

RE: P230145-01 - Roof - Cobey Creek Lot 12		MiTek USA, Inc.
Site Information:		16023 Swingley Ridge Rd
Project Customer: Clover & Hive Project Name: Wilk Lot/Block: 12 Subdivisio	dflower - Farmhouse 3 Car	314-434-1200
Model:		
Address: 3433 SW Corbin Dr		
City: Lee's Summit State: MC)	
General Truss Engineering Criteria & Design Loads	(Individual Truss Design	
Design Code: IPC2019/TPI2014	Design Drogram, MiTal 20/	0086
Wind Code: ASCE 7-16 Wind Speed: 115 mph	Design Method: MWFRS (E	nvelope)/C-C hybrid Wind ASCE 7-16
Roof Load: 45.0 psf	Floor Load: N/A psf	
Mean Roof Height (feet): 35	Exposure Category: C	
No. Seal# Truss Name Date No. Seal#	Truss Name Date	
1157499577A1 $3/31/23$ 3515749962157499578A2 $3/31/23$ 3615749963157499579A3 $3/31/23$ 3715749964157499580A4 $3/31/23$ 3815749965157499581A5 $3/31/23$ 3915749966157499582A6 $3/31/23$ 3915749967157499583A7 $3/31/23$ 3915749968157499584B1 $3/31/23$ 311574995869157499586B3 $3/31/23$ 311110157499587B4 $3/31/23$ 1215749958811157499588B5 $3/31/23$ 1315749959012157499598B6 $3/31/23$ 1415749959913157499599D1 $3/31/23$ 1514157499593D2 $3/31/23$ 1415157499594D3 $3/31/23$ 16157499595D4 $3/31/23$ 17157499596HJD1 $3/31/23$ 20157499597J1 $3/31/23$ 21157499599J3 $3/31/23$ 22157499600J4 $3/31/23$ 23157499601J5 $3/31/23$ 24157499604JD3 $3/31/23$ 25157499605JD4 $3/31/23$ 26157499605JD4 $3/31/23$ 27157499606JD5 $3/31/23$ 28<	11 PB2 3/31/23 12 VD1 3/31/23 13 VD2 3/31/23 14 VD3 3/31/23 15 VD4 3/31/23	

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Premier Building Supply (Springhill, KS)20300 W 207th Street.

Truss Design Engineer's Name: Nathan Fox

My license renewal date for the state of Missouri is December 31, 2024.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Nathan Fox

AS NOTED ON PL		EVIEW		Truss Ty	/pe			Qty	Ply	Roof - Cobey C	reek Lot 12			
DEXELOBMEN		UCES		Hip Gir	der			1	1	Job Reference	optional)		15749957	7
Premier Building Supply 04/20/2023	(Springhill) 4:4	KS) Spring	iills, KS - 66083,			Run: 8.63 ID:cswuX	S Nov 19 KpEzqz8v0	2022 Print: 8 DwX9juUjXzc	.630 S Nov oV5-RfC?P	19 2022 MiTek Indus sB70Hq3NSgPqnL8w	rries, Inc. Thu Mar 30 1 3uITXbGKWrCDoi7J4z	5:47:04 JC?f	Pa	ıge: 1
	-0-10-8 	<u>4-0-0</u> 4-0-0	1(6 NAILED NAILED	<u>0-10-4</u> -10-4 NAILED	NAILED NAI	<u>15-10-4</u> 5-0-0 ILED NAILED	NAILED	21-2-4 5-4-0 NAILED	ILED NAI	26-6-4 5-4-0 LED I NAILED NAILI	<u>32-0-0</u> 5-5-12 ED NAILED NAILED	NAILED	<u>36-0-0</u> 4-0-0	36-10-8
$\begin{array}{c c} & 3-6-1 \\ \hline & 3-6-1 \\ \hline 1-0-0 & 3-2-12 \\ \hline & 1-0-0 & 2-2-12 \\ \hline & 0-8-0 \\ \hline \end{array}$	1 2 1 3 4x6	3 3 4x8 20 4x8 21 21 3x4 II MT18	5x8= 4 22 19 34 1.5x4 II Special NAILED	23 and a second	3x4= 24 5 2 36 17 x10= 3x4 II NAILED NAI	25 ≥ 26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4x12= 6 16 3x4= NAILED	27 NAILED NA	3x6= 7 ⊠8 2 11 1 40 ⊠ 4 15 7x8= 11LED NAI	4 8 ≥ 29 30 31 5 1 42 43 44 LED NAILED NAILI	x4= 9 32 33 10 10 10 10 10 10 10 10 10 10 10 10 10 1	5x8 = 10 13 1.5x4 II Special		11 12 4x6=
		<u>2-3-8 4-1</u> 2-3-8 1-9-	-4 1 -12 6	<u>0-8-8</u> 6-7-4		<u>15-10-4</u> 5-1-12		<u>21-2-4</u> 5-4-0		<u>26-6-4</u> 26 5-4-0 0	5-8-8 31-10-12 Ⅱ 5-2-4 -2-4	<u> </u>	<u>36-0-0</u> 4-1-4	

Scale = 1:66.1

Plate Offsets	Offsets (X, Y): [2:Edge,0-0-11], [3:0-5-10,Edge], [4:0-5-0,0-2-12], [10:0-4-12,0-2-8], [14:0-2-4,0-3-0], [18:0-3-8,0-2-8], [20:0-5-0,0-0-8], [21:Edge,0-2-8]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.87 0.77 0.98	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.24 -0.35 0.16	(loc) 18-19 18-19 11	l/defl >999 >724 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 160 lb	GRIP 197/144 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SPF No.2 *Exce 1650F 1.5E 2x4 SP No.2 *Excep 3-18:2x4 SP 1650F 2400F 2.0E 2x3 SPF No.2 Structural wood she 3-5-15 oc purlins, ex 2-0-0 oc purlins, ex 2-0-0 oc purlins, (3-1 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=-87 (LC Max Uplift 2=-420 (L 15=-1579 Max Grav 2=1140 (L 15=-3047	ept* 4-7,7-10:2x4 SP t* 21-20:2x3 SPF No 1.5E, 17-14:2x4 SP athing directly applie ccept 0-14 max.): 4-10. applied or 6-0-0 oc 6-15, 9-15 11=0-3-0, 15=0-3-8 C 10) C 12), 11=-288 (LC 2 (LC 9) C 25), 11=607 (LC 2	N 1 20.2, 2 ed or 3 4 5 8), 6 26),	 IOTES Unbalanced this design. Wind: ASCE Vasd=91mph Ke=1.00; Ca exterior zone Exterior(2R) 32-0-0, Exter left and right exposed; pool forces & MW DOL=1.60 pl Provide adec All plates are chord live loa Provide mecc bearing plate joint 2, 1579 	roof live loads h 7-16; Vult=115r n; TCDL=6.0psf; t. II; Exp C; Encl e and C-C Exteri 4-0-0 to 10-10-4 rior(2E) 32-0-0 to exposed ; end v ch right expose (FRS for reaction ate grip DOL=1, quate drainage to MT20 plates ur is been designer hanical connecti e capable of with Ib uplift at joint 1	ave been of mph (3-sec BCDL=6. losed; MW or(2E) -0-7 , Interior (5 36-7-13 : vertical left d;C-C for r hs shown; 60 o prevent h hless other d for a 10.0 t with any on (by oth standing 4 15 and 288	considered fc cond gust) Dpsf, h=35ft; FRS (envelo r-13 to 4-0-0, 1) 10-10-4 to zone; cantilev and right members and Lumber water ponding wise indicate D psf bottom other live loa ers) of truss t k20 lb uplift at jc	pr pe) ver d sd. to to to t	1) De Pla Ur Co	ead + Ro ate Incre niform Lo Vert: 1 18-20=- oncentra Vert: 4= 16=-25 23=-31 27=-46 32=-46 36=-41 40=-25 45=-25	oof Live ease=1 bads (II 4=-70, 20, 11- ted Loc -31 (F), 6= (F), 24 (F), 23 (F), 33 (F), 37 (F), 41 (F), 46	e (balanced): Lur .15 b/ft) 4-10=-70, 10-12 -17=-20 ads (lb)), 7=-46 (F), 10= 46 (F), 13=-220 =-46 (F), 13=-220 =-46 (F), 29=-46 =-46 (F), 34=-41 '=-25 (F), 38=-25 =-25 (F)	nber Increase=1.15, =-70, 2-21=-20, -46 (F), 19=-234 (F), -(F), 22=-31 (F), -(F), 26=-46 (F), -(F), 31=-46 (F), -(F), 35=-41 (F), -(F), 39=-25 (F), -(F), 44=-25 (F),
FORCES	(lb) - Maximum Com Tension 1-2=0/13, 2-3=-945/3 4-5=-2277/1053, 5-6 6-8=-966/2012, 8-9	pression/Maximum 373, 3-4=-2294/972, 5=-2122/988, 966/2012, 9-10=0/6	7 634, ⁸	 This truss is International R802.10.2 ar Graphical pu or the orienta 	designed in according to the second state of the second referenced state of the second	ordance w le sections andard AN on does no n along the	ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the s top and/or	and size				SE OF	MISS
BOT CHORD	$\begin{array}{c} 10-11=-752/006, 111\\ 2-21=-107/255, 20-2\\ 3-20=-782/1728, 19\\ 18-19=-901/2017, 11\\ 5-18=-546/326, 16-1\\ 15-16=-164/328, 13-\\ 11-13=-468/546\\ 4-19=-215/622, 4-18\\ 16-18=-74/215, 6-18\\ 6-16=-18/262, 6-15=\\ 8-15=-517/326, 9-15\\ 9-14=-346/528, 10-1\\ 10-13=-268/364\\ \end{array}$	-12=0/13 21=-32/118, -20=-889/1983, 7-18=-17/125, 17=-91/164, -15=-523/558, 3=-280/347, 3=-890/1938, -2654/1283, 5=-2148/1368, (4=-765/304,	9 1 1 L	bottom chord) "NAILED" ind per NDS guit 0) Hanger(s) or provided suff lb down and 158 lb up at selection of s responsibility 1) In the LOAD of the truss a OAD CASE(S)	I. dicates Girder: 3 delines. other connection icient to support 155 lb up at 4-0 31-11-4 on both such connection of others. CASE(S) section ire noted as from Standard	-10d (0.14 n device(s concentra)-0, and 22 om chord. device(s) n, loads a t (F) or ba	8" x 3") toe-) shall be ated load(s) 2 20 lb down ar The design/ is the pplied to the solution (B).	nails 234 nd face		-		PE-2022	INTEL X 1042259

March 31,2023

DE	LEASE FOR CONSTRI								
A	NOTED ON PLANS R	EVIEW		Truss Type		Qty	Ply	Roof - Cobey Creek Lot 12	
	DEXELOBMENT SERV			Hip Structural Gable		1	1	Job Reference (optional)	157499578
(Premier Building Supply (Springhill 04/20/2023 4:45	KS) Spring	lills, KS - 66083,		Run: 8.63 S Nov 19 2 ID:BGzRrG3ERgl6_X	022 Print: 8. EEGtBcOvzr	630 S Nov 1 6_?-RfC?Psl	9 2022 MiTek Industries, Inc. Thu Mar 30 15:47:07 370Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

Scale = 1:66

Plate Offsets ((X, Y): [3:0	-6-0,0-1-9],	[4:0-3-5,Edge], [8:0	-2-8,0-3	0], [17:0-4-4,0-	1-8], [29:0-5-0	,0-0-8], [30:Eo	dge,0-2-8]							
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20)18/TPI2014	CSI TC BC WB Matrix-S	0.71 0.97 0.68	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.27 -0.55 0.19	(loc 25-26 25-26 25-26) l/defl 6 >923 6 >455 5 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 173 lb	GRIP 197/144 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	2x4 SP N 2x4 SP N 2x3 SPF 31-2:2x4 2x3 SPF Structura 4-6-12 oc 2-0-0 oc Rigid ceil bracing. 1 Row at	lo.2 lo.2 *Excep No.2 *Exce SP No.2 No.2 I wood shea purlins, e: purlins (6-0 ing directly midpt	t* 30-29:2x3 SPF No pt* 17-15:2x6 SPF N athing directly applie xcept end verticals, -0 max.): 4-12. applied or 2-2-0 oc 6-25	o.2 No.2, ed or and	TOP CHORD	1-2=0/40, 2-3 4-5=-514/165 7-9=-418/149 10-11=-70/22 12-13=-87/26 14-15=-81/30 2-31=-404/61 30-31=-79/25 28-29=-127/7 26-27=-497/1 25-26=-303/7 23-24=-686/1 20-21=-686/1 18-19=-209/8	3=-156/5, 3-4= 5, 5-6=-424/14 19, 9-10=-418, 12, 11-12=-69, 11, 13-14=-81, 13, 15-16=0/4; 16, 29-30=-13, 133, 27-28=-1; 158, 5-27=-36; 19, 24-25=-68; 75, 19-20=-2; 10, 17-18=-20; 10, 17-18=-20; 11, 12, 12, 12, 12, 12; 11, 12, 12, 12; 11, 12, 12, 12; 11, 12, 12, 12; 11, 12; 11	935/129, -5, 6-7=-418/ (1499, (223, (289, 3, 15-17=-62/ (94, 3-29=-55 28/724, 5/177, 5/175, 5/175, 5/175, 5/175, 5/86, 5/80, 5/80	1499, 134, /482,	 3) T oi oi oi oi oi oi oi a oi a <	Fruss designed nly. For s ee Standa r consult of rovide ade Il plates al able studs his truss h hord live k rovide me earing pla jint 17, 192	gned fo tuds ex rd Indu jualified equate re MT2 re 1.5x s space as bee bad non chanic te capa 5 lb up at joint	or wind loads in ti posed to wind (r istry Gable End I d building design drainage to prev 0 plates unless o da t2-0-0 oc. en designed for a inconcurrent with al connection (by able of withstand lift at joint 20, 49- 21. 103 lb uplift i	ne plane of the ormal to the fa Details as appl er as per ANS ent water pono therwise indic therwise indic 10.0 psf bottc any other live others) of tru- ing 147 lb uplift 4 lb uplift at joi at joint 23, 93	truss ice), icable, I/TPI 1. Jing. ated. ated. ated. wm loads. ss to t at nt 25, b uplift
REACTIONS	Max Horiz Max Uplift Max Grav	17=14-11- 19=14-11- 21=14-11- 24=14-11- 31=146 (L 17=-147 (19=-79 (L 21=-55 (L 24=-93 (L 31=-102 (17=77 (LC 19=195 (L 21=190 (L 24=62 (LC	-8, 18=14-11-8, -8, 20=14-11-8, -8, 23=14-11-8, -8, 25=14-11-8, 31= -C 11) LC 25), 18=-85 (LC C 3), 20=-195 (LC C 9), 23=-103 (LC 2 C 9), 25=-494 (LC 9) LC 12) C 20), 18=238 (LC 1), C 20), 20=80 (LC 9) C 25), 23=87 (LC 9) C 25), 25=2274 (LC 1)	0-3-8 13), 25), (5),),),), 25),	WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m Ke=1.00; C	4-28=0/316, 3-31=-456/14 6-26=-161/93 25-35=-1122 32-33=-164/6 11-32=-154/7 23-33=-40/16 8-35=-28/7, 1 d roof live load E 7-16; Vult=1 ph; TCDL=6.0 at. II; Exp C; E	4-27=-331/90, 11, 6-25=-154; 19, 7-25=-308, (313, 34-35=- 14, 21-32=-15; 13, 9-34=-73/4 3-19=-162/10 Is have been of 15mph (3-sec psf; BCDL=6.1; Inclosed; IMW	12-20=-260/ 5/431, 1140, 1102/308, 193/795, 54/664, 9/74, 6, 24-34=-12 3, 14-18=-16 considered for cond gust) Dpsf; h=35ft; FRS (envelop	57, 6/55, 6/103 r	a a 10) T Ir R 11) G o b b	is on the point of	79 lb u uplift a' s desig al Resid and ref urlin re tation o rd.) Sta	piff at joint 19, 8 t joint 31. ned in accordance dential Code sec erenced standar spresentation do of the purlin alon indard	ib uplift at joi ce with the 201 tions R502.11. d ANSI/TPI 1. ss not depict ft g the top and/c	1 and 1 e size
FORCES	(lb) - Max Tension	31=704 (L kimum Com	.C 25) pression/Maximum		Interior (1) Interior (1) 36-10-8 zo vertical left forces & M DOL=1.60	4-1-8 to 6-0-0, 13-0-14 to 30- ne; cantilever l and right expo WFRS for read plate grip DOL	Exterior(2E) -0- Exterior(2R) 0-0, Exterior(2 eft and right e osed;C-C for n ctions shown; .=1.60	6-0-0 to 13-0 2E) 30-0-0 to exposed ; end nembers and Lumber	-14, I				PE-2022	BER 042259	

ESSIONAL E there March 31,2023

> V MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

RELEASE FOR CONSTRUCTION					-			
AS NOTED ON PLANS REVIEW	Trus	ss Type		Qty	Ply	Roof - Cobey Creek Lot 1	2	
DEVELORMENT SERVICES	Hip			1	1	Job Reference (optional)		157499579
Premier Building Supply (Springhill, KS), Spring 04/20/2023 4:45:52	lills, KS - 66083,	Run ID:U	: 8.63 E Dec 29 2 ImBWwfJTE0RX2	022 Print: 8. DPeh0_O_C	630 E Dec 2 2r5tD-lygMS	9 2022 MiTek Industries, Inc. Fr R6qKQ??R?Zr_jMQ2d_M4rgS	ri Mar 31 17:38:26 oweRRtkmBnzVW?1	Page: 1
-0-10-8	-1-0		6-0-0					36-10-8

Scale =	1:69.2
---------	--------

Plate Offsets	(X, Y): [3:0-4-10,0-0-4], [5:0-3-5,Edge], [9:	0-3-5,Ed	ge], [11:0-1-3,	0-3-9], [15:0-2-11	,0-1-8], [18	:0-2-0,0-0-8],	, [20:Edę	ge,0-2-8]	, [22:0-2	-0,Edg	e], [24:0-4-0,0-1-	8], [25:Edge,0-2-8]
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.74 0.86 0.95	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.29 -0.55 0.39	(loc) 16-17 16-17 11	l/defl >999 >777 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 172 lb	GRIP 197/144 244/190 FT = 20%
LUMBER TOP CHORD	2x4 SP 1650F 1.5E No.2, 9-12:2x4 SP 2 2400E 2 0E	*Except* 4-5:2x4 SF 400F 2.0E, 4-1:2x6	s SP	WEBS	4-23=-640/237 10-14=-1246/3 6-17=-527/231 8-16=-558/269	, 5-23=-38/5 20, 10-13=- , 5-17=-321, 9-16=-323	530, 9-14=0/4 117/1846, /1145, /1194	105,					
BOT CHORD	2x4 SP No.2 *Excep SPF No.2, 3-19,15-1 13-11-2x6 SP 2400F	t* 25-24,22-21,20-1≀ I3:2x4 SP 1650F 1.5 - 2 0F	8:2x3 N 5E, 1	NOTES	d roof live loads	have been	considered fo	or					
WEBS BRACING TOP CHORD	2x3 SPF No.2 *Exce Structural wood she 3-4-8 oc purlins, exc	athing directly applie	No.2 2 ed or	2) Wind: ASC Vasd=91m Ke=1.00; (exterior zo	E 7-16; Vult=11 ph; TCDL=6.0ps Cat. II; Exp C; En ne and C-C Exte	5mph (3-sec f; BCDL=6. closed; MW rior(2E) -0-8	cond gust) 0psf; h=35ft; /FRS (envelo 3-11 to 4-0-12	pe) 2,					
BOT CHORD	2-0-0 oc purins (3-4 Rigid ceiling directly bracing, Except: 9-4-14 oc bracing: 1 8-6-2 oc bracing: 16	-7 max.): 5-9. applied or 10-0-0 or 7-18 -17.	C	15-0-14, Ir 28-0-0 to 3 cantilever right expos	terior (1) 15-0-14 35-0-14, Interior (left and right exp sed;C-C for mem	Extendin/2R 4 to 28-0-0, 1) 35-0-14 t osed ; end v bers and fo	Exterior(2R) o 36-10-8 zoi vertical left ar rces & MWFF	ne; nd RS					
WEBS	1 Row at midpt	8-17		for reaction	ns shown; Lumbe	er DOL=1.60) plate grip						
REACTIONS	(lb/size) 2=1667/0 Max Horiz 2=-164 (L Max Uplift 2=-172 (L	-3-8, 11=1679/0-3-8 .C 10) .C 9), 11=-173 (LC 8	3) 4	DOL=1.60 B) Provide ad All plates a	lequate drainage are MT20 plates i	to prevent	water ponding	g. ed.					
FORCES	(lb) - Max. Comp./M	ax. Ten All forces	250 5	chord live	nas been design load nonconcurre	ed for a 10. ent with any	other live loa	ads.					
TOP CHORD	(ib) or less except w 2-26=-1232/182, 3-2 3-4=-3105/452, 4-5= 5-6=-3044/514, 6-27 7-27=-3042/512, 7-2 8-28=-3042/512, 8-5 9-29=-2567/356, 10	nen snown. 26=-1184/185, -2707/415, 7=-3042/512, 28=-3042/512,)=-3045/483, -29=-2639/331, 1.305034/505	6 7 8	 Bearing at using ANS designer s Provide me bearing pla joint 2 and This truss 	joint(s) 11 consid I/TPI 1 angle to g hould verify capa echanical connec ate capable of wit 173 lb uplift at jo is designed in ac	ders paralle grain formul icity of bear tion (by oth thstanding 1 int 11. cordance w	I to grain valu a. Building ing surface. ers) of truss t 172 lb uplift at ith the 2018	ie to t				STATE OF M	MISSOUR
BOT CHORD	3-24=-451/2561, 23 22-23=-383/2178, 11 18-19=-390/2142, 11 16-17=-478/3043, 11 14-15=-215/2139, 11 11-13=-410/4187	-50=-5054/505 -24=-507/2757, 9-22=-390/2144, 7-18=-383/2178, 5-16=-215/2139, 3-14=-352/3374,	S	Internation R802.10.2) Graphical or the oriel bottom cho -OAD CASE(\$	al Residential Co and referenced purlin representa ntation of the pur ord. S) Standard	ode sections standard AN tion does no lin along the	s R502.11.1 a NSI/TPI 1. ot depict the s e top and/or	and size		,		PE-2022	SER 042259

V MiTek

AS NOTED ON PLANS REVIEW	Truss Type	Q	ity Ply	Roof - Cobey Creek Lot 12	
DEVELORMENT SERVICES	Нір	1	1	Job Reference (optional)	157499580
Premier Building Supply (Spring)ill_KS)_Spring 04/20/2023 4:45:52	Hills, KS - 66083,	Run: 8.63 E Dec 29 202 ID:sDp4May4KUatQ2jpT	2 Print: 8.630 E Dec 97mxOzr5V8-mmFe	29 2022 MiTek Industries, Inc. Fri I 9tkqK5Qm2ryeTxmNcNb0mP3CE0	Mar 31 17:39:15 Page: 1 PxAlbzTKzVW_g
-0-10-8 5-6-4 	4 <u>10-0-0</u> 4 4-5-12	18-0-0 8-0-0	<u>26-0-</u> 8-0-	-0 33 0 7·	36-10-8 -5-12 36-0-0
<u> </u>	6x6=	1.5x	4 u	6x6 =	
	8 ² 1.5x4 4 26				27 5x8* 288
	¢ 20 ₈	16 17 14 $4x_{6}$ 17 $3x_{8}$	13 3×6-	12 3x8=	11 10 7x8=
6x6= 4x4 II	3x4=	3x4 II	- 0.0-	0.0-	MT18HS 6x12
MT1	18HS 5x8 II 3x4 II 3x4	3x4 II			6∟ 12

		0,7,1,11					12
		11-8-8					36-0-0
2-3-8	9-10-12	10-8-8 12-10-8	18-0-0	21-8-8	26-1-4	33-8-8	35-8-8
2-3-8	7-7-4	0-9-12 1-2-0	5-1-8	3-8-8	4-4-12	7-7-4	2-0-0
		1-0-0					0-3-8

Scale = 1:66.8

Plate Offsets ([2:0-2-1,0-3-4], X, Y): [22:Edge,0-3-8	[3:0-2-1,0-0-9], [5:0]	-3-5,Edg	e], [7:0-3-5,Edge], [9:0-1-7,0-3-9],	[12:0-2-8	3,0-1-8], [15:0)-2-0,0-0)-8], [17:	Edge,0-2	2-8], [1	9:0-2-0,Edge], [2	1:0-4-0,0-1-8],
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.96	Vert(LL)	-0.38	20-21	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.94	Vert(CT)	-0.78	20-21	>549	180	MT18HS	244/190
BCLL	0.0	Rep Stress Incr	YES		WB	0.88	Horz(CT)	0.49	9	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S							Weight: 183 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP 2400F 2.0E 1650F 1.5E 2x4 SP No.2 *Excep 13-11:2x4 SP 1650F SPF No.2, 11-9:2x6 SP 2400F 2.0E 2x3 SPF No.2 *Excep 5-14,14-7:2x4 SP No.2 1 Structural wood she except 2-0-0 oc purlins (2-2 Rigid ceiling directly bracing, Except: 2-2-0 oc bracing: 20 6-0-0 oc bracing: 17 1 Pow at midot	*Except* 5-7:2x4 SF t* 2-22:2x6 SPF No 5 1.5E, 19-18,17-15: SP 2400F 2.0E, 16- ept* 11-8:2x6 SPF No 0.2 1-3-0 athing directly applie -0 max.): 5-7. applied or 10-0-0 or -21 -18.	2, 2x3 3:2x4 - o.2, ; ed,	WEBS 5 7 2 NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=91mph Ke=1.00; Car exterior zone Interior (1) 4- 17-0-14, Inte 26-0-0 to 33- cantilever lef right exposed for reactions DOL=1.60 3) Provide adec	5-20=-53/580, 8-1 5-14=-273/775, 6- 7-14=-272/795, 7- 1-20=-523/250 roof live loads hav 7-16; Vult=115m v; TCDL=6.0psf; E t. II; Exp C; Enclo and C-C Exterio 1-8 to 10-0-0, Ex rior (1) 17-0-14 tc 0-14, Interior (1) : t and right expose d;C-C for member shown; Lumber E	1=-131/2 14=-680, 12=0/48 we been of bh (3-sec 3CDL=6, sed; MW r(2E) -0-7 terior(2R o 26-0, 33-0-14 t d; end v ws and for DOL=1.60	2019, 305, 7, 8-12=-1695 considered fo cond gust) Dpsf, h=35ft; FRS (envelop 10-8 to 4-1-8,) 10-0-0 to Exterior(2R) o 36-10-8 zor vertical left an cces & MWFR) plate grip	5/487, r be) he; d tS					
REACTIONS	(lb/size) 2=1678/0-	-3-8. 9=1678/0-3-8		 All plates are 	MT20 plates unl	ess other	wise indicate	d.					
FORCES	Max Horiz 2=201 (LC Max Uplift 2=-188 (L (lb) - Max. Comp./Ma	C 11) C 12), 9=-188 (LC 1 ax. Ten All forces	3) 250	 5) This truss ha chord live loa 6) Bearing at jo using ANSI/T 	s been designed ad nonconcurrent int(s) 9 considers Pl 1 angle to gra	for a 10.0 with any parallel t) psf bottom other live loa o grain value a. Building	ds.				Contraction	alle
TOP CHORD	(lb) or less except w 5-23=-2513/340, 6-2 6-24=-2516/339, 7-2 2-3=-1646/230, 3-25	hen shown. 23=-2515/339, 24=-2513/340, 5=-2866/338,	-	designer sho 7) Provide mech bearing plate joint 2 and 18	uld verify capacit hanical connectio capable of withs 38 lb uplift at joint	y of bear n (by oth tanding 1 9.	ng surface. ers) of truss t 88 lb uplift at	0			A	STATE OF N STATE NATHA	NIEL R.
BOT CHORD	4-5=-2503/200, 7-27 27-28=-2503/240, 8- 8-9=-5388/628 2-22=-145/527, 3-21 20-21=-392/2418, 12 16-19=-300/2032, 11 14-15=-295/1992, 12 12-13=-134/1981, 11 9-11=-535/4545	-2381/279, -2381/279, -28=-2519/229, 9-20=-295/1992, 5-16=-300/2032, 3-14=-134/1981, 1-12=-470/3668,	:	 3) This truss is International R802.10.2 ar 3) Graphical pu or the orienta bottom chord LOAD CASE(S) 	designed in accor Residential Code nd referenced sta flin representation tition of the purlin I. Standard	dance w sections ndard AN n does no along the	ith the 2018 R502.11.1 a ISI/TPI 1. of depict the s top and/or	nd size		r /		PE-20220	HAR HORE

	E lease fo i	R CONSTRUCT	ION	i			1	1		
	S NOTED O	N PLANS REVI	EW	Truss Type		Qty	Ply	Roof - Cobey Creek Lot	12	
Line Line <thline< th=""> Line Line <thl< td=""><td>PEXELOR</td><td>IENT SERVICE</td><td>S</td><td>Hip</td><td></td><td>1</td><td>1</td><td></td><td>`</td><td>157499581</td></thl<></thline<>	PEXELOR	IENT SERVICE	S	Hip		1	1		`	157499581
CM200203 34.05.05.11 Decision of a concept the state the product of the state the	LEE'S SUN	IMIT, MISSOUR		P	Burn 0.00 E E			JOD Reference (optional) Eri Mor 04 47 40 50	Des: 4
Numerical and the standard standa	04/20/20	3023 4:45:5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Run: 8.63 E De	ec 29 2022 Print: { /uSI7E2E3vBmR7i	5AO-IBspMO	:∋ ∠∪22 MITEK Industries, Inc. I IvBX78RaMB2ue43CaHKe6ae	⊢⊓ Mar 31 17:40:58 PiVpOWZnXzz\/\/z5	Page: 1
A set way is a province of the set of the	0 1/20/2	-0-10-8	7-3-12 7-3-12	12-0-0	<u>18-0-0</u> 6-0-0		<u>24-0-0</u> 6-0-0	<u>28-11-2</u> 4-11-2	<u></u>	36-10-8 <u> 36-0-0 </u> 2-4-120-10-8
Image: state is a state state is state is a				7x	8=	1.5x4 u		5x5=		
Under tricle, out into tricle, ou	Ó 4			7 5		26 6 27		7		
with the second seco	8?			5						
 A set of the set of					//				3x6 👟	
 The second second			12	4x4 🕫					4x6	
The difference of the second secon			86	4					8	
A set of the set of	6-1-3		. /						9	
1 1	-7-		30 31						28 29	
 A service of the servic	~~~					$\land \parallel //$	/			1.5x4 II
Image: Proving the second s		3								NR ID
Image: Second		2 2			7 51					11
Link Mar Mar <td>0 0</td> <td></td> <td></td> <td>23 20 2118</td> <td></td> <td>16</td> <td>15</td> <td>14</td> <td></td> <td>13 12</td>	0 0			23 20 2118		16	15	14		13 12
$ \begin{array}{c} \text{bise} \\ & \text{total} \\ $	⊥ ~~	6± C		3x4 II 3x4 II 4x8=	19	4x8=	4x8=	3x4=		8x8=
Line Junit		6x6=		374 II 2014 -	3x4 u					5x10 👟
Hart Top Hart Top Hart Top Hart Top Hart Har		12	x14 =	3X4 II	3x4 u					6∟
11-10-12* 2-3.8 7-3-12 39-0-0 3-8-12 state -158				4x4 12-	= 10-8					12
$\frac{12.3.8}{12.3.8} + \frac{7.3.12}{7.3.4} + \frac{10.8.8}{9.1.4} + \frac{12.1.8}{13.6.4.5} + \frac{21.4.8}{3.8.8} + \frac{24.1.4}{2.4.124} + \frac{33.8.8}{9.7.4} + \frac{15.5.8}{20.6.1} + \frac{12.3.8}{20.6.1}$ $\frac{12.3.8}{2.3.8} + \frac{7.3.12}{2.3.8} + \frac{10.8.8}{2.4.124} + \frac{12.1.8}{2.4.124} + \frac{13.8.8}{2.4.124} + \frac{12.1.8}{2.4.124} + \frac{12.8.8}{2.4.124} + $				11-10-	12					36-0-0
23:0 5:0:4 3:4:12 0:7.7 5:1:8 3:3:8 2:4:12 9:1:4 0:3:8 Date - 1:8		2-3-8	7-3-12	10-8-8 11-3-15	18-0-0	21-	8-8 24	<u>1-1-4 33</u>	3-8-8	35-8-8
Exame - 188 Difference Difference <thdifference< th=""> Difference Differe</thdifference<>		2-3-8	5-0-4	3-4-12 0-7-7 0-6-1	5-1-8 3	3-8	з-в 2-	4-12 9-	-7-4	2-0-0 0-3-8
Plate Offsets (X, Y): [2:02-13.0-30], [5:0-40-02-1], [11:0-3-11.0-1-15], [13:0-5-0.Edge], [17:0-2-0.0-4], [19:Edge.0-2-8], [21:0-3-10.0-2-0], [2:0-2-0.Edge], [2:E:Edge.0-2-0] Loading TCLL (rod) (pn) 100 Spacing Plate Gr pD L 2-0-0 Lumber DOL CSI 0.8 DET. in (ho) (ho) WIT2 WIT2 BCL 0.00 Verificity 0.03 Verificity 0.04 Verificity Verificity 0.03 Verificity 0.04 Verificity 0.05 0.05 0.05 0.05 0.05 0.05 Verificity 0.05 0.05 0.05 0.05 0.05 0.05 <	Scale = 1:68			0-1	1-12					
Loading TCLL (root) (pst) 25.0 Spacing Plate Grp DOL Lumber DOL Code 20-0 1.15 CSL TC 0.01 VER(L) in (hoc) Videl Lumber DOL NED BCLL 0.01 Rep Stress Incr YES 0.01 Rep Stress Incr YES 0.02 Ver(CT) 0.33 13-14 -989 240 BCLL 0.01 Rep Stress Incr YES 0.02 Ver(CT) 0.33 13-14 -989 240 LUMBER TOP CHORD 2.45 PN to.2 TScept's 1-22:45 PS 19 Ver(CT) 0.33 11 n'a n'a DOP CHORD 2.45 PN to.2 TScept's 1-22:45 PS 15:5 FS 1-2:45 SP 10:13-00600, 5:18-4767503 8-14-614/272, 4:23-4/231, 4:23-4/231, 4:23-4/231, 4:3-4/231, 4:23-4/2	Plate Offsets (2	K, Y): [2:0-2-13,0-3-0], [5:0-4-0,0-2-1], [11:	0-3-11,0-1-15], [13:0-5-	0,Edge], [17:0-2-0	0,0-0-8], [19:Ed	ge,0-2-8], [2	21:0-3-10,0-2-0], [22:0-2-0	,Edge], [25:Edge,	0-2-0]
Lummy Upper Place Ging DoL 1.15 Col UPPE Image ToU Part of the DoL Pa	Loading	(nof)	Spacing	2-0-0	CSI					CRIP
CDC 0.0 Lumber DoL 1.15 BC 0.82 VertiCT 0.73 13-14 >589 180 BCDL 10.0 Code FR2018712014 Marrix S <	TCLL (roof)	(psi) 25.0	Plate Grip DOL	2-0-0 1.15	TC	0.81 Vert	L (LL) -0.	.31 13-14 >999 240	MT20	197/144
BCLL 0.0 Rep Stress Incr YES WB 0.74 Horz(CT) 0.37 11 n/a n/a LUMBER 10.0 Code RC20187 (P12014 Watrix-S 0.37 11 n/a n/a LUMBER 24.5 P No.2 "Except" 9-122:x4 SP 1650F File 716–2223285, 714–67553, 716–22472009 Stress 122, 25, 152:26 SP 160-152:x4 SP 100-152:x4 SP No.2, 15:132:x4 SP No.2, 15:0,	TCDL	10.0	Lumber DOL	1.15	BC	0.82 Vert	(CT) -0	.73 13-14 >589 180		
ECDL 10.0 Code IRC2018/TFI2014 Matrix-S Weight: 214 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 * Except * 9-12.2x4 SP 1650F 1.55; 5:12x6 SP 2400F 2.0; 5:21:2x6 SPF No.2; 3:21:2x6 SPF No.2; 5:16;71:2x6 SPF No.2; 3:17:2x6 SPF No.2; 5:16;71:2x6 SPF No.2; 4:16:8000 Call (1); 1:16:91:12;72:14:15:5000 Call (1); 1:16:900 Call	BCLL	0.0	Rep Stress Incr	YES	WB	0.74 Horz	2(CT) 0	.37 11 n/a n/a		
LUMBER TOP CHORD V4 SP No.2 Texcept 9: 22:24 SP 1550F 1.5E, 51:26 SP 24007 2.0E 23: SPF No.2 Texcept 9: 22:35 SP 1:00 F 2:00F 2:35 SPF No.2 Texcept 9: 22:51, 52:12:65 SP No.2, 32:12:26 SP 24007 2.0E 23: SPF No.2 Texcept 9: 22:51, 52:12:65 SP No.2, 32:11:22:65 SP 24007 2.0E 23: SPF No.2 Texcept 9: 24:05 SP No.2, 32:11:22:65 SP 24007 2.0E 23: SPF No.2 Texcept 9: 24:05 SP No.2, 32:11:22:65 SP 24007 2.0E STUCUTING 0: 50 F 1:00 F 1:	BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		-		Weight: 214 lb	FI = 20%
TOP CHORD 244 SP No.2 "Except" 5-12:2x4 SP 1606F 7-16=-222/55, 7-14=-67553, 1-15, 51-256 SP 24007, 2:0, 2-19:2x4 SP 160, 2-29:0x4 SP	LUMBER			WEBS	5-16=-196/497, 6	6-16=-490/223,				
 BOT CHORD 21 Strong 226, 152, 1226 SP No.2, 321:2x6 SP 2400F 2.0E, 20:19:2x4 SP No.2, 331:2x6 SP 2400F 2.0E, 20:19:2x4 SP No.2, 331:2x8 SPF No.2, 15-13:2x4 SP No.2 WEBS 2x3 SPF No.2, 15-16, 7-16:2x4 SP No.2 WEBS 2x3 SPF No.2, 15-16, 7-16:2x4 SP No.2 BRACING TOP CHORD Structural wood sheathing diredly applied or 2-00 oc purifins (3-58 max); 5-7. BOT CHORD Rigid celling directly applied or 2-00 oc purifins (3-58 max); 5-7. BOT CHORD Rigid celling directly applied or 2-00 oc purifins (3-58 max); 5-7. BOT CHORD Rigid celling directly applied or 2-00 oc purifins (3-58 max); 5-7. BOT CHORD Rigid celling directly applied or 10-0- oc bracing. FRACING (b):Alax. Comp.Max. Tan - All forces 250 (b): Max. Comp.Max. Tan - All forces 250 (b): Alax. Comp.Max. Tan - All forces 250 (c): Di-28a-6280/331, 7:27-a2024/343, 7-22-a2036/331, 7:27-a2024/343, 7-28-2243/33, 7:27-a2024/343, 7-28-2243/33, 7:27-a2024/343, 7:28-2243/33, 7:27-a2024/343, 7:28-230/322, 4:31-a207/326, 7:38-2443/33, 2:22-a302/324, 6:45-2282/337, 7:27-a2024/34, 7:41-15-63/1771, 1:34-1-380/2257, 1:1-13-a250/226, 7:11-2302/246, 7:11-13-a250/226, 7:11-13-a250	TOP CHORD	2x4 SP No.2 *Excep	t* 9-12:2x4 SP 1650F	-	/-16=-222/526, 7 8-14=-614/272 •	-14=-67/553, 3-13=-227/2000				
 No.2, 3:21:2x6 SP 2:00F 2.0E, 20:19:2x4 SP No.2, 13:11:2x8 SPF No.2, 15:13:2x4 SP 1680F 1.5E WEBS 2x3 SPF No.2, 15:10; 2x4 SP No.2 WERS 2x3 SPF No.2, 15:10; 2x4 SP No.2 Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Wort. SC SC P-16; Vult=115mph (3-second gust) vasd=9 imph; TCDL=6.0psf; BCDL=6.0psf; H=35f; Ke=1.00; CC.at. II; Exp; C: Inclosed: MWFRS (Revelope) exterior zone and C-C Exterior(2R) 12:0-0 to tracing. REACTIONS (Ib/size) 2=16670-3-6, 11=16790-3-8 Max Hoir 2=2239 (LC 11) Max Upfit 2=2239 (LC 11) Top CHORD 5:26=2023/342, 2:25=2023/342, 6:27=2026/343, 7:27=2024/343, 7:27=2024/343, 7:8=2244/315, 8:9=-443/522, 9:28=-4504/508, 28:29=-4635/504, 10:29=-458/5003, 10:11=5118/405, 2:3=-1398/190, 3:30=-233/321, 4:5=-2282/332, 4:31=-230/2443, 7:8=2244/315, 8:9=-443/522, 9:28=-4504/508, 28:29=-4635/504, 10:29=-458/503, 10:11=5118/405, 2:3=-1398/190, 3:30=-233/321, 4:5=-2282/333, 1:22=-307/255, 3:24=-256/2141, 23:24=-307/255, 3:24=-256/2141, 23:24=-307/255, 18:21=-302/2428, 7:11=207/175, 18:21=-302/2428, 7:11=207/175, 19:12=-302/2428, 7:11=207/175, 19:12=-302/2428, 7:11=207/175, 19:12=-302/2428, 7:11=302/2428, 7:11=307 	BOT CHORD	2x3 SPF No.2 *Exce	pt* 2-25,15-21:2x6 S	PF	10-13=0/600, 5-1	8=-112/623, 4-2	23=-4/391,			
 No.2, 13-11:2x8 SPF No.2, 15-13:2x4 SPF (650F 1.5E) WEBS No.2 WERS No.2 BRACING TOP CHORD STRuctural wood sheathing directly applied of 2-2-0 oc purlins, except 2-2-0 oc purlin		No.2, 3-21:2x6 SP 2	400F 2.0E, 20-19:2x4	4 SP	4-18=-857/298					
 WEBS 2X3 SPF No.2 'Except' 5-16,7-16:2x4 SP No.2 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=9mph; TCDL=6.0ps; h=35t; K=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior 22n - 0 op unins (3-5-8 max.): 5-7. BOT CHORD Rigid celling directly applied or 10-0-0 oc bracing. REACINS (Ib/size) 2-1667/0-3-8, 11=1679/0-3-8 Max Horiz 2-2039 (LC 11) Max Lopift 2-2-2039 (LC 12), 11=209 (LC 13) FORCES (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) - racises except when shown. TOP CHORD 5-26=-2023/342, -62=-2023/342, -62=-2023/343, -72=-2023/343, -72=-2023/343, -72=-2023/343, -72=-2023/343, -72=-2023/342, -62		No.2, 13-11:2x8 SPF	- No.2, 15-13:2x4 SP	NOTES	roof live last last	wo hear and '	lorod fo-			
No.2 2) Wind: ACE 7-16; Vull=11sph (3-second gust) BRACIMS 70P CHORD Structural wood sheathing directly applied or 2-2-0 oc putilins, (3-58 max); 5-7. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. Vaid=31mph; TGL=6.0pcf; BCDL=6.0pcf; BCDL=6.0p	WEBS	2x3 SPF No.2 *Exce	pt* 5-16,7-16:2x4 SP	this design.	roor live loads ha	ave been consid				
BRACING Vasd=91mph; TCDL=6.0ps; BCDL=6.0ps; h=35f; TOP CHORD Structural wood sheathing directly applied or 10-0-0 cc 2-0 oc purlins; 0:5-8 max.): 5-7. BOT CHORD BOT CHORD Rigid celling directly applied or 10-0-0 cc braining. 2-200 (C 11) Max Upitf 2-205 (LC 12) Max Upitf 2-205 (LC 13) Max Upitf 2-205 (LC 13) <td< td=""><td></td><td>No.2</td><td></td><td>2) Wind: ASCE</td><td>7-16; Vult=115m</td><td>nph (3-second g</td><td>ust)</td><td></td><td></td><td></td></td<>		No.2		2) Wind: ASCE	7-16; Vult=115m	nph (3-second g	ust)			
 Tori of total a word sheating directly applied of 2-20 oc putlins, except 2-0-0 ac putlins, except 2-0-0 ac putlins, except 3-20-0 ac putli		Structural wood cho	athing directly applied	Vasd=91mp	h; TCDL=6.0psf;	BCDL=6.0psf; h	n=35ft;			
 BOT CHORD BOT CHORD BOT CHORD Rigid celling directly applied or 100-0 oc bracing. REACTIONS (Ib/size) 2=1667/0.3-8, 11=1679/0.3-8 Max Horiz 2=239 (LC 12), 11=209 (LC 13) FORCES (Ib) - Max Comp./Max. Ten All forces 250 (Ib) - Max Scomp./Max. Ten All forces 250 (Ib) - 264-865/503, 10-11-55118/405, 2-39-2024/343, 7-27=2024/343, 7-27=2024/343, 7-2897/345, 8-9=-4443/522, 9-28=-4535/504, 10-11-55118/405, 2-3=-1398/190, 3-30=-2831/321, 30-31=-2832/325, 4-31=-2807/345, 4-5=-2802/337 BOT CHORD 2-255-63229, 24-255-37/255, 18-21-305/2433, 21-22=-302/2426, 11-25-14-305/2430, 22-23=-305/2433, 21-22=-302/2426, 11-3=-4305/2430, 22-23=-305/2433, 21-22=-302/2426, 11-3=-4305/2430, 22-23=-305/2433, 21-22=-302/2426, 11-3=-4305/2240, 11-3=-4802/217, 11-3=-1892/2257, 11-13=-285/4263 BOT CHORD 2-255-63/229, 24-255-37/255, 18-21-3007/2426, 18-21-300/2430, 12-2300/2426, 11-3=-2807/345, 12-2300/2426, 11-3=-2807/345, 12-2300/2426, 11-3=-4802/07/179, 16-17=-210/1786, 15-16-62/1777, 11-31=-285/4263 BOT CHORD 2-255-63/229, 24-255-37/255, 18-21-300/2430, 12-2300/2426, 11-23-2402/2426, 11-23-24-305/2430, 22-23-305/2433, 21-22-305/2433, 21-22-305/2433, 21-22-305/2433, 21-22-305/2430, 12-230-305/2433, 21-22-305/2430, 12-230-305/2433, 21-22-305/2430, 12-230-305/2433, 21-22-305/2430, 12-230-305/2433, 21-22-305/2430, 12-20-305/2433, 21-22-305/2430, 12-300/2426, 11-30-207/2426, 12-30-207/2426, 12-30-207/2426, 12-30-207/2426, 12-30-207/2426, 12-30-207/2426, 12-30-207/2426,		2-2-0 oc purlins, exc	ept	exterior zone	e and C-C Exterio	or(2E) -0-8-11 to	0 4-3-5,			
 BOT CHORD Rijd ceiling directly applied or 10-0-0 c bracing. REACTIONS (Ib/size) 2=1667/0-3-8, 11=1679/0-3-8 Max Horiz 2=239 (LC 11) 24-0-0 is 03-10-14, Interior (1) 31-0-14 to 26-0-9. Exterior(2R) 24-0-0 is 03-10-14, Interior (1) 31-0-14 to 26-0-9. Exterior(2R) 24-0-0 is 03-10-14, Interior (1) 31-0-14 to 26-0-9. Exterior(2R) 24-0-0 is 03-10-14, Interior (1) 31-0-14 to 26-0-9. Exterior(2R) 24-0-0 is 03-10-14, Interior (1) 31-0-14 to 26-0-9. Exterior(2R) 24-0-0 is 03-10-14, Interior (1) 31-0-14 to 26-0-9. Exterior(2R) 24-0-0 is 03-10-14, Interior (1) 31-0-14 to 26-0-9. Exterior(2R) 24-0-0 is 03-10-14, Interior (1) 31-0-14 to 26-0-9. Exterior(2R) 24-0-0 is 03-10-14, Interior (1) 31-0-14 to 26-0-9. Exterior(2R) 24-0-0 is 03-10-14, Interior (1) 31-0-14 to 26-0-9. Exterior(2R) 24-0-0 is 03-10-14, Interior (1) 31-0-14 to 26-0-9. Exterior(2R) 24-0-0 is 03-10-14, Interior (1) 31-0-14 to 26-0-9. Exterior(2R) 24-0-0 is 03-10-14, Interior (1) 31-0-14 to 26-0-9. Exterior(2R) 24-0-0 is 03-10-14, Interior (1) 31-0-14 to 26-0-9. Exterior(2R) 24-0-0 is 03-10-14, Interior (1) 31-0-14 to 26-0-9. Exterior(2R) 24-0-0 is 03-10-14, Interior (1) 31-0-14 to 26-0-9. Exterior(2R) 24-0-0 is 03-10-14, Interior (1) 31-0-14 to 26-0-9. Exterior(2R) 24-0-0 is 0-10. Exterior(2R) 24-0-0		2-0-0 oc purlins (3-5	-8 max.): 5-7.	Interior (1) 4	-3-5 to 12-0-0, E>	xterior(2R) 12-0	-0 to			
 REACTIONS (Ib/size) 2=1667/0-3-8, 11=1679/0-3-8 Max Horiz 2=239 (LC 11) Max Uplift 2=-205 (LC 12), 11=-209 (LC 13) FORCES (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) - Max. Solution - All forces 250 (Ib) - Max. Solution	BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	19-0-14, Inte 24-0-0 to 31	erior (1) 19-0-14 to -0-14 Interior (1)	0 24-0-0, Exteri	or(2R)			
 Max Horiz 2=239 (LC 11) Max Uplit 2=205 (LC 12), 11=-209 (LC 13) FORCES (b) - Max. Comp./Max. Ten All forces 220 (b) or less except when shown. TOP CHORD 5-26=-2024/342, 6-26=-2023/342, 6-27=-2025/343, 7-27=-2024/343, 7-8=-2244/315, 8-9=-4443/522, 9-28=-4504/508, 28-29=-4535/504, 10-29=-4585/503, 10-11=-5118/405, 2-3=-1398/190, 3-30=-2931/321, 30-31=-2832/325, 4-31=-2807/345, 4-5=-2282/337 BOT CHORD 2-256-63/289, 24-25=-37/255, 3-24=-256/2141, 23-24=-305/2430, 22-23=-305/2433, 21-22=-302/2426, 18-21=-302/2426, 17-18=-207/1779, 16-17=-210/1785, 15-16=-62/1772, 14-15=-63/1771, 13-14=-198/2257, 11-13=-285/4263 right exposed.C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 ps bottom chord live load nonconcurrent with any other live loads. Bearing at joint 2 and 209 ib uplif at joint 11. This truss is designed in accordance with the 2018 Intermational Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. Graphical puritin representation does not depict the size or the orientation of the puritin along the top and/or bottom chord. LOAD CASE(S) Standard 	REACTIONS	(lb/size) 2=1667/0-	-3-8, 11=1679/0-3-8	cantilever le	ft and right expos	sed ; end vertica	l left and			
 Max Uplift 2=-205 (LC 12), 11=-209 (LC 13) FORCES (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 5-26=-2024/342, 6-262023/342, 6-27=-2025/343, 7-27=-2024/343, 7-27=-2024/343, 7-27=-2024/343, 7-27=-2024/343, 7-27=-2024/343, 7-27=-2024/343, 7-27=-2024/342, 6-262023/342, 6-26-2023/242, 6-26-2023/242, 6-26-2023/242, 6-26-2023/242, 6-26-2023/242		Max Horiz 2=239 (LC	C 11)	right expose	d;C-C for membe	ers and forces &	MWFRS			
 FORCES (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 5:26=-2024/342, 6:26=-2023/342, 6:26=-2023/342, 6:27=-2025/343, 7:27=-2024/343, 7:48=-2244/315, 8:98=-4443/522, 9:28=-4504/508, 28:298=-4535/504, 10:298=-4504/508, 28:298=-4536/2111, 28:294=-200/24266, 17:18=-200/24266, 17:18=-207/1779, 16:178=, 15:16=62/1777, 11:1-13=-285/4263 FOT CHORD 2:258=-63/289, 24:258=-37/255, 10:298=-4504/508, 22:218, 11:138, 10:298=-4504/508, 22:298=-4504/508, 22:298=-4504/508, 22:298=-4504/508, 22:298=-4504/508, 22:298=-4504/508, 22:298=-4504/508, 22:298=-4504/508, 22:298=-4504/508, 22:298=-4504/508, 22:298=-4504/508, 22:218, 22:298=-550/211, 12:298=-550/211, 12:298=-560/211772, 11:1-13=-285/4263 FOX Hard MASI/TPI 1. CAD CASE(S) Standard LOAD CASE(S) Standard 		Max Uplift 2=-205 (L	C 12), 11=-209 (LC 1	3) for reactions $DOI = 1.60$	snown; Lumber	DOL=1.60 plate	grip			
 TOP CHORD 5-26=-2024/342, 6-22=-2024/343, 7-27=-2024/343, 7-8=-2244/315, 8-9=-4443/522, 9-28=-4535/504, 10-29=-4585/503, 10-11=-5118/405, 2-3=-1398/190, 3-30=-2931/321, 30-31=-2832/325, 4-31=-2807/345, 4-5=-2282/337 BOT CHORD 2-25=-63/289, 24-25=-37/255, 3-24=-256/2141, 23-24=-305/2430, 22-23=-305/2430, 22-23=-305/2430, 22-23=-305/2430, 22-23=-305/2430, 22-23=-305/2430, 22-23=-305/2426, 17-18=-207/1779, 16-17=-210/1785, 15-16=-62/1772, 14-15=-63/1771, 13-14=-198/2257, 11-13=-285/4263 H This truss is designed in accordance with the purlin along the top and/or bottom chord. LOAD CASE(S) Standard This truss is designed in a conduction of the purlin along the top and/or bottom chord. 	FORCES	(lb) - Max. Comp./Ma	ax. Ten All forces 2	50 3) Provide ade	quate drainage to	prevent water	ponding.			
 6-27=-2025/343, 7-27=-2024/343, 7-27=-2024/343, 7-8=-2244/315, 8-9=-4443/522, 9-28=-4504/508, 28-29=-4535/504, 10-29=-4585/503, 10-11=-5118/405, 2-3=-1398/190, 3-30=-2931/321, 30-31=-2832/325, 4-31=-2807/345, 4-5=-2282/337 BOT CHORD 2-25=-63/289, 24-25=-37/255, 3-24=-256/2141, 23-24=-305/2430, 22-23=-305/2433, 21-22=-302/2426, 17-18=-207/1779, 16-17==210/1785, 15-16=-62/1772, 14-15=-63/1771, 13-14=-198/2257, 11-13=-285/4263 BOT CHORD 2-25=-63/289, 24-25=-37/255, 3-24=-256/2141, 23-24=-305/2430, 22-23=-305/2433, 21-22=-302/2426, 17-18=-207/1779, 16-17==210/1785, 15-16=-62/1772, 14-15=-63/1771, 13-14=-198/2257, 11-13=-285/4263 CHORD 2-25=-63/289, 24-25=-37/255, 3-24=-256/2141, 23-24=-305/2430, 22-23=-302/2426, 17-18=-207/1779, 16-17=-210/1785, 15-16=-62/1772, 14-15=-63/1771, 13-14=-198/2257, 11-13=-285/4263 CHORD 2-25=-63/289, 24-25=-37/255, 3-24=-305/2430, 22-23=-302/2426, 17-18=-207/1779, 16-17=-210/1785, 15-16=-62/1772, 14-15=-63/1771, 13-14=-198/2257, 11-13=-285/4263 CHORD 2-25=-63/289, 24-25=-37/255, 3-24=-2302/2426, 17-18=-207/1779, 11-13=-285/4263 CHORD 2-25=-63/289, 24-25=-37/255, 3-24=-2302/2426, 17-18=-207/1779, 16-17=-210/1785, 15-16=-62/1772, 14-15=-63/1771, 13-14=-198/2257, 11-13=-285/4263 CHORD 2-25=-63/289, 24-25=-302/2426, 17-18=-207/1779, 16-17=-210/1785, 15-16=-62/1772, 14-15=-63/1771, 13-14=-198/2257, 11-13=-285/4263 CHORD 2-25=-63/289, 24-25=-37/255, 35=-37/255	TOP CHORD	5-26=-2024/342. 6-2	::e=-2023/342.	This truss have	as been designed	for a 10.0 psf b	ottom			
 7-8=-2244/315, 8-9=-4443/522, 9-28=-4504/508, 28-29=-4535/504, 10-29=-4585/503, 10-11=-5118/405, 2-3=-31398/190, 3-30=-2807/345, 4-5=-2282/337 BOT CHORD 2-25=-63/289, 24-25=-37/255, 3-24=-256/2141, 23-24=-305/2430, 22-23=-305/2433, 21-22=-302/2426, 18-21=-302/2426, 17-18=-207/1779, 16-17=-210/1785, 15-16=-62/1772, 14-15=-63/1771, 13-14=-198/2257, 11-13=-285/4263 C) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 205 lb uplift at joint 2 and 209 lb uplift at joint 11. T) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. G) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 		6-27=-2025/343, 7-2	7=-2024/343,	chord live lo 5) Rearing at ic	ad nonconcurrent	t with any other	iive loads. ain value			
 designer should verify capacity of bearing surface. designer should verify capacity of bearing surface. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 205 lb uplift at joint 11. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 		7-8=-2244/315, 8-9=	-4443/522, 204525/504	using ANSI/	TPI 1 angle to gra	ain formula. Bu	ilding			The
 2-3=-1398/190, 3-30=-2931/321, 30-31=-2832/325, 4-31=-2807/345, 4-5=-2282/337 BOT CHORD 2-25=-63/289, 24-25=-305/2430, 3-24=-256/2141, 23-24=-305/2430, 22-23=-305/2433, 21-22=-302/2426, 18-21=-302/2426, 17-18=-207/1779, 16-17=-210/1785, 15-16=-62/1772, 14-15=-63/1771, 13-14=-198/2257, 11-13=-285/4263 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 205 lb uplift at joint 2 and 209 lb uplift at joint 11. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 		10-29=-4585/503. 10	D-11=-5118/405,	designer sho	ould verify capacit	ty of bearing su	rface.		OF N	Alson
30-31=-2832/325, 4-31=-2807/345, 4-5=-2282/337joint 2 and 209 lb uplift at joint 11.BOT CHORD2-25=-63/289, 24-25=-37/255, 3-2-42=-256/2141, 23-24=-305/2430, 22-23=-305/2433, 21-22=-302/2426, 18-21=-302/2426, 17-18=-207/1779, 16-17=-210/1785, 15-16=-62/1772, 14-15=-63/1771, 13-14=-198/2257, 11-13=-285/42637 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.8 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.NATHANIEL FOX9 Deams grade of Market and Code sections R502.11.2 and 209 lb uplift at joint 12.This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.9 Deams grade of Market and Deams grade of Market at the size or the orientation of the purlin along the top and/or bottom chord.9 Deams grade of Market at the size or the orientation of the purlin along the top and/or bottom chord.9 Deams grade of Market at the size or the orientation of the purlin along the top and/or bottom chord.9 Deams grade of Market at the size or the orientation of the purlin along the top and/or bottom chord.9 Deams grade of Market at the size or the orientation of the purlin along the top and/or bottom chord.9 Deams grade of Market at the size or the orientation of the purlin along the top and/or bottom chord.9 Deams grade of Market at the size or the orientation of the purlin along the top and/or bottom chord.9 Deams grade of Market at the size orientation of the purlin along the top and/or bottom c		2-3=-1398/190, 3-30	=-2931/321,	 b) Provide med bearing plate 	nanical connection	on (by others) o standing 205 lb	i truss to uplift at		ANE	NO.C
 BOT CHORD 2-25E-63/289, 24-25=-37/255, 3-24=-256/2141, 23-24=-305/2430, 22-23=-305/2433, 21-22=-302/2426, 18-21=-302/2426, 17-18=-207/1779, 16-17=-210/1785, 15-16=-62/1772, 14-15=-63/1771, 13-14=-198/2257, 11-13=-285/4263 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 		30-31=-2832/325, 4- 4-52282/327	·31=-2807/345,	joint 2 and 2	09 lb uplift at join	t 11.	apint at	B	NATHA	NIEL XP.V
 3-24=-256/2141, 23-24=-305/2430, 22-23=-305/2433, 21-22=-302/2426, 18-21=-302/2426, 17-18=-207/1779, 16-17=-210/1785, 15-16=-62/1772, 14-15=-63/1771, 13-14=-198/2257, 11-13=-285/4263 B) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 	BOT CHORD	2-25=-63/289, 24-25	=-37/255,	7) This truss is	designed in acco	ordance with the	2018	B	FO	x VA
 22-23=-305/2433, 21-22=-302/2426, 18-21=-302/2426, 17-18=-207/1779, 16-17=-210/1785, 15-16=-62/1772, 14-15=-63/1771, 13-14=-198/2257, 11-13=-285/4263 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 9) Fe-2022042259 9) Fe-2022042259<td></td><td>3-24=-256/2141, 23-</td><td>24=-305/2430,</td><td>R802.10 2 a</td><td>nd referenced sta</td><td>e sections R502 andard ANSI/TF</td><td>2.11.1 and 911.</td><td>67</td><td>M das</td><td>1 At M</td>		3-24=-256/2141, 23-	24=-305/2430,	R802.10 2 a	nd referenced sta	e sections R502 andard ANSI/TF	2.11.1 and 911.	67	M das	1 At M
or the orientation of the purlin along the top and/or bottom chord. 11-13=-285/4263 or the orientation of the purlin along the top and/or LOAD CASE(S) Standard PE-2022042259		22-23=-305/2433, 21	1-22=-302/2426, 7-18=-207/1770	8) Graphical pu	urlin representatio	on does not dep	ict the size	8		X stand
14-15=-63/1771, 13-14=-198/2257, 11-13=-285/4263 LOAD CASE(S) Standard PE-2022042259 Standard PE-STONAL ENGLA		16-17=-210/1785, 1	5-16=-62/1772,	or the orient	ation of the purlin	along the top a	ind/or	W.	ow man	BER MAR
11-13=-285/4263		14-15=-63/1771, 13-	14=-198/2257,		u. Standard			N.	O PE-2022	042259 /云月
WOSTONAL ENGLA		11-13=-285/4263		LUAD CASE(S)	Stanualu			y y	A BO	154
Amost									SIONIA	LEN
									CITA	and the second s

LEASE FO	R CONSTRUCT	ION	T						
	N PLANS REVIE	EW			Qty	Ply 1	Roof - Cobey Cree	k Lot 12	157499582
LEE'S SUN	MIT, MISSOUR		Нір		1	1	Job Reference (opt	ional)	45 47 00 David
$\frac{1}{20/20}$	023 4:45:5	3 S - 66083,		ID:rkv3YMoo6NCB	9 2022 Pi A45?XbY	LPEzr55W-RfC?Ps	B70Hq3NSgPqnL8w3u	, Inc. Thu Mar 30 IITXbGKWrCDoi7	15:47:09 Page: 1 J4zJC?f
	-0-10 0-10-	-8 <u>5-7-7</u> -8 5-7-7	13-11-5 1-8-14 6-7-0	5 14-0-0 0-0-11 12	<u>22-0-0</u> 8-0-0	22-1-13 0-1-13	<u>28-7-11</u> 6-5-14	<u>33-5-12</u> 4-10-1	36-10-8
				רֿ' זיאַ 7×8–		6×6-			
	-12 -13			ې پې 6 24		25 7 m			
			12 8	6			_		
			3x4 🕫					4x8	
	<u>е</u> е		3x6 #		$\langle \rangle$			¹ x4	
2-12	9-10- 8-10-	4x4 🍫	4					°26	
-01	0, 0	^{4x4} ²²						2	7 4x6a
		JE S						4-6-1	10
		×	88						
			19	48 207 -		1615		14	13
	C	⊠ 4x6 ∎	21 1 5×1 # M1	8AHS 12x18 ॥		3x6=	1	.5x4 II	10x10 = ⊠
			1.5x4 =	3x4=		0,0 -			-×0 ≤
		7 4 5	7-5-9 12 10 9	13-10-4	21 5 0	22-1-12	29 7 11	22.0.0	12 36-0-0
Casta 4:75.0		7-4-5	0-1-4 5-4-15	0-11-12	7-7-5	0-8-3	6-5-15	5-0-13	2-0-0
$\frac{\text{Scale} = 1.75.3}{\text{Plate Offsets ()}}$	(, Y): [2:0-3-1,0-1-12]], [6:0-4-12,0-2-0], [1	1:0-1-4,0-1-13], [20:Edg	e,0-5-8]					0-3-8
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in (loc) l/defl		S GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.85	Vert(LL) -0.2	28 15-17 >999	240 MT20	244/190
BCLL	0.0	Rep Stress Incr	YES	WB	0.92	Horz(CT) -0.:	43 11 n/a	n/a	5 90/86
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S				Weight:	212 lb FT = 20%
LUMBER	2v4 SP No 2 *Except	t* 6-7 9-7·2v6 SPF N	2) Wind: ASCE Vasd=91mp	7-16; Vult=115mph h: TCDL=6.0psf: BC	(3-seco DL=6.0r	nd gust) sf: h=35ft:			
	9-12:2x6 SP 2400F 2	2.0E	Ke=1.00; Ca	t. II; Exp C; Enclose	d; MWF	RS (envelope)			
BOTCHORD	1/2" 2.0E Microllam®	LVL, 16-13:2x4 SP	Interior (1) 4	-1-8 to 14-0-0, Exter	ior(2R)	14-0-0 to			
WEBS	1650F 1.5E, 13-11:2 2x3 SPF No.2 *Exce	x6 SPF No.2 pt* 17-6,15-6,15-7:2:	x4 22-0-0 to 29	-0-14, Interior (1) 29	2-0-0, E -0-14 to	36-8-11 zone;			
SLIDER	SP No.2, 13-10:2x6 SPF No.2	SPF No.2 4-4-8	cantilever le right expose	ft and right exposed d;C-C for members	; end ve and forc	rtical left and es & MWFRS			
BRACING			for reactions	shown; Lumber DO	L=1.60 p	plate grip			
I OP CHORD	Structural wood sheat except	athing directly applied	d, 3) Provide ade	quate drainage to pr	event wa	ater ponding.			
BOT CHORD	2-0-0 oc purlins (4-9- Rigid ceiling directly	-8 max.): 6-7. applied or 10-0-0 oc	 All plates are 5) This truss has 	e MT20 plates unles as been designed fo	s otherw r a 10.0	ise indicated.			
WERS	bracing.	6 15 9 15	chord live lo 6) Bearing at ic	ad nonconcurrent wi pint(s) 11 considers r	th any o parallel t	ther live loads. o grain value			
REACTIONS	(size) 2=0-3-8, 1	1=0-3-8	using ANSI/	TPI 1 angle to grain	formula.	Building			
	Max Horiz 2=-275 (L0 Max Uplift 2=-225 (L0	C 10) C 12) 11=-223 (I C 1	7) Provide mec	chanical connection	by other	surface. s) of truss to			
	Max Grav 2=1675 (L	.C 1), 11=1674 (LC 1	bearing plate joint 2 and 2	e capable of withstar 23 lb uplift at joint 1	nding 22 1.	5 lb uplift at			
FORCES	(lb) - Maximum Com Tension	pression/Maximum	8) This truss is International	designed in accorda	ance with ections F	n the 2018 8502.11.1 and			
TOP CHORD	1-2=0/16, 2-5=-2326 6-7=-1642/346, 7-8-	/282, 5-6=-2059/333 -2133/331	R802.10.2 a	nd referenced stand	ard ANS	il/TPI 1.			Jacob
	8-10=-2748/331, 10-	11=-3902/342,	or the orient	ation of the purlin alo	ong the t	op and/or		A.F.	OF MISS
BOT CHORD	2-21=-274/1810, 20-	21=-249/1639,	bottom chore LOAD CASE(S)	d. Standard				ANT.	NATHANIE
	18-20=0/169, 18-19= 17-18=-280/1850. 15	=-31/211, 5-17=-116/1607,	(•)					A ?/ '	FOX
	14-15=-193/2380, 13	3-14=-194/2379,					(BALM	1 AFB
WEBS	19-21=-17/176, 5-19	=-140/117,						K In/K	MARE STIDA
	5-17=-363/252, 6-17 6-15=-160/236, 7-15	=-79/548, =-41/614,						NO PE	E-2022042259
NOTES	10-13=-54/1341, 8-1	4=0/248, 8-15=-870/	/309					N. F.	1.SA
1) Unbalance	d roof live loads have	been considered for						Post.	ONAL EN
this design								10	Contract

Note on PLANS Repair of the process of the proces of the process of the proces of the process of the pr	LEASE FO	R CONSTRUCTION	ON N			i					
And the set of the	S NOTED O	N PLANS REVIE	w	Truss Type		Qty	Ply	Roof - Cot	ey Creek L	_ot 12	157400500
Construction Middle Direct	PF2361-49R4	MENT SERVICES		Hip		1	1	Joh Refere	ance (option	nal)	157499583
	Premier Building	Supply (Springhill_KS)_Sp	ring Hills, KS - 66083,		Run: 8.63 S	lov 19 2022 Prir	nt: 8.630 S No	v 19 2022 MiTek	Industries, Ir	nc. Thu Mar 30 15:4	7:09 Page: 1
$\frac{1000}{100} \frac{1}{2} \frac{1}{2}$	04/20/20	023 4:45:53			ID:K6IHzPblke	w_1IYCb81ltdzr	4sl-RfC?PsB	70Hq3NSgPqnL8	w3ulTXbGK	WrCDoi7J4zJC?f	
<pre> function relation re</pre>		0.1		7 8 2							26 10 9
Under TOR Org		-0-1	-6 $7-3-13$	0.4.5	6-0-0 3-3-14	4-0-0	+	<u>28-7-11</u> 8-7-11		36-0-0	
Uncertain The state of the sta		0-1	0-0 1010	0-4-5	6	x6= 5	5x5=	0711		110	0-10-8
Line Product P		-1-0-1-1-3			6 9	_	7				
Under the second seco		<u></u>		12							
upped uppped upped upped upped upped upped upped uppe				8				<			
Under the state of the sta				5x8 WB 🦻					4x4		
9 9				4x6 #				M	-18HS 5x8 W	VB 💊	
with a state of the		2-3		<u>5</u>		10			23		
		11-9-11	4x4 💋	4					×.		
Limit of the state		÷	^{4x4} <i>[•]</i> 21							24	
Image: State 1 Image:			321					A			
Image: Series 1 Series 1::0:1 Series 1::0:1 Series 1::0:1 Series 1::0:1 Series 1::0:1 Series 1::0:1:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:			Æ			k k	\mathbb{H}			4	x6 .
Linking Linking <t< td=""><td></td><td></td><td>2 / 19/</td><td>¢17</td><td></td><td></td><td><u>.</u></td><td></td><td>U</td><td></td><td>10</td></t<>			2 / 19/	¢17			<u>.</u>		U		10
5:5: 10.4 tr Dote Dote Dote Mithout State Mithout State 4:6: Mithout State 3.4 tr Mithout State 3.4 tr		<u> </u>			<u>1</u> 10	0 1: 4= 1:	514 2x12 =		13 3x4 u	12	
465 [±] 34.6 MTHRES Sule = Defa $\frac{7}{19}$ Defa			5x5=	20 1.5x4 u	AF.				0,4 1	M18AHS	6x18 👟
1944			4x6=	3x4= MT18H	S 5x8 =						5x8 ≈
Product Product <t< td=""><td></td><td></td><td></td><td>3x4 I</td><td></td><td></td><td></td><td></td><td></td><td>6L 1</td><td>- 2</td></t<>				3x4 I						6L 1	- 2
State + 1801 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 1/2 0 0 1/2 0 0 1/2 1/2 0			7040	9-8-0 7-5-9	15 10 1	10 0 020-	1-12	00 7 44		22.0.0 25	36-0-0
State - 180.1 12.2-7 0.3-8 Piete Offsets (X, Y): [2:0-1-15.0-2-0], [2:0-1-13.Edge], [5:0-3-8.Edge], [5:0-3-8.Edge], [5:0-4-8.Edge], [1:0-2-4.0-1-9], [1:0-2-6.0-1-9], [1:0-1-0.0-1-9], [1:0-2-6.0-1-9], [1:0-2-6.0-1-9], [1:0-2-6.0-1-9], [1:0-1-0.0-1-9], [1:0-1-0.0-1-9], [1:0-1-0.0-1-9], [1:0-1-0.0-1-9], [1:0-1-0.0-1-9], [1:0-1-0.0-1-9], [1:0-1-0.0-1-9], [1:0-1-0.0-1-9], [1:0-1-0.0-1-9], [1:0-1-0.0-1-9], [1:0-1-0.0-1-9], [1:0-1-0.0-1-9], [1:0-1-0.0-1-9], [1:0-1-0.0-1-9], [1:0-1-0.0-1-9], [1:0-1-0.0-1-9], [1			7-3-13	0-1-12	6-2-4	3-10-4 0-	5-4	8-5-15		5-0-13 2-0	0-0
Plate Offiests (X, Y): [2:0-1-15.02-20, [2:0-1-13.Edge], [5:0-3-5.Edge], [5:0-3-5.Edge], [1:0-2-4.0-4-9], [1:0-1-3-9.0-0-7], [1:0-3-5.Edge] Loading (rsh) TCLL (roof) 2:5:0 TCLL (roof) 2:5:0 BCL 1:0.0 BCL 1:0.0 Code int VES BC 0:0.0 BC 0:0	Scale = 1:80.1			2-2-7			• •				0-3-8
Loading (pd) Spacing 2-9-0 CSI 0.9 DFL (in full) in full) (ide) Ide MIT 2.44 H90 BCLL 0.0	Plate Offsets (2	X, Y): [2:0-1-15,0-2-0],	[2:0-1-13,Edge], [5:	:0-3-12,Edge], [6:0-3-5	,Edge], [8:0-4-0,E	dge], [10:0-2-	4,0-1-9], [10	0:1-3-9,0-0-7],	15:0-5-8,E	dge]	
TCLL (root) 25.0 Piace Gip DOL 1.15 TC 0.89 Vert(C1) -0.28 12.41 -0.99 24.0 MT20 24.41/90 BCLL 0.0 0.0 Rep Stress Incr YES WES 0.0 10 v/a n/a MT20 244/190 BCLL 0.0 Code IRC2018/TP12014 Matrix-S Vert(C1) 0.43 10 v/a n/a Mt8AHS 186/179 BCDL 0.00 Code IRC2018/TP12014 Matrix-S Vert(C1) 0.43 10 v/a n/a Mt8AHS 186/179 UMBER Code TC2 Code TC2 Code 10 v/a n/a m/a Mt8AHS 186/179 UMBER Code TC2 Code	Loading	(psf)	Spacing	2-0-0	CSI	D	EFL	in (loc)	l/defl L	_/d PLATES	GRIP
TCDL. 10.0 Lumber DOL. 1.15 BC 0.76 Ver(CT) -0.53 16-17 >>816 100 M113HS 244/190 BCDL 10.0 Code IRC2018/TPI2014 Matrix-S BC Horz(CT) -0.53 16-17 >>816 100 M113HS 244/190 BCDL 10.0 Code IRC2018/TPI2014 Matrix-S BC Horz(CT) -0.53 16-17 >>816 100 M113HS 244/190 LUMBER 2x6 SPF No.2 Except '2-12x4 SP No.2 IRC2018/TPI2014 Multi ASCE '7-16; Vult=115mph (3-second gust) Vase4=31mph; TCDL=6.0pst; BcDL=6.0pst; BcDL=6.0pst	TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.98 V	ert(LL)	-0.28 12-13	>999 2	40 MT20	244/190
CDL LO Code Number of Code Recent of Code Number of	TCDL	10.0	Lumber DOL Rep Stress Incr	1.15 YES	BC	0.76 V	ert(CT)	-0.53 16-17	>816 1	80 MT18HS	244/190 186/179
LUMBER TOP CHORD 2x6 SPF No.2 "Except" 6-7:2x4 SP No.2, Sep 52 Add P2 Add P2 Cle Sep 52 Add P2 Add P2 Cle Sep 52 Add P2 No.2 "Except" 2-19:2x4 SP No.2, 2x6 SP 2400F 2.0E "Except" 2-19:2x4 SP No.2 Cle 1.0; Cle 1.1: Exp C: Enclosed: MWRRS (envelope) exterior zone and C-C Exterior(2E) 16-00 to 220-04 Exterior(2E) 20-00 to 220-04 Exterior(2E) 16-00 to 220-04 Exterior(2E) 20-00 to 220-04 Exterior(2E) 16-00 to 220-04 Exterior(2E) 20-00 to 220-04 Exterior(2E) 16-00 to 220-04 Exterior(2E) 16-00 to 220-04 Exterior(2E) 16-00 to 220-04 Exterior(2E) 16-00 to 220-04 Exterior(2E) 20-00 to 220-04 Exterior(2E) 16-00 to 220-04 Exterior(2E) 20-00	BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S	0.00 11	012(01)	0.40 10	17/4 1	Weight: 247	7 lb FT = 20%
 Vasia-91mph: TCDL-60.08; BCDL-60.08; H=26ff; 562-04-008; H=26ff; 206 SP 2400F 2.08; Except 2-19:2x4 SP No.2, 19-17;2x1 29 F 2400F 2.08; No.2, 19-17;2x1 29 F 2400F 2.04; No.2, 19-10;2x1 2002F 2, 24=2411/32x, 10;2x1 2002F 240;2x2 4=2411/32x, 10;2x1 2002F 240;2x2 4=2411/32x, 10;2x1 2002F 240;2x2 4=2411/32x, 10;2x2 -00-358/1876, 19-20-322/1679, 17-19=810, 17-18=33/224, 16-19, 10-168 BOT CHORD 6-78=14363(31, 1-2-002;2, 24=2411/32x, 10;0x1 2+a02374 BOT CHORD 6-78=1436(313, 1-2-002;2, 24=2411/32x, 10;0x1 2+a02374 WEES 6-18=-141777,14=-843(327, 18-20-0031, 13-14=-190/2496, 12-13=-190/2492, 10-12=-2002374 WEES 6-18=-141777,14=-634327, 18-20-0031, 13-14=-190/2496, 12-13=-190/2492, 10-12=-2002374 WEES 6-18=-141777,14=-634327, 18-20-0031, 13-14=-190/2496, 12-13=-190/2492, 10-12=-2002374 WEES 6-18=-141777,14=-634327, 18-20-0031, 13-14=-190/2496, 12-13=-190/2492, 10-12=-2002374 WEES 6-18=-141777,14=-4507575, 13-14=-190/2496, 12				2) Wind ASC	F 7-16: Vult=115	mph (3-secon	d aust)			•	
5-8.87-224 SP 2400F 2.0E Ke = 1.00; Cat: II; Exp C; Enclosed; MVRFS (envelope) 80T CHORD Ke SP 2400F 2.0E Ke = 1.00; Cat: II; Exp C; Enclosed; MVRFS (envelope) 80T CHORD Ke SP 2400F 2.0E Ke = 1.00; Cat: II; Exp C; Enclosed; MVRFS (envelope) 80T CHORD Ke SP 2400F 2.0E Ke = 1.00; Cat: II; Exp C; Enclosed; MVRFS (envelope) 80T CHORD Structural wood sheathing directly applied, envelope exterior 200 to 27-014, Interior (1) 20-0.0 Exputine (4-6.9 max); 6-7 6-0 ob traing; 2-20 6-0 ob traing; 2-20 6-0 ob traing; 7-19 All plates are MT20 plates unless otherwise indicated. 9-8-11 ob traing; 2-20 6-0 ob traing; 7-19 All plates are MT20 plates unless otherwise indicated. 9-8-11 ob traing; 2-20 6-0 ob traing; 7-19 This truss is been designed tor 10.0 p5 bottom chord live load noconcurrent with any other live loads. WEES 1.00 wat midpt 4-16, 9-14, 6-14 80 Privide mechanical connection (by others) of truss to bearing plate capable of withstanding 2411 bupiff at joint 10. 90 Privide mechanical connection (by others) of truss to bearing plate capable of withstanding 2411 bupiff at joint 10. FORCES (b) - Maximum Compression/Maximum 10 Privide mechanical connection (br others) of truss to bearing plate capable of withstanding 2411 bupiff at joint 10. 10 Graphical purin representatand ones not depict the size or the ori	TOP CHORD	2x6 SPF No.2 *Excep	t* 6-7:2x4 SP No.2,	Vasd=91m	ph; TCDL=6.0psf	; BCDL=6.0ps	f; h=35ft;				
 BOT CHORD BOT CHORD 2X6 SP 2400P 2.0E 2X6 SP No.2 19-72.4X SP 2400P 2.0E MESS 2X4 SP No.2 "Except" 9-13:2X3 SP F No.2 3UDER Left Zx6 SPF No.2 - 3-10-12 BRACING Structural wood sheathing directly applied, except 2-0-0 oc purlins (4-6 ymax): 6-7. BOT CHORD Structural wood sheathing directly applied, except 2-0-0 oc bracing: 17-19. WEBS 1 Row at midpt 4-16, 9-14, 6-14. REACTIONS (size) 2-0-38, 10-0-3 Max foriz 2-314 (LC 11) Max Grav 2-1679 (LC 1), 10-1667 (LC 1) Porkie and 271 bugith at joint 10. Porkie and 271 bugith at join		5-6,8-7:2x4 SP 2400F	2.0E	Ke=1.00; C	at. II; Exp C; Enc	losed; MWFR	S (envelope	e)			
WEBS 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 OTHERS 2x4 SPF No.3 2x0-0.1 Exterior(2R) 20-0 to 27-0.14, Interior (1) SLIDER Left 2x6 SPF No.2 - 3-10-12 270-0.1 to 36-811 zone; cantilever left and right exposed.C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 TOP CHORD Structural wood sheathing directly applied, except 270-01 to 270-01	BOT CHORD	No.2, 19-17:2x12 SP 2	2400F 2.0E	Interior (1)	4-1-8 to 16-0-0, E	Exterior(2E) 16	6-0-0 to				
 Ulters Differs 24 SPF N0.3 24 SPF N0.2 - 3-10-12 BRACING TOP CHORD Structural wood sheathing directly applied, except 2-0-00 c purifins (4-6-9 max,): 6-7. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing: 2-20 6-0-00 co bracing: 2-20 6-0-00 co bracing: 2-20 6-0-00 co bracing: 2-21 8 (size) 2-0-3-8, 10-0-3-8 WEBS 1 Row at might 4-16, 9-14, 6-14 REACTIONS (size) 2-0-3-8, 10-0-3-8 Wax Horiz 2-314 (LC 11) Max K Grav 2-1679 (LC 12), 10-237 (LC 13) Max Grav 2-1679 (LC 11), 10-1667 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 6-71436/313, 1-2=0/22, 2-4=-2411/32, 4-6-2006/313, 7-9-1390/298, 9-10388/1887, 19-20-332/1673, 10-11-01/8 BOT CHORD 2-20-388/1887, 19-20-332/1673, 11-11-01/8 BOT CHORD 2-20-388/1887, 19-20-332/1673, 11-11-01/8 BOT CHORD 2-20-388/1887, 19-20-332/1673, 11-14-90/2753, 9-141164/403, 6-14-367/186 NOTES 1) Urbalanced roof live loads have been considered for this design. 	WEBS	2x4 SP No.2 *Except*	9-13:2x3 SPF No.2	20-0-0, Ext	erior(2R) 20-0-0 t	o 27-0-14, International Inter	erior (1) d right				
BRACING TOP CHORD TOP CHORD CTOP CHORD STUCTURE Wood sheathing directly applied, except 2-0-0 oc putitins (4-6-9 max): 6-7. members and forces & MUFRES for reactions shown; Litter DOL=1.60 BOT CHORD 9-6-11 oc bracing: Except: Provide adequate drainage to prevent water ponding. 9-6-11 oc bracing: Except: 9 9-6-11 oc bracing: 2-20 6-0-0 oc bracing: 17-19. 14 I plates are MT20 plates uniters parallel to grain value using MSITP1 1 angle to grain formula. Building designer should verify capacity of bearing surface. REACTIONS (Size) 2-2-241 (LC 11), 10=237 (LC 13), Max Grav 2=1679 (LC 1), 10=237 (LC 13), Max Grav 2=1679 (LC 1), 10=237 (LC 13), Max Grav 2=1679 (LC 1), 10=327 (LC 13), Max Grav 2=1679 (LC 1), 10=327 (LC 13), Max Grav 2=1679 (LC 1), 10=327 (LC 13), Max Grav 2=1679 (LC 1), 10=667 (LC 1), TOP CHORD Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 241 b uplit at joint 2 and 237 lb uplit at joint 2 and 23	SLIDER	2x4 SPF No.3 Left 2x6 SPF No.2 3	3-10-12	exposed ; e	and vertical left ar	nd right expose	ed;C-C for				
 TOP CHORD Structural wood sheathing directly applied. except 2-0-0 oc puritins (4-6-9 max): 6-7. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing: 12-20. BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing: 2-20. BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing: 2-20. BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing: 2-20. BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing: 2-20. BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing: 2-20. BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing: 2-20. BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing: 2-20. BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing: 2-20. BOT CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing: 2-20. BOT CHORD 6-7-1438/313, 1-2-a0/22, 2-4a-2411/322, 4-6	BRACING			members a	Ind forces & MWF	RS for reaction	ons shown;				
 All plates are MT20 plates unless otherwise indicated. All plates are MT20 plates unless otherwise indicated. The Fabrication Tolerance at joint 12 = 16% The Stass has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 241 b uplift at joint 10. This truss has been designed for a 10.0 psf bottom chord. The Fabrication 2002 at the size of the size of the purlin along the top and/or bottom chord. CoAD CASE(S) Standard 	TOP CHORD	Structural wood sheat	hing directly applied	d, 3) Provide ad	equate drainage t	o prevent wat	er ponding.				
 BOT CHORD Rigid celling directly applied or 10-0-0 co bracing. Except: 9-8-11 oc bracing. 2:20 6-0-0 co bracing: 17-19. Strust as been designed for a 10.0 psf bottom chord live load noncoursernt with any other live loads. Portoide mechanical connection (by others) of truss to bearing plate capable of withstanding 241 lb uplift at joint 12. and 237 lb uplift at joint 10. max Grav 2=1679 (LC 1), 10=-237 (LC 13) Max Grav 2=1679 (LC 1), 10=1667 (LC 1) PORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 6-7=-1436/313, 1-2=0/22, 2-4=-2411/322, 4-6=-2006/313, 7-9=-1930/298, 9-10=-308/5378, 10-11-01/8 BOT CHORD 2-20=-358/1887, 19-20332/1679, 11-71-9=-56/1943, 14-16=-68/1505, 13-14=-90/2492, 12-13=-190/2492, 12-13=-190/2492, 12-13=-190/2492, 12-13=-190/2492, 12-13=-190/2492, 12-13=-190/2492, 12-13=-190/2492, 12-13=-190/2492, 12-13=-190/2492, 12-13=-190/2492, 12-13=-190/2492, 12-13=-100/2492,		2-0-0 oc purlins (4-6-9	9 max.): 6-7.	4) All plates a	re MT20 plates u	nless otherwis	e indicated				
 braching, Expl. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. braching, Expl. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. braching expl. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. braching expl. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. provide mechanical connection (by others) of truss to bearing particle concol to youthers) of truss to bearing particle concol accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSi/TP1 1. chord live load nonconcurrent with any other live loads nonconcurent with the 2018 International Partiento	BOT CHORD	Rigid ceiling directly a	pplied or 10-0-0 oc	 5) The Fabric 6) This truss I 	ation Tolerance a	t joint 12 = 16 d for a 10.0 ps	% sf bottom				
 6-0-0 co bracing: 17-19. WEBS 1 Row at midpt 4-16, 9-14, 6-14 using ANS/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 241 lb uplift at joint 10. FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 6-7=-1436/313, 12=0/22, 2-4=-2411/32, 4-6=-200/313, 7-9=-1930/298, 9-10=-3085/378, 10-11=0/18. BOT CHORD 2-20=-358/1887, 19-20=-332/64, 16-17=-365/1943, 14-16=-681/1505, 13-14=-190/2498, 12-13=-190/2498, 12-13=-190/2492, 12-140/2492, 12-140		9-8-11 oc bracing: 2-2	20	chord live I	oad nonconcurrer	nt with any oth	er live load	s.			
 WEBS 1 HOW at Integr 4-16, 9-14, 6-14 REACTIONS (size) 2-0-3-8, Max Horiz 2=314 (LC 11) Max Uplift 2=-241 (LC 12), 10=-237 (LC 13) Max Grav 2=1679 (LC 1), 10=1667 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 6-7=-1436(313, 1-2=0/22, 2-4=-2411/32, 4-6=-2006/313, 7-9=-1930/298, 9-10=-3085/378, 10-11=0/18 BOT CHORD 2-20=-385/487, 19-20=-332/1679, 17-19=-81/0, 17-18=-33/264, 16-17=-365/1943, 14-16=-68/1505, 13-14=-190/2496, 12-13=-190/2492, 10-12=-200/2374 WEBS 6-16=-141/771, 4-16=-543/327, 18-20=0/318, 4-18=-95/162, 9-13-00/2595, 7-14=-95/575, 9-14=-1164/403, 6-14=-367/186 NOTES 1) Unbalanced roof live loads have been considered for this design. 	WEDO	6-0-0 oc bracing: 17-1	9.	 Bearing at using ANS 	joint(s) 10 conside I/TPI 1 angle to gi	ers parallel to rain formula.	graın value Building				
 Max Horiz 2=314 (LC 11) Max Uplift 2=-241 (LC 12), 10=-237 (LC 13) Max Grav 2=1679 (LC 1), 10=1667 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 6-7=-1436/313, 1-2=0/22, 2-4=-2411/322, 4-6=-2006/313, 7-9=-1930/298, 9-10=-3085/378, 10-11=-0/18 BOT CHORD 2-20=-358/1887, 19-20=-332/1679, 17-19=-81/0, 17-18=-33/264, 16-17=-365/1943, 14-16=-68/1505, 13-14=-190/2496, 12-13=-190/2492, 10-12=-200/2374 WEBS 6-16=-14/1771, 4-16=-543/327, 18-20=0/318, 4-18=-95/162, 9-13=0/595, 7-14=-95/575, 9-14=-1164/403, 6-14=-367/186 NOTES 1) Unbalanced roof live loads have been considered for this design. 	REACTIONS	(size) 2=0-3-8 10	-16, 9-14, 6-14)=0-3-8	designer sl	nould verify capac	ity of bearing	surface.				
 Max Uplift 2=-241 (LC 12), 10=-237 (LC 13) Max Grav 2=1679 (LC 1), 10=1667 (LC 1) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 6-7=-1436/313, 1-2=0/22, 2-4=-2411/32, 4-6=-2006/313, 7-9=-1930/298, 9-10=-3085/378, 10-11=0/18 BOT CHORD 2-20=-358/1887, 19-20=-332/1679, 17-19=-81/0, 17-18=-33/264, 16-17=-365/1943, 14-16=-68/1505, 13-14=-190/2496, 12-13=-190/2492, 10-12=-200/2374 WEBS 6-16=-114/771, 4-16=-543/327, 18-20=0/318, 4-18=-95/162, 9-13=0/595, 7-14=-95/575, 9-14=-1164/403, 6-14=-367/186 NOTES 1) Unbalanced roof live loads have been considered for this design. 		Max Horiz 2=314 (LC	11)	 8) Provide me bearing pla 	echanical connect te capable of with	ion (by others standing 241) of truss to lb uplift at				
 9 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. 9 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. 9 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. 9 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. 10 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 9 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. 10 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 9 This truss is design. 9 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard 9 This truss is design. 9 Core and the purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 9 This truss is design. 9 This tru		Max Uplift 2=-241 (LC	12), 10=-237 (LC 1	(3) joint 2 and	237 lb uplift at joi	nt 10.	io apint at				
Tension Tension TOP CHORD 6-7=-1436/313, 1-2=0/22, 2-4=-2411/332, 4-6==2006/313, 7-9=-1930/298, 9-10==3085/378, 10-11=0/18 BOT CHORD 2-20=-358/1887, 19-20=-332/1679, 17-19=-81/0, 17-18=-33/264, 16-17=-365/1943, 14-16=-68/1505, 13-14=-190/2496, 12-13=-190/2492, 10-12=-200/2374 WEBS 6-16=-141/771, 4-16=-543/327, 18-20=0/318, 4-18=-95/162, 9-13=0/595, 7-14==95/575, 9-14=-1164/403, 6-14=-367/186 NOTES 1) Unbalanced roof live loads have been considered for this design.	FORCES	(lb) - Maximum Comp	ression/Maximum	 9) This truss i Internation 	s designed in acc	ordance with the sections PF	the 2018	d			
 10P CHORD 6-/=-1436/313, 1-2=0/22, 2-4=-2411/332, 4-6=-2006/313, 7-9=-1930/298, 9-10=-3085/378, 10-11=0/18 BOT CHORD 2-20=-332/1687, 19-20=-332/1679, 17-19=-81/0, 17-18=-33/264, 16-17=-365/1943, 14-16=-68/1505, 13-14=-190/2496, 12-13=-190/2492, 10-12=-200/2374 WEBS 6-16=-141/771, 4-16=-543/327, 18-20=0/318, 4-18=-95/162, 9-13=-0/595, 7-14=-95/575, 9-14=-1164/403, 6-14=-367/186 NOTES Unbalanced roof live loads have been considered for this design. 		Tension		R802.10.2	and referenced st	tandard ANSI/	TPI 1.	4			ann
9-10=-3086/37, 10-1160/18 Of the offendation of the pullin along the top ald/of BOT CHORD 2-20=-358/1887, 19-20=-332/1679, 17-19=-81/0, 17-18=-33/264, 16-17=-365/1943, 14-16=-68/1505, 13-14=-190/2496, 12-13=-190/2492, 10-12=-200/2374 LOAD CASE(S) Standard WEBS 6-16=-141/771, 4-16=-543/327, 18-20=0/318, 4-18=-95/162, 9-13=0/595, 7-14=-95/575, 9-14=-1164/403, 6-14=-367/186 NATHANIEL NOTES 1) Unbalanced roof live loads have been considered for this design. PE-2022042259	I OP CHORD	6-7=-1436/313, 1-2=0 4-6=-2006/313, 7-9	/22, 2-4=-2411/332 1930/298	, 10) Graphical p	ourlin representati	on does not d	epict the siz	ze		8.0	FMISCO
BOT CHORD 2-20=-358/1887, 19-20=-332/1679, LOAD CASE(S) Standard 17-19=-81/0, 17-18=-33/264, 16-17=-365/1943, 14-16=-68/1505, 13-14=-190/2496, 12-13=-190/2492, 10-12=-200/2374 WEBS 6-16=-141/771, 4-16=-543/327, 18-20=0/318, 4-18=-95/162, 9-13=0/595, 7-14=-95/575, 9-14=-1164/403, 6-14=-367/186 NOTES 1) Unbalanced roof live loads have been considered for this design.		9-10=-3085/378, 10-1	1=0/18	bottom chc	rd.	n along the to	p anu/01			BJE	N.O.S
101-00/001 101-001/2047, 161-17-365/1943, 14-16=-68/1505, 13-14=-190/2496, 12-13=-190/2492, 10-12=-200/2374 WEBS 6-16=-141/1771, 4-16=-543/327, 18-20=0/318, 4-18=-95/162, 9-13=0/595, 7-14=-95/575, 9-14=-1164/403, 6-14=-367/186 NOTES 1) Unbalanced roof live loads have been considered for this design.	BOT CHORD	2-20=-358/1887, 19-2	0=-332/1679, 33/264	LOAD CASE(S	5) Standard					AS NAT	THANIEL CEN
13-14=-190/2496, 12-13=-190/2492, 10-12=-200/2374 WEBS 6-16=-141/771, 4-16=-543/327, 18-20=0/318, 4-18=-95/162, 9-13=0/595, 7-14=-95/575, 9-14=-1164/403, 6-14=-367/186 NOTES 1) Unbalanced roof live loads have been considered for this design.		16-17=-365/1943, 14-	16=-68/1505,						4	hal in	FOX
WEBS 6-16=-141/771, 4-16=-543/327, 18-20=0/318, 4-18=-95/162, 9-13=0/595, 7-14=-95/575, 9-14=-1164/403, 6-14=-367/186 NOTES 1) Unbalanced roof live loads have been considered for this design.		13-14=-190/2496, 12-	13=-190/2492,						E C	MH	1 238
4-18=-95/162, 9-13=0/595, 7-14=-95/575, 9-14=-1164/403, 6-14=-367/186 NOTES 1) Unbalanced roof live loads have been considered for this design.	WEBS	10-12=-200/2374 6-16=-141/771. 4-16=	-543/327, 18-20=0/	318,						Alkin	11 That
9-14=-1164/403, 6-14=-367/186 NOTES 1) Unbalanced roof live loads have been considered for this design. Note: 1 - 20 - 2022 Note: 1 - 202	-	4-18=-95/162, 9-13=0	/595, 7-14=-95/575	,						and make	MBER U
1) Unbalanced roof live loads have been considered for this design.	NOTES	9-14=-1164/403, 6-14	=-367/186							W PE-20	522042259 AB
this design.	1) Unbalance	ed roof live loads have b	een considered for							Acse-	TNO'S
	this design	1.								AP101	VAL EL
											roh 21 2022

16023 Swingley Ridge Rd Chesterfield, MO 63017

			Truss Type		011/	Plv	Roof Cab	ev Crook Lot	12	
DEVELORM	ENT SERVICES	s S	Diggyback Page			1	1000 - 000	Cy DIECK LUL	12	157499586
LEE'S SUM	MIT, MISSOUR		Piggyback Base	Burn 0.00.0 New 10	2022 D=1 1		Job Refere	ence (optional)	bu Mor 20 45 47 11	Deer d
04/20/20	23 4:45:54	4 4		ID:qpbfqY5sNEJZV	2022 Print: 8. DNCeVblw7zq	630 S Nov 1 pOr-RfC?Ps	9 2022 Millek B70Hq3NSgPo	Industries, Inc. 1 qnL8w3uITXbGK	hu Mar 30 15:47:11 (WrCDoi7J4zJC?f	Page: 1
	-	0-10-8 <u>7-5-5</u> 0-10-8 7-5-5	<u> 15-7-</u> 8-1-1	- <u>0 20-4</u> 1 4-9-	- <u>15</u> 15	<u>28-6-1</u> 8-1-1	4 28-8 4 0-2	-13 <u>36-0-</u> -0 7-3-3	0 36-10-8 3 0-10-8	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	25 1 2 4x6=	8 ¹² 5x8 * 26 3 24 24 24 4x6= 4x6= 4x6=	4 5 4 5 4 5 4 5 6 16 16 16 20 5 5 5 5 5 5 5 5 17 5 5 5 19 10 10 10 5 5 5 5 17 5 19 10 10 10 10 10 10 10 10 10 10	5 5 14 15 14 18 5 14 18 5 14 18 5 14 18 5 14 18 5 14 18 5 14 18 5 10 11 5 10 11 5 10 11 5 10 11 5 10 10 10 10 10 10 10 10 10 10 10 10 10	- 10 7x8= " 25-2-0 4-7-5	5x 27 9 5x8= 5x4 3x 28-67 3-4-70_1	⁸ ≈ 6 28 8 u 4 u -11 <u>36-0-1</u>	0 4x6=	2-0-0
Scale = 1:86.7		7-4-5	4-7-11	0-1-12 0-2-8	8 0-4-15 2-0-0 0-1-12	4-7-5	3-4-7 0-1	-4 7-4-5)	
Plate Offsets (X,	, Y): [2:Edge,0-0-14]], [3:0-4-0,0-3-4], [4:0)-3-0,0-2-3], [6:0-4-0,0-3-	-4], [7:Edge,0-0-1-4],	12:Edge,0-3	8-8], [14:0-2	2-0,0-0-8], [1	8:Edge,0-2-8],	, [20:0-5-8,0-2-12], [24:0-2-8,0-2-0]
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.65 Vert(1 0.65 Vert(1 0.50 Horz(- _L) -0. CT) -0. CT) 0.	in (loc) 21 19 39 19 26 7	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 MT18HS Weight: 252 lb	GRIP 197/144 244/190 FT = 20%
TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS (s M FORCES TOP CHORD BOT CHORD BOT CHORD	2x4 SP 2400F 2.0E * No.2 2x4 SP No.2 *Except 2400F 2.0E, 18-14:2 SPF No.2, 10-7,23-2 2x4 SP No.2 *Except 3-24,6-9,15-17,10-11 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea 4-2-0 oc purlins, exc 2-0-0 oc purli	*Except* 4-5:2x4 SP *Except* 4-5:2x4 SP x3 SPF No.2, 12-10: :2x6 SPF No.2 t2-10: :2x6 SPF No.2 t* 1:2x3 SPF No.2 athing directly applie tept -7 max.): 4-5. applied or 10-0-0 oc -19. 3-20, 4-15, 6-13 7=0-3-8 C 11) C 12), 7=-237 (LC 13 C 1), 7=1681 (LC 1) pression/Maximum //319, 4-5=-1566/304 0/21 16=-77/1720, .1/813, 18-19=-46/1, 8/1580, 13-14=-7/15 1-12=-82/989, I=-134/1852, -244/1854/1854, -244/1854/1854, -244/1854/1854, -244/1854/1854, -244/1854/1854, -244/1854/1854, -244/1854/1854, -244/1854/1854, -244/1854/1854, -244/1854/1854/1854, -244/1854/1854, -244/1854/1	 NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=91mpf d or Ke=1.00; Ca exterior zone Interior (1) 4-20-4-15, Extt 27-5-13 to 36 exposed; en members an Lumber DOL 3) Provide adec 4) All plates are chord live loa 5) This truss ha chord live loa 6) Provide mec bearing plate joint 7 and 22; 7) This truss is International R802.10.2 ar 34, 8) Graphical pu or the orienta bottom chord 	20-22=0/133, 4-20=- 3-22=-150/249, 4-15- 3-24=-486/217, 6-13= 5-11=-110/141, 13-15 5-15=-79/613, 20-24= 15-17=-1734/8, 10-11 roof live loads have the 7-16; Vult=115mph (1; TCDI=6.0psf; BCE t. II; Exp C; Enclosec e and C-C Exterior(22 and C-C Exterior(22 -1-8 to 15-7-0, Exterior erior(2R) 20-4-15 to 2 6-10-8 zone; cantilev di vertical left and rigid d forces & MWFRS f =1.60 plate grip DOL quate drainage to pre e MT20 plates unless us been designed for ad nonconcurrent with hanical connection (t e capable of withstam 36 lb uplift at joint 2. designed in accordar Residential Code se and referenced standa r/lin representation dr ation of the purlin alon 1.		-11=0/309, ered for ust) =35ft; envelope) 4-1-8, 0 to rior (1) ght C-C for shown; onding. dicated. ottom ive loads. truss to uplift at 2018 11.1 and 1. ot the size id/or		-	STATE OF M STATE OF M NATHA	AISSOURIEL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 31,2023

			TION										
Provide Provid	S NOTED O	N PLANS REV	IEW		Truss T	уре		Qty	Ply	Roof - Col	bey Creek Lo	ot 12	
<page-header></page-header>	PE2361-QBN		ES DI		Piggyb	ack Base		6	1	Job Refer	ence (option	al)	157499587
TO LOCUE VICUS TO PROVE MUMAUAU AUTOR AUT	Premier Building	Supply (Springhill, KS)	Spring H	ills, KS - 66083	,		Run: 8.63 S N	lov 19 2022 Prin	t: 8.630 S No	v 19 2022 MiTek	Industries, Ind	c. Thu Mar 30 15:4	7:11 Page: 1
Image: space of the state is the space of the s	07/20/20	520 4.40.0	74				ID:FWVNPNA.	2DB HARZIVVNJW	IZQDVC-RIC?	PSB70Hq3NSgF	rqnL8w3u11Xb	GKWICD017J42JC	. 11
Number Number Number Number Number Number 0 <t< th=""><th></th><th> </th><th><u>7-1</u> 7-1</th><th>-10 -10</th><th>+</th><th><u>15-3-8</u> 8-1-14</th><th><u> </u></th><th>$\frac{6-12}{3-4}$ 20-1-7</th><th><u>24-11-12</u> 4-10-5</th><th>28-3-1</th><th>1</th><th>35-8-8 7-4-13</th><th></th></t<>		 	<u>7-1</u> 7-1	-10 -10	+	<u>15-3-8</u> 8-1-14	<u> </u>	$\frac{6-12}{3-4}$ 20-1-7	<u>24-11-12</u> 4-10-5	28-3-1	1	35-8-8 7-4-13	
Image: specific production of the specific productio				10		0		3x6=					0-10-8
Image: State Stat	-	-					6x6=	3x4 I					
 Add P Mod P (1) and P (2) and P (Ţ	- @ 7					∞ 3 	45 					
Image: product of the state of the stat	÷	- 0			10					4.0			
Image: Strate 1/3 Im					81					4x6 x			
9 9					6x6 🕫						5x5 🗙		
To CHORE Services and the state have been considered from the state st	3-14	11-3		2							7		
Under the state of th	11-3			20					\$/				
Image: space of the s			6-	8-1								23	
figure 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1		MT18HS 3	x10 11									6-11-9	
L L <thl< th=""> <thl< th=""> <thl< th=""></thl<></thl<></thl<>			ດ ⊽⊤							1 /3		-9 -19	
1.5x4 // 306 3x4 306 4x6 1.5x4 // 4x6 1.5x4 // 306 1.5x4 // 306 4x6 1.5x4 // 4x6 1.5x4 // 4x6 1.5x4 // 306 1.5x1 // 2 1.9x6 // 4x6 224-108 224-3 325-83 2x84 - 1.72 Pine Offenen (C, Y): (1:0-5-0.0-0-12) (2:0-30.Eggl) [3:0-3-0.0-23] (7:0-2-8.0-3-4) (10E3/ge.0-3-8] Execution (C, Y): (1:0-5-0.0-0-12) (2:0-30.Eggl) [3:0-3-0.0-23] (7:0-2-8.0-3-4) (10E3/ge.0-3-8] Loading 2x85 Pine GPDont (C, Y): (1:0-5-0.0-0-12) (2:0-30.Eggl) [3:0-3-0.0-23] (7:0-2-8.0-3-4) (10E3/ge.0-3-8] Execution (C, Y): (1:0-5-10.0-12) (2:0-30.Eggl) [3:0-3-0.0-23] (7:0-2-8.0-3-4) (1:0-2/9) (1:0	\perp		2		8 18	17	16	15 .	<u>∓</u> ⊥ 3¥4	12 💾 🔤	11	0-2	
Line Total 15-1:12 19-8:8 Total 244-10.8 28.44-3 35-8:8 Scient=1:74 7-0-13 8-0+15 4-6-12 5-2:0 3-5-11 7-4-5 Pate Offsets (X, Y): [1:0-50.0-0:12] [2:0-30.Edga] [3:0-30.0-2:3]; [7:0-28.0-3-4]; [1:0-Edga.0-3:8]; Exactly (Construction of the pate of the pote of the				1	.5x4 I	3x6=	3x4=	3x6=	x6=	4x6=	1.5x4 I		4x6 II
State 1:74 7-013 8-0-15 4-6-12 5-20 3-5-11 7-4-5 Prise Offsets (X, Y): [1-0-6-0.0-0-12] [2-0-30.0Edge] [3:0-3-0.0-2.3] [7:0-28.0-3-4] [10E dge.0-3-8] Image: Constraint of the constrainth of the constraint of the constrainthe constraint of the const		L	7-0)-13	4	15-1-12	19-	·8-8	24-10-8	28-4-3		35-8-8	
Plane Offsets (X, Y): [1:0-0.0.0-12], [2:0-3-0.0-2-3], [7:0-2-0.0-3], [1:0-2-0.0-3], [1:0-2-0.0-3], [1:0-16-18, 3-99, 10:0] PLATES: GRIF Ladding (pr)	Scale = 1:74	1	7-0	-13	1	8-0-15	4-6	-12	5-2-0	3-5-11	I	7-4-5	Ţ
Loading TCUL (root) Yes Specing Local (root) 2-0-0 CSI DEF In In In Pitter Sign Out	Plate Offsets (2	K, Y): [1:0-5-0,0-0-1	2], [2:0-	3-0,Edge], [3	:0-3-0,0-2-3	3], [7:0-2-8,0-3	-4], [10:Edge,0-3	3-8]				-	
Incl. (nob) 25.0 Plate sign DU-L 1.13 IC 0.03 With 300 1.15 IC 0.03 With 300 WIL2 1.01 WIL2 1.01 <th< th=""><th>Loading</th><th>(psf)</th><th>Spac</th><th>cing</th><th>2-0-0</th><th></th><th>CSI</th><th></th><th>EFL</th><th>in (loc)</th><th>l/defl L/</th><th></th><th>GRIP</th></th<>	Loading	(psf)	Spac	cing	2-0-0		CSI		EFL	in (loc)	l/defl L/		GRIP
BCLL 0.0 Rep Stress Incr YES WB 0.56 Hor2(CT) 0.03 10 n/a n/a ECDL 10.0 Code IRC2C018/TPI2014 Watrix-S Hor2(CT) -0.03 10 n/a n/a ECDL 10.0 Code IRC2C018/TPI2014 Watrix-S Hor2(CT) -0.03 10 n/a n/a EDCL 0.00 K4 SP No.2 Except 12:18, 22:X3 SPF No.2 X3250201200000000000000000000000000000000	TCDL	10.0	Lum	ber DOL	1.15		BC	0.57 Ve	ert(CT)	-0.21 16-18	>999 18	0 MT18HS	244/190
 LUMBER TOP CHORD 2x4 SP No.2 ESC 45 PN 0.2 "Except" 6-12:2x3 SPF No.2 WEBS 2x4 SP No.2 "Except" 6-12:2x3 SPF No.2 BRACINO TOP CHORD Structural wood sheathing directly applied, except end verticals, and 2x-0 oc purins (H0-0-0 max): 3-5. BOT CHORD Structural wood sheathing directly applied, except end verticals, and 2x-0 oc purins (H0-0-0 max): 3-5. BOT CHORD Structural wood sheathing directly applied, except end verticals, and 2x-0 oc purins (H0-0-0 max): 3-5. BOT CHORD Rigid celling directly applied, except end verticals, and 2x-0 oc purins (H0-0-0 max): 3-5. BOT CHORD Rigid celling directly applied, except end verticals, and 2x-0 oc purins (H1-0-0 max): 3-5. BOT CHORD Rigid celling directly applied, except end verticals, and 2x-0 oc purins (H1-0-0 max): 3-5. BOT CHORD Rigid celling directly applied, except end verticals, and 2x-0 oc purins (H1-0-0 max): 3-5. BOT CHORD Rigid celling directly applied, except end verticals, and 2x-0 oc purins (H1-0-0 max): 3-5. BOT CHORD Rigid celling directly applied of 5-1.11 co Max Horiz 19-320 (LC 8) Max Horiz 19-320 (LC 18) Max Horiz 19-	BCLL BCDL	0.0 10.0	Rep Code	Stress Incr	YES IRC2018	3/TPI2014	WB Matrix-S	0.56 H	orz(CT)	-0.03 10	n/a n/	a Weight: 211	lb FT = 20%
this design.	LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD 1 Row at midpt WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance	2x4 SP No.2 2x4 SP No.2 *Exce 2x4 SP No.2 *Exce SPF No.2 Structural wood sh except end vertica (10-0-0 max.): 3-5 Rigid ceiling direct bracing. Except: 4-14 1 Row at midpt (size) 10=0-3- Mechan Max Horiz 19=-32C Max Uplift 10=-272 19=-185 Max Grav 10=650 19=761 (lb) - Maximum Co Tension 1-3=-935/333, 3-4: 5-6=-22/464, 6-8= 1-19=-670/220, 8- 18-19=-280/752, 1 15-16=-122/159, 1 4-14=-517/6, 13-1: 12-13=-162/430, 6 11-12=-153/407, 1 6-14=-619/241, 3- 2-16=-698/308, 3- 7-12=-491/201, 7-	ept* 6-12 ept* 2-18 meathing ls, and 2 fly applie 6-14, 2 8, 15=0- ical (LC 8) (LC 13) (LC 25) (LC 25) mpressie =-32/381 6-27/419 10=-591/ 6-18=-27 4-15=-11 4=-46/17 -13=-12(0-11=-11) 16=-90/5 15=-933 11=0/27(re been o	2:2x3 SPF No 3;12-7,7-11:2; directly appli -0-0 oc purlir d or 5-1-11 o 2-16, 3-15 3-8, 19=), 15=-43 (LC), 15=-43 (LC), 15=1922 (LC on/Maximum , 4-5=-32/36;), 8-9=0/40, 321 79/752, 055/76, 1, 0/454, 53/407 44, (145, 2-18=0/) considered fo	2) .2 (3 ed, ls c 3) 4) 5) 6) 7) 12), 8) C 1), 9) 3, 10 LC 3005, r	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5- 20-4-15, Ext 27-5-13 to 33 exposed ; en members an Lumber DOL Provide aded All plates are The Fabricat This truss ha chord live loa Refer to girdd Provide mec bearing plate joint 10, 189 15. This truss is International R802.10.2 ar) Graphical pu or the orientat bottom chorc DAD CASE(S)	7-16, Vull=113 ; TCDL=6.0psf. t. II; Exp C; Enc e and C-C Exteri 5-4 to 15-7-0, E erior(2R) 20-4-1 5-10-8 zone; can d vertical left ar d forces & MWF =1.60 plate grip quate drainage to MT20 plates un ion Tolerance a is been designe d nonconcurrer er(s) for truss to hanical connect e capable of with lb uplift at joint designed in accc Residential Coon d referenced si rlin representati ation of the purli 3. Standard	In (SSECUTIN BCDL=6.0psi losed; MWFR; or(2E) 0-5-4 to ixterior(2E) 15 5 to 27-5-13, 1 5 to 27-5-13, 1 tilever left and d right expose rRS for reactio DDL=1.60 o prevent wate less otherwis t joint 8 = 8% d for a 10.0 ps t with any oth truss connect ion (by others) istanding 272 19 and 43 lb u ordance with t de sections R5 andard ANSI/ on does not do n along the top	(is h=35ft; is h=35ft; is (envelope b 5-5-4, -7-0 to nterior (1) d right ed;C-C for ns shown; er ponding. e indicated. if bottom er live loads ions. of truss to b uplift at joint he 2018 02.11.1 and TPI 1. epict the siz b and/or) 5. d e		STATE OF STATE OF NAT	F MISSOLUT HANIEL FOX
March 31,2023	this design											SSION	VAL ENUIS
												Ma	rch 31,2023

16023 Swingley Ridge Rd Chesterfield, MO 63017

EASE FO	R CONSTRUCTI	өн								
		W	Truss Type		Qty	Ply	Roof - Col	bey Creek L	ot 12.	157499589
-230145101 EE'S SUN	MIT, MISSOURI		Piggyback Base		2	1	Job Refer	ence (optior	nal)	-
	0234:45:54	oring Hills, KS - 66083,		Run: 8.63 S Nov 1 ID:umCNgxfjnvdQv	9 2022 Print v3QlyPbR3tz	:: 8.630 S No zqq9A-RfC?F	v 19 2022 MiTek PsB70Hq3NSgPo	Industries, Ir nL8w3uITXb	ic. Thu Mar 30 15 GKWrCDoi7J4zJ	6:47:12 Page: 1 C?f
		7- 6 11 11 7-0	-2-1)-10 15 2 8	10.9.9	20-1-7	24 10 4	29 2 15	8-4-6	25 9 9	36-7-0
	├ ───	6-11-11 0-0	⊪ 13-3-8)-15 8-1-7	4-5-0	0-4-15	4-8-13	3-4-11	 0-1-7	7-4-2	0-10-8
		0-	-1-8		3x6=					
	5			6×6=	1.5x4 I					
T					56 ⊠					
			12				3×4.			
			814				7			
		MT1	8HS 9x18 =				× ,	5x8 _⋧ 1		
-14	11-3	2						>_8		
1-3	10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	23		1/ 1/	2				3x4	
						1			²² 10	
		6-8-1			$\parallel \parallel $				3x4	*
									181	
\perp			9 18	17		15		13		
	MT18HS 3x1	0 II 1	.5x4 u 3x6=	3x4=	16 3x8=	3x6=	14 3x4=	1.5x4 II		3x6 II
		7-0-13	15-1-12	19-6-12	19-8-8	24-10-4	28-4-3		35-8-8	
Scale = 1:75.1		7-0-13	8-0-15	4-5-0	0-1-12	5-1-12	3-5-15	1	7-4-5	•
ate Offsets ()	X, Y): [4:0-3-0,0-2-3], [9:0-4-0,0-3-0], [11:0	0-3-9,0-0-15], [20:0-5-8,0)-1-8]						
bading	(psf)	Spacing	2-0-0	CSI	DE	FL	in (loc)	l/defl L	/d PLATES	GRIP
CDL (root)	25.0 10.0	Lumber DOL	1.15	BC	0.66 Ve 0.51 Ve	ert(LL) ert(CT)	-0.10 17-19 -0.21 17-19	>999 24	40 MT20 80 MT18HS	244/190 244/190
CLL CDI	0.0	Rep Stress Incr	YES IRC2018/TPI2014	WB Matrix-S	0.82 Ho	orz(CT)	0.02 11	n/a r	Veight [,] 2	18 lb FT = 20%
			2) Wind: ASCE	7-16: Vult=115mph	(3-second	aust)			110igini 2	
OP CHORD	2x4 SP 2400F 2.0E *	Except* 4-6:2x4 SP	Vasd=91mp	h; TCDL=6.0psf; BC	DL=6.0psf	; h=35ft;				
OT CHORD	No.2, 1-2:2x4 SP 165 2x4 SP No.2	0F 1.5E	exterior zone	e and C-C Exterior(2	E) 0-1-12 1	to 5-1-12,	;)			
/EBS	2x4 SP No.2 *Except 2-19.14-8.9-13.14-7:2	* 2x3 SPF No.2	Interior (1) 5 20-1-7, Exte	-1-12 to 15-3-8, Externation (2R) 20-1-7 to 27	erior(2E) 15 '-2-5, Interi	5-3-8 to ior (1) 27-2	-5			
LIDER	Right 2x4 SP No.2	4-4-8	to 36-7-0 zo	ne; cantilever left an	d right exp	osed; end				
RACING OP CHORD	Structural wood shea	thing directly applie	d or forces & MW	/FRS for reactions s	hown; Lum	bers and				
	5-0-13 oc purlins, ex	cept end verticals, a	and DOL=1.60 p 3) Provide ade	late grip DOL=1.60 quate drainage to pr	event wate	er ponding.				
OT CHORD	Rigid ceiling directly a	applied or 6-0-0 oc	4) All plates are	MT20 plates unles	s otherwise	e indicated.				
/EBS	bracing. 1 Row at midpt 3	3-17, 4-16, 7-16, 5-1	16 chord live lo	ad nonconcurrent wi	th any othe	er live loads	5.			
EACTIONS	(size) 11=0-3-8, Mochanica	14=0-3-8, 16=0-3-8,	, 20= 6) Refer to gird 7) Provide med	er(s) for truss to trus	s connecti by others)	ons. of truss to				
	Max Horiz 20=-313 (L	.C 8)	bearing plate	e capable of withstar	nding 227 l I 1	b uplift at				
	Max Uplift 11=-266 (L Max Grav 11=614 (L	.C 13), 20=-227 (LC C 26), 14=253 (LC 2	(12) 8) This truss is	designed in accorda	ance with th	he 2018				
00050	16=1775 (I	_C 1), 20=741 (LC 1	1) R802.10.2 a	nd referenced stand	ard ANSI/1	02.11.1 and FPI 1.				
URCES	Tension	Jession/waximum	 Graphical pu or the orient 	Irlin representation of the purlin alo	loes not de	epict the siz and/or	e			
OP CHORD	4-5=-23/348, 5-6=-28 6-7=-20/413, 7-8=-16	/337, 1-20=-669/26 2/380, 9-11=-534/3	8, bottom chore 23, LOAD CASE(S)	d. Standard	•				A	and
	11-12=0/16, 1-4=-856	6/310 0298/768	LUAD CASE(S)	Standard					Fre	F MISS
OTCHORD	16-17=-176/235, 14-1	19=-296/708, 16=-157/109,							AN	
/EBS	13-14=-113/330, 11-1 4-17=-59/493, 3-17=-	3=-112/328 630/258, 3-19=0/31	18,					2	9 S/ N	FOX
	2-3=-588/286, 8-14=- 8-9=-328/265 4-16-	414/146, 8-13=0/26 954/109	68,						4 11	11 -
	7-16=-515/282, 5-16=	-453/57, 7-14=-94/	219					Ø	athan	WEBER STAT
								· · · · ·		
IOTES) Unbalance	d roof live loads have h	peen considered for						, (j	PE-	2022042259 / 24
IOTES) Unbalance this design	ed roof live loads have b	been considered for						,	PE-	2022042259 五月

ELEASE FO	R CONSTRU			Truss Type		Qtv		Ply	Roof - Col	bey Cree	ek Lot 1	2		
PE25EL29RA	IENT SERVE	CES		Piggyback Base	Structural Gable	1		1	lok D-f-	,	tionell		157	499590
Premier Building	Supply (Springhill	KS)_Spring	lills, KS - 66083,		Run: 8.63 S Nov 1	19 2022 F	Print: 8.63	30 S Nov 1	9 2022 MiTek	Industrie	s, Inc. T	hu Mar 30 15:4	47:13	Page: 1
04/20/20	023 4:45	54	J		ID:umCNgxfjnvdQv	w3QlyPbl	R3tzqq9/ 20-4-15	A-RfC?PsE	70Hq3NSgPc	nL8w3ul⁻	TXbGKV	VrCDoi7J4zJC	?f	
		-0-10-8	7-5-2	. 1	5-7-0 . 19	19 19 9-5-12	9-10-4	,	28-8-13			36-0-0	36-10-8	3
		0-10-8	7-5-2	8	-1-14 3-	10-11 C)-4-8		8-3-14	ł		7-3-3	0-10-8	
	<u> </u>				6x6=		0-0-11 6x6=	•		00				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2 3x6	12x12 \$ 10x10 \$ 666 45 666 45 55 54 67 3 55 54 67 3	8^{12} 1 $5x5 \neq 10^{9}$ $7^{$	9 14 15 13 12 14 15 12 13 14 15 12 14 15 15 12 14 15 15 12 14 15 15 12 14 15 15 12 14 15 16 12 14 15 16 12 14 15 16 12 14 15 16 12 14 15 16 14 15 16 16 14 15 16 16 15 16 16 16 15 16 16 16 15 16 16 16 16 17 16 16 17 18 17 18 18 3x8 3x4 3x4 35 3x8 3x4 3x4	16 1 3x4n 41 41 41 41 42 4103x41 4x 40 40 40 40 40 40 40 40 40 40 40 40 40	1719 211 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	3 24 3 3 4 27 27 27 27 39 3x6=	6 3x4 = 28 30 3x4 = 31 4 = 31 29 3 38	3×6		3x4 34 34	на 35 3х8 ш	6
		⊢	<u>7-4-5</u> 7-4-5		5-5-4 19 0-15 4	<u>9-10-4</u> 4-5-0		<u>25-1-12</u> 5-3-8	27-8-	-8	:	<u>36-0-0</u> 8-3-8		
Scale = 1:79.2	X Y)· [2·0-2-12]	Edgel [24	0-5-0 0-2-81 14-2	-7-3 Edgel [8:0-2-8 0	-3-0] [14.0-3-0 0-2-3]	[21.0-3	3-4 0-2-4	6] [32.0-4		35.0-3-1	3 Edge			
	Λ, τ <i>γ</i> . [2.0-0-13,]	, [3.		, 0,2090j, [0.0-2-0,0	oo	, _L 3	,, U-2-0	oj, [02.0-0	, _,_uyej, [d		, Luye		~	
Loading TCLL (roof)	(p: 25	st) Sp 5.0 Pla	acing ate Grip DOL	3-0-0 1.15	TC	0.78	DEFL Vert(LL	_) -0.	ın (loc) 18 35-37	ı/defl >719	L/d 240	PLATES MT20	GRI 197/	. 144
TCDL BCU	10).0 Lui	mber DOL	1.15 NO	BC WB	0.96	Vert(C	T) -0.	38 35-37 03 35	>339 n/a	180 n/a			
BCDL	10	0.0 Co	de	IRC2018/TPI2014	Matrix-S	0.20	1012(0			n/a	iva .	Weight: 32	5 lb _FT =	20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER	2x4 SP 2400F 2 No.2, 41-32:2x6 2x4 SP No.2 *E No.2 2x3 SPF No.2 * 58-17,22-23,61 Left 2x6 SPF N	2.0E *Exc 5 SPF No. 5xcept* 32 Except* -13:2x4 S 0.2 4-4	ept* 14-21:2x4 S .2 2-37,8-51:2x3 SP P No.2 -8, Right 2x4 SP	P	Max Grav 2=353 (L0 38=116 (l 42=501 (l 44=507 (l 46=170 (l 51=188 (l 53=181 (l 55=197 (l	C 20), 3 LC 3), 4 LC 1), 4 LC 1), 4 LC 25), 4 LC 25), 4 LC 25), 5 LC 1), 5 LC 25), 4 LC 25), 4	5=1347 0=487 (3=119 (5=243 (48=180 50=177 2=186 (54=186	(LC 1), (LC 3), (LC 25), (LC 1), (LC 25), (LC 1), (LC 1), (LC 1), (LC 25),	WEBS		14-44= 59-60= 56-57= 18-58= 32-37= 64-65= 62-63= 44-61= 42-57=	=-444/26, 14 =-183/339, 5 =-166/340, 5 =-209/418, 1 =0/445, 8-51 =-68/114, 63 =-68/113, 61 =-70/116, 16 =-181/82, 1	-59=-226/4 6-60=-211/ 7-58=-216/ 9-20=-103/ =-148/19, { -64=-68/11 -62=-67/11 -56=-158/7 -58=-78/40	84, 455, 479, 19, 3-65=-68/113, 3, 3, 8,
BRACING	No.2 4-11-3			FORCES	(lb) - Maximum Com Tension	npressio	n/Maxir	num			22-23 26-27	=-104/30, 24 =-115/82, 28	-25=-92/56 -29=-125/8	, 6,
BOT CHORD	2-0-0 oc purlins (Switched from Rigid ceiling dir bracing, Exce 10-0-0 oc braci	s (5-10-1 r sheeted: rectly appl pt: ng: 40-41	max.) Spacing > 2-0-0) lied or 6-0-0 oc ,38-40,37-38,35-	TOP CHORD 37.	1-2=0/24, 2-3=-413/ 4-6=-340/343, 6-7=- 9-10=-266/325, 10-1 11-12=-237/407, 12 13-14=-224/479, 14 15-16=-296/472, 16	/381, 3-4 -308/332 11=-252 -13=-21 -15=-29 -1720	4=-363/3 2, 7-9=-3 /366, 4/446, 8/473, 7/472	360, 295/345,			30-31= 43-60= 45-61= 46-62= 48-63= 49-64=	=-45/49, 15-5 =-142/49, 13 =-207/92, 12 =-136/103, 1 =-148/105, 1 =-150/107. 9	 59=-173/56 -61=-210/9 -62=-133/1 1-63=-149/ 0-64=-150/ -65=-144/8	, 7, 02, 104, 106, 2,
		22-2	23, 13-61		17-19=-297/472, 19	-21=-29	6/467,				50-65= 6-53=-	=-144/81, 7-5	52=-150/85 54=-175/12	, 9.
JOINTS	1 Brace at Jt(s) 21, 56, 58, 22, 31, 59, 62, 64	: 14, 27,			21-23=-290/474, 23 24-26=-341/456, 26 28-30=-350/336, 30	-24=-33 -28=-34 -32=-43	5/502, 1/397, 2/306,		NOTES	;	3-55=-	150/116	5 - 17 5/12	σ,
REACTIONS	(size) 2=20 40=0 44=2 51=2 54=2 Max Horiz 2=-4 Max Uplift 2=-2 42=- 44=- 46=- 51=- 53=- 55=-	-0-0, 35=)-3-8, 42= 20-0-0, 45 20-0-0, 45 20-0-0, 52 20-0-0, 55 58 (LC 10 02 (LC 8) 180 (LC 8) 180 (LC 12 33 (LC 12) 37 (LC 9) 90 (LC 12 84 (LC 12)	0-3-8, 38=0-3-8, 20-0-0, 43=20-0- =20-0-0, 50=20-(=20-0-0, 50=20-(=20-0-0, 53=20-(=20-0-0))), 35=-382 (LC 13), 43=-76 (LC 9), 45=-65 (LC 9), 2, 50=-58 (LC 9), 52=-61 (LC 12), 2, 54=-108 (LC 1))	0,)-0,)-0,)-0, BOT CHORD),), 2),	32-53=1525/500, 3 18-41=-1131/446, 1 20-22=-1183/508, 2 25-27=-1134/535, 2 29-31=-1002/443, 3 2-55=-136/196, 54-5 53-54=-136/206, 50 49-50=-136/206, 48 46-48=-136/206, 43 44-45=-136/206, 43 42-43=-148/293, 41 40-41=-179/1106, 3 37-38=-179/1106, 3	3-30=0/. 8-20=-1 2-25=-1 1-32=-9 55=-137. -53=-13 -51=-13 -49=-13 -44=-14 -42=-14 8-40=-1 5-37=-1	24, 211/48(185/56(070/49(77/427 /203, 6/206, 6/206, 6/206, 6/206, 8/293, 8/293, 79/1106 78/1108	0, 6, 0, 6, 8	1) Unt this	balanceo design.		NATE O STE O STE O NATE PE-20 STOT	F MIS F MIS THANIEL FOX DEBER 02204225 NAL E	South and the second se

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEXELORPMENT SERVICES LEE'S SUMMIT, MISSOURI Premier Building Supply (Springhill, KS), Spring 04/20/2023 4:45:55

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 15-7-0, Exterior(2E) 15-7-0 to 20-4-15, Exterior(2R) 20-4-15 to 27-7-14, Interior (1) 27-7-14 to 36-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Provide adequate drainage to prevent water ponding.
 All plates are 1.5x4 MT20 unless otherwise indicated.
- All plates are 1.5x4 MT20 unless
 Gable studs spaced at 1-4-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 202 lb uplift at
- joint 2, 382 lb uplift at joint 35, 18 lb uplift at joint 44, 37 lb uplift at joint 51, 180 lb uplift at joint 42, 76 lb uplift at joint 43, 65 lb uplift at joint 45, 79 lb uplift at joint 46, 81 lb uplift at joint 48, 83 lb uplift at joint 49, 58 lb uplift at joint 50, 61 lb uplift at joint 52, 90 lb uplift at joint 53, 108 lb uplift at joint 54 and 84 lb uplift at joint 55.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Truss Type	Qty	Ply	Roof - Cobey Creek Lot 12	
Piggyback Base Structural Gable	1	1	Job Reference (optional)	157499590

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Thu Mar 30 15:47:13 ID:umCNgxfjnvdQw3QlyPbR3tzqq9A-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 2

RE ASE FOR CONST NICTIO NOTED ON PLANS REVIEW A KELOBMENT SERVICES S SUMMIT MIT, MISSOURI Supply (Springhill, KS), Spring 023 4:45:55

				L			16-	7-0						
Scale = 1:46.3	X X), [2.0	2 12 Edge	[40:0 2 42 Edge]											
	A, T). [2.0	-3-13,Euge	, [10.0-3-13,⊏uge]											
Loading TCLL (roof) TCDL BCLL BCDI		(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	3-0-0 1.15 1.15 NO	018/TPI2014	CSI TC BC WB Matrix-S	0.78 0.98 0.93	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.29 0.23 0.01	(loc) 27-28 27-28 16	l/defl >287 >362 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
DODL		10.0	Code	11(02	010/11/2014	Width-0							Weight. 91 lb	11 = 2070
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N 2x3 SPF Left 2x4 S 1-6-5 2-0-0 oc (Switcher Rigid ceil	lo.2 lo.2 No.2 SP No.2 1 purlins (6-0 d from shee ing directly	-6-5, Right 2x4 SF -0 max.) ted: Spacing > 2-0 applied or 5-10-11	9 No.2 9-0). 00	BOT CHORD	2-29=-348/ 27-28=-348 25-26=-348 20-21=-348 18-19=-348 9-24=-1122 7-26=-126/ 4-29=-51/7 11-21=-163	394, 28-29=-34 3/394, 26-27=-3 3/394, 24-25=-3 3/394, 19-20=-3 3/394, 19-20=-3 3/394, 16-18=-3 1/526, 8-25=-46 137, 6-27=-59/£ 7, 10-23=-128/7 3/168, 12-20=-1	8/394, 48/394, 48/394, 48/394, 48/394, 48/394, 48/394 9/550, 56, 5-28=-94/7 '3, 47/129,	74,	 8) This Inte R80 9) Gra or th bott LOAD (s truss is rnationa 02.10.2 a phical p ne orien om choi CASE(S	desig I Resic and refurin ref ation c d. Star	ned in accordanc lential Code sect erenced standarc presentation doe of the purlin along ndard	e with the 2018 ions R502.11.1 and d ANSI/TPI 1. is not depict the size the top and/or
ber energy	bracing.	ing anoony		00		13-19=-153	8/157, 14-18=-1	25/137						
REACTIONS	(size) Max Horiz Max Uplift Max Grav	2=0-3-0, 1 19=10-8-8 23=10-8-8 2=256 (LC 2=-171 (LL 18=-113 (l 20=-78 (LC 23=-67 (L1 25=-527 (l 2=736 (LC 18=172 (L 20=192 (L 20=192 (L 23=261 (L 25=1148 (6=10-8-8, 18=10-8 3, 20=10-8-8, 21=1 4, 24=10-8-8, 25=1 5, 11) C 12), 16=-142 (LC C 13), 19=-75 (LC C 13), 21=-87 (LC C 13), 24=-930 (LC C 12) C 1), 16=535 (LC 1 C 20), 19=189 (LC C 20), 21=186 (LC C 1), 24=648 (LC LC 25)	3-8, 0-8-8, 0-8-8 2 9), 2 13), 13), 2 25),), 2 20), 2 20), 12),	NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m Ke=1.00; (exterior 2C Exterior(21 right expon- left and rig MWFRS fr grip DOL= 3) Truss des expl. Exc.	ed roof live lo a. CE 7-16; Vult: ph; TCDL=6 Cat. II; Exp C one and C-C (one and C-C (N) 4-3-8 to 8- N) 13-38 to 1 sed ; end ver pht exposed; for reactions s 1.60 signed for win	ads have been =115mph (3-sea .0psf; BCDL=6. ; Enclosed; MW Corner(3E) -0-1 3-8, Corner(3R (7-5-8 zone; cal tical left and rigi -C for member hown; Lumber i d loads in the p	considered for cond gust) Opsf; h=35ft; FRS (envelop 0-8 to 4-3-8, 8-3-8 to 13-7 ntilever left ar tt exposed; p s and forces 8 DOL=1.60 pla lane of the trr.	r De) 3-8, Id orch & ate				SS OF M	
FORCES	(lb) - Max	kimum Com	pression/Maximum	ı	only. For see Stand	studs expose ard Industry (d to wind (norm Gable End Deta	al to the face ils as applica), ble,			E	TE	NOSON SCH
TOP CHORD	1-2=0/24 5-6=-444 8-9=-564 10-11=-4 12-13=-4 14-16=-5	, 2-4=-592/6 /649, 6-7=-3 /1060, 9-10 80/878, 11- 70/695, 13- 59/573, 16-	629, 4-5=-478/608, 394/653, 7-8=-375, =-452/905, 12=-468/772, 14=-465/610, 17=0/24	743,	or consult 4) All plates a 5) Gable stud 6) This truss chord live 7) Provide m bearing pl joint 2, 14 ² 527 lb upli at joint 21, and 113 lb	qualified buil are 1.5x4 MT ds spaced at has been de load noncom echanical con ate capable c 2 lb uplift at joint 25, 78 lb uplift at joint o uplift at joint	ding designer a 20 unless other 1-4-0 oc. signed for a 10. surrent with any nection (by oth f withstanding ' bint 16, 930 lb u 67 lb uplift at jo t joint 20, 75 lb 18.	s per ANSI/TI wise indicated 0 psf bottom other live loa ers) of truss t 71 lb uplift at plift at joint 24 uplift at joint 1	PI 1. d. ds. co 4, plift 19				PE-2022	NIEL P BER 042259 E L ENGINE

25

24

2322

4x6=

21

20

19

18

3x6 II

26

27

28

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Ŕ

3x6 II

29

MiTek

16023 Swingley Ridge Rd Chesterfield, MO 63017

March 31,2023

ann

	R CONSTRUCTION PLANS REVIEW	N N	Truss Type		Qty	Ply	Roof - Cobey Creek Lo	ot 12	157/00502
PF236149RW	IENT SERVICES		Hip Girder		1	1	Job Reference (option	al)	107499092
Premier Building	supply (springhill_ks)_springhill_ks)_springhill_ks)	ng Hills, KS - 66083,		Run: 8.63 S Nov 1 ID:5iwhcqMA1rPs_	9 2022 Print: 8 BhVRPOalgyp	.630 S Nov 1 p4T-RfC?PsE	9 2022 MiTek Industries, Ind 370Hq3NSgPqnL8w3uITXb0	b. Thu Mar 30 15:47: GKWrCDoi7J4zJC?f	15 Page: 1
		-0-10-8 	4-2-0 8- 4-2-0 4-	3-14 8-6-12 1-14 11 0-2-14	<u>12-10-6</u> 4-3-10	13-4-2 13-1-4 0-2-14 0-2-14 NAILED 3x4=	17-6-0 4-1-14	21-8-0 2 4-2-0 0	2-6-8
		1 2 4X6 II	8 ¹² NAILED	NAILED NAILED 1.5x4 II 3x4= 21 55 56 29 187 1	NAILED	3x4= 1.5x4 3x4 = 789 180 15	NAILED 4x6 II 25 26 10 31 32 14	3x6 \$ 11 33	12 13
Scale = 1:53.4	(Y)· [2:0.3.5 0.0.15] [4.0-2-14 0-2-01 [1]	4x4 = Special NAILED	1.5x4 NAILED 3x4 = 4 NAILED -6-12 8-9-10 1-6-0 0-2-14 5 0.1-21	NAILED x4= <u>13-1-4</u> 4-3-10	1.5x4 NAILED	4x4= NAILED NAILED S <u>17-7-4</u> 4-6-0	21-8-0 4-0-12	
	(, Y): [2:0-3-5,0-0-15], [4:0-2-14,0-2-0], [1	0:0-2-14,0-2-0], [12:0-3-	5,0-1-3]				1	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) S 25.0 F 10.0 L 0.0 F 10.0 C	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.83 Vert(0.87 Vert(0.81 Horz	L LL) 0. CT) -0. (CT) 0.	in (loc) l/defl L/ 12 15-17 >999 24 22 15-17 >999 18 08 12 n/a n/	d PLATES 0 MT20 0 a Weight: 99 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 2-4 No.2 2-4-11 Structural wood sheath	-11, Right 2x4 SP hing directly applied	2) Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Exterior(2R) 17-6-0, Exte left and right d or exposed;C-C reactions sh	7-16; Vult=115mph h; TCDL=6.0psf; BC ti. II; Exp C; Enclose e and C-C Exterior(2 4-2-0 to 11-2-14, Int rior(2E) 17-6-0 to 22 exposed ; end vertic C for members and fo own; Lumber DOL=	(3-second g DL=6.0psf; h d; MWFRS (E) -0-10-8 to terior (1) 11-2 e-6-8 zone; ca cal left and ri- corces & MWF 1.60 plate grit	ust) =35ft; envelope) 4-2-0, 2-14 to antilever ght FRS for	Vert: 6=-51 20=-51 (F), 26=-51 (F), 30=-28 (F),	(F), 18=-28 (F), 1 21=-51 (F), 23=-5 27=-212 (F), 28=- 31=-28 (F), 32=-2	5=-28 (F), 7=-51 (F), 51 (F), 25=-51 (F), -28 (F), 29=-28 (F), 28 (F), 33=-244 (F)
BOT CHORD	2-9-14 oc purlins, exce 2-0-0 oc purlins (3-2-6 Rigid ceiling directly ap bracing.	pt max.): 4-10. oplied or 6-6-12 oc	DOL=1.60 3) Provide adec 4) This truss ha	quate drainage to pr as been designed for	event water p r a 10.0 psf b	oonding. ottom ive loads			
REACTIONS	(size) 2=0-3-8, 12= Max Horiz 2=-93 (LC 10 Max Uplift 2=-425 (LC 10 Max Grav 2=1530 (LC 10)	=0-3-8 0) 12), 12=-422 (LC 1 1), 12=1551 (LC 1	 5) Provide mec bearing plate 3) joint 2 and 4 6) This truss is 	hanical connection (capable of withstar 22 lb uplift at joint 12 designed in accorde	(by others) of nding 425 lb u 2. ance with the	truss to uplift at 2018			
FORCES	(lb) - Maximum Compre Tension 1-2=0/16, 2-4=-2150/63 5-6=-2536/811, 6-7=-2: 7-8=-2542/821, 8-9=-2: 9-10=-1659/543, 10-12	ession/Maximum 30, 4-5=-1638/549 536/811, 542/821, 2=-2177/633,	International R802.10.2 a 7) Graphical pu or the orienta bottom chord 8) "NALLED" ind	Residential Code so nd referenced stand urlin representation c ation of the purlin alo d. dicates Girder: 3-100	ections R502 ard ANSI/TP loes not depi ong the top a d (0.148" x 3'	.11.1 and I 1. ct the size nd/or) toe-nails			
BOT CHORD	2-13=0/16 2-19=-527/1667, 18-19 17-18=-799/2536, 15-1 14-15=-777/2542 12-1)=-799/2536, 7=-777/2542, 4=-444/1689	per NDS gui 9) Hanger(s) or provided suf	delines. • other connection de ficient to support cor 96 lb up at 2-9-4 a	evice(s) shall ncentrated loa	be ad(s) 212		STE OF	MISSO
WEBS	4-19=-228/925, 10-14= 8-15=0/253, 7-17=-35/2 5-19=-1143/414	230/943, 6-18=0/ 26, 9-14=-1124/41	255, Ib up at 18- 6, of such conn others	10-0 on bottom chore nection device(s) is the	d. The desig	n/selection ility of		S NATH	IANIEL
NOTES 1) Unbalanced this design.	d roof live loads have be	een considered for	 In the LOAD of the truss a LOAD CASE(S) Dead + Row Plate Increas Uniform Lo Vert: 1-4 Concentrat 	CASE(S) section, lo are noted as front (F Standard of Live (balanced): L ase=1.15 ads (lb/ft) =-70, 4-10=-70, 10- ed Loads (lb)	bads applied) or back (B). Lumber Increa 13=-70, 2-12:	to the face ase=1.15, =-20	k	PE-202	AL ENGINE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

			TRUCTION				_			
ASNO	DTED C	N PLAN	SREVIEW	Truss Type		Qty	Ply	Roof - Cobey Cre	ek Lot 12	
DE 2	3 51-49 70	MENT SE		Нір		1	1	Job Reference (o	ptional)	157499593
Prem 04/	pier Building 20/2	Supply (Sprin 023 4	45:55	fills, KS - 66083,	Run: 8.63 S Nov 19 20 ID:Heg7d163RuD3QjC	022 Print: 8. QQ4QV7Gly	630 S Nov pp3V-RfC?I	19 2022 MiTek Industri PsB70Hq3NSgPqnL8w	es, Inc. Thu Mar 30 15:47:16 3uITXbGKWrCDoi7J4zJC?f	Page: 1
			-0-10-8	6-2-0	10-10-0	1	15	5-6-0	21-8-0	22-6-8
			0-10-8	6-2-0	4-8-0	I	4	-8-0	6-2-0	0-10-8
-	4-9-5	0-1-13		$\begin{array}{c} 12 \\ 8 \end{array} \qquad 43 \\ 3x4 \end{array} \qquad 5 \\ 3x4 \end{array} \qquad 3x4 \qquad 13 \\ 3 \end{array}$	14 ×4 <i>v</i>	3x4 =		4x4	• 16 3x4• 7	
0-0-2	9-0-9 4-7-8	4-7-8		JE .						3x4 •

Scale = 1:44

Plate Offsets (X, Y): [4:0-1-11.0-2-0]. [6:0-1-11.0-2-0]

	(,, ,). [], [0:0 : : :,0 = 0]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.40 0.74 0.38	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.36 0.04	(loc) 10-12 10-12 8	l/defl >999 >713 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 99 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 - 3 3-7-2 Structural wood shea 4-8-7 oc purlins, exo 2-0-0 oc purlins (5-6 Rigid ceiling directly bracing.	8-7-2, Right 2x4 SP athing directly applie ept -10 max.): 4-6. applied or 10-0-0 or	4) 5) No.2 6) ed or 7) c L	 This truss ha chord live loa Provide mec bearing plate joint 2 and 1. This truss is International R802.10.2 a Graphical pu or the orienta bottom chore CAD CASE(S) 	as been designed ad nonconcurrent hanical connectio e capable of withs 22 lb uplift at joint designed in accoo Residential Code nd referenced sta urlin representation ation of the purlin J. Standard	for a 10.0 with any n (by oth tanding 1 8. rdance w e sections ndard AN n does no along the	D psf bottom other live loa ers) of truss t 22 lb uplift at the 2018 R502.11.1 a USI/TPI 1. bt depict the s top and/or	ds. o nd					
REACTIONS	(size) 2=0-3-8, 8 Max Horiz 2=-129 (Lo Max Uplift 2=-122 (Lo Max Grav 2=1036 (L	8=0-3-8 C 10) C 12), 8=-122 (LC 1 .C 1), 8=1036 (LC 1)	3))										
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=0/16, 2-4=-1382 5-61014/203 6-8-	/191, 4-5=-1014/22	4, 6										
BOT CHORD	2-12=-136/1020, 10- 8-1048/1020	12=-188/1222,	0										
WEBS	4-12=-19/417, 5-12= 5-10=-370/196, 6-10	-370/196, =-19/417										Contraction of the second	and
NOTES												A OF I	MISC W
 Unbalance this design 	ed roof live loads have n.	been considered for	r								Å	TATE NATUR	NILL SOL
2) Wind: AS Vasd=91n Ke=1.00; exterior zc Interior (1) 22-6-8 zo vertical lef	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BCI Cat. II; Exp C; Enclosed one and C-C Exterior(2)) 4-1-8 to 6-2-0, Exterior) 13-2-14 to 15-6-0, Ext ne; cantilever left and ri ft and right exposed;C-f	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-10-8 to 4-1-8, or(2R) 6-2-0 to 13-2- terior(2E) 15-6-0 to ight exposed ; end C for members and	oe) 14,									PE-2022	BER 042259

forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

ELEASE FOR AS NOTED OI	R CONSTRUCTION PLANS	N	Truss Type		Qty	Ply	Roof - Cobe	y Creek Lot	12	
PE2361-QBM			Нір		1	1	Job Referen	ce (optional)	· · · · · · · · · · · · · · · · · · ·	157499594
Premier Building 04/20/20	Supply (Springhill KS) Sprin 23 4:45:56	g Hills, KS - 66083,		Run: 8.63 S No ID:MIYmo2iIK1I	v 19 2022 Prin hJ0zxgGhJTyp	t: 8.630 S No pox?-RfC?Ps	w 19 2022 MiTek Ir B70Hq3NSgPqnL8	ndustries, Inc. T w3uITXbGKWi	Fhu Mar 30 15:47:1 rCDoi7J4zJC?f	6 Page: 1
	-0-1 0-1	0-8 4-2-1 0-8 4-2-1	2 8-2 2 3-1	-0 1-4	13-6- 5-4-(0)	<u> </u>	5-4	<u>21-8-0</u> 4-2-12	22-6-8 0-10-8
6.4.9	2 2-11-8 5-11-8 0-1-13 1 2 2	3x4 = 3 14	8 ¹² 1.5x4 4	4x4 ¢	B 12	8	4x6 II 6 11	1.5	5x4 ø 7 3x4 8	15 9 10
			<u>8-0-12</u> 8-0-12	3x8 =	3x4= <u>13-7-</u> 5-6-8	43	3x4=	<u>21-</u> 8-0	<u>8-0</u> -12	
Scale = 1:46.8 Plate Offsets (X	(Y)· [2·0-3-1 0-1-11] [6	·0-1-11 0-2-01 [9·	0-3-1 0-1-11]							
	(101)			661			in (lee)			
TCLL (roof) TCDL BCLL BCDL	(psi) 3 25.0 P 10.0 L 0.0 R 10.0 C	late Grip DOL umber DOL ep Stress Incr ode	1.15 1.15 YES IRC2018/TPI2014	TC BC WB Matrix-S	0.51 Ve 0.60 Ve 0.17 He	ert(LL) ert(CT) orz(CT)	-0.12 9-11 -0.24 9-11 0.04 9	>999 240 >999 180 n/a n/a	MT20 Weight: 103 lb	197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalances	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 2-6- 2-6-0 Structural wood sheath 5-1-3 oc purlins, except 2-0-0 oc purlins, except 2-0-0 oc purlins (5-2-7 in Rigid ceiling directly ap bracing. size) 2=0-3-8, 9=0 Max Horiz 2=-167 (LC 1 Max Grav 2=1036 (LC Max Uplift 2=-142 (LC 1 Max Grav 2=1036 (LC (lb) - Maximum Compre Tension 1-2=0/16, 2-4=-1349/26 5-6=-891/241, 6-7=-114 /-9=-1349/232, 9-10=0 2-13=-178/1032, 11-13: 9-11=-115/1032 4-13=-225/189, 5-13=-1 6-13=-109/110, 6-11=-3	0, Right 2x4 SP N ng directly applied nax.): 5-6. blied or 10-0-0 oc -3-8 0) 2), 9=-142 (LC 13 1), 9=1036 (LC 1) ssion/Maximum 2, 4-5=-1141/237, 1/224, 16 22/891, 0/302, -3/302, 7-11=-226/ an considered for	 a) Provide adet 4) This truss ha chord live loc 5) Provide mec bearing plate joint 2 and 1. 6) This truss is International R802.10.2 at 7) Graphical pu or the orienta bottom chore LOAD CASE(S) a) 	as been designed as been designed ad nonconcurrent hanical connectio e capable of withs 42 lb uplift at joint designed in acco Residential Code nd referenced sta Irlin representation ation of the purlin d. Standard	prevent wate for a 10.0 ps with any oth- n (by others) tanding 142 l 9. "dance with t sections R5 ndard ANSI/ n does not de along the top	f bottom f bottom er live load: of truss to b uplift at he 2018 02.11.1 an TPI 1. epict the siz o and/or	s. d ze		THE OF	MISSOLIS
 chibalancer this design. Wind: ASC Vasd=91mp Ke=1.00; C exterior zor Interior (1) / Exterior(2R 22-6-8 zone vertical left forces & MV DOL=1.60 p 	E 7-16; Vult=115mph (3- bh; TCDL=6.0psf; BCDL- at. II; Exp C; Enclosed; I he and C-C Exterior(2E) 4-1-4 to 8-2-0, Exterior(2) 13-6-0 to 20-6-14, Inter cantilever left and righ and right exposed;C-C fr WFRS for reactions show plate grip DOL=1.60	second gust) =6.0psf; h=35ft; /WFRS (envelope -0-10-8 to 4-1-4, E) 8-2-0 to 13-6-0 ior (1) 20-6-14 to exposed ; end or members and /n; Lumber	») ,						PE-2022 Marcel	BER 2042259 50 AL ENGINE h 31,2023

			Roof, Coboy Crook Lat 12	
	Hin Cirdor		NUUI - CUDEY CIEEK LOL 12	157499595
LEE'S SUMMIT, MISSOURI			Job Reference (optional)	
04/20/2023 4:45:56	Run: 8.63 S Nov 19 ID:IUFpwALYrKQM	9 2022 Print: 8.630 S Nov YSZ9YIj6zeypowA-RfC?F	19 2022 MITER Industries, Inc. Thu Mar 30 15:47: PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1
	5-1-15 10-0-6 5-1-15 4-10-7	11-7-10 16 1-7-4 4-7	-6-1 21-8-0 10-7 5-1-15	
HIGS HIGS HIGS HIGS HIGS HIGS HIGS HIGS	8 ¹² 4x6 # 3x6 # 2 ¹² 15 11 16 17 HUS26 HUS26 HUS26 5-1-15 # 9-11-2	6x6= 6x6= 5 5 10 18 9 19 x8= 7x8= HUS26 HUS26 111-8-14, 16	4x6 6 13 7 20 821 22 23 HUS26 HUS26 HUS26 HUS26 HUS26 HUS26 HUS26 HUS26 HUS26	
Scolo - 1:55 %	5-1-15 9-11-2 5-1-15 4-9-3	1-9-12 4-	-9-3 5-1-15	
Plate Offsets (X, Y): [1:0-0-13,0-3-0], [4:0-3-5,Edge], [5:0	-3-5,Edge], [7:Edge,0-1-6], [9:0-4-0,0-4-8], [10:0-4-0,0-4-8]		
Loading (psf) Spacing TCLL (roof) 25.0 Plate Grip DOL TCDL 10.0 Lumber DOL BCLL 0.0 Rep Stress Incr BCDL 10.0 Code	2-0-0 CSI 1.15 TC 1.15 BC NO WB IRC2018/TPI2014 Matrix-S	DEFL 0.73 Vert(LL) - 0.53 Vert(CT) - 0.43 Horz(CT) -	in (loc) I/defl L/d 0.10 10-11 >999 240 MT20 0.17 10-11 >999 180 0.04 7 n/a n/a Weight: 249 II	GRIP 197/144 b FT = 20%
LUMBER TOP CHORD 2x4 SP 1650F 1.5E *Except* 4-5:2x4 SP No.2 BOT CHORD 2x6 SP 2400F 2.0E WEBS 2x3 SPF No.2 SLIDER Left 2x4 SP No.2 2-10-15 BRACING TOP CHORD TOP CHORD Structural wood sheathing directly applied 4-8-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 4-5. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 1=0-3-8, 7=0-4-0 Max Horiz 1=-192 (LC 8) Max Uplift 1=-1355 (LC 12), 7=-1350 (LC Max Grav FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-3=-6761/1759, 3-4=-4903/1348, 4-5=-4100/1190, 5-6=-5044/1400, 6-7=-6972/1808 BOT CHORD 1-3=-6761/1759, 3-4=-4903/1348, 4-5=-4100/1190, 5-6=-5044/1400, 6-7=-6972/1808 BOT CHORD 1-1=-1454/5400, 9-11=-1454/5400, 8-9=-1387/5548 WEBS 3-11=-498/1991, 3-10=-1720/593, 4-10=-569/2092, 4-9=-204/421, 5-9=-718/2497, 6-9=-1807/602, 6-8=-517/2125 NOTES 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: 1) 2-ply truss to be connected as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc. <t< th=""><td> All loads are considered equally a except if noted as front (F) or bac CASE(S) section. Ply to ply conn provided to distribute only loads r unless otherwise indicated. Unbalanced roof live loads have I this design. Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCI Ke=1.00; Cat. II; Exp C; Enclosee exterior zone and C-C Exterior(2I Interior (1) 5-1-15 to 10-0-6, Exter 11-7-10, Exterior(2R) 11-7-10 to 18-8-8 to 21-6-0 zone; cantilever end vertical left and right exposed forces & MWFRS for reactions sh DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to pre 6) This truss has been designed for chord live load nonconcurrent wit 7) Provide mechanical connection (I bearing plate capable of withstan joint 1 and 1350 lb uplift at joint 7 This truss is designed in accorda International Residential Code se R802.10.2 and referenced standa Graphical purlin representation d or the orientation of the purlin alo bottom chord. Use Simpson Strong-Tie HUS26 Truss) or equivalent spaced at 2-0-11-4 from the left end to 20-11-to back face of bottom chord. Fill all nail holes where hanger is LOAD CASE(S) Standard Dead + Roof Live (balanced): Lu Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-4=-70, 4-5=-70, 5-7=-5 </td><td>applied to all plies, kk (B) face in the LOAI ections have been hoted as (F) or (B), been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope) E) 0-1-12 to 5-1-15, rior(2E) 10-0-6 to 18-8-8, Interior (1) left and right exposed d;C-C for members an hown; Lumber event water ponding. a 10.0 psf bottom h any other live loads. oy others) of truss to ding 1355 lb uplift at nce with the 2018 ctoions R502.11.1 and ard ANSI/TPI 1. bes not depict the size ng the top and/or (14-10d Girder, 4-10d 0-0 oc max. starting a 4 to connect truss(es) in contact with lumber umber Increase=1.15, 70 1-7=-20</td><td>Concentrated Loads (ib) D Vert: 11=-741 (B), 14=-723 (E 16=-741 (B), 17=-741 (B), 18 20=-835 (B), 21=-741 (B), 22 1; id i i i i i i i i i i i i i</td><td>B), 15=-721 (B), =-835 (B), 19=-835 (B), =-741 (B), 23=-745 (B) MISSOLUTION ANTEL DX IBER 2042259 AL ENGINE</td></t<>	 All loads are considered equally a except if noted as front (F) or bac CASE(S) section. Ply to ply conn provided to distribute only loads r unless otherwise indicated. Unbalanced roof live loads have I this design. Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCI Ke=1.00; Cat. II; Exp C; Enclosee exterior zone and C-C Exterior(2I Interior (1) 5-1-15 to 10-0-6, Exter 11-7-10, Exterior(2R) 11-7-10 to 18-8-8 to 21-6-0 zone; cantilever end vertical left and right exposed forces & MWFRS for reactions sh DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to pre 6) This truss has been designed for chord live load nonconcurrent wit 7) Provide mechanical connection (I bearing plate capable of withstan joint 1 and 1350 lb uplift at joint 7 This truss is designed in accorda International Residential Code se R802.10.2 and referenced standa Graphical purlin representation d or the orientation of the purlin alo bottom chord. Use Simpson Strong-Tie HUS26 Truss) or equivalent spaced at 2-0-11-4 from the left end to 20-11-to back face of bottom chord. Fill all nail holes where hanger is LOAD CASE(S) Standard Dead + Roof Live (balanced): Lu Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-4=-70, 4-5=-70, 5-7=-5 	applied to all plies, kk (B) face in the LOAI ections have been hoted as (F) or (B), been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope) E) 0-1-12 to 5-1-15, rior(2E) 10-0-6 to 18-8-8, Interior (1) left and right exposed d;C-C for members an hown; Lumber event water ponding. a 10.0 psf bottom h any other live loads. oy others) of truss to ding 1355 lb uplift at nce with the 2018 ctoions R502.11.1 and ard ANSI/TPI 1. bes not depict the size ng the top and/or (14-10d Girder, 4-10d 0-0 oc max. starting a 4 to connect truss(es) in contact with lumber umber Increase=1.15, 70 1-7=-20	Concentrated Loads (ib) D Vert: 11=-741 (B), 14=-723 (E 16=-741 (B), 17=-741 (B), 18 20=-835 (B), 21=-741 (B), 22 1; id i i i i i i i i i i i i i	B), 15=-721 (B), =-835 (B), 19=-835 (B), =-741 (B), 23=-745 (B) MISSOLUTION ANTEL DX IBER 2042259 AL ENGINE

DE	LEASE FOR CONST	PLICTION							
AS	NOTED ON PLANS	REVIEW		Truss Type		Qty	Ply	Roof - Cobey Creek Lot 12	
	EXELOBMENT SER	ѵӏҫ҈ӻѕ		Jack-Open		2	1	Job Reference (optional)	157499596
6	Premier Building Supply (Springh	ill, KS), Spring I	lills, KS - 66083,		Run: 8.63 S Nov 19 2	2022 Print: 8.	630 S Nov 1	9 2022 MiTek Industries, Inc. Thu Mar 30 15:47:17	Page: 1
	ノサ/ とし/ としとし み・5	10.00	ID:vbuPOxrynr?jJ73aJXKtJQyppKe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f						

2-11-4 -1-2-14 1-2-14 2-11-4

2-11-4

Scale = 1:26.9							1					
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.18	Vert(LL)	0.00	4-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	-0.01	4-5	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 12 lb	FT = 20%
		-		-								

LUMBER

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or

	2-11-4 oc	purlins, except end verticals.						
BOT CHORD	Rigid ceili bracing.	Rigid ceiling directly applied or 10-0-0 oc bracing.						
REACTIONS	(size)	3= Mechanical, 4= Mechanical, 5=0-4-9						
	Max Horiz	5=74 (LC 12)						
	Max Uplift	3=-48 (LC 12), 5=-48 (LC 12)						
	Max Grav	3=74 (LC 1), 4=49 (LC 3), 5=244 (LC 1)						
FORCES	(lb) - Max	imum Compression/Maximum						

FORCES

Tension TOP CHORD 2-5=-214/223, 1-2=0/41, 2-3=-54/30 BOT CHORD 4-5=0/0

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- 3) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to 4) bearing plate capable of withstanding 48 lb uplift at joint 5 and 48 lb uplift at joint 3.
- This truss is designed in accordance with the 2018 5) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

OF MISSO E NATHANIEL FOX MAN PE-2022042259 C HRSSIONAL ET March 31,2023

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

DE									
A	NOTED ON PLANS	REVIEW		Truss Type		Qty	Ply	Roof - Cobey Creek Lot 12	
	DE256LOBMENT SER	VICES		Diagonal Hip	Girder	1	1	Job Reference (optional)	157499597
(Premier Building Supply (Springhi 04/20/2023 4:4	IL KS) Spring	lills, KS - 66083,		Run: 8.63 S Nov 19 ID:wzVXE9TK7dPHji	2022 Print: 8 nIQsdsa_xzqu	.630 S Nov qm8-RfC?Ps	19 2022 MiTek Industries, Inc. Thu Mar 30 15:47:17 B70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1
					<u>-1-2-14</u> 2-11-10 1-2-14 2-11-10	2-6	6-6 -12		
					2-6-6	-			
					5.60	<u>, 12 2-1</u>	-8		
						NAILED			
						NAILED	3x4 ı	1	
				3-6-3		3x4 II 3 5 6 7 7 7	4	မှ မှ ဗိ	
					ыс 3x6 ш	1.5x4 ॥ NAILED	4x4 = 1.5x4	п	
						NAILED			
	Scale = 1:43.9				<u>3-1-6</u> 3-1-6	2-	<u>6-6</u> 5-0		

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.30	Vert(LL)	0.05	7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.32	Vert(CT)	-0.05	7	>999	180		
BCLL	0.0	Rep Stress Incr	NO	WB	0.00	Horz(CT)	-0.03	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 25 lb	FT = 20%

	2V4 CD N	0.2
TOP CHORD	2X4 3P IN	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x4 SP N	0.2
BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	5-6-6 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	5= Mechanical, 8=0-4-9
	Max Horiz	8=126 (LC 12)
	Max Uplift	5=-106 (LC 12), 8=-78 (LC 12)
	Max Grav	5=221 (LC 1), 8=344 (LC 1)

FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	2-8=-315/272, 1-2=0/41, 2-3=-235/63,
	3-4=-72/10, 4-5=-127/140
DOTOLODD	

- BOT CHORD 7-8=-175/156, 6-7=-46/58, 3-6=-22/58, 5-6=-65/61
- NOTES
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- 3) Refer to girder(s) for truss to truss connections. 4) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 78 lb uplift at joint 8 and 106 lb uplift at joint 5.
- This truss is designed in accordance with the 2018 5) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- "NAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails 6) per NDS guidelines.

7) In the LOAD CASE(S) section, loads applied to the face

of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.15, 1)

Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-2=-70, 2-4=-70, 7-8=-20, 5-6=-20

Concentrated Loads (lb) Vert: 7=3 (F=2, B=2)

> OF MISSO TE NATHANIEL FOX AIMIA OFFESSIONAL ET PE-2022042259 March 31,2023

PELEASE FOR CONSTRUCTION				
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply Roof - Cobey Creek Lot 12	
DEXELOBMENT SERVICES	Diagonal Hip Girder	1	1 Job Reference (optional)	157499598
Premier Building Supply (Springhill, KS), Spring Hill 04/20/2023 4:45:57	s, KS - 66083, Run: ID:Q	8.63 S Nov 19 2022 Print: 8.63 1Ybg7Buqy4j2zjQLbsawgzqqhL	30 S Nov 19 2022 MiTek Industries, Inc. Thu Mar 30 15:47:17 L-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page:
	<u>-1-2-14</u> 1-2-14	<u>5-6-6</u> 5-6-6		

. . . . So

Scale = 1:36.3														
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.66	Vert(LL)	0.17	4-5	>363	240	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15		BC	0.72	Vert(CT)	0.15	4-5	>429	180			
BCLL	0.0	Rep Stress Incr	NO		WB	0.05	Horz(CT)	0.00	4	n/a	n/a			
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S							Weight: 22 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep	ot* 4-3:2x3 SPF No.2	8 9 L	 "NAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails per NDS guidelines. In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 										
TOP CHORD BOT CHORD	HORD Structural wood sheathing directly applied or 5-6-6 oc purlins, except end verticals. HORD Rigid ceiling directly applied or 10-0-0 oc bracing.		edor 1) Dead + Ro Plate Incre Uniform Lo Vert: 1-2	oof Live (balanc ease=1.15 oads (lb/ft) 2=-70, 2-3=-70,	ed): Lumber 4-5=-20	Increase=1.	.15,						
REACTIONS	EACTIONS (size) 4= Mechanical, 5=0-3-14			Concentrated Loads (Ib)										

NAILED

5-6-6

Max Horiz 5=127 (LC 12) Max Uplift 4=-105 (LC 12), 5=-88 (LC 8) Max Grav 4=223 (LC 1), 5=346 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-5=-302/253, 1-2=0/41, 2-3=-175/55

BOT CHORD 4-5=0/0 3-4=-165/211 WEBS

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- The Fabrication Tolerance at joint 2 = 8% 3)
- 4)́ This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Refer to girder(s) for truss to truss connections. 5) Provide mechanical connection (by others) of truss to
- 6) bearing plate capable of withstanding 88 lb uplift at joint 5 and 105 lb uplift at joint 4.
- This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Vert: 7=3 (F=2, B=2)

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

PELEASE FOR CONSTRUCTION				
AS NOTED ON PLANS REVIEW	Truss Type	Qty Ply	Roof - Cobey Creek Lot 12	
DEXELOBMENT SERVICES	Jack-Open	4 1	Job Reference (optional)	157499599
Premier Building Supply (Springhill KS) Spring	ills KS - 66083 Run: 8	63 S Nov 19 2022 Print: 8 630 S Nov 1	9 2022 MiTek Industries, Inc. Thu Mar 30 15:47:18	Page: 1

04/20/2023 4:45:57

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Thu Mar 30 15:47:1 ID:wzVXE9TK7dPHjnlQsdsa_xzqqm8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-3-8	4-0-0
2-3-8	1-8-8

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.16	Vert(LL)	0.02	6	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.17	Vert(CT)	-0.02	7	>999	180			
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	5	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 18 lb	FT = 20%	
LUMBER			LOAD CASE(S) Standard					-				

TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x4 SP N	0.2
BRACING		
TOP CHORD	Structural 4-0-0 oc p	l wood sheathing directly applied or ourlins, except end verticals.
BOT CHORD	Rigid ceil bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	4= Mechanical, 5= Mechanical, 8=0-3-8
	Max Horiz	8=129 (LC 12)
	Max Uplift	4=-64 (LC 12), 5=-20 (LC 12), 8=-16 (LC 12)
	Max Grav	4=108 (LC 19), 5=66 (LC 19), 8=251 (LC 1)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	2-8=-230/	/117. 1-2=0/39. 2-3=-147/0.

TOP CHORD 2-8=-230/117, 1-2=0/39, 2-3=-147/0, 3-4=-69/54 BOT CHORD 7-8=-93/92, 6-7=-12/41, 3-6=-6/50, 5-6=0/0

NOTES

Scale = 1:36.3

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Refer to girder(s) for truss to truss connections.
 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 16 lb uplift at joint
 Other and the plate is in the device of the trust of the state of the stat
- 8, 64 lb uplift at joint 4 and 20 lb uplift at joint 5.
 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

RE	EASE FOR CONSTR									
AS	NOTED ON PLANS	REVIEW	٦	Truss Type		Qty	Ply	Roof - Cobey Creek Lot 12		
1	EXELOBMENT SER	VICES		Jack-Open		11	1	Job Reference (optional)	157499600	
	Premier Building Supply (Springhi	II, KS), Spring	ills, KS - 66083, Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Thu Mar 30 15:47:18						Page: 1	
	14/20/2023 4.4	0.07 J	ID:EbtbCsFr?bmABIr6j2ZzfdzqqqJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f							

-0-10-8

ID:EbtbCsFr?bmABIr6j2ZzfdzqqqJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-11-12

4-0-0

Scale		1.3/ 5
Scale	=	1.34.3

Scale = 1:34.5					7								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	0.04	4-5	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.29	Vert(CT)	0.04	4-5	>999	180			
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.02	3	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 15 lb	FT = 20%	
LUMBER													
TOP CHORD	2x4 SP No.2												
BOT CHORD	2v4 SP No 2												

4-0-0

-	U	IVI	D	-	n	
-	\sim		0			•

TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x4 SP N	0.2
BRACING		
TOP CHORD	Structura 4-0-0 oc j	I wood sheathing directly applied or purlins, except end verticals.
BOT CHORD	Rigid ceil bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(size)	3= Mechanical, 4= Mechanical, 5=0-3-8
	Max Horiz	5=129 (LC 12)

	Max Uplift	3=-87 (LC 12), 4=-24 (LC 9), 5=-19
	-	(LC 9)
	Max Grav	3=123 (LC 19), 4=72 (LC 3), 5=251
		(LC 1)
ORCES	(lb) - Max	imum Compression/Maximum
	T	

Tension TOP CHORD 2-5=-220/118, 1-2=0/39, 2-3=-108/57 BOT CHORD 4-5=0/0

NOTES

F

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- 3) Refer to girder(s) for truss to truss connections.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 5, 87 lb uplift at joint 3 and 24 lb uplift at joint 4.
- This truss is designed in accordance with the 2018 5) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

DE	LEASE FOR CONSTRUCTION	M					
A	NOTED ON PLANS REVIE	N	Truss Type	Qty	Ply	Roof - Cobey Creek Lot 12	
	DEXELOBMENT SERVICES		Jack-Open	4	1	Job Reference (optional)	157499601
	Premier Building Supply (Springhill KS) Sp	na Hills KS - 66083	Run: 8 63 S Nov 19	Page: 1			

04/20/2023 4:45:57

ID:W25FhZubNBf3IYHa9XYi70zqqs3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1:26.7
---------	--------

1-10-15

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.10	Vert(LL)	0.00	4-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	0.00	4-5	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 8 lb	FT = 20%

LUMBER

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 1-10-15 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc

	bracing.	
REACTIONS	(size)	3= Mechanical, 4= Mechanical, 5=0-3-0
	Max Horiz	5=70 (LC 12)
	Max Uplift	3=-41 (LC 12), 4=-14 (LC 9), 5=-20
		(LC 12)
	Max Grav	3=50 (LC 19), 4=31 (LC 3), 5=171
		(LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-5=-150/114, 1-2=0/40, 2-3=-52/31

BOT CHORD 4-5=0/0

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- 3) Refer to girder(s) for truss to truss connections.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 20 lb uplift at joint 5, 14 lb uplift at joint 4 and 41 lb uplift at joint 3.
- This truss is designed in accordance with the 2018 5) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

RFI	FASE FOR CONST	RUCTION	L
Δ٩	NOTED ON PLANS	PEREW	
	A CHARMENT SER	VIGES	
	LEE'S SUMMIT. MIS	SOURI	┝
	Premier Building Supply (Springh	ill, KS), Spring	łi
()4/20/2023 4:4	5:58	

			-	-		
/IEW		Truss Type	Qty	Ply	Roof - Cobey Creek Lot 12	
ES		Half Hip Girder	1	1	Job Reference (optional)	157499602
Spring	lills KS - 66083	Run: 8.63 S. Nov 19.2	022 Print: 8	630 S Nov 1	9 2022 MiTek Industries Inc. Thu Mar 30 15:47:18	Page: 1

2-2-0 2-2-0 2-8-8

0-6-8

NAILED

Run; 8.63 S Nov 19 2022 Print; 8.630 S Nov 19 2022 MiTek Industries, Inc. Thu Mar 30 15:47:18 ID:JppW51ErxGh3Ku4dVNDmU3ypp5w-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

0-10-8

0-10-8

Scale = 1:34.9

Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.10 0.12	DEFL Vert(LL) Vert(CT)	in 0.00 -0.01	(loc) 2-7 2-7	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 197/144	
BCLL BCDL	0.0 10.0	Code	NO IRC2018	3/TPI2014	WB Matrix-P	0.03	Horz(CT)	0.00	6	n/a	n/a	Weight: 14 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 1 Structural wood she: 2-8-8 oc purlins, exc 2-0-0 oc purlins: 4-5 Rigid ceiling directly	-4-15 athing directly applie ept - applied or 10-0-0 oc	7) 8) d or 9) 10)	This truss is of International R802.10.2 ar Graphical pur or the orienta bottom chord "NAILED" inc per NDS guic) In the LOAD of the truss a	designed in ac Residential Cc od referenced s rlin representa tition of the pur l. dicates Girder: delines. CASE(S) secti re noted as fro	cordance wi ode sections standard AN tion does no lin along the 3-10d (0.14 ion, loads ap ont (F) or bac	ith the 2018 R502.11.1 i ISI/TPI 1. ot depict the top and/or 8" x 3") toe- oplied to the ck (B).	and size -nails face						
REACTIONS	bracing. (size) 2=0-3-8, 6 Max Horiz 2=88 (LC Max Uplift 2=-28 (LC Max Grav 2=192 (LC	 5= Mechanical 33) 12), 6=-55 (LC 12) 2 1), 6=123 (LC 1)	LO 1)	Dead + Roc Plate Increa Uniform Loa Vert: 1-4=	Standard of Live (balance ase=1.15 ads (lb/ft) =-70, 4-5=-70,	ed): Lumber 2-6=-20	Increase=1	.15,						

FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/16, 2-4=-66/41, 4-5=-1/0 2-7=-8/7, 6-7=0/0

BOT CHORD WEBS 4-7=-115/141

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Provide adequate drainage to prevent water ponding. 3)
- This truss has been designed for a 10.0 psf bottom 4) chord live load nonconcurrent with any other live loads.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 2 and 55 lb uplift at joint 6.

- Concentrated Loads (lb) Vert: 4=-6 (F), 7=-5 (F)

March 31,2023

RE	EASE FOR CONST	RUCTION
AS	NOTED ON PLANS	RE₩IEW
1	EXELOBMENT SER	VjCES
	Premier Building Supply (Springh	SOURI
C	4/20/2023 4:4	5:58

EW		Truss Type	Qty	Ply	Roof - Cobey Creek Lot 12	
S		Half Hip Girder 1		1	Job Reference (optional)	157499603
Spring	lills, KS - 66083,	Run: 8.63 S Nov 19	2022 Print: 8	630 S Nov 1	9 2022 MiTek Industries, Inc. Thu Mar 30 15:47:18	Page: 1

ID:JppW51ErxGh3Ku4dVNDmU3ypp5w-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:30

Plate Offsets (X, Y): [4:0-2-3,0-2-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.17 0.09 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 2-7 2-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 Structural wood she 4-2-0 oc purlins, ex 2-0-0 oc purlins: 4-5	1-6-4 athing directly applic cept end verticals, a	6 7 ed or ⁸ ind 9	 This truss is International R802.10.2 a Graphical pu or the orient bottom chore "NAILED" in per NDS gui In the LOAD 	designed in acc Residential Coc nd referenced st Irlin representati ation of the purlin d. dicates Girder: 3 delines. CASE(S) sectio	ordance w de sections andard AN on does no n along the -10d (0.14 n, loads aj	ith the 2018 R502.11.1 a ISI/TPI 1. of depict the s top and/or 8" x 3") toe- oplied to the	and size nails face					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	c L	of the truss a OAD CASE(S)	are noted as fron Standard	it (F) or ba	ск (В).						
bracing. REACTIONS (size) 2=0-3-8, 6= Mechanical Max Horiz 2=98 (LC 9) Max Uplift 2=-78 (LC 12), 6=-84 (LC 9) Max Grav 2=297 (LC 1), 6=-32 (LC 1)			1) Dead + Ro Plate Increa Uniform Lo Vert: 1-4	of Live (balanced ase=1.15 ads (lb/ft) =-70, 4-5=-70, 2	d): Lumber -6=-20	Increase=1.	15,					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		Concentrat Vert: 8=-	ed Loads (lb) 103 (B)								
TOP CHORD	1-2=0/16, 2-4=-232/ 5-6=-47/35	76, 4-5=-45/48,											
BOT CHORD	2-7=-122/141, 6-7=-	121/136 22/168											
NOTES	4-7	22/100											
1) Wind: AS Vasd=91r Ke=1.00; exterior z and right exposed; reactions DOL=1.60	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I C-C for members and fr shown; Lumber DOL=1 0	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever left and right orces & MWFRS for 1.60 plate grip	oe) left									STATE OF I	MISSOURI NIEL X

- 2) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3)
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 84 lb uplift at joint 6 and 78 lb uplift at joint 2.

PE-202204 ESSIONAL ET Con

March 31,2023

RE	LEASE FOR CONST	RUCTION
AS	NOTED ON PLANS	RE ¥IEW
	EVELOBMENT SER	VjÇES
	LEE'S SUMMIT, MIS Premier Building Supply (Springh)4/20/2023 4 4	SOURI ill_KS)_Spring I

	Truss Type Jack-Open	Qty 7	Ply 1	Roof - Cobey Creek Lot 12 Job Reference (optional)	157499604
lills, KS - 66083,	Run: 8.63 S Nov 19 2	2022 Print: 8.0	630 S Nov 1	9 2022 MiTek Industries, Inc. Thu Mar 30 15:47:19	Page: 1

ID:CISBiOyg66bfMG5GiszR1pyppJC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Coolo	- 1	1.20	0
Scale	=	1.29	.o

4-2-0

Loading TCLL (roc TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0 BC 0 WB 0 Matrix-R).27).22).00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.03 -0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHC BOT CHC WEBS BRACING TOP CHC BOT CHC	LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2 BRACING Structural wood sheathing directly applied or 4-2-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 3= Mechanical, 4= Mechanical,											
REACTIC	EACTIONS (size) 3= Mechanical, 4= Mechanical, 5=0-3-8 Max Horiz 5=134 (LC 12) Max Uplift 3=-91 (LC 12), 5=-17 (LC 12) Max Grav 3=131 (LC 19), 4=75 (LC 3), 5=259 (LC 1)											
FORCES TOP CHC BOT CHC	(LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-5=-227/136, 1-2=0/40, 2-3=-105/61 POT CHORD 4-5 0/2											
NOTES 1) Wind: Vasd= Ke=1. exteri and ri expos reacti DOL=	BOT CHORD 4-5=0/0 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI=1 60											
 2) This t chord 3) Refer 4) Provide bearing 5 and 5) This t 	DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) Refer to girder(s) for truss to truss connections. 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 17 lb uplift at joint 5 and 91 lb uplift at joint 3. 5) This truss is designed in accordance with the 2018											
5) This t Intern R802	russ is designed in accorda ational Residential Code s .10.2 and referenced stand	ance with the 2018 ections R502.11.1 ar lard ANSI/TPI 1.	nd							S.	PE-2022	042259

LOAD CASE(S) Standard

RE	LEASE FOR CONSTRUCTION	
AS	NOTED ON PLANS REVIEW	
1	EXELOBMENT SERVICES	
	Premier Building Supply (Springhill_KS)_Spring	Hi
()4/20/2023 4:45:58 1	

¶EW		Truss Type	Qty	Ply	Roof - Cobey Creek Lot 12	
<u>Ç</u> ES		Half Hip Girder	1	1	Job Reference (optional)	157499605
S) Spring	lills, KS - 66083,	Run: 8.63 S Nov 19 2	2022 Print: 8.	630 S Nov 1	9 2022 MiTek Industries, Inc. Thu Mar 30 15:47:19	Page: 1

2-9-4

ID:RURkSrf_?QRCsQhSk60aWYyppJb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-2-0

-0-10-8

Scale = 1:30.2

Plate Offsets (X, Y): [4:0-2-3,0-2-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC20	18/TPI2014	CSI TC BC WB Matrix-P	0.18 0.13 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 2-7 2-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x3 SPF No.2 SLIDER Left 2x4 SP No.2 1-6-10 BRACING TOP CHORD Structural wood sheathing directly applied or 4-2-0 oc purlins; except end verticals, and 2-0-0 oc purlins: 4-5. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc				 This truss is Internationa R802.10.2 a Graphical pu or the orient bottom chor "NAILED" in per NDS gu In the LOAD 	designed in acco I Residential Cound referenced s urlin representat ation of the purli d. dicates Girder: 3 idelines. 0 CASE(S) section	cordance wi de sections tandard AN ion does no in along the 3-10d (0.14	th the 2018 R502.11.1 a ISI/TPI 1. It depict the s top and/or 8" x 3") toe- oplied to the	and size nails face					
BOT CHORD	T CHORD Rigid ceiling directly applied or 10-0-0 oc			of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard									
REACTIONS (size) 2=0-3-8, 6= Mechanical Max Horiz 2=99 (LC 9) Max Uplift 2=-76 (LC 12), 6=-82 (LC 9) Max Grav 2=323 (LC 1), 6=-264 (LC 1)			1) Dead + Ro Plate Incre Uniform Lo Vert: 1-4	of Live (balance ase=1.15 bads (lb/ft) I=-70, 4-5=-70, 2	d): Lumber 2-6=-20	Increase=1.	15,					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		Vert: 8=	-160 (F)								
TOP CHORD	1-2=0/16, 2-4=-260/ 5-6=-45/33	71, 4-5=-46/49,											
BOT CHORD WEBS	2-7=-118/147, 6-7=- 4-7=-36/217, 4-6=-2	117/141 70/168											
NOTES	, .												
 Wind: AS' Vasd=91r Ke=1.00; exterior zr and right exposed; reactions DOL=1.60 	IOTES) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.60												

- 2) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3)
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 82 lb uplift at joint 6 and 76 lb uplift at joint 2.

March 31,2023

RFI	FASE FOR CONST	RUCTION	L
49	NOTED ON PLANS	REVIEW	
	NOTED ON TEARS		L
	P236443 MIENI SER	VILSES	
	LEE'S SUMMIT. MIS	SOURI	┝
	Premier Building Supply (Springh	ill, KS), Spring	łi
()4/20/2023 4:4	5:59	

				-		
EW		Truss Type	Qty	Ply	Roof - Cobey Creek Lot 12	
5		Half Hip Girder	1	1	Job Reference (optional)	157499606
prina	lills, KS - 66083.	Run: 8.63 S. Nov 19	2022 Print: 8.	630 S Nov 1	9 2022 MiTek Industries, Inc. Thu Mar 30 15:47:19	Page: 1

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Thu Mar 30 15:47:19 ID:GMHa84W4b23m1kLLbIK?aDyppJm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

-0-10-8		2-9-4
	2-2-0	
0-10-8	2-2-0	0-7-4

NAILED

Scale = 1:34.9

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	18/TPI2014	CSI TC BC WB Matrix-P	0.10 0.20 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 0.00	(loc) 2-7 2-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP No.2 1 Structural wood she: 2-9-4 oc purlins; exc 2-0-0 oc purlins; 4-5	-4-15 athing directly applie ept	7) 8) d or 9) 10	 This truss is a International R802.10.2 ar Graphical pu or the orienta bottom chord "NAILED" inc per NDS guid Hanger(s) or provided suff 	designed in accorr Residential Code ad referenced star rlin representation tion of the purlin a dicates Girder: 3-1 delines. other connection icient to support c	dance w sections indard AN i does no along the 0d (0.14 device(s	ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the s top and/or 8" x 3") toe-I) shall be ted load(s)	and size nails The					
BOT CHORD	Rigid ceiling directly bracing. (size) 2=0-3-8, 6 Max Horiz 2=88 (LC Max Uplift 2=-28 (LC Max Grav 2=209 (LC	applied or 10-0-0 oc = Mechanical 12) 12), 6=-51 (LC 9) C 1), 6=180 (LC 1)	1 ¹ Lu	 design/selection of such connection device(s) is the responsibility of others. 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 									
FORCES	(lb) - Maximum Com Tension	pression/Maximum	1,) Dead + Roc Plate Increa	of Live (balanced): ise=1.15 ads (lb/ft)	Lumber	Increase=1.	15,					
TOP CHORD BOT CHORD WEBS	1-2=0/16, 2-4=-69/4 2-7=-9/11, 6-7=0/0 4-7=-191/150	1, 4-5=-1/0		Vert: 1-4= Concentrate Vert: 4=-7	ed Loads (ID/II) =-70, 4-5=-70, 2-6 ed Loads (Ib) 74 (B), 7=-5 (B)	=-20							
NOTES	ed roof live loads have	been considered for											
 this design Wind: ASG Vasd=91n Ke=1.00; exterior zc and right exposed; reactions 	n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I C-C for members and fr shown; Lumber DOL=1	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le eft and right orces & MWFRS for I.60 plate grip	e) eft							•		STATE OF M	MISSOUP

- DOL=1.60
- Provide adequate drainage to prevent water ponding. 3)
- This truss has been designed for a 10.0 psf bottom 4) chord live load nonconcurrent with any other live loads.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 2 and 51 lb uplift at joint 6.

FR PE-2022042259 SSIONAL ET

March 31,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

LEASE FOR CONST	RUCTION	
NOTED ON PLANS	REVIEW	
DEVELORMENT SER	VICES	
		L
Premier Building Supply (Springh	nill_KS)_Spring	łi
	LEASE FOR CONST ₩OTED ON PLANS DEXELQRMENT SER LEE'S SUMMIT, MIS Premier Building, Supply (Septing)	LEASE FOR CONSTRUCTION ₩OTED ON PLANS RE%IEW DEXEL_QRMENT SERVICES LEE'S SUMMIT, MISSOURI Promist Building Supply (SpringlilLKS)_Spring

EW		Truss Type	Qty	Ply	Roof - Cobey Creek Lot 12	157 (00000	
S		Lay-In Gable	1	1	Job Reference (optional)	157499608	
pring	ills, KS - 66083, Run: 8.63 S Nov 19 2022 Print: 8.63 ID:VVWUksK0TpCmb7zfriMRvDEzr5A				9 2022 MiTek Industries, Inc. Thu Mar 30 15:47:20 B70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1	

Scale	= 1:45.9
-------	----------

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.08 0.04 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 58 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood sh 6-0-0 oc purlins. Rigid ceiling direct bracing. (size) 1=11-8- 9=11-8- 9=11-8- 1=11-8 Max Horiz 1=-197 Max Uplift 1=-84 (I 8=-164 11=-171 Max Grav 1=192 (8=215 (10=144 12=214	eathing directly applie y applied or 10-0-0 o 14, 7=11-8-14, 8=11 14, 10=11-8-14, -14, 12=11-8-14 LC 8) C 10), 7=-59 (LC 11) LC 13), 9=-170 (LC 1 (LC 12), 7=176 (LC 13) .C 20), 9=230 (LC 20) (LC 22), 11=231 (LC (LC 19)	2) ed or c 8-14, 3) , 4) C 12, 6)), 7) 19), 8)	Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5- 10-10-10, Int left and right exposed;C-C reactions shu DOL=1.60 Truss design only. For stu see Standard or consult qu All plates are Gable requir Gable studs This truss ha chord live loa Provide mec	7-16; Vult=115 h; TCDL=6.0psi t. II; Exp C; End e and C-C Exten -3-12 to 5-10-10 terior (1) 10-10- exposed ; end C for members a pwn; Lumber D ned for wind loa uds exposed to d Industry Gabl alified building e 1.5x4 MT20 u es continuous b spaced at 2-0-0 to been designed an onconcurre hanical connecc	mph (3-sec ; BCDL=6. closed; MW ior(22) 0-3. 0, Exterior(2 10 to 11-5- vertical left and forces & OL=1.60 pla ads in the pl wind (norm e End Deta designer as nless othern cottom chor o oc. ed for a 10.0 nt with any tion (by oth hstanding 8	cond gust) Opsf; h=35ft; FRS (envelo 12 to 5-3-12 2R) 5-10-10 tt and right & MWFRS fo ate grip lane of the trr al to the face ils as applica s per ANSI/T wise indicate d bearing. D psf bottom other live los ers) of truss i	pe) o lever r Jss), ble, PI 1. d. ds. to o oint					
FORCES	(lb) - Maximum Co Tension	mpression/Maximum		1, 59 lb uplift uplift at joint	t at joint 7, 164 11, 170 lb uplif	lb uplift at jo at joint 9 a	oint 12, 171 li and 164 lb up	b lift at					
I OP CHORD	1-2=-265/170, 2-3 4-5=-136/119, 5-6	152/107, 3-4=-136/′ 127/74, 6-7=-244/17	125, 70 or	joint 8.	designed in ac	ordance w	ith the 2019						
BOT CHORD	1-12=-128/187, 11 10-11=-129/187, 9 8-9=-128/187, 7-8: 2-12=-213/180, 3- 4-10=-112/74, 5-9:	-12=-128/187, -10=-129/187, 128/186 1=-226/197, 226/196, 6-8=-213/ ²	9) Lu 181	International R802.10.2 a DAD CASE(S)	Residential Co nd referenced s Standard	de sections tandard AN	SR502.11.1 a	Ind			H	STATE OF D	MISSOU

NOTES

1) Unbalanced roof live loads have been considered for this design.

RFI	FLEASE FOR CONSTRUCTION								
AS	NOTED ON PLANS	REVIEW							
1	EXELOBMENT SER	VICES							
	Premier Building Supply (Springhi)4/20/2023 4.4	ill_KS)_Spring I	lills, KS						

	Truss Type	Qty Ply Roof - C		Roof - Cobey Creek Lot 12	157 (00000		
	Lay-In Gable	Job Reference (optional)	157499609				
S - 66083,	Run: 8.63 S Nov 19 2	Page: 1					
	ID:II7oZ7I2DJmZuQo)	ID:II7oZ7I2DJmZuQoXfsoP2dypp4Y-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f					

Scale = 1:49.3

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.10 0.06 0.18	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 66 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood sh 6-0-0 oc purlins. Rigid ceiling direct bracing. (size) 1=13-0- 9=13-0- 11=3-0 Max Horiz 1=221 (f Max Uplift 1=-77 (L 8=-202 (11=-164 Max Grav 1=199 (f 8=265 (f 10=158 12=258	eathing directly applied y applied or 10-0-0 oc 14, 7=13-0-14, 8=13-0-1 14, 10=13-0-14, -14, 12=13-0-14, C 9) C 10), 7=-48 (LC 11), LC 13), 9=-158 (LC 13) (LC 12), 7=185 (LC 21), (LC 22), 7=185 (LC 20), (LC 22), 11=223 (LC 19) (LC 19)	2) or [14, 3) , 4) , 5) [2) 6) 7))), 8)	Wind: ASCE Vasd=91mpf Ke=1.00; Ca exterior zone Interior (1) 5- 11-6-10, Inte left and right exposed;C-C reactions she DOL=1.60 Truss design only. For stu see Standard or consult qu All plates are Gable requiring Gable studs This truss ha chord live loa Provide med	7-16; Vult=115mj h; TCDL=6.0psf; E t. II; Exp C; Enclose and C-C Exterior -3-12 to 6-6-10, E: rior (1) 11-6-10 to exposed; end ve C for members and bown; Lumber DOL and for wind loads tds exposed to wind a Industry Gable E alified building de e 1.5x4 MT20 unle es continuous bot spaced at 2-0-0 o to be designed ad nonconcurrent hanical connection a canable of withst	bh (3-see 3CDL=6. Sed; MW (2E) 0-3 xterior(21 12-9-9; ritical left 4 forces a =1.60 pl is in the p nd (norm End Deta signer a signer a signer a signer a tom chor c. for a 10. with any n (by oth andino	cond gust) Dpsf; h=35ft; FRS (envelo -12 to 5-3-12 R) 6-6-10 to cone; cantilev and right & MWFRS fo ate grip lane of the tr al to the face ils as applica s per ANSI/T wise indicate d bearing. D psf bottom other live loa ers) of truss	pe) , ver r uss e), bble, PI 1. d. d. ads. to ioint					
FORCES	(lb) - Maximum Co Tension	mpression/Maximum		1, 48 lb uplift	at joint 7, 197 lb	uplift at j	oint 12, 164 l	b lift at					
TOP CHORD	1-2=-283/182, 2-3= 4-5=-148/132, 5-6=	159/105, 3-4=-147/138 131/66, 6-7=-258/178	3, ai	joint 8.	designed in accor	dance w	ith the 2018						
BOT CHORD	1-12=-144/212, 11 10-11=-145/212, 9 8-9=-145/212, 7-8= 2-12=-250/214, 3- ⁻ 4-10=-130/89, 5-9=	·12=-145/212, ·10=-145/212, ·-144/211 1=-216/191, ·-209/184, 6-8=-256/215	9) L(International R802.10.2 ar	Residential Code nd referenced star Standard	sections ndard AN	SR502.11.1 a	and			H	STATE OF D	MISSOL R

 \vdash

1) Unbalanced roof live loads have been considered for this design.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

RELEASE FOR CONSTRUCTION							
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof - Cobey Creek Lot 12			
DEXELOBMENT SERVICES	Piggyback	1	1	Job Reference (optional)	157499610		
Premier Building Supply (Springhill, KS), Spring	fills, KS - 66083, Run: 8.63 S 1	Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Thu Mar 30 15:47:20					

-3-5

1-3-13 1-7-5 1-7-5 0-3-8 α ဗုံ

4-0-0

2-0-0

Scale = 1:23.5

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading	(psf)	Spacing	3-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.28	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0	Rep Stress Incr	NO		WB	0.00	Horiz(TL)	0.00	3	n/a	n/a			
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-P							Weight: 13 lb	FT = 20%	
LUMBER			7)	See Standar	d Industry Piggyb	ack Truss	s Connection							
TOP CHORD	2x4 SP No.2		,	Detail for Co	nnection to base t	truss as a	applicable, or							
BOT CHORD	2x4 SP No.2			consult quali	fied building desig	gner.								
BRACING			8)	Graphical pu	Irlin representation	n does no	ot depict the s	ize						
TOP CHORD	2-0-0 oc purlins			or the orienta	ation of the purlin	along the	top and/or							
	(Switched from shee	eted: Spacing > 2-0-0)).	bottom chore	d.									
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	É LC	DAD CASE(S)	Standard									
	bracing.													
REACTIONS	(size) 1=3-4-1, 3	3=3-4-1												
	Max Horiz 1=54 (LC	11)												
	Max Uplift 1=-35 (LC	212), 3=-35 (LC 13)												
	Max Grav 1=250 (LC	C 1), 3=250 (LC 1)												
FORCES	(lb) - Maximum Com Tension	pression/Maximum												
TOP CHORD	1-2=-215/140, 2-3=-	215/140												
BOT CHORD	1-3=-45/140													
NOTES														
1) Unbalance	ed roof live loads have	been considered for												
this desig	n.													
Wind: AS	CE 7-16; Vult=115mph	(3-second gust)												
Vasd=91n	nph; TCDL=6.0psf; BC	DL=6.0psf; h=35ft;												
Ke=1.00;	Cat. II; Exp C; Enclose	d; MWFRS (envelop	e)											
exterior zo	one and C-C Exterior(2	E) zone; cantilever le	eft									000	THE	
and right e	exposed ; end venical i	ercano nghi										BOF N	Alson	
reactions	shown: Lumber DOI -	1 60 plate grip										4 SE	11.0°	
DOI = 1.60		1.00 plate grip									A	N	Nes /	
3) This truss	, has been designed for	r a 10.0 psf bottom									A	S/ NATHA	NIEL / C Y	λ
chord live	load nonconcurrent wi	th any other live load	ls.								-	FO.	x	8
4) Provide m	echanical connection ((by others) of truss to)								W/		$\Lambda \sim V_{\star}$	2
bearing pl	ate capable of withstar	nding 35 lb uplift at jo	oint								WI	Tthe	V m	2

1 and 35 lb uplift at joint 3.

- 5) N/A
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and 6) R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 31,2023

VNOUBER

PE-20220422

HESSIONAL ET

Con

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

RELEASE FOR CONSTRUCTION						
AS NOTED ON PLANS REVIEW	Truss Type Qty Ply Roof - Cobey Creek Lot 12					
DEXELAGRMENT SERVES	Piggyback	21	1	Job Reference (optional)	157499611	
Premier Building Supply (Springhill, KS), Spring Hills 04/20/2023 4:46:00	s, KS - 66083, Run: 8.63 S. Nov 19 2022 Print: 8.630 S. Nov 19 2022 MiTek Industries, Inc. Thu Mar 30 15:47:21 ID:9FIL2khX6ICKeQADhqLUhqzqshp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f					

7-3-5

1-3-13 1-7-5 1-7-5 0-3-8 9-3-8

Scale = 1:23.5

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.08 0.17	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190	
BCLL	0.0	Rep Stress Incr	YES		WB	0.00	Horiz(TL)	0.00	3	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI	2014	Matrix-P							Weight: 13 lb	FT = 20%	
SCLL SCDL LUMBER TOP CHORD SOT CHORD SOT CHORD SOT CHORD SOT CHORD SOT CHORD SOT CHORD CHORD SOT CHORD SOT CHORD NOTES 1) Unbalance this design Wind: ASC Vasd=91n Ke=1.00; exterior z c and right 6 exposed; reactions : DOL=1.60 3) Truss des only. For see Stand or consult	0.0 10.0 2x4 SP No.2 2x4 SP No.2 Structural wood she 4-9-15 oc purlins. Rigid ceiling directly bracing. (size) 1=3-4-1, 3 Max Horiz 1=-36 (LC Max Uplift 1=-23 (LC Max Grav 1=167 (LC (lb) - Maximum Com Tension 1-2=-143/98, 2-3=-1 1-3=-32/93 ed roof live loads have h. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I signed for wind loads in studs exposed to wind lard Industry Gable En qualified building designed	Rep Stress Incr Code athing directly applied applied or 10-0-0 oc 3=3-4-1 2 10) 2 12), 3=-23 (LC 13) C 1), 3=167 (LC 1) apression/Maximum 43/98 been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le left and right orcres & MWFRS for 1.60 plate grip n the plane of the trus I (normal to the face), d Details as applicab gner as per ANSI/TP	YES IRC2018/TPI: 8) This Inte R8(9) See d or con LOAD (LOAD (ss le, 11.	is truss is d ernational F 02.10.2 and e Standard tail for Con nsult qualific CASE(S)	WB Matrix-P lesigned in accorda Residential Code se d referenced stand: Industry Piggybac nection to base true ed building designe Standard	0.00 ance wi ections ard AN k Trus: ss as a sr.	Horiz(1L) ith the 2018 R502.11.1 ar ISI/TPI 1. s Connection applicable, or	nd	3	n/a	n/a	Weight: 13 lb	FT = 20%	
 A) N/A This truss chord live 	has been designed for load nonconcurrent wi	r a 10.0 psf bottom	s.									PE-2022	SER 042259	9
 6) Provide m bearing pl 1 and 23 l 	echanical connection (ate capable of withstar b uplift at joint 3.	(by others) of truss to nding 23 lb uplift at jo	int								Ø	FESSIONA	L ENGI	
7) N/A												Van	5555	

- ng 23 lb up 1 and 23 lb uplift at joint 3.
- 7) N/A

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 31,2023

	R CONS	TRUCTIC		1							
	ON PLAN	SREVIE	N	Truss Type		Qty	Ply	Roof - Col	bey Creek Lo	t 12	157400040
PF236149B	MENT SE	ERVICES		Valley		1	1	Job Refer	ence (optiona	l)	157499612
Premier Building	g Supply (Spri	nghill, KS), Spr	ing Hills, KS - 66083,		Run: 8.63 S Nov 1	9 2022 Print:	8.630 S No	v 19 2022 MiTek	Industries, Inc	Thu Mar 30 15:47:21	Page: 1
04/20/2	0234	.40.00			ID:KCW4clOApYrE	∃xaZqV?m_s	VypotW-RfC	?PsB70Hq3NSg	PqnL8w3ulTXt	GKWrCDoi7J4zJC?f	
			L	8-0-0				16-0-	0		
			I	8-0-0		I		8-0-0)	I	
						4x4 =					
				10		3					
		T		8	/		<				
				1.5x4	• //		$\langle \rangle$	1.5x	«4 и		
					10			11			
		12		2					1		
		2-2-2		9				- B	12		
									\nearrow		
			,							$\langle \rangle$	
		2	1							5	
		⊥ <u>"</u> ⊤	- 😥		*****	<u>161</u> XXXXXXXXXX	*****	₩ ╳╳╳╳ХХХХХХХХ	******		
		0	2×4 -	8	******	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~	<u>~~~~~~</u> 6	********	2×4	
			3X4 💋	1.5x4	II	1.5x4 🛚		1.5>	(4 u	3x4 🔪	
						16-0-0					
Scale = 1:40.5											
Loading		(psf)	Spacing	2-0-0	CSI	DE	FL	in (loc)	l/defl L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15	TC	0.27 Ve	rt(LL)	n/a -	n/a 999	9 MT20	244/190
BCLL		0.0	Rep Stress Incr	YES	WB	0.13 Ve	riz(TL)	0.00 5	n/a 99	a	
BCDL		10.0	Code	IRC2018/TPI2014	Matrix-S					Weight: 60 lb	FT = 20%
	044 CD N	- 0		 Truss design only For stu 	ed for wind loads in	h the plane	of the trus	S			
BOT CHORD	2x4 SP N 2x4 SP N	0.2 0.2		see Standard	I Industry Gable En	d Details as	s applicable	э,			
OTHERS	2x3 SPF	No.2		or consult qu	alified building desi	gner as per	ANSI/TPI	1.			
BRACING				 Gable require Gable stude 	es continuous botto	m chord be	aring.				
TOP CHORD	Structura	I wood sheat	hing directly applied	d or 6) This truss ha	s been designed fo	r a 10.0 psf	bottom				
BOT CHORD	Rigid ceil	ing directly a	pplied or 10-0-0 oc	chord live loa	d nonconcurrent w	ith any othe	er live loads	3.			
REACTIONS	bracing.	1=16-10-7	5=16-10-7 6=16-1	0-7 bearing plate	capable of withsta	nding 20 lb	uplift at joi	nt			
REAGNONO	(3120)	7=16-10-7,	8=16-10-7	8) This truss is 0	ft at joint 8 and 190 designed in accorda	Ib uplift at j ance with th	oint 6. 1e 2018				
	Max Horiz Max Uplift	1=-149 (LC 1=-20 (LC 1	8) 3), 6=-190 (LC 13)	International	Residential Code s	ections R50	02.11.1 and	b			
	May Craw	8=-191 (LC	12)	, R802.10.2 ar LOAD CASE(S)	d referenced stand	lard ANSI/ I	PI 1.				
	Max Grav	1=168 (LC 2 6=441 (LC 2	20), 5=164 (LC 1), 20), 7=256 (LC 1),		Clandard						
FORCES	(lb) - May	8=442 (LC	19) ression/Maximum								
	Tension										
I OP CHORD	1-2=-155/ 4-5=-117/	/110, 2-3=-15 /67	2/135, 3-4=-141/12	22,							
	1-8=-44/9	99, 7-8=-44/9	9, 6-7=-44/99,								
BOT CHORD	E C _ A A "	13									
BOT CHORD WEBS	5-6=-44/9 3-7=-184/	/0, 2-8=-344/	235, 4-6=-343/235								
BOT CHORD WEBS NOTES	5-6=-44/9 3-7=-184/	/0, 2-8=-344/	235, 4-6=-343/235							STATE	ADD
BOT CHORD WEBS NOTES 1) Unbalance this design	5-6=-44/9 3-7=-184/ ed roof live l n.	/0, 2-8=-344/ loads have b	235, 4-6=-343/235 een considered for							FE OF M	AISSO
BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASI	5-6=-44/9 3-7=-184/ ed roof live l n. CE 7-16; Vu	/0, 2-8=-344/ loads have b lt=115mph (3	235, 4-6=-343/235 een considered for 3-second gust)						,	THE OF N	MISSOLUT
BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: ASI Vasd=91r Ke=1.00:	5-6=-44/9 3-7=-184/ ed roof live l n. CE 7-16; Vu nph; TCDL= Cat. II; Exp	/0, 2-8=-344/ loads have built=115mph (3 :6.0psf; BCDI C; Enclosed:	235, 4-6=-343/235 een considered for 3-second gust) _=6.0psf; h=35ft; MWFRS (envelope	9)					A	STATE OF M	AISSOLUTION
BOT CHORD WEBS NOTES 1) Unbalance this desig 2) Wind: ASI Vasd=91r Ke=1.00; exterior zz	5-6=-44/9 3-7=-184/ ed roof live l n. CE 7-16; Vu mph; TCDL= Cat. II; Exp one and C-C	/0, 2-8=-344/ loads have b lt=115mph (3 :6.0psf; BCD C; Enclosed; C Exterior(2E) 5-10. Exterior	235, 4-6=-343/235 een considered for 3-second gust) _=6.0psf; h=35ft; MWFRS (envelope 0-7-6 to 5-7-6, c/2D) 8 5 10 to	9)						STATE OF M NATHA	MISSOURIEL

left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

REL EASE FOR CONSTRUCTION NOTED ON PLANS REVIEW A DEXELORMENT SERVICES LEE'S SUMMIT, MISSOURI Premier Building Supply (Springhill, KS) Spring D4/20/2023 4:46:00 lills, KS - 66

	Truss Type		Qty Ply Roof - Cobey Creek Lot 12					
	Valley		1	1	Job Reference (optional)		157499613	
6083,		Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Thu Mar 30 15:47:21 ID:ZwZUUNVqhJ_yWzIZXOQ5jOypotN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f						
	0-2-2	600	1		11 0 14	12-0-0		

Loading	(psf)	Spacing	
TCLL (roof)	25.0	Plate Grip DOL	

Scale = 1:36

Loading TCLL (roof) TCDL BCLL BCDL	() 2 1	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.20 0.12 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 43 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural woo 6-0-0 oc purlin Rigid ceiling c bracing. (size) 1=1 7=1 10 Max Uplift 1=- (LC Max Grav 1=7 (LC 1),	2 od shea ns. 12-10-7, 12-10-7, =12-10-7 =-111 (L 58 (LC C 13), 7= C 12), 10 75 (LC 9 C 26), 7= 9=354 (thing directly applie applied or 10-0-0 oc 5=12-10-7, 6=12-1 8=12-10-7, 9=12-1 7 C 8) 10), 5=-35 (LC 11), -161 (LC 13), 9=-11), 5=56 (LC 13), 6= -352 (LC 20), 8=280 LC 19), 10=41 (LC	3) d or 5) 5) 5 5 7) 0-7, 0-7, 8) 6=-9 63 LC 25	Truss design only. For stu see Standard or consult qu. Gable require Gable studs s This truss ha chord live loa Provide mech bearing plate 1, 35 lb uplift joint 6, 163 lb This truss is of International R802.10.2 an DAD CASE(S)	ed for wind loads ds exposed to wind I Industry Gable E alified building des es continuous bott spaced at 4-0-0 oc s been designed f d nonconcurrent v nanical connection capable of withsta at joint 5, 9 lb upli uplift at joint 9 an designed in accord Residential Code d referenced stan Standard	in the pl d (norm ind Detai signer as om chor c. or a 10.0 with any h (by oth anding 5 iff at join d 161 lb dance wi sections dard AN	ane of the tru al to the face, ils as applicat s per ANSI/TF d bearing. 0 psf bottom other live loa ers) of truss t 8 lb uplift at joint ith 10, 9 lb uplift uplift at joint ith the 2018 R502.11.1 a ISI/TPI 1.	iss ble, ble, ll 1. ds. o bint t at 7. nd						
FORCES	(lb) - Maximur Tension	m Comp	pression/Maximum	_0)											
TOP CHORD	1-2=-118/92, 2 4-5=-96/54	2-3=-14	9/110, 3-4=-144/10	7,											
BOT CHORD	1-10=-111/11 7-8=-27/77, 5-	1, 1-9=- -7=-27/7	27/77, 8-9=-27/77, 77, 5-6=0/0										000	m	
WEBS	3-8=-195/28, 2	2-9=-28	7/218, 4-7=-285/21	8									OF N	Also	
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m Ke=1.00; C exterior zoo Interior (1) 11-5-10, In left and rig exposed;C reactions s DOL=1.60	ed roof live loads 2E 7-16; Vult=11 hph; TCDL=6.0p Cat. II; Exp C; E ne and C-C Ext 5-8-12 to 6-5-1 hterior (1) 11-5 ht exposed ; en -C for members shown; Lumber	s have b 15mph (osf; BCD Enclosed terior(2E 10, Exter 10 to 12 nd vertica s and fo DOL=1.	Seen considered for 3-second gust) DL=6.0psf; h=35ft; ; MWFRS (envelop 5) 0-8-12 to 5-8-12, ior(2R) 6-5-10 to -2-7 zone; cantileve al left and right rces & MWFRS for 60 plate grip	e) er									NATHA FOI PE-20220 PE-20220 PE-20220 PE-20220 PE-20220 PE-20220 PE-20220	NIEL PL	I

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 31,2023

	NETRUCT											
NOTED ON PL		W	Truss Type		Qty	Ply	Ro	of - Cob	ey Cree	ek Lot 1	12	
DEXELQBMENT	SERVICES	5	Valley		1	1	Joł	Refere	ence (op	tional)		157499614
Premier Building Supply 04/20/2023	(Springhill, KS), Springhill, KS), Sprin	pring Hills, KS - 66083,		Run: 8.63 S Nov 19 20 ID:zVFc7PYi_EMXNQ)22 P 17CX	rint: 8.630 S N _oL1ypotK-Rf	lov 19 202 C?PsB70l	22 MiTek Hq3NSgF	Industrie PqnL8w3u	s, Inc. T uITXbGł	⁻ hu Mar 30 15:47:21 KWrCDoi7J4zJC?f	Page: 1
				4-0-0		1	ł	8-0-0			4	
			I	4-0-0		I		4-0-0				
						4x4 =						
	-			<u>, 12</u>		2 ☆						
				01								
		2					$\langle \rangle$					
								$\langle \rangle$				
			1						\backslash		3	
		3-12				0				Ò	\geq	
		Ó										
			3x4 🍫			4				3>	×4 👟	
						1.5x4 ॥						
					8	-0-0					_	
Scale = 1:26.9			1	i							·	
Loading	(psf) 25.0	Spacing	2-0-0 1 15		33	DEFL Vert(LL)	in n/a	(loc)	l/defl	L/d gga	PLATES	GRIP 244/190
TCDL	10.0	Lumber DOL	1.15	BC 0.1	5	Vert(TL)	n/a	-	n/a	999	101120	277/130
BCLL	0.0 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB 0.0 Matrix-P)5	Horiz(TL)	0.00	3	n/a	n/a	Weight: 28 lb	FT = 20%

Т	IN	11	RI	F	R

P CHORD 2	x4 SP No.	.2
T CHORD 2	x4 SP No.	.2
THERS 2	x3 SPF N	0.2
RACING		
P CHORD S	tructural v -0-0 oc pu	wood sheathing directly applied or urlins.
)T CHORD F	ligid ceilin racing.	g directly applied or 10-0-0 oc
ACTIONS (siz	ze) [~]	1=8-10-7, 3=8-10-7, 4=8-10-7
Ma	ax Horiz	1=-74 (LC 8)
Ma	ax Uplift 🖌	1=-49 (LC 12), 3=-59 (LC 13)
Ma	ix Grav	1=197 (LC 1), 3=197 (LC 1), 4=299 (LC 1)
ORCES (I	b) - Maxin	num Compression/Maximum
Ť	ension	·
P CHORD 1	-2=-126/7	4, 2-3=-120/74
T CHORD 1	-4=-16/60	, 3-4=-16/60
EBS 2	-4=-203/1	04
Ma Ma DRCES (I T DP CHORD 1 DT CHORD 1 EBS 2	x Uplift x Grav (b) - Maxin ension -2=-126/7 -4=-16/60 -4=-203/1	1=-149 (LC 12), 3=-59 (LC 13) 1=197 (LC 1), 3=197 (LC 1), 4- (LC 1) num Compression/Maximum 4, 2-3=-120/74 , 3-4=-16/60 04

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 49 lb uplift at joint 1 and 59 lb uplift at joint 3.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

RELEASE FOR CONSTRUCTION								
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof - Cobey Creek Lot 12				
DEXELORMENT SERVICES	Valley	1	1	Job Reference (optional)	157499615			
Premier Building Supply (Springhill, KS), Spring Hi 04/20/2023 4:46:01	ilis, KS - 66083, Rt ID	Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Thu Mar 30 15:47:22 ID:O4wIIQabH9k6EuCiufXVyfypotH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f						
		2-0-0	.	4-0-0				
		2-0-0	:	2-0-0				

4-0-0

Soolo	- 1	1.21	15
SUGIE	_	1.6	

												-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-P	0.07 0.04 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 Structural wood she 4-11-3 oc purlins. Rigid ceiling directly bracing. (size) 1=4-10-7, Max Horiz 1=-37 (LC Max Uplift 1=-24 (LC Max Grav 1=96 (LC (LC 1)	athing directly appli applied or 10-0-0 o , 3=4-10-7, 4=4-10-7 ; 8) ; 12), 3=-28 (LC 13) 1), 3=96 (LC 1), 4=	7) 8) ed or c , 142	Provide mec bearing plat 1 and 28 lb This truss is Internationa R802.10.2 a DAD CASE(S)	chanical conne e capable of wi uplift at joint 3. designed in ac l Residential C nd referenced Standard	ction (by oth ithstanding 2 ccordance w ode sections standard AN	ers) of truss 24 lb uplift at ith the 2018 5 R502.11.1 a ISI/TPI 1.	to joint and					

FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-63/44, 2-3=-60/44

2-4=-96/61

TOP CHORD 1-2=-63/44, 2-3=-60/4 BOT CHORD 1-4=-8/30, 3-4=-8/30

WEBS

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

