

LEE'S SUMMIT LOGISTICS BUILDING C LOT 3 LEE'S SUMMIT, MO PROJECT NO. 2220003

STRUCTURAL CALCULATIONS

05/06/2022

JAMES GRANICH, P.E. ENGINEER OF RECORD

> wallace design collective, pc structural - civil - landscape - survey 1703 wyandotte street, suite 200 kansas city, missouri 64108 816.421.8282 - 800.364.5858 wallace.design

WALLACE DESIGN PROGRAM REVISED 04/24/19, Carrie Johnson Copyright ©

of

Sheet No.

Date	4/19/2022	S
Job	Project Birkda	le
Subject	Roof Loads	

DEAD AND LIVE LOADS ASCE 7-16 Table C3.1-1a and Table 4.3.1

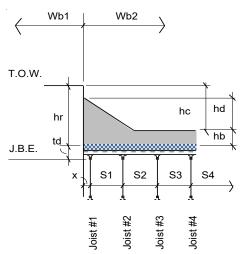
ROOF LOADS

DEAD

ITEM	DESCRIPTION	UNIT NEIGHT (PSF)	TOTAL
Roof Covering Insulation Deck Ceiling HVAC Sprinklers Fire-Proofing Waterproofing Miscellaneous	EPDM Membrane Polystyrene Foam (per inch thickness) Metal Deck, 22 gage, 1.5" B None HVAC Allowance (except sprinklers) Branch Lines Only	1.0 x 0.50 3.5 x 0.20 1.0 x 2.00 1.0 x 0.00	0.5 0.7 2.0 1.5 2.0 0.00 0.00 1.50
Sub-Total			8.2
Secondary Frai	mi⊧K-Series (30K10) joists at 6'-0" O.C.		2.0
Sub-Total			10.2
Primary Framin	g Joist Girders (60' max. span)		1.5
Total			11.7

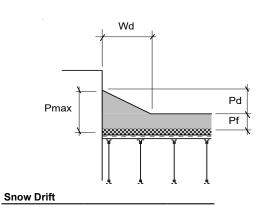
ROOF LIVE/SNOW LOADS

ITEM	LOAD (PSF)
Roof Live Load	20.0
Factored Roof Snow Load, Pf	20.0


Revised 05/20/19, Carrie Johnson

Copyright © 10/19/93

Date	5/5/2022	Sheet No.	of	
Project	2220003 Building 3			
Subject	Snow Drift Fast/West - 4	875ft Parapet		


FLAT ROOF SNOW DRIFT - Joists Parallel to Wall

ASCE 7-16

Configuration

Note: For projections, input width of projection for Wb1 and input maximum of leeward and windward drift length for Wb2. For parapets, input the parapet width as Wb1.

1. Input

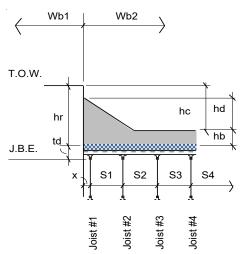
1. Input		
Dead Load = Roof Live Load = Pg, Ground Snow Load = Drift for parapet, projection, or upper Risk Categoy (I, II, III, or IV) = Ce, Exposure Factor = Ct, Thermal Factor = Use Pg minimum for drift calc's (Pf =	20 20 roof? P II 1.0 1.0	psf psf (P), (PR) or (U) Table 1.5-1 Table 7.3-1 Table 7.3-2 (Y or N)
Geometry T.O.W., Top of Parapet Elevation = J.B.E., Joist Bearing Elevation = td, Thickness of Joist, Deck, and Insu Wb1, length of upper roof = Wb2, length of lower roof = x, Joist #1 dist. from wall = S1, First Joist Spacing = S2, Second Joist Spacing = S3, Third Joist Spacing = S4, Fourth Joist Spacing = S5, Fifth Joist Spacing =	0.80 350.00 6.25 6.25 6.25 6.25 6.25 6.25	feet inches feet
2. Balanced Snow Load Check		
ls, Importance Factor = Pf = 0.7 Ce Ct Is Pg = Pm = Is Pg = Rain on snow surcharge = Pmin =	14.00 20.00	Table 1.5-2 psf (7.3-1) psf (7.3.4) psf (7.10) psf
3. Drifted Snow Load Check		
$Pf = Pg = D = 0.13 Pg + 14.0 \le 30 pcf = hb = Pf/D = Wb = hd = 0.75[0.43 Wb2^1/3 (Pg+10)^1/4 hd + hb = hr = hc = hr - hb = Wd = 4 hd or 4 [hd^2/hc] \le 8 hc = Pmax = D (hd + hb) \le D hr = Pd = D hd \le D hc = Pd = D hd = D hd$	1.20 350.00 1.5] Is^1 4.18 5.39 3.48	pcf (7.7-1) feet feet feet (Fig. 7.6-1) feet feet feet feet feet psf
4. Uniform Load Summary		
Drifted Snow Load w, wall w, Joist #1 w, Joist #2	Snow Total 170.6 208.1 280.3 355.3 199.3 274.3	plf * plf *
w, Joist #2 w, Joist #3 w, Joist #4 w, Joist #5	199.3 274.3 141.9 216.9 125.0 200.0 125.0 200.0	plf * plf
Balanced Load Check		
	(20 psf) Total	
w, wall	62.5 100.0	
w, Joist #1	125.0 200.0	•
w, Joist #2 w, Joist #3	125.0 200.0 125.0 200.0	•
w, Joist #3 w, Joist #4	125.0 200.0	•
w loist #5	125.0 200.0	

* indicates controlling load (drifted vs. undrifted)

200.0 plf *

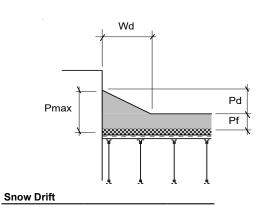
125.0

w, Joist #5


Revised 05/20/19, Carrie Johnson

Copyright © 10/19/93

Date	5/5/2022	Sheet No.	of	
Project	2220003 Building 3			
Subject	Snow Drift Fast/West - 4	875ft Parapet		


FLAT ROOF SNOW DRIFT - Joists Parallel to Wall

ASCE 7-16

Configuration

Note: For projections, input width of projection for Wb1 and input maximum of leeward and windward drift length for Wb2. For parapets, input the parapet width as Wb1.

1. Input

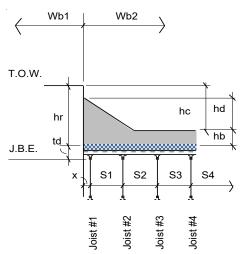
1. Input			
Dead Load = Roof Live Load = Pg, Ground Snow Load = Drift for parapet, projection, or uj Risk Categoy (I, II, III, or IV) = Ce, Exposure Factor = Ct, Thermal Factor = Use Pg minimum for drift calc's (20 20 P II 1.0 1.0	psf psf (P), (PR) or (U) Table 1.5-1 Table 7.3-1 Table 7.3-2 (Y or N)
Geometry T.O.W., Top of Parapet Elevatio J.B.E., Joist Bearing Elevation = td, Thickness of Joist, Deck, and Wb1, length of upper roof = Wb2, length of lower roof = x, Joist #1 dist. from wall = S1, First Joist Spacing = S2, Second Joist Spacing = S3, Third Joist Spacing = S4, Fourth Joist Spacing = S5, Fifth Joist Spacing =		40.00 34.60 5.00 0.80 350.00 6.25 6.25 6.25 6.25 6.25 6.25	feet inches feet feet feet feet feet feet
2. Balanced Snow Load Check			
Is, Importance Factor = Pf = 0.7 Ce Ct Is Pg = Pm = Is Pg = Rain on snow surcharge = Pmin =		14.00 20.00	Table 1.5-2 psf (7.3-1) psf (7.3.4) psf (7.10) psf
3. Drifted Snow Load Check			
Pf = Pg = D = 0.13 Pg + 14.0 \le 30 pcf = hb = Pf/D = Wb = hd = 0.75[0.43 Wb2^1/3 (Pg+10) hd + hb = hr = hc = hr - hb = Wd = 4 hd or 4 [hd^2/hc] \le 8 hc Pmax = D (hd + hb) \le D hr = Pd =D hd \le D hc =	-	1.20 350.00	pcf (7.7-1) feet feet feet (Fig. 7.6-1) feet feet feet feet psf
4. Uniform Load Summary			
Drifted Snow Load w, wall w, Joist #1 w, Joist #2 w, Joist #3 w, Joist #4 w, Joist #5	Snow 242.0 384.8 252.6 155.7 125.0 125.0	Total 279.5 459.8 327.6 230.7 200.0 200.0	plf * plf * plf * plf * plf
Balanced Load Check			
	Pmin (20 psf) 62.5 125.0 125.0 125.0 125.0 125.0	Total 100.0 200.0 200.0 200.0 200.0 200.0	plf plf plf plf

* indicates controlling load (drifted vs. undrifted)

200.0 plf *

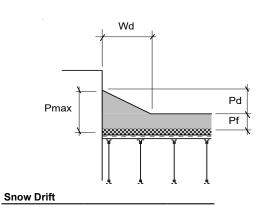
125.0

w, Joist #5


Revised 05/20/19, Carrie Johnson

Copyright © 10/19/93

Date	5/5/2022	Sheet No.	of	
Project	2220003 Building 3			
Subject	Snow Drift Fast/West - 4	875ft Parapet		


FLAT ROOF SNOW DRIFT - Joists Parallel to Wall

ASCE 7-16

Configuration

Note: For projections, input width of projection for Wb1 and input maximum of leeward and windward drift length for Wb2. For parapets, input the parapet width as Wb1.

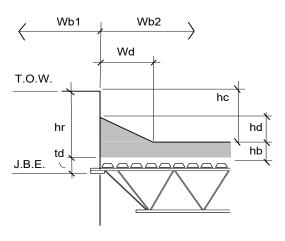
1. Input

1. Input			
Dead Load = Roof Live Load = Pg, Ground Snow Load = Drift for parapet, projection, or u Risk Categoy (I, II, III, or IV) = Ce, Exposure Factor = Ct, Thermal Factor = Use Pg minimum for drift calc's		20 20 P II 1.0 1.0	psf psf (P), (PR) or (U) Table 1.5-1 Table 7.3-1 Table 7.3-2 (Y or N)
Geometry T.O.W., Top of Parapet Elevation J.B.E., Joist Bearing Elevation = td, Thickness of Joist, Deck, and Wb1, length of upper roof = Wb2, length of lower roof = x, Joist #1 dist. from wall = S1, First Joist Spacing = S3, Third Joist Spacing = S4, Fourth Joist Spacing = S5, Fifth Joist Spacing =	-	42.50 36.19 5.00 0.80 350.00 6.25 6.25 6.25 6.25 6.25 6.25	feet inches feet feet feet feet feet feet
2. Balanced Snow Load Check			
Is, Importance Factor = Pf = 0.7 Ce Ct Is Pg = Pm = Is Pg = Rain on snow surcharge = Pmin =		14.00 20.00	Table 1.5-2 psf (7.3-1) psf (7.3.4) psf (7.10) psf
3. Drifted Snow Load Check			
$Pf = Pg = D = 0.13 Pg + 14.0 \le 30 pcf = hb = Pf/D = Wb = hd = 0.75[0.43 Wb2^1/3 (Pg+10) hd + hb = hr = hc = hr - hb = Wd = 4 hd or 4 [hd^2/hc] \le 8 hc Pmax = D (hd + hb) \le D hr = Pd = D hd \le D hc = Pd = D hd = D hd \le D hc = Pd = D hd \le D hc = Pd = D hd \le D hc = Pd = D hd = D $, <u>-</u>	1.20 350.00	pcf (7.7-1) feet feet feet (Fig. 7.6-1) feet feet feet feet psf
4. Uniform Load Summary			
Drifted Snow Load w, wall w, Joist #1 w, Joist #2 w, Joist #3 w, Joist #4 w, Joist #5	Snow 259.3 396.9 234.8 139.4 125.0 125.0	Total 296.8 471.9 309.8 214.4 200.0 200.0	plf * plf * plf * plf * plf
Balanced Load Check w, wall w, Joist #1 w, Joist #2 w, Joist #3 w, Joist #4 w, Joist #5	Pmin (20 psf) 62.5 125.0 125.0 125.0 125.0 125.0	Total 100.0 200.0 200.0 200.0 200.0 200.0	plf plf plf plf

* indicates controlling load (drifted vs. undrifted)

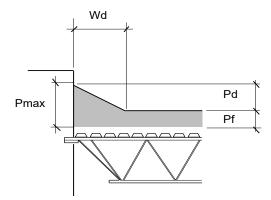
125.0

200.0 plf *


w, Joist #5

Revised 05/20/19, Carrie Johnson Copyright © 10/19/93

Date	5/5/2022	Sheet No.	of
Project	2220003 Building 3		
Subject			


FLAT ROOF SNOW DRIFT - Joists Perpendicular to Wall

ASCE 7-16

Configuration

Note: For projections, input width of projection for Wb1 and input maximum of leeward and windward drift length for Wb2. For parapets, input the parapet width as Wb1.

1. Input

Dead Load = Roof Live Load = Pg, Ground Snow Load = Drift for parapet, projection, or upper roof? Risk Categoy (I, II, III, or IV) = Ce, Exposure Factor = Ct, Thermal Factor = Use Pg minimum for drift calc's (Pf = Pg)?	20 20 P II 1.00 1.00	psf psf (P), (PR) or (U) Table 1.5-1 Table 7.3-1 Table 7.3-2 (Y or N)
Geometry		
T.O.W., Top of Parapet Elevation =	37.50	feet
J.B.E., Joist Bearing Elevation =	33.58	feet
td, Thickness of Joist, Deck, and Insulation =	5.00	inches
Wb1, length of upper roof =	0.80	feet
Wb2, length of lower roof =	220.83	feet
S, Joist Spacing =	6.25	feet
L, Joist Span =	60.00	feet

2. Balanced Snow Load Check

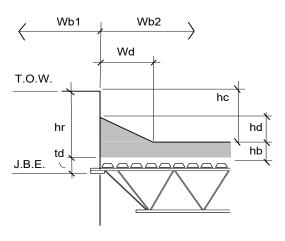
ls, Importance Factor =	1.00 Table 1.5-2
Pf = 0.7 Ce Ct ls Pg =	14.00 psf (7.3-1)
Pm = ls Pg =	20.00 psf (7.3.4)
Rain on snow surcharge =	5.00 psf (7.10)
Pmin =	20.00 psf

3. Drifted Snow Load Check

Pf = 0.7 Ce Ct Is Pg =	14.00 psf
D = 0.13 Pg + 14.0 ≤ 30 pcf =	16.60 pcf
hb = Pf/D =	0.84 ft
Wb =	220.83 ft
hd = 0.75[0.43 Wb2^1/3 (Pg+10)^1/4-1.5] Is^2	3.43 ft
hd + hb =	4.27 ft
hr =	3.50 ft
hc = hr - hb =	2.66 ft
Wd = 4 hd or 4 [hd^2/hc] ≤ 8 hc =	17.68 ft
Pmax = D (hd + hb) ≤ D hr =	58.16 psf
Pd =D hd ≤ D hc =	44.16 psf

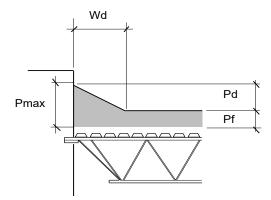
4. Uniform Load Summary

Drifted Snow Load


	Snow	Total
R left =	4825.0	7075.0 lbs
R right =	2864.6	5114.6 lbs
M max =	46892.0	80490.5 ft-lbs
w base =	87.5	162.5 plf
w drift =	276.0	351.0 plf
w equiv =	160.8	235.8 plf *
Load Without Drift		
	Live	Total
w (Live = 20 psf) =	125.0	200.0 plf

Revised 05/20/19, Carrie Johnson Copyright © 10/19/93

Date	5/5/2022	Sheet No.	of
Project	2220003 Building 3		
Subject			


FLAT ROOF SNOW DRIFT - Joists Perpendicular to Wall

ASCE 7-16

Configuration

Note: For projections, input width of projection for Wb1 and input maximum of leeward and windward drift length for Wb2. For parapets, input the parapet width as Wb1.

1. Input

Dead Load = Roof Live Load = Pg, Ground Snow Load = Drift for parapet, projection, or upper roof? Risk Categoy (I, II, III, or IV) = Ce, Exposure Factor = Ct, Thermal Factor = Use Pg minimum for drift calc's (Pf = Pg)?	20 20 P II 1.00 1.00	psf psf (P), (PR) or (U) Table 1.5-1 Table 7.3-1 Table 7.3-2 (Y or N)
Geometry		
T.O.W., Top of Parapet Elevation =	37.50	feet
J.B.E., Joist Bearing Elevation =	33.58	feet
td, Thickness of Joist, Deck, and Insulation =	5.00	inches
Wb1, length of upper roof =	0.80	feet
Wb2, length of lower roof =	220.83	feet
S, Joist Spacing =	6.25	feet
L, Joist Span =	60.00	feet

2. Balanced Snow Load Check

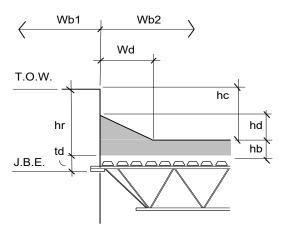
ls, Importance Factor =	1.00 Table 1.5-2
Pf = 0.7 Ce Ct ls Pg =	14.00 psf (7.3-1)
Pm = ls Pg =	20.00 psf (7.3.4)
Rain on snow surcharge =	5.00 psf (7.10)
Pmin =	20.00 psf

3. Drifted Snow Load Check

Pf = 0.7 Ce Ct Is Pg =	14.00 psf
D = 0.13 Pg + 14.0 ≤ 30 pcf =	16.60 pcf
hb = Pf/D =	0.84 ft
Wb =	220.83 ft
hd = 0.75[0.43 Wb2^1/3 (Pg+10)^1/4-1.5] Is^2	3.43 ft
hd + hb =	4.27 ft
hr =	3.50 ft
hc = hr - hb =	2.66 ft
Wd = 4 hd or 4 [hd^2/hc] ≤ 8 hc =	17.68 ft
Pmax = D (hd + hb) ≤ D hr =	58.16 psf
Pd =D hd ≤ D hc =	44.16 psf

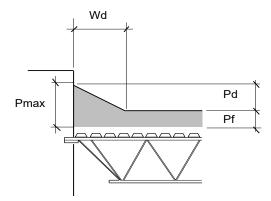
4. Uniform Load Summary

Drifted Snow Load


	Snow	Total
R left =	4825.0	7075.0 lbs
R right =	2864.6	5114.6 lbs
M max =	46892.0	80490.5 ft-lbs
w base =	87.5	162.5 plf
w drift =	276.0	351.0 plf
w equiv =	160.8	235.8 plf *
Load Without Drift		
	Live	Total
w (Live = 20 psf) =	125.0	200.0 plf

Revised 05/20/19, Carrie Johnson Copyright © 10/19/93

Date	5/5/2022	Sheet No.	of	
Project	2220003 Building 3			
Subject	South Drift 42'-0"			


FLAT ROOF SNOW DRIFT - Joists Perpendicular to Wall

ASCE 7-16

Configuration

Note: For projections, input width of projection for Wb1 and input maximum of leeward and windward drift length for Wb2. For parapets, input the parapet width as Wb1.

1. Input

20 20 P II 1.00 1.00	psf psf (P), (PR) or (U) Table 1.5-1 Table 7.3-1 Table 7.3-2 (Y or N)
42.00	feet
37.58	feet
5.00	inches
0.80	feet
220.83	feet
6.25	feet
53.33	feet
	20 20 P II 1.00 1.00 N 42.00 37.58

2. Balanced Snow Load Check

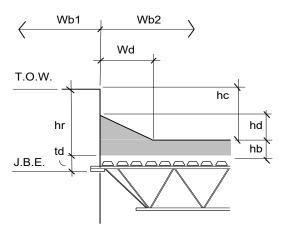
ls, Importance Factor =	1.00 Table 1.5-2
Pf = 0.7 Ce Ct ls Pg =	14.00 psf (7.3-1)
Pm = ls Pg =	20.00 psf (7.3.4)
Rain on snow surcharge =	5.00 psf (7.10)
Pmin =	20.00 psf

3. Drifted Snow Load Check

Pf = 0.7 Ce Ct Is Pg =	14.00 psf
D = 0.13 Pg + 14.0 ≤ 30 pcf =	16.60 pcf
hb = Pf/D =	0.84 ft
Wb =	220.83 ft
hd = 0.75[0.43 Wb2^1/3 (Pg+10)^1/4-1.5] Is^2	3.43 ft
hd + hb =	4.27 ft
hr =	4.00 ft
hc = hr - hb =	3.16 ft
Wd = 4 hd or 4 [hd^2/hc] ≤ 8 hc =	14.88 ft
$Pmax = D (hd + hb) \le D hr =$	66.46 psf
Pd =D hd ≤ D hc =	52.46 psf

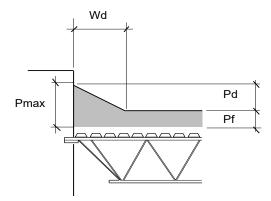
4. Uniform Load Summary

Drifted Snow Load


	Snow	Total
R left =	4546.0	6546.0 lbs
R right =	2560.3	4560.3 lbs
M max =	37456.7	63987.5 ft-lbs
w base =	87.5	162.5 plf
w drift =	327.8	402.8 plf
w equiv =	170.5	245.5 plf *
Load Without Drift		
	Live	Total
w (Live = 20 psf) =	125.0	200.0 plf

Revised 05/20/19, Carrie Johnson Copyright © 10/19/93

Date	5/5/2022	Sheet No.	of	
Project	2220003 Building 3			
Subject	South Drift 42'-0"			


FLAT ROOF SNOW DRIFT - Joists Perpendicular to Wall

ASCE 7-16

Configuration

Note: For projections, input width of projection for Wb1 and input maximum of leeward and windward drift length for Wb2. For parapets, input the parapet width as Wb1.

1. Input

Dead Load = Roof Live Load = Pg, Ground Snow Load = Drift for parapet, projection, or upper roof? Risk Categoy (I, II, III, or IV) = Ce, Exposure Factor = Ct, Thermal Factor = Use Pg minimum for drift calc's (Pf = Pg)?	20 20 P II 1.00 1.00	psf psf (P), (PR) or (U) Table 1.5-1 Table 7.3-1 Table 7.3-2 (Y or N)
Geometry		
T.O.W., Top of Parapet Elevation =	40.00	feet
J.B.E., Joist Bearing Elevation =	37.75	feet
td, Thickness of Joist, Deck, and Insulation =	5.00	inches
Wb1, length of upper roof =	0.80	feet
Wb2, length of lower roof =	220.83	feet
S, Joist Spacing =	6.25	feet
L, Joist Span =	53.33	feet

2. Balanced Snow Load Check

ls, Importance Factor =	1.00 Table 1.5-2
Pf = 0.7 Ce Ct Is Pg =	14.00 psf (7.3-1)
Pm = ls Pg =	20.00 psf (7.3.4)
Rain on snow surcharge =	5.00 psf (7.10)
Pmin =	20.00 psf

3. Drifted Snow Load Check

Pf = 0.7 Ce Ct Is Pg =	14.00 psf
D = 0.13 Pg + 14.0 ≤ 30 pcf =	16.60 pcf
hb = Pf/D =	0.84 ft
Wb =	220.83 ft
hd = 0.75[0.43 Wb2^1/3 (Pg+10)^1/4-1.5] Is^2	3.43 ft
hd + hb =	4.27 ft
hr =	1.83 ft
hc = hr - hb =	0.99 ft
Wd = 4 hd or 4 [hd^2/hc] ≤ 8 hc =	7.92 ft
Pmax = D (hd + hb) ≤ D hr =	30.43 psf
Pd =D hd ≤ D hc =	16.43 psf

4. Uniform Load Summary

Drifted Snow Load

	Snow	Total
R left =	2719.9	4719.9 lbs
R right =	2353.5	4353.5 lbs
M max =	31650.2	58315.8 ft-lbs
w base =	87.5	162.5 plf
w drift =	102.7	177.7 plf
w equiv =	102.0	177.0 plf
Load Without Drift		
	Live	Total
w (Live = 20 psf) =	125.0	200.0 plf *

	Date 4/29/2022		Sheet		of	
	Job 2220003 Building 3 Subject North Wind TOW: 37.5ft					
	Subject North Wind TOW: 37.5ft					
DANALYSIS: ANALYTICAL - ALL HEIGHTS METHOD						
E 7-16, Chapters 26, 27 and 30	1. Input					
Windward Leeward	Design Parameters					
Window Pressure	Basic Wind Speed, V =					6.5, Fig. 1A-2D)
of the second seco	Exposure Category (B, C, or D) = Building Risk Category (I, II, III, IV) =				(Section 26.7) (Table 1.5-1)	
	Civil finished floor elevation (if unknown input 0) =				feet (Sect. 26.9	. Table 26.9-1)
He He Height	······································					, ,
	Eave Height, He =			33.58		
	Max Building Height or Ridge Height above ground le	evel, Hr =		34.61		
	Parapet Height above ground level, Hp = Building Width Perpendicular to Wind, B =			37.50	feet (max bldg (dim)
L	Building Width Parallel to Wind, L =			220.83		
	Enclosure Classification =				(Section 26.12)	
FER TO FIGURE 27.3-1	Roof Configuration = Gabled, Hipp	ped or Mond	slope Ro			
	Angle of Plane of Roof From Horizontal, θ =			1.20	degrees	
I	Is building on or near a hill, ridge, or escarpment?			N	(Y or N) (Sectio	n 26.8)
	Height of Hill or Escarpment relative to upwind terrain					i.8, Fig. 26.8-1)
x (upwind) x	Horiz. Dist. Upwind to Point Where Elevation = H/2, L	_h =			feet (Section 26	- ,
	Horiz. Dist. from Crest to Building Site, x =				feet (Section 26	i.8, Fig. 26.8-1)
► V(z)	2D Ridge, 2D Escarpment, or Axisymmetrical Hill =				(R, E, or H)	
	Is the building site upwind or downwind of the crest?			DOWN	(up, down)	
	2. Calculations - Main Wind Force Resisting System					
	Equivalent Allowable Stress Design Wind Speed, Vas	sd =		84.43	mph (IBC 2018	1609.3.1)
	Mean roof height, h =			33.58	feet	
	Kz, velocity pressure exposure coefficient at hz = 34.6	61ft =		1.01	Table 26.10-1	(use with qz)
	Kz, velocity pressure exposure coefficient at hh = 33.	.58ft =		1.00	Table 26.10-1	(use with qh)
	Kz, velocity pressure exposure coefficient at hp = 37.5	.5ft =			Table 26.10-1	(use with qp)
2-D Ridge or Axisymmetrical Hill	Kzt,topographic factor at hz = 34.61ft =				Figure 26.8-1	(use with qz)
ER TO FIGURE 26.8-1	Kzt,topographic factor at hh = 33.58ft =				Figure 26.8-1	(use with qh)
	Kzt,topographic factor at hp = 37.5ft = Kd, wind directionality factor =				Figure 26.8-1 Table 26.6-1	(use with qp)
	Ke, ground elevation factor at				Table 26.9-1	
	G, gust factor =			0.85	Section 26.11.4	
	qz, velocity pressure at hz = 34.61ft =			26 11	psf (Eq. 26.10-1	D)
	qh, velocity pressure at hh = 33.58ft =			25.85	psf (Eq. 26.10-')
	qp, velocity pressure at hp = 37.5ft =			26.63	psf (Eq. 26.10-)
	Walls: P = q(GCpf-GCpi) Eqn. 27.3-1	qz	GCp	GCpi	(1.0)P	(0.6)P
	Windward pressure	26.11	0.68	=	17.8 psf	10.7 pst
		qh	GCp	GCpi	(1.0)P	(0.6)P
	Leeward Pressure	25.85	-0.43		-11 psf	-6.6 psf
	Sidewall pressure	25.85	-0.60	0.18	-20 psf	-12 psf
	Internal Pressure	25.85		0.18	4.7 psf	2.8 psf
	(1.0)W = (1.0)(Windward + Leeward Pressure) = (0.6)W =(0.6)(Windward + Leeward Pressure) =		17.76 psf + 10.99 psf = 10.65 psf + 6.59 psf =		28.7 psf 17.2 psf	
	Parapets: Pp =qp(GCpn) Eqn. 27.3-3	qp	GCpn		(1.0)Pp	(0.6)Pp
	Windward parapet pressure	26.63	1.5	-	39.9 psf	24 psf
	Leeward parapet pressure	26.63	-1.0		-26.6 psf	-16 psf
	Windward + Leeward Pressure	26.63	2.50		66.6 psf	39.9 ps
	Roof Normal to Ridge (θ≥10 degrees)	qh	GCp	GCpi	(1.0)P	(0.6)P
	Windward Pressure case i	25.85	-0.60	0.18	-20 psf	-12 psf
	case ii	25.85	-0.15	0.18	-8.6 psf	-5.2 pst
	Leeward Pressure	25.85	-0.26	0.18	-11.2 psf	-6.7 pst
	D. CALOU. O. I'V.	qh	GCp	GCpi	(1.0)P	(0.6)P
	Root All Other Conditions		-0.77	0.18	-24.4 psf	-14.7 ps
	Roof All Other Conditions For 0 to h/2 = 0 ft to 16.79 ft	25.85	-0.11	0.10		
	For 0 to h/2 = 0 ft to 16.79 ft h/2 to h = 16.79 ft to 33.58 ft	25.85	-0.77	0.18	-24.4 psf	-14.7 ps
	For 0 to h/2 = 0 ft to 16.79 ft h/2 to h = 16.79 ft to 33.58 ft h to 2h = 33.58 ft to 67.16 ft	25.85 25.85	-0.77 -0.43	0.18 0.18	-24.4 psf -15.6 psf	-14.7 ps -9.4 psf
	For 0 to h/2 = 0 ft to 16.79 ft h/2 to h = 16.79 ft to 33.58 ft	25.85	-0.77	0.18	-24.4 psf	
	For 0 to h/2 = 0 ft to 16.79 ft h/2 to h = 16.79 ft to 33.58 ft h to 2h = 33.58 ft to 67.16 ft	25.85 25.85	-0.77 -0.43	0.18 0.18	-24.4 psf -15.6 psf	-14.7 ps -9.4 psf

	Date 4/29/2022		Sheet		of	
	Date 4/29/2022 Job 2220003 Building 3		Sheet		01	
	Subject North Wind TOW: 38.5ft					
D ANALYSIS: ANALYTICAL - ALL HEIGHTS METHOD						
E 7-16, Chapters 26, 27 and 30						
Windward Leeward	1. Input Design Parameters					
Windward Leeward Pressure Pressure	Basic Wind Speed, V =			109	mph (Section 26	5.5, Fig. 1A-2D)
Pres	Exposure Category (B, C, or D) =				(Section 26.7)	, ,
	Building Risk Category (I, II, III, IV) =				(Table 1.5-1)	
	Civil finished floor elevation (if unknown input 0) =			0.00	feet (Sect. 26.9,	Table 26.9-1)
	Eave Height, He =			33.58	faat	
	Max Building Height or Ridge Height above ground leve	el Hr=		33.50		
	Parapet Height above ground level, Hp =	,		38.50		
	Building Width Perpendicular to Wind, B =				feet (max bldg d	im)
ļļ	Building Width Parallel to Wind, L = Enclosure Classification =		Enclosed	220.83 Ruildings	feet (Section 26.12)	
	Roof Configuration = Gabled, Hippe				(Section 26.12)	
FER TO FIGURE 27.3-1	Angle of Plane of Roof From Horizontal, $\theta =$				degrees	
	Is building on or poor a bill ridge, or occorrement?			N	(Y or N) (Sectior	26.9)
	Is building on or near a hill, ridge, or escarpment? Height of Hill or Escarpment relative to upwind terrain, I	н =			feet (Section 26.	,
	Horiz. Dist. Upwind to Point Where Elevation = H/2, Lh				feet (Section 26.	
x (upwind) x	Horiz. Dist. from Crest to Building Site, x =				feet (Section 26.	
	2D Ridge, 2D Escarpment, or Axisymmetrical Hill =				(R, E, or H)	. ,
► V(z)	Is the building site upwind or downwind of the crest?				(up, down)	
	2. Calculations - Main Wind Force Resisting System	-		04.40	mph (IBC 2018,	1600.2.4)
	Equivalent Allowable Stress Design Wind Speed, Vasd	=		84.43 33.58	• •	1609.3.1)
	Mean roof height, h = Kz, velocity pressure exposure coefficient at hz = 34.61	1ft =			Table 26.10-1	(use with qz)
	Kz, velocity pressure exposure coefficient at hz = 34.54 Kz, velocity pressure exposure coefficient at hh = 33.58				Table 26.10-1	(use with qh)
	Kz, velocity pressure exposure coefficient at hp = 38.5f				Table 26.10-1	(use with qp)
2-D Ridge or Axisymmetrical Hill	Kzt,topographic factor at hz = 34.61ft =				Figure 26.8-1	(use with qz)
	Kzt,topographic factor at hh = 33.58ft =			1.00	Figure 26.8-1	(use with qh)
ER TO FIGURE 26.8-1	Kzt,topographic factor at hp = 38.5ft =				Figure 26.8-1	(use with qp)
	Kd, wind directionality factor =				Table 26.6-1	
	Ke, ground elevation factor at G, gust factor =				Table 26.9-1 Section 26.11.4	
	qz, velocity pressure at hz = 34.61ft = qh, velocity pressure at hh = 33.58ft =				psf (Eq. 26.10-1	
	qp, velocity pressure at hp = 38.5ft =				psf (Eq. 26.10-1 psf (Eq. 26.10-1	
	Walls: P = q(GCpf-GCpi) Eqn. 27.3-1		GCn	GCpi	(1.0)P	(0.6)P
	Windward pressure	qz 26.11	GCp 0.68	oohi -	17.8 psf	10.7 psf
	·				•	
	Leeward Pressure	qh 25.85	GCp -0.43	GCpi	(1.0)P -11 psf	(0.6)P -6.6 psf
	Sidewall pressure	25.85	-0.43	0.18	-11 psi -20 psf	-0.0 psi -12 psf
	Internal Pressure	25.85		0.18	4.7 psf	2.8 psf
	(1.0)W = (1.0)(Windward + Leeward Pressure) = (0.6)W = (0.6)(Windward + Leeward Pressure) =		17.76 psf + 10.99 psf = 10.65 psf + 6.59 psf =		28.7 psf 17.2 psf	
			-	pai -		
	Parapets: Pp =qp(GCpn) Eqn. 27.3-3	qp	GCpn	-	(1.0)Pp	(0.6)Pp
	Windward parapet pressure Leeward parapet pressure	26.63 26.63	1.5 -1.0		39.9 psf -26.6 psf	24 psf -16 psf
	Windward + Leeward Pressure	26.63	2.50		66.6 psf	39.9 psf
	Roof Normal to Ridge (θ≥10 degrees) Windward Pressure case i	qh	GCp -0.60	GCpi	(1.0)P -20 psf	(0.6)P -12 psf
	case ii	25.85 25.85	-0.60	0.18 0.18	-20 psr -8.6 psf	-12 psr -5.2 psr
		25.85	-0.26	0.18	-11.2 psf	-6.7 psf
	Leeward Pressure					
	Leeward Pressure	ah	GCn	GCni	(1 0\P	(0 6)P
		qh 25.85	GCp -0.77	GCpi 0.18	(1.0)P -24.4 psf	(0.6)P -14.7 psf
	Leeward Pressure Roof All Other Conditions					-14.7 psf
	Leeward Pressure Roof All Other Conditions For 0 to $h/2 = 0$ ft to 16.79 ft h/2 to $h = 16.79$ ft to 33.58 ft h to $2h = 33.58$ ft to 67.16 ft	25.85 25.85 25.85	-0.77 -0.77 -0.43	0.18 0.18 0.18	-24.4 psf -24.4 psf -15.6 psf	-14.7 psf -14.7 psf -9.4 psf
	Leeward Pressure Roof All Other Conditions For 0 to h/2 = 0 ft to 16.79 ft h/2 to h = 16.79 ft to 33.58 ft	25.85 25.85	-0.77 -0.77	0.18 0.18	-24.4 psf -24.4 psf	-14.7 psf -14.7 psf
	Leeward Pressure Roof All Other Conditions For 0 to $h/2 = 0$ ft to 16.79 ft h/2 to $h = 16.79$ ft to 33.58 ft h to $2h = 33.58$ ft to 67.16 ft	25.85 25.85 25.85	-0.77 -0.77 -0.43	0.18 0.18 0.18	-24.4 psf -24.4 psf -15.6 psf	-14.7 psf -14.7 psf -9.4 psf

	Date 4/29/2022		Sheet		of	
	Job 2220003 Building 3		Chect		01	
	Subject South Wind TOW: 40.0ft					
ANALYSIS: ANALYTICAL - ALL HEIGHTS METHOD						
7-16, Chapters 26, 27 and 30	1. Input					
undward (an	Design Parameters					
Winow Pressure Pressure	Basic Wind Speed, V =				mph (Section 26	6.5, Fig. 1A-2D)
	Exposure Category (B, C, or D) =				(Section 26.7)	
	Building Risk Category (I, II, III, IV) =				(Table 1.5-1)	Table 26.0.1)
H He Heart	Civil finished floor elevation (if unknown input 0) =			0.00	feet (Sect. 26.9,	Table 26.9-1)
	Eave Height, He =			33.58	feet	
	Max Building Height or Ridge Height above ground leve	el, Hr =		37.75		
	Parapet Height above ground level, Hp =			40.00		
L	Building Width Perpendicular to Wind, B = Building Width Parallel to Wind, L =			1150.00 220.83	feet (max bldg d	lim)
·	Enclosure Classification =		Enclosed		(Section 26.12)	
FER TO FIGURE 27.3-1	Roof Configuration = Gabled, Hipped				,	
	Angle of Plane of Roof From Horizontal, θ =			1.20	degrees	
	Is building on or near a hill, ridge, or escarpment?			N	(Y or N) (Sectior	n 26.8)
	Height of Hill or Escarpment relative to upwind terrain, H	H =			feet (Section 26	,
x (upwind) x	Horiz. Dist. Upwind to Point Where Elevation = H/2, Lh	=			feet (Section 26	- ,
	Horiz. Dist. from Crest to Building Site, x =				feet (Section 26	.8, Fig. 26.8-1)
	2D Ridge, 2D Escarpment, or Axisymmetrical Hill =				(R, E, or H)	
V(z) I	Is the building site upwind or downwind of the crest?			DOWN	(up, down)	
	2. Calculations - Main Wind Force Resisting System					
	Equivalent Allowable Stress Design Wind Speed, Vasd	=		84.43	mph (IBC 2018,	1609.3.1)
	Mean roof height, h =			33.58	feet	
	Kz, velocity pressure exposure coefficient at hz = 37.75				Table 26.10-1	(use with qz)
	Kz, velocity pressure exposure coefficient at hh = 33.58				Table 26.10-1	(use with qh)
	Kz, velocity pressure exposure coefficient at hp = 40ft =				Table 26.10-1	(use with qp)
2-D Ridge or Axisymmetrical Hill	Kzt,topographic factor at hz = 37.75ft = Kzt,topographic factor at hh = 33.58ft =				Figure 26.8-1 Figure 26.8-1	(use with qz) (use with qh)
ER TO FIGURE 26.8-1	Kzt,topographic factor at hp = 40ft =				Figure 26.8-1	(use with qn)
	Kd, wind directionality factor =				Table 26.6-1	(use with qp)
	Ke, ground elevation factor at				Table 26.9-1	
	G, gust factor =			0.85	Section 26.11.4	
	qz, velocity pressure at hz = 37.75ft =			26.63	psf (Eq. 26.10-1)
	qh, velocity pressure at hh = 33.58ft =			25.85	psf (Eq. 26.10-1)
	qp, velocity pressure at hp = 40ft =			26.89	psf (Eq. 26.10-1)
	Walls: P = q(GCpf-GCpi) Eqn. 27.3-1	qz	GCp	GCpi	(1.0)P	(0.6)P
	Windward pressure	26.63	0.68		18.1 psf	10.9 psf
		qh	GCp	GCpi	(1.0)P	(0.6)P
	Leeward Pressure	25.85	-0.43		-11 psf	-6.6 psf
	Sidewall pressure Internal Pressure	25.85 25.85	-0.60	0.18 0.18	-20 psf 4.7 psf	-12 psf 2.8 psf
	internet ressure	20.00		0.10	ч./ ры	2.0 psi
	(1.0)W = (1.0)(Windward + Leeward Pressure) = (0.6)W =(0.6)(Windward + Leeward Pressure) =			0.99 psf = 6.59 psf =	29.1 psf 17.5 psf	
	Parapets: Pp =qp(GCpn) Eqn. 27.3-3	qp	GCpn		(1.0)Pp	(0.6)Pp
	Windward parapet pressure	26.89	1.5		40.3 psf	24.2 psf
	Leeward parapet pressure	26.89	-1.0		-26.9 psf	-16.1 ps
	Windward + Leeward Pressure	26.89	2.50		67.2 psf	40.3 psf
	Roof Normal to Ridge (θ≥10 degrees)	qh	GCp	GCpi	(1.0)P	(0.6)P
	Windward Pressure case i	25.85	-0.60	0.18	-20 psf	-12 psf
	case ii	25.85 25.85	-0.15 -0.26	0.18 0.18	-8.6 psf	-5.2 psf
	Leeward Pressure	23.05	-0.20	0.10	-11.2 psf	-0.7 psi
	Leeward Pressure Roof All Other Conditions	qh	GCp	GCpi	(1.0)P	(0.6)P
	Leeward Pressure Roof All Other Conditions For 0 to h/2 = 0 ft to 16.79 ft	qh 25.85	GCp -0.77	GCpi 0.18	(1.0)P -24.4 psf	(0.6)P -14.7 ps
	Leeward Pressure Roof All Other Conditions For 0 to h/2 = 0 ft to 16.79 ft h/2 to h = 16.79 ft to 33.58 ft	qh 25.85 25.85	GCp -0.77 -0.77	GCpi 0.18 0.18	(1.0)P -24.4 psf -24.4 psf	(0.6)P -14.7 pst -14.7 pst
	Leeward Pressure Roof All Other Conditions For 0 to $h/2 = 0$ ft to 16.79 ft h/2 to $h = 16.79$ ft to 33.58 ft h to 2h = 33.58 ft to 67.16 ft	qh 25.85 25.85 25.85	GCp -0.77 -0.77 -0.43	GCpi 0.18 0.18 0.18	(1.0)P -24.4 psf -24.4 psf -15.6 psf	-14.7 pst -14.7 pst -9.4 psf
	Leeward Pressure Roof All Other Conditions For 0 to $h/2 = 0$ ft to 16.79 ft h/2 to $h = 16.79$ ft to 33.58 ft h to 2h = 33.58 ft to 67.16 ft >2h = >67.16 ft	qh 25.85 25.85	GCp -0.77 -0.77	GCpi 0.18 0.18	(1.0)P -24.4 psf -24.4 psf	(0.6)P -14.7 pst -14.7 pst -9.4 psf -6.7 psf
	Leeward Pressure Roof All Other Conditions For 0 to $h/2 = 0$ ft to 16.79 ft h/2 to $h = 16.79$ ft to 33.58 ft h to 2h = 33.58 ft to 67.16 ft	qh 25.85 25.85 25.85	GCp -0.77 -0.77 -0.43	GCpi 0.18 0.18 0.18	(1.0)P -24.4 psf -24.4 psf -15.6 psf	(0.6)P -14.7 ps -14.7 ps -9.4 psf

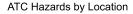
	Date	4/29/202			Sheet		of	
	Job Subject		Building 3 ind TOW: 40.0ft					
		Codar W	1011.40.01					
ND ANALYSIS: ANALYTICAL - ALL HEIGHTS METHOD CE 7-16, Chapters 27 and 30								
	3. Input - Compon					4000.00	guara faat	
			Components, 1 = Components, 2 =				square feet square feet	
			pet Components, 1 =				square feet	
			pet Components, 2 =				square feet	
			Components, 1 =				square feet	
			Components, 2 =				square feet	
			hangs or Canopies, 1	=			square feet	
(5) h			hangs or Canopies, 2				square feet	
			and Cladding Eleme					
			xposure coefficient at xposure coefficient at				Fable 26.10-1 Fable 26.10-1	(use with qh (use with qp
<u>(3</u> (5)			at hh = 33.58ft =	np – 4011 –			Figure 26.8-1	(use with qh
La Ver			at hp = 40ft =				Figure 26.8-1	(use with qp
		irectionality fa					Table 26.6-1	(use min qp
ELEVATION		l elevation fa					Table 26.9-1	
	G, gust fac		olor at				Section 26.11.4	
	qh, velocity	/ pressure at	hh = 33.58ft =			25.85 p	osf (Eq. 26.10-1)
A (1	qp, velocity	/ pressure at	hp = 40ft =			26.89 p	osf (Eq. 26.10-1)
	Walls: trib. Are			qh	GCp	GCpi	(1.0)P	(0.6)P
	Zone 4	Interior Z		25.85	-0.72	0.18	-23.3 psf	-14 psf
	Zone 5	End Zon	e	25.85	-0.72	0.18	-23.3 psf	-14 psf
	Zone 4 and	15		25.85	0.63	-0.18	20.9 psf	12.6 ps
0.2h	Walls: trib. Are	ea = 500 sq.	ft.	qh	GCp	GCpi	(1.0)P	(0.6)P
	Zone 4	Interior Z	lone	25.85	-0.72	0.18	-23.3 psf	-14 psf
	Zone 5	End Zon	e	25.85	-0.72	0.18	-23.3 psf	-14 psf
	Zone 4 and	15		25.85	0.63	-0.18	20.9 psf	12.6 ps
0.6h	Parapets: trib.	Area = 100	0 og ft	610	GCp	GCpi	(1.0)P	(0.6)P
	Case A	Zone 4	Interior Zone	qp 26.89	1.89	0.00	50.8 psf	30.5 ps
0 <u>.6h'</u>	Case A	Zone 5	End Zone	26.89	1.89	0.00	50.8 psf	30.5 ps
		Zone o	End Zone	20.00	1.00	0.00	00.0 por	00.0 p3
\bigcirc	Case B	Zone 4	Interior Zone	26.89	1.35	0.00	36.3 psf	21.8 pst
		Zone 5	End Zone	26.89	1.35	0.00	36.3 psf	21.8 ps
PLAN	Parapets: trib.			qp	GCp	GCpi	(1.0)P	(0.6)P
	Case A	Zone 4 Zone 5	Interior Zone End Zone	26.89 26.89	1.89 1.89	0.00 0.00	50.8 psf 50.8 psf	30.5 psi 30.5 psi
							-	-
	Case B	Zone 4 Zone 5	Interior Zone End Zone	26.89 26.89	1.35 1.35	0.00 0.00	36.3 psf 36.3 psf	21.8 ps 21.8 ps
		2010 0	End Zono	20.00	1.00	0.00	00.0 por	21.0 p5
	Roofs: trib. Ar		. ft.	qh	GCp	GCpi	(1.0)P	(0.6)P
\backslash	Corner Zor			25.85	-1.61	0.18	-46.2 psf	-27.7 ps
10-	End Zone (· /		25.85	-1.50	0.18	-43.5 psf	-26.1 ps
θ	Interior Zor			25.85	-1.08	0.18	-32.6 psf	-19.5 ps
	Interior Zor			25.85 25.85	-0.65 0.20	0.18 -0.18	-21.4 psf	-12.8 ps
	Positive (A	1 20103)		20.00	0.20	-0.10	16 psf	9.6 ps
	- Roofs trib Ar	rea = 10 sq. 1	ft.	qh	GCp	GCpi	(1.0)P	(0.6)P
ELEVATION				25.85	-3.20	0.18	-87.4 psf	-52.4 ps
ELEVATION	Corner Zor					0.18	-64.1 psf	-38.5 ps -29.2 ps
	Corner Zor End Zone ((2)		25.85	-2.30		10 F	
ELEVATION REFER TO FIGURE 30.3-2A	Corner Zor End Zone (Interior Zor	(2) ne (1)		25.85 25.85	-1.70	0.18	-48.6 psf	
	Corner Zor End Zone ((2) ne (1) ne (1')		25.85			-48.6 psf -27.9 psf 16 psf	-16.8 ps
	Corner Zor End Zone (Interior Zor Interior Zor	(2) ne (1) ne (1')		25.85 25.85 25.85	-1.70 -0.90	0.18 0.18	-27.9 psf	-16.8 ps
	Corner Zor End Zone (Interior Zor Interior Zor	(2) ne (1) ne (1') Il Zones)) sq. ft.	25.85 25.85 25.85 25.85	-1.70 -0.90	0.18 0.18	-27.9 psf	-16.8 ps 9.6 ps
	Corner Zor End Zone (Interior Zor Interior Zor Positive (A	(2) he (1) he (1') Il Zones) ib. Area = 50) sq. ft.	25.85 25.85 25.85	-1.70 -0.90 0.30	0.18 0.18	-27.9 psf 16 psf	-16.8 ps 9.6 psf (0.6)Pp
	Corner Zor End Zone (Interior Zor Interior Zor Positive (A Overhangs: tri	(2) ne (1) ne (1') Il Zones) ib. Area = 50 ne (3)) sq. ft.	25.85 25.85 25.85 25.85 9	-1.70 -0.90 0.30 GCpn	0.18 0.18	-27.9 psf 16 psf (1.0)Pp	-16.8 ps 9.6 ps (0.6)Pp -36.2 ps
	Corner Zor End Zone (Interior Zor Positive (A Overhangs: tri Corner Zor End Zone (Interior Zor	(2) he (1) he (1') II Zones) ib. Area = 5(he (3) (2) he (1)) sq. ft.	25.85 25.85 25.85 25.85 9 9 9 9 9 9 1 9 1 1 1 1 1 1 1 1 1 1	-1.70 -0.90 0.30 GCpn -2.34 -1.81 -1.63	0.18 0.18	-27.9 psf 16 psf (1.0)Pp -60.4 psf -46.7 psf -42.1 psf	-16.8 ps 9.6 ps (0.6)Pp -36.2 ps -28 ps -25.3 ps
	Corner Zor End Zone (Interior Zor Positive (A Overhangs: tri Corner Zor End Zone ((2) he (1) he (1') II Zones) ib. Area = 5(he (3) (2) he (1)) sq. ft.	25.85 25.85 25.85 25.85 qh 25.85 25.85	-1.70 -0.90 0.30 GCpn -2.34 -1.81	0.18 0.18	-27.9 psf 16 psf (1.0)Pp -60.4 psf -46.7 psf	-16.8 ps 9.6 ps (0.6)Pp -36.2 ps -28 ps -25.3 ps
	Corner Zor End Zone (Interior Zor Positive (A Overhangs: tri Corner Zor End Zone (Interior Zor Interior Zor	(2) he (1) he (1') II Zones) ib. Area = 5(he (3) (2) he (1)) sq. ft.	25.85 25.85 25.85 25.85 25.85 25.85 25.85 25.85 25.85	-1.70 -0.90 0.30 GCpn -2.34 -1.81 -1.63 -1.63	0.18 0.18	-27.9 psf 16 psf (1.0)Pp -60.4 psf -46.7 psf -42.1 psf -42.1 psf	-16.8 ps 9.6 ps (0.6)Pp -36.2 ps -28 ps -25.3 ps
	Corner Zor End Zone (Interior Zor Positive (A) Overhangs: tri Corner Zor End Zone (Interior Zor Interior Zor Overhangs: tri	(2) The (1) The (1') Il Zones) ib. Area = 50 the (3) (2) The (1) The (1') ib. Area = 10		25.85 25.85 25.85 25.85 25.85 25.85 25.85 25.85 25.85 25.85 25.85 	-1.70 -0.90 0.30 -2.34 -1.81 -1.63 -1.63 GCpn	0.18 0.18	-27.9 psf 16 psf (1.0)Pp -60.4 psf -46.7 psf -42.1 psf -42.1 psf (1.0)Pp	-16.8 ps 9.6 ps (0.6)Pp -36.2 ps -28 ps -25.3 ps -25.3 ps -25.3 ps -25.3 ps (0.6)Pp
	Corner Zor End Zone (Interior Zor Positive (A Overhangs: tri Corner Zor End Zone (Interior Zor Interior Zor Overhangs: tri Corner Zor	(2) The (1) The (1') Il Zones) ib. Area = 5((2) The (1) The (1') ib. Area = 1(The (3)		25.85 25.85 25.85 25.85 25.85 25.85 25.85 25.85 25.85 qh 25.85	-1.70 -0.90 0.30 GCpn -2.34 -1.81 -1.63 -1.63 GCpn -3.20	0.18 0.18	-27.9 psf 16 psf (1.0)Pp -60.4 psf -46.7 psf -42.1 psf -42.1 psf -42.1 psf -42.1 psf -42.1 psf -42.1 psf -42.1 psf -42.1 psf -42.1 psf	-16.8 ps 9.6 ps 9.6 ps -36.2 ps -28 ps -25.3 ps -25.3 ps (0.6)Pp -49.6 ps
	Corner Zor End Zone (Interior Zor Positive (A) Overhangs: tri Corner Zor End Zone (Interior Zor Interior Zor Overhangs: tri Corner Zor 	(2) te (1) te (1) te (1) II Zones) ib. Area = 5(te (3) (2) te (1) te (1) te (1') ib. Area = 1(te (3) (2) (2)		25.85 25.85 25.85 25.85 25.85 25.85 25.85 25.85 qh 25.85 25.85	-1.70 -0.90 0.30 -2.34 -1.81 -1.63 -1.63 GCpn -3.20 -2.30	0.18 0.18	-27.9 psf 16 psf (1.0)Pp -60.4 psf -46.7 psf -42.1 psf -42.1 psf -42.1 psf -42.2 psf -42.7 psf -59.5 psf	-16.8 ps 9.6 ps -36.2 ps -28 ps -25.3 ps
	Corner Zor End Zone (Interior Zor Positive (A Overhangs: tri Corner Zor End Zone (Interior Zor Interior Zor Overhangs: tri Corner Zor	(2) te (1) te (1') Il Zones) ib. Area = 5(te (3) (2) te (1) te (1') ib. Area = 1(te (3) (2) te (1)		25.85 25.85 25.85 25.85 25.85 25.85 25.85 25.85 25.85 qh 25.85	-1.70 -0.90 0.30 GCpn -2.34 -1.81 -1.63 -1.63 GCpn -3.20	0.18 0.18	-27.9 psf 16 psf (1.0)Pp -60.4 psf -46.7 psf -42.1 psf -42.1 psf -42.1 psf -42.1 psf -42.1 psf -42.1 psf -42.1 psf -42.1 psf -42.1 psf	(0.6)Pp -36.2 ps -25.3 ps -25.3 ps -25.3 ps -25.3 ps -25.3 ps -25.3 ps -25.3 ps -25.3 ps -25.4 ps -35.7 ps -26.4 ps -26.4 ps

a, end zone width = Min. of 10% L and .4H but not < 4% L or 3' =

13.4 feet (Fig. 30.3-1)

Notes:
1. The gust factor of 0.85 is based on a building with a natural frequency of > 1 Hz. For other buildings, the gust factor must be calculated.
2. GCp for walls include a 10% reduction when angle of roof is 10 deg or less. (Figure 30.3-1, Footnote 5)
3. If a parapet equal to 3 ft or higher is provided around the perimeter of a roof with a slope of ≤ 7°, the roof corner zones may be treated as end zones. (Fig. 30.3-2A, Footnote 5)

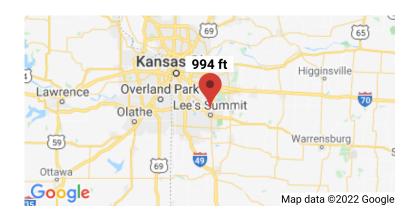
	Date 4/29/2022		Sheet		of	
	Job 2220003 Building 3		oncer		01	
	Subject South Wind TOW: 42.0ft					
D ANALYSIS: ANALYTICAL - ALL HEIGHTS METHOD						
E 7-16, Chapters 26, 27 and 30	1. Input					
Windward Leeward	Design Parameters					
Window Pressure	Basic Wind Speed, V =				mph (Section 26	i.5, Fig. 1A-2D)
	Exposure Category (B, C, or D) =				(Section 26.7)	
	Building Risk Category (I, II, III, IV) =				(Table 1.5-1)	Table 26.0.1)
He H	Civil finished floor elevation (if unknown input 0) =			0.00	feet (Sect. 26.9,	Table 26.9-1)
	Eave Height, He =			33.58	feet	
	Max Building Height or Ridge Height above ground lev	el, Hr =		37.75		
	Parapet Height above ground level, Hp =			42.00		
L L	Building Width Perpendicular to Wind, B = Building Width Parallel to Wind, L =			1150.00 220.83	feet (max bldg d	im)
	Enclosure Classification =	I	Enclosed		(Section 26.12)	
FER TO FIGURE 27.3-1	Roof Configuration = Gabled, Hippe					
	Angle of Plane of Roof From Horizontal, θ =			1.20	degrees	
	Is building on or near a hill, ridge, or escarpment?			N	(Y or N) (Section	n 26.8)
	Height of Hill or Escarpment relative to upwind terrain,	H =			feet (Section 26	,
x (upwind) x	Horiz. Dist. Upwind to Point Where Elevation = H/2, Lh	1 =			feet (Section 26	,
	Horiz. Dist. from Crest to Building Site, x =				feet (Section 26	.8, Fig. 26.8-1)
	2D Ridge, 2D Escarpment, or Axisymmetrical Hill =				(R, E, or H)	
	Is the building site upwind or downwind of the crest?			DOWN	(up, down)	
	2. Calculations - Main Wind Force Resisting System					
	Equivalent Allowable Stress Design Wind Speed, Vasc	d =		84.43	mph (IBC 2018,	1609.3.1)
	Mean roof height, h =			33.58	feet	
	Kz, velocity pressure exposure coefficient at hz = 37.7				Table 26.10-1	(use with qz)
	Kz, velocity pressure exposure coefficient at hh = 33.5				Table 26.10-1	(use with qh)
	Kz, velocity pressure exposure coefficient at hp = 42 ft	=			Table 26.10-1	(use with qp)
2-D Ridge or Axisymmetrical Hill	Kzt,topographic factor at hz = 37.75ft = Kzt,topographic factor at hh = 33.58ft =				Figure 26.8-1 Figure 26.8-1	(use with qz) (use with qh)
ER TO FIGURE 26.8-1	Kzt,topographic factor at hp = 42ft =				Figure 26.8-1	(use with qn)
	Kd, wind directionality factor =				Table 26.6-1	(use min qp)
	Ke, ground elevation factor at				Table 26.9-1	
	G, gust factor =			0.85	Section 26.11.4	
	qz, velocity pressure at hz = 37.75ft =			26.63	psf (Eq. 26.10-1)
	qh, velocity pressure at hh = 33.58ft =			25.85	psf (Eq. 26.10-1)
	qp, velocity pressure at hp = 42ft =			27.15	psf (Eq. 26.10-1)
	Walls: P = q(GCpf-GCpi) Eqn. 27.3-1	qz	GCp	GCpi	(1.0)P	(0.6)P
	Windward pressure	26.63	0.68		18.1 psf	10.9 psf
		qh	GCp	GCpi	(1.0)P	(0.6)P
	Leeward Pressure	25.85	-0.43	0.40	-11 psf	-6.6 psf
	Sidewall pressure Internal Pressure	25.85 25.85	-0.60	0.18 0.18	-20 psf 4.7 psf	-12 psf 2.8 psf
	internal i ressure	20.00		0.10	ч. гры	2.0 psi
	(1.0)W = (1.0)(Windward + Leeward Pressure) = (0.6)W =(0.6)(Windward + Leeward Pressure) =		18.11 psf + 10.99 psf = 10.86 psf + 6.59 psf =		29.1 psf 17.5 psf	
	Parapets: Pp =qp(GCpn) Eqn. 27.3-3	qp	GCpn		(1.0)Pp	(0.6)Pp
	Windward parapet pressure	27.15	1.5	=	40.7 psf	24.4 psf
	Leeward parapet pressure	27.15	-1.0		-27.1 psf	-16.3 ps
					67.9 psf	
	Windward + Leeward Pressure	27.15	2.50		07.5 par	40.7 pst
	Roof Normal to Ridge (θ≥10 degrees)	qh	GCp	GCpi	(1.0)P	(0.6)P
	Roof Normal to Ridge (θ≥10 degrees) Windward Pressure case i	qh 25.85	GCp -0.60	0.18	(1.0)P -20 psf	(0.6)P -12 psf
	Roof Normal to Ridge (θ≥10 degrees)	qh	GCp		(1.0)P	(0.6)P -12 psf -5.2 psf
	Roof Normal to Ridge (θ≥10 degrees) Windward Pressure case i case ii Leeward Pressure	qh 25.85 25.85 25.85	GCp -0.60 -0.15 -0.26	0.18 0.18 0.18	(1.0)P -20 psf -8.6 psf -11.2 psf	(0.6)P -12 psf -5.2 psf -6.7 psf
	Roof Normal to Ridge (θ≥10 degrees) Windward Pressure case i case ii Leeward Pressure Roof All Other Conditions	qh 25.85 25.85 25.85 qh	GCp -0.60 -0.15 -0.26 GCp	0.18 0.18 0.18 GCpi	(1.0)P -20 psf -8.6 psf -11.2 psf (1.0)P	(0.6)P -12 psf -5.2 psf -6.7 psf (0.6)P
	Roof Normal to Ridge (θ≥10 degrees) Windward Pressure case i case ii Leeward Pressure	qh 25.85 25.85 25.85	GCp -0.60 -0.15 -0.26	0.18 0.18 0.18	(1.0)P -20 psf -8.6 psf -11.2 psf	(0.6)P -12 psf -5.2 psf -6.7 psf (0.6)P -14.7 ps
	Roof Normal to Ridge (θ≥10 degrees) Windward Pressure case i Leeward Pressure Roof All Other Conditions For 0 to h/2 = 0 ft to 16.79 ft h/2 to h = 16.79 ft to 33.58 ft h to 2h = 33.58 ft to 67.16 ft	qh 25.85 25.85 25.85 qh 25.85 25.85 25.85	GCp -0.60 -0.15 -0.26 GCp -0.77 -0.77 -0.43	0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18	(1.0)P -20 psf -8.6 psf -11.2 psf (1.0)P -24.4 psf -24.4 psf -24.4 psf -15.6 psf	(0.6)P -12 psf -5.2 psf -6.7 psf (0.6)P -14.7 ps -14.7 ps -9.4 psf
	Roof Normal to Ridge (θ≥10 degrees) Windward Pressure case i case ii Leeward Pressure Roof All Other Conditions For 0 to h/2 = 0 ft to 16.79 ft h/2 to h = 16.79 ft to 33.58 ft	qh 25.85 25.85 25.85 qh 25.85 25.85	GCp -0.60 -0.15 -0.26 GCp -0.77 -0.77	0.18 0.18 0.18 0.18 0.18 0.18 0.18	(1.0)P -20 psf -8.6 psf -11.2 psf (1.0)P -24.4 psf -24.4 psf	-12 psf -5.2 psf -6.7 psf
	Roof Normal to Ridge (θ≥10 degrees) Windward Pressure case i Leeward Pressure Roof All Other Conditions For 0 to h/2 = 0 ft to 16.79 ft h/2 to h = 16.79 ft to 33.58 ft h to 2h = 33.58 ft to 67.16 ft	qh 25.85 25.85 25.85 qh 25.85 25.85 25.85	GCp -0.60 -0.15 -0.26 GCp -0.77 -0.77 -0.43	0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18	(1.0)P -20 psf -8.6 psf -11.2 psf (1.0)P -24.4 psf -24.4 psf -24.4 psf -15.6 psf	(0.6)P -12 psf -5.2 psf -6.7 psf (0.6)P -14.7 pst -14.7 pst -9.4 psf


	Date	4/29/202			Sheet		of	
	Job Subject		Building 3 ind TOW: 42.0ft					
		oounn						
D ANALYSIS: ANALYTICAL - ALL HEIGHTS METHOD E 7-16, Chapters 27 and 30								
	3. Input - Compone Tributary A		dding Elements Components, 1 =			1000 00 9	square feet	
			Components, 2 =				square feet	
			pet Components, 1 =				square feet	
	Tributary A	rea for Para	pet Components, 2 =			500.00 s	square feet	
	Tributary A	rea for Roof	Components, 1 =			300.00	square feet	
	Tributary A	rea for Roof	Components, 2 =			10.00	square feet	
			hangs or Canopies, 1				square feet	
	Tributary A	rea for Overl	hangs or Canopies, 2	2 =		10.00	square feet	
	4. Calculations - C	omponent a	and Cladding Eleme	nts				
			posure coefficient at			1.00	Table 26.10-1	(use with gh
			posure coefficient at	hp = 42ft =		1.05	Table 26.10-1	(use with q
			at hh = 33.58ft =				Figure 26.8-1	(use with q
All and a second s			at hp = 42ft =				Figure 26.8-1	(use with q
ELEVATION		rectionality fa					Table 26.6-1	
		elevation fa	ctor at				Table 26.9-1	
	G, gust fac	lor =				0.85	Section 26.11.4	
		r pressure at pressure at	hh = 33.58ft = hp = 42ft =				osf (Eq. 26.10-1 osf (Eq. 26.10-1	,
0.6h	Walls: trib. Are	a = 1000 sc	, ft	qh	GCp	GCpi	(1.0)P	(0.6)P
	Zone 4	Interior Z		25.85	-0.72	0.18	-23.3 psf	-14 ps
3	Zone 5	End Zon		25.85	-0.72	0.18	-23.3 psf	-14 ps
	Zone 4 and			25.85	0.63	-0.18	20.9 psf	12.6 ps
0.2h	Walls: trib. Are	a = 500 sq.	ft.	qh	GCp	GCpi	(1.0)P	(0.6)P
	Zone 4	Interior Z		25.85	-0.72	0.18	-23.3 psf	-14 ps
	Zone 5	End Zon		25.85	-0.72	0.18	-23.3 psf	-14 ps
	Zone 4 and	15		25.85	0.63	-0.18	20.9 psf	12.6 ps
0.6h	Parapets: trib.	Area = 100	0 sa ft	qp	GCp	GCpi	(1.0)P	(0.6)P
0.6h	Case A	Zone 4	Interior Zone	27.15	1.89	0.00	51.3 psf	30.8 ps
		Zone 5	End Zone	27.15	1.89	0.00	51.3 psf	30.8 ps
3								
	Case B	Zone 4 Zone 5	Interior Zone End Zone	27.15 27.15	1.35 1.35	0.00 0.00	36.6 psf 36.6 psf	22 psf 22 psf
PLAN	Dense star trib					GCpi	-	
	Parapets: trib. Case A	Zone 4	Interior Zone	qp 27.15	GCp 1.89	0.00	(1.0)P 51.3 psf	(0.6)P 30.8 ps
		Zone 5	End Zone	27.15	1.89	0.00	51.3 psf	30.8 ps
	Case B	Zone 4	Interior Zone	27.15	1.35	0.00	36.6 psf	22 psf
		Zone 5	End Zone	27.15	1.35	0.00	36.6 psf	22 ps1
	Roofs: trib. Ar		. ft.	qh	GCp	GCpi	(1.0)P	(0.6)P
$\mathbf{\lambda}$	Corner Zon			25.85	-1.64	0.18	-46.9 psf	-28.2 ps
	End Zone (,		25.85	-1.52	0.18	-43.9 psf	-26.3 p
θ	Interior Zor Interior Zor			25.85 25.85	-1.09 -0.66	0.18 0.18	-32.9 psf -21.8 psf	-19.7 p: -13.1 p:
	Positive (Al	. ,		25.85	-0.00	-0.18	-21.6 psi 16 psf	9.6 ps
/ h		,						270 00
			_					
ELEVATION	Roofs: trib. Ar		n.	qh	GCp	GCpi	(1.0)P	(0.6)P
	Corner Zon End Zone (25.85 25.85	-3.20 -2.30	0.18 0.18	-87.4 psf -64.1 psf	-52.4 ps -38.5 ps
REFER TO FIGURE 30.3-2A	Interior Zor			25.85	-2.30	0.18	-48.6 psf	-38.5 ps
REFER TO TROUTE 00.0-2A	Interior Zor			25.85	-0.90	0.18	-27.9 psf	-16.8 p
		ll Zones)		25.85	0.30	-0.18	16 psf	9.6 ps
	Positive (Al							
	Positive (Al							
	Overhangs: tri) sq. ft.	qh	GCpn	-	(1.0)Pp	
	Overhangs: tri Corner Zon	ie (3)) sq. ft.	25.85	-2.34	-	-60.4 psf	-36.2 ps
	Overhangs: tri	ie (3) 2)) sq. ft.		-	-	-60.4 psf -46.7 psf	-36.2 ps -28 ps
	Overhangs: tri Corner Zon End Zone (Interior Zor Interior Zor	ne (3) 2) ne (1)) sq. ft.	25.85 25.85 25.85 25.85	-2.34 -1.81 -1.63 -1.63	_	-60.4 psf	-36.2 ps -28 ps -25.3 ps
	Overhangs: tri Corner Zon End Zone (Interior Zor	ne (3) 2) ne (1)) sq. ft.	25.85 25.85 25.85	-2.34 -1.81 -1.63	_	-60.4 psf -46.7 psf -42.1 psf	-36.2 ps -28 ps -25.3 ps
	Overhangs: tri Corner Zon End Zone (Interior Zor Interior Zor	ne (3) 2) ne (1) ne (1')		25.85 25.85 25.85 25.85 	-2.34 -1.81 -1.63 -1.63	-	-60.4 psf -46.7 psf -42.1 psf	-36.2 ps -28 ps -25.3 ps -25.3 ps -25.3 ps
	Overhangs: tri Corner Zon End Zone (Interior Zor Interior Zor Overhangs: tri Corner Zon	ne (3) 2) ne (1) ne (1') b. Area = 10 ne (3)		25.85 25.85 25.85 25.85 qh 25.85	-2.34 -1.81 -1.63 -1.63 GCpn -3.20	-	-60.4 psf -46.7 psf -42.1 psf -42.1 psf (1.0)Pp -82.7 psf	-36.2 ps -28 ps -25.3 ps -25.3 ps -25.3 ps
	Overhangs: tri Corner Zon End Zone (Interior Zon Interior Zon Overhangs: tri Corner Zon End Zone (ne (3) 2) ne (1) ne (1') b. Area = 1(ne (3) 2)		25.85 25.85 25.85 25.85 qh 25.85 25.85	-2.34 -1.81 -1.63 -1.63 GCpn -3.20 -2.30	-	-60.4 psf -46.7 psf -42.1 psf -42.1 psf (1.0)Pp -82.7 psf -59.5 psf	(0.6)Pr -36.2 ps -28 ps -25.3
	Overhangs: tri Corner Zon End Zone (Interior Zor Interior Zor Overhangs: tri Corner Zon	ne (3) 2) ne (1) ne (1') b. Area = 10 ne (3) 2) ne (1)		25.85 25.85 25.85 25.85 qh 25.85	-2.34 -1.81 -1.63 -1.63 GCpn -3.20	-	-60.4 psf -46.7 psf -42.1 psf -42.1 psf (1.0)Pp -82.7 psf	-36.2 ps -28 ps -25.3 ps -25.3 ps -25.3 ps (0.6)Pp -49.6 ps

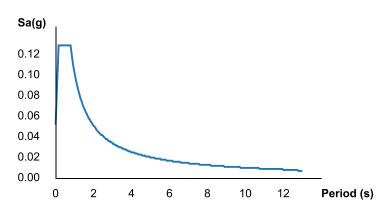
a, end zone width = Min. of 10% L and .4H but not < 4% L or 3' =

13.4 feet (Fig. 30.3-1)

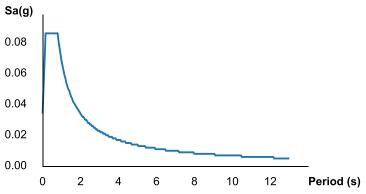
Notes:
1. The gust factor of 0.85 is based on a building with a natural frequency of > 1 Hz. For other buildings, the gust factor must be calculated.
2. GCp for walls include a 10% reduction when angle of roof is 10 deg or less. (Figure 30.3-1, Footnote 5)
3. If a parapet equal to 3 ft or higher is provided around the perimeter of a roof with a slope of ≤ 7°, the roof corner zones may be treated as end zones. (Fig. 30.3-2A, Footnote 5)


Site Class:

Hazards by Location


Search Information

Address:	NE Tudor Rd & NW Main St, Lee's Summit, MO 64086, USA
Coordinates:	38.9307532, -94.3853697
Elevation:	994 ft
Timestamp:	2022-01-05T13:53:22.471Z
Hazard Type:	Seismic
Reference Document:	ASCE7-16
Risk Category:	II



MCER Horizontal Response Spectrum

С

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
S _S	0.099	MCE _R ground motion (period=0.2s)
S ₁	0.068	MCE _R ground motion (period=1.0s)
S _{MS}	0.129	Site-modified spectral acceleration value
S _{M1}	0.102	Site-modified spectral acceleration value
S _{DS}	0.086	Numeric seismic design value at 0.2s SA
S _{D1}	0.068	Numeric seismic design value at 1.0s SA

Additional Information

Name	Value	Description	
SDC	В	Seismic design category	
Fa	1.3	Site amplification factor at 0.2s	
Fv	1.5	Site amplification factor at 1.0s	

1/6/22, 8:02 AI	М	ATC Hazards by Location
CR_S	0.927	Coefficient of risk (0.2s)
CR ₁	0.877	Coefficient of risk (1.0s)
PGA	0.047	MCE _G peak ground acceleration
F _{PGA}	1.3	Site amplification factor at PGA
PGA _M	0.061	Site modified peak ground acceleration
TL	12	Long-period transition period (s)
SsRT	0.099	Probabilistic risk-targeted ground motion (0.2s)
SsUH	0.107	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	1.5	Factored deterministic acceleration value (0.2s)
S1RT	0.068	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.078	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.6	Factored deterministic acceleration value (1.0s)
PGAd	0.5	Factored deterministic acceleration value (PGA)

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

NALLACE DESIGN PROGRAM Revised 12/27/18, Sheila Butcher				
Copyright ©				
	Date Job	3/10/2022 2220003	Sheet No.	of
	Subject	Building 3		
SEISMIC LOAD SUMMARY 2018 IBC (Ch: 16) and ASCE 7-16 (Ch: 11 to 13)				
1. Input				
Spectral Response Acceleration for Short Periods, Ss =		0.099		
Spectral Response Acceleration for 1-second Periods, S1 =		0.068	:	
Risk Category =			(IBC Table 1604.5 &	
Site Classification (A,B,C,D,E,F) =		C	(ASCE 7 Ch.20 Tabl	le 20.3-1)
Basic Structural System STRUCTURAL STEEL SYSTEMS NOT SPECIFICALLY DETAILE	D FOR SEISMIC	RESISTANCE	(Table 12.2-1)	
	hear Walls and			
	s either 1.0 or 1.3		(ASCE 7 Section 12	
ρy, redundancy in y-dir.= (Redundancy is r, =1.0 for Seismic Design Category B and C, RE: ASCE 7 Section 12.3.4.1 for additional exceptions.	s either 1.0 or 1.3	i) 1.00	(ASCE 7 Section 12	.3.4)
le Structure regular with a pariod < E coo?		Vee	0/N 4005 7	0
Is Structure regular with a period < .5 sec? Is Structure short period with a rigid diaphragm?			(Yes or No, ASCE 7 (Yes or No, ASCE 7	
Is Structure short period w/ non-rigid diaphragm & vertical elements of seismic force-resisting system	spaced at 40' oc		(Yes or No, ASCE 7	
Does Structure have a flexible diaphragm?			(Yes or No, ASCE 7	
(For Wall anchorage requirements per Section 12.11.2.1)				
Span length of flexible diaphragm -x dir. =		220.8333333	feet (input 0 for rig	id diaphragm)
Span length of flexible diaphragm -y-dir. =		1134	feet	
2. Determine Design Spectral Response Accelerations and Seismic Design Category, Section 11.6:				
Response Modification Factor, R =			(Table 12.2-1)	
Overstrength Factor, $\Omega o =$ (refer to footnote b for .5 reduction for Flexible Diaphragms) Deflection Amplification Factor, Cd =			(Table 12.2-1) (Table 12.2-1)	
Denection Amplification Factor, Cd =		3	(Table 12.2-1)	
Acceleration for Short Period				
Site Coefficient, Fa =				(1), ASCE 7 Table 11.4-1)
Site Adjusted Spectral Response Acceleration for Short Periods, Sms = Acceleration for 1-Second Period		0.129	(IBC Section 1613.2	.3, ASCE 7 Section 11.4.4
Site Coefficient, Fv =		1.50	(IBC Table 1613 2 3	(2), ASCE 7 Table 11.4-2)
Site Adjusted Spectral Response Acceleration for 1-second Periods, Sm1 =				.3, ASCE 7 Section 11.4.4
Design Spectral Response Acceleration for Short Periods, Sds =		0.096	(IBC Section 1612.2	4 and APCE 7 Section 11
Seismic Design Category based on short period =		0.080 A		.4 and ASCE 7 Section 11
Design Spectral Response Acceleration for 1-second Periods, Sd1 =				.4 and ASCE 7 Section 11
Seismic Design Category based on 1-second period =		В		
Design Response Spectrum, Ts =		0 793	seconds (Section 11	4.6)
Approximate Fundamental Period, Ta =			seconds (Section 12	
Fundamental Period, T, shall not exceed Ta * Cu =			seconds (Section 12	
Can the Seismic Design Category be based on the short period alone?				.5.1, ASCE 7 Section 11.6
Seismic Design Category =		в	(Most severe case e	xcept as allowed by Sect
3. Seismic Base Shear for the Lateral Force Resisting System using the Equivalent Lateral Force P	rocodura Sacti	on 12 8·		
	rocedure, Secti	011 12.0.		
a. Calculation of Seismic Base Shear Coefficient:				
Seismic Importance Factor, I _a =			(ASCE 7 Table 1.5-2	
$Cs = (Sds/(R / I_e)) =$		0.029	(ASCE Equation 12.	8-2, Section 12.8.1.3)
b. Seismic Base Shear, Section 12.8.1:		Strength (1.0E)	ASD (0.7E)	
V = Cs W =		0.029 W	. ,	
c. Horizontal Seismic Load, Section 12.4.2.1=		Strength (1.0E)	ASD (0.7E)	
For the X-direction: Eh=		0.029 W		
For the Y-direction: Eh=		0.029 W	0.020 W	
d Vertical Science Load Component - Section 12 (2.2)				
d. Vertical Seismic Load Component, Section 12.4.2.2: Ev = 0.2 Sds D =		0.017 D	0.012 D	
For structures in SDC B and for the design of foundations using ASD, Ev may be taken as zero. (Sect	tion 12.4.2.2)	5.01.1 D		
		o	100 (
e. Find the Design Seismic Shear for the Diaphragm, Section 12.10.1.1:		Strength (1.0E)		
Force shall not be less than 0.2*Sds*le*wpx =		0.017 W 0.034 W	0.012 W	
For a one story building, Fpx =		0.029 W	0.020 W	
f. For collector elements in Seismic Design Categories C through F, Section 12.10.2				
Emb = $\Omega \circ V$ =		0.072 W	0.050 W	
Notes:				

Notes: 1 A building that is low rise (one or two story) building with a short period is assumed for calculation of Seismic Response Coefficient, Cs. 2 The values for design spectral response acceleration assume a regular structure of 5 stories or less with a period, T < 0.5 seconds 3 The values for design forces for the diaphragm assume no offsets or changes in the stiffness of the vertical components 4 Section 1613.1 of 2018 IBC excludes the detailing requirements of Chapter 14 of ASCE 7. 5 Per Section 1613.2.2 and 11.4.3, if site investigations performed per ASCE 7 Chpt 20 reveal rock conditions consistent with Site Class B, but site-specific velocity measurements are not made, Fa and Fv shall = 1.0.

WALLACE DESIGN PROGRAM								
Revised 12/27/18, Sheila Butcher								
Copyright ©					Date	3/10/2022	Sheet No.	of
					Job	0/10/2022	Chectrici	01
					Subject			
SEISMIC LOAD SUMMARY								
2018 IBC (Ch: 16) and ASCE 7-16 (Ch: 11 to 13	3)							
	5)							
4. Minimum Continuous Load Path, Interconne	ection and Connection to sup	pports	, Section 12	.1.3 and 1	2.1.4:			
a. Continuous Load Path and Interconnectio $F_{p}{=}~0.133~S_{ds}~W_{p}$ or .05 W_{p} min. =	ns, Section 12.1.3:					Strength (1.0E 0.050 W		(Section 12.1.3)
b. Connection to Supports, Section 12.1.4 : F_{p} = .05 * dead + live reaction =						0.050 Rd+	l 0.035 Rd+l	(Section 12.1.4)
5. Structural Walls and Anchorage, Section 12.	.11					Strength (1.0E) ASD (0.7E)	
a. Minimum Out-of-Plane Forces on Structur $F_p= 0.40$ le Sds wp or .10 wp min =	al Walls, Section 12.11.1:					0.100 W		(Section 12.11.1)
								(,
b. Minimum anchorage connection of struct			ion, Section	12.11.2.1	and 12.11.2:			
For loading in the x-direction: $k_a = 1.0+L_t/100$ or max 2.0 =	Per 12.11.2.2, the strengtl design force for steel elements with the exception	- 1	2.00			Strength (1.0E) ASD (0.7E)	
$Fp= 0.4 S_{ds} k_a I_e W_p \text{ or } .2 k_a I_e Wp \text{ min.} = F_p^* 1.4 \text{ for steel elements per 12.11.2.2.2}$	of anchor bolts and reinforcing steel shall be	-		at Flexible	Diaphragms	0.400 Wi 0.560 Wi		
$k_a = 1.0$ $Fp= 0.4 S_{ds} k_a I_e W_p \text{ or } .2 k_a I_e Wp \text{ min.} =$	increased by 1.4 times.		nantiana nat	ot Elovible	Dianhranna		-	
$Fp = 0.4 \text{ Sd}_{s} \text{ k}_{a} \text{ I}_{e} \text{ Wp of } 2 \text{ k}_{a} \text{ I}_{e} \text{ Wp find.} =$ $Fp * 1.4 \text{ for steel elements per 12.11.2.2.2}$	FC	or Con	inections not	at Flexible	Diaphragms	: 0.200 Wj 0.280 Wj		
For loading in the y-direction:								
k _a = 1.0+L _i /100 or max 2.0 =			2.00					
$Fp=0.4 S_{ds} k_a I_e W_p \text{ or } .2 k_a I_e Wp \text{ min.} =$ $Fp * 1.4 \text{ for steel elements per 12.11.2.2.2}$		For	Connections	at Flexible	Diaphragms	: 0.400 Wi 0.560 Wi		
k _a = 1.0 Fp= 0.4 S _{ds} k _a l _e W _p or .2 k _a l _e Wp min. =	F.		neations not	ot Flovible	Dianhranna	. 0 200 W/	0.140 Wm	
$Fp = 0.4 3_{ds} R_a 1_e W_p 01.2 R_a 1_e W_p 111.2 2.2 2$	FC		inections not	at Flexible	Diaphragms	: 0.200 Wr 0.280 Wr		
The minimum well encharge load for concre	to or maconry walls is 0.2* ti	howo	ll woight or	Encfnor				
The minimum wall anchorage load for concre	ete or masonry wans is 0.2" ti	ne wa	il weight or :	o psi per	1.4.4.			
6. Horizontal Seismic Design Force on Nonstru	uctural Architectural Compor	nents,	Section 13.	3:		Factor 4.0	Factor 4.5	
Fp max = 1.6 Sds lp Wp=						For lp =1.0 0.137 W	For lp=1.5	(Equation 13.3-2)
Fp min = 0.3 Sds Ip Wp=						0.026 W		(Equation 13.3-3)
The Seismic Design Force is based on Equation Fp= 0.4 ap Sds Wp (1 + 2 z/h)/(Rp/lp)	on 13.3-1, with the minimum ar	nd ma	ximum limits	noted abo	ve.			
Seismic Design Force Summary on Architect	ural Components. Section 13	3.5:						
······, ·····, ······, ······, ·······, ······	·····, ·····		ap=	Rp=	Ip=	z/h=	Strength (1.0E)	ASD (0.7E)
1. Cantilevered (Unbraced) Parapets and Chimi	neys		2.50	2.50	1.00	1.00	0.103 Wp	0.072 Wp (Table 13.5-1)
2. Braced Interior Non-masonry walls and partiti	ions							
Fp at floor=			1.00	2.50	1.00	0.00	0.026 Wp	0.018 Wp (Table 13.5-1)
Fp at roof= Fp average at roof and floor:			1.00	2.50	1.00	1.00	0.041 Wp 0.033 Wp	0.029 Wp (Table 13.5-1) 0.023 Wp
T p average at tool and hoor.							0.033 WP	0.023 Wp
3. Braced Interior Unreinforced masonry walls a	ind partitions							
Fp at floor=			1.00	1.50	1.00	0.00	0.026 Wp	0.018 Wp (Table 13.5-1)
Fp at roof= Fp average at roof and floor:			1.00	1.50	1.00	1.00	0.069 Wp 0.047 Wp	0.048 Wp (Table 13.5-1) 0.033 Wp
r p arolago arrool and hool.							0.047 110	0.000 Mp
4. Cantilevered (Unbraced) Interior Nonstructura	al walls		2.50	2.50	1.00	0.00	0.034 Wp	0.024 Wp (Table 13.5-1)
5. Braced Parapets and Chimneys			1.00	2.50	1.00	1.00	0.041 Wp	0.029 Wp (Table 13.5-1)
6. Exterior Nonstructural Wall Elements								
Fp at floor= Fp at roof=			1.00 1.00	2.50 2.50	1.00 1.00	0.00 1.00	0.026 Wp 0.041 Wp	0.018 Wp (Table 13.5-1) 0.029 Wp (Table 13.5-1)
Fp average at roof and floor:				2.00			0.033 Wp	0.023 Wp
For the Body of the Wall Panel Connection:								
Fp at floor=			1.00	2.50	1.00	0.00	0.026 Wp	0.018 Wp (Table 13.5-1)
Fp at roof=			1.00	2.50	1.00	1.00	0.041 Wp	0.029 Wp (Table 13.5-1)
For the fasteners of the connecting system:								
Fp at floor=			1.25	1.00	1.00	0.00	0.043 Wp	0.030 Wp (Table 13.5-1)
Fp at roof=			1.25	1.00	1.00	1.00	0.129 Wp	0.090 Wp (Table 13.5-1)
7. Appendages and Ornamentation			2.50	2.50	1.00	1.00	0.103 Wp	0.072 Wp (Table 13.5-1)

Notes: 1. Refer to Section 13.4.2 for additional requirements for anchors in concrete and masonry. 2. Section 1613.1 of 2018 IBC excludes the detailing requirements of Chapter 14 of ASCE 7.

WALLACE DESIGN PROGRAM Revised 12/27/18, Sheila Butcher Copyright ©

SEISMIC LOAD SUMMARY 2018 IBC (Ch: 16) and ASCE 7-16 (Ch: 11 to 13)

Table 11.4-1 and IBC 1613.2.3(1)	
Site Coefficient En	

		Site Co	efficient, Fa				
Site	Mapped Sp	ectral Respo	nse Accelerat	ion at Short P	eriods (Ss)		Distance
Class	Ss<=0.25	0.5	0.75	1	1.25	Ss>=1.5	Value
Α	0.80	0.80	0.80	0.80	0.80	0.80	0.80
В	0.90	0.90	0.90	0.90	0.90	0.90	0.90
С	1.30	1.30	1.20	1.20	1.20	1.20	1.30
D	1.60	1.40	1.20	1.10	1.00	1.00	1.60
E	2.40	1.70	1.30	1.20	1.20	1.20	2.40
F							

Minimum of 1.2 per Section 11.4.4 considered. Exceptions per Section 11.4.8 included.

Table 11.4-2 and IBC 1613.2.3(2)

		Site Co	efficient, Fv				
Site	Mapped Spe	ctral Respon	se Acceleratio	n at 1 Second	Period (S1)		Distance
Class	S1<=0.1	0.2	0.3	0.4	0.5	S1>=0.6	Value
A	0.80	0.80	0.80	0.80	0.80	0.80	0.80
В	0.80	0.80	0.80	0.80	0.80	0.80	0.80
С	1.50	1.50	1.50	1.50	1.50	1.40	1.50
D	2.40	2.20	2.00	1.90	1.80	1.70	2.40
E	4.20	3.30	2.80	2.40	2.20	2.00	4.20
F							

IBC Table 1613.2.5(1) and 11.6-1

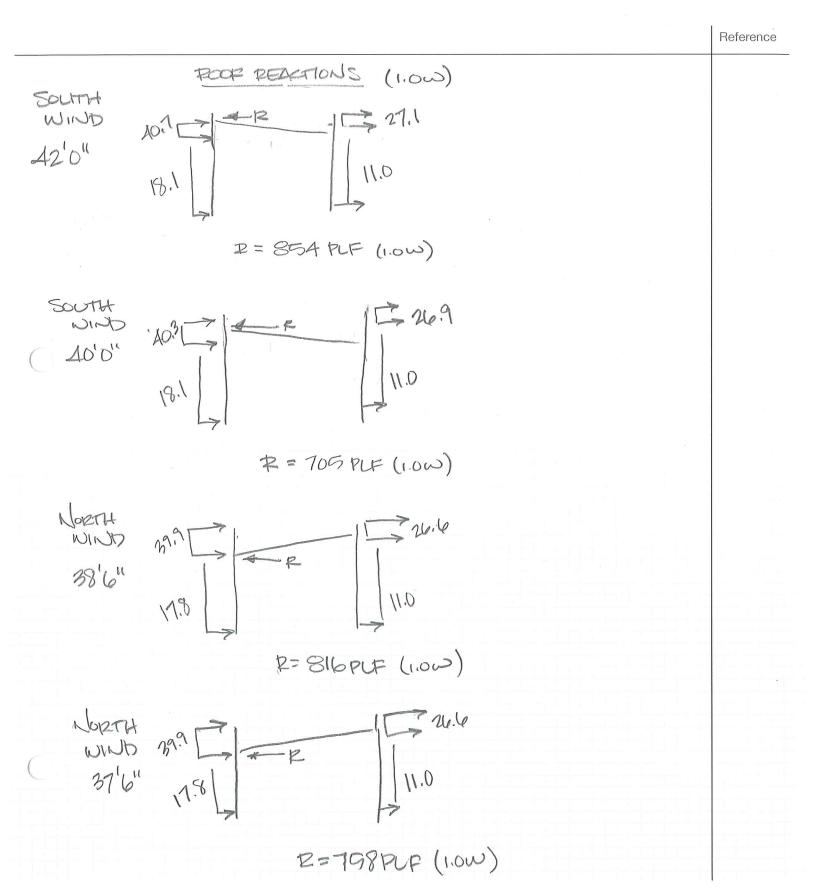
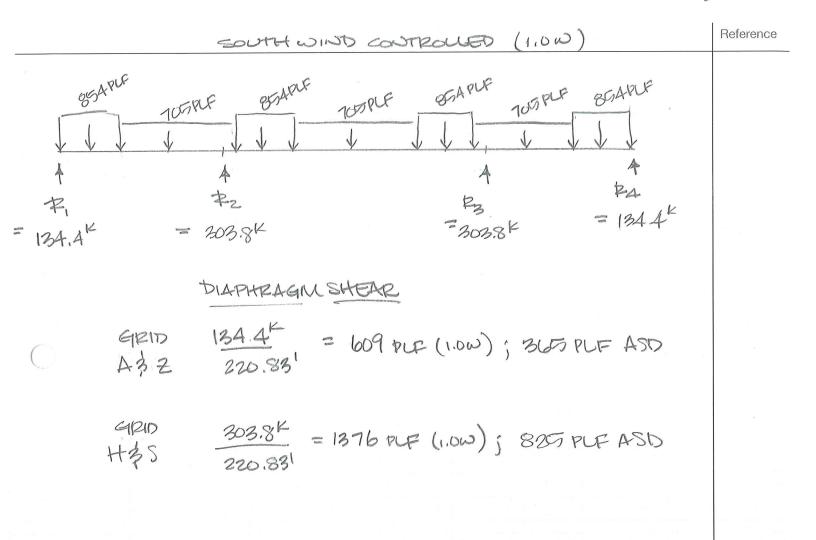

eismic Design Catego	ory based or	Short Perio	od Response Acceleratio	
Value of	Occ	upancy Cateo	gory	Design
Sds	l or ll	III	IV	Category Category
Sds <= 0.167	A	A	A	A A
0.167 <= Sds < 0.33	В	В	С	В
0.33 <= Sds < 0.5	С	С	D	С
0.5 <= Sds	D	D	D	D
S1 >= 0.75	E	E	F	E

Table 1613.2.5(2) and 11.6-2 - D-

Table 1613.2.5(2) and 11.6-2						
Seismic Design Cate	Seismic Design Category Based on 1-Second Period Response Acceleration					
Value of	Oco	cupancy Categ	lory		Design	
Sd1	l or ll	Ш	IV		Category C	ategory
Sd1 <= 0.067	A	A	A		A	в
0.067 <= Sd1 < 0.133	В	В	С		В	
0.133 <= Sd1 < 0.2	С	С	D		С	
0.2 <= Sd1	D	D	D		D	
S1 >= 0.75	E	E	F		E	



Date	4	26 22	S	heet No.	of
Job	22	2003-BL	LILP	INH3	
Subje	ct	MWFIZS		NIS	

Date 4/26/22 Sheet No. of Job 222003-BLDG 3 Subject DIAPHRAGMSHEAR (N/S)

BIEKDALE

$$\frac{\text{DIAPHEAGM CHORD}}{\text{M} = 11,609 \text{ K.ft}} \quad \frac{\text{M}}{\text{e}} = \text{Fmax} = \frac{11,609 \text{ K.ft}}{220.83'} = 52.6 \text{ K} \text{ (UPFD)}$$

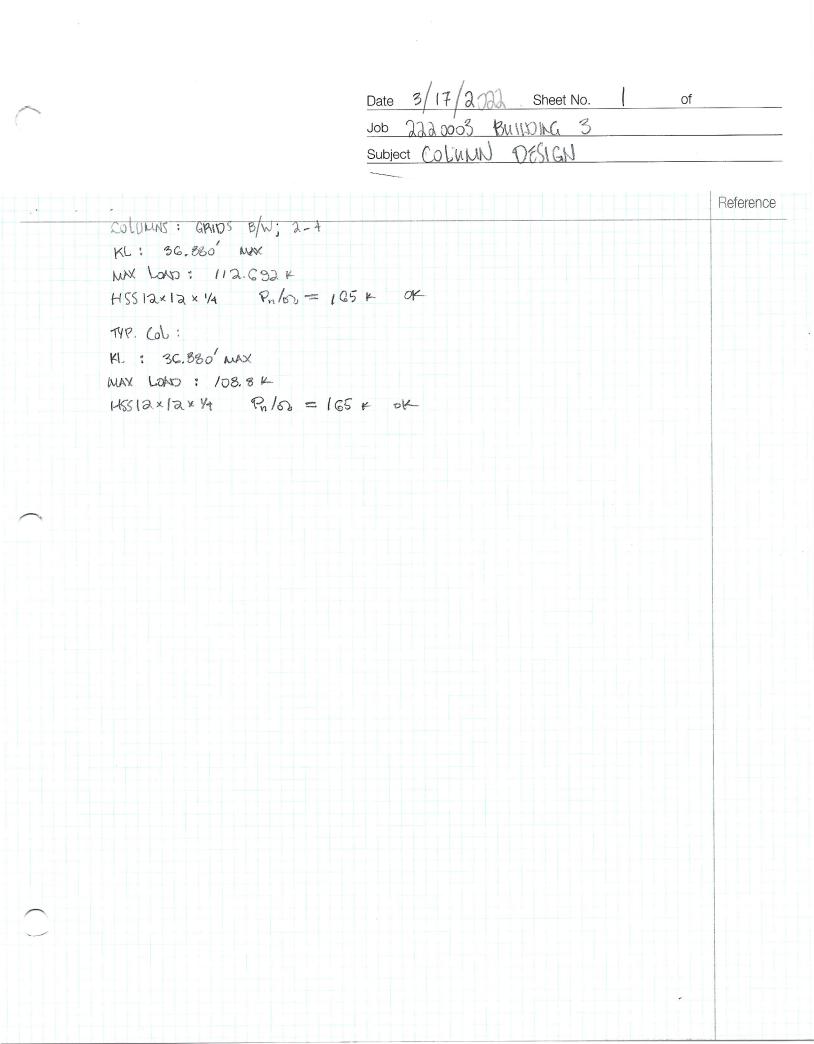
$$\frac{\text{TENSION}}{\text{FSrcq.}} = \frac{\text{P.SC}}{\text{Fg}} = \frac{31.55^{\text{K}}.167}{36 \text{ KS}^{\text{K}}} = 1.46 \text{ m}^{2} \text{ CAXA} \times 36$$

$$\begin{aligned} & COMPRESSION \\ & FL = G' - O'' \\ & LAXA \times 3/8 \quad \frac{F_{1}}{2} = 39.3^{K} 7 31.5^{K} \\ & 1.5^{K} \end{aligned}$$

$$SPLICE = \frac{Areq}{1001574} = \frac{1.46m^{2}}{5"} = 0.292", SAY 3/8"$$

$$WELD = \frac{31.55^{k}}{(0.928 \times 3 \times 2)} = 5.666" - 6" WELD$$

$$\frac{1}{14PHEAM} (1000) = (11000E SPAN)$$


$$\frac{1}{14PHEAM} (1000) = (19330 K-H (1.000)) = (19330 K-H (1.000)) = (19330 K-H = 87.53 K (1000)); (52.532 K (ASD)) = (1000 K K = 1000); (52.532 K (ASD)) = (1000 K K = 1000); (52.532 K (ASD)) = (1000 K K = 1000); (1000 K = 2.44in^{2}) = (1000 K K = 1000); (1000 K = 1000 K = 1000); (1000 K = 1000 K = 1000); (1000 K = 1000 K = 1000 K = 1000); (1000 K = 1000 K = 10000 K = 1000 K = 1000 K = 100$$

Date 3/14/2022 Sheet No. 1 of JOB 2220003 BUILDING 3 Subject ROOF DECK

1%" DECK x 22 GA TYPE B $F_{y} = 50$ KSI (GGO) L = G'-J" TRIPLE SPAN $M_{Hac} = 87$ TSF $M_{0L} = 3.2$ FSF $M_{0L} = 3.2$

2 Sheet No. 2 of Date 20003 BUILDING 3 Job Subject RDOF STRUCTURE

TYP. PLOUF JOIRTS SPACING G'-O' 24 = 11.7 PSF - USE 12.0 PSF 25L = 20 PSF WIL = (12.0+20 PSF) (G.O') = 1.92.0 PLF ~ = [1.2(12.0 PSF) + 1.G (20 PSF)] (G.O') = 273.4 PLF JOIST REACTIONS L = GO -- V = NL/2 = 5.760 + (ND), 8.352 + (LAFD) L = 53'-4" -> V = ~L/2 = 5.120 K (ASD), 7.424 K (LAFD) TYP. GIRDER POINT LONDS (ACD) END BAY NORTH P = CO'[192.0 HF] = 11.520 K ELD BAY SOUTH P = 53.33'[192.0 PH] = 10.240 K $P = 4.859 \text{ ks} + \frac{52.33}{2} [192.0 \text{ plf}] = 9.979 \text{ k(NO)}.$ AT SPI AT SP2 P = 4.404 LBS + 53.33/2 [192.0 PLF] = 9.524 K (ASD) AT SP3 P = 4.914 LBS + 53.3% [192.0 PLF] = 10.03+ K ASD

	Date 3/17/2022 Sheet No. 1 of Job 2220003 BUILDING 3 Subject LOAD BEARING FOOTING
AT $40'-0''$ WALL w = 228.9 pLF + (4041) AT $38'-G''$ WALL w = 209.0 PLF + (385+1) .FROM JOIST BEARING COND AT CORNER SPI, GRID 2 w = (81.768+/54 FT) + TYP. NORTH, SP3, GRID 2 w = (70.794+/54 FT) + AT CORNER SP2, GRID 4 w = (110.24 F/84 FT) + TYP. SOUTH, GRID 4,	(9.25/12)(150 Psr) = 5196.68 Pdr (9.25/12)(150 Re) = 4969.53 Pdr (9.25/12)(150 Re) = 4.776.19 ITION 38'-6'' WALL (38.5+1)(9.25/12)(150 Re) = G081.41 Pdr 37'-6'' WALL + 5' (37.5+5)(9.25/12)(150 Psr) = G225.06 Pdr 42'-0'' WALL (42.0+1)(9.25/12)(150 Psr) = G284.20 Pdr
$B_{P40} = \frac{36''}{-7}$	$f_{c}' = 300 \text{ psi}$ $= 2500 \text{ psi}$ $B_{MD} = 24^{\circ}$ WIDTH ALLOW LOADS $BFT \qquad 7.5 \text{ HF}$ CHECK FTG PREQUIPTEMENTS $h_{g}p = 36^{\circ} - 3^{\circ} = 33^{\circ}$ MOMENT (APACITY $dM_{h} = 0.c (5) - f_{5000} (36^{\circ} (33^{\circ})^{2}) M_{h} = 894705 \text{ HF}$ $SHEAR (APACITY dM_{h} = 0.c (5) - f_{5000} (36^{\circ} (33^{\circ})^{2}) M_{h} = 894705 \text{ HF} SHEAR (APACITY dM_{h} = 0.c (5) - f_{5000} (36^{\circ} (33^{\circ})^{2}) M_{h} = 894705 \text{ HF} SHEAR (APACITY dM_{h} = 0.c (5) - f_{5000} (36^{\circ} (33^{\circ})^{2}) M_{h} = 894705 \text{ HF} SHEAR (APACITY dM_{h} = 0.c (5) - f_{5000} (36^{\circ} (33^{\circ})^{2}) M_{h} = 894705 \text{ HF} SHEAR (APACITY dM_{h} = 0.c (5) - f_{5000} (36^{\circ} (33^{\circ})^{2}) M_{h} = 894705 \text{ HF} SHEAR (APACITY dM_{h} = 0.c (5) - f_{5000} (36^{\circ} (33^{\circ})^{2}) M_{h} = 52.1 \text{ HF} (HECK SPAN) M_{h} = 1.6 (6.284 \text{ H}) = 10.054 \text{ H} - VEPY CONSERVATIVE M_{h} = -\int_{0.47}^{0} (9.47(9) = 8.4875 \text{ FT} \int_{0.054}^{0} (9.476) = 8.4875 \text{ FT}$

Date 3/18/22	Sheet No.	of		
Job 2220003 BLD 6 3				
Subject NET DP	LIFT			

 POOF UPLIET

 a=0.6h = 20.146

 DECK

 Ar=10ft²

 DL=3psf

 ZONE 1'

 16.3 psf

 ZONE 1

 29.2 psf

 20NE 2

 38.5 psf

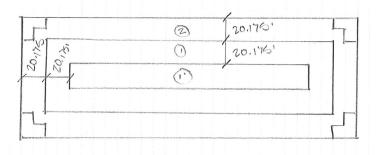
524psf

0.10N - 0.10D
0.601-0.60 14.5psf
27.21 psf
36.7psf
50.6psf

ZONE 3 POSITIVE

ROOF SOISTS

DL=10psf

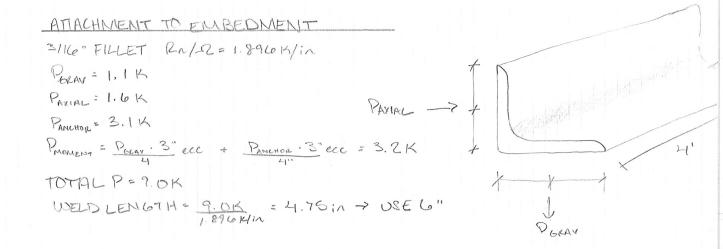

A.= MAX(6'.0", 53'.4", (53'.4")2/3)= 94892

Desit	0.(01) 12.8psf	0.6W-0.6D
ZONE I'	12. 8psf	11. Opst
ZONE	19.0pst	17.7psf
ZONE 2	26.1psf	24.3 psf
ZONE 3	27.7 psf	26.9 psf
POSITIVE		-

ROOF GIRDERS

DL=12psf

Ar = MAX (624:63:4", (64:32/3) = 2880 ft2 0 to 33.63 33.63 to 67.26 -6.64 -0.62 -



Date 3/18/22	Sheet No.	of
Job 2220063	BLDG3	
Subject MALL	ANCHORAGE	

PANEL ANCHORAGE P=MAX (0.2W, Spor) EODEF=WALL WEIGHT WI= 0.2. 150 PCf. (9.25"/12) = 23.125psf 9"4+1" = WALL THICKNESS P=23.1250sf WIND WALL PRESSURE A. = 500 ft2 WWALL = 14.2psf 783 DIF WEL WPARA = 43.9psf 331 WO ONLY LATERAL LOADS (WALL PULDUT) WIND = 306 PIF (N/S WIND CORNER) 111 = 331 PIF (EIW WIND MIDDLE) 829 pif WEL 306 WONLY SEISMIC = GRAVITY LOADS JOIST PARALLEL - 265 PIF SOIST PERPENDICULAR - SEE PLAN JOIST BEARING CONDITION -MAX SPACING - 6'-0" -MAX DIAPHRAGH SHEAR - 127pif (GRIDG). 6.0" = 0.76K -ANCHORAGE OF WALLS - 829 pif (CORNER). 6.0"= 5.0K - STD SEAT WELD R= S. TLEK Kn/SZ= 0.928.2.2.2.7.4K OK JOIST PARALLEL CONDITION ·ANCHORAGE EMBEDMENT - 41-0" MAX FOR L4X4X318 WORAV = 265 pif WAXIAL . 410plf WANCHOR = 783pif >LAXAX 38 GOOD

Date	3/18/22	Sheet No.	of	
Job	2220003	BLDGS		
Subject WALL ANCHORAGE				

 \bigcirc

wallace design collective

Date 3/21/22	Sheet No.	of
Job 2220003	BLD63	
Subject BRACE FE	LAME GRADE	BEAM

WEIGHT ON SYSTEM
13) IOXIOX3 FTD
- (150pcf SC10'SC10'SC3') = 135.0K (1.00) 81.0K (0.60)
SLAB ABOVE -7"
- (71,2)(150pcF)(1,2)=122.5psf
Oll n= D. 6 (5, 1. D.) 4.000ps;) (12.62) = 9486.816-in= 0.79 K-H
-LALLOWS = (1.79 K.H.Z = 3.69) 122.5 psf
-3(10'+3.59'.2)2 (7/12")(150)=77.5K (1.0D) 416.5K (0.60)
COL LOADS
- RISALCIS D. 60+ D. 600-76.6K
PASSINE PRESSURE
$-(12)(3)(10)(250psf) \cdot 3 = 11.3K$
TOTAL RESISTANCE
81.0K + 46.5K - 76.6K + 11.3K = 2K.4K
TOTAL SHEAR
V=182.11K
WEIGHT REOD
$F = \mu N \doteq V_{\mu}$
6.30(20+1.1K)+ 11.3K = 12.63K
182.0K-72.B3K=1091.5K 2EQ
109.5K = 3641.9 K = 0.15KCF.3'.2.43.33.X
0.3 X=9.361 =91-616B
이 물건 같은 것이 집에서 집에 걸려 가지 않는 것이 같다.

Date 3/21/22	Sheet No.	of
Job 2220003	BLDG 3	
Subject BRACED	FRAME	GRADE BEANI

	WEIGHT ADDED NUCLUDE SLAB AROVE GRADE BEAM . ASSUME 11-6"
	NOLUDE SLAB ABOVE GRADE BEAM. ASSUME 1-6"
	- (63.331-10'-3,69'.2)= 3(.16'
	- (150pcf)(7/12")(8.7))(36.15) = 27.5K (1.00) 1000 16.5K (0.00)
_	NEW WEIGHT
	81.0K+H6KK+76.6K+16.5K=220.6K
PP	11.3K
	WEIGHT READ
	0.30 (220, 6K) + 11.3K = 77.481K
	180.7 K-77.5K=102.7K
	102.7K = 342,3K = 0.16KCF · 3' · 2 · 43.33 · ×
	8.48'= x = 9'- D''
	DOWEL INTO CONC
	V= 102.74
	TRY #4 BARS - A: 0.2:n2 - fy = 3(eks:
	M = D(6(36 ke)(0-2) + 1.3 K)
	<u>93.5K</u> = 23.9 BARS 4.3K/BAR
	USE #4 POWELS AT 3'-6"

CONCOUVE	Date 21/4/22	Sheet No.	of
	Job 2220003		
	Subject BLD6 3	GB/FND D	DOWELS
DOWELS FOR SHE	AR SLIDING	Gantagen Reference and the Symposium and the	
342.3K = 3(0.15)(3	5.2'.43.33') + X		
342.38 - 116.991	K= 225.3K		
#4 DOWELS - 4.3	SK		
2.25.3K = 52.3	9 DOWELS		
(4510' FDN) = 167	2/FT = 16.4 = 6	4 DOWELS	

NO DOWERS IN 6B