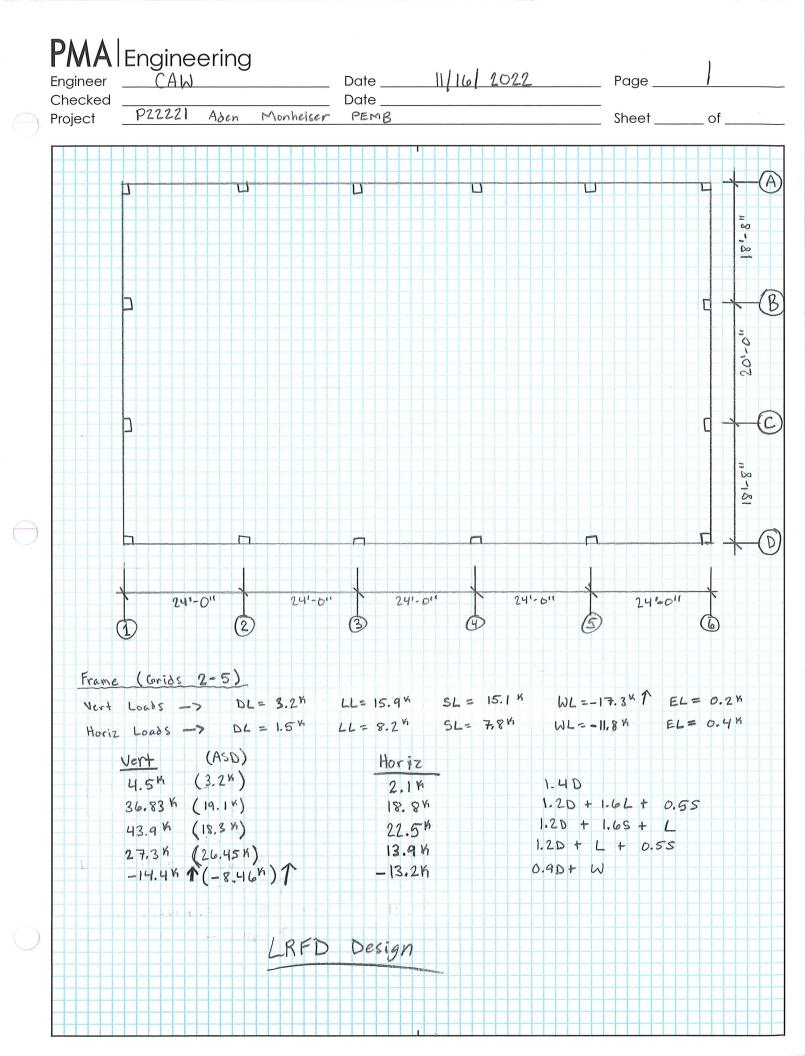
STRUCTURAL DESIGN CALCULATIONS For

M. Aden Monheiser and Jennifer A. Monheiser

Lee's Summit, Missouri Jackson County


> Permit December 2, 2022

David M. McNaghten Professional Engineer MO# 023021

Page McNaghten Associates, Inc. Professional Engineering Corporation Missouri State Certificate of Authority #001400

Pages 1 - 23

	ecked .				Date				Page	
Pro	ject	P222	21 Aden	Monhei	ser PEMB				Sheet	of
	Assume	e Bea	ring Press	ue —7	2,000	PSF				
	Vert	Load	= 26.5		26,500	LB				
		26.5	12 = 13	.25 SF	->	513.25	= 3.6	4'		
		Næð			x 4'-0>"				M4.0	
F	Endvall	Col	<u>s</u>							After LC
	Grid	1 -	Corners	-7	Vertical = Horiz =	0.5%	<u>LL</u> 2.0%	<u>5L</u> 1.9%		-> 5.64" -> 4.25%
			Middle	-7	Vert = Hoviz =	1.4%	6.0 ⁴	5.7%	7.84 - 11.34 -	-> 16.85 -> -10K (-6.784
	Grid	6 -	Corners	>	Vert = Horiz =	0.6 ⁿ	2.6*	2.5%	3.24 - 5.74 -	-> 7,3K
			Middle	-7	Vert = Horiz =	1.2 [%]	6.0 M	5.1 4	9.1 K	> 15.64
			Corners	->	7.34/2 HSF	= 3.6	SSF (3.65=	1.911	(-8.28 K)
					Need 2'x 2					
			Middle		6.18* 1 2×5F ced 3' × 3				= 2.91	
	Check	Uplift	Loa'ds							
	Uplift	δŅ	grids 2	-5 -	> 14.4*	= 14	,400 LE			
	M 5	j.o = ;	5' x 3' x 2	5' =	62,5ft ³	Cone	rete = 15	O pef		
		150 × 60	937	516						
	Grad	e Be	am = 3	2.51 × 1.	51 =	3.75f+2		150 x	3.75= 5	562.5 plf
<i>y</i>	٢	Veed	502516	more .	-7 50	025/562	.5 =	8.91		

Engineer	Engineering cAW	_ Date	Page <u>3</u>
Checked		_ Date	
Project	P222221 Aden Monheiser	PEMB	Sheet of
Uplif.	t on corners -7 3650 LB	4.1n - 0.9(0.5) = 3.65h	
	M3.0= 3'×3'× 2.5'=	22.5 ft 3 × 150 pcf = 337516	
	Uplif is OK	(From grade beam)	
Up left	on ends in middle	-7 8.1" $-0.9(1.2) = 7.0$	() = -4.101 %
	7000 LB		
	$M3.0 = 22.5 ft^3 x$	150 pcf = 3375 16	
	Grade Beam = 562.5 plf		
	7000-3375 = 362516	1562.5 = 6.41 needed < 18-	e" Avail.
	Upliff is OK		
<u>Check</u> Max	FTG Top Steel for the rc1uireb grade beam length 14.4%		
	required grade beam length	-> 8.9'	
	required grade beam length	-> 8.91 Top Steel Critical Section	
Max .	- 14.4K	-> 8.9'	
Max .	rc1uireb grade beam length	-> 8.91 Top Steel Critical Section	
Max T Pu Qu	$= 14.4\%$ $= \frac{14.4\%}{25.6t^2} = 576 \text{ psf}$	-> 8.9' Top Steel Critical Section	
Max T Pu Qu	$= 14.4\%$ $= \frac{14.4\%}{25.6t^2} = 576 \text{ psf}$	-> 8.9' Top Steel Critical Section	
Max T Pu Qu Mu	- 14.4K	-> 8.9' Top Steel Critical Section	

PMA Engineering

	Date	Page4
	Date	
Project		Sheet of
M. ØN 2.89.57 2.80	$A = 2.89 \text{ H-ft} \qquad a = \frac{A_{s} (60 \text{ ksi})}{6.85 (4.5)(5')} = 0.26 \text{ As}$ $In = \emptyset A_{s} fy (d - \frac{a}{2})$ $Ft \leq \emptyset A_{s} fy (d - \frac{0.26A_{s}}{2}) \qquad Try A_{smin} = .0018 (5')(d - \frac{0.26A_{s}}{2}) \qquad = \frac{3.24 \text{ in}^{2}}{3.24 \text{ in}^{2}}$ $I \leq 0.9 (3.24) (60) (27'' - \frac{0.26 (3.24)}{2})$ $89 \leq 387.5 \text{ H-ft} \qquad Use (11) \# 5 \text{ bars Eq.}$	^{1/2 in} (30 in) F+ (30 in) Space c
	$\#S = 0.51 \text{ in}^2 \times 11 = 3.41 \text{ i}$	
Only	Using the (2) #5's from grade beam $\longrightarrow A_5 = 0.621$	n ²
- Use	(5) #8's for constructability	
\bigcirc		

PMA	Engineering			5
Engineer	CAW	Date	 _ Page	\mathbf{J}
Checked		Date	_	
Project		λ	_ Sheet	of
Check	: Sliding on Foundat	ions		

From	1BC 2018	Table	1806.2	>	2,000	PSF BU	earing,	150psf: Late	ral,
					0.25	coefficie.	nt of	friction	
Will	hair pin ties	work?	Ч	slab	= 50	psf ×	0.25	= 12.5 psf	+
A	vailable slab =	24'-0"	× 28	1_811 =	= 68	88 ft ^z x	12.5 =	860016 or	8.6 K

Will need thickened slab with lateral ties.

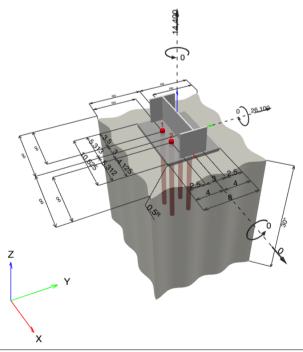
For end columns on grids 1 & 6 -> Horiz Force = 8.3K

Calculate As required to resist stasing -> 1.2(1.5) + 1.6(7.8) + 8.2 = 22.5 W

 $F = Asfy \qquad 22.5^{11} = pA_s (60 \text{ ksi}) -7 \text{ As} = 0.417 \text{ in}^2 / 2 \text{ bars}$ $= 0.2093^{2} \text{ in}^2 (reg'd \text{ per bar})$

Use (2) #5's as ties

e: 1
cifier:
ail:
e: 11/18/2022
be

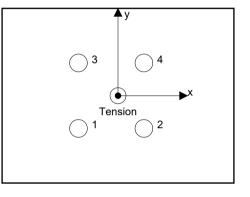

Specifier's comments:

1 Input data

Anchor type and diameter:	Hex Head ASTM F 1554 GR. 55 3/4
Item number:	not available
Effective embedment depth:	h _{ef} = 14.000 in.
Material:	ASTM F 1554
Evaluation Service Report:	Hilti Technical Data
Issued I Valid:	- -
Proof:	Design Method ACI 318-19 / CIP
Stand-off installation:	e _b = 0.000 in. (no stand-off); t = 0.500 in.
Anchor plate ^R :	$I_x \times I_y \times t = 10.625$ in. x 8.000 in. x 0.500 in.; (Recommended plate thickness: not calculated)
Profile:	W shape (AISC), W10X15; (L x W x T x FT) = 9.990 in. x 4.000 in. x 0.230 in. x 0.270 in.
Base material:	cracked concrete, 4000, f_{c} = 4,000 psi; h = 30.000 in.
Reinforcement:	tension: not present, shear: not present;
	edge reinforcement: none or < No. 4 bar

 $^{\rm R}$ - The anchor calculation is based on a rigid anchor plate assumption.

Geometry [in.] & Loading [lb, in.lb]



www.hilti.com				
Company:		Page:		2
Address:		Specifier:		
Phone I Fax:		E-Mail:		
Design:	Concrete - Nov 18, 2022	Date:		11/18/2022
Fastening point:				
1.1 Design results				
Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	N = 14,400; V _x = 0; V _y = 26,100;	no	75

 $M_x = 0; M_y = 0; M_z = 0;$

2 Load case/Resulting anchor forces

Anchor reactions [Ib] Tension force: (+Tension, -Compression)					
Anchor	Tension force	Shear force	Shear force x	Shear force y	
1	2,849	5,884	681	5,844	
2	4,351	7,238	681	7,206	
3	2,849	5,884	-681	5,844	
4	4,351	7,238	-681	7,206	
max. concrete compressive strain:- [‰]max. concrete compressive stress:- [psi]resulting tension force in $(x/y)=(0.000/0.000)$:14,400 [lb]resulting compression force in $(x/y)=(0.000/0.000)$:0 [lb]					

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

	Load N _{ua} [lb]	Capacity ¢ N _n [lb]	Utilization $\beta_N = N_{ua} / \Phi N_n$	Status
Steel Strength*	4,351	18,787	24	OK
Pullout Strength*	4,351	14,650	30	OK
Concrete Breakout Failure**	14,400	65,157	23	OK
Concrete Side-Face Blowout, direction **	N/A	N/A	N/A	N/A

* highest loaded anchor **anchor group (anchors in tension)

www.hilti.com

Company:		Page:	3
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design: Fastening point:	Concrete - Nov 18, 2022	Date:	11/18/2022

3.1 Steel Strength

N _{sa} = A _{se,N} f _{uta}	ACI 318-19 Eq. (17.6.1.2)
∮ N _{sa} ≥ N _{ua}	ACI 318-19 Table 17.5.2

Variables

A _{se,N} [in. ²]	f _{uta} [psi]
0.33	75,000

Calculations

N_{sa} [lb] 25,050

Results

N _{sa} [lb]	φ _{steel}	φ N _{sa} [lb]	N _{ua} [lb]
25,050	0.750	18,787	4,351

3.2 Pullout Strength

$N_{pN} = \Psi_{c,p} N_{p}$	ACI 318-19 Eq. (17.6.3.1)
$N_p = 8 A_{brg} f_c$	ACI 318-19 Eq. (17.6.3.2.2a)
∮ N _{pN} ≥ N _{ua}	ACI 318-19 Table 17.5.2

Variables

$\Psi_{c,p}$	A _{brg} [in. ²]	λ_{a}	f _c [psi]
1.000	0.65	1.000	4,000
Calculations			
N _p [lb]			
20,928			
Results			
N _{pn} [lb]	ϕ_{concrete}	φ N _{pn} [lb]	N _{ua} [lb]
20,928	0.700	14,650	4,351

www.hilti.com

Company:		Page:	4
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Nov 18, 2022	Date:	11/18/2022
Fastening point:			

3.3 Concrete Breakout Failure

$N_{cbg} = \left(\frac{A_{Nc}}{A_{Nc}}\right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b}$	ACI 318-19 Eq. (17.6.2.1b)
$\phi \ N_{cbg} \ge N_{ua}$ A _{Nc} see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b)	ACI 318-19 Table 17.5.2
A_{Nc} see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b) A_{Nc0} = 9 h_{ef}^2	ACI 318-19 Eq. (17.6.2.1.4)
$\psi_{\text{ec,N}} = \left(\frac{\frac{1}{1+\frac{2 e_{N}}{3 h_{\text{ef}}}}\right) \leq 1.0$	ACI 318-19 Eq. (17.6.2.3.1)
$\Psi_{\text{ed,N}}$ = 0.7 + 0.3 $\left(\frac{c_{a,\text{min}}}{1.5h_{\text{ef}}}\right) \leq 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\Psi_{\text{cp,N}} = \text{MAX}\left(\frac{c_{a,\text{min}}}{c_{ac}}, \frac{1.5h_{\text{ef}}}{c_{ac}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.6.1b)
$N_{\rm b} = 16 \lambda_{\rm a} \sqrt{f_{\rm c}} h_{\rm ef}^{5/3}$	ACI 318-19 Eq. (17.6.2.2.3)

Variables

-

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\Psi_{\text{ec1,N}}$	$\psi_{ec2,N}$	$\psi_{\text{ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
2,025.00	1,764.00	0.985	1.000	1.000	1.000	82,293
Results						
N _{cbg} [lb]	ϕ_{concrete}	φ N _{cbg} [lb]	N _{ua} [lb]			
93,082	0.700	65,157	14,400	-		

www.hilti.com

Company: Address:		Page: Specifier:	5
Phone I Fax:		E-Mail:	
Design: Fastening point:	Concrete - Nov 18, 2022	Date:	11/18/2022

4 Shear load

	Load V _{ua} [lb]	Capacity ଦ V _n [lb]	Utilization $\beta_{\rm V} = V_{\rm ua} / \Phi V_{\rm n}$	Status
Steel Strength*	7,238	9,769	75	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	26,100	130,314	21	OK
Concrete edge failure in direction **	N/A	N/A	N/A	N/A

* highest loaded anchor **anchor group (relevant anchors)

4.1 Steel Strength

V_{sa}	= 0.6 A _{se.V} f _{uta}	ACI 318-19 Eq. (17.7.1.2b)
φ V _{ste}	$e_{l} \ge V_{ua}$	ACI 318-19 Table 17.5.2

Variables

A _{se,V} [in. ²]	f _{uta} [psi]	_
0.33	75,000	
Calculations		
V _{sa} [lb]		
15,030		

Results

V _{sa} [lb]	ϕ_{steel}	♦ V _{sa} [lb]	V _{ua} [lb]
15,030	0.650	9,769	7,238

www.hilti.com

Company:		Page:	6
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Nov 18, 2022	Date:	11/18/2022
Fastening point:			

4.2 Pryout Strength

$V_{cpg} = K_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b} \right]$	ACI 318-19 Eq. (17.7.3.1b)
$\phi V_{cpg} \ge V_{ua}$	ACI 318-19 Table 17.5.2
A _{Nc} see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b)	
$A_{\rm Nc0}$ = 9 $h_{\rm ef}^2$	ACI 318-19 Eq. (17.6.2.1.4)
$\Psi_{ec,N} = \left(\frac{1}{1 + \frac{2 e_N}{3 h_{ef}}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.3.1)
$\Psi_{ed,N} = 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\begin{split} \psi_{\text{cp,N}} &= \text{MAX} \left(\frac{c_{a,\text{min}}}{c_{ac}}, \frac{1.5h_{\text{ef}}}{c_{ac}} \right) \leq 1.0 \\ N_{\text{b}} &= 16 \lambda_{a} \sqrt{f_{c}} h_{\text{ef}}^{5/3} \end{split}$	ACI 318-19 Eq. (17.6.2.6.1b)
$N_{\rm b} = 16 \lambda_{\rm a} \sqrt{f_{\rm c}} h_{\rm ef}^{5/3}$	ACI 318-19 Eq. (17.6.2.2.3)

Variables

k _{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	
2	14.000	0.313	0.000	~	
$\psi_{c,N}$	c _{ac} [in.]	k _c	λ_{a}	f _c [psi]	
1.000	∞	16	1.000	4,000	

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\psi_{\text{ ec1,N}}$	$\Psi_{ec2,N}$	$\psi_{\text{ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
2,025.00	1,764.00	0.985	1.000	1.000	1.000	82,293
Results						
V _{cpg} [lb]	ф _{concrete}	φ V _{cpg} [lb]	V _{ua} [lb]			
186,163	0.700	130,314	26,100			

5 Combined tension and shear loads, per ACI 318-19 section 17.8

β_N	β_V	ζ	Utilization $\beta_{N,V}$ [%]	Status
0.297	0.741	5/3	74	OK

 $\beta_{\mathsf{NV}} = \beta_{\mathsf{N}}^{\zeta} + \beta_{\mathsf{V}}^{\zeta} <= 1$

www.hilti.com			
Company:		Page:	7
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Nov 18, 2022	Date:	11/18/2022
Fastening point:			

6 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/

Fastening meets the design criteria!

Company:		Page:	8
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Nov 18, 2022	Date:	11/18/2022
Fastening point:			
7 Installation da	ata		
		Anchor type and diameter: Hex He	ead ASTM F 1554 GR.
		55 3/4	
Profile: W shape (AISC), W10X15; (L x W x T x FT) = 9.990 in. x 4.000 in. x		Item number: not available	
0.230 in. x 0.270 in.			

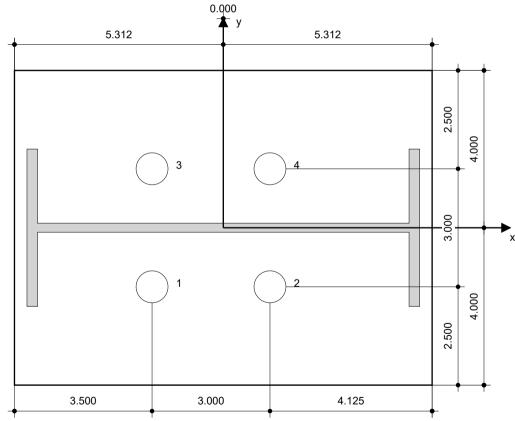

Hole diameter in the fixture: $d_f = 0.812$ in.

Plate thickness (input): 0.500 in.

Recommended plate thickness: not calculated

Item number: not available Maximum installation torque: -Hole diameter in the base material: - in. Hole depth in the base material: 14.000 in. Minimum thickness of the base material: 15.000 in.

Hilti Hex Head headed stud anchor with 14 in embedment, 3/4, Steel galvanized, installation per instruction for use

Coordinates Anchor [in.]

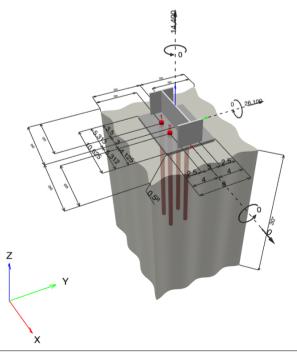
Anchor	х	У	с _{-х}	C+x	с _{-у}	с _{+у}
1	-1.813	-1.500	-	-	-	-
2	1.187	-1.500	-	-	-	-
3	-1.813	1.500	-	-	-	-
4	1.187	1.500	-	-	-	-

www.hilti.com			
Company:		Page:	9
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Nov 18, 2022	Date:	11/18/2022
Fastening point:			

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

www.hilti.com			
Company:		Page:	1
Address:		Specifier:	
Phone I Fax:		E-Mail.	
Design:	Concrete - Nov 18, 2022	Date:	11/18/2022
Fastening point:			

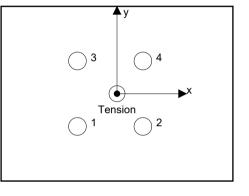

Specifier's comments:

1 Input data

Anchor type and diameter:	Hex Head ASTM F 1554 GR. 55 3/4
Item number:	not available
Effective embedment depth:	h _{ef} = 20.000 in.
Material:	ASTM F 1554
Evaluation Service Report:	Hilti Technical Data
Issued I Valid:	- -
Proof:	Design Method ACI 318-19 / CIP
Stand-off installation:	e _b = 0.000 in. (no stand-off); t = 0.500 in.
Anchor plate ^R :	$l_x \ge l_y \ge 10.625$ in. ≥ 8.000 in. ≥ 0.500 in.; (Recommended plate thickness: not calculated)
Profile:	W shape (AISC), W10X15; (L x W x T x FT) = 9.990 in. x 4.000 in. x 0.230 in. x 0.270 in.
Base material:	cracked concrete, 4000, f _c ' = 4,000 psi; h = 30.000 in.
Reinforcement:	tension: not present, shear: not present;
	edge reinforcement: none or < No. 4 bar

 $^{\rm R}$ - The anchor calculation is based on a rigid anchor plate assumption.

Geometry [in.] & Loading [lb, in.lb]



www.hilti.com				
Company:		Page:		2
Address:		Specifier:		
Phone I Fax:		E-Mail:		
Design:	Concrete - Nov 18, 2022	Date:		11/18/2022
Fastening point:				
1.1 Design results				
Case	Description	Forces [lb] / Moments [in.lb]	Seismic	Max. Util. Anchor [%]
1	Combination 1	N = 14,400; $V_x = 0$; $V_y = 26,100$;	no	75

 $M_x = 0; M_y = 0; M_z = 0;$

2 Load case/Resulting anchor forces

Anchor reactions [Ib] Tension force: (+Tension, -Compression)					
Anchor	Tension force	Shear force	Shear force x	Shear force y	
1	2,849	5,884	681	5,844	
2	4,351	7,238	681	7,206	
3	2,849	5,884	-681	5,844	
4	4,351	7,238	-681	7,206	
max. concrete compressive strain:- [‰]max. concrete compressive stress:- [psi]resulting tension force in $(x/y)=(0.000/0.000)$:14,400 [lb]resulting compression force in $(x/y)=(0.000/0.000)$:0 [lb]					

Anchor forces are calculated based on the assumption of a rigid anchor plate.

3 Tension load

	Load N _{ua} [lb]	Capacity ¢ N _n [lb]	Utilization $\beta_N = N_{ua} / \Phi N_n$	Status
Steel Strength*	4,351	18,787	24	OK
Pullout Strength*	4,351	14,650	30	OK
Concrete Breakout Failure**	14,400	113,894	13	OK
Concrete Side-Face Blowout, direction **	N/A	N/A	N/A	N/A

* highest loaded anchor **anchor group (anchors in tension)

www.hilti.com

Company:		Page:	3
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design: Fastening point:	Concrete - Nov 18, 2022	Date:	11/18/2022

3.1 Steel Strength

N _{sa} = A _{se,N} f _{uta}	ACI 318-19 Eq. (17.6.1.2)
∮ N _{sa} ≥ N _{ua}	ACI 318-19 Table 17.5.2

Variables

A _{se,N} [in. ²]	f _{uta} [psi]
0.33	75,000

Calculations

N_{sa} [lb] 25,050

Results

N _{sa} [lb]	φ _{steel}	φ N _{sa} [lb]	N _{ua} [lb]
25,050	0.750	18,787	4,351

3.2 Pullout Strength

$N_{pN} = \Psi_{c,p} N_{p}$	ACI 318-19 Eq. (17.6.3.1)
$N_p = 8 A_{brg} f_c$	ACI 318-19 Eq. (17.6.3.2.2a)
∮ N _{pN} ≥ N _{ua}	ACI 318-19 Table 17.5.2

Variables

$\Psi_{c,p}$	A _{brg} [in. ²]	λ_{a}	f _c [psi]
1.000	0.65	1.000	4,000
Calculations			
N _p [lb]			
20,928			
Results			
N _{pn} [lb]	ϕ_{concrete}	φ N _{pn} [lb]	N _{ua} [lb]
20,928	0.700	14,650	4,351

www.hilti.com

Company:		Page:	4
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Nov 18, 2022	Date:	11/18/2022
Fastening point:			

3.3 Concrete Breakout Failure

$N_{cbg} = \left(\frac{A_{Nc}}{A_{Nc}}\right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b}$	ACI 318-19 Eq. (17.6.2.1b)
$\phi \ N_{cbg} \ge N_{ua}$ A _{Nc} see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b)	ACI 318-19 Table 17.5.2
A_{Nc} see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b) A_{Nc0} = 9 h_{ef}^2	ACI 318-19 Eq. (17.6.2.1.4)
$\psi_{\text{ec,N}} = \left(\frac{\frac{1}{1+\frac{2 e_{N}}{3 h_{\text{ef}}}}\right) \leq 1.0$	ACI 318-19 Eq. (17.6.2.3.1)
$\Psi_{\text{ed,N}}$ = 0.7 + 0.3 $\left(\frac{c_{a,\text{min}}}{1.5h_{\text{ef}}}\right) \leq 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\Psi_{\text{cp,N}} = \text{MAX}\left(\frac{c_{a,\text{min}}}{c_{ac}}, \frac{1.5h_{\text{ef}}}{c_{ac}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.6.1b)
$N_{\rm b} = 16 \lambda_{\rm a} \sqrt{f_{\rm c}} h_{\rm ef}^{5/3}$	ACI 318-19 Eq. (17.6.2.2.3)

Variables

h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]	$\Psi_{\text{c,N}}$
20.000	0.313	0.000	~	1.000
c _{ac} [in.]	k _c	λ _a	f _c [psi]	
-	16	1.000	4,000	

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\Psi_{\text{ec1,N}}$	$\Psi_{ec2,N}$	$\psi_{\text{ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
3,969.00	3,600.00	0.990	1.000	1.000	1.000	149,119
Results						
N _{cbg} [lb]	ϕ_{concrete}	φ N _{cbg} [lb]	N _{ua} [lb]			
162,706	0.700	113,894	14,400	-		

www.hilti.com

Company: Address:		Page: Specifier:	5
Phone I Fax:		E-Mail:	
Design: Fastening point:	Concrete - Nov 18, 2022	Date:	11/18/2022

4 Shear load

	Load V _{ua} [lb]	Capacity ଦ V _n [lb]	Utilization $\beta_{\rm V} = V_{\rm ua} / \Phi V_{\rm n}$	Status
Steel Strength*	7,238	9,769	75	OK
Steel failure (with lever arm)*	N/A	N/A	N/A	N/A
Pryout Strength**	26,100	227,789	12	OK
Concrete edge failure in direction **	N/A	N/A	N/A	N/A

* highest loaded anchor **anchor group (relevant anchors)

4.1 Steel Strength

V_{sa}	= 0.6 A _{se.V} f _{uta}	ACI 318-19 Eq. (17.7.1.2b)
	$ V_{ua} \ge V_{ua}$	ACI 318-19 Table 17.5.2

Variables

A _{se,V} [in. ²]	f _{uta} [psi]	_
0.33	75,000	
Calculations		
V _{sa} [lb]	_	
15,030	-	

Results

V _{sa} [lb]	ϕ_{steel}	♦ V _{sa} [lb]	V _{ua} [lb]
15,030	0.650	9,769	7,238

www.hilti.com

Company:		Page:	6
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Nov 18, 2022	Date:	11/18/2022
Fastening point:			

4.2 Pryout Strength

$V_{cpg} = K_{cp} \left[\left(\frac{A_{Nc}}{A_{Nc0}} \right) \psi_{ec,N} \psi_{ed,N} \psi_{c,N} \psi_{cp,N} N_{b} \right]$	ACI 318-19 Eq. (17.7.3.1b)
$\phi V_{cpg} \ge V_{ua}$	ACI 318-19 Table 17.5.2
A _{Nc} see ACI 318-19, Section 17.6.2.1, Fig. R 17.6.2.1(b)	
$A_{\rm Nc0} = 9 h_{\rm ef}^2$	ACI 318-19 Eq. (17.6.2.1.4)
$\Psi_{ec,N} = \left(\frac{1}{1 + \frac{2 e_N}{3 h_{ef}}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.3.1)
$\Psi_{ed,N} = 0.7 + 0.3 \left(\frac{c_{a,min}}{1.5h_{ef}} \right) \le 1.0$	ACI 318-19 Eq. (17.6.2.4.1b)
$\Psi_{\text{cp,N}} = \text{MAX}\left(\frac{c_{a,\text{min}}}{c_{ac}}, \frac{1.5h_{\text{ef}}}{c_{ac}}\right) \le 1.0$	ACI 318-19 Eq. (17.6.2.6.1b)
$N_{\rm b} = 16 \lambda_{\rm a} \sqrt{\dot{f_{\rm c}}} h_{\rm ef}^{5/3}$	ACI 318-19 Eq. (17.6.2.2.3)

Variables

k _{cp}	h _{ef} [in.]	e _{c1,N} [in.]	e _{c2,N} [in.]	c _{a,min} [in.]
2	20.000	0.313	0.000	~
$\Psi_{c,N}$	c _{ac} [in.]	k _c	λ _a	f _c [psi]
1.000	ø	16	1.000	4,000

Calculations

A _{Nc} [in. ²]	A _{Nc0} [in. ²]	$\Psi_{\text{ec1,N}}$	$\Psi_{ec2,N}$	$\psi_{\text{ed},\text{N}}$	$\psi_{\text{cp},\text{N}}$	N _b [lb]
3,969.00	3,600.00	0.990	1.000	1.000	1.000	149,119
Results						
V _{cpg} [lb]	ϕ_{concrete}	φ V _{cpg} [lb]	V _{ua} [lb]			
325,412	0.700	227,789	26,100	-		

5 Combined tension and shear loads, per ACI 318-19 section 17.8

β_N	β_V	ζ	Utilization $\beta_{N,V}$ [%]	Status	
 0.297	0.741	5/3	74	OK	

 $\beta_{\mathsf{NV}} = \beta_{\mathsf{N}}^{\zeta} + \beta_{\mathsf{V}}^{\zeta} <= 1$

www.hilti.com			
Company:		Page:	7
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Nov 18, 2022	Date:	11/18/2022
Fastening point:			

6 Warnings

- The anchor design methods in PROFIS Engineering require rigid anchor plates per current regulations (AS 5216:2021, ETAG 001/Annex C, EOTA TR029 etc.). This means load re-distribution on the anchors due to elastic deformations of the anchor plate are not considered the anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the design loading. PROFIS Engineering calculates the minimum required anchor plate thickness with CBFEM to limit the stress of the anchor plate based on the assumptions explained above. The proof if the rigid anchor plate assumption is valid is not carried out by PROFIS Engineering. Input data and results must be checked for agreement with the existing conditions and for plausibility!
- Condition A applies where the potential concrete failure surfaces are crossed by supplementary reinforcement proportioned to tie the potential concrete failure prism into the structural member. Condition B applies where such supplementary reinforcement is not provided, or where pullout or pryout strength governs.
- For additional information about ACI 318 strength design provisions, please go to https://submittals.us.hilti.com/PROFISAnchorDesignGuide/

Fastening meets the design criteria!

Company:		Page:	8	
Address:		Specifier:		
Phone I Fax:		E-Mail:		
Design: Fastening point:	Concrete - Nov 18, 2022	Date:	11/18/2022	
7 Installation da	ata			
		Anchor type and diameter: Hex Head ASTM F 1554 GR.		
		55 3/4		
Profile: W shape (AISC), W10X15; (L x W x T x FT) = 9.990 in. x 4.000 in. x		Item number: not available		
0.230 in. x 0.270 in.				

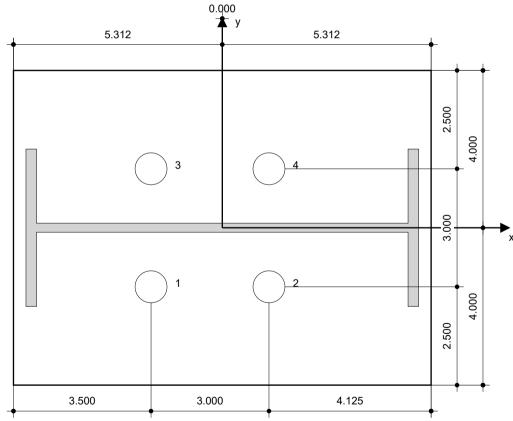

Hole diameter in the fixture: $d_f = 0.812$ in.

Plate thickness (input): 0.500 in.

Recommended plate thickness: not calculated

55 3/4 Item number: not available Maximum installation torque: -Hole diameter in the base material: - in. Hole depth in the base material: 20.000 in. Minimum thickness of the base material: 21.000 in.

Hilti Hex Head headed stud anchor with 20 in embedment, 3/4, Steel galvanized, installation per instruction for use

Coordinates Anchor [in.]

Anchor	х	У	с _{-х}	c _{+x}	с _{-у}	c _{+y}
1	-1.813	-1.500	-	-	-	-
2	1.187	-1.500	-	-	-	-
3	-1.813	1.500	-	-	-	-
4	1.187	1.500	-	-	-	-

www.hilti.com			
Company:		Page:	9
Address:		Specifier:	
Phone I Fax:		E-Mail:	
Design:	Concrete - Nov 18, 2022	Date:	11/18/2022
Fastening point:			

8 Remarks; Your Cooperation Duties

- Any and all information and data contained in the Software concern solely the use of Hilti products and are based on the principles, formulas and security regulations in accordance with Hilti's technical directions and operating, mounting and assembly instructions, etc., that must be strictly complied with by the user. All figures contained therein are average figures, and therefore use-specific tests are to be conducted prior to using the relevant Hilti product. The results of the calculations carried out by means of the Software are based essentially on the data you put in. Therefore, you bear the sole responsibility for the absence of errors, the completeness and the relevance of the data to be put in by you. Moreover, you bear sole responsibility for having the results of the calculation checked and cleared by an expert, particularly with regard to compliance with applicable norms and permits, prior to using them for your specific facility. The Software serves only as an aid to interpret norms and permits without any guarantee as to the absence of errors, the correctness and the relevance of the results or suitability for a specific application.
- You must take all necessary and reasonable steps to prevent or limit damage caused by the Software. In particular, you must arrange for the
 regular backup of programs and data and, if applicable, carry out the updates of the Software offered by Hilti on a regular basis. If you do not use
 the AutoUpdate function of the Software, you must ensure that you are using the current and thus up-to-date version of the Software in each
 case by carrying out manual updates via the Hilti Website. Hilti will not be liable for consequences, such as the recovery of lost or damaged data
 or programs, arising from a culpable breach of duty by you.

Appendix to

STRUCTURAL DESIGN CALCULATIONS For

M. Aden Monheiser and Jennifer A. Monheiser

Lee's Summit, Missouri Jackson County

	Conte: CULTERAL LOCUM LOOD CASE ABBREVATIONS: ****** Conte: CULTERAL LOCUM LOOD CASE ABBREVATIONS: ****** Read Primed Primed Primed Prime Prime Prime Prime Prime Med Primed Primed Primed Primed Prime Prime LETP/Right Senal Lie Longertingung, windo Primed Primed Primed Primed Senal Lie Longertingung, windo Primed Primed Senal Lie Longertingung, windo Primed Primed Primed Senal Lie Longertingung, Station With Windo Primed EFL/Right Environ Lie Primed Lie Disconsistion With Windo Primed EFL/Right Environ Lie Primed Lie Primed Lie Primed P	FROM THE BRACED BAY AND THE VERTICAL REACTION (V) ACTING DOWNWARD.	 GENERAL NOTES ALL LOORS OF DIFFORMER E EXAMINED. THE WAYNWA WO WINNWA HOREDONTAL (M) RECTORS (M: REPORTED. (M) REACTINGS (M: REPORTED. (M) REACTINGS (M: REPORTED. (M) REACTINGS (M: REPORTED. (M) REPORTED. (M) REPORTED. (M) REPORTED. (M) REPORTED (M) RE	I 0 4 0.750 8.000 8.250 0.375 0.0 6 0 4 0.750 8.000 8.250 0.375 0.0 6 C 4 0.750 8.000 8.250 0.375 0.0 6 A 4.750 8.000 8.250 0.375 0.0 6 A 4.0750 8.000 8.250 0.375 0.0 6 A 4.0750 8.000 8.250 0.375 0.0	Average A	SID FRAME: ANCHOR BC		FRAME LINES: 2 3 4 5
			Lee Tune Line Horz West Horz West Wind See Ave E. W J AB 6.5 4.3 1.1 0.8 () B. W A 4.3 6.5 4.3 1.1 0.8 () ()Bracing in real to rigid frame	0.0 0.0 0.0 5.1 0.0 1.1 0.0 0.0 0.0 2.5 0.0 1.0 0 BRACING REACTIONS ↓ Breactiona(k.). Pronet_Steer	Image Collect Line Store Line Regin to the store Line	Same Same <th< td=""><td>Frome lines: 2.3.4.5 VALL COLUMN: BASIC COLUMN REA VAL Vert Vert Vert Line Vert Vert Vert B 1.4. 0.3. 1.7. 1.0 B 1.4. 0.3. 1.7. 1.0</td><td>Rigit Frame Column Frame Col</td></th<>	Frome lines: 2.3.4.5 VALL COLUMN: BASIC COLUMN REA VAL Vert Vert Vert Line Vert Vert Vert B 1.4. 0.3. 1.7. 1.0 B 1.4. 0.3. 1.7. 1.0	Rigit Frame Column Frame Col
The seal proteins of the the resolute approximate space in the second se	МЕ 26 созто МЕ 108 м0	MER NAME TRO DUMPSTER EE'S SUMMIT, MO 6	0, LEE'S SUMMIT, MO 6 4082	4082	TOPLINE STEE 13323 SW BURLER ROAD NOSE HILL KS 67133 PHONE (800) 369-3882	E BUILDINGS	ANCHOR BOLTS PERMITS FINALS	DMN CHK PHC PE DATT MISS ARK ARHR TY 10/12/2022 MISS ARK ARHR TY 10/12/2022 CMB MIR ARHR TY 10/12/2022