LEIGH & O'KANE L.L.C. – STRUCTURAL CALCULATIONS FOR

ITAP – Lee's Summit

228 SW Main Street, Lee's Summit, Missouri 64063

Adam C. O'Kane, P.E. & Reagan Holden, E.I. & Kenton Hawley, E.I. February 23, 2023

> Leigh & O'Kane 250 NE Mulberry St. | Suite 201 Lee's Summit, MO 64086

		1
Revision:	Date:	Sheet No. i
Made by: RAH & KDH	Date: 2023-02-23	Job No. 22-15

Project Name: ITAP Lee's Summit

TABLE OF CONTENTS

General Design Considerations	.1
Referenced Design Standards	.1
New Lintel over New Window Opening in Existing Wall	.2
New Lintel over New Duct Opening in Existing Wall	.4
New Lintel over Enlarged Door Opening in Existing Wall	.6
Existing Wood Joist Modification for New RTU	.8

Made by: RAH & KDH	Date: 2023-02-23	Job No. 22-15	
Revision:	Date:	Sheet No. 1	
Project Name: ITAP Lee's Summit			

GENERAL DESIGN CONSIDERATIONS

The calculations provided are for modifications to the existing building located at 228 SW Main Street in Lee's Summit, MO. The space is being modified for the tenant, International Tap House.

REFERENCED DESIGN STANDARDS

- 2018 IBC International Building Code
- ASCE 7-16 American Society of Civil Engineers Minimum Design Loads for Buildings and Other Structures
- AISC 360-16 American Institute of Steel Construction Fifteenth Edition
- ACI 318-14 American Concrete Institute Building Code Requirements for Structural Concrete
- NDS 2018 National Design Specification for Wood Construction

Made by: RAH & KDH	Date: 2023-02-23	Job No. 22-15	
Revision:	Date:	Sheet No. 2	
Project Name: ITAP Lee's Summit			

NEW LINTEL OVER NEW WINDOW OPENING IN EXISTING WALL

SECTION PROPERITES: L 8x6x1/2

yield strength	Fy	36 ksi
modulus of elasticity	E	29000 ksi
vertical leg length	b_1	8 in
horizontal leg length	b ₂	6 in
thickness	t	0.5 in
cross section area	А	6.8 in ²
major axis moment of inertia	I _x	44.4 in ⁴
elastic section modulus (major axis)	S _x	8.01 in ³
radius of gyration (major axis)	r _x	2.55 in
plastic section modulus (major axis)	Z _x	14.6 in ³
moment of inertia (minor axis)	l _y	21.7 in ⁴
elastic section modulus (minor axis)	Sy	4.79 in ³
radius of gyration (minor axis)	r _y	1.79 in
plastic section modulus (minor axis)	Zy	8.52 in ³
moment of inertia (principal axis)	l _z	11.5 in ⁴
elastic section modulus (principal axis)	Sz	3.98 in ³
radius of gyration (principal axis)	r _z	1.3 in
width to thickness ratio	b/t	16.00
limiting compact/noncompact ratio	$\lambda_p = 0.54 v(E/F_y)$	15.33
limiting noncompact/slender ratio	$\lambda_r = 0.91 \sqrt{(E/F_y)}$	25.83

LOADING

factored moment

factored line load	w _u = [1.2 D + 1.6 (L + S)]*T + 1.2 W _w H	7080 plf
service line load	$w = [D_f + D_r + L_f + S]^*T + W_wH$	5250 plf
roof snow	S	20 psf
roof dead	Dr	20 psf
floor live	L _f	80 psf
floor dead	D _f	20 psf
wall weight	W _w	140 psf
total wall height above window	н	18 ft
trib length	т	19.5 ft
span length	L	6 ft

 $M_{u} = w_{u} L^{2} / 8$

31.86 k-ft

Made by: RAH & KDH	Date: 2023-02-23	Job No. 22-15	
Revision:	Date:	Sheet No. 3	
Project Name: ITAP Lee's Summit			

thickness	t	0.5 in
elastic section modulus per foot	$S = [t^2 / 6] * 12$	0.5 in ³ /ft
plastic section modulus per foot	$Z = [t^2 / 4] * 12$	0.75 in ³ /ft
allowable moment	$\phi M_n = 0.9 [F_y Z] < 0.9 [1.6 F_y S]$	24.30 k-in/ft
required moment per angle	w _u b / 2	21.24 k-in/ft
utilization		87%
SINGLE ANGLE IN FLEXURE (F10)		
PRINCIPAL AXIS YIELDING (F10.1)		
yield moment	$M_{y} = F_{y} S_{z}$	143.28 k-in
allowable moment	$\phi M_n = 0.9^* 1.5 M_y$	16.12 k-ft
required moment per angle	M _u / 2	15.93 k-ft
utilization		99%
LATERAL TORSIONAL BUCKLING ABOUT PRINCI	PAL AXIS (F10.2)	
lateral torsional buckling moment (F10-4)	M _{cr}	1239.01 k-in
section property from Table C-F10.1	β _w	-3.14
lateral torsional modification factor	C _b	1
laterally unbraced length	L _b	6 ft
allowable moment	$\phi M_n = 0.9*[1.92 - 1.17 v(M_y/M_{cr})]M_y$	16.36 k-ft
required moment per angle	M _u / 2	15.93 k-ft
utilization		97%
LEG LOCAL BUCKLING (F10.3)		
(b) for sections with noncompact legs	$M_n = F_y S_c [2.43 - 1.72]$	(b/t) v(F _y /E)]
elastic section modulus of toe in compression	$S_c = 0.80 S_x$	6.408 in ³
allowable moment	φM _n	25.27 k-ft
required moment per angle	M _u / 2	15.93 k-ft
utilization		63%
DEFLECTION		
deflection	$\Delta = 5 \text{ w L}^4 / 384 \text{ E I}_x$	0.119 in
deflection limit	$\Delta_{\text{allow}} = L/600$	0.12 in

factored moment

Made by: RAH & KDH	Date: 2023-02-23	Job No. 22-15	
Revision:	Date:	Sheet No. 4	
Project Name: ITAP Lee's Summit			

NEW LINTEL OVER NEW DUCT OPENING IN EXISTING WALL

SECTION PROPERITES: L 6x4x3/8 at Duct

yield strength	Fy	36 ksi
modulus of elasticity	E	29000 ksi
vertical leg length	b ₁	6 in
horizontal leg length	b ₂	4 in
thickness	t	0.375 in
cross section area	А	3.61 in ²
major axis moment of inertia	I _x	13.4 in^4
elastic section modulus (major axis)	S _x	3.3 in ³
radius of gyration (major axis)	r _x	1.93 in
plastic section modulus (major axis)	Z _x	5.89 in ³
moment of inertia (minor axis)	l _y	4.86 in ⁴
elastic section modulus (minor axis)	Sy	1.58 in ³
radius of gyration (minor axis)	r _y	1.16 in
plastic section modulus (minor axis)	Z _y	2.79 in ³
moment of inertia (principal axis)	Ι _z	2.73 in ⁴
elastic section modulus (principal axis)	Sz	1.31 in ³
radius of gyration (principal axis)	r _z	0.87 in
width to thickness ratio	b/t	16.00
limiting compact/noncompact ratio	$\lambda_p = 0.54 \sqrt{(E/F_\gamma)}$	15.33
limiting noncompact/slender ratio	$\lambda_r = 0.91 \sqrt{(E/F_y)}$	25.83
LOADING		

span length	L	2 ft
trib length	Т	19.5 ft
total wall height above opening	н	14 ft
wall weight	W _w	140 psf
floor dead	D _f	20 psf
floor live	L _f	80 psf
roof dead	Dr	20 psf
roof snow	S	20 psf
service line load	$w = [D_f + D_r + L_f + S]^*T + W_wH$	4690 plf
factored line load	w _u = [1.2 D + 1.6 (L + S)]*T + 1.2 W _w H	6408 plf

 $M_{u} = w_{u} L^{2} / 8$

3.204 k-ft

Made by: RAH & KDH	Date: 2023-02-23	Job No. 22-15	
Revision:	Date:	Sheet No. 5	
Project Name: ITAP Lee's Summit			

thickness	t	0.375 in
elastic section modulus per foot	$S = [t^2 / 6] * 12$	0.28125 in ³ /ft
plastic section modulus per foot	$Z = [t^2 / 4] * 12$	0.42 in ³ /ft
allowable moment	$\phi M_n = 0.9 [F_y Z] < 0.9 [1.6 F_y S]$	13.67 k-in/ft
required moment per angle	w _u b / 2	12.82 k-in/ft
utilization		94%
SINGLE ANGLE IN FLEXURE (F10)		
PRINCIPAL AXIS YIELDING (F10.1)		
yield moment	$M_y = F_y S_z$	47.16 k-in
allowable moment	$\phi M_n = 0.9^* 1.5 M_y$	5.31 k-ft
required moment per angle	M _u / 2	1.602 k-ft
utilization		30%
LATERAL TORSIONAL BUCKLING ABOUT PRINCI	PAL AXIS (F10.2)	
lateral torsional buckling moment (F10-4)	M _{cr}	346.59 k-in
section property from Table C-F10.1	β _w	-3.14
lateral torsional modification factor	C _b	1
laterally unbraced length	L _b	6 ft
allowable moment	$\phi M_n = 0.9*[1.92 - 1.17 v(M_y/M_{cr})]M_y$	5.26 k-ft
required moment per angle	M _u / 2	1.602 k-ft
utilization		30%
LEG LOCAL BUCKLING (F10.3)		
(b) for sections with noncompact legs	$M_n = F_y S_c [2.43 - 1.72]$	(b/t) v(F _y /E)]
elastic section modulus of toe in compression	$S_{c} = 0.80 S_{x}$	2.64 in ³
allowable moment	φM _n	10.41 k-ft
required moment per angle	M _u / 2	1.602 k-ft
utilization		15%
deflection	$A = E_{W} I^{4} / 284 E I$	0.004 in
deflection limit	$\Delta = 5 \text{ w L} / 384 \text{ E I}_{x}$ $\Delta_{\text{ellenn}} = 1/600$	0.004 m
		110/

factored moment

Revision: Date: Sh	Sheet No. 6

Project Name: ITAP Lee's Summit

NEW LINTEL OVER ENLARGED DOOR OPENING IN EXISTING WALL

SECTION PROPERITES: L 6x4x3/8 at Door

yield strength	Fy	36 ksi
modulus of elasticity	E	29000 ksi
vertical leg length	b ₁	6 in
horizontal leg length	b ₂	4 in
thickness	t	0.375 in
cross section area	А	3.61 in ²
major axis moment of inertia	I _x	13.4 in ⁴
elastic section modulus (major axis)	S _x	3.3 in ³
radius of gyration (major axis)	r _x	1.93 in
plastic section modulus (major axis)	Z _x	5.89 in ³
moment of inertia (minor axis)	l _y	4.86 in ⁴
elastic section modulus (minor axis)	Sy	1.58 in ³
radius of gyration (minor axis)	r _y	1.16 in
plastic section modulus (minor axis)	Z _y	2.79 in ³
moment of inertia (principal axis)	Ι _z	2.73 in ⁴
elastic section modulus (principal axis)	Sz	1.31 in ³
radius of gyration (principal axis)	r _z	0.87 in
width to thickness ratio	b/t	16.00
limiting compact/noncompact ratio	$\lambda_p = 0.54 v(E/F_y)$	15.33
limiting noncompact/slender ratio	$\lambda_r = 0.91 \sqrt{(E/F_y)}$	25.83
LOADING		

span length	L	4 ft
trib length	т	10 ft
total wall height above opening	н	11 ft
wall weight	W _w	140 psf
floor dead	D _f	20 psf
floor live	L _f	80 psf
roof dead	Dr	20 psf
roof snow	S	20 psf
service line load	$\mathbf{w} = [\mathbf{D}_{f} + \mathbf{D}_{r} + \mathbf{L}_{f} + \mathbf{S}]^*\mathbf{T} + \mathbf{W}_{w}\mathbf{H}$	2940 plf
factored line load	w _u = [1.2 D + 1.6 (L + S)]*T + 1.2 W _w H	3928 plf

 $M_{u} = w_{u} L^{2} / 8$

7.856 k-ft

Made by: RAH & KDH	Date: 2023-02-23	Job No. 22-15		
Revision:	Date:	Sheet No. 7		
Project Name: ITAP Lee's Summit				

thickness	t	0.375 in
elastic section modulus per foot	$S = [t^2 / 6] * 12$	0.28125 in ³ /ft
plastic section modulus per foot	$Z = [t^2 / 4] * 12$	0.42 in ³ /ft
allowable moment	$\phi M_n = 0.9 [F_y Z] < 0.9 [1.6 F_y S]$	13.67 k-in/ft
required moment per angle	w _u b / 2	7.86 k-in/ft
utilization		57%
SINGLE ANGLE IN FLEXURE (F10)		
PRINCIPAL AXIS YIELDING (F10.1)		
yield moment	$M_y = F_y S_z$	47.16 k-in
allowable moment	$\phi M_n = 0.9*1.5 M_y$	5.31 k-ft
required moment per angle	M _u / 2	3.928 k-ft
utilization		74%
LATERAL TORSIONAL BUCKLING ABOUT PRINCI	PAL AXIS (F10.2)	
lateral torsional buckling moment (F10-4)	M _{cr}	346.59 k-in
section property from Table C-F10.1	β _w	-3.14
lateral torsional modification factor	C _b	1
laterally unbraced length	L _b	6 ft
allowable moment	$\phi M_n = 0.9*[1.92 - 1.17 v(M_v/M_{cr})]M_v$	5.26 k-ft
required moment per angle	M _u / 2	3.928 k-ft
utilization		75%
LEG LOCAL BUCKLING (F10.3)		
(b) for sections with noncompact legs	$M_n = F_y S_c [2.43 - 1.72]$	(b/t) √(F _y /E)]
elastic section modulus of toe in compression	$S_{c} = 0.80 S_{x}$	2.64 in ³
allowable moment	φM _n	10.41 k-ft
required moment per angle	M _u / 2	3.928 k-ft
utilization		38%
DEFLECTION		
deflection	$\Delta = 5 \text{ w L}^4 / 384 \text{ E L}$	0.044 in
deflection limit	$\Delta_{\text{allow}} = L/600$	0.08 in
utilization	Δ / Δ_{allow}	54%

EXISTING WOOD JOIST MODIFICATION FOR NEW RTU

Made by: RAH & KDH	Date: 2023-02-23	Job No. 22-15
Revision:	Date:	Sheet No. 8
Project Name: ITAP Lee's Summit		

Applied loading

Load combinations

Beam loads

Dead self weight of beam \times 1 Design full UDL 90 lb/ft Dead point load 500 lb at 36.00 in

Load combination 1	Support A	Dead imes 1.00
		$\text{Design} \times 1.00$
	Span 1	$\text{Dead}\times 1.00$
		$\text{Design} \times 1.00$
	Support B	$\text{Dead}\times 1.00$
		$\text{Design} \times 1.00$

Made by: RAH & KDH	Date: 2023-02-23	Job No. 22-15
Revision:	Date:	Sheet No. 9
Project Name: ITAP Lee's Summit		

Analysis results		
Maximum moment;	M _{max} = 5784 lb_ft;	M _{min} = 0
Design moment;	M = max(abs(M _{max}),abs(M _{min})) =	= 5784 lb_ft
Maximum shear;	F _{max} = 1426 lb;	F _{min} = -1
Design shear;	F = max(abs(F _{max}),abs(F _{min})) = ⁻	1426 lb
Total load on member;	W _{tot} = 2502 lb	
Reaction at support A;	R _{A_max} = 1426 lb;	R _{A_min} =
Unfactored dead load reaction at support A;	R _{A_Dead} = 526 lb	
Unfactored design load reaction at support A;	R _{A_Design} = 900 lb	
Reaction at support B;	R _{B_max} = 1076 lb;	$R_{B_{min}} =$
Unfactored dead load reaction at support B;	R _{B_Dead} = 176 lb	
Unfactored design load reaction at support B;	R _{B_Design} = 900 lb	

R_{A_min} = **1426** lb

M_{min} = 0 lb_ft

F_{min} = **-1076** lb

R_{B_min} = **1076** lb

Sawn lumber section details	
Nominal breadth of sections;	b _{nom} = 2 in
Dressed breadth of sections;	b = 1.5 in
Nominal depth of sections;	d _{nom} = 10 in
Dressed depth of sections;	d = 9.25 in
Number of sections in member;	N = 3
Overall breadth of member;	$b_{b} = N \times b = 4.5$ in
Species, grade and size classification;	Spruce-Pine-Fir, No.2 grade, 2" & wider
Bending parallel to grain;	F _b = 875 lb/in ²
Tension parallel to grain;	F _t = 450 lb/in ²
Compression parallel to grain;	F _c = 1150 lb/in ²
Compression perpendicular to grain;	F _{c_perp} = 425 lb/in ²
Shear parallel to grain;	F _v = 135 lb/in ²
Modulus of elasticity;	E = 1400000 lb/in ²
Modulus of elasticity, stability calculations;	E _{min} = 510000 lb/in ²
Mean shear modulus;	G _{def} = E / 16 = 87500 lb/in ²
Member details	
Service condition;	Dry
Length of span;	L _{s1} = 20 ft
Length of bearing;	L _b = 4 in
Load duration;	Ten years
Section properties	
Cross sectional area of member;	$A = N \times b \times d = 41.62 in2$
Section modulus;	$S_x = N \times b \times d^2 / 6 = 64.17 \text{ in}^3$

Made by: RAH & KDH	Date: 2023-02-23	Job No. 22-15
Revision:	Date:	Sheet No. 10
Project Name: ITAP Lee's Summit		

	$S_y = d \times (N \times b)^2 / 6 = 31.22 \text{ in}^3$	
Second moment of area;	$I_x = N \times b \times d^3 / 12 = 296.79 \text{ in}^4$	
	$I_y = d \times (N \times b)^3 / 12 = 70.24 \text{ in}^4$	
Adjustment factors		
Load duration factor - Table 2.3.2:	C _D = 1.00	
Temperature factor - Table 2.3.3:	Ct = 1.00	
Size factor for bending - Table 4A;	C _{Fb} = 1.10	
Size factor for tension - Table 4A:	C _{Ft} = 1.10	
Size factor for compression - Table 4A:	C _{Fc} = 1.00	
Flat use factor - Table 4A;	C _{fu} = 1.20	
Incising factor for modulus of elasticity - Table 4.3.8		
5	C _{iE} = 1.00	
Incising factor for bending, shear, tension & compre	ession - Table 4.3.8	
	C _i = 1.00	
Incising factor for perpendicular compression - Tabl	e 4.3.8	
	C _{ic_perp} = 1.00	
Repetitive member factor - cl.4.3.9;	Cr = 1.15	
Bearing area factor - cl.3.10.4;	C _b = 1.00	
Depth-to-breadth ratio;	$d_{nom} / (N \times b_{nom}) = 1.67$	
- Beam is fully restrained		
Beam stability factor - cl.3.3.3;	C _L = 1.00	
Bearing perpendicular to grain - cl 3 10 2		
Design compression perpendicular to grain:	$F_{a norm}' = F_{a norm} \times C_{t} \times C_{ia norm} \times C_{t} = 425 \text{ lb/in}^2$	
Applied compression stress perpendicular to grain;	$f_{\text{a source}} = B_{\text{a source}} / (N \times h \times l_{\text{b}}) = 79 \text{ lb/in}^2$	
Applied compression sitess perpendicular to grain,	$f_{c_{1}} = 0.186$	
PASS - Des	ign compressive stress exceeds applied compressive stress at bearing	
r Add - Design compressive suess exceeds appried compressive suess at bearing		
Strength in bending - cl.3.3.1		
Design bending stress;	$F_{b}' = F_{b} \times C_{D} \times C_{t} \times C_{L} \times C_{Fb} \times C_{i} \times C_{r} = 1107 \text{ lb/ln}^{2}$	
Actual bending stress;	$f_b = M / S_x = 1082 \ lb/ln^2$	
	$t_{\rm b} / F_{\rm b}' = 0.977$	
	PASS - Design bending stress exceeds actual bending stress	
Strength in shear parallel to grain - cl.3.4.1		
Design shear stress;	$F_v' = F_v \times C_D \times C_t \times C_i = 135 \text{ lb/in}^2$	
Actual shear stress - eq.3.4-2;	$f_v = 3 \times F / (2 \times A) = 51 \text{ lb/in}^2$	
	f _v / F _v ' = 0.381	
	PASS - Design shear stress exceeds actual shear stress	
Deflection - cl.3.5.1		
Modulus of elasticity for deflection;	$E' = E \times C_{ME} \times C_t \times C_{iE} = \textbf{1400000} \ lb/in^2$	
Design deflection:	$\delta_{adm} = 0.0056 \times L_{s1} = 1.344$ in	
Total deflection:	δ _{b s1} = 1.021 in	
· · · ,	$\delta_{\rm h} {\rm s1} / \delta_{\rm adm} = 0.760$	
	PASS - Total deflection is less than design deflection	
	i Add - i diai deneduon is iess unan design deneduon	