

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Re: 210567 Boyer Res. - Floors

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Wheeler - Waverly.

Pages or sheets covered by this seal: I48620987 thru I48621002

My license renewal date for the state of Missouri is December 31, 2022.

Missouri COA: Engineering 001193

November 9,2021

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Scale = 1:48.3

Plate Offsets (2	X, Y): [23:0-1-8,Edge], [24:Edge,0-1-8], [4	5:Edge,0	-1-8]									
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 15.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC20 ²	18/TPI2014	CSI TC BC WB Matrix-R	0.07 0.02 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 24	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 101 lb	GRIP 197/144 FT = 5%F, 10%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2(flat) 2x4 SPF No.2(flat) 2x4 SPF No.2(flat) 2x4 SPF No.2(flat) 2x4 SPF No.2(flat) Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (lb/size) 24=44/27. 26=180/22: 28=174/27 30=173/2 32=173/27 34=173/27 36=173/27 42=173/27 42=173/27 44=173/27	athing directly applie cept end verticals. applied or 10-0-0 oc -8-0, 25=144/27-8-0, 7-8-0, 29=173/27-8-0 7-8-0, 31=173/27-8-0 7-8-0, 31=173/27-8-0 7-8-0, 37=173/27-8-0 7-8-0, 39=173/27-8-0 7-8-0, 43=173/27-8-0 7-8-0, 43=174/27-8-0	V d or N : 1 2 3 0, 4 0, 5 0, 4 0, 5 0, 4 0, 5 0, 6 0, 6 0, 0, 0 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0	VEBS All plates and Gable requir Truss to be 1 braced again Gable studs This truss is International R802.10.2 a R802.10.2 a R802.10.2 a Construction oc (0.131" X 3" at their outer CAD CASE(S)	2-44=-145/0, 3- 5-41=-147/0, 6- 8-38=-147/0, 9- 12-35=-147/0, 1 15-32=-147/0, 1 18-29=-147/0, 1 21-26=-152/0, 2 e 2x4 MT20 unle res continuous b fully sheathed fr nst lateral move spaced at 1-4-C designed in acc I Residential Co and referenced s d 2x6 strongbar r ends or restrai Standard	43=-147/0, 40=-147/0, 37=-147/0, 37=-147/0, 9-28=-147/ 9-28=-147/ 22-25=-124/ ess otherwi bottom chor om one fac ment (i.e. d) oc. cordance w de sections tandard AN ks, on edge o each truss acks to be ned by othe	4-42=-146/0, 7-39=-147/0, 11-36=-147/0, 11-36=-147/0, 0, 17-30=-14 00, 20-27=-14 00 se indicated. d bearing. e or securely iagonal web) ith the 2018 i R502.11.1 a ISI/TPI 1. e, spaced at s with 3-10d attached to wer means.	, ,7/0, ,7/0, ,5/0, , , ,					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-45=-54/0, 23-24=- 3-4=-6/0, 4-5=-6/0, 5 7-8=-6/0, 8-9=-6/0, 9 12-13=-6/0, 13-14=- 15-16=-6/0, 16-17=- 18-19=-6/0, 19-20=- 21-22=-6/0, 22-23=- 44-45=0/6, 43-44=0/ 40-41=0/6, 39-40=0/ 36-37=0/6, 35-36=0/ 31-32=0/6, 30-31=0/ 27-28=0/6, 26-27=0/	pression/Maximum 35/0, 1-2=-6/0, 2-3=- i-6=-6/0, 6-7=-6/0, 1-11=-6/0, 11-12=-6/0, 6/0, 14-15=-6/0, 6/0, 17-18=-6/0, 6/0, 02-21=-6/0, 6/0, 02-21=-6/0, 6/0, 32-33=0/6, 32-34= 6, 29-30=0/6, 28-29= 6, 25-26=0/6, 24-25= 6, 25-26=0/6, 25-25=0/6, 25-25=0/6, 25-25=0/6, 25-25=0/6, 25-25=0/6, 25-25=0/6, 25-25=0/6, 25-25=0/6, 25-25=0/6, 25-25=0/6, 25	6/0, D, =0/6, =0/6, =0/6, =0/6, =0/6								With the Photo	2 XUEG LIN E-29	MISSOURIES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Boyer Res Floors 210567 F2 Floor 11 1 Job Reference (opti Job Reference (opti ID:WuXtuo97ievjiKdLZOqw6yNZme-RfC?PsB70Hq3NSgPqnL&w3uITX)	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 148620988 LEE'S SUMMIT, MISSOURI c. Mon Nov (1)579:/520/299:22
210567 F2 Floor 11 1 Job Reference (optimed to the second to	Itale20988 LEE'S SUMMIT, MISSOURI c. Mon Nov (1) 5:39:15 20/210:22 3KW/CD0i7 34200?1 GKW/CD0i7 34200?1 200/210:22
Wheeler Lumber, Waverly, KS - 66871, Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, ID://WuXtuo97ievjiKdLZOqw6yNZme-RfC?PsB70Hq3NSgPqnL8w3uITX	c. Mon Nov (1) 5:79:1/20/210:22 GKV /rCDoi7,942.Jd?f
. 2-5-12	
0-1-8 H 2-5-4	0-1-8 ∦
4x4=	2v2-
2x4 II 3x6 FP	2,5=
2x3 = 5x12 = 2x4 i 4x8	$2x4 \parallel 5x12 = 2x4 \parallel$
21 20 19 18 17 16	15
$4x10 = 5x12 = 4x8 = 2x4 ext{ II} 2x4 ext{ II}$	5x12 = 4x10 =
MT18HS 3x10 FP	
3x10 = 4x8 =	
14-10-4	
12-10-4 27-8-0	
' 12-10-4 '1-0-0' 12-9-12	I

Scale =	1:48.3
---------	--------

Plate Offsets (X, Y): [7:0-1-8,Edge], [8:0-1-8,Edge], [13:	:0-1-8,Edge], [14:Ed	ge,0-1-8], [18:0-1-8,E	dge], [19:0)-1-8,Edge],	[22:Edge	,0-1-8]				
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 15.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES IRC2018/TPI201	CSI TC BC WB 4 Matrix-S	0.59 0.88 0.56	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.53 -0.86 0.15	(loc) 18-19 18-19 14	l/defl >625 >384 n/a	L/d 480 360 n/a	PLATES MT18HS MT20 Weight: 111 lb	GRIP 197/144 197/144 FT = 5%F, 10%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SPF 2400F 2. 2x4 SPF 2100F 1. 2x4 SPF No.2(flat) 2x4 SPF No.2(flat) 5tructural wood sh)E(flat) 3E(flat) eathing directly applic	6) Recom 10-00- (0.131" at their LOAD CAS	mend 2x6 strongback 0 oc and fastened to X 3") nails. Strongba outer ends or restrair E(S) Standard	as, on edge each truss acks to be ned by othe	e, spaced at s with 3-10d attached to v er means.	valls					
BOT CHORD	Rigid ceiling direct bracing.	y applied or 10-0-0 o	с									
REACTIONS FORCES	(lb/size) 14=1419 (lb) - Maximum Co	/size) 14=1419/0-4-0, 22=1419/0-5-8 b) - Maximum Compression/Maximum ension - 02-0410, 42-44, 20/0, 4-2, 4/0										
TOP CHORD	1-22=-91/0, 13-14= 2-3=-3886/0, 3-4=- 5-7=-5929/0, 7-8=- 9-10=-5918/0, 10-1 11-12=-3862/0, 12											
BOT CHORD	21-22=0/2191, 20- 18-19=0/6309, 16- 14-15=0/2160											
WEBS NOTES 1) Unbalance	7-19=-108/166, 8- 7-20=-856/105, 5- 4-21=-1409/0, 3-2 ⁻ 2-22=-2542/0, 12- 11-15=-217/0, 10- 9-16=-295/14, 8-16 ed floor live loads have	8=-105/168, 20=-296/13, 4-20=0/9 =-217/0, 2-21=0/199 4=-2516/0, 12-15=0/ 15=-1417/0, 10-16=0/ 5=-865/96 ve been considered for	92, 1, 2000, 1000, 01							in in .	XHE OF /	ANG
 c) c) and c) c)	are MT20 plates unle are 2x4 MT20 unless cation Tolerance at jc is designed in accorr nal Residential Code and referenced star	ss otherwise indicate otherwise indicated. int $17 = 10\%$ dance with the 2018 sections R502.11.1 a dard ANSI/TPI 1.	d. nd							* 85.11	E-29	BER 713

November 9,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Bover Res Floors	AS NOTED FOR PLAN REVIEW
040507	50					DEVELOPMENT SERVICES 148620989
210567	F3	Floor Supported Gable	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI	
Wheeler Lumber, Wav	verly, KS - 66871,	Run: 8.43 S ID:6ijZCm_TC	Oct 11 2021 Print: QRT9iSxTCNAViU	8.430 S Oct /NY2f-RfC?I	t 11 2021 MiTek Industries, Inc. N PsB70Hq3NSgPqnL8w3uITXbGł	on Nov (1)579:/620/2922 WrCDoi794zJC?
		0-1-8				

Scale = 1:25.4

Plate Offsets (X_Y): [8:Edge 0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	15.0	Lumber DOL	1.00	BC	0.02	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.02	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 17 lb	FT = 5%F, 10%E

U	M	в	E	R

TOP CHORD	2x4 SPF	No.2(flat)
BOT CHORD	2x4 SPF	No.2(flat)
WEBS	2x4 SPF	No.2(flat)
OTHERS	2x4 SPF	No.2(flat)
BRACING		
TOP CHORD	Structur 4-0-0 oc	al wood sheathing directly applied or purlins, except end verticals.
BOT CHORD	Rigid ce bracing.	iling directly applied or 10-0-0 oc
REACTIONS	(lb/size)	5=76/4-0-0, 6=177/4-0-0, 7=169/4-0-0, 8=66/4-0-0
FORCES	(lb) - Ma Tension	ximum Compression/Maximum
TOP CHORD	1-8=-55/ 3-4=-7/0	/0, 4-5=-62/0, 1-2=-7/0, 2-3=-7/0,
BOT CHORD	7-8=0/7,	6-7=0/7, 5-6=0/7
WEBS	2-7=-143	3/0, 3-6=-153/0
NOTES		
1) All plates a	are 1x3 M	Γ20 unless otherwise indicated.

1-8-0

Gable requires continuous bottom chord bearing. 2) 3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

Gable studs spaced at 1-4-0 oc. 4)

- This truss is designed in accordance with the 2018 5) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Recommend 2x6 strongbacks, on edge, spaced at 6) 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

OF MIS TIS * PROLIT UEGANG LIU NUMBER E-29713 8 0 S SS/ONALE November 9,2021

V MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

						RELEASE FOR CONSTRUCTION	
Job	Truss	Truss Type	Qty	Ply	Boyer Res Floors		
210567	F4	Floor 6		1	Job Reference (optional	LEE'S SUMMIT, MISSOURI	
Wheeler Lumber, Waverly, KS - 6	Run: 8.43 S Oct 11 2 ID:TjWsrAf5gkuzI7ZN	021 Print: 8.4 zbZiXhyNXw	on Nov (1) 5:79:/620/299:22				

Scale = 1:42.1

	Plate Offsets (X, Y): [1:Edge,0-1-8], [6:0-1-8,Edge], [7:0-1-8,Edge], [12:0-1-8,Edge], [13:Edge,0-1-8], [17:0-1-8,Edge], [18:0-1-8,Edge], [21:Edge,0-1-8], [22:0-1-8,0-0-8]	
--	---	--

Loading	(psf)	Spacing	1-7-3	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	тс	0.75	Vert(LL)	-0.41	16-17	>687	480	MT20	197/144
TCDL	15.0	Lumber DOL	1.00	BC	1.00	Vert(CT)	-0.66	16-17	>423	360	MT20HS	148/108
BCLL	0.0	Rep Stress Incr	YES	WB	0.45	Horz(CT)	0.09	13	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 97 lb	FT = 5%F, 10%E

-0	М	в	E	R	

TOP CHORD	2x4 SPF No.2(flat) *Except* 5-12:2x4 SPF 2100F 1 8F(flat)
BOT CHORD	2x4 SPE 2100E 1 8E(flat)
WEBS	2x4 SPF No 2(flat)
OTHERS	2x4 SPF No.2(flat)
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 5-10-6 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 2-2-0 oc bracing.
REACTIONS	(lb/size) 13=1211/0-4-0, 21=1211/0-5-8
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-21=-1238/0, 12-13=-89/0, 1-2=-876/0, 2-3=-876/0, 3-4=-3570/0, 4-6=-3570/0, 6-7=-4468/0, 7-8=-4595/0, 8-9=-4595/0, 9-10=-3178/0, 10-11=-3178/0, 11-12=-4/0
BOT CHORD	20-21=0/50, 19-20=0/2419, 18-19=0/4468, 17-18=0/4468, 16-17=0/4468, 14-16=0/4051, 13-14=0/1814
WEBS	6-18=0/264, 7-17=-204/48, 6-19=-1211/0, 4-19=-228/48, 3-19=0/1351, 3-20=-1814/0, 2-20=-185/0, 1-20=0/1475, 11-13=-2112/0, 11-14=0/1603, 10-14=-219/0, 9-14=-1025/0, 9-16=0/640, 8-16=-332/0, 7-16=-353/455
NOTES	

- Unbalanced floor live loads have been considered for 1)
- this design. 2)
- All plates are MT20 plates unless otherwise indicated.
- 3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:42.7

Plate Offsets (X, Y): [1:Edge,0-1-8	, [6:0-1-8,Edge], [7:0	-1-8,Edge], [13:Edge,0-1·	-8], [17:0-1-8,Edg	e], [18:0-	1-8,Edge], [2	1:Edge,	0-1-8], [2	2:0-1-8,	0-0-8],	[23:0-1-8,0-1-8]	
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 15.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.76 0.91 0.52	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.41 -0.67 0.09	(loc) 16-17 16-17 13	l/defl >685 >421 n/a	L/d 480 360 n/a	PLATES MT20 MT20HS Weight: 100 lb	GRIP 197/144 148/108 FT = 5%F, 10%E
LUMBER TOP CHORD BOT CHORD	2x4 SPF No.2(flat) 2100F 1.8E(flat) 2x4 SPF 2400F 2.0	*Except* 5-12:2x4 SF E(flat) *Except* 15-13	LOAD CASE(S) PF 3:2x4	Standard								
WEBS OTHERS BRACING	SPF 2100F 1.8E(fla 2x4 SPF No.2(flat) 2x4 SPF No.2(flat)	it)										
TOP CHORD BOT CHORD	Structural wood sh 5-8-7 oc purlins, e Rigid ceiling direct	eathing directly applie ccept end verticals. y applied or 10-0-0 oc	ed or									
REACTIONS	bracing. (Ib/size) 13=1225 (Ib) Maximum Cor	/0-8-0, 21=1225/0-5-	8									
TOP CHORD	(i) - Maximum Con Tension 1-21=-1253/0, 12-1 2-3=-886/0, 3-4=-30 6-7=-4557/0, 7-8= 9-10=-3346/0, 10-1	3=-100/0, 1-2=-886/0 522/0, 4-6=-3622/0, 4717/0, 8-9=-4717/0, 1=-3346/0, 11-12=-4/), /0									
BOT CHORD	20-21=0/51, 19-20= 17-18=0/4557, 16-1 13-14=0/2007	=0/2452, 18-19=0/455 17=0/4557, 14-16=0/4	57, 1197,									
WEBS	6-18=0/288, 7-17=- 4-19=-225/48, 3-19 2-20=-184/0, 1-20= 8-16=-329/0, 9-16= 10-14=-213/0, 11-1	227/45, 6-19=-1250/0 =0/1374, 3-20=-1839 0/1493, 7-16=-334/49 0/611, 9-14=-1000/0, 4=0/1573, 11-13=-22	0, /0, 90, 81/0								THE OF I	MISSOU
NOTES 1) Unbalance this design 2) All plates a 3) This truss Internation R802.10.2 4) Recomme 10-00-00 (0.131" X 3 at their out	ed floor live loads hav are MT20 plates unles is designed in accord al Residential Code s and referenced stam nd 2x6 strongbacks, bc and fastened to ea 3") nails. Strongback ter ends or restrained	e been considered fo ss otherwise indicated ance with the 2018 sections R502.11.1 at dard ANSI/TPI 1. on edge, spaced at ch truss with 3-10d s to be attached to wa by other means.	r d. nd alls								E-29 November	ANG BER 713 ALENG ALENG

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

											RELEAS	E FOR CONSTRU	JCTION
Job	Truss		Truss Type		Qty	Ply	В	oyer Res.	Floor	s	AS NOT	ED FOR PLAN R	EVIEW
210567	F6		Floor Supported G	able	1	1	J	ob Refere	nce (op	tional	LEE'S	148620992 SUMMIT, MISSO	URI
Wheeler Lumber	r, Waverly, KS - 66871,			Run: 8.43 S Oct 1	11 2021 F	Print: 8.430 S	Oct 11 20	21 MiTek Ir	ndustries	, Inc. N	on Nov (1) 5:79:16	20/20	22
				ID:6_F_naB8Qgcl	<e3kkhs_< td=""><td>_Uu4yNY2O-</td><td>RfC?PsB7</td><td>'0Hq3NSgF</td><td>qnL8w3i</td><td>ultxbG</td><td>KWrCDol7942JO?f</td><td></td><td></td></e3kkhs_<>	_Uu4yNY2O-	RfC?PsB7	'0Hq3NSgF	qnL8w3i	ultxbG	KWrCDol7942JO?f		
	0-1-8 												
	2x3 =												
	1 2	3 4	5 6	7 8	3	9	10	11		12	13	14 15	
T						Ô	6	6		1	<u> </u>		T
0- 8-	•												9-9-
÷						Н	Н	H		Н			÷
	30				*				****				
	^{×××××××××××××××××××××××××××××××××××××}	28 27	26 25	24 23	3	22	21	20	~~~~~	19 19	18	17	
				10.0.0									
				<u>18-0-0</u> 18-0-0)								
Scale = 1:33.3													
Plate Offsets (X, Y): [15:0-1-8,Edg	e], [16:0-1-8,Edge], [3	0:Edge,0-1-8]										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	40.0	Plate Grip DOL	1.00	TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	197/144	
BCLL	0.0	Rep Stress Incr	YES	WB	0.02	Horiz(TL)	0.00	- 16	n/a n/a	999 n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 67 lb	FT = 5%F, 10	0%E
			3) Truss to be	fully sheathed from	one fac	e or secure	ly D						
BOT CHORD	2x4 SPF No.2(flat) 2x4 SPF No.2(flat)		4) Gable studs	spaced at 1-4-0 oc.		ayunai wei	<i>.</i>						
WEBS OTHERS	2x4 SPF No.2(flat) 2x4 SPF No 2(flat)		 This truss is International 	designed in accord Residential Code s	ance wi	th the 2018 R502.11.1	and						
BRACING	of (110.2(nat)		R802.10.2 a	and referenced stand	dard AN	SI/TPI 1.	-						

 Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

CAUTION, Do not erect truss backwards.
 LOAD CASE(S) Standard

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

REACTIONS (lb/size)

bracing.

Tension

14-15=-4/0

14-17=-116/0

17-18=0/4, 16-17=0/4

All plates are 2x4 MT20 unless otherwise indicated.
 Gable requires continuous bottom chord bearing.

Structural wood sheathing directly applied or

16=28/18-0-0, 17=132/18-0-0,

18=180/18-0-0, 19=172/18-0-0, 20=174/18-0-0, 21=173/18-0-0, 22=173/18-0-0, 23=173/18-0-0, 24=173/18-0-0, 25=173/18-0-0, 26=173/18-0-0, 27=173/18-0-0, 28=173/18-0-0, 29=176/18-0-0,

6-0-0 oc purlins, except end verticals.

30=61/18-0-0

11-12=-4/0, 12-13=-4/0, 13-14=-4/0,

(lb) - Maximum Compression/Maximum

1-30=-53/0, 15-16=-20/0, 1-2=-4/0, 2-3=-4/0, 3-4=-4/0, 4-5=-4/0, 5-6=-4/0, 6-7=-4/0, 7-8=-4/0, 8-9=-4/0, 9-10=-4/0, 10-11=-4/0,

29-30=0/4, 28-29=0/4, 27-28=0/4, 26-27=0/4,

25-26=0/4, 24-25=0/4, 23-24=0/4, 22-23=0/4, 21-22=0/4, 20-21=0/4, 19-20=0/4, 18-19=0/4,

2-29=-147/0, 3-28=-147/0, 4-27=-147/0, 5-26=-147/0, 6-25=-147/0, 7-24=-147/0, 8-23=-147/0, 9-22=-147/0, 10-21=-147/0,

11-20=-147/0, 12-19=-145/0, 13-18=-152/0,

Rigid ceiling directly applied or 10-0-0 oc

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						RELEASE FOR CONSTRUCTION
Joh	Truss	Truss Type	Otv	Plv	Bover Res - Floors	AS NOTED FOR PLAN REVIEW
005	11000		Guy	,	boyer res. Thoms	DEVELOPMENT SERVICES
210567	F7	Floor	12	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
	•					

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Non Nov 1579:/20/29:22 ID:KnU60Pezmk_XOctTFkanpgyNXye-RfC?PsB70Hq3NSgPqnL8w3ulTXbG WrCDorred20Cft

Scale = 1:33.5

Plate Offsets (X, Y):	[4:0-1-8,Edge],	[5:0-1-8,Edge], [9:0	-1-8,Edge], [10:Edge,0-	1-8], [12:0-1-8,E	dge], [13:0-	1-8,Edge], [1	5:Edge,0)-1-8]				
Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	тс	0.43	Vert(LL)	-0.15	11-12	>999	480	MT20	197/144
TCDL	15.0	Lumber DOL	1.00	BC	0.85	Vert(CT)	-0.25	11-12	>859	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.33	Horz(CT)	0.06	10	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 75 lb	FT = 5%F, 10%E

LUMBER

TOP CHORD	2x4 SPF No.2(flat)
BOT CHORD	2x4 SPF No.2(flat)
WEBS	2x4 SPF No.2(flat)
OTHERS	2x4 SPF No.2(flat)
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
REACTIONS	(lb/size) 10=923/0-4-0, 15=923/0-5-8
FORCES	(Ib) - Maximum Compression/Maximum Tension
TOP CHORD	1-15=-89/0, 9-10=-88/0, 1-2=-4/0, 2-3=-2231/0, 3-4=-2231/0, 4-5=-2671/0,
	5-6=-2671/0, 6-7=-2236/0, 7-8=-2236/0, 8-9=-4/0
BOT CHORD	14-15=0/1335, 13-14=0/2671, 12-13=0/2671, 11-12=0/2640, 10-11=0/1337
WEBS	8-10=-1557/0, 2-15=-1554/0, 8-11=0/1056, 2-14=0/1052, 7-11=-214/0, 3-14=-238/0, 6-11=-475/0, 4-14=-629/0, 6-12=-164/281, 4-13=-50/97, 5-12=-106/76
	,

NOTES

- 1) Unbalanced floor live loads have been considered for this design.
- This truss is designed in accordance with the 2018 2) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Recommend 2x6 strongbacks, on edge, spaced at 3) 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job 210567 Truss Truss Type F8 Truss Type Floor Supported Gable 1 1 1 1 Boyer Res Floors Job Reference (optional Development And Rectar Supported Gable 1 2021 Print: 8 430 S Oct 11 2021 MiTek Industries, Inc. Nor Nov $0.5787/20/2022$			-											REI		
$\frac{210567}{210567}$ F8 Floor Supported Gable 1 1 1 Job Reference (optional Lers SUMPORTED SOURT) Wheeler Lumber, Waverly, KS - 66871. Wheeler Lumber, Waverly, KS - 66871. Wheeler Lumber, Waverly, KS - 66871. $\frac{0^{+}_{$	Job		Truss			Truss Type			0	Qty	Ply	Boyer Res.	- Floors	AS [DEVELOPMENT SER	VICES
Wheeler Lumber, Waverly, KS - 66871, Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MITek Industries, Inc. 16 In Nov $0.527/20/2022$ $0^{-1.8}$ $2x_3 = 2x_3 = 2x_$	210567		F8			Floor Sup	ported Ga	ble		1	1	Job Refere	nce (optional		LEE'S SUMMIT, MIS	SOURI
$\begin{array}{c} 0 \cdot 1 \cdot 8 \\ 2x3 = \\ & \\ \hline \\ 0 \\ \hline \\ 0 \\ \hline \\ 0 \\ \hline \\ 3x4 \\ \\ \\ \\ \\ \\ 29 \\ 28 \\ 27 \\ 29 \\ 28 \\ 27 \\ 26 \\ 25 \\ 26 \\ 25 \\ 24 \\ 23 \\ 22 \\ 21 \\ 20 \\ 28 \\ 27 \\ 26 \\ 25 \\ 24 \\ 23 \\ 22 \\ 21 \\ 20 \\ 19 \\ 18 \\ 17 \\ 3x4 \\ \\ \hline \\ \\ 18 \\ 18 \\ 19 \\ 18 \\ 17 \\ 3x4 \\ \\ \hline \\ \hline \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18$	Wheeler Lumber	r, Waverly, KS -	66871,					Run: 8.43 ID:pvrmt?	S Oct 11 202 JP3ktKRbVfH	1 Print: 8 Y9qIByN	.430 S Oct 1 Y2E-RfC?Psl	1 2021 MiTek In B70Hq3NSgPqn	dustries, Inc. N L8w3uITXbGK	on Nov (1)5 VrCDoi7342J	7,120/2	922
$\begin{array}{c} 0 \\ 1 \\ 1 \\ 2x_{3} \\ \hline \\ 0 \\ \hline \\ 0 \\ \hline \\ 0 \\ \hline \\ 0 \\ 3x_{4} \\ 1 \\ 2y $																
$\begin{array}{c} 0 - \frac{1 - 8}{1 - 8} \\ 2x_3 = \\ \hline \\ 0 - \frac{1 - 8}{1 - 8} \\ 2x_3 = \\ \hline \\ 0 - \frac{1 - 8}{1 - 8} \\ 3x_4 = 29 \\ 28 \\ 27 \\ 29 \\ 28 \\ 27 \\ 29 \\ 28 \\ 27 \\ 26 \\ 25 \\ 24 \\ 23 \\ 22 \\ 21 \\ 20 \\ 28 \\ 27 \\ 26 \\ 25 \\ 24 \\ 23 \\ 22 \\ 21 \\ 20 \\ 19 \\ 18 \\ 17 \\ 3x_4 = \\ \hline \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 $																
23 = 23 = 23 = 23 = 23 = 23 = 23 = 23 =		0-1-8 													0-1-8 	
$\begin{array}{c} \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$		2x3 =													2x3 =	
$\begin{array}{c} \hline \\ \hline $		1	2	3	4	5	6	7	8	9	10	11	12	13	14 15	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	T		ľ	Ċ	6	ľ	Ê.	ľ	- î	ľ	ľ	ľ	Ċ	Ê		T
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-8-0	•													ф 	-8-0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	20														-
3x4 29 28 27 26 25 24 23 22 21 20 19 18 17 3x4																
18-1-8		3х4 п	29	28	27	26	25	24	23	22	21	20	19	18	17 _{3x4 II}	
10.4.0		1							18-1-8						I	
10-1-0									18-1-8							

Scale = 1:33.5

Plate Offsets (X, Y): [15:0-1-8,Edge], [16:Edge,0-1-8], [3	80:Edge,0-1-8	3]									
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 15.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2018/T	PI2014	CSI TC BC WB Matrix-R	0.07 0.02 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 68 lb	GRIP 197/144 FT = 5%F, 10%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS	2x4 SPF No.2(flat) 2x4 SPF No.2(flat) 2x4 SPF No.2(flat) 2x4 SPF No.2(flat) *1 2400F 2.0E(flat)	Except* 16-32:2x4 S	3) 1 k 4) (5) 1 F F 6) F	Fruss to be froraced again Gable studs Fhis truss is International R802.10.2 ar Recommend	ully sheathed froi st lateral movem spaced at 1-4-0 of designed in acco Residential Code nd referenced sta 2x6 strongbacks	m one fac lent (i.e. d oc. ordance w e sections andard AN s, on edge	te or securely liagonal web). th the 2018 SR502.11.1 an ISI/TPI 1. e, spaced at	nd					
TOP CHORD BOT CHORD	Structural wood shea 6-0-0 oc purlins, exo Rigid ceiling directly	athing directly applie cept end verticals. applied or 10-0-0 oc	edor ¹ (10-00-00 oc 0.131" X 3") at their outer	and fastened to e nails. Strongbac ends or restraine	each truss cks to be ed by othe	s with 3-10d attached to water means.	alls					
REACTIONS	bracing. (lb/size) 16=30/18 18=181/10 20=174/10 22=173/10 24=173/10 26=173/11 28=174/11 30=63/18	-1-8, 17=131/18-1-8, 8-1-8, 19=171/18-1-4 8-1-8, 21=173/18-1-4 8-1-8, 23=173/18-1-4 8-1-8, 25=173/18-1-4 8-1-8, 27=173/18-1-4 8-1-8, 29=174/18-1-4 -1-8	LOA 8, 8, 8, 8, 8, 8, 8,	D CASE(S)	Standard								
FORCES	(Ib) - Maximum Com	pression/Maximum											
TOP CHORD	1-30=-54/0, 15-16=- 3-4=-5/0, 4-5=-5/0, 5 7-8=-5/0, 8-9=-5/0, 9 11-12=-5/0, 12-13=- 14-15=-5/0	20/0, 1-2=-5/0, 2-3=- 5-6=-5/0, 6-7=-5/0, 9-10=-5/0, 10-11=-5/0 5/0, 13-14=-5/0,	-5/0, 0,									ITE OF	MISSO
BOT CHORD	29-30=0/5, 28-29=0/ 25-26=0/5, 24-25=0/ 21-22=0/5, 20-21=0/ 17, 18=0/5, 16, 17=0/	/5, 27-28=0/5, 26-27 /5, 23-24=0/5, 22-23 /5, 19-20=0/5, 18-19	=0/5, =0/5, =0/5,								in in	スト シンズUEG	ANG D
WEBS	2-29=-146/0, 3-28=- 5-26=-147/0, 6-25=- 8-23=-147/0, 9-22=- 11-20=-147/0, 12-19 14-17=-115/0	0 147/0, 4-27=-147/0, 147/0, 7-24=-147/0, 147/0, 10-21=-147/0 9=-145/0, 13-18=-153	, 3/0,								C Philip	A E-29	BER 713
NOTES		de anosta a facilita en 1										1,SSICH	ENGIN
 All plates a Gable req 	uires continuous bottor	m chord bearing.										1111	iiiii.

All plates are 244 million unloss states are 2
 Gable requires continuous bottom chord bearing.

November 9,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

														RELEASE	FOR CONSTRU	JCTION	
Job		Truss		Truss	Туре		Qty	/	Ply	Bo	yer Res	Floor	s	AS NOTE	D FOR PLAN RI		1
210567		F9		Floor			12		1		Refere	ance (on	tional	LEE'S	148620995 SUMMIT, MISSC	DURI	
Wheeler Lumbe	er, Waverly, KS -	66871,				Run: 8.43	S Oct 11 2021 I	Print: 8.4	30 S Oct	11 2021	I MiTek I	ndustries	, Inc. N	on Nov (1) 5:79:17	20/20	22	1
						ID:Tnr7_pf	ì₩ExVB8K8vJA	kj2CyNZ	mn-RfC?	?PsB70F	lq3NSgF	ʻqnL8w3u	ITXbG	KWrCDo₩d4zUC?f			
	0-9-8												0)-7-0 ├──			
0-1 	-8 2-5-4	└		2-0	-0					2-	6-12	+		2-0-0	0-1-8 ∦	•	
	6x6=						4x5=										
2:	x3= 1_2	4x8= 3	4	4x4 = 5	4x4 = 6	3x 7	6 FP 8 9	10	5	5x12 = 11	;	3x4 n 1 2 81	5: 1	x7= 4x4 3 14 15	= 2x3= 16		
0-8				4				ľ					\nearrow			8-0	
÷			26	25	24	22	- <u></u>					J.			17	, 🗄	
<u>ا</u>	≤ 27 4x8=		20 4x8=	25	24	23 4x8= MT2	22 20HS 3x8 FP	21 5x12=			4	20 x10 =		19 18 5x7=	4x8=		
	6x8=			1()-8-12												
ł		8-8-	-12	9-8-12	: 		23-6-8	>				-		<u>31-7-8</u> 8-1-0	———————————————————————————————————————		
		0-0-	-12	1-0-0	I-0-0		12-5-12	-						0-1-0			
Scale = 1:54.3	[1·Eda	<u>o 0-1-81</u>	[5:0-1-8 Edge] [6:0-	1-8 Eda	a] [14·0-1-8 Ed	ne] [15:0-1-8	Edge] [16:0-	1-8 Eda	17۰] [م	Edae 0	_1_8] [1	8.0-1-8	Edgel	[19:0-1-8 Edge]	[24:0-1-8 Edge	_1	-
Plate Offsets	(X, Y): [25:0-1	-8,Edge], [28:Edge,0-1-8], [2	9:0-1-8,0)-0-8]		,Euge], [10.0	1 0,Eug	joj, [17.1	Luge,o	10], [1	0.0 1 0,	Lugoj,	. [10.0 1 0,Euge],		-],	_
Loading		(psf) 40.0	Spacing Plate Grip DOI	1-7-3 1.00		CSI	0.98	DEFL	ы. П	in -0.36	(loc) 23-24	I/defl ⊳773	L/d	PLATES	GRIP 197/144		
TCDL		15.0	Lumber DOL Rep Stress Ipcr	1.00 1.00 VES		BC	0.98	Vert(C		-0.58	23-24	>485	360 260	MT20HS	148/108		
BCDL		10.0	Code	IRC20	18/TPI2014	Matrix-S	0.01	11012(0	51)	0.00	20	n/a	Π/a	Weight: 130 lb	FT = 5%F, 10)%E	_
LUMBER TOP CHORD	2x4 SPF No 2100F 1.8E	.2(flat) *l (flat)	Except* 8-16:2x4 SP	F	NOTES) Unbalanced this design.	floor live load	ls have been	conside	red for								
BOT CHORD	2x4 SPF 21 SPF No.2(fl	00F 1.8E at)	E(flat) *Except* 22-17	:2x4 2	 All plates are All plates are 	e MT20 plates e 2x4 MT20 u	s unless other Inless otherwi	wise ind se indic	dicated. ated.								
WEBS OTHERS	SPF No.2(flat) 3) All plates are 2x4 M120 unless otherwise indicated. SS 2x4 SPF No.2(flat) ERS 2x4 SPF No.2(flat) end and the second secon																
BRACING TOP CHORD	Structural w	ood she	athing directly applie	d, 5	 5) This truss is 	designed in a	accordance w	ith the 2	2018	4							
BOT CHORD	except end Rigid ceiling bracing.	verticals. directly	applied or 2-2-0 oc	6	R802.10.2 a	nd referenced 2x6 strongb	d standard AN acks, on edge	ISI/TPI e, space	1. 1. dat	u							
REACTIONS	(lb/size) 1	7=116/0- 8=1112/0	-3-0, 20=2022/0-8-0, 0-4-0		10-00-00 oc (0.131" X 3"	and fastened nails. Stron	I to each truss gbacks to be	s with 3- attache	10d d to wal	lls							
	Max Uplift 1 Max Grav 1 2	7=-127(7=288(L 8=1120(LC 3) .C 4), 20=2027 (LC 9 (LC 10))), I	at their outer) CAUTION, E OAD CASE(S)	ends or rest to not erect tr Standard	rained by othe russ backward	er mean Is.	S.								
FORCES	(lb) - Maxim Tension	um Com	pression/Maximum														
TOP CHORD	1-28=-1150 2-3=-728/0	/0, 16-17 3-4=-31	′=-158/0, 1-2=-728/0, 79/0_4-5=-3179/0														
	5-6=-3884/0 9-10=-2158), 6-7=-3 (0 10-11	814/0, 7-9=-3814/0, =-2158/0 11-12-0/1	575										ann	un.		
	12-13=0/15	75, 13-14 /455 15	= 2100/0, 11-12=0/1 4=-227/483, .16=-6/0	070,										NE OF A	NISS		
BOT CHORD	27-28=0/47	26-27=0)/2145. 25-26=0/388	4.									1	18	• ·····	1	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

24-25=0/3884, 23-24=0/3884, 21-23=0/3156,

15-17=-273/532, 13-19=0/991, 14-19=-761/0, 15-18=-93/0, 5-25=-27/222, 6-24=-162/85, 5-26=-967/0, 4-26=-241/15, 3-26=0/1216, 3-27=-1665/0, 2-27=-185/0, 1-27=0/1332, 11-20=-2323/0, 11-21=0/1792, 10-21=-225/0, 9-21=-1203/0, 9-23=0/802, 7-23=-293/0,

20-21=0/662, 19-20=-782/82, 18-19=-455/240, 17-18=-455/240

12-20=-269/0, 13-20=-1106/0,

6-23=-478/204

WEBS

16023 Swingley Ridge Rd Chesterfield, MO 63017

Scale = 1:54.3

Plate Offsets (X, Y): [27:0-1-8,Edge], [28:Edge,0-1-8], [53:Edge,0-1-8] Loading Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) (loc) TCLL 40.0 Plate Grip DOL 1.00 TC 0.08 Vert(LL) n/a 999 MT20 197/144 n/a TCDL 15.0 Lumber DOL 1.00 BC 0.04 Vert(TL) n/a n/a 999 BCLL Rep Stress Incr YES WB Horiz(TL) 28 0.0 0.02 0.00 n/a n/a BCDL 10.0 Code IRC2018/TPI2014 Weight: 117 lb FT = 5%F, 10%E Matrix-R LUMBER BOT CHORD 52-53=0/11, 51-52=0/11, 50-51=0/11, 49-50=0/11, 48-49=0/11, 47-48=0/11, TOP CHORD 2x4 SPF No.2(flat) 46-47=0/11, 45-46=0/11, 44-45=0/11, BOT CHORD 2x4 SPF No.2(flat) 43-44=0/11, 42-43=0/11, 41-42=0/11, 2x4 SPF No.2(flat) WEBS 39-41=0/11, 38-39=0/11, 37-38=0/11, OTHERS 2x4 SPF No.2(flat) 36-37=0/11, 35-36=0/11, 34-35=0/11, BRACING 33-34=0/11, 32-33=0/11, 31-32=0/11, TOP CHORD Structural wood sheathing directly applied or 30-31=0/11, 29-30=0/11, 28-29=0/11 6-0-0 oc purlins, except end verticals. WEBS 2-52=-96/0, 3-51=-153/0, 4-50=-145/0, BOT CHORD Rigid ceiling directly applied or 10-0-0 oc 5-49=-147/0, 6-48=-147/0, 7-47=-147/0 bracing. 8-46=-147/0. 9-45=-147/0. 10-44=-147/0. REACTIONS (lb/size) 28=100/31-7-8, 29=194/31-7-8, 11-43=-147/0, 12-42=-147/0, 13-41=-147/0, 30=168/31-7-8, 31=175/31-7-8, 15-39=-147/0, 16-38=-147/0, 17-37=-147/0, 32=173/31-7-8, 33=173/31-7-8, 18-36=-147/0, 19-35=-147/0, 20-34=-147/0, 34=173/31-7-8. 35=173/31-7-8. 21-33=-147/0, 22-32=-146/0, 23-31=-148/0, 36=173/31-7-8, 37=173/31-7-8, 24-30=-143/0, 25-29=-160/0, 26-28=-94/0 38=173/31-7-8, 39=173/31-7-8, NOTES 41=173/31-7-8, 42=173/31-7-8, All plates are 2x4 MT20 unless otherwise indicated. 1) 43=173/31-7-8, 44=173/31-7-8, Gable requires continuous bottom chord bearing. 2) 45=173/31-7-8, 46=173/31-7-8, Truss to be fully sheathed from one face or securely 3) 47=173/31-7-8, 48=173/31-7-8, braced against lateral movement (i.e. diagonal web). 49=174/31-7-8, 50=171/31-7-8, Gable studs spaced at 1-4-0 oc. 51=182/31-7-8, 52=92/31-7-8, 4) This truss is designed in accordance with the 2018 53=35/31-7-8 5) 111111 International Residential Code sections R502.11.1 and TAS TO PROFILE FORCES (lb) - Maximum Compression/Maximum R802.10.2 and referenced standard ANSI/TPI 1. OF MIS Tension 6) Recommend 2x6 strongbacks, on edge, spaced at TOP CHORD 1-53=-12/0, 27-28=0/5, 1-2=-11/0, 2-3=-11/0, 10-00-00 oc and fastened to each truss with 3-10d 3-4=-11/0, 4-5=-11/0, 5-6=-11/0, 6-7=-11/0, (0.131" X 3") nails. Strongbacks to be attached to walls 7-8=-11/0, 8-9=-11/0, 9-10=-11/0, XUEGANG at their outer ends or restrained by other means. 10-11=-11/0, 11-12=-11/0, 12-13=-11/0, LIU LOAD CASE(S) Standard 13-15=-11/0, 15-16=-11/0, 16-17=-11/0, 17-18=-11/0, 18-19=-11/0, 19-20=-11/0, 20-21=-11/0, 21-22=-11/0, 22-23=-11/0, NUMBEF 23-24=-11/0, 24-25=-11/0, 25-26=-11/0, E-29713 26-27=-1/0

0

F

S

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

S/ONAL

THIN November 9.2021

Scale = 1:43.6

Plate Offsets (X, Y): [1:Edge,0-1-8],	[21:0-1-8,Edge], [22	2:Edge,0)-1-8], [41:Edge,0	-1-8]								
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 15.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2	018/TPI2014	CSI TC BC WB Matrix-R	0.08 0.02 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 22	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 91 lb	GRIP 197/144 FT = 5%F, 10%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2(flat) 2x4 SPF No.2(flat) 2x4 SPF No.2(flat) 2x4 SPF No.2(flat) 2x4 SPF No.2(flat) Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (lb/size) 22=91/24- 24=170/2 26=173/2 33=173/2 33=173/2 35=173/2 35=173/2 41=97/24-	athing directly applie cept end verticals. applied or 10-0-0 oc 4-7-8, 23=187/24-7-8, 4-7-8, 25=174/24-7-4 4-7-8, 30=173/24-7-4 4-7-8, 33=173/24-7-4 4-7-8, 36=173/24-7-4 4-7-8, 36=173/24-7-4 4-7-8, 38=174/24-7-4 4-7-8, 40=184/24-7-4 7-8	ed or , 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,	WEBS NOTES 1) All plates are 2) Gable requir 3) Truss to be f braced agair 4) Gable studs 5) This truss is International R802.10.2 ar 6) Recommend 10-00-00 cos (0.131" X 3") at their outer LOAD CASE(S)	2-41=-105/0, 3-40 5-38=-147/0, 6-37 3-35=-147/0, 10-3 12-32=-147/0, 13- 15-28=-147/0, 16- 18-25=-148/0, 19- 2 2x4 MT20 unless es continuous bot ully sheathed from 1st lateral moveme spaced at 1-4-0 o designed in accor Residential Code nd referenced star 2x6 strongbacks, and fastened to e nails. Strongbac ends or restraine Standard	=-155/0, =-147/0, 4=-147/0, 31=-147/0 31=-147/2 27=-147/2 24=-143/ s otherwit tom chorn n one face ent (i.e. d c. 'dance w sections ndard AN , on edge ach truss ks to be d by othe	4-39=-145/0, 7-36=-147/0, 0, 11-33=-147/ (0, 14-30=-147/ (0, 17-26=-144/ (0, 20-23=-160) se indicated. d bearing. te or securely liagonal web). tith the 2018 s R502.11.1 at ISI/TPI 1. a, spaced at s with 3-10d attached to wa er means.	/0, 7/0, 6/0, 0/0 nd alls					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-41=0/21, 21-22=-7 3-4=-14/0, 4-5=-14/0 7-8=-14/0, 8-10=-14/ 11-12=-14/0, 12-13= 14-15=-14/0, 15-16= 17-18=-14/0, 18-19= 20-21=-14/0	75/0, 1-2=-5/0, 2-3=- 0, 5-6=-14/0, 6-7=-14 /0, 10-11=-14/0, -14/0, 13-14=-14/0, -14/0, 16-17=-14/0, -14/0, 19-20=-14/0,	14/0, 4/0,								in in	S. XUEG	MISSOLANG
BOT CHORD	40-41=0/14, 39-40=(37-38=0/14, 36-37=(34-35=0/14, 33-34=(31-32=0/14, 30-31=(27-28=0/14, 26-27=(24-25=0/14, 23-24=(0/14, 38-39=0/14, 0/14, 35-36=0/14, 0/14, 32-33=0/14, 0/14, 28-30=0/14, 0/14, 25-26=0/14, 0/14, 22-23=0/14									* 80.00	SS/ON	BER 713

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

November 9,2021

Scale = 1:43.6

Plate Offsets (X, Y): [6:0-1-8,Edge], [7:0-1-8,Edge], [12:0-1-8,Edge], [13:Edge,0-1-8], [17:0-1-8,Edge], [18:0-1-8,Edge], [20:Edge,0-1-8]												
Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	тс	0.67	Vert(LL)	-0.41	16-17	>717	480	MT20HS	148/108
TCDL	15.0	Lumber DOL	1.00	BC	0.90	Vert(CT)	-0.65	16-17	>447	360	MT20	197/144
BCLL	0.0	Rep Stress Incr	YES	WB	0.48	Horz(CT)	0.11	13	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 99 lb	FT = 5%F, 10%E

LUMBER

TOP CHORD	2x4 SPF No.2(flat) *Except* 5-12:2x4 SPF 2100F 1.8E(flat)
BOT CHORD	2x4 SPF 2100F 1.8E(flat)
WEBS	2x4 SPF No.2(flat)
OTHERS	2x4 SPF No.2(flat)
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 4-10-12 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
REACTIONS	(lb/size) 13=1261/0-3-0, 20=1261/0-4-0
FORCES	(Ib) - Maximum Compression/Maximum Tension
TOP CHORD	1-20=-88/0, 12-13=-89/0, 1-2=-4/0, 2-3=-3338/0, 3-4=-3338/0, 4-6=-4941/0, 6-7=-4941/0, 7-8=-4897/0, 8-9=-4897/0, 9-10=-3342/0, 10-11=-3342/0, 11-12=-4/0
BOT CHORD	19-20=0/1895, 18-19=0/4297, 17-18=0/4941, 16-17=0/4941, 14-16=0/4296, 13-14=0/1897
WEBS	6-18=-321/0, 7-17=-165/89, 2-20=-2208/0, 2-19=0/1695, 3-19=-217/0, 4-19=-1126/0, 4-18=0/974, 11-13=-2210/0, 11-14=0/1697, 10-14=-216/0, 9-14=-1121/0, 9-16=0/706, 8-16=-304/0, 7-16=-512/328

NOTES

- Unbalanced floor live loads have been considered for 1) this design.
- 2) All plates are MT20 plates unless otherwise indicated.
- This truss is designed in accordance with the 2018 3) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Boyer Res Floors	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
210567	F13	Floor Girder	1	2	Job Reference (optional	148620999 LEE'S SUMMIT, MISSOURI

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Mon Nov 0113:3919 20/2 20:22

Scale = 1:43.6

Plate Offsets (X, Y): [6:0-1-8,Edge],	[7:0-1-8,Edge], [12:	0-1-8,Edg	e], [13:Edge,0-	1-8], [17:0-1-8,E	dge], [18:0)-1-8,Edge], [20:Edge	e,0-1-8]				
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 15.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.96 0.92 0.53	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.40 -0.66 0.09	(loc) 18-19 18-19 13	l/defl >729 >444 n/a	L/d 480 360 n/a	PLATES MT20HS MT20 Weight: 197 lb	GRIP 148/108 197/144 FT = 5%F, 10%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS 1) N/A 2) N/A 3) N/A	2x4 SPF No.2(flat) *I 2400F 2.0E(flat) 2x4 SPF 2400F 2.0E SPF 2100F 1.8E(flat 2x4 SPF No.2(flat) 2x4 SPF No.2(flat) 2x4 SPF No.2(flat) 2x4 SPF No.2(flat) Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (lb) - Maximum Com Tension 1-20=-87/0, 12-13=-1 2-3=-6907/0, 3-4=-63 6-7=-9158/0, 7-8=-81 9-10=-4944/0, 10-11 19-20=0/3710, 18-15 16-17=0/9158, 14-16 6-18=0/299, 7-17=0/ 2-19=0/3756, 3-19=- 4-18=-1067/0, 11-13 10-14=-205/0, 9-14= 8-16=-86/217, 7-16=	Except* 5-12:2x4 SP (flat) *Except* 15-12 (flat) *Except* 15-12 athing directly applie cept end verticals. applied or 10-0-0 oc 0-3-0, 20=2346/0-4-1 pression/Maximum 89/0, 1-2=-4/0, 907/0, 4-6=-9158/0, 000/0, 8-9=-8000/0, =-4944/0, 11-12=-4/ 3=0/6685, 13-14=0/2 5=0/6685, 13-14=0/2 461, 2-20=-4326/0, 179/0, 4-19=-3159/0 =-3158/0, 11-14=0/2 -2045/0, 9-16=0/154 -1933/0	4) F 3:2x4 5) d or 5 0 6) 7) 8) 0 9) 1158, 710 10, 2625, 11, 12 12 11, 11, 11, 12	N/A All loads are except if not CASE(S) see provided to C unless other Unbalanced this design. All plates are This truss is International R802.10.2 a Recommenc 10-00-00 oc (0.131" X 3") at their outer 0) Use Simpson or equivalen (es) to back (1) Fill all nail hd 2) In the LOAD of the truss a DAD CASE(S) Dead + Flo Plate Increa Uniform Lo Vert: 13- Concentrat Vert: 4=-	considered equi ed as front (F) or tion. Ply to ply o distribute only loa wise indicated. floor live loads h e MT20 plates ur designed in accc Residential Coo nd referenced st 2x6 strongback and fastened to nails. Strongback and fastened to load fastened to nails. Strongback and fastened to nails. Strongback and fastened to nails. Strongback and fastened to load fastened to lass strongback and fastened to nails. Strongback and fastened to nails	ally applier back (B) connection ads noted have been ordance we less other ordance we lessections andard AN s, on edge each truss acks to be ed by othk A426 (Sing the left end d. er is in cor n, loads a t (F) or ba d): Lumbe 8	d to all plies, face in the LC s have been as (F) or (B), considered for wise indicate ith the 2018 s R502.11.1 a s R502.11.1 a s SICTPI 1. b, spaced at s with 3-10d attached to w attached to w ar means. gle Chord Gir d to connect t tact with lum pplied to the i ck (B). r Increase=1.	DAD or ed. and valls der) truss ber. face 00,				XUEG NUM E-29	MISSOLANG ANG BER 713

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

November 9.2021

Scale = 1:27.7

Plate Offsets (X, Y): [4:0-1-8,Edge], [8:0-1-8,Edge]

Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	тс	0.33	Vert(LL)	-0.04	8-9	>999	480	MT20	197/144
TCDL	15.0	Lumber DOL	1.00	BC	0.31	Vert(CT)	-0.06	8-9	>999	360		
BCLL	0.0	Rep Stress Incr	NO	WB	0.12	Horz(CT)	0.01	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 34 lb	FT = 5%F, 10%E

LUMBER

TOP CHORD	2x4 SPF No.2(flat)
BOT CHORD	2x4 SPF No.2(flat)
WEBS	2x4 SPF No.2(flat)
OTHERS	2x4 SPF No.2(flat)
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(lb/size) 6=405/0-3-0, 9=410/0-4-0
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-9=-89/0, 5-6=-97/0, 1-2=0/0, 2-3=-512/0,
	3-4=-512/0, 4-5=-4/0
BOT CHORD	8-9=0/485, 7-8=0/512, 6-7=0/512
WEBS	4-6=-590/0, 2-9=-570/0, 3-8=-141/33,
	4-7=0/68, 2-8=-14/223
NOTES	

- 2) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 4) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6-10-1
6-10-1

Scale = 1:21.4

Plate Offsets (X, Y): [4:0-1-8,Edge], [5:Edge,0-1-8], [7:Edge,0-1-8]

	(, , ,). [e : e,⊒ege],	[e:=age;e : e]; [::=	- ago,o : o]									
Loading TCLL TCDL BCLL	(psf) 40.0 15.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	1-7-3 1.00 1.00 NO	CSI TC BC WB	0.49 0.48 0.65	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.10 0.02	(loc) 6-7 6-7 5	l/defl >999 >772 n/a	L/d 480 360 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC2018/1PI2014	Matrix-P							Weight: 36 lb	FI = 5%F, 10%E
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF 2100F 1.8E 2x4 SPF 2100F 1.8E 2x4 SPF No.2(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (lb/size) 5=1372/0 Mechanic	E(flat) E(flat) athing directly applie cept end verticals. applied or 10-0-0 o -6-14, 7=1651/	ed or c									
FORCES	(lb) - Maximum Corr	pression/Maximum										
TOP CHORD BOT CHORD WEBS	S (b) - Maximum Compression/Maximum Tension IORD 1-7=-353/0, 4-5=-1377/0, 1-2=0/0, 2-3=-1833/0, 3-4=-1833/0 IORD 6-7=0/2634, 5-6=0/0 2-7=-2921/0, 2-6=-893/0, 3-6=-947/0,											
NOTES	10-0/2011											
 Refer to gi This truss Internation R802.10.2 Recomment 10-00-00 c (0.131" X 3 at their out LOAD CASE(F) Plate Incr Uniform L Vert: 5 Concentr. Vert: 8 	rder(s) for truss to trus is designed in accorda is designed in accorda and referenced stand md 2x6 strongbacks, o be and fastened to ead 3") nails. Strongbacks ter ends or restrained 5) Standard loor Live (balanced): I rease=1.00 _oads (lb/ft) -7=-16, 1-4=-88 ated Loads (lb) =-777, 9=-777, 10=-75	ss connections. ance with the 2018 ections R502.11.1 a lard ANSI/TPI 1. in edge, spaced at th truss with 3-10d to be attached to w by other means. Lumber Increase=1.	ind ralls 00,							A BUILT	SS/ON	ANG BER 713

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

November 9,2021

Scale = 1:33.5

TOP CHORD 2x4 SPF No.2(flat)

Plate Offsets (X, Y): [1:0-1-8,Edge], [3:0-3-0,Edge], [8:0-1-8,Edge], [9:Edge,0-1-8], [12:0-1-8,Edge], [13:0-1-8,Edge]												
Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.86	Vert(LL)	-0.22	11-12	>870	480	MT20	197/144
TCDL	15.0	Lumber DOL	1.00	BC	0.96	Vert(CT)	-0.36	11-12	>544	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.50	Horz(CT)	0.03	9	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 75 lb	FT = 5%F, 10%E
LUMBER												

BOT CHORD	2x4 SPF No.2(flat)
WEBS	2x4 SPF No.2(flat)
OTHERS	2x4 SPF No.2(flat)
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing, Except:
	2-2-0 oc bracing: 12-13.
REACTIONS	(lb/size) 1=848/0-3-8, 9=842/0-3-0
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-14=-39/0, 8-9=-70/0, 1-2=-1420/0,
	2-3=-1420/0, 3-4=-2246/0, 4-5=-2247/0,
	5-6=-1871/0, 6-7=-1871/0, 7-8=-3/0
BOT CHORD	13-14=0/0, 12-13=0/1420, 11-12=0/1420,
	10-11=0/2216, 9-10=0/1026
WEBS	2-13=-868/0, 3-12=-114/0, 3-11=0/985,
	4-11=-390/0, 5-11=0/98, 5-10=-406/0,
	6-10=-225/0, 7-10=0/992, 7-9=-1265/0,
	1-13=0/1766

NOTES

- Unbalanced floor live loads have been considered for 1) this design.
- This truss is designed in accordance with the 2018 2) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 4) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in. 5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

