

Model: Address: 2063 NW O'Brian Rd	alvision: vvoodside Ridge e: MO
Mean Roof Height (feet): 35	Exposure Category: C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	eal# Truss Name Date 2120804 G04 5/24/22 2120805 G05 5/24/22 2120806 H01 5/24/22 2120807 H02 5/24/22 2120808 J01 5/24/22 2120809 J02 5/24/22 2120810 J03 5/24/22 2120811 J04 5/24/22 2120813 J06 5/24/22 2120813 J06 5/24/22 2120813 J06 5/24/22 2120814 J07 5/24/22 2120815 J08 5/24/22 2120814 J07 5/24/22 2120818 J11 5/24/22 2120814 J11 5/24/22 2120819 J12 5/24/22 2120821 J14 5/24/22 2120823 LG01 5/24/22 2120824 LG02 5/24/22 2120825 LG03 5/24/22 2120826 LG04

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Premier Building Supply (Springhill, KS)20300 W 207th Street.

Truss Design Engineer's Name: Fox, Steve

My license renewal date for the state of Missouri is December 31, 2022.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Fox, Steve

											RELEASE	FOR CONSTRUCTION	N
Job		Truss		Truss Type		Qty	Ply	R	of				
P220274-P2	20274-02	A01		Common Support	ed Gable	1	1		b Reference	antional		OPMENT SERVICES 152120770 SUMMIT, MISSOURI	
Premier Building	Supply (Springh	nill, KS), Sprin	ng Hills, KS - 66083,		Run: 8.53 S Ap	r 27 2022 F	rint: 8.530 S	Apr 27 202	2 MiTek Indust	ies. Inc. N	on May 13 19 26:57	12/2922	ว ี
					ID:qNTK_h89bv	RM81Dkdc	Q2NjzYcoP-	-RfC?PsB70	Hq3NSgPqnL8	w3ulTXbG	KWrCDor734250?f		
			-0-10-8	10-					20-0-0		20-10-		
			d-10-8	10-	J-U				10-0-0		d-10-8	3	
Scale = 1:51.4	7-7-3	0-10-0	1 23 3x8 II	3 4 3 22 21 5x5=	2 6 5 1 2 0 19	20-0	4 =	8	9 8 7 7	10	11 12 14 15 3x8 II	13	
Plate Offsets (>	K, Y): [7:0-2-0	0,Edge], [21	:0-2-8,0-3-0]										_
I	6-0-0 oc pur Rigid ceiling bracing. (Ib/size) 14 11 20 22 Max Horiz 22 Max Uplift 14 11 24 Max Grav 14 11 11 24 Max Grav 14 11 24 22 Max Grav 14 11 24 24 22 25 25 25 26 26 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	25.0 P 10.0 Li 0.0 R 10.0 C 10.0 C 22 23 3 ood sheathir 1/ins, excep 9 directly app 4=236/20-0 6=198/20-0 8=246/20-0 0=150/20-0 0=150/20-0 3=-227 (LC 4=-19 (LC 9 6=-50 (LC 1 0=-109 (LC 2 2=-172 (LC 4=243 (LC 2 6=198 (LC 2 0=162 (LC 2 2=189 (LC 2) 0=162 (LC	pacing late Grip DOL umber DOL ep Stress Incr ode ing directly applied t end verticals. plied or 10-0-0 oc -0, 15=128/20-0-0, -0, 15=128/20-0-0, -0, 15=128/20-0-0, -0, 19=246/20-0-0, -0, 21=195/20-0-0, -0, 21=195/20-0-0, 10) 1, 15=-173 (LC 13) 3), 17=-112 (LC 13) 3), 17=-51 (LC 12) 12), 21=-51 (LC 12) 12), 21=-51 (LC 12) 12), 15=-186 (LC 20) 1), 19=254 (LC 19) 19), 21=195 (LC 1) 19), 23=248 (LC 2' rssion/Maximum	or this design 2) Wind: ASC Vasd=91rr Ke=1.00; (exterior 20 Exterior(2h 15-0-0, Ex left and rig exposed; (reactions s DOL=1.60 3), 3) Truss des or consult), 4) All plates a 5) Gable requ), 6) Truss to be braced age), 7) Gable stud	E 7-16; Vult=115m ph; TCDL=6.0psf; E Cat. II; Exp C; Enclo ne and C-C Corner(v) 4-0-0 to 10-0-0, C terior(2N) 15-0-0 to ht exposed ; end ve -C for members and shown; Lumber DOL	22=-143/ 7=-140/1 11-15=-14 ve been c ph (3-sec 3CDL=6.0 sec; MWH (3GE)-0-10-8 zec; MWH (3GE)-0-10-8 zertical left d forces 8 =-1.60 pt s in the pl nd (normation esigner as sess otherwittom chorr n one fac ent (i.e. d) pc.	171, 38, 2/173 onsidered ond gust) pst; h=35fi FRS (envel- 8 to 4-0-0) 10-0-0 to one; cantil and right MWFRS fi te grip ane of the fact s as applic per ANSI/ vise indicat b bearing. e or secure agonal wei	t; loope) , vever for truss ce), cable, TPI 1. ied. ly yly b).	- n.	fi L/d 'a 999 'a 999 'a n/a	PLATES MT20 Weight: 103 lb	GRIP 244/190 FT = 20%	
TOP CHORD	Tension 2-23=-208/3 3-4=-163/70 6-7=-135/11 9-10=-139/3	30, 1-2=0/40 0, 4-5=-149/9 3, 7-8=-135 39, 10-11=-1 /94, 12-13=0 222, 20-22=- 224, 18-19=- 224, 16-17=-	0, 2-3=-231/107, 52, 5-6=-129/74, 5/113, 8-9=-117/70 56/59, 0/40, 12-14=-205/2 -96/224, -96/224, -96/224,	 9) Provide modeling places bearing places and places	ioad nonconcurrent echanical connectio ate capable of withsis plift at joint 14, 23 lb t 20, 51 lb uplift at joint 18, joint 16 and 173 lb u is designed in accor al Residential Code and referenced star 5) Standard	n (by othe tanding 3 o uplift at joint 21, 1 112 lb up uplift at joi rdance wi s sections	ers) of truss o lb uplift a oint 19, 10 72 lb uplift lift at joint nt 15. th the 2018 R502.11.1	s to t joint 19 lb at 17, 50		and the second	E-23	DX BER 873	

16023 Swingley Ridge Rd Chesterfield, MO 63017

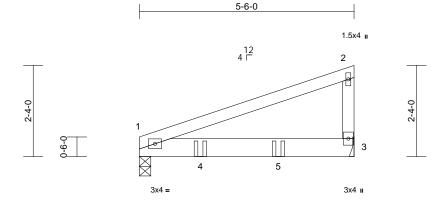
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

										FOR CONSTRUCTION	_
Job	Truss		Truss Type		Qty	Ply	Roof			D FOR PLAN REVIEW OPMENT SERVICES 152120771]
P220274-P220274-02	A02		Common		1	1	Job Refere	ence (optional)		I52120771 SUMMIT, MISSOURI	
Premier Building Supply (Sprin	ghill, KS), Spring Hills	s, KS - 66083,		Run: 8.53 S Apr 27 ID:4BdR804SSZ7Qt	2022 Print	8.530 S Apr 27	2022 MiTek I	ndustries Inc. M	on May 3 Posts	02/2022	-
				и).400K804552/Qt	scve112.\)	Z TUNU-KIU /PS	<i>ы о</i> пцзія5gP	quilow3ui I XDGI		, •	
			5-1-12 5-1-12	<u>10-0-0</u> 4-10-4		<u>14-10-4</u> 4-10-4		20-0-0 5-1-12	20-10-8 0-10-8		
					4x4 =				0 10 0		
					3						
	ΤΤ		12								
			12 8								
			4x4 🕫				4x4 👟				
	7-7-3		2				4				
				$\langle \rangle$							
		3x4 II							3x4 II		
		1							5		
		10							× × °		
		⊠ 3x6 =	9 4x6 =		8 3x8=				3x6=		
			4x0=		3X0=						
			<u> </u>				20-0-0		———————————————————————————————————————		
Scale = 1:53.2											_
Loading TCLL (roof)	(psf) Spacia 25.0 Plate C	ng Grip DOL	2-0-0 1.15	CSI TC		E FL ert(LL) -0.	in (loc) 18 7-8	l/defl L/d >999 240	PLATES MT20	GRIP 244/190	
TCDL	10.0 Lumbe	•	1.15 YES	BC	0.95 Ve	rt(CT) -0.	.37 7-8 .03 7	>634 180 n/a n/a			
BCDL	10.0 Code		IRC2018/TPI2014	Matrix-S	5.01 110				Weight: 104 lb	FT = 20%	_
LUMBER TOP CHORD 2x4 SP No	2			lesigned in accordar Residential Code se							
BOT CHORD 2x4 SP No		7-5-2v4 SP I	R802.10.2 an	d referenced standa							
BRACING		,	()	Stanuaru							
5-9-14 oc	wood sheathing di purlins, except en	d verticals.	i or								
BOT CHORD Rigid ceilin bracing.	ng directly applied	or 2-2-0 oc									
	7=960/0-3-8, 10=8 10=-221 (LC 8)	385/0-3-8									
-	7=-149 (LC 13), 10 mum Compression		2)								
Tension	38, 2-3=-880/202, 3										
	137, 5-6=0/40, 1-1		,								
BOT CHORD 8-10=-182	2/891, 7-8=-83/847 40, 4-8=-299/239, 2										
2-10=-741	/164, 4-7=-687/12		,								
NOTES1) Unbalanced roof live lot	oads have been co	nsidered for									
this design. 2) Wind: ASCE 7-16; Vul										<u>11.</u>	
Vasd=91mph; TCDL=6 Ke=1.00; Cat. II; Exp (e)						NE OF	MISS	
exterior zone and C-C Interior (1) 5-0-5 to 10								2	A	- 0,0	
14-11-11, Interior (1) 1 cantilever left and right	4-11-11 to 20-10-8	3 zone;						1	STE	/EN	
right exposed;C-C for for reactions shown; L	members and force	es & MWFRS						Ξ*		AL *=	
DOL=1.60 3) This truss has been de		• •						ET	NUM	BER :	
 4) One H2.5T Simpson S 	current with any of	ther live load	S.						O E-23	873	
recommended to conn	ect truss to bearing	g walls due to)						ISS/ON	ENGIN	
UPLIFT at jt(s) 10 and only and does not con:									111	24 2022	

May 24,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

								RELEASE	FOR CONSTRUCTION	
Job	Truss	Truss Type		Qty	Ply	Roof			ED FOR PLAN REVIEW OPMENT SERVICES 152120772	7
P220274-P220274-0	2 A03	Common		2	1	Job Refere	nce (optional)		I52120772 SUMMIT, MISSOURI	
Premier Building Supply (Sp	inghill, KS), Spring Hills, KS -	- 66083,	Run: 8.53 S A	pr 27 2022 Print: 8 SZ7QtscXeTJ5?yz1	530 S Apr 27	2022 MiTek li	ndustries, Inc. N	on May 13 14 26:59	02/2022	, -
			ID.4DUR00433	SZ / QISCAR I JS / yZ I	CIIC-RIC?FS	Bronqanagri	ILOWSUITADG			
		<u>5-1-12</u> 5-1-12	<u> </u>		14-10-4 4-10-4		20-0-0 5-1-12	20-10-8 0-10-8		
				4x4=				0 10 0		
				3						
	ΤΤ		12							
			8 ¹²		\searrow					
			4x4 ¢ 2			4x4 🔪				
	7-7-3 7-6-0					4				
		3x4 II						3x4 II		
	1 م							5		
		Ţ.								
		3x6= 9	6=	8 3x8=				3x6=		
		44		5x6=						
			10-0-0 10-0-0			20-0-0 10-0-0		———————————————————————————————————————		
Scale = 1:53.2	· · ·			· · · · · ·						_
Loading TCLL (roof)	(psf) Spacing 25.0 Plate Grip D	2-0-0 DOL 1.15	CSI TC	0.36 Vert		in (loc) 18 7-8	l/defl L/d >999 240	PLATES MT20	GRIP 244/190	
TCDL BCLL	10.0 Lumber DO 0.0 Rep Stress		BC WB	0.95 Vert 0.61 Horz	. ,	37 7-8 03 7	>634 180 n/a n/a			
BCDL	10.0 Code	IRC2018/TPI2		0.01 11012	(01) 0.			Weight: 104 lb	FT = 20%	_
LUMBER TOP CHORD 2x4 SP N	10.2		H2.5T Simpson Strong- mmended to connect tru		lls due to					
BOT CHORD 2x4 SP M		UPL	IFT at jt(s) 7. This conne not consider lateral for	ction is for uplift						
BRACING	1 /	7) This	truss is designed in accordance of the second secon	ordance with the						
5-9-14 o	al wood sheathing directly c purlins, except end ver	ticals. R80	2.10.2 and referenced st							
BOT CHORD Rigid cei bracing.	ling directly applied or 2-2	2-0 oc LOAD C	ASE(S) Standard							
REACTIONS (lb/size) Max Horiz	7=960/0-3-8, 10=885/ M 10=-221 (LC 8)	Mechanical								
Max Uplift	7=-149 (LC 13), 10=-12									
Tension	ximum Compression/Max									
	7/88, 2-3=-880/202, 3-4=- 9/137, 5-6=0/40, 1-10=-34									
BOT CHORD 8-10=-18	32/891, 7-8=-83/847									
	540, 4-8=-299/239, 2-8=- 1/164, 4-7=-687/127	309/242,								
NOTES 1) Unbalanced roof live	loads have been conside	ered for								
this design. 2) Wind: ASCE 7-16; V									10	
Vasd=91mph; TCDL	=6.0psf; BCDL=6.0psf; h= C; Enclosed; MWFRS (e	=35ft;						NE OF	MISS	
exterior zone and C-	C Exterior(2E) 0-1-12 to 5 0-0-0, Exterior(2R) 10-0-0	5-0-5,					5	XA	- 0,0,1	
14-11-11, Interior (1)	14-11-11 to 20-10-8 zon ht exposed ; end vertical	e;					E.	STE		
right exposed;C-C fo	r members and forces & I Lumber DOL=1.60 plate	MWFRS					Ξ*		ох *=	
DOL=1.60							ET	NUM	SEA ST	
chord live load nonce	designed for a 10.0 psf bo oncurrent with any other li	ive loads.					E.	E-23	873	
5) Provide mechanical	truss to truss connections connection (by others) of	truss to						rss;	ENGLIN	
bearing plate capable joint 10.	e of withstanding 123 lb u	plift at						NON/	iiii.	
								May	/ 24.2022	


уl MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

May 24,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof	AS NOTED FOR PLAN REVIEW
505	11035	Thuss Type	Quy	I IY	Rool	DEVELOPMENT SERVICES 152120773
P220274-P220274-02	AG01	Jack-Closed Girder	1	1	Job Reference (optional	

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Non May 33 87 02/29:22 ID:uXPQidXD3ITpzxftVW?YgTzYcnv-RfC?PsB70Hq3NSgPqnL8w3uITXbGK VrCDoi704.91

LUS26

LUS26

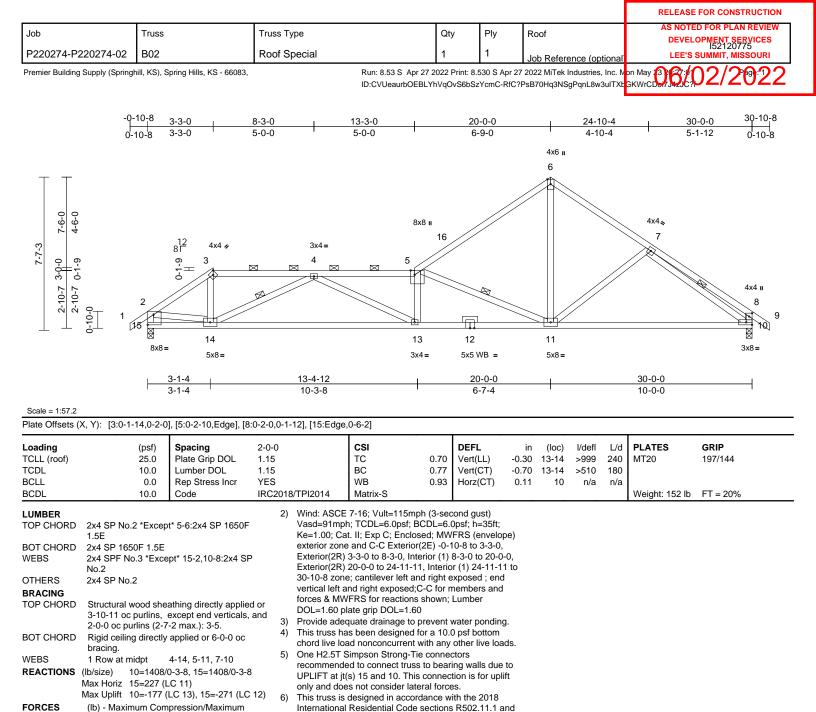
5-6	o-0	

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.72	Vert(LL)	-0.10	1-3	>648	240		244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.77	Vert(CT)	-0.18	1-3	>352	180		
BCLL	0.0	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI	2014 Matrix-P							Weight: 23 lb	FT = 20%
LUMBER			7) Us	e Simpson Strong-Tie LU	S26 (4-100	d Girder, 4-10	Dd					
TOP CHORD	2x4 SP No.2			ss, Single Ply Girder) or e								
BOT CHORD	2x6 SP 2400F 2.0E			max. starting at 1-6-12 fro			2 to					
WEBS	2x4 SPF No.3			nect truss(es) to front fac								
BRACING			<u> </u>	all nail holes where hang he LOAD CASE(S) section								
TOP CHORD	Structural wood she 5-6-0 oc purlins, ex			he truss are noted as fror			lace					
BOT CHORD	Rigid ceiling directly			CASE(S) Standard	()	()						
BOT ONORD	bracing.			ead + Roof Live (balanced	d): Lumbei	Increase=1.	.15,					
REACTIONS		-3-8, 3=1037/ Mech	anicai	ate Increase=1.15								
	Max Horiz 1=91 (LC	,	U	niform Loads (lb/ft)								
	Max Uplift 1=-189 (L	.C 8), 3=-184 (LC 12	2)	Vert: 1-2=-70, 1-3=-20								
FORCES	(lb) - Maximum Con	pression/Maximum	С	oncentrated Loads (lb)	(E)							
	Tension			Vert: 4=-865 (F), 5=-865	(F)							
TOP CHORD	1-2=-127/77, 2-3=-1	82/241										
BOT CHORD	1-3=-39/42											
NOTES												
	CE 7-16; Vult=115mph											
	nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose		20)									
	one and C-C Exterior(2											
	exposed ; end vertical	, ,	ion									
	C-C for members and f		r									
	shown; Lumber DOL=	1.60 plate grip										111.
DOL=1.60											IN OF	MICH
	has been designed fo										NE	SS
	load nonconcurrent w irder(s) for truss to trus		ids.								· · · · ·	
	echanical connection		to							-	STEV	VEN : P-
	ate capable of withsta									-		
joint 3.	Ispanio en minota		-							= *	E.F	·
	T Simpson Strong-Tie	connectors								=	: \	X =
	nded to connect truss									- 7		BEB C
	t jt(s) 1. This connection	on is for uplift only a	nd									• 41.
does not c	consider lateral forces									-	O E-23	

does not consider lateral forces.
6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

SSIONALE


May 24,2022

0

								RELEAS	SE FOR CO	NSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof				LAN REVIEW
P220274-P22027	74-02 B01	Roof Special Girde	r	1	1	lob Roforo	nce (optional	LEE'	ELOPMENT 15212 S SUMMIT,	SERVICES 0774 MISSOURI
Premier Building Supply	/ (Springhill, KS), Spring Hills, KS - 6608	33,	Run: 8.53 E Apr 27	2022 Print: 8	.530 E Apr 2	7 2022 MiTek Ir	ndustries, Inc. T	ie May 24 200:5	m2/	202
			ID:CVUeaurbOEBLY	hVqOvS6bS	zYcmC-t6G3	hnF0lhdzOjTjfl	cj8sHxhmM8lgA	XOcMlyBzDIL?		2022
	-0-10-8 2 2 0 7	2.0 12	3.0	10	20.0	0	24 10 4		30-0-0	30-10-8
	-0-10-8 2-3-0 7 0-10-8 2-3-0 5			-1-8 10-8	20-0 3-10		<u>24-10-4</u> 4-10-4		5-1-12	0-10-8
						6x6=				
						7				
TT										
				MT18	HS 6x12 🖌		\square			
7-6-0	10			6	//			3x6		
2	12 8			20	X			8		
7-7-3	6x6=	4x12=	MT18HS 10x14	s =///						
6- <u>-</u> -		18 4 19 ⊠ ⊠ ⊠	5		Á	2			\searrow	
2-2-9 2-2-90-1-7					Ň	$\langle \rangle$				9
0-10-0							/	•		10
⊥_⊥;⊥		22 15 23	24 14 1	3		12		11		
	7x8= 8x10=	3x6 II				5x8=		3x6 ш		7x8=
			8	x8=						
	2-1-4 7 2-1-4 5-	-3-0 <u> </u> 12·	4-12	20-	1-12		24-10-4		30-0-0	
	2-1-4 5-	1-12 5-	1-12	7-	9-0	I	4-8-8	I	5-1-12	I
Scale = $1:57.6$ Plate Offsets (X, Y):	[2:Edge,0-4-4], [3:0-3-0,0-2-3], [4	:0-4-12.0-2-0]. [6:0-3-8.0-3	3-0]. [9:Edge.0-4-4]. [1	4:0-3-4.0-3	-12]. [16:0-	3-8.0-5-81				
			1	-						
Loading TCLL (roof)	(psf) Spacing 25.0 Plate Grip DOL	2-0-0 1.15	TC CSI	DEF 0.73 Vert		in (loc) 0.54 14-15	l/defl L/d >664 240	PLATES MT20	GRIP 244/19(D
TCDL	10.0 Lumber DOL	1.15 NO		0.94 Vert	. ,	0.96 14-15 0.09 9	>372 180	MT18HS	244/190	D
BCLL BCDL	0.0 Rep Stress Incr 10.0 Code	NO IRC2018/TPI2014	WB Matrix-S).94 Horz	2(CT) 0	9.09 9	n/a n/a	Weight: 208 II	o FT = 20)%
LUMBER		NOTES	· · · · ·			1) De	ad + Roof Live	e (balanced): Lu	umber Incre	ease=1.15,
TOP CHORD 2x4 2.0E	SP No.2 *Except* 3-5,5-7:2x6 SP	2400F 1) Unbalanced this design.	roof live loads have b	een consid	lered for		ate Increase=1 iform Loads (I			
BOT CHORD 2x8	SP 2400F 2.0E *Except* 13-9:2x8	SPF 2) Wind: ASCE	7-16; Vult=115mph (,	Vert: 1-3=-70,	3-5=-70, 5-7=-7	70, 7-10=-7	0, 2-9=-20
No.2 WEBS 2x4	2 SP No.2 *Except*		h; TCDL=6.0psf; BCD at. II; Exp C; Enclosed				ncentrated Lo Vert: 16=-198	ads (lb) (F), 17=-108 (F), 18=-108	(F), 19=-108
	,12-8,8-11,12-6:2x4 SPF No.3, 6- 2400F 2.0E		e and C-C Exterior(2E 2-3-0 to 7-3-0, Interio				(F), 21=-33 (F), 22=-33 (F), 2	3=-33 (F), 2	24=-1017 (F)
WEDGE Left:	2x4 SP No.2	Exterior(2R)	20-0-0 to 24-10-4, Int	erior (1) 24	I-10-4 to					
Righ BRACING	t: 2x4 SP No.2		e; cantilever left and r and right exposed;C-C							
TOP CHORD Stru	ctural wood sheathing directly app		VFRS for reactions sh late grip DOL=1.60	own; Lumb	er					
	9 oc purlins, except 0 oc purlins (2-11-4 max.): 3-5.	 Provide ade 	quate drainage to pre							
BOT CHORD Rigi	d ceiling directly applied or 8-8-5 o		e MT20 plates unless as been designed for a							
WEBS 1 Ro	ow at midpt 4-16, 6-12	chord live lo	ad nonconcurrent with	any other	live loads.					
REACTIONS (lb/siz		bearing plat	chanical connection (b e capable of withstand							
	Horiz 2=-203 (LC 10) Jplift 2=-596 (LC 12), 9=-286 (LC	12)	86 lb uplift at joint 9. designed in accordar	ce with the	2018					
()	Max. Comp./Max. Ten All force or less except when shown.	s 250 Internationa	Residential Code se	tions R502	2.11.1 and					
TOP CHORD 2-3=	-4050/865, 3-17=-2916/668,		and referenced standa urlin representation do						un.	
	8=-2919/669, 4-18=-2923/670, =-9313/1769, 5-19=-9310/1769,		ation of the purlin alor					NE OF	MISS	11,
5-20	=-10613/2050, 6-20=-10476/2069	, 9) Hanger(s) o	r other connection dev				5	A.		U.
8-9=	2375/499, 7-8=-2411/494, 2641/449		fficient to support cond 107 lb up at 3-11-4,				2	STE	VEN	.2-
	i=-753/3101, 16-21=-1790/8296, 2=-1790/8296, 15-22=-1790/8296	107 lb up at	5-11-4, and 158 lb do p chord, and 198 lb do	own and 10)7 lb up at		E*		OX	*=
15-2	3=-1790/8296, 23-24=-1790/8296	, 2-3-0, 66 lb	down at 3-11-4, 66 lb	down at 5	5-11-4, and		E		ma	in-E
12-1	24=-1790/8296, 13-14=-686/3602, 3=-686/3602, 11-12=-277/2024,		at 7-11-4, and 1017 lb n bottom chord. The c				=		1BER 3873	.щ.:
	=-277/2024 =-390/2225, 4-16=-5658/1125,	such conne	ction device(s) is the r	esponsibilit	y of others.				•	1
4-15	=0/679, 4-14=-43/1067,		CASE(S) section, loa are noted as front (F)					1,SSIC:	NEN	3.11
	=-5983/1236, 7-12=-445/2294, =-2528/641, 6-14=-1582/7982	LOAD CASE(S)	Standard					110/ON	ALIN	
									ay 24,20	22
								_		
WARNING - Ve	erify design parameters and READ NOTES C	N THIS AND INCLUDED MITEK F	REFERENCE PAGE MII-7473	rev. 5/19/202	0 BEFORE US	E.				

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent touls be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

R802.10.2 and referenced standard ANSI/TPI 1.

or the orientation of the purlin along the top and/or

Graphical purlin representation does not depict the size

NOTES

WEBS

TOP CHORD

BOT CHORD

 Unbalanced roof live loads have been considered for this design.

7-10=-1262/228

1-2=0/40, 2-3=-1819/287, 3-4=-1435/273,

6-7=-1608/315, 7-8=-595/129, 8-9=0/40,

4-5=-3805/638, 5-6=-1650/296,

2-15=-1431/250, 8-10=-529/161

3-14=-32/713, 4-14=-1802/390, 4-13=-58/848, 5-13=-227/126, 5-11=-2714/576, 6-11=-162/1267,

7-11=-246/227, 2-14=-113/1425,

14-15=-226/227, 13-14=-632/3044

11-13=-643/3790, 10-11=-161/1400

Tension

ALLIN TAS * PROFT MI 0 STEVEN E. FOX OROFE UMBE E-23873 0 S S F ONAL min May 24,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

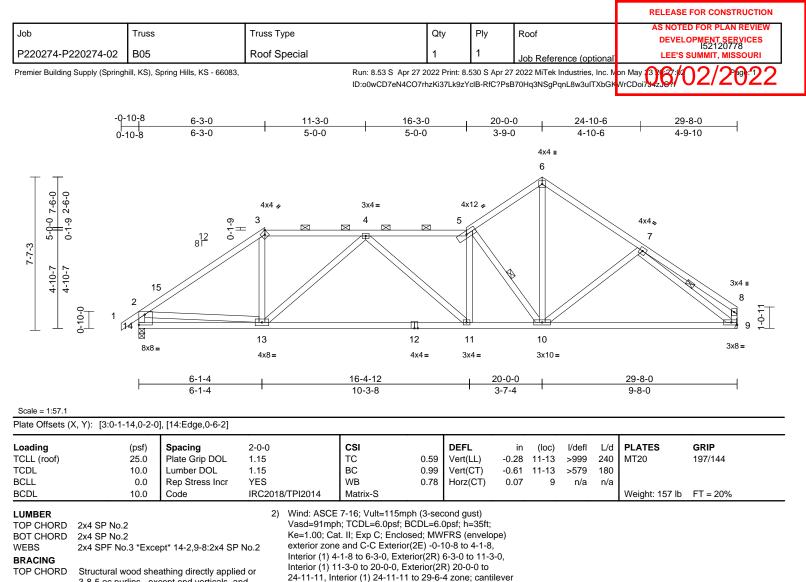
7)

bottom chord.

LOAD CASE(S) Standard

								RELEAS	SE FOR CON	ISTRUCTION
b	Truss	Truss Type	(Qty	Ply	Roof			ED FOR PL LOPMENT S 15212	
220274-P220274-02	B03	Roof Special		l	1	Job Refere	ence (optional)		152120 S Summit, N	
mier Building Supply (Springh	nill, KS), Spring Hills, KS - 66083,		Run: 8.53 S Apr 27 202 ID:CVUeaurbOEBLYhV	2 Print: 8. qOvS6bSz	530 S Apr 2 zYcmC-RfC	7 2022 MiTek I ?PsB70Hq3NS	ndustries, Inc. N gPqnL8w3uITXb	on May (3) (7) GKWrCDor/J42JC	02/2	2022
	10-8 4-3-0 10-8 4-3-0	9-3-0	<u>14-3-0</u> 5-0-0		<u>20-0-0</u> 5-9-0		<u>24-10-4</u> 4-10-4		<u>30-0-0</u> 5-1-12	30-10-8 0-10-8
0-	10-8				000	4x4 =	1 10 1			0-10-8
7-7-3 3-6-7 3-6-0 3-6-7 0-1-9 3-10-0 1 1 1	$8^{12} 4x4 \neq 3$	3x4= A A A A A A A A A A A A A		12		6		4x4 \$ 7		4x4 II 8 9 10 3x8 =
	5x8=		3x4	= 4x6	6 =	4x8 =				0.00
	4-1-4	14-4-12			20-0-0			30-0-0		
	4-1-4	10-3-8	· ·		5-7-4	•		10-0-0		•
ale = 1:57.2 te Offsets (X, Y): [3:0-1-	14,0-2-0], [5:0-5-0,0-2-3], [8:0)-2-0.0-1-12]. [15:Edge.0	-6-21							
, .						in (la a)	1/-1-41 1/-1	DI ATEO		
ading LL (roof)	(psf) Spacing 25.0 Plate Grip DOL	2-0-0 1.15	CSI TC 0.7	3 Vert(in (loc)).29 13-14	l/defl L/d >999 240	PLATES MT20	GRIP 197/144	
DL	10.0 Lumber DOL	1.15 VEC	BC 0.9	· ·	, ,).65 13-14	>546 180			
LL DL	0.0 Rep Stress Incr 10.0 Code	YES IRC2018/TPI2014	WB 0.6 Matrix-S	4 Horz	(CT) (0.09 10	n/a n/a	Weight: 153 I	FT = 20	%
No.2 2x4 SPF No No.2 ACING P CHORD Structural w 2-11-15 oc p 2-0-0 oc pur T CHORD Rigid ceiling bracing. BS 1 Row at mi ACTIONS (lb/size) 10 Max Horiz 19 Max Uplift 10 RCES (lb) - Maxim Tension P CHORD 1-2=0/40, 2- 4-5=-3062/5 6-7=-1605/3 2-15=-1403/ 14-15=-242/ 11-13=-501/ ES 3-14=-31/70	DF 1.5E *Except* 12-10:2x4 \$.3 *Except* 15-2,10-8:2x4 SF bood sheathing directly applie purlins, except end verticals, rlins (2-11-13 max.): 3-5. g directly applied or 2-2-0 oc	Vasd=91mpl Ke=1.00; Ca exterior zone Exterior (2R) Exterior(2R) 30-10-8 zone vertical left a forces & MW DOL=1.60 p 3) Provide ader 4) This truss ha chord live los 5) One H2.5T S recommende UPLIFT at jtt only and doe 6) This truss is International R802.10.2 a 7) Graphical pu		6.0psf; h WFRS (i) -10-8 to)) 9-3-0 t ior (1) 2: t expose r membe r, Lumbe t water p 0.0 psf b y other l ectors aring wa ection is ces. with the ns R502 ANSI/TP not depi	=35ft; envelope) 4-3-0, to 20-0-0, 4-11-11 to d; end ers and er bonding. ottom live loads. Ils due to for uplift 2018 .11.1 and 11. ct the size		j.	S. STE	MISS	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



														RE	LEASE F	OR CON	STRUCTION	1
Job	Truss		Truss	Гуре			Qty		Ply	Roc	of							٦
P220274-P220274-02	B04		Roof S	Special			1		1		Poforo	nce (opt	ional				ERVICES	
Premier Building Supply (Spr	nghill, KS), S	Spring Hills, KS - 66083,			Rur	n: 8.53 S Apr	27 2022 P	rint: 8.5	530 S Apr 2	27 2022	MiTek lı	ndustries.	Inc. N	on May 👔	RIC	2/2	2010	>
					ID:0	CVUeaurbOEI	BLYhVqOv	/S6bSz	YcmC-RfC	?PsB70)Hq3NSg	9PqnL8w3	BulTXb	GKWrCDorf.			-022	-
	-0-10-8	5-3-0	1	10-3-0	I	15-3-0	1	1	20-0-0)		24-10)-4	1	30-0	0-0	30-10-8	
	0-10-8	5-3-0	1	5-0-0	Ι	5-0-0			4-9-0		T	4-10	-4	Γ	5-1·	-12	0-10-8	
											4x4 II							
\top \top											6							
00												\searrow						
7-6-0 3-2-0		12 8	4x4 🅢		3x4=		4:	x12 🍫						4x4 👟				
ဝှ စု		0-1-0 			4	2 M	5							7				
7-7-3 4-4 0-1		-0-	\$											\gg				
						\searrow												
4-2-7									X	\mathbf{X}					Å		4x4 u	
	$\frac{2}{4}$						\searrow			\backslash							8	
	15	L															The second	
	8x8=	=	4 5x8 =					l3 12 x4=			11 3x10=						3x8=	
		· · · · · ·					0	4x6	-		0,10 =							
	1	5-1-4	1		15-4-12			1	20-0-0)	1			30-0-0				
		5-1-4	1		10-3-8			1	4-7-4					10-0-0				
Scale = 1:57.2 Plate Offsets (X, Y): [3:0	1-14.0-2-0)]. [8:0-2-0.0-1-12]. [1	5:Edae.0	-6-2]														—
		1	2-0-0	1	CSI			DEEL		i.e.	(10.0)	1/106	1 /4	PLATES		GRIP		—
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	1.15		тс		0.44	DEFL Vert(l	LL) -(in 0.28		l/defl >999	L/d 240	MT20		197/144		
TCDL BCLL	10.0 0.0	Lumber DOL Rep Stress Incr	1.15 YES		BC WB		0.94 0.92	Vert(Horz(,	0.62 0.08	13-14 10	>573 n/a	180 n/a					
BCDL	10.0	Code		18/TPI2014	Matr	ix-S		- (Weight: 1	57 lb	FT = 209	%	_
	• •		2			Vult=115mp L=6.0psf; B												
		Except 12-10:2x4	SP	Ke=1.00;	Cat. II; Ex	cp C; Enclos	ed; MWF	RS (e	envelope)									
No.2 WEBS 2x4 SPF	No.3 *Exce	ept* 15-2,10-8:2x4 SI	P			C-C Exterior 5-3-0, Exter												
No.2		1 2				o 20-0-0, Ex 1) 24-11-11												
		eathing directly applie				ight expose for members												
		except end verticals, a 3-11 max.): 3-5.	and	for reactio	ns showr	n; Lumber D												
BOT CHORD Rigid cei bracing,		/ applied or 10-0-0 oc	3		dequate o	Irainage to p												
2-2-0 oc	oracing: 11		4			n designed f concurrent v												
WEBS 1 Row at REACTIONS (lb/size)	•	7-10, 5-11 /0-3-8, 15=1408/0-3-a	в 5			n Strong-Tie			ls due to									
Max Horiz Max Uplift		LC 11) (LC 13), 15=-271 (LC	2 12)	UPLIFT at	jt(s) 15 a	and 10. This consider late	connecti	ion is f										
FORCES (lb) - Max		npression/Maximum	6) This truss	is design	ed in accord	dance wit	th the										
Tension TOP CHORD 1-2=0/40	2-3=-1870	0/319, 3-4=-1448/318	3,			ential Code renced stan												
		=-1601/315, =-588/124, 8-9=0/40,	7			presentation f the purlin a				9								
		10=-522/157 -14=-449/2278,		bottom ch	ord.		5								<u>in</u>	In.		
11-13=-3	96/2542, 1	0-11=-164/1402	L	OAD CASE(S) Stan	dard								NYE	DF M	ISS	11.	
		=-1045/223, =-72/102, 2-14=-82/1	191,										3	76.			CD-	
		11=-206/1342, 11=-250/231											Ξ.	1	STEVE			
NOTES													-*	\langle	2		*E	
 Unbalanced roof live this design. 	oads have	e been considered for											EP		UMBI	37 >>	<u>α</u>	
													=	0	E-238	73	14	
													1	ASO.		· NO	1	
														111	ONA			
																04 000	-	

May 24,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3-8-5 oc purlins. except end verticals, and 2-0-0 oc purlins (3-7-12 max.): 3-5. BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. WEBS 1 Row at midpt 7-9, 5-10 REACTIONS (lb/size) 9=1321/ Mechanical, 14=1395/0-3-8 Max Horiz 14=224 (LC 9) Max Uplift 9=-154 (LC 12), 14=-269 (LC 12) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/40, 2-3=-1840/321, 3-4=-1409/331, 4-5=-2113/384, 5-6=-1532/320, 6-7=-1557/308, 7-8=-354/57, 2-14=-1355/290, 8-9=-302/82 BOT CHORD 13-14=-358/566, 11-13=-391/1998,

10-11=-320/2112, 9-10=-196/1319

5-11=-11/138 2-13=-122/1013

7-9=-1435/274, 6-10=-227/1329,

5-10=-1434/338, 7-10=-209/222

Unbalanced roof live loads have been considered for

3-13=-9/608, 4-13=-791/194, 4-11=-18/221,

WEBS

NOTES

this design.

1)

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 Refer to girder(s) for truss to truss connections.
 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 154 lb uplift at joint 9.
 One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to

left and right exposed ; end vertical left and right

reactions shown; Lumber DOL=1.60 plate grip

exposed;C-C for members and forces & MWFRS for

Provide adequate drainage to prevent water ponding.

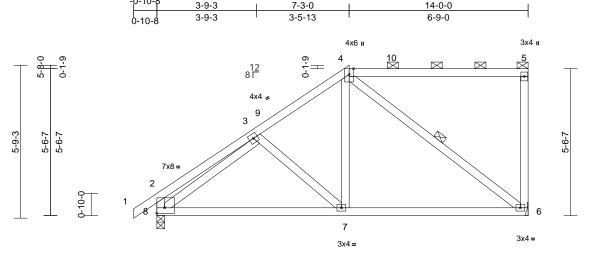
recommended to connect truss to bearing walls due to UPLIFT at jt(s) 14. This connection is for uplift only and does not consider lateral forces.
8) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

DOL=1.60


3)

NITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 152120779
P220274-P220274-02	B06	Half Hip		1	1	Job Reference (optional	LEE'S SUMMIT MISSOURI
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083,		Run: 8.53 S Apr 27 2 ID:Ozlwkj0pnklj3SqH	2022 Print: 8 04AdUhzYc	.530 S Apr 27 ki-RfC?PsB7(7 2022 MiTek Industries, Inc. M 0Hq3NSgPqnL8w3uITXbGKW	on May 06/02/2022
	-0)-10-8	 7.0.0				

	7-1-4	14-0-0	
	7-1-4	6-10-12	
Scale = 1:43.4			
Plate Offsets (X, Y): [2:Edge,0-2-8]			

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.78	Vert(LL)	-0.05	6-7	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.47	Vert(CT)	-0.10	6-7	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.23	Horz(CT)	0.01	6	n/a	n/a		FT 000/
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 77 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING		ept* 8-2:2x4 SP No.2	bearing joint 6. 7) One H2. recomm	nechanical connection olate capable of with T Simpson Strong- anded to connect true at jt(s) 8. This conne	standing Fie conne ss to bear	I 42 lb uplift a ctors ing walls due	t e to					
TOP CHORD		athing directly applied cept end verticals, an 0-0 max.): 4-5.	does no d 8) This trus	consider lateral forc s is designed in acco	es. ordance w	vith the 2018						
BOT CHORD	Rigid ceiling directly bracing.	applied or 9-9-9 oc	R802.10	onal Residential Cod 2 and referenced sta	andard Al	NSI/TPI 1.						
WEBS	1 Row at midpt	4-6		I purlin representation			size					
REACTIONS	(lb/size) 6=614/ M Max Horiz 8=234 (L0 Max Uplift 6=-142 (L	,	-8 bottom o	entation of the purlir hord. : (S) Standard	along the	e top and/or						
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=0/40, 2-3=-271/ 4-5=-112/111, 5-6=-	116, 3-4=-584/155, 228/107, 2-8=-316/13	39									
BOT CHORD WEBS	7-8=-353/537, 6-7=- 4-7=-13/328, 4-6=-5 3-7=-178/167	226/436 26/203, 3-8=-485/85,										
NOTES 1) Unbalance	ed roof live loads have	been considered for										1100

- this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 7-3-0, Exterior(2E) 7-3-0 to 13-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding. 3)
- This truss has been designed for a 10.0 psf bottom 4)
- chord live load nonconcurrent with any other live loads. 5) Refer to girder(s) for truss to truss connections.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

									Г	REL	EASE FOR C	CONSTRUCTIO	N
Job	Truss		Truss Type		C	ty	Ply	Roof				PLAN REVIEW	
P220274-P220274-02	C01		Hip Girder		1		2	Job Reference (opt	ional			T SERVICES 120780 T, MISSOURI	
Premier Building Supply (Spring	ghill, KS), Spr	ring Hills, KS - 66083,		Run: 8 ID:f_D	.53 S Apr 27 202 ZxGCiFfK8PRslYa	2 Print: 8.5 pvTkzQQł	30 S Apr 2 HW-RfC?Ps	7 2022 MiTek Industries, B70Hq3NSgPqnL8w3ul	Inc. No	n May (3) WrCDoi - 942	3/02	/202	2
		-0-10-8	3-0-0		7-0-0		_	11-0-0			14-0-0	14-10-8	
		0-10-8	3-0-0	I	4-0-0		I	4-0-0		I	3-0-0	0-10-8	I
			5 Г	NAILED	NAILED	N	AILED	NAILED	NA	ILED			
		:	3x8 II	4x4 =			3x8 =			4x4 =			
0-1-10			0-1-10	3 11	⊠ ¹²	\bowtie	⊳			5		0.40	
			6			_					· ·	3x8 II	
<u>1-11-3</u> <u>1-8-6</u> <u>1-8-6</u>	<u> </u>	2			\bigcirc				_			6	7
	0-2-0								-[]
				10	15		9	16		8			
		3x4	=	3x4 =			1.5x4 ॥			3x4 =		3x4 =	
				Special	NAILED	N	AILED	NAILED	Sp	ecial			
			2-10-4		7-0-0			11-1-12		-	14-0-0		
Scale = 1:32			2-10-4	I	4-1-12		ļ	4-1-12		ļ	2-10-4	I	
Plate Offsets (X, Y): [2:Edge,0-1-6], [2:0-3-3,Edge], [6:Edge,0-1-6], [6:0-3-3,Edge]													
Loading TCLL (roof) TCDL BCLL	25.0 10.0	Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15 NO	CSI TC BC WB	0.24 0.32 0.10	Vert(C	.L) -0 CT) -0	in (loc) l/defl .04 9 >999 .06 9 >999 .02 6 n/a	L/d 240 180 n/a	PLATES MT20	GRIF 197/ ⁻		
BCDL	10.0	Code	IRC2018/TPI201	4 Matrix-S	8					Weight: 1	22 lb FT =	20%	
BOT CHORD 2x4 SP No. WEBS 2x4 SPF No. WEDGE Left: 2x4 SP Right: 2x4 SP Notes BRACING Structural v 6-0-0 oc pu 2-0-0 oc pu 2-0-0 oc pu 2-0-0 oc pu BOT CHORD Rigid cellin bracing. REACTIONS (lb/size) 2 Max Horiz 2 Max Horiz 2 Max Uplift 2 FORCES (lb) - Maxin Tension TOP CHORD 1-2=0/6, 2- 4-5=-1271/1 BOT CHORD 2-10=-406/ 8-9=-639/1 WEBS 3-10=-89/4 4-8=-753/2 NOTES 1) 2-ply truss to be connected 3	 VP CHORD 2x4 SP No.2 VT CHORD 2x4 SP No.2 VT CHORD 2x4 SP No.2 CT CHORD 2x4 SP No.3 EBS 2x4 SP No.3 EDGE Left: 2x4 SP No.2 Right: 2x4 SP No.2 CHORD Structural wood sheathing directly applied or 6-0 oc purlins (except 2-0 oc oc purlins (except 2-0 (c - 10 - 0, Exterior (2E) 11-0 to 14 + 10-8 zone; cantilever left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 SP CHORD Rigid ceiling directly applied or 10-0-0 cbracking 2 = 29 (LC 16) Max Horiz 2 = 29 (LC 16) Max Uplift 2 = -245 (LC 8), 6=-245 (LC 9) VP CHORD 1:2=0/6, 2-3=-1521/516, 3-4=-1271/480, 4-5=-1521/516, 3-4=-1271/480, 4-5=-1521/516, 5-7=0/6 PC CHORD 1:2=0-8/9453, 4-10=-753/256, 4-9=0/201, 4-8=-753/256, 5-8=-89/453 PT CHORD 1:2=0-8/39/453, 4-10=-753/256, 4-9=0/201, 4-8=-753/256, 5-8=-89/453 PT S 2-ply truss to be connected together with 10d (c) (131'x3') nails as follows: 2-ply truss to be connected together with 10d oc. (c) 1''x3') nails as follows: 2-ply truss to be connected as follows: 2x4 - 1 row at 0-9-0 co. 								-8				
 Bottom chords connect 0-9-0 oc. Web connected as follo All loads are considered except if noted as front CASE(S) section. Ply to provided to distribute on unless otherwise indica 	Out. Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc. of such connection device(s) is the responsibility of others. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. LOAD CASE(S) Standard Unbalanced roof live loads have been considered for Vert: 1-3=-70, 3-5=-70, 5-7=-70, 2-6=-20					2022							

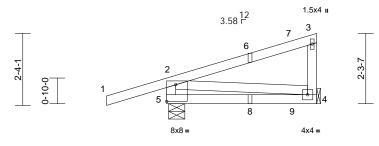
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 NITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

										E FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Roof			ED FOR PLAN REVIEW LOPMENT SERVICES 152120781
P220274-P220274-02	C02		Нір		1	1	Job Refere	ence (optional		IS2120781 S SUMMIT, MISSOURI
remier Building Supply (Spring	hill, KS), S	pring Hills, KS - 66083,		Run: 8.53 S Apr ID:JIx6SMMDQLr	27 2022 Print: RrHn3F50jyG	8.530 S Apr 2 zQQHK-RfC?	27 2022 MiTek	Industries, Inc. N	on May 3 22:	02/2022
		-0-10-8								14-10-8
		0-10-8	<u> </u>			9-0-0			<u>14-0-0</u> 5-0-0	0-10-8
						100			000	
			12 5 [4x•	4 =		4x4	=		
2-8-0				0-1-0-0-1-0	×	4-0-0		4 10		
						-				
2-9-3 2-6-6 2-6-6		3	x8 II				<u></u>		\sim	3x8 II
2-(2					<u>-</u>			5
0-2-0	-	1	Υ	l_						
				8			7			
		⊠ 3x4 :			4					3x4 =
		5,44	-	1.5x4	+ 11		1.	5x4 n		574 -
			<u>4-10-4</u> 4-10-4			9-1-12 4-3-8			<u>14-0-0</u> 4-10-4	
Scale = 1:31.7 late Offsets (X, Y): [2:Edg	ie.0-1-6].	[2:0-3-3.Edae]. [5:Ed	ae.0-1-6]. [5:0-3-3.Eda	le]						
oading	(psf)	Spacing	2-0-0	CSI	DE	FL	in (loc)	l/defl L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.43 Ve	rt(LL) -(0.08 5-7	>999 240	MT20	197/144
CDL BCLL	10.0 0.0	Lumber DOL Rep Stress Incr	1.15 YES	BC WB		· · /	0.115-70.025	>999 180 n/a n/a	1	
CDL	10.0	Code	IRC2018/TPI2014	Matrix-S					Weight: 53 lb	FT = 20%
UMBER OP CHORD 2x4 SP No. OT CHORD 2x4 SP No. VEBS 2x4 SPF No. VEDGE Left: 2x4 SPF Right: 2x4 SP Right: 2x4 SP SRACING OP CHORD Structural v 5-0-5 oc pu	2 o.3 P No.2 SP No.2 vood shea	athing directly applied	recommend UPLIFT at j and does n 6) This truss is Internationa R802.10.2 a d or 7) Graphical p or the orien	Simpson Strong-Tie led to connect truss t(s) 2 and 5. This cc ot consider lateral fc s designed in accord al Residential Code : and referenced stan urlin representation tation of the purlin a	to bearing v nnection is irces. lance with th sections R5 dard ANSI/1 does not de	valls due to for uplift only ne 2018 02.11.1 and 'PI 1. pict the size				
2-0-0 oc pu OT CHORD Rigid ceiling	rlins (6-0-	-0 max.): 3-4. applied or 10-0-0 oc	bottom chor LOAD CASE(S							
bracing. EACTIONS (lb/size) 2 Max Horiz 2		-8, 5=688/0-3-8 12)								
Max Uplift 2	2=-108 (L0	C 8), 5=-108 (LC 9) pression/Maximum								
		318, 3-4=-870/333,								
4-5=-1044/3 3OT CHORD 2-8=-205/8 VEBS 3-8=0/193,	77, 7-8=-2	208/870, 5-7=-206/87	7							
OTES										
) Unbalanced roof live loa this design.									VIL OF	MISS
Wind: ASCE 7-16; Vult= Vasd=91mph; TCDL=6. Ke=1.00; Cat. II; Exp C; exterior zone and C-C E Interior (1) 4-1-8 to 5-0- zone; cantilever left and and right exposed;C-C 1	0psf; BCI Enclosed Exterior(2 0, Exterio I right exp	DL=6.0psf; h=35ft; d; MWFRS (envelope E) -0-10-8 to 4-1-8, or(2E) 5-0-0 to 14-10- posed ; end vertical le	8					minn.		VEN B
MWFRS for reactions s grip DOL=1.60			9					E		IBER
)) Provide adequate drain.)) This truss has been des chord live load nonconc 	signed for	a 10.0 psf bottom	5.						RSS/ON	AL ENGIN
	in parameter		HIS AND INCLUDED MITEK I	REFERENCE PAGE MIL-7	473 rev. 5/19/2		SE.			

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

											RELEASE FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Pl	у	Roof			AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
P220274-P220274-02	C03		Common		5	1		Job Refer	ance (or	tional	DEVELOPMENT SERVICES 152120782 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Spring	jhill, KS), S	pring Hills, KS - 66083,		Run: 8.53 S Apr 27	2022 Prir	nt: 8.530	S Apr 27	2022 MiTek	Industries	Inc. M	
				ID:eFOBIQXnfxidk3d	lY1cSijm	zYck1-Rf	C?PsB7()Hq3NSgPqn	L8w3uITX	bGKW	
		-0-10-8	-	7-0-0		1			14-0-0		14-10-8
		0-10-8		7-0-0		+			7-0-0		0-10-8
						4x6 =					
				1 <u>2</u> 5 Г	_	3					
				/		\uparrow					
				8				\sim	9		
3-7-3		3	3x8 II 7						\sim		10 _{3x8 II}
e e										<u> </u>	
	0-2-0	1	1								4 5
	2-0					- <u>6</u> -					
			_			6					
		4x4	=			1.5x4 🛚					4x4 =
		L		7-0-0		1			14-0-0		
Scale = 1:34.8		I	7	7-0-0		I			7-0-0		I
Plate Offsets (X, Y): [2:Edg	ge,0-1-14], [2:0-3-3,Edge], [4:E	dge,0-1-14], [4:0-3-3,E	dge]							
Loading	(psf)	Spacing	2-0-0	CSI		DEFL		in (loc)	l/defl	L/d	PLATES GRIP
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15			/ert(LL) /ert(CT)	-0. -0.		>999 >999	240 180	MT20 197/144
BCLL BCDL	0.0 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014			lorz(CT)		02 4	n/a	n/a	Weight: 52 lb FT = 20%
	10.0			designed in accordan	nce with	the 201	8	<u>-</u> .			1.0.grid 02.10 1.1 - 20.70
TOP CHORD 2x4 SP No.			International	Residential Code secondarional referenced standario	ctions R	502.11.					
BOT CHORD2x4 SP No.WEBS2x4 SPF No.	o.3		LOAD CASE(S)			/1611.					
WEDGE Left: 2x4 SF Right: 2x4 S											
BRACING TOP CHORD Structural v	vood shor	athing directly applied	or								
2-2-0 oc pu	ırlins.		0.								
bracing.		applied or 10-0-0 oc									
REACTIONS (lb/size) 2 Max Horiz 2		3-8, 4=688/0-3-8 : 13)									
Max Uplift 2	2=-122 (L	C 12), 4=-122 (LC 13)	1								
Tension		pression/Maximum									
4-5=0/6		18, 3-4=-933/318,									
BOT CHORD 2-6=-182/75 WEBS 3-6=0/333	58, 4-6=-	182/758									
NOTES	ada to	haan aaratida 14									
 Unbalanced roof live loa this design. 											MILLION.
 Wind: ASCE 7-16; Vult= Vasd=91mph; TCDL=6. 											NE OF MISS
Ke=1.00; Cat. II; Exp C; exterior zone and C-C E)							3	XP Up-
Interior (1) 4-1-8 to 7-0- Interior (1) 12-0-0 to 14-	0, Exteric	or(2R) 7-0-0 to 12-0-0,								Ξ	E.FOX
right exposed ; end vert	tical left a	nd right exposed;C-C								-*	HA *
for members and forces Lumber DOL=1.60 plate	e grip DO	L=1.60	11,							= 7	NUMBER
 This truss has been des chord live load noncond 			i.							=	O E-23873
4) One H2.5T Simpson Sta recommended to conne	rong-Tie o	connectors									NG NG
UPLIFT at jt(s) 2 and 4. and does not consider l	This con	nection is for uplift on									ONAL ENT
and does not consider l		ues.									May 24,2022
Design valid for use only w	vith MiTek®	connectors. This design is	HIS AND INCLUDED MITEK R based only upon parameters applicability of design parame	shown, and is for an individ	ual buildin	ig compon	nent, not				
building design. Bracing in		a provent building of individ	high truck und and/or shord n								

Design valid for use only with MTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and perment bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof	AS NOTED FOR PLAN REVIEW
			,			DEVELOPMENT SERVICES I52120783
P220274-P220274-02	CJ01	Diagonal Hip Girder	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
		•				00/00/0000

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Non May 33 67 40 2/2 9:22 ID:LOzof6fLxqk4b0ECgmWRQFzQQKp-RfC?PsB70Hq3NSgPqnL8w3ulTXbsKWrCDw7JS06?

NAILED

Special

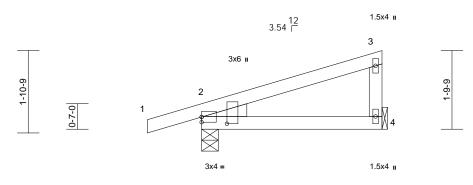
Scale = 1:37.5

Plate Offsets (X, Y): [5:Edge,0-6-8]

	(, .): [::==g:;: : :]												
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.53	Vert(LL)	-0.03	4-5	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.31	Vert(CT)	-0.06	4-5	>937	180		
BCLL	0.0	Rep Stress Incr	NO		WB	0.07	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2	018/TPI2014	Matrix-P	-						Weight: 25 lb	FT = 20%
LUMBER				6) ^{N/A}									
TOP CHORD	2x4 SP No.2			- /									
BOT CHORD	2x4 SP No.2												
NEBS	2x4 SPF No.3 *Exce	ept* 5-2:2x4 SP No.2	2		" indicates Girder: 3	-10d (0.14	8" x 3") toe-	nails					
BRACING					guidelines.								
TOP CHORD	Structural wood she				 or other connection sufficient to support 			10 16					
	4-10-8 oc purlins, e												
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	C		down and 106 lb up at 4-1-0 on top chord, and 30 lb down at 4-1-0 on bottom chord. The design/selection of								
	bracing.		0.5		such connection device(s) is the responsibility of others.								
REACTIONS	(lb/size) 4=221/ M Max Horiz 5=102 (L0	echanical, 5=393/0-	6-9-			•							
	Max Uplift 4=-73 (LC	,			AD CASE(S) section			face					
ORCES	(lb) - Maximum Corr	,, , ,			ss are noted as fror	nt (F) or ba	ck (B).						
ORCES	Tension	ipression/waximum			(S) Standard								
TOP CHORD)/42.2-3=-107/52.			Roof Live (balanced	d): Lumbei	Increase=1	.15,					
	3-4=-165/167	, ,			crease=1.15 Loads (lb/ft)								
BOT CHORD	4-5=-244/132				1-2=-70, 2-3=-70, 4	-520							
WEBS	2-4=-101/218				trated Loads (lb)	-320							
NOTES					7=-45 (F), 8=6 (B),	9=-15 (F)							
	CE 7-16; Vult=115mph					(-)							
	nph; TCDL=6.0psf; BC												
	Cat. II; Exp C; Enclose												1.1.1
	one and C-C Corner (3 exposed ; end vertical		π										
	C-C for members and f		r									NE OF	VISS
	shown; Lumber DOL=		•								1	101	
DOL=1.60		. 51									2	A	

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) Refer to girder(s) for truss to truss connections.
- One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5 and 4. This connection is for uplift only and does not consider lateral forces.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

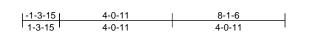


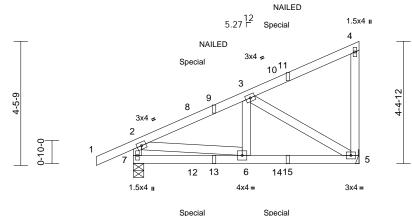
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
P220274-P220274-02	CJ02	Diagonal Hip Girder	2	1	Job Reference (optional	DEVELOPMENT SERVICES 152120784 LEE'S SUMMIT, MISSOURI
Descript Duilding Cumply (Casing						

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Non May 33 67 0 2/20 21 ID:AYK3vAk6XgVEJxhM10drgWzQQKj-RfC?PsB70Hq3NSgPqnL8w3uITXbd KWrCDord 2007

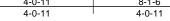
		4-1-7	
Scale = 1:26.3	I		
Plate Offsets (X, Y): [2:Edge,0-1-7], [2:0-1-14,0-6-15]			

				-								
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.52	Vert(LL)	-0.01	2-4	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.72	Vert(CT)	-0.02	2-4	>999	180		
BCLL	0.0	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 17 lb	FT = 20%
LUMBER												
TOP CHORD	2x4 SP No.2											
BOT CHORD												
WEBS	2x4 SPF No.3											
WEDGE												
BRACING												
TOP CHORD												
	4-1-7 oc purlins, ex											
BOT CHORD		applied or 10-0-0 o	C									
	bracing.											
REACTIONS	(/	4-9, 4=151/ Mechani	cal									
	Max Horiz 2=70 (LC 9)											
	Max Uplift 2=-110 (L	,. ,										
FORCES												
	Tension											
TOP CHORD		, 3-4=-113/161										
BOT CHORD	2-4=-30/33											
NOTES												
1) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)										
	nph; TCDL=6.0psf; BC											
	Cat. II; Exp C; Enclose											
	one and C-C Corner (3		ft									• 14 T
	exposed ; end vertical											1111.
	C-C for members and f										NOF	MISS
DOL=1.60	shown; Lumber DOL=	1.60 plate grip									XE.	
		r a 10.0 pef bottom								-	X	-
	This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.											
	irder(s) for truss to tru									= .	E.F	OX
	T Simpson Strong-Tie									- *		· · · · ·
	nded to connect truss t		to									tor =
UPLIFT at	t jt(s) 4 and 2. This cor	nnection is for uplift o	only							= 7	NUM	BER
	not consider lateral for									- 7	E-23	873 :00-
	is designed in accorda									-	A	.2.5
	nal Residential Code s		nd								. Co.	G
R802.10.2	2 and referenced stand	lard ANSI/TPI 1.									1.S/ON	NI ENIN
LOAD CASE(S) Standard										1111	itill'
											2011	1111


May 24,2022


MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


						RELEASE FOR CONSTRUCTION	
Job	Truss	Truss Type	Qty	Ply	Roof	AS NOTED FOR PLAN REVIEW	
P220274-P220274-02	CJ03	Diagonal Hip Girder	3	1	Job Reference (optional	DEVELOPMENT SERVICES 152120785 LEE'S SUMMIT, MISSOURI	

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Non May 33 67: 02/26 22 ID:WW7yytnFMC7WQiaJqaD0NZzQQKe-RfC?PsB70Hq3NSgPqnL8w3uITX GKWrCber7922C?

Scale =	1:41.4
---------	--------

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	-0.01	5-6	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.23	Vert(CT)	-0.02	5-6	>999	180		
BCLL	0.0	Rep Stress Incr	NO	WB	0.19	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 44 lb	FT = 20%

TC BOT CHORD 2x4 SP No.2

DOT CHORD	24 01 110.2
WEBS	2x4 SPF No.3 *Except* 7-2:2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 9-5-3 oc
	bracing.
REACTIONS	(lb/size) 5=371/ Mechanical, 7=477/0-4-7
	Max Horiz 7=197 (LC 9)
	Max Uplift 5=-146 (LC 9), 7=-130 (LC 12)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	2-7=-449/299. 1-2=0/41. 2-3=-548/171.

3-4=-219/97, 4-5=-114/131 BOT CHORD 6-7=-389/234, 5-6=-319/409 WEBS 2-6=-67/503, 3-6=0/170, 3-5=-457/309

NOTES

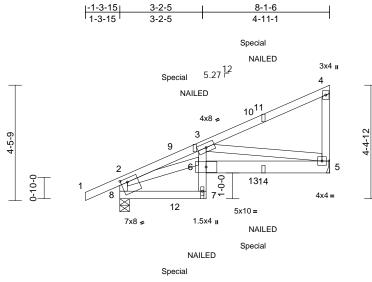
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) -1-3-15 to 5-8-15, Exterior(2R) 5-8-15 to 7-11-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to 4) bearing plate capable of withstanding 146 lb uplift at joint 5.
- 5) One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at it(s) 7. This connection is for uplift only and does not consider lateral forces.

R802.10.2 and referenced standard ANSI/TPI 1. N/A 7)

- 8) "NAILED" indicates Girder: 3-10d (0.148" x 3") toe-nails per NDS guidelines.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 122 Ib down and 57 lb up at 2-1-10, and 158 lb down and 108 lb up at 5-2-1 on top chord, and 6 lb down and 8 lb up at 2-1-10, and 27 lb down at 5-2-1 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15
 - Uniform Loads (lb/ft)
 - Vert: 1-2=-70, 2-4=-70, 5-7=-20
 - Concentrated Loads (lb) Vert: 10=-9 (F), 11=-10 (B), 12=3 (F), 13=2 (B), 14=-14 (F), 15=-13 (B)



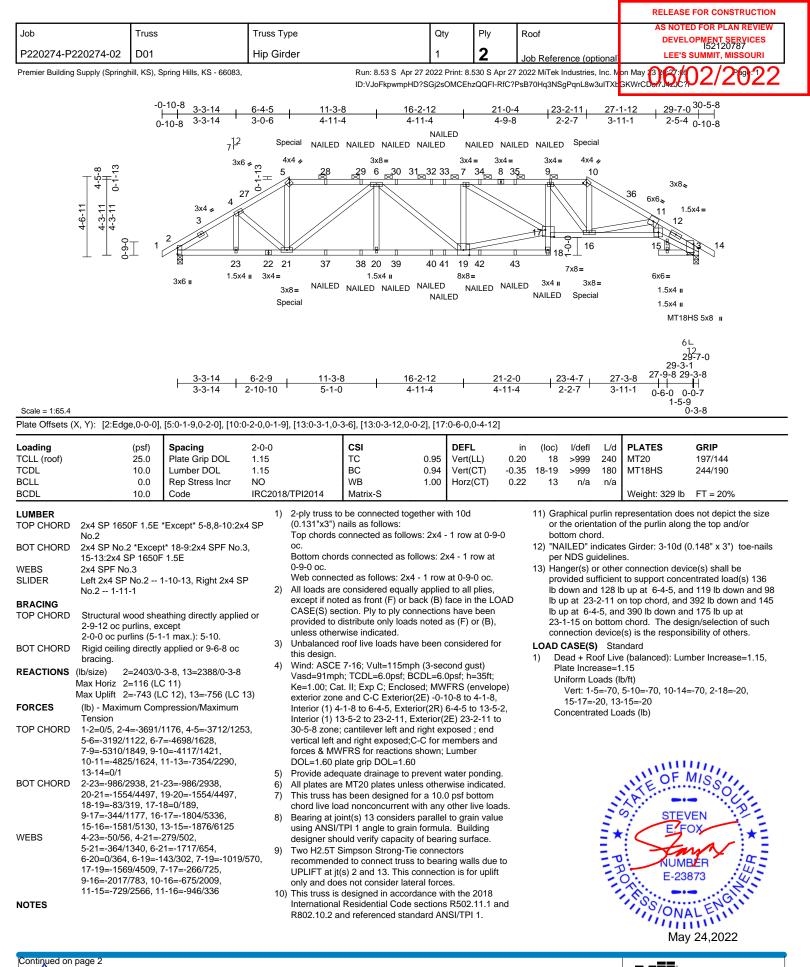
MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof	AS NOTED FOR PLAN REVIEW
P220274-P220274-02	CJ04	Diagonal Hip Girder	1	1	Job Reference (optional	DEVELOPMENT SERVICES 152120786 LEE'S SUMMIT, MISSOURI

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Non May 33 67 402/2022 ID:IEAMryuuEzGF?4m2ryt7ETzQQKV-RfC?PsB70Hq3NSgPqnL8w3uITXbG WrCDoir429 ft

3-4-1 8-1-6 3-4-1 4-9-5


Scale = 1:44.6 Plate Offsets (X, Y): [8:0-3-0 0-1-12]

Loading TCLL (roof) (psf) 25.0 Spacing Plate Grip DOL Lumber DOL 0.0 2-0-0 Plate Grip DOL Lumber DOL 0.0 CSI TC DEFL Ver(LL) in (loc) I/defl L/d MT20 TCDL BCLL 0.0 Plate Grip DOL 1.15 1.15 BC 0.39 Ver(LL) 0.04 5-6 >999 240 MT20 BCLL 0.0 Rep Stress Incr NO WB 0.43 Horz(CT) -0.02 5 n/a n/a BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Weight: 43 II Weight: 43 II LUMBER TOP CHORD 2x4 SP No.2 2x4 SP No.2 *Except* 7-3:2x4 SPF No.3, 6-5:2x6 SPF No.2 5) One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 8. This connection is for uplift only and does not consider lateral forces. Vertice 1.1 and International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. N/A Vertice 1.1 and R802.10.2 and referenced standard ANSI/TPI 1. N/A	GRIP 197/144 0 FT = 20%
LUMBER 5) One H2.5T Simpson Strong-Tie connectors TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 *Except* 7-3:2x4 SPF No.3, 6-5:2x6 SPF No.2 UPLIFT at jt(s) 8. This connection is for uplift only and does not consider lateral forces. WEBS 2x4 SPF No.3 *Except* 8-2:2x4 SP No.2 BRACING TOP CHORD TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 8-3-8 oc	0/0
 Any of the problem of t	MISSOURIEVEN FOX

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

May 24,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MI-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 16023 Swingley Ridge Rd Chesterfield, MO 63017

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof	AS NOTED FOR PLAN REVIEW
P220274-P220274-02	D01	Hip Girder	1	2	Job Reference (optional	DEVELOPMENT SERVICES 152120787 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Springl	on May 3167:#02/2922 GKWrCD97.92/29					

Vert: 5=-93 (B), 18=-61 (B), 9=-73 (B), 21=-386 (B), 16=-371 (B), 10=-56 (B), 28=-93 (B), 29=-93 (B), 30=-93 (B), 32=-93 (B), 33=-93 (B), 34=-93 (B), 35=-93 (B), 37=-45 (B), 38=-45 (B), 39=-45 (B), 40=-45 (B), 41=-45 (B), 42=-45 (B), 43=-45 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

											RELEASE FOR C	CONSTRUCTION
Job		Truss		Truss T	уре		Qty	Ply	Roof		AS NOTED FOR	
P220274-P22	0274-02	D02		Hip			1	1	Job Refere	ence (optional	DEVELOPMEI 152 LEE'S SUMM	
Premier Building Su	upply (Springhi	II, KS), S	pring Hills, KS - 66083,			Run: 8.53 S Apr 27 ID:eim9RyXZjrrGHY	2022 Print: 8	.530 S Apr 2	7 2022 MiTek I	ndustries, Inc. N	on May 13 27:00	/2022
		0 10	0				pPb/jAawzG	QDE-RIC?P	ѕв70нqзмъдн	qnL8w3u11XbG		20.5.9
		-0-10 	4-5-10		7-11 -2-2	<u>14-9-8</u> 6-1-13		<u>20-11-5</u> 6-1-13	-	24-0-0 3-0-11	27-1-12 29-7-0 3-1-12 2-5-4 (
	m				4x4 🌶	_	3x8=		4x6			
5-9-8			7	1 <u>2</u>	0-1-13 5			X				
	0			.5x4				<u> </u>	IT.		4 . 8 2×10	
	= =		4 3x6 ≠					\mathcal{H}		\rightarrow	o 3x10 _€ 24 3x6 ⊪	
5-10-11 5 7 11	5-7-11		21 3	~\\							9	
	0	2								<u></u>		<
\perp		1				[•]			114	-0-0		12
			⊠ 4x6 ∎		19 3x8=	18 3x4=	17 6x6=		1615 1.5x4			× 8=
									5x10		1.5x4 ။	
											1.5x4 II	
											6∟	
									21-2	-0	12 29- 29-3	-7-0
				-15		<u>-2-0 14-9-8</u> -8-1 3-7-8		20-9-9	20-11-	- <u>5</u> 27-	3-8 29-3-1	
Scale = 1:61.6			0-0	-15	2	-0-1 3-7-0		6-0-1	0-1-1 0-2-1		0-0	I-7 3-8
	Y): [5:0-1-9	,0-2-0],	[11:0-4-0,0-0-2], [13	8:0-5-4,0-3	-0], [13:0-1-6,0	-0-12], [14:0-2-12,0-3	3-0]					<u> </u>
Loading		(psf)	Spacing	2-0-0		CSI	DEF	L	in (loc)	l/defl L/d		P
TCLL (roof) TCDL		25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15			0.64 Vert 0.83 Vert	. ,	.15 13-14 .34 13-14	>999 240 >999 180		144
BCLL BCDL		0.0 10.0	Rep Stress Incr Code	YES	8/TPI2014	WB Matrix-S	0.82 Horz	(CT) 0	.20 11	n/a n/a		= 20%
		10.0	Code	2)		7-16; Vult=115mph (3-second a	ust)				2078
TOP CHORD 2		F 2.0E *	Except* 5-7:2x4 SP	'	Vasd=91mph	i; TCDL=6.0psf; BCE t. II; Exp C; Enclosed	L=6.0psf; h	n=35ft;				
BOT CHORD 2		*Except	t* 13-11:2x4 SP 165	0F	exterior zone	and C-C Exterior(2E	E) -0-10-8 to	o 4-4-0,				
	.5E 2x4 SPF No.3	3 *Exce	pt* 20-13:2x4 SP No	o.2	Interior (1) 15	4-0 to 8-7-11, Exterio 5-8-9 to 20-11-5, Exterio	erior(2R) 20	-11-5 to	,			
	.eft 2x4 SP N No.2 1-11-1		2-6-13, Right 2x4 SP		and right exp	or (1) 28-0-2 to 30-5- osed ; end vertical le	ft and right					
BRACING TOP CHORD	Structural wa	od chor	athing directly applie	dor		for members and fo wn; Lumber DOL=1.						
3	3-3-7 oc purli	ns, exc	ept	3)	DOL=1.60 Provide adec	uate drainage to pre	vent water	pondina.				
BOT CHORD	Rigid ceiling		-7 max.): 5-7. applied or 10-0-0 oc	4)	This truss ha	s been designed for Id nonconcurrent with	a 10.0 psf b	ottom				
	oracing. I Row at mid	pt	6-19	5)	Bearing at jo	nt(s) 11 considers particular to grain for	arallel to gra	ain value				
REACTIONS (Ib Mathematical Mathematical Math	o/size) 2= ax Horiz 2=		3-8, 11=1399/0-3-8	0	designer sho	uld verify capacity of	bearing su					
Ma	ax Uplift 2=	-163 (L	C 12), 11=-163 (LC	13) 6)	recommende	impson Strong-Tie c d to connect truss to	bearing wa					
Ť	Tension		pression/Maximum		only and doe	s) 2 and 11. This cor s not consider latera	forces.					
	-2=0/5, 2-4= 5-6=-1522/25		290, 4-5=-1812/248, -1825/271,	7)		designed in accordar Residential Code se						
	7-8=-2169/28)-11=-4102/4	,	,	8)		nd referenced standa rlin representation do						11.
			19=-234/1884, 0/0, 13-14=-200/221	-,		tion of the purlin alo					NE OF MIS	Soll
1	1-13=-311/3	381			DAD CASE(S)					1	STEVEN	
e		0, 6-17	=-171/114, 9-13=0/1							Ξ.	E. FOX	
	3-14=-489/17 7-14=-76/776		=-114/857, 14-16=0/ =-237/1846,	/121,						Ξí	24	12 î E
6 NOTES	6-14=-222/14	3								E	NUMBER	
1) Unbalanced	roof live load	s have	been considered for								O E-23873	
this design.											SSIONAL E	NGIN
											May 24.2	1000

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

May 24,2022

Job Truss Truss Type Qty Ply Roof DEVE P220274-P220274-02 D03 Hip 1 1 Job Reference (optional LEE'S Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083, Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 33 Part Inc. Mon May 33 Part	
P220274-P220274-02 D03 Hip 1 1 Job Reference (optional) LEE'S Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083, Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 33 (27) ID:?IhlmvPMXG2vYmuRNyXH1wzQQC5-RfC?PsB70Hq3NSgPqnL8w3uITXt GKWrC ber7942C	s summit, missouri
ID:?IhImvPMXG2vYmuRNyXH1wzQQC5-RfC?PsB70Hq3NSgPqnL8w3uITXtGKWrCDor7342JC	
-0-10-78 5-7-5 10-11-2 18-7-14 23-11-11 29	30-5-8
	<u>9-7-0 30-5-8</u> 5-7-5 0-10-8
6x6= 5x5=	
$\begin{bmatrix} \frac{\varphi}{1} \\ $	3x4 8 3x4 9 10
10 14 15 12 11 4v6 u	4x6 u
5-7-5 5-2-1 8-0-3 5-2-1 5-	9-7-0 5-7-5
Scale = 1:56.5 Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) I/defl L/d PLATES	GRIP

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.89	Vert(LL)	-0.12	12-14	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.59	Vert(CT)	-0.27	12-14	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.31	Horz(CT)	0.08	9	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 154 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.2 *Excep	t* 5-6:2x4 SP 1650F	7-16; Vult=115n h; TCDL=6.0psf;	BCDL=6.	Opsf; h=35ft;							

TOP CHORD	2x4 SP No.2 *Except* 5-6:2x4 SP 1650F 1.5E
BOT CHORD	
WEBS	2x4 SPF No.3
SLIDER	Left 2x4 SP No.2 3-2-11, Right 2x4 SP
	No.2 3-2-11
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	3-6-11 oc purlins, except
	2-0-0 oc purlins (2-2-0 max.): 5-6.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
WEBS	1 Row at midpt 5-12
REACTIONS	(lb/size) 2=1393/0-3-8, 9=1393/0-3-8
	Max Horiz 2=-191 (LC 10)
	Max Uplift 2=-188 (LC 12), 9=-188 (LC 13)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/5, 2-4=-2057/277, 4-5=-1696/288,
	5-6=-1395/304, 6-7=-1696/292,
	7-9=-2057/283, 9-10=0/5
BOT CHORD	
	12-14=-112/1395, 11-12=-175/1648, 9-11=-175/1648
WEBS	4-15=0/191, 4-14=-380/204, 5-14=-33/395, 5-12=-160/161, 6-12=-2/395, 7-12=-379/204,
	5-12=-160/161, 6-12=-2/395, 7-12=-379/204, 7-11=0/190
NOTES	1 11-0/100

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 10-11-2, Exterior(2R) 10-11-2 to 18-0-0, Interior (1) 18-0-0 to 18-7-14, Exterior(2R) 18-7-14 to 25-8-11, Interior (1) 25-8-11 to 30-5-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. One H2.5T Simpson Strong-Tie connectors 5)
- recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 9. This connection is for uplift only and does not consider lateral forces.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size 7) or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

MiTek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

											RELEASE	FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	R	loof				D FOR PLAN REVIEW
P220274-P220274-02	D04		Hip		1	1	J	ob Refere	nce (op	tional		OPMENT SERVICES 152120790 SUMMIT, MISSOURI
Premier Building Supply (Spring	hill, KS), S	pring Hills, KS - 66083,		Run: 8.53 S Apr ID:3d5Qv2bm?tx								02/2022
	-0-10-8		1	3-2-9	16-4-	7	22	2-9-15		-	29-7-0	30-5-8
	0-10-8	6-9-1	6	6-5-9	3-1-1	4	6	6-5-9		I	6-9-1	0-10-8
9-9-0 0-9-0	1 2	3x4 = 3x4 = 18 3 46 II	7 ¹² 3x4 = 3x6 = 5 19 4 5 8 17	0-1-1-3 9	x6 II	4x4 * 7			3x4 x 8	x6 ≈ 9 20	21 10	3x4 11 12 4x6 II
	4.		1.5x4 u	3x4	1=	3x8=			1	.5x4 I		400 1
					3x4=							
	F	<u> </u>		-0-13 -3-13	<u>16-6-</u> 3-5-6			<u>2-9-15</u> 3-3-13			<u>29-7-0</u> 6-9-1	
Scale = 1:59.7 Plate Offsets (X, Y): [7:0-2-	0 0-1-91											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.81 0.54 0.66	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.17 0.08	16-17 16-17	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 163 lb	GRIP 244/190 FT = 20%
No.2 3-10 BRACING	2 2 0.3 No.2 ()-10 vood she	3-10-10, Right 2x4 SP athing directly applied	2) Wind: ASCE Vasd=91mpt Ke=1.00; Ca exterior zone Interior (1) 4- 16-4-7, Exter to 30-5-8 zor vertical left a forces & MW	7-16; Vult=115mp n; TCDL=6.0psf; B t. II; Exp C; Enclos and C-C Exterior 1-8 to 13-2-9, Ext ior(2R) 16-4-7 to 2 ne; cantilever left a nd right exposed; FRS for reactions	CDL=6.0 (2E) -0-10 (2E) -0-10 erior(2E) 23-5-5, In 23-5-5, In nd right e C-C for m shown; L	psf; h=35ft; RS (envelo)-8 to 4-1-8 13-2-9 to terior (1) 23 exposed ; e embers an	ope) 3, 3-5-5 nd					
2-0-0 oc pu BOT CHORD Rigid ceiling bracing. WEBS 1 Row at m REACTIONS (lb/size) 2 Max Horiz 2	rlins (5-1 g directly idpt =1393/0 =-228 (L	-2 max.): 6-7. applied or 10-0-0 oc 6-14 -3-8, 11=1392/0-3-8	 Provide adec All plates are This truss ha chord live loa One H2.5T S recommende 	ate grip DOL=1.60 quate drainage to p 3x4 MT20 unless s been designed f ad nonconcurrent v timpson Strong-Tie d to connect truss s) 2 and 11. This c	orevent w otherwis for a 10.0 with any c e connect s to bearir	e indicated psf bottom other live lo cors ng walls due	ads. e to					
FORCES (lb) - Maxim Tension TOP CHORD 1-2=0/5, 2-4	num Com 1=-2045/2	pression/Maximum 274, 4-6=-1534/249,	only and doe 7) This truss is International	s not consider late designed in accore Residential Code	eral forces dance wit sections	s. h the 2018 R502.11.1						
	/275, 11 1640, 16		B) Graphical pu	nd referenced star rlin representation ation of the purlin a I.	does not	depict the	size					10 ···
11-13=-117	/1640 , 4-16=-5 183, 7-14	54/246, 6-16=-83/405 =-67/387,	LOAD CASE(S)								ATE OF A	MISSOL

NOTES

1) Unbalanced roof live loads have been considered for this design.

9-14=-553/246, 9-13=0/281

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

										RELEASE	FOR CONSTRUCTION	
Job	Truss		Truss Ty	/pe		Qty	Ply	Roof				٦
P220274-P220274	02 D05		Roof S	pecial		1	1		<i>.</i>		OPMENT SERVICES 152120791 SUMMIT, MISSOURI	
Premier Building Supply (Spring Hills, KS - 66083			Run: 8.53 S Apr 27 2	·	8 530 S Apr	-	ence (optional	0.04		
Treffier Duilding Supply (pringrilli, rto), i	opinig rins, no - 00003,			ID:jxpyR8kIAZR4Hw						JZIZUZZ	
			7-6-8		14-9-8	18-4-12	00 0 4 4	-0-0 , 27-1-	-12 _29-7-	30-5-8		
		<u> </u>	7-6-8		7-3-0	3-7-4	1-10-2	5-1-		1		
					4xi 5			9-2		0-10-8		
		Z- 	3x4 # 2 x4 #	7 ¹² 3x6 = 3 20 5x5 =	3x4 = 4 19 19 3x4 = 1.55 5x	4 II 3	3x4 4x4 6 247 247 3 3 4x4 8 3 4 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4	1.5x4 II 8 1 14 4x8=	3x8 i 3x10 4x8 s 9 10 13 7x8 = 1.5x4 ii 1.5x4 ii			
Scale = 1:85.1 Plate Offsets (X, Y): [1		3		12 1-9-4	<u>22-0-0</u> 5-3-8	<u>27-3</u> 5-3	-8 0-6-00 1-5- C	H -0-7 9 -3-8		_
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC 0	.94 Ve		in (loc) 0.16 14-15	l/defl L/d >999 240		GRIP 244/190	
TCDL	10.0	Lumber DOL	1.15		BC 0	.93 Ve	rt(CT) -	0.31 14-15	>999 180		2	
BCLL BCDL	0.0 10.0	Rep Stress Incr Code	YES IRC2018	8/TPI2014	WB 0 Matrix-S	.68 Ho	rz(CT)	0.22 11	n/a n/a	Weight: 171 lb	FT = 20%	
-	10.0	Code	-							Weight. 171 lb	11 - 2070	_
LUMBER TOP CHORD 2x4 SI	No.2 *Exce	pt* 7-12:2x4 SP 2400F	,		7-16; Vult=115mph (3 n; TCDL=6.0psf; BCD							
2.0E BOT CHORD 2x4 SI		pt* 17-15:2x4 SPF No.	3		 II; Exp C; Enclosed; and C-C Exterior(2E) 							
13-11:	x4 SP 1650		.,	Interior (1) 5-	0-0 to 14-9-8, Exterio	r(2R) 14-	9-8 to					
	F No.3	1-1-2 Pight 2v1 CD N	0.2	,	or (1) 19-9-8 to 30-5-8 osed ; end vertical lef	,		t				
SLIDER Left 22 1-11		4-4-2, Right 2x4 SP N	0.2	exposed;C-C	for members and for	ces & MV	VFRS for					
BRACING				reactions sho DOL=1.60	own; Lumber DOL=1.6	50 plate g	Irip					
		eathing directly applied applied or 2-2-0 oc	i. 3)	This truss ha	s been designed for a							
bracin			4)		ad nonconcurrent with int(s) 11 considers pa							
WEBS 1 Row REACTIONS (lb/size)	at midpt 1=1324/0	3-16)-3-8, 11=1397/0-3-8	''	using ANSI/1	PI 1 angle to grain fo	rmula. B	uilding					
· · · ·	iz 1=-255 (l		5)		uld verify capacity of simpson Strong-Tie co							
		LC 12), 11=-219 (LC 1	3) 3)	recommende	ed to connect truss to	bearing v	valls due to					
FORCES (lb) - M Tensio		npression/Maximum			s) 1 and 11. This coni s not consider lateral		for uplift					
TOP CHORD 1-3=-2 5-6=-1)14/293, 3-5 I81/318, 6-8	=-1547/296, =-2393/444,	6)	This truss is	designed in accordan Residential Code sec	ce with th	02.11.1 and					

International Residential Code sections R502.11.1 and 8-9=-2330/324, 9-11=-4192/564, 11-12=0/1 R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 17-18=-52/56, 15-17=-75/0, 15-16=-39/1468, 14-15=-91/1525, 13-14=-369/2902,

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

WEBS

NOTES

this design.

1-20=-292/1615, 18-20=-43/105,

8-14=-448/231, 9-14=-927/266, 9-13=-133/1529, 6-16=-591/244, 6-14=-237/895, 16-20=-251/1523,

3-20=-49/170, 16-18=0/292, 5-16=-161/1039,

11-13=-434/3492

3-16=-510/269

1) Unbalanced roof live loads have been considered for

Len Thesis Thesis Thesis The Strippe Pay													RELEAS	E FOR CONSTRUCTION	
Prevent during lack (Jong Tip), Fig. Series (Jong Tip), Fig. Seri	Job		Truss		Truss T	уре		Qty	Ply	Roof					٦
Text status gauge granget. 60. Specify des per La des par 20 des per La des per La des par 20 des per La d	P220274-P22	20274-02	E01		Roof S	pecial Girde	r	1	1	Job Refer	ence (on	tional		S SUMMIT, MISSOURI	
$\frac{1}{12} \frac{1}{9} 1$	Premier Building S	Supply (Springhi	II, KS), S	pring Hills, KS - 66083	ļ,	Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc.								<u> </u>	,
$\frac{1}{100} \frac{1}{100} \frac{1}$				1-9)-7		ID:dDv0f4SQBho9nL	9t7t2NF3z0		24-0-0	qnL8w3ul	TXbGł			-
Number Number<				►+				-	0 7 4				31-7-0		
Lossing Difference Sector						4-4-0	4-4-0 4-4	4x4=	J-7-4]-		0-0-12	2			
Link Num Num <td></td> <td>-</td> <td>т т</td> <td>-</td> <td></td> <td></td> <td></td> <td>8</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		-	т т	-				8							
Under State 100 -100 200 -100															
Universe Procession Specing (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			م	. 1	2		30 /		×	310 1.5x4					
Image: Status Image: S		-12	9-4-				6=								
Image: State 1 # 10.1		9-6		2								5x	-		
Image: Second		c				•			/			\geq	12 13		
Bit of the second sec			+ <u></u> -					19				1	6		
Normalized H 412* 1.54 H 1.5		-	⊥ <i>←</i> ⊥					21	3x4 u		-				
LXC17 50Ge 1.554* 8000 20.0 111-3 0.711 0.4-7 19.8-8 30.0 31.3-3 31.0-1 111-3 0.711 0.4-7 14.4-6 0.4-0 0.4-12 5-3.8 0.4-00.0-7 31.0-1 1.5.4* 1.5.4* 0.4-0 0.4-12 5-3.8 0.4-00.0-7 31.0 1.5.4* 0.4-0 1.5.4* 0.4-0 0.4-12 5-3.8 0.4-00.0-7 31.0 1.5.4* 0.4-0 1.5.4* 0.4-0 0.4-12 5-3.8 0.4-00.0-7 1.5.0* 20.0 1.5.5 1.5.6* 0.5.8 1.00 0.00 1.00 0.00				4x6 ı		3x4	= 4x12=		I						
$\frac{1+3-9-9}{1+1-3}, \frac{1}{9}, \frac{1}{1}, \frac{1}{8}, \frac{1}{1}, \frac{1}{8}, $					TJC37 5x5=				1.5x4 I						
11-13 37-11 14-17 14-18 14-18 14-18 14-18 14-18 14-18 14-18 14-18 14-18 14-18 14-18 14-18 14-18 14-18 14-18 14-18 14-18 14-18 14-18 24-00 14-18 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>															
Image: Provide state in the image of the image								40					311-23-8		
1.11:3 0.7.11 4.9-12 4.4-10 7.12 5-3-8 5-3-8 5-3-8 0.5-00.0-7 State - 1.85.1 1-0-13 114:0-2.40 <				1-1		8-1-7	12-5-8 16-9	-18 -16-11-4	8-8 12	-0-0	29-3-	8 29	9-9-8		
Bits Officies (X, Y): [4:0:4:4:0-24], [5:0:3-0.0:1-15], [12:0-1-4:0:3-0], [14:0:2-4; (0:1-13], [14:Edge, 1-0:2], [14:1-0-6; 0-2:0], [16:0-4:12:0-2-0] [0:3:8] Deading (pst) Spacing 2-0-0 CSI DEFL in (io:) (ide) Lid PLATES GRIP TCLL (non) 25:0 First Signal 20-0 TC 0.3:8 Verift(1) -0.3:8 Verift(1)	•			1-1		4-5-12	4-4-0 4-4	0112		-3-8	5-3-8	3 0	-6-00-0-7		
TCLL (root) 25.0 Plate Grip DOL 1.15 TC 0.83 Vert(T1 -0.20 17.18 -999 240 MT20 197/144 BCLL 0.00 Rep Stress Inc NO WB 0.88 Vert(T1 -0.29 17.18 -999 240 MT20 197/144 BCLL 0.00 Code IRC2018/TP2014 Matrix-S Vert(T1 -0.29 17.18 -970 100 Weight: 193.16 FT = 20% LUMBER Code IRC2018/TP2014 Matrix-S Matrix-S Vert(S1 -0.29 14 n/a n/a<		, Y): [4:0-4-4	,0-2-8],	[5:0-3-0,0-1-15], [1		-0], [14:0-2-4,0)-1-13], [14:Edge,1-0-2	2], [14:1-0-	·6,0-2-0], [′	9:0-4-12,0-2	-0]				-
TCLL (root) 25.0 Plate Grip DOL 1.15 TC 0.83 Vert(T1 -0.20 17.18 -999 240 MT20 197/144 BCLL 0.00 Rep Stress Inc NO WB 0.88 Vert(T1 -0.29 17.18 -999 240 MT20 197/144 BCLL 0.00 Code IRC2018/TP2014 Matrix-S Vert(T1 -0.29 17.18 -970 100 Weight: 193.16 FT = 20% LUMBER Code IRC2018/TP2014 Matrix-S Matrix-S Vert(S1 -0.29 14 n/a n/a<			(nsf)	Spacing	2-0-0		CSI	DEF		in (loc)	l/defl	h/l	PLATES	GRIP	—
BCLL 0.0 Reg Stress Incr NO WE 0.85 Horz(CT) 0.25 14 n'a n'a n'a BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Horz(CT) 0.25 14 n'a n'a n'a BCDL 20.6 24.5 P No.2 *Except 10.5:2x4 SP 24007 10 Unbalanced roof Ive loads have been considered for this design. 10 Unbalanced roof Ive loads have been considered for this design. 120 In the LOAD CASE(5) section, loads applied to the face of the truss are noted as front (7) or back (B). WEBS 2x4 SP No.2 *Except 20.16:2x4 SP No.2 *Except 21.6:12:4x SP No.2 *1.5:12. 11.1 Interior (1) 27-94 to 2947 for 20.5 & 20.7 & 16-9.6. 15.9 + 10.0 Const 10.5 & 14.1 & 10.0 Const 10.0 For 10.	TCLL (roof)		25.0	Plate Grip DOL	1.15		тс с	.93 Ver	:(LL) -	0.20 17-18	>999	240			
 LUMBER TOP CHORD 2:4 SP No.2 "Except" 10-15:2x4 SP 24007 20.6 BOT CHORD 2:4 SP No.2 "Except" 20-15:2x4 SP 24007 2:4 SP No.2 "Except" 20-18:2x4 SPF No.3. Stacept" 20-18:2x4 SPF No.3. Subset 2:4 SPF No.3 "Except" 12-16:2x6 SPF No.3. Subset 2:4 SPF No.3. Subset 2:4 SPF No.3 "Except" 12-16:2x6 SPF No.3. Subset 2:4 SPF No.3. Subset 3:4 SPF No.3. Subs		·							. ,						
 TOP CHORD 244 SP No.2 *Except* 10-15:244 SP 24067 20: 82-44 SP F No.3, 19-16:16:142-43 P1 6507-15.E WIEBS 244 SPF No.3 *Except* 12-16:2x6 SPF No.3, 19-16:16:142-43 P1 6507-15.E WIEBS 244 SPF No.3 *Except* 12-16:2x6 SPF No.2, Left 2x4 SPF No.3, 19-16:16:142-43 P1 6507-15.E WIEBS 244 SPF No.3 *Except* 12-16:2x6 SPF No.2, Left 2x4 SPF No.2, -1:11. BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 or brain (S-1-13 max): 4-5. BOT CHORD Rigid ceiling directly applied or 6-0-0 or brains, except O-0 oc purilins, e	BCDL		10.0	Code	IRC2018	3/TPI2014	Matrix-S						Weight: 193 lb	FT = 20%	_
 2.0E 2.0E 2.0F CHORD 2.04 SP No.2 - 15:02:4 SPF No.3, 19:16;16:14:2x4 SP 1650° 1.5E Vast-9-Pintph: TCDL-60;05;18;0CL=60;05;18:0CL=60;05;18:0CL=60;05;18:0CL=60;05;18:0CL=60;05;18:0CL=60;18:02;18:0		2x4 SP No 2	*Excent	t* 10-15·2v4 SP 24	,		roof live loads have b	een consid	dered for						
 19-16, 16-14/2x4 SP 1630F 1.5E WEBS 2x4 SPF No.3 "Except 12-16:2x6 SPF No.2 Left 2x4 SP No.2 - 1-51-2, Right 2x4 SP No.2 - 1-11-1 BRACING TOP CHORD Structural wood sheathing directly applied 2-0-0 oc purlins (3-1-13 max): 4-5. BOT CHORD Rigid ceiling directly applied or 2-0-0 oc purlins (3-1-13 max): 4-5. BOT CHORD Rigid ceiling directly applied or 2-10 oc purlins (3-1-13 max): 4-5. BOT CHORD Rigid ceiling applied or 2-2-26 (LC 11) Max Horiz 2-226 (LC 12), 14-226 (LC 13). FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 12-266-3301(52; 2-2-2-3822/1628, 23-24-620/3269, 2-2-3-379/2160, 21-22-6-3301, 21-17-8-113/1632, 7-81683335, 8-4-1872/352, 7-81683335, 8-4-1872/352, 7-86183335, 8-4-1872/352, 7-8618335, 8-4-18272, 7-18119/162, 7-87082, 7-19/162, 7-		2.0E			2)	Wind: ASCE				LOAD	CASE(S)) Sta	ndard		
 SLIDER Left 2x4 SP No.21-5-12, Right 2x4 SP No.21-5-12, Right 2x4 SP No.21-111 BRACING TCHORD Structural wood sheathing directly applied or 2-10 oc purlins, except 2-00 oc purlins, except 2-00 oc purlins, except 2-00 oc purlins (3-1-13 max); 4-5. BOT CHORD Ridgi Calling directly applied or 6-00 oc bracing. REACTINS (Ib/size) 2-1470/0-3-8, 14=1486/0-3-8 Max Horiz 2-256 (LC 11) Max Horiz 2-256 (LC 11) Max Upit 2-2-26 (LC 12), 14=-226 (LC 13) Max Horiz 2-256 (LC 11) Max Upit 2-2-242 (LC 12), 14=-226 (LC 12), 14=-226 (LC 12), 14=-226 (LC 13) Max Horiz 2-256 (LC 11) Max Upit 2-2-242 (LC 12), 14=-226 (LC 12), 14=-26 (LC 12), 14=-216 (LC 12),					0.3,	Ke=1.00; Ca	t. II; Exp C; Enclosed;	MWFRS	(envelope)					mber Increase=1.15,	
No.2 - 1:11-1 21-9-8, Interior (1) 21-9-8 to 32-5-8 zone; caniliever left and right exposed; end vertical left an										U		,	,	'0. 8-15=-70. 2-20=-20.	
TOP CHORD Structural wood sheathing directly applied of 2-1-0 oc purins, except 2-0-0 oc purins (3-1-13 max.): 4-5. exposed(2-C for members and forces & MWFRS for cactors shown; Lumber DOL=1.60 Vert: 26=7 (B) BOT CHORD Rigd ceiling directly applied of 6-0-0 oc bracing. Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Searing at joint(s): 14 considers parallel to grain value using ANS//TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. One H2.5T Simpson Strong-Tie connectors recommende to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 14. This connection is for uplift only and does not consider lateral forces. One H2.5T Simpson Strong-Tie TJC37 (4 nail 90-150) or ether of the formation of the purina along the top and/or 21-22=-46/56. 20-21=-84/21, 18-20=-51/0, 18-19=-64/1672, 17-18=-149/1682, 42=28=-706/216, 7-22=-58/24/0, 19-21=0/229, at 28=-270/216, 7-22=-58/24/0, 19-21=0/229, at 28=-230/216, 200, at 28=-270/216, 7-22=-58/24/0, 19-21=0/229, at 28=-230/24/02, 19-21=-0/229, at 18=-33/898, 19-21=0/229, at 18=-33/898, 19-21=0/229, at 18=-33/898, 19-22=-270/216, 7-22=-58/24/0, 19-21=0/229, at 18=-33/898, 19-22=-179/1624, 7-19=-48/223 Step vert vert vert and vert a		No.2 1-11-1	1								16-18=-	20, 14	-16=-20	-,,	
 DOLE 1-60 DOLE 1-60	TOP CHORD				ed or					0			. ,		
 BOT CHORD Right claiming directly applied of 6-0-0 cb bracing. REACTIONS (b/size) 2=1470(0-3-8, 14=1486/0-3-8 Max Horiz 2=256 (LC 11) List russ has been designed for a 10.0 pet bottom chord live load nonconcurrent with any other live loads. Bearing at joint(s) 14 considers parallel to grain value using ANSUTPI 1 angle to grain value using ANSUTPI 1 and the sweet value to the 2-265/389, 6-7=-1979/352, 7-8=-165/335, 8-9=-1672/345, 9-11=-2587/456, 11-12=-2522/347, 11-12=-2587/456, 11-12=-2522/347, 12-14=-4549/586, 14-15=0/1 BOT CHORD 2-268=-383/1625, 24-26=-382/1628, 82-248=-260/3269, 22-23=-379/2160, 22-24=-64/1672, 17-18=-119/1692, 16-17=-374/3034, 14-16=-452/3808 WEBS 4-26e=-056/240, 19-21=0/229, 81-27=-2115/3221, 12-28-46/1672, 17-18=-119/1692, 12-28-46/1672, 12-18-48/172, 12-18=-48/172, 12					0)	DOL=1.60			•						
 REACTIONS (b/size) 2=1470/0-3-8, 14=1486/0-3-8 Max Horiz 2=256 (LC 11) Max Uplit 2=-242 (LC 12), 14=-226 (LC 13) FORCES (b). Maximum Compression/Maximum Tension TOP CHORD 1-2=0/5, 2-4=-2115/323, 4-5=-3151/490, 5-6=-2565/389, 6-7=-1979/352, 7-8=-1663/335, 8-9=-1672/345, 9-11=-2587/456, 11-12=-2522/347, 12-14=-4549/586, 14-15=0/1 BOT CHORD 2-26=-383/1625, 24-26=-382/1628, 23-24=-620/3269, 22-23=-379/2160, 12-12=-462/152, 24-26=-382/1628, 23-24=-620/3269, 22-23=-379/2160, 18-17=-374/3034, 14-16=-4522808 WEBS 4-26=0/50, 4-24=-272/1915, 5-24=-1153/221, 5-23=-1167/253, 6-23=-70/217478, 6-22=-706/216, 7-22=-58/240, 19-21=0/229, 8-19=-231/1332, 11-17=-448/227, 12-16=-143/1684, 12-17=-891/280, 9-19=-612/249, 9-17=-233/899, 19-22=-179/1624, 7-19=-485/236 Chord Ilve load onoconcurrent with any other live loads. Bearing at joint(s) 14 consider lareal for consider lareal forces. 7 This trues is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. 8 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. Use Simpson Strong-Tie TJC37 (4 nail 90-150) or equivalent at 1-9-7 from the left end to connect truss(es) to back face of bottom chord, skewed 48.8 deg.to the right, sloping 0.0 deg. down. Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) (23 lb down and 55 lib up at 1-9-7 not pop chord. The design/ selection of such connection device(s) is the 			directly	applied or 6-0-0 oc		This truss ha	as been designed for a	10.0 psf	oottom						
Max Uplift 2=-242 (LC 12), 14=-226 (LC 13)Using ANSP 11 and get signer should verify capacity of bearing surface.FORCES(b) - Maximum Compression/Maximum Tension60TOP CHORD1-2=0/5, 2-4=-2115/323, 4-5=-3151/490, 5-6=-2565/389, 6-7=-1979/352, 7-8=-1663/335, 8-9=-1672/345, 9-11=-2587/456, 11-12=-2522/347, 12-14=-4549/586, 11-12=-2522/347, 12-14=-4549/586, 11-12=-2522/347, 12-14=-4549/586, 11-12=-2522/347, 12-14=-4549/586, 11-12=-2522/347, 12-14=-4549/586, 11-12=-2522/347, 12-14=-4549/586, 11-12=-2522/347, 12-14=-4549/586, 11-12=-2522/347, 12-14=-4549/586, 11-12=-2522/347, 12-14=-4549/586, 11-12=-51/0, 18-19=-64/1672, 17-18=-119/1692, 19-19=-12/16, 11-17=-2538/240, 19-21=0/229, 8-19=-2311/332, 11-17=-48/227, 12-16=-143/1684, 12-17891/260, 8-19=-2311/332, 11-17=-48/227, 12-16=-143/1684, 12-17891/260, 9-19=-21=-179/1624, 7-19=-485/236Using ANSPITT and gut evity capacity of bearing surface. 6 commended to connect trunss to bearing surface. Commended to connect truns to bearing surface.WEBS4-26=0/50, 4-24=-271/191, 5-24=-1153/221, 5-23=-1167/253, 6-23=-271/478, 6-22=-706/216, 7-223-858/240, 19-21=0/229, 8-19=-2311/332, 11-17=-448/227, 12-16=-143/1684, 12-17891/260, 9-19=-212/249, 9-17=-233899, 19-22=-179/1624, 7-19=-485/2368Graphical purple merge sin contact with lumber. 10 Fill all nail holes where hanger is in contact with lumber. 11 Hanger(s) or other connection device(s) shall b provide sufficient to support concentrated load(s) 23 lb down and 53 lb up at 1-9-7 on top chord. The design/ selection of such connection device(s) is the	REACTIONS (lb/size) 2=			³ 5)										
FORCES(b) - Maximum Compression/Maximum Tension6)One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 14. This connection is for uplift only and does not consider lateral forces.TOP CHORD1-2=0/5, 2-4=-2115/323, 4-5=-3151/490, 5-6=-2565/389, 6-7=-1979/352, 7-8=-1663/335, 8-9=-1672/345, 9-11=-2587/456, 11-12=-2522/347, 12-14=-4549/566, 14-15=0/16)One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 14. This connection is for uplift only and does not consider lateral forces.BOT CHORD2-26=-383/1625, 24-26=-382/1628, 23-24=-620/3269, 22-23=-379/2160, 21-22=-46/56, 20-21=-84/21, 18-20=-51/0, 18-19=-64/1672, 17-18=-119/1692, 18-19=-64/1672, 17-18=-119/1692, 6-22=-706/216, 7-22=-58/240, 19-21=0/229, 8-19=-231/1332, 11-17=-448/227, 12-16=-143/1684, 12-17=-891/260, 9-19=-612/249, 9-17=-233/899, 19-22=-179/1624, 7-19=-485/236B)One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 14. This connection device(s) is theWEBS4-26=0/50, 4-24=-272/1915, 5-24=-1153/221, 5-23=-1167/253, 6-23=-27/478, 6-22=-706/216, 7-22=-58/240, 19-21=0/229, 8-19=-231/1332, 11-17=-448/227, 12-16=-143/1684, 12-17=-891/260, 9-19==-612/249, 9-17=-233/899, 19-22=-179/1624, 7-19=-485/236Use Simpson Strong-Tie to support concentrated load(s) 23 lb down and 53 lb up at 1-9-7 on top chord. The design/ selection of such connection device(s) is the				,	13)										
 TOP CHORD 1-2=0/5, 2-4=-2115/323, 4-5=-3151/490, 5-6=-2565/389, 6-7=-1979/352, 7-8=-1663/335, 8-9=-1672/345, 9-11=-2587/456, 11-12=-2522/347, 12-14=-4549/586, 14-15=0/1 BOT CHORD 2-26=-383/1625, 24-26=-382/1628, 23-24=-620/3269, 22-23=-379/2160, 21-22=-46/56, 20-21=-84/21, 18-20=-51/0, 18-19=-64/1672, 17-18=-119/1692, 16-17=-374/3034, 14-16=-452/3808 WEBS 4-26=0/50, 4-24=-272/1915, 5-24=-1153/221, 5-23=-1167/253, 6-23=-27/478, 6-22=-706/216, 7-22=-58/240, 19-21=0/229, 8-19=-231/1332, 11-17=-448/227, 12-16=-143/1684, 12-17=-891/260, 9-19=-612/249, 9-17=-233/899, 19-22=-179/1624, 7-19=-485/236 CTOP CHORD 2-28-78/240, 19-21=0/229, 10-22=-779/1624, 7-19=-485/236 		. ,	m Com	pression/Maximum	6)	One H2.5T S	Simpson Strong-Tie co	onnectors							
 7-8=-1663/335, 8-9=-1672/345, 9-11=-2587/456, 11-12=-2522/347, 12-14=-4549/586, 11-12=-2522/347, 12-14=-4549/586, 11-12=-2522/347, 12-14=-4549/586, 11-12=-2522/347, 23-24=-620/3269, 22-23=-379/2160, 21-22=-46/56, 20-21=-84/21, 18-20=-51/0, 18-19=-64/1672, 17-18=-119/1692, 16-17=-374/3034, 14-16=-452/3808 WEBS 4-26=-0/50, 4-24=-272/1915, 5-24=-1153/221, 5-23=-1167/253, 6-23=-27/478, 6-22=-706/216, 7-22=-58/240, 19-21=0/229, 8-19=-231/1322, 11-17=-448/227, 12-16=-143/1684, 12-17=-891/260, 9-19=-612/249, 9-17=-233/899, 19-22=-179/1624, 7-19=-485/236 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. 8) Graphical purlin representation does not depic the size or the orientation of the purlin along the top and/or bottom chord. 9) Use Simpson Strong-Tie TJC37 (4 nail 90-150) or equivalent at 1-9-7 from the left end to connect truss(es) to back face of bottom chord, skewed 48.8 deg.to the right, sloping 0.0 deg. down. 10) Fill all nail holes where hanger is in contact with lumber. 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 23 lb down and 53 lb up at 1-9-7 on top chord. The design/ selection of such connection device(s) is the 	TOP CHORD	1-2=0/5, 2-4=			Ι,	UPLIFT at jt	(s) 2 and 14. This con	nection is							
 BOT CHORD 2-26=-383/1625, 24-26=-382/1628, 23-24=-620/3269, 22-23=-379/2160, 21-22=-46/56, 20-21=-84/21, 18-20=-51/0, 18-19=-64/1672, 17-18=-119/1692, 16-17=-374/3034, 14-16=-452/3808 WEBS 4-26=0/50, 4-24=-272/1915, 5-24=-1153/221, 5-23=-1167/253, 6-23=-27/478, 6-22=-706/216, 7-22=-58/240, 19-21=0/229, 8-19=-231/1332, 11-17=-448/227, 12-16=-143/1684, 12-17=-891/260, 9-19=-612/249, 9-17=-233/899, 19-22=-179/1624, 7-19=-485/236 R802.10.2 and referenced standard ANS/ITP1 1. BR02.10.2 and referenced standard ANS/ITP1 1. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. Use Simpson Strong-Tie TJC37 (4 nail 90-150) or equivalent at 1-9-7 from the left end to connect truss(es) to back face of bottom chord, skewed 48.8 deg.to the right, sloping 0.0 deg. down. Fill all nail holes where hanger is in contact with lumber. Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 23 lb down and 53 lb up at 1-9-7 on top chord. The design/ selection of such connection device(s) is the 		7-8=-1663/33	5, 8-9=	-1672/345,	7)				e 2018						
BOT CHORD2-26=-383/1625, 24-26=-382/1628, 23-24=-620/3269, 22-23=-379/2160, 21-22=-46/56, 20-21=-84/21, 18-20=-51/0, 18-19=-64/1672, 17-18=-119/1692, 16-17=-374/3034, 14-16=-452/38088)Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.WEBS4-26=0/50, 4-24=-272/1915, 5-24=-1153/221, 5-23=-1167/253, 6-23=-27/478, 6-22=-706/216, 7-22=-58/240, 19-21=0/229, 8-19=-231/132, 11-17=-448/227, 12-16=-143/1684, 12-17=-891/260, 9-19=-612/249, 9-17=-233/899, 19-22=-179/1624, 7-19=-485/2368)Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.WEBS10)Fill all nail holes where hanger is in contact with lumber. 11)10)WEBS11-17=-448/227, 19-22=-179/1624, 7-19=-485/23610)WEBS12-16=-143/1684, 12-17=-891/260, 9-19=-612/249, 9-17=-233/899, 19-22=-179/1624, 7-19=-485/23610) </td <td></td> <td>MILL</td> <td></td>														MILL	
 21-22=-46/56, 20-21=-84/21, 18-20=-51/0, 18-19=-64/1672, 17-18=-119/1692, 16-17=-374/3034, 14-16=-452/3808 WEBS 4-26=0/50, 4-24=-272/1915, 5-24=-1153/221, 5-23=-1167/253, 6-23=-27/478, 6-22=-706/216, 7-22=-58/240, 19-21=0/229, 8-19=-231/1332, 11-17=-448/227, 12-16=-143/1684, 12-17=-891/260, 9-19=-612/249, 9-17=-233/899, 19-22=-179/1624, 7-19=-485/236 bottom chord. Use Simpson Strong-Tie TJC37 (4 nail 90-150) or equivalent at 1-9-7 from the left end to connect truss(es) to back face of bottom chord, skewed 48.8 deg.to the right, sloping 0.0 deg. down. 10) Fill all nail holes where hanger is in contact with lumber. 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 23 lb down and 53 lb up at 1-9-7 on top chord. The design/ selection of such connection device(s) is the 					8)	Graphical pu	Irlin representation do	es not dep	ict the size	1		3	NYE OF	MISSO	
 16-17=-374/3034, 14-16=-452/3808 WEBS 4-26=0/50, 4-24=-272/1915, 5-24=-1153/221, 5-23=-1167/253, 6-23=-27/478, 6-22=-706/216, 7-22=-58/240, 19-21=0/229, 8-19=-231/1332, 11-17=-448/227, 12-16=-143/1684, 12-17=-891/260, 9-19=-612/249, 9-17=-233/899, 19-22=-179/1624, 7-19=-485/236 (a) Fill all nail holes where hanger is in contact with lumber. 1) Fill all nail holes where hanger is in contact with lumber. 1) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 23 lb down and 53 lb up at 1-9-7 on top chord. The design/ selection of such connection device(s) is the 		21-22=-46/56	6, 20-21	=-84/21, 18-20=-51		bottom chore	d.					1	1	VEN D	
 WEBS 4-26=0/50, 4-24=-272/1915, 5-24=-1153/221, 5-23=-1167/253, 6-23=-27/478, 6-22=-706/216, 7-22=-58/240, 19-21=0/229, 8-19=-231/1332, 11-17=-448/227, 12-16=-143/1684, 12-17=-891/260, 9-19=-612/249, 9-17=-233/899, 19-22=-179/1624, 7-19=-485/236 to back face of bottom chord, skewed 48.8 deg.to the right, sloping 0.0 deg. down. Fill all nail holes where hanger is in contact with lumber. Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 23 lb down and 53 lb up at 1-9-7 on top chord. The design/ selection of such connection device(s) is the 		16-17=-374/3	8034, 14	4-16=-452/3808						;)		Ξ			
6-22=-706/216, 7-22=-58/240, 19-21=0/229, 8-19=-231/1332, 11-17=-448/227, 12-16=-143/1684, 12-17=-891/260, 9-19=-612/249, 9-17=-233/899, 19-22=-179/1624, 7-19=-485/236 10) Fill all nail holes where hanger is in contact with lumber. 11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 23 lb down and 53 lb up at 1-9-7 on top chord. The design/ selection of such connection device(s) is the					3/221,			ved 48.8 d	eg.to the			Ξ.			
12-16=-143/1684, 12-17=-891/260, 9-19=-612/249, 9-17=-233/899, 19-22=-179/1624, 7-19=-485/236 		6-22=-706/21	6, 7-22	=-58/240, 19-21=0/) Fill all nail holes where hanger is in contact with lumber.										
19-22=-179/1624, 7-19=-485/236 selection of such connection device(s) is the		12-16=-143/1	684, 12	2-17=-891/260,	11	provided suf	ficient to support conc	entrated lo	oad(s) 23 II)		E	E-20	3873	
													SS:	ENGLI	
	NOTES					responsibility	of others.						THUN	ALTIN	

May 24,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

										RELE	ASE FOR CONSTRUCTION	
Job	Truss		Truss Type		Qty	Ply	R	oof				٦
P220274-P220274-02	E02		Roof Special		1	1		h Defease			VELOPMENT SERVICES 152120793 E'S SUMMIT, MISSOURI	
Premier Building Supply (Spring		pring Hills, KS - 66083,		Run: 8.53 S Apr 27 2			or 27 20	22 MiTek In		Mon May 13 12	2/02/2022)
		-		ID:LaGespRgonK1q			fC?PsB	70Hq3NSg	PqnL8w3uIT>			•
		-0-10-8 4-0-14 0-10-8 4-0-14	6-0-14 10-9-12	14-2-12 16-9-8		24-0-		29-0		32-5-8		
		0-10-8 4-0-14	2-0-0 4-8-14	3-5-0 2-6-12	2 1-9-4 8x8=	4' 5-5-4		5-0-	12 2-	6-4 0-10-8		
ç u c	$\begin{array}{c c} & & & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$	2 2 5 1 4хб в	$4x6 \parallel 4x12 =$ $4 \implies 5$ $26 \implies 25$ $1.5x4 \parallel 5x10 =$ $6-2-10 \qquad 10-11-8$ $2-3-8 \qquad 4-8-14$		18 18 20 5x8= 1	± 19. ± 19. 5x10= 5x4 ⊪	14	6 a 11 7 x4 =	4) 5×5 % 12 16 7×8= 1.5× 1.5× 1.5×	4 µ 4 µ 8×10≈ 31- 7-0 31-23-8 -3-1	0-0-	
Scale = 1:85.1		5-11-2	2-3-0 4-0-14	5-1-0 2-0-0	1-11	.0 5-5-6	,	0-0	000	-5-9 0-3-8		
Plate Offsets (X, Y): [5:0-6-	0,0-1-15]	, [12:0-1-4,0-3-0], [14	:0-2-4,0-1-13], [14:Ed	ge,1-0-2], [14:1-0-6,0-2	2-0], [1	8:0-3-12,0-2-	8], [22	:0-2-8,0-3	-0]			_
Loading	(psf)	Spacing	2-0-0	CSI			in	. ,	I/defl L/		GRIP	
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15			Vert(LL) Vert(CT)	-0.28		>999 24 >750 18		197/144	
BCLL BCDL	0.0 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB (Matrix-S	0.93	Horz(CT)	0.39	14	n/a n/	a Weight: 215	5 lb FT = 20%	
2.0E BOT CHORD 2x4 SP No. SPF No.3, 3 WEBS 2x4 SPF No. 16-12:2x6 S SLIDER Left 2x4 SP 1-11-1 BRACING TOP CHORD Structural w 2-0-0 oc pu BOT CHORD Rigid ceiling bracing. WEBS 1 Row at m REACTIONS (lb/size) 2 Max Uplift 2 FORCES (lb) - Maxim TOP CHORD 1-2=0/5, 2-4 5-6=-3468/3 7-8=-2292/4 9-11=-1892 12-14=-453 BOT CHORD 2-26=-373/3 24-25=-5/55 22-23=-449 7-22=-162/4 18-19=-50/7	2 *Except 16-14:2x4 0.3 *Except PF No.2 2 vood sheat urlins, ex- rlins (3-6- g directly idpt =1476/0- =256 (LC =-242 (LC um Compt 12-2235/3 51, 6-7= 176, 8-9= 1/349, 11- 2/567, 14- 5, 23-24= 1/29, 21-21 1/24, 20-21 3, 9-18= 1/21, 3, 9-18= 1/21,	1 max.): 4-5. applied or 2-2-0 oc 8-20 3-8, 14=1486/0-3-8 11) C 12), 14=-226 (LC 1 pression/Maximum 340, 4-5=-2582/421, -2360/399, -1785/426, 12=-2531/359, I-15=0/1 26=-375/1786, 0/91, 6-23=-176/1244 -22=-21/18, 1=-6/38, 19-20=-23/8	 NOTES Unbalance this design. Unbalance this design. or 2) Wind: ASC Vasd=91m Ke=1.00; C exterior zor Interior (1) 21-9-8, Inte and right e: exposed;C reactions s DOL=1.60 Provide add This truss f chord live live signer sf Bearing at using ANSI designer sf One H2.5T recommend UPLIFT at only and dc This truss i Internationa R802.10.2 Graphical p 	E 7-16; Vult=115mph (: bh; TCDL=6.0psf; BCD at. II; Exp C; Enclosed; 6-0-14 to 16-9-8, Exteri- rior (1) 21-9-8 to 32-5 rior (1) 21-9-8 to 32-5 rior (1) 21-9-8 to 32-5 rioewn; Lumber DOL=1.1 equate drainage to prev- has been designed for a boad nonconcurrent with thought of the transformed and and nonconcurrent with thought of the transformed and provide the transformed and rTPI 1 angle to grain for bould verify capacity of Simpson Strong-Tie cc ded to connect truss to f(s) 2 and 14. This con- tes not consider lateral s designed in accordan al Residential Code sec and referenced standau urlin representation do tation of the purlin alon rd.	3=-4/4 =-142: 7=0/31 6=-13: =-397, =-220, eeen cc 3-seccc 1_=6.0; ; MWF) -0-1(ior(2R 8 zone ft and rcces & 60 pla vent w a 10.0 a any c arallel 1 rrmula bearin nonectio forces tions s not cost and s consections for cest tions s not	67, 9/104, 55, 5/1683, 1/2115, 1/311 onsidered for and gust) osf; h=35ft; RS (envelop) -8 to 6-0-14,) 16-9-8 to ;; cantilever 1 mWFRS for te grip ater ponding psf bottom ther live load o grain value. Building g surface. ors g walls due 1 n is for uplift 5. h the 2018 RS02.11.1 ar SJ/TPI 1. depict the si	e) eft s.			* PROFILSS	MISSOURIE EVEN FOX JMBER 23873 NALENG	

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof	
P220274-P220274-02	E03	Roof Special		1	1		DEVELOPMENT SERVICES 152120794 LEE'S SUMMIT, MISSOURI
	hill, KS), Spring Hills, KS - 66083,		Run: 8.53 S Apr 27 2	2022 Print: 8	.530 S Apr 27	Job Reference (optional 2022 MiTek Industries, Inc. M	
					QQ3s-RfC?P	sB70Hq3NSgPqnL8w3ulTXbG	
			¹² 14-2-12 16-9-8		24-0-0	29-0-12 31-7	32-5-8 <u>′-0</u>
	0-10-8 6	4-5 2-0-0 2-5-7		1-9-4 3x8=	5-5-4	5-0-12 2-6	-4 0-10-8
Loading	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	2-9 4:0-2-4,0-1-13], [14:Edge 2-0-0	$\begin{array}{c} 1.5x4 \\ 4x8 \\ 31 \\ 6 \\ 7 \\ 7 \\ 8 \\ 1.5x4 \\ 1.5x$	20 5 5x8= 5 1.5x4 1 18-8-8 1-11-0 -0], [18:0-3 DEF	3x4 320 340 320 320 320 320 320 320 320 320 320 32	3x6 11 3x8 4x1 5x5 12 17 17 4x4 7x8 1.5x4	$2 \approx$ $3 \qquad 0 \qquad $
TCLL (roof) TCDL	25.0 Plate Grip DOL 10.0 Lumber DOL	1.15 1.15		0.78 Vert 0.96 Vert	. ,	.28 22-23 >999 240 .51 22-23 >744 180	MT20 197/144
BCLL BCDL	0.0 Rep Stress Incr 10.0 Code	YES IRC2018/TPI2014).94 Horz	. ,	.42 14 n/a n/a	Weight: 217 lb FT = 20%
LUMBER TOP CHORD 2x4 SP No.: 2.0E BOT CHORD 2x4 SP No.: SPF No.3, 7 WEBS 2x4 SPF No. SPF No.3, 7 WEBS 2x4 SPF No. 16-12:2x6 S SLIDER Left 2x4 SP No.2 1-11 BRACING TOP CHORD Structural w 2-0-0 oc pu BOT CHORD Rigid ceiling bracing. WEBS 1 Row at m REACTIONS (lb/size) 2 Max Horiz 2 Max Horiz 2 Max Uplift 2 FORCES (lb) - Maxim Tension TOP CHORD 1-2=0/5, 2-4 5-6=-3572/ 7-8=-229/4 9-11=-1892 BOT CHORD 2-26=-334/ 24-25=-10/ 22-3=-463 7-22=-10/1 18-19=-50/	2 *Except* 10-15:2x4 SP 240 2 *Except* 24-6,7-21,19-9:2x 16-14:2x4 SP 1650F 1.5E 3 *Except* 25-23:2x4 SP No SPF No.2 No.2 3-6-14, Right 2x4 SP -1 rood sheathing directly applie rlins, except rlins, except rlins, except a directly applied or 2-2-0 oc idpt 5-25, 8-20 =1476/0-3-8, 14=1486/0-3-8 =256 (LC 11) =-242 (LC 12), 14=-226 (LC rum Compression/Maximum 4=-2203/330, 4-5=-2135/371, 583, 6-7=-2354/399, 180, 8-9=-1785/429, /356, 11-12=-2531/367, 2/567, 14-15=0/1 17771, 25-26=-336/1767, 54, 23-24=0/62, 6-23=-256/15 (3062, 21-22=-22/18, 142, 20-21=-7/38, 19-20=-23/ 13, 9-18=-222/186, /2173, 16-17=-358/3013,	WEBS 4 DF 2 The second secon	4-26=0/216, 4-25=-10; 23-25=-471/2797, 5-2; 23-25=-1549/356, 11-18 11-17=0/365, 12-17=-8 12-16=-135/1683, 8-22 20-22=-86/1523, 8-22= 18-20=-60/1322, 8-18= roof live loads have be 7-16; Vult=115mph (; n; TCDL=6.0psf; BCDI t. II; Exp C; Enclosed; and C-C Exterior(2E) 1-8 to 6-4-5, Exterior(4-5 to 16-9-8, Exterior(4-5 to 16-9-8, Exterior(c) 1) 21-9-8 to 32-5-8 cosed ; end vertical lef c) for members and for bown; Lumber DOL=1.6 quate drainage to prevent 1.5x4 MT20 unless of s been designed for a ad nonconcurrent with int(s) 14 considers pair PI 1 angle to grain for uld verify capacity of It simpson Strong-Tie co ad referenced standar Residential Code sect that referenced standar Residential Code sect ation of the purlin along	3=-141/122 8=-784/238 853/229, 0=-1428/10 =-401/2124 =-220/1312 een consid 3-second g L=6.0psf; h MWFRS () -0-10-8 tc (2E) 6-4-5 i 2C) 6-4-5 i 8 zone; car t and right ces & MWH 50 plate gri vent water therwise ir a 10.0 psf b bearing su ponnectors bearing su ponnectors bearing wa nection is f forces. ce with the titons R502 d ANSI/TP es not depi	29, 3, 4, 4, 2 ered for ust) =35ft; envelope) 4-1-8, to 8-4-5, 8 to ntilever left =RS for p bonding. dicated. bottom live loads. ain value Iding face. ulls due to or uplift 2018 .11.1 and 1. ct the size	4, LOAD CASE(S) Sta	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

										RELEASE FOR CONSTRUCTION
Job	Trus	s	Truss Typ	0e	Qty	Р	ly	Roof		AS NOTED FOR PLAN REVIEW
P220274-P2	20274-02 E04		Roof Sp	ecial	1	1	-	Lab Data		DEVELOPMENT SERVICES 152120795 LEE'S SUMMIT, MISSOURI
		, Spring Hills, KS - 66083,		Run: 8.53 S Ap	or 27 2022 F	rint: 8.530	S Apr 27		nce (optional ndustries, Inc. N	
				ID:Dc6aLVCNK	eelGUzAS8	4m?DzQC		PsB70Hq3NSg 24-0-0	9PqnL8w3uITXb	GKWrCDoirJ¥2JC?
		-0-10-8 4-5		8-7-11 10-7-11 16-9		20-4-12	22 2 4	4 2		32-5-8 1-7-0
		0-10-8 ⁴⁻⁵	5-10	4-2-2 2-0-0 6-1-1	13 4x6	3-7-4 =	1-10-2	2 5 1-9-2	5-0-12 2	2-6-4 '-' 0-10-8
	т	т			7 ∕⊄		3:	×4.		
		9-4-9 		4x12 🖌		\mathbb{A}	4x4			
		133-13	10	$\stackrel{4x4}{\leftarrow} \stackrel{27}{} \stackrel{6}{} \stackrel{6}{} \stackrel{7}{} \stackrel{6}{} \stackrel{7}{} \stackrel{6}{} \stackrel{7}{} \stackrel{7} \stackrel{7}} \stackrel{7}{} \stackrel{7} \stackrel{7} \stackrel{7}\phantom$				289 1.5x4 II		
	9-5-12	0-1-1-0 -1-1-13 	712 71					10		3x8 II
			^{1.5x4}				/	$\langle > $	5x5.	4x12
		<u>-</u> 							11	1 12
			>			17	0 0	16	15	14
	⊥,			22 21	20	3	,∸ ⊥ ×4 ∎	4x8=	· _	
		4x6 u		5x10= 6x6=	1.5x 5x8	4 11			7x8 1.5	}= 5x4 ⊪
						1.5x4 ॥			1.5	5x4 II
										8x10
				10-5-15		8-8-8			,	31- 7-0 311-28-8 31-3-1
			8-5-15	8-9-6 16-9-	. ₈ 16-1		24-0-0		29-3-8 29-9	
Scale = 1:85.1			8-5-15	0-3-6 6-3-9 1-8-10	01	12 -9-4	5-3-8	3		-00-0-7 1-5-9
	, Y): [5:0-1-9,0-2-(0], [6:0-6-0,0-1-15], [11	:0-1-4,0-3-0], [13:0-2-4,0-1-13], [13:Edge,	1-0-2], [13	:1-0-6,0-	2-0], [18	3:0-2-0,0-3-0], [22:0-3-0,0-	<u>0-3-8</u> 3-4]
Loading	(psf)	Spacing	2-0-0	CSI		DEFL		in (loc)	l/defl L/d	PLATES GRIP
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC	0.85 0.97	Vert(LL) Vert(CT)		19 16-17 37 16-17	>999 240 >999 180	MT20 197/144
BCLL	0.0	Rep Stress Incr	YES	WB	0.78	Horz(CT	,	.24 13	n/a n/a	
BCDL	10.0	Code	IRC2018/							Weight: 193 lb FT = 20%
LUMBER TOP CHORD	2x4 SP No.2 *Exc	ept* 9-14:2x4 SP 2400	= '	Wind: ASCE 7-16; Vult=115m Vasd=91mph; TCDL=6.0psf; I	BCDL=6.0	psf; h=35	5ft;			
	2.0E 2x4 SP No.2 *Exce	ept* 19-17:2x4 SPF No		Ke=1.00; Cat. II; Exp C; Enclo exterior zone and C-C Exterio						
WEBS	15-13:2x4 SP 165 2x4 SPE No 3 *Ex	0F 1.5E cept* 15-11:2x6 SPF N		Interior (1) 4-4-0 to 8-7-11, Ex 10-7-11, Interior (1) 10-7-11 to						
	Left 2x4 SP No.2 -	- 2-6-13, Right 2x4 SP		16-9-8 to 21-9-8, Interior (1) 2 cantilever left and right expose						
BRACING	No.2 1-11-1			right exposed;C-C for membe for reactions shown; Lumber [rs and for	es & MV	VFRS			
TOP CHORD	Structural wood sh 2-2-0 oc purlins, e	neathing directly applie xcept	a or	DOL=1.60						
BOT CHORD	2-0-0 oc purlins (4 Rigid ceiling direct	-4-3 max.): 5-6. Ily applied or 2-2-0 oc	4)	Provide adequate drainage to This truss has been designed	for a 10.0	psf botto	om ⁻			
	bracing.			chord live load nonconcurrent Bearing at joint(s) 13 consider						
REACTIONS (lb/size) 2=1476 /lax Horiz 2=256 (/0-3-8, 13=1486/0-3-8 LC 11)		using ANSI/TPI 1 angle to gra designer should verify capacit						
FORCES	-	(LC 12), 13=-226 (LC mpression/Maximum	³⁾ 6)	One H2.5T Simpson Strong-T recommended to connect trus	ie connec	tors				
	Tension			UPLIFT at jt(s) 2 and 13. This	connectio	n is for u				
	5-6=-1648/328, 6-		7)	only and does not consider lat This truss is designed in acco	rdance wi	h the 20'				
	7-8=-1668/360, 8- 10-11=-2524/369,			International Residential Code R802.10.2 and referenced sta						ANNUL.
BOT CHORD	13-14=0/1 2-21=-399/1857, 2	20-21=-44/116,		Graphical purlin representatio or the orientation of the purlin						OF MISS !!
	19-20=-53/65, 17-16-17=-116/1690,	19=-76/0, 17-18=-63/1	625,	bottom chord.					1	AF
WEBS	13-15=-451/3808 4-22=-147/174, 5-		LOA	DCASE(S) Standard					1	STEVEN
	6-22=-565/136, 6-	21=-245/61, 18-20=0/2	98,						= = *	E. FOX
	7-18=-194/1256, 1 11-16=-886/258, 1								= 7	NUMBER
	8-18=-601/245, 8- 18-21=-248/1768,									O. E-23873
NOTES										All and a start of the
 Unbalanced this design. 		ve been considered for								ONALE
										May 24,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

												FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Ro	oof				D FOR PLAN REVIEW OPMENT SERVICES 152120796
P220274-P220274-02	E05		Roof Special		1	1	Jo	b Refere	ence (op	tional	LEE'S	I52120796 SUMMIT, MISSOURI
Premier Building Supply (Spri	nghill, KS), S	Spring Hills, KS - 66083,	-	Run: 8.53 S Apr ID:sBMYRQZZV	27 2022 P YleEyhkfj52	int: 8.530 S A ZgLzQQ0H-Rf	Apr 27 202 fC?PsB70	2 MiTek I Hq3NSgF	ndustries PqnL8w3u	, Inc. N ıITXbG	on May 13 127:10 (WrCDon 0425C?)f	02/2022
	-0-10-8 0-10-8	5-7-5 5-7-5	<u>10-11-2</u> 5-3-13	12-11-2 2-0-0	<u>16-9-8</u> 3-10-6			-0-8 3-0			31-7-0 7-6-8	32-5-8 0-10-8
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 2 1 4x	3x4 = 3x4 = 3 6 II	7 ¹² 3x6 = 4 ¹⁸ 17 1.5x4 II	4x6 II 4x6 =	(0) 14 3×4	4x6 II 7			x4 = 8	1.5x4 4 9 78	7 3x4 10 80	з 3х4 11 12 4х6 в
cale = 1:61.7	H	5-7-5 5-7-5	10-9-6 5-2-1	2-3-8		<u>22-1-5</u> 9-0-7			+		<u>31-7-0</u> 9-5-11	
ate Offsets (X, Y): $[6:0]$	3-0,0-1-15	i], [8:0-2-0,Edge]										
Dading CLL (roof) CDL CLL CDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.94	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-13 11-13 11	l/defl >999 >968 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 177 lb	GRIP 197/144 FT = 20%
1.5E OT CHORD 2x4 SP N EBS 2x4 SPF	o.2 No.3 iP No.2 :	ot* 7-8:2x4 SP 1650F 3-2-11, Right 2x4 SP	Vasd=91 Ke=1.00 exterior z Interior (12-11-2, 16-9-8 to	SCE 7-16; Vult=115mp mph; TCDL=6.0psf; E ; Cat. II; Exp C; Enclos zone and C-C Exterior 1) 4-1-8 to 10-11-2, E; Interior (1) 12-11-2 to 21-9-8, Interior (1) 27 r left and right expose	CDL=6.0 sed; MWF (2E) -0-10 xterior(2E 16-9-8, E I-9-8 to 32	osf; h=35ft; RS (envelop)-8 to 4-1-8,) 10-11-2 to xterior(2R) 2-5-8 zone;					•	

BRACING

OP CHORD	Structural wood sheathing directly applied,
	except
	2-0-0 oc purlins (4-5-0 max.): 5-6.

2 0 0 00 pulling (1 0 0 max.). 0 0.
Rigid ceiling directly applied or 2-2-0 oc
bracing.
1 Row at midpt 6-15
(lb/size) 2=1483/0-3-8, 11=1483/0-3-8
Max Horiz 2=-255 (LC 10)
Max Uplift 2=-243 (LC 12), 11=-224 (LC 13)
(lb) - Maximum Compression/Maximum
Tension
1-2=0/5, 2-4=-2235/343, 4-5=-1847/348,
5-6=-1622/344, 6-7=-1898/454,
7-9=-1969/418, 9-11=-2163/342, 11-12=0/5
2-17=-360/1790, 16-17=-360/1790,
15-16=-209/1520, 13-15=-84/1239,
11-13=-183/1741
4-17=0/231, 4-16=-377/183, 5-16=-88/260,
5-15=-59/361, 6-15=-1065/287,

0, 7-15=-272/953, 7-13=-218/726, 9-13=-456/331

NOTES

1) Unbalanced roof live loads have been considered for this design.

cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 11. This connection is for uplift only and does not consider lateral forces.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size 7) or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job P220274-P220274-02 Trues Trues Type Rod Special Op Rod Special P H P1 Rod P220274-P220274-02 As of P220274-02 As of P2200-01-02								RELEASE	FOR CONSTRUCTION
P 2202744P 2302744P 230274P 2304P 1404P	Job	Truss	Truss Type	Qty	Ply	Roof			
Prever Butting Suppy (grouper, KS). Spring Hits, KS - BRO3. Bits Say <i>B</i> 27 2022 Hits 2830 <i>B</i> 47 2022 Hits Say	P220274-P220274-02	E06	Roof Special	1	1	Job Refere	ance (ontional		
$\frac{4 \cdot 10 \cdot 8}{6 \cdot 10^{16}} \xrightarrow{6 \cdot 9 \cdot 1} + \frac{13 \cdot 2 \cdot 9}{6 \cdot 9 \cdot 1} \xrightarrow{15 \cdot 2 \cdot 9} \xrightarrow{16 \cdot 9 \cdot 8} \xrightarrow{24 \cdot 0 \cdot 8} \xrightarrow{24 \cdot 0 \cdot 8} \xrightarrow{31 \cdot 7 \cdot 0} \xrightarrow{32 \cdot 6 \cdot 4} \xrightarrow{16 \cdot 10 \cdot 9} \xrightarrow{16 \cdot 9 \cdot 1} $	Premier Building Supply (Springh	nill, KS), Spring Hills, KS - 66083,	Run: 8.53 S Apr 27	2022 Print: 8	.530 S Apr 2	7 2022 MiTek I	ndustries, Inc. N	on May 32 7:1	02/2022
Junctic Class (X, Y): [7:0-3:0.0-1:16], [3:0-20.Edge] Localing (Class (X, Y): [7:0-3:0.0-1:16], [3:0-20.Edge] Code (Class (Class (Clas		0.40.9					-durgengen voor		
Local p 194 s 000 p 100 p <		0-10-8 6-9-1	<u> </u>	0 1-6-15		<u>24-0-8</u> 7-3-0			
Image: Section 1943 Space 1943 Space 1943 Space 1943 Space 1944 Space 1944 <t< td=""><td></td><td></td><td></td><td>4x</td><td>δ..</td><td></td><td></td><td></td><td></td></t<>				4x	δ . .				
4de 6-9-1 13-0-13 15-4-5 24-0-8 31-7-0 Scale = 184.5 6-9-1 6-3-13 2-3-8 8-8-3 7-6-8 Plate Offsets (X, Y): [7:0-3-0.0-1-15], [9:0-2-0.Edgel Loading (pst) plate for pOL 1.15 CSI 0.8 DEFL vert(L1) 0.1 PLATES GRIP TCUL (roof) 10.0 Rep Stress Incr YES Wert(C1) 0.08 12 n/a N/a BCDL 0.0 Code IRC2018/TPI2014 Matrix-S Wert(C1) 0.08 12 n/a n/a LUMBER 10.0 Code IRC2018/TPI2014 Matrix-S Second gust) Weight: 185 b FT = 20% LUMBER 2.44 SP No.2 *Except* 5-6,8-9.2x4 SP 1650F 1.5E Second gust) Second gust) Weight: 185 b FT = 20% VEBS 2.44 SP No.3 Studteral wood sheathing directly applied, except 2.00 oo putins (4-8-2 max): 6-7. Second gust) Second gust) Weight: 185 b FT = 20% WEBS 1.60 oo putins (4-82 max): 6-7.	9-5-12 8-3-11 8- 8-3-11 0-2	3x4 = 3 1 2	7 ¹² 3x4 = 3x6 = 5 4 19 18 1	4x6 = 7 7 7 7 7 7 7 7 7	15		1.5x4 II 10 14	11	12 13
6-9-1 13-0-13 15-4-5 24-0-8 31-7-0 Scale = 1.64.5 6-3-13 2-3-8 8-8-3 7-6-8 Plate Offsets (X, Y): [7:0-3-0,0-1-15], [3:0-2-0,Edge] Fragment of the second part of the		4X0 II	1.5x4 II 3x4= 3	×4=	3x4=		4x4=		4x0 II
TCLL (mod) 25.0 TCDL Piate Grip DOL 1.15 Lumber DOL TC 0.88 BC Vert(L1) -0.14 14-16 >999 240 LO MT20 244/190 BCLL 0.0 Rep Stress Incr YES WB 0.73 Vert(CT) -0.33 14-16 >999 240 MT20 244/190 BCLL 0.0 Rep Stress Incr YES WB 0.73 Vert(CT) -0.33 14-16 >999 240 Weight: 185 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 *Except* 5-6,8-9:2x4 SP 1650* Ke=1.00; Cat II; Exp C; Enclosed; MWFRS (servelope) exterior 220 a and 10; Exp C; Enclosed; MWFRS (servelope) exterior 220 a to 16-94; Iterior (1) 15-2-9 to 16-94; Exterior (22) 13-2-9 to 16-94; Exterior (22) 12-9-34; T-8-94; Or 10-0-0 co purins (4-8-2 max); 6-7. 3) Provide adequate drainage to prevent water ponding. 3) Provide adequate drainage to prevent water ponding. 3) Provide adequate drainage to prevent water ponding. 4) All plates are 3x4 MT20 unless otherwise indicated. 5) 5) 5) 5) 5) 5) 5) 5) 5) 5) 5) 5) 5) 5)	Plate Offsets (X, Y): [7:0-3-0	6-9-1 0,0-1-15], [9:0-2-0,Edge]	6-3-13 2-3-	5 3	8-	8-3		7-6-8	
BCLL BCDL 0.0 10.0 Rep Stress Incr Code YES IRC2018/TPI2014 WB 0.99 Matrix-S Horz(CT) 0.08 12 n/a N/a LUMBER TOP CHORD 2x4 SP No.2 **Except* 5-6,8-9:2x4 SP 16505 1.5E 2 Wind: ASCE 7-16,8-9:2x4 SP 16505 1.5E 2 Wind: ASCE 7-16,8-9:2x4 SP 16505 1.5E 2 Wind: ASCE 7-16,8-9:2x4 SP No.2 2 Wind: ASCE 7-16,90;51; BCDL=6,0ps; 1: h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 15-2-9 to 16-9-9, Exterior(2E) -0-10-8 to 4-1-8, No.2 - 4-4-2 Interior (1) 15-2-9 to 16-9-9, Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 12-9-8 to 32-5-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 5 BOT CHORD TOP CHORD Structural wood sheathing directly applied except 2-0:0 oc purlins (4-8-2 max.): 6-7. 3 Provide adequate drainage to prevent water ponding. All plates are 3x4 MT20 unless otherwise indicated. 5 WEBS I Row at midpt Core CHORD Max Horiz 2-1483/0-3-8, 12=1483/0-3-8, Max Horiz 1.2=243 (LC 12), 12=-224 (LC 13) 6 0 WEBS I TOP CHORD I 1-2=00; 2-24-82206/338, 4-6=-1702/330, 6-7=-1387/32, 7-8=-1663766, -7= 6 0 0 1.2=1483/0-3-8, Max Horiz 1.2=243 (LC 12), 12=-224 (LC 13) 1 1.2=245, 2-4=-2206/338, 4-6=-1702/330, 6-7=	TCLL (roof)		1.15 TC			. ,			
BCDL 10.0 Code IRC2018/TPI2014 Matrix-S LUMBER TOP CHORD 2x4 SP No.2 *Except* 5-6,8-9:2x4 SP 1650F 1.5E Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0pst; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -01-0-8 to 4-1-8, Interior (1) 41-1-8 to 13-2-9, Exterior(2E) 13-2-9 to Interior (1) 41-1-8 to 13-2-9, Exterior(2E) 10-0-8 to 41-8, Interior (1) 12-9-8 to 22-5-8 zone; cantilever left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip 2-0-0 oc putlins (4-8-2 max.): 6-7. BOT CHORD TOP CHORD Xiructural wood sheathing directly applied, except 2-0-0 oc putlins (4-8-2 max.): 6-7. BOT CHORD TOP CHORD Rigid ceiling directly applied, except 2-0-0 oc putlins (4-8-2 max.): 6-7. BOT CHORD BOT CHORD Rigid ceiling directly applied, except 2-0-0 oc putlins (4-8-2 max.): 6-7. BOT CHORD BOT CHORD Rigid ceiling directly applied, except 2-0-0 oc putlins (4-8-2 max.): 6-7. BOT CHORD BOT CHORD 1 Row at midpt 0-12-20/5, 2-4=-2206/338, 4-6=-1702/330, 6-7=-1887/24, 7-8=-1563378. FORCES (lb) - Maximum Tension (lb) - Maximum Tension TOP CHORD 0-12-20/5, 2-4=-2206/338, 4-6=-1702/330, 6-7=-1887/24, 7-8=-1563378. TOP CHORD 0-12-20/5, 2-4=-2206/338, 4-6=-1702/330, 6-7=-1887/24, 7-8=-1563378. TOP CHORD 0-12-20/5, 2-4=-2206/338, 4-6=-1702/330, 6-7=-1887/24, 7-8=-1563378.					. ,				
TOP CHORD2x4 SP No.2 *Except* 5-6,8-9:2x4 SP 1650F 1.5EVasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope)BOT CHORD2x4 SP No.2Interior (1) 4-1-8 to 13-2-9, Exterior(2E) -01-0-8 to 44-1-8, Interior (1) 4-1-8 to 13-2-9, Exterior(2E) -01-0-8SLIDERLeft 2x4 SP No.2 - 3-10-10, Right 2x4 SP No.2 - 4-4-2Interior (1) 4-1-8 to 13-2-9, Exterior(2E) -01-0-8BRACINGInterior (1) 4-1-8 to 13-2-9, Exterior (2R) 16-9-8TOP CHORDStructural wood sheathing directly applied, except 2-0-0 oc purlins (4-8-2 max.): 6-7.Interior (1) 15-2-9 to 16-9-8, Exterior(2R) 16-9-8BOT CHORDRigid ceiling directly applied or 10-0-0 cc bracing.Provide adequate drainage to prevent water ponding.WEBS1 Row at midpt 6-16, 7-166-16, 7-16REACTIONS(b):ze2 - 21483/0-3-8, 12=1483/0-3-8, Max Horiz 2=255 (LC 11) max Uplift 2=-243 (LC 12), 12=-224 (LC 13)Provide adeguate drainage to prevent water ponding. All plates are 3x4 MT20 unless otherwise indicated.FORCES(b) - Maximum Compression/Maximum TensionThis truss is been designed for a 10.0 psf bottom only and does not consider lateral forces.TOP CHORD1-2=0/5, 2-4=-2206/338, 4-6=-1702/330, 6-7=-1387/324, 7-8=-1563/376,This truss is destigned in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.							1,4 1,4	Weight: 185 lb	FT = 20%
 8-10=-2170/531, 10-12=-2189/313, 12-13=0/5 BOT CHORD 2-19=-342/1774, 18-19=-342/1774, 16-18=-102/352, 12-14=-158/1759 WEBS 4-19=0/286, 4-18=-536/237, 6-18=-102/352, 6-16=-94/218, 7-16=-715/170, 8-16=-715/170, 8-16=-210/847, 8-14=-359/878, 10-14=-509/380 NOTES 1) Unbalanced roof live loads have been considered for 	TOP CHORD 2x4 SP No.2 1.5E 1.5E BOT CHORD 2x4 SP No.2 WEBS 2x4 SPF No SLIDER Left 2x4 SP No.2 4-4-2 BRACING TOP CHORD Structural we except 2-0-0 oc pur BOT CHORD BOT CHORD Rigid ceiling bracing. WEBS 1 Row at mir REACTIONS (lb/size) 2: MAX HORIZ 2 MAX Upliff 2 FORCES (lb) - Maximit Tension 1-2=0/5, 2-4 6-7=-1387/3 8-10=-2170/ 12-13=0/5 BOT CHORD 2:19=-342/1 6-18=-146/ 12:14=-158/ WEBS 4-19=0/286, 6-16=-94/21 8-16=-210/8 6-16=-94/21 8-16=-210/8 10-14=-509/	2 .3 No.2 3-10-10, Right 2x4 Sl 2 ood sheathing directly applie rlins (4-8-2 max.): 6-7. g directly applied or 10-0-0 oc dpt 6-16, 7-16 =1483/0-3-8, 12=1483/0-3-8 =255 (LC 11) =-243 (LC 12), 12=-224 (LC - um Compression/Maximum =-2206/338, 4-6=-1702/330, 124, 7-8=-1563/376, /531, 10-12=-2189/313, 774, 18-19=-342/1774, /1369, 14-16=-79/1250, /1759 4-18=-536/237, 6-18=-102/3 8, 7-16=-715/170, 4/7, 8-14=-359/878, /380	 50F Vasd=91mph; TCDL=6.0psf; BCI Ke=1.00; Cat. II; Exp C; Enclosed exterior zone and C-C Exterior(2D Interior (1) 4-1-8 to 13-2-9, Exterior 15-2-9, Interior (1) 15-2-9 to 16-9 to 21-9-8, Interior (1) 21-9-8 to 32 left and right exposed; end vertic exposed; C-C for members and for reactions shown; Lumber DOL=1 DOL=1.60 3) Provide adequate drainage to pre 4) All plates are 3x4 MT20 unless of 5) This truss has been designed for chord live load nonconcurrent wit 6) One H2.5T Simpson Strong-Tie or recommended to connect truss to UPLIFT at jt(s) 2 and 12. This cor only and does not consider latera 7) This truss is designed in accordaa International Residential Code se R802.10.2 and referenced standa 8) Graphical purlin representation do or the orientation of the purlin alo bottom chord. LOAD CASE(S) Standard 	PL=6.0psf; f ; MWFRS (j) -0-10-8 tt s; MWFRS (j) -0-10-8 tt s, Exterior(-5-8 zone; f al left and r crees & MW 60 plate gr vent water herwise ind a 10.0 psf th any other onnectors bearing wa nection is f forces. to e with the ctions R502 rd ANSI/TF bes not dep	n=35ft; envelope) o 4-1-8, -9 to 2R) 16-9-8 cantilever ight FRS for ip ponding. icated. oottom live loads. alls due to or uplift 22018 2.11.1 and 11. ict the size				

May 24,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof	AS NOTED FOR PLAN REVIEW
005	11000		Guy	,	11001	DEVELOPMENT SERVICES I52120798
P220274-P220274-02	E07	Hip 1		1	Job Reference (optional	

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May ID:S9kGx0x0B4CFSiZizk9rRtzQQ?o-RfC?PsB70Hq3NSgPqnL8w3uITXbGK VrCDoi704.001

Plate Offsets (X Y):	[5:0-2-0.Edge], [8:0-2-0.Edge]

	[,],	[
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.94	Vert(LL)	-0.11	16-17	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.70	Vert(CT)	-0.22	13-14	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.32	Horz(CT)	0.09	11	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 170 lb	FT = 20%

LU	М	В	E	R	

Scale = 1:77.6

0.2
5)
)
;)
5)
;)
3)
3)
;)

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 15-6-0, Exterior(2E) 15-6-0 to 16-1-0, Exterior(2R) 16-1-0 to 23-1-14, Interior (1) 23-1-14 to 32-5-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom

2) Wind: ASCE 7-16; Vult=115mph (3-second gust)

chord live load nonconcurrent with any other live loads. One H2.5T Simpson Strong-Tie connectors 5) recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 11. This connection is for uplift

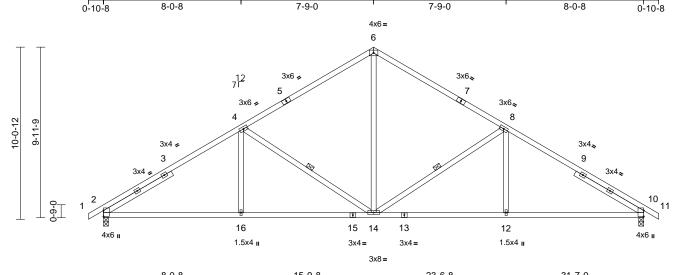
only and does not consider lateral forces. This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

3) 4)

1) Unbalanced roof live loads have been considered for this design.



02/2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

							RELEASE FO	R CONSTRUCTION
Job	Truss	Truss Type		Qty	Plv	Roof		OR PLAN REVIEW
	11400			α.,	,		DEVELOP	IENT SERVICES
P220274-P220274-02	E08	Common		1	1	Job Reference (optional	LEE'S SUN	IMIT, MISSOURI
Premier Building Supply (Springh	nill, KS), Spring Hills, KS - 66083,		Run: 8.53 S Apr 27 2	022 Print: 8.	530 S Apr 27	7 2022 MiTek Industries, Inc. M 370Hq3NSgPqnL8w3uITXbGk	on May 3 😰:	2/202
			ID:Lw_nnO_XFligxKs	TCaDnbjzQC	Q?k-RfC?PsE	370Hq3NSgPqnL8w3uITXbGk	WrCDoi794z99?	
	-0-10-8 8-0-8	I	15-9-8	1	23-6-8		31-7-0 3.	2-5-8

		8-0-8	5	15-9-8		Z,	3-6-8		1		31-7-0	
Scale = 1:67.4		8-0-8	3	7-9-0	I	7	-9-0		1		8-0-8	Ι
		1		1								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.86	Vert(LL)	-0.11	2-16	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.71	Vert(CT)	-0.24	2-16	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.39	Horz(CT)	0.09	10	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 161 lb	FT = 20%

LU	ME	ΒE	R

TOP CHORD	2x4 SP 1650F 1.5E *Except* 1-5,7-11:2x4 SP
	No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SPF No.3
SLIDER	Left 2x4 SP No.2 4-7-9, Right 2x4 SP No.2 4-7-9
BRACING	
TOP CHORD	Structural wood sheathing directly applied.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
WEBS	1 Row at midpt 8-14, 4-14
REACTIONS	(lb/size) 2=1483/0-3-8, 10=1483/0-3-8
	Max Horiz 2=-272 (LC 10)
	Max Uplift 2=-230 (LC 12), 10=-230 (LC 13)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/5, 2-4=-2167/311, 4-6=-1524/326,
	0.0 4504/000 0.40 0407/044 40.44 0/5

 6-8=-1524/326, 8-10=-2167/311, 10-11=0/5

 BOT CHORD
 2-16=-313/1740, 14-16=-313/1740, 12-14=-151/1740, 10-12=-151/1740

 WEBS
 6-14=-121/876, 8-14=-709/305, 8-12=0/334, 4-14=-709/305, 4-16=0/334

NOTES

 Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 15-9-8, Exterior(2R) 15-9-8 to 20-9-8, Interior (1) 20-9-8 to 32-5-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. One H2.5T Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 10. This connection is for uplift only and does not consider lateral forces.
 This truss is designed in accordance with the 2018

This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof		AS NOTED FOR PLAN REVIEW
P220274-P220274-02	E09	Roof Special	5	1	Job Refere	ence (optional	DEVELOPMENT SERVICES 152120800 LEE'S SUMMIT, MISSOURI
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 6608	3, Run	8.53 S Apr 27 2022 Pr 18x586Qfh56l0CaLOwl	nt: 8.530 S Apr	27 2022 MiTek I	ndustries Inc. N	on May 3167/02/2022
					PSB/URIQSINOU		
	3-2-8 7-5-12 3-2-8 4-3-4	<u> </u>		23-3-0 7-9-0		<u>31-3-8</u> 8-0-8	32-2-0 0-10-8
			5x10=				
Scale = 1:65.9	3x8 = 4x6 = 1 2 5x4 II 16 5x8 = 3-0-12 -5.0-12 -5.0-2-8], [16:0-3-0,0-2-4]	$ \begin{array}{c} 1.5x4 \\ 1.5x4 $		3×6 × 6 6 23-3-0 7-9-0	3x6 \$ 7 11 1.5x4 #	3x4 8 58 31-3-8 8-0-8	$3x^4$ 9 10 6 $ -$
Loading TCLL (roof)	(psf)Spacing25.0Plate Grip DOL	2-0-0 CSI 1.15 TC	0.86	. ,	in (loc) 0.21 15-16	l/defl L/d >999 240	PLATES GRIP MT20 197/144
TCDL BCLL	10.0 Lumber DOL 0.0 Rep Stress Incr	1.15 BC YES WB		. ,	0.49 15-16 0.09 9	>763 180 n/a n/a	
BCDL	10.0 Code	IRC2018/TPI2014 Matrix		()			Weight: 177 lb FT = 20%
1.5E BOT CHORD 2x4 SPF No.3 WEBS 2x4 SPF No.3 SLIDER Right 2x4 S BRACING TOP CHORD TOP CHORD Structural wexcept end (3-6-2 max.) BOT CHORD Rigid ceiling bracing, E 6-0-0 oc bracing, E 6-0-0 cb fraction Max drift 9 REACTIONS (lb/size) 9 Max Horiz 1 Max Uplift 9 Max Horiz 1 FORCES (lb) - Maxim Tension 10P CHORD TOP CHORD 1-17=-1385 2-3=-3140/4 4-5=-1865/4 7-9=-2136/3 (1-13=-148) BOT CHORD 16-17=-235 14-15=0/30 11-13=-148 1-16=-322/2 3-16=-93/9 5-15=-296/1	j directly applied or 10-0-0 xcept: idigt 7-13 =1464/0-3-8, 17=1401/ lechanical 7=-290 (LC 8) =-235 (LC 13), 17=-209 (LC ium Compression/Maximur /192, 1-2=-2510/293, i40, 3-4=-1923/332, i28, 5-7=-1484/322, i18, 9-10=0/5 (265, 15-16=-327/1994, i4-15=-267/184, 13-14=-10 /1714, 9-11=-148/1714 i766, 2-16=-1766/321, i27, 3-15=-542/227, i102, 5-13=-131/264, i14, 7-13=-718/303, 7-11=0	Ke=1.00; Cat. II; Ex b.3 exterior zone and C b.2 Interior (1) 3-2-8 to b.2 20-6-0, Interior (1) 2 and right exposed; exposed;C-C for me reactions shown; Lu DOL=1.60 DC 3) Provide adequate d 4) This truss has been chord live load nonc 5) Refer to girder(s) fo 6) Provide mechanical bearing plate capab joint 17. 7) One H2.5T Simpson recommended to co 10/LITA tjt(s) 9. Th does not consider la 8) This truss is designed international Reside R802.10.2 and refer 9) Graphical purlin rep or the orientation of bottom chord. LOAD CASE(S) Stand	=6.0psf; BCDL=6.0p b C; Enclosed; MWF C Exterior(2E) 0-1-1 5-6-0, Exterior(2R) / 0-6-0 to 32-2-0 zone end vertical left and in mbers and forces & mber DOL=1.60 plat ainage to prevent wid designed for a 10.0 oncurrent with any o truss to truss conne connection (by other e of withstanding 20 I Strong-Tie connection nis connection is for u teral forces. ed in accordance with thial Code sections F enced standard ANS resentation does not the purlin along the t	sf; h=35ft; S (envelope) 2 to 3-2-8, 5-6-0 to cantilever lef ght <i>IWFRS</i> for 9 grip ter ponding. sf bottom her live loads titons. s) of truss to 0 buplift at rs y walls due to built only and the 2018 502.11.1 and <i>TP</i> I 1. depict the size	t		STEVEN E. FOX VUMBER E-23873

NOTES

> V MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job								RELEASE FOR CONSTRUCTION
300	Truss		Truss Ty	ре	Qty	Ply	Roof	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 152120801
P220274-P2	220274-02 G01		Hip Girc	ler	1	2	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Premier Building	g Supply (Springhill, KS), S	Spring Hills, KS - 66083,		Run: 8.53 S Apr 2 ID:eXQspbGabgjG	7 2022 Print: 8 p0i4ccfPZnzG	3.530 S Apr 2 Q?M-RfC?Ps	7 2022 MiTek Industries, Inc. M B70Hq3NSgPqnL8w3uITXbGI	on May @167:/02/2922 WrCDoily4z
		-3-14 6-4-5 -3-14 3-0-6 7 ¹²	NAILED N	11-1-12 15-9-8 4-9-8 4-7-12	NAILED	<u>20-5-4</u> 4-7-12	<u>25-2-11</u> 4-9-8	<u>28-3-2</u> <u>31-7-0</u> <u>32-5-8</u> 3-0-6 <u>3-3-14</u> <u>0-10-8</u>
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3 3 3 3 3 3 3 3 3 3 3 3 3 3	3x6 = 24 24 23 1.5x4 II	4x4 ¢ 5 22 3x8 = Special		1.5x4 II 7 3 7 3 7 3 7 3 7 3 7 3 7 4 7 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	LED NAILE 3x4= $0 \ge 8 31$ $1 \ge 1 =$ $1 \ge 1 =$ 20-5-4 = 4-7-12 =	3x8= 9 32 33 9 32 33 17 40 41 1.5x4 ⊪	$\begin{array}{c} 4x4_{x} \\ 10 \\ 3x6_{x} \\ 34 \\ 11 \\ 3x6_{x} \\ 12 \\ 12 \\ 13 \\ 16 \\ 15 \\ 3x8_{z} \\ 1.5x4_{z} \\ 1.5$
Scale = 1:59.3 Plate Offsets (Loading TCLL (roof) TCDL BCLL BCDL	X, Y): [2:Edge,0-0-0] (psf) 25.0 10.0 0.0 10.0	, [5:0-1-9,0-2-0], [10:0 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO IRC2018/	CSI TC BC WB		(LL) 0 (CT) -0	in (loc) l/defl L/d .18 19 >999 240 .31 17-19 >999 180 .11 13 n/a n/a	PLATES GRIP MT20 197/144
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x4 SP No.2 2x4 SPF No.3 Left 2x4 SP No.2 No.2 1-10-13 Structural wood she 4-4-1 oc purlins, ex 2-0-0 oc purlins (5-2 Rigid ceiling directly bracing. (lb/size) 2=2584/0 Max Horiz 2=-116 (L Max Uplift 2=-787 (L (lb) - Maximum Com Tension	2-4 max.): 5-10. / applied or 9-10-14 or)-3-8, 13=2585/0-3-8 _C 10) _C 12), 13=-787 (LC 1 npression/Maximum /1244, 4-5=-4033/132	d or 2) c 3) 3)	2-ply truss to be connected toge (0.131"x3") nails as follows: Top chords connected as follows oc. Bottom chords connected as foll 0-9-0 oc. Web connected as follows: 2x4 All loads are considered equally except if noted as front (F) or ba CASE(S) section. Ply to ply com provided to distribute only loads unless otherwise indicated. Unbalanced roof live loads have this design. Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BC Ke=1.00; Cat. II; Exp C; Enclose exterior zone and C-C Exterior(2 Interior (1) 4-1-8 to 6-4-5, Exteri- Interior (1) 13-5-2 to 25-2-11, Ex 32-5-8 zone; cantilever left and I	s: 2x4 - 1 rov ows: 2x4 - 1 - 1 row at 0-4 applied to a ck (B) face i ections hav noted as (F) been consid (3-second g DL=6.0psf; d; MWFRS E) -0-10-8 t E) -0-10-8 t terior(2E) 25	v at 0-9-0 row at 9-0 oc. Il plies, n the LOAD e been or (B), dered for gust) n=35ft; (envelope) o 4-1-8, to 13-5-2, 5-2-11 to	provided sufficien lb down and 128 l lb down and 145 l 145 lb up at 25-1 selection of such responsibility of o LOAD CASE(S) Sta 1) Dead + Roof Liv Plate Increase= Uniform Loads (Vert: 1-5=-70, Concentrated Lo Vert: 5=-93 (F), 16 26=-93 (F), 27 31=-93 (F), 32	ndard e (balanced): Lumber Increase=1.15, .15 b/ft) 5-10=-70, 10-14=-70, 2-13=-20 ads (lb)), 20=-45 (F), 22=-386 (F), 19=-45 (F), -386 (F), 10=-93 (F), 25=-93 (F), '=-93 (F), 29=-93 (F), 35=-45 (F), '=-93 (F), 38=-45 (F), 39=-45 (F),

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

							E FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof		ED FOR PLAN REVIEW LOPMENT SERVICES 152120802
P220274-P220274-02	G02	Hip	1	1	Job Reference (option		I52120802 SUMMIT, MISSOURI
Premier Building Supply (Spring	nill, KS), Spring Hills, KS - 66083,		•	•	2022 MiTek Industries, Ind 70Hq3NSgPqnL8w3uITXb		02/2022
-0-1 0-1	4-5-10	8-7-11 15-9-8 4-2-2 7-1-13		<u>22-1</u> 7-1-		27-1-6 4-2-2	<u>31-7-0</u> 32-5-8 4-5-10 0-10-8
$\begin{bmatrix} 5-10-11 \\ 5-7-11 \\ 5-7-11 \\ 0-9-0 \\ 5-7-11 \\ 0-1-13 \\$	7 ¹² 1.5x4 4 17 ³ 4 4x6 II	4x6 II 7 7 7 7 7 7 7 7 7 7 7 7 7	3x8= 6 15 14 3x4= 1.5x4 II	(F) 13 3x4=	4x6 u 7 7 12 3x8 =	1.5x4 # 8	3хба 9 18 10 11 4хб ш
	8-5-15	15-9-8	I	23-1	-1	31-7-0	

7-3-9

7-3-9

Scale = 1:59.4

		1			i		i					1	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.85	Vert(LL)	-0.13	2-16	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.78	Vert(CT)	-0.29	2-16	>999	180		
BCLL	0.0	Rep Stress Incr	YES		WB	0.34	Horz(CT)	0.10	10	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 157 lb	FT = 20%
LUMBER			2	Wind: ASCE	7-16; Vult=115m	ph (3-sec	cond aust)						
TOP CHORD	2x4 SP No.2				n; TCDL=6.0psf; I								
BOT CHORD	2x4 SP No.2			Ke=1.00; Ca	t. II; Exp C; Enclo	sed; MW	FRS (envelo	pe)					
WEBS	2x4 SPF No.3				and C-C Exterio								
SLIDER	Left 2x4 SP No.2 2	2-6-13, Right 2x4 SP			4-0 to 8-7-11, Ex								
	No.2 2-6-13				5-9-8 to 22-11-5,								
BRACING					or (1) 30-0-2 to 3			left					
TOP CHORD	Structural wood she	athing directly applie	d or		osed ; end vertic for members an			r					
	2-11-6 oc purlins, ex				own; Lumber DOI								
	2-0-0 oc purlins (3-2	,		DOL=1.60	2011001 2 01		ato grip						
BOT CHORD	0 0 7	applied or 10-0-0 oc	3		quate drainage to	prevent	water ponding	a.					
WEBS	bracing.	C 4C C 4D	4		s been designed			5-					
		6-16, 6-12			ad nonconcurrent			ids.					
		-3-8, 10=1483/0-3-8	5) One H2.5T S	Simpson Strong-T	ie conne	ctors						
	Max Horiz 2=-153 (L	,	10)		ed to connect trus								
	Max Uplift 2=-167 (L	<i>,,</i>	13)		s) 2 and 10. This			t					
FORCES	(lb) - Maximum Corr Tension	pression/Maximum			s not consider lat								
TOP CHORD	1-2=0/5, 2-4=-2205/	201 4 5 1099/251	6		designed in acco			ام من					
TOP CHORD	1-2=0/5, 2-4=-2205/ 5-6=-1678/251, 6-7=				Residential Code nd referenced sta			ina					
)=-2205/291, 10-11=(0/5 7		rlin representatio			izo					
BOT CHORD	,	,			ation of the purlin			SIZE					
20101010	12-14=-299/2174, 1			bottom chord		along the							
WEBS	4-16=-167/188, 5-16			OAD CASE(S)									
-		4=0/263, 6-12=-718/2	.37, L	CAD CASE(S)	Stanualu								1111
	7-12=-32/576, 8-12=	-167/188										NOF	MISS
NOTES											1	NYE	
	ed roof live loads have	been considered for									-	X	-

 Unbalanced roof live loads have been considered for this design.

8-5-15

BORNAL ENGLINE

8-5-15

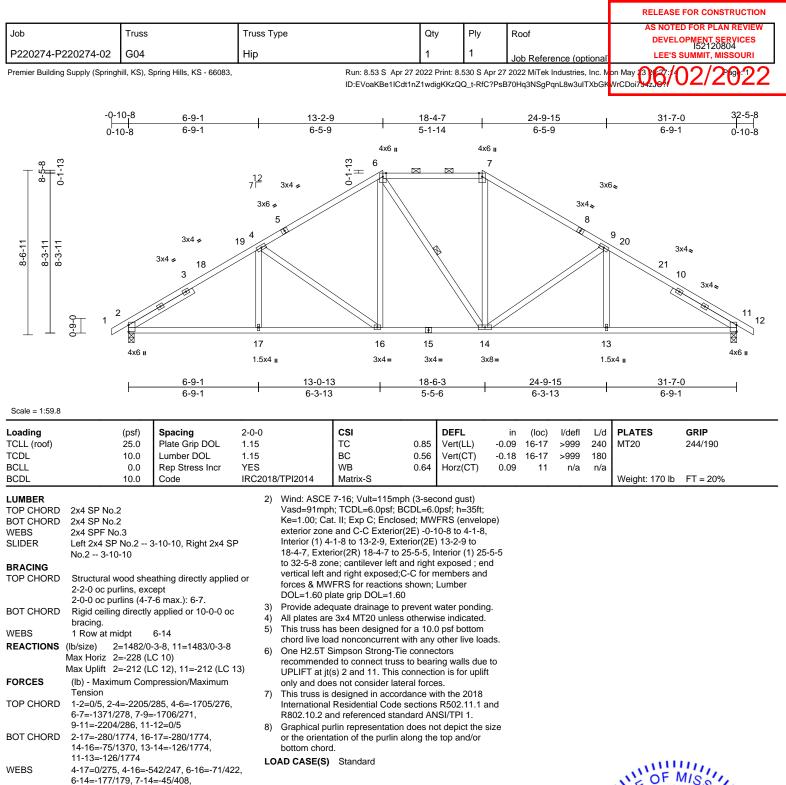
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

					RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty Ply	Roof	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 152120803
P220274-P220274-02	G03	Нір	1 1	Job Reference (optional	
Premier Building Supply (Spring	hill, KS), Spring Hills, KS - 66083,			27 2022 MiTek Industries, Inc. M RfC?PsB70Hq3NSgPqnL8w3ulT	
-0-1		<u>10-11-2</u> <u>15-9-8</u> 5-3-13 4-10-6	20-7-14	<u> </u>	<u>31-7-0</u> <u>32-5-8</u> 5-7-5 0-10-8
0-1	0-8 5-7-5	5-3-13 4-10-6	4-10-6 3x4=	5-3-13 4x4	5-7-5 0-10-8
7-2-11 	3x4 = 4 3x4 = 17 3	Χ6 #		7	3x6 8 20 3x4 9 3x4 10 11 12
	4x6	5 15 5x4 u 3x8=	14 4x6=	13 3x8=	12 ⊠ 1.5x4 ⊪
	5-7-5 5-7-5	10-9-6 2	<u>20-9-10</u> 10-0-3	<u>25-11-11</u> 5-2-1	31-7-0 5-7-5

Scale = 1:59.5

Plate Offsets (X, Y): [5:0-1-9,0-2-0], [7:0-1-9,0-2-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.61 0.87 0.30	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.25 -0.53 0.09	(loc) 13-15 13-15 10	l/defl >999 >712 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 167 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	No.2 3-2-11 Structural wood she 3-1-11 oc purlins, ex 2-0-0 oc purlins (4-5			Vasd=91mph Ke=1.00; Cat exterior zone Interior (1) 4- 18-0-0, Interi 20-7-14 to 27 cantilever lef right exposed for reactions DOL=1.60	7-16; Vult=115m n; TCDL=6.0psf; E t. II; Exp C; Enclo and C-C Exterio 1-8 to 10-11-2, E or (1) 18-0-0 to 2 7-8-11, Interior (1) t and right expose d;C-C for member shown; Lumber I quate drainage to	CDL=6.0 sed; MW r(2E) -0-1 xterior(2F 0-7-14, E) 27-8-11 ed ; end v rs and for DOL=1.60	Dpsf; h=35ft; FRS (envelop 10-8 to 4-1-8, R) 10-11-2 to xterior(2R) to 32-5-8 zor vertical left an cces & MWFR 0 plate grip	ne; d S					
	1 Row at midpt		4) 5) 3)	chord live loa One H2.5T S recommende	s been designed ad nonconcurrent Simpson Strong-T ed to connect trus s) 2 and 10. This	with any ie conneo s to bear	other live loa ctors ing walls due	to					
FORCES	(lb) - Maximum Corr Tension	pression/Maximum	6)	only and doe	s not consider lat	eral force	es.						
TOP CHORD	1-2=0/5, 2-4=-2226/ 5-6=-1533/285, 6-7=	, ,	_,	International R802.10.2 ar	Residential Code nd referenced sta rlin representation	e sections ndard AN	R502.11.1 a ISI/TPI 1.						
BOT CHORD	2-16=-247/1783, 15- 13-15=-153/1680, 12 10-12=-177/1783	-16=-247/1783,	.,	or the orienta bottom chord	ation of the purlin I.			<i>n2</i> 0					990
WEBS	4-16=0/160, 4-15=-3 6-15=-374/208, 6-13	865/214, 5-15=-36/55 3=-374/208, 365/214, 8-12=0/16	0,	OAD CASE(S)	Standard							XA STEV	MISSOU

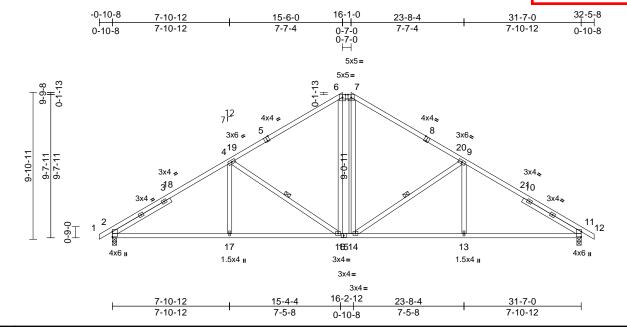

NOTES

 Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NOTES

 Unbalanced roof live loads have been considered for this design.


9-14=-541/248. 9-13=0/274

STEVEN E. FOX E. FOX E-23873 May 24,2022

						RELEASE FOR CONSTRUCTION
lob	Truss	Truss Type	Qty	Plv	Roof	AS NOTED FOR PLAN REVIEW
305	11035	Truss Type		I IV	RUUI	DEVELOPMENT SERVICES 152120805
P220274-P220274-02	G05	Нір	1	1	Job Reference (optional	
Premier Building Supply (Springl						

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Non May 3367/02/2022 ID:tpX6rloYTu8ATdULd8wUprzQQ_h-RfC?PsB70Hq3NSgPqnL8w3uITXbGf WrCDoi76420?

Plate Offsets (X, Y): [5:0-2-0,Edge], [8:0-2-0,Edge]

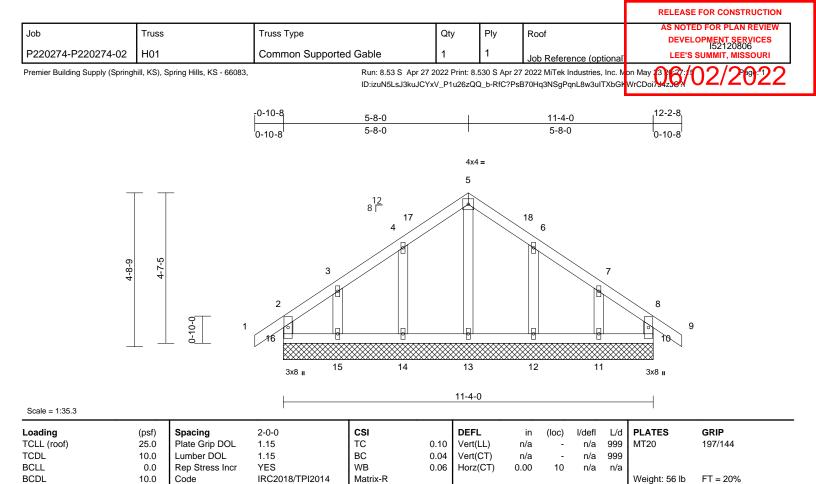
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.94	Vert(LL)	-0.11	16-17	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.70	Vert(CT)	-0.22	13-14	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.32	Horz(CT)	0.09	11	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 170 lb	FT = 20%

LUM	BER
TOD	CUO

Scale = 1:77.6

LUMBER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SPF No.3
SLIDER	Left 2x4 SP No.2 4-6-9, Right 2x4 SP No.2
	4-6-9
BRACING	
TOP CHORD	Structural wood sheathing directly applied,
	except
	2-0-0 oc purlins (4-8-2 max.): 6-7.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
WEBS	1 Row at midpt 4-16, 9-14
REACTIONS	(lb/size) 2=1483/0-3-8, 11=1483/0-3-8
REACTIONS	•
REACTIONS	(lb/size) 2=1483/0-3-8, 11=1483/0-3-8
REACTIONS	(lb/size) 2=1483/0-3-8, 11=1483/0-3-8 Max Horiz 2=265 (LC 11) Max Uplift 2=-229 (LC 12), 11=-229 (LC 13)
	(lb/size) 2=1483/0-3-8, 11=1483/0-3-8 Max Horiz 2=265 (LC 11)
	(lb/size) 2=1483/0-3-8, 11=1483/0-3-8 Max Horiz 2=265 (LC 11) Max Uplift 2=-229 (LC 12), 11=-229 (LC 13) (lb) - Maximum Compression/Maximum
FORCES	(Ib/size) 2=1483/0-3-8, 11=1483/0-3-8 Max Horiz 2=265 (LC 11) Max Uplift 2=-229 (LC 12), 11=-229 (LC 13) (Ib) - Maximum Compression/Maximum Tension
FORCES	(lb/size) 2=1483/0-3-8, 11=1483/0-3-8 Max Horiz 2=265 (LC 11) Max Uplift 2=-229 (LC 12), 11=-229 (LC 13) (lb) - Maximum Compression/Maximum Tension 1-2=0/5, 2-4=-2173/311, 4-6=-1552/304,
FORCES	(Ib/size) 2=1483/0-3-8, 11=1483/0-3-8 Max Horiz 2=265 (LC 11) Max Uplift 2=-229 (LC 12), 11=-229 (LC 13) (Ib) - Maximum Compression/Maximum Tension 1-2=0/5, 2-4=-2173/311, 4-6=-1552/304, 6-7=-1215/294, 7-9=-1552/304, 9-11=-2172/311, 11-12=0/5
FORCES	(Ib/size) 2=1483/0-3-8, 11=1483/0-3-8 Max Horiz 2=265 (LC 11) Max Uplift 2=-229 (LC 12), 11=-229 (LC 13) (Ib) - Maximum Compression/Maximum Tension 1-2=0/5, 2-4=-2173/311, 4-6=-1552/304, 6-7=-1215/294, 7-9=-1552/304, 9-11=-2172/311, 11-12=0/5
FORCES	(Ib/size) 2=1483/0-3-8, 11=1483/0-3-8 Max Horiz 2=265 (LC 11) Max Uplift 2=-229 (LC 12), 11=-229 (LC 13) (Ib) - Maximum Compression/Maximum Tension 1-2=0/5, 2-4=-2173/311, 4-6=-1552/304, 6-7=-1215/294, 7-9=-1552/304, 9-11=-2172/311, 11-12=0/5 2-17=-311/1745, 16-17=-311/1745,
FORCES	(Ib/size) 2=1483/0-3-8, 11=1483/0-3-8 Max Horiz 2=265 (LC 11) Max Uplift 2=-229 (LC 12), 11=-229 (LC 13) (Ib) - Maximum Compression/Maximum Tension 1-2=0/5, 2-4=-2173/311, 4-6=-1552/304, 9-11=-2172/311, 11-12=0/5 2-17=-311/1745, 16-17=-311/1745, 14-16=-60/1215, 13-14=-133/1745,

NOTES


1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 15-6-0, Exterior(2E) 15-6-0 to 16-1-0, Exterior(2R) 16-1-0 to 23-1-14, Interior (1) 23-1-14 to 32-5-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. 3)

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- One H2.5T Simpson Strong-Tie connectors 5) recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 11. This connection is for uplift only and does not consider lateral forces.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

	Max Grav	10=147 (LC 26), 11=176 (LC 20), 12=202 (LC 20), 13=174 (LC 22), 14=201 (LC 19), 15=183 (LC 19), 16=151 (LC 20)	9)	chord live load nonconcurrent Provide mechanical connectio bearing plate capable of withs 16, 30 lb uplift at joint 10, 78 ll
FORCES	(lb) - Max Tension	imum Compression/Maximum		uplift at joint 15, 79 lb uplift at joint 11.
TOP CHORD	3-4=-61/1	2/119, 1-2=0/40, 2-3=-85/81, 15, 4-5=-109/212, 5-6=-109/213, 13, 7-8=-61/61, 8-9=0/40, 2/121	,	This truss is designed in acco International Residential Code R802.10.2 and referenced sta
BOT CHORD		6/88, 14-15=-66/88, 13-14=-66/88, 6/88, 11-12=-66/88, 10-11=-66/88	LO	AD CASE(S) Standard
WEBS		9/16, 4-14=-163/177, 4/162, 6-12=-163/177, 0/162		
NOTES 1) Unbalanc this desig		oads have been considered for		
WAR	NING - Verify de	sign parameters and READ NOTES ON THIS A		LUDED MITEK REFERENCE PAGE MII
		NUMERIC		

LUMBER

WEBS

OTHERS

BRACING

TOP CHORD

BOT CHORD

REACTIONS (lb/size)

TOP CHORD

BOT CHORD

2x4 SP No.2

2x4 SP No.2

2x4 SP No.2

bracing.

Max Uplift

2x4 SPF No.3

Structural wood sheathing directly applied or

10=145/11-4-0, 11=143/11-4-0,

12=196/11-4-0, 13=171/11-4-0,

14=196/11-4-0, 15=143/11-4-0,

10=-30 (LC 12), 11=-93 (LC 13), 12=-79 (LC 13), 14=-78 (LC 12),

15=-97 (LC 12), 16=-49 (LC 8)

6-0-0 oc purlins, except end verticals.

16=145/11-4-0

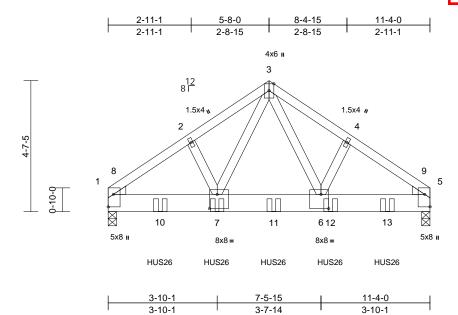
Max Horiz 16=-147 (LC 10)

Rigid ceiling directly applied or 6-0-0 oc

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 4-1-8, Exterior(2N) 4-1-8 to 5-8-0, Corner(3R) 5-8-0 to 10-8-0, Exterior(2N) 10-8-0 to 12-2-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face),

Wind: ASCE 7-16; Vult=115mph (3-second gust)

- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. All plates are 1.5x4 MT20 unless otherwise indicated. 4)
- Gable requires continuous bottom chord bearing. 5)
- Truss to be fully sheathed from one face or securely 6) braced against lateral movement (i.e. diagonal web). Gable studs spaced at 2-0-0 oc. 7)
- 8) This truss has been designed for a 10.0 psf bottom
- nt with any other live loads.
- ion (by others) of truss to standing 49 lb uplift at joint lb uplift at joint 14, 97 lb it joint 12 and 93 lb uplift at
- ordance with the 2018 be sections R502.11.1 and andard ANSI/TPI 1.


MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

III-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not besign valid to less only with with twe commendations. This besign is based only upon parameters and properly incorporate this design into the overall a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2)

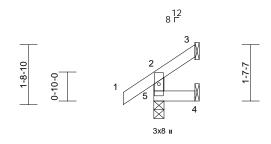
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
P220274-P220274-02	H02	Common Girder	1	2	Job Reference (optional	DEVELOPMENT SERVICES 152120807 LEE'S SUMMIT, MISSOURI

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Non May 33 67 / 02/29 22 ID:mrI2FT2jXLnBVrbNM3oP9HzQQ_M-RfC?PsB70Hq3NSgPqnL8w3uITXbcKWrCDore45027

Scale =	= 1:40.6

Plate Offsets (X, Y): [1:Edge,0-2-3], [5:Edge,0-2-3], [6:0-3-4,0-6-0], [7:0-3-4,0-6-0]

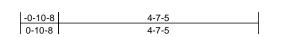
	(x, i). [i:Eugo,o z o],	[0:Edg0;0 E 0]; [0:0	0 1,0 0 0], [1:0 0 1,0 0 (,								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.61	Vert(LL)	-0.04	6-7	>999	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.77	Vert(CT)	-0.07	6-7	>999	180		
BCLL	0.0	Rep Stress Incr	NO		WB	0.59	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0	Code		8/TPI2014	Matrix-S	0.00		0.01	0			Weight: 126 lb	FT – 20%
	10.0	oode	11(0201	0/11/2014	Matrix 0		-					Weight. 120 lb	11 = 2070
LUMBER			4)		7-16; Vult=115m								
TOP CHORD	2x4 SP No.2			Vasd=91mp	n; TCDL=6.0psf;	BCDL=6.0	0psf; h=35ft;						
BOT CHORD	2x8 SPF No.2				t. II; Exp C; Enclo								
WEBS	2x4 SPF No.3				and C-C Exterio								
WEDGE	Left: 2x4 SP No.2				-1-12 to 5-8-0, Ex								
	Right: 2x4 SP No.2			()	0-8-0 to 11-2-4 zo	,		0					
BRACING					d vertical left and								
TOP CHORD	Structural wood she	athing directly applie	d or		d forces & MWFF			ו;					
	5-7-9 oc purlins.				=1.60 plate grip								
BOT CHORD		applied or 10-0-0 oc	5		is been designed								
201 0110112	bracing.				ad nonconcurrent			ads.					
REACTIONS		-3-8, 5=4053/0-3-8	6)		Simpson Strong-T								
REACTIONS	Max Horiz 1=115 (L0				ed to connect trus								
	Max Uplift 1=-604 (L		3)		s) 1 and 5. This o		n is for uplift	only					
FORCES			· .		t consider lateral								
FORCES	(lb) - Maximum Com	pression/iviaximum	7		designed in acco								
	Tension	4504/000			Residential Code			and					
TOP CHORD	,				nd referenced sta								
	3-4=-4622/888, 4-5=		8		n Strong-Tie HUS								
BOT CHORD	,	-390/2741,			uivalent spaced a								
	5-6=-599/3673	440/404			the left end to 9-1	10-0 to co	nnect truss(e	es) to					
WEBS	3-6=-487/2680, 4-6=		0	back face of bottom chord. Fill all nail holes where hanger is in contact with lumber.									
	3-7=-478/2623, 2-7=	-115/480			•	er is in cor	tact with lum	iber.					• 144 m
NOTES				DAD CASE(S)								, unit	
	s to be connected toge	ther with 10d	1)		of Live (balanced): Lumber	Increase=1.	15,				Nº OF /	MISSI
	") nails as follows:			Plate Increa								NKE	
•	ds connected as follows	s: 2x4 - 1 row at 0-9-0	0	Uniform Lo							1	18	
oc.					=-70, 3-5=-70, 1-	5=-20					-	STEV	EN 2
	nords connected as foll	ows: 2x8 - 3 rows			ed Loads (lb)						-		
	at 0-8-0 oc.	4			1381 (B), 10=-13		=-1381 (B),				= *	E. F	<u>^ :*:</u>
	nected as follows: 2x4 -			12=-138	1 (B), 13=-1381 (B)					_	~ 7	
	are considered equally										= -		
	noted as front (F) or ba		AD									NUM	• 41.
	section. Ply to ply conr										-	0: E-23	373
	to distribute only loads nerwise indicated.	noted as (F) or (B),									1	A	
		haan aanaldana 1.f										1. So	
,	ed roof live loads have	been considered for										I,ONI	LEIN
this desig	n.											- 4411	inn
													04 0000

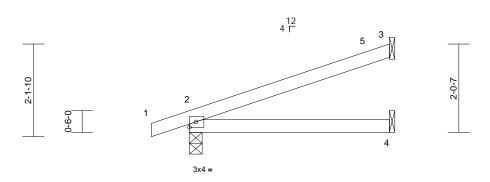

May 24,2022

						RELEASE FOR CONSTRUCTION			
Job	Truss	Truss Type	Qty	Ply	Roof	AS NOTED FOR PLAN REVIEW			
P220274-P220274-02	J01	Jack-Open	1	1	Job Reference (optional	DEVELOPMENT SERVICES 152120808 LEE'S SUMMIT, MISSOURI			
Dramian Duilding Cumply (Casing									

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Non May 13167;102/2022 ID:ntFvBKcLluS3q2pjHm_o4czQQNS-RfC?PsB70Hq3NSgPqnL8w3uITXbGFWrCDoi7942.9?

1-2-3


Scale = 1:33.1					1	I						
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.10 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 6 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 Structural wood she 1-2-3 oc purlins, ex	eathing directly applie ccept end verticals. / applied or 10-0-0 or	Internationa R802.10.2 LOAD CASE(S	s designed in acco al Residential Cod and referenced sta) Standard	e sections	R502.11.1 a	and					
REACTIONS	0	C 12) C 12), 4=-5 (LC 12), 8	5=-17									
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Cor Tension 2-5=-134/122, 1-2=	npression/Maximum 0/40, 2-3=-35/23										
NOTES 1) Wind: ASC Vasd=91m Ke=1.00; (exterior zo and right e exposed;C reactions s	CE 7-16; Vult=115mpl nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclos one and C-C Exterior(exposed ; end vertical >-C for members and shown; Lumber DOL=	CDL=6.0psf; h=35ft; ed; MWFRS (envelop 2E) zone; cantilever I left and right forces & MWFRS for	eft							11.	THE OF	MISSOL
chord live) has been designed fo load nonconcurrent w irder(s) for truss to tru	ith any other live load	ds.							E*	STE E.F	OX *
 Provide m bearing pla 	echanical connection ate capable of withsta uplift at joint 3.	(by others) of truss to								Part		8873
5) One H2.57 recommen UPLIFT at	T Simpson Strong-Tie nded to connect truss i jt(s) 5. This connection consider lateral forces	to bearing walls due on is for uplift only an								11.	NSS/ON Ma	ALENGIII y 24,2022


V MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 152120809
P220274-P220274-02	J02	Jack-Open	1	1	Job Reference (optional	
Bromior Building Supply (Spring)	hill KS) Spring Hills KS 66082	Bup: 8 52 S. Apr 27 2	022 Drint: 9	520 S Apr 27	2022 MiTek Industrias, Inc. N	

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Non May 33 67:102/269:22 ID:8r3oE1gTZR4Mwpih4JaznfzQQNN-RfC?PsB70Hq3NSgPqnL8w3uITXbGtWrCDoi 04236 ft

4-7-5

475

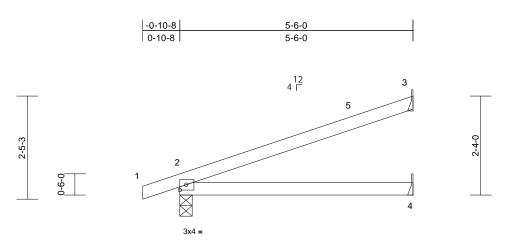
Scale = 1.20.0												
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.40	Vert(LL)	-0.02	2-4	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.24	Vert(CT)	-0.05	2-4	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 16 lb	FT = 20%
TOP CHORD BOT CHORD BRACING		International Residential Code sections R502.11.1 and International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S)										
TOP CHORD	Structural wood she	athing directly applie	•									
	4-7-5 oc purlins.											
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	C									
REACTIONS	(lb/size) 2=278/0-3	3-8, 3=146/ Mechani	cal,									

REACTIONS	(lb/size)	2=278/0-3-8, 3=146/ Mechanical, 4=44/ Mechanical
	Max Horiz	2=80 (LC 8)
	Max Uplift	2=-81 (LC 8), 3=-81 (LC 12)
	Max Grav	2=278 (LC 1), 3=146 (LC 1), 4=88 (LC 3)
FORCES	(lb) - Max Tension	imum Compression/Maximum

TOP CHORD 1-2=0/6, 2-3=-90/42 BOT CHORD 2-4=0/0

Scale - 1.26.6

NOTES


- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, Interior (1) 4-1-8 to 4-6-9 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) Refer to girder(s) for truss to truss connections.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 81 lb uplift at joint 3.
- One H2.5T Simpson Strong-Tie connectors 5) recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

						RELEASE FOR CONSTRUCTION	
Job	Truss	Truss Type	Qty	Ply	Roof	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 152120810	
P220274-P220274-02	J03	Jack-Open	3	1	Job Reference (optional		
Breezies Building Currenty (Cariag							

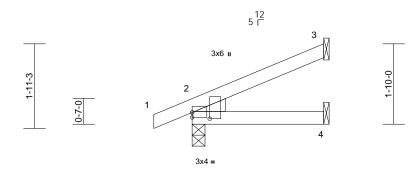
Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 33 67:102/2022 ID:YQkxs3iMsMSwnGQFIS7gOIzQQNK-RfC?PsB70Hq3NSgPqnL8w3uITXbsKWrCDbrJ92/2022

Scale = 1:27.2	

1	5-6-0	l
		l

00010 = 1.21.2												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.60	Vert(LL)	-0.05	2-4	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.35	Vert(CT)	-0.09	2-4	>675	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 18 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD			Internation	is designed in acco al Residential Cod and referenced sta	e sections	R502.11.1 a	and					
BRACING	2X4 3F NU.2		LOAD CASE(0/////						
OP CHORD	Structural wood she	athing directly appli	•	Stanuaru								
	5-6-0 oc purlins.	auning unecuy appli										
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	с									
REACTIONS	(lb/size) 2=316/0-3 4=53/ Me	3-8, 3=178/ Mechan chanical	ical,									
	Max Horiz 2=93 (LC											
	Max Uplift 2=-87 (LC											
	Max Grav 2=316 (LC (LC 3)	C 1), 3=178 (LC 1),	4=106									
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=0/6, 2-3=-102/5	0										
BOT CHORD	,	-										
NOTES												
	CE 7-16; Vult=115mph	(3-second aust)										
Vasd=91m	nph; TCDL=6.0psf; BC	DL=6.0psf; h=35ft;										
	Cat. II; Exp C; Enclose		pe)									
	one and C-C Exterior(2		.1.4									
	4-1-8 to 5-5-4 zone; c end vertical left and rig											1117
	and forces & MWFRS										Nº OF	MISSI
	OL=1.60 plate grip DO		9								NXE	0.1
	has been designed for									-	×	
chord live	load nonconcurrent wi	ith any other live loa	ds.								STE'	VEN
	irder(s) for truss to trus									= .	: E.F	OX
	echanical connection (- 7		7 10 2 =
	ate capable of withstar	nding 98 lb uplift at j	oint							=		
3. 5) Ono H2 57	T Simpson Strong-Tie	connectors								= 7	NUM	BER :
	i Simpson Strong-Tie ided to connect truss t		to								C E-23	873
	it(s) 2. This connectio									-	A	
	consider lateral forces.										1, 50,	
											IN ON	ALENN
											1111	inn,
											Ma	v 24 2022

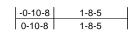
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

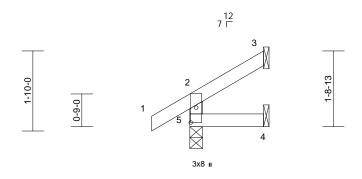

May 24,2022

						RELEASE FOR CONSTRUCTION		
Job	Truss	Truss Type	Qty	Plv	Roof	AS NOTED FOR PLAN REVIEW		
	11400		Guy	,	1001	DEVELOPMENT SERVICES 152120811		
P220274-P220274-02	J04	Jack-Open	5	1	Job Reference (optional			

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Non May 3367/02/29:22 ID:z?Q4U5IE9HqVek9qQahN0wzQQNH-RfC?PsB70Hq3NSgPqnL8w3uITXb KWrCD9152;?

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017




	3-0-0	
Scale = 1:26.3		
Plate Offsets (X, Y): [2:Edge,0-1-6], [2:0-1-11,0-4-13]		

L oading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.16 0.09 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 2-4 2-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%
	3-0-0 oc purlins. Rigid ceiling directly bracing. (lb/size) 2=210/0- 4=28/ Me Max Horiz 2=69 (LC Max Uplift 2=-40 (LL Max Grav 2=210 (L	C 12), 3=-57 (LC 12)	Internationa R802.10.2 i LOAD CASE(S ad or al,	s designed in accc al Residential Cod and referenced st) Standard	le sections	R502.11.1 a	and					
 Vasd=91m Ke=1.00; C exterior zou and right e: exposed;C reactions s DOL=1.60 2) This truss I chord live I 3) Refer to gir 4) Provide me bearing pla 3. 5) One H2.5T recommen- UPLIFT at 	Tension 1-2=0/6, 2-3=-68/3; 2-4=0/0 EF 7-16; Vult=115mpl ph; TCDL=6.0psf; BC Cat. II; Exp C; Encloss ne and C-C Exterior(xposed ; end vertical -C for members and shown; Lumber DOL=	h (3-second gust) CDL=6.0psf; h=35ft; ed; MWFRS (envelop 2E) zone; cantilever l left and right forces & MWFRS for e1.60 plate grip or a 10.0 psf bottom ith any other live loa uss connections. (by others) of truss t anding 57 lb uplift at junce connectors to bearing walls due on is for uplift only ar	eft ds. o bint to								E-23	DX BER 873

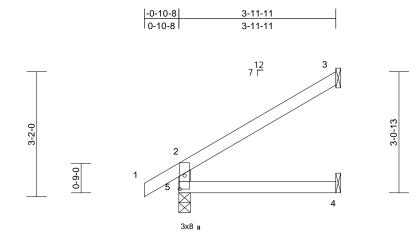
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof	AS NOTED FOR PLAN REVIEW
P220274-P220274-02	J05	Jack-Open		1		DEVELOPMENT SERVICES 152120812
	005		4	'	Job Reference (optional	

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Non May 33 67 02/29 210:09nLl8p?k7bfMfc_nronGBzQQNB-RfC?PsB70Hq3NSgPqnL8w3uITXbGK VrCDoi794361 02/29

1	1-8-5	

4.00 4

X, Y): [5:0-4-2,0-1-8]											
(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB Matrix B	0.08 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190 FT = 20%
10.0	Code	IRC2018/1P12014	Matrix-R	_	-	-				weight: 8 lb	F1 = 20%
2x4 SP No.2 2x4 SP No.2 2x4 SP No.2		Ínternationa R802.10.2 a	I Residential Cod and referenced sta	le sections	R502.11.1 a	Ind					
Structural wood she	athing directly applie	ed or									
1-8-5 oc purlins, ex	cept end verticals.										
Rigid ceiling directly bracing.	applied or 10-0-0 oc										
Mechanic Max Horiz 5=53 (LC Max Uplift 3=-33 (LC	al, 5=164/0-3-8 12) 2 12), 5=-23 (LC 12)	-164									
	pression/Maximum										
)/36, 2-3=-39/25										
ph; TCDL=6.0psf; BC cat. II; Exp C; Enclose ne and C-C Exterior(2 xposed ; end vertical -C for members and f hown; Lumber DOL= has been designed fo oad nonconcurrent wi der(s) for truss to tru echanical connection	DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever li left and right orces & MWFRS for 1.60 plate grip r a 10.0 psf bottom th any other live load ss connections. (by others) of truss to	eft ds.									MISSOUR
	(psf) 25.0 10.0 0.0 10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 1-8-5 oc purlins, ex Rigid ceiling directly bracing. (b/size) 3=35/ Me Mechanic Max Horiz 5=53 (LC Max Grav 3=41 (LC (LC 1) (lb) - Maximum Conr Tension 2-5=-144/113, 1-2=(4-5=0/0 E 7-16; Vult=115mph ph; TCDL=6.0psf; BC at. II; Exp C; Enclose the and C-C Exterior(2 qosed ; end vertical C for members and f hown; Lumber DOL= the bas been designed for bad nonconcurrent wid der(s) for truss to tru- chanical connection	(psf) Spacing 25.0 Plate Grip DOL 10.0 Lumber DOL 0.0 Rep Stress Incr 10.0 Code 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood sheathing directly applied 1-8-5 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. (lb/size) 3=35/ Mechanical, 4=10/ Mechanical, 5=164/0-3-8 Max Horiz 5=53 (LC 12) Max Grav 3=41 (LC 19), 4=27 (LC 3), 5= (LC 1) (lb) - Maximum Compression/Maximum Tension 2-5=-144/113, 1-2=0/36, 2-3=-39/25 2-5=-144/113, 1-2=0/36, 2-3=-39/25 4-5=0/0 E 7-16; Vult=115mph (3-second gust) ph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; iat. II; Exp C; Enclosed; MWFRS (envelope end C-C Exterior(2E) zone; cantilever I qoosed ; end vertical left and right C-C for members and forces & MWFRS for hown; Lumber DOL=1.60 plate grip mas been designed for a 10.0 psf bottom boad nonconcurrent with any other live load der(s) for truss to truss connections. Ichanical connection (by others) of truss to truss connection	(psf) Spacing 2-0-0 25.0 Plate Grip DOL 1.15 10.0 Lumber DOL 1.15 0.0 Rep Stress Incr YES 10.0 Code IRC2018/TPI2014 6) This truss is International 2x4 SP No.2 R802.10.2 a 2x4 SP No.2 R802.10.2 a 2x4 SP No.2 LOAD CASE(S) Structural wood sheathing directly applied or 1-8-5 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. (lb/size) 3=35/ Mechanical, 4=10/ Mechanical, 5=164/0-3-8 Max Horiz 5=53 (LC 12) Max Grav 3=41 (LC 19), 4=27 (LC 3), 5=164 (LC 1) (lb) - Maximum Compression/Maximum Tension 2-5=-144/113, 1-2=0/36, 2-3=-39/25 4-5=0/0 E 7-16; Vult=115mph (3-second gust) ph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; iat. II; Exp C; Enclosed; MWFRS (envelope) ne and C-C Exterior(2E) zone; cantilever left oposed ; end vertical left and right -C for members and forces & MWFRS for hown; Lumber DOL=1.60 plate grip nas been designed for a 10.0 psf bottom pad nonconcurrent with any other live loads.	(psf) Spacing 2-0-0 CSI 10.0 Plate Grip DOL 1.15 TC 10.0 Lumber DOL 1.15 BC wB Matrix-R 6) This truss is designed in accollator 2x4 SP No.2 Code IRC2018/TPI2014 Matrix-R 6) This truss is designed in accollator International Residential Coollator R802.10.2 and referenced st 2x4 SP No.2 LOAD CASE(S) Standard Structural wood sheathing directly applied or 1-8-5 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. (lb/size) 3=35/ Mechanical, 4=10/ Mechanical, 5=164/0-3-8 LOAD CASE(S) Standard Max Horiz 5=53 (LC 12) Max Grav 3=41 (LC 19), 4=27 (LC 3), 5=164 (LC 1) Max Grav 3=41 (LC 19), 4=27 (LC 3), 5=164 (LC 1) Itemation (lb) - Maximum Compression/Maximum Tension 2-5=-144/113, 1-2=0/36, 2-3=-39/25 4-5=0/0 E 7-16; Vult=115mph (3-second gust) ph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; iat II; Exp C; Enclosed; MWFRS (or hown; Lumber DOL=1.60 plate grip Nas been designed for a 10.0 psf bottom has been designed for a 10.0 psf bottom and forces & MWFRS for hown; Lumber DOL=1.60 plate grip has been designed for a 10	(psf) 25.0 Plate Grip DOL 1.15 Lumber DOL 0.0 0.0 1.00Spacing Code2-0-0 TC TC CO.08 BC 0.04 WB WB 0.00 Matrix-R2x4 SP No.2 2x4 SP No.2 2x4 SP No.26)This truss is designed in accordance wi International Residential Code sections R802.10.2 and referenced standard AN LOAD CASE(S)Structural wood sheathing directly applied or 1-8-5 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.6)(b/size)3=35/ Mechanical, 4=10/ Mechanical, 5=164/0-3-8 (LC 12)CL 12)Max Upilit3=-33 (LC 12), 5=-23 (LC 12) Wax Grav 2-5=-144/113, 1-2=0/36, 2-3=-39/25 4-5=0/0StandardE 7-16; Vult=115mph (3-second gust) ph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; at II; Exp C; Enclosed; MWFRS (envelope) he and C-C Exterior(2E) zone; cantilever left coposed ; end vertical left and right C for members and forces & MWFRS for hown; Lumber DOL=1.60 plate gripwas been designed for a 10.0 psf bottom bad nonconcurrent with any other live loads. der(s) for truss to truss connection. schanical connection (by others) of truss to truss to truss to t	(pst) Spacing 2-0-0 CSI DEFL 25.0 11.15 TC 0.08 Vert(LL) 0.0 0.0 Rep Stress Incr YES WB 0.00 10.0 Code IRC2018/TPI2014 WB 0.00 Matrix-R 2x4 SP No.2 Code IRC2018/TPI2014 WB 0.00 Matrix-R 2x4 SP No.2 Structural wood sheathing directly applied or 1-8-5 oc purlins, except end verticals. R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Standard Standard Structural wood sheathing directly applied or 10-0-0 oc bracing. Intermational Residential Code sections R502.11.1 a R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Standard Structural wood sheathing directly applied or 10-0-0 oc bracing. Intermational Residential Code sections R502.11.1 a R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Standard Standard Structural wood sheathing directly applied or 10-0-0 oc bracing. Intermational Residential Code sections R502.11.1 a R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Standard Standard Structural wood sh	(psi) Spacing 2-0-0 CSI DEFL in (25.0) Plate Grip DOL 1.15 TC 0.08 BC 0.04 Vert(LT) 0.00 0.0 0.0 Rep Stress Incr YES BC 0.04 Wort(CT) 0.00 10.0 Code IRC2018/TPI2014 Marix-R DEFL in 2x4 SP No.2 Code IRC2018/TPI2014 Warix-R DefL international Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 2x4 SP No.2 Extractural wood sheathing directly applied or 1-8-5 oc puttins, except end verticals. R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Structural wood sheathing directly applied or 1-8-5 oc puttins, except end verticals. R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Structural wood sheathing directly applied or 1-8-5 oc puttins, except end verticals. R10/2000 and and and ANSI/TPI 1. LOAD CASE(S) Standard Mark Horiz 5=53 (LC 12) Max Grav 3=41 (LC 19, 4=27 (LC 3), 5=164 (LC 1) (LC 1) (lb) - Maximum Compression/Maximum Te	(pst) Spacing 2-0-0 CSI DEFL in (loc) 10.0 0.0 0.0 1.15 TC 0.08 Vert(LL) 0.00 4-5 2x4 SP No.2 Code IRC2018/TPI2014 WB 0.00 Matrix-R Horz(CT) 0.00 4-5 2x4 SP No.2 Code IRC2018/TPI2014 Matrix-R 0.00 Horz(CT) 0.00 3 2x4 SP No.2 Code IRC2018/TPI2014 Matrix-R 0.00 Horz(CT) 0.00 3 2x4 SP No.2 Code IRC2018/TPI2014 Matrix-R 0.00 Horz(CT) 0.00 3 Structural wood sheathing directly applied or 1.8-5 oc putlins, except end verticals. Rigid ceiling directly applied or 1.8-5 oc putlins, except end verticals. Standard Rigid ceiling directly applied or 10-0-0 oc bracing. 1.935/ Mechanical, 4=10/ Mechanical, 5=164/0-3-8 Matrix Matrix Matrix 2.5-5-14(LC 19), 4=27 (LC 3), 5=164 (LC 1) 1.620/0-38 Matrix 2.5-5-14(L113, 1-2=0/36, 2-3=-39/25 -5-5-16/0-20; BCL=6.0pst; h=35ft; at II; Exp C; Enclosed;	(ps) Spacing 2-0-0 CSI DEFL in (loc) i/deft 10.0 Plate Grip DOL 1.15 TC 0.08 Vert(L) 0.00 4-5 >999 10.0 Rep Stress Incr YES BC 0.04 Vert(CT) 0.00 4-5 >999 2x4 SP No.2 Code IRC2018/TPI2014 WB 0.00 Matrix-R Matrix-R 0.00 A-5 >999 4x4 SP No.2 Code IRC2018/TPI2014 WB 0.00 Matrix-R Matrix-R 0.00 A-5 >999 2x4 SP No.2 Code IRC2018/TPI2014 WB 0.00 A-5 >999 Horz(CT) 0.00 3 n/a 2x4 SP No.2 Code IRC2018/TPI2014 WB 0.00 A-5 >999 Horz(CT) 0.00 3 n/a Structural wood sheathing directly applied or 1 A-5 acparition Rep Circlast Area (CI 2) Notacina, A=10/ MacParition MacParia (CI 2), A=27 (LC 3), 5=164 (LC 1	(psf) Spacing 2-0-0 CSI DEFL in (loc) l/defl L/defl 0.0 Rep Stress Incr YES BC 0.04 Vert(L1) 0.00 4-5 >999 240 0.0 Code IRC2018/TPI2014 BC 0.04 Horz(CT) 0.00 4-5 >999 240 2x4 SP No.2 Code IRC2018/TPI2014 Matrix-R Horz(CT) 0.00 3 n/a n/a 2x4 SP No.2 Code IRC2018/TPI2014 Matrix-R Horz(CT) 0.00 3 n/a n/a 2x4 SP No.2 Loba CASE(S) Standard Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Structural wood sheathing directly applied or 10-0-0 c bracing. International factoread standard ANSI/TPI 1. LOAD CASE(S) Standard (Ib/Size) 3-35/. Mechanical, 4=10/ Mac Grav 3=11 (LC 19), 4=27 (LC 3), 5=164 (LC 1) (Mac Grav 3=11 (LC 19), 4=27 (LC 3), 5=164 (LC 1) (B) - Maximum Compression/Maximum Teension 2-5=-144/113, 1-2=0/36, 2-3	(pst) Spacing 2-0-0 CSI DEFL in (loc) l/deft L/d 10.0 10.0 Rep Stress Incr YES Vert(LL) 0.00 4-5 >999 240 0.0 Rep Stress Incr YES WB 0.00 Vert(CT) 0.00 4-5 >999 100 2x4 SP No.2 Code IRC2018/TPI2014 Matrix-R PLATES Weight: 8 lb 2x4 SP No.2 10.0 This trues is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/TP11. LOAD CASE(S) Standard 2x4 SP No.2 LOAD CASE(S) Standard Standard Standard Structural wood sheathing directly applied or 10-0-0 oc bracing. Figid celling directly applied or 10-0-0 oc bracing. Figid celling directly applied or 10-0-0 oc bracing. 10(b):Associte of the associte of the associal transitional transitreformatreforenced standard transitional transitionalt


One H2.5T Simpson Strong-Tie connectors 5) recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and does not consider lateral forces.

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof	
P220274-P220274-02	J06	Jack-Open	3	1	Job Reference (optional	DEVELOPMENT SERVICES 152120813 LEE'S SUMMIT, MISSOURI
		Due 0.50.0 Aug 074		500 0 4		

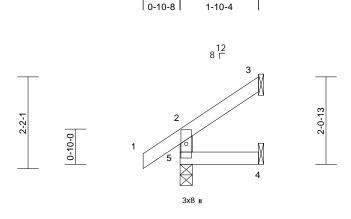
Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Non May 33 67 102/2022 ID:4Vi_DXv05GTfikeKhpQQ2g2QQN4-RfC?PsB70Hq3NSgPqnL8w3ulTXbC WrCDord 4.007 102/2022

3-11-11	

Scale = 1:29.2 Plate Offsets (X, Y): [5:0-4-2,0-1-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.24 0.17 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 -0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she 3-11-11 oc purlins, Rigid ceiling directly bracing. (lb/size) 3=115/ M	eathing directly applie except end verticals applied or 10-0-0 or lechanical, 4=44/ al, 5=251/0-3-8 C 12) C 12), 5=-24 (LC 12)	6) This truss Internatio R802.10.2 LOAD CASE(ed or	is designed in acc nal Residential Co 2 and referenced s S) Standard	de sections	s R502.11.1 a	Ind					
 Vasd=91mj Ke=1.00; C exterior zor and right exeposed;C- reactions sl DOL=1.60 This truss F chord live ld Refer to gir Provide me bearing pla 3. One H2.5T recommend UPLIFT at j 	(Ib) - Maximum Con Tension 2-5=-220/131, 1-2=(4-5=0/0 E 7-16; Vult=115mph ph; TCDL=6.0psf; BC at. II; Exp C; Enclose he and C-C Exterior(2 xposed ; end vertical C for members and f hown; Lumber DOL= has been designed fo oad nonconcurrent w der(s) for truss to tru- cchanical connection te capable of withsta Simpson Strong-Tie ded to connect truss to f(s) 5. This connection nosider lateral forces.	 D/36, 2-3=-88/51 D/36, 2-3=-88/51 DL=6.0psf; h=35ft; d; MWFRS (envelop 2E) zone; cantilever left and right orcres & MWFRS for 1.60 plate grip r a 10.0 psf bottom ith any other live loa iss connections. (by others) of truss t nding 80 lb uplift at juconnectors to bearing walls due 	left ds. o pint to							A BUILT		OX BER 873 ALENG

16023 Swingley Ridge Rd Chesterfield, MO 63017


						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
P220274-P220274-02	J07	Jack-Open	3	1	Job Reference (optional	DEVELOPMENT SERVICES 152120814 LEE'S SUMMIT, MISSOURI
Deamias Buildina Suanky (Serias)						

1-10-4

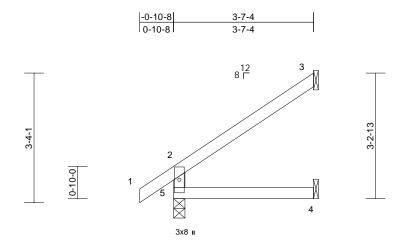
-0-10-8

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Non May 33 67 02/2022 ID:KEIO6c01z1cNH6r3jC4XvZzQQMx-RfC?PsB70Hq3NSgPqnL8w3uITXbGtWrCDoi 042304

1-10-4

Scale = 1:27.3												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.10 0.07 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood sh 1-10-4 oc purlins, Rigid ceiling direct bracing. (lb/size) 3=42/ M Mechan Max Horiz 5=66 (Lt Max Uplift 3=-42 (L	eathing directly applie except end verticals. y applied or 10-0-0 o echanical, 4=13/ ical, 5=169/0-3-8	6) This truss Internation R802.10.2 LOAD CASE(ed or	is designed in acc al Residential Co and referenced s	de sections	R502.11.1 a	Ind					
FORCES TOP CHORD BOT CHORD	(LC 1)	C 19), 4=31 (LC 3), 5 mpression/Maximum =0/40, 2-3=-50/32	=169									
NOTES 1) Wind: ASC Vasd=91m Ke=1.00; (exterior 20 and right e exposed;(reactions s DOL=1.60 2) This truss chord live 3) Refer to gi 4) Provide m bearing pla and 42 lb (5) One H2.51 recommen UPLIFT at	CE 7-16; Vult=115mp nph; TCDL=6.0psf; B Cat. II; Exp C; Enclos one and C-C Exterior exposed ; end vertica C-C for members and shown; Lumber DOL has been designed f load nonconcurrent t irder(s) for truss to tr echanical connectior ate capable of withst uplift at joint 3. T Simpson Strong-Tii ided to connect truss	CDL=6.0psf; h=35ft; ed; MWFRS (envelop (2E) zone; cantilever I left and right forces & MWFRS for =1.60 plate grip or a 10.0 psf bottom with any other live loa uss connections. I (by others) of truss t anding 3 lb uplift at jo e connectors to bearing walls due ion is for uplift only ar	left ds. o int 4							111 * Philit	STE SOF E-20 OF SS/ON	OX *



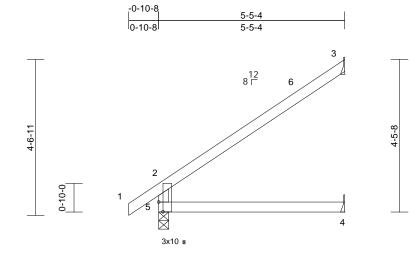
MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

						RELEASE FOR CONSTRUCTION				
Job	Truss	Truss Type	Qty	Ply	Roof	AS NOTED FOR PLAN REVIEW				
				Ĺ		DEVELOPMENT SERVICES 152120815				
P220274-P220274-02	J08	Jack-Open	3		Job Reference (optional	LEE'S SUMMIT, MISSOURI				

Scale = 1:29.7

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Non May 33 67:102/2022 ID:C?_vy_3Y1G6pmk8gy19T4PzQQMt-RfC?PsB70Hq3NSgPqnL8w3uITXbd KWrCDord 45077

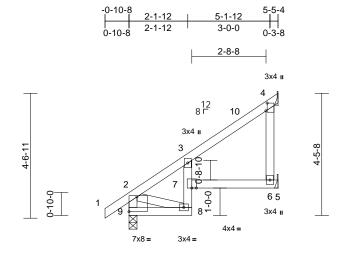
3-7-4	
. 1	

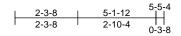

Scale = 1:29.7												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.20 0.20 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.01 -0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 Structural wood she 3-7-4 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 or	Internationa R802.10.2 ; LOAD CASE(S	s designed in acco Il Residential Code and referenced sta) Standard	e sections	s R502.11.1 a	and					
		C 12), 5=-11 (LC 12)										
FORCES TOP CHORD BOT CHORD	,											
Vasd=91n Ke=1.00; (exterior zc and right e exposed;(reactions s DOL=1.60		DL=6.0psf; h=35ft; ad; MWFRS (envelop 2E) zone; cantilever l left and right 'orces & MWFRS for 1.60 plate grip	left							11.	THE OF	MISSOU
chord live3) Refer to gi4) Provide mbearing plate	has been designed fo load nonconcurrent w jirder(s) for truss to tru- nechanical connection late capable of withsta	ith any other live loa iss connections. (by others) of truss t	0							int P	S	OX *
recommer UPLIFT at	T Simpson Strong-Tie nded to connect truss i t jt(s) 5. This connectio consider lateral forces.	to bearing walls due									E-23	• 41.

May 24,2022

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof	AS NOTED FOR PLAN REVIEW
P220274-P220274-02	J09	Jack-Open	19	1	Job Reference (optional	DEVELOPMENT SERVICES 152120816 LEE'S SUMMIT, MISSOURI

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Non May 33, 67, 02/29:22 ID:Zyoo?h7hrok6sV1okblenTzQQMo-RfC?PsB70Hq3NSgPqnL8w3uITXbGK VrCDoi792.01


	ł	5-5-4	1	4	
Scale = 1:33.7	Ι				
Plate Offsets (X, Y): [5:0-3-7,0-1-8]					


		_		_								
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.51	Vert(LL)	0.06	4-5	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.41	Vert(CT)	-0.08	4-5	>791	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.04	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 20 lb	FT = 20%
LUMBER			This truss i	s designed in acco	ordance w	ith the 2018						
TOP CHORD	2x4 SP No.2			al Residential Cod			and					
BOT CHORD	2x4 SP No.2		R802.10.2	and referenced st	andard AN	ISI/TPI 1.						
WEBS	2x4 SP No.2		LOAD CASE(S	 Standard 								
BRACING												
TOP CHORD		eathing directly appli xcept end verticals.	ied or									
BOT CHORD		v applied or 10-0-0 c										
BOT CHORD	bracing.											
REACTIONS		Mechanical, 4=65/										
	Mechan Max Horiz 5=168 (I	ical, 5=314/0-3-8										
	Max Uplift 3=-122 (,	2)									
	Max Grav 3=176 (I											
	5=314 (I		· ·									
FORCES	(lb) - Maximum Co Tension	mpression/Maximum	1									
TOP CHORD	2-5=-275/147, 1-2=	=0/40, 2-3=-137/81										
BOT CHORD	4-5=0/0											
NOTES												
	CE 7-16; Vult=115mp											
	nph; TCDL=6.0psf; B Cat. II; Exp C; Enclos		(no)									n.,
	one and C-C Exterior										NUME I	Miller.
) 4-1-8 to 5-4-8 zone;										NEOF	NISS .
	end vertical left and									-		
	and forces & MWFR		ו;								à ···	·
	OL=1.60 plate grip D									2	STE	
	has been designed f									= *		OX +=
	load nonconcurrent v irder(s) for truss to tru		ads.							-		-11 =
	echanical connection		to							-7	: AG	
	ate capable of withsta									- 7	E-23	• 41
joint 3.		5 - <u>5</u> -pinta									E-23	
	T Simpson Strong-Tie									1	£	GIN
	nded to connect truss										1,S/ON	AL ENIN
	t jt(s) 5. This connect		nd									iiiiii ii
does not d	consider lateral forces	š.										y 24,2022
											ivia	y 27,2022

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof	AS NOTED FOR PLAN REVIEW
			,	,		DEVELOPMENT SERVICES I52120817
P220274-P220274-02	J10	Jack-Open	1	1	Job Reference (optional	
						00/00/0000

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Non May 33 67 10 2/2 9:22 ID:KVHpgQDizGlzqjeKCGuX59zQQMg-RfC?PsB70Hq3NSgPqnL8w3uITXbd KWrCDord 2007

Scale = 1:42.1

	(), [= = ;= =];	[5-,]	-										-
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.36 0.33 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.07 -0.08 0.04	(loc) 6-7 6-7 6	l/defl >857 >759 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 27 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 *Excep 2x4 SPF No.3 *Excep Structural wood she 5-5-4 oc purlins, ex Rigid ceiling directly bracing. (Ib/size) 4=143/ M. 	pt* 9-2:2x4 SP No.2 athing directly applie cept end verticals. applied or 10-0-0 oc echanical, 6=81/ al, 9=304/0-3-8 2 12) 12), 6=-12 (LC 12), 12)	ed or c 7 8	 bearing plate 4 and 12 lb tilde One H2.5T S recommende UPLIFT at jtilde does not cor This truss is International R802.10.2 at Gap betwee 	shanical connection e capable of withs plift at joint 6. Simpson Strong-T ed to connect trus (s) 9. This connect sider lateral forc designed in accc Residential Cod nd referenced sta n inside of top ch vertical web shall Standard	standing 9 Tie connectss to bearing totion is for es. brdance w e sections andard AN hord bearing	18 lb uplift at j ctors ing walls due uplift only at th the 2018 SR502.11.1 at ISI/TPI 1. ing and first	ioint to nd					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	2-9=-291/105, 1-2=0 3-4=-101/76	/40, 2-3=-201/0,											
BOT CHORD	6-7=0/0, 5-6=0/0	, ,											
WEBS	2-8=-30/127, 4-6=0/	0											1117
 NOTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 4-1-8, 											·····*	ATE OF STEN	

exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom 3)

Interior (1) 4-1-8 to 5-1-12 zone; cantilever left and right

chord live load nonconcurrent with any other live loads.

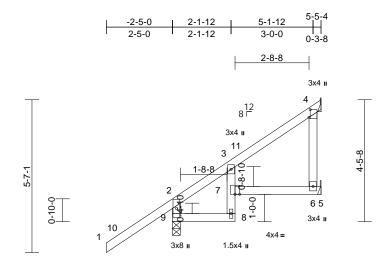
4) Refer to girder(s) for truss to truss connections.

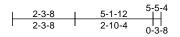
23873

S/ONALE

11 min May 24,2022

O


D inner.


8

S

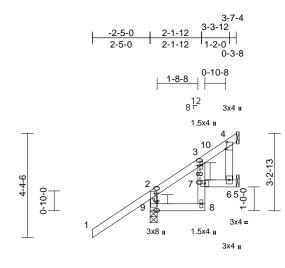
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof	AS NOTED FOR PLAN REVIEW
P220274-P220274-02	J11	Jack-Open	1	1	Job Reference (optional	DEVELOPMENT SERVICES I52120818 LEE'S SUMMIT, MISSOURI
						00/00/0000

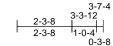
Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 3767/102/29:22 ID:drCS8pI5JPdz9ogg7EWAtdzQQMZ-RfC?PsB70Hq3NSgPqnL8w3uITXb6 WrCDore459241

Scale = 1:42.2

Plate Offsets (X, Y): [4:0-3-7,0-0-8]

Fiale Olisela	s (X, T). [4.0-3-7,0-0-8]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.60 0.27 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.05 -0.07 0.04	(loc) 6-7 6-7 6	l/defl >999 >871 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 28 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORI BOT CHORI WEBS BRACING TOP CHORI BOT CHORI REACTIONS	 D 2x4 SP No.2 *Excep 2x4 SPF No.3 D Structural wood she 5-5-4 oc purlins, ex D Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 7-1 S (lb/size) 4=126/ M. 	athing directly applie cept end verticals. • applied or 10-0-0 or 8. echanical, 6=59/ ral, 9=450/0-3-8 C 12) C 12), 6=-3 (LC 12), 9	6) ed or c 7) 8) 9=-68	bearing plate 4 and 3 lb up One H2.5T S recommende UPLIFT at jtr does not cor This truss is International R802.10.2 a Gap betwee	Simpson Strong-T ed to connect trus (s) 9. This connec isider lateral force designed in acco Residential Code nd referenced sta n inside of top cho vertical web shall	ie conne is to bear sto bear stion is for es. rdance w sections ndard AN ord bearir	to ib uplift at ing walls due r uplift only a ith the 2018 is R502.11.1 a NSI/TPI 1. ing and first	joint e to nd					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORI	D 2-9=-397/245, 1-2=0 3-4=-94/72	0/100, 2-3=-142/0,											
BOT CHORI	D 8-9=-86/133, 7-8=-1 5-6=0/0	3/34, 3-7=-6/72, 6-7	=0/0,										III
WEBS	4-6=0/0											VIL OF	MISSI
 NOTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -2-5-0 to 2-7-0, Interior (1) 2-7-0 to 5-1-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 											Min * Phin		OX *
	girder(s) for truss to trus		us.									1111	inn


4) Refer to girder(s) for truss to truss connections.



May 24,2022

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof	AS NOTED FOR PLAN REVIEW
P220274-P220274-02	J12	Jack-Open	1	1	Job Reference (optional	DEVELOPMENT SERVICES 152120819 LEE'S SUMMIT, MISSOURI
L						

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Non May 33 67:10 2/29 22 ID:OOhUqYO6Rser71HDbwf2CJzQQMR-RfC?PsB70Hq3NSgPqnL8w3uITX GKWrCD97042CH

Scale = 1:48.2

Plate Offsets (X, Y): [4:0-3-7,0-0-8]

	(X, 1): [4:0 8 7,0 8 0]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.63 0.13 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 -0.01	(loc) 7 8 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 21 lb	GRIP 197/144 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 *Excep 2x4 SPF No.3 Structural wood she 3-7-4 oc purlins, ex Rigid ceiling directly bracing. (Ib/size) 4=63/ Me	athing directly applie cept end verticals. applied or 6-0-0 oc chanical, 6=13/ ial, 9=394/0-3-8 C 12) C 12), 6=-3 (LC 12), 9	6) ed or 7) 8) 9=-80	bearing plate 4 and 3 lb up One H2.5T S recommende UPLIFT at jtt does not cor This truss is International R802.10.2 a Gap betweel	Simpson Strong-Ti ed to connect trust s) 9. This connec isider lateral force designed in accor Residential Code and referenced stat n inside of top cho rertical web shall r	tanding 4 ie connet s to bear tion is for s. rdance w sections ndard AN ord bearir	1 b uplift at ctors ing walls due uplift only a th the 2018 STS02.11.1 ISI/TPI 1. ng and first	joint e to nd					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	2-9=-345/280, 1-2=0 3-4=-45/41	0/99, 2-3=-82/9,											
BOT CHORD	8-9=-25/70, 7-8=-10 5-6=0/0	/32, 3-7=-21/39, 6-7	=0/0,										
WEBS	4-6=0/0												111.
NOTES												N'OF	MISSIL
,	ed roof live loads have	been considered for	r									NYE	Sol
Vasd=91n Ke=1.00; (exterior zc Interior (1) exposed ; members Lumber D 3) This truss chord live	n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2) 2-7-0 to 3-3-12 zone; end vertical left and rig and forces & MWFRS OL=1.60 plate grip DC load nonconcurrent wi irder(s) for truss to tru	DL=6.0psf; h=35ft; d; MWFRS (envelop E) -2-5-0 to 2-7-0, cantilever left and ri ght exposed;C-C for for reactions shown VL=1.60 r a 10.0 psf bottom ith any other live load	ight ;								Min * Philip	E-23	OX BER 873

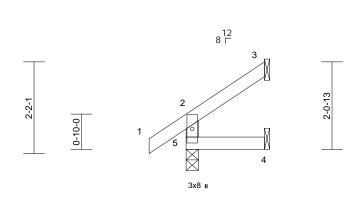
- This truss has been designed for a 10.0 psf b chord live load nonconcurrent with any other live loads.
- 4) Refer to girder(s) for truss to truss connections.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

May 24,2022

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof	AS NOTED FOR PLAN REVIEW
P220274-P220274-02	J13	Jack-Open	1	1	Job Reference (optional	DEVELOPMENT SERVICES 152120820 LEE'S SUMMIT, MISSOURI
Describe Destriction Operation (Operation		Due 0.50.0 Aug 074		500 0 0 0 0		00/00/0000

1-10-4


1-10-4

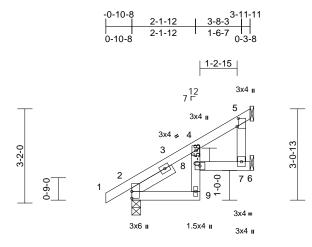
-0-10-8

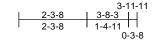
0-10-8

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Non May 33 67 / 02/2022 ID:ZVre8JX0rF1HxjdKkkMd9ezQQMG-RfC?PsB70Hq3NSgPqnL8w3ulTXbG WrCDore4292 ft

Scale = 1:27.3

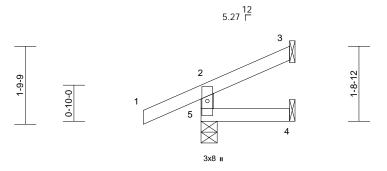

1-10-4


Scale = 1:27.3				1							-	
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.10 0.07 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 8 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD		xcept end verticals.	Internationa R802.10.2 a LOAD CASE(S)	designed in accord I Residential Code s and referenced stand Standard	sections	R502.11.1 a	and					
	(lb/size) 3=42/ Me	2 12), 4=-3 (LC 12), 5										
	(LC 1)	19), 4=31 (LC 3), 5=	=109									
FORCES	(Ib) - Maximum Com Tension 2-5=-148/115, 1-2=0											
BOT CHORD	4-5=0/0											
1) Wind: ASC Vasd=91m Ke=1.00; C exterior zon and right e exposed;C	E 7-16; Vult=115mph ph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose ne and C-C Exterior(2 xposed ; end vertical I c-C for members and f shown; Lumber DOL=	DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever l left and right orces & MWFRS for	eft							111	ALE OF	MISSOL
	has been designed for									5.		OX
	load nonconcurrent wi rder(s) for truss to tru		ds.							- *	\leq	+// =
4) Provide me	echanical connection ((by others) of truss to								= 0		BER
	ate capable of withstar	nding 3 lb uplift at joi	nt 4							-1	E-23	• 41-
5) One H2.5T recommend UPLIFT at	uplift at joint 3. Simpson Strong-Tie ided to connect truss t jt(s) 5. This connectio onsider lateral forces.	o bearing walls due									RSS ON	ALENGINI

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof	AS NOTED FOR PLAN REVIEW
						DEVELOPMENT SERVICES 152120821
P220274-P220274-02	J14	Jack-Open	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
						00/00/0000

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Non May 33 67:102/29:22 ID:K2Kgp2d1yi18vyEsCPVVUKzQQM8-RfC?PsB70Hq3NSgPqnL8w3ulTXb6 KWrCDor 4.547?

Scale = 1:38.7

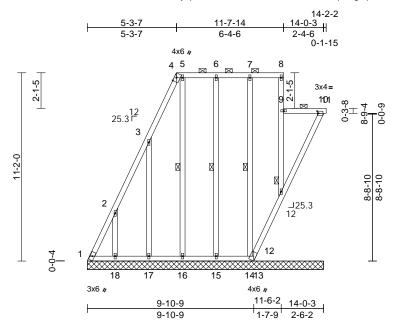

Plate Offsets (X, Y): [2:Edge,0-0-0],	[5:0-3-4,0-0-8]										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.14 0.20 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 0.01	(loc) 8 9 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SPF No.3 Left 2x4 SP No.2 Structural wood she 3-11-11 oc purlins. Rigid ceiling directly bracing. (Ib/size) 2=234/0-3 7=69/ Me Max Horiz 2=116 (LC Max Uplift 2=-22 (LC 7=-15 (LC Max Grav 2=234 (LC	1-7-3 athing directly applie applied or 10-0-0 oc 3-8, 5=96/ Mechanica chanical C 12) 5 (12), 5=-54 (LC 12), 5 (12)	dor HOAD CASE(T Simpson Strong- aded to connect tru- tit(s) 2. This conne- consider lateral forc- is designed in acco- nal Residential Cod 2 and referenced sta een inside of top ch or vertical web shall S) Standard	ss to bear ction is for es. ordance w e sections andard AN ord bearir	ing walls due r uplift only ar ith the 2018 s R502.11.1 a ISI/TPI 1. ng and first	nd					
FORCES	(LC 19) (lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD BOT CHORD	1-2=0/5, 2-4=-164/0 2-9=-63/84, 8-9=0/4 6-7=0/0	,	О,									
WEBS	5-7=0/0											1117.
NOTES											OF	MISSI
Vasd=91m Ke=1.00; C exterior zo and right e exposed;C	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed; end vertical I C-C for members and f shown; Lumber DOL=	DL=6.0psf; h=35ft; d; MWFRS (envelop E) zone; cantilever le left and right orces & MWFRS for	eft							·////* P	S STE	VEN OX BER
chord live	has been designed for load nonconcurrent wi	th any other live load	ds.							111	E-23	• 41-
4) Provide m bearing pla	rder(s) for truss to tru echanical connection (ate capable of withstar o uplift at joint 7.	(by others) of truss to									KSS/ON May	ALENGIII y 24,2022
												

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof	
P220274-P220274-02	J15	Jack-Open		1		DEVELOPMENT SERVICES 152120822
	515		<u> '</u>	<u>'</u>	Job Reference (optional	

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Non May 3367/02/29:22 ID:h?8Zsmh9nEfR?j6q?y4gANzQQM3-RfC?PsB70Hq3NSgPqnL8w3ulTXbG WrCDor/42904

Scale =	1:26.5
---------	--------

2-0-8


Scale = 1:26.5					1		I					
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.20 0.04 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		- (-)					Weight: 9 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 Structural wood she: 2-0-8 oc purlins, exi		Internatic R802.10. LOAD CASE	s is designed in acco nal Residential Code 2 and referenced sta (S) Standard	e sections	s R502.11.1 a	and					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	c									
	()	(LC 12), 5=-49 (LC 12)										
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	2-5=-198/220, 1-2=0)/41, 2-3=-38/20										
BOT CHORD	4-5=0/0											
Vasd=91m Ke=1.00; (exterior zo and right e exposed;C	CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Corner (3) exposed ; end vertical I C-C for members and for shown; Lumber DOL=1	DL=6.0psf; h=35ft; d; MWFRS (envelop) zone; cantilever lef left and right orces & MWFRS for	ft								ATE OF	MISSOU
	has been designed for load nonconcurrent wi		ds							3	STE :	VEN
3) Refer to gi	irder(s) for truss to trus	ss connections.								Ξ *		*=
	echanical connection (ate capable of withstar									P	NUM	BER
5) One H2.5 recommen UPLIFT at	T Simpson Strong-Tie aded to connect truss tr jt(s) 5. This connectio consider lateral forces.	o bearing walls due								1111	E-23	ALENGINI

May 24,2022

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof	AS NOTED FOR PLAN REVIEW
P220274-P220274-02	LG01	Lay-In Gable	1	1	Job Reference (optional	DEVELOPMENT SERVICES 152120823 LEE'S SUMMIT, MISSOURI
Barris Bailling County (Or day)		Due 0.50.0 Aug 0.7		500.0 4		00/00/0000

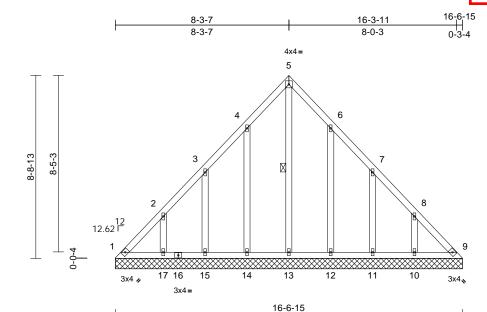
Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Mon May 3367:/02/2022 ID:OwkLyApRQJw0CFtla3G0aUzQQLv-RfC?PsB70Hq3NSgPqnL8w3uITXbqKWrCDgrJsbc?i

Scale = 1:68.4

Plate Offsets (X, Y): [4:0-2-13,Edge], [10:0-0-13,0-1-8]

Loading	(r	osf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		5.0	Plate Grip DOL	1.15		TC	0.22	Vert(LL)	n/a	(100)	n/a	999		244/190
TCDL		0.0	Lumber DOL	1.15		BC	0.06	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0	Rep Stress Incr	YES		WB	0.46	Horz(CT)	-0.02	10	n/a	n/a		
BCDL		0.0	Code		18/TPI2014	Matrix-S							Weight: 116 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SPF No.3 2x4 SPF No.3 Structural woo 5-9-2 oc purlir 2-0-0 oc purlir Except:	od shea	athing directly applie ept end verticals, a -0 max.): 4-8, 9-12,	ed or I nd 9-11.	BOT CHORD WEBS NOTES 1) Unbalanced this design. 2) Wind: ASC	1-18=-87/70, 17-1 15-16=-87/70, 14- 12-13=-93/80, 100 7-14=-144/142, 6: 5-16=-236/307, 3: 2-18=-401/429 d roof live loads ha E 7-16; Vult=115m	-15=-87/7 -12=-319 -15=-146 -17=-450 ve been ph (3-sea	70, 13-14=-87 /263 /142, /484, considered fo	7/70,	Inte R80 13) Gra or th	rnationa 2.10.2 a phical p ne orien om cho	al Resid and ref ourlin re tation o rd.	Ined in accordance dential Code sect ferenced standarce epresentation doe of the purlin along	e with the 2018 ions R502.11.1 and ANSI/TPI 1. is not depict the size
	Rigid ceiling d bracing, Excu 10-0-0 co brac 1 Row at midp (lb/size) 1=4 14= 14= 18= Max Uplift 1= 12= 14= 16= 18= 18= Max Grav 1=9 12=	ept: cing: 12 bt 9/14-0 197/14-0 197/14-0 177/14 172/14 68 (LC 453 (LC -101 (I -39 (LC -201 (I -403 (I 14 (LC 282 (L	7-14, 6-15, 5-16 -3, 10=114/14-0-3, I-0-3, 13=-17/14-0-3 I-0-3, 15=180/14-0- I-0-3, 17=181/14-0- I-0-3 :12) C 10), 10=-293 (LC C 10), 13=-31 (LC C 10), 13=-31 (LC C 10), 15=-54 (LC 8), IC 12), 17=-442 (LC C 12) :12), 10=218 (LC 1) C 21), 13=20 (LC 1) C 21), 13=20 (LC 1)	3, 3, 12), 10), 2 12), 9), 2),	 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) 0-2-12 to 14-2-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Provide adequate drainage to prevent water ponding. All plates are 1.5x4 MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing. Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Provide mechanical connection (by others) of truss to 							in.	ине ок. 5. С. С.	MISSOUT
FORCES TOP CHORD	16= 18= (lb) - Maximun Tension 1-2=-1043/850 4-5=-52/53, 5-	219 (L 318 (L n Com), 2-3= 6=-52/ 12=-14	oression/Maximum -647/531, 3-4=-186/ 53, 6-7=-52/53, I9/167, 8-9=-58/79,	19), (150,	 bearing plate capable of withstanding 101 lb uplift at joint 12 and 293 lb uplift at joint 10. 10) N/A 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 12, 10. 							* 85.11	E.FO NUME E-230	AL AL

May 24,2022



						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 152120824
P220274-P220274-02	LG02	Lay-In Gable	1	1	Job Reference (optional	
						00/00/0000

Scale - 1.55

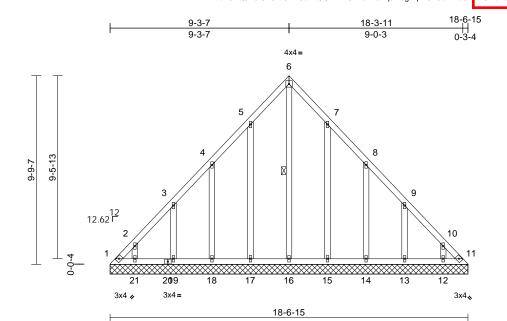
NOTES

Run: 8.53 S Apr 27 2022 Print: 8.530 S Apr 27 2022 MiTek Industries, Inc. Non May 33 67:102/269:22 ID:OCGmX_05QX3ckth0473?n3zQQLe-RfC?PsB70Hq3NSgPqnL8w3ulTXbs KWrCDw1326?

00010 - 1100					-							
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.15	Horiz(TL)	0.01	9	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 96 lb	FT = 20%
			1) Unbalancer	t roof live loads	have been (considered fo)r					

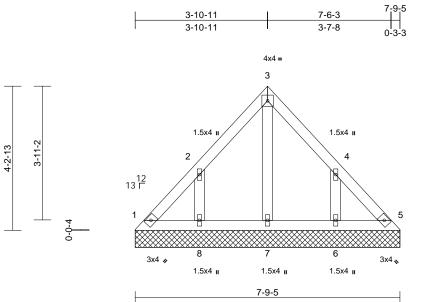
LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SPF	No.3
BRACING		
TOP CHORD	Structure	I wood sheathing directly applied or
TOP CHORD	6-0-0 oc r	0,11
BOT CHORD	Riaid ceil	ing directly applied or 10-0-0 oc
	bracing.	3
WEBS	1 Row at	midpt 5-13
REACTIONS	(lb/size)	1=96/16-6-15, 9=96/16-6-15,
REACTIONS	(10/3120)	10=202/16-6-15, 11=174/16-6-15,
		12=187/16-6-15, 13=117/16-6-15,
		14=187/16-6-15, 15=174/16-6-15,
		17=202/16-6-15
	Max Llaria	
		1=-237 (LC 8)
	Max Uplift	1=-88 (LC 10), 9=-50 (LC 11),
		10=-151 (LC 13), 11=-135 (LC 13),
		12=-135 (LC 13), 14=-138 (LC 12),
		15=-134 (LC 12), 17=-151 (LC 12)
	Max Grav	1=207 (LC 12), 9=181 (LC 13),
		10=231 (LC 20), 11=199 (LC 20),
		12=216 (LC 20), 13=200 (LC 13),
		14=218 (LC 19), 15=198 (LC 19),
		17=231 (LC 19)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD		/197, 2-3=-170/141, 3-4=-141/107,
TOP CHORD		/174, 5-6=-174/164, 6-7=-102/70,
		///////////////////////////////////////
		,
BOT CHORD		9/223, 15-17=-149/223,
		49/223, 13-14=-149/223,
		49/223, 11-12=-149/223,
		49/223, 9-10=-149/223
WEBS		6/121, 4-14=-187/161,
		8/160, 2-17=-203/170,
		7/159, 7-11=-188/161,
	8-10=-203	3/170

Unbalanced roof live loads have been considered for 1) this design. 2)


- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-1 to 5-4-1, Interior (1) 5-4-1 to 8-3-11, Exterior(2R) 8-3-11 to 13-3-11, Interior (1) 13-3-11 to 16-3-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) All plates are 1.5x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 5)
- 6) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads.
- Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 88 lb uplift at joint 1, 50 lb uplift at joint 9, 138 lb uplift at joint 14, 134 lb uplift at joint 15, 151 lb uplift at joint 17, 135 lb uplift at joint 12, 135 lb uplift at joint 11 and 151 lb uplift at joint
- 10. This truss is designed in accordance with the 2018 9) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

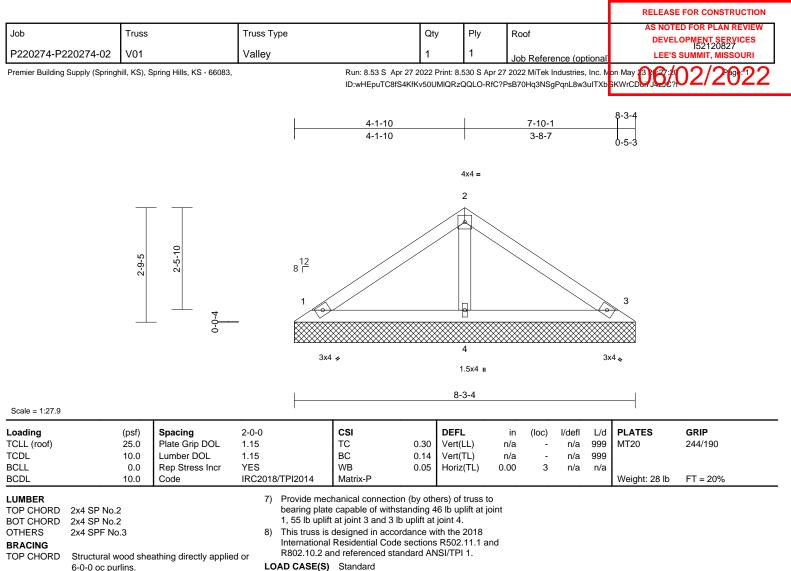
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Roof	AS NOTED FOR PLAN REVIEW
000	11033		Guy	1 19	ROOI	DEVELOPMENT SERVICES 152120825
P220274-P220274-02	LG03	Lay-In Gable	1	1	Job Reference (optional	
Premier Building Supply (Spring	nill, KS), Spring Hills, KS - 66083,				2022 MiTek Industries, Inc. M 870Hq3NSgPqnL8w3uITXbGK	


Scale = 1:59.8

													-	
Loading		(psf)	Spacing 2	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL 1	.15		TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL 1	.15		BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0	Rep Stress Incr Y	/ES		WB	0.20	Horiz(TL)	0.01	11	n/a	n/a		
BCDL		10.0	Code II	RC201	B/TPI2014	Matrix-S							Weight: 113 lb	FT = 20%
LUMBER				W	EBS	6-16=-205/145, 5	5-17=-182	158,						
TOP CHORD	2x4 SP N	0.2				4-18=-189/162, 3		,						
BOT CHORD	2x4 SP N				:	2-21=-156/133, 7	7-15=-182	156,						
OTHERS	2x4 SPF	No.3				8-14=-189/163, 9	9-13=-191	164,						
BRACING						10-12=-156/133								
TOP CHORD	Structura	l wood she	athing directly applied o	or NO	DTES									
	6-0-0 oc				Unbalanced	roof live loads h	ave been	considered fo	r					
BOT CHORD			applied or 10-0-0 oc	,	this design.									
	bracing.	5,		2)	Wind: ASCE	7-16; Vult=115r	nph (3-seo	ond gust)						
WEBS	1 Row at	midpt	6-16	,	Vasd=91mp	n; TCDL=6.0psf;	BCDL=6.	0psf; h=35ft;						
REACTIONS	(lb/size)	1=46/18-6	6-15, 11=46/18-6-15,			t. II; Exp C; Encl			be)					
	(,)		8-6-15, 13=185/18-6-15	i.		and C-C Exteri								
		14=178/1	8-6-15, 15=186/18-6-15	i,		-3-11 to 9-3-11,								
		16=117/1	8-6-15, 17=186/18-6-15	i,		rior (1) 14-3-11			er					
			8-6-15, 19=185/18-6-15	i,		exposed ; end v								
		21=153/1	8-6-15			own; Lumbers a								
	Max Horiz				DOL=1.60	Jwn, Lumber DC	JL=1.60 pi	ate grip						
	Max Uplift		.C 10), 11=-106 (LC 11)			ned for wind load	de in the n	and of the tru						
			(LC 13), 13=-139 (LC 13	<i>, י</i>		ids exposed to v								
			(LC 13), 15=-132 (LC 13			d Industry Gable								
			(LC 12), 18=-139 (LC 12			alified building o								
	Mar. 0		(LC 12), 21=-116 (LC 12	<u>()</u> 4)		e 1.5x4 MT20 un								
	Max Grav		C 12), 11=251 (LC 13), LC 20), 13=212 (LC 20),	– Ś		es continuous be								
			LC 20), 15=212 (LC 20), LC 20), 15=214 (LC 20),	,		spaced at 2-0-0		5						
			LC 20), 13=214 (LC 20), LC 13), 17=217 (LC 19),		This truss ha	s been designed	d for a 10.) psf bottom					ALL DE	
			LC 19), 19=212 (LC 19),		chord live loa	ad nonconcurrer	nt with any	other live loa	ds.				NEOF	ISS
		21=176 (L		' 8)	Provide med	hanical connecti	ion (by oth	ers) of truss t	0			1	A	
FORCES	(lb) - May	•	pression/Maximum			e capable of with						2	A	· D ·
TOROLO	Tension		pression/maximum			o uplift at joint 11						-	STEV	'EN
TOP CHORD		/242 2-3=-	287/196, 3-4=-173/144,			at joint 18, 139 ll						24	E.F	DX XC
		,	191/195, 6-7=-191/183,			21, 132 lb uplift						2.0	1 1	101
			32/85, 9-10=-248/158,			Ib uplift at joint 1	13 and 116	b uplift at jo	Int					MY:
	10-11=-3		. ,		12. This trues is	decisioned in		th the 2010				=	NUME	BER :
BOT CHORD	1-21=-16	8/253, 19-2	21=-168/253,	9)		designed in acc Residential Coc			nd				C E-238	373 :41
	18-19=-1	68/253, 17	-18=-168/253,			nd referenced st			nu			-	A	125
		,	-16=-168/253,				anuaru Ar	131/1F11.				1	1000	GN
			-14=-168/253,	LC	DAD CASE(S)	Standard							IN ONIA	I EMIN
	12-13=-1	68/253, 11	-12=-168/253										1111	inter

16023 Swingley Ridge Rd Chesterfield, MO 63017

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Roof	AS NOTED FOR PLAN REVIEW
000	11400	11000 1990		Guy	,	1001	DEVELOPMENT SERVICES 152120826
P220274-P220274-02	LG04	Lay-In Gable		1	1	Job Reference (optional	
Premier Building Supply (Spring	emier Building Supply (Springhill, KS), Spring Hills, KS - 66083, ID: u63TnBt7rgdQ0liu3KHL0zQQLQ-RfC?PsB70Hq3NSqPanL8w3ulTX						
			ID:_u631nBt/rddQ0ll	U3KHLUZQQ	LQ-RIC (PSE	ar und singer dur swan i yog v	VICD0I/J=ZJO?



Scale = 1:33.8

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.07 BC 0.03 WB 0.06 Matrix-P 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in (loc) n/a - n/a - 0.00 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 35 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SPF No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (lb/size) 1=72/7-9 6=197/7- 8=197/7- Max Horiz 1=-111 (L Max Uplift 1=-26 (LC (LC 13), i Max Grav 1=99 (LC		d or 6) This truss h chord live lo 7) Provide mec bearing plat 1, 9 lb uplift uplift at joint 8) This truss is Internationa R802.10.2 a =228	designed in accordance waile designed in accordance waile Residential Code sections and referenced standard Al	hal to the face), iils as applicable, s per ANSI/TPI 1 rd bearing. 0 psf bottom other live loads. hers) of truss to 26 lb uplift at join int 8 and 160 lb vith the 2018 s R502.11.1 and	, .				
FORCES	(lb) - Maximum Con Tension	npression/Maximum								
TOP CHORD	1-2=-123/91, 2-3=-1 4-5=-108/76	102/80, 3-4=-96/76,								
BOT CHORD	1-8=-65/97, 7-8=-65 5-6=-65/97	5/97, 6-7=-65/97,								
WEBS	3-7=-78/20, 2-8=-23	35/184, 4-6=-235/184								
this design 2) Wind: AS(Vasd=91n Ke=1.00; exterior zo and right e exposed;(ed roof live loads have n. CE 7-16; Vult=115mpt mph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2 exposed ; end vertical c-C for members and f shown; Lumber DOL=	n (3-second gust) DDL=6.0psf; h=35ft; ed; MWFRS (envelope 2E) zone; cantilever le left and right forces & MWFRS for	e)					110 * PRO	STEN E-23	OX *

reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) 1=183/8-3-4, 3=183/8-3-4, 4=298/8-3-4

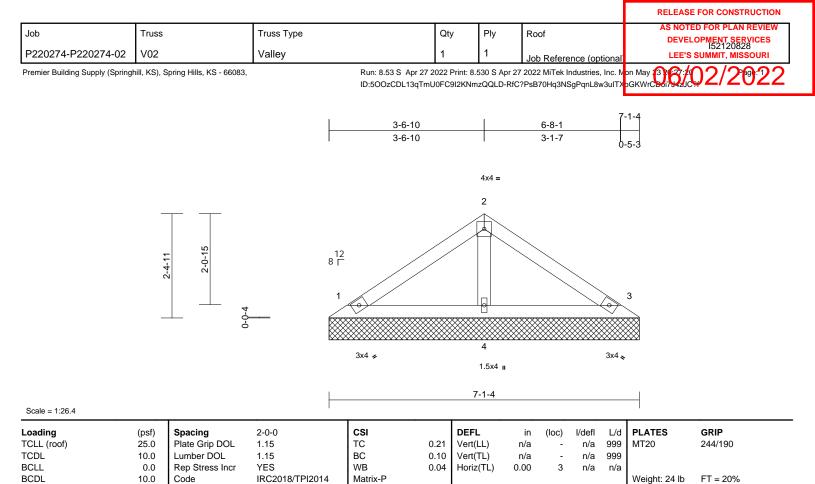
Max Horiz 1=69 (LC 9) 1=-46 (LC 12), 3=-55 (LC 13), 4=-3 Max Uplift (LC 12) FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-111/64, 2-3=-104/64 BOT CHORD 1-4=-14/50, 3-4=-14/50 WEBS 2-4=-206/104

NOTES

Unbalanced roof live loads have been considered for 1) this design.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.


Gable requires continuous bottom chord bearing. 4)

5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

BCDL		10.0	Code	IRC2
LUMBER	·			
TOP CHORD	2x4 SP N	o.2		
BOT CHORD	2x4 SP N	0.2		
OTHERS	2x4 SPF I	No.3		
BRACING				
TOP CHORD	Structural	l wood shea	athing direc	tly applied or
	6-0-0 oc p	ourlins.		
BOT CHORD	0	ing directly	applied or '	10-0-0 oc
	bracing.			
REACTIONS	(lb/size)			7-1-4,
		4=251/7-1		
	Max Horiz	· ·	,	
	Max Uplift	``	12), 3=-46	(LC 13), 4=-2
		(LC 12)		
FORCES		imum Com	pression/M	aximum
	Tension			
TOP CHORD		8, 2-3=-88/		
BOT CHORD		2, 3-4=-12/	42	
WEBS	2-4=-173/	'97		

WEBS

NOTES

Unbalanced roof live loads have been considered for 1) this design.

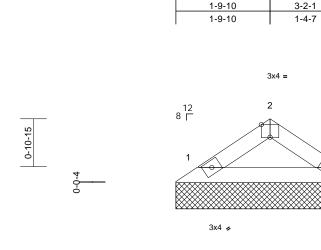
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=1.00; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing. 4)

5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 1, 46 lb uplift at joint 3 and 2 lb uplift at joint 4.

This truss is designed in accordance with the 2018 8)


International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Roof	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 152120829
P220274-P220274-02	V03	Valley	1	1	Job Reference (optional	
Premier Building Supply (Spring	nill, KS), Spring Hills, KS - 66083,				7 2022 MiTek Industries, Inc. M ?PsB70Hq3NSgPqnL8w3uITX	

3

3x4 💊

3-7-4

Scale =	1:22
---------	------

Plate Offsets (X, Y): [2:0-2-0,Edge]

1-2-11

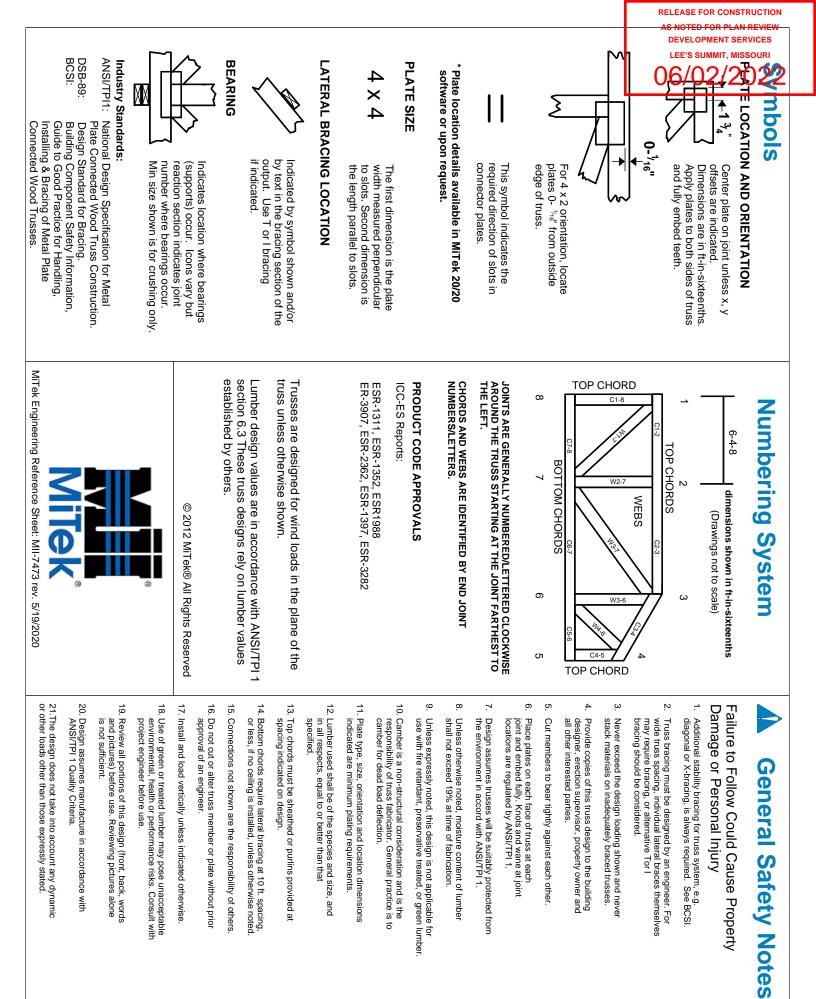
Plate Offsets (.	X, Y): [2:0-2-0,Edge]	-									-	
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.04 0.09 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 10 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 Structural wood she	othing directly oppli	Ínternatio R802.10. LOAD CASE	is designed in acco nal Residential Cod 2 and referenced st (S) Standard	de sections	R502.11.1 a	Ind					
TOP CHORD	3-8-0 oc purlins.	atining unectly applie										
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	с									
	(lb/size) 1=122/3-7 Max Horiz 1=25 (LC Max Uplift 1=-17 (LC											
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD BOT CHORD	, -	06/73										
NOTES												
	ed roof live loads have	been considered fo	r									
Vasd=91m Ke=1.00; 0	n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Cat. II; Exp C; Enclose one and C-C Exterior(2	DL=6.0psf; h=35ft; d; MWFRS (envelop										
and right e exposed;C	exposed ; end vertical I C-C for members and for shown; Lumber DOL=*	eft and right prces & MWFRS for									ILLE OF	MISSO
 Truss des only. For s see Standa 	signed for wind loads ir studs exposed to wind ard Industry Gable En- qualified building desid	(normal to the face d Details as applical), ble,								S STE	VEN P
4) Gable requ	uires continuous botto	n chord bearing.								=	$\sim c$	n/x =
Cohla ature	do oppood at 1 0 0 ao									- 1		

- Gable studs spaced at 4-0-0 oc. 5)
- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 7) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 17 lb uplift at joint 1 and 17 lb uplift at joint 3.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

NUMBER

S/ONAL ENT


May 24,2022

GIT

E -23873

0

8 S

