

September 23, 2022

To:	Blue Raven Solar
	1403 North Research Way, Building
	Orem, UT. 84097

Subject: Certification Letter Darville Residence 1824 SW. Blackstone Pl. Lee's Summit, MO. 64082

To Whom It May Concern,

A jobsite observation of the condition of the existing framing system was performed by an audit team of Blue Raven Solar as a request from Domus Structural Engineering. All review is based on these observations and the design criteria listed below and only deemed valid if provided information is true and accurate.

On the above referenced project, the roof structural framing has been reviewed for additional loading due to the installation of the solar PV addition to the roof. The structural review only applies to the section of the roof that is directly supporting the solar PV system and its supporting elements. The observed roof framing is described below. If field conditions differ, contractor to notify engineer prior to starting construction.

The roof structures of (MP1&2) consist of composition shingle on roof plywood that is supported by 2x6 rafters @ 16"o.c. with ceiling joists acting as rafter ties. The rafters have a max projected horizontal span of 13'-0", with a slope of 43 degrees. The rafters are connected at the ridge to a ridge board and are supported at the eave by a load bearing wall.

The existing roof framing systems of (MP1&2) are judged to be adequate to withstand the loading imposed by the installation of the solar panels. No reinforcement is necessary.

The spacing of the solar standoffs should be kept at 64" o.c. for landscape and 48" o.c. for portrait orientation, with a staggered pattern to ensure proper distribution of loads.

The scope of this report is strictly limited to an evaluation of the fastener attachment, underlying framing and supporting structure only. The attachment's to the existing structure are required to be in a staggered pattern to ensure proper distribution of loading. All panels, racking and hardware shall be installed per manufacturer specifications and within specified design limitations. All waterproofing shall be provided by the manufacturer. Domus Structural Engineering assumes no responsibility for misuse or improper installation of the solar PV panels or racking.

Note: Seismic check is not required since Ss<.4g and Seismic Design Category (SDC) < B

Design Criteria:

- Applicable Codes = 2018 IBC/IRC, ASCE 7-16
- Roof Dead Load = 8 psf (MP1&2)
- Roof Live Load = 20 psf
- Wind Speed = 115 mph (Vult), Exposure C
- Ground Snow Load = 20 psf Roof Snow Load = 14 psf
- Attachment: 1 5/16 dia. lag screw with 2.5 inch min. embedment depth, at spacing shown above.

Please contact me with any further questions or concerns regarding this project.

Sincerely,

Digitally signed by John A. Calvert Date: 2022.09.23 16:30:40 -06'00'

John Calvert, P.E. Project Engineer Domus

STRUCTURAL

ENGINEERING, LLC

Domus Structural Engineering, LLC P.O. Box 6986 Broomfield, CO 80021 530-864-7055 Domusstructural@gmail.com

Gravity Loading

Roof Snow Load Calculations		
p _g = Ground Snow Load =	20 psf	_
$p_f = 0.7 C_e C_t I p_g$		(ASCE7 - Eq 7-1)
C_e = Exposure Factor =	1	(ASCE7 - Table 7-2)
C _t = Thermal Factor =	1	(ASCE7 - Table 7-3)
I = Importance Factor =	1	
p _f = Flat Roof Snow Load =	14.0 psf	
$p_s = C_s p_f$		(ASCE7 - Eq 7-2)
Cs = Slope Factor =	1	
p _s = Sloped Roof Snow Load =	14.0 psf	

PV Dead Load = 3 psf (Per Blue Raven Solar)		
DL Adjusted to 43 Degree Slope	4.10 psf	
PV System Weight		
Weight of PV System (Per Blue Raven Solar)	3.0 psf	
X Standoff Spacing =	4.00 ft	
Y Standoff Spacing =	6.08 ft	
Standoff Tributary Area =	24.33 sft	
Point Loads of Standoffs	73 lb	
Note: DV standoffs are staggared to ansure proper distri	bution of looding	

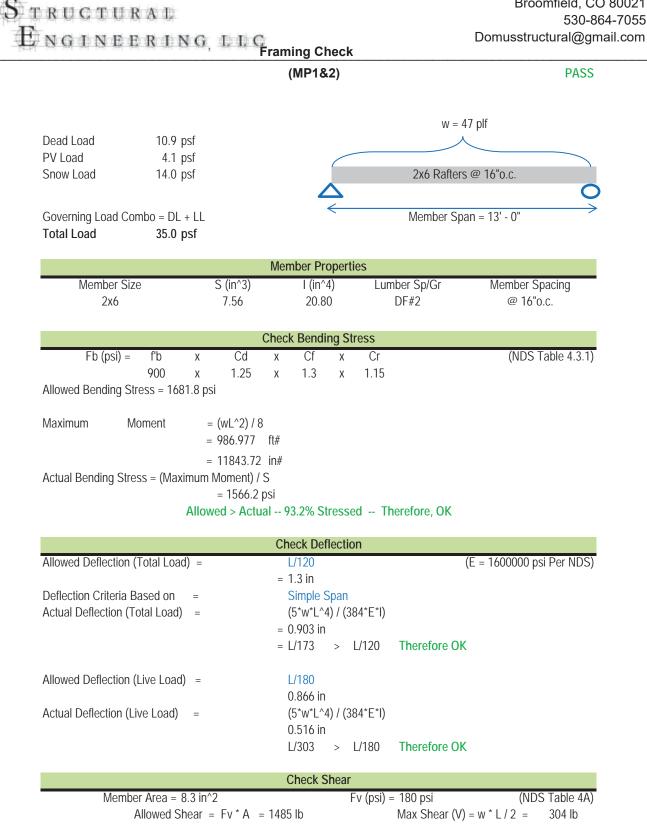
Note: PV standoffs are staggered to ensure proper distribution of loading

Roof Live Load = 20 psf

Note: Roof live load is removed in area's covered by PV array.

Roof Dead Load (MP1&2)		
Composition Shingle	4.00	-
Roof Plywood	2.00	
2x6 Rafters @ 16"o.c.	1.72	
Vaulted Ceiling	0.00	(Ceiling Not Vaulted)
Miscellaneous	0.28	
Total Roof DL (MP1&2)	8.0 psf	
DL Adjusted to 43 Degree Slope	10.9 psf	

Wind Calculations Per ASCE 7-16 Components and Cladding


Input Variable	S				
Wind Speed	115 mph	-			
Exposure Category	С				
Roof Shape	Gable Roof				
Roof Slope	43 degrees				
Mean Roof Height	20 ft				
Effective Wind Area	21.3 ft				
Ground Elevation	0 ft				
Design Wir	d Pressure Calo	culations			
qh = 0.00256 * Kz *	Kzt * Kd * Ke * \	/^2	(Eq. 26.10-1)		
Kz (Expos	ure Coefficient) =	= 0.90	(Table 30.3-1)		
Kzt (topo	graphic factor) =	1.00	(Fig. 26.8-1)		
Kd (Wind Direct	ionality Factor) =	0.85	(Table 26.6-1)		
Ke (Ground El	evation Factor) =	1.00			
V (Desig	gn Wind Speed) =	= 115 mph	(Fig. 26.5-1A)		
	Risk Category =	=	(Table 1.5-1)		
	qh =	25.95			
01					
Stan	doff Uplift Calcu			Dealthas	
, v	Zone 1 0.67	Zone 2 0.77	Zone 3 0.80	Positive 0.67	
y _a = GCp =	-1.41	-1.93	-2.59	0.75	(Fig. 30.3)
Uplift Pressure =	-1.41 -24.6 psf	-1.95 -38.7 psf	-2.39 -53.7 psf	0.75 13.0 psf	(Fig. 30.3) (Eq. 29.4-7)
ASD Uplift Pressure =	-14.8 psf	-23.2 psf	-32.2 psf	9.6 psf	(Eq. 29.4-7)
X Standoff Spacing =	4.00	4.00	2.67	9.0 psi	
Y Standoff Spacing =	6.08	3.04166667	3.04166667		
Tributary Area =	24.33	12.17	8.11		
Dead Load on attachment =	73 lb	37 lb	24 lb		
Footing Uplift (0.6D+0.6W) =	-315 lb	-261 lb	-247 lb		
Stando	off Uplift Calcula	tions-Landsc	ape		
	Zone 1	Zone 2	Zone 3	Positive	-
y _a =	0.71	0.80	0.80	0.71	
GCp =	-1.53	-2.00	-2.70	0.79	(Fig. 30.3)
Uplift Pressure =	-28.1 psf	-41.5 psf	-56.1 psf	14.6 psf	(Eq. 29.4-7)
ASD Uplift Pressure (0.6W)=	-16.9 psf	-24.9 psf	-33.7 psf	9.6 psf	
X Standoff Spacing =	5.33	5.33	3.56		
Y Standoff Spacing =	3.50	1.75	1.75		
Tributary Area =	18.67	9.33	6.22		
Dead Load on attachment =	56.00	28.00	18.67		
Footing Uplift (0.6D+0.6W) =	-281 lb	-216 lb	-198 lb		

Standoff Uplift Check

Maximum Design Uplift = -315 lb

Standoff Uplift Capacity = 450 lb 450 lb capacity > 315 lb demand Therefore, OK

Fastener Capacity Check
Fastener = 1 - 5/16" dia. lag
Number of Fasteners = 1
Embedment Depth = 2.5
Pullout Capacity Per Inch = 250 lb
Fastener Capacity = 625 lb
w/ F.S. of 1.5 & DOL of 1.6= 667 lb
667.2 lb capacity > 315 lb demand Therefore, OK

Domus

Allowed > Actual -- 20.5% Stressed -- Therefore, OK