

MiTek USA, Inc. RE: P220296-P220296-02 - Roof - 2217 NW Killarney Ln, Lee's Summit, MO 16023 Swinglev Ridge Rd Site Information: Chesterfield, MO 63017 Project Customer: Summit Homes Project Name: 314-434-1200 Lot/Block: 197 Subdivision: Woodside Ridge Model: Pikewood - Craftsman Address: 2217 NW Killarney Ln City: Lee's Summit State: MO General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Code: IRC2018/TPI2014 Design Program: MiTek 20/20 8.5 Wind Code: ASCE 7-16 Wind Speed: 115 mph Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16 Roof Load: 45.0 psf Floor Load: N/A psf Mean Roof Height (feet): 35 Exposure Category: C No. Seal# Truss Name Date No. Seal# Truss Name Date 152488884 6/14/22 35 36 37 38 39 40 152488918 6/14/22 H1 12345678910112 A1 152488885 A2 6/14/22 6/14/22 152488919 H2 6/14/22 I52488920 I52488921 152488886 A3 H3 6/14/22 6/14/22 6/14/22 A4 H4 152488887 6/14152488888 A5 152488922 J1 J2 6/14/ A6 A7 152488923 152488889 14/22 6/14 41 42 152488924 152488925 152488890 ĴЗ 6/14/22 6/14/2 152488891 J4 A8 6/14/22 6/1443 44 45 J5 J7 B1 B2 152488892 152488926 6/14/22 6/14/2 152488893 6/14/22 152488927 6/14/2 B3 B4 152488928 152488929 152488894 6/14/22 Ĵ8 6/14/22 46 47 152488895 Ĵ9 6/14/22 6/14/213 14 B5 C1 152488896 152488930 Ĵ10 6/14/22 6/14/22 J11 152488897 48 152488931 6/14/22 6/14/22 15 16 17 18 152488898 152488899 Č2 C3 I52488932 I52488933 4555555555556 6/14/22 Ĵ12 6/14/22 J13 6/14/22 6/14/22 C4 D1 152488900 6/14/22 152488934 J14 6/14/2 152488901 14/22 152488935 J15 6 6/14/2 152488902 D2 6/14/22 152488936 J16 6/14/2 152488903 D3 6/ 14/22 152488937 6/14/2 152488904 6/14/22 152488938 D4 J18 6/14/2 152488905 D5 14/22 152488939 6 152488906 6/14/22 152488940 D6 J20 6/14/2 152488907 Đ7 6 152488941 6/14 152488908 D812234512334 14/22 152488942 6/ 152488909 6/ 14/22 152488943 152488943 152488944 152488945 152488946 152488947 152488947 152488948 152488949 61 62 63 152488910 6/14/22 152488911 152488912 64 65 152488913 152488914 14

LAY8

V1

152488950 152488951

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Premier Building Supply (Springhill, KS)20300 W 207th Street.

66 67

68

Truss Design Engineer's Name: Sevier, Scott

152488915

152488916

152488917

My license renewal date for the state of Missouri is December 31, 2023.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Sevier, Scott

June 14,2022

RE: P220296-P220296-02 - Roof - 2217 NW Killarney Ln, Lee's Summit, MO

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

No.	Seal#	Truss Name	Date
69	152488952	V3	6/14/22
70	152488953	V4	6/14/22
71	152488954	V5	6/14/22
72	152488955	V6	6/14/22
73	152488956	V7	6/14/22
74	152488957	V8	6/14/22
75	152488958	V9	6/14/22
76	152488959	V10	6/14/22

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply F	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit, MO DEVELOPMENT, SERVICES
P220296-P220296-02	A1	Hip Girder	1	1	Job Reference (optional	152488884
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083,	F	Run: 8.53 S Apr 27 2022 Print: 8 D:bQsxP1kCKfvO_88_cBdvZyz	3.530 S Apr 27 20	022 MiTek Industries. Inc. S	
	4-1-4		D-0-0		5-10-12 -10-12	20-0-0 4-1-4 20-10-8
		NAILED NAILED	NAILED NAILED	NAILED	NAILED NA	ILED
0	1 <u>2</u> 6 [4x4 =	3x8 =			4x4 =
0-1-5	0-1-5 =	2 12				4 3x4 s
2-10-10 2-9-5 2-9-5	1				A	5
	11			Π		
-	7x8 =	10 19 7x8 =	20 9 7x8 =	21	22	8 × 4x8 II
		THJA26 NAILED	NAILED NAILED	NAILED		JA26
	<u>3-11-8</u> 3-11-8		-0-0		16-0-8 6-0-8	20-0-0 3-11-8
Scale = 1:39.9						
Plate Offsets (X, Y): [6:0-5-	15,0-0-9], [9:0-4-0,0-4-8], [11	:Edge,0-4-13]				
Loading TCLL (roof) Snow (Pf/Pg) 18.5 TCDL BCLL BCDL	(psf) Spacing 25.0 Plate Grip DOL 0/20.0 Lumber DOL 10.0 Rep Stress Incr 0.0* Code 10.0 Incol	2-0-0 CS 1.15 TC 1.15 BC NO WI IRC2018/TPI2014 Ma	C 0.79 Vert 0.77 Vert		3 9 >999 240 3 8-9 >999 180	MT20 197/144
No.2 BOT CHORD 2x6 SPF No. WEBS 2x4 SPF No. SLIDER Right 2x4 S BRACING TOP CHORD TOP CHORD Structural work BOT CHORD Structural work BOT CHORD Rigid ceiling bracing. WEBS 1 Row at mi REACTIONS (lb/size) 6 Max Uplift 6 Max Grav FORCES (lb) - Maxim Tension TOP CHORD 1-2=-2250/6 -4=-1971/6 BOT CHORD 10-11=-140 6-8=-508/20 WEBS 2-10=-59/60 1-10=-413/1 NOTES NOTES Superstant	A *Except* 11-1:2x4 SP No.: P No.2 2-1-13 rood sheathing directly applie rlins, except end verticals, ar rlins (4-2-13 max.): 2-4. g directly applied or 7-11-2 oc idpt 3-10, 3-8 =1342/0-3-8, 11=1309/ 1echanical 1=-49 (LC 12) =-352 (LC 17), 11=-331 (LC =1423 (LC 41), 11=1365 (LC um Compression/Maximum 643, 2-3=-1972/611, 14, 4-6=-2326/667, 6-7=0/0, /393 /396, 8-10=-864/3214,	 Vasd=91mph; TC Ke=1.00; Cat. II; exterior zone and Exterior (2R) 4-1- 15-10-12, Exterior cantilever left and right exposed;C-i for reactions sho DOL=1.60 TCLL: ASCE 7-1 Plate DOL=1.15) DOL=1.15 Plate Exp.; Ce=0.9; Cs Unbalanced snow design. This truss has be load of 12.0 psf c overhangs non-c Provide adequate 7) This truss has be chord live load not 3-06-00 tall by 2- chord and any ot 9) Refer to girder(s) Provide mechani bearing plate car joint 11. One H2.5T Simp recommended to 	b; Vult=115mph (3-second g) DL=6.0psf; BCDL=6.0psf; ICDL=6.0psf; BCDL=6.0psf; IC-C Exterior(2E) 0-1-12 to 4 to 11-2-2, Interior (1) 11-2 r(2E) 15-10-12 to 20-10-8 z d right exposed ; end vertica C for members and forces 8 wn; Lumber DOL=1.60 plate 6; Pr=25.0 psf (roof LL: Lun ; Pg=20.0 psf; Pf=18.9 psf (DOL=1.15); IS=1.0; Rough (=1.00; Ct=1.10, Lu=50-0-0 v loads have been consider en designed for greater of r or 2.00 times flat roof load of oncurrent with other live load e drainage to prevent water en designed for a 10.0 psf I ponconcurrent with any other been designed for a live load ord in all areas where a rec 00-00 wide will fit between 1 her members. for truss to truss connection cal connection (by others) c bable of withstanding 331 lb son Strong-Tie connectors connect truss to bearing w: This connection is for uplifit	h=35ft; (envelope) 4-1-4, 2 to cone; al left and MWFRS e grip h DOL=1.15 Lum Cat C; Fully ed for this min roof live f 13.9 psf on ds. ponding. potom live loads. d of 20.0psf tangle the bottom ns. f truss to uplift at	or the orientation bottom chord. 14) Use Simpson Str Hand Hip) or equ connect truss(es) 15) Use Simpson Str Right Hand Hip) or end to connect tru- 16) Fill all nail holes v 17) "NAILED" indicat per NDS guidelin 18) In the LOAD CAS of the truss are n LOAD CASE(S) Sta 1) Dead + Snow (t Increase=1.15 Uniform Loads (Vert: 1-2=-48 Concentrated Lo	SE(S) section, loads applied to the face oted as front (F) or back (B). andard balanced): Lumber Increase=1.15, Plate (Ib/ft) , 2-4=-58, 4-7=-48, 6-11=-20

June 14,2022

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488884
P220296-P220296-02	A1	Hip Girder	1	1	Job Reference (optional	
Premier Building Supply (Spring	nill, KS), Spring Hills, KS - 66083,				7 2022 MiTek Industries, Inc. S 370Ha3NSaPanL8w3uITXbGK	

Vert: 2=-79 (F), 4=-79 (F), 10=-241 (F), 8=-241 (F), 3=-74 (F), 9=-28 (F), 12=-74 (F), 13=-74 (F), 17=-74 (F), 18=-74 (F), 19=-28 (F), 20=-28 (F), 21=-28 (F), 22=-28 (F)

							RELEASE FOR CONSTRUCTION
Jo	ob	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488885
Р	220296-P220296-02	A2	Roof Special Girder	1	1	Job Reference (optional	
Pre	emier Building Supply (Springh	ill, KS), Spring Hills, KS - 66083,				2022 MiTek Industries, Inc. S 70Hq3NSgPqnL8w3uITXbGK	

Scale = 1:59.1

Plate Offsets ((X, Y): [2:0-2-1,0-3-0],	[4:0-3-0,0-1-12], [5:0	-3-8,0-1-	8], [6:0-4-0,0-2	-5], [7:0-2-4,0-2-0]	, [11:0-3	-9,0-0-5], [16	:0-3-0,0	-4-0]				
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.87 0.62 0.98	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 14-16 14-16 11	l/defl >955 >541 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 168 lb	GRIP 197/144 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHOPD	No.2, 6-7,7-9:2x4 SF 2x6 SP 2400F 2.0E 2x4 SPF No.3 Left 2x4 SP No.2 No.2 3-3-4	1-9-14, Right 2x4 SP		Vasd=91mpl Ke=1.00; Ca exterior zone Exterior(2R) Exterior(2R) 23-10-12, Ex 28-10-12 to 3	7-16; Vult=115mp n; TCDL=6.0psf; B t. II; Exp C; Enclos and C-C Exterior 4-1-4 to 9-1-4, Int 16-1-4 to 21-1-4, I tterior(2R) 23-10-1 30-10-8 zone; can nd vertical left and	CDL=6.0 sed; MW (2E) -0-7 erior (1) Interior (2 to 28- tilever le	Dpsf; h=35ft; FRS (envelop I0-8 to 4-1-4, 9-1-4 to 16-1- 1) 21-1-4 to 10-12, Interio ft and right	-4, r (1)	Inte R80 13) Gra or t bot 14) Use Har	ernationa 02.10.2 a uphical p he orien tom choi e Simpso nd Hip) o	al Resid and ref ourlin re tation o rd. on Stro or equir	erenced standard epresentation doe of the purlin along ong-Tie THJA26 (tions R502.11.1 and d ANSI/TPI 1. ss not depict the size g the top and/or THJA26 on 1 ply, Left rom the left end to
TOP CHORD BOT CHORD WEBS REACTIONS	2-3-11 oc purlins, ex 2-0-0 oc purlins (2-4 Rigid ceiling directly bracing. 1 Row at midpt	-13 max.): 4-6, 7-9. applied or 8-4-2 oc 5-17, 8-13 -3-8, 11=1529/0-3-8 16) C 16), 11=-287 (LC 1	3) 4) 2) 5)	members an Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 Unbalanced design. This truss ha	d forces & MWFR =1.60 plate grip D : 7-16; Pr=25.0 ps 1.15); Pg=20.0 ps late DDL=1.15); I diate DDL=1.15); I b; Cs=1.00; Ct=1.1 snow loads have I has been designed f psf or 2.00 times f	S for rea OL=1.60 f (roof LL ; Pf=18.9 s=1.0; Ro 0, Lu=50 been cor	ctions shown) :: Lum DOL=) psf (Lum ough Cat C; F)-0-0 nsidered for th er of min roof	r; 1.15 Fully his live	15) Use Tru left cho 16) Fill 17) "NA per 18) In t of t	e Simpso ss, Sing end to c ord. all nail h NLED" ir NDS gu he LOAL	on Stro le Ply (connec noles w ndicate uideline D CAS are no	ng-Tie LUS26 (4 Girder) or equival t truss(es) to fron there hanger is in s Girder: 3-10d (ts. E(S) section, load ted as front (F) o	-10d Girder, 4-10d lent at 9-11-4 from the t face of bottom o contact with lumber. 0.148" x 3") toe-nails ds applied to the face
FORCES TOP CHORD	5-6=-6730/1700, 6-7 7-8=-4581/1119, 8-9 9-11=-2994/681, 11	1073, 4-5=-3478/947 7=-5214/1253, 9=-2482/642, -12=0/0	, 6) , 7) 8) 9)	overhangs n Provide adeo All plates are This truss ha chord live loa * This truss h	on-concurrent with quate drainage to MT20 plates unle as been designed f ad nonconcurrent nas been designed	n other liv prevent v ess other for a 10.0 with any d for a liv	ve loads. water ponding wise indicate 0 psf bottom other live loa e load of 20.0	g. d. ds.	1) De		now (ba 1.15	alanced): Lumber	Increase=1.15, Plate
BOT CHORD	14-16=-1470/6569, 11-13=-496/2526 4-17=-298/1704, 5-1 6-14=-3141/806, 7-1	13-14=-823/3795, 7=-3585/830, 4=-474/2193,	10	3-06-00 tall t chord and ar)) Two H2.5T S recommende	n chord in all area by 2-00-00 wide wi by other members. Simpson Strong-Ti ed to connect truss	ill fit betv e connee s to bear	veen the botto ctors ing walls due	to			60	ST SCOT SEVI	тм.
NOTES 1) Unbalance this design	8-14=-276/1061, 8-1 9-13=-184/1170, 5-1 6-16=-551/511 ed roof live loads have n.	6=-91/916,	11	does not cor I) One H2.5T S recommende UPLIFT at jtt	(s) 2. This connect nsider lateral forces Simpson Strong-Ti ed to connect truss (s) 11. This connect nsider lateral forces	s. e conne s to bear ction is fo	ctors ing walls due	to				PE-2001	12A

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building design rm ust verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

IONAL

June 14,2022

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit, MO DEVELOPMENT SERVICES 152488885
P220296-P220296-02	A2	Roof Special Girder	1	1	Job Reference (optional	
Premier Building Supply (Springh	nill, KS), Spring Hills, KS - 66083,				2022 MiTek Industries, Inc. S 70Hq3NSgPqnL8w3uITXbGK	

Uniform Loads (lb/ft)

Vert: 1-4=-48, 4-6=-58, 6-7=-48, 7-9=-58, 9-12=-48, 2-11=-20

Concentrated Loads (lb)

Vert: 4=-79 (F), 17=-241 (F), 5=-74 (F), 16=-28 (F), 18=-74 (F), 19=-74 (F), 30=-28 (F), 31=-28 (F), 32=-863 (F)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488886
P220296-P220296-02	A3	Roof Special	1	1	Job Reference (optional	
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083,				2022 MiTek Industries, Inc. S B70Hq3NSgPqnL8w3uITXbG	

Scale = 1:59.1

Plate Offsets (X, Y): [16:Edge,0-5-13]

Plate Olisets (X, Y): [16:Edge,0-5-1	3]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.67 0.96 0.88	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.31 -0.70 0.09	(loc) 13-15 13-15 11	l/defl >999 >509 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 150 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 *Excep 1.5E 2x4 SPF No.3 *Exce No.2 Structural wood shea		l or	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4. Interior (1) 1 21-10-12, Ex 26-10-6 to 30 exposed ; er members an Lumber DOL	7-16; Vult=115mp n; TCDL=6.0psf; B t. II; Exp C; Enclose and C-C Exterior 1-8 to 6-1-4, Exterior 1-1-4 to 18-1-4, Exterior (2R) 21-10-1 0-10-8 zone; cantil d vertical left and d forces & MWFR: =1.60 plate grip D =7-16; Pr=25.0 psi (2.10)	CDL=6. sed; MW (2E) -0- rior(2R) (terior(2) 2 to 26- ever left right exp S for rea OL=1.6	Dpsf; h=35ft; FRS (envelop 10-8 to 4-1-8, 6-1-4 to 11-1- E) 18-1-4 to 10-6, Interior (and right posed;C-C for ctions shown	4, (1)	LOAD	CASE(S)	Sta	ndard	
	2-2-0 oc bracing: 13 (Ib/size) 11=1117/ Max Horiz 16=85 (LC Max Uplift 11=-162 (Max Grav 11=1408 ((Ib) - Maximum Com	0-3-8, 16=1130/0-3-8 C 15) LC 17), 16=-268 (LC (LC 2), 16=1408 (LC 2		DOL=1.15 P Exp.; Ce=0.9 Unbalanced design. This truss ha load of 12.0	1.15); Pg=20.0 psf; late DOL=1.15); Is 0; Cs=1.00; Ct=1.1 snow loads have I as been designed f psf or 2.00 times f	=1.0; Ro 0, Lu=5 been co or great at roof l	bugh Cat C; F D-0-0 nsidered for th er of min roof bad of 13.9 ps	is live					
TOP CHORD	4-5=-2863/548, 5-6= 6-7=-1730/421, 7-8=	5/395, 3-4=-1837/388, 3150/621, 2021/421, 8-9=-348/ 366/331, 9-11=-308/99	7) '9,	This truss has been designed for a 10.0 psf bottom									
BOT CHORD	15-16=-256/488, 13- 12-13=-289/2122, 11	-15=-462/2687, 1-12=-336/1708 1085/267, 4-13=0/34 3=-304/1773, 2=-54/539,	-,	on the bottor 3-06-00 tall to chord and ar One H2.5T S recommende UPLIFT at jt(n chord in all area by 2-00-00 wide wi yy other members. Simpson Strong-Ti- ed to connect truss (s) 16 and 11. This is not consider late	s where Il fit betv e conne to bear connec	a rectangle veen the botto ctors ing walls due tion is for uplit	im to				STATE OF M SCOTT SEVI	$M. \bigvee Y$
NOTES 1) Unbalance this design	ed roof live loads have	been considered for		 This truss is International R802.10.2 at Graphical put 	designed in accord Residential Code nd referenced star Irlin representation ation of the purlin a	dance w sections idard AN does n	ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the s			C	A A A A	PE-20010	LENGT

June 14,2022

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488887
P220296-P220296-02	A4	Roof Special		1	1	Job Reference (optional	
Premier Building Supply (Springh	nill, KS), Spring Hills, KS - 66083,		Run: 8.53 S Apr 27 2	022 Print: 8.	530 S Apr 27	2022 MiTek Industries, Inc. S	

ID:EJQWv5FB5jwGI9UDCjJtlQz8?RZ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGi WrCDoi794294

Scale = 1:58.1

Plate Offsets (X, Y): [2:Edge,0-2-4]

	x, i): [2:2090,0 2 i]		_										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.87 0.96 0.77	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.27 -0.60 0.09		l/defl >999 >595 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 154 lb	GRIP 197/144 FT = 20%
	2x4 SP No.2 *Excep 1.5E 2x4 SPF No.3 *Exce No.2 Structural wood she except end verticals (3-6-13 max.): 4-6. Rigid ceiling directly bracing.	0-3-8, 16=1111/0-3-8 C 15) LC 17), 16=-278 (LC	d, 3) 16) 4)	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4: Interior (1) 1: 25-0-0, Interia and right exp exposed;C-C reactions shu DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9	7-16; Vult=115m n; TCDL=6.0psf; t. II; Exp C; Encle and C-C Exteric 1-8 to 8-1-4, Ext 3-1-4 to 20-0-0, E 005ed; end vertic c) for members ar own; Lumber DO 7-16; Pr=25.0 p .15); Pg=20.0 ps late DOL=1.15); c) Cs=1.00; Ct=1. snow loads have	BCDL=6. osed; MW or(2E) -0-1 terior(2R) Exterior(2R) S0-10-8 zc cal left and forces & bL=1.60 pla osf (roof LL sf; Pf=18.9 Is=1.0; Rc .10, Lu=50	Dipsf; h=35ft; FRS (envelop 0-8 to 4-1-8, 3-1-4 to 13-1: 8) 20-0-0 to ne; cantileve right & MWFRS for ate grip : Lum DOL=: psf (Lum ugh Cat C; F 0-0-0	-4, r left 1.15 fully	LOAD	CASE(S)) Sta	ndard	
FORCES	(lb) - Maximum Com Tension 1-2=0/39, 2-3=-282/3 4-5=-1756/386, 5-6= 6-7=-2370/502, 7-8=	38, 3-4=-2047/396,	5) 6) /9, 7)	 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads. 6) Provide adequate drainage to prevent water ponding. 7) This truss has been designed for a 10.0 psf bottom 									
BOT CHORD WEBS NOTES 1) Unbalance this design	9-10=0/34, 2-16=-28 15-16=-412/1717, 13 12-13=-175/1624, 1 3-15=-125/219, 4-15 5-15=-600/187, 5-13 6-13=-1238/289, 7-1 7-12=-76/213, 8-12= 3-16=-1842/417, 8-1 ed roof live loads have h.	8) 9) 10	* This truss h on the bottor 3-06-00 tall th chord and ar One H2.5T S recommende UPLIFT at jt(only and doe 0) This truss is International R802.10.2 ar	ad nonconcurrent has been designe n chord in all are yy 2-00-00 wide v yy other members Simpson Strong-T ed to connect trus (s) 16 and 11. Th is not consider la designed in acco Residential Cod nd referenced sta rlin representatio dition of the purlin d.	ed for a liv eas where will fit betw s. Tie connec ss to beari- nis connec ateral force ordance w e sections andard AN on does no	e load of 20.0 a rectangle een the botto tors ng walls due ion is for upli s. th the 2018 R502.11.1 a SI/TPI 1.	Opsf om to ft nd		c		STATE OF M SCOTT SEVI DE NUM PE-20010 PE-20010	ER BER D18807	

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

June 14,2022

						RELEASE FOR C	
Job	Truss	Truss Type	C	Qty Ply	Roof - 2217 NW Killarne	AS NOTED FOR / Ln, Lee's Summit, MO DEVELOPMEN	PLAN REVIEW
P220296-P220296-02	A5	Нір	1	1	Job Reference (optional		488888 F, MISSOURI
Premier Building Supply (Spring	ghill, KS), Spring Hills, KS - 66083,				r 27 2022 MiTek Industries, Inc. S sB70Hq3NSgPqnL8w3uITXbGKV		2022
-0 L	-10-8 5-9-14	10-1-4	15-0-0	19-10-1	12 24-2-2	30-0-0	30-10-8
0-	-10-8 5-9-14	4-3-6	4-10-12	4-10-1	2 4-3-6	5-9-14	0-10-8
0				3x4=	4x4 =		
0-1-1	6		× ²¹²²	5 2324 2324			
		3x6 = 3				3x6 ₂ 7	
5-10-10 5-8-15 5-8-15	18 ⁹ 20					25 2627	
	2						8 9
	17		 L28	29	13 12	11	10

	16	15	14	28	29	13	12	11		
8×8 =	5x5= 3x4= 3x8=	3x8=	3x8= 3x4= 5x5=			8x8 =				
5-9-14	I	9-11-8	1	20-0-	-8	1	24-2-2	1	30-0-0	I
5-9-14	1	4-1-10	1	10-1-	-0	1	4-1-10	1	5-9-14	

Scale = 1:57

Plate Offsets (X, Y): [7:0-0-0,0-0-0], [10:Edge,0-5-13], [17:Edge,0-5-13]

Plate Offsets (X, Y): [7:0-0-0,0-0-0],	[10:Edge,0-5-13], [1	7:Edge,0-	5-13]	1							1	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.55 0.90 0.61	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.45 -0.80 0.06	(loc) 13-14 13-14 10	l/defl >784 >447 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 156 lb	GRIP 197/144
BODL	10.0											, , , , , , , , , , , , , , , , , , ,	FT = 2078
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 *Excep 1.5E 2x4 SPF No.3 *Exce No.2 Structural wood she	ept* 17-2,10-8:2x4 SF athing directly applied	d or	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 17-2-2, Interi 19-10-12 to 2 zone; cantile	7-16; Vult=115m n; TCDL=6.0psf; If t. II; Exp C; Enclo e and C-C Exterio -1-8 to 10-1-4, Ex ior (1) 17-2-2 to 1 26-11-10, Interior ver left and right bosed;C-C for me	3CDL=6. sed; MW r(2E) -0- ^{-/} terior(2R 9-10-12, (1) 26-11 exposed	Dpsf; h=35ft; FRS (envelo 0-8 to 4-1-8,) 10-1-4 to Exterior(2R) -10 to 30-10 ; end vertical	-8	LOAD	CASE(S) Sta	ndard	
BOT CHORD	3-8-1 oc purlins, exe 2-0-0 oc purlins (4-2 Rigid ceiling directly bracing.	-12 max.): 4-6.		MWFRS for grip DOL=1.0 TCLL: ASCE	reactions shown;	Lumber I	DOL=1.60 pla .: Lum DOL=						
	(lb/size) 10=1104/ Max Horiz 17=-99 (L Max Uplift 10=-185 (Max Grav 10=1453	LC 17), 17=-185 (LC	16) <u>4</u>)	DOL=1.15 P Exp.; Ce=0.9	late DOL=1.15); I s Cs=1.00; Ct=1. snow loads have	s=1.0; Ro 10, Lu=5	ough Cat C; F)-0-0						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	5)	This truss ha	is been designed psf or 2.00 times								
TOP CHORD	1-2=0/39, 2-3=-2163 4-5=-1725/361, 5-6= 6-7=-1992/373, 7-8= 2-17=-1330/319, 8-1	1725/361, 2163/388, 8-9=0/39	6)	overhangs n Provide adeo This truss ha	on-concurrent wit quate drainage to is been designed ad nonconcurrent	h other lin prevent for a 10.0	ve loads. water pondin) psf bottom	g.					~
BOT CHORD	16-17=-174/540, 14- 13-14=-224/1887, 1 10-11=-99/498	-16=-269/1863,	8)	* This truss h on the bottor	nas been designe n chord in all area by 2-00-00 wide w	d for a liv as where	e load of 20. a rectangle	0psf			6	TATE OF I	AISSO
WEBS NOTES	3-14=-326/189, 4-14 5-14=-403/167, 5-13 6-13=-63/630, 7-13= 2-16=-178/1390, 8-1 3-16=-105/50	8=-403/167, =-326/189, 7-11=-105	,	chord and ar One H2.5T S recommende UPLIFT at jt(only and doe	ny other members simpson Strong-T ed to connect trus s) 17 and 10. Thi s not consider lat designed in acco	, with BC ie conne s to bear s connec eral force	DL = 10.0ps ctors ing walls due tion is for upl es.	f. e to		,	*		ER X
	ed roof live loads have 1.	been considered for		International R802.10.2 and Graphical put	Residential Code nd referenced sta rlin representatio ation of the purlin	e sections ndard AN n does no	R502.11.1 a ISI/TPI 1. ot depict the s			-	A Star	PE-2001	018807

June 14,2022

						RELEASE FOR	CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply Roof	- 2217 NW Killarne/	AS NOTED FO Ln, Lee's Summit, M DEVELOPM	R PLAN REVIEW
P220296-P220296-02	A6	Hip	1	11 1	Reference (optional	LEE'S SUM	52488889 MIT, MISSOURI
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083,		8.53 S Apr 27 2022 Print: 8. cZqNKRjXD4ehr66zxwKgz8_				/2022
-9-	10-8 7-0-5	12-1-4	17-10-12	ı 2	2-11-11	30-0-0	30-10-8
0-	10-8 7-0-5	5-0-15	5-9-8		5-0-15	7-0-5	0-10-8
0-10-10 	2 15	61 ² 3x4 = 3 8	6x6=	4x4= 5 20	3x4s 6	²¹ 22 23	7 8
	8x8=	14 5x5 =	13 1224 3x4= 3x4=	11 3x8=	10 5x5 =		8x8=
	7.0.5					20.0.0	
	7-0-5	4-11-3	<u>18-0-8</u> 6-1-0		2-11-11 4-11-3	<u> </u>	

Scale = 1:57.1

Plate Offsets (X, Y): [9:Edge,0-5-13], [15:Edge,0-5-13]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 (ES RC201)	8/TPI2014	CSI TC BC WB Matrix-S	0.85 0.85 0.58	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-13 11-13 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 159 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SPF No.3 *Exce Structural wood shea 3-0-3 oc purlins, exc 2-0-0 oc purlins (2-1 Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 9=1084/0- Max Horiz 15=113 (L	applied or 10-0-0 oc 4-11 3-8, 15=1084/0-3-8	or 3)	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 17-10-12, Ex 24-11-10 to exposed; er members an Lumber DOL TCLL: ASCE Plate DOL= DOL=1.15 P Exp.; Ce=0.5	7-16; Vult=115m h; TCDL=6.0psf; it. II; Exp C; Enclo and C-C Exterio: -1-8 to 12-1-4, Est terior(2R) 17-10- 30-10-8 zone; can d vertical left and d forces & MWFf =160 plate grip 7-16; PT=25.0 ps late DCL=1.15; 9; Cs=1.00; Ct=1. snow loads have	BCDL=6. psed; MW r(2E) -0 tterior(2E 12 to 24- ntilever led right exp RS for rea DOL=1.60 sf (roof Ll f; Pf=18.9 s=1.0; Ro 10, Lu=5	Dpsf; h=35ft; FRS (envelop 0-8 to 4-1-8,) 12-1-4 to 111-10, Interion ft and right bosed;C-C for ctions shown) :: Lum DOL=: 0 psf (Lum 0 ugh Cat C; F 0-0-0	r (1) ; 1.15 fully					
FORCES	Max Grav 9=1470 (L (lb) - Maximum Com	.C 47), 15=1475 (LC 47 pression/Maximum		design.	as been designed								
TOP CHORD	Tension 1-2=0/34, 2-3=-2236 4-5=-1561/369, 5-6= 6-7=-2232/370, 7-8=	/371, 3-4=-1842/371,	6) 7)	load of 12.0 overhangs n Provide ade This truss ha	psf or 2.00 times on-concurrent wit quate drainage to as been designed	flat roof l th other li prevent for a 10.	bad of 13.9 p ve loads. water ponding D psf bottom	sf on g.					
BOT CHORD	7-9=-1363/313 14-15=-270/691, 13- 11-13=-126/1580, 10 9-10=-179/653		8)	* This truss I on the bottor	ad nonconcurrent nas been designe m chord in all are	d for a liv as where	e load of 20.0 a rectangle	Opsf				OF M	ALSS
WEBS	3-13=-508/206, 4-13 4-11=-174/160, 5-11	=-57/570, =-26/524, 6-11=-516/2 01/1316, 7-10=-97/131	,	chord and and and and and one H2.5T stress recommended and the second stress of the second st	by 2-00-00 wide w ny other members Simpson Strong-T ed to connect trus (s) 15 and 9. This	s, with BC ie conne s to bear	DL = 10.0psf ctors ing walls due	to				STATE OF M	M. YEY
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for	11	only and doe) This truss is International R802.10.2 a) Graphical pu	ss not consider la designed in acco Residential Code nd referenced sta Irlin representatio ation of the purlin d.	teral force rdance w e sections indard AN n does n	es. ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the s	nd			and a second	PE-20010	L ENGLIS

June 14,2022

														RELEASI	FOR CO	NSTRUCTION
Job	Ті	russ		Truss	Туре		Qty		Ply	Ro	of - 221	7 NW Ki	illarne	AS NOT	D FOR PI	LAN REVIEW
P220296-P2202	296-02 A	7		Hip			1		1			nce (op			15248	MISSOURI
Premier Building Supp	oly (Springhill, I	KS), Sp	ring Hills, KS - 66083	,		Run: 8.53 S A	pr 27 2022 F	rint: 8.	530 S Apr	r 27 202	2 MiTek I	ndustries	Inc. S	at Jun 1111:1236	21/	2022
						ID:fal9CXAPzx	4Y4wGxvv5	BPWz8	_lm-RfC?	PsB70F	lq3NSgP	qnL8w3u	ITXbG	WrCDoir 94292.f		
	-0-10-	8	6-5-14	1		14-1-4	15-10	-12		22-0-1			8-6-2 ₁	30-0	0	30-10-8
	0-10-	8	6-5-14	I		7-7-6	1-9	8		6-2-0)	1	-5-7	6-5-1	4	0-10-8
7-10-10 7-8-15 7-8-15 0-1-11	2 1 16	8x8 =	18	3:	=	4 0-1-11	14 3x4=	4x63 6 13 5x8				2 3×4.	2324	3 25 6=	26	9 10 8x8=
			<u>6-5-14</u> 6-5-14			<u>3-11-8</u> '-5-10	16-0 2-1-				3-6-2 -5-10			<u> </u>		
Scale = 1:57.3	. [11.Edge.)	0 5 40	1 [42:0 4 0 0 2 0]		0.5.421											
Plate Offsets (X, Y)					,0-5-13]	681		DEEL			(10.0)	l/dofl	/a			
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL		5.0 9.0 9.0 9.0 9.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.99 0.76 0.75	DEFL Vert(I Vert(0 Horz(LL) CT)	in -0.14 -0.31 0.06	(loc) 12-13 12-13 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/19	
BCDL	10	0.0												Weight: 164 lb	FT = 20	0%
BOT CHORD 2x4 WEBS 2x4 No. BRACING TOP CHORD 4c4 BOT CHORD 4c4 WEBS 1 R REACTIONS (b/si Max Max FORCES (b) TOP CHORD 1-2 5-6 8-9 9-1 BOT CHORD 15- 12- WEBS 3-1 5-1 8-1 8-1	.2 4 SP No.2 4 SPF No.3 * .2 ructural wood cept end vert 1-4 max.): 5- gid ceiling dir acing. Row at midpt ize) 11=1 : Horiz 16=1 : Uplift 11=-; Grav 11=1) - Maximum nsion 2=0/34, 2-3=- 5=-1442/351, 9=-2390/346, 11=-1409/29; -16=-215/402 -14=-213/207; 13=-268/196, 13=-698/247, 12=-170/1704	Excep d shea ticals, -6. rectly a 222 (L 2222 (L 222 (L) (L 222 (L)	C 17), 16=-222 (L C 41), 16=1469 (I pression/Maximum 349, 3-5=-1785/33 1771/336, -0/34, 2-16=-1404, 5=-314/2066, -12=-110/375 39/442, 80/408, 180/1690, 5=-24/199, 8-12=-6	- P ed, IS c 3 (2 16) e C 16) e C 41) e (2 296, e (2 296, e (2 296, e (2 296, e) (2 322 - 1) r 1	 Vasd=91mp Ke=1.00; Cc exterior zon Interior (1) 4 15-10-12, E 22-11-10 to exposed; e members ar Lumber DO TCLL: ASCI Plate DOL= DDL=1.15 F Exp.; Ce=0. Unbalanced design. This truss h load of 12.0 overhangs r Provide ade This truss h chord live lo * This truss on the botto 3-06-00 tall chord and a One H2.5T recommend UPLIFT at jt only and do This truss in Internationa R802.10.2 a Graphical put 		BCDL=6.0 osed; MW or(2E) -0-1 xterior(2E) -12 to 22-1 nutilever lef d right exp RS for reac DOL=1.60 sif (roof LL sf; Pf=18.9 IS=1.0; Ro 1.0, Lu=50 been com d for greate flat roof lc th other liv o prevent v d for a lov as where a will fit betw s. Tie connect sis to bear sis to bear sis to bear sis to bear sis to bear mile betw can when a sis to bear and a dor sis to bear sis to bear and a dor sis to bear sis t	psf; $h = FRS$ (c) FRS (c) r = FRS (c) r = FRS (c) $r = r = 10^{-10}$ (c) $r = 10^{-10}$ (c)	=35ft; nvelope 4-1-8, 4 to Interior (ight -C for shown; DOL=1. um at C; Fu d for this in roof lif 13.9 psf s. onding. ottom ive loads of 20.0p ngle e botton ls due to tor uplift 2018 11.1 and 1.	(1) 15 Ily s ve on s.s s f n o d				SCOT SEV SEV PE-2001 PE-2001	ER 018807 L EN	
				l	OAD CASE(S)	Standard								alle	e 14,20	22
														Jan	,20	

16023 Swingley Ridge Rd Chesterfield, MO 63017

											RELEAS	SE FOR CONSTRUCTION
Job	Truss		Truss Ty	/pe		Qty	P	ly	Roof - 221	7 NW Killarr	AS NO Nev Ln, Lee's Sum	TED FOR PLAN REVIEW
P220296-P220296-02	2 A8		Commo	on		3	1			ence (optiona	1.55	152488891 S SUMMIT, MISSOURI
Premier Building Supply (Spr	nghill, KS), S	Spring Hills, KS - 66083,			Run: 8.53 S Apr	27 2022 Pri	nt: 8.530	S Apr 27	2022 MiTek I	ndustries. Inc.	Sat Jun 1111:1236 GI (WrCDoi) 94292.1f	21/2022
	10.0						5020_N			qneowourixb		
0- 0-	10-8	7-4-12 7-4-12			15-0-0 7-7-4			<u>22-7</u> 7-7-			<u>30-0-0</u> 7-4-12	
						4x8=						
Scale = 1:57 Plate Offsets (X, Y): [2:0	7x8= 2 2 2 3-0,0-2-12	13 <u>10-0-0</u> 10-0-0 2], [10:0-4-0,0-4-8], [11		3x4 = 4 = 14 ¹⁵ 4 11 7x8=	19	5 20-0-0 10-0-0		20	16 ₁₇ 10 7x8=	1.5x4 ø 3x4 s 6 7	18 3x4 8 30-0-0 10-0-0	9 3x4 9 4x6 II
Loading	(psf)	Spacing	2-0-0		CSI		DEFL		in (loc)	l/defl L/		GRIP
(0)	25.0 3.9/20.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.85	/ert(LL) /ert(CT) -0.	30 10-11 51 10-11	>999 24 >700 18	0	244/190
TCDL BCLL	10.0 0.0*	Rep Stress Incr Code	YES IRC2018		WB Matrix-S	0.43	Horz(C1	Γ) 0.0	05 9	n/a n/		
BCDL	10.0										Weight: 152 lt	b FT = 20%
	400F 2.0E	*Except* 1-4,6-9:2x4	2) SP	Vasd=91mph;	-16; Vult=115mp TCDL=6.0psf; B	CDL=6.0p	sf; h=3	5ft;				
No.2 BOT CHORD 2x6 SPF				exterior zone a	II; Exp C; Enclos and C-C Exterior	(2E) -0-10	-8 to 4-	1-8,				
WEBS 2x4 SPF 2.0E	No.3 *Exce	ept* 12-2:2x6 SP 2400	F	20-0-0, Interior	-8 to 15-0-0, Exte r (1) 20-0-0 to 30	-0-0 zone	cantile					
SLIDER Right 2x4 BRACING	SP 2400F	2.0E 4-1-0		exposed;C-C f	sed ; end vertica or members and	forces & I	WFRS	S for				
TOP CHORD Structura		eathing directly applied acept end verticals.	lor	reactions show DOL=1.60	vn; Lumber DOL:	=1.60 plate	e grip					
		applied or 10-0-0 oc	3)		′-16; Pr=25.0 psf l5); Pg=20.0 psf;							
WEBS 1 Row at	-	3-12			te DOL=1.15); ls Cs=1.00; Ct=1.1		gh Cat	C; Fully				
REACTIONS (lb/size) Max Horiz	12=-141	· /	4)	Unbalanced sr design.	now loads have b	been consi	dered f	or this				
		.C 17), 12=-230 (LC 1 LC 3), 12=1479 (LC 3)			been designed f of or 2.00 times fl	0						
FORCES (Ib) - Max Tension	imum Con	npression/Maximum	6)	-	n-concurrent with been designed f			om				
	1/418, 7-9=	3/299, 3-5=-1976/405, =-2218/399,		chord live load * This truss ha	nonconcurrent v s been designed chord in all areas	with any of I for a live	her live	loads. 20.0psf			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m
BOT CHORD 9-12=-33 WEBS 5-10=-14)=-420/273,		3-06-00 tall by	2-00-00 wide wi other members,	ll fit betwe	en the t	oottom			E OF	MISSO
	6/735, 3-1 ⁻	1=-399/268,	8)	One H2.5T Sir	npson Strong-Tie to connect truss	e connecto	ors				0151	TT M.
NOTES				UPLIFT at jt(s)	9 and 12. This of not consider late	connection	is for u			A		VIER
 Unbalanced roof live this design. 	oads have	been considered for	9)	This truss is de	esigned in accord	dance with	the 20			A A	*	
				R802.10.2 and	esidential Code referenced stan					ų.	Scottrus	Servis
			LO	AD CASE(S)	Standard					Ŷ	PE-200	1018807
											CSSION,	AL ENGLA
											an	100000

June 14,2022

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488892
P220296-P220296-02	B1	Half Hip Girder	1	3	Job Reference (optional)	
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083,			•	⁷ 2022 MiTek Industries, Inc. S)Hq3NSgPqnL8w3uITXbGKW	
	$\begin{array}{c} 6-11-4 \\ 5x8 \\ 6^{12} \\ 25 \\ 25 \\ 224 \\ 224 \\ 23 \\ 22 \\ 3x10 \\ 3x10 \\ 3x10 \\ 1 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2^{-3}	6-7-0 6x6= 8 3 3915 40 4x4= LUS24 LUS	0 41 42 24 LUS24 LUS24 13 4x4 II	$\begin{array}{c} & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$

Scale = 1:76.9

Plate Offsets (X, Y): [3:0-4-0,0-2-2], [4:0-5-4,0-2-8], [14:0-5-8,0-2-8], [16:0-5-0,0-3-0]

	X, Y): [3:0-4-0,0-2-2],	, [4.0-3-4,0-2-6], [14.	0-5-8,0-2-6	6], [10.0-5-0,0	1								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 25.0 18.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.64 0.77 0.90	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.21 -0.36 0.14	(loc) 14-15 14-15 12	l/defl >999 >724 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0											Weight: 638 lb	FT = 20%
	2x4 SP 1650F 1.5E No.2, 4-7:2x4 SP No 2x6 SPF No.2 *Exce No.3, 17-6,9-13:2x4 2x4 SPF No.3 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (lb/size) 2=1367/0 17=5024/ Max Horiz 2=172 (L0 Max Uplift 2=-400 (L 17=-1658 Max Grav 2=1534 (I	5.2 spt* 24-3,20-18:2x4 : SP 1650F 1.5E athing directly applie cept end verticals, a 0-0 max.): 4-11. applied or 6-0-0 oc -3-8, 12=2159/0-3-8 0-3-8 C 13) C 16), 12=-703 (LC - (LC 13)	PF SPF 1) ad or nd 12), ²⁾	OTES 3-ply truss t (0.131"x3") Top chords staggered a Bottom chord staggered a Web connect Except menr oc. All loads are except if not	4-23=-410/1370, 5-21=-409/202, 6 11-14=-1897/606 8-16=-7540/2416 12-14=-221/97 o be connected to nails as follows: connected as foll t 0-9-0 oc, 2x4 - 1 rds connected as t 0-9-0 oc, 2x4 - 1 rds connected as t 0-9-0 oc, 2x4 - 2 e considered equated as front (F) or section. Ply to ply co	5-21=-134 11, 8-15=- 5, 9-15=-1 ows: 2x6 I row at 0- follows: 2 row at 0- follows: 2 row at 0- follows: 2 row at 0- follows: 2 ally applie back (B)	3/4382, 357/1461, 016/229, th 10d - 2 rows 9-0 oc. x6 - 2 rows 9-0 oc. at 0-9-0 oc, gered at 0-7- d to all plies, face in the LC		load over 8) Pro 9) This cho 10) * Th on th 3-0 cho 11) Two rec UPI doe 12) Once rec UPI	d of 12.C whangs vide ade s truss h rd live lo his truss the botto 6-00 tall ord and a b H2.5T commence LIFT at j s not ccc e H2.5T commence LIFT at j) psf or non-co equate has bee bad non has be bom cho by 2-0 any oth Simps ded to c tit(s) 12. onsider Simps ded to c c tit(s) 2.	2.00 times flat r ncurrent with oth drainage to preven en designed for a nconcurrent with een designed for rd in all areas w 0-00 wide will fit er members. on Strong-Tie co connect truss to This connection lateral forces. on Strong-Tie co connect truss to	vent water ponding. a 10.0 psf bottom a ny other live loads. r a live load of 20.0psf here a rectangle between the bottom ponnectors bearing walls due to n is for uplift only and
FORCES	17=5249 (lb) - Maximum Com	(LC 37)	3)	unless other Unbalanced	distribute only loa rwise indicated. I roof live loads ha				rec	ommeno LIFT at j	ded to d it(s) 17.	. This connection	bearing walls due to n is for uplift only and
TOP CHORD	Tension 1-2=0/8, 2-3=-911/2 4-5=-2010/666, 5-6= 6-8=-692/2122, 8-9= 9-11=-6077/1912, 1 2-24=-116/25, 3-24=	=-2010/666, =-5273/1760, 1-12=-1795/574	4)	Vasd=91mp Ke=1.00; Ca exterior zon	E 7-16; Vult=115n h; TCDL=6.0psf; at. II; Exp C; Encl e and C-C Exterio I-1-8 to 6-11-4, E;	BCDL=6. osed; MW or(2E) -0-1	Dpsf; h=35ft; FRS (envelop 10-8 to 4-1-8,	,	UOE	IS NOL CC		lateral forces.	MISSOL
	3-23=-974/2832, 21 20-21=-1899/588, 12 18-20=0/55, 17-18= 17-19=-5247/1679, 6-16=-2507/846, 15	-23=-995/2902, 9-20=-2186/675, -87/290, 16-19=-5036/1626,		Interior (1) 1 right expose for members	14-0-2 to 40-2-4 z d; end vertical le s and forces & M L=1.60 plate grip	one; canti eft and righ WFRS for	lever left and nt exposed;C- reactions sho	-C		1	S.	sev otto	IER Service
	14-15=-1939/6192, 9-14=-416/272, 12-1		5) 6)	Plate DOL= DOL=1.15 F Exp.; Ce=0.	E 7-16; Pr=25.0 p 1.15); Pg=20.0 ps Plate DOL=1.15); 9; Cs=1.00; Ct=1 I snow loads have	sf; Pf=18.9 Is=1.0; Ro .10, Lu=50	9 psf (Lum ough Cat C; F)-0-0	ully			SA	PE-2001	L ENGLE

June 14,2022

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit, MO DEVELOPMENT SERVICES 152488892
P220296-P220296-02	B1	Half Hip Girder	1	3	Job Reference (optional	
Premier Building Supply (Spring	nill, KS), Spring Hills, KS - 66083,				7 2022 MiTek Industries, Inc. S DHq3NSgPqnL8w3uITXbGKW	

- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 16) Use Simpson Strong-Tie THJU26 (SGL & SGL LC 2-PLY) or equivalent at 6-11-10 from the left end to connect truss(es) to front face of bottom chord.
- 17) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 4-0-0 oc max. starting at 8-10-0 from the left end to 38-10-0 to connect truss(es) to front face of bottom chord.
- 18) Fill all nail holes where hanger is in contact with lumber.
- LGT3 Hurricane ties must have three studs in line below the truss.
- 20) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 289 Ib down and 108 lb up at 32-11-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft)
 - Vert: 1-3=-48, 3-4=-48, 4-11=-58, 2-24=-20, 3-20=-20, 17-18=-20, 14-16=-20, 12-13=-20
 - Concentrated Loads (lb)
 - Vert: 23=-825 (F), 21=-287 (F), 14=-289 (F), 31=-287 (F), 32=-287 (F), 33=-287 (F), 34=-289 (F), 36=-289 (F), 37=-289 (F), 38=-289 (F), 39=-289 (F), 40=-289 (F), 41=-289 (F), 42=-289 (F), 43=-289 (F), 44=-289
 - (F), 45=-289 (F)

							RELEASE FOR C	
Job	Truss	Truss Type		Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR V Ln, Lee's Summit, MO DEVELOPME	PLAN REVIEW
P220296-P220296-02	B2	Half Hip		1	1	Job Reference (optional		488893 T, MISSOURI
Premier Building Supply (Springh	nill, KS), Spring Hills, KS - 66083,		•			7 2022 MiTek Industries, Inc. S 70Hq3NSgPqnL8w3uITXbGKV		/2022
-0-10-8	8-11-4	13-7-10	18-2-4	24-4-0	25-7-0	32-11-12	40-4-0	1
0-10-8	8-11-4	4-8-6	4-6-10	6-1-12	1-3-0 1.5x4 µ	7-4-12	7-4-4	I
	6)	:6= 3x4=	4x6=		3x6=	4x6=		6=
5-5-0 5-1-15 5-3-10 4-1-15 0-1-11	6^{12} 6^{12} 6^{12} 6^{12} 6^{12} 6^{12} 6^{12}			28 🖂	7 8	29 9 9		0 + 0

Scale = 1:77.1

Plate Offsets (X, Y): [2:0-3-4,0-0-5]	, [3:0-1-8,0-0-10], [6:0	0-1-12,0-2	-0], [13:0-5-12	,0-2-8], [14:0-4-8	3,0-2-0], [2	2:0-3-0,0-2-8	8]					
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 25.0 18.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.91 0.84 0.90	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.30 -0.51 0.25	21-22	l/defl >734 >427 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0											Weight: 209 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2-2-0 oc purlins, ex 2-0-0 oc purlins (2-2 Rigid ceiling directly bracing.	1.5E 1.5E 1.5E 1.5E 2-1-6 1.5E 2-2 oc 3-8, 11=783/0-3-8, 15 1.5E 1.5	, 1) SPF 2) ed or	this design. Wind: ASCE Vasd=91mp Ke=1.00; Ca exterior zone Interior (1) 4 Interior (1) 1 right expose for members Lumber DOL TCLL: ASCE Plate DOL=1	roof live loads h 7-16; Vult=115r h; TCDL=6.0psf; t. II; Exp C; Encl e and C-C Exterii -1-8 to 8-11-4, E 6-0-2 to 40-2-4 z d; end vertical le and forces & M _=1.60 plate grip E 7-16; Pr=25.0 p late DOL=1.15); Pg=20.0 p;	nph (3-sed BCDL=6. osed; MW or(2E) -0-' xterior(2R cone; canti eft and righ WFRS for DOL=1.60 psf (roof LI sf; Pf=18.5	cond gust) Dpsf; h=35ft; FRS (envelo 10-8 to 4-1-8,) 8-11-4 to 14 lever left and the exposed;C reactions ship C L: Lum DOL=	pe) 5-0-2, I -C own; 1.15	or t		tation o rd.	of the purlin along	s not depict the size the top and/or
	Max Horiz 2=217 (L0 Max Uplift 2=-125 (L 16=-469 (Max Grav 2=808 (L0 16=2008	LC 16), 11=-210 (LC (LC 13) C 38), 11=994 (LC 37	// 4)	Exp.; Ce=0.9 Unbalanced design. This truss ha	as been designed psf or 2.00 times	.10, Lu=5 e been cor d for great	0-0-0 nsidered for t er of min roo	his f live					
FORCES	(lb) - Maximum Com	. ,			on-concurrent w			51 011					
TOP CHORD	Tension 1-2=0/1, 2-3=-668/1 4-5=-801/179, 5-6=- 8-9=-1475/373, 9-1(10-11=-919/241	278/458, 6-8=-1475/	6) 7) 373, 8)	This truss ha chord live loa * This truss l	quate drainage to as been designed ad nonconcurren nas been designe m chord in all are	d for a 10.0 It with any ed for a liv	0 psf bottom other live loa e load of 20.	ads.			A	172	AISSOL
BOT CHORD	2-23=-133/276, 22-2 21-22=-179/806, 19	=-2/20, 16-17=-75/93 5-18=-1293/340, -15=-545/207, 2-13=0/148, 12=0/53 4=-470/2031, 4=-433/156, 3=-390/1801,	3, 9)	3-06-00 tall I chord and ar One H2.5T \$ recommende UPLIFT at jtr only and doe 0) This truss is International	y 2-00-00 wide by 2-00-00 wide y other member Simpson Strong- ed to connect tru (s) 11, 2, and 16 is not consider la designed in acco Residential Coo nd referenced st	will fit betw rs. Tie conne ss to bear . This conn ateral force ordance w le sections	veen the bott ctors ing walls due nection is for es. ith the 2018 \$ R502.11.1 a	e to uplift		_	R.	SCOT: SEVI SEVI PE-2001 PE-2001	ER Server D18807 E

June 14,2022

								FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof - 2217 NW Killarn	AS NOTE e/ Ln, Lee's Summi DEVEL	D FOR PLAN REVIEW
P220296-P220296-02	В3	Half Hip		1	1	Job Reference (optiona	1 5510 6	I52488894 SUMMIT, MISSOURI
Premier Building Supply (Springh	nill, KS), Spring Hills, KS - 66083	i,	Run: 8.53 S Ap ID:4KFohlyLe2r	or 27 2022 Print 8cjQrgWJ5zTz	: 8.530 S Apr 2 7zgL-RfC?PsB7	7 2022 MiTek Industries, Inc. 70Hq3NSgPqnL8w3uITXbGK\	Sat Jun 1111: 639 ArCDoi7J4=3C	21/2022
					26-11-1	12		
-0-10-8	7-9-9	10-11-4	18-2-4 2	2-7-0 124	1-11-4	33-5-4	40-4-0	1
0-10-8	7-9-9	3-1-11	7-3-0 4	-4-12 2	2-4-4 2-0-8	6-5-8	6-10-12	
		7x8=			3x6=			4x6=
11		₩ 5	27 6	7	8	9 28 10	0 29	11

Scale = 1:77.3

Plate Offsets (X, Y): [2:0-3-4,0-2-13], [3:0-0-9,0-1-9], [5:0)-4-0,0-3-	3], [15:0-2-12,0	-2-8], [17:Edge,0	-3-8], [19	0-4-8,0-2-0]	, [23:0-4	-0,0-1-8]			-	
Loading FCLL (roof) Snow (Pf/Pg) FCDL	(psf) 25.0 18.9/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	1.00 0.93 0.87	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 20-22 20-22 17	l/defl >602 >301 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCLL BCDL	0.0* 10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 224 lb	FT = 20%
UMBER OP CHORD SOT CHORD VEBS SLIDER BRACING OP CHORD SOT CHORD VEBS REACTIONS	2x4 SP No.2 *Excep 2x4 SP No.2 *Excep No.3, 3-21:2x4 SP 2 2x4 SPF No.3 Left 2x4 SP No.2: Structural wood she 4-5-11 oc purlins, e 2-0-0 oc purlins (2-2 Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 2=597/0-; 17=1666/ Max Horiz 2=261 (L1 Max Uplift 2=-128 (L1 Max Uplift 2=-128 (L1 Max Grav 2=901 (L1 17=-495 (Max Grav 2=901 (L1 17=2029	at* 24-23,20-18:2x4 S 4400F 2.0E 2-1-6 athing directly applie xcept end verticals, a 2-0 max.): 5-11. applied or 2-2-0 oc 5-19 3-8, 12=792/0-3-8, 0-3-8 C 13) C 16), 12=-204 (LC (LC 13) C 40), 12=1067 (LC 3)	1) PF 2) d or and 3) 12), 4)	 this design. Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4. 18-2-4, Interia and right exp exposed;C-C reactions sho DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.5 Unbalanced design. 	roof live loads ha 7-16; Vult=115m n; TCDL=6.0psf; t. II; Exp C; Enclo and C-C Exteric 1-8 to 10-11-4, E ior (1) 18-2-4 to 4 oosed ; end vertic C for members an pwn; Lumber DO 5.7-16; Pr=25.0 p (15); Pg=20.0 ps late DOL=1.15); C cs=1.00; Ct=1. snow loads have is been designed ps for 2.00 times	aph (3-sec BCDL=6.0 bosed; MW rr(2E)-0-7 Exterior(2I 0-2-4 zor al left and d forces a L=1.60 pl sf (roof LL f; Pf=18.5 Is=1.0; R 10, Lu=50 been cor for greate	cond gust) Opsf; h=35ft; FRS (envelo 0-8 to 4-1-8 R) 10-11-4 to te; cantilever f right & MWFRS for ate grip .: Lum DOL= 0 psf (Lum ough Cat C; I 0-0-0 usidered for t er of min roo	pe) left r 1.15 -ully his f live	Inte R80 13) Gra or t	ernationa 02.10.2 a phical p he orien tom cho	al Resid and ref ourlin re tation o rd.	ned in accordance dential Code sec erenced standare epresentation doe of the purlin along	ce with the 2018 tions R502.11.1 and d ANSI/TPI 1. es not depict the size
ORCES	(lb) - Maximum Com Tension		6)	overhangs n	on-concurrent wi	th other liv	/e loads.						an
FOP CHORD	1-2=0/1, 2-3=-852/1 4-5=-1503/277, 5-6= 7-9=-1324/299, 9-10 10-11=-879/239, 11	=-296/291, 6-7=-321/)=-1297/304,	7)	All plates are This truss ha chord live loa	3x4 MT20 unles as been designed ad nonconcurrent as been designed	for a 10.0 with any	se indicated.) psf bottom other live loa	ads.			B	STATE OF I	MISSOUR
BOT CHORD	22-23=-240/1264, 2 19-20=-26/695, 18-2 17-19=-1956/525, 1 6-16=-581/208, 15-1	20=-5/9, 17-18=-146/ 6-19=-1412/394, 16=-72/707, 14-15=0, 14=-14/16, 12-13=-87 2=-237/1241, 15=-172/911, 13=-816/264,	31, 6, (107, 7/98	on the bottor 3-06-00 tall b chord and ar 0) One H2.5T S recommende UPLIFT at jt(only and doe 1) Two H2.5T S recommende UPLIFT at jt(no chord in all are by 2-00-00 wide v yy other members Simpson Strong-1 ad to connect trus s) 12 and 2. This is not consider la Simpson Strong-1 ad to connect trus (s) 17. This connect sider lateral force	as where vill fit betw s, with BC ie connecti s to bear connecti teral force ie connecti s to bear ection is fo	a rectangle veen the bott DL = 10.0ps ctors ing walls due on is for uplif es. ctors ng walls due	om f. e to t		ł	A PAR	NUM PE-2001	ER BER 018807

16023 Swingley Ridge Rd Chesterfield, MO 63017

							RELEASE FOR COM	INSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PU AS NOTED FOR PL V Ln, Lee's Summit, MO DEVELOPMENT 15248	AN REVIEW
P220296-P220296-02	B4	Half Hip		1	1	Job Reference (optional	LEE'S SUMMIT, I	MISSOURI
Premier Building Supply (Spring	nill, KS), Spring Hills, KS - 66083,					2022 MiTek Industries, Inc. 5 sB70Hq3NSgPqnL8w3uITXb		2022
-0-10-8	1-3-3	12-11-4	18-2-4	25-6-4		28-11-4 32-10-4		
0-10-8	7-9-9	5-1-11	5-3-0	7-4-0		' 3-5-0 ' 3-11-0		
0 -		۲ ۲ 5		4x6= 6 2627		5x4 II 3x6=	3x8= 9 30	3x4 ။ 10
-5-0 ⊣ 7-1-15 7-3-1 6-1-15 0-1-1	6^{12} $\frac{3^{3x^4}}{4}$	0-1			28 ⊠ ⊠	7 298		

	0-10-8 7-9-9	5-1-11	5-3-0	7-4-0		5-0 3-11-0		
			7x8= 4	4x6=	1.5x4 u	3x6=	3x8=	3x4 u
+ 4 1 2 2 2 2 2		÷= 5		3 2627 🛛 🖂	28 7	298	9 <u>30</u>	10
-1-0		ġ,		\mathbb{R}	B	L#J		*
	6 	3x4 II 4						
15	25							م
7-5-0 7-1-` 6-1-`	2324 23		X 🛛			\$		7-1-15
~								× ×
	3				\parallel \parallel /			
0 0 0 0 0 0 0		20 19	31 ₁₆	_7			a	
⊥ ÷⊤÷ ?⊤		4x6= 3x6=	MT18HS 5x8 ∎ 1	5 32	14 13	33	12 34	11 ⊥
	4x6 II 3x4 II				3x6=	00	1.5x4 u	4x4=
	4x4 u			(8 II	5x8=			
				x4 II				
	2-6-0 7-9-9	11-4-5	-18 ۱8-0-8 15-10-0	2-4 1 24-4-0	25-6-4	32-10-4	40-4-0	1
	2-6-0 5-3-9		4-5-11 2-2-8 0-1		1-2-4	7-4-0	7-5-12	
			0-1	-12				

Scale =	1:73.9
---------	--------

Plate Offsets (X, Y): [2:0-3-4,0-0-5],	[3:0-1-13,0-1-10], [5	:0-4-0,0-3	-3], [18:0-4-0,E	dge], [21:0-2-0,0)-0-8]							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.94 1.00 0.76	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.48 -0.71 0.08	(loc) 18-20 18-20 11	l/defl >457 >307 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 223 lb	GRIP 197/144 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SPF No.2 *Exce 8-10:2x4 SP 2400F 2x4 SP No.2 *Excep 1.5E 2x4 SPF No.3 Left 2x4 SP No.2 : Structural wood she 4-11-2 oc purlins, e 2-0-0 oc purlins (2-2 Rigid ceiling directly bracing. 1 Row at midpt	2.0E t* 3-19:2x4 SP 1650 2-1-6 athing directly applie xcept end verticals, a 2-0 max.): 5-10. applied or 1-7-8 oc 5-17, 6-15, 9-11, 9-1 3-8, 11=723/0-3-8, 0-3-8 C 13) C 16), 11=-270 (LC LC 13) C 38), 11=971 (LC 35	, 2) F d or and 3 3 4) 12), 5)	this design. Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 20-0-2, Inter and right exp exposed;C-C reactions shu DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.5 Unbalanced design. This truss ha load of 12.0 overhangs n	roof live loads hat 7-16; Vult=115m h; TCDL=6.0psf; t. II; Exp C; Enclo and C-C Exterio -1-8 to 12-11-4, E to (1) 20-0-2 to 4 to (1) 20-0-2 to (1) to (1) 20-0-2 to (1) 20-0-2 to (1) to (1) 20-0-2 to (1) 20-0-2 to (1) to (1) 20-0-2 to (1) 20-0-2 to (1) 20-0-2 to (1) to (1) 20-0-2 to (1) 20-0	nph (3-sec BCDL=6. bosed; MW or(2E) -0 Exterior(2I t0-2-4 zor cal left and d forces 4 L=1.60 pl sf (roof LL sf; Pf=18.5 sf; Pf=18.5 sf; Pf=18.5 sf; Pf=18.5 been cor	cond gust) Dpsf; h=35ft; FRS (envelo 0.8 to 4-1-8, R) 12-11-4 to e; cantilever 4 right & MWFRS fo ate grip .: Lum DOL= 0 psf (Lum 0.0gh Cat C; f 0.0-0 usidered for t er of min rooi bad of 13.9 p ve loads.	pe) left r fully his f live sf on	or t	he orien tom cho	tation (rd.	epresentation doe of the purlin along	s not depict the size
FORCES TOP CHORD BOT CHORD WEBS	,	-1017/19, 6-7=-533/ -115/119, 10-11=-24 22=-5/73, 3-21=-293/ -20=-202/123, -18=-197/0, 5=-670/0, -12=-238/724 9=-329/1279, 17=-2079/495, 11=-971/320, 8=-236/1385,	14/93 674, 10	All plates are This truss ha chord live loa * This truss H on the bottor 3-06-00 tall h chord and ar 0) One H2.5T S recommende UPLIFT at jtt only and doe) This truss is International	MT20 plates un is been designed ad nonconcurrent nas been designed y 2-00-00 wide v yy other member: Simpson Strong-T ad to connect trus (s) 11, 2, and 15, is not consider la designed in acco Residential Codind referenced sta	less other for a 10.0 t with any ed for a liv as where will fit betw s, with BC Fie connee Ss to bear This conr theral force ordance w e sections	wise indicate o psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps ctors ng walls due tection is for s. th the 2018 R502.11.1 a	ed. ads. Opsf com f. e to uplift				CHIE OF M SCOT SEVI CALLAND PE-20010 FBSTONA	

June 14,2022

						REL	EASE FOR CO	ONSTRUCTION
Job Tr	russ	Truss Type	Qty	Ply R	oof - 2217 NW Killa	AS rne/ Ln, Lee's	NOTED FOR F Summit, MO	PLAN REVIEW
P220296-P220296-02 B	35	Half Hip	1		ob Reference (optio		I524 EE'S SUMMIT	88896 , <mark>MISSOURI</mark>
Premier Building Supply (Springhill, H	KS), Spring Hills, KS - 66083,			•	22 MiTek Industries, In Hq3NSgPqnL8w3uITX		\$/21/	2022
-0-10-8 	7-4-10	<u>14-11-4</u> <u>18-2-4</u> 7-6-10 <u>3-3-0</u>	<u>25-6-4</u> 7-4-0		<u>32-10-4</u> 7-4-0		40-4-0 7-5-12	
		6x6= 4x4	-	1.5x	4 II 3x	6= 3x8=		Зх4 н
0-1-5 	4x4 ≠		2122	7	23 24 8	X X	25 🛛 🖂	
0 	19 ²⁰							8-2-5
	//				//			
		17 1626 27 15	28	14		12	30	<u></u> 11 ⊥ 3x6=
		3x4= 3x4=		5x8		1.5x4 I		0.0-
		3x6=			3x6=			
	<u> </u>	18-2-4	<u>25-6-4</u> 7-4-0		32-10-4 7-4-0		40-4-0 7-5-12	———————————————————————————————————————

Scale = 1:74.1	
Plate Offsets (X, Y):	[2:Edge,0-2-4], [5:0-3-5,Edge]

	, i). [E.Edge,o E i],	, [0:0 0 0,Edg0]				-							-
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.87 0.98 0.74	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 17-18 17-18 11	l/defl >602 >299 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 229 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS	No.2 2x4 SP No.2 2x4 SPF No.3 *Exce Structural wood she		2 d or d 3)	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 22-0-2, Inter and right exp exposed;C-0 reactions sh DOL=1.60 TCLL: ASCE Plate DOL= DOL=1.15 P	7-16; Vult=115m h; TCDL=6.0psf; I tt. II; Exp C; Enclo e and C-C Exterio or (1) 22-0-2 to 4 bosed ; end vertic C for members an own; Lumber DOI E 7-16; Pr=25.0 ps 1.15); Pg=20.0 ps late DOL=1.15); I	BCDL=6. psed; MW pr(2E) -0- Exterior(2 0-2-4 zor al left and d forces L=1.60 pl sf (roof Ll f; Pf=18.9 ls=1.0; Re	Opsf; h=35ft; FRS (envelo 10-8 to 4-1-8, R) 14-11-4 to e; cantilever d right & MWFRS fo ate grip .: Lum DOL= 9 psf (Lum ough Cat C; I	r 1.15					
	(Ib/size) 11=760/0 18=548/0 Max Horiz 18=359 (I Max Uplift 11=-215 (18=-152 (Max Grav 11=1085 18=746 (I	-3-8, 15=1705/0-3-8, -3-8 _C 13) (LC 12), 15=-387 (LC (LC 16) (LC 39), 15=2276 (LC	C 3), 6)	Unbalanced design. This truss ha load of 12.0 overhangs n Provide ade	9; Cs=1.00; Ct=1. snow loads have as been designed psf or 2.00 times on-concurrent wit quate drainage to as been designed	been con for great flat roof l h other li prevent	nsidered for t er of min root oad of 13.9 p ve loads. water pondin	f live sf on					
FORCES	(lb) - Maximum Com Tension 1-2=0/34, 2-3=-839/ 5-6=-102/319, 6-7=- 9-10=-130/137, 10-1	npression/Maximum 288, 3-5=-625/177, 597/238, 7-9=-597/23	8) 38,	chord live loa * This truss I on the bottor 3-06-00 tall I chord and ar	ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w ny other members	with any d for a liv as where vill fit betv s, with BC	other live loa e load of 20. a rectangle veen the bott CDL = 10.0ps	0psf .om			6	TATE OF M	AISSOU
BOT CHORD	2-18=-649/267 17-18=-338/727, 15- 14-15=-369/146, 12- 11-12=-208/717	,	9)	recommende UPLIFT at jt	Simpson Strong-T ed to connect trus (s) 11, 15, and 18 id does not consid	s to bear . This co	ing walls due nnection is fo					SCOTI SEVI	ГМ. ХСУУЛ
WEBS NOTES	3-17=-530/284, 5-17 5-15=-883/272, 6-15 3-18=-177/229, 7-14 6-14=-219/1193, 9-1 9-11=-1029/213	5=-1334/347, 4=-567/234, 14=-243/17, 9-12=0/4	64, 11	 This truss is International R802.10.2 a Graphical pu or the orienta bottom chore 	designed in acco Residential Code nd referenced sta urlin representatio ation of the purlin d.	rdance w e sections indard Al n does n	ith the 2018 R502.11.1 a NSI/TPI 1. ot depict the s			_	A A A	PE-2001	018807
 Unbalance this design 	d roof live loads have	been considered for	LC	DAD CASE(S)	Standard							alla	44.0000

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 14,2022

															RELE	ASE FOR CONSTRU	
Job		Truss			Truss T	уре			Qty	Ply	F	Roof - 221	7 NW Ki	llarne	<mark>AS N</mark> Ln, Lee's ک	OTED FOR PLAN RE Immit MO VELOPMENT SERVI	EVIEW
P220296-P2	20296-02	C1			Hip				1	1		ob Refere				E'S SUMMIT, MISSO	
Premier Building	Supply (Springh	nill, KS), S	Spring Hills, K	S - 66083,	ļ ·		Run: 8	3.53 S Apr 2	7 2022 F	Print: 8.530 S	Apr 27 20)22 MiTek I	ndustries.	Inc. S	at Jun 111	4/21/20	22
							ID:dn2	dFkR?Wooz	llaosvG	9l8z7wTj-RfC	?PsB70H	q3NSgPqn	L8w3uITX	(bGKV	rCDoi7J4zJC9	/21/20	22
	-0-10-8 - 0-10-8	3 6	6-2-0	1	11-5-1	, 1	6-10-10 10	6-11-4 2	2-10-0	1	28-8	-12	. :	34-2-1	5	40-4-0	
	0-10-8		6-2-0	I	5-3-1	I	5-5-9 0	-0-10 5	-10-12	I	5-10	-12	I	5-6-3	3	6-1-1	
								12 124									
								10x10=		1.5x4 I			6x6=				
0-1-6 0-1-6					12 6		0-1-6 H	6 ₩		2425 7 262			-78 -78	-			
					o 3x6 ≠	1.5x4 ॥									3x4 🕿		
				3x4 ≠	23	5									92	⁸ 29	
9-3-10 9-1-15 9-1-15				4							Â					30 4x6	ð. .
9-3-10 9-1-15 9-1-15			22 21	3				1			_//	/		A		1	10 _
			21						/								Ģ
	ې 2 ې 1										/			/			3-6-0
$\perp \perp $		>					47						40			•	11 ⊥
	8	x8 ≠		19 4x4=		18 5x8=	17 3x6=	31 [⊠] 3×4 ⊮		15 5x8=	32	14 3x6=	13 3x4=		12 3x4=	Зх	4 u
								5,41									
	F		<u>6-2-0</u> 6-2-0		<u>11-5-1</u> 5-3-1		<u>18-2-4</u> 6-9-3		<u>22-10</u> 4-7-1		<u>28-1</u> 6-0		-	<u>34-2-1</u> 5-4-7		<u>40-4-0</u> 6-1-1	
Scale = 1:74.3																	
Plate Offsets ()	K, Y): [6:0-6-	10,Edge	e], [20:0-2-1: T	2,0-2-4]	-												
Loading TCLL (roof)		(psf) 25.0	Spacing Plate Grip	DOL	2-0-0 1.15		CSI TC		0.71	DEFL Vert(LL)	in -0.25	. ,	l/defl >855	L/d 240	PLATES MT20	GRIP 244/190	
Snow (Pf/Pg) TCDL	18.9	/20.0 10.0	Lumber D Rep Stres	OL	1.15 YES		BC WB		0.83 0.86	Vert(CT) Horz(CT)	-0.40 0.02	16-18	>537 n/a	180 n/a			
BCLL		0.0*	Code			8/TPI2014	Matrix-	S	0.00	1012(01)	0.02		n/a	n/a			
BCDL		10.0													Weight: 244		
LUMBER TOP CHORD	2x4 SP No.2	2			1)	this desig					or	or th	ne orient	ation o		does not depict the long the top and/or	
BOT CHORD WEBS	2x4 SP No.2 2x4 SPF No		ept* 20-2,11	-10:2x4 S	2) P		iCE 7-16; Vu mph; TCDL=						om chor CASE(S)		ndard		
BRACING	No.2		•				Cat. II; Exp one and C-0						- (-)				
TOP CHORD	Structural w						l) 4-1-8 to 16 , Interior (1)										
	5-5-7 oc pur 2-0-0 oc pur	lins (6-0)-0 max.): 6	-8.		28-8-12 t	o 35-9-10, Ir r left and righ	terior (1) 3	5-9-10	to 40-2-4 zo	ne;						
BOT CHORD	Rigid ceiling bracing, Ex		applied or	10-0-0 oc		right expo	osed;C-C for	members a	and for	ces & MWF							
WEBS	6-0-0 oc bra 1 Row at mi	•	-18,15-16. 7-15, 8-15,	9-13. 6-1	6	DOL=1.6	0										
	(lb/size) 1		-3-8, 16=15		3)	Plate DO	SCE 7-16; Pr L=1.15); Pg=	=20.0 psf; F	Pf=18.9	psf (Lum							
	Max Horiz 20)=233 (L	_C 15)				5 Plate DOL =0.9; Cs=1.0				Fully						
)=-148 (LC 16)	,	// - /	Unbalano design.	ed snow loa	ds have be	en con	sidered for t	this						
	Max Grav 1 ⁻ 20	1=985 (L)=799 (L		2127 (LC	3), 5)	This truss	s has been d 2.0 psf or 2.0										
FORCES	(lb) - Maxim Tension	um Com	pression/M	aximum	~	overhang	is non-concu	rrent with c	other liv	e loads.							
TOP CHORD	1-2=0/34, 2-				6) 7)	This truss	dequate dra s has been d	esigned for	r a 10.0	psf bottom	0				A 01	F MISSO	
	5-6=-596/26 8-9=-774/24	,	,	0=-304/22	27, 8)		e load nonco ss has been							6	172		У
		44 40 4		`	0)												
BOT CHORD	2-20=-731/2 19-20=-260/	417, 18-	11=-899/179 -19=-233/86	69,	0)	on the bo 3-06-00 t	ottom chord i all by 2-00-0	0 wide will	where a fit betw	a rectangle een the bott				A	- / ·	OTT M.	<i>S</i>
BOT CHORD	2-20=-731/2	417, 18- 159, 15-	11=-899/179 -19=-233/86 -16=-391/20	69, 09,	9)	on the bo 3-06-00 t chord and		0 wide will nembers, w	where a fit betw vith BCI	a rectangle een the bott DL = 10.0ps				Ro	- / ·	OTT M. EVIER	
BOT CHORD	2-20=-731/2 19-20=-260/ 16-18=-186/	417, 18- 159, 15- 18, 12-1 9	11=-899/179 -19=-233/86 -16=-391/20 13=-116/718	69, 09, 3,	9)	on the bo 3-06-00 t chord and One H2.5 recomme	all by 2-00-0 d any other r 5T Simpson 3 ended to con	0 wide will nembers, w Strong-Tie nect truss te	where a fit betw vith BCI connec o bearii	a rectangle een the bott DL = 10.0ps tors ng walls due	sf. e to				- / ·		
	2-20=-731/2 19-20=-260/ 16-18=-186/ 13-15=-55/6 11-12=-43/5 3-19=0/164, 7-15=-583/2	417, 18- 159, 15- 18, 12-1 9 3-18=-4 19, 8-15	11=-899/179 -19=-233/86 -16=-391/20 13=-116/718 472/201, 5- ⁻ 5=-567/89, 8	69, 09, 3, 18=-478/2 3-13=-45/5	9) 33, 510,	on the bo 3-06-00 t chord and One H2.5 recomme UPLIFT a uplift only	all by 2-00-0 d any other r oT Simpson s ended to con at jt(s) 20, 11 y and does n	0 wide will nembers, w Strong-Tie nect truss to , and 16. T ot consider	where a fit betw vith BCI connec o bearin his con lateral	a rectangle een the both DL = 10.0ps tors ng walls due nection is fo forces.	sf. e to		-		ott		
	2-20=-731/2 19-20=-260/ 16-18=-186/ 13-15=-55/6 11-12=-43/5 3-19=0/164, 7-15=-583/2 9-13=-313/1 10-12=-87/7	417, 18- 159, 15- 18, 12-1 9 3-18=-4 19, 8-15 60, 9-12 76, 2-19	11=-899/179 -19=-233/86 -16=-391/20 13=-116/718 472/201, 5- 5=-567/89, 8 2=-267/110, 9=0/610, 6-	59, 09, 3, 18=-478/2 3-13=-45/5 15=-197/1	9) 33, 510, 10	on the bo 3-06-00 t chord and One H2.5 recomme UPLIFT a uplift only) This truss Internatio	all by 2-00-0 d any other r of Simpson a ended to con at jt(s) 20, 11 v and does n s is designed onal Residen	0 wide will nembers, w Strong-Tie nect truss to , and 16. T ot consider I in accorda tial Code se	where a fit betw vith BCI connec o bearin his con filateral ance with ections	a rectangle een the bott DL = 10.0 ps tors ng walls due nection is fo forces. th the 2018 R502.11.1 a	sf. e to or		-		PE-20	EVIER	
	2-20=-731/2 19-20=-260/ 16-18=-186/ 13-15=-55/6 11-12=-43/5 3-19=0/164, 7-15=-583/2 9-13=-313/1	417, 18- 159, 15- 18, 12-1 9 3-18=-4 19, 8-15 60, 9-12 76, 2-19	11=-899/179 -19=-233/86 -16=-391/20 13=-116/718 472/201, 5- 5=-567/89, 8 2=-267/110, 9=0/610, 6-	59, 09, 3, 18=-478/2 3-13=-45/5 15=-197/1	9) 33, 510, 10	on the bo 3-06-00 t chord and One H2.5 recomme UPLIFT a uplift only) This truss Internatio	all by 2-00-0 d any other r oT Simpson a ended to con at jt(s) 20, 11 v and does n s is designed	0 wide will nembers, w Strong-Tie nect truss to , and 16. T ot consider I in accorda tial Code se	where a fit betw vith BCI connec o bearin his con filateral ance with ections	a rectangle een the bott DL = 10.0 ps tors ng walls due nection is fo forces. th the 2018 R502.11.1 a	sf. e to or		-		PE-20	EVIER	

												REL	EASE FOR CO	INSTRUCTION
Job	Truss		Truss T	уре		Qty	Ply	R	oof - 2217	7 NW Kil	larne	AS / Ln, Lee's	NOTED FOR P Summit MO EVELOPMENT	LAN REVIEW
P220296-P220296-0	2 C2		Hip			1	1		b Refere				I524 EE'S SUMMIT,	88898
Premier Building Supply (Sp	ringhill, KS),	Spring Hills, KS - 66083,			Run: 8.53 S Apr : ID:PZSnqjWW3L/								<u>3</u> #21/	2022
0	10.9	0.5.0	40 7 4				00.0.40						40.4.0	
	10-8 10-8	6-5-8 6-5-8	<u>12-7-1</u> 6-1-9	l	<u>18-11-4</u> 6-4-3		<u>26-8-12</u> 7-9-8			<u>34-2</u> 7-6			<u>40-4-0</u> 6-1-1	
0 –						5x5 =			6x6=					
0-1-11				3x4 ≠		2122		2324	4 7 ⊐R					
0				3x6 =	9									
			12 61	4 ²⁰⁵								3x4 _€ 25 ₈		
2 2 0		5x5 🍃	61	T									26	
<u>10-3-10</u> <u>10-1-15</u> <u>10-1-15</u>		3 ¹⁹							×		/			27 ^{5x5} ≈
		18								¢				<mark>9</mark> т
	8x8=										/			
우 _구 1	2			//						/				3-6-0
	7			28 1		<u>4</u>	30				04			10 ⊥
			16 Зх		5 29 1 x6= 3	4 x8=	30		1312 3x6=		31	11 5x5:	=	Зх4 п
									3x4=					
		<u>10-0-2</u> 10-0-2	+		3-9-8 -9-6	I	<u>26-10-8</u> 8-1-0			<u>34-2</u> 7-4			<u>40-4-0</u> 6-1-1	
Scale = 1:74.5		10-0-2		C	-9-0		8-1-0			7-4	+-7		0-1-1	
Plate Offsets (X, Y): [2:	Edge,0-2-4]]												
Loading	(psf)	Spacing	2-0-0		CSI	0.70	DEFL	in	. ,	l/defl	L/d	PLATES	GRIP	20
	25.0 18.9/20.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.79 0.75	Vert(LL) Vert(CT)	-0.84	14-16 14-16	>907 >575	240 180	MT20	244/19	0
TCDL BCLL	10.0 0.0*	Rep Stress Incr Code	YES IRC2018	3/TPI2014	WB Matrix-S	0.85	Horz(CT)	0.09	10	n/a	n/a			
BCDL	10.0											Weight: 22	25 lb FT = 2	0%
		Except 6-7:2x4 SP	2)	Vasd=91mpl	7-16; Vult=115mp n; TCDL=6.0psf; B0	CDL=6.0	psf; h=35ft;		LOAD C	ASE(S)	Sta	ndard		
2400F 2 BOT CHORD 2x4 SP	.0E 2400F 2.0E				t. II; Exp C; Enclos and C-C Exterior(
WEBS 2x4 SPF No.2	No.3 *Exc	ept* 17-2,10-9:2x4 SP	D		·1-8 to 18-11-4, Ex or (1) 26-0-2 to 26									
BRACING				26-8-12 to 3	3-9-10, Interior (1)	33-9-10	to 40-2-4 zo							
		eathing directly applied xcept end verticals, an		right expose	d;C-C for members shown; Lumber D0	and for	ces & MWFF							
		4-14 max.): 6-7. y applied or 10-0-0 oc		DOL=1.60										
bracing WEBS 1 Row a		5-14, 7-12, 8-12, 3-1	3)		7-16; Pr=25.0 psf .15); Pg=20.0 psf;			1.15						
REACTIONS (lb/size)	10=1399	/0-3-8, 17=1439/0-3-8			late DOL=1.15);			ully						
	z 17=245 (t 10=-211	(LC 15) (LC 17), 17=-290 (LC	4) (16)	Unbalanced design.	snow loads have b	een con	sidered for t	his						
		(LC 3), 17=1985 (LC mpression/Maximum	3) 5)	This truss ha	s been designed fo									
Tension				overhangs n	psf or 2.00 times fla on-concurrent with	other liv	e loads.							
		/229, 3-5=-3068/469, =-2024/461,	6) 7)		quate drainage to p is been designed fo			g.						
		=-1925/338, 0=-1869/317	8)		ad nonconcurrent w has been designed							A	and a	h
BOT CHORD 16-17=- 12-14=-	510/2761, 1 237/1794, 1	14-16=-403/2492, 11-12=-262/1667,		on the bottor	n chord in all areas by 2-00-00 wide wil	where a	a rectangle				A	ATE	F MISS	N.S.
10-11=- WEBS 3-16=-2	44/55 34/237, 5-1	6=-45/527,	9)		iy other members, Simpson Strong-Tie			f.			A		COTT M. SEVIER	15-18
	59/279, 6-1 31/487 7-1	4=-17/649, 2=-72/293, 8-12=-84/3	, 310	recommende	ed to connect truss s) 17 and 10. This	to beari	ng walls due)	Box			A
8-11=-6	73/220, 3-1	7=-2434/294,		only and doe	s not consider late	ral force	s			J		att		njes
9-11=-2 NOTES	53/1870		10	International	designed in accord Residential Code	sections	R502.11.1 a	and		-	83		UMBER 2001018807	IEA .
 Unbalanced roof live this design. 	loads have	e been considered for			nd referenced stan rlin representation			size			V	The second	/	SA -
300igii.					ation of the purlin a) 	P.SIO	NAL EN	Å
				Solion choic								-	mar	122
												,	June 14,20)22

MITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

									RELEASE FOR CONST	RUCTION
Job	Truss		Truss Ty	ре	Qty	Ply	Roof - 221	7 NW Killarne	AS NOTED FOR PLAN / Ln, Lee's Summit MO DEVELOPMENT SE	
P220296-P220296-02	C3		Hip		1	1		nce (optional)	LEE'S SUMMIT, MIS	99
Premier Building Supply (Spr	nghill, KS), Spring H	Hills, KS - 66083,		Run: 8.53 S Apr 27 ID:pqVBCN8Znvdm	2022 Print: 8	8.530 S Apr 2	27 2022 MiTek Ir	ndustries, Inc. S	at Jun 110:64/21/2	022
	10.9 -									
0		- <u>5-2</u> -5-2		15-5-1 20-11-4 7-11-15 5-6-3		4-8-12 3-9-8	<u>32-2</u> 7-6		40-4-0 8-1-2	4
					6x6=	5x	5=			
0 11 0 -10 -10					= 6 		7	_		
÷ 0				^{1.5x4} ¹ 23			24		⁽⁴)	
				222 5	$// \sim$			3x6 x 89	5 226	
		3	6 8x4 =			$\langle $		The second se		
<u>11-3-10</u> <u>11-1-15</u> 11-1-15		Ū	20						27 28	
+ + + +		3		M //		1			5	x5.
		19					, A			10 ঈ⊤
										3-6-0
° _− 1	2									е Ф
	8	17	7	<u></u>		30 14	≌ <u>n</u> 4 13 3	1 1:		≣ 11 ⊥
	MT18HS 9x18 =	= 7x		4x6=			4 10 0 (8=		2 3 3x10=	x6=
				5x8=			3x6=			
		-5-2 -5-2			4-10-8		32-2		40-4-0	4
Scale = 1:76.4	7-	-5-2		7-11-15	9-5-7		7-4	-6	8-1-2	
Plate Offsets (X, Y): [10:	Edge,0-1-12], [11	1:Edge,0-1-8], [1	12:0-3-8,0-	1-8], [17:0-3-8,Edge], [18:Edge,0-6	6-13]					
Loading		cing	2-0-0	CSI	DEI		in (loc)	I/defl L/d	PLATES GRIP	
TCLL (roof) Snow (Pf/Pg) 1		e Grip DOL 1ber DOL	1.15 1.15			. ,	0.62 14-15 0.95 14-15	>769 240 >504 180	MT20 244/190 MT18HS 197/144	
TCDL BCLL	10.0 Rep 0.0* Cod	Stress Incr	YES IRC2018/		0.98 Hor	z(CT)	0.09 11	n/a n/a		
BCDL	10.0								Weight: 232 lb FT = 20%	
		- 11 0 7 0 1 0 0	2)	Wind: ASCE 7-16; Vult=115mph (LOAD	ASE(S) Sta	Indard	
No.2	100F 2.0E *Exce			Vasd=91mph; TCDL=6.0psf; BCE Ke=1.00; Cat. II; Exp C; Enclosed						
BOT CHORD 2x4 SP N		13·2x4 SP 1650		exterior zone and C-C Exterior(28		· · · ~ · ·				
1.5E	0.2 *Except* 16-	10.2)F	Interior (1) 4-1-8 to 20-11-4, Exter	,	,				
1.5E WEBS 2x4 SPF	D.2 *Except* 16- No.3 *Except* 18			24-8-12, Exterior(2R) 24-8-12 to 3	ior(2E) 20 1-9-10, In	-11-4 to terior (1)				
1.5E WEBS 2x4 SPF No.2 BRACING				24-8-12, Éxterior(2R) 24-8-12 to 3 31-9-10 to 40-2-4 zone; cantilevel exposed ; end vertical left and rig	ior(2E) 20 1-9-10, Int left and ri nt exposed	-11-4 to terior (1) ght I;C-C for				
1.5E WEBS 2x4 SPF No.2 BRACING TOP CHORD Structura		3-2,11-10:2x4 Sl g directly applied	P d or d	24-8-12, Éxterior(2R) 24-8-12 to 3 31-9-10 to 40-2-4 zone; cantileve exposed ; end vertical left and rig members and forces & MWFRS for Lumber DOL=1.60 plate grip DOL	, ior(2E) 20 1-9-10, In teft and ri texposed or reaction =1.60	-11-4 to terior (1) ght l;C-C for s shown;	-			
1.5E WEBS 2x4 SPF No.2 BRACING TOP CHORD Structura 1-7-8 oc 2-0-0 oc	No.3 *Except* 18 wood sheathing purlins, except e purlins (4-2-0 ma	3-2,11-10:2x4 Sl g directly applied and verticals, and (x.): 6-7.	P d or d	24-8-12, Éxterior(2R) 24-8-12 to 3 31-9-10 to 40-2-4 zone; cantileve exposed; end vertical left and rig members and forces & MWFRS fi Lumber DOL=1.60 plate grip DOL TCLL: ASCE 7-16; Pr=25.0 psf (r Plate DOL=1.15); Pg=20.0 psf; Pl	ior(2E) 20- 1-9-10, In- left and rint exposed or reaction =1.60 pof LL: Lur =18.9 psf	-11-4 to terior (1) ght l;C-C for s shown; n DOL=1.1 (Lum				
1.5E WEBS 2x4 SPF No.2 BRACING TOP CHORD Structura 1-7-8 oc 2-0-0 oc BOT CHORD Rigid ceil bracing.	No.3 *Except* 18 wood sheathing purlins, except e purlins (4-2-0 ma ng directly applie	B-2,11-10:2x4 Sl g directly appliec and verticals, and v.): 6-7. ed or 2-2-0 oc	P dor d 3)	24-8-12, Éxterior(2R) 24-8-12 to 3 31-9-10 to 40-2-4 zone; cantileve exposed ; end vertical left and rig members and forces & MWFRS fi Lumber DOL=1.60 plate grip DOL TCLL: ASCE 7-16; Pr=25.0 psf (rr	for(2E) 20: 1-9-10, In: left and ri t exposed or reaction =1.60 pof LL: Lur =18.9 psf .0; Rough	-11-4 to terior (1) ght l;C-C for s shown; n DOL=1.1 (Lum Cat C; Full!				
1.5E WEBS 2x4 SPF No.2 BRACING TOP CHORD Structura 1-7-8 oc 2-0-0 oc BOT CHORD Rigid ceil	No.3 *Except* 18 wood sheathing purlins, except e purlins (4-2-0 ma ng directly applie	3-2,11-10:2x4 Sl g directly applied and verticals, and (x.): 6-7.	P d or d 3)	24-8-12, Éxterior(2R) 24-8-12 to 3 31-9-10 to 40-2-4 zone; cantileve exposed ; end vertical left and rig members and forces & MWFRS fi Lumber DOL=1.60 plate grip DOL TCLL: ASCE 7-16; Pr=25.0 psf (m Plate DOL=1.15); Pg=20.0 psf; PI DOL=1.15 Plate DOL=1.15); Is=1 Exp;; Ce=0.9; Cs=1.00; Ct=1.10, Unbalanced snow loads have bee	for(2E) 20 1-9-10, In: left and ri t exposed or reaction =1.60 of LL: Lur =18.9 psf 0; Rough Lu=50-0-0	-11-4 to terior (1) ght I;C-C for s shown; n DOL=1.1 (Lum Cat C; Full				
1.5E WEBS 2x4 SPF No.2 BRACING TOP CHORD Structura 1-7-8 oc 2-0-0 oc BOT CHORD Rigid ceil bracing. WEBS 1 Row at	No.3 *Except* 18 wood sheathing purlins, except e purlins (4-2-0 ma ng directly applie midpt 3-15, 5-15 11=1377/0-3-8,	3-2,11-10:2x4 Sl g directly applied and verticals, and x.): 6-7. ed or 2-2-0 oc 6-15, 6-14, 9-14 18=1422/0-3-8	P d or d 3) 4, 4)	24-8-12, Éxterior(2R) 24-8-12 to 3 31-9-10 to 40-2-4 zone; cantileve exposed; end vertical left and rigi members and forces & MWFRS fi Lumber DOL=1.60 plate grip DOL TCLL: ASCE 7-16; Pr=25.0 psf (ri Plate DOL=1.15); Pg=20.0 psf; PI DOL=1.15 Plate DOL=1.15); Is=1 Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Unbalanced snow loads have bee design. This truss has been designed for	ior(2E) 20 1-9-10, Int left and rint exposed or reaction =1.60 oof LL: Lur =18.9 psf .0; Rough Lu=50-0-0 on consider greater of	-11-4 to terior (1) ght t;C-C for s shown; n DOL=1.1 (Lum Cat C; Fully red for this min roof live	y e			
Here and the second sec	No.3 *Except* 18 wood sheathing purlins, except e purlins (4-2-0 ma ng directly applie midpt 3-15, 5-15 11=1377/0-3-8, 18=259 (LC 13) 11=-231 (LC 17	8-2,11-10:2x4 Sl g directly applied and verticals, and x.): 6-7. ed or 2-2-0 oc 6-15, 6-14, 9-14 18=1422/0-3-8) 7), 18=-304 (LC	P dor d 3) 4, 4) 5) 16)	24-8-12, Éxterior(2R) 24-8-12 to 3 31-9-10 to 40-2-4 zone; cantileve exposed ; end vertical left and rig members and forces & MWFRS fi Lumber DOL=1.60 plate grip DOL TCLL: ASCE 7-16; Pr=25.0 psf (rr Plate DOL=1.15); Pg=20.0 psf; PI DOL=1.15 Plate DOL=1.15); Is=1 Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Unbalanced snow loads have bee design.	for(2E) 20 1-9-10, Ini- 1 left and ri- the exposed = 1.60 pof LL: Lur = 18.9 psf .0; Rough Lu=50-0-0 on consider greater of i roof load o	-11-4 to terior (1) ght t;C-C for s shown; n DOL=1.1 (Lum Cat C; Fully red for this min roof livy of 13.9 psf c	y e			
1.5E WEBS 2x4 SPF No.2 BRACING Structura TOP CHORD Structura 1-7-8 oc 2-0-0 oc BOT CHORD Rigid ceil bracing. WEBS 1 Row at REACTIONS (lb/size) Max Horiz Max Uplift Max Grav	No.3 *Except* 18 wood sheathing purlins, except e purlins (4-2-0 ma ng directly applie midpt 3-15, 5-15 11=1377/0-3-8, 18=259 (LC 13) 11=-231 (LC 17 11=1936 (LC 47)	8-2,11-10:2x4 Sl g directly applied end verticals, and x.): 6-7. ed or 2-2-0 oc 6-15, 6-14, 9-14 18=1422/0-3-8) 7), 18=-304 (LC 7), 18=1967 (LC	P dor d 3) 4, 4) 5) 16) 23) 6)	24-8-12, Éxterior(2R) 24-8-12 to 3 31-9-10 to 40-2-4 zone; cantileve exposed ; end vertical left and rig members and forces & MWFRS fi Lumber DOL=1.60 plate grip DOL TCLL: ASCE 7-16; Pr=25.0 psf (rr Plate DOL=1.15); Pg=20.0 psf; PI DOL=1.15) Plate DOL=1.15); Is=1 Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Unbalanced snow loads have bee design. This truss has been designed for load of 12.0 psf or 2.00 times flat overhangs non-concurrent with of Provide adequate drainage to pre	for(2E) 20: 11-9-10, Ini 11 eft and ri at exposed or reaction =1.60 pof LL: Lur =18.9 psf i .0; Rough Lu=50-0-0 on consider greater of i roof load o her live loa vent water	-11-4 to terior (1) ght t;C-C for s shown; n DOL=1.1 (Lum Cat C; Fully red for this min roof live if 13.9 psf c ads.	y e			
1.5E WEBS 2x4 SPF No.2 BRACING Structura TOP CHORD Structura 1-7-8 oc 2-0-0 oc BOT CHORD Rigid ceil bracing. WEBS REACTIONS (lb/size) Max Horiz Max Uplift Max Grav FORCES	No.3 *Except* 18 wood sheathing purlins, except e purlins (4-2-0 ma ng directly applie midpt 3-15, 5-15 11=1377/0-3-8, 18=259 (LC 17 11=-231 (LC 17 11=1936 (LC 47, imum Compress	8-2,11-10:2x4 Sl g directly appliec end verticals, and x,): 6-7. ed or 2-2-0 oc 6-15, 6-14, 9-14 18=1422/0-3-8) 7), 18=-304 (LC 7), 18=1967 (LC ion/Maximum	P d or d 3) 4, 4) 5) 16) C 3) 6) 7) 8)	24-8-12, Éxterior(2R) 24-8-12 to 3 31-9-10 to 40-2-4 zone; cantileve exposed ; end vertical left and rigi members and forces & MWFRS fi Lumber DOL=1.60 plate grip DOL TCLL: ASCE 7-16; Pr=25.0 psf (rr Plate DOL=1.15); Pg=20.0 psf; PI DOL=1.15 Plate DOL=1.15); Is=1 Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Unbalanced snow loads have bee design. This truss has been designed for load of 12.0 psf or 2.00 times flat overhangs non-concurrent with of Provide adequate drainage to pre All plates are MT20 plates unless This truss has been designed for	for(2E) 20 11-9-10, Ini 1eft and rint texposed or reaction =1.60 bof LL: Lur =18.9 psf .0; Rough Lu=50-0-0 in consider greater of forof load of her live loavent went water otherwise a 10.0 psf	-11-4 to terior (1) ght t;C-C for s shown; n DOL=1.1 (Lum Cat C; Fully red for this min roof live f 13.9 psf c ads. ponding. indicated. bottom	y e n			
1.5E WEBS 2x4 SPF No.2 BRACING TOP CHORD Structura 1-7-8 oc 2-0-0 oc BOT CHORD Rigid ceil bracing. WEBS 1 Row at REACTIONS (lb/size) Max Horiz Max Uplift Max Grav Tension FORCES (lb) - May TOP CHORD 1-2=0/34 5-6=-271	No.3 *Except* 18 wood sheathing purlins, except e purlins (4-2-0 ma ng directly applie midpt 3-15, 5-15 11=1377/0-3-8, 18=259 (LC 13) 11=-231 (LC 17 11=1936 (LC 47) imum Compress 2-3=-3208/464, 3/598, 6-7=-1731	8-2,11-10:2x4 Sl g directly applied end verticals, and x.): 6-7. ed or 2-2-0 oc 6-15, 6-14, 9-14 18=1422/0-3-8) (), 18=-304 (LC 7), 18=1967 (LC ion/Maximum 3-5=-2696/452, 1/436,	P d or d 3) 4, 4) 5) 16) C 3) 6) 7) 8)	24-8-12, Éxterior(2R) 24-8-12 to 3 31-9-10 to 40-2-4 zone; cantileve exposed ; end vertical left and rig members and forces & MWFRS fi Lumber DOL=1.60 plate grip DOL TCLL: ASCE 7-16; Pr=25.0 psf (m Plate DOL=1.15); Pg=20.0 psf; Pl DOL=1.15) Plate DOL=1.15); Is=1 Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Unbalanced snow loads have bee design. This truss has been designed for load of 12.0 psf or 2.00 times flat overhangs non-concurrent with of Provide adequate drainage to pre All plates are MT20 plates unless This truss has been designed for chord live load nonconcurrent with * This truss has been designed for	for(2E) 20 11-9-10, Ini 16 Int and rin 16 exposed or reaction and 16 160 160 160 160 160 160 160 1	-11-4 to terior (1) ght I;C-C for s shown; n DOL=1.1 (Lum Cat C; Fully red for this min roof live of 13.9 psf c ads. ponding. indicated. bottom r live loads. d of 20.0ps	y e n		OF MISS	
1.5E WEBS 2x4 SPF No.2 BRACING Structura TOP CHORD Structura 1.7-8 oc 2-0-0 oc BOT CHORD Rigid ceil bracing. WEBS 1 Row at REACTIONS (lb/size) Max Horiz Max Grav FORCES (lb) - Max TOP CHORD 1-2=0/34 5-6=-271 7-9=-205	No.3 *Except* 18 wood sheathing purlins, except e purlins (4-2-0 ma ng directly applie midpt 3-15, 5-15 11=1377/0-3-8, 18=259 (LC 13) 11=-231 (LC 17 11=1936 (LC 47) imum Compress 2-3=-3208/464,	8-2,11-10:2x4 Sl g directly applied ind verticals, and ix.): 6-7. ed or 2-2-0 oc 6-15, 6-14, 9-14 18=1422/0-3-8) (), 18=-304 (LC 7), 18=1967 (LC ion/Maximum 3-5=-2696/452,)/436,)6/346,	P dor d 3) 4, 4) 5) 16) 23) 6) 7) 8)	24-8-12, Éxterior(2R) 24-8-12 to 3 31-9-10 to 40-2-4 zone; cantileve exposed; end vertical left and rigi members and forces & MWFRS fi Lumber DOL=1.60 plate grip DOL TCLL: ASCE 7-16; Pr=25.0 psf (ri Plate DOL=1.15); Pg=20.0 psf; PI DOL=1.15 Plate DOL=1.15); Is=1 Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Unbalanced snow loads have bee design. This truss has been designed for load of 12.0 psf or 2.00 times flat overhangs non-concurrent with of Provide adequate drainage to pre All plates are MT20 plates unless This truss has been designed for chord live load nonconcurrent with	for(2E) 20 11-9-10, Ini 1eft and rin te exposed or reaction and the exposed or reaction and the exposed or reaction and the exposed of LL: Lur =18.9 psf 1.0; Rough Lu=50-0-0 and consider greater of in cof load of her live loa vent water otherwise a 10.0 psf a any other r a live loa here a rec	-11-4 to terior (1) ght I;C-C for s shown; n DOL=1.1 (Lum Cat C; Fully red for this min roof live of 13.9 psf c ads. ponding. indicated. bottom r live loads. d of 20.0ps tangle	y e n		NIE OF MISSOL	
I.5E WEBS 2x4 SPF No.2 BRACING TOP CHORD Structura 1-7-8 oc 2-0-0 oc BOT CHORD Rigid ceil bracing. WEBS 1 Row at REACTIONS (lb/size) Max Horiz Max Uplift Max Grav FORCES (lb) - Max Tension TOP CHORD 1-2=0/34 5-6=-271 7-9=-205 2-18=-18 BOT CHORD 17-18=-3	No.3 *Except* 18 wood sheathing burlins, except e burlins (4-2-0 ma ng directly applie midpt 3-15, 5-15 11=1377/0-3-8, 18=259 (LC 13) 11=-231 (LC 17) 11=1936 (LC 47) imum Compress 2-3=-3208/464, 3/598, 6-7=-1731 1/423, 9-10=-210 83/360, 10-11=-1 59/738, 15-17=-5	 3-2,11-10:2x4 SI g directly applied and verticals, and ix.): 6-7. ed or 2-2-0 oc 6-15, 6-14, 9-14 18=1422/0-3-8 (), 18=-304 (LC 7), 18=1967 (LC ion/Maximum 3-5=-2696/452, 1/436, 26/346, 1805/325 515/2784, 	P dor d 3) 4, 4) 5) 16) (C 3) 6) 7) 8) 7) 8) 9)	24-8-12, Éxterior(2R) 24-8-12 to 3 31-9-10 to 40-2-4 zone; cantileve exposed; end vertical left and rigi members and forces & MWFRS fi Lumber DOL=1.60 plate grip DOL TCLL: ASCE 7-16; Pr=25.0 psf (r Plate DOL=1.15); Pg=20.0 psf; PI DOL=1.15 Plate DOL=1.15); Is=1 Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Uhbalanced snow loads have bee design. This truss has been designed for load of 12.0 psf or 2.00 times flat overhangs non-concurrent with 0 Provide adequate drainage to pre All plates are MT20 plates unless This truss has been designed for chord live load nonconcurrent with * This truss has been designed for on the bottom chord in all areas w 3-06-00 tall by 2-00-00 wide will fi chord and any other members, wi	ior(2E) 20 i1-9-10, Ini left and rin the exposed or reaction =1.60 bof LL: Lur =18.9 psf .0; Rough Lu=50-0-0 in consider greater of roof load o her live loavent water otherwise a 10.0 psf n any other r a live loa there a rect to between th BCDL =	-11-4 to terior (1) ght t;C-C for s shown; n DOL=1.1 (Lum Cat C; Fully red for this min roof livu f 13.9 psf c ads. ponding. indicated. bottom r live loads. d of 20.0ps tangle the bottom	y e n	<u>H</u>	SCOTT M.	
TOP CHORD 1-2=03 TOP CHORD 1-2=034 TOP CHORD 5-2-0-0 oc BOT CHORD Rigid ceil bracing. WEBS 1 Row at REACTIONS (lb/size) Max Horiz Max Uplift Max Grav FORCES (lb) - May Tension TOP CHORD 1-2=034 5-6=-271 7-9=-205 2-18=-18 BOT CHORD 17-18=-3 14-15=-2 11-12=-5	No.3 *Except* 18 wood sheathing purlins, except e purlins (4-2-0 ma ng directly applie midpt 3-15, 5-15 11=1377/0-3-8, 18=259 (LC 13) 11=-231 (LC 17 11=1936 (LC 47) imum Compress 2-3=-3208/464, 3/598, 6-7=-1731 (423, 9-10=-210) 38/360, 10-11=-1 59/738, 15-17=-5 26/1767, 12-14=- 3/87	 3-2,11-10:2x4 Sl a directly applied and verticals, and x.): 6-7. ad or 2-2-0 oc 6-15, 6-14, 9-14 18=1422/0-3-8 7), 18=-304 (LC 7), 18=-304 (LC 7), 18=-1967 (LC ion/Maximum 3-5=-2696/452, 1/436, 16/346, 1805/325 15/2784, -245/1808, 	P dor d 3) 4, 4) 5) 16) (C 3) 6) 7) 8) 7) 8) 9)	24-8-12, Éxterior(2R) 24-8-12 to 3 31-9-10 to 40-2-4 zone; cantileve exposed ; end vertical left and rigi members and forces & MWFRS fi Lumber DOL=1.60 plate grip DOL TCLL: ASCE 7-16; Pr=25.0 psf (rr Plate DOL=1.15); Pg=20.0 psf; PI DOL=1.15) Plate DOL=1.15); Is=1 Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Unbalanced snow loads have bee design. This truss has been designed for load of 12.0 psf or 2.00 times flat overhangs non-concurrent with of Provide adequate drainage to pre All plates are MT20 plates unless This truss has been designed for on the bottom chord in all areas w 3-06-00 tall by 2-00-00 wide will fi chord and any other members, will one H2.5T Simpson Strong-Tie c	ior(2E) 20: 1-9-10, Ini left and rin texposed or reaction and texposed or reaction and texposed and texposed or reaction texposed and texposed or reaction texposed and texposed or reaction texposed or reaction and texposed or reaction texposed or reaction texposed t	-11-4 to terior (1) ght I;C-C for s shown; n DOL=1.1 (Lum Cat C; Fully red for this min roof live of 13.9 psf c ads. ponding. indicated. bottom r live loads. d of 20.0psf. tangle the bottom 10.0psf.	y e n			
I.5E WEBS 2x4 SPF No.2 BRACING TOP CHORD Structura 1-7-8 oc 2-0-0 oc 30T CHORD Rigid ceil bracing. WEBS 1 Row at REACTIONS (lb/size) Max Horiz Max Uplift Max Grav FORCES (lb) - Max Tension TOP CHORD 1-2=0/34 5-6=-271 7-9=-205 2-18=-18 30T CHORD 17-18=-3 14-15=-3 WEBS 3-17=-27 6-15=-38	No.3 *Except* 18 wood sheathing purlins, except e purlins (4-2-0 ma ng directly applie midpt 3-15, 5-15 11=1377/0-3-8, 18=259 (LC 13) 11=-231 (LC 17 11=1936 (LC 47) imum Compress 2-3=-3208/464, 3/598, 6-7=-1731 4/423, 9-10=-210 38/360, 10-11=-1 9/738, 15-17=-5 26/1767, 12-14=-35 3/87	 3-2,11-10:2x4 Sl g directly applied and verticals, and x.): 6-7. ed or 2-2-0 oc 6-15, 6-14, 9-14 18=1422/0-3-8) 18=-304 (LC 7), 18=-304 (LC 7), 18=1967 (LC ion/Maximum 3-5=-2696/452, 1/436, 1805/325 15/2784, -245/1808, 244, 51/167, 	P d or d 3) 4, 4) 5) 16) (3) 6) 7) 8) 7) 8) 7) 9) 10)	24-8-12, Éxterior(2R) 24-8-12 to 3 31-9-10 to 40-2-4 zone; cantileve exposed ; end vertical left and rigi members and forces & MWFRS fi Lumber DOL=1.60 plate grip DOL TCLL: ASCE 7-16; Pr=25.0 psf (r Plate DOL=1.15); Pg=20.0 psf; PI DOL=1.15 Plate DOL=1.15); Is=1 Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Unbalanced snow loads have bee design. This truss has been designed for load of 12.0 psf or 2.00 times flat overhangs non-concurrent with ot Provide adequate drainage to pre All plates are MT20 plates unless This truss has been designed for chord live load nonconcurrent with ot on the bottom chord in all areas w 3-06-00 tall by 2-00-00 wide will fi chord and any other members, wi On eH2.5T Simpson Strong-Tie c uPLIFT at jt(s) 18 and 11. This cc only and does not consider latera	for(2E) 20 11-9-10, Ini 1eft and rin the exposed or reaction =1.60 bof LL: Lur =18.9 ps f .0; Rough Lu=50-0-0 roof load of her live load other wise a 10.0 ps f a ny otheir r a live load there a rec to between th BCDL = onnectors bearing w innection is forces.	-11-4 to terior (1) ght t;C-C for s shown; n DOL=1.1 (Lum Cat C; Fully red for this min roof livu f 13.9 psf c ads. ponding. indicated. bottom r live loads. d of 20.0ps tangle the bottom 10.0psf. alls due to s for uplift	y e n		SCOTT M.	
1.5EWEBS2x4 SPFNo.2BRACINGTOP CHORDStructura1-7-8 oc2-0-0 ocBOT CHORDRigid ceilbracing.WEBS1 Row atREACTIONS(lb/size)Max HorizMax HorizMax GravFORCES(lb) - MaxTOP CHORD1-2=0/345-6=-2717-9=-2032-18=-18BOT CHORD17-18=-314-15=-211.12=-5WEBS3-17=-276-15=-387-14=-62	No.3 *Except* 18 wood sheathing purlins, except e purlins (4-2-0 ma ng directly applie midpt 3-15, 5-15 11=1377/0-3-8, 18=259 (LC 13) 11=-231 (LC 17 11=1936 (LC 47) imum Compress 2-3=-3208/464, 3/598, 6-7=-1731 1/423, 9-10=-210 8/360, 10-11=-1 59/738, 15-17=-5 59/738, 15-17=-5 3/87 201, 3-15=-579/	 3-2,11-10:2x4 SI g directly applied and verticals, and ix.): 6-7. ed or 2-2-0 oc 6-15, 6-14, 9-14 18=1422/0-3-8 7), 18=-304 (LC 7), 18=-304 (LC 7), 18=1967 (LC ion/Maximum 3-5=-2696/452, 1/436, 2605/325 515/2784, -245/1808, 244, 51/167, 176, 	P d or d 3) 4, 4) 5) 16) (3) 6) 7) 8) 7) 8) 7) 9) 10)	24-8-12, Éxterior(2R) 24-8-12 to 3 31-9-10 to 40-2-4 zone; cantileve exposed ; end vertical left and rigi members and forces & MWFRS fi Lumber DOL=1.60 plate grip DOL TCLL: ASCE 7-16; Pr=25.0 psf (r Plate DOL=1.15); Pg=20.0 psf; PI DOL=1.15 Plate DOL=1.15); Is=1 Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Uhbalanced snow loads have bee design. This truss has been designed for load of 12.0 psf or 2.00 times flat overhangs non-concurrent with of Provide adequate drainage to pre All plates are MT20 plates unless This truss has been designed for on the bottom chord in all areas w 3-06-00 tall by 2-00-00 wide will fi chord and any other members, wi One H2.5T Simpson Strong-Tie c recommended to connect truss to UPLIFT at jt(s) 18 and 11. This co only and does not consider latera	ior(2E) 20 11-9-10, Ini 16ft and rin 16t exposed or reaction and 16t 160 160 161 160 161 160 161 160 161 160 161 160 160	-11-4 to terior (1) ght t;C-C for s shown; n DOL=1.1 (Lum Cat C; Fully red for this min roof live of 13.9 psf c ads. ponding. indicated. d of 20.0ps tangle the bottom i 0.0psf. alls due to s for uplift e 2018	y e n		SCOTT M. SEVIER	
1.5E WEBS 2x4 SPF No.2 BRACING TOP CHORD Structura 1-7-8 oc 2-0-0 oc BOT CHORD Rigid ceil bracing. WEBS 1 Row at REACTIONS (lb/size) Max Horiz Max Uplift Max Grav Tension TOP CHORD 1-2=0/34 5-6=-271 7-9=-205 7-9=-205 2-18=-18 BOT CHORD 17-18=-3 14-15=-2 11-12=-5 WEBS 3.17=-27 WEBS 3-17=-27 6-15=-38 7-14=-62 9-12=-50 5-15=-67	No.3 *Except* 18 wood sheathing purlins, except e purlins (4-2-0 ma ng directly applie midpt 3-15, 5-15 11=1377/0-3-8, 18=259 (LC 13) 11=-231 (LC 17) 11=1936 (LC 47) imum Compress 2-3=-3208/464, 3/598, 6-7=-1731 8/360, 10-11=-1 59/738, 15-17=-5 26/1767, 12-14=- 3/87 201, 3-15=-579// 3/1257, 6-14=-35 532, 9-14=-169/	 3-2,11-10:2x4 SI g directly applied and verticals, and ix.): 6-7. ed or 2-2-0 oc 6-15, 6-14, 9-14 18=1422/0-3-8 (), 18=-304 (LC 7), 18=-304 (LC 7), 18=-304 (LC 7), 18=-2696/452, 1/436, 16/346, 1805/325 151/2784, -245/1808, 244, 51/167, 176, 1/2217, 	P dor d 3) 4, 4) 5) 16) (C) 3) 6) 7) 8) 7) 8) 7) 9) 10) 11)	24-8-12, Éxterior(2R) 24-8-12 to 3 31-9-10 to 40-2-4 zone; cantileve exposed ; end vertical left and rig members and forces & MWFRS fi Lumber DOL=1.60 plate grip DOL TCLL: ASCE 7-16; Pr=25.0 psf (rr Plate DOL=1.15); Pg=20.0 psf; PI DOL=1.15) Plate DOL=1.15); Is=1 Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Unbalanced snow loads have bee design. This truss has been designed for load of 12.0 psf or 2.00 times flat overhangs non-concurrent with of Provide adequate drainage to pre All plates are MT20 plates unless This truss has been designed for chord live load nonconcurrent with * This truss has been designed for on the bottom chord in all areas w 3-06-00 tall by 2-00-00 wide will fi chord and any other members, wi One H2.5T Simpson Strong-Tie c recommended to connect truss to UPLIFT at jt(s) 18 and 11. This co only and does not consider latera This truss is designed in accordar International Residential Code se R802.10.2 and referenced standa	for (2E) 20 11-9-10, Ini 16ft and rin 16t exposed or reaction and exposed or reaction and the exposed or reaction and the exposed or reaction and the exposed of ILL Lur =18.9 psf 0; Rough Lu=50-0-0 on consider greater of the loc vent water otherwise a 10.0 psf a nay other r a live loa vent water otherwise a non opsf a nay other r a live loa bearing w nnections bearing w nnections forces. the with the tions R50 rd ANSI/TI	-11-4 to terior (1) ght I;C-C for s shown; n DOL=1.1 (Lum Cat C; Fully red for this min roof live of 13.9 psf c ads. ponding. indicated. bottom r live loads. d of 20.0psf. tangle the bottom 10.0psf. alls due to s for uplift e 2018 2.11.1 and PI 1.	y on f		SCOTT M.	
I.5E WEBS 2x4 SPF No.2 BRACING TOP CHORD Structura 1-7-8 oc 2-0-0 oc 30T CHORD Rigid ceil bracing. WEBS 1 Row at REACTIONS (lb/size) Max Horiz Max Uplift Max Grav FORCES (lb) - Max Tension TOP CHORD 1-2=0/34 5-6=-271 7-9=-205 30T CHORD 1-2=0/34 5-6=-38 3-17=-57 WEBS 3-17=-57 (-15=-38 7-14=-62 9-12=-50	No.3 *Except* 18 wood sheathing purlins, except e purlins, except e purlins (4-2-0 ma ng directly applie midpt 3-15, 5-15 11=1377/0-3-8, 18=259 (LC 13) 11=-231 (LC 17 11=1936 (LC 4, imum Compress 2-3=-3208/464, 3/598, 6-7=-1731 (423, 9-10=-210 38/360, 10-11=-1 59/738, 15-17=-5 50/1767, 12-14=- 3/87 201, 3-15=-579/ 5/1257, 6-14=-35 532, 9-14=-169/ 3/333, 10-12=-20	 3-2,11-10:2x4 Sl g directly applied and verticals, and x.): 6-7. ad or 2-2-0 oc 6-15, 6-14, 9-14 18=1422/0-3-8 (), 18=-304 (LC 7), 18=-304 (LC 7), 18=-1967 (LC ion/Maximum 3-5=-2696/452, 1/436, 16/346,	P dor d 3) 4, 4) 5) 16) (C) 3) 6) 7) 8) 7) 8) 7) 9) 10) 11)	24-8-12, Éxterior(2R) 24-8-12 to 3 31-9-10 to 40-2-4 zone; cantileve exposed ; end vertical left and rigi members and forces & MWFRS fi Lumber DOL=1.60 plate grip DOL TCLL: ASCE 7-16; Pr=25.0 psf (r Plate DOL=1.15); Pg=20.0 psf; Pl DOL=1.15 Plate DOL=1.15); Is=1 Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Unbalanced snow loads have bee design. This truss has been designed for load of 12.0 psf or 2.00 times flat overhangs non-concurrent with ot Provide adequate drainage to pre All plates are MT20 plates unless This truss has been designed for on the bottom chord in all areas w 3-06-00 tall by 2-00-00 wide will fi chord and any other members, wi On eH2.5T Simpson Strong-Tie c uPLIFT at Jt(s) 18 and 11. This co only and does not consider latera This truss is designed in accordar International Residential Code se R802.10.2 and referenced standa Graphical purlin representation do or the orientation of the purlin alor	for (2E) 20 11-9-10, In 1eft and ri at exposed or reaction at exposed or reaction at exposed or reaction at exposed or reaction at exposed of reaction at exposed of Rough L: Lur =18.9 psf .0; Rough Lu=50-0-0 and on the rive log vent water otherwise a 10.0 psf a any other r a live log otherwater otherwise a reaction th BCDL = onnections bearing w nnection is forces. ice with that citions R50 rd ANSI/Tipes not dep	-11-4 to terior (1) ght I;C-C for s shown; n DOL=1.1 (Lum Cat C; Fully red for this min roof live f 13.9 psf co ads. ponding. indicated. bottom r live loads. d of 20.0psf. talls due to s for uplift e 2018 2.11.1 and Pl 1. bott the size	y on f		SCOTT M. SEVIER NUMBER OPE-2001018807	
1.5E WEBS 2x4 SPF No.2 BRACING FOP CHORD Structura 1-7-8 oc 2-0-0 oc 3OT CHORD Rigid ceil bracing. Bracing. WEBS 1 Row at REACTIONS (lb/size) Max Horiz Max Uplift Max Grav Tension FORCES (lb) - May FOP CHORD 1-2=0/34 5-6=-271 7-9=-205 2-18=-18 307 SOT CHORD 17-18=-3 14-15=-2 11-12=-5 WEBS 3-17=-27 6-15=-38 7-14=-62 9-12=-50 5-15=-67 NOTES Sote State	No.3 *Except* 18 wood sheathing purlins, except e purlins, except e purlins (4-2-0 ma ng directly applie midpt 3-15, 5-15 11=1377/0-3-8, 18=259 (LC 13) 11=-231 (LC 17 11=1936 (LC 4, imum Compress 2-3=-3208/464, 3/598, 6-7=-1731 (423, 9-10=-210 38/360, 10-11=-1 59/738, 15-17=-5 50/1767, 12-14=- 3/87 201, 3-15=-579/ 5/1257, 6-14=-35 532, 9-14=-169/ 3/333, 10-12=-20	 3-2,11-10:2x4 Sl g directly applied and verticals, and x.): 6-7. ad or 2-2-0 oc 6-15, 6-14, 9-14 18=1422/0-3-8 (), 18=-304 (LC 7), 18=-304 (LC 7), 18=-1967 (LC ion/Maximum 3-5=-2696/452, 1/436, 16/346,	P dor d 3) 4, 4) 5) 16) (C) 3) 6) 7) 8) 7) 8) 7) 9) 10) 11)	24-8-12, Éxterior(2R) 24-8-12 to 3 31-9-10 to 40-2-4 zone; cantileve exposed ; end vertical left and rig members and forces & MWFRS fi Lumber DOL=1.60 plate grip DOL TCLL: ASCE 7-16; Pr=25.0 psf (rr Plate DOL=1.15); Pg=20.0 psf; PI DOL=1.15 Plate DOL=1.15); Is=1 Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Unbalanced snow loads have bee design. This truss has been designed for load of 12.0 psf or 2.00 times flat overhangs non-concurrent with of Provide adequate drainage to pre All plates are MT20 plates unless This truss has been designed for chord live load nonconcurrent with * This truss has been designed for on the bottom chord in all areas w 3-06-00 tall by 2-00-00 wide will fi chord and any other members, wi One H2.5T Simpson Strong-Tie co uPLIFT at jt(s) 18 and 11. This co only and does not consider latera This truss is designed in accordar International Residential Code se R802.10.2 and referenced standa Graphical purlin representation do	for (2E) 20 11-9-10, In 1eft and ri at exposed or reaction at exposed or reaction at exposed or reaction at exposed or reaction at exposed of reaction at exposed of Rough L: Lur =18.9 psf .0; Rough Lu=50-0-0 and on the rive log vent water otherwise a 10.0 psf a any other r a live log otherwater otherwise a reaction th BCDL = onnections bearing w nnection is forces. ice with that citions R50 rd ANSI/Tipes not dep	-11-4 to terior (1) ght I;C-C for s shown; n DOL=1.1 (Lum Cat C; Fully red for this min roof live f 13.9 psf co ads. ponding. indicated. bottom r live loads. d of 20.0psf. talls due to s for uplift e 2018 2.11.1 and Pl 1. bott the size	y on f		SCOTT M. SEVIER	* e

											RELEASE F	DR CONSTRUCTION	
Job		Truss		Truss	Туре		Qty	Ply	Roof - 2217	NW Killarne	AS NOTED / Ln, Lee's Summit DEVELOP		
P220296-P2202	296-02	C4		Comr	non		2	1	Job Referen			MENT SERVICES 152488900 MMIT, MISSOURI	
Premier Building Sup	oply (Springhi	ill, KS), S	pring Hills, KS - 66083,	I		Run: 8.53 S Apr 2			27 2022 MiTek Ind	lustries, Inc. S		1/2022	
						ID:5QhjJf525g1jnF	ōns8hZhlz7rp	pw-RfC?PsB7	′0Hq3NSgPqnL8w	/3ulTXbGKWr	CDoi7J429C?	TTEOLL	
	1	-10-8 10-8	7-5-2 7-5-2	 	15-5-1 7-11-15	22-10-0		<u> </u>		<u>38-2-</u> 7-11-			
	Ũ						5x5	i=					
-	Т						6						
						3x4 = 2 2 2			23 3x4 🔊	3x6🗙			
					3x6				7	8			
0					6 ¹² 4					A CONTRACT	6x6) =	
12-3-0				3x4 =							24 4x4		
~			3					\$1	Ø		9	0	
			20							/		J	
	°	2										3-6-0	
-		9		10 18	17	7 16 25	<u>15</u>	n 14	<u>l</u>		<u>t</u> 12	11⊥	
		MT18HS	5 9X 18 =	x5=		:6=	3x8		6= 4x4:	-	6x6=		
						3x4=					3х	4 u	
		⊢	7-5-2 7-5-2		<u>15-5-1</u> 7-11-15	<u>22-10-0</u> 7-4-15) 	<u>30-2</u> 7-4-		<u>38-2-</u> 7-11-			
Scale = 1:83.8 Plate Offsets (X_Y	/)· [18·0-2-	8 0-1-8	, [19:Edge,0-6-13]										
Loading		(psf)	Spacing	2-0-0		csi	DE		in (loc)	l/defl L/d	PLATES (GRIP	
TCLL (roof)		25.0	Plate Grip DOL	1.15		тс	0.86 Vei	rt(LL) -(0.35 13-15	>999 240	MT20 2	44/190	
Snow (Pf/Pg) TCDL	13.9/	10.0	Lumber DOL Rep Stress Incr	1.15 YES		BC WB		. ,	0.61 13-15 : 0.10 11	>791 180 n/a n/a	MT18HS 1	97/144	
BCLL BCDL		0.0* 10.0	Code	IRC20	18/TPI2014	Matrix-S					Weight: 231 lb F	T = 20%	
LUMBER						7-16; Vult=115mph							
16	650F 1.5E		*Except* 6-8,1-4:2x4	SP	Ke=1.00; Ca	h; TCDL=6.0psf; BC at. II; Exp C; Enclose	d; MWFRS	(envelope)					
WEBS 2x			pt* 19-2,11-10:2x4 S	SP	Interior (1) 4	e and C-C Exterior(2 -1-8 to 22-10-0, Exte	rior(2R) 22	2-10-0 to					
No BRACING	0.2				left and righ	erior (1) 27-10-0 to 4 t exposed ; end verti	al left and	right					
TOP CHORD St	tructural wo		athing directly applie	d,	reactions sh	C for members and for own; Lumber DOL=							
BOT CHORD Ri			applied or 9-8-5 oc	3		E 7-16; Pr=25.0 psf (5				
WEBS 1	Row at mic	•	3-16, 5-15, 7-15, 7-1		DOL=1.15 F	1.15); Pg=20.0 psf; F Plate DOL=1.15); Is=			y				
Max	x Horiz 19	=273 (L	,	4		9; Cs=1.00; Ct=1.10 snow loads have be	en conside	red for this					
			LC 17), 19=-315 (LC LC 3), 19=1963 (LC	o) Í	design. j) This truss h	as been designed for	greater of	min roof live	e				
,	o) - Maximu ension	ım Com	pression/Maximum			psf or 2.00 times flat non-concurrent with c			n				
	2=0/34, 2-3 6=-1934/45		/479, 3-5=-2649/463 -1924/436,		All plates ar	e MT20 plates unles as been designed for	s otherwise	indicated.					
	9=-2143/36 19=-1840/3		=-995/182, 11=-1929/268		chord live lo	ad nonconcurrent wi has been designed f	th any othe	r live loads.				0	
			18=-545/2791, 3-15=-247/1824,	-	on the botto	m chord in all areas by 2-00-00 wide will	where a red	ctangle			ATE OF M	ISS	
12	2-13=-182/9	920, 11-		c	chord and a	ny other members, w Simpson Strong-Tie	ith BCDL =	= 10.0psf.		A			
3-	18=-14/208	3, 3-16=	-584/233,		recommend	ed to connect truss t (s) 19 and 11. This c	bearing w	valls due to		A	SCOTT I SEVIER		
6-		250, 7-1	5=-390/222,	4	only and do	es not consider latera designed in accorda	al forces.			80	h-HT .	- Sealer	
9-	·12=-1339/3		7 17 1020,	'	Internationa	Residential Code so I Residential Code so	ections R50	02.11.1 and			NUMBE		
,	oof live load	ls have	been considered for	L	OAD CASE(S)		aiu Ainoi/ I			Ø	PE-200101	8807	
this design.											SSIONAL	ENG	
											and	4,2022	

June 14,2022

												RI	ELEASE FOR CONSTRUCTION
Job		Truss		Truss T	уре		Qty		Ply	Roof - 221	7 NW Killarne	A V Ln, Lee's	S NOTED FOR PLAN REVIEW S Summit MO DEVELOPMENT SERVICES
P220296-P22	20296-02	D1		Roof S	pecial		2		1		ence (optiona		LEE'S SUMMIT, MISSOURI
Premier Building S	Supply (Springh	nill, KS), S	pring Hills, KS - 66083,			Run: 8.53 S	Apr 27 2022 F	rint: 8.5	30 S Apr 2	7 2022 MiTek I	Industries, Inc.	at Jun 11	6/21/2022
						ID:II3hmdTkul	bLOQlazyAd3	HRz7rf5	-RfC?PsB	70Hq3NSgPqn	L8w3ulTXbGK	rCDoi7J4zJ	
		-10-8 -10-8	7-5-2 7-5-2		4-0-4 6-7-2	17-2-3 3-1-15	<u>22-10-0</u> 5-7-12	+	28-5-12 5-7-12	31-6-		-2-14 ·8-12	40-4-0
	0.	-10-8	1-0-2	, c	-1-2	5-1-15	5-7-12	5x5=	5-7-12	3-0-6	0 0	0-12	2-1-2
	0-10-0	2 21 MT18HS	3 22 5 9x18 =	4x4 =	3x6 = 6 ¹² 4 5	27 00 E	28	7 17 17 4x8= 3:	¢ 6 29 x6=	5x1	5x5x 9 0= 14 3x4 II	26	6x6 \$ 4x6 \$ 10 11 0 0 0 0 0 0 0 0 0 0 0 0 0
Scale = 1:83.8		 	7-5-2 7-5-2	, 1	<mark>4-2-0</mark> -8-14 ⊦	6x12= 22-1(8-8-		-1		-4-6 6-6		<u>-2-14</u> 10-8	3x4 II 40-4-0 2-1-2
Plate Offsets (X	, Y): [9:0-2-8	3,0-3-0],	[15:0-3-12,0-2-8], [1	8:0-6-0,0-	3-4], [20:0-5-0	,0-1-8], [21:Edg	e,0-6-13]					_	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	13.9	(psf) 25.0 /20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.75 0.96 0.92	DEFL Vert(L Vert(C Horz(C	L) -0 :T) -0	in (loc) .50 17-18 .88 17-18 .34 12	l/defl L/c >966 240 >548 180 n/a n/a	MT20 MT18HS	244/190 S 197/144
LUMBER				,		roof live loads h	nave been c	onside	red for				
	2.0E, 9-11:2	x4 SP 16		2)		7-16; Vult=115		0	,				
BOT CHORD			t* 19-5,9-14:2x4 SPI <4 SP 1650F 1.5E	=	Ke=1.00; Ca	h; TCDL=6.0psf at. II; Exp C; Enc	closed; MWI	RS (er	nvelope)				
WEBS	2x4 SPF No SP No.2	.3 *Exce	pt* 20-18,21-2,12-11	:2x4		e and C-C Exter -1-8 to 22-10-0,							
BRACING TOP CHORD		and abo	athing directly applie	d		erior (1) 27-10-0 exposed ; end							
	except end v	verticals.		u,		C for members a own; Lumber D0			RS for				
BOT CHORD	bracing.		applied or 2-2-0 oc	3)	DOL=1.60 TCLL: ASCE	E 7-16; Pr=25.0	nsf (roof I I	lum F)OI =1 15				
Ν	/lax Horiz 2 /lax Uplift 12	2=1355/0 1=273 (L 2=-246 (l	6-17, 8-17 D-3-8, 21=1405/0-3-8 .C 13) LC 17), 21=-315 (LC (LC 3), 21=1950 (LC	3 ; 16) 4)	Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 Unbalanced	1.15); Pg=20.0 p late DOL=1.15) 9; Cs=1.00; Ct= snow loads hav	osf; Pf=13.9 ; Is=1.0; Ro 1.10	psf (Lu ugh Ca	ım t C; Fully				
FORCES	(lb) - Maxim		pression/Maximum	5)		as been designe							
TOP CHORD			/478, 3-5=-4394/711		overhangs n	psf or 2.00 time on-concurrent w	vith other liv	e loads	· ·	I			
	11-12=-1927	11, 8-10 180, 2-2 7/265	=-3269/591, 1=-1827/364,	6) 7) 8)	This truss ha	e MT20 plates u as been designe ad nonconcurre has been desigr	ed for a 10.0 nt with any o	psf bo other liv	ttom /e loads.			FE	OF MISSO
BOT CHORD	5-18=-296/1 15-17=-366/	63, 17-1 2585, 14	20=-6/16, 18-19=0/1 8=-464/3055, 1-15=0/121, 4=-4/17, 12-13=-50/		3-06-00 tall I chord and ar	m chord in all ar by 2-00-00 wide ny other membe Simpson Strong	e will fit betw ers, with BCI	een the DL = 10	bottom		Å	1251	SCOTT M. SEVIER
WEBS	3-20=-1198/ 3-18=-124/1 6-17=-1338/ 8-17=-674/2 2-20=-148/2	354, 18- 114, 6-1 420, 7-1 91, 8-15 089, 10- 5/425, 13	20=-591/3029, 8=-357/1768, 7=-277/1826,	10	recommende UPLIFT at jt only and doe) This truss is International	ed to connect tri (s) 21 and 12. T es not consider l designed in acc Residential Co nd referenced s	uss to bearin This connect lateral force cordance with de sections	ng walls on is fo s. h the 2 R502.1	or uplift 018 1.1 and			PE PESSI	NUMBER -2001018807
NOTES					.,							Jan 19	June 14,2022

											E FOR CONSTRUCTION
Job		Truss		Truss Type		Qty	Ply	Roof - 221	7 NW Killarne	AS NOT Ln, Lee's Sum	TED FOR PLAN REVIEW mit, MO LOPMENT SERVICES
P220296-P2	20296-02	D2		Roof Special		2	1		nce (optional		IS2488902 S SUMMIT, MISSOURI
Premier Building	Supply (Spring)	I hill, KS), Spring H	lills, KS - 66083,		Run: 8.53 E A	pr 27 2022 F	Print: 8.530 E Ap			on Jun 18 15 2:3	21/2022
					ID:ETub5t2rtkz	lmrTd5ZPjb	9z7rZB-85me9T	wzq2t9Rb5IE2aID	f8fJpxclgUEK5I	C45z6fL3	21/2022
				15-1	0-1				35-4-4		
	-0-10-8	7-5-2		-2-12 14-0-4	22-10-0		29-9-15	0 5 40	35-2-11 38-2-		
	0-10-8	7-5-2	5-	9-10 0-9-8 1-9-	6-11-15 13		6-11-15	3-5-13 1	-10-15 2-10- 0-1-9	10 7-5	5-2 0-10-8
						5x5= 7					
ΤT					6x6 =						
				MT18HS 5x8	WB _ 31		32	5x10 _≈			
00					6			- 8			
12-3-0 8-3-0				6 ¹² 4 ⁵	The second secon				9 6x6👟		
12-4-6			4x8 ≠				\$		10	5x10👟	
12-			3	< ₩						11	
		30 /		2011					17		^{4x6} * 0_0 312 -0 -0
0 4-0-0						19 18 5x8=		<mark>⊒ 10x10</mark> ≢			
+0-0 +0-0	-1^{2}				3-0-0	6x6)=				1314 m
	1 23		22	21	I ⊥			16		45	
	10x1	0 1	22 5x10=		10x10=					15 5x5=	MT18HS 5x8 II
	—	7-5-2			6-9-8 22-10-0	24-2-0	30-6-8	33-2-0	38-2-14	45-8	
	,	7-5-2		6-8-14 2	-7-8 6-0-8	1-4-0	6-4-8	2-7-8	5-0-14	7-5	-2
Scale = 1:85.3	()(), [0:0.0]	0.0.0.01 [40:0	2 0 0 2 41 1420		4 40 0 4 401 [47:0 0	4 0 4 41 1		1 100:0 5 0 0 4	01 100:0 0 0	0 4 4 21	
	λ, Υ): [6:0-2-6	8,0-2-0], [10:0-	3-0,0-3-4], [13:0	J-5-9,0-0-5], [15:0	-1-12,0-1-12], [17:0-3-	·4,0-4-4], [/	20:0-3-8,Edge], [22:0-5-0,0-1-	8], [23:0-6-8,0	0-4-12]	
Loading TCLL (roof)		(psf) Spac 25.0 Plate	cing e Grip DOL	2-0-0 1.15	CSI TC	0.86	DEFL Vert(LL)	in (loc) -0.59 17-19	l/defl L/d >926 240		GRIP 197/144
Snow (Pf/Pg)	13.9	9/20.0 Lum	ber DOL	1.15	BC	0.97	Vert(CT)	-1.12 17-19	>485 180	MT20	244/190
TCDL BCLL		10.0 Rep 0.0* Code	Stress Incr	YES IRC2018/TPI201	WB 4 Matrix-S	0.97	Horz(CT)	0.77 13	n/a n/a		
BCDL		10.0								Weight: 294 lb	FT = 20%
LUMBER				WEBS	3-22=-1875/462,						by others) of truss to
TOP CHORD	2x4 SP 2400 No.2	0F 2.0E *Excep	ot* 1-4:2x6 SPF		3-20=-263/2641, 6-19=-2153/569,		,			bable of withstand	ding 333 lb uplift at 3.
BOT CHORD			-25,28-29:2x4 S , 16-13,21-23:2x		8-19=-2169/483, 15-17=-441/3833		,				nce with the 2018 ctions R502.11.1 and
			SP 2400F 2.0E		11-15=-2327/367					eferenced standa	
WEBS	2x4 SPF No 22-20,20-3,1		7:2x4 SP No.2,	NOTES 1) Unbala	nced roof live loads ha	ave been o	considered for		CASE(S) Sta	andard	
	17-11:2x4 S 2400F 2.0E	P 1650F 1.5E,	23-2:2x6 SP	this de	sign.						
OTHERS	2x4 SP No.2	2	_	Vasd=9	ASCE 7-16; Vult=115n 91mph; TCDL=6.0psf;	BCDL=6.0)psf; h=35ft;				
SLIDER BRACING	Right 2x6 SI	PF No.2 4-2-	0		0; Cat. II; Exp C; Encl r zone and C-C Exterio			e)			
TOP CHORD			directly applied		(1) 4-1-8 to 22-10-0, I 0, Interior (1) 27-10-0 1			r			
BOT CHORD		directly applie	ed or 10-0-0 oc	left and	I right exposed ; end v	ertical left	and right	•			
	bracing, Ex 2-2-0 oc bra	xcept: acing: 19-20,17	-19.		ed;C-C for members ar ns shown; Lumber DC						
WEBS	1 Row at mi	idpt 6-19,	8-19	DOL=1 3) TCLL:	.60 ASCE 7-16; Pr=25.0 p	ef (roof LL		15			
REACTIONS (· ·	3=1580/0-3-8, 3=215 (LC 16)	23=1591/0-3-8	Plate D	OL=1.15); Pg=20.0 ps	sf; Pf=13.9	psf (Lum				
		•), 23=-337 (LC 1	Fxn · C	.15 Plate DOL=1.15); ce=0.9; Cs=1.00; Ct=1		ugh Cat C; Fu	illy			ADD
FORCES			, 23=2122 (LC 2 n All forces 25	· 4) Unbala	nced snow loads have	e been cor	sidered for thi	S		FOF	MISSOL
TOP CHORD	(lb) or less e	except when sh /500, 3-30=-33	nown.	5) This tru	uss has been designed				4	TAN	Rest
TOF CHORD	3-4=-6496/9	983, 4-5=-6307	/1000,		12.0 psf or 2.00 times ngs non-concurrent wi			fon	B	· /	TT M.
		022, 6-31=-34 /555, 7-32=-33		All plat	es are MT20 plates ur	less other	wise indicated	l.	Bo		
	8-32=-3462/	/536, 8-9=-774	0/1023,		es are 3x4 MT20 unle brication Tolerance at					sott.	Server
	11-33=-3420	/1002, 10-11=- 6/525, 12-33=-	3443/507,		uss has been designed ive load nonconcurren			ls.	R	PE-200	1BER 1018807
BOT CHORD		4/498, 2-23=-2 /4821, 18-19=-		10) * This t	russ has been designe	ed for a liv	e load of 20.0p		Ŷ	100	12 A
	17-18=-450/	/4834, 13-15=-			bottom chord in all are) tall by 2-00-00 wide			m		STON!	AL ENUS
	22-23=-418/	1033		chord a	and any other member	s.					
										Jun	e 14,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 14,2022

June 14,2022

3x8=

4x4 ı

3x6=

5x8=

27

31

29 🗄

1-0-0

34

4x6 II

8x10=

32

4x8=

0-0-0 30 %

5x10=

28

18 🗄

17

15

4x6=

16

×

3x6=

	MT [−]	18HS 5x8 II <u>7-5-2 11-2</u> 4-7-10 3-8-			24-10 123-0-8	30-6-8	<u>33-0-8</u> 2-6-0	<u>38-2-14</u> 5-2-6	45-8	
Scale = 1:85.1	2-9-6	4-7-10 3-8-	14 2-8-8 2-7 0-3-8	-8 4-0-0	2-3-0 1-10	.0 2-8-0	2-6-0	5-2-6	-0-1	-2
Plate Offsets (2	X, Y): [2:0-3-4,0-2-13]], [3:0-0-4,0-2-6], [5:	0-3-0,Edge], [9:0-3-0	,0-1-8], [14:Edge,	,0-5-13], [23:()-3-8,0-1-8], [24:	0-2-0,0-0-8],	[25:0-6-4,0-3	3-8], [32:0-3-8,0-2-0	0], [33:0-3-12,0-1-8]
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.71 0.90 0.97	Vert(CT) -	in (loc) 0.28 25 0.50 26-27 0.25 14	>999 24 >795 18	0 MT20 0 MT18HS	GRIP 197/144 244/190 FT = 20%
BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD 1 Row at midp WEBS	1 Row at midpt	F No.2 t ⁴ 5-22,20-18:2x4 SP 6 SP 2400F 2.0E, pt* 32-25,14-12:2x4 2-1-6 athing directly applie xcept end verticals, a -11 max.): 7-8. applied or 3-11-4 oc 6-23	SP d or and WEBS NOTES	3-33=-526/24 31-32=-60/16 28-29=-35/25 25-27=-77/22 24-25=-539/3 21-23=-135/1 19-20=-41/27 16-17=-1779/ 9-19=-1661/1 14-15=-226/5 4-32=-2052/5 7-21=-751/17 9-21=-32/131	08, 32-33=-6 4, 30-31=-86 6-25=-195/1 8, 24-26=-13 241, 23-24=- 644, 20-21=- 0, 18-20=-31 135, 17-19=- 88, 15-16=-1 00 7, 25-32=-68 39, 7-23=-20 7, 8-21=-65/3 8, 11-16=-59 12-15=-102/	85/2952, (198, 29-31=0/5: 27-30=0/99, 360, (82, 617/3468, 71/110, (1, 17-18=-201/0 1701/166, 60/412, 6/3064, 8/1092, 159, 6/183, 65, 4-25=0/591	2, ov 6) Pr 7) All 8) All 9) Th ch 10) * T on 3-t ch 11) Or rec UF on 12) Th Int	ad of 12.0 psf erhangs non- ovide adequa plates are 3m is truss has b ord live load r "his truss has the bottom c 206-00 tall by 2 206-00 tall by 2 206-00 tall by 2 200 d and any c me H2.5T Simp commended t PLIFT at jt(s) 2 Iy and does n is truss is des ernational Re	or 2.00 times flat r concurrent with oth tte drainage to prev T20 plates unless of 4 MT20 unless of even designed for hord in all areas with 2-00-00 wide will fit ther members. pson Strong-Tie cc o connect truss to 2, 16, and 14. This iot consider lateral signed in accordan	vent water ponding. otherwise indicated. herwise indicated. a 10.0 psf bottom a any other live loads. r a live load of 20.0psf here a rectangle between the bottom onnectors bearing walls due to connection is for uplift forces. ce with the 2018 ttions R502.11.1 and
	(lb/size) 2=1166/0- 16=1610/C Max Horiz 2=199 (LC Max Uplift 2=-291 (L 16=-132 (l Max Grav 2=1541 (L 16=2115 ((lb) - Maximum Com Tension 1-2=0/0, 2-3=-1381/2 4-6=-3978/779, 6-7= 7-8=-1320/394, 8-9= 9-11=-92/293, 11-12 12-14=-533/266	20) C 16), 14=-226 (LC LC 17) C 2), 14=599 (LC 57 (LC 41) pression/Maximum 263, 3-4=-3319/666, -1981/432, -1630/381,	this desi 2) Wind: A: Vasd=91 17), Ke=1.00 exterior : 24-8-12, 31-9-10 exposed member Lumber 3) TCLL: A Plate DC X/4, Plate DC DOL=1. Exp.; Ce		15mph (3-see sof; BCDL=6. inclosed; MW terior(2E) -0- -4, Exterior(2 3-12 to 31-9- antilever left a: and right exy WFRS for rea prip DOL=1.6; 0 psf; (reof LI 0 psf; Pf=18.3; 5); ls=1.0; R: t=1.10, Lu=5	cond gust) Opsf; h=35ft; FRS (envelope) 10-8 to 4-1-8, E) 20-11-4 to 10, Interior (1) and right oosed;C-C for ictions shown; D: Lum DOL=1.1 0 psf (Lum Ough Cat C; Fully 0-0-0	5			MISSOLUT T.M. TER UBER 018807

June 14,2022

12

Ø

8x8=

Continued on page 2

-0-0 4-0-0

3-0-0

0 0

							RELEASE FOR CONSTRUCTION	
Job	Truss	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488904					
P220296-P220296-02	2220296-P220296-02 D4 Hip 1 1 Job Reference (option							
Premier Building Supply (Spring	at Jun 110:64721/210:22							

 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488905 LEE'S SUMMIT MISSOURI
P220296-P220296-02	D5	Hip	1	1	Job Reference (optional	I52488905 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springh	ill, KS), Spring Hills, KS - 66083,				7 2022 MiTek Industries, Inc. S 70Hq3NSgPqnL8w3uITXbGK\	
-0-10-8 	7-5-2 11-6- 7-5-2 4-1-	1 2-6-1 4-11-0 7-9-	8	6	-2-4 34-1-13 <u>38-2-14</u> -5-8 0-11-9 4-1-1	45-8-0 7-5-2 0-10-8
	3x6 = 4 35 35 35 36 = 4 4 32 4x8 = 3: 8AHS 12x18 II 9-8 _ 7-5-2 _ 11-2-1	36^{5} 25^{24} 26^{23} $4x6^{1}$ 29^{4x4} 30^{6} $4x6^{1}$ $4x6^{$	3940	21	$3x6_{\$}$ $4x8_{\$}$ 9 10 41 10 19 17 41 $3x4_{11}$ 16 $3x4=$ $3x6=$ $3x6=$ $33-0-8$ $38-2-14$ $5-2-6$	6-11-14 3x6 11 42 0 0 0 0 0 0 0 0 0 0 0 0 0
Scale = 1:84.9						

Plate Offsets (X, Y): [3:0-9-4,0-4-3],	[24:0-3-0,0-0-8], [25:0-6-	-8,0-3-8], [26:Edge,0)-3-8], [32:0-3-8,0-2	-0], [34	:Edge,0-3-8]						
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 10.0 0.0* 10.0	Plate Grip DOL1.1Lumber DOL1.1Rep Stress IncrYE	15	CSI TC BC WB Matrix-S	0.92 0.87 0.78	Vert(LL) -0.4 Vert(CT) -0.7	0 21 7 21		l/defl >989 >515 n/a	L/d 240 180 n/a	PLATES MT20 M18AHS Weight: 267 lb	GRIP 244/190 186/179 FT = 20%
LUMBER TOP CHORD BOT CHORD	2x4 SP No.2 *Excep 34-33,31-29,26-24,2 1650F 1.5E, 3-30:2x	20-18,22-19:2x4 SP		2-34=-182/641, 33- 3-33=-430/2510, 32 31-32=-18/263, 30- 28-29=-47/17, 28-3 25-27=-6/129, 6-25 26-27=-37/372, 24- 24-25=-509/3293, 2	2-33=-6 31=-34/ 0=0/60, =-218/1 26=0/14	12/3139, /304, 29-31=0/50, , 27-30=0/156, 381, 49,	5) 6) 7) 8) 9)	load overi Prov All pl All pl	of 12.0 hangs r ride ade lates are lates are	psf or non-co quate e MT2 e 3x4	2.00 times flat ro ncurrent with oth drainage to prev 0 plates unless of	ent water ponding. otherwise indicated. erwise indicated.
WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD	2x4 SPF No.3 *Exce No.2 Left 2x4 SP No.2	athing directly applied, , and 2-0-0 oc purlins applied or 10-0-0 oc -29,20-21,18-20,17-18 6-17. 6-23, 7-21 -3-8, 14=448/0-3-8, 0-3-8 C 16), 14=-216 (LC 17), (LC 17) LC 3), 14=611 (LC 57), (LC 3) apression/Maximum /288, 3-4=-3532/617, -2652/490, -1677/367,	WEBS NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 26-0-2, Inter 26-8-12 to 3 cantilever lef right expose for reactions DOL=1.60 3) TCL1 - ASCE	21-23153/2290, 2 19-2045/88, 18-2 19-191630/184, 15 14-15149/446 6-23149/446 6-231732/483, 7- 7-211123/196, 8- 9-2161/1575, 11- 11-15=0/295, 4-32- 25-32652/3159, 4 roof live loads have 57-16; Vult=115mpt h; TCDL=6.0psf; BC t. II; Exp C; Encloss e and C-C Exterior(; -1-8 to 18-11-4, Ext ior (1) 26-0-2 to 26- 3-9-10, Interior (1) 3 s-9-10, Interior (1) 3 ft and right exposed d;C-C for members s shown; Lumber DC E 7-16; Pr=25.0 psf	20-21=-4 0=-4/27 7-19=- i-16=-1 23=-19 21=-12 16=-62 -25=-3 -25=-	42/33, 7, 17-18=-74/29, 1703/178, 49/446, 5/1466, (371, 3/195, 75, 5/609 considered for cond gust) 0psf; h=35ft; (FRS (envelope) 10-8 to 4-1-8, R) 18-11-4 to x:terior(2R) to 46-6-8 zone; vertical left and rcces & MWFRS 0 plate grip	10 11 11	chord) * Thi on th 3-06 chord) One recol UPLI only) This Inter R802) Grap or th	d live lo is truss ne botto -00 tall d and a H2.5T mmend IFT at jt and do truss is nationa 2.10.2 a bhical pu	ad not has be m cho by 2-0 ny oth Simps ed to o (s) 2, es not desig I Resid und ref urlin re ation o	nconcurrent with een designed for rd in all areas wf 0-00 wide will fit er members, with on Strong-Tie co connect truss to I 16, and 14. This consider lateral ned in accordand dential Code sec erenced standar	any other live loads. a live load of 20.0psf here a rectangle between the bottom h BCDL = 10.0psf. nnectors bearing walls due to connection is for uplift forces. ce with the 2018 tions R502.11.1 and d ANSI/TPI 1. es not depict the size g the top and/or MISSOL T M.
	9-11=-123/272, 11-1 12-14=-545/258	12=-602/285, 12-13=0/34,	Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9	1.15); Pg=20.0 psf; late DOL=1.15); Is= 9; Cs=1.00; Ct=1.10; snow loads have b	Èf=18.9 ⊧1.0; Ro), Lu=50	9 psf (Lum ough Cat C; Fully 0-0-0				A.	PE-2001	LENGI

Dorom June 14,2022

							RELEASE FOR CONSTRUCTION			
Job										
P220296-P220296-02	Job Reference (optional									
Premier Building Supply (Springh	at Jun 110:64/21/219:22									

LOAD CASE(S) Standard

Scale = 1:84.7

Plate Offsets	(X, Y): [3:0-11-0	0,0-2-7]], [9:0-3-0,0-2-4], [22	2:0-3-8,0)-1-8], [26:0-2-(),Edge], [33:0-3-	-8,0-2-0], [34	:0-3-12,0-1-8]						
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	18.9/2	(psf) 25.0 (20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2	018/TPI2014	CSI TC BC WB Matrix-S	0.83 0.98 0.85	Vert(CT)	in -0.30 -0.61 0.24	(loc) 23-25 23-25 15	l/defl >999 >658 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 265 lb	GRIP 197/144 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD	No.2, 11-14,5 2x4 SP No.2	5-1:2x4 *Except 27-25,2 6 SP 24	1-19:2x4 SP 1650F 400F 2.0E,		BOT CHORD	2-35=-161/568 3-34=-410/233 32-33=-58/32, 29-30=-8/30, 2 26-28=0/186, 25-27=-9/20, 2 23-25=-260/24	38, 33-34=-5 , 31-32=-87/4 29-31=0/55, 2 6-26=-344/18 25-26=-194/2	71/2906, 0, 30-32=0/54 28-31=0/84, 38, 27-28=-73/ 376,	l, (65,	loa ove 6) Pro 7) All 8) All	d of 12.0 erhangs ovide ade plates an plates an) psf or non-co equate re MT2 re 3x4	2.00 times flat r ncurrent with oth drainage to prev 0 plates unless MT20 unless oth	greater of min roof live roof load of 13.9 psf on her live loads. vent water ponding. otherwise indicated. nerwise indicated. a 10.0 psf bottom
WEBS SLIDER BRACING TOP CHORD	2x4 SPF No.3 No.2 Left 2x4 SP N Structural wo except end ve (3-3-12 max.)	3 *Exce No.2 1 pod shea rerticals,): 7-9.	pt* 15-13,33-26:2x4 I-9-6 athing directly applie , and 2-0-0 oc purlin	ed,	WEBS	21-22=-75/14, 18-19=-119/27 18-20=-1622/ 16-17=-150/4 7-26=-382/19 8-23=-616/22 9-22=-700/13 12-17=-605/15	, 20-21=-14/5 7, 17-18=-169 176, 10-20=- 14, 15-16=-19 14, 7-23=-492 5, 9-23=-217/ 1, 10-22=-119	1, 19-21=-25/2 97/166, 1601/180, 50/414 2/140, 1459, 3/1342,	21,	, chơ 10) * T on 3-0 chơ 11) On rec	ord live lo his truss the botto 06-00 tall ord and a e H2.5T commend	bad not has be om cho by 2-0 any oth Simps ded to o	nconcurrent with een designed for rd in all areas w 0-00 wide will fit er members. on Strong-Tie co connect truss to	any other live loads. r a live load of 20.0psf here a rectangle t between the bottom
BOT CHORD	bracing. (Ib/size) 2= 17: Max Horiz 2= Max Uplift 2= 17: Max Grav 2=	:1189/0- :=1669/0 :158 (LC :-266 (L0 :=-99 (L0 :1538 (L	C 20) C 16), 15=-214 (LC C 17) .C 2), 15=593 (LC 5	17),	this design 2) Wind: ASC Vasd=91m	4-33=-869/254 4-26=-17/571	4, 26-33=-572 s have been o 15mph (3-sec sf; BCDL=6.0	2/3142, considered for cond gust) Dpsf; h=35ft;		onl 12) Thi Inte R8 13) Gra or t	y and do is truss is ernationa 02.10.2 a aphical p	bes not s desig al Resid and ref ourlin re tation of rd.	consider lateral ned in accordan dential Code sec erenced standar presentation do of the purlin alon	forces. ice with the 2018 tions R502.11.1 and rd ANSI/TPI 1. es not depict the size ing the top and/or
FORCES TOP CHORD	(lb) - Maximu Tension 7-8=-2188/48 9-10=-1257/3 12-13=-575/2	38, 8-9= 352, 10- 285, 13- 255, 1-2 37, 4-6=	pression/Maximum -2188/488, 12=-98/272, 14=0/34, =-7/0, 2-3=-1522/28		exterior zo Interior (1) 24-0-2, Int 28-8-12 to cantilever right expos for reaction DOL=1.60 3) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce=	ne and C-C Extr 4-1-8 to 16-11 erior (1) 24-0-2 35-9-10, Interio left and right exp sed;C-C for men as shown; Lumb	erior(2E) -0-1 4, Exterior(2F to 28-8-12, E r (1) 35-9-10 posed ; end v nbers and for per DOL=1.6(0 psf (roof LL 0 psf; Pf=18.5 5); Is=1.0; Rc t=1.10, Lu=5(0-8 to 4-1-8, R) 16-11-4 to xterior(2R) to 46-6-8 zonu certical left and cess & MWFRS) plate grip :: Lum DOL=1) psf (Lum yugh Cat C; Fu)-0-0	e; J S .15 Jlly		-		STATE OF STATE OF SEV SEV PE-2001	TER BEN 1018807

design.

June 14,2022

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

							RELEASE FOR CONSTRUCTION			
Job										
P220296-P220296-02	Job Reference (optional									
Premier Building Supply (Spring	remier Building Supply (Springhill, KS), Spring Hills, KS - 66083, ID:DIXZ6nJ7_2RWh6_YivRsE6z7fdo-RfC?PsB70Hq3NSgPqnL8w3uITXbGf									

LOAD CASE(S) Standard

Image: Section of the sectio															RE	LEASE FOR C	CONSTRUCTION
Particle 220208-02 PT Hp 1 Descention Less subtritue Particle 20208-02 PT Main Rein ASI Auf 22021 Rein ASI	Job		Truss		Truss	Туре			Qty	Ply	R	oof - 221	7 NW K	illarne	Ln, Lee's	S NOTED FOR Summit MO	PLAN REVIEW
Premer Budry Skey (SomgHL KS) Gorg HL KS - 4000. Premer Budry 2021 Per E 50 E Apr 2 7022 M is its its measure in the har 0 Bar	P220296-P2202	296-02	D7		Hip				1	1						152	488907
-4-10-8 7.6-2 14.0-4 141/4 20.8-2 30.8-2 30.8-2 30.8-4 30.8-2 30.8-4 </td <td>Premier Building Supp</td> <td>oply (Springhill</td> <td>l, KS), Sp</td> <td>oring Hills, KS - 6608</td> <td>3,</td> <td></td> <td>Run: 8.53</td> <td>3 E Apr 27 20</td> <td>22 Print:</td> <td>8.530 E Ap</td> <td>r 27 202</td> <td>22 MiTek I</td> <td>ndustries</td> <td>, Inc. N</td> <td>on Jun 1</td> <td>6/21</td> <td>/2022</td>	Premier Building Supp	oply (Springhill	l, KS), Sp	oring Hills, KS - 6608	3,		Run: 8.53	3 E Apr 27 20	22 Print:	8.530 E Ap	r 27 202	22 MiTek I	ndustries	, Inc. N	on Jun 1	6/21	/2022
-10.0 7.6-2 14.0-4 14.114 20.8-2 30.6-12 30.4-0 0-10.6 7.6-2 0.612 7.6-2 0.612 7.1-6 0.611-10 2.7.4 0-10.6 7.6-2 0.612 7.6-2 0.612 5.644 5.644 0-10.0 7.6-2 0.612 7.6-2 0.612 5.644 5.644 0-10.0 7.6-2 0.612 7.6-2 0.612 5.644 5.644 0-10.0 7.6-2 0.612 7.6-2 0.612 1.644 5.644 0-10.0 7.6-2 0.612 7.6-2 0.612 1.646 5.644 0-10.0 7.6-2 0.614 2.7.9 6.630 0.61 0.64 0-10.0 7.6-2 0.614 2.7.9 6.630 0.61 0.64 2.64 0.64 2.64 0.64 2.64 0.64 2.64 0.64 2.64 0.64 2.64 0.64 2.64 0.64 2.64 0.64 0.64 0.64							ID:WINKU			/IrxLvvxv	VK40VKI	uoxiviRm	2001/315	anpSAA	RGOIVIGR		
UNU Units U		-0-10-8	6				14-1										4
Image: Specific constraints Image: Specific constraints <t< td=""><td></td><td>0-10-8</td><td></td><td>7-5-2</td><td>1</td><td>6-7-2</td><td>0-11</td><td></td><td></td><td>7-1-6</td><td></td><td></td><td></td><td>5-11-10</td><td>0</td><td>2-7-4</td><td>I</td></t<>		0-10-8		7-5-2	1	6-7-2	0-11			7-1-6				5-11-10	0	2-7-4	I
Image: Second												4 5-4					
State 165 304 # 3	10				,1 <u>2</u>			5 7			2627	8	28	52		9	5w4
Image: State = 165.3 Space = 165.3 Plate Offsets (X, Y): [30:4-0.0-1-15], [13:0-4-8.0-1-6], [17:0-5-12.EEdge], [19:0-4-0.4-40], [21:0-6-0.1-16], [22:Edge.0-5-13] Loading TCDL (mode) Space = 165.3 Plate Offsets (X, Y): [30:4-0.0-1-16], [17:0-5-12.EEdge], [19:0-4-0.4-40], [21:0-6-0.1-16], [22:Edge.0-5-13] Loading TCDL (mode) Space = 165.3 Plate Offsets (X, Y): [30:4-0.0-1-16], [17:0-5-12.EEdge], [19:0-4-0.4-40], [21:0-6-0.1-16], [22:Edge.0-5-13] Loading TCDL (mode) Space = 165.3 Plate Offsets (X, Y): [30:4-0.0-1-16], [17:0-5-12.EEdge], [19:0-4-0.4-40], [21:0-6-0.0-16], [22:Edge.0-5-13] Loading TCDL (mode) Space = 165.3 Plate Offsets (X, Y): [30:4-0.0-1-16], [17:0-5-12.EEdge], [19:0-4-10, 4-00], [21:0-6-0.0-16], [22:Edge.0-5-13] Loading TCDL (mode) Space = 165.3 DTCL (mode) Space = 165.3 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>00</td> <td></td> <td></td> <td></td> <td>k</td> <td></td> <td>~</td> <td>A</td> <td></td> <td></td> <td></td>							00				k		~	A			
Image: Second Structural wood sheating directly applied or 22-00 profiles. Reception 4:22-00 profiles. Reception 4:22-0	-15					. //											
Image: Section 1.05.3 23 24 <t< td=""><td></td><td></td><td></td><td></td><td>3 4²⁵</td><td></td><td></td><td></td><td></td><td></td><td>\searrow</td><td></td><td></td><td></td><td></td><td></td><td>0-0</td></t<>					3 4 ²⁵						\searrow						0-0
Image: Second	-3-10			/	T			17	- <u>9</u> -							<u>a</u> 14	13 0-0
Image: Section 2 Image: Section 2<				23 24			19	1	₿Ç⊥							2 - 3x8= -	-11
Image: Source 1:85.3 21 3x4 # 1 11/2 3x4 # 1 11/2 11/2 3x4 # 1 11/2 3x4 # 8x10 # 1 11/2 11/2 3x4 # 1 11/2 3x4 # 1 11/2 3x4 # 1 11/2 11/2 11/2 3x4 # 1 11/2	4-0-0	0						0-	7x8=						3x4 I	3:	
Des 21 4112 3x4 # 810 = 4112 = Bit 0 = 520 = 1.5.2 Plate Offsets (X, Y): [9:0-4-0.0-1-15], [13:0-4-3.0-1-8], [17:0-5-12.Edge], [19:0-4-4.0-4:0], [21:0-6-0.0-1-8], [22:Edge.0-5-13] Loading (pdf) Spacing TCLL (root) 25.0 Plate Grap DOL 1.15 BCD 10.0 Res Stress Incr YES BCLL 0.01 Code IR22:018/TPI2014 Matrix-S WEB 2.40 EP No.2 "Except" 46-224 SP 2400F 1 Unblanced root live loads have been considered for this design. 1) Graphical putitin representation does not depict the size other orientation of the putin along the top and/or bot mode. UMBER			\langle													3X4 II	9-9- 0
Art12# Br10# 7.5:2 14:2:0 16:9:8 23:0:6 23:0:6 33:0:6 13:0:6 Scale = 1:65.3 Plate Grip DOL 1:5:1 TC 0:9:1 Vert(L) 0:0:0 Vert(L) Vert(L) Vert(L)	\top \top $\frac{2}{2}$	_			21												
7-5-2 14-2-0 16-9-8 23-0-8 23-9-2 30-6-8 30-0-8 Scale = 165.3 Plate Offsets (X, Y): [9:0-4-0.0-1-15], [17:0-5-12.Edge], [19:0-4-4.0-4-0], [21:0-6-0.0-1-8], [22:Edge.0-5-13] Loading TCLL (root) (ps) Plate Grip DOL 1.15 TC 0.91 Vert(LT) 0.05 6.814 2.7-8 6.8-04 (ps) PLATES GRIP CLL (root) Plate Grip DOL 1.15 TC 0.91 Vert(LT) 0.05 14-15 747 160 Scole + 105.3 Rep Stress Int YES Rep Stress Int YES NOTES 11 n/a		8)	×8=		4x12=		3X4										
Scale = 165.3 Plate Offsets (X, Y): [9:0-4-0.0 ^{-1.15}], [13:0-48.0 ^{-1.8}], [17:0-5 ⁻¹² , Edge], [19:0-4 ⁻¹ , 0 ⁻⁴ , 0		L		7-5-2		14-2-0				23-0-8	2	23-9-2	:	30-6-8		33-0-8	1
Plate Offsets (X, Y): [9:0-4-0.0-1-15], [1:0-4-8,0-1-8], [1:0-5-12,Edge], [1:0-4-4,0-4-0], [2:1-0-6-0,0-1-8], [2:2:Edge,0-5-13] Loading TCLL (roof) (pst) 2.0 Spacing Plate Grip DOL Lumber DOL TCD 2.0-0 Lumber DOL 1.15 CSI TC 0.91 UVert(LL) DEFL 0.25 in (loc) Videl L/d BCLL 0.0' Parts Grip DOL Lumber DOL TCD 1.15 TC 0.91 Vert(LL) -0.25 14-15 >999 240 MBR Roy Stress Incr YES CSI DEFL in (loc) Videl L/d BCDL 10.0 Vertical wood sheathing directly applied or 2.06, 69.2x4 SP No.2 "Except" 19-17,11-10:2x4 SP No.2, 22-2:X4 SP P No.3 NOTES 1) Uhalanced roof live loads have been considered for this design. 10 UNIABAIN COLL=0,0pst BCDL=0,0pst BCD	Scale - 1:65 3	I		7-5-2	I	6-8-14	I	2-7-8		6-3-0	(0-8-10		6-9-6		2-6-0 0-3	3-8
TCLL (fool) 25.0 Plate Grip DOL 1.15 TC 0.91 Vert(LT) -0.25 14.15 >747 180 Snow (Pi/Pg) 18.9/20.0 10.0 Rep Stress Incr YES WB 0.37 Wert(CT) -0.53 14.15 >747 180 Weight: 199 lb FT = 20% LUMBER 0.0° Zv4 SP No.2 *Except* 4-6:2v4 SP 2400F 10.0 NOTES 10.0 Unbalanced roof live loads have been considered for this design. 10.0 Vert(LT) -0.23 11.15 na rais BOT CHORD 2v4 SP No.2 *Except* 19-18:2v6 SPF No.2, 18*7,14-12:2v4 SPF No.3 NOTES 10.0 10.0 Undalanced roof live loads have been considered for this design. 10.0 Cal. IE Exp C: Enclosed; MWFRS (servelope) 10.0 Cal. IE Exp C: Enclope: Cal. IE Exp C: Enclosed; MWFRS (servelope)	-	′): [9:0-4-0,	0-1-15],	[13:0-4-8,0-1-8],	[17:0-5-12	,Edge], [19:0-4	1-4,0-4-0], [21	:0-6-0,0-1-8], [22:E	dge,0-5-1	3]						
Snow (Pt/Fg) 18.920.0 TCDL Lumber DOL 1.15 Rep Stress Incr EC 1.00 WB Vert(CT) -0.53 14.15 >747 180 Weight: 199 lb FT = 20% LUMBER 0.00 Code IRC2018/TP12014 Matrix-S Weight: 199 lb FT = 20% LUMBER 0.00 Code IRC2018/TP12014 Matrix-S NOTES III n/a n/a DOP CHORD 2x4 SP No.2 "Except" 4-6:2x4 SP 2400F NOTES IIII IIII n/a n/a IIIII n/a n/a BOT CHORD 2x4 SP No.3 'Except" 19-18:2x6 SPF No.2, 187,14-12:2x4 SPF No.3 NOTES IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Loading	(psf)	Spacing	2-0-0				DE	FL	in	(loc)	l/defl	L/d	PLATES	GRI	5
TCDL 10.0 BCLL Rep Stress Incr Code YES Code WB 0.97 Matrix-S Horz(CT) 0.24 11 n/a	()									. ,					MT20	244/	190
BCDL 10.0 Weight: 199 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 "Except" 4-6:2x4 SP 2400F 2.0E, 6-9:2x4 SP 16:0F 1.5E NOTES 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bits design. BOT CHORD 2x4 SP No.2 "Except" 19-18:2x6 SPF No.2, 18-7;14-12:2x4 SPF No.3 "Except" 19-17;11-10:2x4 SP No.2, 22-2;2x4 SP 2400F 2.0E NOTES 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bits design. BRACING Structural wood sheathing directly applied 2-0:0 oc purlins, 4x-15 max); 6-9. 2:0 Wind: ASCE 7-16; Vull=115mph (3-second gust) vad=91mph; 12-20-2 to 20-3-12.2 Exterior(ZE) 9-0-0 co purlins, 4x-15 max); 6-9. 0:0 Cat. II; Exp C; Enclosed; MWFRS (envelope) bracing. BOT CHORD Structural wood sheathing directly applied or 2-2:0 oc bracing. 0:0 -116; Pitale DL1-145; Pitale 2.2 Exterior(ZE) 9-28-208 (b) / Nax. Comp./Max. Ten All forces 250 (b) - Max. Comp./Max. Ten All forces 250 (c) This truss has been designed for graeter of min rool five toad 12.0 pst bottom chord five load nonconcurrent with other live loads. 5) This truss has been designed for a 10.0 pst bottom chord live load	TCDL	1	10.0	Rep Stress Incr	YES		WB			. ,							
 TOP CHORD 2x4 SP No.2 *Except* 4-6:2x4 SP 2400F 2.0E 6-9:2x4 SP 1650F 1.5E BOT CHORD 2x4 SP No.2 *Except* 19-18:2x6 SPF No.2, 18-7,14-12:2x4 SPF No.3 *Except* 19-17,11-10:2x4 SP No.2, 22-2:2x4 SP 2400F 2.0E BRACING TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals, and 2-0-0 oc purlins, (3-4-15 max), 6-9. BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. REACTIONS (b/size) 11=1226/0-3-8, 22=1218/0-3-8 Max Horiz, 22=273 (LC 13) Max Uplift 11=228 (LC 13), 22=-233 (LC 16) Max Grav 11=1486 (LC 2), 22=1559 (LC 2) (b) - Max. Comp./Max. Ten All forces 250 (b) - 11:5 (22)-2:2-3314/561, 4-25=-3113/566, 5-25=-3039/568, 5-6=-3289/675, 6-7=-3219/657, 7-2681/522, 2-22=-2881/522, 8-28=-2683/524, 9-28=-2681/522, 2-22=-1487/313, 11-13=-1446/222 DOT CHORD 223=-2681/522, 2-22=-1487/313, 11-13=-1446/222 DOT CHORD 213=-2681/522, 2-22=-1487/313, 11-13=-1446/222 DOT CHORD 213=-2681/522, 2-21=1487/313, 11-13=-1446/222 DOT CHORD 213=-2681/522, 2-22=-1487/313, 11-13=-146/222 DOT CHORD 223=-2681/522, 2-22=-1487/313, 11-13=-148/222 DOT CHORD 223=-2681/522, 2-22=-1487/313, 11-13=-148/222 DOT CHORD 223=-2681/522, 2-22=-1487/313, 11-13=-148/222 DOT CHORD 23=-2681/522, 2-22=-1487/313, 11-13=-148/222 DOT CHORD 23=-2681/522, 2-22=-1487/313, 11-13=-148/222 DOT CHORD 23=-2681/522, 2-22=-1487/313, 11-13=-148/222 DOT CHORD 24=-2700 divel and an an an weak where a rectangle 31-00-00 wide will fit between the bottom chord in all areas where a				Code	IRC20	18/TPI2014	Matrix-S								Weight:	199 lb FT =	20%
 2.0E, 6-9:2x4 SP 1650F 1.5E BOT CHORD 2x4 SP No.2 "Except" 19-18:2x6 SPF No.2, 18-7;14-12:2x4 SPF No.3 Wind: ASCE 7-16; Vull=115mph (3-second gust) Vasd=91mph; TCDL=6.0pst; BCDL=6.0pst; h=35ft; Vasd=91mph; TCDL=6.0pst; BCDL=6.0pst; Dest News(PSE) vasd=91mph; TCDL=6.0pst; Dest News(PSE) vasd=91mph;																	
18-7,14-12:2x4 SPF No.3 Vasd=91mph; TCDL=6.0psf; BcDL=6.0psf; b)F 1	,		ids have bee	n cons	dered for					of the purli	n along the to	p and/or
WEBS No.2, 22-2:24 SPF No.3 *Except* 19-17,11-10:2x4 SP No.2, 22-2:24 SP 2400F 2.0EKe=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 14-11-4, Exterior(2R) 14-11-4 to 22-0-0 purlins, except end verticals, and 2-0-0 oc purlins, 2-1415 max). E-9.Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2R) 14-11-4, for 22-0-2 to 30-8-12, Exterior(2R) 14-11-4, for 22-0-2, Interior (1) 4-1-8 to 14-11-4, Exterior(2R) 14-11-4, for exposed; end vertical left and right exposed; end vertical left and right exposed; end vertical left and right exposed; end vertical left and right exposed; C-0 for members and forces & MWFRS for reactions shown; Lumber DOL=1.60BOT CHORD REACTIONS (bb/size)11=1226/0-3-8, 22=1218/0-3-8 11=1486 (LC 2), 22=-233 (LC 18) Max Grav 11=1486 (LC 2), 22=-333 (LC 16) Max Grav 11=1486 (LC 2), 22=-13671, 2537FORCES (b) or less except when shown.DOL=1.15) Flate DOL=-1.15); Flate DOL=-1.15); Flate DOL=-1.15); Flate DOL=-1.15; Flate DOL=-1.15); Flate DOL=-1.15; Flate DOL=-1.15; Flate DOL=-1.15); Flate DOL=-1.15; Flat					No.2, 2	,	,	· · ·		0 /		LOAD	CASE(S) Star	ndard		
BRACING TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals, and 2-0-0 oc purlins, (3-4-15 max). 6-9. Interior (1) 4-1-8 to 14-11-4. Exterior(2R) 14-11-4 to 22-0-2, Interior (1) 22-0-2 to 30-8-12, Exterior(2R) BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. Interior (1) 4-1-8 to 14-11-4. Exterior(2R) 14-11-4 to 22-0-2, Interior (1) 22-0-2 to 30-8-12, Exterior(2R) BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. Interior (1) 4-1-8 to 14-11-4. Exterior(2R) 14-11-4 to 22-0-2, Interior (1) 22-0-2 to 30-8-12, Exterior(2R) REACTIONS (lb/size) 11=1226/0-3-8, 22=1218/0-3-8 Max Horiz Interior (1) 4-1-8 to 14-11-4, Exterior(2R) 14-11-4 to 22-0-2, Interior (1) 22-0-2 to 30-8-12, Exterior(2R) Max Moriz 22-273 (LC 13) Interior (1) 4-1-8 to 14-11-4, Exterior(2R) 14-11-4 to 22-0-2, Interior (1) 22-0-2 to 30-8-12, Exterior(2R) Interior (1) 4-1-8 to 34-21 to 33-24 + 22 to 30-8-12, Exterior(2R) Max Horiz 22-0-2 oc Interior (1) 4-1-6 to 14-11-4, Exterior(2R) 14-11-4 Interior (1) 4-1-8 to 34-21 to 33-24 + 22 to 33-24 and the signed for 2-0 to 33-24 + 20 ex (2-15 multiple) FORCES (lb) - Max. Comp./Max. Ten - All forces 250 (b) or less except when shown. This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7-72e=-2881	WEBS 2x4	4 SPF No.3	*Excep	ot* 19-17,11-10:2x	4 SP	Ke=1.00; C	at. II; Exp C;	Enclosed; N	IWFRS	(envelope	e)						
 30-8-12 to 33-2-4 zone; cantilever left and right 20-0 oc purlins (3-4-15 max.): 6-9. BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. REACTIONS (b/size) 11=1226/0-3-8, 22=1218/0-3-8 Max Horiz 22=273 (LC 13) Max Uplift 11=-228 (LC 13), 22=-233 (LC 16) Max Grav 11=1486 (LC 2), 22=1559 (LC 2) FORCES (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 2-23=-2400/310, 23-24=-2276/315, 3-24=-2288/333, 3-4==3134/561, 4-25==-3113/566, 5-25==-3039/596, 5-6==-2989/675, 6-7==3219/657, 7-26==2681/522, 2.6-27=-2681/522, 8-27==-2681/522, 8-27==-2681/522, 8-27==-2681/522, 8-27==-2681/522, 4, 2-22==-1487/313, 1-113=-11438/292 DOL = 0 to the totom of the bottom the bottom tode in all reas where a rectangle 3-06=00 tall by 2-00-00 wide will fit between the bottom 		J.Z, ZZ-Z.ZX	4 37 24	00F 2.0E		Interior (1)	4-1-8 to 14-1	1-4, Exterior	(2R) 14	-11-4 to							
BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. REACTIONS (lb/size) 11=1226/0-3-8, 22=1218/0-3-8 Max Horiz 22=273 (LC 13) Max Horiz 22=273 (LC 13) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); ls=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0 Max Grav 11=1486 (LC 2), 22=1559 (LC 2) FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-23=-2400/310, 23-24=-2276/315, 3-24=-2268/333, 3-4=-3103/566, 5-25=-3039/596, 5-6=-2989/675, 6-7=-3219/657, 7-26=-2681/522, 26-27=-2						30-8-12 to	33-2-4 zone;	cantilever le	ft and r	ght							
 bracing. REACTIONS (lb/size) 11=1226/0-3-8, 22=1218/0-3-8 Max Horiz 22=273 (LC 13) Max Upilit 11=-228 (LC 13), 22=-233 (LC 16) Max Grav 11=1486 (LC 2), 22=1559 (LC 2) FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-23=-2400/310, 23-24=-2276/315, 3-24=-2268/333, 3-4=-3134/561, 4-25=-3113/566, 5-25=-3039/596, 5-6=-2989/675, 6-7=-3219/657, 7-26=-2681/522, 26-27=-2681/522, 8-27=-2681/522, 26-27=-2681/522, 8-27=-2681/524, 2-22=-1487/313, 11-13=-1436/292 Det UIMDE 11 (-177) (-170) (-10) (-170) (-10) (-170) (-10) (-170) (-10) (-170) (-10) (-170) (-10) (-170) (-10) (-170) (-10) (-170) (-10) (-170) (-10) (-170) (-10) (-170) (-10) (-170) (-10) (-170) (-10) (-10) (-170) (-10)				,	c												
 Max Horiz 22=273 (LC 13) Max Uplift 11=-228 (LC 13), 22=-233 (LC 16) Max Grav 11=1486 (LC 2), 22=1559 (LC 2) FORCES (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 2-23=-2400/310, 23-24=-2276/315, 3-24=-2268/333, 3-4=-3134/561, 4-25=-3113/566, 5-25=-3039/596, 5-6=-2989/675, 6-7=-3219/657, 7-26=-2681/522, 26-27=-2681/522, 8-27=-2681/522, 26-27=-2681/522, 8-27=-2681/522, 26-27=-2681/522, 8-27=-2681/522, 26-27=-2681/522, 8-27=-2681/522, 26-27=-2681/522, 8-27=-2681/522, 26-27=-2681/522, 8-27=-2681/522, 26-27=-2681/522, 8-27=-2681/522, 26-27=-2681/522, 8-2681/522, 26-27=-2681/522, 8-2681/524, 2-22=-1487/313, 11-13=-1436/292 Dot Ullobal and the trian the bottom the diver local of the bottom the bottom the bottom the bottom the bottom 	bra	acing.			2					n DOL=1.	.15						
Max Uplift11=-228 (LC 13), 22=-233 (LC 16) Max GravExp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0Max Grav11=1486 (LC 2), 22=1559 (LC 2)Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0FORCES(lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0TOP CHORD2-23=-2400/310, 23-24=-2276/315, 3-24=-2268/333, 3-4=-3134/561, 4-25=-3113/566, 5-25=-3039/596, 5-6=-2989/675, 6-7=-3219/657, 7-26=-2681/522, 26-27=-2681/522, 8-27=-2681/522, 26-27=-2681/522, 8-27=-2681/522, 26-27=-2681/522, 8-27=-2681/522, 2-22=-1487/313, 11-13=-1436/292For Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0Date Of ICO provide adequate for this design.Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0Unbalanced snow loads have been considered for this design.Det Of ICO provide adequate for the provide adequate for the provide adequate drainage to prevent water ponding. 7-26=-2681/522, 26-27=-2681/522, 8-227=-2681/524, 2-22=-1487/313, 11-13=-1436/292For Cese1.00; Ct=1.10, Lu=50-0-0Det Of ICO provide adequate for this addition the provide adeguate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottomFor MIS Solid Solid fit by 2-00-00 wide will fit between the bottom	```	,		,	3-8						illv						
FORCES(lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.Top CHORD2-23=-2400/310, 23-24=-2276/315, 3-24=-2268/333, 3-4=-3134/561, 4-25=-3113/566, 5-25=-3039/596, 5-6=-2989/675, 6-7=-3219/657, 7-26=-2681/522, 26-27=-2681/522, 8-27=-2681/522, 8-28=-2683/524, 9-28=-2681/524, 2-22=-1487/313, 11-13=-1436/292This trus has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.TOP CHORD2-23=-2400/310, 23-24=-2276/315, 3-24=-2268/333, 3-4=-3134/561, 4-25=-3113/566, 5-25=-3039/596, 5-6=-2989/675, 6-7=-3219/657, 7-26=-2681/522, 26-27=-2681/522, 8-27=-2681/522, 2-22=-1487/313, 11-13=-1436/292This truss has been designed for a 10.0 psf bottom chord in el areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom					<u> </u>	Exp.; Ce=0	.9; Cs=1.00;	Ct=1.10, Lu	=50-0-0	,	,						
TOP CHORD2-23=-2400/310, 23-24=-2276/315, 3-24=-2268/333, 3-4=-3134/561, 4-25=-3113/566, 5-25=-3039/596, 5-6=-2989/675, 6-7=-3219/657, 7-26=-2681/522, 26-27=-2681/522, 8-27=-2681/522, 8-28=-2683/524, 9-28=-2681/524, 2-22=-1487/313, 11-13=-1436/292Ioad of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.OFMISSO overhangs non-concurrent with other live loads.Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottomProvide adequate drainage to prevent water ponding.TOP CHORD2-21/0707 concentry10 ad of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.TOP CHORD2-21/0717 concentry10 ad of 12.0 psf or 2.00 times flat roof load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom	FORCES (lb)	o) - Max. Co	mp./Ma	x. Ten All forces	s 250	design.											
4-25=-3113/566, 5-25=-3039/596, 5-6=-2989/675, 6-7=-3219/657, 7-26=-2681/522, 26-27=-2681/522, 8-277=-2681/522, 8-28=-2683/524, 9-28=-2681/524, 2-22=-1487/313, 11-13=-1436/292 6) Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8-279=2681/522, 8-28=-2683/524, 9-28=-2681/524, 2-22=-1487/313, 11-13=-1436/292 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom \$COTT M. SEVIER	TOP CHORD 2-2	23=-2400/3	10, 23-2	24=-2276/315,	Ę	load of 12.0) psf or 2.00	times flat roo	f load o	of 13.9 psf							
5-6=-2989/675, 6-7=-3219/657, 7-26=-2681/522, 26-27=-2681/522, 8-27=-2681/522, 8-28=-2683/524, 9-28=-2681/524, 2-22=-1487/313, 11-13=-1436/292 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 11-13=-1436/292 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom	4-2	25=-3113/5	66, 5-25	5=-3039/596,	6	-									~	Secon	~
9-28=-2681/524, 2-22=-1487/313, 11-13=-1436/292 3-06-00 tall by 2-00-00 wide will fit between the bottom SEVIER					7						s.				A.F.	OF MIS	B
11-13=-1436/292 3-06-00 tall by 2-00-00 wide will fit between the bottom					8	* This truss	has been de	signed for a	live loa	d of 20.0p				A	174		New Y
	11-	1-13=-1436/2	292			3-06-00 tal	l by 2-00-00 v	wide will fit b			m			R	7/		1-1
7-17=-295/301, 16-17=-697/3257, 9) One H2.5T Simpson Strong-Tie connectors	7-1	17=-295/30	1, 16-17	7=-697/3257,	ę) One H2.5T	Simpson Str	ong-Tie con						av	1		*
15-16=-697/3257, 14-15=-225/883, 13-14=-186/952 recommended to connect truss to bearing walls due to UPLIFT at jt(s) 22 and 11. This connection is for uplift	13-	8-14=-186/9	52											A	catt	NUMBER	enter
WEBS 3-21=-892/319, 19-21=-531/2195, 3-19=-185/752, 6-19=-330/363, only and does not consider lateral forces. 10) This truss is designed in accordance with the 2018					1					e 2018				N	PE.	-200101880	T E
17-19=-575/2706, 6-17=-287/1374, International Residential Code sections R502.11.1 and						Internation	al Residentia	Code section	ons R50	2.11.1 an	d			Y	1. Ser		NOT A
7-15=-729/180, 8-15=-677/250, 9-15=-406/2075, 9-13=-1507/411, 2-21=-8/1301	9-1	15=-406/20				1.002.10.2		ou stanuaru	, 11 101/1						APR -	UNALE	Å
June 14,2022	2-2	_1_ 0/1001															2022
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.																	

													RELEASE	E FOR CONSTRUCTION	
Job		Truss		Truss T	уре		Qt	y	Ply	Roof - 22	217 NW K	illarne	AS NOT Ln, Lee's Sump	ED FOR PLAN REVIEW	٦
P220296-P2	20296-02	D8		Roof S	pecial		1		1		erence (op			IS2488908	
Premier Building	Supply (Springh	nill, KS), S	pring Hills, KS - 66083,		•	Run: 8.53 E Apr 27	7 2022	Print: 8.5	30 E Apr 2	27 2022 MiTe	k Industries	, Inc. M	on Jun 18 52:5/	21/2022	>
						ID:wEE3MAxtIXIsir	JGkT7	pE4z7fxf-	mmPeLC	M2UpCd3Uy	wWmgRs12	21DrZW	LbyqYtRLaxzoffHy	21/2022	-
	-0-1	10-8	7-5-2		12-11-4	14-0-4	21	-9-4		123-8-0 ²	5-6-12		32-8-12	33-4-0	
	0-1	0-8	7-5-2	1	5-6-2	1-1-0		-9-0		1-10-121	-10-12		7-2-0	0-7-4	
										6x6					
						3x8=			MT	≥ 18HS 5x8 7				3x4 u	
_66 1	11-6				5-	7x8= 4 5 29		30 313	2 6	_11	4x8;	• 3:	3 3435 36 ⊠ ⊠	7x8= 910	
0 4 8 9 4 9	0			12 6			⊠			F //					
7-1-15 3-1-15				1.5x4	•			R						-	
8-3-0 + 7- 3-			2	3 ²⁸	~	194 18							n 1/		
8			26		<u>\$</u>	21	20			17 16	15		12 - 3		י -
4-0-0		25				0	3x4 II			7x8=	5x8=		1.5x4 u		,
44	° <u>−</u> 1	2		\mathbb{H}_{λ}		3-0-0		3x4 II		3x4=			1.5x4 i		
\perp \perp					/	e 22								\perp	
		8x8=		23 12x12	2=	8x10= 3x4 I I	•								
						3x4 II 3x4=									
		L	7-5-2		14-2-0	16-9-8		21-1		23-0-8 25	-5-0	30		33-4-0 <u>8-0-8 </u>	
Scale = 1:66.4		I	7-5-2	I	6-8-14	2-7-8	I	5-1	-8	1-1-8 2	4-8	5-	-1-8 2-	-6-0 0-3-8	
	K, Y): [4:0-4-1	10,Edge]	, [6:0-4-0,0-2-0], [9:	0-4-10,Ed	ge], [13:0-4-8,0	-1-8], [15:0-1-8,0-2-	0], [19	:0-3-4,0	-3-12], [2	23:0-5-12,E	dge], [24:	Edge,0	-5-13]		—
Loading		(psf)	Spacing	2-0-0		CSI		DEFL		in (loc) l/defl	L/d	PLATES	GRIP	—
TCLL (roof) Snow (Pf/Pg)	19.0	25.0 /20.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.82 0.85	Vert(L Vert(C	,	0.39	5 >999	240 180	MT20 MT18HS	197/144 197/144	
TCDL	10.9	10.0	Rep Stress Incr	YES		WB	0.85	Horz(C	,	0.71 17-18 0.40 1'		n/a		197/144	
BCLL BCDL		0.0* 10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 206 lb	FT = 20%	
LUMBER				W	EBS 3	-23=-544/285, 4-23	=-196	1/458,		10) O	ne H2.5T	Simps	on Strong-Tie co	nnectors	_
TOP CHORD	2x4 SP No.2 2.0E	*Except	* 4-6,8-9:2x4 SP 24	00F		9-23=-930/3733, 4- -17=-2286/555, 7-1			,					bearing walls due to	
BOT CHORD	2x4 SP No.2		* 22-5,20-18,14-12: SP 1650F 1.5E	2x4		-15=-183/1016, 8-1 -15=-597/2949, 2-2				0	nly and do	oes not	consider lateral	forces.	
WEBS	2x4 SPF No.	.3 *Exce	pt*			5-17=-746/231, 9-13				ÍIn	ternationa	al Resid	dential Code sec	tions R502.11.1 and	
	23-19,19-4,1 No.2	7-7,15-7	7,15-9,24-2,11-10:2>		DTES Unbalanced I	roof live loads have	been (consider	ed for	12) G	raphical p	ourlin re		es not depict the size	
BRACING TOP CHORD	Structural w	ood shee	athing directly applie	ed or 2)	this design. Wind [.] ASCE	7-16; Vult=115mph	(3-sec	cond aus	st)		the orier		of the purlin along	g the top and/or	
	2-6-11 oc pu	urlins, ex	cept end verticals,	and	Vasd=91mph	; TCDL=6.0psf; BC	DL=6.0	0psf; h=	35ft;		CASE(S) Sta	ndard		
BOT CHORD			1-12 max.): 4-6, 8-9 applied or 6-0-0 oc		exterior zone	and C-C Exterior(2	E) -0-1	10-8 tò 4	l-1-8, ´						
WEBS	bracing. 1 Row at mi	dpt -	4-23, 5-17		17-11-4, Inter	1-8 to 12-11-4, Exte rior (1) 17-11-4 to 23	3-8-0,	Exterior	(2E)						
		1=1227/0)-3-8, 24=1219/0-3-6	В		6-12, Interior (1) 25- 32-8-12 to 33-2-4 zo									
l	Max Uplift 11	1=-194 (L	_C 16), 24=-302 (LC			I; end vertical left a and forces & MWFF				1;					
FORCES			LC 2), 24=1559 (LC ax. Ten All forces :		Lumber DOL	=1.60 plate grip DO 7-16; Pr=25.0 psf (L=1.60	C							
TOP CHORD	(lb) or less e	xcept wh		3)	Plate DOL=1	.15); Pg=20.0 psf; P	Pf=18.9	9 psf (Lu	m				~		
	26-27=-2306	6/435, 3-	27=-2225/452,		Exp.; Ce=0.9	ate DOL=1.15);	Lu=50	0-0-0		y			OFI	MISSOL	
	4-5=-4333/9	85, 5-29		4)	Unbalanced : design.	snow loads have be	en cor	nsidered	for this			6	ATEOFI	0200	
	31-32=-3816	6/769, 6-	-31=-3817/769, 32=-3816/770,	5)		s been designed for osf or 2.00 times flat						A	SCOT SEV	Т М. \75- У	
	6-7=-4243/8 8-33=-3068/		-3413/702, 34=-3068/610,	E)	overhangs no	on-concurrent with c	other liv	ve loads				81		\★₿	
	34-35=-3068	3/610, 35	-36=-3068/610, 4=-1484/341,	6) 7)	All plates are	uate drainage to pro MT20 plates unless	s other	wise inc	licated.			8	la the	Santon	
POT OUODO	11-13=-1442	2/337, 10	-13=-200/297	8)		s been designed for d nonconcurrent wi						87	O PE-2001	018807	
BOT CHORD		4144, 17	-18=-1025/4340,	9)		as been designed for the chord in all areas to				f		V	The second	158	
	16-17=-578/ 14-15=-122/		-16=-578/2564, 14=-117/381		3-06-00 tall b	y 2-00-00 wide will t y other members.			•			6	SIONA	LEN	
					choru anu an	y other members.							allo	e 14,2022	
													June	5 17,2022	

NITEK° 16023 Swingley Ridge Rd Chesterfield, MO 63017

													RELEASE FOR CONSTRUCTION	
Job		Truss		Truss T	уре		Qty	Ply	/	Roof - 221	7 NW K	llarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES	1
P220296-P22	20296-02	E1		Roof S	pecial		1	1		Job Refere			LEE'S SUMMIT, MISSOURI	
Premier Building S	Supply (Spring	nill, KS), S	pring Hills, KS - 66083,			Run: 8.53 S Apr 2	7 2022 P	int: 8.530 S	S Apr 27	2022 MiTek	ndustries	Inc. S	at Jun 111:64921/299:02	4
						ID:Ezv8LBGICxgd	OTp47PC	Hahz7g1h-	RfC?PsE	370Hq3NSgF	oqnL8w3u	ITXbG	WrCDoird 423C?f	
			2-9-12		<u>5-9-12</u> 3-0-0	9-10				3-10-4 4-0-4			<u>3-10-4 19-6-0</u> 3-0-0 2-7-12	
			2-9-12	-	3-0-0	4-0	4		-	+-0-4		5	2-7-12	
						12 6 Г	2	4x4 = 4						
\top	\top					6 Г	_							
	5-3-0 2-0-2		3x8 =	1.5x	4	6x6 =	/	\square	\sim		6x6	_	1.5x4 u 3x8 =	
			1	2	1	53 E						-	6 7	
5-3-0	3-2-14	\top												
2	~ ~	~								/	/~	\sim		
	3-1-3 3-1-3	3-1-3												
					0 0 13 5			11						
			14	9	13 ←⊥			3x8 =					9 1 8	
			3x4 =	1.5x	4 u								3x4 =	
					5x8 =								1.5x4 u	
			2-11-	8		9-10-0		1		16	6-8-8		19-6-0	
Scale = 1:41.1			l 2-11-	8 I		6-10-8		I		6-	10-8		2-9-8	
Plate Offsets (X	, Y): [10:0-2	-12,0-2-	8], [12:0-2-12,0-2-8]							_			•	_
Loading		(psf)	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC		DEFL Vert(LL)		in (loc)	l/defl	L/d	PLATES GRIP MT20 197/144	
TCLL (roof) Snow (Pf/Pg)	18.9	25.0 /20.0	Lumber DOL	1.15		BC	0.64	Vert(CT)		11-12	>999 >999	240 180	197/144	
TCDL BCLL		10.0 0.0*	Rep Stress Incr Code	YES IRC2018	8/TPI2014	WB Matrix-S	0.58	Horz(CT)	0.1	10 8	n/a	n/a		
BCDL		10.0		-									Weight: 104 lb FT = 20%	_
LUMBER TOP CHORD	2x4 SP No.2	2		2)	Vasd=91mpł	7-16; Vult=115mph n; TCDL=6.0psf; BC	DL=6.0	osf; h=35f						
	2x4 SP No.2 2x4 SPF No		t* 13-2,6-9:2x4 SPF I	No.3	exterior zone	t. II; Exp C; Enclose and C-C Exterior(2)	2E) 0-1-1	2 to 5-1-1	12, ´					
BRACING TOP CHORD	Structural w	ood she	athing directly applied	lor		-1-12 to 9-10-0, Extension (1) 13-10-4 to 1								
	4-8-14 oc pu	urlins, e	xcept end verticals, a -3 max.): 1-3, 5-7.			exposed ; end verti c for members and f			for					
BOT CHORD	Rigid ceiling	``	applied or 6-0-0 oc		reactions sho DOL=1.60	own; Lumber DOL=	1.60 pla	e grip						
REACTIONS (bracing. lb/size) 8:	=706/0-3	8-8, 14=707/0-5-8	3)		7-16; Pr=25.0 psf (.15); Pg=20.0 psf; I			_=1.15					
	/lax Horiz 14 /lax Uplift 8:		.C 13) C 17), 14=-143 (LC 1	6)	DOL=1.15 P	late DOL=1.15); ls=); Cs=1.00; Ct=1.10	1.0; Rou	igh Cat C	; Fully					
			C 2), 14=864 (LC 2) pression/Maximum	4)		snow loads have be	,		r this					
	Tension 1-14=-826/2			5)	Provide adeo	quate drainage to pr			•					
	2-3=-1144/3	54, 3-4=	-1291/338,	6)	chord live loa	is been designed fo ad nonconcurrent w	ith any c	ther live l	oads.					
	4-5=-1292/3 6-7=-1037/2	52, 7-8=	-827/237	7)	on the bottor	nas been designed f n chord in all areas	where a	rectangle	• '					
	11-12=-627/	1826, 10	=0/52, 2-12=-289/11: 0-11=-547/1794,		chord and ar	by 2-00-00 wide will by other members.			ottom				ADDREED	
WEBS	12-14=-140/	/166, 1-1	2=-353/1311,	8)	recommende	Simpson Strong-Tie ed to connect truss t	o bearir	g walls du					STE OF MISSOL	
	3-12=-834/2 4-11=-156/8					s) 14 and 8. This co s not consider later			olift			B	SCOTT M.	
NOTES	5-10=-858/2	73, 8-10	=-59/78, 7-10=-346/1	268 9)	This truss is	designed in accorda Residential Code s	ance wit	h the 2018				Ø.	SEVIER Y	
	l roof live loa	ds have	been considered for	10	R802.10.2 a	nd referenced stand	lard ANS	SI/TPI 1.				8*		
this design.				10	or the orienta	ation of the purlin al						0	cottoning	
				LC	bottom chord DAD CASE(S)							N.	OF PE-2001018807	
												4	CSSIONAL ENCIDE	
													aller a	
													June 14,2022	

															RELEASE FOR CONSTRUCTION
Job		Truss			Truss T	уре		Qty	,	Ply	Ro	of - 2217	' NW Ki	llarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES
P220296-P2	20296-02	E2			Roof S	pecial		1		1		o Referei			LEE'S SUMMIT, MISSOURI
Premier Building	Supply (Springl	hill, KS), S	Spring Hil	lls, KS - 66083,		*	Run: 8.53 S	Apr 27 2022 F	Print: 8.	530 S Apr	27 2022	2 MiTek In	dustries,	Inc. S	at Jun 1111: 45/21/29:02
							ID:pJ6IRvPD	w7jiNZtRT?R	eCiz7g2	o-RfC?P	sB70Hq3	BNSgPqnL	.8w3uIT>	KbGKV	
			ī	2-9-12	3-9-1	21	8-9-12	1	10-10	-4		15-	10-4		1 ⁶⁻¹⁰⁻⁴ 19-6-0 I
				2-9-12	1-0-(5-0-0		2-0-	в		5-	0-0		1-0-0 2-7-12
								6x6	-	4x4	=				
:	4 <u>-</u> 4						12 ∓ 6Γ ÷⊐	4	\bowtie		5				
	4 0 8 7						12 F 6Γ +⊐				\geq				3x4 u
	4-7-3 2-4-5					6x6 =						\sim			6x6 =
4			5>	<5 =	3x4 u	17 ¹⁸							\sim		¹⁹ 20 4x12 =
4-8-14	2-2-14		1		23					$\setminus $					
		_	ļ			T G					1				
	2-1-3 2-1-3	2		\geq		o l		12							
			16		15	1-0-0		13 4x6 =		12 5x	:8 =				10 9
			\mathbb{R}	>				470 -		54	.0 =				5x10 =
			3>	<4 =	1.5x4 I										3x4 = 1.5x4 u
						5x10 =									
			⊢	2-11-8			8-8-0		11-0				16-8-8	}	19-6-0
Scale = 1:39.5			I	2-11-8	I		5-8-8	I	2-4-	0 1			5-8-8		2-9-8
Plate Offsets ()	K, Y): [1:0-2-	8,0-1-8],	[11:0-4	I-0,0-2-8], [14	:0-3-4,0-2	-12]									
Loading		(psf)	Spac	-	2-0-0		CSI	0.04	DEFL		in	(loc)	l/defl	L/d	PLATES GRIP
TCLL (roof) Snow (Pf/Pg)	18.9	25.0 9/20.0		Grip DOL er DOL	1.15 1.15		TC BC	0.61 0.88	Vert(,	-0.16 -0.31	13-14 13-14	>999 >748	240 180	MT20 197/144
TCDL BCLL		10.0 0.0*	Rep S Code	Stress Incr	YES IRC2018	3/TPI2014	WB Matrix-S	0.96	Horz(CT)	0.22	9	n/a	n/a	
BCDL		10.0													Weight: 103 lb FT = 20%
	0.4 OD No.	2			2)		7-16; Vult=115 h; TCDL=6.0ps								
TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2		t* 15-2,	7-10:2x4 SP	F	Ke=1.00; Ca	at. II; Exp C; Ėn	closed; MW	FRS (e	nvelope	e)				
WEBS	No.3 2x4 SPF No	0.3				Interior (1) 3	e and C-C Exte -9-12 to 8-9-12	, Exterior(2E) 8-9-	12 to					
	Structurel	and show	othing	directly opplic	dor		erior (1) 15-10-4 t exposed ; end				r				
TOP CHORD	3-9-1 oc pu	rlins, exc	cept en	directly applie d verticals, a	nd		C for members own; Lumber D								
BOT CHORD				x.): 1-3, 4-5, d or 6-0-2 oc		DOL=1.60					15				
REACTIONS	bracing.	-696/0-3	8-8 16-	=697/0-5-8	3)	Plate DOL=	E 7-16; Pr=25.0 1.15); Pg=20.0	psf; Pf=18.9	psf (L	um					
	Max Horiz 1	6=-107 (LC 12)		10)	Exp.; Ce=0.9	Plate DOL=1.15 9; Cs=1.00; Ct=	1.10, Lu=50	0-0-0						
	Max Uplift 9 Max Grav 9				(10) 4)	Unbalanced design.	snow loads ha	ve been cor	sidere	d for this	6				
FORCES	(lb) - Maxim Tension	ium Com	pressio	n/Maximum	5) 6)		quate drainage as been design								
TOP CHORD	1-16=-774/2				,	chord live lo	ad nonconcurre	ent with any	other I	ve loads					
	2-3=-2364/6 4-5=-1256/4	402, 5-6=	-1481/4	407,	7)	on the botto	has been desig m chord in all a	reas where	a recta	ngle					
BOT CHORD				513, 8-9=-77 , 2-14=-228/0			by 2-00-00 wide ny other membe		een th	e botton	n				APPER
	13-14=-967/ 11-12=-799/			54/1260, 49, 7-11=-21	8) 2/69.		Simpson Strong ed to connect tr			ls due to					TE OF MISSOL
WEBS	9-10=-56/18 14-16=-197	36			,	UPLIFT at jt	(s) 16 and 9. Thes not consider	nis connectio	on is fo					A	
WEBO	3-14=-802/3	305, 3-13	8=-1651	/621,	9)	This truss is	designed in ac	cordance w	th the					A	SCOTT M.
	6-12=-1555	/470, 6-1	1=-831			R802.10.2 a	Residential Co nd referenced	standard AN	SI/TPI	1.				81	
NOTES	9-11=-163/7	′ю́, 8-11=	-551/20	J74	10	, , ,	urlin representa ation of the pur				e		_	K	NUMBER
1) Unbalance		ids have	been c	onsidered for		bottom chore	d.	5						X1	PE-2001018807
this design					LC	OAD CASE(S)	Siandard							Ŷ	ATO AT
															STONAL ENGE
															June 14,2022
															, -

						RELEASE FOR CONS	TRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLA V Ln, Lee's Summit MO DEVELOPMENT SE 1524889	N REVIEW RVICES
P220296-P220296-02	E3	Нір	1	1	Job Reference (optional		ITT SSOURI
Premier Building Supply (Spring	nill, KS), Spring Hills, KS - 66083,				27 2022 MiTek Industries, Inc. S sB70Hq3NSgPqnL8w3uITXbGk		022
				3			
		6-9-12 I	12-10-4		ı 1	19-6-0	
		6-9-12	6-0-8			6-7-12	
		12 6 □ 5x8 =			6x6 =		
$-\frac{6}{4}$		~ 3	x x		4 13		
0-1-0		° 11			14		
-14 3-7-3 2-7-3							
3-8-14 3-7 2-7	2					5	
4 -0-0 -0-0	1	9 10 -			8	6	٩
		1.5X4 II			3x4 =	7 ¹¹ 7x8 =	0-5-0
	3x4 🗸	= x4				1.5x4 ∎ 3x4 _≈	
	2-11-8	6-11-8	<u>12-8-8</u> 5-9-0		16-8-8	<u> </u>	
	2-11-0	4 -0-0	5-9-0		4-0-0	2-9-0	
Scale = 1:39.9							

Scale = 1:39.9

Plate Offsets (X, Y): [2:0-0-13,0-2-0], [3:0-5-4,0-2-8], [5:0-0-13,0-2-0]

Plate Offsets (.	X, Y): [2:0-0-13,0-2-0], [3:0-5-4,0-2-8], [5: -	0-0-13,0-2	2-0]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.74 0.86 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.24 -0.44 0.40	(loc) 10 10 6	l/defl >939 >517 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 88 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m Ke=1.00; C exterior zo Interior (1) 19-4-4 zon vertical left forces & M	Max Horiz 1=63 (LC Max Uplift 1=-98 (LC Max Grav 1=872 (LC (lb) - Maximum Com Tension 1-2=-387/125, 2-3=- 3-4=-1705/432, 4-5= 1-10=-20/0, 2-10=0/ 8-9=-296/1716, 5-8= 6-7=-21/0 3-9=0/237, 3-8=-177 ed roof live loads have	t* 10-2,5-7:2x4 SPF athing directly applie ccept -5 max.): 3-4. applied or 6-0-0 oc 5-8, 6=689/0-3-8 16) 5 (16), 6=-97 (LC 17) 5 (2), 6=872 (LC 2) pression/Maximum 1822/414, -1814/407, 5-6=-40 72, 2-9=-300/1708, -282/1696, 5-7=0/70 7/157, 4-8=0/239 been considered fo (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) 0-2-12 to 5-2-12, prior(2E) 6-9-12 to ight exposed ; end for members and	No.3 4) ed or 5) 6) 7) 7) 8) 1/121 1(0, L(r	Plate DOL= DOL=1.15 P Exp.; Ce=0.9 Unbalanced design. Provide ade This truss ha chord live loo * This truss loo chord and and One H2.5T S recommend UPLIFT at jt and does no This truss is International R802.10.2 a		ssf; Pf=18.5 ; Is=1.0; Rc 1.10, Lu=50 re been cor to prevent v ed for a 10.0 mt with any need for a liv eas where will fit betw rs. -Tie connee uss to bear s connectio al forces. cordance w de sections tandard AN ion does no	psf (Lum ugh Cat C; F)-0-0 isidered for t vater pondin) psf bottom other live load e load of 20.1 a rectangle veen the bott tors ng walls due h is for uplift th the 2018 R502.11.1 a SI/TPI 1.	Fully his g. ads. 0psf om eto only and				STATE OF SCOT	T M. IER BER 018807
												June	E 14,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

								DR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof - 2217 NW Killarne	AS NOTED / Ln, Lee's Summit DEVELOP	FOR PLAN REVIEW
P220296-P220296-02	E4	Hip		1	1	Job Reference (optional		IS2488912 MMIT, MISSOURI
Premier Building Supply (Springh	ill, KS), Spring Hills, KS - 66083,					2022 MiTek Industries, Inc. S 2sB70Hq3NSgPqnL8w3uITXb		1/2022
	4-9	-12	9-10-0			14-10-4	19-	8-0
	4-9	-12	5-0-4		1	5-0-4	4-9	-12
		5	x5 =	2	4x8 =		5x5 =	
2-8-14 -0 2-7-3 2-8-14 -0 1-7-3 0-1-11	1	-0			4 15 • • • • • • • • • • • • • • • • • • •		5 9	6
0-4-0		12 [⊷] 7x8 =	4x4 =		.5x4 II		4 = 8 77×8	
	3x4 ≠	1.5x4 I					1.5x4	∎ 3x4 _{>}

l	2-11-8	4-11-8	9-10-0	14-8-8	16-8-8	19-8-0	
ſ	2-11-8	2-0-0	4-10-8	4-10-8	2-0-0	2-11-8	

Scale = 1:37.9

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.62	Vert(LL)	-0.30	10	>761	240	-	244/190
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15		BC	0.69	Vert(CT)	-0.55	10	>419	180		210,000
TCDL	10.0	Rep Stress Incr	YES		WB	0.52	Horz(CT)	0.38	7	n/a	n/a		
BCLL	0.0*	Code		8/TPI2014	Matrix-S								
BCDL	10.0		110201	5,1112011								Weight: 87 lb	FT = 20%
LUMBER			2)	Wind: ASCE	7-16; Vult=115m	oh (3-seo	cond aust)						
TOP CHORD	2x6 SP 2400F 2.0E	*Except* 3-5:2x4 SP	_/		h; TCDL=6.0psf; E								
	No.2			Ke=1.00; Ca	it. II; Exp C; Enclo	sed; MW	FRS (envelo	pe)					
BOT CHORD	2x4 SP No.2 *Excep	ot* 12-2,6-8:2x4 SPF			e and C-C Exterior								
	No.3, 2-6:2x4 SP 16				4-9-12 to 11-10-1								
NEBS	2x4 SPF No.3				erior(2E) 14-10-4			ever					
BRACING					exposed ; end ve								
OP CHORD	Structural wood she	athing directly applie	d or		c for members and			or					
	5-1-10 oc purlins, ex			DOL=1.60	own; Lumber DOL	=1.60 pi	ate grip						
	2-0-0 oc purlins (3-1	,	3)		7-16; Pr=25.0 ps	f (roof L		1 15					
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc	3)		1.15); Pg=20.0 ps			1.15					
	bracing.				late DOL=1.15); Is			Fully					
REACTIONS	(lb/size) 1=712/0-5	5-8, 7=712/0-5-8			9; Cs=1.00; Ct=1.1			any					
	Max Horiz 1=44 (LC		4)		snow loads have			his					
	Max Uplift 1=-95 (LC	C 13), 7=-95 (LC 12)	,	design.									
	Max Grav 1=876 (L0	C 2), 7=876 (LC 2)	5)	Provide ade	quate drainage to	prevent	water pondin	g.					
ORCES	(lb) - Maximum Com	pression/Maximum	6)	This truss ha	s been designed	for a 10.	0 psf bottom	•					
	Tension			chord live lo	ad nonconcurrent	with any	other live loa	ads.					
OP CHORD	1-2=-389/116, 2-3=-		7)		has been designed			0psf					
	3-4=-2446/551, 4-5=	,			m chord in all area								
	5-6=-2461/532, 6-7=				oy 2-00-00 wide w		veen the bott	tom					
BOT CHORD	1-12=-20/0, 2-12=0/				ny other members							- mar	TO
	10-11=-614/3324, 9-	,	8)		Simpson Strong-Ti							8 OF I	MICON
	6-9=-444/2408, 6-8=	,			ed to connect trus						- 1	A TE	MISSO
VEBS	3-11=-21/373, 4-11=	,	30,		(s) 1 and 7. This c		n is for uplift	oniy			6	N	
	4-9=-979/240, 5-9=-	21/3/3	9)		t consider lateral f designed in accor		ith the 2019				B	STATE OF I	
NOTES			-,		Residential Code			and			R	SEV	ER \ Y
,	ed roof live loads have	been considered for			nd referenced star			anu			2 *	4	1+1
this desigr	n.		10		Ind representation			size			8.	50 11.	
			10	, , ,	ation of the purlin			5120			N to	Nooth.	ter not

 Graphical purlin representation does not depict the s or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Nitek* 16023 Swingley Ridge Rd Chesterfield, MO 63017

														CONSTRUCTION	
Job		Truss	Truss T	уре		Qty	γ F	Ply	Roof - 221	7 NW K	illarne	AS Ln, Lee's S	NOTED FOR UMMIT, MO	PLAN REVIEW NT SERVICES 2488913	7
P220296-P22	0296-02	E5	Hip Gir	der		1	1		Job Refere					NT SERVICES 2488913 IT, MISSOURI	
Premier Building Su	upply (Springh	ill, KS), Spring Hills, KS - 6608	33,		Run: 8.53 S	Apr 27 2022 F	Print: 8.530) S Apr 27 :	2022 MiTek I	ndustries	Inc. S	at Jun 1111:	₹/21	/2022	•
					ID:476_sYh	yRCJqo21RPm	14A64z7g.	JD-RfC?Psl	370Hq3NSgF	PqnL8w3ı	ılTXbG	KWrCDor7342	Kht I		
		-0-10-8 2-10			9-10-0				16-				19-8-0		
		0-10-8 2-10	-8		6-11-8		I		6-1	1-8		I	2-10-8	0-10-8	
			I	NAILED								Specia	I		
			Special	I	NAILED	NAILED	NAILED	NA	ILED	NAILED		NAILED			
		1: 6 Г	2 4x6 =				7x8 =					4x6	-		
4	ю	ပုံ	3	11	12	13 14	4	15	16	17		18 5	5		
2-2-7	-02									<u>_</u>			\searrow		
<u>2-2-7</u> 1-7-1	0	2												6	
	0-4-0	1		Π	Π	Π			Π	Π				7	
		4x4 =	10	19	20	21	9		22	23		24 8		4x4 =	
			7x8 :				7x8 =					7x8	=		
			THJU26		NAILED	NAILED	NAILED	NA	ILED	NAILED		NAILED			
				NAILED	9-10-0				16	11-4		THJU2	⁵ 19-8-(
		2-8-2			7-1-4					1-4 1-4			2-8-12		
Scale = 1:41															
	Y): [8:0-3-8	3,0-4-4], [9:0-4-0,0-4-12], [10:0-3-8,0-4	-4]											—
Loading		(psf) Spacing	2-0-0		CSI		DEFL		n (loc)	l/defl	L/d	PLATES	GRI	P	_
TCLL (roof) Snow (Pf/Pg)	18.9	25.0 Plate Grip DOL /20.0 Lumber DOL	1.15 1.15		TC BC	0.79 0.95	Vert(LL Vert(CT	,		>709 >424	240 180	MT20	197/	144	
TCDL		10.0 Rep Stress Incr	NO		WB	0.93	Horz(C	,		n/a	n/a				
BCLL BCDL		0.0* Code 10.0	IRC201	3/TPI2014	Matrix-S							Weight: 88	lb FT =	20%	
LUMBER			2)	Wind: ASCE	7-16; Vult=11	5mph (3-sec	ond gust	i)	12) Use	Simpso	on Stro	ng-Tie THJL	J26 (SGL &	SGL SHORT	_
	2x4 SP No.2 1.5E	*Except* 3-5:2x4 SP 165	0F		h; TCDL=6.0p at. II; Exp C; Ei									the left end to chord, skewed	
BOT CHORD 2	2x6 SPF No.			exterior zone	e and C-C Ext 2-10-8 to 9-10	erior(2E) -0-1	0-8 to 2-	10-8,	0.0	deg.to t	ne left,	sloping 0.0	deg. down.		
WEBS 2 BRACING	2x4 SPF No.	3		16-9-8, Exte	rior(2E) 16-9-8	3 to 20-6-8 zo	ne; cant	ilever						e left end to	
TOP CHORD	Structural wo	ood sheathing directly app	lied or		t exposed ; en C for members							to back face sloping 0.0		chord, skewed	
		lins (3-8-15 max.): 3-5.			own; Lumber I				14) Fill	all nail h	oles w	here hanger	is in conta	ct with lumber. x 3") toe-nails	
	Rigid ceiling bracing.	directly applied or 6-4-11	oc 3)	TCLL: ASCE	E 7-16; Pr=25.				, per	NDS gu	ideline	s.	,	,	
WEBS	1 Row at mic				1.15); Pg=20.0 Plate DOL=1.1				,	0 ()		connection to support c	()	hall be d load(s) 111 lb	
``	o/size) 2= ax Horiz 2=	=1020/0-5-8, 6=1021/0-5-8 =-34 (LC 65)	3 (4)	Exp.; Ce=0.9	9; Cs=1.00; Ct snow loads ha	=1.10, Lu=50	0-0-0	, ,	dow	n and 1	55 lb ι	ip at 2-10-8,	and 111 lb	down and 155 /selection of	
М	ax Uplift 2=	=-283 (LC 16), 6=-284 (LC	17) ⁽	design.									0	bility of others.	
		=1089 (LC 56), 6=1089 (L um Compression/Maximur	· · · · · · · · · · · · · · · · · · ·		as been desigr psf or 2.00 tim				17) In th	ne LOAE	CAS	E(S) section,	loads appl	lied to the face	

(Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/38, 2-3=-2298/585, 3-4=-2001/542, 4-5=-2002/544, 5-6=-2299/586, 6-7=0/38 BOT CHORD 2-10=-516/2067, 8-10=-1338/4648, 6-8=-504/2068 WEBS 3-10=-34/628, 5-8=-33/627, 4-9=0/266,

4-10=-2692/852, 4-8=-2691/851

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 6. This connection is for uplift only and does not consider lateral forces.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

- In the LOAD CASE(S) section, loads applied to the face
- of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard

MiTek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit, MO DEVELOPMENT SERVICES 152488913
P220296-P220296-02	E5	Hip Girder	1	1	Job Reference (optional	
Premier Building Supply (Springh	nill, KS), Spring Hills, KS - 66083,				2022 MiTek Industries, Inc. S sB70Hq3NSgPqnL8w3uITXbG	

Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15

Uniform Loads (lb/ft) Vert: 1-3=-48, 3-5=-58, 5-7=-48, 2-6=-20

Concentrated Loads (lb)

Vert: 3=-52 (B), 5=-52 (B), 10=-13 (B), 8=-13 (B), 4=-84 (B), 9=-5 (B), 11=-19 (B), 12=-19 (B), 13=-84 (B), 16=-84 (B), 17=-19 (B), 18=-19 (B), 19=-6 (B), 20=-6 (B), 21=-5 (B), 22=-5 (B), 23=-6 (B), 24=-6 (B)

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488914
P220296-P220296-02	G1	Half Hip	1	1	Job Reference (optional	
Premier Building Supply (Springh	ill, KS), Spring Hills, KS - 66083,				2022 MiTek Industries, Inc. S 370Hq3NSgPqnL8w3uITXbGk	

Scale = 1:46.1				7-5-1				-10-7			-	
Loading	(psf)	Spacing	2-0-0	CSI	0.00	DEFL	in	(loc)	l/defl		PLATES	GRIP
TCLL (roof) Snow (Pf/Pg)	25.0 18.9/20.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC		Vert(LL) Vert(CT)	-0.09 -0.15	6-7 6-7	>999 >999	-	MT20 MT18HS	197/144 244/190
TCDL BCLL	10.0 0.0*	Rep Stress Incr Code	YES IRC2018/TPI2014	WB Matrix-S		Horz(CT)	0.01	6	n/a	n/a		
BCDL	10.0	Code	1862010/1112014	Wattix-5							Weight: 72 lb	FT = 20%

1/-3-8

7-5-1

i.

5)

LUMBER

BRACING

TOP CHORD

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD

2x4 SPF No.3 *Except* 8-2:2x4 SP No.2 WEBS

Structural wood sheathing directly applied or

- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. 6)
- All plates are MT20 plates unless otherwise indicated. 7)
- 8) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle

3-06-00 tall by 2-00-00 wide will fit between the bottom

recommended to connect truss to bearing walls due to

11) This truss is designed in accordance with the 2018

R802 10 2 and referenced standard ANSI/TPL1

12) Graphical purlin representation does not depict the size

or the orientation of the purlin along the top and/or

UPLIFT at it(s) 6 and 8. This connection is for uplift only

International Residential Code sections R502.11.1 and

chord and any other members, with BCDL = 10.0psf.

10) One H2.5T Simpson Strong-Tie connectors

and does not consider lateral forces.

bottom chord.

LOAD CASE(S) Standard

- 4-10-3 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-5. BOT CHORD Rigid ceiling directly applied or 9-6-11 oc bracing. REACTIONS (lb/size) 6=501/0-5-8, 8=528/0-3-8 Max Horiz 8=269 (LC 13) Max Uplift 6=-121 (LC 13), 8=-130 (LC 16)
- Max Grav 6=669 (LC 3), 8=799 (LC 38) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/39, 2-3=-870/181, 3-4=-822/315, 4-5=-116/121, 5-6=-134/91, 2-8=-732/272
- BOT CHORD 7-8=-364/687. 6-7=-211/278 3-7=-506/347, 4-7=-300/807, 4-6=-532/304 WFBS
- NOTES
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 10-11-4, Exterior(2E) 10-11-4 to 14-1-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0
- 4) Unbalanced snow loads have been considered for this design.

						R	ELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	/ Ln, Lee	AS NOTED FOR PLAN REVIEW S Summit MO DEVELOPMENT SERVICES 152488915
P220296-P220296-02	G2	Half Hip	1	1	Job Reference (optional		I52488915 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083,				7 2022 MiTek Industries, Inc. S ′0Hq3NSgPqnL8w3uITXbGKW		06/21/2022
		-10-8 7-2-14 -10-8 7-2-14		11-4 ·8-6	14-3-8 5-4-4		
			1.5x4 แ	6x6 =		3x4 ∎	
- - - -		$ \begin{array}{c} 6 \\ 17 \\ 1.5x4 \\ 1 \\ 3 \\ 16 \\ 17 \\ 16 \\ 3 \\ 13 \\ 13 \\ 5 \\ 13 \\ 5 \\ 18 \\ 13 \\ 5 \\ 18 \\ 18 \\ 5 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18 \\ 18$	4 11 4x4=	5	Порадија 10 10 1.5х4 и 1.5х4 и	6 9 7 1.5x4 II	5-1-15
		2-0-0 7-2-14 2-0-0 5-2-14			-1-8 <u>14-0-0</u> 0-10 1-10-8	14-3-8 0-3-8	

Scale = 1:44.5 Plate Offsets (X, Y): [3:0-6-0,0-1-8], [12:0-4-0,0-1-8]

	(X, Y): [3:0-6-0,0-1-8],	, [12.0-4-0,0-1-8]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.80 0.85 0.58	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-12 11-12 7	l/defl >811 >499 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 74 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES	2x4 SP No.2 *Excep No.3, 3-9:2x4 SP 16 2x4 SPF No.3 *Exce Structural wood she 3-4-13 oc purlins, e 2-0-0 oc purlins, (6-0 Rigid ceiling directly bracing. (lb/size) 7=515/0-5 Max Horiz 14=224 (L Max Grav 7=627 (LC (lb) - Maximum Com Tension	50F 1.5E spt* 14-2:2x4 SP No. athing directly applie xcept end verticals, a -0 max.): 5-6. applied or 6-0-0 oc 5-8, 14=534/0-3-8 _C 13) _C 13), 14=-127 (LC C 2), 14=-766 (LC 38) ppression/Maximum	2 and 3) 16) 5)	Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 14-1-12 zone vertical left a forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.5 Unbalanced design. This truss ha load of 12.0 overhangs n	7-16; Vult=115mpl 7; TCDL=6.0psf; BC t. II; Exp C; Encloss and C-C Exterior(1-8 to 8-11-4, Exte c; cantilever left and nd right exposed;C (FRS for reactions : ate grip DOL=1.60 7-16; Pr=25.0 psf; late DOL=1.15); Is- b; Cs=1.00; Ct=1.10 snow loads have b is been designed for psf or 2.00 times file on-concurrent with	CDL=6. ed; MW (2E) -0- erior(2E d right e C-C for r shown; (roof LI Pf=18.9 =1.0; R 0, Lu=5 been col or great at roof I other li	Dpsf; h=35ft; FRS (envelo 10-8 to 4-1-8,) 8-11-4 to xxposed ; enc nembers and Lumber .: Lum DOL= 9 psf (Lum pugh Cat C; F D-0-0 nsidered for th er of min roof pad of 13.9 p ve loads.	1.15 Fully his f live sf on					
TOP CHORD	4-5=-1040/419, 5-6= 6-9=-217/110, 2-14= 13-14=-280/326, 12- 3-12=-187/541, 11-1	=-84/73, 7-9=-602/22 =-375/212 -13=-59/85,	8)	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b	quate drainage to p is been designed for ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will by other members.	or a 10. vith any for a liv s where	0 psf bottom other live loa e load of 20.0 a rectangle	ads. Opsf				STE OF I	MISSOL
WEBS NOTES 1) Unbalance this design	4-11=-541/357, 5-11 5-9=-660/312, 3-14= ed roof live loads have	=-566/209	10 11	One H2.5T S recommende UPLIFT at jt(only and doe) This truss is International R802.10.2 at) Graphical pu	impson Strong-Tie d to connect truss s) 7 and 14. This c s not consider late designed in accord Residential Code s nd referenced stam- rlin representation ation of the purlin a d.	to bear connecti ral force dance w sections dard AN does no	ing walls due on is for uplif es. th the 2018 \$ R502.11.1 a ISI/TPI 1. ot depict the s	t and		-		STE OF I SCOT SEVI SEVI DE-2001	I M. ER 018807

												RELEAS	E FOR CONSTRUCTION
Job		Truss		Truss T	уре	Qty	PI	у	Roof - 221	7 NW K	illarne	AS NOT Ln, Lee's Sumr	ED FOR PLAN REVIEW
P220296-P2	20296-02	G3		Half Hi	р	1	1		Job Refere				IS2488916 SUMMIT, MISSOURI
Premier Building	Supply (Springh	ill, KS), S	pring Hills, KS - 6608	33,	Run: 8	53 S Apr 27 2022 Pi	nt: 8.530	S Apr 27	2022 MiTek li	ndustries	, Inc. S	it Jun 11 11: 453	21/2022
					ID:k7E	g8dVokVEInegc4xzj_	Nz7gWN-	RfC?PsB	70Hq3NSgPc	nL8w3ul	TXbGł	WrCDoi794z3C?	
			-0-10-8		6-11-4				14-3-8			15-9-4	
			0-10-8		6-11-4				7-4-4			1-5-12	
						6x6 =						5x5 II	
-	++-3-10 0-1-11				12	4			\bowtie		16	5 6	
	4 0				12 6 T		_						
	5				15				A				
0 7 7	3-1-15 3-1-15		1.	5x4 I									-15
C 7				3							_		4-1-15
		0	2	12	0	Let				e 1	0	9	
	1-0-0 1-0-0	0-10-0	14	3x10 =	0 0 13 T	11 1.5x4 "			8	3 3x	6=	7	
-						1.5X4 II			1.5x4 ॥		-	8	
			:	3x4 = 3	x4 u					1.5x4	II	1.5x4 ॥	
					5x8 II								
												14-3-8	
			F	2-0-0	6-9-8			<u>12-1-8</u> 5-4-0		<u> 14</u> 1.	<u>4-0-0</u> -10-8		
Scale = 1:40.3												0-3-8	
Plate Offsets (X	(, Y): [3:0-6-1	12,0-1-8]], [5:0-2-8,0-1-8], [12:0-4-0,0-1	-8]			_		-			
Loading		(psf)	Spacing	2-0-0	CSI		DEFL		in (loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) Snow (Pf/Pg)	18.9	25.0 /20.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC		/ert(LL) /ert(CT)		19 11-12 30 11-12	>902 >561	240 180	MT20	197/144
TCDL BCLL		10.0 0.0*	Rep Stress Incr	YES	B/TPI2014 WB		Horz(CT) 0.1	17 7	n/a	n/a		
BCDL		0.0 10.0	Code	IRC201	5/TP12014 Matrix-3							Weight: 71 lb	FT = 20%
LUMBER				2)									
TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2		t* 13-12,10-8:2x4	SPF	Vasd=91mph; TCDL= Ke=1.00; Cat. II; Exp	C; Enclosed; MWF	RŚ (enve	elope)					
WEBS	No.3, 3-9:2x 2x4 SPF No.		50F 1.5E pt* 14-2:2x4 SP N	lo.2	exterior zone and C-C Interior (1) 4-1-8 to 6-	()		,					
BRACING					14-1-12, Interior (1) 14 left and right exposed		,	lever					
TOP CHORD	2-2-0 oc pur	lins, exc	athing directly app cept end verticals,		exposed;C-C for mem reactions shown; Lum	bers and forces &	WWFRS	for					
BOT CHORD			-10 max.): 4-6. applied or 10-0-0	00 00	DOL=1.60		•						
	bracing, Ex 6-0-0 oc bra		3	3)	Plate DOL=1.15); Pg=	20.0 psf; Pf=18.9	sf (Lum						
WEBS	1 Row at mid	dpt	4-9		DOL=1.15 Plate DOL= Exp.; Ce=0.9; Cs=1.0			C; Fully					
	lb/size) 7= Max Horiz 14		5-8, 14=538/0-3-8 .C 13)	4)	Unbalanced snow load	ds have been cons	dered fo	or this					
			C 13), 14=-117 (L0 C 37), 14=713 (LC		This truss has been de								
FORCES	(lb) - Maxim		pression/Maximun		load of 12.0 psf or 2.0 overhangs non-concu			9 psr on					
TOP CHORD	Tension 1-2=0/39, 2-	3=-112/4	42, 3-4=-1023/256	6) 6, 7)									
	4-5=-120/80 5-9=-465/19	,), 7-9=-750/272, -344/181	8)	chord live load noncor * This truss has been								
BOT CHORD	13-14=-266/	324, 12-	13=-54/82,	0)	on the bottom chord ir	all areas where a	rectangl	e				OF	MISSO
			2=-374/887, 0=-356/879, 8-10=		3-06-00 tall by 2-00-00 chord and any other n	embers.		ollom			6	ATE	230c
WEBS	7-8=-33/7 4-11=0/353,	4-9=-82	3/351, 3-14=-577/	9) /208	One H2.5T Simpson S recommended to conr			lue to			8	SCOT SEV	
	t roof live loo	da hava	haan aanaidarad f	for	UPLIFT at jt(s) 7 and only and does not con			olift			(A)		
this design.		us nave	been considered f	10) This truss is designed International Resident	in accordance wit	the 201			>	KC.	to	Jenin
					R802.10.2 and referer	ced standard ANS	I/TPI 1.			_	87	NUM PE-2001	
				11) Graphical purlin repre or the orientation of th						V	The second	158
					bottom chord. DAD CASE(S) Standa	- rd						SIONA	L EN
					Standal	u						all a	e 14,2022
												Juli	5 17,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

Plate Offsets (X, Y): [2:0-1-12,0-0-1], [3:0-9-0,0-4-8], [3:0	-6-0,0-2-	5], [4:0-3-0,0-2	-7], [5:0-3-8,0-1-8],	, [9:0-4-	3,0-2-0]						
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.89 0.52 0.67	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-12 11-12 7	l/defl >999 >871 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 86 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	No.3, 3-9:2x6 SP 24 2x4 SPF No.3 Left 2x4 SP No.2 Structural wood she 4-11-11 oc purlins, 2-0-0 oc purlins (3-4 Rigid ceiling directly bracing. 1 Row at midpt	t* 13-3,10-8:2x4 SPF 00F 2.0E 1-10-2 athing directly applied except end verticals, -6 max.): 4-6. applied or 9-4-1 oc 5-9 -3-8, 7=1253/0-5-8 C 13) C 16), 7=-431 (LC 13	2) d or and 3)	this design. Wind: ASCE Vasd=91mpl Ke=1.00; Ca exterior zone Interior (1) 4 Interior (1) 1 right expose for members Lumber DOL TCLL: ASCE Plate DOL=1.15 P Exp.; Ce=0.5 roof snow loa exposed sur	roof live loads hav 7-16; Vult=115mp h; TCDL=6.0psf; B t. II; Exp C; Enclos e and C-C Exteriori -1-8 to 4-11-4, Ext 2-0-2 to 14-1-12 zc d; end vertical left and forces & MW/ =1.60 plate grip D E 7-16; Pr=25.0 psf .15); Pg=20.0 psf .15); Pg=20.0 psf .15); Pg=20.0 psf .15); Pg=20.0 psf .15); Sg=1.00; Ct=1.1 ad governs. Rain sf faces with slopes I with IBC 1608.3.4.	h (3-sec CDL=6. ed; MW (2E) -0- erior(2R one; can and rigi FRS for OL=1.60 (roof LL Pf=18.9 =1.0; Rc 0, Lu=50 surcharg	cond gust) Opsf; h=35ft; FRS (envelo IO-8 to 4-1-8,) 4-11-4 to 12 tilever left an t exposed;C reactions sho D : Lum DOL= 2 psf (Lum pugh Cat C; F 0-0-0; Min. ft te applied to	pe) , 2-0-2, id -C own; :1.15 =ully at	bea join 10) This Inte R80 11) Gra or t	aring plat at 7 and 3 s truss is ernationa 02.10.2 a aphical p	te capa 353 lb i s desig al Resid and ref urlin re tation d	able of withstandi uplift at joint 2. ned in accordand dential Code sect erenced standard	tions R502.11.1 and d ANSI/TPI 1. es not depict the size
FORCES	•	ax. Ten All forces 2			snow loads have b	een cor	nsidered for t	his					
TOP CHORD	2-3=-646/243, 3-14= 4-14=-3007/1178, 4- 7-9=-1351/481	-3039/1161,	5)	This truss ha load of 12.0	as been designed f psf or 2.00 times fl on-concurrent with	at roof l	oad of 13.9 p					OF I	
BOT CHORD WEBS	3-12=-1150/2794, 1: 18-19=-1123/2718, : 11-20=-922/2584, 10 10-21=-924/2579, 9 4-11=-369/216, 5-11 5-9=-2610/962, 4-12	11-19=-1123/2718, 0-20=-922/2584, -21=-924/2579 I=-177/630,	6) 7) 8)	Provide adec This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b	quate drainage to p as been designed f ad nonconcurrent v has been designed n chord in all areas by 2-00-00 wide wi by other members.	orevent or a 10.0 with any for a liv s where Il fit betw	water pondin 0 psf bottom other live loa re load of 20. a rectangle	ads. Opsf				STATE OF I	

Continued on page 2 WARNING - Verify

WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 •

June 14,2022

E

-2001018

ONAL

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488917
P220296-P220296-02	G4	Half Hip Girder	1	1	Job Reference (optional	
Premier Building Supply (Spring	nill, KS), Spring Hills, KS - 66083,	Run: 8.53 E Apr 27 2 ID:1JnTKpHKIHseTT	022 Print: 8. 41xRwyXRz	530 E Apr 27 7gq0-wb7N9e	, 2022 MiTek Industries, Inc. M ppqNN6BIHFii7IGv8GjlkwldZS	on Jun 167663421/21922

- 12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 134 lb down and 102 lb up at 13-0-0 on top chord, and 501 lb down and 225 lb up at 4-11-4, 215 lb down and 93 lb up at 7-0-0, 215 lb down and 93 lb up at 9-0-0, and 215 lb down and 93 lb up at 11-0-0, and 49 lb down at 13-0-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-3=-48, 3-4=-48, 4-6=-58, 2-13=-20, 3-10=-20, 7-8=-20

Concentrated Loads (lb)

Vert: 12=-501 (B), 17=-105 (B), 18=-215 (B), 19=-215 (B), 20=-215 (B), 21=-40 (B)

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.79 0.41 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.06 -0.05 -0.01	(loc) 7-8 7-8 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 47 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x6 SPF No.2 2x4 SPF No.3 Structural wood she 5-8-5 oc purlins, exc 2-0-0 oc purlins (4-5	ept	7)	design. This truss ha load of 12.0 overhangs no Provide adeo This truss ha chord live loa	snow loads have b s been designed for opsf or 2.00 times fla on-concurrent with quate drainage to p is been designed for ad nonconcurrent y	or great at roof le other li prevent or a 10.0 vith any	er of min roof bad of 13.9 p ve loads. water ponding 0 psf bottom other live loa	live sf on g. ds.	of th LOAD (1) De Inc Ur Cc	he truss CASE(S) ead + Sh crease= hiform Lo Vert: 1-3 oncentra	are no) Stat now (ba 1.15 bads (ll 3=-48, ted Lo	nted as front (F) o ndard alanced): Lumber b/ft) 3-4=-58, 4-6=-48 ads (Ib)	r Increase=1.15, Plate 3, 2-5=-20
	Rigid ceiling directly bracing. (lb/size) 2=460/0-3 Max Horiz 2=30 (LC Max Uplift 2=-208 (L Max Grav 2=535 (LC	3-8, 5=460/0-3-8 64) C 13), 5=-208 (LC 1	Q)	on the bottor 3-06-00 tall b chord and ar One H2.5T S recommende	has been designed in chord in all areas by 2-00-00 wide wil by other members. Simpson Strong-Tie d to connect truss s) 5 and 2. This co	where I fit betw conne to bear	a rectangle veen the botto ctors ing walls due	om to), 4=-26 (B), 8=-2 11=-2 (B), 12=-2	2 (B), 7=-2 (B), 9=-7 2 (B)
FORCES	(lb) - Maximum Com Tension 1-2=0/38, 2-3=-914/ 4-5=-956/1247, 5-6=	1192, 3-4=-826/1067		and does not) This truss is International	consider lateral for designed in accord Residential Code s	orces. lance w sections	ith the 2018 R502.11.1 a	,					
BOT CHORD WEBS	4-5=-950/1247, 5-6= 2-8=-1005/833, 7-8= 5-7=-1075/877 3-8=-312/202, 4-7=-	-1033/868,) Graphical pu	nd referenced stan rlin representation ation of the purlin a I.	does no	ot depict the s	ize					
this design 2) Wind: ASC Vasd=91m Ke=1.00; (exterior zo	ed roof live loads have E 7-16; Vult=115mph iph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose ne and C-C Exterior(2 ixposed ; end vertical l	(3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever l	- 13 e) eft 14	Right Hand H to connect tre Use Simpsor Hand Hip) or connect truss Fill all nail ho	n Strong-Tie THJA: dip) or equivalent a uss(es) to back fac n Strong-Tie THJA: equivalent at 8-0-6 s(es) to back face o les where hanger i dicates Girder: 3-10	at 2-5-1(e of bot 26 (THJ 6 from t of botton is in cor) from the left tom chord. A26 on 1 ply, he left end to m chord. htact with lum	Left ber.		Ç		STATE OF I	

- and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0
- per NDS guidelines. 16) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 85 lb down and 133 lb up at 2-5-4, and 85 lb down and 133 lb up at 8-0-12 on top chord. The design/selection of such

connection device(s) is the responsibility of others.

June 14,2022

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 4-5-4, Exterior(2E) 4-5-4 to 10-3-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0

 Unbalanced snow loads have been considered for this design. NUMBER PE-2001018807 June 14,2022

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488920
P220296-P220296-02	НЗ	Common	2	1	Job Reference (optional	
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083,				27 2022 MiTek Industries, Inc. S PsB70Hq3NSgPqnL8w3uITXbGH	
		-0-10-8 5-3-0 0-10-8 5-3-0			<u>10-9-8</u> 5-6-8	
34-11	0-3-8 2-11-8 0-3-8 2-8-0 0-4-0	6 r 2 2 1 3x4 =	7	4x4 = 3 5 1.5x4	8	9 10 4 3x4 s

					5-3-0 5-3-0					<u>10-9</u> 5-6-	-		_	
Scale = 1:32.5					000					00	0			
Loading	(psf)	Spacing	2-0-0	CSI			DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс		0.55	Vert(LL)	-0.02	4-5	>999	240	MT20	197/144	
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC		0.32	Vert(CT)	-0.05	4-5	>999	180			
TCDL	10.0	Rep Stress Incr	YES	WB		0.10	Horz(CT)	0.01	4	n/a	n/a			

IRC2018/TPI2014

LUMBER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SPF No.3
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
Bor onone	bracing.
REACTIONS	(lb/size) 2=405/0-5-8, 4=347/0-5-8
	Max Horiz 2=65 (LC 20)
	Max Uplift 2=-99 (LC 16), 4=-72 (LC 17)
	Max Grav 2=546 (LC 2), 4=461 (LC 2)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/29, 2-3=-663/282, 3-4=-655/286
BOT CHORD	2-5=-167/516, 4-5=-167/516
WEBS	3-5=0/251
NOTES	
A) Lists stars a	ad read live loads have been sensidered for

0.0*

10.0

Code

BCLL

BCDL

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 5-3-0, Exterior(2R) 5-3-0 to 10-3-0, Interior (1) 10-3-0 to 10-6-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom 6)

Matrix-S

chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

8) One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4 and 2. This connection is for uplift only and does not consider lateral forces.

This truss is designed in accordance with the 2018 9) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

OF MISSO E SCOTT M. SEVIER IIMBE PE-2001018807 0 SSIONAL E June 14,2022

FT = 20%

Weight: 38 lb

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

								RELEASE FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488921
P220296-P220296-02	H4		Roof Special		3	1	Job Reference (optional	
Premier Building Supply (Spring	hill, KS), S	Spring Hills, KS - 66083,		Run: 8.53 S Ap ID:uUqAe_doHF	r 27 2022 Print: PvD5wPoOoM3k	8.530 S Apr 2 9z7f0g-RfC?F	7 2022 MiTek Industries, Inc. S PsB70Hq3NSgPqnL8w3uITXb0	at Jun 11065721/2022
			-0-10-8 0-10-8	<u>5-3-0</u> 5-3-0			<u>10-9-8</u> 5-6-8	
						4x6 =		
3-4-11	0-3-8 2-11-8		2 ¹⁰	6 ¹² 3 9	11 0-0-F	4 12 8 1.5x4	5	
			3x4				1.5x4	3x4 ≈
				4x8 =	:		1.5x	4 n
Scale = 1:32.7		10-0 4 4 0 0 EL 15-0		2-5-8 2-5-8	5-3-0 2-9-8		8-4-0 3-1-0	10-9-8 2-5-8
Plate Offsets (X, Y): [2:0-1- Loading TCLL (roof)	(psf) 25.0	[3:0-4-4,0-2-5], [5:0- Spacing Plate Grip DOL	-6-7,0-0-5], [5:0-0-14,0 	CSI TC	0.80 Ver		in (loc) l/defl L/d 0.24 5-8 >511 240	

Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 25.0 13.9/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.80 0.83 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.24 -0.44 0.43	(loc) 5-8 5-8 6	l/defl >511 >284 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCLL BCDL	0.0* 10.0	Code		18/TPI2014	Matrix-S	0.10	11012(C1)	0.43	0	n/a	n/a	Weight: 39 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP 2400F 2.0E 2x4 SP No.2 *Excep 2x4 SPF No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	athing directly applie	No.3 5 ed or 6	 design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss I on the bottor 	snow loads have as been designed psf or 2.00 times on-concurrent wit as been designed ad nonconcurrent nas been designe n chord in all area	for greate flat roof lo h other liv for a 10.0 with any d for a liv as where	er of min roof bad of 13.9 p ve loads. D psf bottom other live loa e load of 20.1 a rectangle	f live sf on ads. Opsf					
REACTIONS	(lb/size) 2=405/0-5 Max Horiz 2=65 (LC Max Uplift 2=-99 (LC Max Grav 2=546 (LC	(LC 17), 6=-72 (LC 17)	8	chord and and and and and and and and and an	by 2-00-00 wide w ny other members Simpson Strong-T ed to connect trus (s) 6 and 2. This o	s. Tie connec is to bear	ctors ing walls due	to					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	ç	and does no	t consider lateral designed in acco	forces.							
TOP CHORD	1-2=0/29, 2-3=-269/ 4-5=-958/417, 5-6=-2				Residential Code nd referenced sta			and					
BOT CHORD	2-9=-6/18, 3-9=-21/8 5-8=-289/897, 5-7=-	-, ,	L	OAD CASE(S)	Standard								
WEBS	4-8=-45/246												
this design 2) Wind: AS Vasd=91n	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat II: Exp.C: Enclose	(3-second gust) DL=6.0psf; h=35ft;									B	TATE OF M	1 CAN

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 5-3-0, Exterior(2R) 5-3-0 to 10-3-0, Interior (1) 10-3-0 to 10-6-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488922
P220296-P220296-02	J1	Diagonal Hip Girder		1	1	Job Reference (optional	
Premier Building Supply (Springh	nill, KS), Spring Hills, KS - 66083,	Run	n: 8.53 S Apr 27 2	022 Print: 8.	530 S Apr 27	2022 MiTek Industries, Inc. S	

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Sat Jun 111:65, 21/20:22 ID:U3kDsD5xBjuRyxdhSq79sKz7hyZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGK/wrCDoi7/4z.9?/

Scale = 1:45.6

Plate Offsets (X, Y): [3:0-6-0,0-1-8], [8:0-4-0,0-1-8], [10:Edge,0-2-8]

	(X, 1). [3.0-0-0;0-1-0],	[0.0-4-0,0-1-0], [10.1	Luge,0-2-0	'									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.51 0.97 0.32	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.15 -0.18 0.08	(loc) 7-8 7-8 6	l/defl >769 >626 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 46 lb	GRIP 197/144 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 *Excep 3-6:2x4 SP 1650F 1. 2x4 SPF No.3 *Excep Structural wood she 5-2-9 oc purlins, exc Rigid ceiling directly bracing. (Ib/size) 6=527/ Mi Max Horiz 10=177 (L Max Uplift 6=-202 (L Max Grav 6=567 (LC) 	.5E pt* 10-2:2x4 SP No. athing directly applie cept end verticals. applied or 8-7-7 oc echanical, 10=500/0- LC 13) C 16), 10=-197 (LC C 23), 10=604 (LC 2)	5) 2 6) d or 7) -4-9 8) 9) 12)	load of 12.0 overhangs n All plates an This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a Refer to girc Provide med bearing plat joint 6.	as been designed f psf or 2.00 times f on-concurrent with a MT20 plates unle as been designed f ad nonconcurrent i nas been designed m chord in all area by 2-00-00 wide wi ny other members. er(s) for truss to tr hanical connection e capable of withst Simpson Strong-Ti	lat roof I n other li ess othe for a 10. with any d for a liv s where ill fit betv uss coni n (by oth canding 2	bad of 13.9 ps ve loads. wise indicate 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto nections. ers) of truss t 202 lb uplift at	sfon ed. Ids. Dpsf om					
FORCES	 (lb) - Maximum Com Tension 2-10=-286/260, 1-2= 3-4=-945/459, 4-5=- 	- =0/35, 2-3=-83/19,	11	UPLIFT at jt does not cor	ed to connect truss (s) 10. This connect sider lateral forces designed in accor	ction is f s.	or uplift only a						
BOT CHORD	9-10=-352/336, 8-9= 7-8=-592/860, 6-7=- 4-7=-116/331, 4-6=-	592/860	6,	International R802.10.2 a	Residential Code nd referenced star dicates Girder: 3-1	sections	s R502.11.1 a NSI/TPI 1.						
NOTES			12	per NDS gui		00 (0.1-		lans					The second
 Wind: AS Vasd=91 Ke=1.00; exterior 2 Exterior(2 right exp for memb Lumber D TCLL: AS Plate DO DOL=1.1 Exp.; Ces 	SCE 7-16; Vult=115mph mph; TCDL=6.0psf; BC . Cat. II; Exp C; Enclose tone and C-C Corner (3 2R) 5-10-0 to 9-6-8 zone osed ; end vertical left a bers and forces & MWFI DOL=1.60 plate grip DO SCE 7-16; Pr=25.0 psf (L=1.15); Pg=20.0 psf; F 5 Plate DOL=1.15); Is= =0.9; Cs=1.00; Ct=1.10 ced snow loads have be	DL=6.0psf; h=35ft; d; MWFRS (envelop) -1-2-14 to 5-10-0, e; cantilever left and ind right exposed;C-C- RS for reactions sho >L=1.60 roof LL: Lum DOL=1 Pf=13.9 psf (Lum 1.0; Rough Cat C; Fu	e) LC 1) C wn; .15 ully) In the LOAD of the truss a DAD CASE(S) Dead + Sn Increase=1 Uniform Lo Vert: 1-2 Concentrat Vert: 11:	CASE(S) section, are noted as front (Standard ow (balanced): Lur .15	(F) or ba mber Inc 0=-20, 6 13=-254	ck (B). rease=1.15, F 3-8=-20					PE-2001	

June 14,2022

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488923
P220296-P220296-02	J2	Jack-Open	2	1	Job Reference (optional	
Promier Building Cumply (Casing)		But 0.52.6 Att 07.6		500 C A== 07	2000 MiTel: Industrian Inc. C	

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. St Jun 111:65:21/20:22 ID:MIs1RKJoG3qWG6kNiOz8Gqz7hzZ-RfC?PsB70Hq3NSgPqnL8w3uITXbqKWrCDoH45077

Scale = 1:31.6

Scale = 1.51.0													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.58 0.07 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.12 -0.14 0.06	(loc) 7 7 5	l/defl >484 >412 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 *Except Structural wood she 4-10-3 oc purlins, e Rigid ceiling directly bracing. (Ib/size) 4=127/ M	ot* 7-2:2x4 SPF No.3 athing directly applie xcept end verticals. applied or 10-0-0 oc echanical, 5=24/ al, 8=211/0-3-8 C 16) C 16), 8=-35 (LC 16)	5) ed or 6) ; 7) 8)	load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Refer to gird Provide mec bearing plate 4. One H2.5T \$ recommende	as been designed psf or 2.00 times on-concurrent will us been designed ad nonconcurrent has been designed n chord in all are by 2-00-00 wide v ny other members er(s) for truss to 1 hanical connective e capable of withs Simpson Strong-T ed to connect trus s) 8. This connect	flat roof li th other li l for a 10. t with any ed for a liv as where will fit betv s. truss conr on (by oth standing §	bad of 13.9 p ve loads.) psf bottom other live load e load of 20. a rectangle veen the bott nections. ers) of truss 17 lb uplift at ctors ing walls due	ads. Opsf com joint e to					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 2-8=-266/154, 1-2=(3-4=-102/79 7-8=-226/96, 6-7=-4)/34, 2-3=-100/25,	c 0/0	does not cor)) This truss is International	nsider lateral force designed in acco Residential Code nd referenced sta	es. ordance w e sections	ith the 2018 R502.11.1 a						
WEBS	2-7=-100/234		Ľ	DAD CASE(S)	Standard								
Vasd=91m Ke=1.00; (exterior zo Interior (1) exposed; members a Lumber DU 2) TCLL: AS(Plate DOL DOL=1.15 Exp.; Ce=0	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC cat. II; Exp C; Enclose one and C-C Exterior(2) 4-1-8 to 4-9-7 zone; c end vertical left and ri; and forces & MWFRS OL=1.60 plate grip DC CE 7-16; Pr=25.0 psf (.=1.15); Pg=20.0 psf; F i Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10	DL=6.0psf; h=35ft; d; MWFRS (envelopsize) -0.10-8 to 4-1-8, cantilever left and rigight exposed; C-C for for reactions shown; $DL=1.60(roof LL: Lum DOL=1Pf=13.9 psf$ (Lum 1.0; Rough Cat C; Figure 2.10 to 2.1	.15 ully									STATE OF SEV SEV PE-2001	HER BER CILC

Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria**, **DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

SSIONAL EN

June 14,2022

G

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit, MO DEVELOPMENT SERVICES 152488924
P220296-P220296-02	J3	Jack-Open	2	1	Job Reference (optional	
						00/01/0000

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. St Jun 111:65/21/20:22 ID:LgIK94V8HAG96fXJj6lBWUz7i_d-RfC?PsB70Hq3NSgPqnL8w3uITXbGK/rCDoi7.4207/21/20:22

Scale = 1:34.8

Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 25.0 13.9/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.10 0.09 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 3 3-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCLL BCDL	0.0* 10.0	Code	IRC20	18/TPI2014	Matrix-R							Weight: 14 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD	Mechanic Max Horiz 8=68 (LC Max Uplift 4=-35 (LC (LC 16) Max Grav 4=65 (LC (LC 23) (lb) - Maximum Com Tension 2-8=-199/131, 1-2=0 3-4=-42/24	athing directly applie xcept end verticals. applied or 10-0-0 oc chanical, 5=52/ ial, 8=159/0-3-8 16) C 16), 5=-5 (LC 16), 8 23), 5=84 (LC 7), 8= apression/Maximum 0/34, 2-3=-81/0,	s 5 ed or 6 c 7 8 8 =222 1	 load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Refer to gird Provide mec bearing plate 4 and 5 lb up One H2.5T S recommende UPLIFT at jtt does not cor This truss is International 	Simpson Strong- ed to connect tru (s) 8. This conne sider lateral for designed in acco Residential Coo nd referenced st	a flat roof li ith other li d for a 10. it with any ed for a liv as where will fit betw rs. truss conr on (by oth standing 3 Tie connel ss to bear ction is for yes. ordance w le sections	bad of 13.9 p ve loads. D psf bottom other live load e load of 20. a rectangle veen the bott nections. ers) of truss 55 lb uplift at ctors ing walls due r uplift only a ith the 2018 5 R502.11.1 a	ads. Opsf com to joint e to nd					
Vasd=91rr Ke=1.00; (exterior zc and right e exposed;(reactions s DOL=1.60 2) TCLL: AS(Plate DOL DOL=1.15 Exp.; Ce=	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical C-C for members and f shown; Lumber DOL=) CE 7-16; Pr=25.0 psf (_=1.15); Pg=20.0 psf; F is Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10	DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever l left and right orces & MWFRS for 1.60 plate grip roof LL: Lum DOL=1 Pf=13.9 psf (Lum 1.0; Rough Cat C; F	eft I.15 ully									STATE OF SCOT SEV OF PE-2001	IER Server

Unbalanced snow loads have been considered for this design.

SSIONAL

E

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit, MO DEVELOPMENT SERVICES 152488925
P220296-P220296-02	J4	Jack-Closed	5	1	Job Reference (optional	
Premier Building Supply (Spring	hill KS) Spring Hills KS - 66083	Rup: 8.53 S. Apr 27	2022 Print: 8	530 S Apr 2	7 2022 MiTek Industries Inc. S	

ID:tx85p64BWPr7PHMa9Fd_b6z7i?A-RfC?PsB70Hq3NSgPqnL8w3ulTXbGr/WrCDoi754z39? n: 8.53 S Apr 27 2022 Print: 8. 0 S Apr 27 2022 MiTek Ir

Plate Offsets (X, Y):	[6:0-3-0,0-0-8],	[8:0-3-0,0-1-12]

Scale = 1:36.7

Plate Olisets ((A, T). [0.0-3-0,0-0-0],	[0.0-3-0,0-1-12]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.61 0.63 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.14 -0.17 0.07	(loc) 5-6 5-6 5	l/defl >565 >469 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 32 lb	GRIP 197/144 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SPF No.3 *Exce 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (lb/size) 5=221/ M Max Horiz 8=165 (LC Max Uplift 5=-90 (LC Max Grav 5=309 (LC (lb) - Maximum Com Tension 2-8=-365/229, 1-2=(3-4=-175/57, 4-5=-1 7-8=-437/288, 6-7=- 5-6=-101/109 2-7=-101/209	apt* 8-2:2x4 SP No.2 athing directly applie cept end verticals. applied or 8-10-3 oc echanical, 8=277/0-3 C 13) C 16), 8=-66 (LC 16) C 23), 8=376 (LC 2) ppression/Maximum 0/34, 2-3=-285/137, 92/214	5) d or 6) 3-8 7) 3-8 8) 9) , 1(load of 12.0 overhangs n) This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 5. One H2.5T S recommende UPLIFT at jit does not com) This truss is International	as been designed f port 2.00 times fl on-concurrent with as been designed f ad nonconcurrent vith as been designed n chord in all area: by 2-00-00 wide wi by 2-00-00 wide wi by cher members. er(s) for truss to tru- hanical connectior e capable of withst: Simpson Strong-Til ed to connect truss (s) 8. This connect sider lateral forces designed in accord Residential Code nd referenced star Standard	lat roof I o other li o other li or a 10. with any I for a liv s where II fit betw uss com h (by oth anding s e conne s to bear ion is fo s. dance w sections	oad of 13.9 p ve loads. 0 psf bottom other live loa e load of 20. a rectangle ween the bott nections. uers) of truss 30 lb uplift at ctors ing walls due r uplift only a with the 2018 s R502.11.1 a	ads. Opsf com to joint e to nd					
Vasd=91m Ke=1.00; (exterior zo Interior (1) exposed; members; Lumber DC 2) TCLL: AS(Plate DOL DOL=1.15 Exp.; Ce=(CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2)) 4-1-8 to 6-9-8 zone; c end vertical left and rig and forces & MWFRS OL=1.60 plate grip DC CE 7-16; Pr=25.0 psf (.=1.15); Pg=20.0 psf; F is Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 ed snow loads have be	DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-10-8 to 4-1-8, cantilever left and rigi ght exposed;C-C for for reactions shown; yL=1.60 roof LL: Lum DOL=1 Pf=13.9 psf (Lum 1.0; Rough Cat C; Fi	.15 ully									STATE OF J	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 14,2022

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488926
P220296-P220296-02	J5	Jack-Closed	4	1	Job Reference (optional	
Bromior Building Supply (Spring)	all KS) Spring Hills KS 66083	Bun: 8 52 6 Apr 27 2	022 Drint: 0	520 C Apr 27	2022 MiTek Industrias Inc. S	

ling Supply (Springhill, KS), Spring Hills, KS - 6

)22 MiTek li ID:?cneWRXb3KoCV?Q5oMjmcTz7j30-RfC?PsB70Hq3NSgPqnL8w3uITXbqWrCDob94xe0?f21/2^{bg}222

6-11-4

Scale	=	1:35.8

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-P	0.71 0.58 0.16	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.23 0.00	(loc) 4-5 4-5 4	l/defl >682 >341 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%
	2x4 SPF No.3 *Exce Structural wood she 6-0-0 oc purlins, exc Rigid ceiling directly bracing.	thing directly applie cept end verticals. applied or 9-2-5 oc echanical, 5=277/0-3 16), 5=-68 (LC 16) 23), 5=376 (LC 2) pression/Maximum	6 d or 7 8 8-8 g	 chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Provide mec bearing plate 4. One H2.5T \$ recommended UPLIFT at jtt does not cor This truss is International 	Residential Co nd referenced s	nt with any ned for a liv eas where will fit betw ers. tion (by oth- nstanding 8 -Tie connec uss to beari ection is for ces. cordance wide sections	other live loa e load of 20. a rectangle veen the bott nections. ers) of truss 9 lb uplift at ctors ng walls due uplift only a ith the 2018 R502.11.1 a	ads. Opsf tom to joint e to nd					

NOTES

Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 6-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this desian.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488927
P220296-P220296-02	J7	Jack-Closed	8	1	Job Reference (optional	
Bromior Building Supply (Spring)		Bup: 8 52 S. Apr 27 2	022 Drint: 9	520 S Apr 27	2022 MiTek Industrias Inc. S	

-0-10-8

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Sat Jun 1 11:65/21/2021 ID:sbVyz22sXI8BjDMFhvb2eAz7i0V-RfC?PsB70Hq3NSgPqnL8w3uITXbGKyrCDoi7.4207

Scale = 1:38.4

Scale = 1:38.4													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.71 0.49 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.18 0.00	(loc) 5-6 5-6 4	l/defl >881 >440 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS	2x4 SPF No.3 *Exce Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 9-7-6 oc echanical, 6=277/0-3 C 13) C 16), 6=-61 (LC 16) C 23), 6=376 (LC 2) upression/Maximum 0/34, 2-3=-173/79, 38/42	ed or 7) 8) 3-8 9) 10 <u>)</u> 11 <u>)</u>	chord live lo * This truss on the botto 3-06-00 tall chord and a Refer to girc Bearing at jo using ANSI/ designer shu Provide med bearing plat 4.) One H2.5T si recommend UPLIFT at jo does not cool) This truss is Internationa R802.10.2 at	as been designed i ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members ler(s) for truss to tr bint(s) 6 considers TPI 1 angle to grai ould verify capacity chanical connection e capable of withst Simpson Strong-Ti ed to connect truss (s) 6. This connect nesider lateral force designed in accor I Residential Code and referenced star	with any d for a liv s where ill fit betv. uss conr parallel of bear n formul of bear n (by oth anding S e conne s to bear tion is foi s. dance w sections	other live load e load of 20. a rectangle veen the bott nections. to grain value a. Building ing surface. ers) of truss 66 lb uplift at ctors ing walls due r uplift only a ith the 2018 s R502.11.1 a	ads. .0psf tom e to joint e to ind					
Vasd=91m Ke=1.00; (CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2	DL=6.0psf; h=35ft; d; MWFRS (envelop		AD CASE(S)	Standard							Contraction of the	

exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 6-9-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15

- 2) TOLL: ASGE 7-10; P1=25:0 psi (1001 LL: LUIII DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit, MO DEVELOPMENT SERVICES 152488928
P220296-P220296-02	J8	Diagonal Hip Girder	1	1	Job Reference (optional	
Premier Building Supply (Springh	nill, KS), Spring Hills, KS - 66083,	Run: 8.53 S A	pr 27 2022 Print: 8.	530 S Apr 27	2022 MiTek Industries, Inc. S	

ID:_Ybo7V8kriJy_94LYhoHppz7gwf-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKVrCDoi7J3zJC9721/20922

Scale = 1:36.7

Plate Offsets (X, Y): [6:0-2-8.0-1-8], [8:0-4-8.0-1-8]

Plate Offsets (X, Y): [6:0-2-8,0-1-8],	[8:0-4-8,0-1-8]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-R	0.64 0.73 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.17 -0.18 -0.07	(loc) 5-6 5-6 5	l/defl >470 >437 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 28 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91n Ke=1.00; (exterior zc Exterior(21 right expos for membe Lumber DU 2) TCLL: ASC Plate DOL DOL=1.15 Exp; Ce= 3) Unbalance design.	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.2 *Excep Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (Ib/size) 5=239/ Mi Max Horiz 8=129 (LC Max Uplift 5=-115 (L Max Grav 5=314 (LC (Ib) - Maximum Com Tension 2-8=-391/404, 1-2=C 3-4=-168/77, 4-5=-1	t* 4-5:2x4 SPF No.3 athing directly applied cept end verticals. applied or 10-0-0 oc echanical, 8=311/0-4 C 13) C 16), 8=-145 (LC 12 C 23), 8=416 (LC 2) pression/Maximum //35, 2-3=-254/162, 75/209 18/49, 3-6=-77/142, (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope)) -1-2-14 to 5-10-0, e; cantilever left and nd right exposed;C-C RS for reactions show u=1.60 roof LL: Lum DOL=1. 2f=13.9 psf (Lum 1.0; Rough Cat C; Fu	6) d or 7) 8) -9 9) 2) 11 12 12 12 11 12 12 12 11 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2) 2)	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 5. One H2.5T S recommende UPLIFT at jt(does not cor 0) This truss is International R802.10.2 at 1) "NAILED" ind per NDS gui 2) In the LOAD of the truss a DAD CASE(S) Dead + Snc Increase=1 Uniform Lo: Vert: 1-2 Concentrate	CASE(S) section, are noted as front (Standard ow (balanced): Lur .15	with any I for a liv s where ill fit betw uss conne to be ar ion is fo s to bear ion is fo s. dance w sections ndard AN Od (0.14 loads a (F) or ba mber Inc =-20, 5-	other live load e load of 20. a rectangle veen the bott nections. ers) of truss 15 lb uplift a ctors ing walls due r uplift only a ith the 2018 s R502.11.1 a 4SI/TPI 1. 8" x 3") toe- pplied to the ck (B). rease=1.15, 6=-20	Opsf om to t joint e to nd and nails face				STATE OF J STATE OF J SEV SEV NUM PE-2001	MISSOL T M. HER BER 018807
load of 12.	.0 psf or 2.00 times flat s non-concurrent with c										SSIONA	14 2022	

June 14,2022

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488929
P220296-P220296-02	J9	Jack-Open	2	1	Job Reference (optional	
						00/01/0000

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. St Jun 111:654 21/26:22 ID:1Lum?NVVKQeT70X9x2LsAez7gxU-RfC?PsB70Hq3NSgPqnL8w3ulTXbgKWrCDord 4-947

2-3-2

Scale = 1:36.6

Scale = 1.50.0												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2	CSI TC BC WB Matrix-R	0.10 0.11 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 7 7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 13 lb	GRIP 197/144 FT = 20%
	2-10-3 oc purlins, e Rigid ceiling directly bracing. (Ib/size) 4=47/ Me	athing directly applied xcept end verticals. applied or 10-0-0 oc chanical, 5=33/ ial, 8=148/0-3-8 16) 216), 5=-18 (LC 16), 216) 23), 5=41 (LC 23), 8-	load ove 5) This cho d or 6) * Th on t 3-00 cho 7) Ref 8) Pro bea 4 ar 9) One =210 UPI doe 10) This	truss has been design of 12.0 psf or 2.00 tim hangs non-concurrent truss has been design d live load nonconcurrent is truss has been design he bottom chord in all a -00 tall by 2-00-00 wid rd and any other memb er to girder(s) for truss t vide mechanical connect ing plate capable of wi d 18 lb uplift at joint 5. H2.5T Simpson Strong mmended to connect ti JFT at jt(s) 8. This conr s not consider lateral fo truss is designed in ac	es flat roof lo with other live ed for a 10.0 ent with any ned for a live reas where e will fit betw ers. o truss conr ztion (by oth thstanding 3 g-Tie connec russ to bear nection is for rces. cordance w	bad of 13.9 p ve loads.) psf bottom other live load e load of 20.1 a rectangle veen the botti- nections. ers) of truss t 21 b uplift at j ctors ing walls due • uplift only an ith the 2018	sf on ads. Opsf om to joint to nd					
TOP CHORD	2-8=-189/137, 1-2=0 3-4=-35/27		R80 LOAD (rnational Residential Co 2.10.2 and referenced : :ASE(S) Standard								
BOT CHORD	7-8=-64/47, 6-7=-12	/33, 3-6=-10/44, 5-6=	0/0									
 Wind: ASC Vasd=91m Ke=1.00; (exterior zc and right e exposed;C reactions s DOL=1.60 TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce= 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical c-C for members and f shown; Lumber DOL=) CE 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; F 5 Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 ed snow loads have be	DL=6.0psf; h=35ft; d; MWFRS (envelope E) zone; cantilever le left and right orces & MWFRS for 1.60 plate grip froof LL: Lum DOL=1. Pf=13.9 psf (Lum 1.0; Rough Cat C; Fu	íť 15 Ily						2	S.	STATE OF SCOT SEV NUM PE-2001	I M. IER Jerrer 018807

June 14,2022

MITEK° 16023 Swingley Ridge Rd Chesterfield, MO 63017

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit, MO DEVELOPMENT SERVICES 152488930
P220296-P220296-02	J10	Jack-Open	4	1	Job Reference (optional	
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083.	Run: 8.53 S Apr 27	2022 Print: 8	530 S Apr 27	2022 MiTek Industries, Inc. S	

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Stit Jun 11 16 657 21/26 21 ID:iprj3_IKTuHTtircc8?ZArz7gvA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrOpor7J4zJ941

L	2-0-0	4-11-4
Γ	2-0-0	2-11-4

Scale = 1:30.7		
Plate Offsets (X, Y):	[2:0-1-8,0-0-9], [3:	0-7-0,0-3-2

Plate Offsets (2	X, Y): [2:0-1-8,0-0-9],	[3:0-7-0,0-3-2]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-R	0.32 0.52 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.24 0.00	(loc) 5 5 4	l/defl >521 >241 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 24 lb	GRIP 197/144 FT = 20%
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m Ke=1.00; C exterior zo Interior (1) exposed ; members a Lumber DC 2) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce=C 3) Unbalance design. 4) This truss I load of 12. overhangs 5) This truss I	2x6 SPF No.2 2x4 SP No.2 *Excep Left 2x4 SP No.2 - 1 Structural wood sheat 4-11-4 oc purlins. Rigid ceiling directly bracing. (Ib/size) 2=214/0-3 Max Horiz 2=125 (LC Max Grav 2=289 (LC (Ib) - Maximum Com Tension 1-2=0/0, 2-3=-133/13 2-6=-2/1, 3-6=0/38, 3 CE 7-16; Vult=115mph ph; TCDL=6.0psf; BCI Cat. II; Exp C; Enclose ne and C-C Exterior(2 4-1-8 to 4-10-8 zone; end vertical left and rig and forces & MWFRS DL=1.60 plate grip DO CE 7-16; Pr=25.0 psf (I =1.15); Pg=20.0 psf; P Plate DOL=1.15); Is= .9; Cs=1.00; Ct=1.10 ad snow loads have be has been designed for 0 psf or 2.00 times flat non-concurrent with of has been designed for load nonconcurrent with	I-10-2 athing directly applie applied or 6-0-0 oc B-8, 4=164/ Mechanic C 16) 16), 4=-81 (LC 16) C 2), 4=235 (LC 23) pression/Maximum 3, 3-4=-106/101 3-5=0/3 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) -0-10-8 to 4-1-8, cantilever left and rig pht exposed; C-C for for reactions shown; L=1.60 roof LL: Lum DOL=1 %=13.9 psf (Lum 1.0; Rough Cat C; Fu en considered for thi r greater of min roof 1 troof load of 13.9 psi ther live loads.	9) cal 10 L0 e) ght .15 ully is ive f on	on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 4. One H2.5T S recommende UPLIFT at jt(does not com)) This truss is International	has been designe In chord in all are- by 2-00-00 wide v by other members er(s) for truss to the hanical connecting e capable of withs Simpson Strong-T ad to connect trus (s) 2. This conner designed in acco Residential Code nd referenced sta Standard	as where vill fit betv s. rruss conr on (by oth standing & Tie conner ss to bear sto	a rectangle veen the bott nections. ers) of truss 11 lb uplift at ctors uplift only a ith the 2018 R502.11.1 a	to joint e to nd				PE-2001	T M. HER 018807 LEN CIT

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit, MO DEVELOPMENT SERVICES 152488931
P220296-P220296-02	J11	Jack-Open	1	1	Job Reference (optional	
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083.	Run: 8.53 S Apr 27	2022 Print: 8	.530 S Apr 27	2022 MiTek Industries, Inc. S	

RUn: 8.53 5 Apr 27 2022 Print: 8.530 5 Apr 27 2022 MiTek Industries, Inc. Stit Jun 11111459 21/269 22 ID:0nwwxFcioN0?SVgZUXS74qz7gtT-RfC?PsB70Hq3NSgPqnL8w3uITXbGr WrCDoihe4259 4

4-11-4

Scale		4.00 0	
Scale	=	1:29.8	

00010 - 112010													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	018/TPI2014	CSI TC BC WB Matrix-R	0.45 0.33 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.04 -0.05 -0.03	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD NOTES	Mechanic Max Horiz 5=113 (L0 Max Uplift 3=-91 (LC Max Grav 3=163 (L0 (LC 2) (lb) - Maximum Com Tension 2-5=-255/204, 1-2=0 4-5=0/0	xcept end verticals. applied or 10-0-0 or echanical, 4=53/ ial, 5=214/0-3-8 C 16), C 16), 5=-35 (LC 16) C 23), 4=89 (LC 7), 4 apression/Maximum D/34, 2-3=-106/57	ed or c 5=292	 chord live lo. * This truss is on the bottoo 3-06-00 tall is chord and air of a chord and	as been designed ad nonconcurren has been designe m chord in all are by 2-00-00 wide e ny other member ler(s) for truss to thanical connecti e capable of with Simpson Strong- ed to connect tru (s) 5. This conne sider lateral forc designed in acco Residential Cod nd referenced st Standard	tt with any ed for a liv as where will fit betv 's. truss conr on (by oth standing § Tie conne ss to bear iction is foi zes. ordance w le sections	other live loa e load of 20. a rectangle ween the bott nections. ers) of truss 01 lb uplift at ctors ing walls due r uplift only at ith the 2018 s R502.11.1 a	Opsf com to joint e to nd					
Vasd=91m Ke=1.00; C exterior zo Interior (1)	CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose ne and C-C Exterior(2 4-1-8 to 4-10-8 zone;	DL=6.0psf; h=35ft; d; MWFRS (envelop P) -0-10-8 to 4-1-8, cantilever left and ri	ight									TE OF J	MISSO

- exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully
- Exp.; Ce=0.9; Cs=1.00; Ct=1.10
 Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

June 14,2022

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488932
P220296-P220296-02	J12	Jack-Open	2	1	Job Reference (optional	
Promior Building Supply (Spring	hill KS) Spring Hills KS 66093	Pup: 9.52 S. Apr 27	2022 Drint: 9	520 S Apr 27	2022 MiTok Industrios, Inc. S	

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Sat Jun 1 10:65/21/2022 ID:8k_DRsfivb36Ykt3HL2i1fz7gJF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWr2Doi7J42w27

3-11-5

Scale =	1:25.6
---------	--------

Scale = 1:25.6					,								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-P	0.24 0.15 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 2-4 2-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASG Vasd=91n Ke=1.00; exterior zc and right 6 exposed; reactions : DOL=1.60 2) TCLL: AS; Plate DOL DOL=1.15 Exp.; Ce=	2x4 SP No.2 2x4 SP No.2 Structural wood she 3-11-5 oc purlins. Rigid ceiling directly bracing. (lb/size) 2=211/0-7 4=36/ Me Max Horiz 2=85 (LC Max Uplift 2=-112 (L Max Grav 2=301 (LC (lb) - Maximum Com Tension 1-2=0/30, 2-3=-66/3 2-4=0/0 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner (3 exposed ; end vertical I shown; Lumber DOL=	applied or 10-0-0 or 7-12, 3=68/ Mechani chanical 12) C 12), 3=-59 (LC 16 C 23), 3=-103 (LC 23 7) npression/Maximum 4 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop) zone; cantilever lef left and right orces & MWFRS for 1.60 plate grip (roof LL: Lum DOL= ⁴ Pf=13.9 psf (Lum 1.0; Rough Cat C; F	8) c ical, 9) i), 10)), LO be) ft 1.15 ully	on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 3. One H2.5T S recommende UPLIFT at jt(does not com This truss is International	has been designer in chord in all area by 2-00-00 wide w any other members er(s) for truss to tri- hanical connection is capable of withsi simpson Strong-Ti- di to connect trus; s) 2. This connec designed in accor Residential Code and referenced star Standard	as where iill fit betv - russ conr n (by oth tanding 5 ie conne s to bear tion is for s. rdance w s sections	a rectangle ween the bott nections. ers) of truss s 59 lb uplift at j ctors ing walls due r uplift only an ith the 2018 \$ R502.11.1 a	to joint e to nd				Weight: 14 lb	MISSOLIA T M.
load of 12	has been designed for 0.0 psf or 2.00 times flats non-concurrent with c	t roof load of 13.9 ps									N.	PE-2001	018807

overhangs non-concurrent with other live loads.5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit, MO DEVELOPMENT SERVICES 152488933
P220296-P220296-02	J13	Jack-Open	6	1	Job Reference (optional	IS2488933 LEE'S SUMMIT, MISSOURI
Bremier Building Cumply (Casing		Burn 0.52.6. Ann 07.6		500 C Ant 03	2000 MiTak Industrian Inc. C	

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. St Jun 111:65/21/20:22 ID:95dMHwh0uim2FotOmi3ezaz7gHw-RfC?PsB70Hq3NSgPqnL8w3uITXbG WrCDor/w4292 ft

2-10-8

Scale = 1:25.7	
----------------	--

						-							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.10 0.07 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 2-4 2-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 Structural wood she 2-10-8 oc purlins. Rigid ceiling directly bracing. (lb/size) 2=151/0-1 4=26/ Me Max Horiz 2=78 (LC Max Uplift 2=-43 (LC	16)	8) , 9) ,	on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 3. One H2.5T S recommende UPLIFT at jt(does not com) This truss is International	as been designe n chord in all area by 2-00-00 wide w y other members er(s) for truss to t hanical connectic capable of withs stimpson Strong-T do connect trus s) 2. This connect sider lateral force designed in acco Residential Code do referenced sta	as where vill fit betv s. russ conr on (by oth tanding 5 rie connec s to bear stion is for es. rdance w e sections	a rectangle ween the botto nections. ers) of truss t i1 lb uplift at j ctors ing walls due r uplift only ar ith the 2018 s R502.11.1 a	o o oint to nd					
Vasd=91r Ke=1.00; exterior zo and right exposed;(2-4=0/0 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical c-C for members and f shown; Lumber DOL=	6 (3-second gust) :DL=6.0psf; h=35ft; ed; MWFRS (envelope) :E) zone; cantilever lef left and right orces & MWFRS for)	DAD CASE(S)							ł.	THE OF M	AISSOUR

- CLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

SCOTT M. SEVIER PE-2001018807

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488934
P220296-P220296-02	J14	Jack-Open	3	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Promior Building Supply (Spring)	hill KS) Spring Hills KS 66093	Pup: 9.52 S Ar	or 27 2022 Dript: 9	520 S Apr 27	2022 MiTok Industrios Inc. S	

ID:8k_DRsfivb36Ykt3HL2i1fz7gJF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrpDoi7J429C? r 27 2022 Print: 8.5 0 S A or 27 2022 MiTek Ir

2-6-3

Loading TCLL (root) (pst) 25.0 Spacing Plate Grip DOL 1.15 2-0-0 1.15 CSI TC DEFL 0.12 in (loc) Vdefl U Ud Vartic PLATES SRIP GRIP Snow (P/Pg) 13.9/20.0 BCLL 0.0° 1.15 BC 0.07 Vert(C1) 0.01 2.9999 180 BCLL 0.0° Vert(L1) 0.01 2.9999 180 BCLL 0.0° Vert(L1) 0.00 4 n/a N/a BCLL 0.0° Vert(L1) 0.00 4 n/a N/a N/a BCLL 0.0° 10.0 Vert(L1) 0.00 4 n/a N/	Scale = 1:28.1								1					
TOP CHORD 2x6 SPF No.2 on the bottom chord in all areas where a rectangle BOT CHORD 2x4 SP No.2 3-06-00 wide will fit between the bottom BRACING Structural wood sheathing directly applied or 2-10-8 oc purlins. 6) Refer to girder(s) for truss to truss connections. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 6) Refer to girder(s) for truss to truss connection. REACTIONS (lb/size) 1=124/0-2-0, 3=98/ Mechanical, 4=25/ Mechanical, 4=25/ Mechanical, 4=49 (LC 7) 8) Max Horiz 1=79 (LC 16) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 70 lb uplift at joint 3. FORCES (lb) - Maximum Compression/Maximum Tension 1=168 (LC 23), 3=142 (LC 23), 4=49 (LC 7) TOP CHORD 1-2=-104/26, 2-3=-81/59 10) One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 1. This connection is for uplift only and does not consider lateral forces. 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) LOAD CASE(S) Standard 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.	TCLL (roof) Snow (Pf/Pg) TCDL BCLL	25.0 13.9/20.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	8/TPI2014	TC BC WB	0.07	Vert(LL) Vert(CT)	0.01 -0.01	2	>999 >999	240 180	MT20	197/144
Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope)	TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m	2x4 SP No.2 Structural wood she 2-10-8 oc purlins. Rigid ceiling directly bracing. (Ib/size) 1=124/0-2 4=25/ Me Max Horiz 1=79 (LC Max Uplift 1=-15 (LC Max Uplift 1=-15 (LC (Ib) - Maximum Com Tension 1-2=-104/26, 2-3=-8 2-4=0/0 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC	applied or 10-0-0 od 2-0, 3=98/ Mechanic chanical 16) 2 16), 3=-70 (LC 16) C 23), 3=142 (LC 23 7) apression/Maximum 11/59 a (3-second gust) CDL=6.0psf; h=35ft;	ed or 6) c 8) al, 9)), 1(1	on the botto 3-06-00 tall chord and a Refer to gird Bearing at ju using ANSI/ designer shi Provide med bearing plat 3. O One H2.5T recommend UPLIFT at ji does not co 1) This truss is Internationa R802.10.2 a	m chord in all are by 2-00-00 wide v ny other member der(s) for truss to oint(s) 1 consider: TPI 1 angle to gra ould verify capaci chanical connectii e at joint(s) 1. chanical connectii e capable of with: Simpson Strong- ed to connect tru: (s) 1. This conne- nsider lateral forc designed in accc I Residential Cod and referenced sta	as where will fit betw s. truss conr s parallel i ain formul ty of bear on (by oth on (by oth on (by oth standing 7 Fie conne es to bear ction is foi es. ordance w e sections	a rectangle veen the bott nections. o grain value a. Building ng surface. ers) of truss : ers) of truss : 0 lb uplift at j ctors ing walls due · uplift only at ith the 2018 ; R502.11.1 a	to to joint e to nd					

and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 2)

Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for a 10.0 psf bottom 4) chord live load nonconcurrent with any other live loads.

OF MISSO P SCOTT M. SEVIER NIT OFFESSIONAL ET PE-2001018807

June 14,2022

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit, MO DEVELOPMENT SERVICES 152488935
P220296-P220296-02	J15	Diagonal Hip Girder		3	1	Job Reference (optional	
Promior Building Supply (Spring	hill KS) Spring Hills KS 66093		Que: 9 52 9 Apr 27 2	022 Drint: 9	520 S Apr 27	2022 MiTok Industrios, Inc. S	

ın: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Ir ID:T6_k_8y3O?rUJJFgsITvzSz7jAC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKVrCDoi7J4zJC9721/26922

5-8-2

Scale = 1:35.9

Plate Offsets (X, Y): [5:0-3-0.0-2-0]

Plate Offse	ets (X, Y): [5:0-3-0,0-2-0]												
Loading TCLL (root Snow (Pf/F TCDL BCLL BCDL	/	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.73 0.40 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.10 0.00	(loc) 4-5 4-5 4	l/defl >999 >639 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 28 lb	GRIP 197/144 FT = 20%
FORCES TOP CHO WEBS NOTES 1) Wind: Vasd= Ke=1.0 exteric and rig expose reactio DOL= 2) TCLL: Plate I DOL= Exp.; (3) Unbala design 4) This tr load of	 RD 2x4 SP No.2 2x4 SPF No.3 *Exce Structural wood she 5-8-2 oc purlins, ex RD Structural wood she 5-8-2 oc purlins, ex RD Rigid ceiling directly bracing. NS (Ib/size) 4=181/ M Max Horiz 5=127 (LC Max Uplift 4=-63 (LC Max Grav 4=241 (LC (Ib) - Maximum Com Tension RD 2-5=-298/374, 1-2=0 3-4=-186/234 RD 4-5=-292/160 2-4=-121/258 ASCE 7-16; Vult=115mph 91mph; TCDL=6.0psf; BC 20; Cat. II; Exp C; Enclose r zone and C-C Corner (3) th exposed ; end vertical 1 ed;C-C for members and f ins shown; Lumber DOL=1.60 ASCE 7-16; Pr=25.0 psf (00L=1.15); Pg=20.0 psf; F 1.15 Plate DOL=1.15); Is= Ca=0.9; Cs=1.00; Ct=1.10 anced snow loads have be us has been designed foi f 12.0 psf or 2.00 times fla 	Athing directly applied cept end verticals. applied or 10-0-0 oc echanical, 5=264/0-4 C 13) C 16), 5=-115 (LC 12) C 23), 5=353 (LC 2) pression/Maximum b/35, 2-3=-138/77, (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope) 2 one; cantilever left eft and right orces & MWFRS for 1.60 plate grip roof LL: Lum DOL=1. Pf=13.9 psf (Lum 1.0; Rough Cat C; Fu een considered for thi r greater of min roof I t roof load of 13.9 psl	6) d or 7) 8) -9 9) 10) 11) 12) L0 1) 20 1) 20 1) 20 1) 20 20 20 20 20 20 20 20 20 20 20 20 20	chord live loa * This truss h on the bottom 3-06-00 tall l chord and ar Refer to gird Provide mec bearing plate 4. One H2.5T S recommende UPLIFT at jit does not cor) This truss is International R802.10.2 a) "NAILED" ini- per NDS gui) In the LOAD of the truss a DAD CASE(S) Dead + Snu Increase=1 Uniform Lo Vert: 1-2 Concentrat	CASE(S) section, are noted as front (Standard bw (balanced): Lur .15	with any f for a liv s where ill fit betw uss conr h (by oth anding 6 e connec to bear ion is for s. dance w sections ndard AN 0d (0.14 loads a (F) or ba mber Inc =-20	other live loa e load of 20.1 a rectangle veen the botti nections. ers) of truss t is a lb uplift at j ctors ing walls due r uplift only ar ith the 2018 s R502.11.1 a 4SI/TPI 1. 8" x 3") toe-l pplied to the t ck (B).	Opsf om to joint e to nd and nails face				STATE OF J STATE OF J SCOT SEV PE-2001	T M. IER BER 018807
overha	ings non-concurrent with c	other live loads.										-ut	

load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 14,2022

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit, MO DEVELOPMENT SERVICES 152488936
P220296-P220296-02	J16	Jack-Open	11	1	Job Reference (optional	
Premier Building Supply (Spring)	hill KS) Spring Hills KS - 66083	Run: 8 53 S	Apr 27 2022 Print: 8 5	530 S Apr 27	2022 MiTek Industries Inc. S	

ding Supply (Springhill, KS), Spring Hills, KS - 66

ID:PhXDhOMKxxgQxn0GUy5PU7z7jAz-RfC?PsB70Hq3NSgPqnL8w3ulTXb6KWrCD6wJ4z9c?

1	4-1-4	

Scale = 1:29					1								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-R	0.29 0.23 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 -0.02 -0.02	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 Structural wood she 4-1-4 oc purlins, ex Rigid ceiling directly bracing. (Ib/size) 3=83/ Me Mechanic Max Horiz 5=95 (LC Max Uplift 3=-76 (LC Max Uplift 3=-76 (LC Max Grav 3=132 (LC (LC 23) (Ib) - Maximum Com Tension 2-5=-234/178, 1-2=0	cept end verticals. ^a applied or 10-0-0 oc chanical, 4=42/ ial, 5=187/0-3-8 16) C 16), 5=-32 (LC 16) C 23), 4=73 (LC 7), 5 appression/Maximum	7) 8) 9) 5=264 10	chord live lo * This truss on the botto 3-06-00 tall chord and a Refer to girc Provide mee bearing plat 3. One H2.5T recommend UPLIFT at jt does not co) This truss is International	as been designed ad nonconcurren has been designe m chord in all are by 2-00-00 wide hy other member ler(s) for truss to chanical connectie e capable of with: Simpson Strong- ed to connect tru: (s) 5. This conne nsider lateral forc designed in acco l Residential Cod und referenced sta Standard	t with any ed for a liv as where will fit betw 's. truss conr on (by oth standing 7 Tie connec ss to bear ction is for res. ordance w le sections	other live loa e load of 20. a rectangle ween the bott nections. ers) of truss 6 lb uplift at ctors ing walls due uplift only a ith the 2018 s R502.11.1 a	Opsf tom to joint ∋ to nd					
Vasd=91n Ke=1.00; (exterior zc and right e exposed;C reactions s DOL=1.60 2) TCLL: AS(Plate DOL DOL=1.15 Exp.; Ce=	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical C-C for members and f shown; Lumber DOL=) CE 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; F 5 Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 ed snow loads have be	DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever l left and right orces & MWFRS for 1.60 plate grip froof LL: Lum DOL=1 Pf=13.9 psf (Lum 1.0; Rough Cat C; Fi	eft I.15 ully									STATE OF J SCOT SEV NUM PE-2001	BER EN

design. This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on 4)

. ...

overhangs non-concurrent with other live loads.

June 14,2022

GÍ

SSIONAL ET

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488937
P220296-P220296-02	J17	Jack-Open	5	1	Job Reference (optional	
Promior Building Supply (Spring)	hill KS) Spring Hills KS 66093	Pup: 9.52 S. Apr 27	2022 Drint: 9	520 S Apr 27	Z 2022 MiTok Industrios Inc. S	

ID:T1t1iu8PP6H79s3ctTFyD7z7jBG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKVrCDoi7J4zJC9721/26922 un: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Ir

2-0-3

Scale = 1:26.8	1:26.8
----------------	--------

Scale = 1:26.8													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁻	18/TPI2014	CSI TC BC WB Matrix-R	0.09 0.06 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD	Mechanic Max Horiz 5=50 (LC Max Uplift 3=-36 (LC Max Grav 3=46 (LC (LC 2) (lb) - Maximum Corr Tension 2-5=-152/126, 1-2=(cept end verticals. applied or 10-0-0 or chanical, 4=15/ cal, 5=124/0-3-8 16) C 16), 5=-26 (LC 16) 2), 4=33 (LC 7), 5=- apression/Maximum	7 8 9 173 1	 chord live lo * This truss on the bottoo 3-06-00 tall chord and a Refer to girco Provide med bearing plata One H2.5T s recommend UPLIFT at jt does not cor This truss is International 	as been designed ad nonconcurrent has been designed m chord in all are by 2-00-00 wide v ny other members er(s) for truss to i chanical connectitie e capable of withs Simpson Strong-T ed to connect trus (s) 5. This conner hsider lateral force designed in acco Residential Cod nd referenced star Standard	t with any ed for a liv as where will fit betv s. truss conr on (by oth standing 3 Fie connec ss to bear ction is for es. ordance w e sections	other live loa e load of 20.0 a rectangle veen the botti- nections. ers) of truss i 6 lb uplift at j ctors ng walls due uplift only ar ith the 2018 R502.11.1 a	0psf om to joint to nd					
Vasd=91m Ke=1.00; C exterior zou and right e exposed;C reactions s DOL=1.60 2) TCLL: ASC	4-5=0/0 E 7-16; Vult=115mph ph; TCDL=6.0psf; BC cat. II; Exp C; Enclose ne and C-C Exterior(2 xposed ; end vertical -C for members and f hown; Lumber DOL= CE 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; F	DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever l left and right orces & MWFRS for 1.60 plate grip 'roof LL: Lum DOL='	left									STATE OF SCOT	
Exp.; Ce=0	Plate DOL=1.15); ls= 0.9; Cs=1.00; Ct=1.10 d spow loads have be											ott,	Lever

3) Unbalanced snow loads have been considered for this design.

This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on 4) overhangs non-concurrent with other live loads.

PE-2001018807 SSIONAL EN June 14,2022

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit, MO DEVELOPMENT SERVICES 152488938
P220296-P220296-02	J18	Jack-Open	1	1	Job Reference (optional	
						00/04/0000

1-10-2

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. St Jun 11:60/21/20:22 ID:LXb6_S_FT6ez5sZ6cEWvBNz7jBT-RfC?PsB70Hq3NSgPqnL8w3ulTXb6_WrCDor/w42:92f

2-0-3

Scale = 1:24

Scale = 1:24						-								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TF	912014	CSI TC BC WB Matrix-R	0.06 0.03 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 3-4 3-4 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 7 lb	GRIP 197/144 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91n	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 2-0-3 oc purlins, ex Rigid ceiling directly bracing. (Ib/size) 1=45/ Mer	cept end verticals. applied or 10-0-0 oc chanical, 2=41/ al, 3=20/ Mechanica 8 13) 16), 2=-35 (LC 16) 2), 2=59 (LC 2), 3=5 :37 (LC 7) pression/Maximum (3-second gust) DL=6.0psf; h=35ft;	or 3- ct 6) Ri ed or 5 2. 8) O re 1, di 9) Th 85 10) G di LOAD	the bottom 06-00 tall b ord and an affer to girde ovide mech earing plate ne H2.5T S commende PLIFT at jt(s bes not cons his truss is c ternational 1 302.10.2 an ap between	as been designe n chord in all area y 2-00-00 wide w y other members r(s) for truss to tranical connection capable of withs impson Strong-T d to connect trus s) 1. This connect sider lateral force designed in accoo Residential Code d referenced sta niside of top cho ertical web shall in Standard	as where vill fit betv s. russ conr n (by oth tanding 3 ie conne s to bear s to bear s to bear tion is fo es. rdance w e sections ndard Ah ord bearin	a rectangle veen the botto nections. ers) of truss t 55 lb uplift at j ctors ing walls due r uplift only ar ith the 2018 s R502.11.1 a SI/TPI 1. ng and first	o o oint to id						
and right e exposed;C reactions s DOL=1.60 2) TCLL: AS(Plate DOL DOL=1.15 Exp.; Ce= 3) Unbalance design. 4) This truss	one and C-C Exterior(2 exposed ; end vertical I C-C for members and fr shown; Lumber DOL= ') CE 7-16; Pr=25.0 psf (_=1.15); Pg=20.0 psf; F S Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 ed snow loads have be has been designed for load nonconcurrent wi	eft and right orces & MWFRS for 1.60 plate grip roof LL: Lum DOL=1 2f=13.9 psf (Lum 1.0; Rough Cat C; F een considered for th r a 10.0 psf bottom	l.15 ully is							;		SCOT SEV SEV NUM PE-200 FFSSTON	MISSOLA TT M. TER MBER 1018807	

June 14,2022

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488939
P220296-P220296-02	J19	Jack-Closed Girder	1	1	Job Reference (optional	
Promier Building Cumply (Casing)		Burn 0 52 C Arr 07 (500 C Ann 0	7 2022 MiTel: Industrian Inc. C	

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Sat Jun 111:60/21/20:22 ID:CTKMBtxI04OLMMD?vUu74qz7j7f-RfC?PsB70Hq3NSgPqnL8w3ulTXbGf WrCDoi 94204

HUS26

4-1-4

Scale - 1.27.6

Scale = 1:27.6													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-R	0.56 0.60 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.06 0.00	(loc) 3-4 3-4 3	l/defl >999 >775 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 19 lb	GRIP 197/144 FT = 20%
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m Ke=1.00; C exterior zor and right ex exposed;C- reactions si DOL=1.60 2) TCLL: ASC Plate DOL= DOL=1.15 Exp.; Ce=0 3) Unbalanced design. 4) This truss f chord live l 5) * This truss on the botto 3-06-00 tall	2x4 SP No.2 2x6 SP 2400F 2.0E 2x4 SPF No.3 Structural wood she 4-1-4 oc purlins, ex Rigid ceiling directly bracing. (lb/size) 3=835/ M Max Horiz 4=106 (L0 Max Uplift 3=-235 (L Max Grav 3=884 (L0 (lb) - Maximum Com Tension 1-4=-146/119, 1-2=- 3-4=-85/88 E 7-16; Vult=115mph ph; TCDL=6.0psf; BC e and C-C Exterior(2 xposed ; end vertical L C for members and f hown; Lumber DOL=' E 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; F Plate DOL=1.15); Is= 1.9; Cs=1.00; Ct=1.10 d snow loads have be has been designed fo oad nonconcurrent wi is has been designed fo pon chord in all areas I by 2-00-00 wide will any other members.	cept end verticals. applied or 10-0-0 o echanical, 4=751/0- C 13) C 16), 4=-179 (LC 1 C 2), 4=787 (LC 22) pression/Maximum 143/44, 2-3=-116/16 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever left and right ororces & MWFRS for 1.60 plate grip roof LL: Lum DOL= 2f=13.9 psf (Lum 1.0; Rough Cat C; F then considered for th r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle	c 9) 3-8 6) 1(37 12 37 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14	 Provide mec bearing plats joint 3. One H2.5T S recommende UPLIFT at jtt does not cor This truss is International R802.10.2 a Use Simpson Truss, Single left end to cc chord. Fill all nail hc "NAILED" ini- per NDS gui In the LOAD of the truss a OAD CASE(S) Dead + Sno Increase=1 Uniform Lo Vert: 1-2 Concentrat 	CASE(S) section are noted as front Standard ow (balanced): Lu .15	n (by oth tanding 2 ie connects to bear tion is for ss. rdance w a sections indard AN i26 (14-1) quivalent to front fac r is in cor 10d (0.14 h, loads a (F) or ba	ers) of truss 235 lb uplift a ctors ing walls due r uplift only a ith the 2018 is R502.11.1 a SI/TPI 1. 0d Girder, 6- at 2-2-0 from ce of bottom ntact with lum (8" x 3") toe- pplied to the ck (B).	t e to nd and 10d the nber. nails face				SCOT SEV NUM PE-2001	IER BER 1018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 14,2022

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488940
P220296-P220296-02	J20	Jack-Open Structural Gable	2	1	Job Reference (optional	
Promior Building Supply (Spring)	hill KS) Spring Hills KS 66093	Pup: 9.52 S. Apr. 27.1	0022 Drint: 9	520 S Apr 27	2022 MiTok Industrios, Inc. S	

ID:SPNvlb2Jwl8F87mco1sp4Qz7et5-RfC?PsB70Hq3NSgPqnL8w3ulTXbGK vrCDoi7342J541 un: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Ind

0-0)-7		
-	1-5-6	3-4-11	
	1-4-15	1-11-5	
0-0)-7		

Scale = 1:33

Plate Offsets (X, Y): [3:0-2-10,0-3-0]

). [3.0-2-10,0-3-0]]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.20 0.35 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 16 lb	GRIP 197/144 FT = 20%
BOT CHORD 2x- WEBS 2x- BRACING TOP CHORD Str 3-4 BOT CHORD Rig br REACTIONS (lb/s REACTIONS (lb/s REACTIONS (lb/s Max Max Max Max Max Max Max Max Max Max	8-13 oc purlins, e: igid ceiling directly acing. size) 2=151/0-5 4=18/ Mec x Horiz 2=65 (LC x Uplift 2=-126 (L x Grav 2=223 (LC (LC 7), 5= b) - Maximum Com ansion 2=0/29, 2-3=-47/25 5=-42/31, 4-5=-24/ 5=-29/14 -16; Vult=115mph TCDL=6.0psf; BC II; Exp C; Enclose and C-C Exterior(2 sed; end vertical I for members and for vn; Lumber DOL=1 for; Pr=25.0 psf (15); Pg=20.0 psf; F te DOL=1.15); Is= Cs=1.00; Ct=1.10	C 12), 3=-45 (LC 16) C 23), 3=84 (LC 23), 4: 90 (LC 7) pression/Maximum 9, 3-4=0/0 /26 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelope) E) zone; cantilever left eft and right prces & MWFRS for 1.60 plate grip roof LL: Lum DOL=1.1	7) 8) =35 9) 10) 11) 11) t LO	load of 12.0 overhangs ner This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to girdd Provide mec bearing plate 3. One H2.5T S recommende UPLIFT at jt(and does not) This truss is International R802.10.2 ar	s been designed f psf or 2.00 times fl on-concurrent with s been designed f ad nonconcurrent vi as been designed n chord in all areas by 2-00-00 wide wi y other members. er(s) for truss to tru hanical connection o capable of withsta Simpson Strong-Tie do to connect truss s) 2 and 5. This co t consider lateral for designed in accord Residential Code nd referenced stam n inside of top chor retrical web shall n Standard	at roof le other li or a 10.1 with any for a livs s where Il fit betw uss conne to bear onnectio orces. dance w sections dard AH rd bearin	bad of 13.9 ps ve loads. O psf bottom other live loa e load of 20.0 a rectangle veen the botto nections. ers) of truss t IS lb uplift at ji ctors ing walls due n is for uplift of ith the 2018 s R502.11.1 a SI/TPI 1. ng and first	sf on ds. Dpsf om o oint to only		e	B	STATE OF J STATE OF J SEV SEV PE-2001	BER 018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 14,2022

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	DEVELOPMENT SERVICES
P220296-P220296-02	J21	Jack-Open	4	1	Job Reference (optional	152488941 LEE'S SUMMIT, MISSOURI
Barris Baillian Quarta (Quaita		D		500 0 4		

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Set Jun 111:60/21/20:22 ID:SPNvIb2Jwl8F87mco1sp4Qz7et5-RfC?PsB70Hq3NSgPqnL8w3uITXbGK

2-5-4

Scale =	1:25.3
---------	--------

Scale = 1:25.3								1					
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.09 0.05 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 2-4 2-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91n Ke=1.00; (exterior zc and right e exposed;C reactions s DOL=1.60 2) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce= 3) Unbalance design. 4) This truss load of 12. overhangs 5) This truss	4=22/ Mer Max Horiz 2=68 (LC Max Uplift 2=-41 (LC Max Grav 2=190 (LC (LC 7) (Ib) - Maximum Com Tension 1-2=0/29, 2-3=-51/3 2-4=0/0 Cat. II; Exp C; Enclose ne and C-C Exterior(2 exposed ; end vertical I shown; Lumber DOL=	applied or 10-0-0 oc 3-8, 3=42/ Mechanica chanical 16) 2 16), 3=-42 (LC 16) C 23), 3=62 (LC 23), apression/Maximum 1 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le left and right orces & MWFRS for 1.60 plate grip roof LL: Lum DOL=1 2f=13.9 psf (Lum 1.0; Rough Cat C; Fu een considered for th r greater of min roof 1 t roof load of 13.9 ps sther live loads. r a 10.0 psf bottom	8) 1, 9) 4=45 10, LC LC e) eft .15 .15 .15 .15 .15 .15 .15 .15	on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 3. One H2.5T S recommende UPLIFT at jt(does not com) This truss is International	as been designe n chord in all area by 2-00-00 wide w y other members er(s) for truss to t hanical connectio c capable of withs simpson Strong-T ed to connect trus s) 2. This connect designed in acco Residential Code nd referenced sta Standard	as where rill fit betw russ conr n (by oth tanding 4 ie conned s to bear tion is for rs. rdance w e sections	a rectangle veen the botto nections. ers) of truss ti 2 lb uplift at ju ctors ing walls due · uplift only an ith the 2018 ; R502.11.1 a	o o oint to nd				PE-2001	I M. TER DISSO ACT

June 14,2022

																RELE	ASE FOR CONSTRUCT	ION
Job		Truss			Trus	s Type			Qt	у	Ply	Ro	of - 2	217 NW	Killarne	AS N / Ln, Lee's Su	OTED FOR PLAN REVII mmit_MO VELOPMENT SERVICES	EW
P220296-P2	20296-02	LAY1			Lay	-In Gable			1		1				optional		I52488942 E'S SUMMIT, MISSOUR	-
Premier Building	Supply (Spring	ghill, KS), S	Spring Hills,	KS - 66083	,		Ru	in: 8.53 S A	pr 27 2022	Print: 8.5	530 S Ap	or 27 202	2 MiTe	k Industr	ies, Inc. S	at Jun 11 11:15 CDoi7J423C?1	/21/202	22
							ID:	S6wa8jvejn	Om9ngt4tt5	_yz/slk	-RIC /PS	SB70Hq3	NSgPq	nL8w3ui	IXDGKW	CD017J425C?1	/_//_0_	
							25-4-4 25-4-4									<u>32-1</u> 7-7	<u>1-14</u> -11 0-3-1	15 1
	3х4 н						3x4=								5x5、		0-3-	
	1 2		3	4	5 39	6 7	8 9	1(ସ ସ			12 ⊠	4013 ⊠		14 ⊠	15			
ΤT	Ē				ł	l l				2	f	ľ		Ē	$\overline{\mathbf{A}}$			
																$\langle \rangle$		
																16 B <u>1</u> :	2 113.42	
6 6 E																	41	
8-10-3 8-10-3 8-6-11							⊠	⊠	⊠			⊠	I	×			17	
																	18	
																		0
0-3-8 0-3-8 0-3-8	38									 XXXXX		lgi XXXXXX	~~~					9
	37	7 3	6 3	5 3	34	3332 31	30) 29) 28	}	27	26		2 3 4	23	22	21 20 _{3x4}	•
	3х4 п					3x4=			00 0 45				;	3x4 =				
Scale = 1:57.8									33-2-15									
Plate Offsets (X	K, Y): [15:0-	-1-5,0-1-1	5], [25:0-1 I	-15,0-1-8]									_	-	1		
Loading TCLL (roof)		(psf) 25.0	Spacing Plate G	-	2-0-0 1.15)	CSI TC		0.69	DEFL Vert(l		in n/a	(loc) l/de - n/		PLATES MT20	GRIP 197/144	
Snow (Pf/Pg) TCDL	18.	.9/20.0	Lumber	DOL	1.15 YES		BC WB		0.23	Vert(TL)	n/a	1	- n/	a 999			
BCLL		10.0 0.0*	Rep Stro Code	ess incr		018/TPI2014	Mati	rix-S	0.18	Horiz	(1L)	0.02	1	9 n/	a n/a			
BCDL		10.0														Weight: 249		
LUMBER TOP CHORD	2x4 SP No	.2					Max Gra		57 (LC 43)	, 22=28	36 (LC 4	43),	ν	asd=91	mph; TC	DL=6.0psf; BC	n (3-second gust) CDL=6.0psf; h=35ft;	
BOT CHORD WEBS	2x4 SP No 2x4 SPF N								2 (LC 30) 7 (LC 36)								ed; MWFRS (envelope 2E) 0-1-12 to 5-1-12,	e)
OTHERS BRACING	2x4 SPF N	0.3							0 (LC 36) 8 (LC 2),								terior(2R) 25-4-4 to 11-4 zone; cantilever	left
TOP CHORD	Structural								'8 (LC 2), 9 (LC 36)							d; end vertical members and	left and right forces & MWFRS for	
	6-0-0 oc pı 2-0-0 oc pı	urlins (6-0	-0 max.):	1-15.		FORCES	(IL) N	37=21	6 (LC 36)	, 38=61	(LC 36	,,	re		shown;		1.60 plate grip	
BOT CHORD	Rigid ceilin bracing.	ng directly	applied o	r 6-0-0 oc		FORCES	Tensio		•				2) 7	russ de	signed f		in the plane of the trus	
WEBS	1 Row at m		1-38, 2-3 [°] 5-34, 6-3			TOP CHORD		120/116, 35/150, 4					S	ee Stan	dard Ind	ustry Gable Er	d (normal to the face), nd Details as applicabl	le,
			10-29, 11 13-26, 14	-28, 12-2	7,			35/150, 7- =-135/150,				150,	3) T	CLL: AS	SCE 7-16	6; Pr=25.0 psf	igner as per ANSI/TPI (roof LL: Lum DOL=1.	
REACTIONS (. ,	19=34/33-	-2-15, 20=	131/33-2	15,			=-135/150 =-135/149									Pf=18.9 psf (Lum =1.0; Rough Cat C; Fu	ılly
	:	23=139/3	3-2-15, 22 3-2-15, 24	=154/33-	2-15,		16-17=	=-322/334 =-543/534								=1.00; Ct=1.10 v loads have b), Lu=50-0-0 een considered for thi	is
			3-2-15, 27 3-2-15, 29			BOT CHORD	37-38=	-365/380					́ d	esign.			revent water ponding.	
			3-2-15, 31 3-2-15, 34				33-34	=-365/380 =-365/380	31-33=-3	65/380	,						s otherwise indicated.	
	;	35=155/3	3-2-15, 36 3-2-15, 38	=160/33-	2-15,		28-29=	=-365/380 =-365/380	27-28=-3	65/380	,					600	E MISCH	
	Max Horiz 🗧	38=-364 (LC 14)				23-24=	=-365/380 =-365/380	22-23=-3	68/382	,				4	FATE	E MISSOL	
I		21=-147 (LC 17), 22	2=-166 (L	C 17),			=-368/382 =-368/382	20-21=-3	68/382,	,				A	S/ SCO	M TTC .M TTC	λ
	23=-127 (LC 12), 24=-48 (LC 12), 26=-41 (LC 13), 27=-40 (LC 12), 28=-39 (LC 13), 29=-39 (LC 12),							180/112, 3							Ber		EVIER 🔶	8
	;	30=-39 (L	C 13), 31	=-42 (LC ⁻	12),		9-30=-	139/63, 10 =-150/63,	0-29=-139	/63,	. 10/	1				doll	Serve	∇
			C 13), 34 C 13), 36				13-26=	-205/66,	14-24=-21	2/70,					N.		MBER 01018807	1
	:	37=-55 (L	C 13), 38	=-24 (LC ⁻	2)			=-238/174 =-217/173							V	22 H	158	
						NOTES										ANON	VAL EN	
																	ine 14,2022	
Continued on r																	•	

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488942
P220296-P220296-02	LAY1	Lay-In Gable	1	1	Job Reference (optional	
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083,	′ 2022 MiTek Industries, Inc. S Hq3NSgPqnL8w3uITXbGKWi				

- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members.
 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 38, 168 lb uplift at joint 19, 55 lb uplift at joint 37, 51 lb uplift at joint 36, 43 lb uplift at joint 35, 41 lb uplift at joint 34, 37 lb uplift at joint 33, 42 lb uplift at joint 31, 39 lb uplift at joint 30, 39 lb uplift at joint 29, 39 lb uplift at joint 28, 40 lb uplift at joint 27, 41 lb uplift at joint 26, 48 lb uplift at joint 24, 127 lb uplift at joint 23, 166 lb uplift at joint 20,
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488943
P220296-P220296-02	LAY2	Lay-In Gable	1	1	Job Reference (optional	
						00/04/0000

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Sat Jun 110: 60/21/2021

_

Scale = 1:55.3

		1												
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.05	Vert(TL)	n/a	-	n/a	999			
TCDL	10.0	Rep Stress Incr	YES		WB	0.15	Horiz(TL)	0.01	9	n/a	n/a			
BCLL	0.0*	Code	IRC20	18/TPI2014	Matrix-S									
BCDL	10.0											Weight: 91 lb	FT = 20%	
LUMBER	2x4 SP No 2				roof live loads have	e been	considered fo	r						
BOT CHORD													d ANSI/TPI 1.	
OTHERS	2x4 SPF No.3			2) Wind: ASCE 7-16; Vult=115mph (3-second gust) LOAD CASE(S) Standard										
BRACING										•				
TOP CHORD	Structural wood she	eathing directly applie	d or											
	6-0-0 oc purlins.	0 , 11												
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc		Interior (1) 12	2-9-9 to 15-3-3 zon	e; cant	lever left and							
WEBS	1 Row at midpt	5-13												
REACTIONS	(lb/size) 1=55/15-	6-10. 9=55/15-6-10.						own;						
	· /	, , ,	-10,											
	12=139/1	15-6-10, 13=90/15-6-1	10,											
	14=139/1	5-6-10, 15=136/15-6-	-10,											
	,	,												
		,, (,												
		i) Pite Grip DOL 1.15 TC 0.08 Vert(LL) n/a - n/a 99 MT20 244/190 Lumber DOL 1.15 BC 0.05 Vert(TL) n/a - n/a 99 MT20 244/190 MT20 Code IRC2018/TPI2014 Matrix-S BC 0.05 Vert(TL) n/a - n/a 99 MT20 244/190 MT20 Code IRC2018/TPI2014 Matrix-S Vert(TL) n/a - n/a 99 MT20 244/190 MT20 Vertice MT20 Vertice NOTES Notes												
	25.0 Plane Grp DOL 1.15 TC 0.00 Vert(L) n/a n/a 99 MT20 24/4/190 10.0 0.0* Code IRC2018/TTPI2014 Matrix-S Vert(L) n/a - n/a 999 MT20 24/4/190 20 24/4 SP No.2 NOTES NOTES 10 Unbalanced roof live loads have been considered for his design. 12 This truss is designed in accordance with the 2018 international Pacetons R502.11.1 and R802.10.2 and referenced standard ANSI/TP11. 20 24/4 SP No.2 10 Unbalanced roof live loads have been considered for his design. 13.970.02.11.1 and R802.10.2 and referenced standard ANSI/TP11. 20 Match 200 Section R502.11.1 and R802.10.2 and referenced standard ANSI/TP11. 21 This truss is designed for no-oco bracing. 10 Unbalanced roof live loads have been considered for his design. 10 Section R502.11.1 and R802.10.2 and referenced standard ANSI/TP11. LOAD CASE(S) Standard 21 The Section C27 Paceton C													
	25.0 Plate Grip DOL 1.15 TC 0.00 100 <td></td>													
				design.										
				6) All plates are 1.5x4 MT20 unless otherwise indicated.										
				7) Gable require	es continuous botto	om choi	d bearing.							
			29),	B) Gable studs	spaced at 2-0-0 oc	-						A	and	
FORCES		,										B & OF I	MIS SCH	
FURGES		npression/waximum									4	A. A.	N'S	
TOP CHORD		202/156 2 1- 1/9/10	00	,	0)psf			B	SCOT	M XAN	
I OF CHORD	,	,	,								B	~ /		
						I fit bety	veen the botto	om			Bas			
BOT CHORD						(b) (ath	oro) of truce t	•			W ^	115		
Bot offortb	, -	,											Server	
											NS	NUM	BER	
				unifi at joint 15, 142 lb unifit at joint 16, 148 lb unifit at									018807	
WEBS	5-13=-172/122, 4-1	4=-198/173,									N	M	12A	
	3-15=-207/178, 2-1	6=-186/159,					- apint at jo				٩	1ºSer	GIA	
		1=-207/178,										ONA	LEFA	
	8-10=-186/159											Un	TOS	
													4.4.0000	

June 14,2022

											Г		FOR CONSTRUCTIO	
Job	Truss Tru			Truss T	Truss Type		Qty Ply		Roof - 2	217 NW Killai	rne/	AS NOTED FOR PLAN REVIEW V Ln, Lee's Summit MO DEVELOPMENT SERVICES		
P220296-P220	0296-02	LAY3		Lay-In	Gable		1	1		erence (optior			152488944 SUMMIT, MISSOURI	
Premier Building Sup	pply (Springh	nill, KS), Spri	ing Hills, KS - 66083,			Run: 8.53 S Apr 27			r 27 2022 MiTe	k Industries, Ind	c. Sat		21/2022	ァ
						ID:8k_DRsfivb36Ykt	3HL2i1tz7g	JF-RfC?Pst	370Hq3NSgPqi			Doi7J4 29C ?		
						6-10-1			13-5-2	13-8-2 0-3-1				
						6-10-1			6-7-0	0-3-1				
							4x4 = 4							
			-0-9-4	13.42 1		3 13 1 1 1 2 11		5 8 9	14 6 8 8	7 3x4				
Scale = 1:50.9					<u> </u>		13-8-2							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL		25.0 F 9/20.0 L 10.0 F 0.0* C	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	BC ().11 Ve).06 Ve	E FL ert(LL) ert(TL) oriz(TL)	in (loc n/a n/a 0.00	, - n/a 9 - n/a 9	199 199 n/a	PLATES MT20 Weight: 75 lb	GRIP 244/190	
BCDL		10.0				7 40-1/04 44Emph (Weight: 75 lb	FT = 20%	—
OTHERS 23 BRACING TOP CHORD S BOT CHORD R REACTIONS (Ib/ Ma Ma FORCES (II TOP CHORD 1- 4-	x4 SP No.2 x4 SPF No. Structural wo 5-0-0 oc puri Rigid ceiling oracing. //size) 1= 8= 100 12 ax Horiz 1= 8= 11 ax Grav 1= 8= 100 12 12 15 10) - Maximu -2=-250/17 1-5=-153/14	2 .3 rood sheath rlins. g directly ap =88/13-8-2 =181/13-8- 0=96/13-8- =-211 (LC 1- =-57 (LC 1- =-57 (LC 1- =-57 (LC 1- =-199 (LC 2- =-19) (LC 2- =184 (LC 3- =184 (LC 3- =-182 (LC 3- 0=172 (LC 2- =-172 (LC 2-	12) 4), 7=-24 (LC 15), 17), 9=-136 (LC 17) C 16), 12=-194 (LC 31), 7=170 (LC 32), 30), 9=215 (LC 23), 32), 11=220 (LC 22) 29) ression/Maximum 50/97, 3-4=-153/147 18/54, 6-7=-221/151	3) ,, 16) 5) 2), 6) 7) 8) 9)	Vasd=91mph Ke=1.00; Cata exterior zone Interior (1) 5- 11-10-5, Inter left and right exposed;C-C reactions sho DOL=1.60 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced s design. All plates are Gable studs s This truss has chord live loa	7-16; Vult=115mph (n; TCDL=6.0psf; BCD t. II; Exp C; Enclosed and C-C Exterior(2E 3-15 to 6-10-5, Exter rior (1) 11-10-5 to 13 exposed ; end vertica; for members and for bwn; Lumber DOL=1. The d for wind loads in ds exposed to wind (d Industry Gable End alified building design 7-16; Pr=25.0 psf (rr .15); Pg=20.0 psf; Pf ate DOL=1.15); Is=1. t; Cs=1.00; Ct=1.10 snow loads have bee 1.5x4 MT20 unless of es continuous bottom spaced at 0-0-0 oc. s been designed for at onconcurrent with as been designed for as been designed for	L=6.0psf ; MWFRS) 0-3-15 f ior(2R) 6- ior(2R) 6- d-11 zon al left and cress & MM 60 plate g the plane normal to Details a ner as pe- of LL: Lu =13.9 psf 0; Rough n conside therwise chord be a 10.0 psi a any othe	; h=35ft; S (envelope to 5-3-15, -10-5 to e; cantilev I right WFRS for grip of the trus of the face), s applicabl in DOL=1. (Lum of Cat C; Fu ered for this indicated. paring. f bottom er live load	er •s •, 1. 15 Illy s s.			of M	AISSO	
30T CHORD 1- 1(8- WEBS 2- 4- NOTES	-12=-132/19 0-11=-132/ 3-9=-132/19 2-12=-255/2 1-10=-140/9	96, 11-12= /196, 9-10= 96, 7-8=-13 213, 3-11=- 91, 5-9=-18	=-132/196, =-132/196, 32/196	11 8	on the bottom 3-06-00 tall b chord and an 1) N/A 2) This truss is o International	las been designed foin n chord in all areas w y 2-00-00 wide will fii y other members. designed in accordar Residential Code sec d referenced standa	here a re betweer	ctangle the bottor he 2018 02.11.1 an	n		COROL OR	SCOTT SEVII NUME PE-20010	ER DI8807	7
				LC	DAD CASE(S)							S'SIONA	L EN 14.2022	

June 14,2022

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MONT SERVICES DEVELOPMENT SERVICES 152488945
P220296-P220296-02	LAY4	Lay-In Gable	1	1	Job Reference (optional	
Premier Building Supply (Springl	nill, KS), Spring Hills, KS - 66083,				2022 MiTek Industries, Inc. S 370Hq3NSgPqnL8w3uITXbGł	
					11 6 10	

11-6-10

Scale = $1:46$	ale = 1:46
----------------	------------

Loading TCLL (roof)		(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		TC	0.07	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20
Snow (Pf/Pg) TCDL	1	3.9/20.0 10.0	Lumber DOL Rep Stress Incr	1.15 YES		BC WB	0.03 0.08	Vert(TL) Horiz(TL)	n/a 0.00	-7	n/a n/a	999 n/a	
BCLL		0.0*	Code		8/TPI2014	Matrix-S	0.06		0.00	1	n/a	n/a	
BCDL		10.0	Code	160201	0/1112014	Widthx-5							Weight: 60 lb
LUMBER	-			2	Wind: ASCE	7-16; Vult=11	5mph (3-sec	cond gust)					
TOP CHORD	2x4 SP N	o.2				h; TCDL=6.0ps							
BOT CHORD	2x4 SP N	o.2				it. II; Exp C; En							
OTHERS	2x4 SPF	No.3				e and C-C Exte							
BRACING						-3-15 to 5-9-9,							
TOP CHORD			athing directly applied	d or		0-9-9 to 11-3-3 nd vertical left a							
	6-0-0 oc j					d forces & MW	0 1	,					
BOT CHORD	Rigid ceil bracing.	ing directly	applied or 10-0-0 oc		Lumber DOI	.=1.60 plate gr	ip DOL=1.60)					
REACTIONS	0	1=53/11-6	6-10, 7=55/11-6-10,	3)		ned for wind lo uds exposed to							
		8=130/11-	-6-10, 9=141/11-6-10),		d Industry Gab							
			-6-10, 11=145/11-6-1	0,		alified building							
		12=126/11		4		7-16; Pr=25.0							
	Max Horiz			•,		1.15); Pg=20.0							
	Max Uplift		5 14), 7=-44 (LC 15),			late DOL=1.15			ully				
			C 17), 9=-155 (LC 17		Exp.; Ce=0.	9; Cs=1.00; Ct=	=1.10	0 ,					
			LC 16), 12=-139 (LC		Unbalanced	snow loads ha	ive been cor	nsidered for t	his				
	Max Grav	(C 16), 7=141 (LC 17),	,	design.								
			C 30), 9=232 (LC 23),		All plates ar	e 1.5x4 MT20 ι	unless other	wise indicate	d.				
			C 32), 11=236 (LC 2	⁽²⁾ , 7		es continuous		d bearing.					
	(1)	12=196 (L	,	8)		spaced at 0-0-							
FORCES	()	imum Com	pression/Maximum	9)		as been design							
	Tension	447 2 2	1 44 /400 0 4 40 4/4/	14		ad nonconcurre							
TOP CHORD			141/100, 3-4=-134/12 114/62, 6-7=-204/14			has been desig			0psf				STATE OF I
BOT CHORD		,	2=-109/161,	1		m chord in all a							AFE OF 1
BOT CHORD			0=-109/161,			oy 2-00-00 wid		veen the bott	om			4	
		/161, 7-8=-'		4		ny other memb						A	SCOT
WEBS		,	=-220/186, 4-10=-11			hanical connect capable of wi						H	SEV
**200		/180, 6-8=-'		1700,		t at joint 7, 139						8.	
NOTES	0 0-214	100, 0 0=				11, 155 lb upli						86	2 . 1
	ed roof live l	oads have	been considered for		joint 8.		-	·				135	h atte
this design				1:		designed in ac						117	STOR BOL
0					Internationa	Residential Co	ode sections	s R502.11.1 a	and			XX'	$O \setminus PE-2001$

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LOAD CASE(S) Standard

R802.10.2 and referenced standard ANSI/TPI 1.

GRIP 244/190

FT = 20%

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488946
P220296-P220296-02	LAY5	Lay-In Gable	1	1	Job Reference (optional	
Bromior Building Supply (Spring	hill KS) Spring Hills KS 66082	Bup: 8 53 5 Apr 27 2	0000 Drint: 0	520 C Apr 27	2022 MiTek Industrias Inc. S	

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Sat Jun 111:60, 21/20:22 ID:wSWQ_GuUdHCJoUKCqubYZHz8?F7-RfC?PsB70Hq3NSgPqnL8w3uITx6GKWrC90i794207

_

Scale = 1:74.4 Plate Offsets (X, Y): [9:Edge,0-1-8]

Plate Olisets (∧, 1). [9.⊏uge,0-1-o]											-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.14 0.05 0.22	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 109 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SPF No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 9-1 1 Row at midpt (lb/size) 1=87/15-8 10=113/11 12=84/15- 14=132/11 Max Horiz 1=380 (LC Max Uplift 1=-122 (LL 10=-131 (13=-119 (15=-155 (10=176 (L 12=167 (L 14=214 (L 16=191 (L (lb) - Maximum Com Tension 1-2=-508/370, 2-3=-3	10. 6-12, 5-14 8-2, 9=38/15-8-2, 5-8-2, 11=144/15-8-2, 5-8-2, 13=-10/15-8-2, 5-8-2, 15=140/15-8-2, 5-8-2, 17=178/15-8-2 C 16), 9=-165 (LC 15 LC 17), 11=-149 (LC LC 16), 16=-134 (LC LC 16), 16=-134 (LC LC 16), 9=243 (LC 17), .C 30), 11=233 (LC 2: .C 17), 13=96 (LC 15] .C 22), 15=217 (LC 2: .C 29), 17=277 (N(i or 1) 2) , , , , , , , , , , , , , , , , , ,	DTES Unbalanced this design. Wind: ASCE Vasd=91mpf Ke=1.00; Car exterior zone Interior (1) 5- 15-6-0 zone; vertical left a forces & MW DOL=1.60 pl Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced design. All plates are Gable requird Gable studs This truss ha chord live loa bottom 3-06-00 tall b	5-12=-160/113, 5-1 1-15=-208/179, 3-1 2-17=-250/212, 7-1 3-10=-173/150 roof live loads have 7-16; Vult=115mpl ; TCDL=6.0psf; BC t. II; Exp C; Enclose and C-C Exterior(3-15 to 10-9-9, Ext cantilever left and nd right exposed;C FRS for reactions : ate grip DOL=1.60 ned for wind loads id ds exposed to winn d Industry Gable Er alified building des 7-16; Pr=25.0 psf; ate DOL=1.15); Is= ; Cs=1.00; Ct=1.10 snow loads have b 1.5x4 MT20 unless es continuous botto spaced at 2-0-0 oc s been designed n chord in all areas y 2-00-00 wide will y other members.	6=-185, 1=-201, a been which is a second cDL=6, ed; MW 2E) 0-3 terior(2E) right ex- cond peta igner a (roof LI Pf=13.5; =1.0; Ro been cond so other cond peta igner a (roof LI Pf=13.5; =1.0; Ro been cond cond peta igner a (roof a 10.0) where is a solution for a 10.0) is where	(160, (175, considered for cond gust) 0psf; h=35ft; (FRS (envelop 15 to 5-3-15, E) 10-9-9 to cposed ; end nembers and Lumber lane of the trust al to the face) ils as applicab s per ANSI/TP L: Lum DOL=1 0 psf (Lum bugh Cat C; Fu nsidered for th wise indicated d bearing. 0 psf bottom other live load of 20.0 a rectangle	e) ss , le, 11. 15 is	bea join lb u join and 12) Bev surf 13) This Inte	aring pla t 1, 165 uplift at ju- t 16, 19- 1 131 lb- veled pla face with s truss is prnationa 02.10.2	te capa lb uplik boint 14, 4 lb up uplik a date or s n truss s design all Resid all Resid all Resid of Sta	able of withstandi ft at joint 9, 119 lk , 155 lb uplift at joi lift at joint 17, 149 t joint 10. thim required to p chord at joint(s) 9 dential Code sect dential Code sect d	e with the 2018 ions R502.11.1 and d ANSI/TPI 1.
												June	, 17,2022

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488947
P220296-P220296-02	LAY6	Lay-In Gable		1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building Supply (Spring	hill KS) Spring Hills KS - 66083		Run: 8 53 S Apr 27 2	022 Print: 8	530 S Apr 27	2022 MiTek Industries Inc. S	

ding Supply (Springhill, KS), Spring Hills, KS - 660

ID:OFRpbefESw6nIDKSwJHIngz7etb-RfC?PsB70Hq3NSgPqnL8w3uITXbGFWrCDor7s4z5??21/2022

5-4-10

Scale = 1:33.3	

Plate Offsets (X, Y): [3:Edge.0-3-0]

Plate Offsets	(X, Y): [3:Edge,0-3-0]	-											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.06 0.02 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SPF No.3 Structural wood sheat 5-5-2 oc purlins. Rigid ceiling directly bracing. (Ib/size) 1=50/5-4- 6=111/5-4 Max Horiz 1=-77 (LC Max Uplift 6=-109 (LC Max Grav 1=85 (LC	applied or 10-0-0 oc 10, 5=50/5-4-10, 1-10, 7=111/5-4-10 (5 12) C 17), 7=-111 (LC 10 31), 5=84 (LC 32), 6 2 =173 (LC 29)	5) d or 6) ; 7) 8) 9) 6)	Plate DOL=1 DOL=1.15 P Exp.; Ce=0.3 Unbalanced design. Gable requir Gable studs This truss h on the bottor 3-06-00 tall it chord and ar Provide mec bearing plate	57-16; Pr=25.0 psi 1.15); Pg=20.0 psi 1.15); Pg=20.0 psi 1.15); Pg=20.0 psi 1.15); Pg=20.0 psi 1.15); Pg=20.0 psi 1.15); Pg=20.0 psi 2.00, Ct=1.1 psi paced at 0-0-0 of 1.15); Pg=20.0 psi 1.15); Pg	; Pf=13.9 5=1.0; Ro 0 50 been col com choi c. for a 10. with any 1 for a liv s where ill fit betv n (by oth	 psf (Lum pugh Cat C; F nsidered for the dearing. 0 psf bottom other live load of 20.0 a rectangle veen the bottod ers) of truss to the deares 	Fully his dds. Dpsf om					
TOP CHORD BOT CHORD WEBS	4-5=-111/107	5/106, 5-6=-95/106	,	International	designed in accorr Residential Code nd referenced star Standard	sections	s R502.11.1 a	Ind					
NOTES 1) Unbalance this desig 2) Wind: AS Vasd=911 Ke=1.00; exterior z and right exposed; reactions DOL=1.66 3) Truss de only. For see Stand	ed roof live loads have in. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I C-C for members and for shown; Lumber DOL=1	been considered for (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le left and right orces & MWFRS for 1.60 plate grip n the plane of the true (normal to the face) d Details as applicab	e) eft ss ,									STATE OF J SCOT SEV DE CON	iler 018807

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488948
P220296-P220296-02	LAY7	Lay-In Gable	1	1	Job Reference (optional	
		D., 0.50 0 A., 070		500 0 A 07		

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Set Jun 111:60/21/2022 ID:5wfjv8G4EgcwE9weq0uUS0z7gq2-RfC?PsB70Hq3NSgPqnL8w3uITXbGr WrCDoi794204

Scale = 1:108.4				8-7-6	9-	1-9						
Loading	(psf)	Spacing	2-0-0	CSI	-	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.91	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15	BC	0.32	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.16	Horiz(TL)	-0.01	12	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-S								
BCDL	10.0										Weight: 147 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 2x4 SPF No.3		BOT CHORD	1-21=-160/176, 19-20=-160/176 17-18=-160/176 15-16=-253/272 13-14=-238/255 2-21=-193/166, 4-19=-200/174	6, 18-19=-1 6, 16-17=-2 2, 14-15=-2 5, 12-13=-3 3-20=-191	60/176, 50/279, 59/278, 25/346 /168,		bea join 151 uplit join	ring plat t 12, 368 lb uplift ft at joint t 16, 154	te capa 3 lb upl at join t 19, 10 4 lb upl	able of withstandii ift at joint 1, 120 I t 21, 142 Ib uplift 50 Ib uplift at joint	others) of truss to ng 307 lb uplift at b uplift at joint 17, at joint 20, 150 lb 18, 121 lb uplift at i lb uplift at joint 14

BRACING		
TOP CHORD		l wood sheathing directly applied or purlins, except end verticals.
BOT CHORD	Rigid ceili bracing,	ing directly applied or 10-0-0 oc
WEBS	1 Row at	5
REACTIONS	(lb/size)	1=42/17-8-15, 12=52/17-8-15, 13=142/17-8-15, 14=134/17-8-15, 15=139/17-8-15, 16=117/17-8-15, 17=5/17-8-15, 18=132/17-8-15, 19=138/17-8-15, 20=131/17-8-15, 21=138/17-8-15
	Max Horiz Max Uplift	1=647 (LC 16)
	Max Grav	1=787 (LC 16), 12=265 (LC 12), 13=229 (LC 22), 14=212 (LC 29), 15=216 (LC 29), 16=185 (LC 29), 17=169 (LC 15), 18=210 (LC 29), 19=215 (LC 29), 20=205 (LC 29), 21=216 (LC 29)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD		7/1162, 2-3=-1106/1049,

3-4=-980/937, 4-6=-850/818, 6-7=-717/693, 7-8=-606/596, 8-9=-473/474, 9-10=-354/369, 10-11=-183/182. 11-12=-141/114

NOTES

Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-3-15 to 5-3-15, Interior (1) 5-3-15 to 17-7-7 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

7-16=-170/149, 8-15=-204/175,

9-14=-217/185, 10-13=-285/223

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design

All plates are 1.5x4 MT20 unless otherwise indicated. 5) 6) Gable requires continuous bottom chord bearing.

Gable studs spaced at 0-0-0 oc. 7)

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

and 153 lb uplift at joint 13.

11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 12, 16, 15, 14, 13.

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	DEVELOPMENT SERVICES
P220296-P220296-02	LAY8	Lay-In Gable	1	1	Job Reference (optional	152488949 LEE'S SUMMIT, MISSOURI
Beerle Britting Oracle (Oraci		D., 0.50.0 A., 07/		500.0 4		

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. St Jun 111:60/21/2021 ID:InLm8rF7RdYmnJEuZih22Tz7g1i-RfC?PsB70Hq3NSgPqnL8w3uITXbGKurCDoi7.4007

Scale = 1.102.5					0-8-9								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		8/TPI2014	CSI TC BC WB Matrix-S	0.85 0.27 0.69	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a -0.01	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 101 lb	GRIP 197/144 FT = 20%
	6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 8=34/10-(10=123/1 12=130/1 14=135/1 Max Horiz 16=521 (l Max Uplift 8=-132 (L 10=-133 (l 12=-159 (l 14=-883 16=-132 (l 10=226 (l 12=218 (l 14=270 (l 16=241 (l	7-8 5-4, 9=9/10-5-4, 0-5-4, 11=140/10-5 0-5-4, 13=9/10-5-4, 0-5-4, 15=104/10-5 5-4 LC 13), 11=-160 (LC 15 (LC 13), 11=-160 (LC 16), (LC 16), 13=-112 (LC 16), (LC 14), 15=-568 (LC 16), LC 29), 11=212 (LC 16), LC 29), 13=164 (LC 16), LC 14), 15=916 (LC 16), LC 14), 15=916 (LC 16), LC 14), 15=916 (LC 16),	N(1) d or 4, 2) 4, 3)), (16), (12), 4) (14), 4) (14), 5) (29), 6) (15), 7)	Cotes Vasd=91mpt Ke=1.00; Ca exterior zone Interior (1) 5- right exposed for members Lumber DOL Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 PI Exp.; Ce=0.5 Unbalanced design. Gable require Truss to be f braced again Gable studs This truss ha	2-15=-1591/1474 4-12=-238/192, 5 5-10=-286/229, 2 7-16; Vult=115m n; TCDL=6.0psf; t. II; Exp C; Encl e and C-C Exteric -1-12 to 10-3-8 z d; end vertical le and forces & MV =1.60 plate grip ned for wind load dis exposed to w d Industry Gable ralified building d 7-16; Pr=25.0 p alate DOL=1.15); c); Cs=1.00; Ct=1. snow loads have es continuous bo ully sheathed fro ist lateral movem spaced at 0-0-0 is been designed d nonconcurrent	-11=-231, -14=-141 apph (3-sec BCDL=6. bsect, IMW or(2E) 0-1 one; canti ft and rigt WFRS for DOL=1.6(is in the p ind (norm End Deta esigner a: sf (roof LL f; Pf=13.8 is=1.0; Rc 10 been cor ttom chor m one fac uent (i.e. d oc.	(184, 6/1485 cond gust) 0psf; h=35ft; FRS (envelo -12 to 5-1-12 lever left and tt exposed;C reactions shu) lane of the tri al to the face ills as applica s per ANSI/T :: Lum DOL= 0 psf (Lum ough Cat C; F asidered for t d bearing. e or securely iagonal web) 0 psf bottom	, -C own; ble, PI 1. 1.15 =ully his	sur 14) Thi Inte R8	veled pla face with s truss is ernationa	n truss s desig al Resid and ref) Sta	chord at joint(s) ned in accordand dential Code sec ferenced standar indard	with the 2018 tions R502.11.1 and d ANSI/TPI 1.
FORCES	(lb) - Maximum Com Tension 1-16=-214/191, 1-2=		9)	* This truss h	nas been designe n chord in all are	ed for a liv	e load of 20.				ł,	SCOT SEV	
I OF CHORD	,	476/479, 5-6=-348/3	62,	chord and ar	by 2-00-00 wide way other members hanical connection	s.						tt	- Sinter
BOT CHORD	15-16=-730/717, 14 13-14=-168/183, 12 11-12=-265/284, 10 9-10=-239/252, 8-9=	-13=-263/289, -11=-269/285,		bearing plate joint 8, 46 lb	e capable of withs uplift at joint 9, 1 nt 11 and 133 lb	standing 1 59 lb uplif	32 lb uplift at tat joint 12,	t		-	No.	PE-2001	LENGINE

June 14,2022

2x4 SP No.2 BOT CHORD 2x4 SPF No.3 WEBS OTHERS 2x4 SPF No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. 1=79/7-10-14, 4=102/7-10-14, REACTIONS (lb/size) 5=305/7-10-14 Max Horiz 1=160 (LC 13) Max Uplift 4=-30 (LC 13), 5=-137 (LC 16) Max Grav 1=115 (LC 30), 4=149 (LC 22), 5=405 (LC 2)

FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-285/168, 2-3=-123/93, 3-4=-119/133

1-5=-70/77, 4-5=-70/77 BOT CHORD WFBS 2-5=-315/326 NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-7-9 to 5-7-9, Interior (1) 5-7-9 to 7-9-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- Gable requires continuous bottom chord bearing. 5)
- Gable studs spaced at 4-0-0 oc. 6)
- 7)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 9) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 30 lb uplift at joint 4 and 137 lb uplift at joint 5.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Paradover production of the	Production Producting Producting Producting Producting Producting Producti											FOR CONSTRUCTION
Produce Produce Produce V V V V V V V V V V V V V V V V V V V	Production of the control of the	Job	Truss	Truss Type		Qty	Ply	Roof - 2217	' NW K	illarne	/ Ln, Lee's Summ DEVEL	D FOR PLAN REVIEW
Tente bluete	The name of the specific register of the sp	P220296-P220296-02	V2	Valley		1	1					
Image: state in the state	<complex-block> - 0.14 - 0.15 - 0.15 - 0.10 - 0.14 - 0.14 - 0.15 - 0.15 - 0.15 - 0.15 - 0.15 - 0.15 - 0.15 - 0.15 - 0.15 -</complex-block>	Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66	083,	Run: 8.53 S Apr 27 2	2022 Print: 8.	530 S Apr 27	2022 MiTek Ir	dustries	, Inc. S	at Jun 1111: 505	21/2022
State - 1267	Image: space of the s				ID:d06zaM4Sa0LyLE	35omga4nTz	7xS9-RfC?PsI	370Hq3NSgPo	nL8w3u	ITXbG	(WrCDoi75425C?f	
State - 1267	Image: space of the s			I	5-1	0-14			I			
Image: 100 Control Image: 10	<complex-block> Image: space space</complex-block>								1			
Figure 1:137 1 <t< td=""><td>Image: space of the s</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.5</td><td>ōx4 u</td><td></td><td></td><td></td></t<>	Image: space of the s							1.5	ōx4 u			
Figure 1:137 1 <t< td=""><td>Image: space of the s</td><td></td><td></td><td></td><td></td><td></td><td></td><td>n</td><td></td><td></td><td></td><td></td></t<>	Image: space of the s							n				
The second seco	Algorithm of the second of							2	1			
The second seco	Algorithm of the second of						/		1			
The second seco	Algorithm of the second of					_	//					
The second seco	Algorithm of the second of		-1	12							+ - -	
Image: Second products of the product of the produ	A decision of the second decision of the s		2-1-	6							2-1-	
Image: Second products of the product of the produ	A decision of the second decision of the s				4							
Judy 4 5-10-14 Scale = 1.24.7 5-10-14 Scale = 1.24.7 5-10-14 Scale = 1.24.7 5-10-14 Scale = 1.24.7 Scale = 1.24.7 Scale = 1.24.7 Note = 1.24.7 Scale	Image: State in the state			1								
Jule 1.54 # Secter 124.7 5-10-14 CitL (root) 1.35 00 CitL (root) 1.35 00 CitL (root) 1.35 00 CitL (root) 1.35 00 CitL (root) 0.00 CitL (root) 0.00 CitL (root) 0.00 CitL (root) 0.00 Code RC2018/TP12014 Matrix-P 0.00 CitL (root) 0.00 Code RC2018/TP12014 Matrix-P 0.00 Code RC2018/TP12014 Matrix-P 0.00 More X SP No.2 Not (root) WEBS 2x4 SF No.3 Miniter - OT CHORD 2x4 SF No.3 - More Matrix - Miniter - OT CHORD 2x4 SF No.3 - Matrix - OT CHORD 2x4 SF No.3 - Matrix - OT CHORD 2x4 SF No.3 - Matrix - Matrix - Matrix -	Jat Lat June June			• 📈		·····	******		3			
State 1:24.7 Description (pr) Spacing 2-0-0 (C) (C) (D)	<page-header><page-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></page-header></page-header>		0									
State - 1:24.7 a.adding (pf) (pf) (pf) (pf) (pf) (pf) (pf) (pf)	 State - 1247 Andright of the construction of the				3x4 🝃			1.5	5x4 u			
State - 1:24.7 a.adding (pf) (pf) (pf) (pf) (pf) (pf) (pf) (pf)	 State 1:347 Londing (p) (p) (p) (p) (p) (p) (p) (p) (p) (p)											
 Cading (ps) (ps) (ps) (ps) (ps) (ps) (ps) (ps)	 Loading (pr) (pr) 25.0 [CLL (rod) 25.				5-1	0-14			{			
CitL (root) 25.0 Place dip DOL 1.15 TC 0.67 Vert(TL) n/a - n/a 998 MT20 244/190 CiDL 0.00 10.00 Code IIIC2014 Vert(TL) n/a - n/a 998 MT20 244/190 Matrix-P Code IIIC2018/TPI2014 Weint Vert(TL) n/a - n/a 998 MT20 244/190 UMBER Code IIIC2018/TPI2014 Weint Vert(TL) n/a - n/a 998 MT20 244/190 Vert(TL) n/a - n/a 998 MT20 244/190 Vert(TL) n/a - n/a 998 MT20 244/190 Vert(TL) n/a - n/a 998 MT20 244/190 Vert(TL) n/a - n/a 998 MT20 244/190 Vert(TL) n/a - n/a 998 MT20 244/190 Vert(TL) n/a - n/a 998 MT20 244/190 Vert(S 244 SP No.2 Vert(S 244 SP No.2 Vert(S - n/a 901 - n/a 901	CTCLL (root) 25.0 (mov (PUP) Pate Sing DOL 1.15 (mov PC) 1.15 (mov PC) TC 0.07 (mov PC) Ver(TL) n/2 n/2 N/2 CTCL 0.07 (COL 3COL 0.07 (COL 0.00 0.07 (COL 1.00 TC 0.07 (COL 0.00 Ver(TL) n/2 n/2 0.04 (Waght: 20 lb FT = 20% VERS 2.44 SP No.2 300 C HORD 2.44 SP No.2 300 C HORD 7 To this has been designed for a line designe designed for a line designe designed for a										1	
 Bow (PP) 1 39/20.0 (Dec 11.5 (Dec 2018) 11.5 (Dec 201	Since (P(P)g) 13.820.01 Lumber DOL 1.15 BC 0.34 Ver(TL) n/a - n/a 999 SCL 0.04 Code International Code No	-										
CLL 0.0* Code IRC2018/TPI2014 Matrix-P Weight: 20 ib FT = 20% VCDL 10.0 Code IRC2018/TPI2014 Matrix-P Weight: 20 ib FT = 20% VCDL Start SFR No.2 Start SFR No.2 Start SFR No.3 St	SQLL 0.0° Code IRC2018/TPI2014 Matrix-P Weight: 20 b FT = 20% LUMBER TOP CHORD 2x4 SP No.2	Snow (Pf/Pg) 13.9	9/20.0 Lumber DOL	1.15	BC C).34 Vert((TL) n	/a -	n/a			
 IMMER OP CHORD 2x4 SP No.2 OT CHORD 2x4 SP No.2 This truss has been designed for a 10.0 pst bottom chord live load on concurrent with any other live loads. This truss has been designed for a live load of 20.0 pst on the bottom chord in all areas where a rectangle 30-600 all by 20-000 wide will fit between the bottom chord live load on a concurrent with any other members. This truss has been designed for a live load of 20.0 pst on the bottom chord in all areas where a rectangle 30-600 all by 20-000 wide will fit between the bottom chord and any other members. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 1 and 65 lb uplift at joint 3. This truss has been designed in accordance with the 2018 International Residential Codes excloses descions R502.11.1 and R802.10.2 and referenced standard ANSI/TP11. DAD CASE(S) (b) - Maximum Compression/Maximum Tension OP CHORD 1.32-63/67 Windr ASCE 7-16; Vult=115mph (3-second gust) Vad=91mph; TCDL=6.0pt; BCDL=6.0pt; ha:381; Vad=91mph; TCDL=6.0pt; BcDL=1.58 ppt (b) Lint size in designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as a pplicable, or consult qualified building designer as per ANSI/TP1 1. TUCL: ASCE 7-16; Pr26.0 (C) H:H=1.39 pst (Lum DDL=1.15Pite DDL=1.15]; B=2.0 pst; H=1.39 pst (Lum DDL=1.15Pite DDL=1.15]; B=2.00 pst; H=1.39 pst (Lum DDL=1.15Pite DDL=1.15]; B=1.0; Rough Cat C; Fully Exp; Ce=0.9; Cs=1.00; Ct=1.10 Orable requires continuous bottom chord bearing. 	 1. UMBER TOP CHORD 2:44 SP No.2 B05 CHORD 2:44 SP No.2 WEBS 2:44 SP No.3 7. This truss has been designed for a 10.0 psf bottom chord live load for 20.0 psf on the bottom chord in all areas where a rectangle 3:600 CHORD 0:400 WebS and areas whithe areas 3:600 CHORD 0:400 WebS and areas where a rectangle 3:600 CHORD 0:400 WebS and areas whithe 2018 1:100 CHORD 0:400 WebS and areas where a rectangle 3:600 CHORD 0:400 WebS and areas where a rectangle 3:600 CHORD 0:400 WebS and areas whithe areas 3:600 CHORD 0:400 WebS and areas where a rectangle 3:600 CHORD 0:400 WebS and areas where a rectangle 3:600 CHORD 0:400 WebS and areas where areas 3:600 CHORD 0:400 WebS and areas where are rectangle 3:600 CHORD 0:400 WebS and areas where are rectangle 3:600 CHORD 0:400 WebS and areas where areas 3:600 CHORD 0:400 WebS and areas where areas 3:600 CHORD 0:400 CHORD 0:4	BCLL					2(TL) 0.0	0 3	n/a	n/a		
 chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord live load nonconcurrent with any other live loads. chord and any other members. chord and any other any other any other	 TOP CHORD 2:44 SP No.2 Strotural wood sheathing directly applied or 10-00 or 56:11-60 op units, except ned vertical or 10:00 or 00:00 wild will be advected and any other members. TOP CHORD Structural wood sheathing directly applied or 10-00 or 66:11-60 op units, except ned vertical or 10:00 or 00:00 will will be taipent to advect the taipent and 65 built if between the bottom chord in all areas where a rectangle 3:00-00 wild will will be taipent to advect the taipent and 65 built at joint 3. This truss has been designed for 0:00 will will be taipent to advect the taipent and 65 built at joint 3. This truss has been designed for 0:00 will will be taipent to advect the taipent and 65 built at joint 3. This truss has been designed for 0:00 will will be taipent to advect the taipent to advect the taipent and 65 built to jint 3. This truss has been designed for 0:00 will will be taipent to advect the taipent to the taipent to advect the taipent to advect t	BCDL	10.0								Weight: 20 lb	FT = 20%
	WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not	 VEBS 2x4 SPF No. BRACING FOP CHORD Structural w 5-11-6 oc p 5-11-6 oc p 5-11-6 oc p sol CHORD Rigid ceiling bracing. REACTIONS (Ib/size) 1 Max Horiz 1 Max Uplift 1 Max Grav 1 FORCES (Ib) - Maxim Tension FORCES (Ib) - Maxim Tension FOP CHORD 1-2=-160/10 30T CHORD 1-3=-53/57 NOTES I) Wind: ASCE 7-16; Vult- Vasd=91mph; TCDL=6. Ke=1.00; Cat. II; Exp C; exterior zone and C-C E and right exposed ; end exposed; C-C for membi- reactions shown; Lumbo DOL=1.60 2) Truss designed for win- only. For studs exposer see Standard Industry O or consult qualified build 3) TCLL: ASCE 7-16; Pr=2 Plate DOL=1.15); Pg=2 DOL=1.15 Plate DOL=1 Exp.; Ce=0.9; Cs=1.00; 4) Unbalanced snow loads design. 5) Gable requires continued 	 a.3 b.3 cood sheathing directly apurlins, except end vertical g directly applied or 10-0- =175/5-10-14, 3=175/5-1 =115 (LC 13) =-36 (LC 16), 3=-65 (LC 22), 3=249 (LC 22), 3=24, 3=249 (LC 22), 3=24, 3=249 (LC 22), 3=24,	ft; elope) er left for truss cce), cable, /TPI 1. L=1.15 c; Fully	e bottom chord in all areas w 00 tall by 2-00-00 wide will fit I and any other members. de mechanical connection (b ng plate capable of withstand 65 lb uplift at joint 3. rruss is designed in accordan national Residential Code sec .10.2 and referenced standar	here a recta between th y others) of ling 36 lb up ce with the ctions R502	angle ne bottom truss to plift at joint 2018 .11.1 and				SCOTT SEVI SEVI OPE-20010 PE-20010	T M. ER 018807
	Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not	WARNING - Verify desir	n parameters and READ NOTES	ON THIS AND INCLUDED	MITEK REFERENCE PAGE MII-7473	rev. 5/19/2020) BEFORE USF					
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL7273 rev 5/19/2020 REFORE USE		Design valid for use only w	ith MiTek® connectors. This de	ign is based only upon par	ameters shown, and is for an individu	ual building co	mponent, not					

a duss system. Delote use, the building designer must verify the application of design parameters and property incorporate must use used in into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

					i	-				FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof - 221	7 NW K	illarne	/ Ln, Lee's Summ DEVEL	D FOR PLAN REVIEW it MO DPMENT SERVICES 152488952
P220296-P220296-02	V3	Valley		1	1	Job Refere	ence (op	tional	LEE'S	I52488952 SUMMIT, MISSOURI
Premier Building Supply (Springh	ill, KS), Spring Hills, KS - 66083	3,	Run: 8.53 S Apr 2	7 2022 Print: 8.	530 S Apr 27	2022 MiTek li	ndustries	, Inc. S	at Jun 111: 505	21/2022
			ID:d06zaM4Sa0Ly	LB5omga4nTz7	7xS9-RfC?Ps	B70Hq3NSgP	qnL8w3u	ITXbG	(WrCDoi75425C?f	
			1							
				3-10-14						
						1.5x4 🛚				
						_				
						2				
						b				
	~		12 6						~	
									1-11-11	
	÷		1						,	
						∐ 3 ∞∞∞∞				
	0									

			3x4 🝃			1.5x4 🛚				
				3-10-14						
Scale = 1:20.8			· · · · · · · · · · · · · · · · · · ·							
oading	(psf) Spacing	2-0-0	CSI	DEF		in (loc)	l/defl	L/d	PLATES	GRIP
CLL (roof) Snow (Pf/Pg) 13.9	25.0 Plate Grip DOL /20.0 Lumber DOL	1.15 1.15	TC BC	0.22 Vert(0.12 Vert(, ,	n/a - n/a -	n/a n/a	999 999	MT20	244/190
CDL	10.0 Rep Stress Incr 0.0* Code	YES IRC2018/TPI2014	WB Matrix-P	0.00 Horiz	z(TL) 0.	.00 3	n/a	n/a		
BCDL	10.0	102010/1112014	Wattix-F						Weight: 13 lb	FT = 20%
3-11-6 oc pu BOT CHORD Rigid ceiling bracing. EACTIONS (lb/size) 1= Max Horiz 1= Max Uplift 1= Max Grav 1= FORCES (lb) - Maximu Tension OP CHORD 1-2=-100/67 OT CHORD 1-3=-33/36 IOTES) Wind: ASCE 7-16; Vult= Vasd=91mph; TCDL=6.0 Ke=1.00; Cat. II; Exp C; exterior zone and C-C E and right exposed; end exposed;C-C for membe reactions shown; Lumbe DOL=1.60) Truss designed for wind only. For studs exposed see Standard Industry G or consult qualified build) TCLL: ASCE 7-16; Pr=22 Plate DOL=1.15; Pg=22 DOL=1.15 Plate DOL=1.	3 bod sheathing directly appli Irlins, except end verticals. directly applied or 10-0-0 c =107/3-10-14, 3=107/3-10- =71 (LC 13) =-22 (LC 16), 3=-40 (LC 16 =144 (LC 22), 3=144 (LC 22) um Compression/Maximum , 2-3=-112/144 115mph (3-second gust))psf; BCDL=6.0psf; h=35ft; Enclosed; MWFRS (envelo kterior(2E) zone; cantilever vertical left and right rs and forces & MWFRS for r DOL=1.60 plate grip loads in the plane of the tr to wind (normal to the face able End Details as applica ing designer as per ANSI/T 5.0 psf (roof LL: Lum DOL=	8) * This true on the bo 3-06-00 ti chord and 9) Provide n bearing p 1 and 40 10) This truss Internatio R802.10. 2) LOAD CASE	 load nonconcurrent w ss has been designed 1 wittom chord in all areas all by 2-00-00 wide will d any other members. nechanical connection vlate capable of withsta lb uplift at joint 3. is designed in accord- nal Residential Code s 2 and referenced stance (S) Standard 	for a live load where a recta fit between th (by others) of nding 22 lb up ance with the ections R502	of 20.0psf angle ne bottom truss to plift at joint 2018 .11.1 and				STATE OF M SCOTT SEVI PE-20010	Server *

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ADSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488953
P220296-P220296-02	V4	Valley	1	1	Job Reference (optional	
Premier Building Supply (Springh	nill, KS), Spring Hills, KS - 66083,	Run: 8.53 S Apr 27 2	2022 Print: 8.	530 S Apr 27	2022 MiTek Industries, Inc. S	

ID:d06zaM4Sa0LyLB5omga4nTz7xS9-RfC?PsB70Hq3NSgPqnL8w3uITXbG WrCDonw4z92 ft / 200 22

0-11-11 0-0-4

3x4 🍃

Scale = 1:16.9

Plate Offsets (X, Y): [2:Edge,0-1-14]

	(; ;): [<u></u> go;o : : :	1										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI201	CSI TC BC WB 4 Matrix-P	0.02 0.01 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 5 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m Ke=1.00; C exterior zoo and right e exposed;C reactions s DOL=1.60 2) Truss desi or consult (3) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce=0	Max Horiz 1=26 (LC Max Uplift 1=-8 (LC Max Grav 1=53 (LC (lb) - Maximum Com Tension 1-2=-37/25, 2-3=-41, 1-3=-12/13 CE 7-16; Vult=115mph ph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose ne and C-C Exterior(2 xposed; end vertical I -C for members and fishown; Lumber DOL=	xcept end verticals. applied or 10-0-0 or 0)-14, 3=40/1-10-14 13) 16), 3=-15 (LC 16) 2), 3=53 (LC 2) pression/Maximum /53 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever left and right orces & MWFRS for 1.60 plate grip in the plane of the trul (normal to the face) d Details as applical gner as per ANSI/TF roof LL: Lum DOL= ? ef=13.9 psf (Lum 1.0; Rough Cat C; F	7) This trucchord I 8) * This to on the 3-06-00 chord a c 9) Provide bearing and 15 10) This tru- Interna R802.1 LOAD CAS bele left r ulss), ble, PI 1. 1.15 cully	studs spaced at 4-0-0 uss has been designe ive load nonconcurre russ has been designe bottom chord in all ar 0 tall by 2-00-00 wide and any other membe e mechanical connect plate capable of witt lb uplift at joint 3. uss is designed in acc tional Residential Co 0.2 and referenced s SE(S) Standard	ed for a 10.0 ent with any ned for a liv reas where e will fit betw ers. tion (by oth hstanding & cordance w ode sections	other live loa e load of 20.0 a rectangle veen the botto ers) of truss t b lb uplift at jo ith the 2018 a R502.11.1 a	Opsf om iot 1				CELLES OF	IO18807

5) Gable requires continuous bottom chord bearing.

June 14,2022

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR CONSTRUCTION AS NOTED FOR PLAN REVIEW Un, Lee's Summit, MO DEVELOPMENT SERVICES 15/2488954
P220296-P220296-02	V5	Valley	1	1	Job Reference (optional	I52488954 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springl	nill, KS), Spring Hills, KS - 66083,				7 2022 MiTek Industries, Inc. S sB70Hq3NSgPqnL8w3uITXb0	
		3-8-			-1-10	
				1.5×	4 u	
	2-1-1	6 ¹²		2	3	_

3-8-6

1.5x4 II

Scale = 1:23.5

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.18	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.10	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-P								
BCDL	10.0											Weight: 13 lb	FT = 20%
FORCES	Max Horiz 1=78 (LC Max Uplift 1=-13 (LC Max Grav 1=132 (L((Ib) - Maximum Com Tension	xcept end verticals. applied or 10-0-0 oc 6, 4=131/3-8-6 13) 2 (16), 4=-60 (LC 16) 2 (LC 23), 4=182 (LC 23) pression/Maximum	9	 load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live lo * This truss I on the bottor 3-06-00 tall I chord and an Provide med bearing plate 1 and 60 lb u 	as been designed psf or 2.00 times con-concurrent wit res continuous bo spaced at 4-0-0 o as been designed ad nonconcurrent has been designed m chord in all are: by 2-00-00 wide v ny other members chanical connectio e capable of withs uplift at joint 4. designed in acco Residential Code	flat roof k h other lin ttom chor oc. for a 10.0 with any d for a liv as where vill fit betv S. n (by oth tanding 1 rdance w	bad of 13.9 p ve loads. d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the bott ers) of truss t 3 lb uplift at j ith the 2018	sfon Ids. Dpsf om Iont					
TOP CHORD BOT CHORD	1-2=-118/72, 2-3=-2 1-4=-31/33	0/0, 2-4=-153/182			nd referenced sta	indard AN	ISI/TPI 1.						
NOTES			L	OAD CASE(S)	Stanuard								

- Wind: ASCE 7-16; Vull=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.

						RELEASE FOR CONSTRUCTION			
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488955			
P220296-P220296-02	V6	Valley	1	1	Job Reference (optional				
Premier Building Supply (Springh	Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083, Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Ind								

ID:uANZ8bRsbgzpZHrOH24Mfpz7rf8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi79429774

1-8-6

Scale = 1:20.7

Plate Offsets (X, Y): [2:Edge,0-1-14]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.03	Vert(LL)	n/a		n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.01	Vert(CT)	n/a	-	n/a	999	-	
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018	3/TPI2014	Matrix-P								
BCDL	10.0											Weight: 5 lb	FT = 20%
FORCES TOP CHORD BOT CHORD NOTES	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 1-8-14 oc purlins, e Rigid ceiling directly bracing. Ib/size) 1=24/1-8- Vax Horiz 1=34 (LC Max Uplift 4=-39 (LC Max Grav 1=32 (LC (Ib) - Maximum Com Tension 1-2=-60/34, 2-3=-20, 1-4=-10/11 E 7-16; Vult=115mph	xcept end verticals. applied or 10-0-0 or 6, 4=69/1-8-6 13) 16) 31), 4=97 (LC 2) pression/Maximum /0, 2-4=-87/109	9) 10 11	load of 12.0 overhangs Gable requi Gable studs This truss h chord live la * This truss on the botto 3-06-00 tall chord and a) Provide me bearing plat 4.) This truss is International	as been design psf or 2.00 tim- non-concurrent res continuous s spaced at 4-0- as been design mad nonconcurre has been desig m chord in all a by 2-00-00 wid- ny other memb chanical connect e capable of wi designed in ac l Residential Co and referenced) Standard	es flat roof le with other lib bottom chor 0 oc. ent with any ned for a 10.0 ent with any ned for a liv reas where e will fit betw ers. stion (by oth thstanding 3 cordance w bde sections	bad of 13.9 p ve loads. d bearing. D psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss 19 lb uplift at ith the 2018 t R502.11.1 a	ads. Opsf om to joint					

- Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 4) design.

												Г	RELEASE	FOR CONSTRUCTIO	N
Job		Truss		Truss T	уре		Qty	Ply		Roof - 221	7 NW Killai	rne/	AS NOTE Ln, Lee's Summi	D FOR PLAN REVIEW	V
P220296-P22	20296-02	V7		Valley			1	1			ence (optior			DPMENT SERVICES 152488956 SUMMIT, MISSOURI	
Premier Building S	upply (Springhi	ill, KS), Sj	pring Hills, KS - 66083,			Run: 8.53 S Apr	27 2022 Pri	nt: 8.530 S	Apr 27 2	2022 MiTek li	ndustries. Inc	c. Sat	Jun 111: 600	21/202	2
						ID:D2_kICOohV7	CW3F8Jhp	n7Vz7Hov-l	RfC?PsE	370Hq3NSgF	۹nL8w3ulT>	KPG K	WrCDor734230?f	_ 1/2024	
											1				
						<u>5-6-6</u> 5-6-6				6-7-10 1-1-4					
									1.5	5x4 u 3	1				
		_							0		1				
									2	//			\top		
									<u> </u>	ſ					
		1-4-8	-												
		Ċ			1 <u>2</u> 6 ┌─	5							2-9-7		
					1										
		-	-0							4					
						*********			*****	2					
					3x4 ≠				1.5	5x4 n					
						5-6-6	6			1					
Scale = 1:26.8					 										
Loading		(psf)	Spacing	2-0-0		CSI		DEFL		n (loc)			PLATES	GRIP	
TCLL (roof) Snow (Pf/Pg)	13.9/	25.0 20.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC		/ert(LL) /ert(CT)	n/ n/			99 99	MT20	244/190	
TCDL BCLL		10.0 0.0*	Rep Stress Incr Code	YES IRC2018		WB Matrix-P	0.00	Horz(CT)	0.0	0 4	n/a r	n/a			
BCDL		10.0											Weight: 21 lb	FT = 20%	
LUMBER TOP CHORD				5)		s been designed f sf or 2.00 times fl									
BOT CHORD	2x4 SP No.2 2x4 SP No.2			0)	overhangs no	n-concurrent with	other live	loads.	551 011						
WEBS 2 BRACING	2x4 SPF No.:	3		6) 7)	Gable studs s	s continuous bott paced at 4-0-0 oc	.								
			athing directly applied cept end verticals.	dor 8)		s been designed f d nonconcurrent v									
BOT CHORD			applied or 10-0-0 oc	9)		as been designed chord in all areas									
	b/size) 1=		-6, 4=230/5-6-6		3-06-00 tall by	/ 2-00-00 wide wi	ll fit betwe								
	1ax Horiz 1= 1ax Uplift 1=		: 13) 16), 4=-110 (LC 16)	10) Provide mech	anical connection	n (by other								
		•	2), 4=334 (LC 23) pression/Maximum		1 and 110 lb u	uplift at joint 4.	-		-						
	Tension			11	International F	lesigned in accord Residential Code	sections F	502.11.1							
	1-2=-203/125 1-4=-49/53	o, 2-3=-4	13/0, 2-4=-286/318	LC	R802.10.2 and AD CASE(S)	d referenced stan Standard	idard ANS	I/TPI 1.							
NOTES 1) Wind: ASCE	7-16: Vult=1	15mph	(3-second gust)												
Vasd=91mp	h; TCDL=6.0	psf; BCI	DL=6.0psf; h=35ft; d; MWFRS (envelope	<i>)</i>											
exterior zone	e and C-C Ex	terior(28	E) 0-7-9 to 5-5-2,	,											
exposed ; er	nd vertical lef	t and rig	antilever left and righ ht exposed;C-C for	L									OFN		
Lumber DOL	L=1.60 plate	grip DOI										Å	ATE	IISSOL	
			the plane of the trus (normal to the face),									Ho o	SCOTT		
			Details as applicabl ner as per ANSI/TPI								E	*	SEVI		
3) TCLL: ASCE	E 7-16; Pr=25	5.0 psf (r	oof LL: Lum DOL=1. f=13.9 psf (Lum								l l		nt.	South)
DOL=1.15 P		15); Is=1	1.0; Rough Cat C; Fu	lly							7	ARC	PE-20010		
4) Unbalanced			en considered for this	5								S	THE		
design.													SSIONA	LENS	
													and	14,2022	
													oune	,	

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488957
P220296-P220296-02	V8	Valley	1	1	Job Reference (optional	
Premier Building Supply (Springh	nill, KS), Spring Hills, KS - 66083,				7 2022 MiTek Industries, Inc. S PsB70Hq3NSgPqnL8w3uITXbG	
		3-6-6		4	-7-10	
		3-6-6			1-1-4	

3-6-6

Scale = 1:22.9

Scale = 1:22.9													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.13 0.09 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 3-6-14 oc purlins, e Rigid ceiling directly bracing. (lb/size) 1=81/3-6- Max Horiz 1=88 (LC Max Grav 1=110 (LC (lb) - Maximum Com Tension 1-2=-147/85, 2-3=-4 1-4=-29/31	xcept end verticals. applied or 10-0-0 or 6, 4=168/3-6-6 13) 2 16) C 23), 4=244 (LC 23 ppression/Maximum	9) 10) 11	load of 12.0 overhangs n Gable requii Gable studs This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a Provide mer bearing plate 4.) This truss is International	as been designed psf or 2.00 times ion-concurrent wit res continuous boi spaced at 4-0-0 c as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members chanical connectio e capable of withs designed in accoo Residential Code nd referenced sta Standard	flat roof lo h other lift ttom chor oc. for a 10.1 with any d for a liv as where vill fit betv s. n (by oth tanding & rdance we	bad of 13.9 p: <i>re</i> loads. d bearing. D psf bottom other live loa e load of 20.0 a rectangle <i>veen the botto</i> ers) of truss t 8 lb uplift at j ith the 2018 c 502.11.1 a	sf on Ids. Dpsf om ioint					
 Wind: ASC Vasd=91m Ke=1.00; C exterior zo and right e exposed;C 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical I C-C for members and f shown; Lumber DOL=	DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever b left and right orces & MWFRS for	eft									ATE OF I	MISSOL

- DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

SCOTT M.

SEVIER

PE-2001018807

June 14,2022

OF PL

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488958
P220296-P220296-02	V9	Valley	1	1	Job Reference (optional	
Premier Building Supply (Springh	nill, KS), Spring Hills, KS - 66083,				7 2022 MiTek Industries, Inc. S 2sB70Ha3NSaPanL8w3uITXb0	

2-7-6

Scale = 1:18.3											
Loading (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 13.9/20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI:	2014 CSI TC BC WB Matrix-P	0.07 0.04 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SPF No.3 BRACING TOP CHORD Structural wood shea 2-7-14 oc purlins, ex BOT CHORD Rigid ceiling directly bracing. REACTIONS (lb/size) 1=64/2-7-6 Max Horiz 1=42 (LC Max Uplift 1=-13 (LC Max Grav 1=85 (LC FORCES (lb) - Maximum Comp Tension TOP CHORD 1-2=-60/40, 2-3=-66/ BOT CHORD 1-3=-19/21	xcept end verticals. applied or 10-0-0 oc 6, 3=64/2-7-6 13) 16), 3=-24 (LC 16) 2), 3=-85 (LC 2) pression/Maximum	cho 8) * Tr on t 3-00 cho 9) Pro bea 1 au 10) This Inte R80	s truss has been design rd live load nonconcurr is truss has been design be bottom chord in all a 5-00 tall by 2-00-00 wic rd and any other memi- vide mechanical conner ring plate capable of w and 24 lb uplift at joint 3. s truss is designed in a rnational Residential C 12.10.2 and referenced CASE(S) Standard	ent with any gned for a liv areas where le will fit betw bers. ction (by oth ithstanding 1 ccordance w ode sections	other live load e load of 20.0 a rectangle veen the botto ers) of truss to 3 lb uplift at jo th the 2018 R502.11.1 a)psf om o oint				vveignt: 8 ib	r I = 20%
 NOTES Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCI Ke=1.00; Cat. II; Exp C; Enclosed exterior zone and C-C Exterior(2I and right exposed ; end vertical le exposed; C-C for members and for reactions shown; Lumber DOL=1 DOL=1.60 Truss designed for wind loads in only. For studs exposed to wind see Standard Industry Gable Enc or consult qualified building desig TCLL: ASCE 7-16; Pr=25.0 psf (r Plate DOL=1.15); Pg=20.0 psf; P DOL=1.15 Plate DOL=1.15); Is=1 Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have ber design. Gable requires continuous botton 	DL=6.0psf; h=35ft; d; MWFRS (envelope E) zone; cantilever le eft and right prces & MWFRS for .60 plate grip the plane of the trus (normal to the face), d Details as applicabl gner as per ANSI/TPI roof LL: Lum DOL=1. tf=13.9 psf (Lum 1.0; Rough Cat C; Fu	́т s e, 1. 15 Ily								STATE OF SCOT SEV PE-2001	1ER 018807

June 14,2022

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof - 2217 NW Killarne	AS NOTED FOR PLAN REVIEW / Ln, Lee's Summit MO DEVELOPMENT SERVICES 152488959
P220296-P220296-02	V10	Valley	1	1	Job Reference (optional	
Premier Building Supply (Spring	nill, KS), Spring Hills, KS - 66083,				7 2022 MiTek Industries, Inc. S	

ID:qORLHDR1nuOAcEO28_IzUIz7jHK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDord42sO?f 2-10-14

1.5x4 🛚

2-10-14

Scale = 1:18.9												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 25.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.09 0.05 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m Ke=1.00; C exterior zo and right e exposed;C reactions s DOL=1.60 2) Truss des only. For s see Standd or consult 3) TCLL: ASC Plate DOL= DOL=1.15 Exp; Ce=C 4) Unbalance design. 5) Gable requ	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 Structural wood she 2-11-6 oc purlins, e Rigid ceiling directly bracing. (lb/size) 1=74/2-10 Max Horiz 1=49 (LC Max Uplift 1=-15 (LC Max Grav 1=98 (LC (lb) - Maximum Com Tension 1-2=-69/46, 2-3=-76, 1-3=-23/24 E 7-16; Vult=115mph ph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose ne and C-C Exterior(2 xposed ; end vertical I c for members and fr hown; Lumber DOL= ⁻¹ gned for wind loads in ituds exposed to wind ard Industry Gable En- qualified building desig E 7-16; Pr=25.0 psf (=1.15); Pg=20.0 psf; F Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 d snow loads have be iires continuous bottor s spaced at 4-0-0 oc.	xcept end verticals. applied or 10-0-0 oc 0-14, 3=74/2-10-14 13) 16), 3=-27 (LC 16) 2), 3=98 (LC 2) pression/Maximum /98 (3-second gust) DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le ft and right proces & MWFRS for 1.60 plate grip n the plane of the tru (normal to the face) d Details as applicate gner as per ANS/ITP roof LL: Lum DOL=1 /f=13.9 psf (Lum 1.0; Rough Cat C; Fit en considered for the	chord liv 8) * This tri on the b 3-06-00 chord ar 9) Provide bearing 1 and 27 10) This true Internati R802.10 LOAD CASH eft ss , ble, 11. .15 ully	is has been designed e load nonconcurren iss has been designed ottom chord in all are tall by 2-00-00 wide ' id any other member mechanical connecti plate capable of with ' Ib uplift at joint 3. is is designed in acco onal Residential Cod .2 and referenced st E(S) Standard	nt with any ed for a liv eas where will fit betw rs. ion (by oth istanding 1 ordance w de sections	other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 5 lb uplift at ju ith the 2018 R502.11.1 a	Opsf om o oint				PE-2001	T M. TER

June 14,2022

