

wallace design collective

1 of 65

COVENANT SHELL BUILDING LEE'S SUMMIT, MO PROJECT NO. 2220068

STRUCTURAL CALCULATIONS

04/05/2022 Missouri COA #001268

JAMES M. GRANICH, P.E. ENGINEER OF RECORD

> wallace design collective, pc structural - civil - landscape - survey 1741 mcgee street kansas city, missouri 64108 816.421.8282 - 800.364.5858 wallace design

2 of 65

wallace design collective

CODE LOADING

,

wallace design collective, pc structural - civil - landscape - survey 1741 magee street kances city, missouri 64108

1741 mogee street kansas city, missouri 64108 816.421.8282 - 800.364.5858 wallade design

wallace design collective

CODE CHECK

DATE: 3/10/22

TO: City of Lee's Summit, MO

PHONE:	8169691200	D	FAX:			
ATTN:				EMAIL:		
PROJECT	r: # 2220068	Covenant G	roup Shell Building Lee	's Summit, M	lissouri	
BY:	PHONE X	VISIT	OTHER	TIME:		
ITEM DESCRIPTION RESPON					SE	
1. GOVEF	RNING CODE					
А.	Local Buildi	ng Code:		2018	IBC Int	ernational Building Code
В.	Local Amen	dments:				
C.	Do State Bu	ilding Code	Requirements Differ?			
D.	Observation	ns Required t	o be performed by EOR?	No		
E.		bections Fina	I Report Required	Yes		
2. ROOF	LIVE LOAD					
Α.	Minimum Ro	oof Live Load	l:		20 psf	
3. SNOW	LOAD					
A.	Ground Sno	w Load, Pg:			20 psf	
В.			duced below Pg as allowe	ed by code?:	Yes	
4. WIND I	OAD					
А.	Design Win	d Speed:			109 mph	
В.	Risk Catego	ory			11	
5. SEISM		-				
А.	Mapped Spe	ectral Respo	nse Acceleration, Ss:		.099	(short period, 0.2s)
В.	Mapped Spe	ectral Respo	nse Acceleration, S1:		.068	(long period, 1.0s)
6. FROST	DEPTH					
Α.	Minimum Be	earing Depth	:		36 in.	
DEMADIZ						

REMARKS:

Please notify the undersigned if the above information is incorrect or incomplete.

FROM: Tyler Monnett, P.E.

CC:

wallace design collective, pc

structural - civil - landscape - survey 123 north martin luther king jr. boulevard tulsa, oklahoma 74103 918,584,5858 - 800,364,5858 wallace design Hazards by Location

Search Information

Search Info	ormation		69	(65)
Address:	400 NW Chipman Rd, Lee's Summit, MO 64063, USA	1 m	Kansas 1000 ft	Higglnsville
Coordinates:	38.92551679999999, -94.3894651	Lawrence	Overland Part	Concordiaº 👼
Elevation:	1000 ft	(59)	2	Warrensburg
Timestamp:	2022-03-10T21:03:04.513Z	Ottawa	(i) (ii) (ii) (iii) (iii	
Hazard Type:	Wind	Google		Map data ©2022 Google

ASCE 7-16

ASCE 7-10

ASCE 7-05

MRI 10-Year	76 mph	MRI 10-Year 76 n	nph ASCE 7-05 Wind Speed	90 mph
MRI 25-Year	83 mph	MRI 25-Year 84 n	nph	
MRI 50-Year	88 mph	MRI 50-Year	nph	
MRI 100-Year	94 mph	MRI 100-Year	nph	
isk Category I	103 mph	Risk Category I 105 n	nph	
Risk Category II	109 mph	Risk Category II 115 n	nph	
Risk Category III	117 mph	Risk Category III-IV 120 n	nph	
Risk Category IV	122 mph			

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area - in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility r liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the https://hazards.atcouncil.org/#/wind?lat=38.925516799999998lng=-94.3894651&address=400 NW Chipman Rd%2C Lee's Summit%2C MO 64063%2... 1/2 ATC Hazards by Location

building site described by latitude/longitude location in the report.

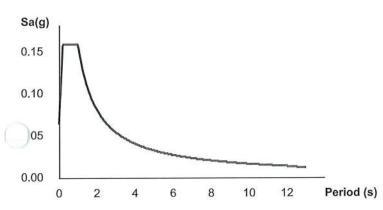
The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

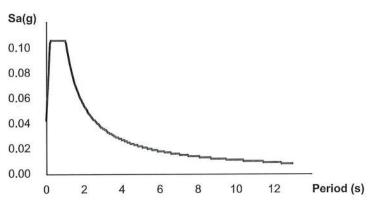
azard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

Search Information


Search Info	rmation	1.00	(200 69	(65)
Address:	400 NW Chipman Rd, Lee's Summit, MO 64063, USA	3	Kansas 1000 ft	HiggInsville
Coordinates:	38.92551679999999, -94.3894651	Lawrence	Overland Parles	Concordiao 👼
Elevation:	1000 ft	and a		Warrensburg
Timestamp:	2022-03-10T21:03:46.277Z	(59) Ottawa	W (6)	Manensburg (
Hazard Type:	Seismic	Google		Man data @2022 Capada
Reference Document:	ASCE7-16	9.6 0 E		Map data ©2022 Google

Risk Category:


Site Class: **D**-default

Ш

MCER Horizontal Response Spectrum

Design Horizontal Response Spectrum

Basic Parameters

Name	Value	Description
SS	0.099	MCE _R ground motion (period=0.2s)
S ₁	0.068	MCE _R ground motion (period=1.0s)
S _{MS}	0.159	Site-modified spectral acceleration value
S _{M1}	0.163	Site-modified spectral acceleration value
S _{DS}	0.106	Numeric seismic design value at 0.2s SA
S _{D1}	0.109	Numeric seismic design value at 1.0s SA

Additional Information

Name	Value	Description
SDC	В	Seismic design category
Fa	1.6	Site amplification factor at 0.2s
Fv	2.4	Site amplification factor at 1.0s

3/10/22, 3:03 PM	A.	ATC Hazards by Location
CR _S	0.927	Coefficient of risk (0.2s)
CR ₁	0.877	Coefficient of risk (1.0s)
PGA	0.047	MCE _G peak ground acceleration
F _{PGA}	1.6	Site amplification factor at PGA
PGAM	0.075	Site modified peak ground acceleration
ΤL	12	Long-period transition period (s)
SsRT	0.099	Probabilistic risk-targeted ground motion (0.2s)
SsUH	0.107	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
SsD	1.5	Factored deterministic acceleration value (0.2s)
S1RT	0.068	Probabilistic risk-targeted ground motion (1.0s)
S1UH	0.078	Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years)
S1D	0.6	Factored deterministic acceleration value (1.0s)
PGAd	0.5	Factored deterministic acceleration value (PGA)

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

Copyright ©

Page 1

Date	3/29/2022	Sheet No.	of
Job	2220068		
Subject	Dead Live Lo	ads	

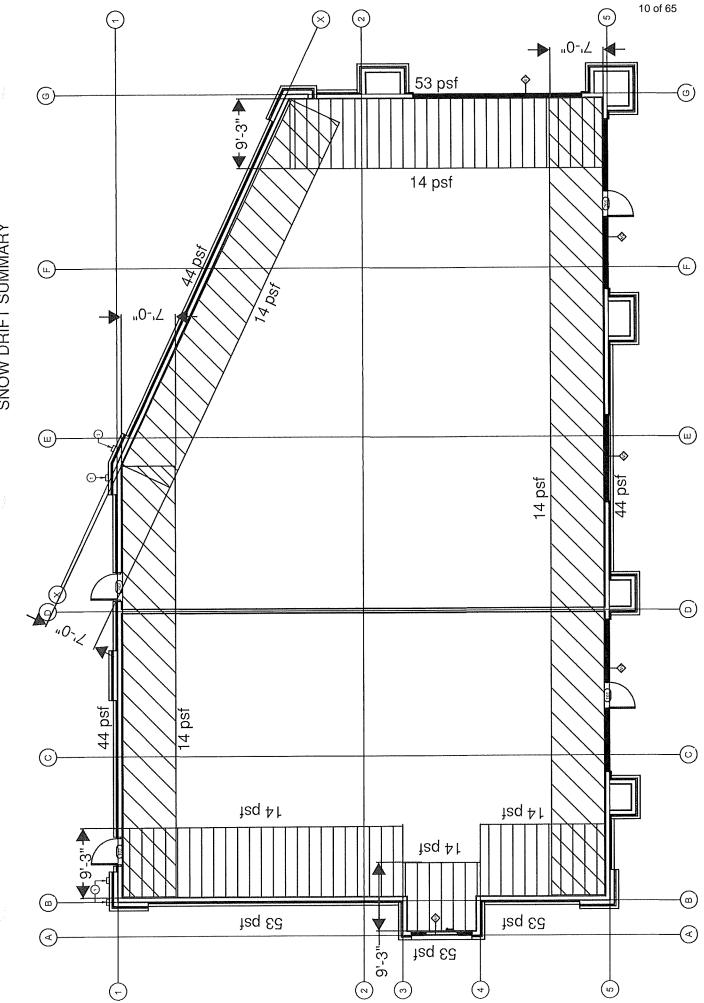
DEAD AND LIVE LOADS

ASCE 7-16 Table C3.1-1a and Table 4.3.1

ROOF LOADS

DEAD

ITEM	DESCRIPTION	UNIT NE	IGHT (PSF)	TOTAL
Roof Covering Insulation	EPDM Membrane Polyisocyanurate Insulation (per inch thickness)	1.0 5.0	x 0.50 x 0.25	0.5 1.3
Deck	Plywood (per inch)	1.0	x 3.20	3.2
Ceiling	Acoustical Fiberboard	1.0	x 1.00	1.0 4.0
HVAC Sprinklers	HVAC Allowance (except sprinklers)			2.0
Fire-Proofing				0.00
Waterproofing				0.00
Miscellaneous				0.00
Sub-Total				12.0
Secondary Fran	nii Wood Trusses at 2'-0" O.C.			3.0
Sub-Total				15.0
Primary Framing	g Wood Girders (20' max. span)			1.0
Total				16.0 LUSE 20psf
ROOF LIVE/SNO	W LOADS			LUSE
ITEM				LOAD (PSF)
Roof Live Load				20.0
Factored Roof S	Snow Load, Pf			30.0

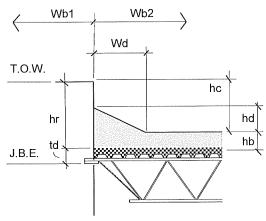

ITEM	
Roof Live Load	
Factored Roof Snow Load, Pf	

Date	3/29/2022	Sheet No.	of
Job	5/4/7982		
Subject	Dead Live Lo	bads	

EXTERIOR WALL LOADS

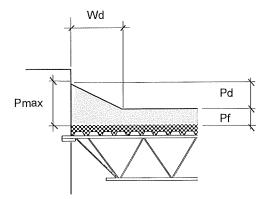
DEAD

ITEM	DESCRIPTION	WEIGHT (PSF)
Wall 1	2x6 at 16" O.C., 5/8" Gypsum, Insulated, 3/8" Siding	12.00
Wall 2	Exterior Stud Walls with Brick Veneer	48.00
Wall 3	Select Exterior Wall Material	-
Wall 4	Select Exterior Wall Material	-
Wall 5	Select Exterior Wall Material	-
Wall 6	Select Exterior Wall Material	-


SNOW DRIFT SUMMARY

WALLACE DESIGN PROGRAM

Revised 05/20/19, Carrie Johnson Copyright © 10/19/93


Date	3/29/2022	Sheet No.	of
Project	2220068		
Subject	Perpendicular Sn	ow Drift T1	

FLAT ROOF SNOW DRIFT - Joists Perpendicular to Wall ASCE 7-16

Configuration

Note: For projections, input width of projection for Wb1 and input maximum of leeward and windward drift length for Wb2. For parapets, input the parapet width as Wb1.

1	Inr	urf.	

	1. Input			
	Dead Load = Roof Live Load = Pg, Ground Snow Load = Drift for parapet, projection, or upper r Risk Categoy (I, II, III, or IV) = Ce, Exposure Factor = Ct, Thermal Factor = Use Pg minimum for drift calc's (Pf =		20 20 P II 1.00 1.00	psf psf (P), (PR) or (U) Table 1.5-1 Table 7.3-1 Table 7.3-2 (Y or N)
	Geometry T.O.W., Top of Parapet Elevation = J.B.E., Joist Bearing Elevation = td, Thickness of Joist, Deck, and Insu Wb1, length of upper roof = Wb2, length of lower roof = S, Joist Spacing = L, Joist Span =	lation =	20.00 15.00 5.00 57.00 2.00 28.50	feet inches feet feet feet
	2. Balanced Snow Load Check			
ו	ls, Importance Factor = Pf = 0.7 Ce Ct ls Pg = Pm = ls Pg = Rain on snow surcharge = Pmin =		14.00 20.00	Table 1.5-2 psf (7.3-1) psf (7.3.4) psf (7.10) psf
	3. Drifted Snow Load Check			
	Pf = 0.7 Ce Ct ls Pg = D = 0.13 Pg + 14.0 \leq 30 pcf = hb = Pf/D = Wb = hd = 0.75[0.43 Wb2^1/3 (Pg+10)^1/4 hd + hb = hr = hc = hr - hb = Wd = 4 hd or 4 [hd^2/hc] \leq 8 hc = Pmax = D (hd + hb) \leq D hr = Pd =D hd \leq D hc =	-1.5] ls^;	14.00 16.60 0.84 57.00 1.78 2.62 5.00 4.16 7.10 43.48 29.48	pcf ft ft ft ft ft ft ft ft ft psf
	4. Uniform Load Summary			
	Drifted Snow Load	Snow	Total	
	R left = R right = M max = w base = w drift = w equiv =	591.0 416.4 3096.2 28.0 59.0 41.5	876.0 701.4 5124.5 48.0 79.0 61.5	lbs lbs ft-lbs plf plf
	Load Without Drift	Livo	Total	

	Live	lotal
w (Live = 20 psf) =	40.0	60.0 plf
w (Live = 20 psi) =	40.0	00.0 pil

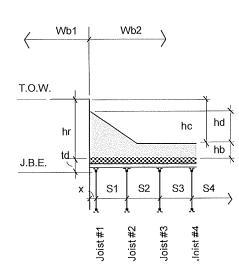
* indicates controlling load (drifted vs. undrifted)

WALLACE DESIGN PROGRAM

Revised 05/20/19, Carrie Johnson

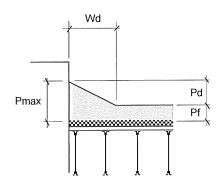
Copyright © 10/19/93

Date	3/29/2022	Sheet No.	of
Project	2220068		
Subject	Parallel Drift T2		


FLAT ROOF SNOW DRIFT - Joists Parallel to Wall ASCE 7-16

1. Input

2.


3.

4.

Configuration

Note: For projections, input width of projection for Wb1 and input maximum of leeward and windward drift length for Wb2. For parapets, input the parapet width as Wb1.

Snow Drift

Dead Load =		10	psf
Roof Live Load =			psf
Pg, Ground Snow Load =			psf
Drift for parapet, projection, or upper	r roof?		(P), (PR) or (U)
Risk Categoy (I, II, III, or IV) =			Table 1.5-1
Ce, Exposure Factor =			Table 7.3-1
Ct, Thermal Factor =			Table 7.3-2
Use Pg minimum for drift calc's (Pf =	= Pa)2		(Y or N)
Ose Fy minimum for unit cales (i 1 -	-19):		
Geometry			
T.O.W., Top of Parapet Elevation =		20.00	feet
J.B.E., Joist Bearing Elevation =		15.00	
td, Thickness of Joist, Deck, and Ins	ulation =		inches
Wb1, length of upper roof =	alation -	5.00	
Wb2, length of lower roof =		97.00	
x, Joist #1 dist. from wall =		2.00	
-		2.00	
S1, First Joist Spacing =		2.00	
S2, Second Joist Spacing =			
S3, Third Joist Spacing =		2.00	
S4, Fourth Joist Spacing =		2.00	
S5, Fifth Joist Spacing =		2.00	leel
Balanced Snow Load Check			
la Importance Easter -		1.0	Table 1.5-2
ls, Importance Factor =			psf (7.3-1)
Pf = 0.7 Ce Ct Is Pg =			
Pm = ls Pg =			psf (7.3.4)
Rain on snow surcharge =			psf (7.10)
Pmin =		20.00	psi
Drifted Snow Load Check			
Pf = 0.7 Ce Ct ls Pg =		14.00	psf (7.3-1)
$D = 0.13 Pg + 14.0 \le 30 pcf =$			pcf (7.7-1)
hb = Pf/D =		0.84	
Wb =		97.00	
hd = 0.75[0.43 Wb2^1/3 (Pg+10)^1/-	4_1 51 ls^1		feet (Fig. 7.6-1)
hd + hb =	4-1.0110 /	3.18	
hr =		5.00	
hc = hr - hb =		4.16	
		9.35	
Wd = 4 hd or 4 [hd^2/hc] \leq 8 hc =			
Pmax = D (hd + hb) ≤ D hr = Pd =D hd ≤ D hc =		52.80 38.80	
$Pa = D ha \le D hc =$		30.00	psi
Uniform Load Summary			
Drifted Snow Load			
	Snow	Total	
w, wall	50.7	60.7	
w, Joist #1	89.0	109.0	
w, Joist #1 w, Joist #2	72.4	92.4	•
•	55.8	75.8	
w, Joist #3	55.0 30.2	75.0	

Balanced Load Check

w, Joist #4

w, Joist #5

	Pmin (20 psf)	Total
w, wall	20.0	30.0 plf
w, Joist #1	40.0	60.0 plf
w, Joist #2	40.0	60.0 plf
w, Joist #3	40.0	60.0 plf
w, Joist #4	40.0	60.0 plf*
w, Joist #5	40.0	60.0 plf*

39.2

29.5

59.2 plf 49.5 plf

* indicates controlling load (drifted vs. undrifted)

12 of 65

wallace design collective

Date	3/11/22	Sheet No.	of	
Job	2220068			
Subje	CT WIND L	ZAAO		

N/S FLEV

TOWER- 32.5' + 28' = 60.5' MED PAR-14'+16.5'= 30.5' LOW PAR-10'

N/SLOINDLOAD (1.0 W)

WALL (97')(15'/2)(24 3psf)= 17.7K

PARAPET (60.5)(9)/2)(60.1psf) = 16.4K (30.5)(7)/2)(69.5psf) = 6.4K (10)(5)(5)/2)(58.2psf) = 1.5K

24.3K (LRFD) 1H. (CK (ASD)

EIW ELEY

MED PAR- 0' LOW PAR- 26.5'

E/W WIND LOAD (1.0W)

WALL (57.)(15/12)(21.7psf)=9.3K

PARAPET (32.5')(9112)(60.1psf) = 8.8K (26.6')(512)(68.2psf)= 3.9K

22.0K (LRFD)

13.2K (ASD)

	Date Job	3/11/2022 2220068		heet	of	
	Subject	Wind NS/Walls EW Low Para	pet			
WIND ANALYSIS: ANALYTICAL - ALL HEIGHTS METHOD ASCE 7-16, Chapters 26, 27 and 30	Exposure C Building Ris	ters Speed, V = Sategory (B, C, or D) = sk Category (I, II, III, IV) = id floor elevation (if unknown inpu	t 0) =	C II	nph (Section 26 Section 26.7) Table 1.5-1) eet (Sect. 26.9,	.5, Fig. 1 A -2D) Table 26.9-1)
	Parapet He Building Wi Building Wi	nt, He = ng Height or Ridge Height above ight above ground level, Hp = dth Perpendicular to Wind, B = dth Parallel to Wind, L = Classification =	_	15.00 15.00 20.00 97.00 57.00 closed Bulldings	feet feet feet (max bldg d feet	im)
REFER TO FIGURE 27.3-1	Roof Config		led, Hipped or Monosic	ope Roofs (ø ≤ 7)	degrees	
z V(z)	Height of H Horiz. Dist. Horiz. Dist. 2D Ridge, 3	on or near a hill, ridge, or escarp III or Escarpment relative to upwi Upwind to Point Where Elevatio from Crest to Building Site, x = 2D Escarpment, or Axisymmetric ing site upwind or downwind of th	nd terrain, H = n = H/2, Lh ≕ al Hill =	10.00 10.00 10.00 E	(Y or N) (Section feet (Section 26 feet (Section 26 feet (Section 26 (R, E, or H) (up, down)	.8, Fig. 26.8-1) .8, Fig. 26.8-1)
2-D Ridge or Axisymmetrical Hill REFER TO FIGURE 26.8-1	Equivalent Mean roof Kz, velocity Kz, velocity Kzt, topogra Kzt, topogra Kzt, topogra Kzt, topogra Kd, wind di	Iain Wind Force Resisting Syst Allowable Stress Design Wind Si height, h = γ pressure exposure coefficient a γ pressure exposure coefficient a γ pressure exposure coefficient a aphic factor at h μ = 15ft = aphic factor at h μ = 20ft = rectionality factor = elevation factor at	beed, Vasd = hz = 15ft = hh = 15ft =	15.00 0.85 0.90 1.00 1.00 1.00 0.05	mph (IBC 2018, feet Table 26.10-1 Table 26.10-1 Table 26.8-1 Figure 26.8-1 Figure 26.8-1 Table 26.6-1 Table 26.9-1	1609.3.1) (use with qz) (use with qh) (use with qp) (use with qz) (use with qh) (use with qp)
	G, gust fac qz, velocity			21.98	Section 26.11.4 psf (Eq. 26.10-1 psf (Eq. 26.10-1)
		pressure at hp = 20ft =			psf (Eq. 26.10-1	
	Walls: P = q(0 Windward	GCpf-GCpi) Eqn. 27.3-1 pressure	'	GCp GCpi 0.68	(1.0) P 14.9 psf	(0.6)P 9 psf
	Leeward P		21.98	GCp GCpi -0.43	(1.0)P -9.3 psf -17 psf	(0.6)P -5.6 psf -10.2 psf

-9.6 psf

(1.0)P -31.8 psf

-5.7 psf

(0.6)P -19.1 psf

14 of 65

Sidewall pressure Internal Pressure 21.98 -0.60 0.18 -17 psf -10.2 psf 21.90 0.18 4 psf 2.4 psf (1.0)W = (1.0)(Windward + Leeward Pressure) = 14.94 psf + 9.34 psf = 24.3 psf 8.97 psf + 5.6 psf = 14.6 psf (0.6)W =(0.6)(Windward + Leeward Pressure) = Parapets: Pp =qp(GCpn) Eqn. 27.3-3 Windward parapet pressure Leeward parapet pressure (1.0)Pp 34.9 psf GCpn (0.6)Pp qp 20.9 psf -14 psf 23.27 1.5 2**3**.27 -1.0 -23.3 psf 58.2 psf 34.9 psf Windward + Leeward Pressure 23.27 2.50 Roof Normal to Ridge (8≥10 degrees) Windward Pressure case i (1.0)P -17.2 psf GCpi 0.18 (0.6)P GCp ah 21.98 -0.60 -10.3 psf -4.4 psf -5.9 psf case ii 21.98 -0.15 0.18 -7.3 psf Leeward Pressure 21.98 -0.26 0.18 -9.8 psf (0.6)P -12.5 psf -12.5 psf GCp -0.77 **Roof All Other Conditions** qh GCpi (1.0)P -20.8 psf -20.8 psf For 0 to h/2 = 0 ft to 7.5 ft h/2 to h = 7.5 ft to 15 ft 21.98 21.98 0.18 0.18 -0.77 -13.3 psf -8 psf 18

Roof Overhangs Section 27.3.3 Maximum pressures	qh 21.98	GCp -0.77	GCpi 0.68
>2h = >30 ft	21.98	-0.26	0.18
h to 2h = 15 ft to 30 ft	21.98	-0.43	0.18

1

	Date Job	3/11/2022 220068		Sheet		of	
	Subject	Wind NS/ Walls EW Med Parapet					
WIND ANALYSIS: ANALYTICAL - ALL HEIGHTS METHOD ASCE 7-16, Chapters 26, 27 and 30							
adward Lea	Input Design Parame Basic Wind	eters d Speed, V =			109 m	ph (Section 26	.5, Fig. 1A-2D)
Ples	Exposure (Category (B, C, or D) =				Section 26.7)	
		isk Category (I, II, III, IV) = ed floor elevation (if unknown input 0) =	=		The second s	rable 1.5-1) eet (Sect. 26.9,	Table 26.9-1)
Wall y L L L L L L L L L L L L L L L L L L	Eave Heigl	ht, He =			15.00 fe	et	
		ng Height or Ridge Height above grour eight above ground level, Hp =	nd level, Hr =		15.00 fe 22.00 fe		
1	Building W	idth Perpendicular to Wind, B =			97.00 fe	eet (max bldg d	im)
L		/idth Parallel to Wind, L = Classification =	E	Inclosed	57.00 fe Buildings (S	et Section 26.12)	
REFER TO FIGURE 27.3-1	Roof Confi		Hipped or Mono	slope Ro		egrees	
A 1	ls building	on or near a hill, ridge, or escarpment	?			Y or N) (Section	
	•	Hill or Escarpment relative to upwind te				eet (Section 26 eet (Section 26	-
x (upwind) x		b) Upwind to Point Where Elevation = H b) from Crest to Building Site, x =	WZ, LII		2020 (1997) (1997) (1997) (1997)	et (Section 26	
	2D Ridge,	2D Escarpment, or Axisymmetrical Hill			And the second second second second	R, E, or H)	
V(z)	Is the build	ding site upwind or downwind of the cre	est?		DOWN (I	up, down)	
	. Calculations - M	Main Wind Force Resisting System					
	•	t Allowable Stress Design Wind Speed, height, h =	, Vasd =		84.43 n 15.00 fe	nph (IBC 2018,	1609.3.1)
		y pressure exposure coefficient at hz =	= 15ft =			able 26.10-1	(use with qz)
		y pressure exposure coefficient at hh =				able 26.10-1	(use with qh)
2-D Ridge or Axisymmetrical Hill		y pressure exposure coefficient at hp = aphic factor at hz = 15ft =	= 22ft ==			able 26.10-1 igure 26.8-1	(use with qp) (use with qz)
	Kzt,topogr	aphic factor at hh = 15ft =			1.00 F	Igure 26.8-1	(use with qh)
REFER TO FIGURE 26.8-1		aphic factor at hp = 22ft = lirectionality factor =				igure 26.8-1 able 26.6-1	(use with qp)
	Ke, ground	d elevation factor at				able 26.9-1	
	G, gust fac	ctor =			0.85 8	Section 26.11.4	
	qh, velocit	y pressure at hz = 15ft = y pressure at hh = 15ft = y pressure at hp = 22ft =			21.98 p	sf (Eq. 26.10-1 sf (Eq. 26.10-1 sf (Eq. 26.10-1)
		GCpf-GCpi) Eqn. 27.3-1	qz 21.98	GCp 0.68	GCpi	(1.0)P 14.9 psf	(0.6)P 9 psf
	Windward	pressure	21.90 qh	GCp	GCpi	(1.0)P	(0.6)P
	Leeward F		21.98	-0.43		-9.3 psf	-5.6 psf
	Sidewall p internal Pr		21.98 21.98	-0.60	0.18 0.18	-17 psf 4 psf	-10.2 psf 2.4 psf
		1.0)(Windward + Leeward Pressure) = 0.6)(Windward + Leeward Pressure) =		-	9.34 psf = ⊦5.6 psf =	24.3 psf. 14.6 psf	
	Parapets: Pp	=qp(GCpn) Eqn. 27.3-3	qp	GCpn		(1.0)Pp	(0.6)Pp
	Windward	parapet pressure	23.78	1.5	_	35.7 psf -23.8 psf	21.4 psf
		 + Leeward Pressure 	23.78 23.78	-1.0 2.50		-23.8 psi	-14.3 psf 35.7 psf
		to Ridge (8≥10 degrees)	23.70 gh	GCp	GCpi	(1.0)P	(0.6)P
	Windward	Pressure case i	21.98	-0.60	0.18 0.18	-17.2 psf -7.3 psf	-10.3 psf -4.4 psf
	Leeward F	case ii Pressure	21.98 21.98	-0.15 -0.26	0.18	-9.8 psf	-5.9 psf
			qh	GCp	GCpi	(1.0)P	(0.6)P
	Roof All Othe	r Conditions					
	For 0 to h/	/2 = 0 ft to 7.5 ft	21.98	-0.77	0.18	-20.8 psf	-12.5 psf
	For 0 to h/ h/2 to h =				0.18 0.18 0.18	-20.8 psf -20.8 psf -13.3 psf	-12.5 psf -12.5 psf -8 psf
	For 0 to h/ h/2 to h =	/2 = 0 ft to 7.5 ft 7.5 ft to 15 ft 15 ft to 30 ft	21.98 21 .9 8	-0.77 -0.77	0.18	-20.8 psf	-12.5 psf

	Date 3/11/2022 Job 220068 Subject Wind NS/Walls EW Tower		Sheet		of	
VIND ANALYSIS: ANALYTICAL - ALL HEIGHTS METHOD	·					
ASCE 7-16, Chapters 26, 27 and 30	1 Innut					
Roof	1. Input Design Parameters Basic Wind Speed, V = Exposure Category (B, C, or D) = Building Risk Category (I, II, III, IV) = Officient descent view for the second sec			C (: II (nph (Section 26 Section 26.7) Table 1.5-1) Set (Sect. 26.9,	5.5, Fig. 1A-2D)
Wall U U U U U U U U U U U U U U U U U U	Civil finished floor elevation (if unknown input 0) = Eave Height, He = Max Building Height or Ridge Height above ground leve Parapet Height above ground level, Hp = Building Width Perpendicular to Wind, B = Building Width Parallel to Wind, L = Enclosure Classification = Roof Configuration = Angle of Plane of Roof From Horizontal, θ =	E		15.00 fe 15.00 fe 24.00 fe 97.00 fe 57.00 fe Buildings (f ofs (ø ≤ 7)	eet eet eet eet (max bldg d	
	-			La colongado da Antonio	-	
x (upwind) x	Is building on or near a hill, ridge, or escarpment? Height of Hill or Escarpment relative to upwind terrain, Horiz. Dist. Upwind to Point Where Elevation = H/2, Lh Horiz. Dist. from Crest to Building Site, x = 2D Ridge, 2D Escarpment, or Axisymmetrical Hill = Is the building site upwind or downwind of the crest?			10.00 fé 10.00 fé 10.00 fé E (
	2. Calculations - Main Wind Force Resisting System Equivalent Allowable Stress Design Wind Speed, Vasd Mean roof height, h = Kz, velocity pressure exposure coefficient at hz = 15ft = Kz, velocity pressure exposure coefficient at hh = 15ft	=		15.00 fe 0.85 T	nph (IBC 2018, eet Fable 26.10-1 Fable 26.10-1	(use with qz) (use with qh)
 2-D Ridge or Axisymmetrical Hill REFER TO FIGURE 26.8-1	Kz, velocity pressure exposure coefficient at hp = 24ft = Kzt,topographic factor at hz = 15ft = Kzt,topographic factor at hh = 15ft = Kzt,topographic factor at hp = 24ft = Kd, wind directionality factor = Ke, ground elevation factor at G, gust factor =	=		1.00 F 1.00 F 1.00 F 0.85 T 1.00 T	Fable 26.10-1 Figure 26.8-1 Figure 26.8-1 Figure 26.8-1 Fable 26.6-1 Fable 26.9-1 Section 26.11.4	(use with qp) (use with qz) (use with qh) (use with qp)
	q, velocity pressure at hz = 15ft = qh, velocity pressure at hh = 15ft = qp, velocity pressure at hp = 24ft =			21. 98 p	osf (Eq. 26.10-1 osf (Eq. 26.10-1 osf (Eq. 26.10-1)
	Walls: P = q(GCpf-GCpi) Eqn. 27.3-1 Windward pressure	qz 21.98	GCp 0.68	GCpi	(1.0) P 14.9 psf	(0.6)P 9 psf
		qh	GCp	GCpi	(1.0)P	(0.6)P
	Leeward Pressure	21.98 21.98	-0.4 3 -0.60	0.18	-9.3 psf -17 psf	-5.6 psf -10.2 psf
	Sidewall pressure Internal Pressure	21.98	-0.00	0.18	4 psf	2.4 psf
	(1.0)W = (1.0)(Windward + Leeward Pressure) = (0.6)W =(0.6)(Windward + Leeward Pressure) =			9,34 psf = ⊦ 5.6 psf =	24.3 psf 14.6 psf	
	Parapets: Pp =qp(GCpn) Eqn. 27.3-3	qp	GCpn		(1.0)Pp	(0.6)Pp
	Windward parapet pressure Leeward parapet pressure	24.04 24.04	1.5 -1.0		36.1 psf -24 psf	21.6 psf -14.4 psf
	Windward + Leeward Pressure	24.04	2.50		60.1 psf	36.1 psf
	Roof Normal to Ridge (8≥10 degrees)	qh	GCp	GCpi	(1.0)P	(0.6)P
	Windward Pressure case i	21.98	-0.60	0.18	-17.2 psf	-10.3 psf
	case ii Leeward Pressure	21.98 21.98	-0.15 -0.26	0.18 0.18	-7.3 psf -9.8 psf	-4.4 psf -5.9 psf
	Roof All Other Conditions	qh	GCp	GCpi	(1.0)P	(0.6)P
	For 0 to $h/2 = 0$ ft to 7.5 ft	21.98	-0.77	0.18	-20.8 psf	-12.5 psf
	h/2 to h = 7.5 ft to 15 ft	21.98	-0.77	0.18	-20.8 psf	-12.5 psf
	h to 2h = 15 ft to 30 ft >2h = >30 ft	21.98 21.98	-0.43 -0.26	0.18 0.18	-13.3 psf -9.6 psf	-8 psf -5.7 psf
	Roof Overhangs Section 27.3.3	qh	GCp	GCpi	(1.0)P	(0. 6)P
	Maximum pressures	21.98	-0.77	0.68	-31.8 psf	-19.1 psf

1

	Date 3/11/2022 Job 2220068 Subject Wind EW/Wall NS Low Parapet	Sheet		of
WIND ANALYSIS: ANALYTICAL - ALL HEIGHTS METHOD				
ASCE 7-16, Chapters 26, 27 and 30	1. Input Design Parameters Basic Wind Speed, V = Exposure Category (B, C, or D) = Building Risk Category (I, II, III, IV) = Civil finished floor elevation (if unknown input 0) = Eave Height, He = Max Building Height or Ridge Height above ground level, Parapet Height above ground level, Hp = Building Width Parallel to Wind, B = Building Width Parallel to Wind, L = Enclosure Classification =	Enclose	C (Section II (Table * 0.00 feet (Sec 15.00 feet 20.00 feet 20.00 feet 57.00 feet (ma 97.00 feet d Buildings (Section	ι.5-1) ct. 26.9, Table 26.9-1) αx bldg dim)
REFER TO FIGURE 27.3-1	Roof Configuration = Gabled, Hipped Angle of Plane of Roof From Horizontal, θ = Is building on or near a hill, ridge, or escarpment? Height of Hill or Escarpment relative to upwind terrain, H Horiz. Dist. Upwind to Point Where Elevation = H/2, Lh = Horiz. Dist. from Crest to Building Site, x = 2D Ridge, 2D Escarpment, or Axisymmetrical Hill = Is the building site upwind or downwind of the crest?	=	1.19 degrees N (Y or N 10.00 feet (Se 10.00 feet (Se	I (Section 26.8) Iction 26.8, Fig. 26.8-1) Iction 26.8, Fig. 26.8-1) Iction 26.8, Fig. 26.8-1) r H)
2-D Ridge or Axisymmetrical Hill REFER TO FIGURE 26.8-1	2. Calculations - Main Wind Force Resisting System Equivalent Allowable Stress Design Wind Speed, Vasd = Mean roof height, h = Kz, velocity pressure exposure coefficient at hz = 15ft = Kz, velocity pressure exposure coefficient at hh = 15ft = Kz, velocity pressure exposure coefficient at hp = 20ft = Kzt,topographic factor at hz = 15ft = Kzt,topographic factor at hp = 15ft = Kzt,topographic factor at hp = 20ft = Kd, wind directionality factor = Ke, ground elevation factor at G, gust factor =		84.43 mph (IE 15.00 feet 0.85 Table 2 0.90 Table 2 1.00 Figure : 1.00 Figure : 0.05 Table 2 1.00 Figure : 0.05 Table 2 0.85 Section	6.10-1 (use with qh) 6.10-1 (use with qp) 26.8-1 (use with qz) 26.8-1 (use with qh) 26.8-1 (use with qh) 26.8-1 (use with qp) 6.6-1 6.9-1
	qz, velocity pressure at hz = 15ft = qh, velocity pressure at hh = 15ft = qp, velocity pressure at hp = 20ft =		21.98 psf (Eq 21.98 psf (Eq 23.27 psf (Eq	, 26.10-1)
	Walls: P = q(GCpf-GCpi) Eqn. 27.3-1 Windward pressure	qz GCp 21.98 0.68		.0)P (0.6)P 9 psf 9 psf
	Leeward Pressure Sidewall pressure Internal Pressure	qh GCp 21.98 -0.31 21.98 -0.60 21.98 -0.60	-6. 0.18 -1	.0)P (0.6)P 7 psf -4 psf 7 psf -10.2 psf psf 2.4 psf
	(1.0)W = (1.0)(Windward + Leeward Pressure) = (0.6)W =(0.6)(Windward + Leeward Pressure) =		•	7 psf 9 psf
	Parapets: Pp ≕qp(GCpn) Eqn. 27.3-3 Windward parapet pressure Leeward parapet pressure	qpGCpn23.271.523.27-1.0	34	0)Pp (0.6)Pp .9 psf 20.9 psf .3 psf -14 psf
	Windward + Leeward Pressure	23.27 2.50	58	2 psf 34.9 psf
	Roof Normal to Ridge (0≿10 degrees) Windward Pressure case i case ii Leeward Pressure	qhGCp21.98-0.6021.98-0.1521.98-0.26	0.18 -1 0.18 -7.	.0)P (0.6)P 7 psf -10.2 psf 3 psf -4.4 psf 6 psf -5.7 psf
	Roof All Other Conditions For 0 to $h/2 = 0$ ft to 7.5 ft h/2 to $h = 7.5$ ft to 15 ft h to $2h = 15$ ft to 30 ft > $2h = >30$ ft	qhGCp21.98-0.7721.98-0.4321.98-0.26	0.18 -20 0.18 -20 0.18 -13	.0)P (0.6)P .8 psf -12.5 psf .8 psf -12.5 psf .3 psf -8 psf 6 psf -5.7 psf
	Roof Overhangs Section 27.3.3 Maximum pressures	qh GCp 21.98 -0.77		.0)P (0.6)P .8 psf -19.1 psf

	Date 3/11/2022 Job 220068 Subject Wind EW/Walls NS Med Parapet	Shee	et	of	
WIND ANALYSIS: ANALYTICAL - ALL HEIGHTS METHOD					
ASCE 7-16, Chapters 26, 27 and 30	1. Input Design Parameters Basic Wind Speed, V = Exposure Category (B, C, or D) = Building Risk Category (I, II, III, IV) = Civil finished floor elevation (if unknown input 0) = Eave Height, He = Max Building Height above ground level, Hp = Building Width Perpendicular to Wind, B = Building Width Parallel to Wind, L = Enclosure Classification = Roof Configuration = Gabled, Hipp Angle of Plane of Roof From Horizontal, 6 =		C (II (0.00 f 15.00 f 15.00 f 22.00 f 57.00 f 97.00 f sed Buildings (Roofs (ø ≤ 7)	Section 26.7) Table 1.5-1) eet (Sect. 26.9, eet eet eet eet (max bldg o eet	
x (upwind) x	Is building on or near a hill, ridge, or escarpment? Height of Hill or Escarpment relative to upwind terrain, Honz. Dist. Upwind to Point Where Elevation = H/2, Li Honz. Dist. from Crest to Building Site, x = 2D Ridge, 2D Escarpment, or Axisymmetrical Hill = Is the building site upwind or downwind of the crest?		10.00 f 10.00 f 10.00 f E (eet (Section 26	n 26.8) .8, Fig. 26.8-1) .8, Fig. 26.8-1) .8, Fig. 26.8-1)
2-D Ridge or Axisymmetrical Hill REFER TO FIGURE 26.8-1	 Calculations - Main Wind Force Resisting System Equivalent Allowable Stress Design Wind Speed, Vas Mean roof height, h = Kz, velocity pressure exposure coefficient at hz = 15ft Kz, velocity pressure exposure coefficient at hh = 15ft Kz, velocity pressure exposure coefficient at hh = 22ft Kzt,topographic factor at hz = 15ft = Kzt,topographic factor at ha = 15ft = Kzt,topographic factor at hp = 22ft = Kd, wind directionality factor = Ke, ground elevation factor at G, gust factor = 	:= !=	15.00 f 0.85 7 0.92 7 1.00 F 1.00 F 1.00 F 0.85 7 1.00 7	mph (IBC 2018, eet Fable 26.10-1 Fable 26.10-1 Fable 26.10-1 Figure 26.8-1 Figure 26.8-1 Fable 26.6-1 Fable 26.9-1 Section 26.11.4	(use with qz) (use with qh) (use with qp) (use with qz) (use with qh) (use with qp)
	qz, velocity pressure at hz = 15ft = qh, velocity pressure at hh = 15ft = qp, velocity pressure at hp = 22ft =		21.98	osf (Eq. 26.10-1 osf (Eq. 26.10-1 osf (Eq. 26.10-1)
	Walls: P = q{GCpf-GCpi) Eqn. 27.3-1 Windward pressure	q z GC 21.98 0.6		(1.0)P 14.9 psf	(0.6)P 9 psf
	Leeward Pressure Sidewall pressure Internal Pressure	qh GC 21.98 -0.3 21.98 -0.6 21.98	1	(1.0)P -6.7 psf -17 psf 4 psf	(0.6)P -4 psf -10.2 psf 2.4 psf
	(1.0)W = (1.0)(Windward + Leeward Pressure) = (0.6)W =(0.6)(Windward + Leeward Pressure) =		f + 6.72 psf = f + 4.03 psf =	21.7 psf 13 psf	
	Parapets: Pp =qp(GCpn) Eqn. 27.3-3 Windward parapet pressure Leeward parapet pressure	qp GCp 23.78 1.5 23.78 -1.0	-	(1.0)Pp 35.7 psf -23.8 psf	(0.6)Pp 21.4 psf -14.3 psf
	Windward + Leeward Pressure	23.78 2.5	0	59.5 psf	35.7 psf
	Roof Normal to RIdge (8≥10 degrees) Windward Pressure case i case ii Leeward Pressure	qh GC 21.98 -0.6 21.98 -0.1 21.98 -0.2	0 0.18 5 0.18	(1.0)P -17 psf -7.3 psf -9.6 psf	(0.6)P -10.2 psf -4.4 psf -5.7 psf
	Roof All Other Conditions For 0 to $h/2 = 0$ ft to 7.5 ft $h/2$ to $h = 7.5$ ft to 15 ft h to $2h = 15$ ft to 30 ft $>2h = >30$ ft	qh GC 21.98 -0.7 21.98 -0.7 21.98 -0.4 21.98 -0.2	7 0.18 7 0.18 3 0.18	(1.0)P -20.8 psf -20.8 psf -13.3 psf -9.6 psf	(0.6)P -12.5 psf -12.5 psf -8 psf -5.7 psf
	Roof Overhangs Section 27.3.3 Maximum pressures	qh GC 21.98 -0.7		(1.0)P -31.8 psf	(0.6)P -19.1 psf

1

	Date 3/11/2022 Job 220068 Subject Wind EW/Wall NS Tower	Sheet		of
WIND ANALYSIS: ANALYTICAL - ALL HEIGHTS METHOD				
ASCE 7-16, Chapters 26, 27 and 30	1. Input Design Parameters Basic Wind Speed, V = Exposure Category (B, C, or D) = Building Risk Category (I, II, III, IV) = Civil finished floor elevation (if unknown input 0) =		C (Sect II (Tabl	Section 26.5, Fig. 1A-2D) ion 26.7) e 1.5-1) Sect. 26.9, Table 26.9-1)
Wall L REFER TO FIGURE 27.3-1	Eave Height, He = Max Building Height or Ridge Height above ground level Parapet Height above ground level, Hp = Building Width Perpendicular to Wind, B = Building Width Parallel to Wind, L = Enclosure Classification = Roof Configuration = Angle of Plane of Roof From Horizontal, 8 =		97.00 feet Buildings (Sect	
x (upwind) x	Is building on or near a hill, ridge, or escarpment? Height of Hill or Escarpment relative to upwind terrain, H Horiz. Dist. Upwind to Point Where Elevation = H/2, Lh = Horiz. Dist. from Crest to Building Site, x = 2D Ridge, 2D Escarpment, or Axisymmetrical Hill = Is the building site upwind or downwind of the crest?		10.00 feet (10.00 feet (
2-D Ridge or Axisymmetrical Hill REFER TO FIGURE 26.8-1	 Calculations - Main Wind Force Resisting System Equivalent Allowable Stress Design Wind Speed, Vasd = Mean roof height, h = Kz, velocity pressure exposure coefficient at hz = 15ft = Kz, velocity pressure exposure coefficient at hp = 24ft = Kzt, topographic factor at hz = 15ft = Kzt,topographic factor at hp = 24ft = Kzt,to		84.43 mph 15.00 feet 0.85 Table 0.93 Table 0.93 Table 1.00 Figur 1.00 Figur 0.85 Table 1.00 Table 0.85 Secti	2 26.10-1 (use with qh) 2 26.10-1 (use with qp) e 26.8-1 (use with qz) e 26.8-1 (use with qh) e 26.8-1 (use with qp) e 26.6-1 (use with qp) e 26.6-1 (use with qp) e 26.9-1 (use with qp)
	qz, velocity pressure at hz = 15ft = qh, velocity pressure at hh = 15ft = qp, velocity pressure at hp = 24ft =		21.98 psf (f 21.98 psf (f 24.04 psf (f	Eq. 26.10-1)
	Walls: P = q(GCpf-GCpi) Eqn. 27.3-1 Windward pressure	qz GCp 21.98 0.68	•	(1.0)P (0.6)P 14.9 psf 9 psf
	Leeward Pressure Sidewall pressure Internal Pressure	qh GCp 21.98 -0.31 21.98 -0.60 21.98 -0.60		(1.0)P (0.6)P -6.7 psf -4 psf -17 psf -10.2 psf 4 psf 2.4 psf
	(1.0)W = (1.0)(Windward + Leeward Pressure) = (0.6)W =(0.6)(Windward + Leeward Pressure) =	14.94 psf + 8.97 psf +		21.7 psf 13 psf
	Parapets: Pp =qp(GCpn) Eqn. 27.3-3 Windward parapet pressure Leeward parapet pressure	qp GCpn 24.04 1.5 24.04 -1.0	:	(1.0)Pp (0.6)Pp 36.1 psf 21.6 psf -24 psf -14.4 psf
	Windward + Leeward Pressure	24.04 2.50	é	60.1 psf 36.1 psf
	Roof Normal to Ridge (8≿10 degrees) Windward Pressure case i case ii	qh GCp 21.98 -0.60 21.98 -0.15	0.18	(1.0)P (0.6)P -17 psf -10.2 psf -7.3 psf -4.4 psf
	Leeward Pressure	21.98 -0.26		9.6 psf -5.7 psf
	Roof All Other Conditions For 0 to $h/2 = 0$ ft to 7.5 ft $h/2$ to $h = 7.5$ ft to 15 ft h to $2h = 7.5$ ft 5 ft to 30 ft $>2h = >30$ ft	qh GCp 21.98 -0.77 21.98 -0.77 21.98 -0.43 21.98 -0.26	0.18 - 0.18 - 0.18 -	(1.0)P (0.6)P 20.8 psf -12.5 psf 20.8 psf -12.5 psf 20.8 psf -12.5 psf 13.3 psf -8 psf 9.6 psf -5.7 psf

1

	Date	3/22/202			Sheet		of	
	Job Subject		20068 V/Walls NS Med Para	net				
	Subject	AANUT EA	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	per				
WIND ANALYSIS: ANALYTICAL - ALL HEIGHTS METHOD								
ASCE 7-16, Chapters 27 and 30	3. Input - Compone	nt and Cla	ddina Elements					
	Tributary Are	ea for Wall (Components, 1 =				quare feet	
			Components, 2 =				square feet	
			pet Components, 1 = pet Components, 2 =				square feet square feet	
	•		Components, 1 =				square feet	
			Components, 2 ≈				square feet	
			hangs or Canopies, 1				square feet	
	Tributary Are	ea for Overl	hangs or Canopies, 2	=		50.00 \$	square feet	
	4, Calculations - Co	mponenta	and Cladding Eleme	nts				
			xposure coefficient at				Table 26.10-1	(use with qh)
			xposure coefficient at	hp = 22ft =			Fable 26.10-1 Figure 26.8-1	(use with qp) (use with qh)
a s			at hh = 15ft = at hp = 22ft =				Figure 26.8-1	(use with qp)
ELEVATION	Kd, wind dire						Table 26.6-1	· · · · ·
BEFAINA	Ke, ground e		ctor at				Fable 26.9-1	
	G, gust facto	or =				0.85 \$	Section 26.11.4	
	qh, velocity	oressure at	bh = 15ft =			21.98 (osf (Eq. 26.10-1	
	qp, velocity						osf (Eq. 26.10-1	
0.6h	Walls: trib. Area	a = 10 sq. f	ť.	qh	GCp	GCpi	(1.0)P	(0.6)P
	Zone 4	Interior Z		21.98	-0.99	0.18	-25.7 psf	-15.4 psf
0 17 0 1	Zone 5	End Zon	e	21.98	-1.26	0.18	-31.6 psf	-19 psf
Pr= 11 101	Zone 4 and	5		21.98	0.90	-0.18	23.7 psf	14.2 psf
0.2h-	Walls: trib. Area	a = 500 sa	ft.	qh	GCp	GCpi	(1.0)P	(0.6)P
	Zone 4	Interior Z		21.98	-0.72	0.18	-19.8 psf	-11.9 psf
	Zone 5	End Zon		21.98	-0.72	0.18	-19.8 psf	-11.9 psf
	Zone 4 and	5		21.98	0.63	-0.18	17.8 psf	10.7 psf
1 . 0.6h	Parapets: trib.	Area = 10 s	a ff	qp	GCp	GCpi	(1.0)P	(0.6)P
0.6h	Case A	Zone 4	Interior Zone	23,78	2.97	0.00	70.6 psf	42.4 psf
		Zone 5	End Zone	23.78	3,78	0.00	89.9 psf	53.9 psf
	Case B	Zone 4	Interior Zone	23.78	1.89	0.00	45 psf	27 psf
	Case B	Zone 5	End Zone	23.78	2.16	0.00	51.4 psf	30.8 psf
PLAN	Parapets: trib.	0 roci → 50 c	a ft	qp	GCp	GCpi	(1.0)P	(0.6)P
	Case A	Zone 4	Interior Zone	23.78	2.53	0.00	60.1 psf	36 psf
		Zone 5	End Zone	23.78	3.00	0.00	71.4 psf	42.8 psf
	Case B	Zone 4	Interior Zone	23.78	1.67	0,00	39.7 psf	23.8 psf
		Zone 5	End Zone	23.78	1.83	0.00	43.4 psf	26.1 psf
	Roofs: trib. Are	a = 10 cm	#	qh	GCp	GCpi	(1.0)P	(0.6)P
N	Corner Zone		n.	21.98	-3,20	0.18	-74.3 psf	-44.6 psf
h	End Zone (2			21.98	-2.30	0.18	-54.5 psf	-32.7 psf
10	Interior Zone	9 (1)		21.98	-1.70	0.18	-41.3 psf	-24.8 psf
	Interior Zone			21.98	-0.90	0.18	-23,7 psf	-14.2 psf 9.6 psf
	Positive (All	∠ones)		21.98	0.30	-0.18	16 psf	9.0 hai
n								
	Roofs: trib. Are	a = 100 co	ft.	qh	GCp	GCpi	(1.0)P	(0.6)P
ELEVATION	Corner Zone			21.98	-2.14	0.18	-51 psf	-30.6 psf
	End Zone (2	:)		21.98	-1.77	0.18	-42.9 psf	-25.7 psf
REFER TO FIGURE 30.3-2A	Interior Zone Interior Zone			21.98 21.98	-1.29 -0.90	0.18 0.18	-32.3 psf -23.7 psf	-19.4 psf -14.2 psf
	Intenor Zone Positive (All			21.98	-0.90	-0.18	-23.7 psi 16 psf	9,6 psf
		,		•			•	
	. .		0		~~		14 015	10 010-
	Overhangs: trit Corner Zone		usq.ft.	qh 21.98	GCpn -3.20	-	(1.0)Pp -70.3 psf	(0.6)Pp -42.2 psf
	End Zone (2			21.98	-2.30		-50.5 psf	-30.3 psf
	Interior Zone			21.98	-1.70		-37.4 psf	-22.4 psf
	Interior Zone	e (1')		21.98	-1.70		-37.4 psf	-22.4 psf
	Overhangs: trit). Area = 50	0 sq. ft.	qh	GCpn		(1.0)Pp	(0.6)Pp
	eromange, un		1	21.98	-2.34	-	-51.3 psf	-30.8 psf
	Corner Zone	e (3)		21.50	2.01			
	End Zone (2	:)		21.98	-1.81		-39.7 psf	-23.8 psf
		:) e (1)						

a, end zone width = Min. of 10% L and .4H but not < 4% L or 3' =

Notes:
1. The gust factor of 0.85 is based on a building with a natural frequency of > 1 Hz. For other buildings, the gust factor must be calculated.
2. GCp for walls include a 10% reduction when angle of roof is 10 deg or less. (Figure 30.3-1, Footnote 5)
3. If a parapet equal to 3 ft or higher is provided around the perimeter of a roof with a slope of ≤ 7°, the roof corner zones may be treated as end zones. (Fig. 30.3-2A, Footnote 5)

wallace design collective

Date 3/29/22 Sheet No. of

Job 2220068

Subject SEISMIC LOAD SUMMARY

BUILDING WEIGHT

ROOF - ZOPSF

(H8785F)(20 pSf) = 97.56K

RRICK - 48 psf

(105sf + 46sf + 100sf + 98sf + 116sf + 84sf + 103sf + 113sf + 100sf + 100sf + 74sf + 35sf + 64sf + 136sf + 62sf)(48pst) = (1335 = f)(48pst) = 64.08K

STUD WALL - Mpst

(825sf+340sf+996sf+598sf+568sf)(12psf)=(3322st)(12psf)= 39.86K

TOTAL WEIGHT

97.56K+641.08K+39.86K=201.5K

SEISMIC LOAD

(201.5KX0.016)= 3.2K

opyright ©				Date Job Subject	3/29/2022 2220068 Seimic Loads	Sheet No.	of
EISMIC LOAD SUMMARY	r						
018 IBC (Ch: 16) and ASC	E 7-16 (Ch: 11 to 1	3)					
1. Input							
Spectral Response Acco					0.099		
Spectral Response According Risk Category =	eleration for 1-second	Periods, S1 =			0.068	(IBC Table 1604.5	& ASCE: Table 1-5-1)
Site Classification (A,B,	C,D,E,F) =					(ASCE 7 Ch.20 T	
Is Site Class Assumed of	or Known?					(ASCE 7 Sectio	n 11.4.4)
Basic Structural System					ALL SYSTEMS		
Lateral Force Resisting		Light Frame (wood) Walls w/ we	(Redundancy is eith			(ASCE 7 Section	12 3 4)
ρx , redundancy in x-dir. ρy , redundancy in y-dir. r, =1.0 for Seismic Desig	=	RE: ASCE 7 Section 12.3.4.1 for ac	(Redundancy is eith		12,025.2	(ASCE 7 Section	
Is Structure regular with	a period < .5 sec?				Yes	(Yes or No, ASCE	7 Section 12.8.1.3)
Is Structure short period	I with a rigid diaphrage	n?				(Yes or No, ASC	
Is Structure short period Does Structure have a f		m & vertical elements of seismic for	ce-resisting system spa	aced at 40' o		(Yes or No, ASCE (Yes or No, ASCE	
(For Wall anchorage red	quirements per Section	n 12.11.2.1)					
Span length of flexible of	liaphragm -x dir. =						rigid diaphragm)
Span length of flexible of	fiaphragm -y-dir. =				63	feet	
2. Determine Design Spec	tral Response Accel	erations and Seismic Design Cat	egory, Section 11.6:				
Response Modification	Eactor R =				6.5	(Table 12.2-1)	
		b for .5 reduction for Flexible Diaph	agms)			(Table 12.2-1)	
Deflection Amplification					4	(Table 12.2-1)	
Acceleration for Short P	Period						
Site Coefficient, Fa =							2.3(1), ASCE 7 Table 11.4-1)
Site Adjusted Spectral F Acceleration for 1-Seco		n for Short Periods, Sms =			0.158	(IBC Section 161	3.2.3, ASCE 7 Section 11.4.4)
Site Coefficient, Fv =	nu r enou				2.40	(IBC Table 1613.)	2.3(2), ASCE 7 Table 11.4-2)
	Response Acceleration	n for 1-second Periods, Sm1 =					3.2.3, ASCE 7 Section 11.4.4)
Design Spectral Respo							3.2.4 and ASCE 7 Section 11.
Seismic Design Catego					A 109		3.2.4 and ASCE 7 Section 11.
Design Spectral Responent Seismic Design Catego					0.103 B		J.2.4 BID AGOL 7 OLGIGIT TI.
Design Response Spec	trum, Ts =					seconds (Section	
Approximate Fundamer						seconds (Section	
Fundamental Period, T, Can the Seismic Design		Cu = on the short period alone?				seconds (Section (IBC Section 161	12.6.2) 3.2.5.1, ASCE 7 Section 11.6)
						12	
Seismic Design Catego	ery =				В	(Most severe cas	e except as allowed by Sect 1
		esisting System using the Equiva	lent Lateral Force Pro	cedure, Sec	tion 12.8:		
a. Calculation of Seism	ic Base Shear Coeffi	cient:					
Seismic Importance Fa	ctor, I _e =					(ASCE 7 Table 1 (ASCE Equation	5-2) 12.8-2, Section 12.8.1.3)
$Cs = (Sds/(R / I_e)) =$							12.0 2, 0001011 12.011107
b. Selsmic Base Shear,	Section 12.8.1:				Strength (1.0E)		
V = Cs W =					0.016 W	0.011 W	
c. Horizontal Seismic L	oad, Section 12.4.2.1	=			Strength (1.0E)		
For the X-direction:	Eh=				0.016 W		
For the Y-direction:	Eh=				0.016 W	0.011 W	
d. Vertical Seismic Loa	d Component, Secti	on 12.4.2.2:				1.1.44*	
Ev = 0.2 Sds D = For structures in SDC E	3 and for the design of	foundations using ASD, Ev may be	taken as zero. (Section	n 12.4.2.2)	0.021 D	0.015 D	
					0	ACD (ARE)	
		aphragm, Section 12.10.1.1:			Strength (1.0E)		
Force shall not be less but need not exceed 0					0.021 W	0.015 W	
					0.021 W	0.015 W	
For a one story building	, грх =				0.021 9	0.010 10	
	s in Seismic Design	Categories C through F, Section	12.10.2		0.049 W	0.034 W	
Emh = Ωo V =							

 Notes:

 1 A building that is low rise (one or two story) building with a short period is assumed for calculation of Seismic Response Coefficient, Cs.

 2 The values for design spectral response acceleration assume a regular structure of 5 stories or less with a period, T < 0.5 seconds</td>

 3 The values for design forces for the diaphragm assume no offsets or changes in the stiffness of the vertical components

 4 Section 1613.1 of 2018 IBC excludes the detailing requirements of Chapter 14 of ASCE 7.

 5 Per Section 1613.2.2 and 11.4.3, if site investigations performed per ASCE 7 Chpt 20 reveal rock conditions consistent with Site Class B, but site-specific velocity measurements are not made, Fa and Fy shall = 1.0.

WALLACE DESIGN PROGRAM

"

WALLACE DESIGN PROGRAM							
Revised 12/27/18, Sheila Butcher Copyright ©							
ooppingin e					3/29/2 0 22	Sheet No.	of
				Job			
				Subject			
SEISMIC LOAD SUMMARY 2018 IBC (Ch; 16) and ASCE 7-16 (Ch: 11 to 1	3)						
		orte Soction 12	1 2 and	12 1 4.			
4. Minimum Continuous Load Path, Interconne	ection and Connection to supp	Sits, Section 12	.i.s anu	12.1.4.			
a. Continuous Load Path and interconnectio F_{o} = 0.133 S _{ds} W _p or .05 W _o min. =	ons, Section 12.1.3:			S	trength (1.0E) 0.050 Wp	ASD (0.7E) 0.035 Wp (Section 12.1.3)
 b. Connection to Supports, Section 12.1.4 : F_p= .05 * dead + live reaction = 					0.050 Rd+1	0.035 Rd+l(Section 12.1.4)
5. Structural Walls and Anchorage, Section 12	.11			s	strength (1.0E)	ASD (0.7E)	
a. Minimum Out-of-Piane Forces on Structur F₀= 0.40 le Sds wp or .10 wp min =	ral Walls, Section 12.11.1:				0.100 Wp	0.070 Wp(Section 12.11.1)
b. Minimum anchorage connection of struct		uction, Section	12.11.2.1	and 12.11.2	:		
For loading in the x-direction:	Per 12.11.2.2, the strength design force for steel elements with the exception	,		8	Strength (1.0E)	ASD (0.7E)	
$k_a = 1.0 + L_f / 100 \text{ or max } 2.0 =$	of anchor bolts and	2.00 Connections at	Elovibla	Dianhraoms'	0.400 Wp	0.280 Wp	
Fp= 0.4 S _{ds} k _a i_e W _p or .2 k _a i_e Wp min. = F _o * 1.4 for steel elements per 12.11.2.2.2 k _a = 1.0	reinforcing steel shall be increased by 1.4 times.		, FIEXIDIE	рарнаднь.	0.560 Wp		
Fp= 0.4 S _{ds} k _a l _e W _p or .2 k _a l _e Wp min. = Fp * 1.4 for steel elements per 12.11.2.2.2	For Co	onnections not a	Flexible	Diaphragms:	0.200 Wp 0.280 Wp		
For loading in the y-direction:							
$k_a = 1.0 + L_s/100 \text{ or max } 2.0 =$	-	1.53	The side in	Discharge	0.000 W/-	0,228 Wp	
Fp= 0.4 S _{ds} $k_a l_e W_p$ or .2 $k_a l_e W_p$ min. = Fp * 1.4 for steel elements per 12.11.2.2.2	FC	or Connections at	Flexible	Diaphrayms:	0.326 Wp 0.455 Wp	· •	
k _a = 1.0 Fp= 0.4 S _{ds} k _a i _e W _p or .2 k _a i _e Wp min. = Fp * 1.4 for steel elements per 12.11.2.2.2	For C	onnections not a	t Flexible	Diaphragms:	0.200 Wp 0.280 Wp		
The minimum wail anchorage load for concr	ete or masonry wails is 0.2* the	wall weight or	5 psf per	1.4.4.			
5. Horizontal Seismic Design Force on Nonstr							
a. Holizolital delaline beagint orce on Holizol	ustarar nonicestarar compone		••		For lp =1.0	For Ip=1.5	
Fp max = 1.6 Sds lp Wp= Fp min = 0.3 Sds lp Wp=					0.169 Wp 0.032 Wp		(Equation 13.3-2) (Equation 13.3-3)
The Seismic Design Force is based on Equat Fp= 0.4 ap Sds Wp (1 + 2 z/h)/(Rp/lp)	ion 13.3-1, with the minimum and	I maximum limits	noted ab	oove.			
Seismic Design Force Summary on Architec	tural Components, Section 13.	5:					
1. Cantilevered (Unbraced) Parapets and Chim		ap= 2.50	Rp= 2,50	lp≕ 1.00	z/h= 1.00	trength (1.0E) 0.127 Wp	ASD (0.7E) 0.089 Wp (Table 13.5-1)
						•	•••••
 Braced Interior Non-masonry walls and partit Fp at floor= 	tions	1.00	2,50	1.00	0.00	0.032 Wp	0.022 Wp (Table 13.5-1)
Fp at roof=		1.00	2.50	1.00	1.00	0.051 Wp	0.035 Wp (Table 13.5-1)
Fp average at roof and floor:						0.041 Wp	0.029 Wp
3. Braced Interior Unreinforced masonry walls a	and partitions						0.000.001
Fp at floor=		1.00 1.00	1.50 1.50	1.00 1.00	0.00 1.00	0.032 Wp 0.084 Wp	0.022 Wp (Table 13.5-1) 0.059 Wp (Table 13.5-1)
Fp at roof≕ Fp average at roof and floor:		1.00	1.50	1.00	1.00	0.058 Wp	0.041 Wp
4. Cantilevered (Unbraced) Interior Nonstructur	rai walls	2.50	2.50	1.00	0.00	0.042 Wp	0.030 Wp (Table 13.5-1)
5. Braced Parapets and Chimneys		1.00	2.50	1.00	1.00	0.051 Wp	0.035 Wp (Table 13.5-1)
6. Exterior Nonstructural Wall Elements		4.00	3 50	4 00	0.00	0.032 Wp	0.022 Wp (Table 13.5-1)
Fp at floor≕ Fp at roof=		1.00 1.00	2.50 2.50	1.00 1.00	0.00 1.00	0.032 Wp 0.051 Wp	0.022 Wp (Table 13.5-1) 0.035 Wp (Table 13.5-1)
Fp average at roof and floor:		1.00	2.00			0.041 Wp	0.029 Wp
For the Body of the Wall Panel Connection:		4			0.00	0.000.44	0.022 18/- 27-51- 46 5 4
Fp at floor= Fp at roof=		1.00 1.00	2,50 2.50	1.00 1.00	0.00 1.00	0.032 Wp 0.051 Wp	0.022 Wp (Table 13.5-1) 0.035 Wp (Table 13.5-1)
For the fasteners of the connecting system:							
Fp at floor≃ Fp at roof=		1.25 1.25	1,00 1.00	1.00 1.00	0.00 1.00	0.053 Wp 0.158 Wp	0.037 Wp (Table 13.5-1) 0.111 Wp (Table 13.5-1)
7. Appendages and Ornamentation		2.50	2.50	1.00	1.00	0.127 Wp	0.089 Wp (Table 13.5-1)

Notes: 1 Refer to Section 13.4.2 for additional requirements for anchors in concrete and masonry. 2 Section 1613.1 of 2018 IBC excludes the detailing requirements of Chapter 14 of ASCE 7.

WALLACE DESIGN PROGRAM Revised 12/27/18, Sheila Butcher Copyright © 3/29/2022 Sheet No. of Date Job Subject

SEISMIC LOAD SUMMARY 2018 IBC (Ch: 16) and ASCE 7-16 (Ch: 11 to 13)

Table 11.4-1 and IBC 1613.2.3(1) Site Coefficient, Fa

		0110 00	omotorit, r u				
Site	Mapped Spe	ectral Respo	nse Accelerat	ion at Short F	eriods (Ss)		Distance
Class	Ss<=0.25	0.5	0.75	1	1.25	Ss>=1.5	Value
A	0.80	0.80	0.80	0.80	0.80	0.80	0.80
в	0.90	0.90	0.90	0.90	0.90	0.90	0.90
С	1.30	1.30	1.20	1.20	1.20	1.20	1.30
D	1.60	1.40	1.20	1.10	1.00	1.00	1.60
Е	2.40	1.70	1.30	1.20	1.20	1.20	2.40
F							

Table 11.4-2 and IBC 1613.2.3(2)

		Site Co	efficient, Fv				
Site	Mapped Spee	tral Respons	se Acceleratio	n at 1 Second	d Period (S1)	Distance
Class	S1<=0.1	0.2	0.3	0.4	0.5	S1>=0.6	Value
Α	0.80	0.80	0.80	0.80	0.80	0.80	0.80
в	0.80	0.80	0.80	0.80	0.80	0.80	0.80
С	1.50	1.50	1.50	1.50	1.50	1.40	1.50
D	2.40	2.20	2.00	1.90	1.80	1.70	2.40
E	4.20	3.30	2.80	2.40	2.20	2.00	4.20
F		*					

IBC Table 1613.2.5(1) and 11.6-1

IBC ismic Design Catego	ry based or			ratio
Value of	Design			
Sds	I or II	111	IV	Category Category
Sds <= 0.167	Α	Α	A	A A
0.167 <= Sds < 0.33	в	в	С	В
0.33 <= Sds < 0.5	С	С	D	С
0.5 <= Sds	D	D	D	D
S1 >= 0.75	E	E	F	E

Table 1613.2.5(2) and 11.6-2 Seismic Design Category Based on 1-Second Period Response Acceleration

Value of	Occ	upancy Cate	gory	Design
Sd1	I or II	111	IV	Category Category
Sd1 <= 0.067	Α	A	A	A B
0.067 <= Sd1 < 0.133	в	В	С	В
0.133 <= Sd1 < 0.2	С	С	D	С
0.2 <= Sd1	D	D	D	D
S1 >= 0.75	E	E	F	E

chards - Lot 4E	nit, Missouri
Summit Or	Lee's Sumn

22-5193 March 21, 2022

Bedding material should be graded to provide a continuous support beneath all points of the pipe and joints. Embedment material should be deposited and compacted uniformly and simultaneous on each side of the pipe to prevent lateral displacement. Compacted control fill material will be required for the full depth of the trench above the embedment material except in area landscape area with the compaction may be reduced to 90% Standard Proctor ASTM D 698. No backfill should be deposited or compacted in standing water. Permanent slopes greater than 3 horizontals to 1 vertical should not be used unless additional testing and slope analysis is performed.

6.5 DRAINAGE AND DEWATERING

Normal seasonal weather conditions should be anticipated and planned for during earthwork. It is recommended that the Contractor determine the actual groundwater levels at the site at the time of the construction activities to assess the impact groundwater may have on construction. Water should not be allowed to collect in the foundation excavation, on floor slab areas, or on prepared subgrades of the construction area either during or after construction. Undercut or excavated areas should be sloped toward to collect in the foundation excavation, on floor slab areas, or on prepared subgrades of the construction area either during or after construction. Undercut or excavated areas should be sloped toward one corner to facilitate removal of collected rainwater, groundwater, or surface runoff. Positive site drainage should be provided to reduce infiltration of surface water around the perimeter of the building and beneath the floor slabs. The grades should be sloped away from the building and surface drainage should be collected and discharged such that water is not permitted to infiltrate the backfill and floor slab areas of the building.

The site should be graded such that positive drainage (normally 2% minimum) is provided away from any structures. Where sidewalks or paving do not immediately adjoin the building, protective slopes of at least 5% for a minimum of 10 feet from the perimeter walls are recommended. Roof drains and downpours should also be directed away from the building. Open-graded stone is not recommended for use under sidewalks unless the stone is adequately drained to prevent collection of water under the walks. The site should also be graded to avoid water flows, concentrations, or pools behind retaining walls, curbs or similar structures. When swales are designed at the top of the walls, proper line and slope should be considered to avoid any flow down behind walls. Special attention is needed for sources of storm water from slopes, building roofs, gutter downspouts and paved areas draining to one point.

6.6 LANDSCAPING

Landscaping and irrigation should be limited adjacent to buildings and pavements to reduce the potential for large moisture changes. Trees and large bushes can develop intricate root systems that can draw moisture from the subgrade, resulting in shrinkage of the bearing material during dry periods of the year. Desiccation of bearing material below foundations may result in foundation settlement. Landscaped areas near pavements and sidewalks should include a drainage system that prevents over saturation of the subgrade beneath asphalt and concrete surfaces. Drainage systems in irrigation areas should be incorporated into the storm drain system. 00

Summit Orchards – Lot 4E Lee's Summit, Missouri

22-5193 March 21, 2022

GEOTECHNICAL ENGINEERING RECOMMENDATIONS

7.1 FOUNDATIONS RECOMMENDATIONS

Conventional spread and continuous wall footings are, generally, most economical when the existing soil conditions allow them to be founded at shallow depths on existing materials. Based on the materials encountered during this exploration, it is CFS Engineers' opinion that the planned structure can be supported by a shallow foundation system, such as spread and/or trench footings bearing in native clay and/or shale soils. Please reference the following table for recommended design parameters.

Table 5: Shallow Foundation Design Parameters

DESIGN PARAMETER	RECOMMENDED VALUE	COMMENTS
Allowable Bearing Capacity ⁽¹⁾ (shallow foundations)	2,500 psf	Evaluated based on field and laboratory testing results ⁽¹⁾ .
Recommended Bearing Material ⁽²⁾	FAT CLAY AND/OR SHALE	Suitable bearing material required beneath entirety of foundation system ⁽³⁾ .
Anticipated Total Settlement	< 1-inch	Maximum
Anticipated Differential Settlement	< ¼ -inch	Maximum per 100 feet of linear footing
Minimum Recommended width	24 and 16 inches	Spread and trench, respectively
Minimum Recommended Depth	36-inches	Based on seasonal freeze-thaw cycles

(1) If over excavation of any footing is required to reach design bearing capacity, backfill of the footing should be done with lean concrete.

done with lean concrete.
(2) A uniform bearing condition should exist beneath the entirety of the foundation system for a given structure.
A representative of the Geotechnical Engineer should test the materials in the footing excavations to verify the material and design bearing treasure.

If over excavation of footings becomes necessary to achieve the desired bearing pressure or a uniform bearing condition, backfill of the footing should be done with lean concrete. Footings should be suitably reinforced to reduce the effects of differential movement that may occur due to variations in the properties of the supporting soils. Top and bottom reinforcing steel is recommended for continuous wall footings to reduce differential settlement due to possible varying bearing capacities of the existing fill soils. Every effort should be made to keep the footing excavations dry as the soils will tend to soften when exposed to free water. Footing bottoms should be free of loose soil and concrete should be placed as soon as possible to prevent drying of the foundation soils.

7.2 SEISMIC ANALYSIS

The determination of the seismic class is based on ASCE Standard 7: Minimum Design Loads for Building and Other Structures. Based upon this information, the seismic properties of the soil were interpolated

σ

Summit Orchards – Lot 4E Lee's Summit, Missouri	22-5193 Summit O March 21, 2022 Lee's Sum	Summit Orchards – Lot 4E Lee's Summit, Missouri					March 21, 2022
from the standard penetration test values. A Seismic Site Class "D" was determined for this site. In addition, there is no significant risk of liquefaction or mass movement of the on-site soils due to a seismic	, ,	The requirements for the slab reinforcement should be established by the designer based on experience and the intended slab use.	cement sho	uld be estal	blished by t	he designer base	l on experience
	7.4 L	LATERAL EARTH PRESSURES	IRES				
7.3 SLAB ON GRADE KECOMMENDATIONS		Lateral earth pressures are determined by multiplying the vertical applied pressure by the appropriate	ied by multi	plying the v	vertical app	lied pressure by	the appropriate
In its current state, the overburden materials (i.e., Fat Clay) encountered during this exploration are unsuitable for direct support of the planned slab on grade. CFS recommends all concrete slabs on grade be supported by a minimum of 24-inches of Low Volume Change (LVC) material. LVC material should consist of lean clay (CL), KDOT ABS, curshed limestone screenings or equivalent. A low volume change material is defined as a material with a liquid limit less than 45 and a plasticity index less than 25. The subgrade so constructed as outlined below.		lateral earth pressure coefficient. If the foundation walls are rigidly attached to the building and not free to rotate or deflect at the top. CFS recommends designing the walls for the <i>at</i> -rest earth pressure coefficient. Walls that are permitted to rotate and deflect at the top can be designed for the <i>active</i> lateral earth pressure condition. Horizontal loads acting on shallow foundations are resisted by friction along the foundation base and by <i>passive</i> pressure against the footing face that is perpendicular to the line of applied force.	f the found: CFS recomm ed to rotate prizontal loa issive pressu	ation walls ends desig and deflec ds acting or ire against	are rigidly ning the wi t at the to shallow fo the footing	attached to the ills for the <i>at-res</i> p can be designe undations are re face that is perp	uilding and not earth pressure 4 for the <i>active</i> isted by friction endicular to the
 Cut the subgrade to a minimum depth of 24-inches beneath the planned bottom of slab elevation. The exposed material at this depth should be moisture conditioned and re-compacted, as necessary, to pass a proof cull as careified in Serving 6.1 "Gits propartation" of this report. 		It is recommended that all walls be backfilled with open graded stone (such as No. 57 as referenced in ASTM C33) extending to two (2) feet behind the wall for the entire height of the wall to within 12-inches of the surface to allow for proper drainage and relief of any hydrostatic pressure build-ups that may occur	backfilled wi behind the v inage and re	th open gr wall for the lief of any h	aded stone entire heig iydrostatic	(such as No. 57 tht of the wall to pressure build-up	is referenced in vithin 12-inches : that may occur
 Twenty (20) inches of a compacted LVC material should be placed atop the exposed slab subgrade. The LVC should be placed in lifts no greater than 8-inches-thick (compacted thickness) and 		in the native clay. The use of stone to backfill behind the walls will expedite construction, reduce potential settlement between the wall and the floor slab and lower the pressure induced on the wall from the backfill thus potentially reducing the thickness of the walls.	ne to backfi ill and the flo the thicknes	II behind t or slab and is of the wa	he walls w lowerthe lls.	ill expedite cons pressure induced	ruction, reduce on the wall from
compacted to 95% of the maximum dry density as determined by ASI M 698. Umestone based LVC material should be compacted at a moisture content sufficient to achieve the desired compaction,		Table 6: Earth Pressure and Friction Coefficients	ficients				
and lean clay (CL) material should be compacted at a moisture content between 0 and +4% of optimum. Please note, if lean clay is utilized as LVC, CFS recommends it be capped with 6-inches of	ontent between 0 and +4% of s it be capped with 6-inches of	MATERIAL	ACTIVE (Ka)	PASSIVE (Kp)	AT-REST (Ko)	ALLOWABLE BASE FRICTION	UNIT WEIGHT (pcf)
limestone based LVC to ease construction and protect the subgrade from excessive drying and		Open-graded crushed limestone	0.27	3.69	0.43	0.47	130-140
		In-situ lean clay soils	0.40	2.5	0.68	0.32	120-125
A 4-inch-thick layer of open graded stone (ASIM USS of equivalent material) should be placed atop the 20-inches of compacted LVC material to return the subgrade to the original bottom of slab	1	In-situ fat clay soils	0.49	2.04	0.66	0.24	120-125
elevation. The open-graded stone will ease construction and provide a capillary break between the LVC and concrete slab.		Lean clay – conditioned and compacted	0.32	3.12	0.48	0.35	120-125
	IC 2	Fat clay/Weathered Shale – conditioned and compacted	0.45	2.2	0.63	0.27	120-130
or lean day sous. A subgrade reaction modulus value of 120 ps/ini can be used for co-micines of compacted granular fill such as KDOT AB3, MODOT Type 5 or equivalent.		Limestone Bedrock			×	0.55	140-150
Every floor slab should be evaluated to determine if a vapor retarder under the concrete floor is required. The slab designer should refer to ACI 302 and/or ACI 360 for procedures regarding the use and placement of a vapor retarder.		These earth pressure coefficients do not include the effect of surcharge loads, hydrostatic loading, or a sloping backfill. Nor do they incorporate a factor of safety. Also, these earth pressure coefficients do	onot include porate a fact	the effect or of safety	of surchar, . Also, th	ge loads, hydrost ese earth pressur	tic loading, or a e coefficients do
To reduce the effects of differential movement, slabs-on-grade should not be rigidly connected to columns, walls, or foundations unless it is designed to withstand the additional resultant forces. Floor slabs should not extend beneath exterior doors or over foundation grade beams, unless saw cut at the beam after construction. Expansion joints may be used to allow unrestrained vertical movement of the slabs. The floor slabs should be designed to have an adequate number of joints to reduce cracking resulting from differential movement and shrinkage. CFS suggests joints be provided on a minimum		not account for high lateral pressures that may result from volume changes when expansive clay soils are used as backfill behind walls with unbalanced fill depths. In addition, any disturbed soils that are relied upon to provide some level of passive resistance should be placed in lifts not exceeding six (6) inches in thickness and compacted to a minimum density of 95% of the Standard Proctor (ASTM D598) maximum dry density at a moisture content within +- 3% of the optimum moisture content. It is recommended that a representative of CFS should verify the compaction of any such materials relied upon to provide	s that may re balanced fill ve resistance uum density iithin +- 3% verify the co	esult from v depths. I e should be of 95% of t of the optin ompaction	folume cha in addition, placed in l the Standar num moist of any such	rges wnen expan any disturbed so fifts not exceedin d Proctor (ASTM ure content. It ure content. It	ive clay solls are is that are relied six (6) inches in 0598) maximum s recommended upon to provide
		המשמועה הניסטיות.					
	10						11

26 of 65

27 of 65

wallace design collective

GRAVITY SYSTEM

wallace design collective, pc structural - clvil - landscape - survey 1741 magee street kansas city, missouri 64108

816.421.8282 · 800.364.5858 wallace.design

wallace design collective

Date 3/11/22	Sheet No.	of	
Job 2220068	·.		
Subject ROOF TR	220.		

SPAN

- 281-10"
- (0.07)(28:5)=2.00'= 221"
- USE 24" DEPTH C 24" OC
- -TOTAL LOAD
 - 20pst DEAD
 - -20pst LIVE/SNOW

29 29 39

34 34

39 39 53

41

44

46 60* 69*

47 67* 70*

43 59

52 67*

46

2,5/12

3/12

4/12

5/12

6/12

7/12

3,5/12

Alpine truss designs are engineered to meet specifi span, configuration and load conditions. The shapes an spans shown here represen only a fraction of the millions of designs produced by Alpin Engineers.

re ic ad nd nt of ne	Total load(PSF) Duration factor Live load(PSF) Roof type	1, 40 s shi <u>5</u> 1, 30 s	5 15 mow ngle 5 15 snow le	- 1 30	47 1.15 snow ningle			20	40 1.15) snc hingl	w	1 2 sh **con	rain	tion
	Top Chord Bottom Chord		2x6 2x6 2x4 2x6	2x4 2x4	2x6 2x4	2x6 2x6	, i	2x4 2x4	2x6 2x4	2x6 2x6	2x4 2x4		2x6 2x6
the	Pitch	24 2	Spa 24 33	ans in fo		3 7	it of	5 be a 31	arin 31	g 43	33	33	46

33 33 45

37 39 53

41 44 61

43

46

47

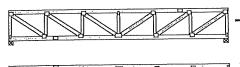
48*

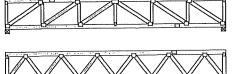
49 64

58 69*

67* 71*

72* 72*


Common -- Truss configurations for t most widely designed roof shapes.


Mono --- Used where the roof is required to slope only in one direction. Also in pairs with their high ends abutting on extremely long spans with a support underneath the high end.

Scissors --- Provides a cathedral or vaulted ceiling. Most economical when the difference in slope between the top and bottom chords is at least 3/12 or the bottom chord pitch is no more than half the top chord pitch.

Flat -- The most economical flat truss for a roof is provided when the depth of the truss in inches is approximately equal to 7% of the span in inches.

NOTES: These overall spans are based on NDS '01 with 4" nominal bearing each end, 24" o.c. spacing, a live load deflection limited to L/240 maximum and use lumber properties as follows: 2x4 f_b=2000 psi f=1100 psi E=1.8x10⁶ 2x6f_b=1750 psi f=950 psi f=1900 psi E=1.8x106. Allowable spans for

										94				
2/12	24	24	33	25	27	38	27	31	41		29	32	44	
2,5/12	28	29	40	29	32	43	31	37	46		33	37	49	
3/12	30	33	45	, 31	37	47	34	42	50		36	42	54	
3.5/12	33	37	49*	· 34	41	51*	36	46	54*		39	46	58*	
4/12	35	41	52*	36	45*	54*	39	50*	58*		42*	49*	62*	
5/12	38*	47*	57*	39	* 51*	59*	42*	56*	63*		45*	54*	68*	
				· ·									Contraction and	
	•									5				
6/12 - 2/12 ‡	40	43	59*	42	49	62*	45	56*	66	;	48	57*	71*	
6/12 - 2/12 ‡ 6/12 - 2.5/12 ‡	40 37	43 38	59* 52	42 38		62* 57*	45 41	56* 50	66 61*	;	48 44	57* 52	66*	
					44					;			66* 60*	
6/12 - 2.5/12 ‡	37	38	52	38	44 38	57*	41	50	61*	;	.44	52	66*	

37 38 52

40 44

44

46

49 66 74*

51

52* 77* 77*

60

76*

50 65

56 69

74*

‡ Other pitch combinations available with these spans For Example, a 5/12 - 2/12 combination has approx. the same allowable span as a 6/12 - 3/12

Total load(PSF)	55_		_40_	_40
Duration factor	1.15	1.15	1.15	1.25
Live load(PSF)	40 snow	30 snow	20 snow	20 rain or constn.
Top Chord	2x4 2x6 2x6	2x4 2x6 2x6	2x4 2x6 2x6	2x4 2x6 2x6

Bottom Chord	2x4	2x4	2x6	2x4	2x4	2x6	2x4	2x4	2x6	2x4	2x4	2x6
Depth	1;		Spans	in fe	et t	o out of	bea	ring	J			
16"	23	24	25 §	25 §	25 §	25 §	25 §	25 §	25 §	25 §	25 §	25 §
18"	25	27	28	27	27	29 §	29 §	29 §	29 §	29 §	29 §	29 §
20"	27	28	30	28	28	32	31	30	33 §	32	31	33 §
24"	29	30	33	31	31	35	34	33	38	35	34	40
28"	32	32	36	34	33	39	37	36	42	38	37	44
30"	33	33	38	35	35	40	38	37	44	40	39	45
32"	34	34	39	36	36	42	39	39	45	41	40	47
36"	36	36	42	39	38	45	42	41	48	43	43	50
42"	39	39	45	41	41	48	44	44	52	45	46	54
48"	40	42	49	43	44	52	46	47	56	46	49	58
60"	44	47	55	46	49	58	48	53	63	49	55	65
72"	45	51	60	48	54	64	51	57	68	51	59	69

§ = Span Limited by length to depth ratio of 24

2x4 top chord trusses using sheathing other than plywood (e.g. spaced sheathing or 1x boards) may be reduced slightly. Trusses must be designed for any special loading such as concentrated loads from hanging partitions or air conditioning units, and snow loads caused by drifting near parapet or slide-off from higher roofs. To achieve maximum indicated spans, trusses may require six or more panels. Trusses with an asterisk (*) that exceed 14' in height may be shipped in two pieces. Contact your Alpine truss manufacturer for more information.

DA.

40 55

46 64

57 74

66 80*

74* 82*

2x4 2x4 2x6

39

43

47 52 70

49

53

55

56* 80* 83*

31 of 65

	Date 3/11/22	Sheet No.	of
	Job 2220068		
	Subject WALLS	TUD CAPAC	ITIES
$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$	$PS_{1}^{S_{1}} > 7.56 \cdot n^{3}$ $(p_{S_{1}})^{a} > 7.56 \cdot n^{3}$ $(p_{S_{1}})^{a} > 1.1.5$ $(r_{H})^{a} = 1.1.5$		
1010)2 e	그는 것 같아요. 아이는 것 않아요. 아이는 않아요. 아이는 것 않아. 아이는 않아. 아		
43	• •		
413 p1£ 16"/12	= 32.25 psf		
	D CAPACITY		
COMPLESSION	2.85K		
COMPRESSION	6.14LK	· · ·	
SHEAR WIND	2.38 K		
ELASTIC MODULUS	, HOOKSI		

 $p^{\prime} = \frac{1}{2}$

í.

,

Date 3/11/22	Sheet No.	of
Job 2220008		

SUBJECT WALL STUD STREMGTH

Refere	ence

BENDING FO COMPRESSION PERP For COMPRESSION PARALLEL FE

BENDING FO

Co= 0.9(0), 1.0(2), 1.15(5), 1.6(W)

CH = 1.0 (NOT EXCEEDING 197)

6== 1.0 (T=100°F)

CL = 1.0 Lds b, 6" - 2", 10 ALLORDANSLE W/ 4.4.1)

CF= 1.3(d=6", y=2")

Cfu= 1.15 (d= 6", b=2")

Ci= 1.0 (NO INCISING)

Cr= 1.15 (16"BC)

F6 = 700 psi (DOUGLAS FIR-LARCH, STUD)

WIND LOAD Fig= (700 psiX1.6)(1.0)(1.0)(1.0)(1.0)(1.3)(1.15)(1.0)(1.15)= 1925.6 psi F'b = (100 ps;)(1,3)(1.13) = 1046.5ps; LIVE

COMPLESSION PEPPENOICULAR FLL

CM=1.0 (NOT EXCEED/NB 197.)

Ct = 1.0 (T = 100°F)

Ci= 1.0 (NO INCISING)

6 = 1.19 (2" BEARING)

Fo= 625psi (DOUGLAS FIR-LARLH, STUD)

F'b= (62505 X1.0)(1.0)(1.0)(1.11) = 743.8psi

COMPRESSION PARALLEL FO

Co= 0.9 (D), 1.0(2), 1.19(S), 1.6(W))

CH= 1. OL NOT EXCEEDING 194.3

CE= 1.01 TE 1000F)

G= 1.1 (d=6", b=2")

Ci= 1.0(NO INVISING)

Cp= 0.24

33	of	65
----	----	----

Date	3/11/22	Sheet No.	of	
Job	2220068			

Subject WALL STUD STRENGTH

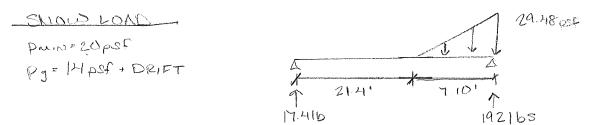
Reference

STRUNDO AX'S CP= L=15'0"	
$l_{e} = (1.0)(16'-0'') = 16'-0''$	
$F_{ce} = \frac{0.822(510,000)}{(16-0''/65'')^{-1}} = 391.44$	
$F_c = 860 psi$	
$C_{p} = \frac{1 + (39124/250)}{2(0.87)} - \int \left[\frac{1 + (391.47850)}{2(0.87)}\right]^{2} = \frac{391.47850}{0.85}$	
Cq=0.37	
$F_e = 850 \text{ ps}$:	
DEAD LOAD Fic: (850ps:)(0.9)(1.0)(1.0)(1.1)(1.0)(0.37))=311.41 ps:	
LIVE LOAD F'S = (850 psi)(1.0)(1.0)(1.0)(1.1)(1.0)(037)=346.0051	
WEAKAXIS $C_P = L = H - 0^{\circ}$	-
le = (1.0)(4'-0")= 4'-0"	
$F_{ce} = \frac{0.8221610, 0000}{(4' \cdot 0''/1.5'')^2} = 4091, 21 \text{ ps};$	
(4'.0"/1.5")2	
$F_{c} = 860 psi$	
$C_{p} = 1 + (409.41/850) - \int \left[\frac{1 + (409.41/850)}{2(0.8)}\right]^{2} - \frac{409.41/850}{0.85}$	
Cp=0.39	
$F_c = 850gs$	
DEAD LOAN F'L= (850psi)(0,9)(1.0)(1.0)(1.1)(1.0)(0.39) = 328.2ps:	
LIVE LOAD FL = (150 psi)(1.0)(1.0)(1.0)(1.0)(0.0)(0.39) = 3641.7psi	
SHEAR FU	
CD = 0.9(D), 1.0(L), 1.15(S), 1.4(W)	
CM = 1.0 (NOT EXCEEDING 19%)	
$C_{\pm} = 1.0 \ (T \le 100 \text{ oF})$	
$C_i = 1.0$ (NO insusing)	
$F_{V} = 180 \text{ ps}$	
DEAD LOAD Fi= (0.9)(1.0)(1.0)(1.0)(180psi)= 162psi	
UVE LOAD FV= (1.03(1.0)(1.0)(1.0)(180 psi)= 180 psi	
WINO WARD FYFLI. 63(1.0)(1.0)(1.0)(1.0)(180psi) = 288psi	

Ċ,

Date 3/11/22	Sheet No.	of
Job 2220068		
Subject WALL S	TUD STRENG	TH

		Reference
Ē	LASTIC MODULUS E'	
-	CM=1.0 (NOT EXCEEDING 191.)	
	$C_{E} = 1.0$ LTG 100°F	
	$C_i = 1.0$ (nou inclusion)	
	E = 1400,000 ps:	
	E'= 1,400,000 psi	
		· · ·



Date 3/11/22	Sheet No.	of	
Job 2220068			
Subject LOAD ON	WALLS		

DEADLOAD

20psf

LIVE LOAD 2005f

$$\frac{-TA}{(123015T + 0)EEHMIN(6)) \cdot 2} (\frac{28.6}{2} + 5) 16"/12 = 26.673f$$

TOTAL LOAD ON WALL

 $D+L = (20psf + 20psf) \frac{33}{2} \frac{D}{c}f = 660 \text{ Ho} = 0.66 \text{ K}$ $D+S = (20psf + 14psf) \frac{33}{2} \frac{0}{c}sf + 19216 = 753 \text{ Ho} = 0.75 \text{ K} \leftarrow CONTROLS$

STUD CAPACITY

Date 3/31/22	Sheet No.	of
Job 7.220068		
Job 2220068		

WIND LOAD (1.0)

CC ZANE 5-29 Spsf (15')(16"/12)=20sf

STUD CAPACITY

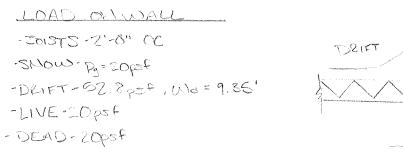
BENDING - 32.25 psf

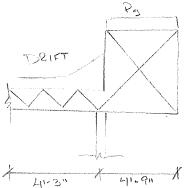
- ASD LOADS
- 0.60+0.60
- 1.012-0.60
- 100-0.48LN + 0755
- UNITY CHECK
- -1.00+0.600(20pst)(3372)(16712) + 17.7pst = 0.10+0.55 = 0.7 410 0K2.85K + 32.25pst = 0.10+0.55 = 0.7 410 0K
- -1.0D + 0.45W + 0.755 + 0.45(29.5051) + 0.75((14p3+)(351/2)(161/12) + 19216) + 0.255K + 0.75((14p3+)(351/2)(161/12) + 19216) + 0.255K +
 - = 0.15 + 0.41 + 0.13 = 0.69 41.0 OK

Date 3/28/22	Sheet No.	of	
Job 2220068			
Subject 191.6" HE	ADER - SOUT	HWALI	

$$\frac{LcAC(ANC)}{G(AN)(TM - T(B))(T2 = 382p)(S)} = \frac{1}{P(S_{0})} = \frac{1}{P(S$$

Mu= 3.20.00 316-H= 60,009 16-H.OK


Date 3/28/22	Sheet No.	of	
Job 2220068			
Subject 10' HEADE	8		


10ADING

BOO - 15' TO = (12)(10') + (12)(10' - 3' - 8'') = 5.86' HEADER FT = (5.86')(10') = 58.66'WALL CEC = 13.8psf (D.6 ASD) GRAVITY - 28.50 (40 pof)= 1140p18 (D+2 NO DRIFT) + -28-50 (34pst)=969 pif + 19516/2 = 1067. pif (D+ Sprift) WALL GRAVITY - 48pst. 5' = 240pif TOTAL GRAVITE = 1140 + 240 = 1380p19 HEADER STRENGTH - GRAVITY $V_{y} = (1380 p) \frac{P}{2} (10') = 690016$ Mx = (1380 p1 f)(102) = 17,250 16-A TRY (3) 9.12 x1.12 LVL Nu= 3(2708165=812416 - 690016 Mu= 3/698216-A)= 1794616-A>17,25016-A DEFLECTION 4/600 = 10:12 = 0.27/in I= (3.1.5")(9.5)3 = 321.51 in" ∆= <u>5(1380 p1f/12)(0'.12)</u> = 0.48in 384(2.10°psi)(321 51in") = 0.48in TRY (3)14" x 1-1/2" I= (3-15")(1+1")3 = 1029:1" Δ = 5(1380 p)f/12)(10:12) = 0.15:Λ < 0.2411Λ OK 384(2:10+ps:)(1029:14) USE (3) 14" 11-12" LVL LATERAL DEFLECTION I= (1+1" (1+6") = 106.3125 in " $\Delta = \frac{5(13.7p3F \cdot 5.86'/12)(10.12)''}{384(2.106p3)5(100.31)A''} = 0.08in$ OK

Date 3/23/22	Sheet No.	of	
Job 2.220068			
Subject EAST WAL	LHEADER	GRAVITY	

REAMBOY RESULTS

DHS

43416 = 217p1 (200F)

1

WALL DEAD IDAD

-EXTERIOR STUD WALL WY BRICK VERIER - 48 PSF

·48psf ·61 = 240plf

TOTAL LOAD

(240plf+217plf) = 460plf

Mu= 20,80016-H Vu= 437016

TRY (3) 20" × 1"2" LVL

M: 3.24.408 10-A + 20 80016-A OK

V: 3.570016 + H37016

DEFLECTION

 $\frac{5(460 \text{pH}/12;n)(19:12)4}{384(2\cdot10^{\circ}\text{ps:})(3\cdot1000;n^{4})} = 0.23 \text{ in}$

 $\frac{L}{600} = \frac{14^{\circ} \cdot 12}{600} = 0.45.6in$

0.23in 40.456 in OK

Date 3/23/22	Sheet No.	of
Job 2220048		
Subject EAST WAL	L HEADER	LATERAL

I= (20)(5.5)3 = 0.57in

LIALL LOAD

- WIND CEC
- (12)(5) + (12)(10) = 7.51
- TA = (19')(7.5')= 142.5sf
- 1.0W 21.7psF
- -0.6W -13.0psf
- (Bpsf)(7.51) = 97.5 pip

DEFLECTION

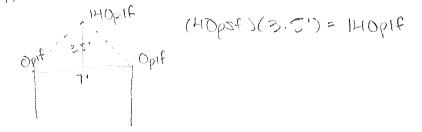
5 (14.5 p1+/12")(19.5.12)" 384(2.10"ps; > (332.7512)"

=0.67:1

- Ireg = Cully 384E DWAX AMAX = Acol · AHEADEX
- Aux= 91.12 = 0.456
- <u>A COL</u> E STUCS C IE' I = (<u>6.1.5.2)(6.5')⁵</u> = 102.98:0"

	И
6	

V = (97.6p19.2(19.2) = 926.2516 $\Delta = (0.926K)(5.12)^{2} (10.12)^{2} = 0.61in$ $3(1400Ksi)(103.98in^{4})(15.12)$


USE HSS 5×5×3/8-0.14:~

D.STIA+ O.HLIA = 0.711

Date 3/3/22	Sheet No.	of
Job 2220068		
Subject DRIVE TH	ROUGH HEP	NOER

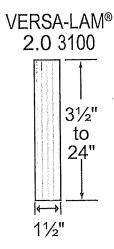
HEADER OVER OPENIONS

-SEE FISH BUTPUT FOR (3) ZX10 MEMPER OK

etail Report: M1		Unity Check: 0	.378 (shear)	Load Combi	nation: LC 1: LOA
NY A	y III	nput Data:			
	x	Shape:	3-2X10 (nominal)	l Node:	N1
	7	Member Type:	Beam	J Node:	N
z	7	Length (ft):	7	I Release:	Fixed
		Material Type:	Wood	J Release:	Fixed
		Design Rule:	Typical	l Offset (in):	N/A
		Number of Internal Sections	s: 97	J Offset (in):	N/A
Vaterial Properties:					
Material:	DF	Grade:	No.1	Nu:	0.3
Туре:	Solid Sawn	Cm:	No	Therm. Coeff. (1e⁵°F⁻¹):	0.3
Database:	Visually Graded	Emod:	1	Density (k/ft³):	0.03
Species:	Douglas Fir-Larch				
Shape Properties:					
F _b (ksi):	1	E (ksi):	1700	b (actual) (in):	4.5
F _t (ksi):	0.675	Emod:	1	d (actual) (in):	9.2
F _v (ksi):	0.18	COV _E (Table F1):	0.25	# of Plies:	:
F_{c} (ksi):	1.5	E _{min} (ksi):	621.025	К _f :	0.
Design Properties:		C .	1	Max Defl Ratio:	L/1000
le2 (ft):	N/A	C _D :		Max Defl Location:	L/ 1000
le1 (ft):	N/A	R _B :	6.194	Span:	N/J
le-bend top (ft):	N/A	C _L :	0.997	opun	
le-bend bot (ft):	N/A	C _r :	1		
К _{у-у} :	1	C _{fu} :	1.2		
К _{z-z} :	1	C _P :	0.41		
y sway:	No	K _f :	0.6		
z sway:	No	,			
	. I I	· · · · · ·			
•		N	11		
N1					N2
Diagrams:					
5		-		-	
		-			
		y Deflectio		z Deflection (in	
1]	on (m)		()
		-			
-		-			
-				-	

0 at 7 ft -0.262 at 0 ft Torsion (kip-ft)	z-z Moment (kip-ft)	y-y Moment (kip-ft)
Axial Stress (ksi)	Bending Compression Stress (ksi)	Bending Tension Stress (ksi)

AWC NDS-18: ASD Code Check


Limit State	Required	Available	Unity Check	Result
Applied Loading - Bending/Axial		-	- 	-
Applied Loading - Shear + Torsion				-
Axial Compression Analysis	0.000 ksi	0.614 ksi		_
Axial Tension Analysis	0.000 ksi	0.743 ksi	-	-
Flexural Analysis, Fb1'	0.000 ksi	1.097 ksi	-	- -
Flexural Analysis, Fb2'	0.000 ksi	1.32 ksi		-
Bending & Axial Compression Analysis			0.000	Pass
Bending & Axial Tension Analysis	-	_	0.000	Pass
Shear Analysis	0.068 ksi	0.18 ksi	0.378	Pass

VERSA-LAM® Products

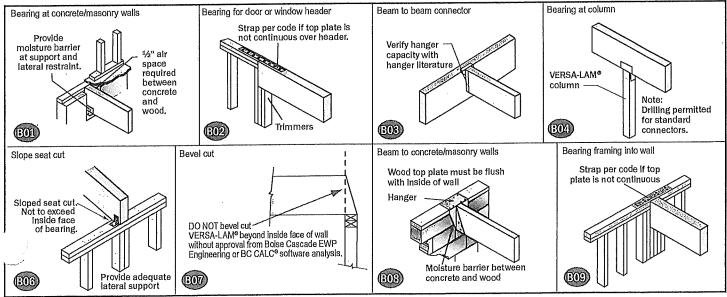
An Introduction to VERSA-LAM® Products

When you specify VERSA-LAM® laminated veneer headers/beams, you are building quality into your design. They are excellent as floor and roof framing supports or as headers for doors, windows and darage doors and columns.

Because they have no camber, VERSA-LAM® LVL products provide flatter, quieter floors, and consequently, the builder canexpect happier customers with significantly fewer call backs.

11/2" VERSA-LAM® 2.0 3100 Design Values

Design Proper	ty	
Grade		2.0 3100
Modulus of Elasticity	E(x 10 ⁶ psi) ⁽¹⁾	2.0
Bending	F _b (psi) ⁽²⁾⁽³⁾	3100
Horizontal Shear	F _v (psi) ⁽²⁾⁽⁴⁾	285
Tension Parallel to Grain	Ft (psi) ⁽²⁾⁽⁵⁾	2150
Compression Parallel to Grain	F _{cII} (psi) ⁽²⁾	3000
Compression Perpendicular to Grain	F _c 上 (psi) ⁽¹⁾⁽⁶⁾	750
Equivalent Specific Gravity for Fastener Design	(SG)	0.5



2

- This value is based upon a load duration of 100% and may be adjusted for other load durations. 2.
- Fiber stress bending value shall be multiplied by the depth factor, $(12/d)^{1/9}$ where d = member 3. depth [in].
- Stress applied perpendicular to the gluelines.
- Tension value shall be multiplied by a length factor, (4/L)^{1/8} where L = member length [ft]. Use 5. L = 4 for members less than four feet long.
- Stress applied parallel to the gluelines.
- Design properties are limited to dry conditions of use where the maximum moisture content of the material will not exceed 16%.

Width	Depth	Weight	Allowable Shear [lb]	Allowable Moment [ft-lb]	Moment of Inertia [in⁴]
[in]	[in] 31⁄2	[lb/ft] 1.4	201 898	907	5.4
	51/2	2.2	1568	2131	20.8
	71/4	2.9	2066	3590	47.6
	91⁄4	3.8	2636	5688	98.9
	9½	3.9	2708	5982	107.2
417	11¼	4.6	3206	8233	178.0
1½	111/3	4.8	3384	9118	209.3
	14	5.7	3990	12443	343.0
	16	6.5	4560	16013	512.0
	18	7.3	5130	20003	729.0
	20	8.1	5700	24408	1000.0
	24	9.8	6840	34443	1728.0

ERSA-LAM[®] Beam Details

VERSA-LAM[®] Installation Notes

- Minimum of 1/2" air space between beam and wall pocket or adequate barrier must be Provided between beam and concrete/masonry. Adequate bearing shall be provided. If not shown on plans, please refer to load tables in
- your region's Specifier Guide.

VERSA-LAM® beams are intended for interior applications only and should be kept as dry as possible during construction.

Continuous lateral support of top of beam shall be provided (side or top bearing framing).

wallace
design
collective

Date 3/24/22	Sheet No.	of	
Job 2220068			
Subject / (V MEMOR	12 CERTAR	6 / / / /	

COL VS SEL

WIND LOAD - 12. Opsf (ASD), 97. Spif, 92610 CID. ONSCOL

114" STEEL COL

 $\Delta = (0.926K)(C^{1/2})^{2}(10^{1/2})^{2} = 0.19in$ $3(29000KS)(16.0in^{4})(16^{1/2})$

218 STEEL COL

 $\Delta = (0.926 \text{ KN}(6:12)^2 (10'.12)^2 = 0.14 \text{ in}$ (3)(29000 KS)(21.7 in)(10'.12)

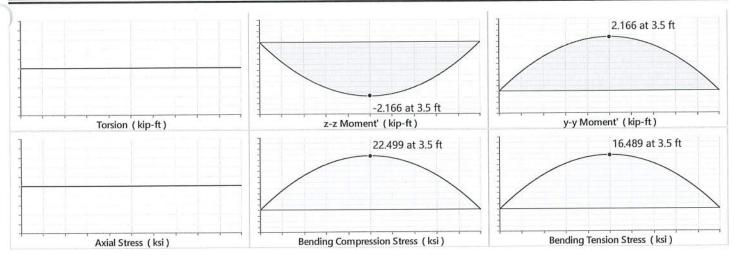
112" STEEL COL

- A = <u>(0.926Ki)(6.12)²(10'12)²</u> = 0.12in (3)(29.000 K3:)(26.0in⁴)(15'.12)
- $\frac{\xi_{1}}{I} + \frac{g_{1}}{g_{1}} + \frac{g_{1}}{g_{1}} + \frac{g_{1}}{g_{2}} + \frac{g_{1}}{g_{2}$
 - & = (0.9210K)(6.12) + (10.12)2 = 0.40in 135(2000 KSi 5(111.64: ")(16:12) = 0.40in

 $\frac{G'14'' \times 14'' PSL}{12} = 168.82in''$

$$\Delta = \frac{(0.9216 \text{ K})(-112)^2}{(3)(2600 \text{ K}=1)(168.821 \text{ K})(15.12)} = 0.26 \text{ in}$$

$$\frac{5''H'' \times 18'' PSL}{I^2} = 217.05in''$$


$$\int = (0.926K)(c_{1.12})^{4}(10.12)^{2} = 0.20in$$

$$\int = (0.926K)(c_{1.12})^{4}(10.12)^{2} = 0.20in$$

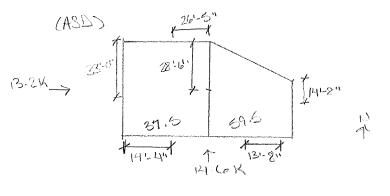
etail Report: M1		Unity Check: 0.788 (axia	l/bending)	Loac	l Combination: LC 1: LOA
¢y ¢y	I	nput Data:			
	×	Shape: Member Type: Length (ft):	L5X5X5 Beam 7	I Node: J Node: I Release:	N1 N2 Fixed
→ ^z	> ^z	Material Type:	Hot Rolled Steel	J Release:	Fixed
		Design Rule: Number of Internal Sections:	Typical 97	l Offset (in): J Offset (in):	N/#
Material Properties:	I however				
Material:	A36 Gr.36	Therm. Coeff. (1e ⁵ °F ⁻¹):	0.65	R _y :	1.
E (ksi):	29000	Density (k/ft³):	0.49	F _u (ksi):	5
G (ksi):	11154	F _y (ksi):	36	R _t :	1.
Nu:	0.3	,			
Shape Properties:					
d (in):	5	Area (in²):	3.07	J (in ⁴):	0.10
b _f (in):	5	I _{yy} (in⁴):	7.44	r _z (in):	0.9
t (in):	0.313	l ⁷ _{zz} (in ⁴):	7.44	k* (in):	0.81
Design Properties:					~~~~
L _{b y-y} (ft):	N/A	К _{у-у} :	1	Max Defl Ratio:	L/34
$L_{b z-z}$ (ft):	N/A	К _{z-z} :	1	Max Defl Location:	3
L _{comp top} (ft):	N/A	y sway:	No	Span:	
L _{comp bot} (ft):	N/A	z sway:	No		
L _{torque} (ft):	N/A	Function:	Lateral		
<u>)</u>		Seismic DR:	None		
		M1			
9					••••••••••••••••••••••••••••••••••••••
N1					INZ.
Diagrama		3]	
Diagrams:					/
					0.1.1.1.2.5.5
		y Deflection (i	<u>3 at 3.5 ft</u> n)	z Defle	-0.144 at 3.5 ft
-]1.75 at 0 ft			
				-	
		1	-1.75 at 7 ft	-	

AISC 15th (360-16): ASD Code Check

Limit State	Required	Available	Unity Check	Result
Applied Loading - Bending/Axial				
Applied Loading - Shear + Torsion			4	(1 4)
Axial Tension Analysis	0.000 k	66.18 k		
Axial Compression Analysis	0.000 k	44.065 k	-	-
Flexural Analysis (Strong Axis)	2.166 k-ft	7.794 k-ft	-	
Flexural Analysis (Weak Axis)	2.166 k-ft	4.247 k-ft	-	-
Shear Analysis (Major Axis y)	1.75 k	20.242 k	0.086	Pass
Shear Analysis (Minor Axis z)	0.000 k	20.242 k	0.000	Pass
Bending & Axial Interaction Check (UC Bending Max)		-	0.788	Pass

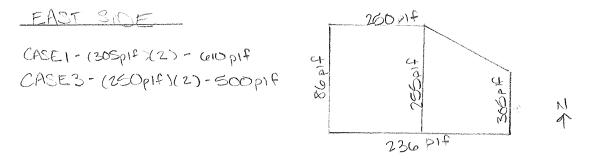
48 of 65

wallace design collective


LATERAL SYSTEM

wallace design collective, pc structural - civil - landscape - survey

structural - civil- landscape - surva 1741 mcgee street kansos city, missouri 64108 816.421.8282 - 800.364.5858 wallage design


49 of 65

SHEARING WALL GLCK. 1000 = 236 PIF SHEAR IN NI WALL G. OK . 1000 = 250 PIF 26.42 SHEAR IN E WALL (29.75/97)(14.60K) = 305, PIF SHEAR IN CENTRAL WALL 7.3K 256 PIF SHEAR IN W WALL (18.75/97)(14.60K) = 8 60 PIF

Date	3/11/22	Sheet No.	of	
Job	2220068			
Subje	ect DIAPHRAGM	SELECT	FION	

USE 80 1-3/8 W/ 15/32 PANEL THICKNESS 2" NAILED FACE

CASE 1 · WYOPIF = 335 pif > 305 pif OK

CASE3 - 50501 = 252.5 pif + 250pif OK

 $\frac{10EST SIDE}{CASE 1 - (265 pif)(2) - 610 pif}$ CASE 3 - (260 pif)(2) - 600pif SAME SHEAR WALL DESIGNATION AS ABOVE CASE 1 - (607pif) = 335 pif + 260pif OK CASE 2 - 605pif = 252.5pif + 260pif OK

Table 4.2C Nominal Unit Shear Capacities for Wood-Frame Diaphragms

phragms ^{1,2,3,4,5}
Dia
Panel
tructural
od S <u>1</u>
Woo
ocked
Unblc

											And 14	
							۷				ß	~
							SEISMIC				MIND	D
		Minimum Fastener	Minimum Nominal	Minimum Nominal Wi dt h of Nailed Face at	6 in. Na	ail Spacin and supp	in. Nail Spacing at diaphragm boundaries and supported panel edges	ngm bou I edges	ndaries	6 diapl suj	i ìn. Nail S hragm bo pported p	6 in. Nail Spacing at diaphragm boundaries and supported panel edges
Sheathing Grade	Vail Size	Penetration in Framing	Panel Thickness	Supported Edges and	ບ <u>ັ</u>	Case 1	Ŭ 	Cases 2,3,4,5,6	,4,5,6	Case	se 1	Cases 2,3,4,5,6
		(in.)	(in.)	Boundaries (in.)	V _s	ບຶ	Vs		ື່ຍ		×.	×
					(plf)	bs/ii	(plf)	<u>S</u>	(kips/in.)	<u>a</u>	(pif)	(JId)
				6		0.25 PLY 9.0 7.0		a co	4.5 4	 	460	350
	pg	1-1/4	5/16	10	370 7		280	4.5	4.0	27.	520	390 -
Structural	pg	1-3/8	3/8	сл ю	480 8 530 7	8.5 7.0 7.5 6.0		6.0 5.0	4.5 4.0	20 20	670 740	505 560
	10d	1-1/2	15/32	о 7				9.5 8.0	7.0 6.0	ŏŏ	800 895	600 670
	2		5/16	сл ю	300 340 340		5 220 5 250	6.0 5.0	4.0 3.5	4 4	420 475	310 350
	Do	-1/4	3/8	0 0		7.5 5.1 6.0 4.1		5.0 4.0	3.0 3.0	4 10	460 520	350 390
			3/8	3 0		9.0 6.5 7.5 5.5		6.0 5.0	4.5 3.5	ق ق	600 670	450 505
Sheathing and Single-Floor	8d	1-3/8	7/16	0.0				5.5 4.5	4.0 3.5	ġŅ	645 715	475 530
- - -			15/32	20 0		7.5 5.5 6.5 5.5	-	5.0	4.0 55	9 2	670 740	505 560
			15/32	0 0 0				0 0 0 0 0 0 0 0	0.0 r 0.0 r		715 810	530 600
	p01	1-1/2	19/32	р (N (N				8.5 7.0	2.0 2.0		800 895	670 670
 Nominal unit shear capacities shall be adjusted in accordance with 4.2.3 to de- termine ASD allowable unit shear capacity and LRFD factored unit resistance. For general construction requirements see 4.2.6. For specific requirements, see 4.2.7.1 for wood structural panel diaphragms. See Appendix A for common 	pacities shall be ad e unit shear capacit on requirements s ructural panel diap	jjusted in accordance ty and LRFD factore ee 4.2.6. For speci hragms. See Appene	e with 4.2.3 to de- ed unit resistance. ific requirements, dix A for common	ગ્ર ુ છે. સં		Cases 1&3 Panel Joints to Framing	Cases 1&3:Continuous Panel Joints Perpendicular to Framing		Cases 2&4: Continuous Panel Joints Parallel to Framing	ntinuous allel to	Cases 58 Panel Join dicular ar Framing	Cases 5&6: Continuous Panel Joints Perpen- dicular and Parallel to Framing
nail dimensions. 2. For species and grades of framing other than Douglas-Fir-Larch or Southern Pine, reduced nominal unit shear capacities shall be determined by multiplying the tabulated nominal unit shear capacity by the Specific Gravity Adjustment Factor = [1-(0,5-G)], where G = Specific Gravity of the framing lumber from the <i>NDS</i> (Table 12.3.3A). The Specific Gravity Adjustment Factor shall not be greater than 1.	s of framing other iunit shear capaciti unit shear capacity where G = Specific (A). The Specific	than Douglas-Fir-I les shall be determin y by the Specific Gr Gravity of the fran Gravity Adjustmen	arch or Southern ed by multiplying avity Adjustment ning lumber from it Factor shall not		Long Panel Direction Perpendicular to Supports		Case 1 Franks	Case 4		Franking Contriveure paral joints	tttt peq peq tttt peq 98DD	6 Frankog 11 Contraction (1994) Contraction provident
 Apparent stream suttuces varues, O₅, are eased on nati stip in naturating with moisture content less than or equal to 19% at time of fabrication and panel stiffness values for diaphragms constructed with either OSB or 3-ply plywood panels. When 4-ply or 5-ply plywood panels or composite panels are used, G₅ values shall be permitted to be multiplied by 1.2. Where moisture content of the framing is greater than 19% at time of fabrica- tion, G₈ values shall be multiplied by 0.5. Diaphraem resistance denends on the direction of continuous nanel ionits. 	ess values, C_{in} are than or equal to 1 thuragms construct :5-ply plywood par ted to be multiplied in of the framing it e multiplied by 0.5 chemends on the	2% obsert on national sup- left with either OSB del with either OSB d by 1.2. d by 1.2. s greater than 19% (firection of continu-	o in training with ication and panel or 3-ply plywood anels are used, G _a at time of fabrica- nons nanel ioints	Long Panel Direction od Parallel to Supports ⁴ G _a	Direction Supports ^a	τιτι ττιτι ε ^{φερ} 3	Case 1 Last 1 La	Cose A Powersking Cose A		Franting		6 Frenhag

AMERICAN WOOD COUNCIL

(a)

with respect to the loading direction and direction of framing members, and is independent of the panel orientation.

5. Diaphragm resistance depends on the direction of continuous panel joints

23

Date 3/11/22	Sheet No.	of	
Job 2220062			
Subject SHEAR M	IAUL SELEC	MON	

NORTH WEST, WALLS

MAX W. = 2EOPIF SAME DESIGNATION AS ABOVE 263p1F - 250p1F OK

$$\frac{EAST WALL, CENTRAL}{NAX Wu = 300 ptr - 2 = 610 ptr - 2 = 610 ptr - 2 = 377.5 ptr - 305 ptr - 2 = 755 ptr - 377.5 ptr - 305 ptr - 2 = 755 ptr - 377.5 ptr - 305 ptr - 2 = 755 ptr - 377.5 ptr - 305 ptr - 2 = 755 ptr - 377.5 ptr - 305 ptr - 2 = 755 ptr - 377.5 ptr - 305 ptr - 377.5 ptr - 305 ptr - 377.5 ptr - 375.5 ptr - 377.5 ptr - 375.5 p$$

Nominal Unit Shear Capacities for Wood-Frame Shear Walls^{1,3,6,7} 4.3A Table

Wood-based Panels⁴

Sheathing Minimum Sheathing Panel Material Thickness (in.)	Minimun						SE	A SEISMIC						А	WIND	
		Fastener				Panel	Edge Fas	tener S	Panel Edge Fastener Spacing (in.)				à.	anel Ed	Panel Edge Fastener Spacing (in.)	ner
		Type & Size		6			4	 	3			2	9	4	n	7
	ess Member or	L.,	٧s	ບຶ	`	۷s	ບຶ	V _s	ືບຶ		٧s	ຶ	>	>	~	>
			(plf)	(kips/in.)		(plf) ((kips/in.)	(plf)	(kips/in.)		(pif)	(kips/in.)	(plf)	(pif)	(plf)	(plf)
		Nail (common or galvanized box)		OSB P	РЦҮ	ŏ	OSB PLY		OSB F	ΡLΥ	ο	OSB PLY				
	6 1-1/4	6d	400					_		Ì					·	1430
			460			720 2		920			1220	43 24	645 715	1010	1290	1710 1875
Structural 1 ^{4.5} //16 ⁻ 15/32	2	Ø	560 560	0 4	5 E		zi 15 18 14			» [-		tu 24 37 23				2045
15/32	2 1-1/2	10d	680		16 10			-		ŀ				1430	1860	2435
	6 1-1/4 3	9q	360 400	t 13			18 12 15 11		24 20	14 13 1		37 18 32 17			980 1090	1260 1430
	1-3/8		440 480		12 6 ² 11 7(640 2 700 2					1060 1170	45 20 42 21	615 670	895 980	1150 1260	1485 1640
Panels – 15/32 Sheathind ^{4,5} 15/32		3)	520												1370	1790
Ľ	1-1/2	10d	620		14 92		30 17	1200		19	1540		870	1290	1680	2155
20/81	V		000		╉			1001		╉			╇	2	╀	3
Plywood 5/16	6 1-1/4	Nail (galvanized casing) 6d	280	13	4	420	16	550	17		720	21	390	590	770	1010
3/8	3 1-3/8	8d	320	16	4	80	18	620	20	-	320	22	450	-	870	1150
Particleboard Sheathing - 3/8		Nail (common or galvanized box) 6d	240	15		60	17	460			600		335		645	840
(M-S "Exterior 3/8	~	8d	260	18	ň	380	20	480			630	53	365	530	670	880
M-2 "Exterior 1/2	0		280	18	4	20	20	540			200	24	390	+	755	980
	C'	10d	370	21	ы С	50	23	720			920	25	520	220	1010	1290
5/8			400	21	. 6	10	23	790	24	· -	1040	26	560		1105	1455
Structural 1/2 Fiberboard		Nail (galvanized roofing) 11 ga. galv. roofing nail (0.120" x 1-1/2" long x 7/16" head)		. I 1	ю́	340	4.0	460	5.0		520	5.5		475	645	730
Sheathing 25/32		11 ga. galv. roofing nail (0.120" x 1-3/4" long x 3/8" head)				340	4.0	460	5.0	````	,520	5.5		475	645	730

AMERICAN WOOD COUNCIL

d

Shears are permitted to be increased to values shown for 15/32 inch (nominal) sheathing with same nailing provided (a) studs are spaced a maximum of 16 inches on center, or (b) panels are applied with long specific requirements, see 4.3.7.1 for wood structural panel shear walls, 4.3.7.2 for particleboard shear walls, and 4.3.7.3 for fiberboard shear walls. See Appendix A for common and box nail dimensions.

For species and grades of framing other than Douglas-Fir-Larch or Southern Pine, reduced nominal unit shear capacities shall be determined by multiplying the tabulated nominal unit shear capacity by the Specific Gravity Adjustment Factor = [1-(0.5-G)], where G = Specific Gravity of the framing lumber from the NDS (Table 12.3.3A). The Specific Gravity Adjustment Factor shall not be greater than 1. dimension across studs. ÷

Apparent shear stiffness values G., are based on nail slip in framing with moisture content less than or equal to 19% at time of fabrication and panel stiffness values for shear walls constructed with either OSB or 3-ply plywood panels. When 4-ply or 5-ply plywood panels or composite panels are used, Ga values sball be permitted to be multiplied by 1.2. 4

Where moisture content of the framing is greater than 19% at time of fabrication, Ga values shall be multiplied by 0.5.

Where panels are applied on both faces of a shear wall and nail spacing is less than 6" on center on either side, panel joints shall be offset to fall on different framing members. Alternatively, the width of the is is

LATERAL FORCE-RESISTING SYSTEMS

nailed face of framing members shall be 3" nominal or greater at adjoining panel edges and nails at all panel edges shall be staggered. Galvanized nails shall be hot-dipped or tumbled. 5

		<u> </u>	
Date 3/28/22	Sheet No.	of	
Job 2220068		Annalasian - A v	
Subject TOP PLA	TES		

EAST WALL

V= 305 PIF (WORST CASE)

(BOSPHE)(24"112)= 61010 (BLOCKING TRUSS SPACINGS

160 NALLS \$=0.148

-CAPACITY -118168 MABLE 12N

Z'=(18165)(1.6)=189165

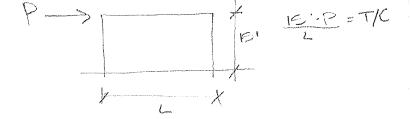
61010 = 3.22 DAILS = 4 NAILS

Date 3/28/22	Sheet No.	of	
Job 2220068			
Subject Shi Di A	TE HOID OUNK	`	

CENTRAL WALL

(7.3K)(15') = 3841216 T/C

EAST WALL


(4476)(15) = 45751571C

HOUS-SDEZ.5-5. WHEID-OK

NORTH WALL

(6.791 M.Y.E.) = 374516 T/C 27.21

HOU 4-503 2.5 - 4,56616 OK

56 of 65

wallace design collective

FOUNDATIONS

wallace design collective, pc

structural - civil - landscape - survey 1741 mogee street kansas city, missouri 64108 816.421.8282 - 800.364.5858 wallace design

)

Date 2/2/22	Sheet No.	of
Job 2120625		
Subject GRADE B	EANI	

• •

-

Date 2/11/22	Sheet No.	of	
Job 2220068			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			

Subject	COLUMN	FOUNDATION
•		

LOADS

B-zopef B-zopef

(Hopsil) (395') (570') = 22.52K

FOOTING SIZE

2000pst BELINUNG

J112657 = 3.39' = 4:0"

1



59 of 65

SUBJECT SHEAR WALL FOUNDATIONS

NORTH WALL
(6.6.K)(13.0') = 3.25 K
3-25K = 1:62SF 2KSF
JI. 425F = 1.271 = 31-0" MIN
EAST WALL
(3050183(14.67:3(13.0.) = H.OK 14.67:
$\frac{1.0K}{2KSF} = 2.5F$
JZSF = 1.41' & 3'-0" MIN

wallace design collective

, A





Date 3/29/22	Sheet No.	of	
Job 2220068			
Subject HEADEL	FOUNDATION	20	

- <u>GRAVITY</u> -12pst.5'= 60p1F -165p1F.60p1F=825p1F
  - Vu = (225p18)(19.5) = 8.0K

FOUNDATION SIZE

2.0K = 4.028F 2KSF = 2.00 - USE 3'X3' FTG 60 of 65

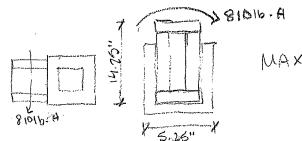
#### 61 of 65



wallace design collective

### MISCELLANEOUS

-


wallace design collective, pc structural - civil - landscape - survey ,

Structural 2004 Intercepts Starv 1741 mogee street kansas city, missouri 64108 816.421.8282 - 800.364.5852 wallace.design





Date 3129122 Sheet No. of Job 2220068 Subject HEADER SEAT STRENGTH



MAX PLATE THILKNESS = 0.75"  $\frac{(0''-3(1.5'')}{2} = 0.75"$ 

M = 13616 + A + 12' = 102016 + A + TOTAL  $\frac{A}{A}$   $\frac{102016 + A = 810 + 16 + 16 + 160E = 9.72 \text{ k-in/SIDE} \Rightarrow 4.86 \text{ k-in/PLATE}$  TIC = 81016 + A = 864165 + 864165 = 43216/PLATE  $\frac{2}{11.25''/2} = 864165 + 864165 = 43216/PLATE$   $\frac{2}{11.25''/2} = 1.516^{2}$   $\frac{2}{1.25''/2} = 1.516^{2}$   $\frac{2}{1.67} = (3685')(1.5i6') = 32.3 \text{ k-in/PLATE}$ 

32.36-11/PLATE > 41.86 K-MI PLATE OK

WELD 43216 = 0.928(3)(2) 1000 L= 0.16"

USE 16" PLATE & WELD

<u>BACK PLATE</u> V=43216.2 = 80416 (T 4 B) 80416.2=172816 0.6(30KS:)(318".15") = 72.4K (OK)



Date 3/29/22	Sheet N	o. of	
Job 2220068			
Subject TOP OF	COLOMN	CONNECTION	

·····

LOADS OUT OF PLANE ON COLUMNS

WIND CRC - 132 plf D+S TORSIDNS - 136 16/A

V = (132 pif)(12') = 792 ib/ BOLT

AWC CONNECTION CALCULATOR

- SINTALE SHEAR - (2) 2×6=3" HICK - (1) L6×11×1141

Ľ

- CO=1.6 (W1NO) - CN=1.0 - CL=1.0

\$= 318" - ASD = 841165

Design Method	Allowable Stress Design (ASD)
Connection Type	Lateral loading
Fastener Type	Bolt 🗸
Loading Scenario	Single Shear - Wood Main Member 🗸 🗸

Main Member Type	Glulam Douglas Fir-Larch 🛛 🗸
Main Member Thickness	3 in. 👻
Main Member: Angle of Load to Grain	0
Side Member Type	Steel
Side Member Thickness	1/4 in. 🗸
Side Member: Angle of Load to Grain	0
Fastener Diameter	3/8 in. ✔
Load Duration Factor	C_D = 1.6  ✔
Wet Service Factor	C_M = 1.0 ✓
Temperature Factor	C_t = 1.0 ♥

### **Connection Yield Modes**

Im	2520 lbs.	
Is	3262 lbs.	
II	1185 lbs.	
IIIm	1370 lbs.	
IIIs	841 lbs.	
IV	883 lbs.	

Adjusted ASD Capacity 841 lbs.

- Bolt bending yield strength of 45,000 psi is assumed.
- The Adjusted ASD Capacity is only applicable for bolts with adequate end distance, edge distance and spacing per NDS chapter 11.
- ASTM A36 Steel is assumed for steel side members 1/4 in. thick, and ASTM A653 Grade 33 Steel is assumed for steel side members less than 1/4 in. thick.

While every effort has been made to insure the accuracy of the information presented, and special effort has been made to assure that the information reflects the state-of-the-art, neither the American Wood Council nor its members assume any responsibility for any particular design prepared from this on-line Connection Calculator. Those using this on-line Connection Calculator assume all liability from its use.

The Connection Calculator was designed and created by Cameron Knudson, Michael Dodson and David Pollock at Washington State University. Support for development of the Connection Calculator was provided by <u>American Wood Council</u>.



Date 3	129/22	Sheet No.	of	
Job 22	200408		,	
Subject	SILL PLATE	E CONNECTION	)	

OUT OF PLANE LOADS 6' · 12' = 60' 26.9 psf (1.0W) - 9' 29.5 psf (1.0W) · 3' 10' -148p1f 130plf

<u>LESULTS</u>

SEE BEAMBOY REPORT Mu= 2.38K.H Vu= 82716 AT END

2×6 CAPACITY (1) 2x6 - 32.25psf > 29.5psf OK - 6.14K - 0.83K OK

(2) STUDS IS SUFFICIEDNT

CONVECTION

-SIMPSON A34 W/ 28) 80 NAILS BY 112" - T&B - SHEID. 2= 109016 - 82716 OK - POWDERED ACTUATED PASTEDICES - HILTIXU

Y2010/ FASTENER (2)