* 5-7,7-8:2x4 SP TOP CHORD No.2

Code

Rep Stress Incr

NO

IRC2018/TPI2014

BOT CHORD 2x4 SP No.2

2x3 SPF No.2 *Except* 9-8:2x4 SP No.2 WFBS

BRACING

TOP CHORD Sheathed or 4-5-0 oc purlins, except end verticals, and 2-0-0 oc purlins (4-10-11 max.):

0.0

10.0

5-7. Rigid ceiling directly applied or 8-6-11 oc

BOT CHORD

bracing 4-13, 6-11, 7-10, 8-9

WEBS 1 Row at midpt

REACTIONS (lb/size) 9=1498/0-3-8, 17=1498/ Mechanical

Max Horiz 17=314 (LC 9)

Max Uplift 9=-212 (LC 9), 17=-212 (LC 12)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250

(lb) or less except when shown.

TOP CHORD 1-17=-1549/154, 1-2=-635/88,

2-18=-1934/278, 3-18=-1828/279, 3-4=-1736/299, 4-19=-1546/294,

5-19=-1420/328, 5-20=-1309/337, 6-20=-1309/337, 6-21=-1137/327,

7-21=-1138/327, 7-22=-723/263,

8-22=-859/251, 8-9=-1449/299

16-17=-347/283, 15-16=-407/682

14-15=-466/1691, 13-14=-466/1691, 12-13=-294/1137, 11-12=-294/1137,

10-11=-211/735

WFBS 1-16=-274/1639, 2-16=-1351/368,

2-15=-98/1080, 4-13=-490/231, 6-13=-130/386, 6-11=-715/208,

7-11=-179/906, 7-10=-840/268,

8-10=-228/1195

NOTES

BOT CHORD

Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-4 to 5-1-4, Interior (1) 5-1-4 to 17-7-4, Exterior(2R) 17-7-4 to 24-8-1, Interior (1) 24-8-1 to 27-9-10, Exterior(2E) 27-9-10 to 33-4-11 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Horz(CT)

0.05

9

n/a

Weight: 187 lb

FT = 20%

WB

Matrix-SH

- Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Refer to girder(s) for truss to truss connections.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

May 8,2023

Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

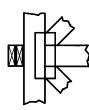
For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek 20/20 software or upon request.

PLATE SIZE

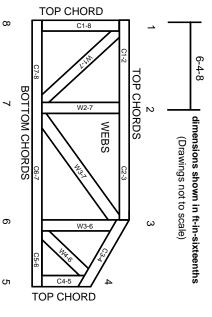
4 × 4


The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING


Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur. Min size shown is for crushing only

Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction. Design Standard for Bracing.
Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-89:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.
- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.

Ģ

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- 20. Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
 21.The design does not take into account any dynamic or other loads other than those expressly stated.