

RE: P230088 Roof - Osage Lot 52

Site Information:

Customer: Clover & Hive Project Name: P230088 Lot/Block: 52 Model: Address: 2121/2123 SW Osage Subdivis City: Lee's Summit State: M

P230088 Model: Subdivision: Osage State: MO

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 45.0 psf Design Program: MiTek 20/20 8.6 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 22 individual, dated Truss Design Drawings and 0 Additional Drawings.

7 156858536 B1 2/27/2023 8 156858537 B2 2/27/2023 9 156858538 C1 2/27/2023 10 156858539 C2 2/27/2023 11 156858540 C3 2/27/2023 12 156858541 C4 2/27/2023 13 156858542 D1 2/27/2023 14 156858543 D2 2/27/2023 15 156858544 V1 2/27/2023 16 156858545 V2 2/27/2023 17 156858546 V3 2/27/2023 18 156858547 V4 2/27/2023 19 156858548 V5 2/27/2023 20 156858549 V6 2/27/2023	8 9 10 11 12 13 14 15 16 17 18 19	I56858537 I56858538 I56858540 I56858541 I56858542 I56858543 I56858543 I56858544 I56858545 I56858546 I56858547 I56858548	B2 C1 C2 C3 C4 D1 D2 V1 V2 V3 V4 V5	2/27/2023 2/27/2023 2/27/2023 2/27/2023 2/27/2023 2/27/2023 2/27/2023 2/27/2023 2/27/2023 2/27/2023 2/27/2023 2/27/2023 2/27/2023	No. 21 22	Seal# I56858550 I56858551
--	--	--	--	---	-----------------	---------------------------------

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision based on the parameters provided by . Truss Design Engineer's Name: Pohlman, Elizabeth

My license renewal date for the state of Missouri is December 31, 2023. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Truss Name

V7

V8

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Date

2/27/2023

2/27/2023

1 of 1

Pohlman, Elizabeth

LEASE FO	R CONS	TRUCTK	ON NC						.			
NOTED C		SREVIE	w		Truss Type		Qty	Ply	Roof - Osa	age Lot 52		156858530
PE23568PI		RVICES			Common Struc	tural Gable	2	1	Job Refer	ence (optiona	I)	190090990
Premier Building	Supply (Sprir	ighill_KS), Sp 57:45	ing Hills, KS ·	- 66083,							Sun Feb 26 18:04 GKWrCDoi7J4zJ0	-
	-(0-10-8	7-9-10		13-9-15 15-9-	10 24-0-0		32-2-6		48	8-0-0	48-10-8
			7-9-10		6-0-5 1-11-	2.00		8-2-6			-9-10	0-10-8
							5x5= 12					
12-9-3	0-6-0 12-6-0	1 2 4x6=	72	3x6 = 3 51	6 ² 3x6 = 5 4	11 3x6 = 8 77 77 4x6 = 3 52 60 58 58 50 58 50 50 58 50 58 58 50 58 58 58 58 58 58 58 58 58 58	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	64 7 69 64 7 69 64 8 1 2 348 1 2 368 1		2222 23 24	25 26 27 28 27 28 36 35 34 33	29 30 ₃₁
								×8 ∥ 5×5=				
			7-9-10		15-9-10	24-0-0	27-2-4	32-2-6			8-0-0	
Scale = 1:95.7			7-9-10		8-0-0	8-2-6	3-2-4	5-0-2		15	-9-10	
Plate Offsets (X, Y): [18:0)-3-8,0-3-0],	[47:0-2-8,0-	1-8], [49	:0-1-12,0-3-0], [53	:0-5-8,0-6-0], [55:0-3-8	,0-3-8], [62:	0-2-0,0-1-8]				
Loading		(psf)	Spacing		2-0-0	CSI	D	EFL	in (loc)	l/defl L/c	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip D		1.15	TC		. ,	.10 2-51	>999 240		244/190
TCDL BCLL			Lumber DO Rep Stress		1.15 YES	BC WB		. ,	0.24 2-51 0.05 47	>999 180 n/a n/a		
BCDL		10.0	Code		IRC2018/TPI2014	Matrix-S		. ,			Weight: 388	lb FT = 20%
WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS	SPF No.2, SPF No.2 2x3 SPF N 56-11,55- Structural 3-6-12 oc Rigid ceilli bracing, 9-1-1 oc b 9-2-14 oc 10-0-0 oc 1 Row at 1 Brace at 54, 59, 60 67, 69 (size) Max Horiz	No.2 *Excep 13,62-14:2x- wood sheat purlins. ng directly a Except: bracing: 2-51 bracing: 50- bracing: 48- midpt 3 1 t Jt(s): 53,	,53-54,54-5 , 4 SP No.2 hing directly pplied or 6-0 51 50. 50, 12-54, 3-55, 14-62 =20-11-8, 3 , 34=20-11- , 38=20-11- , 40=20-11- , 45=20-11- , 45=20-11- 13) 12), 30=-11	5,55-47:2 , applied 0-0 oc 11-56, 2=20-11 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,	2x6 FORCES or TOP CHOR -8, BOT CHOR 5),	40=117 42=317 42=317 45=114 47=130 (lb) - Maximum Co Tension D 1-2=0/17, 2-3=-19 5-6=-745/157, 6-7 8-9=-142/212, 9-1 10-11=-180/256, ^ 12-13=-185/275, ^ 16-17=-161/182, ^ 16-17=-161/182, ^ 18-19=0/362, 19-2 21-23=-15/358, 22 24-25=-52/358, 22 26-27=-89/358, 21 28-29=-123/349, 2 30-31=0/17	(LC 26), 41 (LC 1), 44= (LC 26), 44 (LC 1), 44= (LC 26), 44 (LC 1) ompression/ 25/314, 3-5 =-170/178, 0=-163/234 (1-12=-177/ 13-14=-184/ 15-16=-152/ 20=0/371, 24 -24=-33/35 5-26=-70/35 5-26=-70/35 5-26=-70/35 -28=-108/3 29-30=-170/ 50-51=-399/ 17-48=-756/ 15-46=-308/ 12-44=-309/ 38-39=-309/ 34-35=-309/	=-1159/239, 7-8=-183/197 , 268, 262, 208, 160, 0-21=0/359, 9, 8, 60, 395, 1598, 346, 180, 180, 180, 180, 180,			S ELIZ	ABETH
Design va	ING - Verify des alid for use only	with MiTek® c	13), 37=-41 13), 39=-42 13), 41=-6 13), 45=-53 25), 47=-27 and READ NO	I (LC 13) 2 (LC 13) (LC 12), 3 (LC 13) 72 (LC 13) 72 (LC 12 TES ON THe design is l	, , 2) HIS AND INCLUDED MIT	30-32=-309/180 TEK REFERENCE PAGE MIL eters shown, and is for an inor arameters and properly inor arameters and properly inor	dividual buildin	g component, not		V	FESSION	23000043 / 25 / AL ENGL ary 27,2023
Design va a truss sy building o is always fabricatio	alid for use only rstem. Before us lesign. Bracing required for sta n, storage, deliv	with MiTek® conservations set the building indicated is to ability and to pre- very, erection as	onnectors. This designer must prevent bucklin event collapse and bracing of tr	design is l verify the a of individ with possib usses and	based only upon param applicability of design parameters lual truss web and/or ch	eters shown, and is for an in arameters and properly incor ord members only. Addition roperty damage. For genera ANSI/TPI1 Quality Cri	dividual buildin porate this des al temporary a I guidance reg	g component, not ign into the overa nd permanent bra arding the	ll cing		16023 Swing Chesterfield,	ey Ridge Rd MO 63017

RELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof - Osage Lot 52	
	Common Structural Gable	2	1	Job Reference (optional)	156858530
Premier Building Supply (Springbill, KS), Spring Hills, KS - 66083, 03/28/2023 2:57:46				v 19 2022 MiTek Industries, Inc. Sun Feb 26 18:04:3 ??PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?	- J -
WEBS 3-51=0/339, 3-50=-738/258, 50-52=-17/5 6-52=-80/646, 6-59=-658/120, 58-59=-618/109, 53-58=-613/120, 48-53=-1072/485, 48-54=-156/43, 12-54=-158/72, 48-55=-252/1364, 55-62=-270/1432, 62-64=-267/1390, 64-67=-268/1405, 67-70=-270/1414, 18-70=-275/1436, 18-42=-289/14, 47-65=-1078/261, 63-65=-1128/279, 66-71=-1076/262, 69-71=-1226/291, 18-69=-1147/278, 5-52=-375/209, 52-60=-323/185, 53-60=-409/220, 53-67=-178/0, 56-57=-200/0, 54-56=-203 54-55=-200/0, 55-61=-189/0, 47-61=-302 11-56=-50/19, 10-57=-105/61, 9-53=-130 8-58=0/35, 7-59=-145/68, 59-60=-203/84 13-55=-82/27, 14-62=-127/64, 61-62=-188/57, 15-64=-89/58, 63-64=-77/46-65=-74/62, 16-67=-84/62, 66-67=-79/6 45-68=-81/66, 17-70=-126/37, 69-70=-96 44-71=-179/42, 19-41=-129/24, 20-40=-89/65, 21-39=-93/57, 23-38=-94/2 24-37=-93/57, 25-36=-93/57, 26-35=-93/2 27-34=-97/59, 28-33=-70/41, 29-32=-183	3/0, 2/22, 3/81, 4, 7/63, 63, 5/33, 56, 57,				
NOTES					
 Unbalanced roof live loads have been considered for this design. 					
Wind: ASCE 7-16; Vult=115mph (3-second gust)					
Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft;					
Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope	\				

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Interior (1) 4-1-8 to 24-0-0, Exterior(2R) 24-0-0 to 31-0-14, Interior (1) 31-0-14 to 48-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. All plates are 3x4 MT20 unless otherwise indicated.

This truss has been designed for a 10.0 psf bottom

This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

chord live load nonconcurrent with any other live loads.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 223 lb uplift at joint 2, 272 lb uplift at joint 47, 81 lb uplift at joint 46, 53 lb uplift at joint 45, 15 lb uplift at joint 44, 6 lb uplift at joint 41, 48 lb uplift at joint 40, 42 lb uplift at joint 39, 40 lb uplift at joint 38, 41 lb uplift at joint 37, 41 lb uplift at joint 34, 41 lb uplift at joint 35, 42 lb uplift at joint 34, 28 lb uplift at joint 33, 86 lb uplift at joint 32 and 112 lb uplift

Gable studs spaced at 1-4-0 oc.

DOL=1.60

at joint 30.

LOAD CASE(S) Standard

3)

4) 5)

6)

7)

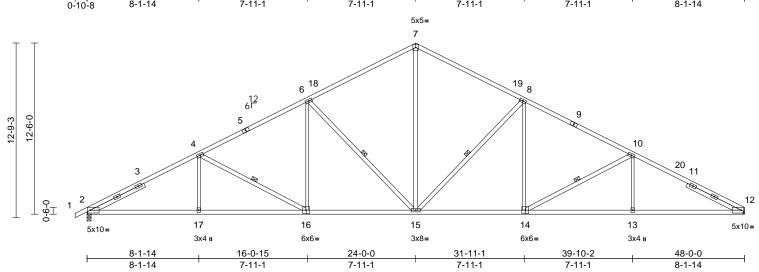
8)

E <mark>LEASE FO</mark>	R GONOTROCTR										
			Truss Type		Qty	/ Ply	Roof - Os	age Lot 52		IFOOF	0521
	MENT SERVICES		Common		6	1	Job Refe	rence (optional)		15685	8531
Premier Building	AMIT, MISSOURI Supply (Springhill, KS), Sp 023 2:57:46	ring Hills, KS - 66083,		Run: 8.6	3 S Nov 19 2022	Print: 8.630 S				4:41	Page: 1
03/28/2	023 2:57:46			ID:Eh5q6	SjuDTnlbtQwPDF	zXnyGxF9-Rf	C?PsB70Hq3NSg	PqnL8w3uITXbGk	WrCDoi7J4zJC	?f	
											10.10
	-0-10-8 7-9-1 0-10-8 7-9-1		<u>15-9-10</u> 8-0-0	+ 24-0-0 8-2-6		<u>32-2-6</u> 8-2-6	; 	<u>40-2-6</u> 8-0-0		<u>48-0-0</u> 7-9-10	48-10-
	0-10-6 7.5 1	0	000	020	6x6=	020		000		1 5 10	0-10-0
					6						
ΤT											
				3x6 =			10x10👟				
			12 6 F	21			22				
			3x6 =	5			7	3x6			
က္ ဝု			4					8			
12-9-3		3x6 ≠	T		⊠			- Al	3x6 👟		
		3							9		
	20									222	
	20		A Contraction of the second se			// 1		A		23	
	, 2					/ //					10 1
				<u>H</u>							
0	4x6=	19		1187	16	15	1143		12		4x6=
		3x4 II		5x8=	5x8=	3x4 🥡	5x8=		3x4 I		
	7-9-1	0	15-9-10	24-0-0) _ 27-	27-2-4	2-2-6	40-2-6		48-0-0	
	7-9-1		8-0-0	8-2-6		1-14	5-0-2	8-0-0		7-9-10	
Scale = 1:85.8						0-0-6					
Plate Offsets (X, Y): [7:0-4-4,0-2-12],	[14:0-2-4,0-3-0], [1	7:0-1-12,0-3-0]								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in (loc)	l/defl L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.93	Vert(LL)	-0.12 16-18	>999 240	MT20	244/190)
TCDL BCLL		Lumber DOL Rep Stress Incr	1.15 YES	BC WB	0.75 0.84	Vert(CT) Horz(CT)	-0.27 16-18 0.06 10				
BCDL		Code	IRC2018/TPI20		0.04	11012(01)	0.00 10	174 174	Weight: 264	lb FT = 20	%
LUMBER			2) Wind:	ASCE 7-16; Vult=	=115mph (3-sec	ond aust)					
TOP CHORD		Except* 1-4,8-11:2x	4 SP Vasd	=91mph; TCDL=6.	0psf; BCDL=6.0	0psf; h=35ft;					
BOT CHORD	No.2 2x4 SP No.2			.00; Cat. II; Exp C; or zone and C-C E							
WEBS	2x4 SP No.2 *Except*			or (1) 4-1-8 to 24-0							
BRACING	19-3,18-5,13-7,12-9:2	x3 SPF No.2		14, Interior (1) 31- nd right exposed ;			ever				
TOP CHORD	Structural wood sheat	thing directly applie	d. expos	ed;C-C for memb	ers and forces &	& MWFRS fo	r				
BOT CHORD	0 0 ,	applied or 4-9-10 oc	, reacti DOL=	ons shown; Lumbe 1.60	er DOL=1.60 pla	ate grip					
WEBS	bracing. 1 Row at midpt 3	-18, 5-16, 6-16, 9-1	13 3) This t	russ has been des							
WEBS	2 Rows at 1/3 pts 7			live load nonconc de mechanical cor							
REACTIONS	(size) 2=0-3-8, 10 Max Horiz 2=-234 (LC)=0-3-8, 15=0-3-8 : 17)	bearir	ng plate capable o	f withstanding 2	22 lb uplift a	t				
	Max Uplift 2=-222 (LC	; 12), 10=-198 (LC	13), joint 2 15.	2, 198 lb uplift at jo	int 10 and 301 I	b uplift at joi	nt				
	15=-301 (L Max Grav 2=1165 (LC		5) This t	russ is designed ir							
	15=2473 (L		intern	ational Residentia .10.2 and referenc			and				
FORCES	(lb) - Maximum Comp	ression/Maximum		SE(S) Standard							
TOP CHORD	Tension 1-2=0/17, 2-3=-1831/3	315, 3-5=-1036/235	5,								
	5-6=-204/206, 6-7=-1	,	85,								
BOT CHORD	9-10=-1225/265, 10-1 2-19=-402/1517, 18-1								-	m	
	16-18=-152/818, 15-1								E.F. OI	E MISSO	don -
	13-15=-56/253, 12-13 10-12=-122/983	=-122/983,						E	1251		N'S
WEBS	3-19=0/338, 3-18=-79		78,					A	41	LABETH	12-11
	5-16=-1075/375, 6-16 7-16=-303/1911, 7-13							CH		ILMAN	1+12
	9-13=-829/280, 9-12=		/404					YPP	Halal		h^{γ}
NOTES	al secol (Secol Secol Secol)							$\mathcal{U}_{\mathcal{I}}$		MBER	YZZ
 Unbalance this design 	ed roof live loads have b n.	een considered for						R.	O PE-20	23000043	1ZA
								V	A.	1	SA.
								0	NOIS SION	JAL EN	Ą
									Or	AL -	
										arv 27.202	20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

February 27,2023

	000077																
LEASE FOR NOTED ON	CONSTR N PLANS F	UCTIC (EVIE)	N		Truss 7	уре			Qty	/	Ply	Roof -	Osage I	_ot 52			
DEXELOPM	ENT SER	ACES			Comm	ion			2		1	Job Re	eference	(optional)		156858532	
Premier Building S 3/28/20	Supply (Springhill) 23 2:5	7:46	ing Hills, K	S - 66083,								19 2022 M	iTek Indu	stries, Inc. S	un Feb 26 18:04:4 GKWrCDoi7J4zJC	-	je: 1
	-0-10-8 0-10-8	7-9-1 7-9-1			<u>15-9-1</u> 8-0-0		ł	24-0-0 8-2-6			<u>32-2-6</u> 8-2-6		I	40-2-6 8-0-0		48-0-0 7-9-10	
	0-10-0				000			020	6x6=	-	020			000			
12-9-3 12-6-0	1 2 4x6=	19		3x6 ≠ 3 18 3x4 µ	6]2 3x6 = 4	5	3x6 = 20 20 176 5x8=	8	8 15 5x8:	= :	₹ 8 8 4 4 8 x4 y	21	x10 æ 7 2 2 2 2 2 8 =	3x6\$ 8	3x6s 9 11 3x4 II	22	10 4x6=
Scale = 1:84.1	F	7-9-1 7-9-1	0		<u>15-9-1</u> 8-0-0		+	24-0-0 8-2-6		<u>7-1-14</u> 3-1-14		<u>-2-6</u> 10-6		<u>40-2-6</u> 8-0-0		48-0-0 7-9-10	—
Plate Offsets (X	, Y): [7:0-4-0,	0-2-12],	[13:0-2-8	,0-3-0], [16	5:0-1-12,	0-3-0]											
Loading TCLL (roof) TCDL BCLL BCDL	2	0.0 0.0 1	Spacing Plate Grip Lumber D Rep Stres Code	OL	2-0-0 1.15 1.15 YES IRC201	8/TPI2014		CSI TC BC WB Matrix-S	1.00 0.75 0.85	DEFL Vert(L Vert(C Horz(C	Ť) -C).12 15-).27 15-	17 >9	99 240	PLATES MT20 Weight: 262 lk	GRIP 244/190 FT = 20%	
WEBS BRACING TOP CHORD BOT CHORD WEBS WEBS REACTIONS (2x4 SP No.2 2x4 SP No.2 * 18-3,17-5,12-* Structural woo Rigid ceiling of bracing. 1 Row at midy 2 Rows at 1/3 size) 2=(Max Horiz 2= Max Uplift 2= 	7,11-9:2) od sheati lirectly ap pts 7- 0-3-8, 10 239 (LC 220 (LC 304 (LC 163 (LC	ning direc oplied or 17, 5-15, 14 = Mechar 12) 12), 10=- C 12) 25), 10=	otly applied 4-9-5 oc , 6-15, 9-12 nical, 14=0 -169 (LC 1	I. 2 3.)-3-8 4 3), ⁵ 6),	Vasd=9 Ke=1.00 exterior Interior 31-0.14 left and exposed reaction DOL=1. DOL=1. This true chord liv Refer to Provide bearing joint 2, 1 14.	1mph; 5; Cat. zone a (1) 4-1 , Interi right e d;C-C b s show 60 ss has ve load o girden mecha plate o 169 lb	-16; Vult=115r TCDL=6.0psf; II; Exp C; Encl and C-C Exteri -8 to 24-0-0, E or (1) 31-0-14 xposed ; end v for members and vn; Lumber DC been designed I nonconcurrer (s) for truss to anical connecti capable of with uplift at joint 10	BCDL=6.(osed; MW or(2E) -0-1 xterior(2R) to 47-11-4 vertical left ad forces & DL=1.60 pla d for a 10.0 tt with any truss conn on (by oth standing 2) and 304 l	Desf; h= FRS (er 0-8 to 4) 24-0-0 zone; c and righ WWFF ate grip 0 psf bot other liv lections ers) of t 20 lb up b uplift	35ft; ivelope) -1-8, to antilever at S for tom te loads. - russ to blift at at joint						
FORCES	14= (Ib) - Maximur Tension	=2486 (Li n Compr	,	laximum	6	Internati	ional F	esigned in acc Residential Coc d referenced st	le sections	R502.1	1.1 and						
	1-2=0/17, 2-3 5-6=-199/200 9-10=-1208/2	6-7=-14				OAD CAS											
BOT CHORD	2-18=-404/15 15-17=-154/8 12-14=-60/24 10-11=-131/9	14, 17-18 14, 14-18 3, 11-12=	5=-1366/3	355,											TATE OF	MISSO	
	3-18=0/338, 3 5-15=-1075/3 7-15=-307/19 9-12=-849/28	-17=-792 74, 6-15= 22, 7-12= 6, 9-11=(=-520/46, =-40/523,)/361, 7-1	14=-2809/4											S ELIZA POHI	BETH MAN HEEQ 3000043	*


February 27,2023

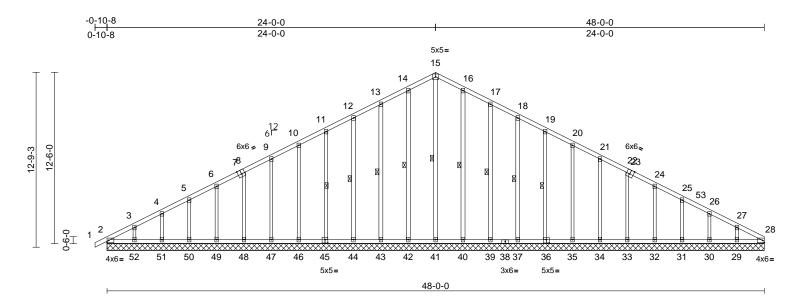
NOTED O	N PLANS REVI	EW	Truss Type		Qty	Ply	Roof - Osa	age Lot 52		
			Roof Special		2	1	lob Rofer	ence (optional)		156858533
EE'S SUN Premier Building	Supply (Springhill, KS), S		· ·	Run: 8.63 S Nov		int: 8.630 S Nov				:04:42 Page: 1
3/28/20	023 2:57:4	6		ID:SN8pPrD2hT						-
	-0-10-8	7-9-10	15-9-10 8-0-0	<u>19-10-4</u> <u>24-0</u> 4-0-10 4-1-		32-2-6 8-2-6		40-2-6 8-0-0		<u>48-0-0</u> 7-9-10
	0-10-8	1-9-10	0-0-0	4-0-10 4-1-	IZ MT18HS 5x			0-0-0		1-3-10
т	т				7					
				4x6 =			7.0			
			12	6 = 26			^{7x8} ≈			
			6Г 5 3x6₂		⊠		8	3x6 ≈		
ہ	12-6-0		4					9		
12-9-3	12-	3x6 3	-				9/		^{3x6} ᢏ ∖ 10	
		R			X		/			28
		25	*	201	18 19	// \$/		A		
	$9 - 1^2$			2-6-0	19					11
\perp		24	23 22		16 ⁹¹¹¹ 17	15	14 13	3	12	4x6=
	4x6=	3x4		8= 3x4 II	3x4 II	4x4=	3x6=		3x4 II	-7.0-
					3x4 II		Зх	6=		
				2	x6= 23-140,64=					
	L	7-9-10	15-9-10	20-0-0 23-4-	23-5-4 0 <u>1</u> 27-3			40-2-6		48-0-0
Scale = 1:91.5		7-9-10	8-0-0	4-2-6 3-4-0) 3-5 0-1-4	-1 4-10 0-0-11	-6 1-9-10	6-2-6		7-9-10
	X, Y): [14:0-2-8,0-1-8], [19:0-2-0,Edge],	20:0-5-8,0-2-8]		0-5-0					
oading	(psf)	Spacing	2-0-0	CSI	1	DEFL	in (loc)	l/defl L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.97	/ert(LL)	0.10 2-24	>999 240	MT20	244/190
TCDL BCLL	10.0 0.0	Lumber DOL Rep Stress Incr	1.15 YES	BC WB		. ,	0.232-240.0815	>999 180 n/a n/a	MT18HS	244/190
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S					Weight: 28	85 lb FT = 20%
LUMBER				E 7-16; Vult=115m						
TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2			ph; TCDL=6.0psf; E Cat. II; Exp C; Enclo						
WEBS	2x3 SPF No.2 *Exce		exterior zo	ne and C-C Exterior 4-1-8 to 24-0-0, Ext	(2E) -0-10-	8 to 4-1-8,				
BRACING	18-6,22-3,16-8,8-15,	, 10-14:2x4 SP N0.2	31-0-14, lr	terior (1) 31-0-14 to	47-11-4 zo	one; cantileve				
TOP CHORD	Structural wood she		eu.	ht exposed ; end ve -C for members and						
BOT CHORD	Rigid ceiling directly bracing. Except:		reactions s	shown; Lumber DOL						
WEBS	6-0-0 oc bracing: 7-1 1 Row at midpt	16 6-18, 3-22, 10-14		are MT20 plates unle						
WEBS	2 Rows at 1/3 pts	8-15	5) This trues	are 3x6 MT20 unless has been designed						
REACTIONS	(size) 2=0-3-8, 1 Max Horiz 2=239 (LC	11= Mechanical, 15 C 16)	=0-3-8 chord live	oad nonconcurrent	with any ot	her live loads				
	Max Uplift 2=-264 (L	.C 12), 11=-337 (LC		rder(s) for truss to tr echanical connection						
	15=-206 (Max Grav 2=1130 (L			ate capable of withst b lb uplift at joint 15 a						
FORCES	15=2547	(LC 1)	11.							
	(lb) - Maximum Com Tension		Internation	is designed in accor al Residential Code						
TOP CHORD	1-2=0/17, 2-3=-1769 5-6=-588/460, 6-7=-	,	l, R802.10.2	and referenced star						
	8-10=-395/546, 10-1	1=-1208/621	432, LOAD CASE(standard					~	ADDA
BOT CHORD	2-24=-491/1466, 22- 21-22=-10/9, 20-21=		37,						A.00	F MISSO
	19-20=-129/453, 18- 16-18=-1390/181, 7-		0/0					k	1251	10. VA
	15-16=-1394/159, 14	4-15=-202/237,						A	~/	IZABETH
WEBS	12-14=-450/996, 11- 6-18=-1010/335, 5-2		0/353,						AIM	HLMAN
	3-22=-836/295, 5-22	2=0/229, 20-22=-25						147	HANN !	I AM OILIN
	8-16=-185/1901, 8-1 8-14=-41/514, 10-14		0/362,					Y:		MBERU VA
NOTES	17-19=-33/32							Ø	PE-2	023000043
NOTES 1) Unbalance	d roof live loads have	been considered for	or						0188310	ENGLIS
1) 01150101100									100	NAL E'S
this design	•								412	
,									-	NAL 27,2023

16023 Swingley Ridge Rd Chesterfield, MO 63017

RELEASE FOR CONSTRUCTION				-		
AS NOTED ON PLANS REVIEW	Truss Type		Qty	Ply	Roof - Osage Lot 52	
DEXELOPMENT SERVICES	Common		10	1	Job Reference (optional)	156858534
Premier Building Supply (Springbill_KS), Spring Hills, 03/28/2023 2:57:46	KS - 66083,				9 2022 MiTek Industries, Inc. Sun Feb 26 18:04 sB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJ0	Ũ
-0-10-8 8-1-14	16-0-15	24-0-0		31-11-1	39-10-2	48-0-0
0-10-8 8-1-14	7-11-1	7-11-1		7-11-1	7-11-1	8-1-14

Scale = 1:84.1

Plate Offsets (X, Y): [2:0-2-5,0-2-8], [12:0-2-5,0-2-8]


Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.79	DEFL Vert(LL)	in -0.27	(loc) 14-15	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.71	Vert(CT)	-0.55	14-15	>999	180	101120	244/100
BCLL	0.0	Rep Stress Incr	YES		WB	0.66	· · ·	0.24	14 13	_3335 n/a	n/a		
BCDL	10.0	Code		8/TPI2014	Matrix-S	0.00	11012(C1)	0.24	12	II/a	11/a	Weight: 262 lb	FT = 20%
BCDL	10.0	Code	IRC201	8/1912014	Matrix-5	-						weight: 262 lb	FT = 20%
	2-2-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 7 Max Horiz 2=239 (LC Max Uplift 2=-353 (L	0:2x3 SPF No.2 4-4-7, Right 2x4 SP N athing directly applie applied or 9-0-2 oc 4-16, 6-15, 8-15, 10- 12= Mechanical C 16) C 12), 12=-328 (LC ⁻	d or 3) 4) 14 5) 6) 13)	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 31-0-14, Inte left and right exposed;C-C reactions sh DOL=1.60 All plates are chord live loa Refer to gird Provide mec bearing plate	7-16; Vult=115m h; TCDL=6.0psf; t. II; Exp C; Encle and C-C Exteric -1-8 to 24-0-0, E trior (1) 31-0-14 exposed ; end v C for members ar own; Lumber DO a 3x6 MT20 unles is been designed ad nonconcurren er(s) for truss to hanical connective capable of withs 28 lb uplif at join	BCDL=6. osed; MW or(2E) -0 xterior(2R o 47-11-4 ertical left d forces o uL=1.60 pl ss otherwid f for a 10. t with any truss cont on (by oth standing 3	Opsf; h=35ft; FRS (envelo, 10-8 to 4-1-8,) 24-0-0 to zone; cantile and right & MWFRS fo ate grip se indicated. D psf bottom other live loa ections. ers) of truss t	ever r nds.					
	Max Grav 2=2223 (L	_C 1), 12=2150 (LC 1) 7)		designed in acco		ith the 2018						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	()	International	Residential Cod	e sections	s R502.11.1 a	and					
TOP CHORD	1-2=0/17, 2-4=-3980 6-7=-2520/513, 7-8= 8-10=-3299/538, 10-	-2520/516,	, L(DAD CASE(S)									
BOT CHORD	2-17=-634/3430, 15- 13-15=-414/3472, 12	-17=-634/3430,										- COLOR	ADD
WEBS	4-17=0/330, 4-16=-6 6-15=-1035/370, 7-1 8-15=-1044/372, 8-1 10-14=-732/270, 10-	5=-251/1635, 4=-35/539,	9,									STATE OF M ELIZAI POHL	N N

1) Unbalanced roof live loads have been considered for this design.

RELEASE FOR CONSTRUCTION							
AS NOTED ON PLANS REVIEW		Truss Type	Qty	Ply	Roof - Osage Lot 52		
DEVELOPMENT SERVICES	C	Common Supported Gable	2	1	Job Reference (optional)	156858535	
Premier Building Supply (Springhill, KS), Spring H 03/28/2023 2:57:47	ills, KS - 66083,	Job Relefence (optional)					

Scale = 1:84.1															
Plate Offsets	(X, Y): [7:0-3-0),Edge],	[23:0-3-0,Edge], [36	:0-2-8,0-3	3-0], [45:0-2-8	3,0-3-0]									
Loading TCLL (roof)		(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC		0.11	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
TCDL BCLL		10.0 0.0	Lumber DOL Rep Stress Incr	1.15 YES		BC WB		0.05 0.20	Vert(CT) Horz(CT)	n/a 0.02	- 28	n/a n/a	999 n/a		
BCDL		10.0	Code		8/TPI2014	Matrix	-S	0.20	11012(01)	0.02	20	1#a	n/a	Weight: 317 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS	2x4 SP No.2 2x3 SPF No.2	2 *Exce 39-17,3	pt* 7-18,42-14,43-13,44	-12:		Max Grav	29=203 31=182 33=180 35=180	(LC 26), (LC 1), 3 (LC 26), (LC 26),	28=114 (LC 2 , 30=174 (LC 32=180 (LC 2 , 34=180 (LC , 36=178 (LC 39=178 (LC 2	26), 26), 1), 1),	WEBS		17-39 19-36 21-34 24-32	=-291/65, 16-40 =-138/105, 18-3 =-138/95, 20-35 =-140/96, 22-33 =-140/96, 25-31 =-136/140, 27-2	7=-142/97, =-141/97, =-140/97, =-141/102,
BRACING	2,4 01 10.2						40=189	(LC 26),	, 41=261 (LC	13),				=-149/79, 13-43	
TOP CHORD	6-0-0 oc purl	ins.	athing directly applie				44=184	(LC 1), 4	, 43=178 (LC 45=178 (LC , 47=180 (LC	1),			10-46	,	=-138/95, -140/96, 8-48=-140/9 140/97, 4-51=-140/12
BOT CHORD	Rigid ceiling bracing.	directly	applied or 10-0-0 oc						, 47=180 (LC , 49=180 (LC					-140/97, 5-50=-1 -139/172	140/97, 4-51=-140/12
WEBS	1 Row at mid		15-41, 16-40, 17-39 18-37, 19-36, 14-42 13-43, 12-44, 11-45	,	ORCES	(lb) - Ma:	52=182	(LC 25)	51=179 (LC : on/Maximum					ive loads have b	een considered for
REACTIONS	30 33 36 40 43 43 46 49)=48-0-0 3=48-0-0 5=48-0-0 9=48-0-0 3=48-0-0 5=48-0-0	28=48-0-0, 29=48-0), 31=48-0-0, 32=48-), 34=48-0-0, 35=48-), 37=48-0-0, 39=48-), 41=48-0-0, 42=48-), 41=48-0-0, 45=48-), 47=48-0-0, 48=48-), 50=48-0-0, 51=48-)	0-0, TC 0-0, 0-0, 0-0, 0-0, 0-0, 0-0,	OP CHORD	17-18=-1 19-20=-8 21-22=-4 25-26=-1 27-28=-2 3-4=-260 6-8=-127	15/34, 26- 236/79, 1-2 0/105, 4-5= 7/152, 8-9=	8-19=-9 -21=-61, -24=-50, -27=-16 2=0/17, 2 212/11 96/180	9/275, /167, /59, 24-25=-7 2/50, 2-3=-327/107 9, 5-6=-163/ 0, 9-10=-80/2	7, '133,					
	Max Horiz 2= Max Uplift 2= 30 32 34 36 39 42 44 46 48 50	=239 (LC =-32 (LC)=-58 (L !=-61 (L)=-61 (L)=-68 (L !=-68 (L !=-53 (L !=-61 (L)=-63 (L)=-61 (L	C 16) (16) (13), 31=-62 (LC 13), (13), 33=-61 (LC 11) (13), 33=-61 (LC 11) (13), 35=-63 (LC 11) (13), 35=-63 (LC 11) (13), 40=-48 (LC 11) (12), 43=-66 (LC 11) (12), 45=-60 (LC 11) (12), 45=-60 (LC 11) (12), 47=-61 (LC 11) (12), 49=-61 (LC 11) (12), 49=-61 (LC 11) (12), 51=-61 (LC 11)	3), B(3), 3), 3), 2), 2), 2), 2), 2),	OT CHORD	12-13=-1 14-15=-1 2-52=-66 50-51=-6 48-49=-6 48-49=-6 43-44=-6 41-42=-6 39-40=-6 35-37=-6 33-34=-6	30/236, 11- 18/329, 13 55/432 5/234, 51-5 56/234, 49- 56/234, 47- 56/234, 44- 5/233, 42- 5/233, 40- 55/233, 37- 56/234, 34- 56/234, 32- 56/234, 32- 56/234, 30- 56/234, 30- 56/24, 30- 56/24, 30- 56/24, 30- 56/24, 30- 56/24, 30- 56/24, 30- 56/24, 30- 56/24,	3-14=-1: 52=-66/2 50=-66/2 -48=-66/2 -48=-66/2 -48=-66/2 -43=-65/2 -39=-65/2 -35=-66/2 -33=-66/2 -35	38/386, 234, 234, 234, 233, 233, 233, 233, 234, 234			(STATE OF ELIZA POHL PE-2023	

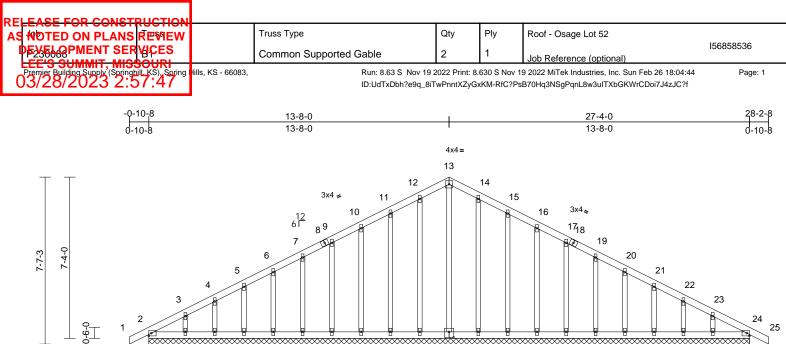
33-34=-66/234, 32-33=-66/234, 31-32=-66/234, 30-31=-66/234,

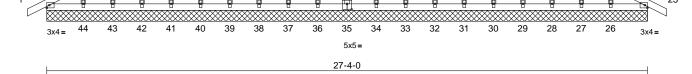
29-30=-66/234, 28-29=-66/234

OFFESSIONAL ET PE-2023000043 February 27,2023

52=-90 (LC 12)

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEXELOR PMENT SERVICES LEE'S SUMMIT, MISSOURI Premier Building Supply (Saringhill, KS), Soring 03/28/2023 2:57:47


- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 4-0-0, Exterior(2N) 4-0-0 to 24-0-0, Corner(3R) 24-0-0 to 29-0-0, Exterior(2N) 29-0-0 to 48-0-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 3x4 MT20 unless otherwise indicated.
 Gable requires continuous bottom chord bearing.
- Gable requires continuous botto
 Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 48 lb uplift at joint 40, 68 lb uplift at joint 39, 61 lb uplift at joint 37, 60 lb uplift at joint 36, 63 lb uplift at joint 35, 61 lb uplift at joint 34, 61 lb uplift at joint 33, 61 lb uplift at joint 32, 62 lb uplift at joint 31, 58 lb uplift at joint 30, 90 lb uplift at joint 29, 53 lb uplift at joint 42, 66 lb uplift at joint 43, 61 lb uplift at joint 44, 60 lb uplift at joint 45, 63 lb uplift at joint 45, 61 lb uplift at joint 44, 60 lb uplift at joint 45, 63 lb uplift at joint 48, 61 lb uplift at joint 49, 61 lb uplift at joint 50, 61 lb uplift at joint 51, 90 lb uplift at joint 52 and 32 lb uplift at joint 2.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

Truss Type	Qty	Ply	Roof - Osage Lot 52	
Common Supported Gable	2	1	Job Reference (optional)	156858535

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Sun Feb 26 18:04:43 ID:JbPUB4NmDf0vUSJtFFIELayGxJT-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Scale = 1:52.4

Plate Offsets (X, Y): [35:0-2-8,0-3-0]

TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.07 Vert(LL) n/a - n/a 999 MT20 TCDL 10.0 Lumber DOL 1.15 BC 0.03 Vert(CT) n/a - n/a 999 MT20 BCLL 0.0 Rep Stress Incr YES WB 0.18 Horz(CT) 0.01 24 n/a n/a	ATES GRIP T20 197/144
TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.07 Vert(LL) n/a - n/a 999 MT20 TCDL 10.0 Lumber DOL 1.15 BC 0.03 Vert(CT) n/a - n/a 999 MT20 BCLL 0.0 Rep Stress Incr YES WB 0.18 Horz(CT) 0.01 24 n/a n/a	
TCDL 10.0 Lumber DOL 1.15 BC 0.03 Vert(CT) n/a - n/a 999 BCLL 0.0 Rep Stress Incr YES WB 0.18 Horz(CT) 0.01 24 n/a n/a	13//144
BCLL 0.0 Rep Stress Incr YES WB 0.18 Horz(CT) 0.01 24 n/a n/a	
	aight: 145 lb ET - 200/
bcbL 10.0 Code IRC2010/17/2014 Matures Weight	eigni. 145 lb $F1 = 20\%$
LUMBER TOP CHORD 2x4 SP No.2 FORCES (b) - Maximum Compression/Maximum Tension 2) Wind: ASCE 7-16; Vull=1 BOT CHORD 2x4 SP No.2 TOP CHORD 15-16=-66/191, 16-17=-53/155, 15-16=-66/191, 16-17=-53/152, 15-16=-66/191, 16-17=-53/152, 15-16=-66/191, 16-17=-53/152, 15-16=-66/191, 16-17=-53/152, 17-19=-41/119, 19-20=-34/83, 20-21=-35/48, 21-22=-51/20, 22-23=-74-122, 23-24=-123/45, 42-25=0/17, 1-22=-377-422, 23-24=-123/45, 10-11=-66/191, 11-12=-80/220, 24-25=0/17, 1-22=-377-40, 30-27-4-0, 31=27-4-0, 32=27-4-0, 30-27-4-0, 31=27-4-0, 32=27-4-0, 30-27-4-0, 31=27-4-0, 32=27-4-0, 36=27-4-0, 43=27-4-0, 33=27-4-0, 36=27-4-0, 43=27-4-0, 33=27-4-0, 36=27-4-0, 43=27-4-0, 33=27-4-0, 36=27-4-0, 43=27-4-0, 33=27-4-0, 36=27-4-0, 43=27-4-0, 33=27-4-0, 36=27-4-0, 42=27-4-0, 43=27-4-0, 36=27-4-0, 40-27-40, 41=27-4-0, 36=27-4-0, 40-27-40, 41=27-4-0, 36=27-4-0, 40-27-40, 41=27-4-0, 36=27-4-0, 40-27-40, 41=27-4-0, 36=37-40/160, 37-38=-40/160, 42-26=-40/160, 32-23=-40/160, 23-23=-40/160, 50 30 Trus designed for wind only. For study exposed or consult qualified build only. For study exposed 3-32-40/160, 23-23=-40/160, 50 30 Trus designed for wind only. For study exposed or consult qualified build only. For study exposed 50 WEBS 33-24-0/160, 23-23=-40/160, 22-28=-40/160, 22-28=-40/160, 22-28=-40/160, 22-28=-40/160, 22-28=-40/160, 22-28=-40/160, 22-28=-40/160, 22-28=-40/160, 22-28=-40/160, 33-41=-40/160, 33-41=-40/160, 33-41=-40/160, 33-41=-40/160, 33-41	ind loads in the plane of the truss and loads in the plane of the truss (Gable End Details as applicable, ilding designer as per ANSI/TPI 1. T20 unless otherwise indicated. Jour bottom chord bearing. t 1-4-0 oc. esigned for a 10.0 psf bottom neurrent with any other live loads.
F	February 27,2023

EASE FOR CONSTRUCTION RE NOTED ON PLANS REVIEW Δ EXELOPMENT SERVICES 0:

	mjer Building Supply (Springbill, KS), Spring 1/28/2023 2:57:47
8)	Provide mechanical connection (by others) of truss to
	bearing plate capable of withstanding 26 lb uplift at joint
	2, 27 lb uplift at joint 36, 46 lb uplift at joint 37, 41 lb
	uplift at joint 38, 41 lb uplift at joint 39, 41 lb uplift at joint
	40, 41 lb uplift at joint 41, 41 lb uplift at joint 42, 40 lb
	uplift at joint 43, 63 lb uplift at joint 44, 21 lb uplift at joint
	34, 48 lb uplift at joint 33, 41 lb uplift at joint 32, 41 lb
	uplift at joint 31, 41 lb uplift at joint 30, 41 lb uplift at joint
	20. 41 lb unlift at joint 29. 40 lb unlift at joint 27. 57 lb

- 29, 41 lb uplift at joint 28, 40 lb uplift at joint 27, 57 lb uplift at joint 26 and 4 lb uplift at joint 24. 9) This truss is designed in accordance with the 2018
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

Truss Type	Qty	Ply	Roof - Osage Lot 52	
Common Supported Gable	2	1	Job Reference (optional)	156858536

Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Sun Feb 26 18:04:44 ID:UdTxDbh?e9q_8iTwPnntXZyGxKM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

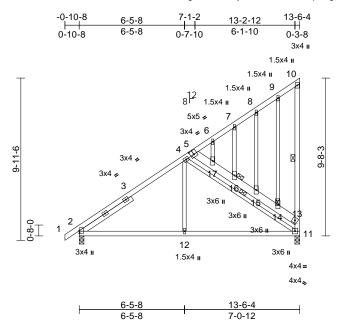
Page: 2

	w	Truss Type		Qty	Ply	Roof - Osa	ge Lot 52		156858537
		Common		4	1	Job Refere	nce (optiona	I)	100000001
remier Building Supply (Springhill_KS), Sp 3/28/2023 2:57:47	ring Hills, KS - 66083,							Sun Feb 26 18:04:4	4 Page: 1
5/20/2025 2.57.41			ID:77CC2GCYqA	WXZI_R058KSLV	JXKZ-RIC?PS	BYUHq3NSgr	qursmanı yo	GKWrCDoi7J4zJC?f	
-0-10-8 0-10-8	6-11-7		13-8-0		20-			27-4-0	28-2-8
0-10-8	6-11-7	I	6-8-9	I	6-8	-9	I	6-11-7	d-10-8
				4x6=					
— —		12		5					
		1 <u>2</u> 6Г 3x4 ≠	/				1.5x4 🧳		
		1.5x4 💊			\searrow		3x4 👟		
		4 14		//		15	6		
		3 1	~ //	/			7		
7-7-3		Ħ					1 A		
	13							16	
2			$\sim //$			$\parallel //$			8
			¥/	(¢)					
			12	11		10			\boxtimes
3x4 =			3x4 =	3x4=		3x4=			3x4 =
		0		40.0.0				07.4.0	
	9-4 9-4			<u>18-0-0</u> 8-8-0				<u>27-4-0</u> 9-4-0	
Scale = 1:52.5									
late Offsets (X, Y): [2:Edge,0-0-9], [8:Edge,0-0-9]		· · · · ·					-	
oading (psf)	Spacing	2-0-0	CSI	DEF		in (loc)	I/defl L/c		GRIP
	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC	0.77 Vert(0.91 Vert(,		>999 240 >732 180		244/190
CLL 0.0	Rep Stress Incr	YES	WB	0.26 Horz	,		n/a n/a	1	
CDL 10.0	Code	IRC2018/TPI2014	Matrix-S			<u> </u>		Weight: 109 lb	FT = 20%
UMBER OP CHORD 2x4 SP No.2			chanical connection e capable of withst						
OT CHORD 2x4 SP No.2		2 and 211 lb	o uplift at joint 8.	0					
/EBS 2x3 SPF No.2 RACING			designed in accor Residential Code						
	thing directly applied	0	and referenced star	ndard ANSI/TP	11.				
2-6-11 oc purlins.		LOAD CASE(S)) Standard						
2-6-11 oc purlins. OT CHORD Rigid ceiling directly a bracing.	pplied or 10-0-0 oc	LOAD CASE(S)) Standard						
2-6-11 oc purlins. OT CHORD Rigid ceiling directly a	applied or 10-0-0 oc ⊧0-3-8	LOAD CASE(S)) Standard						
2-6-11 oc purlins. Rigid ceiling directly a bracing. EACTIONS (size) 2=0-3-8, 8= Max Horiz 2=-137 (LC Max Uplift 2=-211 (LC	applied or 10-0-0 oc =0-3-8 =13) =12), 8=-211 (LC 13) Standard						
2-6-11 oc purlins. OT CHORD Rigid ceiling directly a bracing. EACTIONS (size) 2=0-3-8, 8= Max Horiz 2=-137 (LC	applied or 10-0-0 oc =0-3-8 =13) =12), 8=-211 (LC 13 2 1), 8=1288 (LC 1)) Standard						
2-6-11 oc purlins. OT CHORD Rigid ceiling directly a bracing. EACTIONS (size) 2=0-3-8, 8= Max Horiz 2=-137 (LC Max Grav 2=1288 (LC ORCES (lb) - Maximum Comp Tension	applied or 10-0-0 oc =0-3-8 13) 12), 8=-211 (LC 13 C 1), 8=1288 (LC 1) ression/Maximum) Standard						
2-6-11 oc purlins. Rigid ceiling directly a bracing. EACTIONS (size) 2=0-3-8, 8= Max Horiz 2=-137 (LC Max Uplift 2=-211 (LC Max Grav 2=1288 (LC ORCES (lb) - Maximum Comp Tension OP CHORD 1-2=0/17, 2-3=-2071/2 5-7=-1819/403, 7-8=-2	applied or 10-0-0 oc =0-3-8 =13) =12), 8=-211 (LC 13 =1), 8=1288 (LC 1) ression/Maximum 392, 3-5=-1819/403, 2071/392, 8-9=0/17) Standard						
2-6-11 oc purlins. OT CHORD Rigid ceiling directly a bracing. EACTIONS (size) 2=0-3-8, 8= Max Horiz 2=-137 (LCC Max Uplift 2=-211 (LC Max Grav 2=1288 (LC ORCES (lb) - Maximum Comp Tension OP CHORD 1-2=0/17, 2-3=-2071/3	applied or 10-0-0 oc =0-3-8 =13) =12), 8=-211 (LC 13 =1), 8=1288 (LC 1) ression/Maximum 392, 3-5=-1819/403, 2071/392, 8-9=0/17) Standard						
2-6-11 oc purlins. Rigid ceiling directly a bracing. EACTIONS (size) 2=0-3-8, 8= Max Horiz 2=-137 (LC Max Uplift 2=-211 (LC Max Grav 2=1288 (LC ORCES (lb) - Maximum Comp Tension OP CHORD 1-2=0/17, 2-3=-2071// 5-7=-1819/403, 7-8=- OT CHORD 2-12=-328/1762, 10-1 8-10=-263/1762 /EBS 5-10=-153/671, 7-10=	applied or 10-0-0 oc =0-3-8 =13) =12), 8=-211 (LC 13 C 1), 8=1288 (LC 1) ression/Maximum 392, 3-5=-1819/403, 2071/392, 8-9=0/17 2=-86/1180, -452/287,) Standard						
2-6-11 oc purlins. Rigid ceiling directly a bracing. EACTIONS (size) 2=0-3-8, 8= Max Horiz 2=-137 (LC Max Uplift 2=-211 (LC Max Grav 2=1288 (LC ORCES (lb) - Maximum Comp Tension OP CHORD 1-2=0/17, 2-3=-2071/ 5-7=-1819/403, 7-8=- OT CHORD 2-12=-328/1762, 10-1 8-10=-263/1762	applied or 10-0-0 oc =0-3-8 =13) =12), 8=-211 (LC 13 C 1), 8=1288 (LC 1) ression/Maximum 392, 3-5=-1819/403, 2071/392, 8-9=0/17 2=-86/1180, -452/287,) Standard						
2-6-11 oc purlins. Rigid ceiling directly a bracing. EACTIONS (size) 2=0-3-8, 8= Max Horiz 2=-137 (LC Max Uplift 2=-211 (LC Max Grav 2=1288 (LC ORCES (lb) - Maximum Comp Tension OP CHORD 1-2=0/17, 2-3=-2071/2 5-7=-1819/403, 7-8=-2 OT CHORD 2-12=-328/1762, 10-1 8-10=-263/1762 5-10=-153/671, 3-10= 5-12=-153/671, 3-112= OTES) Unbalanced roof live loads have b	applied or 10-0-0 oc =0-3-8 13) 12), 8=-211 (LC 13 2 1), 8=1288 (LC 1) ression/Maximum 392, 3-5=-1819/403, 2071/392, 8-9=0/17 2=-86/1180, -452/287, -452/287,) Standard					000	
2-6-11 oc purlins. Rigid ceiling directly a bracing. EACTIONS (size) 2=0-3-8, 8= Max Horiz 2=-137 (LC Max Uplift 2=-211 (LC Max Grav 2=1288 (LC ORCES (lb) - Maximum Comp Tension OP CHORD 1-2=0/17, 2-3=-2071/2 5-7=-1819/403, 7-8=-2 OT CHORD 2-12=-328/1762, 10-1 8-10=-263/1762 /EBS 5-10=-153/671, 7-10= 5-12=-153/671, 3-12= OTES	applied or 10-0-0 oc =0-3-8 13) 12), 8=-211 (LC 13 C 1), 8=1288 (LC 1) ression/Maximum 392, 3-5=-1819/403, 2071/392, 8-9=0/17 2=-86/1180, -452/287, -452/287 the en considered for) Standard					SS OF	MISS
2-6-11 oc purlins. OT CHORD Rigid ceiling directly a bracing. EACTIONS (size) 2=0-3-8, 8= Max Horiz 2=-137 (LC Max Uplift 2=-211 (LC Max Grav 2=1288 (LC ORCES (lb) - Maximum Comp Tension OP CHORD 1-2=0/17, 2-3=-2071/ 5-7=-1819/403, 7-8=- OT CHORD 2-12=-328/1762, 10-1 8-10=-263/1762 /EBS 5-10=-153/671, 7-10= 5-12=-153/671, 3-12= OTES) Unbalanced roof live loads have b this design.) Wind: ASCE 7-16; Vult=115mph (Vasd=91mph; TCDL=6.0psf; BCD	applied or 10-0-0 oc =0-3-8 =13) =12), 8=-211 (LC 13 C 1), 8=1288 (LC 1) ression/Maximum 392, 3-5=-1819/403, 2071/392, 8-9=0/17 2=-86/1180, -452/287, -452/287 eeen considered for 3-second gust) L=6.0psf; h=35ft;)) Standard					9 AN	MISSOUS
2-6-11 oc purlins. Rigid ceiling directly a bracing. EACTIONS (size) 2=0-3-8, 8= Max Horiz 2=-137 (LC Max Uplift 2=-211 (LC Max Grav 2=1288 (LC ORCES (lb) - Maximum Comp Tension OP CHORD 1-2=0/17, 2-3=-2071/3 5-7=-1819/403, 7-8=-3 OT CHORD 2-12=-328/1762, 10-1 8-10=-263/1762 /EBS 5-10=-153/671, 3-12= OTES) Unbalanced roof live loads have b this design.) Wind: ASCE 7-16; Vult=115mph (Vasd=91mph; TCDL=6.0psf; BCD Ke=1.00; Cat. II; Exp C; Enclosed exterior zone and C-C Exterior(2E	applied or 10-0-0 oc =0-3-8 =13) =12), 8=-211 (LC 13 C 1), 8=1288 (LC 1) ression/Maximum 392, 3-5=-1819/403, 2071/392, 8-9=0/17 2=-86/1180, -452/287, -452/287, -452/287 even considered for 3-second gust) L=6.0psf; h=35ft; j MWFRS (envelope) -0-10-8 to 4-1-8,)) Standard					ST ELIZA	BETH E
2-6-11 oc purlins. Rigid ceiling directly a bracing. EACTIONS (size) 2=0-3-8, 8= Max Horiz 2=-137 (LC Max Uplift 2=-211 (LC Max Uplift 2=-211 (LC Max Grav 2=1288 (LC ORCES (lb) - Maximum Comp Tension OP CHORD 1-2=0/17, 2-3=-2071/3 5-7=-1819/403, 7-8=- OT CHORD 2-12=-328/1762, 10-1 8-10=-263/1762 /EBS 5-10=-153/671, 3-12= OTES) Unbalanced roof live loads have b this design.) Wind: ASCE 7-16; Vult=115mph (Vasd=91mph; TCDL=6.0psf; BCD Ke=1.00; Cat. II; Exp C; Enclosed exterior zone and C-C Exterior(2E Interior (1) 4-1-8 to 13-8-0, Exterior	applied or 10-0-0 oc =0-3-8 13) 12), 8=-211 (LC 13 C 1), 8=1288 (LC 1) ression/Maximum 392, 3-5=-1819/403, 2071/392, 8-9=0/17 2=-86/1180, -452/287, -452/287 eeen considered for 3-second gust) L=6.0psf; h=35ft; ;MWFRS (envelope) -0-10-8 to 4-1-8, or(2R) 13-8-0 to)) Standard					9 AN	BETH E
2-6-11 oc purlins. OT CHORD Rigid ceiling directly a bracing. EACTIONS (size) 2=0-3-8, 8= Max Horiz 2=-137 (LC Max Uplift 2=-211 (LC Max Grav 2=1288 (LC ORCES (lb) - Maximum Comp Tension OP CHORD 1-2=0/17, 2-3=-2071/: 5-7=-1819/403, 7-8=-: OT CHORD 2-12=-328/1762, 10-1 8-10=-263/1762 /EBS 5-10=-153/671, 7-10= 5-12=-153/671, 3-12= OTES) Unbalanced roof live loads have b this design.) Wind: ASCE 7-16; Vult=115mph (Vasd=91mph; TCDL=6.0psf; BCD Ke=1.00; Cat. II; Exp C; Enclosed exterior zone and C-C Exterior/2E Interior (1) 4-1-8 to 13-8-0, Exteric 18-8-0, Interior (1) 18-8-0 to 28-2- and right exposed ; end vertical le	applied or 10-0-0 oc =0-3-8 =13) =12), 8=-211 (LC 13 =1), 8=-218 (LC 1) ression/Maximum 392, 3-5=-1819/403, 2071/392, 8-9=0/17 2=-86/1180, =452/287, =een considered for 3-second gust) L=6.0psf; h=35ft; =MWFRS (envelope) -0-10-8 to 4-1-8, or(2R) 13-8-0 to 8 zone; cantilever left and right)) Standard					ST ELIZA	BETH E
2-6-11 oc purlins. Rigid ceiling directly a bracing. EACTIONS (size) 2=0-3-8, 8= Max Horiz 2=-137 (LC Max Uplift 2=-211 (LC Max Grav 2=1288 (LC ORCES (lb) - Maximum Comp Tension OP CHORD 1-2=0/17, 2-3=-2071/ 5-7=-1819/403, 7-8=: OT CHORD 2-12=-328/1762, 10-1 8-10=-263/1762 /EBS 5-10=-153/671, 7-10= 5-12=-153/671, 3-12= OTES) Unbalanced roof live loads have b this design.) Wind: ASCE 7-16; Vult=115mph (Vasd=91mph; TCDL=6.0psf; BCD Ke=1.00; Cat. II; Exp C; Enclosed exterior zone and C-C Exterior(2E Interior (1) 4-1-8 to 13-8-0, Exteric 18-8-0, Interior (1) 18-8-0 to 28-2-	applied or 10-0-0 oc =0-3-8 13) 12), 8=-211 (LC 13 C 1), 8=1288 (LC 1) ression/Maximum 392, 3-5=-1819/403, 2071/392, 8-9=0/17 2=-86/1180, -452/287, -452/287, -452/287, -452/287 een considered for 3-second gust) L=6.0psf; h=35ft; ; MWFRS (envelope) -0-10-8 to 4-1-8, rr(2R) 13-8-0 to 8 zone; cantilever left tand right rces & MWFRS for)) Standard					ST ELIZA POHL	BETH MAN MAN
2-6-11 oc purlins. OT CHORD Rigid ceiling directly a bracing. EACTIONS (size) 2=0-3-8, 8= Max Horiz 2=-137 (LC Max Uplift 2=-211 (LC Max Uplift 2=-211 (LC Max Grav 2=1288 (LC ORCES (lb) - Maximum Comp Tension OP CHORD 1-2=0/17, 2-3=-2071/3 5-7=-1819/403, 7-8=: OT CHORD 2-12=-328/1762, 10-1 8-10=-263/1762 /EBS 5-10=-153/671, 3-12= OTES) Unbalanced roof live loads have b this design.) Wind: ASCE 7-16; Vult=115mph (Vasd=91mph; TCDL=6.0psf; BCD Ke=1.00; Cat. II; Exp C; Enclosed exterior zone and C-C Exterior(2E Interior (1) 4-1-8 to 13-8-0, Exterior 18-8-0, Interior (1) 18-8-0 to 28-2- and right exposed ; end vertical le exposed; C-C for members and four reactions shown; Lumber DOL=1. DOL=1.60	applied or 10-0-0 oc =0-3-8 13) 12), 8=-211 (LC 13 C 1), 8=1288 (LC 1) ression/Maximum 392, 3-5=-1819/403, 2071/392, 8-9=0/17 2=-86/1180, -452/287, -452/287 eeen considered for 3-second gust) L=6.0psf; h=35ft; ;MWFRS (envelope) -0-10-8 to 4-1-8, or(2R) 13-8-0 to 8 zone; cantilever left that right rces & MWFRS for 60 plate grip)) Standard					ELIZA POHL PE-2023	BETH MAN
2-6-11 oc purlins. OT CHORD Rigid ceiling directly a bracing. EACTIONS (size) 2=0-3-8, 8= Max Horiz 2=-137 (LC Max Uplift 2=-211 (LC Max Grav 2=1288 (LC ORCES (lb) - Maximum Comp Tension OP CHORD 1-2=0/17, 2-3=-2071/3 5-7=-1819/403, 7-8=- OT CHORD 2-12=-328/1762, 10-1 8-10=-263/1762 /EBS 5-10=-153/671, 3-12= OTES) Unbalanced roof live loads have b this design.) Wind: ASCE 7-16; Vult=115mph (Vasd=91mph; TCDL=6.0psf; BCD Ke=1.00; Cat. II; Exp C; Enclosed exterior zone and C-C Exterior(2E Interior (1) 4-1-8 to 13-8-0, Exterior 18-8-0, Interior (1) 18-8-0 to 28-2- and right exposed; end vertical exposed;C-C for members and for reactions shown; Lumber DOL=1.	applied or 10-0-0 oc =0-3-8 =13) =12), 8=-211 (LC 13 =1), 8=-218 (LC 1) ression/Maximum ===================================)) ft) Standard					ELIZA POHL PE-2023	BETH MAN
2-6-11 oc purlins. OT CHORD Rigid ceiling directly a bracing. EACTIONS (size) 2=-0-3-8, 8= Max Horiz 2=-137 (LC Max Uplift 2=-211 (LC Max Grav 2=1288 (LC ORCES (lb) - Maximum Comp Tension OP CHORD 1-2=0/17, 2-3=-2071/ 5-7=-1819/403, 7-8=- OT CHORD 2-12=-328/1762, 10-1 8-10=-263/1762 /EBS 5-10=-153/671, 7-10= 5-12=-153/671, 7-10= 5-12=-153/671, 7-10= 5-12=-153/671, 7-10= (Vasd=91mph; TCDL=6.0psf; BCD Ke=1.00; Cat. II; Exp C; Enclosed exterior zone and C-C Exterior/2E Interior (1) 4-1-8 to 13-8-0, Exteric 18-8-0, Interior (1) 18-8-0 to 28-2- and right exposed ; end vertical le exposed;C-C for members and for reactions shown; Lumber DOL=1. DOL=1.60	applied or 10-0-0 oc =0-3-8 =13) =12), 8=-211 (LC 13 =1), 8=-218 (LC 1) ression/Maximum ===================================)) ft) Standard					POHL POHL PE-2023	BETH MAN
2-6-11 oc purlins. OT CHORD Rigid ceiling directly a bracing. EACTIONS (size) 2=-0-3-8, 8= Max Horiz 2=-137 (LC Max Uplift 2=-211 (LC Max Grav 2=1288 (LC ORCES (lb) - Maximum Comp Tension OP CHORD 1-2=0/17, 2-3=-2071/ 5-7=-1819/403, 7-8=- OT CHORD 2-12=-328/1762, 10-1 8-10=-263/1762 /EBS 5-10=-153/671, 7-10= 5-12=-153/671, 7-10= 5-12=-153/671, 7-10= 5-12=-153/671, 7-10= (Vasd=91mph; TCDL=6.0psf; BCD Ke=1.00; Cat. II; Exp C; Enclosed exterior zone and C-C Exterior/2E Interior (1) 4-1-8 to 13-8-0, Exteric 18-8-0, Interior (1) 18-8-0 to 28-2- and right exposed ; end vertical le exposed;C-C for members and for reactions shown; Lumber DOL=1. DOL=1.60	applied or 10-0-0 oc =0-3-8 =13) =12), 8=-211 (LC 13 =1), 8=-218 (LC 1) ression/Maximum ===================================)) ft) Standard					ELIZA POHL PC-2023 PE-2023	BETH MAN

AS NOTED ON PLANS REV	9EW	Truss Type	Qty	Ply	Roof - Osage Lot 52	150050500
DEXELOPMENT SERVICI	ES Pl	Common Supported Gable	1	1	Job Reference (optional)	156858538
Premier Building Supply (Springbill KS) 03/28/2023 2:57:4	Spring Hills, KS - 66083,				9 2022 MiTek Industries, Inc. Sun Feb 26 18:04:45 0Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1
	-0-10-8 0-10-8	6-10-0			13-8-0 14-6-8 6-10-0 0-10-8	
5-5-14		³ ¹² ⁴ x8 = 4 ³ ⁴ x8 = 4 ³ ³ ⁴ x8 = 4 ³ ⁵ ⁵ ⁵ ⁵ ⁶ ⁵ ⁶ ⁷ ⁷ ⁷ ⁸	4x4= 7 1 18 13-8-0	8	9 10 4x8 11 12 16 15 14 3x4 II	13
			13-0-0			

Scale = 1:37.9

Plate Offsets (X, Y): [12:Edge,0-5-14]

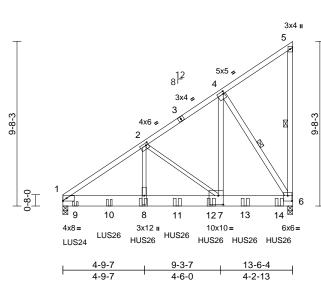

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0	Rep Stress Incr	YES		WB	0.07	Horz(CT)	0.00	12	n/a	n/a		
BCDL		10.0	Code	IRC2	018/TPI2014	Matrix-S							Weight: 73 lb	FT = 20%
LUMBER					WEBS	7-18=-119/26, 8- ²	17=-100/7	4. 9-16=-101	/107.					
TOP CHORD	2x4 SP N	02				10-15=-100/111,		,	,					
BOT CHORD	2x4 SP N					6-19=-104/73, 5-2		,	/111,					
OTHERS	2x3 SPF					3-22=-109/131		,	,					
SLIDER			1-8-5, Right 2x4 SP N	10.2	NOTES									
SEIDEIX	1-8-5	1110.2		10.2		roof live loads ha	ve heen (considered fo	r					
BRACING	100				this design.		we been	Jonsidered 10						
TOP CHORD	Structuro		athing directly applied	dor		7-16; Vult=115m	inh (3-ser	ond quet)						
I OF CHORD	6-0-0 oc i		auning unecuy applied	u 01	,	h; TCDL=6.0psf;	• •	0 /						
BOT CHORD			applied or 10-0-0 oc			t. II; Exp C; Enclo			ne)					
BOT CHORD	bracing.	ing unecuy	applied of 10-0-0 oc			and C-C Corner			,					
REACTIONS	0	2 12 6 4	12=13-6-4, 14=13-6-	4		4-2-0 to 6-10-0, (
REACTIONS	(SIZE)		4, 16=13-6-4, 14=13-6	,		erior(2N) 11-10-0			ever					
			4, 19=13-6-4, 17=13-6 4, 19=13-6-4, 20=13-6			exposed ; end ve								
			4, 19=13-6-4, 20=13-0 4, 22=13-6-4	0-4,		for members an								
	Max Horiz					own; Lumber DO								
		· ·	2 8), 12=-2 (LC 9), 14	73	DOL=1.60									
			5=-52 (LC 13), 16=-5		3) Truss desig	ned for wind load	s in the p	lane of the tru	ISS					
			7=-42 (LC 13), 10=-4		only. For sti	ids exposed to w	ind (norm	al to the face),					
			20=-56 (LC 12), 21=-5		see Standar	d Industry Gable	End Deta	ils as applical	ole,					
			22=-80 (LC 12)		or consult qu	alified building de	esigner as	s per ANSI/TF	기 1.					
	Max Grav		C 20), 12=154 (LC 1),		4) All plates are	e 1.5x4 MT20 unl	ess other	wise indicated	d.					
			_C 20), 15=125 (LC 2	20).		spaced at 1-4-0 d								
			_C 20), 17=127 (LC 2			as been designed							000	and
			_C 22), 19=131 (LC 1		chord live lo	ad nonconcurrent	with any	other live loa	ds.				OF	MIG
			_C 19), 21=126 (LC 1			hanical connection							ACE	ISS W
		22=139 (l		- / /		e capable of withs			int			A	TATE OF	N.S/
FORCES	(lb) - Max	•	pression/Maximum			ift at joint 2, 42 lb						A	S ELIZA	BETH Y
	Tension		procontraint			16, 52 lb uplift at						A	POHL	
TOP CHORD		76.8-9=-6	6/126, 9-10=-49/59,			ift at joint 19, 56 l)		6	2/1 🔺		
		,	2=-112/57, 12-13=0/10	6.		21 and 80 lb upli	ft at joint 2	22.			Y Y			100
		,	112, 3-4=-96/80,	-,	8) N/A						(10	INN V	
			/126, 6-7=-91/176			designed in acco						43		BER ALY
BOT CHORD		150, 21-22				Residential Code			nd			N2	O PE-2023	000043
			20=-52/150,			nd referenced sta	Indard AN	ISI/TPI 1.				N	The second	A A
	18-19=-5	2/150, 17-1	8=-52/150,		LOAD CASE(S)	Standard						Y	1 CP	JON B
	16-17=-5	2/150, 15-1	6=-52/150,										UNIONIA	TENA
	14-15=-5	2/150, 12-1	4=-52/150										PE-2023	L'A
													Echruce	y 27,2023
													Fobruar	1

RFI	LEASE FOR CONST	RUCTION	L
	NOTED ON PLANS		
9	EXELOPMENT SER		
C	Premier Building Supply (Springh 3/28/2023 2	ill_KS), Spring I	łil

ON						
W		Truss Type	Qty	Ply	Roof - Osage Lot 52	
5		Monopitch	1	1	Job Reference (optional)	156858539
orina	lills, KS - 66083,	Run: 8.63 S Nov 19 2	2022 Print: 8.	630 S Nov 1	9 2022 MiTek Industries, Inc. Sun Feb 26 18:04:45	Page: 1

ID:Ho1WEiUTGX1gwu78IG1QiOyGxNB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:70.6								
Diata Offacta (V	\mathbf{V}	12.0 1	1200	41	200	120	1	


TCDL10.0 BCLLLumber DOL1.15 Rep Stress IncrBC0.45 WEVert(CT)-0.1011-12>999180 Weight: 102 lbBCDL10.010.0CodeIRC2018/TPI2014Matrix-SWeight: 102 lbFT = 2LUMBER TOP CHORD2x4 SP No.210.0Vind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; K=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Extern(C2E) -0.10 8 to 4-18, Interior (1) 4-1-8 to 13-4-8 zone; cantilever left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.6010.11-12>999180 Weight: 102 lbBRACING TOP CHORD JOINTSStructural wood sheathing directly applied or 9-9-7 oc bracing.10-11, 4-11 10-11, 4-11 1010-11, 4-11 10-11, 4-113Gable studs spaced to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.WEBS JOINTS1 Row at midpt10-11, 4-11 10-11, 4-113Gable studs spaced to 14-40 oc.WEBS Max Horiz2=0-3-8, 11=0-3-8 Max Horiz2=0-3-8, 11=0-3-8 Max Horiz5Provide mechanical connection (by others) of truss to bearing plate capable of with ta doals on the plane of the truss only. For stude sexposed to run to 10.0 ps bottom chord live load nonconcurrent with any other live loads.FORCES Hor Come1-2=07(6, 2-4=-710/137, 4-6=-398/249, 6-7=-282/207, Ts==-225/205, B-8)=-188/186.5FORCES Hor Come1-2=07(6, 2-4=-710/137, 4-6=-398/249, 6-7=-282/207, Ts==-225/205, B-8)=-188/186.6<	,0-0-4], [క): [2:0-1-13,0-0-4]	X, Y):	, Y): [2:0-1-13,0-0-	0-4], [5:0-2-8,0-3-0]			-	_								
TOP CHORD2x4 SP No.2Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat II; Exp C; Enclosed; MWFRS (envelope)WEBS2x3 SPF No.2exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 13-4-8 zone; cantilever left and right exposed; can dvertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60OTHERS2x3 SPF No.2Interior (1) 4-1-8 to 13-4-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60BRACINGTruss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.JOINTS1 Brace at Jt(s): 14, 1010-11, 4-11 10JOINTS1 Brace at Jt(s): 14, 1010-11, 4-11 10JOINTS2=0-3-8, 11=0-3-8 Max Horiz 2=399 (LC 9) Max uplit 2=-83 (LC 12), 11=658 (LC 19) Max Grav 2=665 (LC 1), 11=658 (LC 19) Max Grav 2=665 (LC 1), 11=658 (LC 19)FORCES(b) - Maximum Compression/Maximum TensionTOP CHORD1-2=0/16, 2-4=-710/137, 4-6=-398/249, 6-7=-252/225, 7-8=-225/205, 8-9=-188/186.	5.0 P 0.0 L 0.0 R	25.0 10.0 0.0		25.0 10.0 0.0	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	5 5 8	TC BC WB	0.45	Vert(LL) Vert(CT)	-0.05 -0.10	11-12 11-12	>999 >999	240 180	MT20	244/190	
9-10=-127/138, 11-13=-346/275, 10-13=-96/74 BOT CHORD 2-12=-341/590 WEBS 4-12=0/306, 4-11=-759/547, 5-17=-546/486, 16-17=-441/390, 15-16=-502/443, 14-15=-538/473, 13-14=-516/441, 9-14=-111/93, 8-15=-79/56, 7-16=-112/96, 6-17=-178/195	No.2 b.2 3-11 d sheath s, excep irectly ap t 10.): 14, -3-8, 11= 99 (LC 9) 33 (LC 12 65 (LC 12) 65 (LC 12) 65 (LC 12) 14, -77-8=-225 8, 11-13= 0, 11-12= 11=-759 00, 15-16 3, 13-14 8-15=-75	4 SP No.2 3 SPF No.2 *Exce 13:2x6 SPF No.2 3 SPF No.2 3 SPF No.2 ft 2x4 SP No.2 3 ructural wood shea 0-0 oc purlins, exc gid ceiling directly acing. Row at midpt Brace at Jt(s): 14, 6 2=0-3-8, 14 x Horiz 2=399 (LC x Grav 2=665 (LC b) - Maximum Com ension 2=0/16, 2-4=-710/- 7=-262/227, 7-8=-2 10=-127/138, 11-1 12=-341/590, 11-1 12=-0/306, 4-11=-7 5-17=-441/390, 15- 1-15=-538/473, 13- 14=-111/93, 8-15=	2x4 \$ 2x3 \$ 5-13:3 2x3 \$ 2x3 \$	2x4 SP No.2 2x3 SPF No.2 *Exc 5-13:2x6 SPF No.2 2x3 SPF No.2 Left 2x4 SP No.2 Structural wood sh 6-0-0 oc purlins, e Rigid ceiling directl bracing. 1 Row at midpt 1 Brace at Jt(s): 14 16 size) 2=0-3-8, 4ax Horiz 2=399 (I 4ax Uplift 2=-83 (L 4ax Grav 2=665 (I (Ib) - Maximum Co Tension 1-2=0/16, 2-4=-71(6-7=-262/227, 7-8= 9-10=-127/138, 11: 10-13=-96/74 2-12=-341/590, 11: 4-12=0/306, 4-11= 16-17=-441/390, 11: 4-15=-58/473, 1: 9-14=-111/93, 8-15	.2 3-10-0 theathing directly app except end verticals. tty applied or 9-9-7 of 10-11, 4-11 14, 8, 11=0-3-8 (LC 9) (LC 12), 11=-528 (LC ompression/Maximu 10/137, 4-6=-398/245 3=-225/205, 8-9=-186 1-13=-346/275, 1-12=-341/590 =-759/547, 5-17=-54 15-18=-502/443, 13-14=-516/441,	plied or oc 2 12) 19) m 9, 8/186, 16/486,	 Vasd=91m Ke=1.00; C exterior zor Interior (1) exposed; e members a Lumber DC Truss desi only. For s see Standa or consult (3) Gable stud This truss f chord live le Provide me bearing pla joint 11 and This truss i Internationa R802.10.2 	sh; TCDL=6.0psf; at. II; Exp C; Encl le and C-C Exterit 4-1-8 to 13-4-8 zo ind vertical left an nd forces & MWF IL=1.60 plate grip gned for wind load tuds exposed to w rd Industry Gable jualified building d s spaced at 1-4-0 has been designed aad nonconcurren chanical connecti te capable of with 1 83 lb uplift at joir s designed in accd al Residential Cod and referenced st	BCDL=6. osed; MW or(2E) -0 nne; cantile d right exx RS for rea DOL=1.6 ds in the p vind (norm End Deta lesigner a: oc. d for a 10.1 t with any on (by oth standing 2 it 2. ordance w le sections	Opsf; h=35ft; (FRS (envelop 10-8 to 4-1-8, aver left and r bosed;C-C for ictions shown D lane of the tru, al to the face ils as applical s per ANSI/Tf 0 psf bottom other live loa ers) of truss t 202 lb uplift at ith the 2018 s R502.11.1 a	ight ;), ble, Pl 1. ds. o		Ç		S/ LUILI		

RELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof - Osage Lot 52	
	Monopitch Girder	2	2	Job Reference (optional)	156858540
Premier Building Supply, (Springbill, KS), Spring Hills, KS - 6608: 03/28/2023 2:57:48	3,			9 2022 MiTek Industries, Inc. Sun Feb 26 18:04:46 PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1

4-9-7	9-3-7	13-6-4	1
4-9-7	4-6-0	4-2-13	٦

Scale = 1:67.8

Plate Offsets (X, Y): [2:0-1-8,0-1-8], [4:0-0-12,0-1-12], [6:0-3-0,0-3-12], [7:0-3-8,0-6-4]

			,	5-12], [7.0-3-0,0									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.61 0.42 0.90	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.15 0.02	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 210 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) 2-ply truss (0.131"x3") Top chords oc. Bottom chd staggered Web connet 1 row at 0- 2) All loads au except if no CASE(S) s	2x4 SP No.2 2x8 SP 2400F 2.0E 2x8 SP 2400F 2.0E 2x4 SP No.2 *Excep Structural wood she 3-11-3 oc purlins, e Rigid ceiling directly bracing. 1 Row at midpt (size) 1=0-3-8, 6 Max Horiz 1=388 (LC Max Uplift 1=-1106 (Max Grav 1=5709 (L (lb) - Maximum Com Tension 1-2=-7730/1434, 2-4 4-5=-205/172, 5-6=- 1-8=-1408/6191, 2-7 8-6-7=-763/3467 2-8=-740/3927, 2-7= 4-7=-1287/7362, 4-6 to be connected toget) nails as follows: s connected as follows: s connected as follows: ords connected as follows: ords connected as follows: ords connected as follows: 2-9-0 oc. re considered equally oted as front (F) or bas section. Ply to ply conr	t* 2-8,7-2:2x3 SPF N athing directly applie xcept end verticals. applied or 10-0-0 oc 5-6, 4-6 5-0-3-8 C 11) LC 12), 6=-1377 (LC C 1), 6=7705 (LC 1) pression/Maximum J=-4248/811, 150/127 5-406/6191, 5-406/607, 5=-6404/1229 ther with 10d s: 2x4 - 1 row at 0-9-0 ows: 2x8 - 4 rows 1 row at 0-9-0 oc, 2: applied to all plies, ck (B) face in the LO tections have been	3 d or 12) 6 7 8 9 9 0 11 L	 Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 5 right expose for members Lumber DOL This truss ha chord live loa Provide mec bearing plate joint 6 and 1 This truss is International R802.10.2 a Use Simpson Truss) or eq connect trus Use Simpson Truss, Single the left end t chord. Use Simpson Truss) or eq 4-8-12 from to back face Fill all nail ho OAD CASE(S) Dead + Ron Plate Increa Uniform Lo Vert: 1-5 Concentrat Vert: 8=- 	7-16; Vult=115m h; TCDL=6.0psf; E t. II; Exp C; Enclo and C-C Exterio -1-12 to 13-4-8 zc d ; end vertical lef and forces & MW _=1.60 plate grip I as been designed ad nonconcurrent hanical connectio e capable of withs 106 lb uplift at joir designed in accoo Residential Code nd referenced sta n Strong-Tie LUS; uivalent at 0-8-12 s(es) to back face n Strong-Tie LUS; uivalent at 0-8-12 s(es) to back face n Strong-Tie LUS; uivalent spaced a the left end to 12- of bottom chord. Jelse where hange Standard of Live (balanced) ase=1.15 ads (lb/ft) =-70, 1-6=-20 ed Loads (lb)	CDL=6. Sect, MW r(2E) 0-1 one; canti ft and rigt VFRS for DOL=1.6 for a 10.1 with any on (by oth tanding 1 t1. redance w e sections indard AN 24 (4-100 from the e of bottom 26 (4-100 Quivalent s) to bacl 26 (4-100 Quivalent s) to bacl 26 (4-100 Quivalent s) to bacl 26 (4-100 Comparing 26 (4-100 Comparing 27 (4-100 Comparing 27 (4-100 Comparing 28 (4-100) 28	Dpsf; h=35ft; FRS (envelop -12 to 5-1-12 lever left and the exposed;C- reactions sho) psf bottom other live loa ers) of truss t 377 lb uplift a ith the 2018 R502.11.1 a ISI/TPI 1. 1 Girder, 2-10 left end to n chord. 1 Girder, 3-10 at 2-8-12 fror c face of botto Od Girder, 6-1 c max. startin- connect truss(latext with lum Increase=1. 783 (B),	ds. o at nd d d gat es) ber.		ę		Veigne 21010	AISSOLIN BETH MAN MAN
provided to	section. Ply to ply conr o distribute only loads erwise indicated.				2130 (B), 9=-788 0 (B), 12=-2130 (B			2133			Ø	OF PE-2023	ENGLIS

February 27,2023

RELEASE FOR CONSTRUCTION					
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof - Osage Lot 52	
	Monopitch Supported Gable	1	1	Job Reference (optional)	156858541
Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083, 03/28/2023 2:57:48	Run: 8.63 S Nov 19 ID:GjwpzSgpHeSKm			9 2022 MiTek Industries, Inc. Sun Feb 26 18:04:46 PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page
	-0-10-8 13-6 0-10-8 13-6				
				4x4 u	
9-11-6	81 2 6		11 0		

19 18

20

14

3x4 =

16

17

15

5

22 21

4x8 💋 4

2

_{3x4} 23

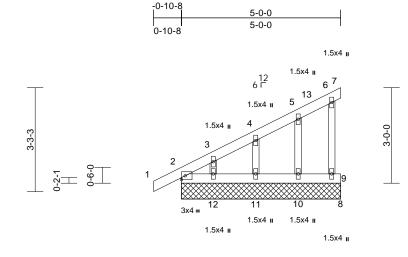
0-8-0

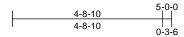
						13-6-4							
Scale = 1:58.3													
Plate Offsets	(X, Y): [8:0-3-0,0-2-4]	, [14:Edge,0-1-8]											
Loading	(psf)	Spacing	2-0-0		csi	-	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.71	Vert(LL)	n/a	()	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.34	Vert(CT)	n/a	-	n/a	999		2.1,100
BCLL	0.0	Rep Stress Incr	YES		WB	0.01	Horz(CT)	0.00	14	n/a	n/a		
BCDL	10.0	Code		8/TPI2014	Matrix-S	0.14	11012(01)	0.00	14	Π/α	Π/a	Weight: 102 lb	FT = 20%
	1010	0000										0	
LUMBER			B	OT CHORD	2-23=-169/21	,	,		LOAD	CASE(S) Sta	ndard	
TOP CHORD					21-22=-169/2								
BOT CHORD					19-20=-169/2								
WEBS	2x4 SP No.2				17-18=-169/2	,	,						
OTHERS		ept* 15-12:2x4 SP No	0.2		15-16=-169/2								
SLIDER	Left 2x4 SP No.2	1-8-10	VV	EBS	12-15=-219/2			00/00					
BRACING					10-17=-100/1	,	,	,					
TOP CHORD		eathing directly applie	d or		3-23=-164/22	,	4-22=-101/1	14,					
BOT CHORD	6-0-0 oc purlins, ex	applied or 10-0-0 oc	. N	OTES									
BOT CHORD	bracing.		,		E 7-16; Vult=11	5mph (3-sec	ond aust)						
WEBS	1 Row at midpt	13-14, 12-15	.,		ph; TCDL=6.0p								
REACTIONS		, 14=13-6-4, 15=13-6	: 1		at. II; Exp C; E			pe)					
REACTIONS	()	4, 17=13-6-4, 18=13-		exterior zor	ne and C-C Cor	ner(3E) -0-1)-8 to 4-2-4,						
		4, 20=13-6-4, 21=13-	,	Exterior(2N	l) 4-2-4 to 13-4	8 zone; cant	ilever left and	d					
		4, 23=13-6-4	01,	right expos	ed ; end vertica	I left and righ	t exposed;C	-C					
	Max Horiz 2=399 (L	,			rs and forces &			own;					
	Max Uplift 2=-101 (L	,	1).		0L=1.60 plate g								
		_C 12), 16=-36 (LC 9)			gned for wind l								
		_C 12), 18=-50 (LC 1			tuds exposed t								
		_C 12), 20=-52 (LC 12			rd Industry Gal								
	,	_C 12), 22=-54 (LC 12	2).		qualified buildin								
	23=-118	(LC 12)	3)		re 1.5x4 MT20			d.					
	Max Grav 2=258 (L	C 20), 14=101 (LC 8)	, 4)		ires continuous		d bearing.					SIL	The
	15=123 (LC 1), 16=134 (LC 19	9), 5)		s spaced at 1-4							THE OF I	Alson
	17=124 (LC 19), 18=127 (LC 1	19), 6)		nas been desig						- 0	BIE	-050,0
		LC 19), 20=126 (LC '			bad nonconcur						6	N.	No 2
		LC 19), 22=126 (LC 1	19), 7)		chanical conne						B	S/ ELIZAI	BETH YE Y
	23=160 (,			te capable of w					1	1	POHLI	MAN \ Y
FORCES	(lb) - Maximum Con	npression/Maximum			1 lb uplift at joir pint 16, 62 lb u					— (.	21		I★Ϋ.
	Tension				Ib uplift at joint					- Y	6	PR IN VI	
TOP CHORD					b upint at joint oint 21, 54 lb up						22		
		-556/372, 6-7=-497/3	43,	at joint 23.	5 III 2 I, 54 ID U	sint at joint 22		apint		· ·	43	B/ NUM	BER A
	7-9=-438/315, 9-10	,	8)		ate or shim requ	lired to provi	de full bearin	a			N	OX PE-2023	000043 / 2 8
	10-11=-304/259, 11		0)		h truss chord at			9			Q	1 and	188
	12-13=-119/134, 13	-14=-61/74	9)		s designed in a		ith the 2018				0	N'Ser	TNU'B
			•,		al Residential C			and				PE-2023	LEY

R802.10.2 and referenced standard ANSI/TPI 1.

Conne February 27,2023

Page: 1


RF	LEASE FOR CONSTRUC		L
	NOTED ON PLANS RE		
	DEXELOPMENT SERVIC		
	LEE'S SUMMIT. MISSOU		L
	Premier Building Supply (Springhill, KS	S), Spring	łi


1		Truss Type	Qty	Ply	Roof - Osage Lot 52	
		Monopitch Supported Gable	2	1	Job Reference (optional)	156858542
	lills, KS - 66083,	Run: 8.63 S Nov 19 2	2022 Print: 8.	630 S Nov 1	9 2022 MiTek Industries, Inc. Sun Feb 26 18:04:47	Page: 1

03/28/2023 2:57:48

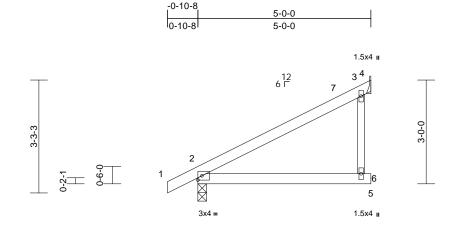
Run: 8,63 S Nov 19 2022 Print: 8,630 S Nov 19 2022 MiTek Industries, Inc. Sun Feb 26 18:04:47 ID:rocYVMcd0cNpDvC99VErNVyGxPd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:36.2

Loading		(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15	TC	0.15	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15	BC	0.01	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	9	n/a	n/a		
BCDL		10.0	Code	IRC2018/TPI	014 Matrix-F							Weight: 22 lb	FT = 20%
			•	2) 411	lates are 4 Ev4 M			ام				•	
				/ /	lates are 1.5x4 M			ea.					
TOP CHORD					le requires continu		d bearing.						
BOT CHORD					le studs spaced at		0						
WEBS	2x3 SPF N				truss has been de			l					
OTHERS	2x3 SPF N	10.2			d live load noncor								
BRACING				,	/ide mechanical co								
TOP CHORD			athing directly applie cept end verticals.	9, 1	ring plate capable 7 lb uplift at joint 2	3 lb uplift at joir	it 8, 37 lb upl	ift at					
BOT CHORD			applied or 10-0-0 or		10, 45 lb uplift at			t 12.					
_ 5. 6610	bracing.	.g an cony		8) This	truss is designed								
REACTIONS	0	2-5-0-0 8	8=5-0-0, 9=5-0-0,		rnational Resident			and					
REACTIONO	· · ·	,	, 11=5-0-0, 12=5-0-0	, R80	2.10.2 and referer	ced standard AN	ISI/TPI 1.						
	Max Horiz			LOAD	ASE(S) Standar	d							
			C 8), 8=-3 (LC 3), 9≕	-14									
)=-37 (LC 12), 11=-4										
		· //	40 (LC 12)										
		<i>, , , , , , , , , ,</i>	C 1), 8=-1 (LC 8), 9=	52									
)=112 (LC 1), 11=13										
		1), 12=78											
FORCES			pression/Maximum										
	Tension												
TOP CHORD	1-2=0/17, 2	2-3=-346/	150, 3-4=-251/125,										
	,		8/76, 6-7=-3/0,										
	6-9=-67/10)7	, ,										
BOT CHORD	2-12=-53/7	70, 11-12=	-53/70, 10-11=-53/7	70,								200	112
	9-10=-53/7	70, 8-9=0/	0	,								POF	MIG
WEBS	5-10=-88/1	154, 4-11=	-103/185, 3-12=-83	/176								ARUT	MISS OF
NOTES											4	ATE OF	N.S.
		t-115mnh	(3-second gust)								H	S ELIZA	BETH XP. W
			DL=6.0psf; h=35ft;								H	POHL	
			ed; MWFRS (envelor								<i>a</i> ₋		
			E) -0-10-8 to 4-1-8,								100		
			; cantilever left and r	iaht							(N)		
			ght exposed;C-C for								y.		
			for reactions shown								NY	PE-2023	000043 750
	DOL=1.60 plat			,							(X	PE-2023	S S S
			n the plane of the tru	ISS							Y	A Ce	1 ONB
			(normal to the face)									V VIII	TENS
			d Details as applicat									ESSIONA	
			gner as per ANSI/TF										
			5 · · · · · · · · · · · · · · · · · · ·									Februar	v 27 2023

February 27,2023



RELEASE FOR CONSTRUCTION	L
AS NOTED ON PLANS REVIEW	Ί
DEXELOPMENT SERVICES	l
Premier Building Supply (Springhill, KS), Spring 03/28/2023 2:57,48	łi

	Truss Type	Qty	Ply	Roof - Osage Lot 52	
	Monopitch	12	1	Job Reference (optional)	156858543
lills, KS - 66083,	Run: 8.63 S Nov 19	2022 Print: 8.	630 S Nov 1	9 2022 MiTek Industries, Inc. Sun Feb 26 18:04:47	Page: 1

ID: UZHDtrLpBrbwaXWxturhUsyGxPz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:33.3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.50	Vert(LL)	-0.03	2-6	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.26	Vert(CT)	-0.06	2-6	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 19 lb	FT = 20%
LUMBER												
TOP CHORD	2x4 SP No.2											
BOT CHORD												
WEBS	2x3 SPF No.2											
BRACING												
TOP CHORD	Structural wood she 5-0-0 oc purlins, ex		ed or									
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	с									
REACTIONS	(size) 2=0-3-0, 4	4= Mechanical										
	Max Horiz 2=121 (LO											
	Max Uplift 2=-58 (LC	,. (,										
	Max Grav 2=294 (L0											
FORCES	(lb) - Maximum Com Tension	npression/Maximum										
TOP CHORD	1-2=0/17, 2-3=-140/	106, 3-4=-64/94,										
	3-6=0/103											
BOT CHORD	2-6=-53/57, 5-6=0/0	1										
NOTES												
	CE 7-16; Vult=115mph											
	nph; TCDL=6.0psf; BC		a a \									
	Cat. II; Exp C; Enclose one and C-C Exterior(2		be)									
) 4-1-8 to 4-11-4 zone;		iaht									
	end vertical left and ri										Sun	alle
	and forces & MWFRS										FO OF I	MISC
	OL=1.60 plate grip DC									1	The	1,00°
	has been designed fo									8	STATE OF I	RETH X
	load nonconcurrent w irder(s) for truss to trus		ds.							R	POHL	
	nechanical connection		0						(71 4		
	late capable of withstal								<u> </u>	AR C	$H_{\rm m}$ $J_{\rm m}()$	non lin
	lb uplift at joint 2.									(8)		
5) This truss	is designed in accorda	ance with the 2018								M.	SI ~ NOM	BER W

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

PE-20230000 SSIONAL E February 27,2023

RELEASE FOR CONSTRUCTION			-				
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof - Osage Lot 52			
DEVELOPMENT SERVICES	Valley	2	1	Job Reference (optional)	156858544		
Premier Building Supply (Springhill, KS), Spring Hills, KS 03/28/2023 2:57:48							

Plate Offsets (X, Y): [9:0-2-0,Edge], [10:0-2-8,Edge]

	(X, T). [3.0 Z 0,Edg				-							-	
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	_ · ·	1.15		тс	0.76	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.37	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES		WB	0.22	Horiz(TL)	0.00	10	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 52 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD	2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood s 6-0-0 oc purlins, Rigid ceiling direc bracing. 1 Row at midpt (size) 1=12-2 12=12 Max Horiz 1=334 Max Uplift 1=-47 11=-64 13=-55 15=-56 17=-10 Max Grav 1=174 11=121 13=124 15=13; 17=24: (lb) - Maximum C Tension 1-2=-503/385, 2-3	heathing directly applie except end verticals. tly applied or 10-0-0 oc 9-10 -1, 10=12-2-1, 11=12-2 2-1, 13=12-2-1, 14=12- 2-1, 16=12-2-1, 17=12-	1) d or 2) 2-1, 3) 2-1, 4) 2-1 5) 6) 2), 7) 2), 7) 2), 7) 2), 8) 19), 8) 002,	Wind: ASCE Vasd=91mpf Ke=1.00; Car exterior zone Interior (1) 5- exposed ; en members and Lumber DOL Truss design only. For stu see Standarc or consult qu All plates are Gable require Gable studs This truss ha chord live loa Provide mech bearing plate 10, 64 lb upli uplift at joint 15, 33 lb upli lb uplift at joint This truss is International	7-16; Vult=115m 7; TCDL=6.0psf; 1; TCDL=6.0psf; 1; II; Exp C; Enclc and C-C Exterior 6-7 to 12-1-3 zor id vertical left anc d forces & MWFF =1.60 plate grip l ned for wind load ids exposed to w 1 Industry Gable alified building dr a 1.5x4 MT20 unle exposed to 14-0 of s been designed ad nonconcurrent hanical connectic e capable of withs ff at joint 16, 100 nt 1. designed in accoo Residential Code nd referenced sta	BCDL=6. Ssed; MW or(2E) 0-4 he; cantiled right exy RS for rea DOL=1.6 s in the p ind (norm End Deta esigner a: ess other ttom choro- c. for a 10.1 with any on (by oth standing 7 b uplift at joint 14, 4 lb uplift a rdance w e sections	Opsf; h=35ft; FRS (envelop -3 to 5-6-7, aver left and ri posed;C-C for ictions shown) lane of the tru, al to the face ils as applical s per ANSI/TF wise indicater d bearing. D psf bottom other live loa ers) of truss t j joint 12, 57 lt 56 lb uplift at j t joint 17 and ith the 2018 s R502.11.1 a	ight ; uss), ble, PI 1. ds. o ioint joint 47				STATE OF J	MISSOLUTE BETH
BOT CHORD	8-9=-111/110, 9-	0=-41/38 6-17=-145/159, 13-15=-145/159,	,								*	Pohl	MIM)~ H
WEBS	8-11=-177/154, 7	-12=-101/93, 6-13=-101 5=-106/74, 3-16=-67/49	,								Q	1285	EN CIT
NOTES												-un	27,2023

RELEASE FOR CONSTRUCTION						
AS NOTED ON PLANS REVIEW	Truss	Туре	Qty	Ply	Roof - Osage Lot 52	
DEXEL QPMENT SERVICES	Valle	y	2	1	Job Reference (optional)	156858545
LEE'S SUMMIT, MISSOURI Premier Building Supply (Springhill, KS), Spring Hi 03/28/2023 2:57:48	lls, KS - 66083,				19 2022 MiTek Industries, Inc. Sun Feb 26 18:04:48 ?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1
		10-8	3-1			
					3x4 II	
	-0-0-4	3x 1.5x4 II 10 2 3x4 z 9 1.5x4 II 1.5x4 II	1.5x4 1 x4 = 4 8 7 3x4 = 1.5x4 1		5 0 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	

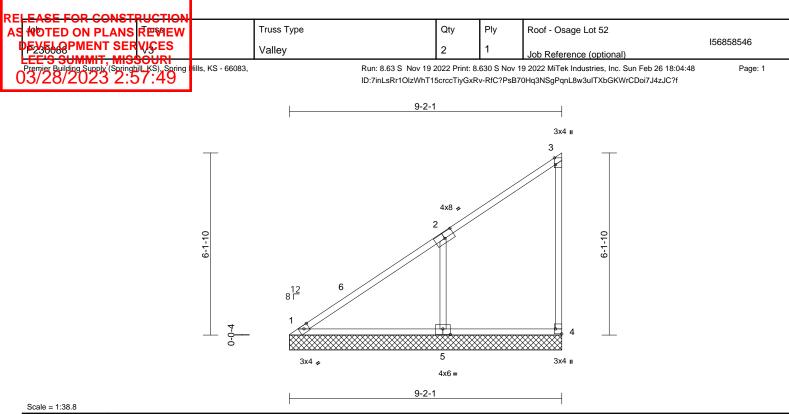
10-8-1

Scale = 1:48.6

Plate Offsets (X, Y): [3:0-2-0,Edge], [5:0-2-11,Edge], [6:Edge,0-2-8]

Plate Olisets	(X, Y): [3:0-2-0,Edge],	, [5:0-2-11,Edge], [6	:Edge,0-2-	5]									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.66 0.23 0.15	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 29 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=10-8-1, 9=10-8-1 Max Horiz 1=291 (LC Max Uplift 1=-47 (LC 7=-174 (L Max Grav 1=145 (LC	cept end verticals. v applied or 10-0-0 o , 6=10-8-1, 7=10-8-1 C 9) C 10), 6=-60 (LC 9), ,C 12), 9=-135 (LC 1	1, 12)	chord live lo Provide med bearing plate 1, 60 lb uplif uplift at joint This truss is International	designed in acco Residential Code nd referenced sta	with any on (by oth standing 4 uplift at jo rdance w e sections	other live loa ers) of truss t 7 lb uplift at j pint 7 and 13 ith the 2018 5 R502.11.1 a	io oint 5 Ib					
FORCES	(lb) - Maximum Com Tension	npression/Maximum											
TOP CHORD	1-2=-465/296, 2-4=- 5-6=-130/137	356/245, 4-5=-174/	146,										
BOT CHORD WEBS	1-9=-126/140, 7-9=- 4-7=-337/286, 2-9=-	,	140										~
Vasd=91r Ke=1.00; exterior zo Interior (1 exposed ; members	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 5-4-3 to 10-7-3 zone; end vertical left and riv and forces & MWFRS	DL=6.0psf; h=35ft; ed; MWFRS (envelop 2E) 0-4-3 to 5-4-3, cantilever left and r ght exposed;C-C for for reactions shown	ight r									STE OF D STE OF D ELIZA POHL	MISSOLIA BETH MAN

 Lumber DOL=1.60 plate grip DOL=1.60
 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.


Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 4-0-0 oc.

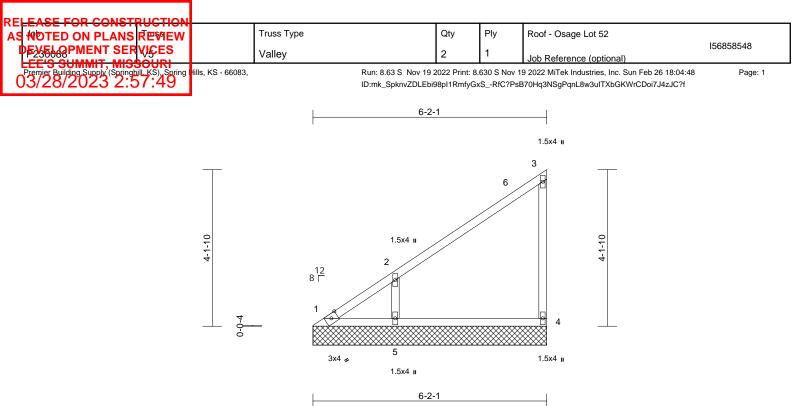
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

Plate Offsets (X, Y): [2:0-4-0,0-2-4], [3:0-2-11,Edge], [4:Edge,0-2-8], [5:0-3-0,0-2-4]

Plate Offsets (X, Y): [2:0-4-0,0-2-4	+j, [3.0-2-11,Eugej, [4	.Euge,0-2-6], [5.0-5	-0,0-2-4]								
Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI201	CSI TC BC WB 4 Matrix-S	0.62 0.33 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 197/144 FT = 20%
6-0-0 oc purlins, e Rigid ceiling direct bracing. REACTIONS (size) 1=9-2-1 Max Horiz 1=249 (Max Uplift 1=-1 (Li (LC 12)	C 8), 4=-51 (LC 9), 5= LC 20), 4=144 (LC 19	6) Provid bearing 4, 213 7) This tri Interna R802. ² ed or LOAD CAS	e mechanical connecti g plate capable of with lb uplift at joint 5 and 1 uss is designed in acco titonal Residential Cod I0.2 and referenced st SE(S) Standard	standing 5 1 lb uplift a ordance w le sections	1 lb uplift at jo t joint 1. ith the 2018 5 R502.11.1 ar	vint					
FORCES (lb) - Maximum Corrension TOP CHORD 1-3=-381/259, 3-4 BOT CHORD 1-4=-111/123 WEBS 2-5=-399/341 NOTES 1) 1) Wind: ASCE 7-16; Vult=115mp Vasd=91mph; TCDL=6.0psf; E Ke=1.00; Cat. II; Exp C; Enclo exterior zone and C-C Exterior Interior (1) 5-2-7 to 9-1-3 zone exposed; end vertical left and members and forces & MWFR Lumber DOL=1.60 plate grip D 2) Truss designed for wind loads only. For studs exposed to win see Standard Industry Gable E or consult qualified building de 3) Gable studs spaced at 4-0-0 o 5) This truss has been designed chord live load nonconcurrent	bh (3-second gust) GCDL=6.0psf; h=35ft; sed; MWFRS (envelog (2E) 0-4-3 to 5-2-7, ; cantilever left and rig right exposed;C-C for S for reactions shown OL=1.60 in the plane of the tru hd (normal to the face ind Details as applica signer as per ANSI/TI tom chord bearing. c. for a 10.0 psf bottom	pe) ght r y; uss), ble, PI 1.						0		STATE OF D STATE OF D POHL POHL PE-2023	MAN MER 000043

February 27,2023


ELEASE FOR CONSTRUCTION					T	
S NOTED ON PLANS REVIEW		Truss Type	Qty	Ply	Roof - Osage Lot 52	156858547
		Valley	2	1	Job Reference (optional)	130030347
Premier Building Supply (Springhill KS), Spring 03/28/2023 2:57:49	lills, KS - 66083,				v 19 2022 MiTek Industries, Inc. Sun Feb 26 18:04:48 sB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1
		7	'-8-1			
					1.5x4 u	
	0-0-4	2 8 1 1 3x4 z	3x4 ¢ .5x4 µ 7 3 6 5x4 µ		4 0 1.5x4 II	
Scale - 1:34 6		7	'-8-1			

Scale = 1:34.6

Plate Offsets (X, Y): [3:0-2-0,Edge]

	∧, 1). [3.0-2-0,⊵uge												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	/TPI2014	CSI TC BC WB Matrix-P	0.47 0.22 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 197/144 FT = 20%
	6-0-0 oc purlins, e Rigid ceiling direct bracing. (size) 1=7-8-1 Max Horiz 1=206 (Max Uplift 1=-14 (I (LC 12)	LC 8), 5=-47 (LC 9), 6 LC 20), 5=156 (LC 19	7) ed or LO / c =-178	bearing plate 5, 178 lb upli This truss is International	hanical connecti capable of with ft at joint 6 and 1 designed in acco Residential Cod nd referenced sta Standard	standing 4 14 lb uplift ordance w le sections	7 lb uplift at jo at joint 1. ith the 2018 5 R502.11.1 at	pint					
FORCES TOP CHORD BOT CHORD WEBS	Tension	mpression/Maximum =-162/132, 4-5=-135/ [,] •95/104	147										
NOTES 1) Wind: ASC Vasd=91m Ke=1.00; C exterior zo Interior (1) exposed ; members a Lumber DC 2) Truss des only. For s see Standa or consult 3) Gable requ 4) Gable requ 5) This truss	CE 7-16; Vult=115mp ph; TCDL=6.0psf; E Cat. II; Exp C; Enclos ne and C-C Exterior 5-4-3 to 7-7-3 zone end vertical left and and forces & MWFR DL=1.60 plate grip D igned for wind loads studs exposed to wir ard Industry Gable E qualified building de uires continuous bott is spaced at 4-0-0 o has been designed f	CDL=6.0psf; h=35ft; sed; MWFRS (envelop (2E) 0-4-3 to 5-4-3, cantilever left and rig right exposed;C-C for S for reactions shown OL=1.60 in the plane of the tru nd (normal to the face ind Details as applical signer as per ANSI/TF om chord bearing.	ht ;), ble, PI 1.							C		ELIZA POHL PE-2023 PE-2023	MAN HER OVAL 000043

Coolo	= 1:30.4	
Scale	= 1.30.4	

Scale = 1:30.4												
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.39	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.21	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 15 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2		bearing pla 1, 41 lb upli 7) This truss is Internationa	chanical connec te capable of wit ift at joint 4 and 7 s designed in act al Residential Co and referenced s	hstanding 4 156 lb uplift cordance w ode sections	4 lb uplift at j at joint 5. ith the 2018 s R502.11.1 a	joint					

d or	LOAD CASE(S)	Standard
aor		otanadia

BRACING												
TOP CHORD		I wood sheathing directly applied or										
		6-0-0 oc purlins, except end verticals.										
BOT CHORD	bracing.	Rigid ceiling directly applied or 10-0-0 oc bracing.										
REACTIONS	(size)	1=6-2-1, 4=6-2-1, 5=6-2-1										
	Max Horiz	1=163 (LC 9)										
	Max Uplift	1=-44 (LC 10), 4=-41 (LC 9),										
		5=-156 (LC 12)										
	Max Grav	1=84 (LC 9), 4=160 (LC 19), 5=379										
		(LC 19)										
FORCES	(lb) - Max	imum Compression/Maximum										
	Tension											
TOP CHORD	1-2=-332/	/216, 2-3=-156/121, 3-4=-136/153										
BOT CHORD	1-5=-78/8	35 4-5=-78/85										

WEBS

- NOTES
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-3 to 5-4-3, Interior (1) 5-4-3 to 6-1-3 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2-5=-299/297

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 4-0-0 oc.

- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

	DONET										
	N PLANS		W	Truss Type		Qty	Ply	Roof - Osa	age Lot 52		
DEXELOP	MENT SER	VICES		Valley		2	1	Job Refere	ence (optional))	156858549
Premier Building	Supply (Springh 023 2:5	^{⊪_ks), s₀} 7:49	ring Hills, KS - 66083,		Run: 8.63 S Nov 19 ID:MAIKAik0HIzfkF0					Sun Feb 26 18:04:49 WrCDoi7J4zJC?f	Page: 1
				\vdash	4	-8-1					
								1.5x4 u			
								2			
			3-1-10	8 ¹	12 F			Ø	3-1-10		
								3			
				ß	3x4 🍫	*****	******	1.5x4 I			
				L	4-	·8-1					
Scale = 1:25.4										1	
Loading TCLL (roof) TCDL BCLL		25.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	BC	0.71 DEF 0.71 Vert(0.38 Vert(0.00 Horiz	(LL) ı (TL) ı	in (loc) n/a - n/a - .00 3	l/defl L/d n/a 999 n/a 999 n/a n/a	PLATES MT20	GRIP 197/144
BCDL			Code	IRC2018/TPI2014	Matrix-P		· · · ·			Weight: 10 lb	FT = 20%
	2x3 SPF No. 2x3 SPF No. Structural wo 4-8-7 oc purd Rigid ceiling bracing. (size) 1= Max Horiz 1= Max Uplift 1= Max Grav 1=	2 2 2 2 3 3 4 3 4 -8 -1, 3 -2 -1, 3 -2 -1, 3 -2 1, 2 2 2 1, 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9) 12), 3=-63 (LC 12) 1), 3=208 (LC 19)	Internatio R802.10. LOAD CASE	s is designed in accordar nal Residential Code se 2 and referenced standa (S) Standard	ctions R502	.11.1 and				
FORCES	Tension	·	ression/Maximum								
TOP CHORD BOT CHORD	1-2=-167/124 1-3=-58/63	+, ∠-3=-16	193								
Ke=1.00; (exterior zo and right e exposed;C reactions s DOL=1.60 2) Truss des only. For see Stand or consult 3) Gable requ 4) Gable stuc 5) This truss chord live 6) Provide m bearing pla	heph; TCDL=6.0 Cat. II; Exp C; I one and C-C E exposed ; end v -C for member shown; Lumber igned for wind studs exposed ard Industry Ga qualified buildi uires continuou ds spaced at 4- has been desi load nonconcu echanical conr	psf; BCD Enclosed terior(2E vertical le's s and for DOL=1. loads in t to wind (able End able End ng design s bottom 0-0 oc. gned for a rrent with ection (b withstanc	L=6.0psf; h=35ft; ; MWFRS (envelope) zone; cantilever le ft and right rces & MWFRS for	ft s e, 1. s.						STATE OF M ELIZAE POHLM PE-20230	BETH MAN COUCH

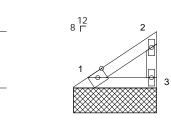
February 27,2023

RELEASE FOR CONSTRUCTION							
AS NOTED ON PLANS REVIEW		Truss Type		Qty	Ply	Roof - Osage Lot 52	
DEVELOPMENT SERVICES		Valley		2	1	Job Reference (optional)	156858550
LEE'S SUMMIT, MISSOURI Premier Building Supply (Springhill, KS), Spring 03/28/2023 2:57:49	lills, KS - 66083,					9 2022 MiTek Industries, Inc. Sun Feb 26 18:04:49 370Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f	Page: 1
			3-:	2-1		-	
					1.	5x4 u	
	2-1-10	t 5	8 T		2	3	
			3x4 🍫		1.	5x4 II	

3-2-1

Scal	lo _	1.21	5

Scale = 1:21.5					-							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.28 0.15 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 7 lb	GRIP 197/144 FT = 20%
FORCES TOP CHORD BOT CHORD	2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 3-2-7 oc purlins, ex Rigid ceiling directly bracing. (size) 1=3-2-1, 3 Max Horiz 1=78 (LC Max Uplift 1=-13 (LC Max Grav 1=124 (LC (Ib) - Maximum Com Tension 1-2=-112/83, 2-3=-1 1-3=-38/41	cept end verticals. applied or 10-0-0 or 3=3-2-1 9) C 12), 3=-41 (LC 12) C 1), 3=135 (LC 19) npression/Maximum	7) This truss i Internation R802.10.2 LOAD CASE(S	s designed in accor al Residential Code and referenced sta	e sections	s R502.11.1 a	nd					
Vasd=91m Ke=1.00; C exterior zo and right e exposed;C reactions s DOL=1.60 2) Truss des only. For s see Standa or consult 3) Gable requ 4) Gable stud 5) This truss chord live I 6) Provide m bearing pla	E 7-16; Vult=115mph hph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose ne and C-C Exterior(2 ixposed ; end vertical I C-C for members and f shown; Lumber DOL= igned for wind loads in studs exposed to wind ard Industry Gable En qualified building desi uires continuous botto Is spaced at 4-0-0 oc. has been designed fo load nonconcurrent wi echanical connection i ate capable of withstar o uplift at joint 3.	DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever l left and right orces & MWFRS for 1.60 plate grip n the plane of the tru I (normal to the face) d Details as applicat gner as per ANSI/TF m chord bearing. r a 10.0 psf bottom ith any other live load (by others) of truss to	eft , , ole, , 1. ds. o								POHLI POHLI POHLI PE-2023 PE-2023	MAN HERCELLAND


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

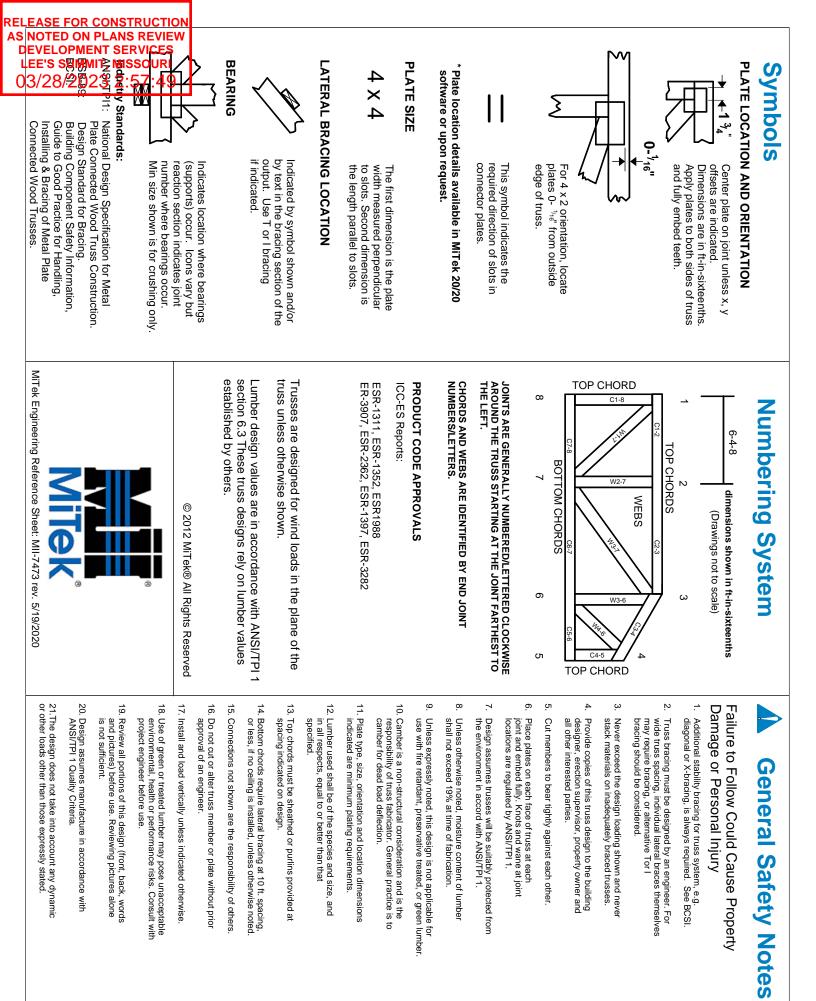
February 27,2023

RELEASE FOR CONSTRUCTION							
AS NOTED ON PLANS REVIEW	Truss Type	Qty	Ply	Roof - Osage Lot 52			
DEVELOPMENT SERVICES	Valley	2	1	Job Reference (optional)	156858551		
Premier Building Supply (Springhill, KS), Spring H 03/28/2023 2:57:49	tills, KS - 66083, Run: 8.63 S Nov 19 2022 Print: 8.630 S Nov 19 2022 MiTek Industries, Inc. Sun Feb 26 18:04:49 ID:3pNgiJfdw84fOAODEBr5MYyGxS8-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f						

1-1-10

3x4 ≠ 1.5x4 ∎

1-8-1


1.5x4 u

Scale = 1:23.2

Scale = 1:23.2				1								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.05 0.03 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 3 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m Ke=1.00; C exterior zo and right e exposed; C reactions s DOL=1.60 2) Truss des only. For s s see Stand or consult 3) Gable requ 4) Gable stud 5) This truss chord live I 6) Provide ms bearing pla	2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 1-8-7 oc purlins, exx Rigid ceiling directly bracing. (size) 1=1-8-1, 3 Max Horiz 1=36 (LC Max Uplift 1=-6 (LC Max Grav 1=56 (LC (lb) - Maximum Com Tension 1-2=-52/39, 2-3=-53, 1-3=-17/19 ET 7-16; Vult=115mph ph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose ne and C-C Exterior(2 xposed ; end vertical I c-C for members and fishown; Lumber DOL=	athing directly applie cept end verticals. applied or 10-0-0 or 3=1-8-1 9) 12), 3=-19 (LC 12) 1), 3=61 (LC 19) apression/Maximum /62 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop (E) zone; cantilever I left and right orces & MWFRS for 1.60 plate grip n the plane of the tru (normal to the face) d Details as applicat gner as per ANSI/TF m chord bearing. r a 10.0 psf bottom th any other live loas (by others) of truss to	7) This truss is Internationa R802.10.2 / LOAD CASE(S ed or c be) eft ss s, ble, 1.1.	designed in acco Residential Cod and referenced sta	e sections	s R502.11.1 a	and		4		PE-2023	MISSOLIA BETH MAN BER 3000043
											all	N 07 2022

February 27,2023

16023 Swingley Ridge Rd Chesterfield, MO 63017

