

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Re: P230088-P230088-02 Roof

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Premier Building Supply (Springhill, KS)20300 W 207th Street.

Pages or sheets covered by this seal: I57620674 thru I57620697

My license renewal date for the state of Missouri is December 31, 2023.

Missouri COA: Engineering 001193

April 7,2023

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

,Engineer

LEASE FOI	R CONSTRUCT N PLANS REVI	ION EW	Truss Type		Qty	Ply	Roof		
PE25668PY	HENT SERVICE	s	Piggyback Base S	Structural Gable	2	1	Job Reference (optio	nal)	157620674
Premier Building	Supply (Springhill, KS) S 023 9:39:0	oring Hills, KS - 66083		Run: 8.63 S Nov 1	9 2022 Print: 8	3.630 S Nov 1	9 2022 MiTek Industries, I		Page: 1
J4/13/20	JZ3 9:39:0	5		ID:EmCXOiXYCMI	5lKd?OVTvI7	yGxE5-RfC?F	sB70Hq3NSgPqnL8w3ulT	XbGKWrCDoi7J4zJC?	f
	-0-10-8 6-1	-7 13	-3-11 20	-4-7 20-11-0	27-1-0 2	7-10-4	34-8-5	48-0-0	48-10-8
	0-10-8 6-1	-7 6	-4-4 7-	000		001	6-10-2	13-3-11	0-10-8
6 8			6x12 ≠	3x6= 1517 18 12 <mark>√15 ⊠</mark>		3x6= 426 ≠105 27	ŵ		
10-10-1 10-10-0 3-6-15 0-1-8			J T	10		27 28	φ ≖ -0 29 _{5×5}		
3-6-1				8					
=			612 4 5	,			³⁰ ³¹ 6 ¹ 32 33		
4			27 29	9 11				34 12 35	
11-2-11 -1 -3		3		11 134 134 16				36	
11 7-3-1 6-10-3	6	0			9				39
	. //		// ``		¥3	25			40
-4-14 -6-0 -6-0 -6-0			<u> </u>		1				4142
-9 90	4x6=	59 3x		57			54 53 52 51 50	49 48 47 46 45	6 44 43 4x6=
		38	5= 3x0	= 4x6=		7x8=	5x5=		
		9-3-14 9-3-14	<u>18-0-2</u> 8-8-5	<u> </u>		-1		<u>8-0-0</u>)-9-12	
			000	52			20	5 12	
Scale = 1:86.4									
Plate Offsets ()	X, Y): [15:0-3-0,Edge], [26:0-3-0,Edge], [3	32:0-2-8,0-3-0], [53:0-2	-8,0-3-0]					
Loading	(psf)	Spacing	2-0-0	CSI	DEF		()	L/d PLATES	GRIP
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC	0.75 Vert 0.95 Vert	. ,		240 MT20 80	244/190
BCLL BCDL	0.0 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB Matrix-S	0.27 Horz	z(CT) 0	07 56 n/a i	n/a Weight: 349 lb	FT – 20%
WEBS OTHERS	2x4 SP No.2 *Excep 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 *Exce 21-20,23-22,25-24,5 No.2	pt*		45=128 (I 47=120 (I 49=120 (I 51=118 (I 53=92 (L0	.C 1), 41=16 .C 1), 44=81 .C 26), 46=1 .C 1), 48=12 .C 26), 50=1 .C 26), 52=1 C 26), 54=24 C 9), 56=196	(LC 1), 19 (LC 1), 20 (LC 1), 23 (LC 1), 29 (LC 1), 5 (LC 1),	14 22 28 31 34 37	4-57=-553/143, 20-2 2-23=-71/39, 24-25= 3-55=-13/108, 29-54 1-52=-93/57, 32-51= 4-49=-93/57, 35-48=	-38/33, 27-56=-397/25, =-98/61, 30-53=-94/54, -93/56, 33-50=-95/58, -93/57, 36-47=-93/57, -97/59, 39-44=-69/41,
BRACING TOP CHORD	Structural wood she	athing directly applie	ed or FORCES	(lb) - Maximum Com	,,,	()	16	6-17=-171/21, 12-13	=-191/48,
	2-2-0 oc purlins, exc 2-0-0 oc purlins (10-	ept		Tension 1-2=0/17, 2-3=-1979	/353, 3-5=-1	730/359,	10 NOTES)-11=-67/47, 8-9=-73	3/46, 6-7=-60/41
BOT CHORD	Rigid ceiling directly			5-6=-43/251, 6-8=-1 10-12=0/301, 12-15	2/269, 8-10=	=0/282,	 Unbalanced ro 	oof live loads have b	een considered for
	bracing, Except: 8-11-14 oc bracing:			17-18=-12/247, 18-2	0=-12/247,	11-10/20	2) Wind: ASCE 7	′-16; Vult=115mph (;	
	10-0-0 oc bracing: 5 2-2-0 oc bracing: 56			20-22=-12/247, 22-2 24-26=-7/250, 26-27	=-47/223, 2			TCDL=6.0psf; BCD II; Exp C; Enclosed	L=6.0pst; h=35ft; ; MWFRS (envelope)
WEBS	1 Row at midpt	20-21, 22-23, 24-25 27-56, 29-54, 30-53		28-29=-5/252, 29-30 31-33=-27/223, 33-3		-31=-3/231,		and C-C Exterior(2E -8 to 20-11-0, Exter	
JOINTS	1 Brace at Jt(s): 14, 21, 11, 7	, -,-,-		34-35=-64/205, 35-3 36-37=-101/205, 37-		4,	27-1-0, Exterio	or(2R) 27-1-0 to 34- 10-8 zone; cantileve	1-14, Interior (1)
REACTIONS	(size) 2=0-3-8,	41=20-11-8, 43=20-	11-8,	38-39=-143/206, 39- 40-41=-239/236, 41-	40=-169/19	5,	exposed ; end	vertical left and righ	t exposed;C-C for
		-8, 45=20-11-8, -8, 47=20-11-8,		7-9=-1831/416, 9-11	=-1864/436	,		forces & MWFRS for 1.60 plate grip DOL	
		-8, 49=20-11-8, -8, 51=20-11-8,		11-13=-1894/457, 13 14-16=-2052/498, 10		,		Carton P	A DOD
		-8, 53=20-11-8,		19-21=-2156/510, 2 23-25=-2220/523, 2				TATE OF	MISSO
								HAVY	
	54=20-11 56=20-11	-8, 55=20-11-8, -8	BOT CHORD	2-59=-415/1679, 57	59=-190/11	03,		AS SCOT	Т М. \ 2 \
	54=20-11	-8, 55=20-11-8, -8 C 12)		2-59=-415/1679, 57- 56-57=-274/1786, 55 54-55=-196/243, 52-	59=-190/11 5-56=-196/2 54=-196/24	03, 43, 3,	ł		T M. TER
	54=20-11 56=20-11 Max Horiz 2=204 (Lt Max Uplift 2=-225 (L 43=-91 (L	-8, 55=20-11-8, -8 C 12) C 12), 41=-31 (LC 2 C 13), 44=-28 (LC 1	5), 3),	2-59=-415/1679, 57 56-57=-274/1786, 5	59=-190/11 5-56=-196/24 54=-196/24 51=-196/24	03, 43, 3, 3,			
	54=20-11 56=20-11 Max Horiz 2=204 (L0 Max Uplift 2=-225 (L 43=-91 (L 45=-42 (L 47=-41 (L	-8, 55=20-11-8, -8 C 12) C 12), 41=-31 (LC 2 C 13), 44=-28 (LC 1 C 13), 46=-41 (LC 1 C 13), 48=-41 (LC 1	5), 3), 3), 3),	2-59=-415/1679, 57 56-57=-274/1786, 5 54-55=-196/243, 52 51-52=-196/243, 50	59=-190/11 5-56=-196/24 54=-196/24 51=-196/24 49=-196/24 49=-196/24	03, 43, 3, 3, 3, 3,		sev Scatter	IER *
	54=20-11 56=20-11 Max Horiz 2=204 (L4 Max Uplift 2=-225 (L 43=-91 (L 47=-42 (L 47=-41 (L 49=-41 (L 51=-41 (L	-8, 55=20-11-8, -8 C 12), 41=-31 (LC 2 C 13), 44=-28 (LC 1 C 13), 46=-41 (LC 1 C 13), 48=-41 (LC 1 C 13), 50=-42 (LC 1 C 13), 52=-39 (LC 1	5), 3), 3), 3), 3), 3),	2-59=-415/1679, 57 56-57=-274/1786, 52 54-55=-196/243, 52 51-52=-196/243, 50 49-50=-196/243, 48 47-48=-196/243, 46	59=-190/11 5-56=-196/24 54=-196/24 51=-196/24 49=-196/24 47=-196/24 45=-196/24	03, 43, 3, 3, 3, 3, 3, 3,			IER *
	54=20-11 56=20-11 Max Uplift 2=-225 (L 43=-91 (L 45=-42 (L 47=-41 (L 51=-41 (L 53=-44 (L	-8, 55=20-11-8, -8 C 12) C 12), 41=-31 (LC 2 C 13), 44=-28 (LC 1 C 13), 46=-41 (LC 1 C 13), 48=-41 (LC 1 C 13), 50=-42 (LC 1	5), 3), 3), 3), 3), 3), 3),	2-59=-415/1679, 57 56-57=-274/1786, 52 54-55=-196/243, 52 51-52=-196/243, 52 49-50=-196/243, 48 47-48=-196/243, 46 45-46=-196/243, 44	59=-190/11 5-56=-196/24 54=-196/24 51=-196/24 49=-196/24 47=-196/24 45=-196/24	03, 43, 3, 3, 3, 3, 3, 3,		Sector PE-2001	TER 1018807
	54=20-11 56=20-11 Max Uplift 2=-225 (L 43=-91 (L 45=-42 (L 47=-41 (L 51=-41 (L 53=-44 (L	-8, 55=20-11-8, -8 C 12) C 12), 41=-31 (LC 2 C 13), 44=-28 (LC 1 C 13), 46=-41 (LC 1 C 13), 48=-41 (LC 1 C 13), 50=-42 (LC 1 C 13), 52=-39 (LC 1 C 13), 54=-23 (LC 1	5), 3), 3), 3), 3), 3), 3),	2-59=-415/1679, 57 56-57=-274/1786, 52 54-55=-196/243, 52 51-52=-196/243, 52 49-50=-196/243, 48 47-48=-196/243, 46 45-46=-196/243, 44	59=-190/11 5-56=-196/24 54=-196/24 51=-196/24 49=-196/24 47=-196/24 45=-196/24	03, 43, 3, 3, 3, 3, 3, 3,		Section PE-2001	TER 1018807

16023 Swingley Ridge Rd Chesterfield, MO 63017

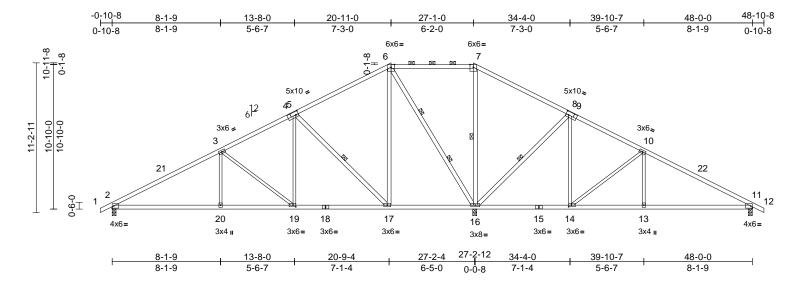
RF ASE FOR CONST HICTIO NOTED ON PLANS REVIEW EXELOPMENT SERVICES Building Supply (Springhill, KS), Spring 3/2023 9:39:05

3)

		Truss Type	Qty	Ply	Roof	
		Piggyback Base Structural Gable	2	1	Job Reference (optional)	157620674
3	lills, KS - 66083,	Run: 8.63 S Nov 19 2	2022 Print: 8.	630 S Nov 1	9 2022 MiTek Industries, Inc. Thu Apr 06 11:06:09	Page: 2

Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,

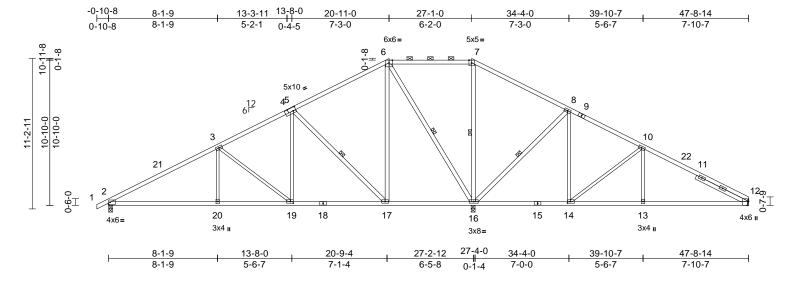
or consult qualified building designer as per ANSI/TPI 1.


- 4) Provide adequate drainage to prevent water ponding. All plates are 3x4 MT20 unless otherwise indicated.
- 5) 6) Gable studs spaced at 1-4-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 225 lb uplift at joint 2, 162 lb uplift at joint 56, 31 lb uplift at joint 41, 528 Ib uplift at joint 55, 23 lb uplift at joint 54, 44 lb uplift at joint 53, 39 lb uplift at joint 52, 41 lb uplift at joint 51, 42 Ib uplift at joint 50, 41 lb uplift at joint 49, 41 lb uplift at joint 48, 41 lb uplift at joint 47, 41 lb uplift at joint 46, 42 Ib uplift at joint 45, 28 lb uplift at joint 44 and 91 lb uplift at joint 43.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries. Inc. Thu Apr 06 11:06:09 ID:EmCXOiXYCML5IKd?OVTvI7yGxE5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

RF	LEASE FOR CONSTE							
AS	NOTED ON PLANS	REVIEW	Truss	Туре	Qty	Ply	Roof	
	F235668P25088-SER		Piggy	back Base	6	1	Job Reference (optional)	157620675
(Premier Building Supply (Springhi) 94/13/2023 9:3		lills, KS - 66083,				9 2022 MiTek Industries, Inc. Thu Apr 06 11:06:12 370Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1


Scale = '	1:86.4
-----------	--------

Scale = 1:86.4													
Plate Offsets ((X, Y): [4:0-2-8,0-3-0],	[9:0-2-8,0-3-0], [14:0)-2-8,0-1-	8], [19:0-2-8,0-	1-8]								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.87 0.75 0.81	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.30 0.04	(loc) 2-20 2-20 16	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 259 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS TOP CHORD BOT CHORD WEBS WEBS REACTIONS	2x4 SP No.2 *Excep 1650F 1.5E 2x4 SP No.2 *Exce 17-5,17-6,16-6,16-7, Structural wood she 2-2-0 oc purlins, exc 2-0-0 oc purlins, exc 2-0-0 oc purlins (10- Rigid ceiling directly bracing. 1 Row at midpt 2 Rows at 1/3 pts (size) 2=0-3-8, 1 Max Horiz 2=204 (LC Max Uplift 2=-197 (L 16=-305 (Max Grav 2=1030 (L 16=2946 // (lb) - Maximum Com Tension 1-2=0/17, 2-3=-1508 5-6=-203/216, 6-7=0 8-10=-127/436, 10-1 2-20=-311/1225, 19- 17-19=-131/712, 16- 14-16=-372/188, 13-	t* 1-4,9-12:2x4 SP ppt* 16-8:2x4 SP No.2 athing directly applie ept 0-0 max.): 6-7. applied or 6-0-0 oc 5-17, 7-16, 8-16 6-16 (1=0-3-8, 16=0-3-8 C 12), 11=-182 (LC - LC 12) C 25), 11=676 (LC 2 (LC 1) pression/Maximum %256, 3-5=-889/221, %858, 7-8=-42/1077, 1=-758/223, 11-12=1 -20=-311/1225, -17=-161/331,	2) d or 3) 4) 5) 13), 6) 26), 7) LG	Wind: ASCE Vasd=91mpi Ke=1.00; Ca exterior zone Interior (1) 4 27-1-0, Exte to 48-10-8 zv vertical left a forces & MW DOL=1.60 p Provide adee This truss ha chord live loa Provide mec bearing plate joint 2, 305 l 11. This truss is International R802.10.2 a Graphical pu	7-16; Vult=115 7-16; Vult=116; N; TCDL=6.0ps t. II; Exp C; En- and C-C Exte 1-8 to 20-11-0 rior(2R) 27-1-0 one; cantilever and right expose (FRS for reaction (FRS for reactio	f; BCDL=6.0 closed; MW rior(2E) -0-1 , Exterior(2E to 34-4-0, I left and righ ed;C-C for n ons shown; 1.60 to prevent to ed for a 10.0 ent with any tion (by oth hstanding 1 l6 and 182 cordance w ode sections standard AN tion does no	Dipsf; h=35ft; FRS (envelo 0-8 to 4-1-8, E) 20-11-0 to therior (1) 34 t exposed ; e nembers and Lumber vater pondin, 0 psf bottom other live loa ers) of truss i b uplift at join th the 2018 R502.11.1 at SI/TPI 1.	-4-0 end g. ds. to t t t				STATE OF M	AISSOUR
WEBS NOTES 1) Unbalance this desigr	11-13=-119/563 3-20=0/307, 3-19=-6 5-17=-899/320, 6-17 6-16=-1478/286, 7-1 8-16=-915/321, 8-14 10-14=-681/229, 10- ed roof live loads have h.	7=-143/767, 6=-886/184, !=-62/516, -13=0/309								2		PE-20010 PE-20010	DI8807

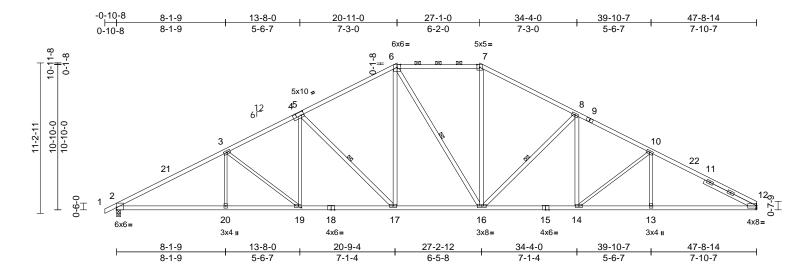
April 7,2023

RE	EASE FOR CONSTR							
	NOTED ON PLANS			Truss Type	Qty	Ply	Roof	
1	EXELSO PYENTS SER	VIÇES		Piggyback Base	2	1	Job Reference (optional)	157620676
C	L EE'S SUMMIT, MISS Premier Building Supply (Springhi)4/13/2023 9:3	IL KS) Spring 9:06	lills, KS - 66083,				9 2022 MiTek Industries, Inc. Thu Apr 06 11:06:12 PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

Scale =	1:85.9
---------	--------

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.83	Vert(LL)	-0.13	2-20	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.76	Vert(CT)	-0.30	2-20	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.97	Horz(CT)	0.04	12	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 263 lb	FT = 20%

LUMBER TOP CHORD	2x4 SP No.2 *Except* 4-1,9-12:2x4 SP 1650F 1.5E	2)	Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope)	
BOT CHORD WEBS	2x4 SP No.2 2x3 SPF No.2 *Except* 17-6,16-7,16-6,16-8,17-5:2x4 SP No.2		exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 20-11-0, Exterior(2E) 20-11-0 to 27-1-0, Exterior(2R) 27-1-0 to 34-4-0, Interior (1) 34-4-0	
SLIDER BRACING TOP CHORD	Right 2x4 SP No.2 4-4-0 Structural wood sheathing directly applied or 3-1-9 oc purlins, except	2)	to 47-8-14 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding.	
BOT CHORD	2-0-0 oc purlins (10-0-0 max.): 6-7. Rigid ceiling directly applied or 6-0-0 oc bracing.	3) 4) 5)	All plates are 3x6 MT20 unless otherwise indicated. This truss has been designed for a 10.0 psf bottom	
WEBS REACTIONS	Max Horiz 2=209 (LC 12) Max Uplift 2=-211 (LC 12), 12=-199 (LC 13), 16=-272 (LC 12)	6) 7)	chord live load nonconcurrent with any other live loads. Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 199 lb uplift at joint 12, 211 lb uplift at joint 2 and 272 lb uplift at joint 16.	
	Max Grav 2=1052 (LC 25), 12=682 (LC 26), 16=2793 (LC 1)	8)	This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and	
FORCES	(Ib) - Maximum Compression/Maximum Tension	9)	R802.10.2 and referenced standard ANSI/TPI 1. Graphical purlin representation does not depict the size	
TOP CHORD		-,	or the orientation of the purlin along the top and/or bottom chord.	OF MISS
BOT CHORD	2-20=-343/1265, 19-20=-343/1265, 17-19=-163/753, 16-17=-79/254, 14-16=-317/196, 13-14=-162/696, 12-13=-162/696	LC	OAD CASE(S) Standard	STATE OF MISSOL
WEBS	3-20=0/307, 6-17=-143/766, 7-16=-801/151, 10-13=0/297, 6-16=-1402/269, 5-19=-62/503, 3-19=-647/226, 8-14=-54/501, 8-16=-912/320, 10-14=-646/212, 5-17=-896/320			NUMBER PE 2001018807
NOTES				11-2001010000/
 Unbalance this designed 	ed roof live loads have been considered for n.			SSIONAL ENG

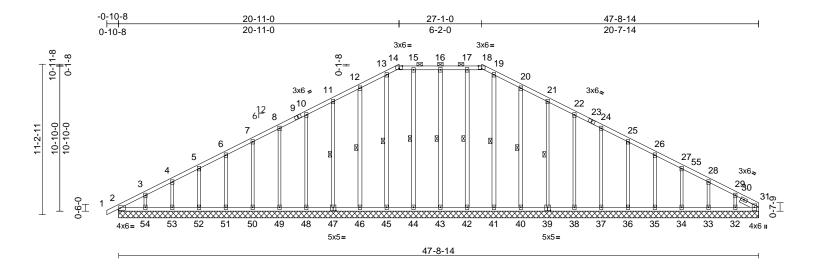

EVIER MBER 01018807 NAL ET April 7,2023

> V MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

AS NOTED O		HEW	Trus	ss Type		Qty	Ply	Roof			157620677
		ES RI		gyback Base		2	1	Job Reference (optional)		137 620677
Premier Building	Supply (Springhill KS)) Spring I	lills, KS - 66083,					19 2022 MiTek Indust sB70Hq3NSgPqnL8w	-	•	3 Page: 1
	-0-10-8 -	<u>8-1-9</u> 8-1-9	<u> </u>			<u>27-1-0</u> 6-2-0		34-4-0 7-3-0	<u>39-10-7</u> 5-6-7		47-8-14 7-10-7
	0-10-8	0-1-9	5-0-1	0-1-1	6x6=	0-2-0		7-5-0	5-0-7		7-10-7
-8 -8					3x4 ∎ ∞ 7		6x6=				
0-1-0					8, 7 -0 0						
				5x8 =				<u> </u>			
			12 6	45		L.		9	10		
<u>11-2-11</u> <u>10-10-0</u> 10-10-0			3			25	Ø			_ 11	
		00						\$	//		27
	/	26			20	■ 19 \\					12
	$T_{T} 1^{2}$						\mathbb{V}		//		
т — 6	4x6=		24	23 22	4x6= 3x4=		⊠ 17	16 15		14	4x6 II
			3х4 ш		4x6=	3v4	3x8=			3x4 II	
	H	<u>8-1-9</u> 8-1-9	13-8- 5-6-7		1-8 23-4-0	-5-4 2 <u> 27-2-12</u> -4 3-9-8 (<u>39-10-7</u> 5-6-7		47-8-14 7-10-7
Scale = 1:85.9		0-1-9	5-6-7	0-3-	o <u> </u>	1-4 3-9-0 (0-1-4 4-0	-0 2-4-0	5-0-7		7-10-7
	X, Y): [4:0-1-4,0-3-	0], [13:0	-3-10,Edge], [15:0-2-	8,0-1-8], [23:0-2-8,	0-1-8]						
Loading	(psf)		cing 2-0-		CSI	DEF		in (loc) l/de		LATES	GRIP
TCLL (roof) TCDL	25.0 10.0		e Grip DOL 1.15 Iber DOL 1.15		TC BC	0.84 Vert 0.72 Vert	. ,).13 2-24 >99).30 2-24 >99		IT20	197/144
BCLL BCDL	0.0 10.0	· · ·	Stress Incr YES	2018/TPI2014	WB Matrix-S	0.80 Horz	z(CT) 0).07 17 n/		Veight: 273 lb	FT = 20%
LUMBER					roof live loads have	been consid	lered for			0	
TOP CHORD	2x4 SP No.2 *Exc 1650F 1.5E	ept* 4-1	,10-13:2x4 SP		7-16; Vult=115mph						
BOT CHORD WEBS	2x4 SP No.2 *Exc 2x3 SPF No.2 *Ex		18:2x3 SPF No.2		; TCDL=6.0psf; BCI II; Exp C; Enclosed						
SLIDER	17-8,17-7,17-9,21 Right 2x4 SP No.2				and C-C Exterior(2 1-8 to 20-11-0, Exte						
BRACING TOP CHORD	Structural wood s	heathing	directly applied or		ior(2R) 27-1-0 to 34 ne; cantilever left ar)			
	2-2-0 oc purlins, e 2-0-0 oc purlins (1	except			nd right exposed;C-(FRS for reactions sh						
BOT CHORD	Rigid ceiling direc bracing. Except:				ate grip DOL=1.60 uate drainage to pre	event water	ponding.				
1 Row at midpt WEBS		0 17	17-25, 9-17, 5-21	All plates are	3x6 MT20 unless o s been designed for	therwise ind	licated.				
JOINTS	1 Brace at Jt(s): 2	25			d nonconcurrent wit er(s) for truss to trus						
	Max Horiz 2=208	(LC 12)	echanical, 17=0-3-8		nanical connection (capable of withstan						
		4 (LC 12	2)		lb uplift at joint 17 ar						
	Max Grav 2=975 17=287	(LC 25), 79 (LC 1)		8) This truss is a	designed in accorda Residential Code se						
FORCES	(lb) - Maximum Co Tension	ompress	ion/Maximum	R802.10.2 ar	nd referenced standa	ard ANSI/TF	기 1.			COLOR	1000
TOP CHORD	1-2=0/17, 2-3=-13 5-6=-221/472, 6-7				tion of the purlin alo				Å	TEOF	MISSOL
BOT CHORD		=-304/62	28, 11-13=-886/646	LOAD CASE(S)					AS	SCOT	
	21-23=-202/592, 2	20-21=-1							Pril	SEV	
		8=-55/20), 15-17=-513/194,						KA	th	
WEBS	3-24=0/311, 8-17= 7-25=-1395/238,	=-860/76	6, 11-14=0/300,						NE	NUM PE-2001	DER 1018807
	5-23=-66/503, 3-2	23=-673/	239, 9-15=-46/497,						ANO!		158
	9-17=-906/313, 1 5-21=-818/273, 7-								V	SSION	IL EN
NOTES										all a	oril 7,2023

RELEASE FOR CONSTRUCTION						
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof		
DEXELORPYENTS SERVICES	Piggyback Base	10	1	Job Reference (optional)	157620678	
Premier Building Supply (Springbill KS) Spring 04/13/2023 9:39:06		9 2022 MiTek Industries, Inc. Thu Apr 06 11:06:13 sB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1			

Scale = 1	1:85.9
-----------	--------


	(n=f)	Speeing	2-0-0		CSI		DEFL	in	(loc)	l/dof	ا	PLATES	GRIP
bading CLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		TC	0.94	Vert(LL)	in -0.25	(loc) 17-19	l/defl >999	L/d 240	MT20	244/190
	10.0	Lumber DOL	1.15		BC	0.81	Vert(CT)		17-19	>999	180		211/100
	0.0	Rep Stress Incr	YES		WB	0.69	Horz(CT)	0.23	12	n/a	n/a		
CDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 268 lb	FT = 20%
JMBER			2)	Wind: ASCE	E 7-16; Vult=115	imph (3-sec	ond aust)						
OP CHORD	2x4 SP 1650F 1.5E	*Except* 6-7:2x4 SF	, '		h; TCDL=6.0ps								
	No.2, 4-1:2x4 SP 24				at. II; Exp C; En								
OT CHORD	2x4 SP 1650F 1.5E				e and C-C Exte								
EBS	2x4 SP No.2 *Excep				4-1-8 to 20-11-0			10					
LIDER	3-20,10-13,5-19,19- Right 2x4 SP No.2 -	,	.2		erior(2R) 27-1-0 cone; cantilever								
RACING	1119111 224 OF 110.2 -	- 4 -0			and right expose								
OP CHORD	Structural wood she	athing directly applie	h		VFRS for reaction								
	except	aamig arcoay applie			plate grip DOL=								
	2-0-0 oc purlins (2-2	2-0 max.): 6-7.	3)		quate drainage			g.					
OT CHORD	Rigid ceiling directly	applied or 9-5-5 oc	4) 5)		e 3x6 MT20 unl as been designe								
	bracing.	0 40 0 40 F 47	5)		ad nonconcurre			ds					
EBS	1 Row at midpt	6-16, 8-16, 5-17	6)		der(s) for truss to			u 5 .					
	(size) 2=0-3-8, ² Max Horiz 2=209 (L0	12= Mechanical	7)		chanical connec			0					
	Max Uplift 2=-329 (L		13)		e capable of wit		01 lb uplift at						
	Max Grav 2=2214 (L		1)		329 lb uplift at j								
RCES	(lb) - Maximum Corr		(1) 8)		designed in ac Residential Co			nd					
NOLO	Tension	ipression/maximum			and referenced s			ina					
OP CHORD	1-2=0/17, 2-3=-4013	3/582, 3-5=-3436/597	7, 9)		urlin representa			size					
	5-6=-2790/564, 6-7=		-,		tation of the pur								
	7-8=-2789/562, 8-10	0=-3408/589,		bottom chor	d.								Th
	10-12=-3902/581	00 500/0400	L	DAD CASE(S)	Standard							OFA	ALC D
OT CHORD	2-20=-562/3436, 19- 17-19=-390/2992, 1	,										ALEUTI	AISSO
	14-16=-325/2985, 1	,									B	1221	10x V
	12-13=-406/3344										B	S/ SCOIL	
EBS	3-20=0/301, 6-17=-1	140/735, 7-16=-82/72	29,								R	SEVI	ER \
	10-13=0/280, 6-16=	,	465,								0 1		★
	3-19=-576/216, 8-14										8	Y e	0
	8-16=-841/315, 10-1 5-17=-847/316	14=-481/200,									2-	9 Colton	rerller
	5-17=-047/310										87	O PE-2001	018807
TES											X X	- IL 2001	
OTES	d roof live loads have	been considered for	-								()	10%	184
Unbalanced	d roof live loads have	been considered for	r								Y	A PS C	OF A
		been considered for	r								Ŷ	FESSIONA	L ENGILE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

April 7,2023

RFI	EASE FOR CONSTRUCTIO	M					
	NOTED ON PLANS REVIEW		Truss Type	Qty	Ply	Roof	
9	EXELORPHENTS SERVICES		Piggyback Base Supported Gable	2	1	Job Reference (optional)	157620679
C	Premier Building Supply (Springhill KS) Spri 4/13/2023 9:39:06	g Hills, KS - 66083,	Run: 8.63 S Nov 19 2 ID:JbPUB4NmDf0vU5	Page: 1			

Scale = 1:85.9

Plate Offsets (X, Y): [14:0-3-0,Edge	e], [18:0-3-0,Edge], [3	31:0-3-2,0-1-12], [39:0-	-2-8,0-3-0], [47:0-2-8,0-3-0]							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.05 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.02	(loc) - - 31	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 313 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 *Exca 43-16,42-17,41-19,4 2x4 SP No.2 Right 2x4 SP No.2	40-20,44-15,45-13,46	S-12:		2=-27 (LC 8), 32 33=-59 (LC 13), 35=-61 (LC 13), 37=-61 (LC 13), 39=-58 (LC 13), 42=-9 (LC 9), 43 44=-12 (LC 9), 4	34=-62 (LC 1 36=-61 (LC 1 38=-62 (LC 1 40=-78 (LC 1 =-59 (LC 8),), 3), 3), 3), 3),	BOT CH	IORD	52-53 50-51 48-49 45-46 43-44	-60/224, 53-54=-(=-60/224, 51-52= =-60/224, 49-50= =-60/224, 46-48= =-60/224, 44-45= =-60/224, 42-43=	-60/224, -60/224, -60/224, -60/224, -60/224,
BRACING TOP CHORD	U U	eathing directly applie	ed or		47=-58 (LC 12), 49=-61 (LC 12), 51=-61 (LC 12), 53=-61 (LC 12),	48=-62 (LC 1 50=-61 (LC 1 52=-61 (LC 1 54=-87 (LC 1	12), 12), 12), 12),			36-37 34-35 32-33	=-60/224, 37-38= =-60/224, 35-36= =-60/224, 33-34= =-60/224, 31-32=	-60/224, -60/224, -60/224
BOT CHORD WEBS		applied or 10-0-0 oc 16-43, 17-42, 19-41 20-40, 21-39, 15-44 13-45, 12-46, 11-47	,	Max Grav	2=176 (LC 21), 3 32=180 (LC 26), 34=180 (LC 26), 36=180 (LC 26), 38=181 (LC 1), 3	33=182 (LC 35=180 (LC 37=180 (LC 39=178 (LC 2	1), 1), 1), 1), 26),	WEBS		19-41 21-39 24-37	=-142/111, 17-42 =-135/0, 20-40=- ⁻ =-138/93, 22-38= =-140/96, 25-36= =-140/96, 27-34=	142/116, -141/97, -140/97,
REACTIONS	32=47-8- 34=47-8- 36=47-8- 38=47-8- 40=47-8- 42=47-8-	4, 31=47-8-14, 14, 33=47-8-14, 14, 35=47-8-14, 14, 37=47-8-14, 14, 39=47-8-14, 14, 41=47-8-14, 14, 43=47-8-14,			40=182 (LC 1), 4 42=177 (LC 26), 44=178 (LC 25), 46=182 (LC 1), 4 48=181 (LC 1), 4 50=180 (LC 1), 5 52=180 (LC 1), 5 54=181 (LC 25)	43=182 (LC 45=177 (LC 47=178 (LC 2 49=180 (LC 2 51=180 (LC 2	26), 22), 25), 25), 25),	NOTES		15-44 12-46 10-48 6-51=		-137/7,
	46=47-8- 48=47-8- 50=47-8-		FORCES TOP CHORD	Tension 1-2=0/17, 4-5=-180/ 7-8=-80/1 11-12=-10 13-14=-12 15-16=-11 17-18=-11 19-20=-12 21-22=-87 24-25=-51	2-3=-294/93, 3-4 99, 5-6=-134/113 64, 8-10=-68/192 57/288, 12-13=-11 25/343, 14-15=-1 17/343, 16-17=-1 18/342, 18-19=-12 (7/236, 22-24=-68/ 1/128, 25-26=-51/ 5/27, 28-29=-144/	=-228/88, , 6-7=-106/1; , 10-11=-87/2 26/350, 18/342, 17/343, 25/343, 25/288, 182, 74, 26-27=-6	37, 236, 9/29,			8	State OF M SCOTT SEVI NUMI PE-20010	ER DI8807

April 7,2023

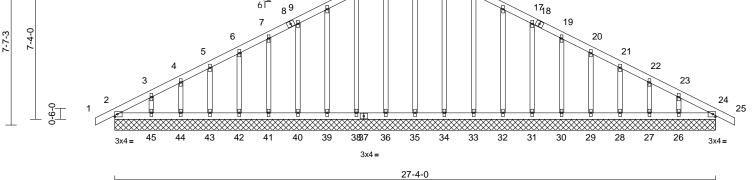
RF ASE FOR CONST UCTIO NOTED ON PLANS REVIEW EXELOPHENT SERVICES MMIT, MISSOURI g Supply (Springhill, KS), Spri 023 9:39:06 Spring

		Truss Type	Qty	Ply	Roof	
		Piggyback Base Supported Gable	2	1	Job Reference (optional)	157620679
1	lills KS - 66083	Run: 8.63 S. Nov 19.2	022 Print: 8	630 S Nov 1	9 2022 MiTek Industries Inc. Thu Apr 06 11:06:14	Page: 2

Unbalanced roof live loads have been considered for 1) this design.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 4-0-0, Exterior(2N) 4-0-0 to 20-11-0, Corner(3R) 20-11-0 to 26-0-0, Exterior(2N) 26-0-0 to 27-1-0, Corner(3R) 27-1-0 to 32-0-0, Exterior(2N) 32-0-0 to 47-8-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- All plates are 3x4 MT20 unless otherwise indicated. 5) 6) Gable requires continuous bottom chord bearing.

Gable studs spaced at 2-0-0 oc. 7)


- This truss has been designed for a 10.0 psf bottom 8) chord live load nonconcurrent with any other live loads.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 27 lb uplift at joint 2, 59 lb uplift at joint 43, 9 lb uplift at joint 42, 78 lb uplift at joint 40, 58 lb uplift at joint 39, 62 lb uplift at joint 38, 61 lb uplift at joint 37, 61 lb uplift at joint 36, 61 lb uplift at joint 35, 62 lb uplift at joint 34, 59 lb uplift at joint 33, 102 lb uplift at joint 32, 12 lb uplift at joint 44, 74 lb uplift at joint 46, 58 lb uplift at joint 47, 62 lb uplift at joint 48, 61 lb uplift at joint 49, 61 lb uplift at joint 50, 61 lb uplift at joint 51, 61 lb uplift at joint 52, 61 lb uplift at joint 53 and 87 lb uplift at joint 54.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

LOAD CASE(S) Standard

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Thu Apr 06 11:06:14 ID:JbPUB4NmDf0vUSJtFFIELayGxJT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

RELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof	
DEXELORPHENTS SERVICES	Common Supported Gable	2	1	Job Reference (optional)	157620680
Premier Building Supply (Springhill, KS) Spring 04/13/2023 9:39:06				9 2022 MiTek Industries, Inc. Thu Apr 06 11:06:14 sB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1
-0-10-8 0-10-8	<u>13-8-0</u> 13-8-0			<u>27-4-0</u> 13-8-0	28-2-8 0-10-8
		4x4= 13			
	12 3x4 = 11 12 10		14 15	16 ^{3x4} *	

Scale = 1:52.4

Loading TCLL (roof) (pst) (pst) (Lumber OpL Lumber DOL 1.15 Spacing (pst) (Lumber DOL 1.00 2-0-0 (RE2010TPL2014 CSI TC DEFL TC in (b) (b) (bd) PLATES GRP (PLATE) BCLL 0.0 Rep Stress Incr YES TC 0.07 Veri(T) n/a - n/a 989 BCLL 0.0 Rep Stress Incr YES 0.01 1.41-80/255 1.415-80/230.01 1.41-80/255 1.415-80/230.01 0.01 1.41-80/255 1.415-80/230.01 0.01 1.41-80/255 1.415-80/230.01 0.01 1.41-80/255 1.415-80/230.01 0.01 1.41-80/255 1.415-80/230.01 0.01 1.41-80/255 1.415-80/230.01 0.01 1.41-80/255 1.415-80/230.01 0.01 1.41-80/255 0.01 0.01-14-80/255 0.01 0.01 1.41-80/255 0.01 0.01 1.41-80/255 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	00010 - 1.02.4													-		
TCLL (roof) 25.0 Piake Grip DOL 1.15 TC 0.07 Ver(L) n/a - n/a 998 MT20 197/144 CDL 0.00 Rep Stress Incr YES WB 0.18 Ver(CT) n/a - n/a 998 MT20 197/144 BCDL 10.0 Rep Stress Incr YES WB 0.18 Horz(CT) 0.01 24 n/a n/a 998 Weight: 145 Ib FT = 20% LUMBER 2x4 SP No.2 TOP CHORD 2x4 SP No.2 TOP CHORD 13-14-8-89/25, 14-15-80/230, 17.2-3-181/64, 45-80/216, 9-10-53/155, 15-96/126, 9-10-53/155, 45-76/17, 13-2-96/126, 9-10-53/155, 15-76/17, 13-2-96/126, 9-10-53/155, 15-76/17, 13-2-96/126, 9-10-53/155, 15-76/17, 13-2-96/126, 9-10-53/155, 15-76/17, 13-2-96/126, 9-10-56/	Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc	c) l/defl	L/d	PLATES	GRIP	
TCDL 10.0 Lumber DOL 1.15 BC 0.03 effect n/n	TCLL (roof)		. ,	Plate Grip DOL	1.15		тс	0.07	Vert(LL)	n/a			999	MT20	197/144	
BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Weight: 145 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 TOP CHORD 13-14=89/255, 14-15=80/230, 15-16=66/119, 16-17-53/155, 17-19=41/119, 19-20-38/38, 20-21=35/48, 22-23=74/22, 23-27422, 23	TCDL		10.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	n/a		- n/a	999			
BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Weight: 145 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 TOP CHORD 13-14-89/255, 14-15-80/230, 15-16-86/811, 16-17-53/155, 807 CHORD Thus designed for wind loads in the plane of the on consult qualified building designed for wind loads in the plane of the on consult qualified building designed for wind loads in the plane of the on consult qualified building designed for wind loads in the plane of the on consult qualified building designed for all 0.0 pb building 22-27-40, 24-27-40, 25-27-40, 33-27-40, 34-27-40, 32-27-40, 33-27-40, 34-27-40, 32-27-40, 33-27-40, 34-27-40, 32-27-40, 33-27-40, 34-27-40, 32-27-40, 33-27-40, 34-27-40, 32-27-40, 33-27-40, 34-27-40, 32-27-40, 33-27-40, 34-27-40, 33-27-40, 33-27-40, 34-27-40, 33-27-40, 33-27-40, 34-27-40, 33-27-40, 33-27-40, 34-27-40, 33-27-40, 33-27-40, 34-27-40, 33-27-40, 33-27-40, 34-27-40, 43-27-40, 43-27-40, 44-27-40, 45-27-40, 43-27-40, 44-27-40, 45-27-40, 43-23-40/160, 24-38-40/160, 33-31-40/1											2					
TOP CHORD 2x4 SP No.2 2x4 SP No.2 only. For Stude exposed to wind (normal to the fast sea pair see Standard Industry Gables End Details as appir or consult qualified building designer as per ANSI 2x3 SPF No.2 BRACING OT CHORD Studural wood sheathing directly applied or 6-0 oo purins. 15:1666/191, 11:1783/155, 2x3 SPF No.2 only. For Stude exposed to wind (normal to the fast see Standard Industry Gables End Details as appir or consult qualified building designer as per ANSI 2x2-56/12, 12:2017, 72-36/126, 5678/89, 67-569/1707, 79-50/126, 910-63/156, 67-569/1707, 79-50/126, 910-63/156, 610-133, 32-274-00, 32-274-00, 33-3274-00, 33-274-00, 32-274-00, 33-3274-01, 33-274-00, 33-274-00, 33-3274-01, 33-274-00, 33-274-00, 33-35-40/160, 33-33-40/160, 33-3274-01, 33-274-00, 32-274-00, 33-35-40/160, 27-36-40/160, 33-31-40/160, 27-36-40/160, 33-31-4	BCDL		10.0	Code	IRC2	018/TPI2014	Matrix-S							Weight: 145	lb FT = 20%)
45=130 (LC 25) reactions shown; Lumber DOL=1.60 plate grip	LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.3 Structural wc 6-0-0 cc purl Rigid ceiling bracing. (size) 2= 27 30 33 36 40 40 40 40 40 40 40 40 40 40 40 40 40	2 2 2 2 2 2 2 2 2 2 2 2 2 2	athing directly applied applied or 10-0-0 oc 24=27-4-0, 26=27-4- 0, 28=27-4-0, 32=27-4 0, 31=27-4-0, 32=27-4 0, 34=27-4-0, 35=27-4 0, 41=27-4-0, 45=27-4 0, 41=27-4-0, 45=27-4 21, 24=12, 22, 22, 22, 22, 22, 22, 22, 22, 22,	1 or 0, 4-0, 4-0, 4-0, 4-0, 4-0,	TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanced this design. 2) Wind: ASC Vasd=91m Ke=1.00; C exterior zor Xasd=91m Ke=1.00; C exterior zor N18-8-0, Ext left and rigf	13-14=-89/255, 1 13-14=-89/255, 1 15-16=-66/191, 1 17-19=-41/119, 1 21-22=-51/20, 22 24-25=0/17, 1-2= 3-4=-131/67, 4-5= 6-7=-59/107, 7-9= 10-11=-66/191, 1 12-13=-89/255 2-45=-40/160, 44 43-44=-40/160, 4 43-44=-40/160, 3 36-38=-40/160, 3 32-33=-40/160, 3 32-33=-40/160, 2 28-29=-40/160, 2 28-29=-40/160, 2 28-29=-40/160, 2 28-29=-40/160, 2 28-29=-40/160, 2 13-35=-148/26, 1: 10-39=-93/64, 5-42 3-45=-99/122, 14 16-32=-93/64, 21 23-26=-99/119 d roof live loads ha E 7-16; Vult=115m oh; TCDL=6.0psf; 1 at. II; Exp C; Enclo the and C-C Corner 1) 4-4-0 to 13-8-0, 0 erior(2N) 18-8-0 to the exposed; end we	6-17=-53 9-20=-34 -23=-74/2 0/17, 2-3 =-99/76, [-50/126, 1-12=-80 -45=-40/1 2-43=-40 0-41=-40 8-39=-40 0-41=-40 8-39=-40 1-32=-40 9-30=-40 1-32=-40 9-30=-40 1-32=-40 9-30=-40 1-32=-40 9-30=-40 2-36=-96/ 4-26=-96/ 4-	 (155,	3/45, 5, 5, 774, 4, 774, /64, /99, r r pe)	 o s o s o a a	nly. For s ee Stande r consult of all plates a sable requ bable stud his truss h hord live l rovide me earing plat , 27 lb upl plift at joir 1, 41 lb up plift at joir 4, 48 lb up plift at joir his truss i thernations ? 802.10.2	Studs e ard Ind qualifier and the space of	for wind loads in xxposed to wind lustry Gable En ad building desi x4 MT20 unless ad ta 1-4-0 oc. the designed for onconcurrent wind cal connection with the pable of withstar bint 36, 46 lb up 11 lb uplift at joi joint 32, 41 lb uu joint 33, 41 lb uu 11 lb uplift at joi joint 28, 40 lb uu and 4 lb uplift at joi idential Code si aferenced stand and ard Standard Control Control Control Standard Control Control Control Control Control Standard Control Control Control Control Standard Control Control Control Control Control Standard Control Control Control Control Control Control Standard Control Control Control Control Control Control Control Standard Control Control Cont	n the plane of t d (normal to the d Details as ap igner as per AN s otherwise ind orm chord bearin ar a 10.0 psf bol ith any other liv (by others) of t nding 26 lb upli polift at joint 38, 4 int 40, 41 lb upl uplift at joint 32, int 45, 21 lb upl uplift at joint 32, int 30, 41 lb upl uplift at joint 32, int 30, 41 lb upl uplift at joint 27, joint 24. ance with the 2 sections R502.1 dard ANSI/TPI	the truss a face), oplicable, NSI/TPI 1. dicated. ng. wittom ve loads. truss to lift at joint 41 lb lift at joint 4, 40 lb lift at joint 4, 41 lb lift at joint 4, 57 lb 2018 11.1 and 1.
	FORCES		`	,			nown; Lumber DOI	L=1.60 pl	ate grip							Ą

April 7,2023

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Common 4 1 usb Reference (indexed) Common 4 1	LEASE FOR CONSTRUCTION NOTED ON PLANS REVIEW	4	Truss Type		Qty	Ply	Roof			
$\frac{1}{2} = \frac{1}{2} + \frac{1}$								e (entional		157620681
Image: Sector 13-8-0 20-4-9 27-4-0 28-2-4 Image: Sector 15-8-4 0-17 0-0-4 Image: Sector 15-8-4 0-0-4 0-0-4 Image: Sector 15-8-4 0-0-4 0-0-4 Image: Sector 15-9 15-9 0-0-4 0-0-4 Image: Sector 12 11 10 0-0-4 0-0-4 Image: Sector 12-0 11 10 0-0-4 0-0-4 Image: Sector 11-0 10-4 0-0-4 0-0-4 0-0-4 Image: Sector 11-0 10-4 0-0-4 0-0-4 0-0-4 Image: Sector 0-0-4 11-5 0-0-4 0-0-4 0-0-4 0-0-4 Image: Sector 0-0-4 11-5 0-0-4	Premier Building Supply (Springhill, KS), Spring	1 lills, KS - 66083,					19 2022 MiTek Ind	ustries, Inc.	Thu Apr 06 11:06:15	Page: 1
dink 0.11/2 0.00 0.11/2 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.	14/13/2023 9.39.00	J		ID:77cC2GCYq/	wXzi_Rd5a	kSLyGxKz-RfC?	PsB70Hq3NSgPqn	L8w3ulTXbG	KWrCDoi7J4zJC?f	
the second seco										28-2-8
Image: space of the space	0-10-8	0-11-7		0-0-9	4×6		-0-9		0-11-7	0-10-8
a 1.544 b <						-				
9 9 9 9 10	ТТ		1 <u>2</u> 6 🗖 3x4					1.5x4 🅢		
9 9 1 1 10<			1.5x4 💊			$\langle \rangle > 0$	3x4	*		
Image: Provide and the standard of the standard			14 4				15 6			
Image: State 152.7 Image: State 152.7 State 15	, о		3 19	~	/		I	7		
Image: State of the state in the state	7-7-	13							16	
Image: State 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>//</td><td></td><td>/</td><td></td><td></td></t<>						//		/		
Image: State 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\sim .</td></t<>										\sim .
Bit of the state 12 11 10 Bit of the state 3x4 =		-								°
Join Juit Juit Juit 9-3-14 18-0-2 27-4-0 Scile = 152.5 9-3-14 8-8-5 9-3-14 Pilet Offnerk (X, Y): [2:Edge,0-0-9] Import Offnerk (X, Y): [2:Edge,0-0-9] Part & Filther DOL 1.15 EC 0.77 Ver(IL1) 0.42 22.989 24/0 MT20 244/190 BCL 10.0 Code YES 0.28 Ver(IC) 0.44 2.12 2.989 24/4 MT20 244/190 BCL 10.0 Code YES 0.28 Ver(IC) 0.44 2.12 2.989 24/4 MT20 244/190 ULMBER Code Secture Mode Status 4 Provide mechanical connection (W) others) of truss to particle in the 2018 4 3.01 10.01 Code 2.02 10.02 10.02 Code 10.02 2.02 10.02 10.02 10.02 10.02 10.02 10.02 10.02 10.02	\bowtie			12 11			10			
Scale = 152.5 9-3-14 8-8-5 9-3-14 Deading (pst) Spacing 2-0-0 CSI (pst) (pst) PLATES GRIP Loading (pst) 2.50-0 CSI 0.77 Wert(L) 0.00 With U 40 PLATES GRIP TCDL 10.0 Lumber DOL 1.15 TC 0.77 Wert(L) 0.044 2-12 2-999 2.40 BCDL 10.0 Code ITES TES	3x4 =			3x4 = 3x4 =			3x4=			3x4 =
State - 152.5 Plate Offsets (X, Y): [2:Edg.0-0-9]. [8:Edgn.0-0-9]. Loading (pst) Plate Sign DDL 1.15 CSI 0.77 Veri(T) -0.20 212 >999 240 TCLL (roof) 2.50 Lumber DDL 1.15 BC 0.97 Veri(T) -0.20 212 >999 240 BCLL 0.0 Code IRC2018/PIPD014 Matrix-S DEFL in (noc) I/deft Veri(T) -0.24 2.737 160 BCDL 10.0 Code IRC2018/PIPD014 Matrix-S DEFL in (noc) I/deft Veri(T) -0.24 2.737 160 BCDL Code IRC2018/PIPD014 Matrix-S DE Description	L	9-3-	14	1	18-0-	2			27-4-0	
Plate Offsets (X, Y): [2:Edge.0-0-9]. Becing (x): Spacing (x): Construction (x): CSI DEFL in floor Vield Ud PLATES GRIP TCLL (root) 2:00 10.0 2:50:0 1:5:5 TC 0.77 Vert(LL) -0.20 MT20 2:44/190 BCDL 10:0 10:0 Code r/YES WB 0.28 Horz(CT) -0.47 2:12:-98907 Weight: 109 lb FT = 20% LUMBER TOP CHORD 2:45 PN 0.2 4) Provide mechanical connection (by others) of truss to base to paring plate capabilis of withstanding of in accordrance with the 2018 international confiction (by others) of truss to base to paring plate capabilis of withstanding of in accordrance with the 2018 international Residential Code sections R802:11:1 and Residential Code Sections R8	Scale = 1:52.5	9-3-	14	I	8-8-5	5	I		9-3-14	1
TCLL (root) 25.0 Plase Cip DOL 1.15 TC 0.77 Ver(CT) 0.20 2-12 939 240 BCLL 0.0 Rep Stress Incr YES WB 0.26 Horz(CT) 0.07 8 n/a n/a N/a BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Matrix-S Weight: 109 Ib FT = 20% LUMBER TOP CHORD 2x4 SP No.2 Soft Ordon Zv4 SP No.2 Soft Ordon Zv4 SP No.2 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 211 Ib uplit at joint 2. and 211 bu uplit at joint 3. Soft Ordon Zv4 SP No.2 This truss is designed in accordance with Hex 2018 International Rescional Root NV1/TH 1. LOAD CASE(S) Standard BOT CHORD 2-20-36, 8-0-38 Max Uplit 2-2011 (C 12, 8-2012/SV2, 3-5-1821403, 5-12-451202, 5-8-2012/SV2, 3-5-1821403, 5-12-451202, 5-8-2012/SV2, 5-8-2027/SV2, 3-5-18214/SV3, 5-12-4-51202, 7-2-451287, 5-51-2-4512/SV2, 5-8-202		dge,0-0-9]								
TCDL 10.0 Lumber DOL 1.15 BC 0.01 Ver(2CT) 0.04 2-12 5737 180 BCDL 10.0 Code IRC2018/TFI2014 Matrix-S 0.26 Ver(2CT) 0.07 8 n/a n/a BCDL 10.0 Code IRC2018/TFI2014 Matrix-S 0.26 Ver(2CT) 0.07 8 n/a							. ,			
BCDL 10.0 Code IRC2018/TPI2014 Matrix:S Weight: 109 lb FT = 20% LUMBER TOP CHORD Zx4 SP No.2 Barting Standard Standard <thstandard< th=""> Standard</thstandard<>						. ,			MT20	244/190
LUMBER TOP CHORD Zxd SP No.2 DOT CHORD Zxd SP No.2 BACING BRACING Structural wood sheathing directly applied or 2.6-11 to putinds. TOP CHORD Structural wood sheathing directly applied or 2.6-11 to putinds. BOT CHORD Rigid colling directly applied or 2.6-11 to putinds. Structural wood sheathing directly applied or 2.6-11 to putinds. BOT CHORD Rigid colling directly applied or 2.6-11 to putinds. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. LOAD CASE(S) Standard BOT CHORD Rigid colling directly applied or 10-0-2007.2-3207/2392.8-9-0.17 Max Upilfi 2211 (LC 12), 8211 (LC 13) Max Grav 2-1228 (LC 1), 10-12-88/11/180, 8-10-2-233/1763 BOT CHORD C-2-12328/1763 (D12-8-96/11/180, 8-10-2-233/1763 WEBS 5-10-154/672, 7.10-4-51/287, 5-12153/672, 7.10-4-51/287, 5-12153/672, 7.10-4-51/287, 5-12153/672, 7.12-451/287 NOTES 10 Unbalanced rool live loads have been considered for this design. 10. Unbalanced rool live loads have been considered for this design. 10. Unbalanced rool live loads have been considered for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 30. This truss has been designed for a 10.0 plate grip DOL=1.60 30. This truss has been designed for a 10.0 plate grip DOL=1.60 31. This truss has been designed for a 10.0 plate grip DOL=					0.26	Horz(CT)	0.07 8	n/a n/a	Weight [,] 109 lb	FT = 20%
All and a second s	 BRACING TOP CHORD Structural wood sheathin 2-6-11 oc purlins. BOT CHORD Rigid ceiling directly app bracing. REACTIONS (size) 2=0-3-8, 8=0-Max Horiz 2=-137 (LC 13 Max Uplift 2=-211 (LC 12 Max Grav 2=1288 (LC 1 FORCES (b) - Maximum Compres Tension TOP CHORD 1-2=0/17, 2-3=-2072/392 5-7=-1821/403, 7-8=-203 BOT CHORD 2-12=-328/1763, 10-12= 8-10=-263/1763 WEBS 5-10=-154/672, 7-10=-44 5-12=-153/672, 3-12=-44 NOTES 1) Unbalanced roof live loads have bee this design. 2) Wind: ASCE 7-16; Vult=115mph (3-s Vasd=91mph; TCDL=6.0psf; BCDL= Ke=1.00; Cat. II; Exp C; Enclosed; M exterior zone and C-C Exterior(2E) - (Interior (1) 4-1-8 to 13-8-0, Exterior(2E) - (Interior (1) 14-1-8 to 13-8-0, Exterior(2E) - (Interior (1) 14-8-0 to 28-2-8 a) and right exposed ; end vertical left a exposed; C-C for members and force reactions shown; Lumber DOL=1.60 3) This truss has been designed for a 1 	lied or 10-0-0 oc 3-8 3) 2), 8=-211 (LC 13), 8=-288 (LC 1) ssion/Maximum 2, 3-5=-1821/403, 72/392, 8-9=0/17 -86/1180, 51/287, 5) (or R802.10.2 (LOAD CASE())) ft	nal Residential Code 2 and referenced star	sections I	R502.11.1 and			SCOTT SEVI NUMI PE-20010	ER BER 018807
		,							alle	

RELEASE FOR CONSTRUCTION						
AS NOTED ON PLANS REVIEW		Truss Type	Qty	Ply	Roof	
DEXELOR PMENTS SERVICES		Common Supported Gable	1	1	Job Reference (optional)	157620682
Premier Building Supply (Springbill KS) Spring 04/13/2023 9:39:06	ills, KS - 66083,				9 2022 MiTek Industries, Inc. Thu Apr 06 11:06:15 0Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1
	-0-10-8	6-10-0			13-8-0	
	0-10-8	6-10-0	ļ		6-10-0 0-10-8	
			4x4 =			
			7			
		12 6 8		8		

5

20

19

18

13-8-0

17

4

21

4x8 🞜

22

2

 \bigotimes

3x4 II

9

16

10

 \bigotimes

15

4x8 💊

11

14

12

3x4 II

13

Scale = 1:37.9

Plate Offsets (X, Y): [12:Edge,0-5-14]

5-2-11

0-8-0

5-5-14

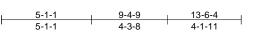
	X, Y): [12:Edge	e,0-5-1	4]											
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.06 0.03 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 73 lb	GRIP 197/144 FT = 20%
	2x4 SP No.2 2x3 SPF No.2 Left 2x4 SP N 1-8-5 Structural wo 6-0-0 oc purli Rigid ceiling of bracing. (size) 2= Max Uplift 2=- Max Uplift 2=- Max Grav 2= 14: 16: 18: 20:	lo.2 od she ns. directly 13-6-4, =13-6-4 =13-6-4 =13-6-4 =13-6-4 =13-6-4 =13-6-4 =13-6-4 (LC 2 13), 1 C 13), 1 C 13), 1 C 12), 2 C 13), 1 C 12), 2 C 12	: 8), 12=-2 (LC 9), 14: 5=-52 (LC 13), 16=-5 7=-42 (LC 13), 19=-4 (0=-56 (LC 12), 21=-5 22=-80 (LC 12) C 20), 12=154 (LC 1), LC 20), 15=125 (LC 2 LC 20), 15=125 (LC 2 C 20), 19=131 (LC 1). LC 29), 21=126 (LC 1)	40.2 d or -4, 6-4, 6-4, 6-4, -73 - 57 - 52 , , , , , , , , , , , , , , , , , ,	NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Exterior(2N) 11-10-0, Ext left and right exposed;Co reactions she DOL=1.60 3) Truss desig only. For stt see Standarr or consult qu 4) All plates are 5) Gable studs 6) This truss ha chord live loa 7) Provide mec bearing plate	7-18=-119/26, 8-17 10-15=-100/111, 1 6-19=-104/73, 5-20 3-22=-109/131 roof live loads have 7-16; Vult=115mp n; TCDL=6.0psf; Be t. II; Exp C; Enclos a and C-C Corner(3 4-2-0 to 6-10-0, CC erior(2N) 11-10-0 te exposed ; end ver C for members and bwn; Lumber DOL= ned for wind loads ids exposed to wind d Industry Gable Ei ialified building des a 1.5x4 MT20 unles spaced at 1-4-0 oc is been designed fr ad nonconcurrent v hanical connection a capable of withsta	1-14=-1)=-99/10 e been h (3-sec CDL=6. CDL=6. CDL=6. WW BB: -0-1 prorer(3F so 14-6-8 tical left forces a =1.60 pl in the p d (norm nd Deta signer a so other core a core a so other core a so other core a so other core a so other core a core a so other core a so other core a so other core a core a co	02/129, 16, 4-21=-100/ considered for xond gust) Dpsf; h=35ft; FRS (envelop 0-8 to 4-2-0, 0-8 to 4-2-0, 0-9 to 4-2-0,	111, e) ver ss , le, 11. ds.			H	THE OF I	MISSOL
FORCES	Tension 7-8=-91/176, 10-11=-58/29 1-2=0/16, 2-3	8-9=-6 , 11-12 =-140/	pression/Maximum 6/126, 9-10=-49/59, 2=-112/57, 12-13=0/16 112, 3-4=-96/80, /126, 6-7=-91/176	· .	uplift at joint 14, 45 lb upl uplift at joint 3) Non Standar 9) This truss is	ift at joint 2, 42 lb u 16, 52 lb uplift at jo ift at joint 19, 56 lb 21 and 80 lb uplift d bearing condition designed in accord	bint 15, uplift at at joint 2 n. Revie dance w	73 lb uplift at joint 20, 52 lb 22. w required. ith the 2018			C	R	SCOT SEVI	
BOT CHORD		, 21-22 0, 19-2 0, 17-1 0, 15-1	2=-52/150, 20=-52/150, 8=-52/150, 6=-52/150,	I		Residential Code and referenced stan Standard			nd			AS.	PE-2001	018807

RELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof	
DEXELOR PMENTES	Monopitch	1	1	Job Reference (optional)	157620683
Premier Building Supply (Springhill KS) Spring 4 04/13/2023 9:39:06				9 2022 MiTek Industries, Inc. Thu Apr 06 11:06:15 PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

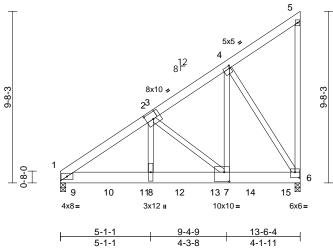
13-6-4 13-2-12 13-2-12 0-3-8 1.5x4 🛚 1.5x4 **I** 3x4 II 14 1.5x4 u 12 1.5x4 **I** 10 MT18HS 5x18 8 812 81 6 0-2-8 9-11-6 II 9-8-3 3x4 🖌 5 3x4 🍫 5-0-6 4-1-4 3 2 9 11 13 15 Ø 16 3x4 II MT18HS 5x8 💊 1.5x4 **I** 6-8-4 13-6-4 ł 6-8-4 6-10-0

Scale = 1:63.8

Plate Offsets (X, Y): [2:0-1-13.0-0-4]. [4:0-9-0.0-3-0]. [15:0-6-6.0-3-11]


Plate Offsets	(X, Y): [2:0-1-13,0-0-4	·], [4:0-9-0,0-3-0], [15 -	5:0-6-6,0-	3-11]								-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.65 0.44 0.25	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.09 0.01	(loc) 15-16 2-16 15	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 97 lb	GRIP 244/190 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep 2x3 SPF No.2 Left 2x4 SP No.2	t* 4-16:2x3 SPF No. 3-11-10 athing directly applie cept end verticals. applied or 10-0-0 oc 14-15 15=0-3-8 C 9) 2 12), 15=-202 (LC 1:	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	 only. For stt see Standard or consult qu Provide adea All plates are Gable studs This truss ha chord live load Provide mection plate joint 15 and This truss is International R802.10.2 a Gaphical put 	ned for wind loads ids exposed to wi d Industry Gable I lailified building de quate drainage to e MT20 plates unl e 3x4 MT20 unles spaced at 1-4-0 c is been designed ad nonconcurrent hanical connectio e capable of withs B3 lb uplift at joint designed in accord Residential Code nd referenced sta rlin representation to of the purlin	nd (norm End Deta ssigner a prevent ess otherwind c. for a 10. with any n (by oth tanding 2 2. rdance w e sections ndard Alt n does n	al to the face ils as applica is per ANSI/TI water ponding wise indicate se indicated. 0 psf bottom other live loa ers) of truss t 202 lb uplift at ith the 2018 is R502.11.1 a VSI/TPI 1. ot depict the s	i), ble, PI 1. g. id. ids. to t					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	I	OAD CASE(S)									
TOP CHORD	1-2=0/16, 2-6=-708/ 8-10=-226/208, 10-1 12-14=-93/93, 13-15 13-14=-86/83, 4-5=- 7-9=-606/280, 9-11= 11-13=-725/366	2=-194/194, 5=-600/360, 538/231, 5-7=-560/2	46,									ATE OF I	MISSOL
BOT CHORD WEBS	2-16=-324/568, 15-1 4-16=0/305, 11-12= 7-8=-84/61, 5-6=-12	-205/174, 9-10=-77/6	63,								A	SCOT SEV	TM. YE Y
Vasd=91 Ke=1.00; exterior z Interior (1 exposed members	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 I) 4-1-8 to 13-4-8 zone; end vertical left and rig and forces & MWFRS DOL=1.60 plate grip DC	DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-10-8 to 4-1-8, cantilever left and right ght exposed;C-C for for reactions shown;	ght									NUM PE-2001	018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


April 7,2023

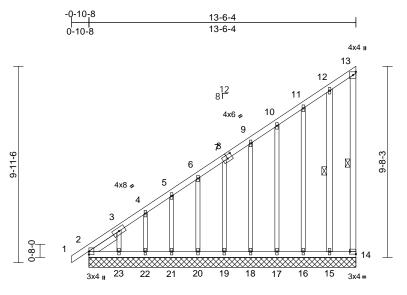
RELEASE FOR CONSTRUCTION			_		
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof	
DEXELOR PMENTS SERVICES	Monopitch Girder	2	2	Job Reference (optional)	157620684
Premier Building Supply (Springhill, KS), Spring Hills, K 04/13/2023 9:39:06				9 2022 MiTek Industries, Inc. Thu Apr 06 15:49:13 1Wou06pi3qOXU5TIxJr3VfYPkKMVJkivtvzTOUs	Page: 1

3x4 **I**

4-3-8

Scale = 1:65

Plate Offsets (X, Y): [3:0-4-12,0-4-8], [4:0-0-12,0-1-12], [6:0-3-0,0-3-12], [7:0-3-8,0-6-4]


	(A, T). [3.0-4-12,0-4-0	oj, [4.0-0-12,0-1-12],	[0.0-3-0,0	-3-12], [7.0-3-6	,0-0-4]								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.28 0.36 0.88	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.12 0.02	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 230 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD	2x8 SP 2400F 2.0E 2x4 SP No.2 Structural wood she 5-5-9 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 1=5489/0 Max Horiz 1=384 (LC Max Uplift 1=-1111 ((lb) - Max. Comp./M. (lb) or less except w 0 1-2=-7644/1379, 2-3 3-4=-4084/753	cept end verticals. applied or 10-0-0 or 5-6, 4-6 -3-8, 6=7638/0-3-8 C 9) (LC 12), 6=-1295 (LC ax. Ten All forces hen shown. 3=-4091/724, 10=-1363/6182, 8-11=-1363/6182, 8-11=-1363/6182, -14=-712/3362, -15=-712/3362, -55=-712/3362	C 4 5 C 12) 6 250	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5 exposed ; er members an Lumber DOL) This truss ha chord live loz) Provide mec bearing platt joint 6 and 1) This truss is International R802.10.2 a) Hanger(s) or provided suf Ib down and Ib up at 2-8- 2121 Ib dow and 313 Ib u up at 10-8-1 12-8-12 on b	7-16; Vult=115n r; TCDL=6.0psf; t. II; Exp C; Encle and C-C Exterior and C-C Exterior and C-C Exterior and c-C Exterior and corect and the second divertical left any second the second and the second and the second and corecting a capable of with and a referenced star other connection ficient to support 209 lb up at 0-8 12, 2121 lb down and a131 lb up ap at 8-8-12, and 2, and 2124 lb do totom chord. Th	BCDL=6. osed; MW or(2E) 0-1 nne; cantik d right exg RS for rea DOL=1.6i d for a 10. t with any on (by oth standing 1 int 1. concentra andard AN n device(s concentra 3-12, 662 L n and 313 at 6-8-12, 1 2121 lb c lown and 2 lown and 2	Opsf; h=35ft; FRS (envelop -12 to 5-1-1, vover left and r obsed;C-C for ctions shown 0 psf bottom other live loa ers) of truss t 295 lb uplift a ith the 2018 s R502.11.1 a JSI/TPI 1.) shall be ated load(s) 6 b down and 31 3 lb up at 4-8- 2121 lb down own and 313 311 lb up at selection of s	ight ; ds. o at 66 73 12, n Ib					
 (0.131"x3 Top chorn staggered Bottom cl staggered Web com All loads except if CASE(S) provided 	s to be connected toge ") nails as follows: ds connected as follows: ds connected as follows d at 0-9-0 oc, 2x4 - 1 ro hords connected as foll d at 0-9-0 oc. nected as follows: 2x4 - are considered equally noted as front (F) or ba section. Ply to ply conr section. Ply to ply cons herwise indicated.	ther with 10d s: 2x6 - 2 rows w at 0-9-0 oc. ows: 2x8 - 4 rows - 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LC nections have been	1	OAD CASE(S) Dead + Roy Plate Increa Uniform Lo Vert: 1-5 Concentrat Vert: 9=-	of Live (balanced ase=1.15 ads (lb/ft) =-70, 1-6=-20 ed Loads (lb) 666 (B), 10=-662 1 (B), 13=-2121 (d): Lumber 2 (B), 11≕	· Increase=1. 2121 (B),	15,				PE-20010 PE-20010	Services

April 7,2023

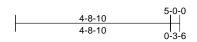
RELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW		Truss Type	Qty	Ply	Roof
₽₽ <u>₩</u> ₽₩₽₩₽₩₽₩₽₽₩₽₽₩₽₽₽₩₽₽₽		Monopitch Supported Gable	1	1	Job Reference (optional)
LEE'S SUMMIT, MISSOURI Premier Building Supply (Springbill KS) Spring Hills, 04/13/2023 9:39:06	s, KS - 66083,				9 2022 MiTek Industries, Inc. Thu Apr 06 11:06:16 PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	Truss Type	Qty	Ply	Roof	
	Monopitch Supported Gable	1	1	Job Reference (optional)	157620685
,	Run: 8.63 S Nov 19 2	2022 Print: 8.	630 S Nov 1	9 2022 MiTek Industries, Inc. Thu Apr 06 11:06:16	Page: 1

Scale = 1:58.3			 		13-6-4							
	(X, Y): [8:0-3-0,0-2-4], [14:Edge,0-1-8]										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.71	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.34	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.14	Horz(CT)	0.00	14	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI20	14 Matrix-S							Weight: 102 lb	FT = 20%
UMBER			BOT CHO	RD 2-23=-169/21	1, 22-23=-16	9/211,		LOAD	CASE(S) Sta	ndard	
FOP CHORD	2x4 SP No.2			21-22=-169/2	11, 20-21=-1	69/211,						
BOT CHORD				19-20=-169/2	11, 18-19=-1	69/211,						
VEBS	2x4 SP No.2			17-18=-169/2	11, 16-17=-1	69/211,						
OTHERS		ept* 15-12:2x4 SP No	.2	15-16=-169/2	11, 14-15=-1	69/211						
SLIDER	Left 2x4 SP No.2		WEBS	12-15=-219/2	13, 11-16=-9	7/104,						
BRACING				10-17=-100/1	10, 9-18=-99	/101, 7-19=-9	99/90,					
TOP CHORD	Structural wood sh	eathing directly applied	hor	6-20=-99/90,	5-21=-99/99	4-22=-101/1	14,					
	6-0-0 oc purlins, ex			3-23=-164/22	9							
BOT CHORD		y applied or 10-0-0 oc	NOTES									
	bracing.) applica of 10 0 0 00		ASCE 7-16; Vult=1	15mph (3-se	cond gust)						
NEBS	1 Row at midpt	13-14, 12-15	/ Vasd	=91mph; TCDL=6.0	osf; BCDL=6	0psf; h=35ft;						
REACTIONS		l, 14=13-6-4, 15=13-6	.4 Ke=1	00; Cat. II; Exp C; E	Inclosed; MV	/FRS (envelo	pe)					
		-4, 17=13-6-4, 18=13-		or zone and C-C Co	rner(3E) -0-1	0-8 to 4-2-4,						
		-4, 20=13-6-4, 21=13-		or(2N) 4-2-4 to 13-4	-8 zone; can	tilever left and	d					
		-4, 23=13-6-4	right e	exposed ; end vertic	al left and rig	ht exposed;C	-C					
	Max Horiz 2=399 (L			embers and forces &			own;					
		LC 8), 14=-105 (LC 11		er DOL=1.60 plate								
		LC 12), 16=-36 (LC 9)	2) Irus	designed for wind								
	(LC 12), 18=-50 (LC 12), only.	For studs exposed	· ·							
	(LC 12), 20=-52 (LC 12	see S		dard Industry Gable End Details as applicable,							
		LC 12), 22=-54 (LC 12	or cor	sult qualified buildir								
	23=-118		3) All pla	ites are 1.5x4 MT20			ed.					
		.C 20), 14=101 (LC 8),		requires continuou		rd bearing.						alle
	15=123	LC 1), 16=134 (LC 19		studs spaced at 1-							8. OF	MISSO
	17=124 (LC 19), 18=127 (LC 1		russ has been desig							TATE OF	0.0
	19=126 (LC 19), 20=126 (LC 1		live load nonconcu						6	1251	
	21=126 (LC 19), 22=126 (LC 1		le mechanical conn						R	SCOT	TM. VEN
	23=160 ((LC 19)		ig plate capable of v	0					0	SEV	IER \\ V
FORCES	(lb) - Maximum Cor	mpression/Maximum		4, 101 lb uplift at joi						8A		1+4
	Tension			ft at joint 16, 62 lb u						W		·le
TOP CHORD		/516, 3-4=-675/430,		8, 53 lb uplift at join							any?	Jenne
	,	-556/372, 6-7=-497/34		ft at joint 21, 54 lb u	plift at joint 2	2 and 118 lb	uplift		_	5	NUM	BER A
	7-9=-438/315, 9-10	,	at joint 23.							N	O PE-2001	018807
	10-11=-304/259, 11	1-12=-237/235,		Severed plate of shift required to provide full bearing								
	12-13=-119/134, 13	3-14=-61/74								Y	Ssin Star	JON H
	- / -		This t	russ is desianed in a	accordance v	/ith the 2018					Nh Ola	IN P

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

SSIONAL E April 7,2023


RF	LEASE FOR CONST	RUCTION	
	NOTED ON PLANS		
9	F23668RPM5N38SER		
	Premier Building Supply (Springh 94/13/2023 9:	souri 11. KS), Spring I 39:06	łil

	Truss Type	Qty	Ply	Roof	
	Monopitch Supported Gable	4	1	Job Reference (optional)	157620686
lills KS - 66083	Run: 8.63 S. Nov 19.2	2022 Print: 8	630 S Nov 1	9 2022 MiTek Industries Inc. Thu Apr 06 11:06:16	Page: 1

Run: 8,63 S Nov 19 2022 Print: 8,630 S Nov 19 2022 MiTek Industries, Inc, Thu Apr 06 11:06:16 ID:rocYVMcd0cNpDvC99VErNVyGxPd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-10-8 5-0-0 5-0-0 0-10-8 4x4 ਫ਼ 1.5x4 u 6 F 56 11 4 1.5x4 I 3 3-0-0 3-3-3 0-2-1 38 10 9 12 7 3x4 = 1.5x4 🛚 1.5x4 🛚 4x6 =

Scale = 1:35.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.48	Vert(LL)	0.12	9-10	>493	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.51	Vert(CT)	0.10	9-10	>562	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.01	Horz(CT)	-0.01	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 22 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 5-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-0, 6 Max Horiz 2=125 (LC Max Uplift 2=-46 (LC	cept end verticals. applied or 10-0-0 o 6= Mechanical C 12)	bearing plat 6 and 46 lb 7) This truss is Internationa R802.10.2 a ed or LOAD CASE(S)	chanical connect e capable of with uplift at joint 2. designed in acc Residential Co nd referenced s Standard	hstanding 7 cordance w de sections	76 lb uplift at rith the 2018 s R502.11.1 a	joint					

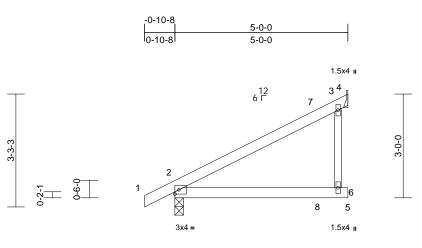
Max Grav 2=294 (LC 1), 6=211 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/17, 2-3=-123/36, 3-4=-55/16, 4-5=-35/10, 5-6=-240/93, 5-8=-341/124 BOT CHORD 2-10=-109/38, 9-10=-109/38, 8-9=-109/38, 7-8=0/0 4-9=-52/60, 3-10=-69/60 WEBS

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 4-1-8, Exterior(2N) 4-1-8 to 4-11-4 zone; cantilever left and right exposed ; end vertical left exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable studs spaced at 1-4-0 oc. 3)

- This truss has been designed for a 10.0 psf bottom 4) chord live load nonconcurrent with any other live loads.
- Refer to girder(s) for truss to truss connections. 5)



RELEAS	E FOR CO	NSTE		ON
	ED ON PL			
DE235	BOR PASTOR	<u>Ş</u> ER	VIÇE S	5
Premier 04/1	Building Supply (Springh	IL KS) S	oring H

	RUCHON						
	REVIEW		Truss Type	Qty	Ply	Roof	
ER	VIÇES SOURI		Monopitch	10	1	Job Reference (optional)	157620687
		lills, KS - 66083,	Run: 8.63 S Nov	19 2022 Print: 8	.630 S Nov 1	9 2022 MiTek Industries, Inc. Thu Apr 06 11:06:17	Page: 1

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Thu Apr 06 11:06:17 ID:UZHDtrLpBrbwaXWxturhUsyGxPz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:33.3

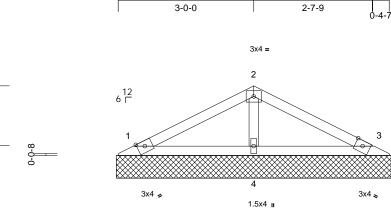
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.50	Vert(LL)	0.09	2-6	>634	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.38	Vert(CT)	0.07	2-6	>787	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 19 lb	FT = 20%
LUMBER												
TOP CHORD	2x4 SP No.2											
BOT CHORD	2x4 SP No.2											
WEBS	2x3 SPF No.2											
BRACING												
TOP CHORD	Structural wood she	athing directly appli	ed or									
	5-0-0 oc purlins, ex	cept end verticals.										
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	с									
REACTIONS	(size) 2=0-3-0, 4	4= Mechanical										
	Max Horiz 2=125 (L0	C 12)										
	Max Uplift 2=-46 (LC	9), 4=-76 (LC 12)										
	Max Grav 2=294 (L0	C 1), 4=211 (LC 1)										
FORCES	(lb) - Maximum Corr	pression/Maximum										
	Tension											
TOP CHORD	1-2=0/17, 2-3=-111/	64, 3-4=-152/93,										
	3-6=-160/103											
BOT CHORD	2-6=0/0, 5-6=0/0											
NOTES												
	CE 7-16; Vult=115mph											
	nph; TCDL=6.0psf; BC		,									
	Cat. II; Exp C; Enclose		be)									
	one and C-C Exterior(2) 4-1-8 to 4-11-4 zone;		iaht									
	; end vertical left expos										000	The
	C-C for members and f										A OF	MIG.
	shown; Lumber DOL=										BIE	Jose W
DOL=1.60		51								6	TATE OF	N SY
2) This truss	has been designed fo	r a 10.0 psf bottom								B	S BCOI	
	load nonconcurrent wi		ds.							R	/ SEV	ER \ Y
	girder(s) for truss to trus									.00		
	nechanical connection									W	the	No line
	late capable of withstar	nding 76 lb uplift at j	oint						-	50-	NUM	BER A
	lb uplift at joint 2.									A.	DE 2001	AD A
 I his truss 	is designed in accorda	ance with the 2018								N	OX PE-2001	018807

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

RELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW		Qty	Ply	Roof	
DEXELOR PMENTS SERVICES	Piggyback	2	1	Job Reference (optional)	157620688
Premier Building Supply (Springhill, KS), Spring H 04/13/2023 9:39:07				9 2022 MiTek Industries, Inc. Thu Apr 06 11:06:17 370Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

1-3-12


1-6-8

ID:9wUnxfypw9GahpSGfCwjgdzczGe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-0-0

5-7-9

6-0-0

3-0-0

Scale - 1.25 5

Scale = 1:25.5													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.27	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.11	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.04	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-P							Weight: 11 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	applied or 10-0-0 or 3=6-1-0, 4=6-1-0	8 ed or g c	bearing plate 1, 36 lb uplif This truss is Internationa R802.10.2 a See Standa Detail for Co	chanical connecti e capable of with t at joint 3 and 9 designed in acco Residential Cod dn referenced st rd Industry Piggy nenection to base ified building des Standard	standing 3 Ib uplift at ordance w le sections andard AN back Trus a truss as a	31 lb uplift at j joint 4. ith the 2018 \$ R502.11.1 a ISI/TPI 1. \$ Connection	oint nd					
FORCES	Max Uplift 1=-31 (LC (LC 12) Max Grav 1=120 (LC (LC 1) (lb) - Maximum Com	C 1), 3=120 (LC 1), 4											
	Tension	iprocolori, maxima											
TOP CHORD	,	/50											
BOT CHORD	1-4=0/23, 3-4=0/23												
WEBS	2-4=-166/150												
NOTES													
 Unbalance this design 	ed roof live loads have	been considered to	r										
	CE 7-16; Vult=115mph	(3-second aust)											
Vasd=91r Ke=1.00; exterior zo and right o exposed;(nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I C-C for members and f shown; Lumber DOL=	DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever left and right orces & MWFRS for	left								-	STATE OF SCOT	MISSOLATIN.
Truss des	signed for wind loads ir	n the plane of the tru	ISS								N	h +==	Air wint

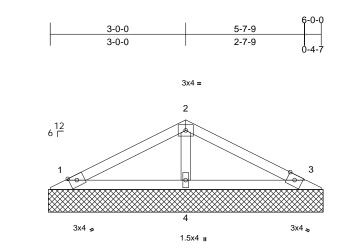
- 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing.
- 4)
- 5) Gable studs spaced at 1-4-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

PE-2-April 7,2023

NUMBER

PE-2001018807

RF	LEASE FOR CONSTR	UCTION					
	NOTED ON PLANS	EVIEW		Qty	Ply	Roof	
	EXELORMENT SER		Piggyback	22	1	Job Reference (optional)	157620689
	Premier Building Supply (Springhill		lills, KS - 66083,	Run: 8.63 S Nov 19 2022 Pri	nt: 8.630 S No	v 19 2022 MiTek Industries, Inc. Thu Apr 06 11:06:17	Page: 1


04/13/2023 9:39:07

1-3-12

0-0-8

1-6-8

ID:9wUnxfypw9GahpSGfCwjgdzczGe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-0-0

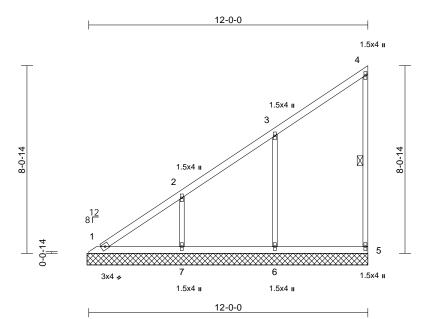
Scale - 1:25 5

Scale = 1:25.5	5											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.27	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2	014 Matrix-P							Weight: 11 lb	FT = 20%
LUMBER			7) Prov	ide mechanical connect	ion (by oth	ers) of truss t	o					
TOP CHORD				ing plate capable of with			oint					
BOT CHORD				3 Ib uplift at joint 3 and 9								
OTHERS	2x3 SPF No.2			truss is designed in acc								
BRACING				national Residential Co			nd					
TOP CHORD		athing directly applie		2.10.2 and referenced si Standard Industry Piggy								
	6-0-0 oc purlins.		Data	ill for Connection to base								
BOT CHORD		applied or 10-0-0 o		sult qualified building des		applicable, of						
	bracing.			ASE(S) Standard	orginon							
REACTIONS	()	3=6-1-0, 4=6-1-0	20/12 0									
	Max Horiz 1=25 (LC		4 0									
	Max Uplift 1=-31 (LC (LC 12)	(LC 13)	, 4=-9									
	Max Grav 1=120 (LC	C 1) 3=120 (I C 1)	4=231									
	(LC 1)	.,,	. 201									
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD	1-2=-53/44, 2-3=-53	/50										
BOT CHORD	1-4=0/23, 3-4=0/23											
WEBS	2-4=-166/150											
NOTES												
1) Unbalanc	ed roof live loads have	been considered fo	or									
this desig												
	CE 7-16; Vult=115mph											CCC.
	mph; TCDL=6.0psf; BC										6 OF	MIL
	Cat. II; Exp C; Enclose										ALE OF	MISS
	one and C-C Exterior(2 exposed ; end vertical		leπ							A		1.5
			r							A	STATE OF	M. NEW
exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip										a	SEV	TER \ \
DOL=1.60		inee place grip								12 -	1	1+1
	signed for wind loads ir	n the plane of the tru	JSS							007	H	·Q. 12
only. For	studs exposed to wind	(normal to the face	e),							X	No UZ	Str NON

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing. 4)

5) Gable studs spaced at 2-0-0 oc.


6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. OFFESSIONAL EN April 7,2023

G

NUMBER

RELEASE FOR CONSTRUCTION			-				
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof			
DE25668P25NT8-SERVICES	Valley	2	1	Job Reference (optional)	157620690		
Premier Building Supply (Springbill, KS), Spring Hills, KS 04/13/2023 9:39:07		Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Thu Apr 06 11:06:17 ID:3dyyPIGdvpWQ0?o0jPG2wlyGxRL-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f					

Scale = 1:49.5

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.25	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.13	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.20	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 50 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.2		5)	chord live loa	as been designed ad nonconcurrent	t with any	other live loa						
BOT CHORD WEBS	2x4 SP No.2 2x3 SPF No.2		6)		hanical connection capable of withs								
OTHERS	2x3 SPF No.2 2x3 SPF No.2				ift at joint 6 and 1			John					
BRACING	273 011 10.2		7)	· ·	designed in acco								
TOP CHORD	Structural wood she	athing directly appli	ed or		Residential Code			and					
	6-0-0 oc purlins, ex				nd referenced sta	andard AN	ISI/TPI 1.						
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	c LO	DAD CASE(S)	Standard								
WEBS	1 Row at midpt	4-5											
REACTIONS		5, 5=12-0-15, 6=12-	0-15,										
	7=12-0-1												
	Max Horiz 1=335 (LC												
	Max Uplift 5=-62 (LC		<u>2),</u>										
	7=-171 (L Max Grav 1=183 (L0 6=412 (L0												
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-377/251, 2-3=- 4-5=-116/84	228/156, 3-4=-104/	51,										
BOT CHORD	1-7=-1/2, 6-7=-1/2, 5												
WEBS	3-6=-327/235, 2-7=-	299/221											
NOTES												000	TIL

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-7-13 to 5-7-13, Interior (1) 5-7-13 to 12-0-1 zone; cantilever left and right exposed; end vertical left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.

RELEASE FOR CONSTRUCTION							
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof			
DEXELOR PUENTS SERVICES	Valley	2	1	Job Reference (optional)	157620691		
Premier Building Supply (Springhill KS) Spring 1 04/13/2023 9:39:07		6083, Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Thu Apr 06 11:06:17 ID:XHTUUTtwhgM5ZxmgHzAJ4LyGxRs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f					

10-0-0 9-11-3 9-11-3 0-0-13 12 118 3x6 II 4 8¹² 1.5x4 u 3 9 6-8-13 7-0-5 7-0-5 1.5x4 u 8 2 0-3-8 -3-8 5 6 3x4 🍫 3х4 **п** 1.5x4 🛛 1.5x4 🛚 10-0-0

Scale = 1:49.3

Plate Offsets (X, Y): [5:Edge,0-2-8]

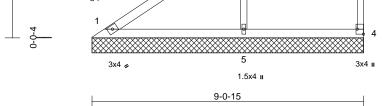
	(X, Y): [5:Edge,0-2-8]												
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.57	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.19	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.14	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 42 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING			5) 6)	chord live loa Provide mec bearing plate	as been designe ad nonconcurrer hanical connect capable of with t at joint 5, 176 ll 7.	nt with any ion (by oth nstanding 7	other live loa ers) of truss t 7 lb uplift at j	o oint					
TOP CHORD	Structural wood she	athing directly appli	ad or 7		designed in acc	ordance w	th the 2018						
	6-0-0 oc purlins, ex				Residential Cod			nd					
BOT CHORD			R802.10.2 a DAD CASE(S)	nd referenced st Standard	tandard AN	ISI/TPI 1.							
REACTIONS	(size) 1=10-6-15	5, 5=10-6-15, 6=10-	6-15,										
	7=10-6-15	-											
	Max Horiz 1=285 (LC												
	Max Uplift 1=-77 (LC	5 10), 5=-59 (LC 9), .C 12), 7=-148 (LC 1	10)										
	Max Grav 1=164 (LC												
		C 19), 7=317 (LC 19											
FORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHORD	Tension 1-2=-494/313, 2-3=-	262/261 2 4- 170/	1 4 4										
TOP CHORD	4-5=-127/134	303/251, 3-4=-170/	144,										
BOT CHORD		126/138. 5-6=-126/2	138										
WEBS	3-6=-344/301, 2-7=-	,											
NOTES												COOL	m
1) Wind: ASC Vasd=91n Ke=1.00; exterior zc Interior (1) exposed ; members							*	STATE OF SCOT	T M. HER				

 Lumber DOL=1.60 plate grip DOL=1.60
 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP11.

Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 4-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


PE-20010188

E

April 7,2023

SSIONAL

RELEASE FOR CONSTRUCTION		1	_	1	
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof	
DEXELORPHENT SERVICES	Valley	2	1	Job Reference (optional)	157620692
Premier Building Supply (Springhill, KS) 04/13/2023 9:39:07	S - 66083, Ru ID:			19 2022 MiTek Industries, Inc. Thu Apr 06 11:06:18 70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1
		9-0-15			
				3x4 II	
6-0-14	- 8 ¹² 6	1.5x4 II 2 7		-0-1 3	

Scale = 1:38.5	
----------------	--

Plate Offsets (X, Y): [4:Edge,0-2-8]

	(A, T). [4.Euge,0-2-0]		-	-	-							
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.41	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.18	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.10	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 36 lb	FT = 20%
LUMBER TOP CHORE	D 2x4 SP No.2			echanical connection te capable of with								
BOT CHORE			01	ift at joint 4 and 20	0							
WEBS	2x3 SPF No.2			s designed in acco								
OTHERS	2x3 SPF No.2			al Residential Code			and					
BRACING				and referenced sta	andard AN	ISI/TPI 1.						
TOP CHORE	D Structural wood she	athing directly applie	ed or LOAD CASE(S	 Standard 								
	6-0-0 oc purlins, ex											
BOT CHORE	 Rigid ceiling directly bracing. 	applied or 10-0-0 o	с									
REACTIONS	0	4=9-0-15, 5=9-0-15	5									
	Max Horiz 1=242 (LC	,										
	Max Uplift 1=-3 (LC	,	-207									
	(LC 12)											
	Max Grav 1=195 (LC),									
	5=501 (LC	,										
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORE		163/129 3-4118/1	129									
BOT CHORE	, -		125									
WEBS	2-5=-389/338											
NOTES												
1) Wind: AS	SCE 7-16; Vult=115mph	(3-second gust)										m
	Imph; TCDL=6.0psf; BC										OF	MIG
	; Cat. II; Exp C; Enclose										FE	USS W
	zone and C-C Exterior(2									6	TATE OF	NSY
	1) 5-5-12 to 9-0-1 zone; ; end vertical left and rid									B		I III. VY N
	s and forces & MWFRS									8	SEV	IER \ V
Lumber [DOL=1.60 plate grip DO	L=1.60	,							8*		1*1
	r studs exposed to wind									V	COMPA	en un
	dard Industry Gable En									N7	PE-2001	018807
or consu	It qualified building desig	gner as per ANSI/TF	ี่ 11.							N	1 2001	158

- Gable requires continuous bottom chord bearing.
 Gable studs spaced at 4-0-0 oc.
- 4) 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ESSIONAL ET bin April 7,2023

RELEASE FOR CONSTRUCTION						
AS NOTED ON PLANS REVIEW	Truss T	уре	Qty	Ply	Roof	
DEXELOPMENT SERVICES	Valley		2	1	Job Reference (optional)	157620693
Premier Building Supply (Springhill KS), Spring Hills 04/13/2023 9:39:07	s, KS - 66083,				19 2022 MiTek Industries, Inc. Thu Apr 06 11:06:18 B70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1
			7-6-15			
					1.5x4 u	
	0-0-4	8 ¹² 1 3x4 2	6 1.5x4 II 2 5 1.5x4 II	3	3 4 1.5x4 II	

S

f) Spacing	2-0-0	csi								
				DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
0 Plate Grip DOL	1.15	TC	0.44	Vert(LL)	n/a	-	n/a	999	MT20	197/144
0 Lumber DOL	1.15	BC	0.21	Vert(TL)	n/a	-	n/a	999		
0 Rep Stress Incr	YES	WB	0.08	Horiz(TL)	0.00	4	n/a	n/a		
0 Code	IRC2018/TPI2014	Matrix-P							Weight: 24 lb	FT = 20%
	.0 Lumber DOL .0 Rep Stress Incr	.0 Lumber DOL 1.15 .0 Rep Stress Incr YES .0 Code IRC2018/TPI2014	.0Lumber DOL1.15BC.0Rep Stress IncrYESWB.0CodeIRC2018/TPI2014Matrix-P	.0 Lumber DOL 1.15 BC 0.21 .0 Rep Stress Incr YES WB 0.08 .0 Code IRC2018/TPI2014 Matrix-P	.0Lumber DOL1.15BC0.21Vert(TL).0Rep Stress IncrYESWB0.08Horiz(TL).0CodeIRC2018/TPI2014Matrix-PHoriz(TL)	.0 Lumber DOL 1.15 BC 0.21 Vert(TL) n/a .0 Rep Stress Incr YES WB 0.08 Horiz(TL) 0.00 .0 Code IRC2018/TPI2014 Matrix-P 0.08 Horiz(TL) 0.00	.0 Lumber DOL 1.15 BC 0.21 Vert(TL) n/a - .0 Rep Stress Incr YES WB 0.08 Horiz(TL) 0.00 4 .0 Code IRC2018/TPI2014 Matrix-P	.0 Lumber DOL 1.15 BC 0.21 Vert(TL) n/a - n/a .0 Rep Stress Incr YES WB 0.08 Horiz(TL) 0.00 4 n/a .0 Code IRC2018/TPI2014 Matrix-P <td>.0 Lumber DOL 1.15 BC 0.21 Vert(TL) n/a - n/a 999 .0 Rep Stress Incr YES WB 0.08 Horiz(TL) 0.00 4 n/a n/a n/a .0 Code IRC2018/TPI2014 Matrix-P</td> <td>.0 Lumber DOL 1.15 BC 0.21 Vert(TL) n/a - n/a 999 .0 Rep Stress Incr YES WB 0.08 Horiz(TL) 0.00 4 n/a n/a .0 Code IRC2018/TPI2014 Matrix-P Weight: 24 lb</td>	.0 Lumber DOL 1.15 BC 0.21 Vert(TL) n/a - n/a 999 .0 Rep Stress Incr YES WB 0.08 Horiz(TL) 0.00 4 n/a n/a n/a .0 Code IRC2018/TPI2014 Matrix-P	.0 Lumber DOL 1.15 BC 0.21 Vert(TL) n/a - n/a 999 .0 Rep Stress Incr YES WB 0.08 Horiz(TL) 0.00 4 n/a n/a .0 Code IRC2018/TPI2014 Matrix-P Weight: 24 lb

7-6-15

WEBS	2x3 SPF I	N0.2
OTHERS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	6-0-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	C F H
REACTIONS	(size)	1=7-6-15, 4=7-6-15, 5=7-6-15
	Max Horiz	1=201 (LC 9)
	Max Uplift	1=-15 (LC 8), 4=-46 (LC 9), 5=-174
	-	(LC 12)
	Max Grav	1=135 (LC 20), 4=158 (LC 19),

	5=421 (LC 19)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-350/232, 2-3=-161/130, 3-4=-135/148
BOT CHORD	1-5=-93/101, 4-5=-93/101
WEBS	2-5=-332/307

NOTES

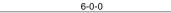
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-5-0 to 5-5-0, Interior (1) 5-5-0 to 7-6-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.

Gable studs spaced at 4-0-0 oc. 4)

- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

7) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and


R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

AS INDICED ON PLANS REFIEW PEAR AGPAIRANTS SERVICES LEVES SUMMIT, MISSOURI, Provide Building Supply (Supply) (Suppl) (Suppl	RE LEASE FOR CONSTRUC	TION					
Valley 2 1 Job Reference (optional) Valley 2 1 Job Reference (optional) Period Building Supply (Snormalit (S, Sormalit (9EW	Truss Type	Qty	Ply	Roof	
$\begin{array}{c} Building Starts for Mail CS, Starts f$	₽₣ ₭₣₭₽₽₩₽₩₽₩₽₩₽₽₩₽₽₩	ES	Valley	2	1	Job Reference (optional)	157620694
1.5x4 \mathbb{I} $1.5x4 \mathbb{I}$ $1.5x4 \mathbb{I}$	Premier Building Supply (Springhill, KS) 04/13/2023 9:39:0	Spring Hills, KS - 66083,				19 2022 MiTek Industries, Inc. Thu Apr 06 11:06:18	Page: 1
$ \begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & &$			6-6)-0			
$1.5x4 \parallel$ $1.5x4 \parallel$ $1.5x4 \parallel$ $1.5x4 \parallel$ $1.5x4 \parallel$ $1.5x4 \parallel$ $1.5x4 \parallel$ $1.5x4 \parallel$ $1.5x4 \parallel$ $1.5x4 \parallel$						1.5x4 u	
3x4 > 1.5x4 II					6	4	
			3x4 ⋧ 1.5x4 ∎			1.3X4 II	

Scale - 1:30.2

Ocale = 1.50.2												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.39	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.21	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 14 lb	FT = 20%
	2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 1=6-0-15, Max Horiz 1=161 (LC Max Uplift 1=-49 (LC	cept end verticals. applied or 10-0-0 o 4=6-0-15, 5=6-0-15 C 9)	bearing plat 1, 41 lb uplit 7) This truss is Internationa R802.10.2 a ed or LOAD CASE(S)	chanical connec e capable of with t at joint 4 and 1 designed in acc Residential Co nd referenced s Standard	hstanding 4 156 lb uplift cordance w de sections	9 lb uplift at at joint 5. ith the 2018 8 R502.11.1 a	joint					

5=-156 (LC 12) 1=84 (LC 9), 4=159 (LC 19), 5=378 Max Grav (LC 19) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-333/217, 2-3=-155/121, 3-4=-136/154 BOT CHORD 1-5=-77/83, 4-5=-77/83 WEBS 2-5=-298/300

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-3 to 5-4-3, Interior (1) 5-4-3 to 6-0-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.

Gable studs spaced at 4-0-0 oc. 4)

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

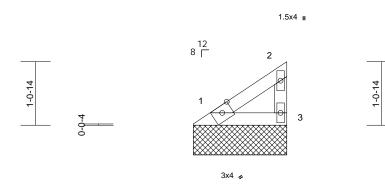
ELEASE FOR C S NOTED ON F	CONSTRUCTI PLANS REVIE	Ə N W	Truss Type		Qty	Ply	Roof				
PE23668P250			Valley		2	1	Job Refere	ence (opti	onal)		157620695
Premier Building Supr 04/13/202	ply (Springhill, KS) Sr 3 9:39:07	ring Hills, KS - 66083,		Run: 8.63 S Nov 19 2 ID:MAIKAik0HIzfkFQ2							Page: 1
			L	4-6	-15						
			I				 1.5x4 ॥				
							2				
		3-0-14	8 _ 1				Ø		3-0-14		
		0-0-0	-				3	-			
			XXX	3x4 🍫	~~~~~		1.5x4 I				
Coolo 4.05.4				4-6	-15						
Scale = 1:25.1	(psf)	Spacing	2-0-0	CSI	DEFL		in (loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC 0	.63 Vert(.33 Vert(LL) r	n/a - n/a -	n/a	999 999	MT20	197/144
BCLL BCDL	0.0	Rep Stress Incr Code	YES IRC2018/TPI2014		.00 Horiz	,	00 3	n/a	n/a	Weight: 10 lb	FT = 20%
BOT CHORD 2x3 WEBS 2x3 BRACING TOP CHORD Str 4-7 BOT CHORD Rig bra REACTIONS (size Max Max	7-5 oc purlins, exc gid ceiling directly a acing.	applied or 10-0-0 oc 3=4-6-15 9) 12), 3=-61 (LC 12)	International R802.10.2 a LOAD CASE(S)	designed in accordance Residential Code sec nd referenced standard Standard	tions R502.	11.1 and					
Te) - Maximum Comp nsion 2=-165/122, 2-3=-1										
 Ke=1.00; Cat. I exterior zone a and right expose exposed; C-C for reactions show DOL=1.60 2) Truss designer only. For stude see Standard In or consult quali 3) Gable requires 4) Gable studs sp 5) This truss has I chord live load 6) Provide mecha 	-16; Vult=115mph (TCDL=6.0psf; BCE II; Exp C; Enclosed ind C-C Exterior(2E sed ; end vertical le or members and fo m; Lumber DOL=1. d for wind loads in s exposed to wind (ndustry Gable End ified building desig continuous bottom baced at 4-0-0 oc. been designed for nonconcurrent witt inical connection (b apable of withstam	IL=6.0psf; h=35ft; ; MWFRS (envelope;) zone; cantilever le ft and right rces & MWFRS for 60 plate grip the plane of the trus normal to the face), Details as applicabl her as per ANSI/TPI chord bearing.	ft 5 9, 1. 5.							THE OF M SCOTT SEVI NUM PE-20010	ER Server D18807

April 7,2023

RELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof	
₽ <u>₣₰</u> ₣₺፼₽ <u>₩</u> ₣₦₮ _₽ ₽₽₽₩₽₩₽₽₽	Valley	2	1	Job Reference (optional)	157620696
Premier Building Supply (Springhill, KS), Spring 04/13/2023 9:39:07				9 2022 MiTek Industries, Inc. Thu Apr 06 11:06:18 370Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

April 7,2023

M MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017



3-0-0

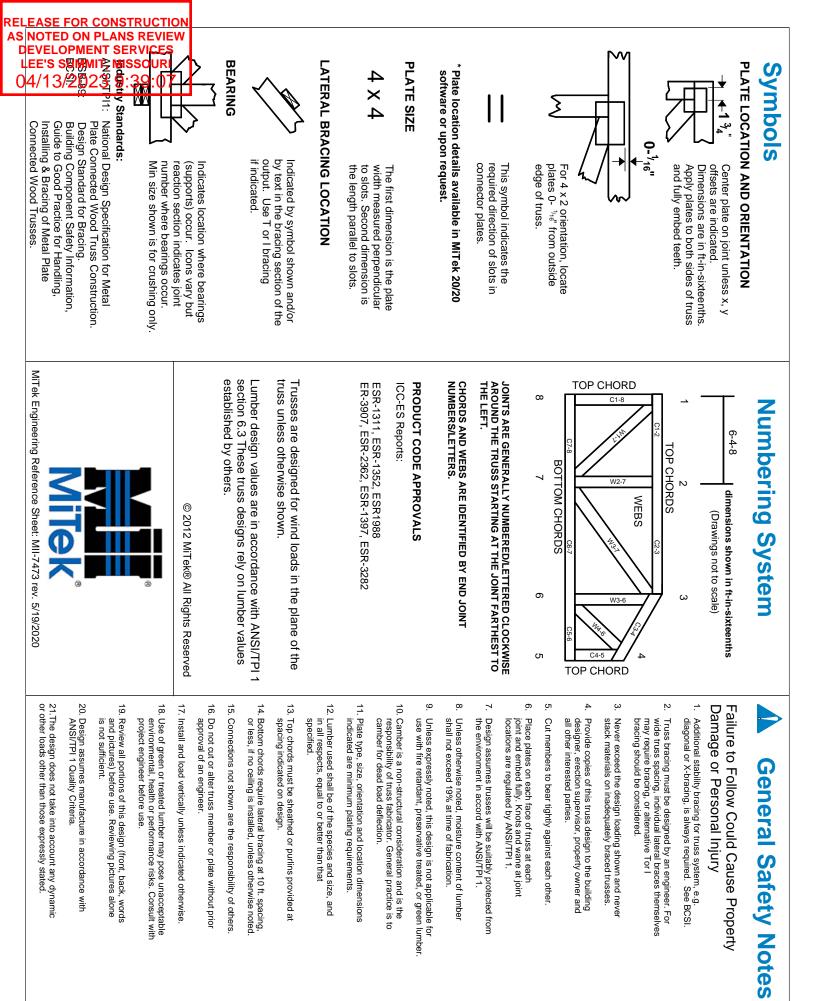
Scale = 1:21.3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.26	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.14	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a	Mainhu Olla	FT 000/
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 6 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD			Internationa	designed in acco Residential Code and referenced sta	e sections	s R502.11.1 a	nd					
WEBS	2x3 SPF No.2		LOAD CASE(S	Standard								
BRACING												
TOP CHORD	Structural wood she	athing directly applie	ed or									
	3-1-5 oc purlins, ex											
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	с									
REACTIONS	()											
	Max Horiz 1=76 (LC											
	Max Uplift 1=-13 (LC											
	Max Grav 1=119 (L0											
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD		07/129										
BOT CHORD	,	07/120										
NOTES	1 0=-07/40											
	CE 7-16; Vult=115mph	(3-second quet)										
	mph; TCDL=6.0psf; BC											
	Cat. II; Exp C; Enclose		pe)									
	one and C-C Exterior(2											
	exposed ; end vertical											
	C-C for members and f											
	shown; Lumber DOL="	1.60 plate grip									A	Alle
DOL=1.60											F. OF	MISS
	signed for wind loads in									4	TATE OF	NS
	studs exposed to wind dard Industry Gable En									H	SCOT	M NON
	t qualified building desig									8		TER Y
	quires continuous botto		11.							6+		
	ids spaced at 4-0-0 oc.	in onora boaring.								RY	1 4	
	has been designed for	r a 10.0 psf bottom								W.	hall?	Lever
chord live	e load nonconcurrent wi	th any other live loa	ds.						-	W.	NUM	
	nechanical connection (N.	PE-2001	1018807
	late capable of withstar	nding 13 lb uplift at j	oint							Q	The second	158
1 and 39 l	lb uplift at joint 3.										ESSIONA	ENUR
											ANN!	AL D'
											Ar	oril 7,2023

RFI	EASE FOR CONSTRU	истюм							
	NOTED ON PLANS R			Truss Type	C	Qty	Ply	Roof	
ļ	F235668P25058-SERV	ICES		Valley	2	2	1	Job Reference (optional)	157620697
		JMMIT, MISSOURI 1000 Reference (optional) Jing Supply (Springhill, KS) Spring Hills, KS - 66083, Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Thu Apr 06 1 2023 9:39:07 ID:3pNgiJfdw84f0AODEBr5MYyGxS8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4							Page: 1

1.5x4 u

1-6-15


Scale = 1:19.4

Scale = 1:19.4												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.04 0.02 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 3 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m Ke=1.00; C exterior zo and right e exposed; C reactions s DOL=1.60 2) Truss des only. For s see Standa or consult 4 3) Gable requ 4) Gable stud 5) This truss i chord live I 6) Provide me bearing pla	2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 1-7-5 oc purlins, ex Rigid ceiling directly bracing. (size) 1=1-6-15, Max Horiz 1=33 (LC Max Uplift 1=-6 (LC Max Grav 1=52 (LC (lb) - Maximum Com Tension 1-2=-48/36, 2-3=-49 1-3=-16/17 CE 7-16; Vult=115mph rph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I shown; Lumber DOL=	athing directly applie cept end verticals. applied or 10-0-0 or 3=1-6-15 9) 12), 3=-17 (LC 12) 1), 3=57 (LC 19) pression/Maximum /57 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop 2E) zone; cantilever I left and right orces & MWFRS for 1.60 plate grip n the plane of the tru I (normal to the face) d Details as applicat gner as per ANSI/TF m chord bearing. r a 10.0 psf bottom ith any other live load (by others) of truss t	7) This truss is Internationa R802.10.2 a LOAD CASE(S) ad or c be) eft sss ble, c) 1.	designed in accord Residential Code and referenced stan	sections	s R502.11.1 a	Ind			B	STATE OF STATE OF SEV SEV NUM PE-2001	MISSOLUT T M. TER 1018807
											alle.	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

April 7,2023

