

MiTek USA, Inc. RE: P230177-01 - Roof - Osage 70 16023 Swinglev Ridge Rd Site Information: Chesterfield, MO 63017 Project Customer: Clover & Hive Project Name: Tupelo - Farmhouse 314-434-1200 Lot/Block: 70 Subdivision: Osage Model: Address: 2125 SW Rutherford Dr City: Lee's Summit State: MO General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Code: IRC2018/TPI2014 Design Program: MiTek 20/20 8.6 Wind Code: ASCE 7-16 Wind Speed: 115 mph Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16 Roof Load: 45.0 psf Floor Load: N/A psf Mean Roof Height (feet): 25 Exposure Category: C No. Seal# Truss Name Date No. Seal# Truss Name Date 157761109 157761110 157761075 35 36 37 38 39 40 123456789111111111122222222222333333 4/14/23 4/14/23 157761076 A2 Ĵ8 157761077 157761078 157761111 157761112 A3 Ĵ9 14 A4 J10 14 A5 B1 157761113 157761114 157761079 J11 J12 14/23 157761080 B2 B3 157761115 157761116 157761081 157761082 41 42 43 44 45 46 47 14/2 J12A J13 Ē4 157761083 14/23 157761117 157761118 157761084 B5 J15 157761118 157761119 157761120 157761121 157761122 157761123 157761124 B6 B7 157761085 14/23 157761086 B8 C1 157761087 157761088 48 Č2 C3 157761089 49012334567890 V1 157761090 V2 C4 C5 157761125 157761126 157761091 V3 157761092 V5 V6 157761093 D1 157761127 157761094 D2 157761128 D3 E1 157761095 157761129 V7 V8 157761096 157761130 157761131 157761132 E2 V9 157761097 14/2 157761098 Ē V10 G1 G2 G3 G4 157761099 133 VG1 157761100

157761108 The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters

provided by Premier Building Supply (Springhill, KS)20300 W 207th Street.

Truss Design Engineer's Name: Garcia, Juan

157761101 157761102

157761103 157761104 157761105 157761106 157761107

J1 J2 J3 J4

J5

My license renewal date for the state of Kansas is April 30, 2024.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

MiTek USA, Inc. RE: P230177-01 - Roof - Osage 70 16023 Swinglev Ridge Rd Site Information: Chesterfield, MO 63017 Project Customer: Clover & Hive Project Name: Tupelo - Farmhouse - 3 car 314-434-1200 Lot/Block: 70 Subdivision: Osage Model: Address: 2125 SW Rutherford Dr City: Lee's Summit State: MO General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Code: IRC2018/TPI2014 Design Program: MiTek 20/20 8.6 Wind Code: ASCE 7-16 Wind Speed: 115 mph Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16 Roof Load: 45.0 psf Floor Load: N/A psf Mean Roof Height (feet): 25 Exposure Category: C No. Seal# Truss Name Date No. Seal# Truss Name Date 157761109 157761110 157761075 35 36 37 38 39 40 123456789111111111122222222222333333 4/14/23 157761076 A2 Ĵ8 157761077 157761078 157761111 157761112 A3 Ĵ9 14 A4 J10 A5 B1 157761113 157761114 157761079 14 J11 157761080 B2 B3 157761115 157761116 157761081 157761082 41 42 43 44 45 46 47 J12A J13 Ē4 157761083 157761117 157761118 157761084 B5 157761118 157761119 157761120 157761121 157761122 157761123 157761124 B6 B7 157761085 157761086 B8 C1 157761087 157761088 48 Č2 C3 157761089 49012334567890 157761090 C4 C5 157761125 157761126 157761091 V3 157761092 V5 V6 157761093 D1 157761127 157761094 D2 157761128 D3 E1 157761129 V7 V8 157761095 157761096 157761130 157761131 157761132 E2 V9 157761097 157761098 Ē V10 G1 G2 G3 G4 VG1 157761099

J1 J2 J3 J4 157761107 J5 157761108 The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters

provided by Premier Building Supply (Springhill, KS)20300 W 207th Street.

Truss Design Engineer's Name: Garcia, Juan

157761100 157761101 157761102

157761103 157761104 157761105 157761106

My license renewal date for the state of Missouri is December 31, 2024.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

			15-0-0					
LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 3-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.20 BC 0.08 WB 0.17 Matrix-R	DEFL. i Vert(LL) -0.0 Vert(CT) -0.0 Horz(CT) 0.0	1 11 n/i	120 90	PLATES MT20 Weight: 79 lb	GRIP 197/144 FT = 20%	
LUMBER- BRACING- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2 *Except* 10-12: 2x4 SPF No.3 OTHERS 2x4 SPF No.3								
REACTIONS. All bearings 15-0-0. (lb) - Max Horz 20=-249(LC 8) Max Uplift All uplift 100 lb or less at joint(s) 12, 18, 14 except 20=-109(LC 6), 17=-102(LC 10), 19=-151(LC 10), 15=-100(LC 11), 13=-140(LC 11) Max Grav All reactions 250 lb or less at joint(s) 12 except 20=253(LC 18), 16=290(LC 20), 17=294(LC 17), 18=280(LC 1), 19=280(LC 17), 15=292(LC 18), 14=280(LC 18), 13=262(LC 18)								
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. 50 JUAN TOP CHORD 5-6=-153/350, 6-7=-153/350 GARCIA WEBS 6-16=-269/28 K								
2) Wind: ASCE 7-16; W Enclosed; MWFRS 10-6-0, Exterior(2N) right exposed;C-C fo	e loads have been considered for this d /ult=115mph (3-second gust) Vasd=91r (envelope) gable end zone and C-C Co 10-6-0 to 12-10-8, Corner(3E) 12-10-8 or members and forces & MWFRS for re-	nph; TCDL=6.0psf; BCDL rner(3E) -0-10-8 to 2-1-8, to 15-10-8 zone; cantileve eactions shown; Lumber E	Exterior(2N) 2-1-8 to 4- er left and right exposed OOL=1.60 plate grip DOI	6-0, Corner(3R) ; end vertical let _=1.60	4-6-0 to 't and		ALENG	

- 10-6-0, Exterior(2N) 10-6-0 to 12-10-8, Corner(3E) 12-10-8 to 15-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 1.5x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 18, 14 except (jt=lb) 20=109, 17=102, 19=151, 15=100, 13=140.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO S300001, MISSOURI 05/08/

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

ASE FOR CONSTRUCTION

Milekvelopment services 16023 Swingley Ridge Rid Chesternett We Staffwirt, MISSOURI 05/08/202

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-0-12, Interior(1) 2-0-12 to 4-6-0, Exterior(2R) 4-6-0 to 10-6-0, Interior(1) 10-6-0 to 12-10-8, Exterior(2E) 12-10-8 to 15-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14, 8.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

SE FOR CONSTRUCTION TED FOR PLAN REVIEW

MIT EVELOPMENT SERVICES 16023 Swingley Ridge Rd Chesterfield, MO S300001, MISSOURI 05/08/

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Chesterfield, Weiger Structure 05/08/2023

05/08

ſ	Job	Truss	Truss Type	Qty	Ply	Roof - Osage 70
						157761079
	P230177-01	A5	Common Girder	1	2	
						Job Reference (optional)
	Premier Building Supply (Spr	inghill, KS), Spring Hills,	KS - 66083,	8.	630 s Nov	19 2022 MiTek Industries, Inc. Thu Apr 13 11:35:36 2023 Page 2

ID:tNc0JE71cPCqdLlj6CNuNIzOoS8-YUjy5F5zxP?v888XzQMbUdAq9y0K?E3FA03gnAzR8Yb

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-70, 3-4=-70, 2-4=-20

Concentrated Loads (lb)

Vert: 6=-1541(F) 8=-1130(F) 9=-1130(F) 11=-1130(F) 12=-1130(F) 13=-1130(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:43.9

EASE FOR CONSTRUCTION

S NOTED FOR PLAN REVIEW

16023 Swindley, Ridge Bill Chesterfield, Wild SSMIMIT, MISSOURI

4

 \mathbf{V}

	6-6-6 6-6-6	<u>12-11-1</u> 6-4-10	<u>19-3-11</u> 6-4-10	<u>25-10-2</u> 6-6-7
Plate Offsets (X,Y)	[8:0-1-8,0-2-0], [11:0-3-0,0-2-0]	0-4-10	0-4-10	0-0-7
LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.90 BC 0.83 WB 0.96 Matrix-SH	DEFL. in (loc) l/defl Vert(LL) -0.22 9-11 >999 Vert(CT) -0.53 9-11 >581 Horz(CT) 0.07 7 n/a	L/d PLATES GRIP 240 MT20 197/144 180 MT18HS 244/190 n/a Weight: 130 lb FT = 20%
4-6: 2x4 BOT CHORD 2x4 SP WEBS 2x4 SP	1650F 1.5E *Except* 4 SP 2400F 2.0E 1650F 1.5E F No.3 *Except* 7,1-11,6-8: 2x4 SP No.2		•	s (3-3-3 max.): 1-6, except end verticals. ectly applied or 6-11-4 oc bracing.
Max Ho Max Up	e) 12=Mechanical, 7=0-3-8 orz 12=116(LC 7) plift 12=-458(LC 4), 7=-505(LC 5) rav 12=1561(LC 1), 7=1671(LC 1)			OF MISSO
TOP CHORD 1-12= 6-7=-' BOT CHORD 9-11= WEBS 1-11=	Comp./Max. Ten All forces 250 (lb) 1486/494, 1-2=-2563/754, 2-3=-256 1548/562 1050/3399, 8-9=-1050/3399 813/2791, 2-11=-597/351, 3-11=-93 679/399, 6-8=-885/2856	3/754, 3-5=-2609/806, 5-6=	-2609/806,	JUAN GARCIA
 Enclosed; MWFRS (DOL=1.60 plate grip Provide adequate drip Provide adequate drip All plates are MT20 p This truss has been This truss has been * This truss has been Refer to girder(s) for Provide mechanical at 12=458, 7=505. This truss is designe referenced standard Graphical purlin reprint "NAILED" indicates 	envelope) gable end zone; cantilever DOL=1.60 ainage to prevent water ponding. plates unless otherwise indicated. designed for a 10.0 psf bottom chord in designed for a live load of 20.0psf of ottom chord and any other members. truss to truss connections. connection (by others) of truss to bea end in accordance with the 2018 Intern ANSI/TPI 1. esentation does not depict the size o is 3-100 Nails (0.148" x 3") toe-nails p (S) section, loads applied to the face	left and right exposed ; end live load nonconcurrent with in the bottom chord in all are aring plate capable of withsta ational Residential Code sea r the orientation of the purlin er NDS guidelines.	eas where a rectangle 3-6-0 tall by 2-0-0 v anding 100 lb uplift at joint(s) except (jt=lb ctions R502.11.1 and R802.10.2 and along the top and/or bottom chord.	CENSE
()	dard alanced): Lumber Increase=1.15, Pla	te Increase=1.15		April 14,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Roof - Osage 70	
						157761080
P230177-01	B1	Flat Girder	1	1		
					Job Reference (optional)	
Premier Building Supply (Springhill, KS), Spring Hills		s, KS - 66083,	, 8.630 s Nov 19 2022 MiTek Industries, Inc. Thu Apr 13 11:35:38 2023 Page 2			
			ID:tNc0JE71cPCqdLlj6CNuNlzOoS8-UtrjWx7DT1FdNSIw4rO3Z2G7Tme1T2XYdKYns2zR8YZ			

LOAD CASE(S) Standard

Uniform Loads (plf)

Vert: 1-6=-70, 7-12=-20 Concentrated Loads (lb)

Vert: 4=-44(F) 6=-82(F) 7=-35(F) 10=-24(F) 13=-44(F) 14=-44(F) 15=-44(F) 16=-44(F) 17=-44(F) 18=-44(F) 19=-44(F) 20=-44(F) 21=-44(F) 22=-44(F) 23=-44(F) 24=-24(F) 25=-24(F) 26=-24(F) 26=-24(F) 28=-24(F) 29=-24(F) 30=-24(F) 31=-24(F) 32=-24(F) 33=-24(F) 34=-24(F) 34=

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:43.9

April 14,2023

	8-8-9 8-8-9	-	17-1-9 8-5-1		25-10-2 8-8-9
LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.84 BC 0.91 WB 0.62 Matrix-SH	DEFL. in Vert(LL) -0.17 Vert(CT) -0.37 Horz(CT) 0.06		PLATES GRIP MT20 197/144 Weight: 130 lb FT = 20%
4-6: 2x BOT CHORD 2x4 SP 9-11: 2 WEBS 2x4 SP	P No.2 *Except* 4 SP 1650F 1.5E P No.2 *Except* x4 SP 1650F 1.5E P No.3 *Except* -7: 2x4 SP No.2		BOT CHORD F	Rigid ceiling directly applied): 1-6, except end verticals. or 8-4-1 oc bracing. 2-11, 5-7
Max H Max U	e) 11=Mechanical, 7=0-3-8 orz 11=-163(LC 6) plift 11=-210(LC 6), 7=-210(LC 7) rav 11=1150(LC 1), 7=1150(LC 1)				OF MISSO
TOP CHORD 2-3=- BOT CHORD 10-11 WEBS 2-11=	Comp./Max. Ten All forces 250 (lb) o .1508/500, 3-5=-1521/564 I=-332/1310, 8-10=-480/1724, 7-8=-38; 1550/635, 2-10=-56/487, 3-10=-315/2 .1587/571	7/1335			JUAN GARCIA
Enclosed; MWFRS (25-8-6 zone; cantile reactions shown; Lu 2) Provide adequate dr	/ult=115mph (3-second gust) Vasd=91n (envelope) gable end zone and C-C Co ver left and right exposed ; end vertical mber DOL=1.60 plate grip DOL=1.60 'ainage to prevent water ponding. designed for a 10.0 psf bottom chord liv	ner(3) 0-1-12 to 5-1-12, E left and right exposed;C-C	xterior(2) 5-1-12 to 20-8-6, c for members and forces &	Corner(3) 20-8-6 to MWFRS for	BO. E-2000162101
 4) * This truss has been will fit between the b 5) Refer to girder(s) for 	n designed for a live load of 20.0ps nottom chord and any other members. • truss to truss connections. connection (by others) of truss to beari	the bottom chord in all are	eas where a rectangle 3-6-0) tall by 2-0-0 wide s) except (jt=lb)	CENSED
 This truss is designed referenced standard 	ed in accordance with the 2018 Internati ANSI/TPI 1. resentation does not depict the size or t			.10.2 and m chord.	TANSES
					April 14 2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y) [10:0-3-8,0-1-8] LOADING (pst) TCLL SPACING- Plate Grip DOL 2-0-0 1.15 CSI. TC DEFL 1.00 in (loc) I/deft L/d TCLL 25.0 Plate Grip DOL 1.15 BC 0.82 Vert(CT) 0.21 7-8 >999 240 BCDL 10.0 Code IRC2018/TPI2014 WB 0.65 Horz(CT) 0.3 6 n/a MT20 197/144 BCDL 10.0 Code IRC2018/TPI2014 WB 0.65 Horz(CT) 0.3 6 n/a n/a LUMBER- TOP CHORD 2x4 SP No.2 BCACINO- 5-61-11: 2x4 SP No.2 BRACINO- 5-61-11: 2x4 SP No.2 BOT CHORD Sheathed or 3-11-0 oc purlins, except end verticals, and 2-0-0 oc purlins (2-44 max): 3-5. BOT CHORD (size) 6-0-3-8, 11=Mechanical Max Horz 11=23(LC 7), 11=-114(LC 10) Max Grav 6 = 1234(LC 2), 11=1203(LC 2) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 3-7 FORCES. (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 10-11=-22/290, 8-1530/239, 3-4=-1199/233, 4-5=-1193/235, 4-5=-1033/225, 1-11=-1130/162 JUAN GARCIA BOT CHORD <		4-8-10 4-8-10	11-1-4 6-4-10	<u>18-3-15</u> 7-2-11	25-10-2				
LOADING (pf) TCLL 25.0 TCL 25.0 TCL 0.0 SPACING- Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO BCDL 10.0 CSI. Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014 DEFL BC 0.82 WB 0.65 Matrix-SH in (loc) Vert(CT) -0.21 7-8 >999 240 Vert(CT) -0.21 7-8 >999 180 No.2 6 n/a n/a PLATES MT20 197/144 LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 Sheathed or 3-11-0 co purlins, except end verticals, and 2-0-0 oc purlins (2-44 max.) 3-5. BOT CHORD Max logit 6=-192(LC 7), 11=-114(LC 10) Max Grav 6=1234(LC 2), 11=1203(LC 2) BRACING- TOP CHORD Max Inter - All forces 250 (lb) or less except when shown. TOP CHORD 1-11=-222/290, 8-10=-276/1473, 7-8=-250/1342 FORCES. 10 Unbalanced roof live loads have been considered for this design. State 2-20-36, 11=-167/1470, 5-7=-234/1482 NOTES- 10 Unbalanced roof live loads have been considered for this design. JUAN 20 Wird: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Extenior(2E) 0-1-12 to 3-1-12. Interior(1) 3-1-12 io 6-10-5, Extenior(2R) 6-10-5 to 15-4-2. Interior(1) 15-4-2 to 22-8-6, Extenior(2E) 0-1-12 to 3-1-12. Interior(1) 3-1-12 io 6-10-5, Extenior(2R) 6-10-5 to 15-4-2. Interior(1) 15-4-2 to 22-8-6 to 25-8-6 to ze-8-6 cone; cantilever let and right exposed; circle all eff a	Plate Offsets (X,Y)		0-4-10	7-2-11	7-0-3				
 TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2 WEBS 2x4 SP No.2 BOT CHORD 5-6,1-11: 2x4 SP No.2 BOT CHORD WEBS 1 Row at midpt 3-7 REACTIONS. (size) 6=0-3-8, 11=Mechanical Max Horz 11=235(LC 9) Max Uplit 6=-192(LC 7), 11=-114(LC 10) Max Grav 6=1234(LC 2), 11=1203(LC 2) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-7653/206, 2-3=-1530/203, 3-4=-1194/231, 5-6=-1093/225, 1-11=-1130/162 BOT CHORD 10-11=-222/290, 8-10=-276/1473, 7-8=-250/1342 WEBS 2.10=-292/119, 3-8=0/334, 4-7=-606/237, 1-10=-167/1470, 5-7=-234/1482 NOTES- Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 2-8-10 2-28-6 to 25-8-6 cone; cantific exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 Provide adequate drainage to prevent water ponding. This two shaps hab been designed for a 10.0 ps blottom chord live load nonconcurrent with any other live loads. 	LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NC	TC 1.00 BC 0.82 WB 0.65	Vert(LL) -0.12 7-8 >999 Vert(CT) -0.21 7-8 >999	240 MT20 197/1 180 n/a	44			
Max Horz 11=235(LC 9) Max Uplift 6=-192(LC 7), 11=-114(LC 10) Max Grav 6=1234(LC 2), 11=1203(LC 2) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-1635/206, 2-3=-1530/239, 3-4=-1196/233, 4-5=-1093/225, 1-11=-1130/162 BOT CHORD 10-11=-222/290, 8-10=-276/1473, 7-8=-250/1342 WEBS 2-10=-292/119, 3-8=0/334, 4-7=-606/237, 1-10=-167/1470, 5-7=-234/1482 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=0.96; Cat. II; Exp C; Enclosed; MW/FRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 6-10-5, Exterior(2R) 6-10-5 to 15-4-2, Interior(1) 15-4-2 to 22-8-6, Exterior(2E) 22-8-6 to 25-8-6 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.	TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S	P No.2 PF No.3 *Except*		TOP CHORD Sheathed or 3- purlins (2-4-4 n BOT CHORD Rigid ceiling dir	nax.): 3-5. rectly applied or 10-0-0 oc bracing.	-0-0 oc			
 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1.12 to 6-10-5, Exterior(2R) 6-10-5 to 15-4-2, Interior(1) 15-4-2 to 22-8-6, Exterior(2E) 22-8-6 to 25-8-6 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 	Max H Max U Max C FORCES. (lb) - Max TOP CHORD 1-2= 1-11 BOT CHORD 10-1	Horz 11=235(LC 9) Jplift 6=-192(LC 7), 11=-114(LC 1 Grav 6=1234(LC 2), 11=1203(LC . Comp./Max. Ten All forces 25(1635/206, 2-3=-1530/239, 3-4=- =-1130/162 11=-222/290, 8-10=-276/1473, 7-8	2) (Ib) or less except when shov 196/233, 4-5=-1194/231, 5-6= =-250/1342	1093/225,		SOUR *			
6=192, 11=114. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and	 BOT CHORD 10-11=-222/290, 8-10=-276/1473, 7-8=-250/1342 WEBS 2-10=-292/119, 3-8=0/334, 4-7=-606/237, 1-10=-167/1470, 5-7=-234/1482 NOTES- Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 6-10-5, Exterior(2R) 6-10-5 to 15-4-2, Interior(1) 15-4-2 to 22-8-6, Exterior(2E) 22-8-6 to 25-8-6 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Refer to girder(s) for truss to truss connections. 								

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ASE FOR CONSTRUCTION

Mitekvelopment services 16023 Swingley Ridge Rid Chesternett We Staffwirt, MISSOURI 05/08/202

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 ASE FOR CONSTRUCTION THE ASE FOR CONSTRUCTION THE ASE FOR PLAN REVIEW MICHONIC FOR PLAN REVIEW MICHONIC FOR PLAN REVIEW MICHONIC FOR PLAN REVIEW 16023 SWIDDLY RIVER FOR Chesterlieut, WO SSTAWT, MISSOURI 05/08/2023

ASE FOR CONSTRUCTION

Milekvelopment services 16023 Swingley Ridge Rid Chesternett We Staffwirt, MISSOURI 05/08/202

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

a duss system planteets and pl

16023 Swingley Ridge Rd Chesterfield, MO S300001, MISSOURI 05/08/

Job	Truss	Truss Type	Qty	Ply	Roof - Osage 70
Tupelo-Roof	B7	Roof Special Girder	4	_	157761086
	D/	Rooi Special Gilder	1	3	Job Reference (optional)
`					

8.630 s Nov 21 2022 MiTek Industries, Inc. Fri Apr 14 08:05:47 2023 Page 2 ID:tNc0JE71cPCqdLlj6CNuNIzOoS8-JoNW5UhvLa9qTDXIN00WVdieWdVgYjna_3OwxTzQsXI

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-70, 2-6=-70, 6-7=-70, 1-13=-20, 2-8=-20 Concentrated Loads (lb)

Vert: 14=-4809(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

4.00 12

3-3-8	6-5-7 9-3-12 16-0-			29-6-5		35-0-0	42-0-0	
3-3-8	3-1-15 2-10-5 6-9-			6-8-11	1	5-5-11	7-0-0	I
Plate Offsets (X,Y)	[2:0-3-11,0-2-6], [12:0-3-7,0-2-3], [16	:0-3-8,0-2-0], [20:0-3-8,0-2-0	0], [21:1-0-2,Edge					
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 25.0	Plate Grip DOL 1.15	TC 0.97	Vert(LL)	-0.43 20-21	>959	240	MT20	197/144
CDL 10.0	Lumber DOL 1.15	BC 0.99	Vert(CT)	-0.76 20-21	>546	180	MT18HS	197/144
BCLL 0.0 *	Rep Stress Incr NO	WB 0.91	Horz(CT)	0.29 15	n/a	n/a		
BCDL 10.0	Code IRC2018/TPI2014	Matrix-SH					Weight: 219 lb	FT = 20%
UMBER-			BRACING-					
	SP 1650F 1.5E *Except*		TOP CHOP				0.40.4	
3OT CHORD 2x4	2x4 SP No.2		BOT CHOF WEBS	5	eiling dire at midpt		or 2-10-1 oc bracing. 4-19, 6-17, 3-20	
	: 2x8 SP 2400F 2.0E, 18-21: 2x4 SP 24	00E 2 0E	WED3	TROW	at mupt	-	+-19, 0-17, 3-20	
	SPF No.3							
SLIDER Righ	nt 2x4 SP No.2 3-9-12							
REACTIONS. (s	size) 2=0-3-8, 15=0-3-8							
((Horz 2=201(LC 10)							
	Uplift 2=-230(LC 10), 15=-269(LC 7)						NEOF	VISS
Max	Grav 2=1613(LC 2), 15=2445(LC 2)						N.A	
							IU/	IN P
	ax. Comp./Max. Ten All forces 250 (Ib) 3=-7080/1162, 3-4=-3616/529, 4-6=-249						GAR	
	10=-1043/181, 10-12=-613/857	2/012, 0-11404/200, 1-0-	-1400/201,					:*=
	21=-1242/6525, 20-21=-1129/5826, 19-2	20=-565/3317, 17-19=-310/2	2232, 16-17=-56/9	02,			E	
	5-16=-659/586, 14-15=-2379/791, 10-14						NUM	BER :
	20=0/535, 4-19=-1203/283, 6-19=-31/81		,				E-2000	162101 :4:5
8-1	17=-171/537, 8-16=-928/311, 10-16=-42	2/1918, 3-21=-303/2065, 3-	20=-2531/568				11.	
NOTES-							1.00	
) Unbalanced roof	live loads have been considered for this	design.					ON	ALEIN
	; Vult=115mph (3-second gust) Vasd=9							III.
	S (envelope) gable end zone and C-C E							ш <u>л.</u>
	0, Interior(1) 25-9-10 to 39-10-8, Exterio					60		GAD
	ght exposed;C-C for members and force 20 plates unless otherwise indicated.	S & IVIVVERS IOF TEACTIONS SI	nown, Lumber DO	- 1.00 plate gr	IP DOL=1	.00	JUAN C	ALD DU
	en designed for a 10.0 psf bottom chord	live load nonconcurrent with	h anv other live loa	ads.			S CE	NSA
/	een designed for a live load of 20 Opsf (v 2-0-0 w	ido		0

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Bearing at joint(s) 2, 15 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=230, 15=269.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

4.00 12

F	<u>3-3-8 9-3-11</u> 3-3-8 6-0-3	16-0		25-10-13 6-2-6	35-0-0		42-0-0 7-0-0		
Plate Offsets (X,)			4-0,Edge], [7:0-6-0,0-1-5]				1-0-0		
LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	* SPACING Plate Grip Lumber DC Rep Stress	- 2-0-0 DOL 1.15 OL 1.15	CSI. TC 0.92 BC 0.74 WB 0.86 Matrix-SH	DEFL. Vert(LL) -0 Vert(CT) -0	in (loc) l/defl .34 21-22 >999 .59 21-22 >703 .26 16 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 236 lb	GRIP 197/144 197/144 FT = 20%	
BOT CHORD 2 2 1 WEBS 2	4 SP No.2 *Except* 7: 2x4 SP 1650F 1.5E, 4 SP 1650F 1.5E *Exc 22: 2x6 SP 2400F 2.0E I-16: 2x6 SPF No.2, 14 4 SPF No.3 *Except* 2-14: 2x6 SPF No.2	cept* E, 19-22: 2x4 SP 2400		BRACING- TOP CHORD BOT CHORD WEBS	purlins (3-5-6 ma	ix.): 7-8. ctly applied or 10 ng: 21-22 15-16.	xcept end verticals 0-0-0 oc bracing, , 3-21, 7-17, 9-16,	Except: 12-15	
Ν	(size) 2=0-3-8, 16= lax Horz 2=175(LC 10 lax Uplift 2=-215(LC 10 lax Grav 2=1605(LC 2)) 0), 16=-323(LC 7)				ŝ	NALE OF	MISSOL	
TOP CHORD	2-3=-6461/924, 3-5=-3	602/462, 5-6=-2363/3	less except when shown 2, 6-7=-2296/401, 7-8=-1				★ GAR		*=
	8-9=-1365/191, 9-11=- 2-22=-982/5879, 21-22 16-17=-21/682, 15-16	2=-878/5173, 20-21=-4	81/3325, 18-20=-115/168	3, 17-18=-115/1680,			P. NUM P. E-2000	• 4	EB
			9, 6-20=-324/199, 7-20=- 918, 9-16=-2160/575, 12-				TR Sector	- join	3
 Wind: ASCE 7 Enclosed; MW to 31-10-1, Interright exposed; Provide adequu All plates are M This truss has * This truss has * This truss has * This truss has * This truss is device advantage Provide mecha 2=215, 16=322 This truss is device advantage 	FRS (envelope) gable e rior(1) 31-10-1 to 38-8- J-C for members and for ate drainage to prevent IT20 plates unless othe been designed for a 10 is been designed for a 11 the bottom chord and a (s) 2 considers parallel ring surface. nical connection (by ot signed in accordance we and and ANSI/TPI 1.	econd gust) Vasd=91m end zone and C-C Exte -2, Exterior(2E) 38-8-2 orces & MWFRS for re t water ponding. erwise indicated. 0.0 psf bottom chord liv ive load of 20.0psf on t any other members, w I to grain value using A thers) of truss to bearin with the 2018 Internatio	př; TCDL=6.0psf; BCDL= erior(2E) -0-10-8 to 3-5-4, to 42-10-8 zone; cantilev actions shown; Lumber D e load nonconcurrent with he bottom chord in all are	Interior(1) 3-5-4 to 1 er left and right expo OL=1.60 plate grip D n any other live loads as where a rectangle formula. Building des anding 100 lb uplift at ctions R502.11.1 and	3-9-2, Exterior(2R) 13- sed ; end vertical left a OL=1.60 3-6-0 tall by 2-0-0 wid igner should verify joint(s) except (jt=lb) R802.10.2 and	-9-2 and de		GARCIA NSEO 952 VSAS	TITER MININ
Design valid for u a truss system. E building design. is always require fabrication, stora	se only with MiTek® connect efore use, the building desigr Bracing indicated is to preven I for stability and to prevent c Je, delivery, erection and brace	tors. This design is based on ner must verify the applicabili nt buckling of individual truss collapse with possible person cing of trusses and truss sys	NCLUDED MITEK REFERENCE y upon parameters shown, and ty of design parameters and pro web and/or chord members only al injury and property damage. I ems, see ANSUTPI1 C vay, Suite 203 Waldorf, MD 2060	s for an individual building perly incorporate this desig . Additional temporary and For general guidance regar tuality Criteria, DSB-89 ar	component, not n into the overall l permanent bracing	ent		e for constr ed for plan r lopment serv Standit, missi 08/20	REVIEW VICES

- LUMBER-BRACING-TOP CHORD 2x4 SP 2400F 2.0E *Except* TOP CHORD Sheathed or 3-5-4 oc purlins, except end verticals, and 2-0-0 oc 6-8: 2x4 SP 1650F 1.5E, 8-10: 2x4 SP No.2, 1-5: 2x6 SP 2400F 2.0E purlins (3-8-13 max.): 6-8 2x4 SP No.2 *Except* BOT CHORD BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing 2-20: 2x6 SP 2400F 2.0E, 18-20: 2x4 SP 2400F 2.0E WEBS 1 Row at midpt 3-19, 4-17 7-15: 2x4 SPF No.3, 16-18: 2x4 SP 1650F 1.5E 2x4 SPF No.3 *Except* WEBS 3-20: 2x6 SPF No.2, 10-11: 2x4 SP No.2
 - REACTIONS. (size) 2=0-3-8, 11=Mechanical Max Horz 2=184(LC 7) Max Uplift 2=-193(LC 10), 11=-170(LC 7) Max Grav 2=1634(LC 1), 11=1561(LC 1)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-6842/871, 3-4=-3660/427, 4-6=-2524/367, 6-7=-2135/388, 7-8=-2137/391,

 8-9=-948/249, 9-10=-988/214, 10-11=-1516/227

 BOT CHORD
 2-20=-926/6247, 19-20=-803/5314, 17-19=-388/3370, 16-17=-270/2221, 7-16=-554/205

 WEBS
 3-20=-241/2037, 3-19=-1959/418, 4-19=0/456, 4-17=-1242/281, 6-17=-25/650, 14-16=-175/981, 8-16=-199/1392, 8-14=-413/165, 12-14=-131/1117, 8-12=-582/63, 10-12=-159/1353

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-7-8, Interior(1) 2-7-8 to 11-6-10, Exterior(2R) 11-6-10 to 21-8-4, Interior(1) 21-8-4 to 24-1-13, Exterior(2R) 24-1-13 to 31-4-4, Exterior(2E) 31-4-4 to 34-10-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=193, 11=170.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

OTED FOR PLAN REVIEW

Milekvelopment services 16023 Swingley Ridge Rid Chesternett We Staffwirt, MISSOURI 05/08/202

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Roof - Osage 70	
					157761091	
P230177-01	C4	Hip	1	1		
					Job Reference (optional)	
Premier Building Supply (Spi	KS - 66083,	8.630 s Nov 19 2022 MiTek Industries, Inc. Thu Apr 13 11:35:57 2023 Page 2				
ID:tNc0JE71cPCqdLlj6CNuNizOoS8-RXUuVQM8_sew9MFZiKEWr2YRJQ5KQfzL?neH1SzR					DoS8-RXUuVQM8 sew9MFZiKEWr2YRJQ5KQfzL?neH1SzR8YG	

NOTES-

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3-3		<u> </u>	21-5-0	<u>24-4-8</u> <u>28-2-0</u> 2-11-8 <u>3-9-8</u>	<u>31-10-0 35-0-0</u> 3-8-0 3-2-0
Plate Offsets (X,Y)		0-1], [5:0-3-8,0-2-0], [12:0-2-8,0-2-0			
LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2- Plate Grip DOL 1 Lumber DOL 1	0-0 CSI. .15 TC 0.95 .15 BC 0.75 NO WB 0.87	DEFL. in Vert(LL) 0.51 Vert(CT) -0.88 Horz(CT) 0.38	(loc) l/defl L/d 17 >810 240 17 >476 180	PLATES GRIP MT20 197/144 MT18HS 197/144 Weight: 445 lb FT = 20%
BOT CHORD 2x6 SF 2-21: 2 7-17: 2 WEBS 2x4 SF	4 SP 1650F 1.5E		BRACING- TOP CHORD BOT CHORD	Sheathed, except end vert 4-10. Rigid ceiling directly applied	icals, and 2-0-0 oc purlins (4-7-1 max.): d or 10-0-0 oc bracing.
REACTIONS. (siz Max H Max L Max C FORCES. (lb) - Max. TOP CHORD 2-3= BOT CHORD 2-21 16-1 12-1 WEBS 3-21 16-1 16-1	 t1=Mechanical, 2=0-3-8 torz 2=170(LC 5) Jplift 11=-920(LC 5), 2=-777(L Grav 11=2914(LC 1), 2=2837(Comp./Max. Ten All forces -12239/3490, 3-4=-6982/2104 -9003/2923, 9-10=-2605/880, -3360/11231, 20-21=-3063/1 7=-69/287, 7-16=-311/1153, 1 3=0/274, 9-12=-2886/1126 -827/3024, 3-20=-3794/1149 8=-2247/6761, 5-16=-1302/39 	LC 1) 250 (lb) or less except when showr , 4-5=-7598/2482, 5-7=-11293/367 10-11=-2807/909 0185, 18-20=-2006/6357, 17-18=-3 5-16=-3710/11323, 14-15=0/277, 8 , 4-20=-309/1367, 4-18=-608/1614 54, 7-15=-2789/930, 10-12=-1239/	3, 7-8=-9049/2908, 316/994, -15=-585/354, , 5-18=-2102/810,		JUAN GARCIA
NOTES- 1) 2-ply truss to be corr Top chords connect Bottom chords connected webs connected as 2) All loads are consid ply connections haw 3) Unbalanced roof liv 4) Wind: ASCE 7-16; \ Enclosed; MWFRS DOL=1.60 plate grip 5) Provide adequate d 6) All plates are MT20 7) This truss has been will fit between the to 9) Refer to girder(s) for Continued on page 2	a follows: 2x4 - 1 row at 0-9-0 d ered equally applied to all plie ve been provided to distribute of e loads have been considered Vult=115mph (3-second gust) (envelope) gable end zone; ca o DOL=1.60 rainage to prevent water pond plates unless otherwise indica d designed for a 10.0 psf bottor on designed for a live load of 2 bottom chord and any other m r truss to truss connections.	20"x3") nails as follows: -7-0 oc. staggered at 0-9-0 oc, 2x6 - 2 row oc. s, except if noted as front (F) or bac only loads noted as (F) or (B), unles for this design. Vasd=91mph; TCDL=6.0psf; BCDL antilever left and right exposed ; end ing. ted. n chord live load nonconcurrent wit 0.0psf on the bottom chord in all ar embers.	ck (B) face in the LOAD C ss otherwise indicated. =6.0psf; h=25ft; Ke=0.96; d vertical left and right exp th any other live loads. eas where a rectangle 3-6	5-0 tall by 2-0-0 wide	16952 AANSAS April 14,2023
Design valid for use onl a truss system. Before building design. Bracin is always required for sl fabrication, storage, del	ly with MiTek® connectors. This design use, the building designer must verify g indicated is to prevent buckling of in tability and to prevent collapse with po livery, erection and bracing of trusses :	N THIS AND INCLUDED MITEK REFERENCE is based only upon parameters shown, and he applicability of design parameters and pr dividual truss web and/or chord members on issible personal injury and property damage. and truss systems, see ANSI/TP1 0 Crain Highway, Suite 203 Waldorf, MD 206	is for an individual building com operly incorporate this design into y. Additional temporary and per For general guidance regarding Quality Criteria. DSB-89 and B	ponent, not o the overall manent bracing the	Chesterfield, We SSOW MIT, MISSOURI

05/08/2023

	Job	Truss	Truss Type	Qty	Ply	Roof - Osage 70
						157761092
	P230177-01	C5	Half Hip Girder	1	2	
						Job Reference (optional)
	Premier Building Supply (Springhill, KS), Spring Hills		KS - 66083,	8.630 s Nov 19 2022 MiTek Industries, Inc. Thu Apr 13 11:36:02 2023 F		
			ID:tNc	JE71cPC	qdLlj6CNu	NIzOoS8-nUInY8PGpPHDG87XUuqhY6FEXRrx5wr483M2ifzR8YB

NOTES-

10) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 11=920, 2=777.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent at 9-0-0 from the left end to connect truss(es) to back face of bottom chord.
- 15) Fill all nail holes where hanger is in contact with lumber.
- 16) "NAILED" indicates 3-10d Nails (0.148" x 3") toe-nails per NDS guidelines.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-4=-70, 4-10=-70, 2-21=-20, 17-21=-20, 15-16=-20, 13-14=-20, 11-12=-20

Concentrated Loads (lb)

Vert: 6=-76(B) 21=-61(B) 19=-85(B) 17=-85(B) 7=-76(B) 22=-122(B) 24=-76(B) 25=-76(B) 26=-76(B) 27=-76(B) 28=-81(B) 29=-109(B) 30=-109(B) 31=-109(B) 32=-109(B) 33=-89(B) 34=-5(B) 35=-167(B) 36=-228(B) 37=-85(B) 38=-85(B) 39=-85(B) 40=-85(B) 41=-117(B) 42=-52(B) 43=-52(B) 44=-52(B) 45=-52(B) 46=-73(B) 46=-7

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MITCHEVELOPMENT SERVICES 16023 Swingley, Ridde Ridt, MISSOURI Chesterheid, Two State Mitt, MISSOURI 05/08/2023

TED FOR PLAN REVIEW

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

A Set For Construction Miles of the for plan review Miles velopment services 16023 Swingley, Ridge Bit Chesternett, Wilssouri 05/08/2023

Job	Truss	Truss Type	Qty	Ply	Roof - Osage 70
					157761095
P230177-01	D3	Half Hip Girder	1	2	
				-	Job Reference (optional)
Premier Building Supply (Spi	ringhill, KS), Spring Hills,	KS - 66083,	8.	630 s Nov	19 2022 MiTek Industries, Inc. Thu Apr 13 11:36:07 2023 Page 2
		ID:tNc0	JE71cPCq	dLlj6CNul	VIzOoS8-8S5gbrTPexvVMv0UHRQtF9y6wSVBmAvpIL3pOtzR8Y6

NOTES-

12) Use Simpson Strong-Tie HUS26 (14-10d Girder, 6-10d Truss, Single Ply Girder) or equivalent at 8-0-0 from the left end to connect truss(es) to front face of bottom chord.

13) Fill all nail holes where hanger is in contact with lumber.

14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1496 lb down and 178 lb up at 10-0-0 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-70, 2-4=-70, 4-5=-70, 10-11=-20, 7-10=-20, 6-7=-20 Concentrated Loads (lb)

Vert: 9=-2988(F) 12=-1496(F) 13=-1541(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2x4 SP No.2 *Except* 18-20: 2x4 SPF No.3 OTHERS 2x4 SPF No.3

REACTIONS. All bearings 20-0-0.

Max Horz 36=-312(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 10, 34, 33, 32, 31, 30, 29, 27, 26, 25, 24, 23, 22 except 36=-179(LC 6), 20=-103(LC 7), 35=-170(LC 10), 21=-146(LC 11)

All reactions 250 lb or less at joint(s) 20, 34, 33, 32, 31, 30, 29, 27, 26, 25, 24, 23, 22, 21 except Max Grav 36=296(LC 18), 10=323(LC 11), 35=258(LC 17)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 6-7=-113/277, 7-8=-143/343, 8-9=-180/413, 9-10=-189/446, 10-11=-189/446,

11-12=-180/413, 12-13=-143/343, 13-14=-108/277

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 7-0-0, Corner(3R) 7-0-0 to 13-0-0, Exterior(2N) 13-0-0 to 17-10-8, Corner(3E) 17-10-8 to 20-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 1.5x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 1-4-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 34, 33, 32, 31, 30, 29, 27, 26, 25, 24, 23, 22 except (jt=lb) 36=179, 20=103, 35=170, 21=146.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design valid for Use only with Mill Reve connectors. This design is based only upon parameters shown, and is to an individual outing component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

April 14,2023

MIT EVELOPMENT SERVICES 16023 Swingley Ridge Rd Chesterfield, MO S300001, MISSOURI 05/08/

SE FOR CONSTRUCTION

OTED FOR PLAN REVIEW

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ASE FOR CONSTRUCTION CONSTRUCTION Chestering: No 83000000 05/08/2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Chesteride: MO 83019917

Job	Truss	Truss Type	Qty	Ply	Roof - Osage 70	
					157761102	2
P230177-01	G4	Common Girder	1	2		
				_	Job Reference (optional)	
Premier Building Supply (Spi	ringhill, KS), Spring Hills,	KS - 66083,	8.	630 s Nov	19 2022 MiTek Industries, Inc. Thu Apr 13 11:36:19 2023 Page 2	_
		ID:tN	c0JE71cP	CqdLlj6CN	uNlzOoS8-nmpD6ydxpdQoolxo_ydhkhSFilhmag1a3CzSoAzR8Xw	

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-70, 3-5=-70, 1-5=-20

Concentrated Loads (lb)

Vert: 1=-157(B) 5=-876(B) 8=-867(B) 10=-868(B) 11=-867(B) 12=-867(B) 13=-867(B) 14=-867(B) 15=-867(B) 15=-867(B) 17=-866(B) 18=-866(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y)	[3:0-2-14,0-0-8]						
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	()	L/d	PLATES	GRIP
TCLL 25.0	Plate Grip DOL 1.15	TC 0.35	Vert(LL) 0.00		240	MT20	197/144
TCDL 10.0	Lumber DOL 1.15	BC 0.07	Vert(CT) -0.00		180		
BCLL 0.0 *	Rep Stress Incr NO	WB 0.04	Horz(CT) -0.00	3 n/a	n/a		
3CDL 10.0	Code IRC2018/TPI2014	Matrix-P				Weight: 13 lb	FT = 20%
UMBER-			BRACING-				
FOP CHORD 2x4 SP	No.2		TOP CHORD	Sheathed or 2	-7-7 oc purlins,	except end verticals	
BOT CHORD 2x4 SP	No.2		BOT CHORD	Rigid ceiling di	rectly applied o	or 6-0-0 oc bracing.	
NEBS 2x4 SP	No.2 *Except*						

REACTIONS. (size) 6=0-4-3, 3=Mechanical, 4=Mechanical Max Horz 6=52(LC 6) Max Uplift 6=-102(LC 6), 3=-13(LC 10), 4=-41(LC 3) Max Grav 6=277(LC 1), 3=106(LC 3), 4=13(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-6=-240/303

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.

3-5: 2x4 SPF No.3

- 6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4 except (jt=lb) 6=102.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

MIS

0

April 14,2023

MIT EVELOPMENT SERVICES 16023 Swingley Ridge Rd Chesterfield, MO S300001, MISSOURI

05/0

SE FOR CONSTRUCTION TED FOR PLAN REVIEW

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 25.0	Plate Grip DOL 1.15	TC 0.10	Vert(LL) -0.00	5-6	>999	240	MT20	197/144
CDL 10.0	Lumber DOL 1.15	BC 0.06	Vert(CT) -0.00	5-6	>999	180		
BCLL 0.0 *	Rep Stress Incr NO	WB 0.06	Horz(CT) 0.00	3	n/a	n/a		
BCDL 10.0	Code IRC2018/TPI2014	Matrix-P					Weight: 12 lb	FT = 20%

BOT CHORD

Rigid ceiling directly applied or 6-0-0 oc bracing.

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.2 *Except*

 3-5: 2x4 SPF No.3

REACTIONS. (size) 6=0-3-8, 4=Mechanical, 3=Mechanical Max Horz 6=49(LC 10) Max Uplift 6=-30(LC 6), 4=-89(LC 3), 3=-36(LC 10) Max Grav 6=193(LC 1), 4=6(LC 10), 3=178(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 5) Refer to girder(s) for truss to truss connections.
- Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 4, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.
- 9) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

SE FOR CONSTRUCTION

MITCHVELOPMENT SERVICES 16023 Swingley Ridge Rd Chesterfield Mo 3300 Mit, MISSOURI

05/0

11111

0

MIS

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

			2-0-12 2-0-12	+	2-11-4 0-10-8		
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES GRIP
TCLL 25.0	Plate Grip DOL 1.15	TC 0.15	Vert(LL) 0.01	` 6	>999	240	MT20 197/144
TCDL 10.0	Lumber DOL 1.15	BC 0.23	Vert(CT) -0.01	6	>999	180	
BCLL 0.0 *	Rep Stress Incr NO	WB 0.02	Horz(CT) 0.00	5	n/a	n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-P	~ /				Weight: 12 lb FT = 20%

TOP CHORD

BOT CHORD

Sheathed or 2-11-4 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 *Except* BOT CHORD 2-6: 2x6 SPF No.2 WEBS 2x4 SPF No.3

REACTIONS. (size) 4=Mechanical, 2=0-3-8, 5=Mechanical Max Horz 2=61(LC 10) Max Uplift 4=-38(LC 10), 2=-31(LC 10) Max Grav 4=101(LC 1), 2=208(LC 1), 5=16(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

1111 11 MIS

0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

SE FOR CONSTRUCTION OTED FOR PLAN REVIEW MIT EVELOPMENT SERVICES 16023 Swingley Ridge Rd Chesterfield, MO S300001, MISSOURI 05/0

L OADING (psf) TCLL 25.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.59	DEFL. i Vert(LL) 0.03	n (loc) l/defl L/d 8 9 >838 240	PLATES GRIP MT20 197/144
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr NO	BC 0.50 WB 0.02	Vert(CT) -0.12 Horz(CT) 0.09		
3CDL 10.0	Code IRC2018/TPI2014	Matrix-SH			Weight: 24 lb FT = 20%
LUMBER-	P No.2		BRACING- TOP CHORD	Sheathed or 5-11-4 oc purli	ns excent
	P No.2 *Except*			2-0-0 oc purlins: 4-6.	
	x6 SPF No.2 PF No.3		BOT CHORD	Rigid ceiling directly applied	l or 6-0-0 oc bracing.
	x4 SP No.2 1-7-4				
REACTIONS. (si	ze) 2=0-3-8, 6=Mechanical, 8=Mechar	lical			
Max	Horz 2=58(LC 8)				OF MIS !!
Max	Uplift 2=-101(LC 8), 6=-71(LC 5), 8=-26(LC 5)			NOF MICH

Max Grav 2=334(LC 25), 6=192(LC 22), 8=107(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 8 except (jt=lb) 2=101.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 11) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.
- 12) "NAILED" indicates 3-10d skew 45 to 135 degrees (0.148" x 3") toe-nails per NDS guidelines.
- 13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
 - Vert: 1-4=-70, 4-6=-70, 2-9=-20, 7-9=-20

WARNOR - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

April 14,2023

Job		Truss	Truss Type	Qty	Ply	Roof - Osage 70
						157761106
P23017	7-01	J4	Half Hip Girder	1	1	
						Job Reference (optional)
Premie	er Building Supply (Spr	inghill, KS), Spring Hills,	KS - 66083,	8.	630 s Nov	19 2022 MiTek Industries, Inc. Thu Apr 13 11:36:33 2023 Page 2
			ID:tNc0	JE71cPC	dLlj6CNu	NIzOoS8-NSfV2knjWwBpUv?Uputzle1cPxU?s9ueHOMBHMzR8Xi

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 3=43(F) 10=-31(F) 11=-94(F) 12=10(F) 14=67(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 ASE FOR CONSTRUCTION TASE OF THE FOR PLAN REVIEW MICE VELOPMENT SERVICES 16023 Swingley Ridge Rdf Chesterried: We Striffwirt, MISSOURI 05/08/2023

LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Sheathed or 5-11-4 oc purlins, except end verticals, and 2-0-0 oc BOT CHORD 2x4 SP No.2 purlins: 4-5 2x4 SPF No.3 BOT CHORD WFBS Rigid ceiling directly applied or 10-0-0 oc bracing SLIDER Left 2x6 SPF No.2 2-5-8

REACTIONS. (size) 5=Mechanical, 6=Mechanical, 2=0-3-8 Max Horz 2=103(LC 7) Max Uplift 5=-26(LC 6), 6=-29(LC 7), 2=-41(LC 10) Max Grav 5=64(LC 1), 6=187(LC 1), 2=330(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-4=-327/41

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Exterior(2R) 2-1-8 to 3-11-9, Exterior(2E) 3-11-9 to 5-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 6, 2.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
 - referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 11) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

TIS * PROXIT F 2000162101 F GIT S E ONAL 1111 April 14,2023 MUMILITY N

11111

JUAN

GARCIA

NUMBER

0

MIS

April 14,2023

MIT EVELOPMENT SERVICES 16023 Swingley Ridge Rd Chesterfield, MO S300001, MISSOURI

05/0

SE FOR CONSTRUCTION TED FOR PLAN REVIEW

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ASE FOR CONSTRUCTION ASE MOTED FOR PLAN REVIEW MICH VIELOPMENT SERVICES 16023 Swindley, Ridge Rd Chesterfield, We Stiffwirt, MISSOURI 05/08/2023

4.00 12

		<u> </u>		-11-4 -7-12				
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 25.0	Plate Grip DOL 1.15	TC 0.49	Vert(LL) 0	13 ⁶ -7	>546	240	MT20	197/144
TCDL 10.0	Lumber DOL 1.15	BC 0.57	Vert(CT) -0	15 6-7	>460	180		
BCLL 0.0 *	Rep Stress Incr NO	WB 0.04	Horz(CT) -0	06 4	n/a	n/a		
BCDL 10.0	Code IRC2018/TPI2014	Matrix-P					Weight: 24 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD WEBS

2x4 SP No.2 *Except* 3-6: 2x4 SPF No.3

BRACING-TOP CHORD BOT CHORD

Sheathed or 5-11-4 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 7=0-3-8, 4=Mechanical, 5=Mechanical Max Horz 7=163(LC 10) Max Uplift 4=-82(LC 10), 5=-31(LC 10) Max Grav 7=336(LC 1), 4=155(LC 17), 5=111(LC 17)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3x4 ||

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

SE FOR CONSTRUCTION OTED FOR PLAN REVIEW

MIT EVELOPMENT SERVICES 16023 Swingley Ridge Rd Chesterfield, MO S300001, MISSOURI

05/

1111 MIS

JUAN

0

						5-4-0)-7-4			
	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL	1.15	TC	0.70	Vert(LL)	0.12	3-6	>552	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.55	Vert(CT)	-0.16	3-6	>430	180		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.02	Horz(CT)	0.15	5	n/a	n/a		
BCDL	10.0	Code IRC2018/TF	PI2014	Matri	x-SH						Weight: 29 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

Sheathed or 5-11-4 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.2

REACTIONS. (size) 8=0-3-8, 4=Mechanical, 5=Mechanical

Max Horz 8=164(LC 10) Max Uplift 4=-86(LC 10), 5=-2(LC 10)

Max Grav 8=359(LC 1), 4=159(LC 17), 5=178(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-8=-320/96

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

SE FOR CONSTRUCTION

MITCHVELOPMENT SERVICES 16023 Swingley Ridge Rd Chesterfield Mo 3300 Mit, MISSOURI

05/

MIS

0

				-		5-11-4			1			
LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL	1.15	TC	0.72	Vert(LL)	0.08	4-5	>884	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.46	Vert(CT)	-0.11	4-5	>598	180		
BCLL	0.0 *	Rep Stress Incr	NO	WB	0.00	Horz(CT)	-0.06	3	n/a	n/a		
BCDL	10.0	Code IRC2018/T	PI2014	Matri	x-R						Weight: 22 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

Sheathed or 5-11-4 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.2

REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical Max Horz 5=164(LC 10)

Max Uplift 3=-118(LC 10)

Max Grav 5=336(LC 1), 3=189(LC 17), 4=109(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-5=-293/127

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 3=118.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

ASE FOR CONSTRUCTION

MITCHVELOPMENT SERVICES 16023 Swingley Ridge Rd Chesterfield Mo 3300 Mit, MISSOURI

05/

1111

Image: FCLL 25.0 Plate Grip DOL 1.15 TC 0.52 FCDL 10.0 Lumber DOL 1.15 BC 0.57 3CLL 0.0 * Rep Stress Incr NO WB 0.05 3CDL 10.0 Code IRC2018/TPI2014 Matrix-P Matrix-P	Vert(LL) 0.12 Vert(CT) -0.15 Horz(CT) 0.07	5-6 >553 5-6 >468 5 n/a	240 180 n/a	MT20 Weight: 24 lb	197/144 FT = 20%
---	--	-------------------------------	-------------------	-----------------------	---------------------

BOT CHORD

Rigid ceiling directly applied or 6-0-0 oc bracing.

3-6: 2x4 SPF No.3 **REACTIONS.** (size) 7=0-3-8, 4=Mechanical, 5=Mechanical Max Horz 7=163(LC 10) Max Uplift 4=-96(LC 10), 5=-16(LC 10)

2x4 SP No.2

2x4 SP No.2 *Except*

Max Grav 7=336(LC 1), 4=169(LC 17), 5=101(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

BOT CHORD

WEBS

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

ASE FOR CONSTRUCTION

MITCHVELOPMENT SERVICES 16023 Swingley Ridge Rd Chesterfield Mo 3300 Mit, MISSOURI

05/0

11111

0

MIS

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

SE FOR CONSTRUCTION

MITCHVELOPMENT SERVICES 16023 Swingley Ridge Rd Chesterfield Mo 3300 Mit, MISSOURI

05/

						24-8-6						
OADING (psf)	SF	ACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 25.0	Pla	ate Grip DOL	1.15	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	197/144
CDL 10.0	Lu	mber DOL	1.15	BC	0.06	Vert(CT)	n/a	-	n/a	999		
BCLL 0.0 *	Re	p Stress Incr	NO	WB	0.17	Horz(CT)	0.01	14	n/a	n/a		
3CDL 10.0	Co	de IRC2018/TF	PI2014	Matrix	k-SH						Weight: 142 lb	FT = 20%

BOT CHORD

WFBS

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt

7-20

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SPF No.3 OTHERS

REACTIONS. All bearings 24-8-6.

Max Horz 1=-229(LC 6) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 14, 26, 25, 24, 23, 21, 19, 18, 17, 16, 15 Max Grav All reactions 250 lb or less at joint(s) 1, 14, 26, 25, 24, 23, 21, 20, 19, 18, 17, 16, 15

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-266/185

NOTES-

1) Unbalanced roof live loads have been considered for this design

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 9-2-0, Exterior(2R) 9-2-0 to 15-2-0, Interior(1) 15-2-0 to 21-3-2, Exterior(2E) 21-3-2 to 24-3-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 1.5x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 14, 26, 25, 24, 23, 21, 19, 18, 17, 16, 15.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11111

JUAN

0

MIS

April 14,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

SE FOR CONSTRUCTION OTED FOR PLAN REVIEW MIT EVELOPMENT SERVICES 16023 Swingley Ridge Rd Chesterfield, MO S300001, MISSOURI 05/08/

	25-9-6	
Plate Offsets (X,Y) [13:0-2-0,Edge], [25:0-2-8,0-3-0]	25-9-6	
LOADING (psf) SPACING- 2-0-0 TCLL 25.0 Plate Grip DOL 1.15 TCDL 10.0 Lumber DOL 1.15 BCLL 0.0 * Rep Stress Incr NO BCDL 10.0 Code IRC2018/TPI2014 100	CSI. DEFL. i TC 0.56 Vert(LL) n/ BC 0.20 Vert(CT) n/ WB 0.19 Horz(CT) -0.0 Matrix-SH Horz(CT) -0.0	/a - n/a 999
21=-105(LC 10), 25=-136(LC Max Grav All reactions 250 lb or less al	BRACING- TOP CHORD BOT CHORD WEBS s) 30, 17, 22, 23, 24, 26, 27, 19, 18 except 20=-113(1), 28=-444(LC 7), 29=-369(LC 6) oint(s) 30, 17, 20, 21, 22, 23, 24, 26, 27, 19, 18 exce	
 18), 28=371(LC 17), 29=501(I FORCES. (lb) - Max. Comp./Max. Ten All forces 250 of TOP CHORD 7-8=-277/218, 8-9=-295/236, 9-10=-265 BOT CHORD 29-30=-348/266, 28-29=-348/266 WEBS 2-29=-460/393, 2-28=-399/522 NOTES- Unbalanced roof live loads have been considered for tf Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd Enclosed; MWFRS (envelope) gable end zone and C-0 17-6-14 to 22-7-10, Exterior(2E) 22-7-10 to 25-7-10 zo for members and forces & MWFRS for reactions show Provide adequate drainage to prevent water ponding. All plates are 1.5x4 MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing. This truss has been designed for a 10.0 psf bottom chr 7) * This truss has been designed for a live load of 20.0ps will fit between the bottom chord and any other membe Provide mechanical connection (by others) of truss to 126, 27, 19, 18 except (jt=lb) 20=113, 21=105, 25=136, 9) This truss is designed in accordance with the 2018 Inter referenced standard ANSI/TPI 1. 	 b) or less except when shown. 226, 11-12=-240/283, 14-15=-220/258 s design. 91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=0.9 Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 17 e; cantilever left and right exposed ; end vertical left a Lumber DOL=1.60 plate grip DOL=1.60 d live load nonconcurrent with any other live loads. on the bottom chord in all areas where a rectangle 3 s. aring plate capable of withstanding 100 lb uplift at jo 8=444, 29=369. 	7-6-14, Exterior(2R) and right exposed;C-C 3-6-0 tall by 2-0-0 wide bint(s) 30, 17, 22, 23, 24,

April 14,2023

1.5x4 ||

Sheathed or 5-3-4 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
CLL 25.0	Plate Grip DOL 1.15	TC 0.57	Vert(LL) n/a - n/a 999	MT20 197/144
CDL 10.0	Lumber DOL 1.15	BC 0.29	Vert(CT) n/a - n/a 999	
3CLL 0.0 *	Rep Stress Incr NO	WB 0.00	Horz(CT) 0.00 3 n/a n/a	
3CDL 10.0	Code IRC2018/TPI2014	Matrix-P		Weight: 19 lb FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SPF No.3 WFBS

REACTIONS. (size) 1=5-3-4, 3=5-3-4

Max Horz 1=119(LC 9) Max Uplift 1=-15(LC 10), 3=-56(LC 10)

Max Grav 1=209(LC 1), 3=223(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Gable requires continuous bottom chord bearing.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

L6-2

- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

SE FOR CONSTRUCTION TED FOR PLAN REVIEW

MIT EVELOPMENT SERVICES 16023 Swingley Ridge Rd Chesterfield, MO S300001, MISSOURI

MI

0

OADING (psf)	SPACING- 2-	-0-0 CS		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 25.0	Plate Grip DOL	1.15 TC	0.29	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL 10.0	Lumber DOL 1	1.15 BC	0.15	Vert(CT)	n/a	-	n/a	999		
BCLL 0.0	Rep Stress Incr	NO WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL 10.0	Code IRC2018/TPI20	014 Mat	rix-P	. ,					Weight: 15 lb	FT = 20%

TOP CHORD

BOT CHORD

Sheathed or 4-0-3 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SPF No.3 WFBS

REACTIONS. (size) 1=4-0-3, 3=4-0-3

Max Horz 1=87(LC 7) Max Uplift 1=-11(LC 10), 3=-41(LC 10) Max Grav 1=153(LC 1), 3=163(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Gable requires continuous bottom chord bearing.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

ł

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

MI

0

Scale = 1:16.3

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

SE FOR CONSTRUCTION TED FOR PLAN REVIEW MIT EVELOPMENT SERVICES 16023 Swingley Ridge Rd Chesterfield, MO S300001, MISSOURI

3x4 🥢

1.5x4 ||

Rigid ceiling directly applied or 10-0-0 oc bracing.

LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.11 BC 0.05 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SP	No.2		BRACING- TOP CHORI	D	Sheath	ed or 2-9	-3 oc purlins	, except end verticals	i.

BOT CHORD

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SPF No.3

REACTIONS. (size) 1=2-9-3, 3=2-9-3

Max Horz 1=55(LC 7) Max Uplift 1=-7(LC 10), 3=-26(LC 10)

Max Grav 1=96(LC 1), 3=103(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Gable requires continuous bottom chord bearing.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

MIS

0

3x4 💋

ł

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) l/defl L/d	PLATES GRIP MT20 197/144
CLL 25.0	Plate Grip DOL 1.15	TC 0.02	Vert(LL) n/a - n/a 999	
CDL 10.0	Lumber DOL 1.15	BC 0.01	Vert(CT) n/a - n/a 999	
CLL 0.0 *	Rep Stress Incr NO	WB 0.00	Vert(CT) n/a - n/a 999	Weight: 5 lb FT = 20%
CDL 10.0	Code IRC2018/TPI2014	Matrix-P	Horz(CT) 0.00 3 n/a n/a	

BOT CHORD 2x4 SP No.2 WEBS 2x4 SPF No.3

REACTIONS. (size) 1=1-6-3, 3=1-6-3 Max Horz 1=23(LC 7) Max Uplift 1=-3(LC 10), 3=-11(LC 10) Max Grav 1=40(LC 1), 3=43(LC 17)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Gable requires continuous bottom chord bearing.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

SE FOR CONSTRUCTION OTED FOR PLAN REVIEW MIT EVELOPMENT SERVICES 16023 Swingley Ridge Rd Chesterfield, MO S300001, MISSOURI

1111 11 MIS

0

Scale = 1:7.9

LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIRC2018/TPI2014	CSI. TC 0.22 BC 0.12 WB 0.00 Matrix-P	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	(loc) l/de - n/ - n/ 3 n/	a 999 a 999	PLATES GRIP MT20 197/144 Weight: 12 lb FT = 20%
LUMBER-	•		BRACING-			

TOP CHORD

BOT CHORD

Sheathed or 3-11-4 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SPF No.3 WFBS

REACTIONS. (size) 1=3-11-4, 3=3-11-4

Max Horz 1=54(LC 7) Max Uplift 1=-18(LC 10), 3=-29(LC 10)

Max Grav 1=137(LC 1), 3=137(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Gable requires continuous bottom chord bearing.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

SE FOR CONSTRUCTION TED FOR PLAN REVIEW

MIT EVELOPMENT SERVICES 16023 Swingley Ridge Rd Chesterfield, MO S300001, MISSOURI

05/

0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

SE FOR CONSTRUCTION TED FOR PLAN REVIEW MIT EVELOPMENT SERVICES 16023 Swingley Ridge Rd Chesterfield, MO S300001, MISSOURI 05/

Max Uplift 1=-1(LC 10), 4=-21(LC 7), 5=-133(LC 10)

Max Grav 1=204(LC 1), 4=104(LC 1), 5=542(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 2-5=-397/248

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-9-1 to 3-9-1, Interior(1) 3-9-1 to 5-11-6, Exterior(2R) 5-11-6 to 10-2-5 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4 except (jt=lb) 5=133.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

1111 11

JUAN

GARCIA

0

MIS

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

SE FOR CONSTRUCTION TED FOR PLAN REVIEW MIT EVELOPMENT SERVICES 16023 Swingley Ridge Rd Chesterfield, MO S300001, MISSOURI 05

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

SE FOR CONSTRUCTION

MITCHVELOPMENT SERVICES 16023 Swingley Ridge Rd Chesterfield Mo 3300 Mit, MISSOURI

LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIRC2018/TPI2014	CSI. TC 0.27 BC 0.14 WB 0.09 Matrix-P	DEFL. ir Vert(LL) -0.00 Vert(CT) 0.00 Horz(CT) 0.00) 1 1	l/defl n/r n/r n/a	L/d 120 80 n/a	PLATES GRIP MT20 197/144 Weight: 27 lb FT = 20%
LUMBER-			BRACING-				

TOP CHORD

BOT CHORD

Sheathed or 6-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SPF No.3
OTHERS	2x4 SPF No.3

REACTIONS. (size) 5=6-8-14, 2=6-8-14, 6=6-8-14 Max Horz 2=127(LC 7) Max Uplift 5=-22(LC 10), 2=-4(LC 6), 6=-97(LC 10)

Max Grav 5=137(LC 1), 2=134(LC 1), 6=391(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 3-6=-303/276

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Gable requires continuous bottom chord bearing.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 6.

6) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

MI

JUAN

GARCIA

 \cap

LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIRC2018/TPI2014	CSI. TC 0.37 BC 0.19 WB 0.00 Matrix-P	DEFL.in(loc)Vert(LL)n/a-Vert(CT)n/a-Horz(CT)0.003	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES GRIP MT20 197/144 Weight: 15 lb FT = 20%
LUMBER-			BRACING-		

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SPF No.3 WFBS

REACTIONS. (size) 1=4-8-10, 3=4-8-10

Max Horz 1=67(LC 7) Max Uplift 1=-23(LC 10), 3=-36(LC 10)

Max Grav 1=172(LC 1), 3=172(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Gable requires continuous bottom chord bearing.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD BOT CHORD

Sheathed or 4-8-10 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

