

RELEASE FOR CONSTRUCTION AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES LEE'S SUMMIT, MISSOURI 05/08/2023

RE: P230180-01 - Roof - Osage Lot 55 Site Information: Project Customer: Clover & Hive Project Name: Twin Cobalt Lot/Block: 55 Subdivision: Osage Model: Address: 2139/2141 SW Osage Dr City: Lee's Summit Single refine Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Cotto: RC2018/TP12014 Wind Code: ASCE 7-16 Wind Speed: 115 mph Roof Load: 45.0 paf Mean Roof Height (feet): 35 State: MO Sealt/ Mean Roof Height (feet): 35 No. Sealt/ 157758176 V11 157758176 V12 157758176 V12 157758176 V13 157758176 V12 157758176 V13 157758176 V13 147423 157758187 V23 147423 157758187 V13 147423 157758187 V23 147423 157758187 V13 147423 157758187 V13 147423 157758187 V13 147423 157758187 V13 147423 157758187 V13 147423 157758187 V13 147423 157758187 V13 147423 157758187 V13 147423 157758187 V13 147423 157758187 V23 14742		
No. Seal# Truss Name Date No. Seal# Truss Name Date 1 57758142 A1 4/14/23 35 157758176 V12 4/14/23 2 157758143 A3 4/14/23 35 157758177 V13 4/14/23 3 157758145 A4 4/14/23 33 157758177 V13 4/14/23 4 157758146 A6 4/14/23 33 157758180 V16 4/14/23 6 157758143 A7 4/14/23 40 157758180 V17 4/14/23 7 157758143 A7 4/14/23 41 157758180 V11 4/14/23 8 157758150 1 4/14/23 44 157758186 4/14/23 1 157758153 1 4/14/23 44 157758186 4/14/23 1 157758163 11 4/14/23 4/14/23 4/14/23 1 157758163 12 4/14/23 4/14/23 12 157758163 13 4/14/23 4/14/23	Site Information:Project Customer: Clover & HiveLot/Block: 55SubdivisionModel:Address: 2139/2141 SW Osage DrCity: Lee's SummitCity: Lee's SummitState: MOGeneral Truss Engineering Criteria & Design Loads (Drawings Show Special Loading Conditions):Design Code: IRC2018/TPI2014Wind Code: ASCE 7-16Wind Speed: 115 mphRoof Load: 45.0 psf	16023 Swingley Ridge Rd Cobalt Chesterfield, MO 63017 Osage 314-434-1200 ndividual Truss Design esign Program: MiTek 20/20 8.6 esign Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16 loor Load: N/A psf
MiTek USA, Inc. under my direct supervision based on the parameters provided by Premier Building Supply (Springhill, KS)20300 W 207th Street. Truss Design Engineer's Name: Sevier, Scott My license renewal date for the state of Missouri is December 31, 2023. IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2. April 14,2023	No.Seal#Truss NameDateNo.Seal#1157758142A1 $4/14/23$ 351577581762157758143A2 $4/14/23$ 361577581763157758144A3 $4/14/23$ 371577581784157758145A4 $4/14/23$ 381577581785157758146A5 $4/14/23$ 391577581806157758147A6 $4/14/23$ 401577581817157758148A7 $4/14/23$ 411577581818157758149C1 $4/14/23$ 411577581839157758150C2 $4/14/23$ 4315775818410157758151C3 $4/14/23$ 4415775818511157758152CJ1 $4/14/23$ 4515775818612157758153D1 $4/14/23$ 4615775818613157758154D2 $4/14/23$ 4615775818713157758157E3 $4/14/23$ 4615775818714157758158E5 $4/14/23$ 4615775818715157758161J3 $4/14/23$ 4615775818720157758161J3 $4/14/23$ 474721157758162PB1 $4/14/23$ 4722157758163PB2 $4/14/23$ 4723157758167V3 $4/14/23$ 24157758167V3 $4/14/23$ 25157758167 <t< td=""><td>Truss Name Date V12 4/14/23 V13 4/14/23 V14 4/14/23 V15 4/14/23 V16 4/14/23 V17 4/14/23</td></t<>	Truss Name Date V12 4/14/23 V13 4/14/23 V14 4/14/23 V15 4/14/23 V16 4/14/23 V17 4/14/23
1 of 1 Sevier Scott	MiTek USA, Inc. under my direct supervision based on the p provided by Premier Building Supply (Springhill, KS)20300 Truss Design Engineer's Name: Sevier, Scott My license renewal date for the state of Missouri is Decembe IMPORTANT NOTE: The seal on these truss component designs is that the engineer named is licensed in the jurisdiction(s) identified and that designs comply with ANSI/TPI 1. These designs are based upon parameter shown (e.g., loads, supports, dimensions, shapes and design codes), which given to MiTek or TRENCO. Any project specific information included is for TRENCO's customers file reference purpose only, and was not taken into a preparation of these designs. MiTek or TRENCO has not independently we applicability of the design parameters or the designs for any particular build the building designer should verify applicability of design parameters and p incorporate these designs into the overall building design per ANSI/TPI 1, C	V 207th Street. 31, 2023. a certification he rs were MiTek's or cocount in the ified the ng. Before use, operly banter 2

Sevier, Scott

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 55	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 157758142
P230180-01	A1	Piggyback Base Supported Gable	2	1	Job Reference (optional	
Premier Building Supply ((Springhill, KS), Spring Hills,				19 2022 MiTek Industries, Inc. ??PsB70Hq3NSgPqnL8w3uITX	
-0-11- - 0-11-			<u>2-7-3</u>)-2-6		<u> </u>	51-3-8 55-11-0 48-3-4 55-0-0
7 . 9 9 9 9		3x6= $5^{\circ}=$ 12 ¹³ 14 15 $5^{\circ}=$ 12 ¹³ 15 12 ¹³ 15 $5^{\circ}=$ 12 ¹³ 15 $5^{\circ}=$ 12 ¹³ 15 12 ¹³ 15 $5^{\circ}=$ 12 ¹³ 15 $5^{\circ}=$ 12 ¹³ 15 12 ¹³ 15 $5^{\circ}=$ 12 ¹³	16 17	3x6= 18 19 ₂₀	~	3-0-4

Scale = 1:98.4

Plate Offsets (Plate Offsets (X, Y): [2:0-2-12,0-1-12], [2:2-6-12,0-1-8], [5:0-2-12,Edge], [13:0-3-0,Edge], [19:0-3-0,Edge], [27:0-2-12,Edge], [35:0-2-12,Edge], [52:0-1-8,0-1-8]												
Loading TCLL (roof) TCDL BCLL BCDL	2	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-	0.90 0.93 0.29 SH	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.07 -0.66 0.11 0.69	(loc) 61 31 36 31	l/defl >917 >136 n/a >131	90 n/a	PLATES MT18HS MT20 Weight: 295 lb	GRIP 244/190 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP No.2 * 2x3 SPF No.2 2x3 SPF No.2 Left 2x4 SP N Sheathed or 4 2-0-0 oc purlin	2 4-4-4 o ns (6-2 directly cept: cing: 39 ing: 59 ing: 58 icing: 5 acing: 3 ing: 37 icing: 35 pt	c purlins, except -4 max.): 13-19. applied or 6-0-0 oc 4-35 -60 -59 7-58 38-39 -38 6-37 -36. 16-47, 17-46, 18-45, 20-43, 15-48, 14-49,			$\begin{array}{c} 2=-136 \ (LC \ 26),\\ 37=-226 \ (LC \ 26),\\ 39=-44 \ (LC \ 13),\\ 41=-49 \ (LC \ 13),\\ 43=-55 \ (LC \ 9),\\ 46=-42 \ (LC \ 8),\\ 446=-42 \ (LC \ 8),\\ 448=-42 \ (LC \ 8),\\ 448=-42 \ (LC \ 8),\\ 53=-49 \ (LC \ 12),\\ 55=-75 \ (LC \ 2),\\ 57=-53 \ (LC \ 12),\\ 59=-103 \ (LC \ 12),\\ 59=-103 \ (LC \ 12),\\ 2=165 \ (LC \ 25),\\ 37=106 \ (LC \ 9),\\ 39=151 \ (LC \ 1),\\ 41=176 \ (LC \ 1),\\ 43=482 \ (LC \ 1),\\ 46=156 \ (LC \ 25),\\ 48=154 \ (LC \ 25),\\ 48=154 \ (LC \ 25),\\ 53=177 \ (LC \ 1),\\ 55=175 \ (LC \ 25),\\ \end{array}$	I, 38=-71 (LC 40=-51 (LC 5=-52 (LC 9 5=-52 (LC 9 9=-51 (LC 9 9=-51 (LC 9 9=-51 (LC 9 1=-57 (LC 1 56=-49 (LC 56=-49 (LC 56=-49 (LC 56=-721 (LC 38=273 (LC 40=180 (LC 47=185 (LC 49=348 (LC 49=348 (LC 54=175 (LC	C (13), (13), (13), (13), (13), (13), (13), (13), (13), (12),	TOP CI	HORD	4-6=-' 7-8=-' 9-10= 11-12 19-20 21-22 23-24 25-26 28-29 30-31 14-15 16-17	1214/1081, 6-7=- 1131/1077, 8-9=- -1049/1076, 10-1 978/1090, 12-1 978/1090, 12-1 108/1075, 22- 1091/1077, 24 1187/1089, 26 1296/1106, 29	1090/1076, 1=-1007/1075, 3=-849/957, =-979/1090, -23=-1049/1076, -25=-1128/1074, -28=-1143/1022, -30=-1350/1136, =-0/7, 13-14=-851/963, =-858/969,
REACTIONS	38= 41= 45= 48= 51= 55=	0-3-8, 3 =44-8-8 =44-8-8 =44-8-8 =44-8-8 =44-8-8 =44-8-8 =44-8-8	12-50 36=44-8-8, 37=44-8-8 3, 39=44-8-8, 40=44-1 3, 42=44-8-8, 43=44-1 3, 46=44-8-8, 47=44-1 3, 49=44-8-8, 50=44-1 3, 53=44-8-8, 57=44-1 3, 55=44-8-8 C 17)	8-8, 8-8, FORCES 8-8, 8-8, 8-8, 8-8,	(lb) - Max Tension	57=196 (LC 25), 59=404 (LC 25) kimum Compressi	58=196 (LC	C 1),				STATE OF I	Server

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

OF ESSIONAL

PE-200101880

E

April 14,2023

						RELEASE FOR CONSTRUCTION				
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 55	AS NOTED FOR PLAN REVIEW				
P230180-01	A1	Piggyback Base Supported Gable	2	1	J J	DEVELOPMENT SERVICES 157758142 LEE'S SUMMIT, MISSOURI				
					Job Reference (optional					
Premier Building Supply (Spring	remier Building Supply (Springhill, KS), Spring Hills, KS - 66083, ID:WcRfdZXs?bG3GRhQ2QHdPbz1SCN-RfC?PsB70Hq3NSgPqnL8w3ulT.									

BOT CHORD	$\begin{array}{l} 2\mbox{-}60\mbox{=}-1000/1331, 60\mbox{-}61\mbox{=}-32/0, \\ 34\mbox{-}35\mbox{=}-52/35, 29\mbox{-}35\mbox{=}-43/37, \\ 33\mbox{-}34\mbox{=}-173/233, 31\mbox{-}33\mbox{=}-410/553, \\ 59\mbox{-}60\mbox{=}-969/1310, 58\mbox{-}59\mbox{=}-969/1310, \\ 57\mbox{-}58\mbox{=}-969/1310, 58\mbox{-}59\mbox{=}-969/1310, \\ 55\mbox{-}58\mbox{=}-969/1310, 54\mbox{-}55\mbox{=}-969/1310, \\ 55\mbox{-}58\mbox{=}-969/1310, 51\mbox{-}53\mbox{=}-969/1310, \\ 50\mbox{-}51\mbox{=}-969/1310, 51\mbox{-}53\mbox{=}-969/1310, \\ 50\mbox{-}51\mbox{=}-969/1310, 47\mbox{-}48\mbox{=}-969/1310, \\ 48\mbox{-}49\mbox{=}-969/1310, 42\mbox{-}48\mbox{=}-969/1310, \\ 41\mbox{-}42\mbox{=}-969/1310, 40\mbox{-}41\mbox{-}-969/1310, \\ 39\mbox{-}40\mbox{=}-969/1310, 38\mbox{-}39\mbox{=}-969/1310, \\ 37\mbox{-}38\mbox{=}-969/1310, 36\mbox{-}37\mbox{=}-969/1310, \\ 37\mbox{-}38\mbox{=}-969/1310, 36\mbox{-}37\mbox{-}-969/1310, \\ 37\mbox{-}38\mbox{=}-969/1310, 36\mbox{-}37\mbox{-}-969/1310, \\ 37\mbox{-}38\mbox{-}-969/1310, 36\mbox{-}37\mbox{-}-969/1310, \\ 37\mbox{-}38\mbox{-}38\mbox{-}-969/1310, 36\mbox{-}37\mbox{-}-969/1310, \\ 37\mbox{-}38\mbox{-}38\mbox{-}96\mbox{-}38\mbox{-}38\mbox{-}38\mbox{-}38\mbox{-}38\mbox{-}38\mbox{-}38\mbox{-}38\mbox{-}3$
WEBS	$\begin{array}{l} 35-36=-969/1310\\ 30-33=-400/212,\ 33-35=-250/335,\\ 30-35=-623/873,\ 16-47=-147/77,\\ 17-46=-118/65,\ 18-45=-309/221,\\ 20-43=-443/351,\ 21-42=-98/77,\\ 22-41=-138/85,\ 23-40=-137/84,\\ 24-39=-128/76,\ 25-38=-174/131,\\ 26-37=-137/60,\ 28-36=-357/390,\\ 15-48=-115/65,\ 14-49=-309/221,\\ 12-50=-443/351,\ 11-51=-119/80,\\ 10-53=-139/85,\ 9-54=-135/83,\ 8-55=-136/83,\\ 7-56=-132/82,\ 6-57=-155/95,\ 4-58=-65/62,\\ 3-59=-373/290\end{array}$

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-11-0 to 4-1-0, Exterior(2N) 4.1-0 to 22-4-13, Corner(3R) 22-4-13 to 27-6-0, Exterior(2N) 27-6-0 to 32-7-3, Corner(3R) 32-7-3 to 37-6-0, Exterior(2N) 37-6-0 to 55-11-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are MT20 plates unless otherwise indicated.
- 6) All plates are 3x4 MT20 unless otherwise indicated.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.Bearing at joint(s) 2 considers parallel to grain value
- using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 10) This truss is designed in accordance with the 2018
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) Graphical purlin representation does not depict the size
- or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof - Osage Lot 55	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 157758143
P230180-01	A2	Piggyback Base		4	1	Job Reference (optional	
Premier Building Supply (Spring	ghill, KS), Spring Hills, KS - 66083,					2022 MiTek Industries, Inc. 2sB70Hq3NSgPqnL8w3uITX	
↓ ↓ ♀ ↓ 2 ∞I ↓ 2 mT18HS 6x	$\begin{array}{c} 6-9-5 + 9-9-7 + 11\\ -4 + 3-3-1 + 3-0-2 + 7\\ & 5 \\ 4x6 = 4x8 = 6\\ 4x6 = 4 & 5\\ -331 & -331 & -330 & 29\\ 12 = 5x5 = \\ \hline 18HS \ 9x18 = \\ 14\\ 28\\ - 6-9-5 + 16-10\\ -3-5-13 & 10-0- \end{array}$		5-1-3 6x6= 8 33 8 33 26	9 34	<u>38-1-</u> 5-6- 6x6= 10 8 2423 <u>38-1-</u> 5-5-	9 7-0-13 11 35 22 12 48-0-0	

Scale = 1:98.4

00000 = 1.00.4	-												
Plate Offsets ((X, Y): [2:0-3-9,Edge]	, [2:0-0-1,Edge], [5:0-	3-0,Edge	e], [17:0-4-3,Ec	lge], [19:0-2-8,0-1	-8], [22:0	-2-8,0-1-8], [23	:0-2-8,0	0-1-8], [2	26:0-2-8,	0-2-0]	, [30:0-7-8,Edge]	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.76		-0.45	28-29	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.84	- (-)	-0.86	28-29	>672	180	MT18HS	244/190
BCLL	0.0	Rep Stress Incr	NO		WB	0.84	Horz(CT)	0.35	21	n/a	n/a	-	
BCDL	10.0	Code	IRC201	18/TPI2014	Matrix-SH	-						Weight: 291 lb	FT = 20%
LUMBER			V	VEBS	8-26=-181/941, 1				LOAD	CASE(S)) Sta	ndard	
TOP CHORD		ot* 1-5:2x6 SP 2400F			9-25=-457/185, 1								
	2.0E, 5-8,13-10:2x4				6-28=-1327/370,		,						CIAL ANCHORAGE,
BOT CHORD	2x6 SP 2400F 2.0E				8-25=-184/226, 1 12-21=-3325/101		,					LLOW FOR THE N	AINIMUM REQUIRED
	,	2 1650F 1.5E, 14-20:2			6-29=-180/1557,	- /	,					RESPONSIBILITY	
	No.2	4 SP No.2, 30-3:2x6	JFF		7-28=-58/734, 4-			N	MANUFA	CTURER	OR TH	IE BUILDING DESI	GNER.
WEBS	2x3 SPF No.2				11-22=-467/295,								
OTHERS	2x4 SP No.2				19-21=-302/402,								
SLIDER	Right 2x4 SP No.2 -	- 1-11-11	N	IOTES									
BRACING			1) Unbalanced	d roof live loads ha	ave been	considered for						
TOP CHORD	Sheathed or 2-1-15			this design.									
	2-0-0 oc purlins (3-1		2		E 7-16; Vult=115n								
BOT CHORD		/ applied or 10-0-0 oc			oh; TCDL=6.0psf;			-					
	bracing, Except: 9-2-0 oc bracing: 2-	20			at. II; Exp C; Encl ie and C-C Exterio			e)					
	6-0-0 oc bracing: 19				4-1-0 to 22-4-13, I								
WEBS	1 Row at midpt	10-23, 9-25, 6-28, 7·	26		erior (1) 29-5-10 1								
WEB0	i non at mapt	8-25, 11-23, 12-21	20,	,	9-8-1, Interior (1)	,	· · ·						
REACTIONS	(size) 2=0-3-8, 1	21=0-3-8, (req. 0-4-9)		eft and right expos								
	Max Horiz 2=180 (Le	C 16)			ed;C-C for membe			S					
	Max Uplift 2=-320 (L	_C 12), 21=-435 (LC 9	9)	for reaction: DOL=1.60	s shown; Lumber	DOL=1.6	0 plate grip						
	Max Grav 2=2186 (LC 1), 21=2889 (LC 1) 3		equate drainage to		water ponding					~	
FORCES	(lb) - Maximum Con	npression/Maximum	4		re MT20 plates ur							South	and
	Tension		5		re 3x6 MT20 unle							F. OF I	MISSO
TOP CHORD	,	7/1254, 3-4=-7831/12	^{30,} 6		as been designed						4	STATE OF I	N.S.
	4-6=-6380/910, 6-7= 7-8=-3191/468, 8-9=	,			bad nonconcurren						A	SCOT	TM. CRN
	9-10=-2832/459, 10		7		Required bearing	g size at jo	pint(s) 21 great	er			U	/ SEV	
	11-12=-2746/337, 1		0		earing size.	11 - 1				- (14		1+4
	14-15=-1089/1216,		8		oint(s) 2 consider /TPI 1 angle to gra						20	1	0
	17-18=0/1				ould verify capaci						W.	a Thomas	Sor Merz
BOT CHORD	2-30=-1278/7340, 2	,	9		s designed in acco					0	th 7	DE 2001	
	28-29=-738/4825, 2	,			al Residential Cod			nd			N.	PE-2001	018807
	25-26=-202/2865, 2 22-23=-131/2451, 2	,			and referenced sta						Y	1 Par	1.SA
	,	1=-166/61, 19-20=-14	5/0 1		urlin representation			ze				CSSIONA	LENA
	17-19=-389/378, 3-3		0,0,		tation of the purlir	along the	e top and/or					CONA	
				bottom cho	ra.							-un	

April 14,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Image: Description Tas: These Type Type Provide Status And the Description Provide Burg Bary Book Hill, Status Hill, Status Ass Bary Bary Bary Bary Bary Bary Bary Bary										RELEASE FOR CONSTRUCTION
Provide of the second secon	Job	Truss		Truss Type		Qty	Ply	Roof - Osage Lo	ot 55	
<page-header></page-header>	P230180-01	A3		Piggyback Base		10	1	Job Reference (ontional	
<complex-block>$\begin{array}{c} \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$</complex-block>	Premier Building Supply (Spi	inghill, KS), Sp	pring Hills, KS - 66083,					19 2022 MiTek Indust	ries, Inc.	
Image: state in the state					ID:WcRfdZXs?bG3G	RhQ2QF	HdPbz1SCN-Rf0	C?PsB70Hq3NSgPqnL	.8w3uITX	
Image: State in the state	-0-1	1-0 <u>3-4-12</u>	6-9-5 9-							
Montpole Market Pole	0-1	1-0 3-4-12	3-4-9 3-	7-0-1	5 5	-0-9			5-1-5	
Montpole Market Pole	+ ⁰ + ² + ² +						8	23 9 2	24	1025
a g g g g g g g g g g g g g g g g g g g	0- 0-				4x4 =	6		Å		6x6≈
with a star with a				_12						
9 9			4x8							
Line All	-2-9 10-8 10-8		4x8 ≠							
Image: 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	9-9-	4x6				1 A			//	8-7-
Line 10 10 18 17 16 15 1413 9/4 9/4 4/12 4/4 5/4			321							
Link ONE ONE Sole Sole Sole M1196 Str8 = 44= 0= 12 0=3 3.23 0.96 4 3.613 0.96 4 3.613 0.96 4 3.613 0.96 4 3.613 0.96 4 5.72 4 4.73 8 0.94 5 5.74 0 4.74 8 0.94 5 5.74 0		2								
4/27 dut bdt Intermediate the second										1413 3x4 ⊪ 🖓⊥
1/2 2/2		4x12 ≠	4x0=				4x4 =	5x6=		
0-3-8 0-3-9-1 16-10-4 22-9-0 227-8-0 32-1-8 32-9-7 28-9-0 State -12.72 Piles Offices (X, Y): [2:0-2:13.0-1:3]. [2:2-2:13.0-3]. [5:0-40.Edge]. [19:0-2:8.0-2:0]. [2:0-9-11.Edge] Image: Comparison of the comparison of			18HS 9x18 =							
Base -17:77 Place Offeets (X, Y): [2:0-21:0.0-13], [2:2-21:0.0-3], [5:0-40.Edge], [19:0-2-8.0-2-0], [2:0-9-11:Edge] Leading TCLL (roof) (rsof) Spacing State 2:0-0 1:15 CSI BC DEFL BC in (roo) Udel Mit State PLATES State GRIP Mit State BCLL 0.0 Rep Stress Incr NO BC 0:3 DEFL BC in (roof) 0:461 V/rite V/rite 0:2 V/rite 0:2 1:9:7/143 V/rite V/rite V/rite 0:2 1:9:7/143 V/rite V/rite <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>20.0.7</td></t<>										20.0.7
Base -17:77 Place Offeets (X, Y): [2:0-21:0.0-1:3], [2:2-21:0.0-3], [5:0-40.Edge], [19:0-2-4:0.2-0], [2:0-9-11:Edge] Leading TCLL (roof) (rsof) Spacing Place (fing DCL 1:15 CSI BC DEFL 0:0:8 in (roo) Videl Viet(LI, -0.32 Videl 1:0:9 Videl Viet(LI, -0.32	(-3-8 3-3-8 H -3-8 3-0-0							<u>2-1-8</u> I-7-8	
Loading (pt) Spacing 20-0 CSI DEFL in (loc) Idel PLATES GRIP TCLL (loc) 10:0 Plate Grip DOL 11.15 IS 0.68 Ver(I) -0.32 18-19 >399 240 MT2L 244.4190 BCLL 0.0 DEX 10:0 Code IS 0.72 Ver(I) -0.32 18-19 >399 240 MT2L 244.4190 MT14HS 197/144 BCLL 0.00 Code ISSEssand	Scale = 1:72.7		3] [2·2-2-13 0-0-3] [5	·0-4-0 Edge] [10:0-2-8	0-2-0] [20:0-9-11 Ed	ael				
TCLC (root) 25.0 Place Gro DOL 1.15 TC 0.68 Wer(T) -0.32 18-16 9896 240 MT20 24/190 BCL 0.00 Rep Stress Indr NO WE 0.72 Wer(T) -0.72 18-19 652 18-19 652 18-19 652 18-19 652 18-19 652 18-19<					1			· // \ ///		
BCLL 0.0 Rep Stress Ind* NO WE 0.72 Mor2(CT) 0.27 12 n/a n/a BCDL 10.0 Code IRC2018/TPL2014 Matrix-SH Mor2(CT) 0.27 12 n/a n/a BCDL 10.0 Code IRC2018/TPL2014 Matrix-SH Mor2(CT) 0.27 12 n/a n/a DFC PORD 2x4 SP No.2 "Except" 1-52:26 SP 2400F Code Not SCE Not Sce	TCLL (roof)	25.0	Plate Grip DOL		TC ().68 V	/ert(LL) -(0.32 18-19 >99	9 240	MT20 244/190
 LUMBER TOP CHORD Zx4 SP No.2 "Except" 1-5:2x6 SP 2400F 2005, 5-8:2x4 SP No.2 "Except" 22:02x6 SP 2400F 2005, 17:20:2x4 SP No.2 "Except" 12:11:2x4 SP No.2 Except" 2:02:2x6 SP 2400F 2005, 17:20:2x4 SP No.2 "Except" 12:11:2x4 SP No.2 BRACINOS TOP CHORD Sheathed or 2-9-9 op pulins, except end wettals, and 2:0-0 oc pulins, except end wettals, and 2:0-0 oc pulins, except end max floring. BOT CHORD Rigid ceiling directly applied or 8-4-1 oc bracing. WEBS 1 Row at might 11:12,9-15,10-13,8-15, 7-16,6-18 Max Grav 2:1787 (LC 1), 12:1711 (LC 1) FORCES (b) - 4:200;803(3), 6:18-4:80737, 4:19-724/254, 4:20-857/178, 10:13-8971/235, 9:15-4350/18, 10:13-8971/235, 9:15-4350/18, 10:13-8971/23							. ,			MT18HS 197/144
TOP CHORD 244 SP No.2*Except 1:52:x6 SP 2400F GOT CHORD 205, 58:24 SP 1650F 1:52:x6 BOT CHORD 224 SP No.2*Except 2:20:26 SP 2400F VERS 223 SPF No.2*Except 1:21:1:24 SP No.2 BTOP CHORD Sheathed or 2:9-9 op puttins, except end TOP CHORD Sheathed or 2:9-9 op puttins, except end VERS Sheathed or 2:9-9 op puttins, except end TOP CHORD Sheathed or 2:9-9 op puttins, except end VERS 1:1:2,9:1:1:0:10:10:24-13; Except (72:10:10:4):1:5:10:13; 8:1; BOT CHORD Sheathed or 2:9-9 op puttins, except end VERS 1:1:2,9:1:0:13; 1:2:4:2:15:10:13; 8:1; BOT CHORD Kegid calling directly applied or 8:4-1 oc bracing. VERS 1:1:2:9:1:0:13; 1:2:4:2:16:10:13; 8:1; NCES (kis) 2:-2:4:10:13; 2:-2:16:10:13; 8:1; WEBS 1:1:1:2:9:17:10:13; 1:2:-2:16:10:13; 8:1; NCES 1:1:1:2:9:17:10:13; 1:2:-2:16:10:13; 8:1; BOT CHORD 1:2:-0:17:10:13; 1:2:-2:16:10:12; Max Upiti 1:2:-2:3:0:10:11:0:2:0:0:16:8:2:0; 1:1:12:9:17:10:13; 1:1:12:9:17:10:10; FORCES (b) - Maximum Compression/Maximum 1:1:1:12:9:17:10:10; 1:1:12:10:10; TDP CHORD 1:2:-0:11:11:12:0:17:10:1; 1:1:10:10:10;	BCDL	10.0		IRC2018/TPI2014	Matrix-SH		· · · ·			Weight: 209 lb FT = 20%
20:E 5:8/2x4 SP 1650F 1.5E 20: BOT CHORD 2:4 SP No.2 *Except 1:20:2x6 SP 2400F 2:05: 15:8/2x4 SP 2x4 SP 2x4 SP 2x40F 2:0E 2:05: 17:20:2x4 SP 2x40F 2:0E BRACING Sheathed or 2:9-9 oc purins, except end, use of 0:00 SP 2x40F 2:00 co purins, except end, use of 0:00 SP 2x40F 2:00 co purins, except end, use of 0:00 SP 2x418; Exp 0:Enclosed: MWHRS (envelope) BOT CHORD Sheathed or 2:9-9 oc purins, except end, use of 0:00 SP 2x418; Exp 0:Enclosed: MWHRS (envelope) BOT CHORD Sheathed or 2:9-9 oc purins, except end, use of 0:00 SP 2x418; Exp 0:Enclosed: MWHRS (envelope) BOT CHORD Sheathed or 2:9-9 oc purins, except end, use of 0:00 SP 2x418; Exp 0:Enclosed: MWHRS (envelope) WEBS Individual differenced of 2:00 co purins, except end, use of 0:00 SP 2x418; Exp 0:00 co purins, except end, use of 0:00 SP 2x418; Exp 0:00 co purins, except end, use of 0:00 SP 2x418; Exp 0:00 co purins, except end, use of 0:00 SP 2x418; Exp 0:00 co purins, except end, use of 0:00 SP 2x418; Exp 0:00 co purins, except end, use of 0:00 co purins, except end, use of 0:00 SP 2x418; Exp 0:00 co purins, except end, use of 0:00 Co purins, except end, use of 0:00 Co purins, except end, use of 0:00 Co purins, except end 0:00 Co purins, except end 0:00 Co purins, except end, use of 0:00 Co purins, except end		lo 2 *Excent	* 1-5·2v6 SP 2400F		roof live loads have b	een cor	nsidered for			
2.0E 17.20/2.94 SP 2400F 2.0E Ke=0.96; Cat. II: Exp C; Enclosed: WWFRS (envelope) BRACING BRACING TOP CHOR Sheathed or 2-9-9 oc putins, except end verticals, and 2-0-0 oc putins, (4-4-3 max); 8-10. Ke=0.96; Cat. II: Exp C; Enclosed: 21: 0-11-0 to 4-1.0, Interior (1) 4-1-0 to 22-4-13; Exterior(ZR) 22-4-13 to 29-5-10 to 22-7.3 to 38-2-4 zone; cantilever land right exposed ; end verticals, and 2-0-0 co putins, (4-4-3 max); 8-10. Network indication in the interior (2) end inter	2.0E, 5-8	:2x4 SP 165	50F 1.5E	Wind: ASCE						
BRACING TOP CHORD Sheathed or 2-9-9 oc purlins, except and verticals, and 2-0-0 oc purlins (4-4-3 max). 8-10. Interior (1) 4-1-0 to 22-4-13, Exterior(2E) 22-4-13 to 22-7-3 to 38-2-4 zone; cancilevel left and right exposed : a2-7-3 to 38-2-4 zone; cancilevel left and right exposed : model adequate drainage to prevent water ponding. 7-16, 6-18 WEBS 1 Row at midpt 11-12, 9-15, 10-13, 8-15, 7-16, 6-18 11-12, 9-15, 10-13, 8-15, 7-16, 6-18 3. REACTIONS (size) 22-9-3.8 (LC 2) Max Uplit 22-274 (LC 12), 12=2-18 (LC 8) Max Grav 2=1787 (LC 1), 12=1711 (LC 1) 3. Max Grav 2=1787 (LC 1), 12=1711 (LC 1) 12-011, 2-3-e5964(1326, 3-4-62275/1279, 4-6=-4860(3337, 10-11-1097/218, 11-12186(1316) 7. This truss is designed in accordance with the 2018 Interinational Residential Code sections RS02.11.1 and R802.10.2 and referenced standard ANS/ITP1 1. FOR CHORD 1-2-011, 2-3-e5964(1326, 3-4-62275/1279, 4-6=-4860(3337, 10-11-1097/218, 11-12186(1316) 7. This truss is designed in accordance with the 2018 Interinational Residential Code sections RS02.11.1 and R802.10.2 and referenced standard ANS/ITP1 1. 6. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 5. UBS 8.16-18/7/32, 9.15-e-309/178, 11-12-920/1285, 7.18-e-37/1634, 3-20-161/1042 7. F. NOTES VETER VETER VETER VETER	2.0E, 17-	20:2x4 SP 2	2400F 2.0E	Ke=0.96; Ca	at. II; Exp C; Enclosed	; MWFF	RS (envelope)			
 Storichic Biologianity, and 20-0 oc pulling (4-43 max): 8-10. BOT CHORD Rigid celling directly applied or 8-4-1 oc bracing. WEBS 1. Row at midpt 11-12, 9-15, 10-13, 8-15, 10-13, 8-16, 18 WEBS 1. Row at midpt 11-12, 9-15, 10-13, 8-16, 18 WEBS 1. Row at midpt 11-12, 9-15, 10-13, 8-16, 18 WEBS 1. Row at midpt 11-12, 9-15, 10-13, 8-16, 18 WEBS 1. Row at midpt 11-12, 9-15, 10-13, 8-16, 18 WEBS 1. Row at midpt 11-12, 9-16, 110 Provide adequate drainage to prevent water ponding. All plates are MT20 plates unbes otherwise indicated. This truss has been designed for a 10.0 ps footrom chord live load anoncoccurrent with any other live loads. Bot CHORD 1.2-0/11, 2-3-6964/1356, 3-4-6275/1279, 4-6-486/2637, 11-12-1797/18, 11-12-166/137, 10-11-1097/218, 11-12-166/137, 10-11-1097/218, 11-12-166/137, 10-11-1097/218, 11-12-166/130, 6-18-116/322, 9-1558/6337, 10-11-1097/218, 11-12-166/130, 6-18-116/322, 9-1558/637, 6-19-203/1258, r1-8-580/194, 10-13-8-71/205, 11-13-580/194, 10-13-8-71/205, 11-13-580/194, 10-13-8-71/205, 11-13-580/194, 10-13-8-71/205, 11-13-580/194, 10-13-8-71/205, 11-13-217/1433, 7-16-11097/218, 11-13-217/1433, 7-16-11097/218, 11-13-217/1433, 7-16-11097/218, 11-3-580/194, 10-13-8-71/205, 11-13-217/1433, 7-16-11097/218, 11-3-580/194, 10-13-8-71/205, 11-13-217/1433, 7-16-11097/218, 11-3-580/194, 10-13-8-71/205, 11-13-217/1433, 7-16-11097/218, 11-3-580/194, 10-13-8-71/205, 11-13-217/1433, 7-16-11097/218, 11-3-217/1433, 7-16-11097/218, 11-38-217/1433, 7-16-11097/218, 11-38-217/1433, 7-16-110-1097/218, 11-38-217/1433, 7-16-11097/218, 11-38-217/1433, 7-16-11097/218, 11-38-217/1433, 7-16-11097/218, 11-38-217/1433, 7-16-11097/218, 11-38-217/1433, 7-16-11097/218, 11-38-217/1433, 7-16-11097/218, 11-38-217/1433, 7-16-11097/218, 11-38-217/1433, 7-16-11097/218, 11-38-217/1433, 7-16-11097/218, 11-38-217/1433, 7-16-11097/218, 11-38-217/1433, 7-16-11097/218, 11-38-217/1433, 7-16-11097/218, 11-38-217/1433, 7-16-11097/218,		No.2 ^Excep	pt* 12-11:2x4 SP No.2	Interior (1) 4	-1-0 to 22-4-13, Exter	ior(2R)	22-4-13 to			
BOT CHORD Rigid celling directly applied or 8-4-1 oc bracing. WEBS 1 Row at midpt 11-12, 9-15, 10-13, 8-15, REACTIONS (size) 2-0-3-8, 12-0-3-8 Max Horiz 2-356 (LC 12) Max Uplit 2-374 (LC 12), 12218 (LC 6) Max Uplit 2-374 (LC 12), 12218 (LC 6) Max Grav 2-1787 (LC 1), 121711 (LC 6) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 12-00/11, 2-3-6964/1356, 3-4-6275/1279, 4-6-4840/824, 6-72-2875/432, 9-10a-1558/337, 10-11-1097/218, 11-122-1610/301, 6-18a-1485/2570, 15-16a-29971400, 13-15-1499/622, 12-13-5/16 WEBS 8-16-187/932, 9-15-4350/78, 10-13-971/235, 8-15-580/184, 10-13-971/235, 8-15-580/184, 10-13-971/235, 8-15-580/184, 10-13-971/235, 8-15-580/184, 10-13-971/235, 8-15-580/184, 10-13-971/235, 8-15-580/184, 10-13-971/235, 8-15-580/184, 10-15-1971/205, 11-13-2771/634, 3-20-161/1042 NOTES NOTES				: 32-7-3 to 38	-2-4 zone; cantilever l	eft and	right exposed			
 braining, or full spin DOL=1.60 grip DOL=1.60		ing directly :	applied or 8-4-1 oc					<u>k</u>		
 All plates are MT2D plates unless otherwise indicated. 7:16, 6:18 All plates are MT2D plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom thoral with any other live loads. Bearing at joint(s) 2 considers parallel to grain value using ANSUTP1 1 angle to grain value using ANSUTP1 1 angle to grain formula. Building designer should verify capacity of bearing surface. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Bearing at joint(s) 2 considers parallel to grain value using ANSUTP1 1 angle to grain value using ANSUTP1 1. Graphical putfin representation does not depict the size or the orientation of the putfin along the top and/or bottom chord. LOAD CASE(S) Standard VEBS 8 16e-187/932, 9-15e-435/178, 10-15a-97/1205, 11-13-217/1433, 7-16=-1109/310, 6-18=-1154/373, 6-19=-203/1258, 7-18=-57/673, 4-19=-734/254, 4-20=-577/1634, 3-20=-161/1042 NOTES 	bracing.			2) Drevide ede		vent wa	ter ponding.			
KEC (1008) (329) 22056 (LC 12) Max Hoirz 2-356 (LC 12) Max Grav 2=1787 (LC 12), 12=-218 (LC 8) Max Grav 2=1787 (LC 1), 12=1711 (LC 1) Max Grav 2=1787 (LC 1), 12=1711 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension 7) TOP CHORD 1-2=0/(11, 2-3=-6964/1356, 3-4=-6275/1279, 4-6=-4420/024, 6-7=-2875/432, 7-8=-2085/390, 8-9=-1558/337, 0-11=-1097/218, 11-12=-1661/316 7) BOT CHORD 2-20=-1556/6304, 19-20=-954/4435, 18-19=-820/3608, 16-18=-485/2570, 15-16=-299/1840, 13-15=-149/962, 12-13=-51/16 6) WEBS 8-16=-187/932, 9-15=-435/178, 10-15=-199/1240, 1-13=-217/1433, 7-16=-1109/310, 6-18=-1154/373, 6-19=-203/1288, 7-18=-576/73, 4-19=-734/254, 4-20=-577/1634, 3-20=-161/1042 CASE(S) NOTES Votes			7-16, 6-18	4) All plates are	e MT20 plates unless	otherwi	se indicated.			
Max Oplint 2e=274 (LC 12), 12=-218 (LC 8) Max Grav 2=1787 (LC 1), 12=-1711 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/11, 2-3=-6964/1356, 3-4=-6275/1279, 4-6=-4840/824, 67=-2875/432, 7-8=-2085/390, 8-9=-1558/337, 10-11=-1097/218, 11-12=-1661/316 BOT CHORD 2-20=-1556/6304, 19-20=954/4435, 18-19=-820/3608, 16-18=-485/2570, 15-16=-239/1840, 13-15=-149/962, 12-13=-5/16 BOT CHORD 2-20=-1556/6304, 19-20=954/4435, 10-13=-971/235, 8-15=-580/184, 10-15=-197/1205, 11-13=-217/1433, 7-16=-1109/310, 6-18=-1154/373, 4-19=-734/254, 4-20=-577/1634, 3-20=-161/1042 WEBS 8-16=-187/932, 9-15=-435/178, 10-13=-971/235, 8-15=-580/184, 10-15=-971/235, 8-15=-580/184, 10-15=-971/235, 8-15=-580/184, 10-15=-971/235, 8-15=-580/184, 10-15=-1154/373, 4-19=-734/254, 4-20=-577/1634, 3-20=-161/1042 NOTES NOTES	· · ·			chord live lo	ad nonconcurrent with	n any otl	her live loads.			
FORCES (b) - Maximum Compression/Maximum Tension 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R502.10.2 and referenced standard ANS/TP11. TOP CHORD 1-2=0/11, 2-3=-6964/1356, 3-4=-6275/1279, 4-6=-4840/824, 6-7=-2875/432, 7-8=-2085/390, 8-9=-1558/337, 9-10=-1558/337, 10-11=-1097/218, 11-12=-1661/316 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R502.10.2 and referenced standard ANS/TP11. BOT CHORD 2-20=-1558/330, 19-20=-954/4435, 18-19=-820/3080, 16-18=-485/2570, 15-16=-299/1840, 13-15=-149/962, 12-13=-5/16 6) Standard WEBS 8-16=-187/932, 9-15=-435/178, 10-13=-971/235, 8-15=-580/184, 10-15=-1971/205, 11-13=-217/1433, 7-16=-1109/310, 6-18=-1154/373, 6-19=-203/1258, 7-18=-57/673, 4-19=-734/254, 4-20=-577/1634, 3-20=-161/1042 CASE(S) Standard NOTES NOTES VE VE NOTES This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. CASE(S) Standard				using ANSI/	TPI 1 angle to grain fo	rmula.	Building			
TOP CHORD 1-2=0/11, 2-3=-6964/1356, 3-4=-6275/1279, 4-6=-4840/824, 6-7=-2875/432, 7-8=-2085/390, 89=-1558/337, 9-10=-1558/337, 10-11=-1097/218, 11-12=-1661/316 R02.10.2 and referenced standard ANSI/TP1 1. 802.10.2 and referenced standard ANSI/TP1 1. Graphical purfin representation does not depict the size or the orientation of the purfin along the top and/or bottom chord. Immunology (1) BOT CHORD 2-20=-1556/6304, 19-20=-954/4435, 18-19=-820/3608, 16-18=-485/2570, 15-16=-299/1840, 13-15=-149/962, 12-13=-5/16 Immunology (2) WEBS 8-16=-187/932, 9.15=-435/178, 10-13=-971/235, 8-15=-580/184, 10-15=-197/1205, 11-13=-217/1433, 7-16=-1109/310, 6-18=-1154/373, 6-19=-203/1258, 7-18=-57/673, 4-19=-734/254, 4-20=-577/1634, 3-20=-161/1042 LOAD CASE(S) Standard NOTES Motor Figure 4 Figure 4 <td< td=""><td>FORCES (lb) - Mai</td><td></td><td></td><td> This truss is </td><td>designed in accordan</td><td>ce with</td><td>the 2018</td><td></td><td></td><td></td></td<>	FORCES (lb) - Mai			 This truss is 	designed in accordan	ce with	the 2018			
 7-8=-2085/390, 8-9=-1558/337, 9-10=-1558/337, 10-11=-1097/218, 11-12=-1661/316 BOT CHORD 2-20=-1556/6304, 19-20=-954/4435, 18-19=-820/3608, 16-18=-485/2570, 15-16=-299/1840, 13-15=-149/962, 12-13=-5/16 WEBS 8-16=-187/932, 9-15=-435/178, 10-13=-971/235, 8-15=-580/184, 10-15=-197/1205, 11-13=-217/1433, 7-16=-1109/310, 6-18=-1154/373, 6-19=-203/1258, 7-18=-57/673, 4-19=-734/254, 4-20=-577/1634, 3-20=-161/1042 NOTES 	TOP CHORD 1-2=0/11			9, R802.10.2 a	nd referenced standa	rd ANSI	I/TPI 1.			
15-16=-299/1840, 13-15=-149/962, 12-13=-5/16 WEBS 8-16=-187/932, 9-15=-435/178, 10-13=-971/205, 8-15=-580/184, 10-15=-197/1205, 11-13=-217/1433, 7-16=-1109/310, 6-18=-1154/373, 6-19=-203/1258, 7-18=-57/673, 4-19=-734/254, 4-20=-577/1634, 3-20=-161/1042 NOTES	7-8=-208	5/390, 8-9=-	-1558/337,	or the orient	ation of the purlin alor			9		ALLER
15-16=-299/1840, 13-15=-149/962, 12-13=-5/16 WEBS 8-16=-187/932, 9-15=-435/178, 10-13=-971/205, 8-15=-580/184, 10-15=-197/1205, 11-13=-217/1433, 7-16=-1109/310, 6-18=-1154/373, 6-19=-203/1258, 7-18=-57/673, 4-19=-734/254, 4-20=-577/1634, 3-20=-161/1042 NOTES	11-12=-1	661/316								SE OF MISCON
12-13=-5/16 WEBS 8-16=-187/932, 9-15=-435/178, 10-13=-971/235, 8-15=-580/184, 10-15=-197/1205, 11-13=-217/1433, 7-16=-1109/310, 6-18=-1154/373, 6-19=-203/1258, 7-18=-57/673, 4-19=-734/254, 4-20=-577/1634, 3-20=-161/1042 NOTES				()					E	
WEBS 8-16=-187/932, 9-15=-435/178, 10-13=-971/235, 8-15=-580/184, 10-15=-197/1205, 11-13=-217/1433, 7-16=-1109/310, 6-18=-1154/373, 6-19=-203/1258, 7-18=-57/673, 4-19=-734/254, 4-20=-577/1634, 3-20=-161/1042 NOTES	15-16=-2	99/1840, 13							A	
10-15=-197/1205, 11-13=-217/1433, 7-16=-1109/310, 6-18=-1154/373, 6-19=-203/1258, 7-18=-57/673, 4-19=-734/254, 4-20=-577/1634, 3-20=-161/1042 NOTES	WEBS 8-16=-18	7/932, 9-15=							8	
NOTES	10-15=-1	97/1205, 11	-13=-217/1433,						8	alt server
3-20=-161/1042 NOTES	6-19=-20	3/1258, 7-18	8=-57/673,						N.	
			=-577/1634,						Ŷ	ATON AND
April 14,2023	NOTES									ONAL EL
										April 14,2023

ent 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

														I	RELEASE	FOR CON	STRUCTION
Job		Truss		Tru	uss Type			Qty	Ply	R	oof - Osa	ge Lot 55	5				AN REVIEW
P230180-01	1	A4		Pi	ggyback Bas	e Girder		2	2		b Refere	nce (onti	onal			DPMENT S 157758 Summit, M	
Premier Building	J Supply (Spring	hill, KS), S	pring Hills, KS -	66083,			.63 S Nov 19			lov 19 20	022 MiTek I	ndustries,	Inc.			$\frac{18}{2}$	201
						ID:IkXF	HPRUnAQGI	NLGmql6q	4dzaidp-RfC	C?PsB70	Hq3NSgPc	InF8w3nIT	TXbGI	WrCDoi	4296?f		
	⊢	<u>4-11</u> 4-11	-5 7-	<u>7-9 9-9</u> - 8-4 2-1-	-7 1	16-10-4 7-0-13		22-4-13		27-6-			-7-3		38-4		
		4-11	-5 2-	8-4 '2-1-	14 '	7-0-13	•	5-6-9	0.0	5-1-3			1-3		5-8-	-13	
- ·	ထု							6- 8-	6x6= 7	2	1.52 23 8 ⊠ ⊠	×4 ∎ 24		6x6 9	= 25		
	0-1-8						4x6 ≠								23		
							4×0 ±									Ĺ	¹ x6 ≈ 10
					12 5	22	R							/			
	<u>o</u>				4x4 =												
9-10-8 8-10-8	2		5x5 ≠	3x6 ≠	5								//		/		ې.
~		MT18HS	3x10 ≢	4							\parallel					/	6-7
		0	3														
	- 1	2							\searrow			/			//		₽ 11
									15		14	13		12			벌 11 ⊥ 3x4 ∎
		26 2			20		18 8x10		4x4=		5x	B=		4x4	4=		384 1
		HS 6x12 ecial			10x10=		6x6=	-				3x6=					
	Op.		MT18HS 3 cial Special	к10 ш													
	1	4-11		9-9-8	1	16-10-4 1	17-3-0 16-11-8	22-3-9	1	27-6-	0 28	-4-0 3	32-8-7	7 ,	38-	4-0	
	F	4-11	-4	4-10-4			0-1-4 0-3-8	5-0-9	1	5-2-7	-	0-0	4-4-7	i i	5-7	7-9	-
Scale = 1:71.6 Plate Offsets ()	X. Y): [1:0-2-	14.0-3-8	l. [3:0-1-12.0-1	1-8]. [16:0-4	-0,0-2-0], [20:0)-5-0.0-5-41	0-3-8										
	, , t -					-					(1)	1/-1-41	1.41				
L oading TCLL (roof)		(psf) 25.0	Spacing Plate Grip D	2-0 OL 1.1		TC			EFL ert(LL)	in -0.22	(loc) 15-16	l/defl >999	L/d 240	PLATE MT20	E3	GRIP 244/190	
TCDL		10.0	Lumber DOL			BC			ert(CT)	-0.40			180	MT18H	HS	197/144	
BCLL BCDL		0.0 10.0	Rep Stress I Code		, C2018/TPI2014	WB 4 Matrix-S		0.94 H	orz(CT)	0.12	11	n/a	n/a	Weigh	it: 445 lb	FT = 20 ⁴	%
LUMBER					NOTES						10) Han	ger(s) or	other	r connec	ction devic	e(s) shall	be
TOP CHORD	2x4 SP No.2 2.0E	2 *Excep	t* 1-4:2x4 SP	2400F		uss to be conne x3") nails as fol		her with 1	0d						ort conce -8-12, and		ad(s) 563 own and 93
BOT CHORD	2x4 SP No.2		t* 17-16:2x3 S		Top cho	ords connected		: 2x4 - 1 r	ow at 0-9-	0	lb up	at 2-8-	12, ar	nd 4771	lb down a	and 681 lb	up at
	2.0E		, 20-1:2x6 SP			chords connec									he design/ e responsi		
NEBS	2x3 SPF No No.2	0.2 *Exce	pt* 11-10,20-1	9:2x4 SP	0-9-0 o at 0-5-0	c, 2x4 - 1 row a) oc.	at 0-9-0 oc,	2x6 - 3 ro	ows stagge	ered	LOAD C				ced): Lum	her Incre	asa-1 15
SLIDER	Left 2x4 SP	No.2 2	2-5-12		Web co	nnected as foll					Pla	te Increa	ase=1	.15	ccu). Lum		
BRACING TOP CHORD	Structural w	ood shea	athing directly	applied or	row at (member 3-21 2)-9-0 oc.						iform Loa /ert: 1-7=), 9-10=-70	0, 11-16=	-20,
	3-2-2 oc pu	rlins, exc	cept end vertic			s are considere if noted as from				DAD		I-17=-20 ncentrate		ads (lb)			
BOT CHORD	Rigid ceiling	directly	applied or 10-	0-0 oc	CASE(S	S) section. Ply t d to distribute d	to ply conn	ections h	ave been					. ,	6=-563 (F),	, 27=-559	(F)
	bracing, Ex 6-0-0 oc bra		-17.		unless	otherwise indic	ated.										
REACTIONS	(size) 1 Max Horiz 1	=0-3-8, 1 -349 (LC			 Unbalar this des 	nced roof live lo sign.	oads have l	been con	sidered foi	r							
	Max Uplift 1	=-1019 (LC 12), 11=-3	. ,		NSCE 7-16; Vul 1mph; TCDL=6											
FORCES	Max Grav 1		.C 1), 11=2359 pression/Maxi		Ke=0.9	6; Cat. II; Exp C	C; Enclosed	d; MWFR	S (envelop								
	Tension					zone and C-C (1) 4-11-5 to 22											
TOP CHORD	1-3=-13024/ 5-6=-5174/7		5=-7714/1114 -3383/575,	,), Interior (1) 29 to 38-2-4 zone;		,	()	ed :				6	2000	TO	
	7-8=-2363/4		-2363/454, 11=-2310/409		end ver	tical left expose	ed;C-C for	members	and force	s &				Fris	OF M	AISSO	D
BOT CHORD	16-17=-372	/0, 16-19	=-721/4205,		grip DC	S for reactions	snown; Lur	mber DOL	_=1.60 pia	le			B	AT/	SCOTT		Na
	15-16=-799/ 12-14=-209/		I-15=-469/303 I-12=-5/17,	2,		adequate drai							R	7	SEVI		1 × 1
	1-21=-1985/ 17-18=-80/4		8-21=-1983/1	1735,	7) This tru	ss has been de	esigned for	a 10.0 ps	sf bottom			- {	8*	[45	0	*
WEBS	7-15=-347/2	2075, 9-1	2=-1447/305,		8) This tru	ve load noncon iss is designed	in accorda	nce with t	the 2018			Ż		tet		A Co	yes
			=-307/1963, 12=-308/2066	i,		tional Residenti 0.2 and referen				nd			87	o P	E-20010		EA
	18-19=0/546	6, 6-19=-			9) Graphic	cal purlin repres	sentation de	oes not d	epict the s	ize			V	- The			\$A
	5-19=-2720/	/489, 6-1	5=-2521/529,		or the o bottom	rientation of the chord.	e purlin alo	ong the top	o and/or				0	Pos	IONA	LEN	Ą
	19-20=-115	8/6641, 3	3-21=-620/462	3										4	and		22
															April	14,202	
	IING - Verify desig	n paramete	rs and READ NOT	'ES ON THIS A		TEK REFERENCE										14,202	23

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 ev. 5/19/2020 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

												RELEASE	FOR CONSTRUCTION	
Job	1	Fruss		Truss Ty	rpe		Qty	PI	у	Roof - Osa	ge Lot 55			
P230180-01		45		Pigavba	ack Base		4	1		lah Defere	nce (optional)		DPMENT SERVICES 157758146 SUMMIT, MISSOURI	
Premier Building	Supply (Springhill,		Hills, KS - 66083,	337		Run: 8.63 S	Nov 19 2022	Print: 8.630	S Nov 1		Industries, Inc.	'hu Apr 13 044:30	18/2023	
						ID:WcRfdZXs	?bG3GRhQ2	QHdPbz1S	CN-RfC?	PsB70Hq3NS?	gPqnL8w3uITX	GKWrCDol754zJC?	50/2023	
		⊢	<u>2-10-0</u> 4-11-14 2-10-0 2-1-14	ļ	12-0-11	17-7		22-8-		27-9-1		33-6-7		
		I	2-10-0 2-1-14		7-0-13	5-6-	9 6x6	5-1-3 -		5-1-3 5x4 u	6x6=	5-8-13		
	-1-0 -1-0 -1-8						∞ 5 5	2		6 <u>2</u> 3	⁷ 24			
						3x4 =	à	\ \		8		5x5 👟		
					5 ¹² 25	4						8	Т	
	ထုထု		3	x4 =										
	10-0-0 9-10-8 8-10-8		3x4 = 3						⊠		×			
	2	4x	6= 2			1		\				×	7-7-5	
		J F												
		2-8-0							<u> </u>	<u> </u>	12*			
	ΤάΤά	⊥ 21 🗄	2	0			15 3x4=			4 13 x8=	3, <u>₽ 107</u> 10	<u></u> 9 8		
		1.5>	A4 II	x8=		7x8=				MT18HS		1.5x4	I	
						1.5x4 I					4x4 II 1.5x4 =			
						12-5-7					5x5= 27-11-6			
		F	<u>4-11-14</u> 4-11-14	l	12 0 11	12-1-15 17-6		22-8-		20010	27-9-10	33-6-7		
Scale = 1:76.5			4-11-14		7-0-13	0-1-4 5-0 0-3-8	-9	5-2-7		3-7-8	1-5-11 0-1-12	5-7-1		
Plate Offsets (2	X, Y): [12:0-4-0	,Edge], [16	6:0-3-4,0-2-8]									•		
Loading		· · ·	acing	2-0-0		CSI		DEFL		in (loc)	l/defl L/d	PLATES	GRIP	
TCLL (roof) TCDL			ate Grip DOL mber DOL	1.15 1.15		TC BC	0.72 0.95	Vert(LL) Vert(CT)		.15 12-14 .27 12-14	>999 240 >999 180	MT20 MT18HS	197/144 244/190	
BCLL BCDL		0.0 Re 0.0 Co	p Stress Incr de	NO IRC2018	/TPI2014	WB Matrix-SH	0.81	Horz(CT) 0.	.19 9	n/a n/a	Weight: 203 lb	FT = 20%	
				-		roof live loads h	nave been o	onsidered	l for					
TOP CHORD BOT CHORD	2x4 SP No.2	Evcont* 18	-16:2x3 SPF No.2	2. 2)	this design. Wind [.] ASCE	7-16; Vult=115	mph (3-sec	ond aust)						
WEBS	11-17:2x4 SP	1650F 1.5		_, ,	Vasd=91mp	h; TCDL=6.0psf t. II; Exp C; Enc	; BCDL=6.0	psf; h=35						
	No.2	схсерт э	-0,21-1,10-7.284	35	exterior zone	e and C-C Exter -9-7 to 22-4-13,	ior(2E) 4-1	-5 to 9-9-	7,					
BRACING TOP CHORD	Sheathed or 3	-1-2 oc pu	rlins, except end		29-5-10, Inte	rior (1) 29-5-10	to 32-7-3, I	Exterior(2						
	verticals, and 2 5-7.	2-0-0 oc pı	urlins (4-9-6 max.)):	exposed ;C-	-2-4 zone; cantil C for members	and forces	& MWFRS	6 for					
BOT CHORD	Rigid ceiling d bracing, Exce		lied or 10-0-0 oc		DOL=1.60	own; Lumber D0	OL=1.60 pla	ate grip						
WEBS	6-0-0 oc braci 1 Row at midp	ng: 16-18,1	12-13. 6-14, 7-10, 5-14,	3) 4)		quate drainage t MT20 plates u								
		4-15	5	5)		as been designe ad nonconcurre								
	Max Horiz 21=	250 (LC 12		6) 7)	Refer to gird	er(s) for truss to designed in acc	truss conn	ections.						
			, 21=-193 (LC 12)), 21=1496 (LC 1)		International	Residential Co	de sections	R502.11.						
FORCES	(lb) - Maximun		sion/Maximum		Graphical pu	nd referenced s Irlin representat	ion does no	t depict th						
TOP CHORD	Tension 5-6=-1302/307				or the orienta bottom chore	ation of the purli d.	in along the	top and/c	or					
	7-8=-860/185, 1-21=-1451/21	12, 1-3=-16	30/224,	LO	AD CASE(S)	Standard						CITAL	an	
BOT CHORD	3-4=-2071/342 20-21=-257/99		57/336 2/76, 18-19=-7/5	6,								TEOFA	AISSO	
	16-18=-488/0, 9-10=-4/11, 16		/57, 10-13=-93/5 ⁻ 1792.	74,							A	S SCOTI	M. E.	
	15-16=-380/18 12-14=-123/76	328, 14-15=	=-250/1449,								H.	SEVI		
WEBS	5-15=-125/544	4, 6-14=-43	31/177,									att	Low	
	10-11=-929/23 5-14=-320/143	3, 7-14=-18	39/1079,	_							KA -	NUME		
	3-20=-788/216	6, 3-17=-34		Ď,							Ø	O PE-20010	1880/ 201	
	4-15=-581/242 17-20=-404/13		74/1597,									CSSIONA	ENG	
NOTES												all		
												April	14,2023	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

											RELEASE	FOR CONSTRUCTION	
Job		Truss		Truss Ty	ре		Qty	Ply	Roof - Osage	e Lot 55		ED FOR PLAN REVIEW	7
P230180-01	I	A6		Piggyba	ick Base		8	1	Job Reference	e (optional	LEE'S	OPMENT SERVICES 157758147 SUMMIT, MISSOURI	
Premier Building	Supply (Spring	nill, KS), S	Spring Hills, KS - 66083,			Run: 8.63 S Nov *			19 2022 MiTek Ind	dustries, Inc.		08/2023	
						ID:WcRfdZXs?bG	3GRhQ2QHd	Pbz1SCN-RfC	?PsB70Hq3NSgF	qnL8w3uHX	GKWrCD01734zJC	<i>••••</i>	
		⊢	4-11-14 4-11-14	<u>12-0</u> 7-0		17-7-4		<u>22-8-7</u> 5-1-3		<u>9-10</u> 1-3	<u>33-6-7</u> 5-8-13	———————————————————————————————————————	
					10	000	6x6=	010	1.5x4 I		ix6=		
- -	0-1-0-0-1-0-0-1-0-0-0-0-0-0-0-0-0-0-0-0					4 6	5	18 ⊠ ⊠	6 19 ⊠ ⊠	_⊠,	7 ₂₀		
	<u>6</u> <u>6</u> <u>6</u>					3x4 =			8	1		5x5≈	
				Į	12 5 17 -	4		\				8 -	
			0.1					\mathbb{N}					
10-0-0	9-10-8 9-10-8		3x4 = 3					A /					
10	9-1	4x6 ≠	2					ľ.				⊠ 7-7-5	
	₊	1											
	2-8-0							/	\parallel				
	5-1					₩						9	
		1.5x4 "	15			14	13		12 11	1	10	1.5x4 II	
			6x6=			5x5=	3x4=		5x8=		4x6=		
			4-11-14	12-0)-11	17-6-0		22-8-7	3x4=	10-14	33-6-7		
Scale = 1:67			4-11-14	7-0		5-5-5	1	5-2-7		2-7	5-7-9		
Plate Offsets (X, Y): [10:0-2	-8,0-2-0], [14:0-2-8,0-3-0], [15	5:0-2-8,0-3	-0]								_
Loading		(psf)	Spacing	2-0-0		CSI		FL		/defl L/d	PLATES	GRIP	
TCLL (roof) TCDL		25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.55 Ve	rt(CT) -0	.18 14-15 >	9999 240 9999 180	MT20	197/144	
BCLL BCDL		0.0 10.0	Rep Stress Incr Code	NO IRC2018/	/TPI2014	WB Matrix-SH	0.73 Ho	rz(CT) 0	.05 9	n/a n/a	Weight: 191 lb	FT = 20%	
LUMBER				2)		7-16; Vult=115mph					•		
TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2					h; TCDL=6.0psf; BC t. II; Exp C; Enclose							
WEBS BRACING	2x3 SPF No	.2 *Exce	pt* 9-8,16-1:2x4 SP N	lo.2		e and C-C Exterior(2 -9-7 to 22-4-13, Ext							
TOP CHORD			c purlins, except end oc purlins (5-1-1 max.			erior (1) 29-5-10 to 3 -2-4 zone; cantileve							
	5-7.)-		C for members and own; Lumber DOL=							
BOT CHORD	bracing.	-	applied or 9-1-8 oc	3)	DOL=1.60 Provide adeo	quate drainage to p	revent wate	r pondina					
WEBS	1 Row at mi		8-9, 6-12, 7-10, 5-12, 4-13		This truss ha	as been designed fo ad nonconcurrent w	r a 10.0 psf	bottom					
REACTIONS	(size) 9: Max Horiz 10		16= Mechanical _C 12)		Refer to gird	er(s) for truss to trus designed in accord	ss connecti	ons.					
			C 8), 16=-193 (LC 12) _C 1), 16=1496 (LC 1)) '	International	Residential Code s	ections R50	02.11.1 and					
FORCES	(lb) - Maxim		pression/Maximum		Graphical pu	nd referenced stand Irlin representation	does not de	pict the size					
TOP CHORD	Tension 1-3=-1633/2				or the orienta bottom chore	ation of the purlin al 1.	ong the top	and/or					
	4-5=-1493/3 6-7=-1155/2	82, 7-8=	-857/185,	LO	AD CASE(S)	Standard							
BOT CHORD		98, 13-1	5=-413/1593,								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	12-13=-224/ 9-10=-4/13	1298, 10	0-12=-118/738,								OF N	MISSO	
WEBS	5-13=-117/5 7-10=-847/2									E	1251	No.	
	7-12=-162/9	28, 8-10)=-188/1200, 4-14=0/2 =0/183, 4-13=-496/22							a	SCOT		
NOTES	1-15=-175/1									8 *	The second secon	1*8	
NOTES			hann ann idean d fan							8	K a +++	South and	

1) Unbalanced roof live loads have been considered for this design.

> 1 oril April 14,2023

at the

PE-200101000 PE-2001018807

									RELEASE FOR CONSTRUCTION
Job		Truss	-	Truss Type		Qty	Ply	Roof - Osage Lot 55	AS NOTED FOR PLAN REVIEW
P230180-01		A7		Piggyback Base S	Supported Gable	2	1	Job Reference (optiona	DEVELOPMENT SERVICES 157758148 LEE'S SUMMIT, MISSOURI
Premier Building S	Supply (Springhi	ill, KS), Spring	Hills, KS - 66083,		Run: 8.63 S Nov 19 2	1 2022 Print: 8.	.630 S Nov 1	9 2022 MiTek Industries, Inc.	
					ID:WcRfdZXs?bG3GI	RhQ2QHdPb	z1SCN-RfC	PsB70Hq3NSgPqnL8w3uIT>	
				17-7-4				27-9-10	33-6-7
				17-7-4		2.1		10-2-6	5-8-13
Ģ	œ				ŵ	3x4= 1156 17	18 19	20 21 22 23 ⊠ ⊠ ⊠	3×4= 2457
-0-0 -0-0	0-1-8 -1-8				°° 5 [™] 14 0° 13				26 27
				12 5 10	12				
			4x6 🚅	9					
0 ~	~	3x6 II	7	8					
10-0-0 9-10-8	9-10-8 M.	T18HS 5x8 II	5						
	0	1 ²	¥						Z-7-5
	Т								
	2-8-0								
⊥ _	⊥ [°] ⊥ 56								<u> </u>
			54 53 52 5	1 50 49 48	47 46 45 44	43 42	41 40		34 33 32 31
	M	ا T18HS 5x8 ا	I		5x5=			3x4=	
		3,0 1			33-	-6-7			
Scale = 1:65.9	Y). [4.0-2-8	0-2-4] [16·	0-2-0 Edge] [24·0-	2-0,Edge], [47:0-2-8	80-3-01				
· · · · ·					-			··· (I==) [/=]={ [/=]	
Loading TCLL (roof)		25.0 Pla	ate Grip DOL 1	2-0-0 .15		.64 Vert(LL)	in (loc) l/defl L/d n/a - n/a 999	MT18HS 244/190
TCDL BCLL				.15 NO		.57 Vert(.16 Horiz	,	n/a - n/a 999 .00 30 n/a n/a	
BCDL		10.0 Co	de I	RC2018/TPI2014	Matrix-R			· · · · · ·	Weight: 256 lb FT = 20%
LUMBER TOP CHORD	2x4 SP No.2				Max Grav 30=54 (LC 1 32=120 (LC				9=-93/46, 21-37=-93/47, 22-36=-95/50, 5=-94/39, 25-34=-92/13, 26-33=-93/77,
	2x4 SP No.2 2x4 SP No.2		-30:2x3 SPF No.2		34=119 (LC 36=122 (LC				2=-94/94, 28-31=-101/85, 19-40=-93/47, 1=-95/50, 17-42=-94/39, 15-43=-93/16,
	2x3 SPF No.2				39=120 (LC 41=122 (LC				4=-94/51, 13-45=-93/58, 12-46=-93/71, 7=-93/43, 10-48=-93/71, 9-49=-93/54,
			rlins, except end		43=119 (LC 45=120 (LC	25), 44=12	20 (LC 25),	8-50	=-93/57, 7-51=-93/57, 6-52=-93/73, =-93/91, 3-54=-94/47, 2-55=-154/434
	16-24.		urlins (6-0-0 max.):		47=120 (LC 49=120 (LC	1), 48=120) (LC 25),	NOTES	
	bracing.		lied or 6-0-0 oc		51=120 (LC 53=120 (LC	25), 52=12	20 (LC 1),	this design.	live loads have been considered for
WEBS	1 Row at mid		89, 21-37, 22-36, 85, 25-34, 26-33,		55=127 (LC	25), 56=67	76 (LC 12)	Vasd=91mph; T0	6; Vult=115mph (3-second gust) CDL=6.0psf; BCDL=6.0psf; h=35ft;
			32, 19-40, 18-41, 2, 15-43, 14-44,	FORCES	(lb) - Maximum Compr Tension	ession/Max	kimum		Exp C; Enclosed; MWFRS (envelope) d C-C Corner(3E) 4-11-5 to 10-2-0,
REACTIONS (size) 30	13-4 =33-6-7_31	15 =33-6-7, 32=33-6-7	TOP CHORD	1-56=-379/106, 1-2=-3 3-5=-207/67, 5-6=-182				2-0 to 22-4-13, Corner(3R) 22-4-13 to 2N) 27-6-0 to 32-7-3, Corner(3R) 32-7-3
	33	3=33-6-7, 34	=33-6-7, 35=33-6-7 =33-6-7, 39=33-6-7	7,	7-8=-131/38, 8-9=-105 10-11=-52/48, 11-12=-	,	,		or(2N) 37-7-3 to 38-2-12 zone; d right exposed ;C-C for members and
	40	=33-6-7, 41	=33-6-7, 42=33-6-7	, ,	13-14=-32/124, 14-15= 15-16=-42/152, 16-17=			forces & MWFRS DOL=1.60 plate	S for reactions shown; Lumber grip DOL=1.60
	46	5=33-6-7, 47	=33-6-7, 45=33-6-7 =33-6-7, 48=33-6-7	7,	17-18=-38/149, 18-19= 19-20=-38/149, 20-21=	=-38/149,			
	52	2=33-6-7, 53	=33-6-7, 51=33-6-7 =33-6-7, 54=33-6-7		21-22=-38/149, 22-23= 23-24=-39/150, 24-25=	=-38/149,			and a second
Ν	55 Max Horiz 56	5=33-6-7, 56 5=250 (LC 12			25-26=-41/147, 26-27=	=-32/111,	0. 40/50		TE OF MISSO
Ν			2), 31=-25 (LC 13), 3), 33=-29 (LC 13),	BOT CHORD	27-28=-22/69, 28-29=- 55-56=-5/2, 54-55=-5/2	2, 53-54=-5	5/2,	E	STATE OF MISSOL
	35	i=-19 (LC 8),	, 36=-26 (LC 9), , 39=-24 (LC 8),		52-53=-5/2, 51-52=-5/2 49-50=-5/2, 48-49=-5/2			,8	SEVIER
	40	, 41=-27 (LC 9),		45-46=-6/2, 44-45=-6/2, 43-44=-6/2, 42-43=-6/2, 41-42=-6/2, 40-41=-6/2,					
	45	=-33 (LC 12	, 44=-31 (LC 12), 2), 46=-46 (LC 12),		39-40=-6/2, 37-39=-6/2 35-36=-6/2, 34-35=-6/2	2, 36-37=-6	6/2,		NUMBER
	49)=-31 (LC 12	2), 48=-47 (LC 12), 2), 50=-33 (LC 12),		32-33=-6/2, 31-32=-6/2			Ø	PE-2001018807
			2), 52=-28 (LC 12), 2), 55=-734 (LC 12)						CSSIONAL ENCID
									COURSES AND

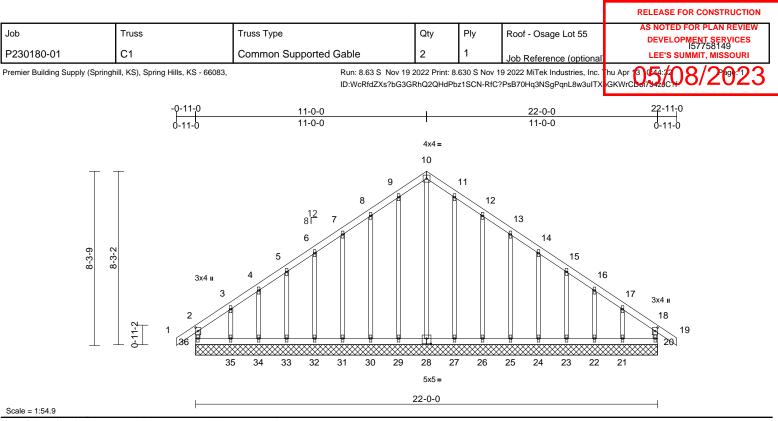
April 14,2023

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property incorporate this design into the overall fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

					RELEASE FOR CONSTRUCTION
Job Truss	Truss Type	Qty	Ply	Roof - Osage Lot 55	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 157758148
P230180-01 A7	Piggyback Base Supported Gable	2	1	Job Reference (optional	
Premier Building Supply (Springhill KS) Spring	a Hills KS - 66083 Run: 8.63 S. Nov	10 2022 Print: 8	630 S Nov 1	9 2022 MiTek Industries Inc.	

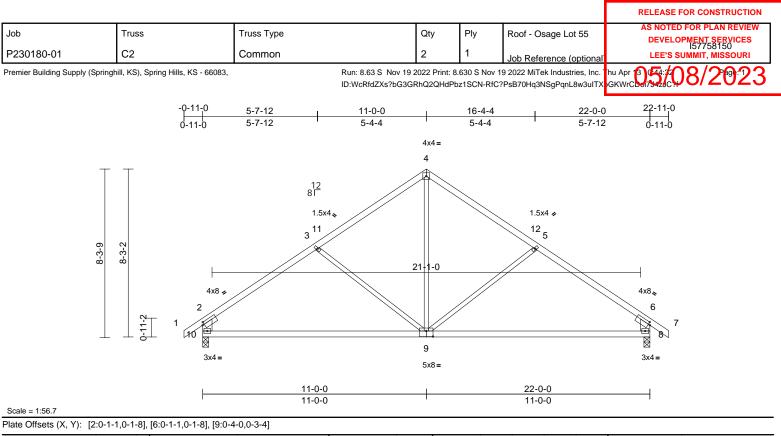
ding Supply (Springhill, KS), Spring Hills, KS - 66

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Provide adequate drainage to prevent water ponding. 4)
- All plates are MT20 plates unless otherwise indicated. 5)
- 6) All plates are 1.5x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.
- 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). Gable studs spaced at 1-4-0 oc. 9)
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


LOAD CASE(S) Standard

n: 8 63 S Nov 19 2022 Print: 8 ID:WcRfdZXs?bG3GRhQ2QHdPbz1SCN-RfC?PsB70Hq3NSgPqnL8w3uITX_GKWrCbd734zdC++

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Plate Offsets (X, Y): [2:0-2-0,0-1-4], [18:0-2-0,0-1-4], [28:0-2-8,0-3-0]

Fiale Olisels	(^, 1). [2.0-2-0,0-1-4],	[10.0-2-0,0-1-4], [20	.0-2-8,0-3-0]									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 NO IRC2018/TPI201	CSI TC BC WB 4 Matrix-R	0.14 0.09 0.36	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 20	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 130 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Sheathed or 6-0-0 of verticals. Rigid ceiling directly bracing. (size) 20=22-0-(23=22-0-(23=22-0-(32=22-0-(35=22-0-(35=22-0-(35=22-0-(35=22-0-(29=2-0-(29=2	· /	BOT CHO 0-0, 0-0, 0-0, 0-0, 0-0, 0-0, WEBS 3), 3), 3), 3), 3), 3), 3), 3),	 2-36=-167/84, 1-2= 3-4=-115/114, 4-5= 6-7=-92/171, 7-8=- 9-10=-155/288, 10 11-12=-144/266, 1: 13-14=-92/171, 14 15-16=-72/98, 16-1 17-18=-115/106, 1: 35-36=-105/117, 3 33-34=-105/117, 3 29-30=-105/117, 2 26-27=-105/117, 2 20-21=-105/117, 2 20-21=-105/117, 2 20-21=-105/117, 2 20-21=-105/117, 10-28=-237/92, 9-2 7-31=-95/63, 6-32= 4-34=-93/74, 3-35= 12-26=-97/77, 13-2 15-23=-96/70, 16-2 	108/11 116/215 -11=-15 2-13=-11 1-15=-68, 7=-80/8 3-19=0/3 4-35=-11 2-33=-11 2-31=-11 7-29=-11 5-26=-11 3-24=-11 1-22=-11 9=-100, 95/63, 121/10 (5=-95/6)	6, 5-6=-95/14 , 8-9=-144/26 5/288, 16/215, 128, 2, 18, 18-20=-14 05/117, 05/117, 05/117, 05/117, 05/117, 05/117, 05/117, 34, 8-30=-96/70, 4, 11-27=-96/ 4, 17-21=-11;	11, 16, 6/68 /77, (32, (63, 3/99	 f) Tru bra bra 7) Gal 8) This cho 9) Pro bea join lb u join lb u join lb u at ja 10) This Inte R80 	ss to be ced aga ole studs s truss h rd live k vide me ring pla t 36, 69 plift at jc t 32, 52 plift at jc t 26, 48 plift at jc obint 21. s truss is rnationa	fully sinst lat sinst lat s space bad not chanic te capa lb uplit bint 30, lb uplit bint 35, lb uplit bint 23, s desig al Resid and ref	eral movement (i. ed at 1-4-0 oc. en designed for a nconcurrent with al connection (by able of withstandi ft at joint 20, 19 lb , 48 lb uplift at join ft at joint 33, 26 lb , 16 lb uplift at join ft at joint 25, 47 lb , 29 lb uplift at join uned in accordance dential Code sect ferenced standard	e face or securely e. diagonal web). 10.0 psf bottom any other live loads. others) of truss to ng 103 lb uplift at o uplift at joint 29, 58 nt 31, 47 lb uplift at o uplift at joint 34, 127 nt 27, 59 lb uplift at o uplift at joint 24, 52 nt 22 and 116 lb uplift ee with the 2018 ions R502.11.1 and
FORCES	33=-52 (L 35=-127 (22=118 (l 24=121 (l 26=123 (l 28=202 (l 30=122 (l 32=120 (l	C 12), 34=-26 (LC 12 LC 12), 36=-103 (LC C 19), 21=168 (LC 2 C 26), 23=124 (LC 2 C 20), 25=121 (LC 2 C 20), 27=122 (LC 2 C 20), 27=122 (LC 1 C 19), 31=121 (LC 1 C 19), 33=125 (LC 1 C 25), 35=184 (LC 1 C 20)	2), this de 8) 2) Wind: A (0), Vasd=1 (0), Ke=0.5 (0), exterio (0), Exterio (0), Exterio (0), Exterio (0), Exterio (0), Ieft and (0), reaction (0), expose (0), reaction (0), expose (0), reaction (0), Truss (0), F (0), See St (0), See	AŠCE 7-16; Vult=115mp 91mph; TCDL=6.0psf; B 16; Cat. II; Exp C; Enclos r zone and C-C Corner((2N) 4-4-0 to 11-0-0, C Exterior(2N) 16-0-0 to 2 right exposed ; end ver d;C-C for members and ns shown; Lumber DOL=	CDL=6.0 ed; MW 3E) -0-1 prner(3F 2-11-0 tical left forces 8 =1.60 pl in the p d (norm nd Deta signer as	Dipsf; h=35ft; FRS (envelop I-0 to 4-4-0, t) 11-0-0 to zone; cantilev and right & MWFRS for ate grip ane of the tru al to the face) Is as applicat to en ANSI/TP	ss , ble, Pl 1.				STATE OF M SCOT SEVI NUM PE-20010 FE-20010	ER Senter

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

April 14,2023

		-										
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.82	Vert(LL)	-0.24	8-9	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.78	Vert(CT)	-0.48	8-9	>535	180		
BCLL	0.0	Rep Stress Incr	NO	WB	0.35	Horz(CT)	0.03	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-SH							Weight: 96 lb	FT = 20%
LUMBER			5) This truss is	designed in accorda	nce w	ith the 2018						
TOP CHORD	2x4 SP 1650F 1.5E			Residential Code se			ind					
BOT CHORD	2x4 SP 1650F 1.5E		R802.10.2 a	nd referenced standa	ard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2 *Exce	ept* 10-2.8-6:2x6 SP	LOAD CASE(S)	Standard								
	2400F 2.0E	pr 10 2,0 0.2/0 01		etandara								
BRACING												
TOP CHORD	Sheathed or 5-0-8 c verticals.	oc purlins, except end	d									
BOT CHORD		applied or 10-0-0 oc										
REACTIONS	(size) 8=0-3-8,	10=0-3-8										
	Max Horiz 10=-245 ((LC 10)										
	Max Uplift 8=-149 (L	C 13), 10=-149 (LC	12)									
	Max Grav 8=1050 (I	LC 1), 10=1050 (LC 1	1)									
FORCES	(lb) - Maximum Corr	npression/Maximum										
	Tension											
TOP CHORD	1-2=0/44, 2-3=-1209	9/214, 3-4=-927/200,										
		1209/214, 6-7=0/44,										
	2-10=-937/221, 6-8=	=-937/221										
BOT CHORD	8-10=-176/924											
WEBS	4-9=-67/539, 5-9=-2	94/246, 3-9=-294/24	6									
NOTES												
1) Unbalance	ed roof live loads have	been considered for										TO
this desigr											OFI	MIG
	CE 7-16; Vult=115mph										Fre	A Scin
	nph; TCDL=6.0psf; BC		``````````````````````````````````````							6	STATE OF M	N.S.Y
,	Cat. II; Exp C; Enclose	· · · ·	e)							R	SCOT	TM. VEN
exterior zo	ne and C-C Exterior(2	(E) - (U - 1) + (U + 1)								И	1	

exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 11-0-0, Exterior(2R) 11-0-0 to 16-0-0, Interior (1) 16-0-0 to 22-11-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom

3) chord live load nonconcurrent with any other live loads.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 149 lb uplift at joint 10 and 149 lb uplift at joint 8.

OFFESSIONAL E April 14,2023

NUMBER

PE-2001018807

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof - Osage Lot 55	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 157758151
P230180-01	C3	Common		9	1	Job Reference (optional	
Premier Building Supply (S	Springhill, KS), Spring Hills, KS - 6	5083,				19 2022 MiTek Industries, Inc. ?PsB70Hq3NSgPqnL8w3uITX	
		5-7-12 5-7-12	11-0-0 5-4-4	-	<u>16-4-4</u> 5-4-4	22-0-0	
		5-7-12		4x4 =	ə-4-4	5-7-12	
				3			
	ດີ ເດື່ອ ອີ 5x5 = 1	8 ¹² 1.5x 2 ⁹		-1-0		1.5x4 ¢	5x5 II 5
	2-1			7 5x8=			6 3x6=
Scale = 1:56.7	├ ──	<u>11-0-0</u> 11-0-0				22-0-0 11-0-0	

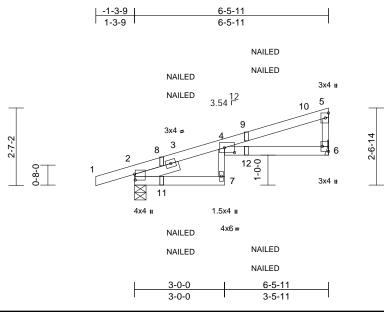
Plate Offsets (X, Y): [6:Edge,0-1-8], [7:0-4-0,0-3-4]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.95	Vert(LL)	-0.24	7-8	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.75	Vert(CT)	-0.48	7-8	>535	180		
BCLL	0.0	Rep Stress Incr	NO	WB	0.37	Horz(CT)	0.03	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-SH							Weight: 92 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS	IORD 2x4 SP No.2		Ínternational	designed in acc Residential Co nd referenced s Standard	de sections	R502.11.1						

	2400F 2.0	DE
BRACING		
TOP CHORD	Sheathed	l or 3-7-9 oc purlins, except end
	verticals.	
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	6=0-3-8, 8=0-3-8
	Max Horiz	8=224 (LC 11)
	Max Uplift	6=-121 (LC 13), 8=-121 (LC 12)

- Max Grav 6=969 (LC 1), 8=969 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-1217/216, 2-3=-927/200, 3-4=-927/200, 4-5=-1217/216, 1-8=-845/173, 5-6=-845/173
- BOT CHORD 6-8=-192/928 WEBS 3-7=-67/540, 4-7=-314/251, 2-7=-314/251 NOTES
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-2-12 to 5-6-5, Interior (1) 5-6-5 to 11-0-0, Exterior(2R) 11-0-0 to 16-0-0, Interior (1) 16-0-0 to 21-9-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- Provide mechanical connection (by others) of truss to 4) bearing plate capable of withstanding 121 lb uplift at joint 8 and 121 lb uplift at joint 6.

LOAD CASE(S) Standard


April 14,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - Osage Lot 55	AS NOTED FOR PLAN REVIEW
305	11035	Truss Type	Quy	i iy	Rool - Osage Lot 55	DEVELOPMENT SERVICES 157758152
P230180-01	CJ1	Diagonal Hip Girder	4	1	Job Reference (optional	

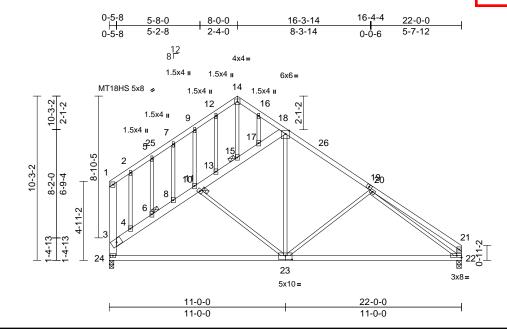
Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. thu Apr 3 44:508/2023 ID:WcRfdZxs?bG3GRhQ2QHdPbz1SCN-RfC?PsB70Hq3NSgPqnL8w3uITX GKWrC5073426CF

Scale = 1:38.5

Plate Offsets (X, Y): [2:0-2-6,0-0-4], [4:0-4-0,0-2-0], [6:Edge,0-2-8]

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	T										1	-
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.73	Vert(LL)	-0.16	7	>492	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.64	Vert(CT)	-0.22	7	>347	180		
BCLL	0.0	Rep Stress Incr	NO		WB	0.00	Horz(CT)	0.11	6	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-R							Weight: 26 lb	FT = 20%
LUMBER			LO	AD CASE(S)	Standard								
TOP CHORD	2x4 SP 1650F 1.5E		1)	Dead + Roo	of Live (balanced)): Lumber	Increase=1.	15,					
BOT CHORD	2x4 SP No.2 *Excep	ot* 7-4:2x3 SPF No.2		Plate Increa	ase=1.15								
WEBS	2x3 SPF No.2			Uniform Loa	ads (lb/ft)								
SLIDER													
BRACING					ed Loads (lb)								
TOP CHORD	Sheathed or 6-0-0 o	oc purlins, except er	d		38 (F=44, B=44),	11=52 (F:	=26, B=26),						
	verticals.			12=-38 (F=-19, B=-19)								
BOT CHORD	OT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.												
REACTIONS	(size) 2=0-4-9, 6	6= Mechanical											
	Max Horiz 2=85 (LC	31)											
	Max Uplift 2=-106 (L	.C 8), 6=-90 (LC 12)											
	Max Grav 2=282 (L0	C 1), 6=280 (LC 1)											
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=0/1, 2-4=-217/5 5-6=-163/170	0, 4-5=-104/51,											
BOT CHORD	2-7=-15/17, 4-7=-29	/61, 4-6=-90/91											
NOTES													
1) Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)											
Vasd=91m	nph; TCDL=6.0psf; BC	DL=6.0psf; h=35ft;											
	Cat. II; Exp C; Enclose		be)										an
	one and C-C Corner (3											OFI	MIG
	R) 5-9-5 to 6-4-7 zone											TEOFI	JSS SCIM
	end vertical left and rig										6	122	
members	and forces & MWFRS	for reactions shown									n	STOT	TM

- members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.602) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.3) Refer to girder(s) for truss to truss connections.
- 4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 5) "NAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails per NDS guidelines.
- In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).


April 14,2023

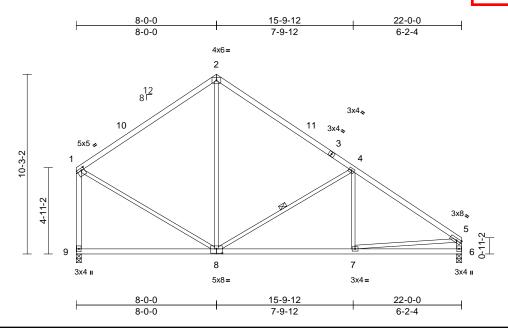
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 55	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 157758153
P230180-01	D1	Common Structural Gable	1	1	Job Reference (optional	

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Thu Apr 354:308/2922 ID:WcRfdZXs?bG3GRhQ2QHdPbz1SCN-RfC?PsB70Hq3NSgPqnL8w3uITX GKWrCbol75421C

Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Plate Grip DOL1Lumber DOL1Rep Stress IncrN	1-11-4 1.15 1.15 NO IRC2018/TP	PI2014	CSI TC BC WB Matrix-SH	0.56 0.81 0.92	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.25 -0.51 0.03	(loc) 22-23 22-23 22	l/defl >999 >510 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 146 lb	GRIP 197/144 197/144 FT = 20%
BOT CHORD 2x4 SP 1650F 1.5E WEBS 2x3 SPF No.2 *Exce 22-21:2x4 SP No.2 22-21:2x4 SP No.2 BRACING TOP CHORD TOP CHORD Sheathed or 5-10-1 or verticals. BOT CHORD Rigid ceiling directly bracing. JOINTS 1 Brace at Jt(s): 11, 15, 6 REACTIONS (size) 22=0-3-8, Max Horiz 24=-325 (IMAX Grav 22=943 (L FORCES (lb) - Maximum Com Tension TOP CHORD 1-2=-102/94, 2-5=-11 7-9=-136/180, 9-12= 12-14=-180/260, 14-16-18=-185/234, 18-16	LC 8) LC 13), 24=-120 (LC 13 .C 1), 24=943 (LC 1) pression/Maximum 07/115, 5-7=-120/146, 161/221, .16=-186/268, 20=-933/198, .=-846/201, 1-3=-94/79, .=-1189/283, 1074/219, .11=-985/171, .15=-917/131, .18=-795/162 	 Va Ke ext Int rig for Lu 3) Tr on se or 4) All 5) All 5) All 5) All 5) All 5) All 6) Tr 6) Tr 6) Tr 6) Tr 8) Th ch ch 8) Th nt R8 10) Gr or bo 	asd=91mph e=0.96; Cat. (terior zone terior (1) 5 terior (1) 13 ght exposed r members a: unber DOL= russ design hly. For stud es Standard c consult qua l plates are uss to be fu aced agains able studs s his truss has hord live load his truss is c ternational f 802.10.2 an raphical pur		CDL=6.0 (2E) 0-2 (2E)	Opsf; h=35ft; FRS (envelop -12 to 5-4-0, tilever left and t exposed;C- reactions sho) lane of the tru al to the face ils as applicat s per ANSI/TF wise indicate se indicated. the or securely liagonal web) 0 psf bottom other live loa ith the 2018 s R502.11.1 a SI/TP1 1. ot depict the s	-0, d -C -C -own; uss), bile, -1. d. - d. -				STATE OF M SCOTT SEVI DE-20010 PE-20010	ER BER 018807

1) Unbalanced roof live loads have been considered for this design.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

April 14,2023

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - Osage Lot 55	AS NOTED FOR PLAN REVIEW
000	11035		Gily	i iy	Rool - Osage Lot 55	DEVELOPMENT SERVICES 157758154
P230180-01	D2	Common	8	1	Job Reference (optional)	

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Thu Apr 344:408/2022 MiTek Industries, Inc. Thu Apr 344:408/2022 MiTek Industries, Inc. Thu Apr 344:408/2022 MiTek Industries, Inc. The Apr 344:408/2022 MiTek Industrie

Scale = 1:65.8

Plate Offsets (X, Y):	[1:0-2-0,0-1-8], [8:0-4-0,0-3-0]
-----------------------	----------------------------------

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.91	Vert(LL)	-0.09	8-9	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.69	Vert(CT)	-0.19	8-9	>999	180		
BCLL	0.0	Rep Stress Incr	NO	WB	0.45	Horz(CT)	0.02	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-SH							Weight: 111 lb	FT = 20%

LUMBER

TOP CHORD	2x4 SP 1650F 1.5E *Except* 2-3:2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x3 SPF No.2 *Except* 9-1,6-5:2x4 SP No.2
BRACING	
TOP CHORD	Sheathed or 4-5-7 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
WEBS	1 Row at midpt 4-8
REACTIONS	(size) 6=0-3-8, 9=0-3-8
	Max Horiz 9=-334 (LC 8)
	Max Linkth C 400 (LC 40) 0 400 (LC 40)

	Max Uplift 6=-129 (LC 13), 9=-123 (LC 13)
	Max Grav 6=977 (LC 1), 9=977 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-782/207, 2-4=-795/221, 4-5=-1283/189,
	1-9=-907/189, 5-6=-921/159
BOT CHORD	7-9=-239/990, 6-7=-51/190
WEBS	2-8=-21/325, 1-8=-73/588, 5-7=-56/806,
	4-8=-594/281, 4-7=0/222

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 5-1-12, Interior (1) 5-1-12 to 8-0-0, Exterior(2R) 8-0-0 to 13-0-0, Interior (1) 13-0-0 to 21-10-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

April 14,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

												RELEAS	SE FOR CONSTRUCTION	N
Job	Truss	3	Truss Ty	/pe		Qty	Ply	Ro	oof - Osa	ge Lot 55	5		TED FOR PLAN REVIEW	
P230180-0	1 E1		Hip Giro	der		2	1		h Roforo	nce (onti	ionali	LEE'	ELOPMENT SERVICES 157758155 'S SUMMIT, MISSOURI	
Premier Building	Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083, Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Thu Apr 6 44 (19) (20) (20) (20) (20) (20) (20) (20) (20													
					ID:WcRfdZXs?b0	G3GRhQ20	QHdPbz1SCN	I-RfC?PsB	70Hq3NS	gPqnL8w3	BulTX	GKWrCD-175420		<u> </u>
		-0-1	1-0	4-8-0) 1		8-8-0		ı	13	8-4-0	.1	14-3-0	
		0-1	1-0	4-8-0			4-0-0				-8-0	———	D-11-0	
					NAILI	ED	NAILED	NAIL	.ED					
					6x6	6 =		5	ix5 =					
	-10			12 5 Г	° 13 4		a ¹⁴ 🖂	1	5 15					
	0-1-0				-0			<u> </u>						
	4 1 1			3						\geq	_6			
	2-9-14 2-5-11 2-5-11		2		<u> </u>		 16		 10		-		7	
			Jo -	 12	9) "	10		x6 =	9	, 🖻	- P	8	
	—					-		-		5	x10 =	X	\sim	
			5x5 =	3x4 u	Spec	al	NAILED	Spe	cial		3x4	5x5	=	
				3x4 II							Зx	:4 u		
				5x1	0 =									
			2	-2-0	4-6-12		8-9-4		1	1-2-0		13-4-0		
Scale = 1:36.8			2	-2-0	2-4-12		4-2-8		2	-4-12	I	2-2-0		
Plate Offsets ((X, Y): [3:0-8-1,Edge], [3:0-0-14,0-1-15], [5:	0-2-8,0-2-	4], [6:0-8-1,Ec	lge], [6:0-0-14,0-1	-15], [10:	0-2-8,0-4-4]							
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.72 0.56	Vert(LL) Vert(CT)	-0.16 -0.27	10-11 10-11		240 180	MT20	197/144	
BCLL	0.0	Rep Stress Incr	NO		WB		Horz(CT)	0.25	7	n/a	n/a	M . L . TO II		
BCDL	10.0	Code	-	/TPI2014	Matrix-SH			-				Weight: 70 lb	FT = 20%	
LUMBER TOP CHORD	2x6 SP 2400F 2.0E	E *Except* 4-5:2x4 SP	4)	chord live loa	s been designed t ad nonconcurrent	with any o	other live loa							
BOT CHORD	No.2 5) This truss is designed in accordance with the 2018													
WEBS	No.2, 3-6:2x6 SP 2400F 2.0E R802.10.2 and referenced standard ANSI/TPI 1.													
BRACING	BRACING or the orientation of the purlin along the top and/or													
TOP CHORD	2-0-0 oc purlins (2-	11 oc purlins, except ·9-8 max.): 4-5.	7)	"NAILED" ind	dicates Girder: 3-1	0d (0.148	3" x 3") toe-	nails						
BOT CHORD	Rigid ceiling directl bracing.	y applied or 9-11-10 oc	8)		other connection									
REACTIONS	(size) 2=0-3-8,	7=0-3-8			icient to support of 128 lb up at 4-8-0									
	Max Horiz 2=-42 (L Max Uplift 2=-288 (.C 17) [LC 12), 7=-288 (LC 13)	128 lb up at	8-7-4 on bottom of	hord. Th	e design/							
	Max Grav 2=1079 (LC 1), 7=1079 (LC 1) Max Grav 2=1079 (LC 1), 7=1079 (LC 1) Max Grav 2=1079 (LC 1), 7=1079 (LC 1) Selection of such connection device(s) is the responsibility of others.													

 In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

FORCES

TOP CHORD

BOT CHORD

this design.

grip DOL=1.60

WEBS

NOTES

1)

2)

3)

Tension

(lb) - Maximum Compression/Maximum

1-2=0/8, 2-3=-590/228, 3-4=-3520/1180,

2-12=-9/33, 3-12=-24/119, 3-11=-1031/3339, 10-11=-1012/3269, 6-10=-976/3197,

4-11=-205/748, 4-10=-235/90, 5-10=-187/704

4-5=-3132/1082, 5-6=-3372/1123,

6-7=-590/227, 7-8=0/8

6-9=-24/119, 7-9=-9/33

Unbalanced roof live loads have been considered for

Wind: ASCE 7-16; Vult=115mph (3-second gust)

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 4-8-0, Exterior(2E) 4-8-0 to 14-3-0

and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate

Provide adequate drainage to prevent water ponding.

zone; cantilever left and right exposed ; end vertical left

 Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)

Vert: 1-3=-70, 3-4=-70, 4-5=-70, 5-6=-70, 6-8=-70, 2-12=-20, 3-6=-20, 7-9=-20

- Concentrated Loads (lb)
- Vert: 4=-52 (B), 5=-52 (B), 11=-310 (B), 10=-310 (B), 14=-52 (B), 16=-59 (B)

SEFORE USE. ponent, not o the overall

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						RELEASE FOR CONSTRUCTION		
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 55	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 157758156		
P230180-01	E2	Roof Special	Roof Special 2 1 Job Reference					
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083,	Run: 8.63 S Nov 19 ID:WcRfdZXs?bG3G	2022 Print: 8 RhQ2QHdPb	.630 S Nov 1 pz1SCN-RfC	19 2022 MiTek Industries, Inc. ?PsB70Hq3NSgPqnL8w3uITX	hu Apr 1354:108/2023 GKWrCD075428C 408/2023		
	-0-11- 0-11-	6-8-0			<u>13-4-0</u> 6-8-0	14-3-0 		
			6x6 =	-				
3-7-14	9-9-9- 9-9- 9-9- 1	5^{12}_{1} 11 3 $4x4 = 3x4 \parallel$ $3x4 \parallel$	4 9 1.5x4		12 5 8 3x8 = 3x4			
		3x8 =			3x4	II.		
Scale = 1:37 Plate Offsets (X, Y): $[3:0.5]$	-6,Edge], [3:0-0-10,0-2-9], [5:0	2-2-0 6-8-0 2-2-0 4-6-0			11-2-0 4-6-0	13-4-0 2-2-0		

	Loading (psf) TCLL (roof) 25.0 TCDL 10.0 DOUL 0.0	Spacing2-0-0Plate Grip DOL1.15Lumber DOL1.15		DEFL Vert(LL) Vert(CT)	in -0.15 -0.28	(loc) 3-9 3-9	l/defl >999 >565	240 180	PLATES MT20	GRIP 197/144
PCDI 10.0 Codo IPC2019/TPI2014 Matrix SU I Waight: 55 lb ET -	BCLL 0.0 BCDL 10.0	Rep Stress Incr NO Code IRC2018/TPI201	WB 0.08 Matrix-SH	Horz(CT)	0.26	6	n/a	n/a	Weight: 55 lb	FT = 20%

LUMBER TOP CHORD 2x6 SPF No.2

BOT CHORD	2x4 SP N	o.2 *Except* 10-3:2x6 SPF No.2,					
	5-8:2x6 S	5-8:2x6 SP 2400F 2.0E					
WEBS	2x3 SPF I	No.2					
BRACING							
TOP CHORD	Sheathed	or 4-10-5 oc purlins.					
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc						
	bracing.						
REACTIONS	(size)	2=0-3-8, 6=0-3-8					
	Max Horiz	2=-58 (LC 17)					
	Max Uplift	2=-109 (LC 12), 6=-109 (LC 13)					
	Max Grav	2=661 (LC 1), 6=661 (LC 1)					
FORCES	(lb) - Max	imum Compression/Maximum					
	Tension						
TOP CHORD	1-2=0/8, 2	2-3=-350/149, 3-4=-1192/384,					

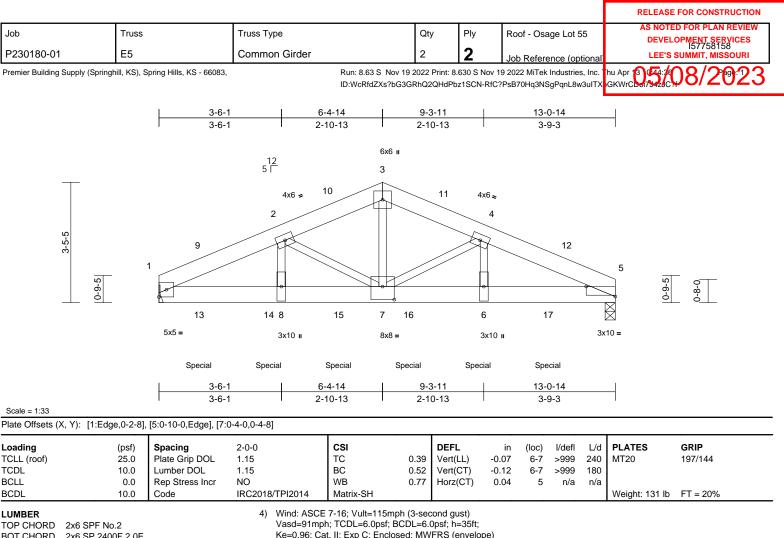
	1 2 0,0,2 0 000, 100,0 1 1102,001,
	4-5=-1192/392, 5-6=-352/139, 6-7=0/8
BOT CHORD	2-10=-6/24, 3-10=-14/88, 3-9=-254/1110,
	5-9=-254/1110, 5-8=-13/89, 6-8=-5/25
WEBS	4-9=0/264

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 6-8-0, Exterior(2R) 6-8-0 to 11-4-12, Interior (1) 11-4-12 to 14-3-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DDL=1.60 plate grip DDL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 This truss is designed in accordance with the 2018
- 4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


16023 Swingley Ridge Rd Chesterfield, MO 63017

									RELEASE FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Roof -	- Osage Lot 55	
P230180-01	E3		Roof Special		4	1		0	DEVELOPMENT SERVICES 157758157 LEE'S SUMMIT, MISSOURI
	ply (Springhill, KS), Spri	ring Hills, KS - 66083.	Rooi Opeoia.	Run: 8,63 S Nov				eference (optional MiTek Industries, Inc.	
11011101 201111 3 2 1 1	// (opiniginii,,,	ing timo, rec 2222.,		ID:Vc7t4F_eo7A0	zc1yOlBpkl	nzaj1?-RfC?P	'sB70Hq3NS	gPqnL8w3uITXbGKW	CDoi7J42/C7/00/2023
		I	6-8-0		I		13-0-14	• 1	I
			6-8-0		+		6-4-14		\neg
					6x6 =				
					3				
	\top		12 5 [9		10			
				°					
	2						\sim		
	3-5-5		2	/				3,	IX8 II
		1			_ <u></u>				5
	0-8-0				7			6	0-9-5
			○		1.5x4 ॥			6 🗀 🗠	
		3x4 =	3х4 ш						4x4 =
								3x4 u	
			3x4 II					3x4 u	
			3x8 =						
		2-2-		6-8-0		11-2		13-0-14	
Scale = 1:35.5		2-2-	-0 1 .	4-6-0	·	4-6	-0	1-10-14	· · · · · · · · · · · · · · · · · · ·
Plate Offsets (X, Y)): [2:0-5-6,Edge], [2	2:0-0-10,0-2-9], [4:0)-4-6,Edge], [5:Edge,0-1-	-7], [5:0-2-6,0-4-8]					
Loading	. ,	Spacing	2-0-0	CSI		DEFL		loc) I/defl L/d	
TCLL (roof) TCDL		Plate Grip DOL Lumber DOL	1.15 1.15	TC BC		√ert(LL) √ert(CT)		2-7 >999 240 2-7 >563 180	MT20 197/144
BCLL	0.0 F	Rep Stress Incr	NO	WB		Horz(CT)	0.26	5 n/a n/a	
BCDL	10.0 0	Code	IRC2018/TPI2014	Matrix-SH		2010			Weight: 51 lb FT = 20%
	6 SPF No.2		International	designed in accord I Residential Code s	sections R	R502.11.1 ai	nd		
	4 SP No.2 *Except* 3 3 SPF No.2	8-2,4-6:2x6 SPF No	lo.2 R802.10.2 ar LOAD CASE(S)	nd referenced stand	dard ANS	I/TPI 1.			
WEDGE Rig	ght: 2x4 SP No.2			Oldriga:					
BRACING TOP CHORD Stru	ructural wood sheath	hing directly applied	ro t						
	9-8 oc purlins. gid ceiling directly ap	nolied or 10-0-0 oc							
bra	acing.								
	k Horiz 1=56 (LC 12	,							
	x Uplift 1=-82 (LC 1) x Grav 1=579 (LC 1								
FORCES (lb)) - Maximum Compre								
TOP CHORD 1-2	ension 2=-353/152, 2-3=-11								
BOT CHORD 1-8	4=-1187/418, 4-5=-3 8=-7/27, 2-8=-20/97,	′, 2-7=-285/1102,							
4-7	7=-285/1102, 4-6=-2 7=0/261								
NOTES									
 Unbalanced roc this design. 	oof live loads have be	een considered for							A MARCA
2) Wind: ASCE 7-	2) Wind: ASCE 7-16; Vult=115mph (3-second gust)								
Ke=0.96; Cat. II	Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope)								
Interior (1) 5-1-	exterior zone and C-C Exterior(2E) 0-1-12 to 5-1-12, Interior (1) 5-1-12 to 6-8-0, Exterior(2R) 6-8-0 to								
	or (1) 11-4-12 to 13-0 xposed ; end vertical							X	atts Sandas
exposed;C-C fo	or members and force vn; Lumber DOL=1.6	ces & MWFRS for						N.	NUMBER
DOL=1.60								Ø.	PE-2001018807
chord live load	been designed for a nonconcurrent with	any other live loads	s.					Y	ESSI ENGLA
4) Refer to girder((s) for truss to truss of	connections.							SJONAL ENCE
									April 14,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

M MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

TOP CHORD	2x6 SPF I	No.2						
BOT CHORD	2x6 SP 24	400F 2.0E						
WEBS	2x3 SPF I	2x3 SPF No.2						
BRACING								
TOP CHORD	Sheathed	Sheathed or 4-11-1 oc purlins.						
BOT CHORD	Rigid ceili bracing.	Rigid ceiling directly applied or 10-0-0 oc bracing.						
REACTIONS	(size) 1= Mechanical, 5=0-3-8, (req. 0-3-12)							
	Max Horiz	1=-54 (LC 17)						
	Max Uplift	1=-727 (LC 12), 5=-669 (LC 13)						
	Max Grav	1=5223 (LC 1), 5=4791 (LC 1)						
FORCES	(lb) - Max Tension	imum Compression/Maximum						
TOP CHORD	1-2=-851	5/1409, 2-3=-6488/1121,						
	3-4=-6486	6/1120, 4-5=-8657/1435						
BOT CHORD	1-8=-1222	2/7552, 7-8=-1222/7552,						
		9/7748, 5-6=-1239/7748						
WEBS		2217, 2-7=-1837/367,						
		4472, 4-7=-2062/406,						
	4-6=-270/	2258						
NOTES								
1) 2-ply truss to be connected together with 10d								

(0.131"x3") nails as follows:
Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.
Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-6-0 oc.
Web connected as follows: 2x3 - 1 row at 0-9-0 oc,

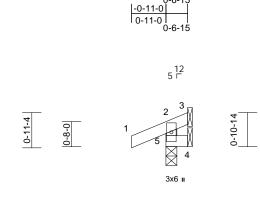
Except member 4-6 2x3 - 1 row at 0-2-0 oc.
All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-12 to 5-0-12, Interior (1) 5-0-12 to 6-4-14, Exterior(2R) 6-4-14 to 11-4-14, Interior (1) 11-4-14 to 12-11-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 6) WARNING: Required bearing size at joint(s) 5 greater
- WARNING: Required bearing size at joint(s) 5 greater than input bearing size.
- 7) Refer to girder(s) for truss to truss connections.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1476 lb down and 205 lb up at 1-1-14, 1476 lb down and 205 lb up at 3-1-14, 1476 lb down and 205 lb up at 5-1-14, 1476 lb down and 205 lb up at 7-1-14, and 1476 lb down and 205 lb up at 9-1-14, and 1476 lb down and 205 lb up at 11-1-14 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)
 - Vert: 1-3=-70, 3-5=-70, 1-5=-20
 - Concentrated Loads (lb)
 - Vert: 6=-1476 (F), 13=-1476 (F), 14=-1476 (F), 15=-1476 (F), 16=-1476 (F), 17=-1476 (F)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEX REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPII Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - Osage Lot 55	AS NOTED FOR PLAN REVIEW
						DEVELOPMENT SERVICES 157758159
P230180-01	J1	Jack-Open	8	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. thu Apr 3 54:10 8/2023 ID:WcRfdZxs?bG3GRhQ2QHdPbz1SCN-RfC?PsB70Hq3NSgPqnL8w3uITX GKWrCbd7322C1 8/2023

0-6-15

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	0.00	5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	5	>999	180		
BCLL	0.0	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 4 lb	FT = 20%

L

TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x4 SP N	0.2
BRACING		
TOP CHORD	Sheathed verticals.	l or 0-6-15 oc purlins, except end
BOT CHORD		ing directly applied or 10-0-0 oc
REACTIONS	(size)	3= Mechanical, 4= Mechanical, 5=0-3-8
	Max Horiz	5=24 (LC 9)
	Max Uplift	3=-56 (LC 1), 4=-19 (LC 1), 5=-67 (LC 8)
	Max Grav	3=25 (LC 8), 4=5 (LC 8), 5=187 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-5=-160/154, 1-2=0/29, 2-3=-33/19

BOT CHORD 4-5=0/0 NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- 3) Refer to girder(s) for truss to truss connections.
- 4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

April 14,2023


						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 55	
P230180-01	J2	Jack-Open	8	1	Job Reference (optional	DEVELOPMENT SERVICES 157758160 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Sp	pringhill, KS), Spring Hills, KS - 66083,				9 2022 MiTek Industries, Inc. ?PsB70Ha3NSaPanL8w3uITX	

-0-11-0

0-11-0

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Thu Apr 13 144:37 ID:WcRfdZXs?bG3GRhQ2QHdPbz1SCN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCbd7542sC+

2-6-15

2-6-15

Scale = 1:29.9

Plate Offsets (X, Y): [2:0-1-8,0-0-3], [4:0-6-13,0-2-4]												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.16	Vert(LL)	0.00	7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	-0.01	7	>999	180		
BCLL	0.0	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 13 lb	FT = 20%

LUMBER

TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2 *Except* 7-4:2x3 SPF No.2
SLIDER	Left 2x4 S	SP No.2 1-6-8
BRACING		
TOP CHORD	Sheathed	l or 2-6-15 oc purlins.
BOT CHORD	Rigid ceil	ing directly applied or 6-0-0 oc
	bracing.	
REACTIONS	(size)	2=0-3-8, 5= Mechanical, 6=
		Mechanical
	Max Horiz	2=60 (LC 12)
	Max Uplift	2=-31 (LC 12), 5=-24 (LC 12), 6=-7 (LC 12)
	Max Grav	2=192 (LC 1), 5=62 (LC 1), 6=49 (LC 3)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/1, 2	2-4=-57/23, 4-5=-25/22
BOT CHORD	2-7=-14/0	, 4-7=0/41, 4-6=0/0

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) Refer to girder(s) for truss to truss connections.

4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

April 14,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

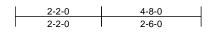
						NEELAOL
lah	Truss	Truss Type	Qty	Plv	Deat Oceans Lat 55	AS NOTE
Job	TTUSS	Truss Type	Qly	Fiy	Roof - Osage Lot 55	DEVELO
P230180-01	J3	Jack-Open	6	1	Job Reference (optional	LEE'S S
		· ·			JOD Reference (optional	

-0-11-0

0-11-0

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Thu Apr 13 44:508/292 ID:WcRfdZXs?bG3GRhQ2QHdPbz1SCN-RfC?PsB70Hq3NSgPqnL8w3uITX GKWrCbd75421C



12 5 Г 8 3x4 2-7-11 2-7-5 3 2 Fot 6 1-0-0 0-8-0 0 7 X 3x4 II 1.5x4 🛚

4x6 🚅

4-8-0

4-8-0

Scale = 1:28.9 Plate Offsets (X, Y): [2:0-1-8,0-4-3]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.58	Vert(LL)	0.05	7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.36	Vert(CT)	-0.07	7	>804	180		
BCLL	0.0	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.05	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 19 lb	FT = 20%

LUMBER

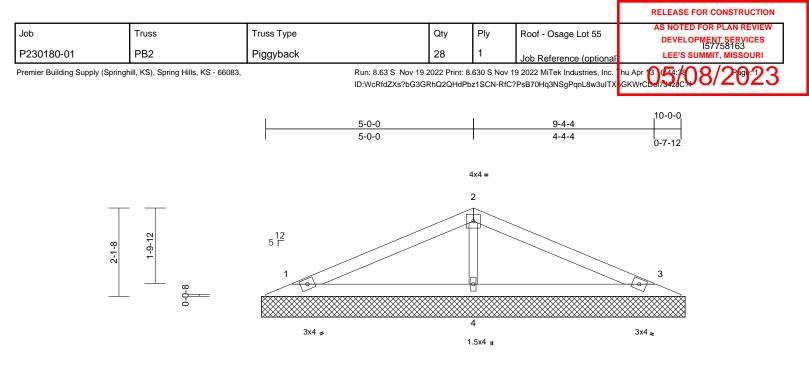
2x4 SP N	0.2
2x4 SP N	o.2 *Except* 7-4:2x3 SPF No.2
Left 2x4 S	SP No.2 1-6-7
Sheathed	l or 4-8-0 oc purlins.
Rigid ceil	ing directly applied or 6-0-0 oc
bracing.	
(size)	2=0-3-8, 5= Mechanical, 6=
	Mechanical
Max Horiz	2=97 (LC 12)
Max Uplift	2=-42 (LC 12), 5=-55 (LC 12), 6=-9 (LC 12)
Max Gray	2=278 (LC 1), 5=122 (LC 1), 6=79
Wax Glav	(LC 3)
(lb) - Max	imum Compression/Maximum
Tension	-
	2x4 SP N Left 2x4 S Sheathee Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Max

TOP CHORD 1-2=0/1, 2-4=-136/0, 4-5=-55/40 BOT CHORD 2-7=-10/14, 4-7=-20/57, 4-6=-6/6 NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior (1) 4-1-0 to 4-7-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 55 lb uplift at joint 5, 42 lb uplift at joint 2 and 9 lb uplift at joint 6.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

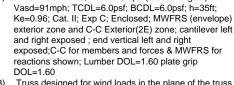
LOAD CASE(S) Standard

NiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

									RELEASE	FOR CONSTRUCTION	
Job	Truss		Truss Type		Qty	Ply	Roof - Osa	ge Lot 55		D FOR PLAN REVIEW	٦
P230180-01	PB1		Piggyback		2	1	Job Refere	nce (optional		OPMENT SERVICES 157758162 SUMMIT, MISSOURI	
Premier Building St	upply (Springhill, KS), S	Spring Hills, KS - 66083,		Run: 8.63 S Nov 19			9 2022 MiTek I	ndustries, Inc.			₹
				ID:WcRfdZXs?bG3G	RhQ2QHdPt	z1SCN-RfC?	PsB70Hq3NSq	gPqnL8w3uITX	GKWrCD017542JC		
			I			I				l	
				<u>5-0-0</u> 5-0-0				9-4-4 4-4-4		10-0-0 0-7-12	
						4x4 =					
						4					
_						4					
				3		\square	5				
2-1-8	1-9-12		12 5 Г	2				6	5		
5,	÷										
	œ	b	1							7	
									\sim		
		E	*****	12 11		10	<u>*************************************</u>	8	******		
			3x4 ≤						3x4 👟		
			I			10-0-0					
Scale = 1:24.4											
Loading	(psf)	Spacing	2-0-0	CSI	DEF		in (loc)	l/defl L/d	PLATES	GRIP	—
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15).04 Vert().02 Vert(,	n/a - n/a -	n/a 999 n/a 999	MT20	244/190	
BCLL BCDL	0.0 10.0	Rep Stress Incr Code	NO IRC2018/TPI2014	WB (Matrix-SH).03 Horiz	2(TL) 0.	00 7	n/a n/a	Weight: 32 lb	FT = 20%	
BOT CHORD 2 OTHERS 2 BRACING TOP CHORD 3 BOT CHORD 4 REACTIONS (s MM M FORCES (TOP CHORD 4 BOT CHORD 4 BOT CHORD 4 BOT CHORD 4 BOT CHORD 4 BOT CHORD 4 S WEBS 4 NOTES 1 Unbalanced this design. 2) Wind: ASCE Vasd=91mpl Ke=0.96; Ca exterior zone and right exp exposed;C-C	bracing. jize) 1=10-2-6, 9=10-2-6, 12=10-2-1, 12=10-2-1, 12=30 [LC lax Uplift 1=-6 (LC (LC 13), § 12), 12= (LC 1), 9 (LC 1), 9 (LC 1), 9 10, 11=11 (lb) - Maximum Com Tension 1-2=-44/27, 2-3=-29 4-5=-35/75, 5-6=-29 1-12=-8/30, 11-12=- 9-10=-8/30, 8-9=-8/3 4-10=-80/15, 3-11=- 5-9=-94/75, 6-8=-11 roof live loads have 7-16; Vult=115mph h; TCDL=6.0psf; BC tt. II; Exp C; Enclose and C-C Exterior(2 posed ; end vertical	rapplied or 10-0-0 oc , 7=10-2-6, 8=10-2-6, , 10=10-2-6, 11=10-2 6 12) 13), 7=-6 (LC 13), 8= 9=-32 (LC 13), 11=-33 46 (LC 12) 1), 7=65 (LC 1), 8=1 =114 (LC 26), 10=105 4 (LC 25), 12=159 (L npression/Maximum //37, 3-4=-35/72, //40, 6-7=-33/19 8/30, 10-11=-8/30, 30, 7-8=-8/30 94/92, 2-12=-115/115 5/94 been considered for a (3-second gust) CDL=6.0psf; h=35ft; ad; MWFRS (envelop; 2E) zone; cantilever le left and right forces & MWFRS for	 only. For s see Standa or consult Q 4) All plates a 5) Gable requ 6) Gable stud: 7) This truss b chord live live 8) This truss in Internationa R802.10.2 9) See Standa 3 (LC consult qua 59 LOAD CASE(S 6) (LC C 1) 	gned for wind loads in 1 tuds exposed to wind (ird Industry Gable End yualified building desigr re 1.5x4 MT20 unless of ires continuous bottom s spaced at 1-4-0 oc. has been designed for a bad nonconcurrent with s designed in accordam al Residential Code sed and referenced standar ard Industry Piggyback onnection to base truss ulified building designer) Standard	normal to the Details as a per as per A potherwise in chord bear a 10.0 psf b any other ce with the ctions R502 rd ANSI/TP Truss Conr s as applica	ne face), applicable, NSI/TPI 1. dicated. ing. ottom live loads. 2018 .11.1 and I 1. nection			STATE OF I SEVI OF ESSIONA	ER *	
									and a	14.2023	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



April 14,2023

				10-0-0									
ale = 1:27.7												I	
iding	(psf)	Spacing	2-0-0	CSI		DEFL	in n/a	(loc)	l/defl		PLATES	GRIP	

Loading TCLL (roof) TCDL BCLL		(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO		CSI TC BC WB	0.32 0.21 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL		10.0	Code	IRC2018	3/TPI2014	Matrix-SH							Weight: 30 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	Rigid ceiling bracing.	2 5.2 r 6-0-0 o g directly	applied or 10-0-0 oc	7) 8) LC	International R802.10.2 ar See Standar Detail for Co	designed in acco Residential Code ad referenced sta d Industry Piggyb nnection to base fied building desig Standard	e sections ndard AN ack Truss truss as a	R502.11.1 a ISI/TPI 1. s Connection						
REACTIONS	Max Horiz 1 Max Uplift 1 4 Max Grav 1	=33 (LC =-38 (LC =-36 (LC	: 12), 3=-44 (LC 13), : 12) C 25), 3=178 (LC 26),											
FORCES	(lb) - Maxim Tension	ium Com	pression/Maximum											
TOP CHORD BOT CHORD WEBS NOTES	1-2=-92/56, 1-4=0/35, 3 2-4=-284/19	-4=0/35 91												
this design 2) Wind: AS Vasd=91r	n. CE 7-16; Vult= nph; TCDL=6.	=115mph 0psf; BC	been considered for (3-second gust) DL=6.0psf; h=35ft;	、 、									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- TE

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)

Gable studs spaced at 4-0-0 oc. 5)

6)

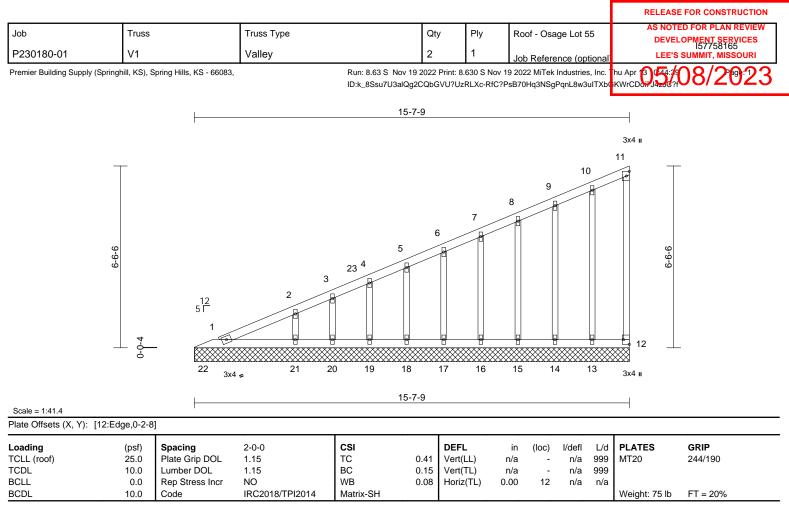
Scale

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

										RELEASE	FOR CONSTRUCTION	
Job		Truss		Truss Type		Qty	Ply	Roof - Osag	ge Lot 55		D FOR PLAN REVIEW	
P230180-01		PB3		Piggyback		2	1	Job Defere	nen (antional	LEE'S	OPMENT SERVICES 157758164 SUMMIT, MISSOURI	
	Supply (Springh	nill. KS). S	pring Hills, KS - 66083,	337	Run: 8.63 S Nov 19 3		630 S Nov 1	-	nce (optional ndustries. Inc.	<u> </u>		
		,,,	p		ID:WcRfdZXs?bG3G							
									I			
				I	5-0-0		1		9-4-4	10)-0-0 I	
					5-0-0				4-4-4			
										0-	7-12'	
							4x4 =					
							3					
					1.5x4 u				1.5x4 ॥			
	~			12	2	/	\square		4			
	2-1-8			12 5 Г								
	- -			/								
	_			1						5		
			8 0			~~~~~~		*******		~	~~~~	
			0									
				3x4 ≠	8		7		6	3x4 👟		
					1.5x4 u		1.5x4 🛚		1.5x4 🛚			
0 1 1050						1	0-0-0					
Scale = 1:25.3			1	,	1					1		-
Loading TCLL (roof)		(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC 0	.09 Vert(in (loc) n/a -	l/defl L/d n/a 999	PLATES MT20	GRIP 244/190	
TCDL		10.0	Lumber DOL	1.15		.05 Vert(,	n/a -	n/a 999	10120	244/130	
BCLL BCDL		0.0 10.0	Rep Stress Incr Code	NO IRC2018/TPI2014	WB 0 Matrix-SH	.04 Horiz	(TL) 0.	00 5	n/a n/a	Weight: 31 lb	FT = 20%	
	-	10.0	0000			10.0 pof b				Wolght. OT ID		•
	2x4 SP No.2			chord live	has been designed for a load nonconcurrent with	any other I	ive loads.					
BOT CHORD OTHERS	2x4 SP No.2 2x3 SPF No.				is designed in accordant al Residential Code sec							
BRACING				R802.10.2	and referenced standar	d ANSI/TPI	1.					
TOP CHORD BOT CHORD	Sheathed or Rigid ceiling		c purlins. applied or 10-0-0 oc		lard Industry Piggyback							
	bracing.	-		consult qu LOAD CASE(alified building designer.							
REACTIONS			5=10-2-6, 6=10-2-6, 8=10-2-6	LOAD CASE	S) Standard							
	Max Horiz 1=	=33 (LC	16)	<u> </u>								
Max Uplift 1=-7 (LC 12), 5=-13 (LC 13), 6= (LC 13), 8=-69 (LC 12)												
			1), 5=89 (LC 1), 6=23 '=132 (LC 1), 8=238 (
	25	5)										
FORCES (lb) - Maximum Compression/Maximum Tension												
TOP CHORD 1-2=-48/36, 2-3=-44/70, 3-4=-44/73, 4-5=-40/28												
BOT CHORD 1-8=-7/28, 7-8=-7/28, 6-7=-7/28, 5-6=-7/2												
WEBS 3-7=-104/38, 2-8=-177/173, 4-6=-177/140 NOTES)								
1) Unbalance		ds have	been considered for							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5	
this design 2) Wind: ASC		115mnh	(3-second gust)							OF	AISSO	
Vasd=91m	ph; TCDL=6.0)psf; BC	DL=6.0psf; h=35ft;						2	TE	0000	
			d; MWFRS (envelope E) zone; cantilever le						A	S SCOT		
and right ex	kposed ; end y	vertical I							B	SEVI	ER L	
reactions s			1.60 plate grip						ja a	the last	0 3	
DOL=1.60				c					4	colon	EMer .	

- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.


April 14,2023

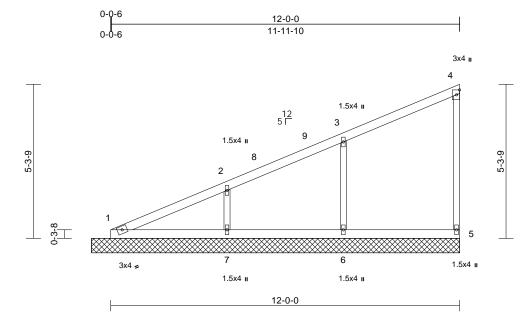
PE-200101880, PE-200101880, PE-SSIONAL ENGIN

aller .

 \mathbf{M} MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BCLL BCDL	0.0 10.0	Code	IRC2018/TI	212014	vvв Matrix-SH	0.08	HORIZ(IL)	0.00	12	n/a i	Weight: 75 lb FT = 20%
BCDL	10.0	Code	IRC2018/11	12014	Maurix-SH		-				Weight: 75 lb $FT = 20\%$
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ep Rigid ceiling directly bracing. (size) 1=15-7-9 14=15-7- 17=15-7- 20=15-7 Max Horiz 22=280 (y applied or 9-0-13 oc 9, 12=15-7-9, 13=15-7 9, 15=15-7-9, 16=15 9, 18=15-7-9, 19=15 9, 21=15-7-9, 22=15 (LC 9)	d or WEB: • •-9, 1) W 7-9, K 7-9, K 7-9 e: •	2(18 16 14 12 5 10 7- 4 5 5 10 7- 4 5 5 10 7 4 5 5 10 7 4 5 5 10 7 4 5 5 10 7 5 10 7 5 10 7 5 10 7 5 10 7 5 10 7 7 5 10 7 7 5 10 7 7 5 10 7 7 5 10 7 7 5 10 7 7 7 5 10 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-22=-425/267, 0-21=-107/117, 8-19=-107/117, 6-17=-107/117, 4-15=-107/117, 2-13=-107/117, 0-13=-105/106, -16=-93/58, 6-1 -19=-98/58, 3-2 7-16; Vult=115r ; TCDL=6.0psf; II; Exp C; Encl and C-C Exteri 11-6 to 15-6-15	19-20=-10 17-18=-10 15-16=-11 13-14=-10 9-14=-95, 7=-93/54, 0=-69/46, mph (3-sec BCDL=6.0 osed; MW or(2E) 0-1 zone; can	07/117, 07/110	10 pe) d			
	14=-25 (I 16=-33 (I 20=-25 (I 22=-71 (I Max Grav 1=208 (L 13=123 (15=120 (17=120 (19=128 (C 20), 12=47 (LC 1), (LC 1), 14=122 (LC 1) (LC 1), 16=120 (LC 1) (LC 1), 16=120 (LC 1) (LC 1), 18=119 (LC 1) (LC 1), 20=83 (LC 1),	2), fc 2), Li 2), 2) T 2), 3) A 2), 3) A 4, 3) A 4, 4) G 7, 5) G 7, 6) T	r members a umber DOL= russ designe hy. For stud- consult qua Il plates are able require able studs s his truss has	; end vertical le and forces & M ¹ e1.60 plate grip ed for wind load 35 exposed to w Industry Gable alified building c 1.5x4 MT20 un s continuous bo paced at 1-4-0 s been designed d nonconcurren	WFRS for DOL=1.60 ds in the pl vind (norm End Deta lesigner as less other bottom chor oc. d for a 10.0	reactions sho ane of the tru al to the face ils as applical s per ANSI/TF wise indicated d bearing.	own; uss), ble, Pl 1. d.			SCOTT M
FORCES		(LC 1), 22=27 (LC 12) mpression/Maximum	7) T	his truss is d	lesigned in according to the second s	ordance w	ith the 2018				SCOTT MI.
TOP CHORD	4-5=-262/158, 5-6=	-312/174, 3-4=-290/1 -236/148, 6-7=-209/1 -151/117, 9-10=-121/ 2=-40/42	69, R 37, LOAE		d referenced st			in U			SEVIER NUMBER PE-2001018807


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

April 14,2023

							RELEASE FOR CONSTRUCTION
ſ	Job	Truss	Truss Type	Qty	Plv	Roof - Osage Lot 55	AS NOTED FOR PLAN REVIEW
	305	11033	Tuss Type	Quy	i iy	Roor - Osage Lot 55	DEVELOPMENT SERVICES 157758166
	P230180-01	V2	Valley	2	1	Job Reference (optional	
Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083, D:WcRfdZXs?bG3GRhQ2QHdPbz1SCN-RfC?PsB70Hq3NS					9 2022 MiTek Industries, Inc.		

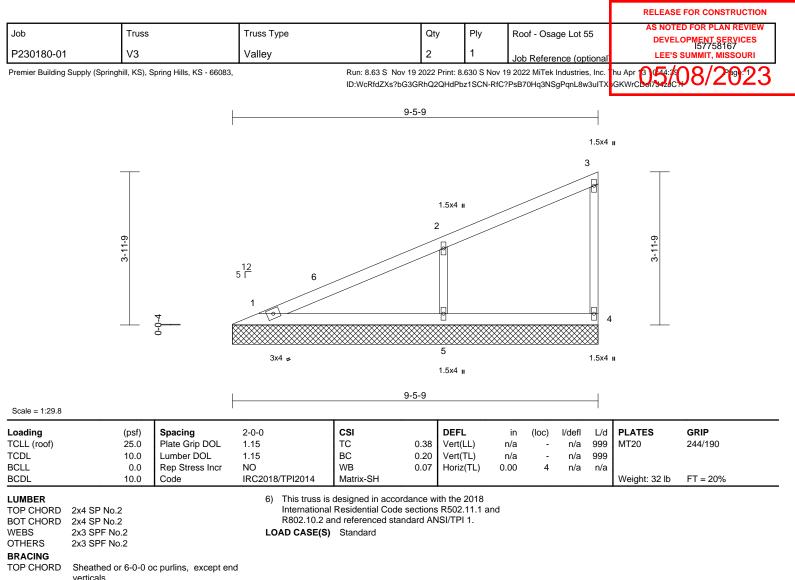
Scale = 1:39.6

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.14	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	NO	WB	0.09	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI201	4 Matrix-SH							Weight: 45 lb	FT = 20%
LUMBER			5) This tru	ss has been designed	d for a 10.	0 psf bottom						
TOP CHORD	2x4 SP No.2			ve load nonconcurren			ids.					
BOT CHORD	2x4 SP No.2			ss is designed in acco								
WEBS	2x3 SPF No.2			ional Residential Cod			and					
OTHERS	2x3 SPF No.2			0.2 and referenced sta	andard Al	NSI/TPI 1.						
BRACING			LOAD CAS	E(S) Standard								
TOP CHORD	Sheathed or 6-0-0 c verticals.	oc purlins, except er	nd									
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	C									
REACTIONS	(size) 1=12-7-1	5, 5=12-7-15, 6=12-	7-15,									
	7=12-7-1		-,									
	Max Horiz 1=224 (LO	C 9)										
	Max Uplift 5=-32 (LC	C 9), 6=-109 (LC 12)	,									
	7=-114 (L											
	Max Grav 1=147 (L0 6=384 (L0	C 20), 5=144 (LC 1) C 1), 7=391 (LC 1)	,									
FORCES	(lb) - Maximum Corr Tension	npression/Maximum										
TOP CHORD	1-2=-308/182, 2-3=- 4-5=-110/101	219/141, 3-4=-118/9	90,									
BOT CHORD		06 5-686/06										
WEBS	3-6=-303/238, 2-7=-	,										
NOTES	0 0 000,200,21	200/210										
	CE 7-16; Vult=115mph	(3-second aust)										acon
	nph; TCDL=6.0psf; BC										8 OF	MICON
	Cat. II; Exp C; Enclose		pe)								8 TE	050.0
	one and C-C Exterior(2									6	N	NSY
) 5-10-5 to 12-7-5 zone									B	STATE OF	TM. YE Y
	sed ; end vertical left a									18	/ SEV	IER \ Y
	ers and forces & MWF		own;						- (14		\★Ŋ
	OL=1.60 plate grip DC									00	1 1/-	0 1
Truss des	designed for wind loads in the plane of the truss											

Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 3)

4) Gable studs spaced at 4-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



April 14,2023

NUMPER

PE-2001018807

OFFSSIONAL ET

BOT CHORD	Rigid ceil bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	1=9-5-9, 4=9-5-9, 5=9-5-9

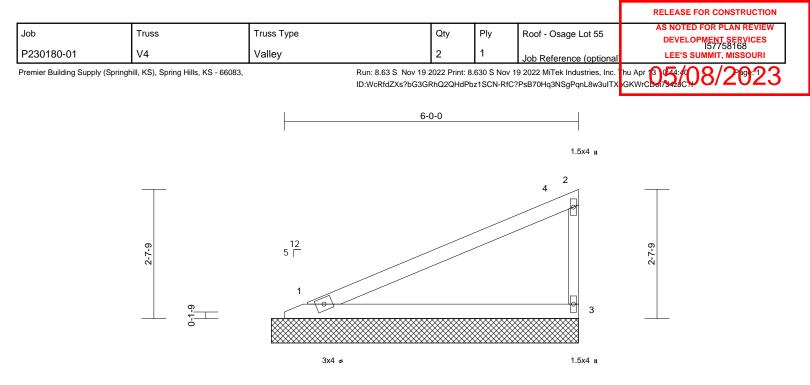
	Max Horiz	1=164 (LC 9)
	Max Uplift	1=-1 (LC 12), 4=-25 (LC 9), 5=-138
		(LC 12)
	Max Grav	1=171 (LC 1), 4=123 (LC 1), 5=485
		(LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tanaian	

	1613011
TOP CHORD	1-2=-234/143, 2-3=-107/73, 3-4=-99/102
BOT CHORD	1-5=-64/73, 4-5=-64/73
WEBS	2-5=-360/300

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-9-1 to 5-6-3, Interior (1) 5-6-3 to 9-4-15 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 4-0-0 oc.


5) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6-0-0

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.79	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.41	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	NO	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 19 lb	FT = 20%

LUMBER	2
--------	---

Scale = 1:23.5

TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Sheathed verticals.	l or 6-0-0 oc purlins, except end
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	1=6-3-3, 3=6-3-3
	Max Horiz	1=103 (LC 9)
	Max Uplift	1=-39 (LC 12), 3=-60 (LC 12)
	Mar. 0	4 044 (104) 0 044 (104)

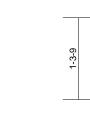
	Max Grav 1=244 (LC 1), 3=244 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-133/91, 2-3=-190/209

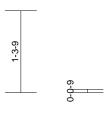
BOT CHORD 1-3=-45/49

NOTES

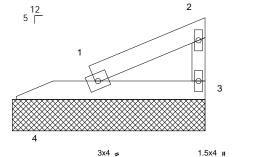
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-9-8 to 5-9-8, Interior (1) 5-9-8 to 6-2-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 4-0-0 oc. 4)
- 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6)
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


April 14,2023



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 55	AS NOTED FOR PLAN REVIEW
P230180-01	V5	Valley	2	1	Job Reference (optional	DEVELOPM <u>ENT SERVICES</u> 157758169 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springh	remier Building Supply (Springhill, KS), Spring Hills, KS - 66083, Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. ID:WcRfdZXs?bG3GRhQ2QHdPbz1SCN-RfC?PsB70Hq3NSgPqnL8w3ulT					

end

3-0-0

Scale	= 1	1:1	8.3
-------	-----	-----	-----

Scale = 1:18.3											_	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	NO	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 8 lb	FT = 20%
LUMBER												

TOP CHORD	2x4 SP N	o.2	
BOT CHORD	2x4 SP N	0.2	
WEBS	2x3 SPF I	No.2	
BRACING			
TOP CHORD	Sheathed verticals.	l or 3-1-6 oc purlins,	except end
BOT CHORD	Rigid ceili bracing.	ing directly applied o	r 10-0-0 oc
REACTIONS	(size)	1=3-0-12, 3=3-0-12	, 4=3-0-12
	Max Horiz	4=43 (LC 9)	
	Max Liplift	2 22 (1 C 12)	

Max Uplift	3=-23 (LC 12)
Max Grav	1=92 (LC 1), 3=71 (LC 1), 4=9 (LC
	3)

FORCES (lb) - Maximum Compression/Maximum Tension

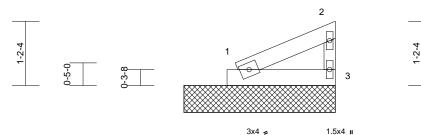
TOP CHORD 1-2=-60/40, 2-3=-58/78 BOT CHORD 1-4=-96/58, 1-3=-19/21

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 3)
- 4) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 5)
- chord live load nonconcurrent with any other live loads. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and
- R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

OF MISSO E SCOTT M. SEVIER NUMBER 0 PE-2001018807 FRSSIONAL EN

April 14,2023



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 55	
P230180-01	V6	Valley	2	1	Job Reference (optional	DEVELOPM <u>ENT SERVICES</u> 157758170 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Spring	nill KS) Spring Hills KS - 66083	Pup: 9.62	S Nov 10 2022 Print: 9	620 S Nov 1		

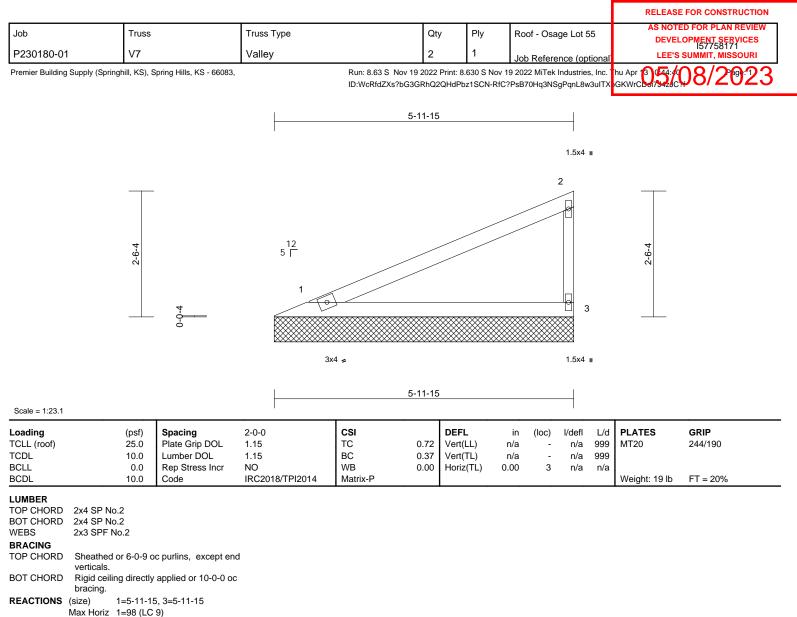
n: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Inc ID:WcRfdZXs?bG3GRhQ2QHdPbz1SCN-RfC?PsB70Hq3NSgPqnL8w3uITX GKWrCber79424C190724997249972499724997249972499724973

1.5x4 u

2-0-0

Scolo - 1.21 2

Scale = 1:21.3												
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.06	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(TL)	n/a	-	n/a	999		
BCLL BCDL	0.0 10.0	Rep Stress Incr Code	NO IRC2018/TPI2014	WB Matrix-P	0.00	Horiz(TL)	0.00	3	n/a	n/a	Weight: 6 lb	FT = 20%
BCDL	10.0	Code	IRC2010/1F12014	Maurix-P							weight. 6 lb	FT = 20%
LUMBER												
TOP CHORD												
BOT CHORD												
NEBS	2x3 SPF No.2											
	0											
TOP CHORD	Sheathed or 2-10-3 verticals.	oc purlins, except e	end									
BOT CHORD		applied or 10-0-0 o	c									
	bracing.		•									
REACTIONS	•	3=2-9-9										
	Max Horiz 1=38 (LC	9)										
	Max Uplift 1=-11 (LC	2 12), 3=-20 (LC 12)										
	Max Grav 1=76 (LC	1), 3=76 (LC 1)										
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD		/73										
BOT CHORD	1-3=-17/18											
NOTES	0	<i>(</i>)										
	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC											
	Cat. II; Exp C; Enclose		ne)									
	one and C-C Exterior(2											
	exposed ; end vertical l											
	C-C for members and f		r									and the second se
	shown; Lumber DOL=	1.60 plate grip									OF I	APRIL OF
DOL=1.60 2) Truss de	u signed for wind loads ir	a tha plana of tha tru	100							6	TATE OF	MISS OF
	studs exposed to wind									6	A.M.	N.S.
	dard Industry Gable En									B	S/ BCOI	
	or consult qualified building designer as per ANSI/TPI 1.											
	quires continuous botto	m chord bearing.								an		0 \ ≭ Й
	ids spaced at 2-0-0 oc.									NY .	115	
5) This truss	has been designed for	r a 10.0 psf bottom							-		NUM	


- chord live load nonconcurrent with any other live loads. This truss is designed in accordance with the 2018 6)
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

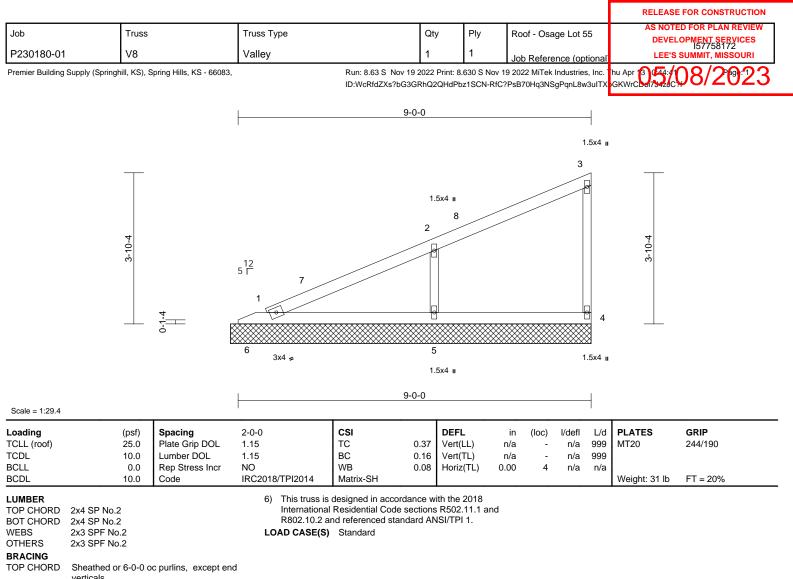
LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		1=-37 (LC 12), 3=-57 (LC 12) 1=233 (LC 1), 3=233 (LC 1)
FORCES		imum Compression/Maximum
	1-2126/	86 2-3-182/200

TOP CHORD 1-2=-126/86, 2-3=-182/200 BOT CHORD 1-3=-43/46

NOTES


- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3) Gable studs spaced at 4-0-0 oc.
- 4) 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss is designed in accordance with the 2018 6)
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

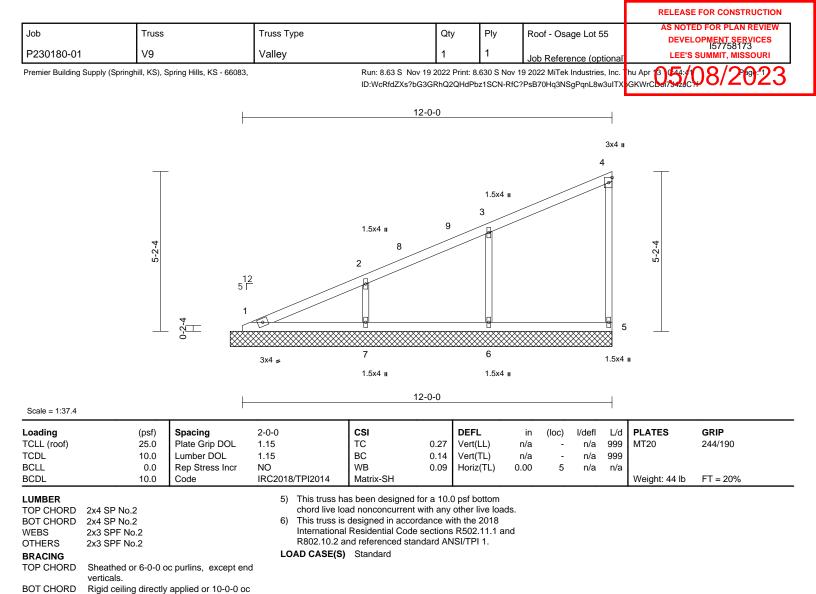
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	verticals.	
BOT CHORD	Rigid ceili bracing.	ng directly applied or 10-0-0 oc
REACTIONS	(size)	1=9-2-6, 4=9-2-6, 5=9-2-6, 6=9-2-6
	Max Horiz	6=159 (LC 9)
	Max Uplift	4=-24 (LC 9), 5=-139 (LC 12),
		6=-88 (LC 3)
	Max Grav	1=221 (LC 3), 4=129 (LC 1), 5=450
		(LC 1), 6=-26 (LC 8)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-242/	148, 2-3=-104/77, 3-4=-99/105

BOT CHORD1-6=-299/184, 1-5=-65/71, 4-5=-65/71WEBS2-5=-357/315

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-11-13 to 5-11-13, Interior (1) 5-11-13 to 9-1-11 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 Gable requires continuous bottom chord bearing.


4) Gable studs spaced at 4-0-0 oc.

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. State of MISSOL

April 14,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

 REACTIONS
 (size)
 1=12-4-12, 5=12-4-12, 6=12-4-12, 7=12-4-12

 Max Horiz
 1=219 (LC 9)

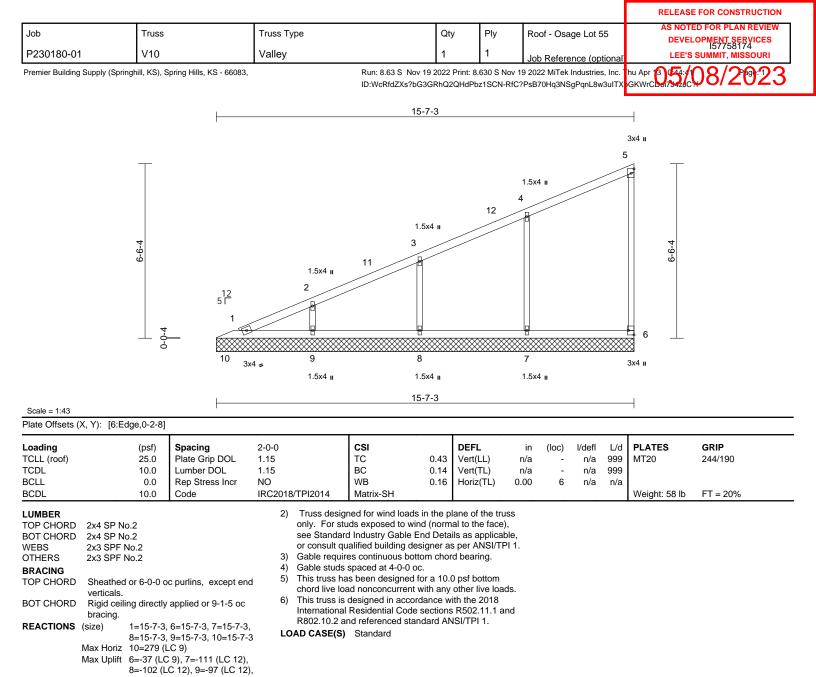
 Max Uplift
 5=-32 (LC 9), 6=-110 (LC 12),

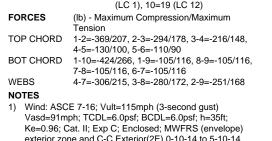
7=-109 (LC 12) Max Grav 1=140 (LC 20), 5=143 (LC 1), 6=387 (LC 1), 7=381 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD	1-2=-302/177, 2-3=-218/139, 3-4=-117/88, 4-5=-110/101
BOT CHORD	1-7=-84/93, 6-7=-84/93, 5-6=-84/93
WEBS	3-6=-305/238, 2-7=-283/210

NOTES

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-9-1 to 5-9-1, Interior (1) 5-9-1 to 12-4-2 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 Gable requires continuous bottom chord bearing.


4) Gable studs spaced at 4-0-0 oc.

April 14,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

10=-43 (LC 1)

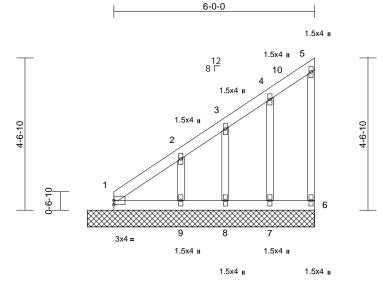
Max Grav

1=169 (LC 20), 6=142 (LC 1),

7=393 (LC 1), 8=360 (LC 1), 9=325

Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-10-14 to 5-10-14, Interior (1) 5-10-14 to 15-6-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


April 14,2023

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 55	AS NOTED FOR PLAN REVIEW
P230180-01	V11	Valley	1	1	Job Reference (optional	DEVELOPMENT SERVICES 157758175 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springh	Run: 8.63 S Nov 19	2022 Print: 8	.630 S Nov 1			

ID:WcRfdZXs?bG3GRhQ2QHdPbz1SCN-RfC?PsB70Hq3NSgPqnL8w3uITX GKWrCbol73-2aCHO/2023

6-0-0

Scale =	1:34.5
---------	--------

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.34 0.03 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
	8=6-9-9, 9 Max Horiz 1=172 (LC Max Uplift 1=-28 (LC (LC 12), 8 12) Max Grav 1=117 (LC	v applied or 10-0-0 o 6=6-9-9, 7=6-9-9, 9=6-9-9 C 9) C 8), 6=-29 (LC 9), 7 8=-43 (LC 12), 9=-9 C 20), 6=57 (LC 19) C 19), 8=109 (LC 19	4) Gable re 5) Gable st 6) This trus chord liv 7) This trus Internati R802.10 ac LOAD CASI 7=-50 5 (LC	s are 1.5x4 MT20 un quires continuous bu uds spaced at 1-4-0 s has been designed e load nonconcurrer s is designed in acc onal Residential Coo .2 and referenced st :(S) Standard	ottom chor oc. d for a 10.0 nt with any ordance w de sections	d bearing.) psf bottom other live loa ith the 2018 ; R502.11.1 a	ds.					
FORCES	(lb) - Maximum Com Tension	npression/Maximum										
TOP CHORD	1-2=-346/222, 2-3=- 4-5=-96/91, 5-6=-71		126,									
BOT CHORD	1-9=-82/89, 8-9=-82 6-7=-82/89	2/89, 7-8=-82/89,										an
WEBS	4-7=-105/103, 3-8=-	-87/82, 2-9=-152/192	2								TEOF	MISS
NOTES		(2 cocord such)								4	9.20	N'SON

WEBS

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-11-11 to 5-11-11, Interior (1) 5-11-11 to 6-8-11 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

HESSIONAL E April 14,2023

O

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

SCOTT M.

SEVIER

NUMBER

PE-2001018807

					RELEASE FOR CONSTRUCTION
Job Truss	Truss Type	Qty	Ply	Roof - Osage Lot 55	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 157758176
P230180-01 V12	Valley	1	1	Job Reference (optiona	
Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,	Run: 8.63 S_Nov 19 J ID:WcRfdZXs?bG3G	2022 Print: RhQ2QHdF	8.630 S Nov Pbz1SCN-RfC	19 2022 MiTek Industries, Inc. C?PsB70Hq3NSgPqnL8w3uIT>	hu Apr 1354:08/2023
	5-7	-0			
				1.5x4 u	
3.8-15	8 ¹² 1 4 3x4 <i>z</i> 5-7			2 5 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	-

		I					1				
(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
25.0	Plate Grip DOL	1.15	тс	0.62	Vert(LL)	n/a	-	n/a	999	MT20	244/190
10.0	Lumber DOL	1.15	BC	0.23	Vert(TL)	n/a	-	n/a	999		
0.0	Rep Stress Incr	NO	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 20 lb	FT = 20%
	10.0 0.0	25.0Plate Grip DOL10.0Lumber DOL0.0Rep Stress Incr	25.0Plate Grip DOL1.1510.0Lumber DOL1.150.0Rep Stress IncrNO	25.0 Plate Grip DOL 1.15 TC 10.0 Lumber DOL 1.15 BC 0.0 Rep Stress Incr NO WB	25.0 Plate Grip DOL 1.15 TC 0.62 10.0 Lumber DOL 1.15 BC 0.23 0.0 Rep Stress Incr NO WB 0.00	25.0 Plate Grip DOL 1.15 TC 0.62 Vert(LL) 10.0 Lumber DOL 1.15 BC 0.23 Vert(TL) 0.0 Rep Stress Incr NO WB 0.00 Horiz(TL)	25.0 Plate Grip DOL 1.15 TC 0.62 Vert(LL) n/a 10.0 Lumber DOL 1.15 BC 0.23 Vert(TL) n/a 0.0 Rep Stress Incr NO WB 0.00 Horiz(TL) 0.00	25.0 Plate Grip DOL 1.15 TC 0.62 Vert(LL) n/a - 10.0 Lumber DOL 1.15 BC 0.23 Vert(TL) n/a - 0.0 Rep Stress Incr NO WB 0.00 Horiz(TL) 0.00 3	25.0 Plate Grip DOL 1.15 TC 0.62 Vert(LL) n/a - n/a 10.0 Lumber DOL 1.15 BC 0.23 Vert(TL) n/a - n/a 0.0 Rep Stress Incr NO WB 0.00 Horiz(TL) 0.00 3 n/a	25.0 Plate Grip DOL 1.15 TC 0.62 Vert(LL) n/a - n/a 999 10.0 Lumber DOL 1.15 BC 0.23 Vert(TL) n/a - n/a 999 0.0 Rep Stress Incr NO WB 0.00 Horiz(TL) 0.00 3 n/a n/a	25.0 Plate Grip DOL 1.15 TC 0.62 Vert(LL) n/a - n/a 999 MT20 10.0 Lumber DOL 1.15 BC 0.23 Vert(TL) n/a - n/a 999 0.0 Rep Stress Incr NO WB 0.00 Horiz(TL) 0.00 3 n/a n/a

LUMBER			J	Μ	в	Е	R
--------	--	--	---	---	---	---	---

LUWBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Sheathed verticals.	l or 5-7-7 oc purlins, except end
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	1=5-7-1, 3=5-7-1, 4=5-7-1
	Max Horiz	4=138 (LC 9)
	Max Uplift	3=-76 (LC 12), 4=-213 (LC 3)
	Max Grav	1=398 (LC 3), 3=225 (LC 19),

4=-64 (LC 8) FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-190/141, 2-3=-188/213 BOT CHORD 1-4=-289/196, 1-3=-66/72

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 3)
- 4) Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and
- R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

OF MISSOL TE SCOTT M. SEVIER NUMBER OFFESSIONAL ET PE-2001018807 April 14,2023

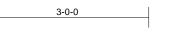
							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof - Osage Lot 55	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 157758177
P230180-01	V13	Valley		1	1	Job Reference (optional	
Premier Building Supply (Sp	oringhill, KS), Spring Hills, KS - 66083,		Run: 8.63 S Nov 19 2 ID:WcRfdZXs?bG3GI	2022 Print: RhQ2QHdl	8.630 S Nov Pbz1SCN-RfC	19 2022 MiTek Industries, Inc. C?PsB70Hq3NSgPqnL8w3uITX	hu Apr 1354/20123 GKWrC50175426CH
			4-(0-0		_	
						1.5x4 u	
	2-10-15		812		2	2-10-15	
	 75.24					3	
			3x4 🍃			1.5x4 u	
Scale = 1:24.5			4-(0-0		_	

00010 = 1.24.0				-								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.36	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.18	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	NO	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 15 lb	FT = 20%
											<u> </u>	
LUMBER	2x4 SP No 2											

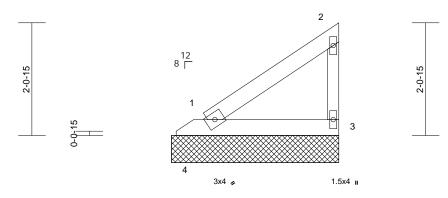
	274 01 11	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Sheathed verticals.	l or 4-4-7 oc purlins, except end
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	1=4-4-1, 3=4-4-1
	Max Horiz	1=104 (LC 9)
	Max Uplift	1=-16 (LC 12), 3=-53 (LC 12)
	Max Grav	1=169 (LC 1), 3=183 (LC 19)

	Max 014V 1=105 (LO 1), 5=105 (LO 15)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-146/108, 2-3=-145/169
BOT CHORD	1-3=-50/55

NOTES


- 1)
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3) Gable studs spaced at 4-0-0 oc. 4)
- 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6)
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 55	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 157758178
P230180-01	V14	Valley	1	1	Job Reference (optional	
Premier Building Supply (Springh	ill, KS), Spring Hills, KS - 66083,				9 2022 MiTek Industries, Inc. PsB70Hq3NSgPqnL8w3uITX	

Scale = 1:21.2	
----------------	--

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	NO	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 10 lb	FT = 20%

3-0-0

LUM	в	=R
-----	---	----

LOWIDER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x3 SPF	No.2
BRACING		
TOP CHORD	Sheatheo verticals.	I or 3-1-7 oc purlins, except end
BOT CHORD	Rigid ceil bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	1=3-1-1, 3=3-1-1, 4=3-1-1
	Max Horiz	4=70 (LC 9)
	Max Uplift	3=-37 (LC 12), 4=-45 (LC 3)
	Max Grav	1=141 (LC 3), 3=110 (LC 19),
		4=-14 (LC 8)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-102	/76, 2-3=-97/117
BOT CHORD	1-4=-155/	/104, 1-3=-34/36

NOTES

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 3)
- 4) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 5)
- chord live load nonconcurrent with any other live loads. 6) This truss is designed in accordance with the 2018
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof - Osage Lot 55	AS NOTED FOR PLAN REVIEW
				Ĺ		DEVELOPMENT SERVICES 157758179
P230180-01	V15	Valley	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Spring	hill KS) Spring Hills KS - 66083	Rup: 8.63 S. Nov 19	2022 Print: 8	630 S Nov 1	9 2022 MiTek Industries Inc.	

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Thu Apr 13 44:40 8/269:23 ID:WcRfdZXs?bG3GRhQ2QHdPbz1SCN-RfC?PsB70Hq3NSgPqnL8w3uITX GKWrCbd73-22C: 8/269:23

1.5x4 🛚

1-10-1 8

1

е

1-2-15

1.5x4 🛚

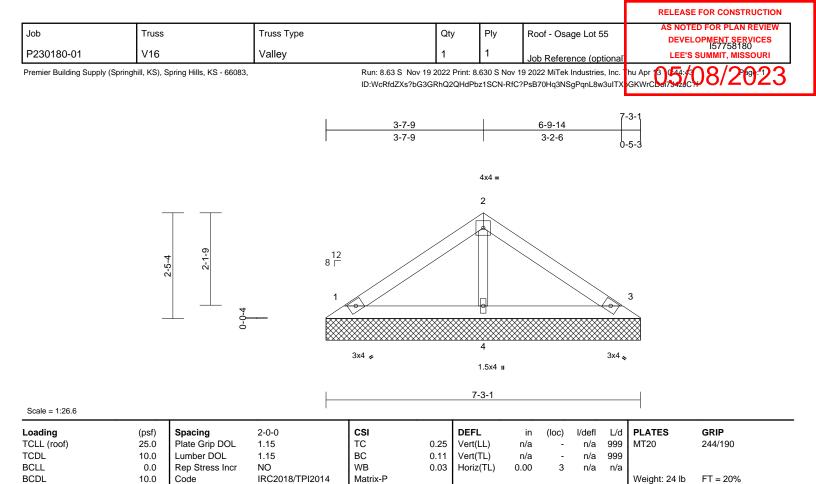
2

Ø

1-10-1

3x4 🧳

Scale = 1:18


Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO	CSI TC BC WB	0.04 0.02 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 6 lb	FT = 20%
LUMBER												
TOP CHORD	2x4 SP No.2											
BOT CHORD												
WEBS	2x3 SPF No.2											
BRACING												
TOP CHORD	Sheathed or 1-10-7	oc purlins, except e	end									
BOT CHORD	verticals. Rigid ceiling directly	combined on 10,0,0 a										
BOICHORD	bracing.	applied of 10-0-0 0	C									
REACTIONS	•	3=1-10-1										
	Max Horiz 1=35 (LC											
	Max Uplift 1=-6 (LC											
	Max Grav 1=58 (LC	1), 3=62 (LC 19)										
FORCES	(lb) - Maximum Corr	pression/Maximum										
TOP CHORD	Tension	161										
BOT CHORD		01										
NOTES	10-11/10											
	CE 7-16; Vult=115mph	(3-second dust)										
	nph; TCDL=6.0psf; BC											
	Cat. II; Exp C; Enclose											
	one and C-C Exterior(2		left									
	exposed ; end vertical C-C for members and f											
	shown; Lumber DOL=										and	and
DOL=1.60											F. OF	MISC
	signed for wind loads in									4	ATE OF	N Oc
	studs exposed to wind ard Industry Gable En									H	SCOT	TM. YEN
	qualified building desi									a	SEV	
	uires continuous botto								•	Ba		0
	ds spaced at 2-0-0 oc.									XX.	675	Serles
	has been designed fo								ø	N-	NUM	BER X
	load nonconcurrent wi		ds.							37	PE-2001	018807
	is designed in accordanal Residential Code s		nd							N	11-2001	

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

April 14,2023

7) This truss is designed in accordance with the 2018

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

International Residential Code sections R502.11.1 and

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUMBER

OTHERS BRACING TOP CHORD

TOP CHORD

BOT CHORD

BOT CHORD

REACTIONS

FORCES

WEBS

1)

2)

3)

4)

5)

6)

NOTES

TOP CHORD

BOT CHORD

this design

DOL=1.60

2x4 SP No.2

2x4 SP No.2

bracing.

Max Grav

Tension

2-4=-171/91

(size)

2x3 SPF No.2

Sheathed or 6-0-0 oc purlins.

Max Horiz 1=57 (LC 9)

(LC 1)

1-2=-100/60, 2-3=-96/60

Unbalanced roof live loads have been considered for

Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing.

This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

Gable studs spaced at 2-0-0 oc.

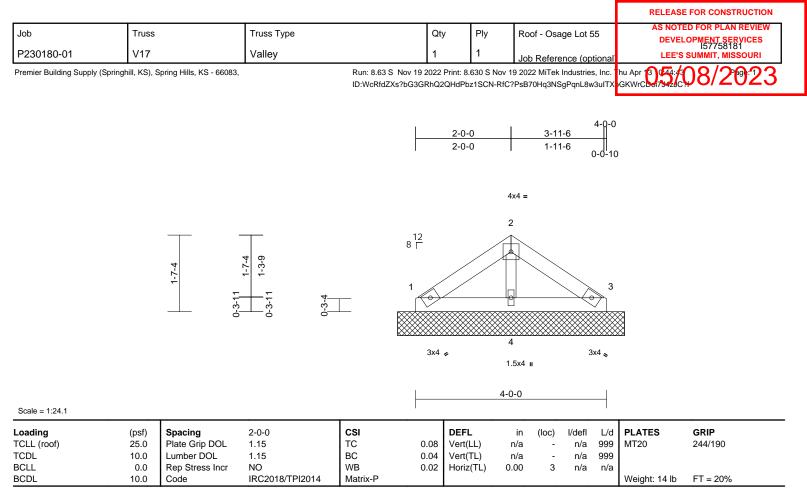
Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left

and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

1-4=-12/47, 3-4=-12/47

Rigid ceiling directly applied or 10-0-0 oc

Max Uplift 1=-38 (LC 12), 3=-45 (LC 13)


(Ib) - Maximum Compression/Maximum

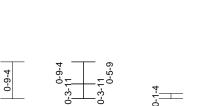
1=7-3-1, 3=7-3-1, 4=7-3-1

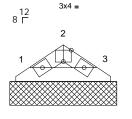
1=161 (LC 1), 3=161 (LC 1), 4=250

LUMBER		
TOP CHORD	2x4 SP No	0.2
BOT CHORD	2x4 SP No	0.2
OTHERS	2x3 SPF N	No.2
BRACING		
TOP CHORD	Sheathed	or 4-9-13 oc purlins.
BOT CHORD	Rigid ceili bracing.	ng directly applied or 10-0-0 oc
REACTIONS	(size)	1=4-9-1, 3=4-9-1, 4=4-9-1
	Max Horiz	1=-35 (LC 10)
	Max Uplift	1=-22 (LC 12), 3=-27 (LC 13)
	Max Grav	1=95 (LC 1), 3=95 (LC 1), 4=144 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD		1, 2-3=-58/41
BOT CHORD		, 3-4=-7/29
WEBS	2-4=-97/6	0
NOTES		
 Unbalance this design 		oads have been considered for
2) Wind: ASC		

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.
- 4) 5)


Gable studs spaced at 2-0-0 oc.


6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - Osage Lot 55	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
P230180-01	V18	Valley	1	1	Job Reference (optional	DEVELOPMENT SERVICES 157758182 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Spr	nghill, KS), Spring Hills, KS - 66083,				9 2022 MiTek Industries, Inc. ?PsB70Hq3NSgPqnL8w3uITX	

1-0-0

1-0-0

3x4 🍫

3x4 💊

2-0-0

0 - 3 - 10

1-8-6

0-8-6

2-0-0

Scale = 1:24.3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.01	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	NO	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 5 lb	FT = 20%

		0.E
BOT CHORD	2x4 SP N	0.2
BRACING		
TOP CHORD	Sheathed	or 2-3-13 oc purlins.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1=2-3-1, 3=2-3-1
	Max Horiz	1=-12 (LC 8)
	Max Uplift	1=-8 (LC 12), 3=-8 (LC 13)
	Max Grav	1=61 (LC 1), 3=61 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	•

TOP CHORD 1-2=-53/36, 2-3=-53/36 BOT CHORD 1-3=-13/36

NOTES

Unbalanced roof live loads have been considered for 1) this design.

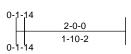
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc. 5)
- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 7) This truss is designed in accordance with the 2018
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

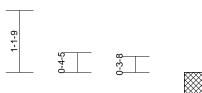
LOAD CASE(S) Standard

April 14,2023

		T					RELEASE FOR CONSTRUCTION AS NOTED FOR PLAN REVIEW
Job	Truss	Truss Type	Qty	Ply	Roof - Osag	ge Lot 55	DEVELOPMENT SERVICES 157758183
P230180-01	V19	Valley	1	1		nce (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply ((Springhill, KS), Spring Hills, KS - 66083	F	Run: 8.63 S Nov 19 2022 Prin D:XO6fujX7NdLVJ9Ym54gbB	t: 8.630 S Nov pzb0C8-RfC?F	⁻ 19 2022 MiTek I PsB70Hq3NSgPq	ndustries, Inc. InL8w3uITXbGi	hu Apr 0424408/2023
			4-0-0				
					1.5x4 u		
	1-10-13	$= \frac{1}{6}$	1.5x4 u 2 2 3x4 = 5 3x4 =		3 4 4		
Scale = 1:21.5			4-0-0				
Loading	(psf) Spacing	2-0-0 CS		EFL	in (loc)	l/defl L/d	PLATES GRIP

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	NO	WB	0.04	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 13 lb	FT = 20%
LUMBER			This truss is	designed in accord	dance w	ith the 2018						
TOP CHORD	2x4 SP No.2			Residential Code			nd					
BOT CHORD			R802.10.2 a	nd referenced star	ndard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2		LOAD CASE(S)	Standard								
OTHERS	2x3 SPF No.2											
BRACING												
TOP CHORD	Structural wood she		ed or									
	4-6-12 oc purlins, e											
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or										
REACTIONS	(size) 1=4-6-12, 6=4-6-12	4=4-6-12, 5=4-6-12	,									
	Max Horiz 6=70 (LC	9)										
	Max Uplift 4=-12 (LC	2 12), 5=-60 (LC 12),										
	6=-15 (LC 3)											
	Max Grav 1=69 (LC (LC 1), 6=		=197									
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=-129/77, 2-3=-5	3/40, 3-4=-52/64										
BOT CHORD	1-6=-158/95, 1-5=-3	1/34, 4-5=-31/34										
WEBS	2-5=-155/171											
NOTES												
	CE 7-16; Vult=115mph											The
	nph; TCDL=6.0psf; BC										OF I	ALC: NO
	Cat. II; Exp C; Enclose one and C-C Exterior(2										ALE OF I	NIS'S
	exposed ; end vertical		en							6	THE OF I	N.S
	C-C for members and f									R	SCOT	TM. YEY
reactions	shown; Lumber DOL=	1.60 plate grip								R	- SEV	IER \Y
	DOL=1.60							1 * 12				
								0 1 8				
	only. For study exposed to wind (normal to the face),								Carlier 2			
	see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.							018807				
	uires continuous botto									N	11-2001	IZ A
	ds spaced at 2-0-0 oc.	5								X	1ºSer	G A
	has been designed fo										CSSIONA	LEFA
chord live	load nonconcurrent wi	th any other live load	ds.								ALL ALL	TTTT


April 14,2023




							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty Ply		Roof - Osage Lot 55	AS NOTED FOR PLAN REVIEW
000	11055	indos rype		Guy	l''y	1001 - Osage Lot 35	DEVELOPMENT SERVICES 157758184
P230180-01	V20	Valley		1	1	Job Reference (optional	
Promior Building Supply (Sp	vinghill KS) Spring Hills KS 6	6083	Bup: 9.62 S. Nov 10.1	0022 Drint:	8 620 S Nov 1	0 2022 MiTok Industrios, Inc.	

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Thu Apr 13 44:40 8/269:123 ID:xzonWIZ0fYj4AcGLmCEIpSzb0C5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKwrCDoi794239? 3 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industr

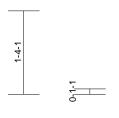
3x4 🚅

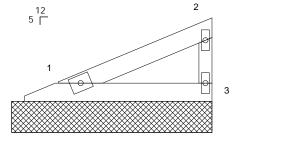
2-0-0

1.5x4 u

Scale = 1:21.1

Scale = 1:21.1												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.07 0.03 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 6 lb	GRIP 244/190 FT = 20%
BOT CHORD : WEBS : BRACING TOP CHORD BOT CHORD REACTIONS (s M	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 2-8-8 oc purlins, ex Rigid ceiling directly bracing. size) 1=2-8-8, 3 lax Horiz 1=35 (LC lax Uplit 1=-12 (LC lax Grav 1=77 (LC	cept end verticals. applied or 10-0-0 or 3=2-8-8 11) 2 12), 3=-19 (LC 12)	C									
TOP CHORD BOT CHORD NOTES	FORCES(lb) - Maximum Compression/Maximum TensionTOP CHORD1-2=-47/32, 2-3=-60/71BOT CHORD1-3=-16/17NOTES											
Vasd=91mpl Ke=0.96; Ca exterior zone and right exp exposed;C-0	: 7-16; Vult=115mph h; TCDL=6.0psf; BC tt. II; Exp C; Enclose e and C-C Exterior(2 boosed ; end vertical C for members and f own; Lumber DOL=	DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever b left and right orces & MWFRS for	left								A OF	MISS


April 14,2023



							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof - Osage Lot 55	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 157758185
P230180-01	V21	Valley		2	1	Job Reference (optional	
Premier Building Supply (S	Run: 8.63 S Nov 19 2 ID:uLwYxRbGBAzoPv		hu Apr 1054:408/2023				

3x4 🚅

1.5x4 🛚

Scale	=	1:18.5

Loading TCLL (roof) TCDI BCLL BCDL

				3-0-0)	_					
(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
25.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190
10.0	Lumber DOL	1.15	BC	0.07	Vert(TL)	n/a	-	n/a	999		
0.0	Rep Stress Incr	NO	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 9 lb	FT = 20%

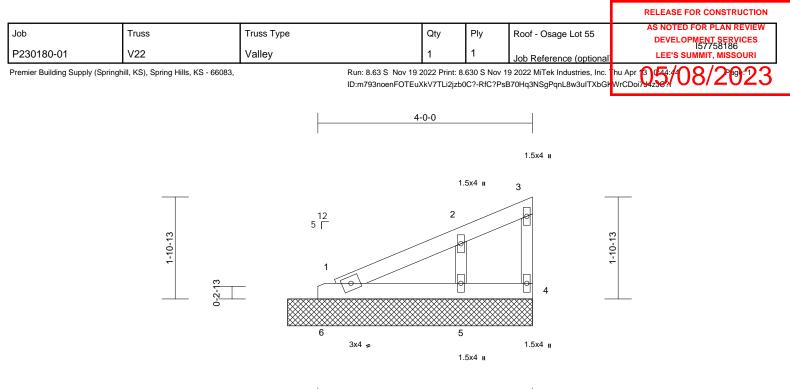
LUMBER

2x4 SP No.2
2x4 SP No.2
2x3 SPF No.2
Structural wood sheathing directly applied or
3-2-8 oc purlins, except end verticals.
Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS	(size)	1=3-2-8, 3=3-2-8			
	Max Horiz	1=45 (LC 9)			
	Max Uplift	1=-17 (LC 12), 3=-26 (LC 12)			
	Max Grav	1=106 (LC 1), 3=106 (LC 1)			
FORCES	(lb) - Maximum Compression/Maximum				
	Tension				
TOPOLIOPP	4 0 50/4	a a a a a a a a a a a a a a a a a a a			

TOP CHORD	1-2=-59/40, 2-3=-82/94
BOT CHORD	1-3=-20/21

NOTES


- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3) Gable studs spaced at 2-0-0 oc.
- 4)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) This truss is designed in accordance with the 2018 6)
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

April 14,2023

4-0-0	

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	NO	WB	0.05	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 14 lb	FT = 20%

LOWIDEN								
TOP CHORD	2x4 SP N	0.2						
BOT CHORD	2x4 SP No.2							
WEBS	2x3 SPF I	2x3 SPF No.2						
OTHERS	2x3 SPF I	No.2						
BRACING								
TOP CHORD		Structural wood sheathing directly applied or 4-6-12 oc purlins, except end verticals.						
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.							
REACTIONS	(size)	1=4-6-12, 4=4-6-12, 5=4-6-12, 6=4-6-12						
	Max Horiz	6=70 (LC 9)						
	Max Uplift	4=-6 (LC 9), 5=-67 (LC 12), 6=-60 (LC 3)						
	Max Grav	1=138 (LC 3), 4=22 (LC 1), 5=208 (LC 1), 6=-18 (LC 8)						
FORCES	(lb) - Max Tension	(Ib) - Maximum Compression/Maximum						
TOP CHORD	1-2=-118/	/74, 2-3=-42/30, 3-4=-22/25						
BOT CHORD	1-6=-158/	/95, 1-5=-31/34, 4-5=-31/34						
WEBS	2-5=-167/	2-5=-167/183						

NOTES

Scale = 1:21.5

LUMBER

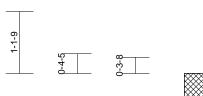
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

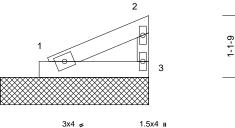
3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 1-4-0 oc.

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 LOAD CASE(S) Standard

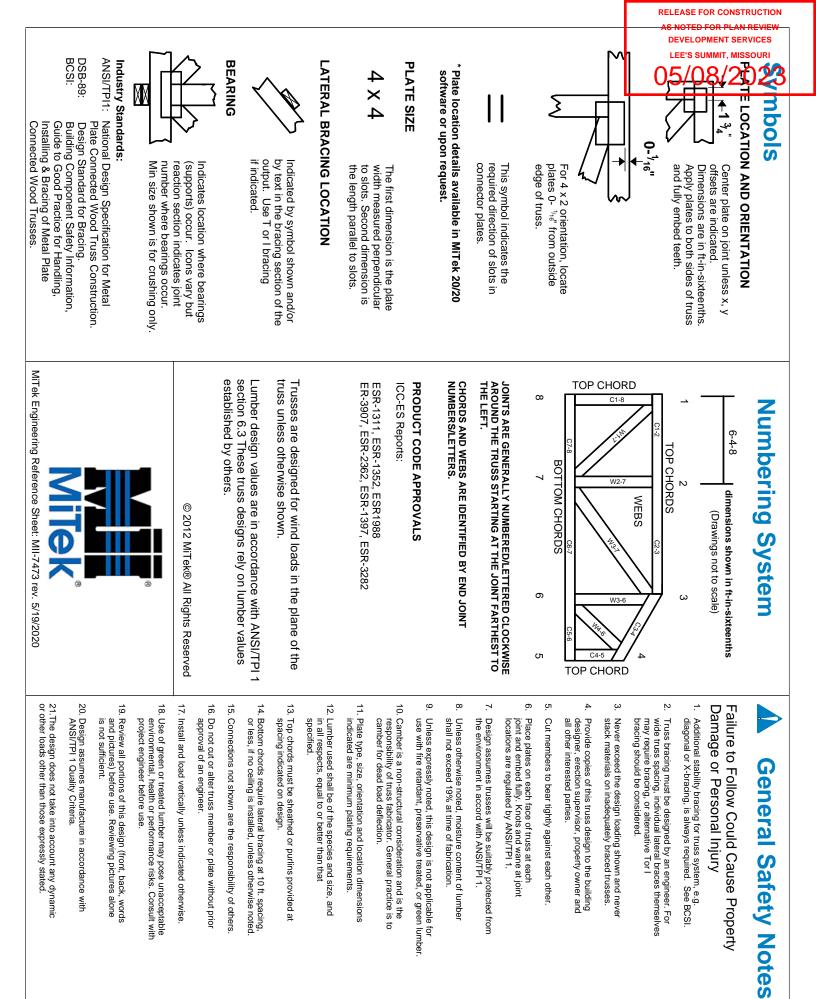
April 14,2023




							RELEASE FOR CONSTRUCTION
lah	Truco	Truss Type		Qty	Plv	Roof - Osage Lot 55	AS NOTED FOR PLAN REVIEW
Job	Truss	Thuss Type		Qly	Fiy	Rool - Osage Lot 55	DEVELOPMENT SERVICES 157758187
P230180-01	V23	Valley		1	1	Job Reference (optional	
Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083, Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022							

ID:IVHpBUf1n0kx8ruuEuNA88zb0Bz-RfC?PsB70Hq3NSgPqnL8w3uITXbGK

1.5x4 u


2-0-0

Scale - 1:21 1

Scale = 1:21.1												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.07 0.03 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 6 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m Ke=0.96; C	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 2-8-8 oc purlins, ex Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 10-0-0 or 3=2-8-8 9) ; 12), 3=-19 (LC 12) 1), 3=77 (LC 1) upression/Maximum /71 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop	ed or c	Mduix-P							weight. o ib	r1 = 20%
 and right e exposed; C reactions 2 DOL=1.60 Truss desi only. For s see Standa or consult of Gable requination Gable studies This truss in the second second	xposed ; end vertical I -C for members and fi hown; Lumber DOL=' gned for wind loads in tuds exposed to wind ard Industry Gable En- qualified building desig irres continuous bottor s spaced at 2-0-0 oc. has been designed for oad nonconcurrent wi a designed in accorda al Residential Code sa and referenced stand	left and right orces & MWFRS for 1.60 plate grip In the plane of the tru- (normal to the face) d Details as applical gner as per ANSI/TF m chord bearing. r a 10.0 psf bottom th any other live loa ance with the 2018 ections R502.11.1 a	iss), ole, PI 1. ds.						، ر		CALLER OF STATE OF SEV SEV NUM PE-2001	BER 1018807

April 14,2023

