SFCS

Submittal Transmittal

SFCS Inc. | 1927 South Tryon Street Suite 207 Charlotte, NC 28203

PROJECT:	John Knox – Meadows Phase II 19132.00	DATE SENT:	11/5/2021
SUBJECT:	19132.00 Roof Trusses	SUBMITTAL ID:	061753-4-0
TYPE:	Submittal	TRANSMITTAL ID:	00453
PURPOSE:	Approved as Noted	VIA:	Procore

SPEC SECTION: 061753

FROM

NAME	COMPANY	EMAIL	PHONE
Daron Speight	SFCS Inc.	dspeight@SFCS.com	(704) 940-6852

ТО

NAME	COMPANY	EMAIL	PHONE
Logan Simpson	Haren Companies	lsimpson@harencompan ies.com	(913) 495-9558
Cory Davison	Haren Companies	cdavison@harencompan ies.com	(913) 495-9558
Daron Speight	SFCS Inc.	dspeight@SFCS.com	(704) 940-6852
Eric Scott	John Knox Village	escott@jkv.org	(816) 347-2700
Faye Doughty	SFCS Inc.	fdoughty@SFCS.com	(540) 682-8027
Jeff Hobbs	John Knox Village	jhobbs@jkv.org	(816) 347-2100
Justin Thompson	John Knox Village	jthompson2@jkv.org	(816) 347-2700

REMARKS:

Response (Approved as Noted) from: Chad Shepherd (Fitzpatrick Engineering Group, PLLC) Remarks:

CONTENTS QUANTITY:

1 DATED:

10/21/2021 NUMBER:

DESCRIPTION:

061753-4-0 - Submittal Form.pdf

ACTION: REMARKS:

QUANTITY:

1 DATED: 10/21/2021 NUMBER:

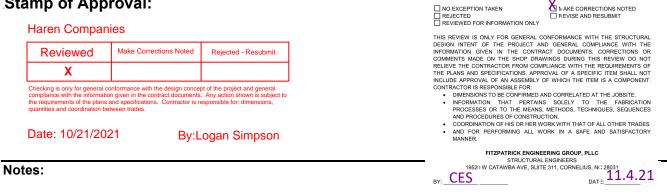
DESCRIPTION:

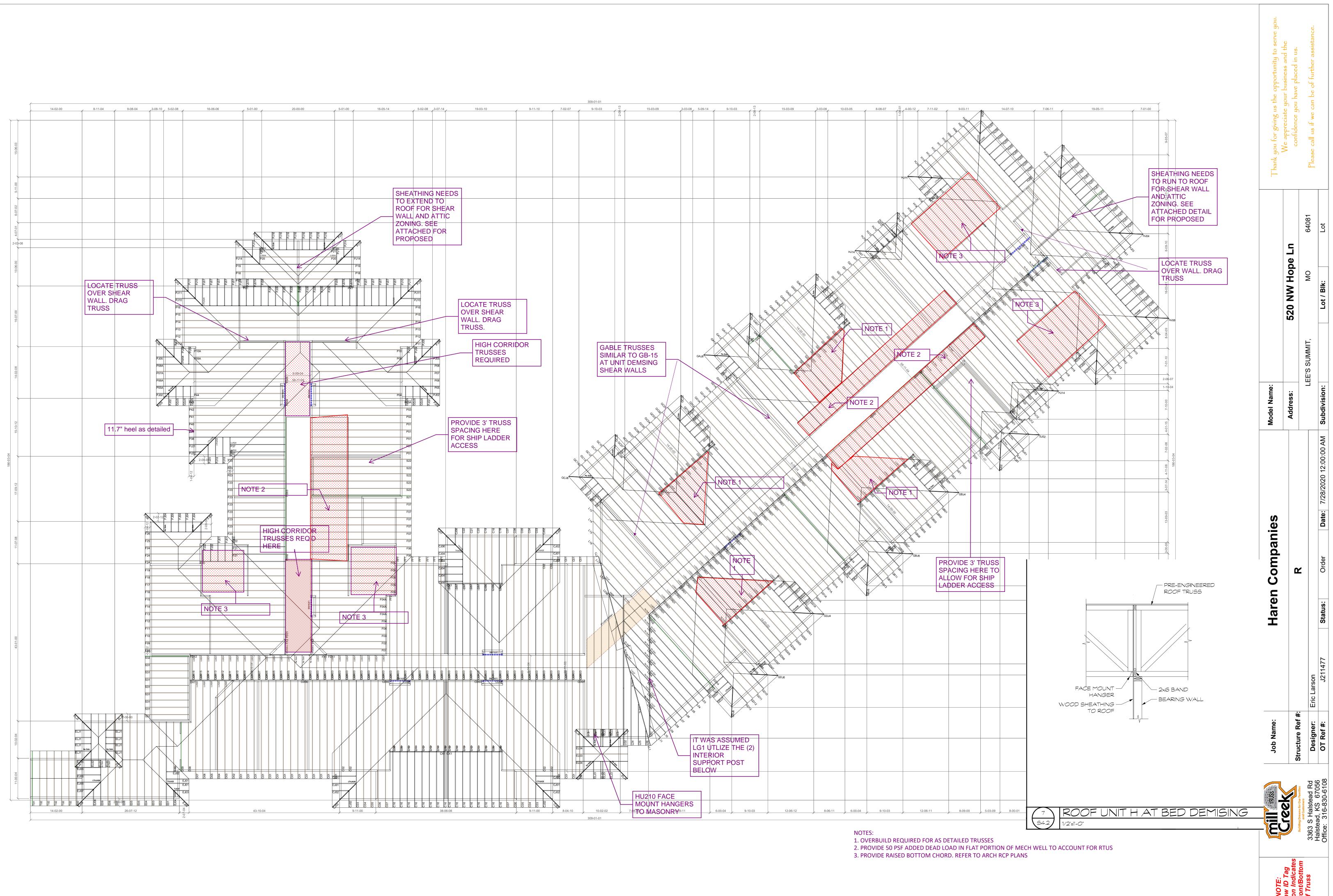
061753-4.0 - Roof Trusses SD.pdf

Submittal Transmittal DATE: 11/5/2021

ID: 00453

ACTION: REMARKS:


SHOP DRAWING REVIEW


NO EXCEPTION TAKEN

SUBMITTAL COVER

Submittal Item: Roof Trusses	DATE	October 21, 2021
	RE: Job # 11035	JKV Meadows Phase II
Spec.061753 – SHOP-FABRICATED WOODSectionTRUSSES	Submittal Type:	Shop Drawings
Subcontractor: Mill Creek Truss, LLC Contact: Eric Larson	Submittal Num.	Per ProCore

Stamp of Approval:

Yel Locat

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

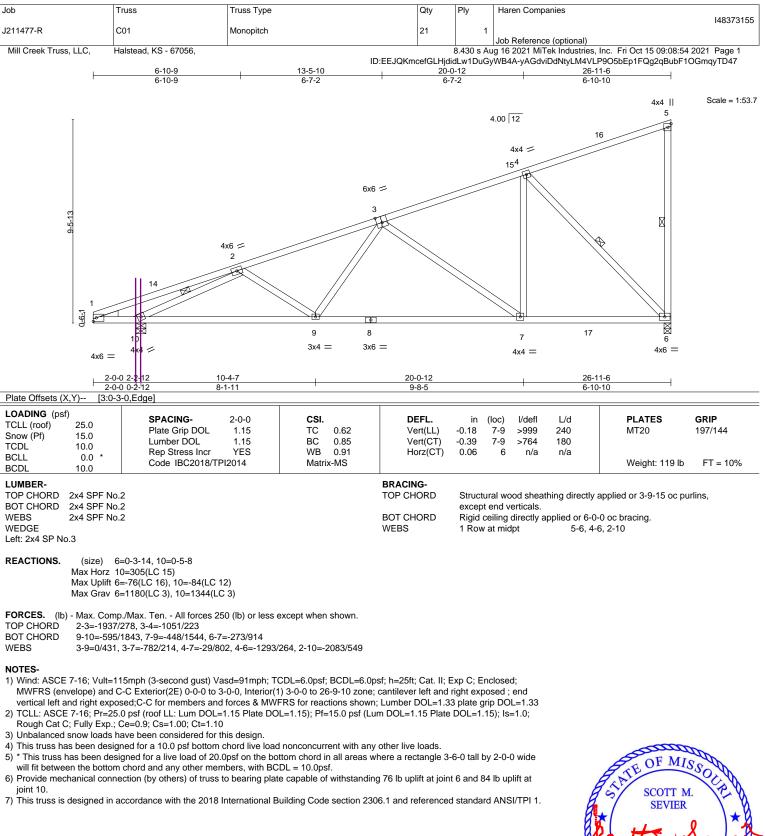
Re: J211477-R Haren Companies

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Mill Creek Truss, LLC.

Pages or sheets covered by this seal: I48373155 thru I48373553

My license renewal date for the state of Missouri is December 31, 2021.

Missouri COA: Engineering 001193

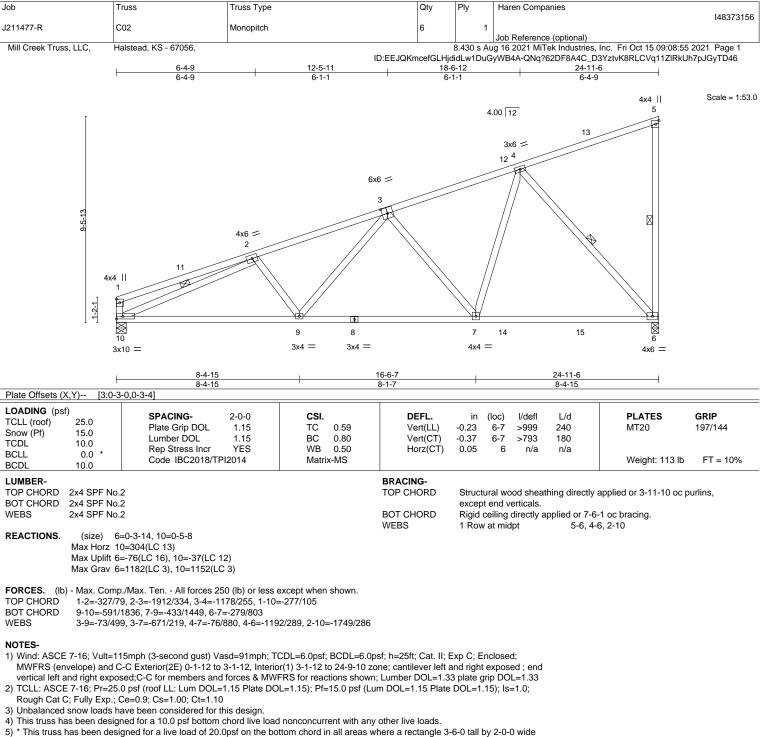


October 18,2021

Sevier, Scott ,Engineer

October 18,20

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design per ANSI/TPI 1, Chapter 2.

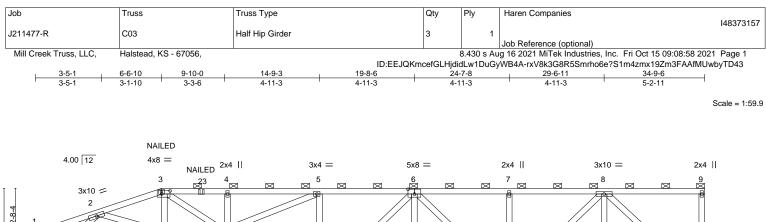


October 18,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 76 lb uplift at joint 6 and 37 lb uplift at joint 10.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

$ \begin{array}{c} 1 \\ \hline \hline \hline $	17 24 6x12 =					2.4-0
LINJA20	16		14 ¹³	12	11	10
	3x4 =	3x10 =	3x4 = 2x4	3x10 =	2x4	4x4 =

<u>2-0-02-2-12</u> 6-6-10 2-0-00-2-12 4-3-14		<u>19-8-6</u> 4-11-3		1-7-8 11-3	29-6-11 4-11-3	+ <u>34-9-6</u> 5-2-11	
	-4,0-2-0], [6:0-4-0,0-3-0]		•			0211	
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIBC2018/TPI2014	CSI. TC 0.45 BC 0.43 WB 0.69 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	-0.06 12-13 > -0.11 12-13 >	defl L/d 999 240 999 180 n/a n/a	PLATES MT20 Weight: 169 lb	GRIP 197/144 FT = 10%
LUMBER- TOP CHORD 2x4 SPF No.: BOT CHORD 2x4 SPF No.: 1-17: 2x6 SP WEBS 2x4 SPF No.:	2 *Except* F 1650F 1.5E		BRACING- TOP CHORD BOT CHORD WEBS	except end verti		applied or 6-0-0 oc pu purlins (4-6-10 max.): 3 2-4 oc bracing.	
Max Horz 19 Max Uplift 10	0=0-3-14, 16=0-5-8, 19=0-5-8 9=135(LC 11) 0=-56(LC 62), 16=-330(LC 9), 19=-158(0=1191(LC 56), 16=1957(LC 32), 19=59						
TOP CHORD 2-3=-312/28 BOT CHORD 17-18=-300 11-12=-75/2 WEBS 3-18=-23/26	./Max. Ten All forces 250 (lb) or less (31, 3-4=-45/521, 4-5=-55/519, 5-6=-830 /291, 16-17=-1914/355, 4-17=-373/149 1053, 10-11=-75/1053 67, 3-17=-749/265, 15-17=-79/934, 5-17 47, 7-12=-386/79, 8-12=-31/603, 8-10=-	/96, 6-7=-1488/116, 7-8= , 13-15=-91/1420, 12-13= /=-1486/97, 5-15=0/295,					
MWFRS (envelope); cantil 2) TCLL: ASCE 7-16; Pr=25. Rough Cat C; Fully Exp.; C 3) Unbalanced snow loads ha 4) Provide adequate drainage 5) This truss has been desigr 6) * This truss has been desigr will fit between the bottom 7) Provide mechanical conner joint 16 and 158 lb uplift at 8) This truss is designed in ac 9) Graphical purlin represent 10) Use Simpson Strong-Tie to front face of bottom ch 11) Fill all nail holes where ha	ave been considered for this design. a to prevent water ponding. hed for a 10.0 psf bottom chord live load gned for a live load of 20.0psf on the bo chord and any other members. ction (by others) of truss to bearing plat	I left and right exposed; I L=1.15); Pf=15.0 psf (Lui nonconcurrent with any ttom chord in all areas wi e capable of withstanding uilding Code section 230 intation of the purlin alon; d Hip) or equivalent at 6-7 g 0.0 deg. down.	Lumber DOL=1.33 m DOL=1.15 Plate other live loads. here a rectangle 3- g 56 lb uplift at join 6.1 and referenced g the top and/or bo 7-0 from the left en	plate grip DOL=1. DOL=1.15); Is=1.0 -6-0 tall by 2-0-0 w t 10, 330 lb uplift a d standard ANSI/T ottom chord.); ide t PI 1.	STATE OF MI SCOTT M SEVIER NUMBER PE-2001018	Service

13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Continued on page 2

5-0-4

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

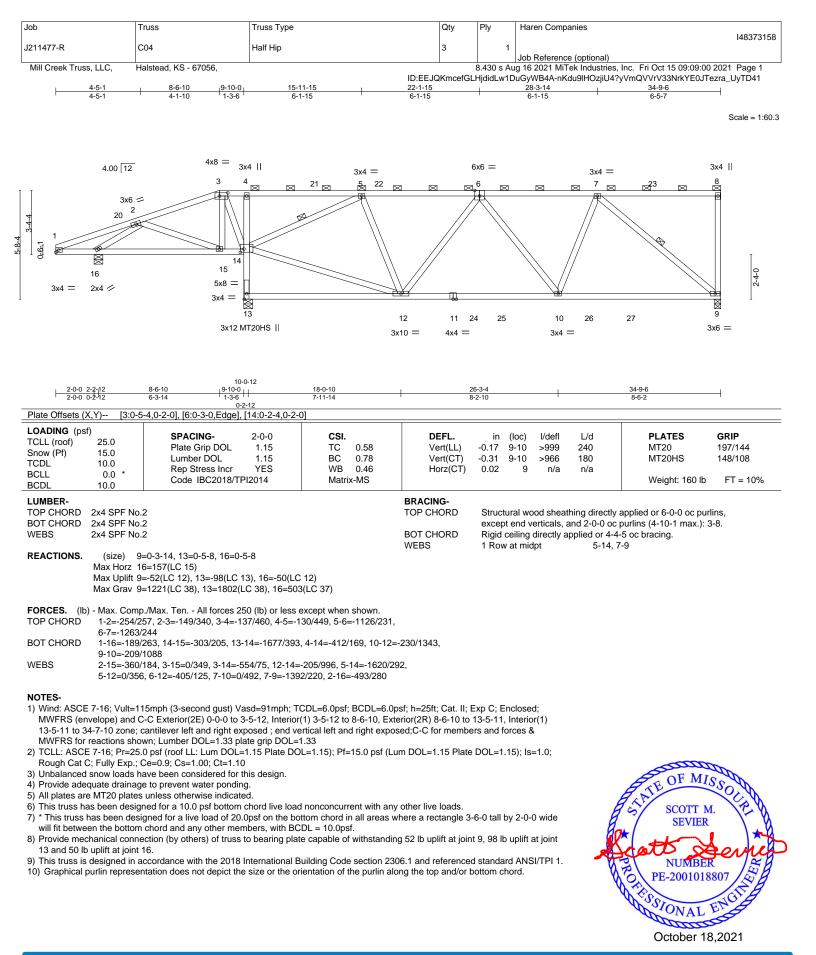
ESSIONAL

E

October 18,2021

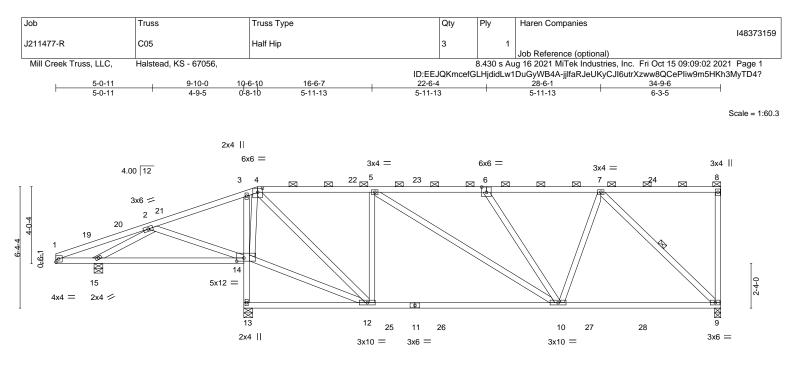
Job	Truss	Truss Type	Qty	Ply	Haren Companies
					148373157
J211477-R	C03	Half Hip Girder	3	1	
					Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:08:58 2021 Page 2
		ID:EEJQKm	cefGLHjdio	dLw1DuGy	WB4A-rxV8k3G8R5Smrho6e?S1m4zmx19Zm3FAAfMUwbyTD43

LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-50, 3-9=-50, 17-20=-20, 10-16=-20 Concentrated Loads (lb)

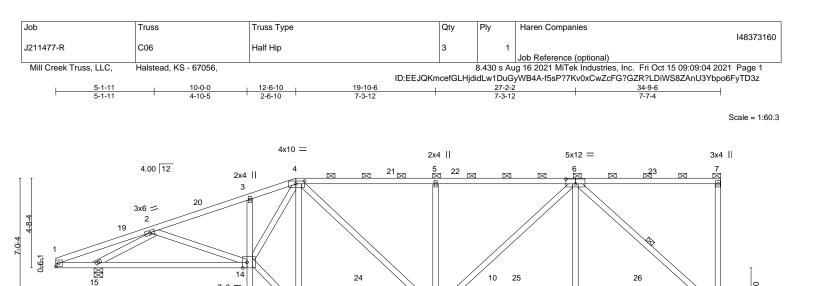
Vert: 3=-7(F) 18=-184(F) 23=-7(F) 24=-51(F)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 MiTek[°]

16023 Swingley Ridge Rd Chesterfield, MO 63017

2-0-02-2-12 2-0-00-2-12	9-10-0 7-7-4	$\frac{10-\rho_{\rm T}12}{0-2-12}$	<u>16-6-7</u> <u>6-5-11</u>	<u>26-3-</u> 9-8-1			34-9-6 8-6-2	
Plate Offsets (X,Y) [4: LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL TCDL 10.0 BCLL 0.0 BCDL 10.0 *	0-3-0,0-2-8], [6:0-3-0, Plate Grip I Lumber DC Rep Stress Code IBC2	2-0-0 DOL 1.15 DL 1.15	CSI. TC 0.56 BC 0.89 WB 0.51 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	-0.24 10-12 >	/defl L/d -999 240 -666 180 n/a n/a	PLATES MT20 Weight: 167 lb	GRIP 197/144 FT = 10%
Max Horz Max Upli	No.2	31(LC 13), 15=-65(BRACING- TOP CHORD BOT CHORD WEBS	except end ver	ticals, and 2-0-0 or 2 ticals, and 2 ticals and 2 ticals applied or 2 ticals applied o	tly applied or 6-0-0 oc pu oc purlins (4-6-1 max.): 4 4-6-9 oc bracing.	
BOT CHORD 1-15=-1 9-10=-1 WEBS 2-14=-4	9/216, 4-5=-1028/266 45/300, 14-15=-191/2 99/1006	, 5-6=-1430/348, 6 85, 13-14=-1569/3 47, 4-12=-219/134	-7=-1195/254 78, 3-14=-369/170, 10- 0, 5-12=-779/240, 5-10	-12=-166/1048,				
NOTES- 1) Wind: ASCE 7-16; Vult MWFRS (envelope) an 15-5-11 to 34-7-10 zon MWFRS for reactions s 2) TCLL: ASCE 7-16; Pre- Rough Cat C; Fully Ex 3) Unbalanced snow load 4) Provide adequate drain 5) This truss has been de 6) * This truss has been de 6) * This truss has been de 7) Provide mechanical co 13 and 65 lb uplift at jo	d C-C Exterior(2E) 0- e; cantilever left and r hown; Lumber DOL= 25.0 psf (roof LL: Lun b_i ; Ce=0.9; Cs=1.00; s have been consider lage to prevent water signed for a 10.0 psf 1 lesigned for a live load om chord and any oth nnection (by others) o	0-0 to 3-5-12, Inter ight exposed ; enc 1.33 plate grip DO 1 DOL=1.15 Plate Ct=1.10 ed for this design. pontion chord live lo of 20.0psf on the er members, with	ior(1) 3-5-12 to 10-6-10 vertical left and right e L=1.33 DOL=1.15); Pf=15.0 ps bad nonconcurrent with bottom chord in all area BCDL = 10.0psf.	 D), Exterior(2R) 10-6-10 xposed;C-C for member f (Lum DOL=1.15 Plate any other live loads. as where a rectangle 3 	to 15-5-11, Interio ers and forces & DOL=1.15); Is=1 -6-0 tall by 2-0-0 v	.0; vide	STATE OF MI	M.


8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X,Y) [4:0-5	10-0-0 10-#г12 12-6-10 7-9-4 0-1/12 2-4-14 -8,0-1-12], [6:0-6-0,0-3-0], [14:0-2-12,E(19-10-6 7-3-12 dael		27-2-2 7-3-12			34-9-6 7-7-4	_
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.83 BC 0.65 WB 0.64	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.11 8-9 -0.21 14-15 0.02 8	l/defl >999 >464 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
3CLL 0.0 * 3CDL 10.0	Code IBC2018/TPI2014	Matrix-MS	BRACING-				Weight: 168 lb	FT = 10%

11

4x8 =

3x4 =

9

2x4 ||

LUWBER-		BRACING-	
TOP CHORD	2x4 SPF No.2	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins,
BOT CHORD	2x4 SPF No.2		except end verticals, and 2-0-0 oc purlins (4-0-8 max.): 4-7.
WEBS	2x4 SPF No.2	BOT CHORD	Rigid ceiling directly applied or 4-4-0 oc bracing.
		WEBS	1 Row at midpt 6-8
REACTIONS.	(size) 8=0-3-14, 13=0-3-8, 15=0-5-8		

Max Horz 15=202(LC 15) Max Uplift 8=-54(LC 12), 13=-85(LC 12), 15=-51(LC 12) Max Grav 8=1265(LC 38), 13=1730(LC 3), 15=533(LC 43)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-293/212, 2-3=-222/322, 3-4=-160/323, 4-5=-1117/292, 5-6=-1117/292,

7-8=-261/94

2x4 💋

4x4

BOT CHORD 1-15=-139/305, 14-15=-178/256, 13-14=-1747/380, 3-14=-311/142, 11-12=-76/324, 9-11=-197/1056, 8-9=-197/1056

7x8

×

3x4 ||

12

3x4 =

WEBS 2-14=-465/197, 12-14=-85/490, 4-14=-1169/283, 4-11=-167/1069, 5-11=-621/225, 6-9=0/431, 6-8=-1390/203, 2-15=-463/361

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-5-12, Interior(1) 3-5-12 to 12-6-10, Exterior(2R) 12-6-10 to 17-5-11, Interior(1) 17-5-11 to 34-7-10 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) Provide adequate drainage to prevent water ponding.

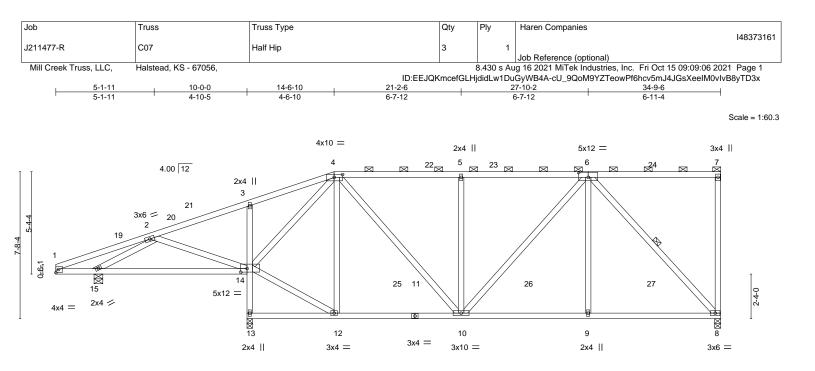
5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 54 lb uplift at joint 8, 85 lb uplift at joint

13 and 51 lb uplift at joint 15.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


2-4-0

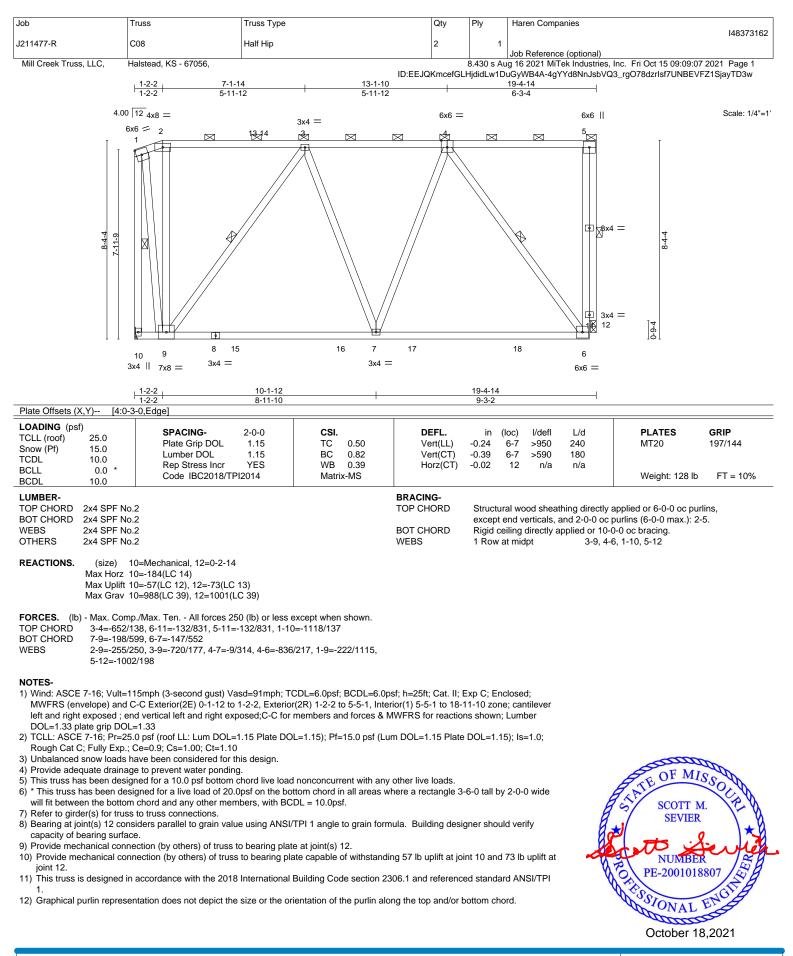
X

3x6 =

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

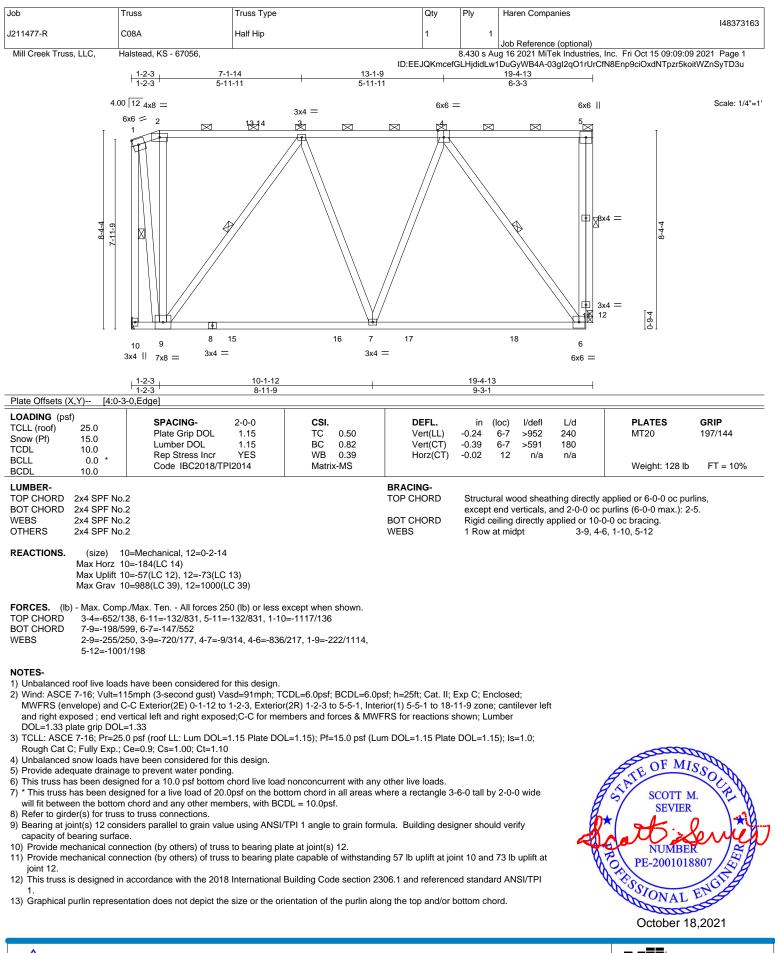
2-0-02-2-12	10-0-0 10-1 _c 12 14-6-	0 21-2-6	з ,	27-10-2	1	34-9-6
2-0-0 0-2-12	7-9-4 0-1-12 4-4-1		2	6-7-12		6-11-4
Plate Offsets (X,Y) [4:0-5	-4,0-1-12], [6:0-6-0,0-3-0], [14:0-4-0,0-2	2-4]				
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.68 BC 0.55 WB 0.82 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl -0.11 14-15 >901 -0.21 14-15 >461 0.02 8 n/a	L/d 240 180 n/a	PLATES GRIP MT20 197/144 Weight: 175 lb FT = 10%
BCDL 10.0						
Max Horz 1 Max Uplift 8	2	; ; 12)	BRACING- TOP CHORD BOT CHORD WEBS		and 2-0-0 oc	r applied or 6-0-0 oc purlins, : purlins (4-8-9 max.): 4-7. 5-15 oc bracing.
TOP CHORD 1-2=-293/2 BOT CHORD 1-15=-138/ 9-10=-193/ 9-10=-193/ WEBS 2-14=-438/	o./Max. Ten All forces 250 (lb) or less 09, 4-5=-1060/295, 5-6=-1060/295 305, 14-15=-206/275, 13-14=-1624/396 909, 8-9=-193/909 181, 12-14=-160/657, 4-14=-1075/240, 6-8=-1318/196, 2-15=-483/351	6, 3-14=-408/183, 10-12=-1	,			
MWFRS (envelope) and C 19-5-11 to 34-7-10 zone; (MWFRS for reactions sho 2) TCLL: ASCE 7-16; Pr=25. Rough Cat C; Fully Exp.; (3) Unbalanced snow loads h 4) Provide adequate drainag 5) This truss has been desig (6) * This truss has been desig will fit between the bottom 7) Provide mechanical conne 13 and 47 lb uplift at joint 8) This truss is designed in a	ave been considered for this design. e to prevent water ponding. ned for a 10.0 psf bottom chord live loa gned for a live load of 20.0psf on the bo chord and any other members, with Bf ection (by others) of truss to bearing pla	(1) 3-5-12 to 14-6-10, Exte ertical left and right expose 1.33 DL=1.15); Pf=15.0 psf (Lum d nonconcurrent with any o ottom chord in all areas whe CDL = 10.0psf. te capable of withstanding Building Code section 2306	rior(2R) 14-6-10 d;C-C for member DOL=1.15 Plate ther live loads. are a rectangle 3 54 lb uplift at join 1 and reference	to 19-5-11, Interior(1) ers and forces & POL=1.15); Is=1.0; -6-0 tall by 2-0-0 wide at 8, 90 lb uplift at joint d standard ANSI/TPI 1.	5	STATE OF MISSOL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

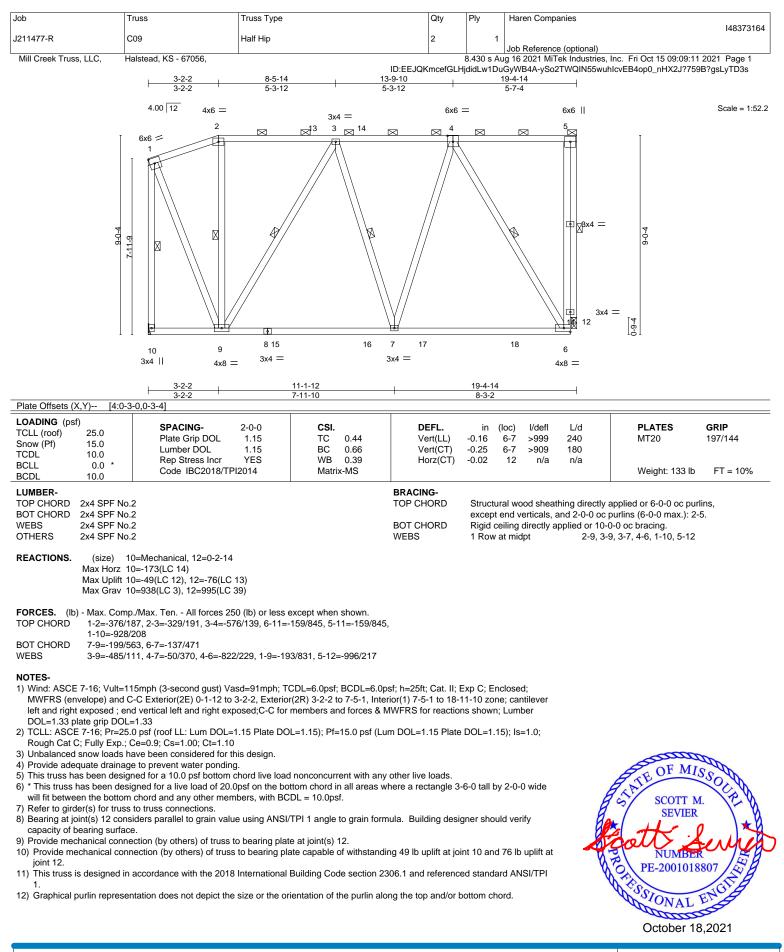


PE-200101880'

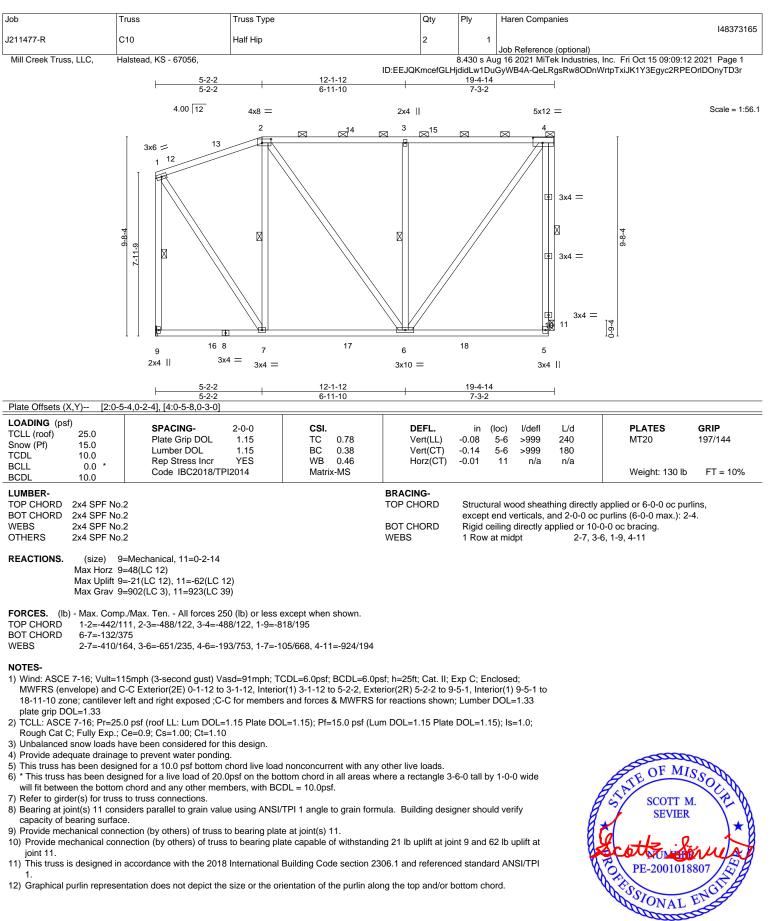
October 18,2021


E

SSIONAL

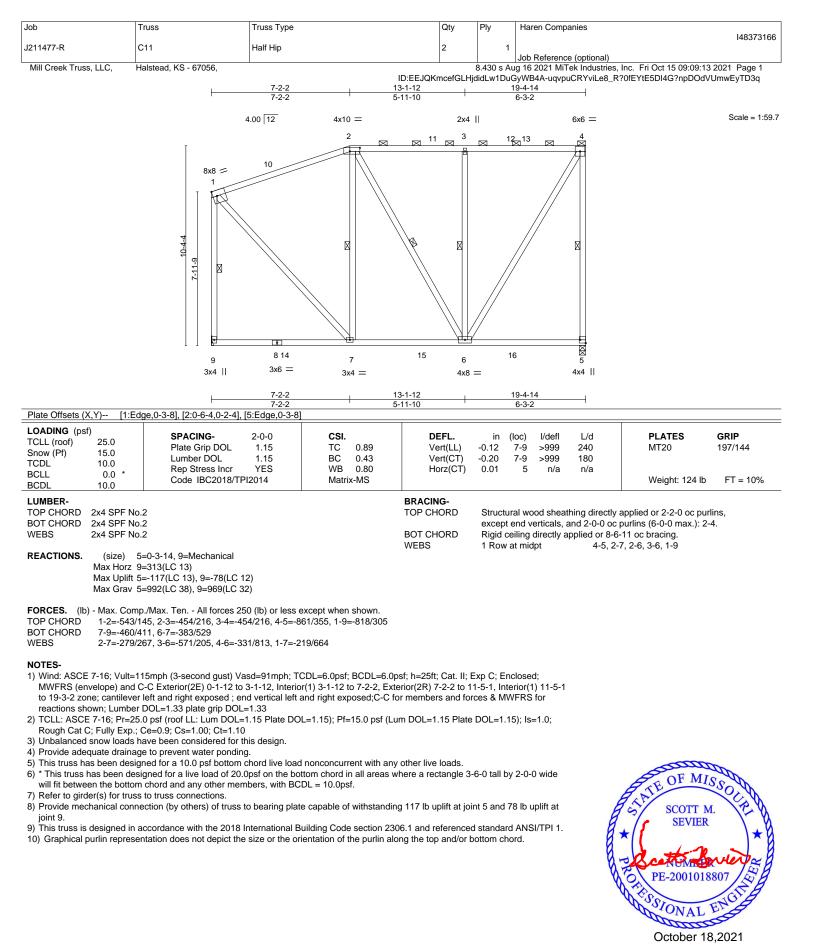

MiTek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

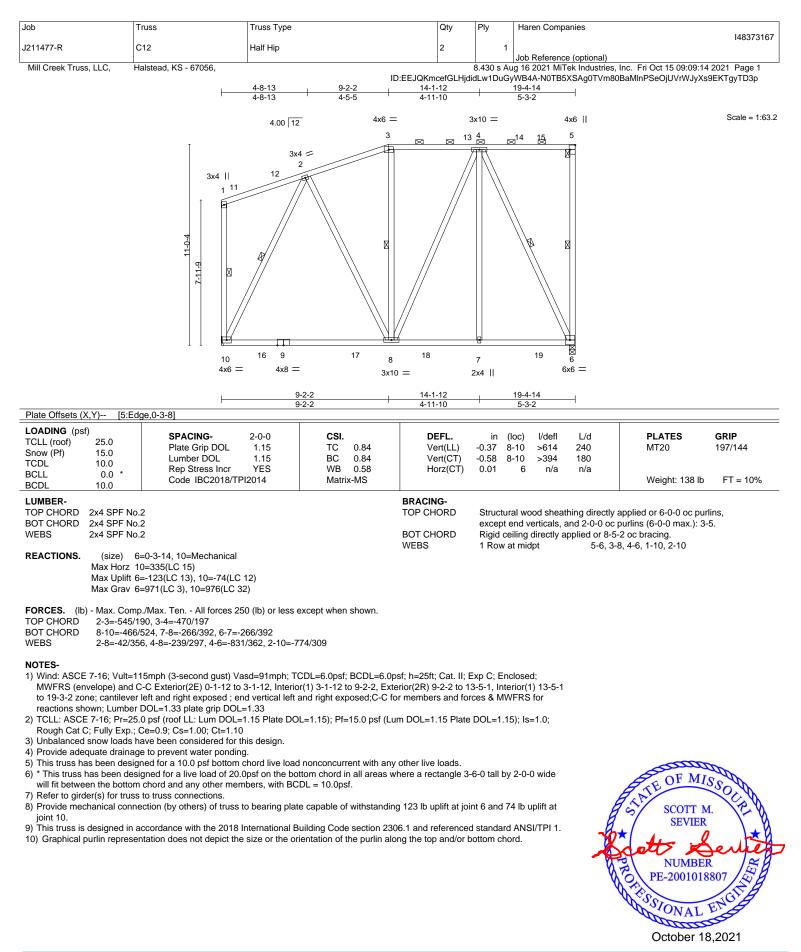

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Mitek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

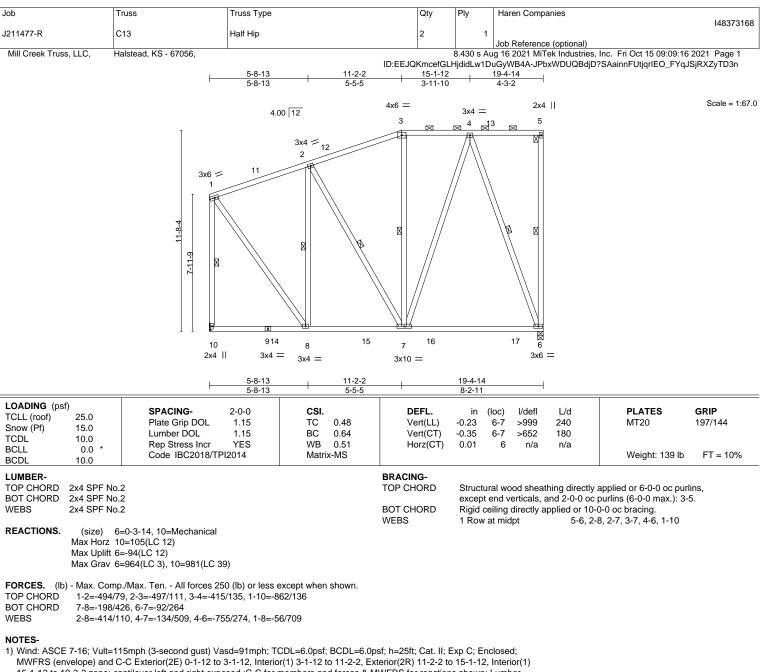
16023 Swingley Ridge Rd Chesterfield, MO 63017


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

October 18,2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

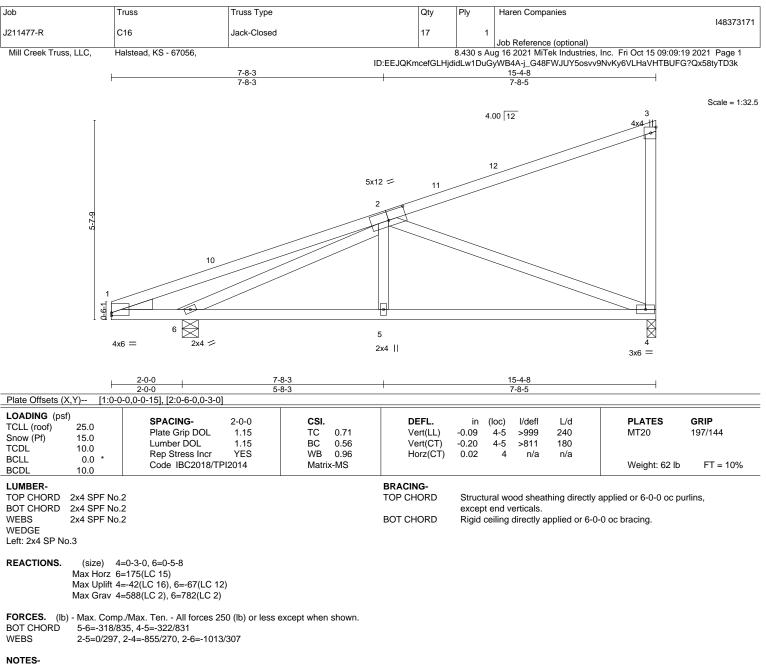
- 15-1-12 to 19-3-2 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 94 lb uplift at joint 6. 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Tru	221	Truss Type		Qty	Ply	Haren Companies]
J211477-R	C1		Half Hip		2	1	naren oompanies		I48373169
Mill Creek Truss		stead, KS - 67056,			2		Job Reference (optional) ug 16 2021 MiTek Industries	Inc. Fri Oct 15 09:09:17	2021 Page 1
	, 220, 110.		6-8-13	ID:EE 13-2-2	JQKmcefGL		DuGyWB4A-nb9KkZV3yxr4c		
		ſ	6-8-13	6-5-5	I	6-2-1	1		
			4.00 12		4x8 =		2x4		Scale = 1:70.9
		I	·		Å	⊠ ⊠			
			3x4 2	= 12					
		4x6	= 10						
			R						
		4-4							
		12-4-4				1			
		7-11-9							
			8	<u></u>			16 5		
		2>	4 II - 2×C	7 15 4 =	6 3x4 =		$\begin{array}{ccc} 16 & 5 \\ & 3x4 = \end{array}$		
			6-8-13	13-2-2	I	19-4-1	14		
Plate Offsets (X	,Y) [3:0-5-4	4,0-2-4]	6-8-13	6-5-5		6-2-1	1		
LOADING (psf) TCLL (roof)		SPACING-	2-0-0 CSI.		DEFL.	in (loc) l/defl L/d	PLATES	GRIP
Snow (Pf) TCDL	25.0 15.0 10.0	Plate Grip DOL Lumber DOL	1.15 TC 1.15 BC		Vert(LL) Vert(CT)		7-9 >999 240 7-9 >999 180	MT20	197/144
BCLL BCDL	0.0 *	Rep Stress Incr Code IBC2018/TF	YES WB PI2014 Matri	0.64 x-MS	Horz(CT)	0.01	5 n/a n/a	Weight: 131 lb	FT = 10%
LUMBER-	10.0			BRAC	ING-				
	2x4 SPF No.2 2x4 SPF No.2			TOP (CHORD		ral wood sheathing directly end verticals, and 2-0-0 oc		
WEBS	2x4 SPF No.2			BOT (WEBS	CHORD	Rigid ce 1 Row a	eiling directly applied or 10 at midpt 4-5, 2	-0-0 oc bracing. -7, 2-6, 3-5, 1-9	
REACTIONS.	(size) 5=0 Max Horz 9=1	0-3-14, 9=Mechanical 124(LC 12)							
	Max Uplift 5=- Max Grav 5=9	-106(LC 12) 962(LC 3), 9=1015(LC 3	9)						
FORCES. (lb)	- Max. Comp./	Max. Ten All forces 2	50 (lb) or less except when	shown.					
TOP CHORD BOT CHORD		, 2-3=-437/88, 1-9=-882 9, 5-6=-121/358	119						
WEBS	2-7=-351/104	4, 2-6=-263/154, 3-6=-4	6/513, 3-5=-780/266, 1-7=	22/714					
NOTES- 1) Wind: ASCE	7-16; Vult=115	omph (3-second gust) V	asd=91mph; TCDL=6.0psf;	BCDL=6.0psf; h=25	5ft; Cat. II; E	xp C; End	closed;		
MWFRS (env	velope) and C-	C Exterior(2E) 0-1-12 to	3-1-12, Interior(1) 3-1-12 i sed ;C-C for members and	o 13-2-2, Exterior(2)	R) 13-2-2 to	17-5-1, li	nterior(1)		
	ate grip DOL=1 7-16; Pr=25.0		1.15 Plate DOL=1.15); Pf=	=15.0 psf (Lum DOL:	=1.15 Plate	DOL=1.1	5); ls=1.0;		
		e=0.9; Cs=1.00; Ct=1.10 ve been considered for							
		to prevent water pondir ed for a 10.0 psf bottom	g. chord live load nonconcuri	ent with any other li	ve loads.				~
			0psf on the bottom chord i nbers, with BCDL = 10.0ps		ectangle 3-	6-0 tall by	2-0-0 wide	TE OF MI	SSO
		truss connections. tion (by others) of truss	to bearing plate capable of	withstanding 106 lb	uplift at joir	nt 5.		SCOTT N	N.V.Y
			International Building Code					sevier	· Y.N
		•						(+ .)	2
								TO DE CONTON	Jerren
							X	O PE-2001018	
								SIONAL	ENUE
								October 18	2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


October 18,2021

Job	Truss	Truss Type	Qty	Ply	Haren Companies			
J211477-R	C15	Half Hip	2	1		148373170		
Mill Creek Truss, LLC,	Halstead, KS - 67056,				Job Reference (optional)	Inc. Fri Oct 15 09:09:18 2021 Page 1		
Will Cleek Huss, LLC,	Haistead, NS - 07030,	7.0.40		GLHjdidLw [,]	IDuGyWB4A-FojixvVhjEzxEm	nKypCpjalo3a5xnS687mmCXcRyTD3l		
		7-8-13	<u>15-2-3</u> 7-5-5		-4-14 2-11			
			4.00 12	4x8 =	2x4	Scale = 1:74.7		
				³ 12	4			
	Ī	6x12 ≠	11					
		2						
	6	x6 = 10	\backslash					
		R II			\setminus			
	13-0-4							
	7-11-9							
				<u>V</u>				
		9 8 13 7	14	6	15 5			
		3x4 3x6 = 3x4 =		3x4 =	3x4 =			
		7-8-13	15-2-3 7-5-5		-4-14 2-11			
Plate Offsets (X,Y) [2:0-6-0,Edge], [3:0-5-4,0-2-0]					1		
LOADING (psf) TCLL (roof) 25.0	SPACING-	2-0-0 CSI .	DEFL.	in		PLATES GRIP		
Snow (Pf) 15.0 TCDL 10.0	Plate Grip DOL Lumber DOL	1.15 TC 0.92 1.15 BC 0.59	Vert(LL) Vert(CT)	-0.12 -0.21	7-9 >999 240 7-9 >999 180	MT20 197/144		
BCLL 0.0	Rep Stress Incr Code IBC2018/TI	YES WB 0.70 PI2014 Matrix-MS	Horz(CT)	0.01	5 n/a n/a	Weight: 134 lb FT = 10%		
BCDL 10.0	0000 1202010,11		BRACING-					
TOP CHORD 2x4 SPF			TOP CHORD		ral wood sheathing directly			
BOT CHORD 2x4 SPF WEBS 2x4 SPF			BOT CHORD		end verticals, and 2-0-0 oc eiling directly applied or 10-			
REACTIONS. (size)) 5=0-3-14, 9=Mechanical		WEBS	1 Row	at midpt 4-5, 2-	7, 2-6, 3-5, 1-9		
Max Ho	orz 9=143(LC 12)							
	lift 5=-118(LC 12) av 5=960(LC 3), 9=1037(LC 3	9)						
FORCES. (Ib) - Max. (Comp./Max. Ten All forces 2	50 (lb) or less except when shown.						
	10/52, 2-3=-360/49, 1-9=-886 09/517, 5-6=-92/264	97						
		7/628, 3-5=-860/298, 1-7=0/706						
NOTES-								
, , ,		asd=91mph; TCDL=6.0psf; BCDL=6. 3-1-12. Interior(1) 3-1-12 to 15-2-3.						
MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 15-2-3, Exterior(2E) 15-2-3 to 19-3-2 zone; cantilever left and right exposed (C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33								
 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 								
	ids have been considered for inage to prevent water pondir							
		chord live load nonconcurrent with a Opsf on the bottom chord in all areas		8-6-0 tall by	(2-0-0 wide			
will fit between the bo	ottom chord and any other me	•	a more a rectangle d	, 5 5 tan Dj		SE OF MISSOL		
, , ,	truss to truss connections. connection (by others) of truss	to bearing plate capable of withstand	ding 118 lb uplift at jo	oint 5.		THE SOUN		
9) This truss is designed	in accordance with the 2018	International Building Code section 2 size or the orientation of the purlin	2306.1 and reference	ed standard		SCOTT M.		
.s, etapinoa parini tep					nho	SEVIER		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 15-2-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

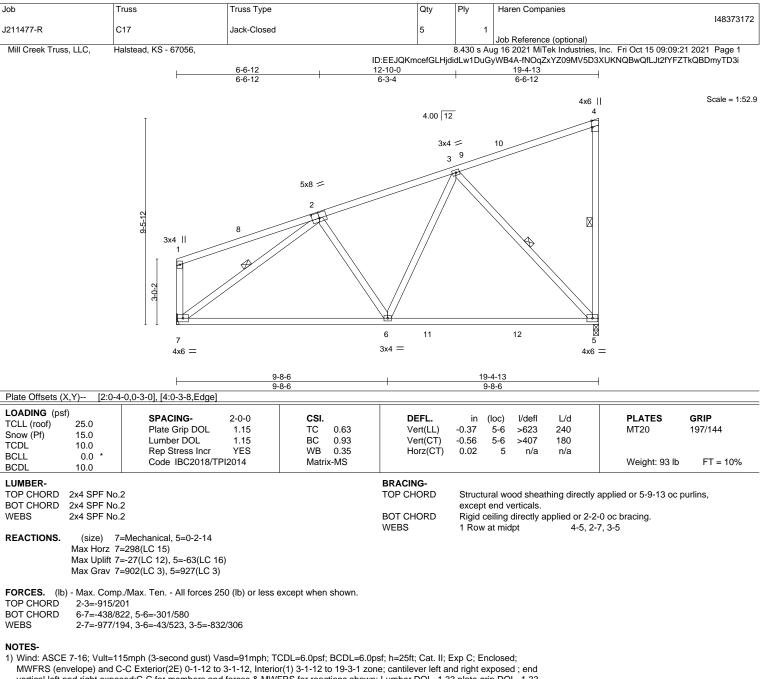
2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 42 lb uplift at joint 4 and 67 lb uplift at joint 6.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33 (2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

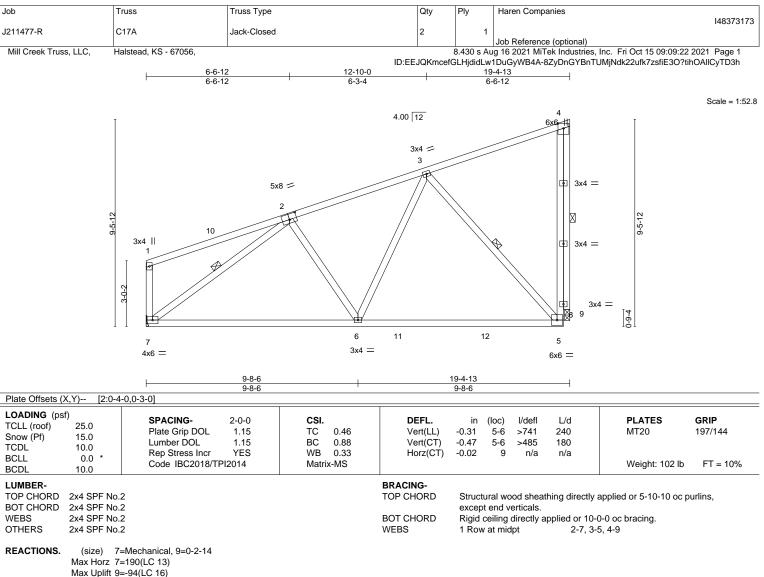
3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.


8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 27 lb uplift at joint 7 and 63 lb uplift at joint 5.

9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Grav 7=903(LC 3), 9=898(LC 3)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-891/81, 5-8=-138/760, 4-8=-138/760

BOT CHORD 6-7=-308/822 5-6=-181/580

WEBS 2-7=-949/65, 3-6=-40/515, 3-5=-800/243, 4-9=-898/216

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 18-11-9 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

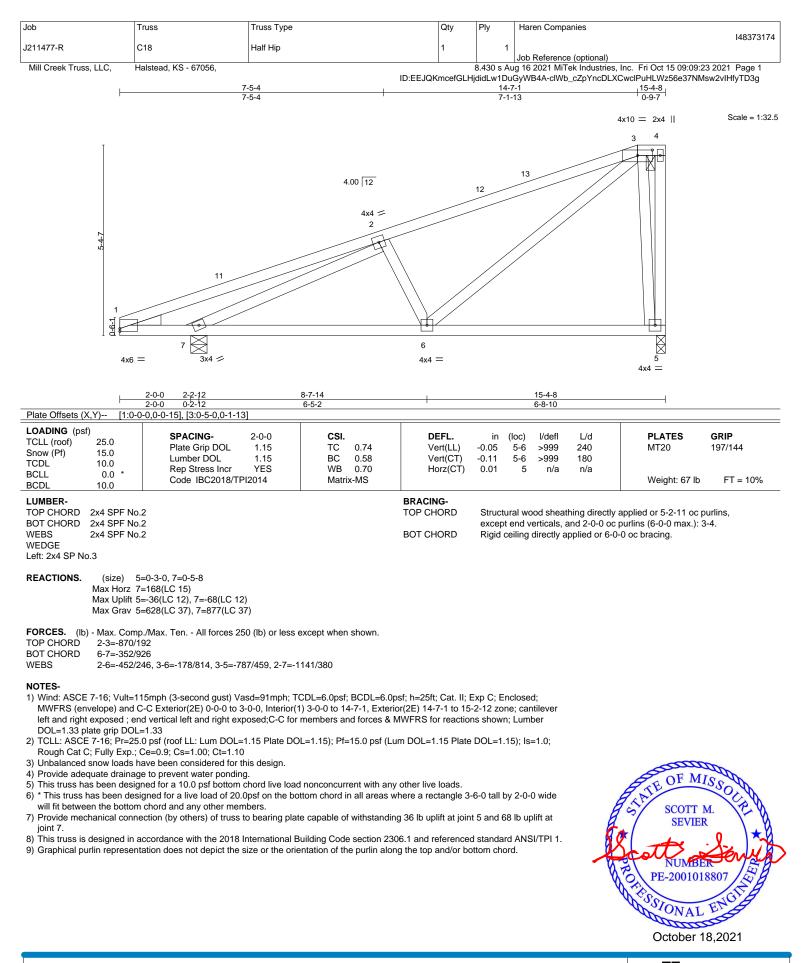
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

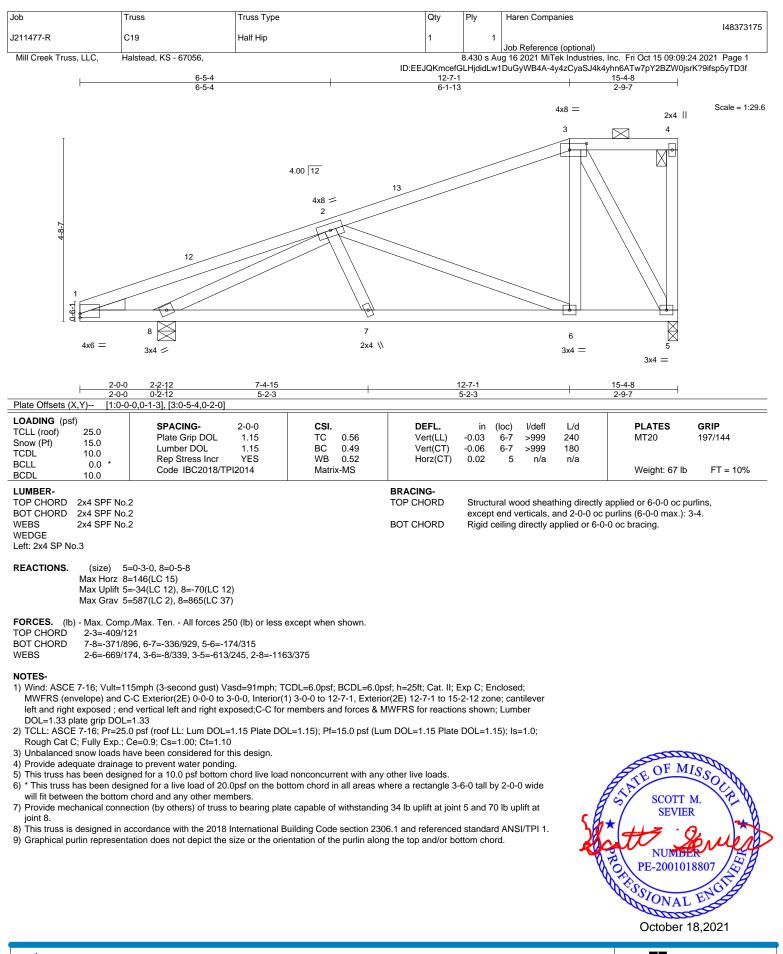
7) Bearing at joint(s) 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 9.

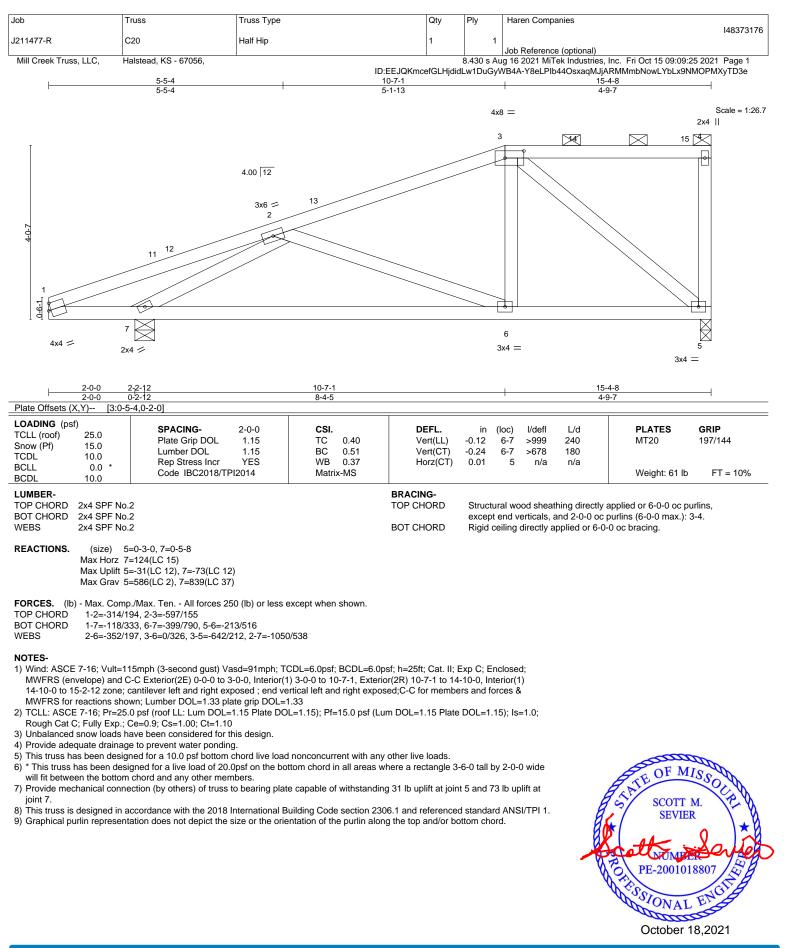
9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 94 lb uplift at joint 9.


10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1

October 18,2021

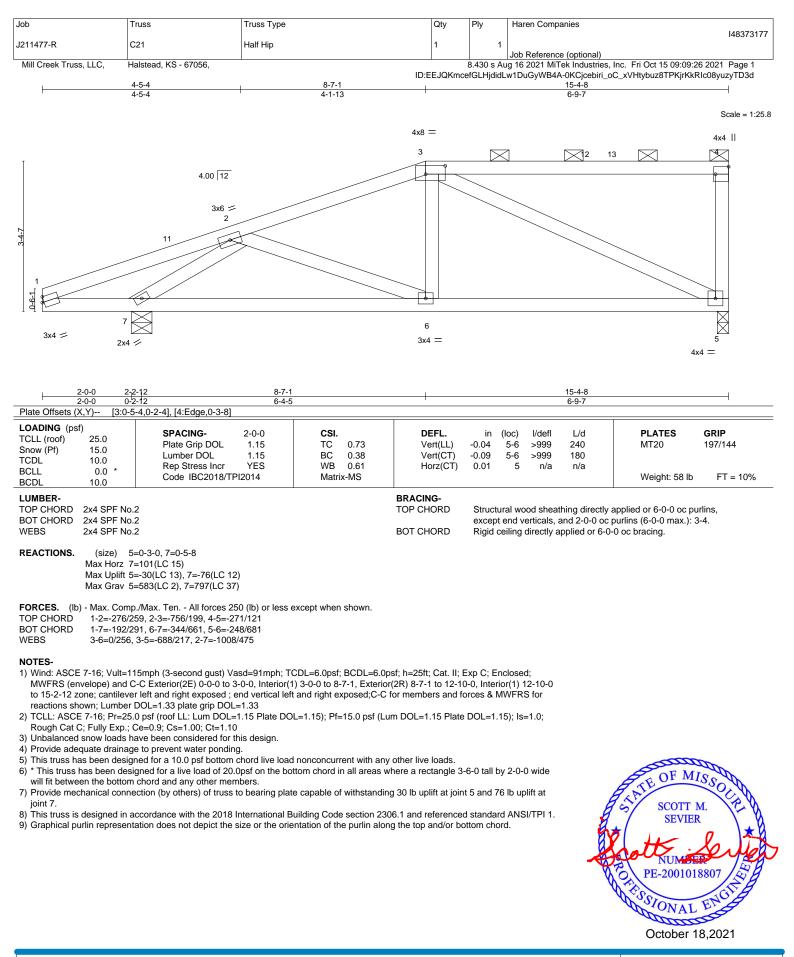

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

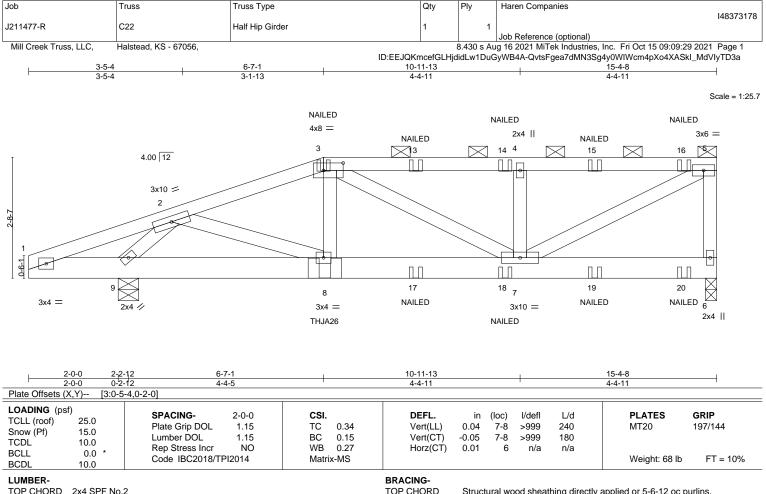

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Mitek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BOT CHORD

 LUMBER

 TOP CHORD
 2x4 SPF No.2

 BOT CHORD
 2x6 SPF 1650F 1.5E

 WEBS
 2x4 SPF No.2

Structural wood sheathing directly applied or 5-6-12 oc purlins, except end verticals, and 2-0-0 oc purlins (5-5-15 max.): 3-5. Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 1-9.

- REACTIONS. (size) 6=0-3-0, 9=0-5-8 Max Horz 9=77(LC 11) Max Uplift 6=-323(LC 9), 9=-303(LC 8) Max Grav 6=813(LC 32), 9=958(LC 33)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 2-3=-1093/520, 3-4=-1018/506, 4-5=-1018/506, 5-6=-698/307
- BOT CHORD 8-9=-312/607, 7-8=-518/1030
- WEBS 2-8=-219/498, 4-7=-425/120, 5-7=-547/1117, 2-9=-1067/427

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;
- Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 323 lb uplift at joint 6 and 303 lb uplift at joint 9.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) Use Simpson Strong-Tie THJA26 (THJA26 on 1 ply, Left Hand Hip) or equivalent at 6-7-7 from the left end to connect truss(es) to front face of bottom chord, skewed 0.0 deg to the right, sloping 0.0 deg. down.
- 11) Fill all nail holes where hanger is in contact with lumber.
- 12) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

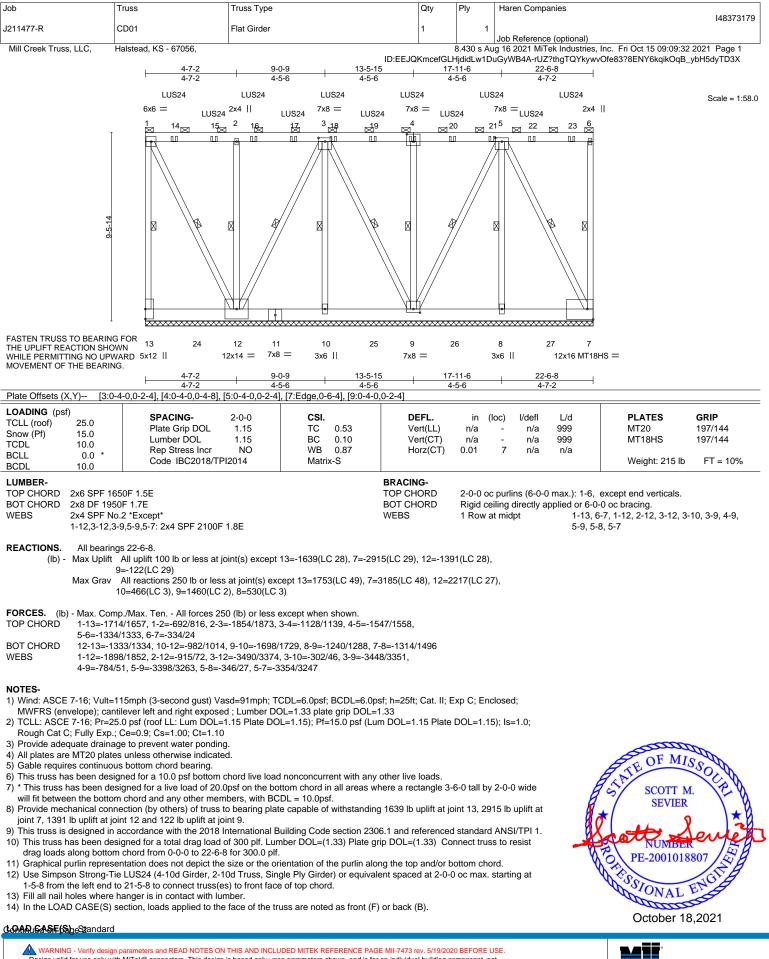
LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-50, 3-5=-50, 6-10=-20

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	Haren Companies	
1044477 D	000	Listfillin Girden			148373178	
J211477-R	C22	Half Hip Girder	1	1	lah Deference (antional)	
					Job Reference (optional)	
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:09:29 2021 Page 2	
		ID:EEJQKmcefGLHjdidLw1DuGyWB4A-QvtsFgea7dMN3Sg4y0WIWcm4pXo4XASkI_MdVIyTD3a				

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 3=-42(F) 8=-172(F) 13=-42(F) 14=-42(F) 15=-42(F) 16=-37(F) 17=-13(F) 18=-13(F) 19=-13(F) 20=-64(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

MiTek

Job	Truss	Truss Type	Qty	Ply	Haren Companies	
1044477 D	0.5.4				148373179	
J211477-R	CD01	Flat Girder	1	1		
					Job Reference (optional)	
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:09:32 2021 Page 2	
		ID:EEJQ	ID:EEJQKmcefGLHjdidLw1DuGyWB4A-rUZ?thgTQYkywvOfe83?8ENY6kqikOqB_ybH5dyTD3X			

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-6=-50, 7-13=-20

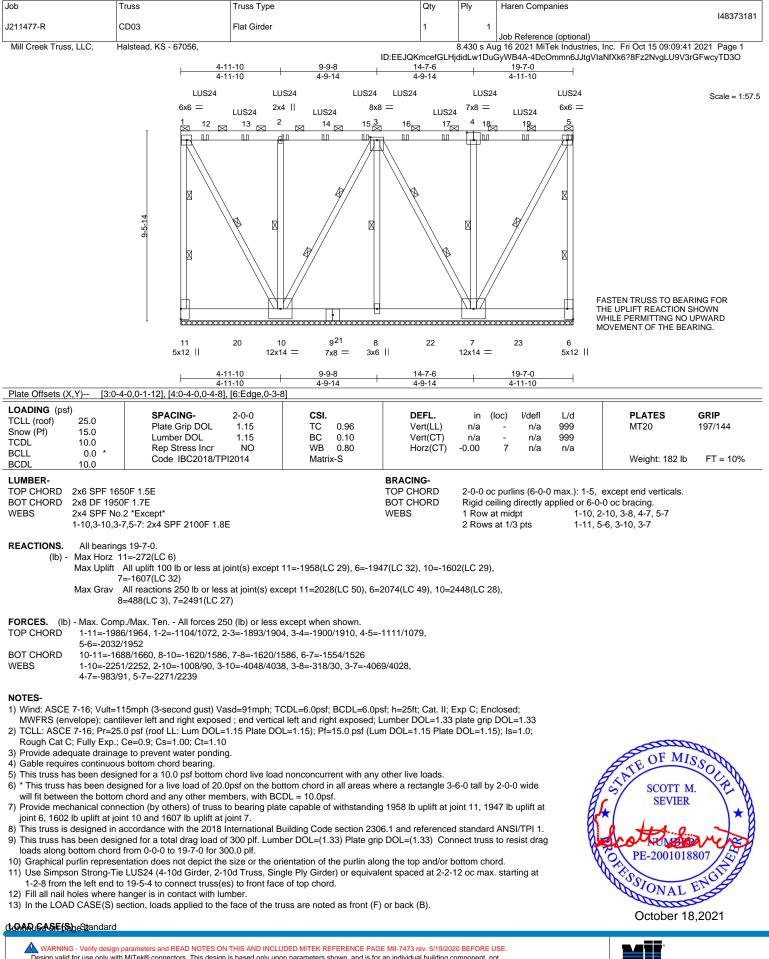
Concentrated Loads (lb)

Vert: 4=-220(F) 14=-220(F) 15=-220(F) 16=-220(F) 17=-220(F) 18=-220(F) 19=-220(F) 20=-220(F) 21=-220(F) 22=-220(F) 23=-222(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		Truss	Truss Type		Qty	Ply	Haren Companies	148373180
J211477-R		CD02	Flat Girder		1	1	Job Reference (optional)	
Mill Creek Truss	i, LLC, H	Halstead, KS - 67056,			ID:EEJQKmcefGLHj			, Inc. Fri Oct 15 09:09:38 2021 Page 1 so_PAPOVdbD9tZ85W3Nt2bJHyTD3R
				2-10-4	5-8-8 2-10-4			
				LUS24	LUS24			Scale = 1:54
				224	S24 = 2x4			
			Ţ					
				× 7				
			10					
			8-8-10					
				<u> </u>			N TRUSS TO BEARING FOR	
			l			WHILE	PLIFT REACTION SHOWN PERMITTING NO UPWARD	
				5 8	9 4	MOVEN	MENT OF THE BEARING.	
				10x12 =	10x12 =			
				5-8				
Plate Offsets (X LOADING (psf)		dge,0-6-4], [5:Edge,0-6-4]						
TCLL (roof) Snow (Pf)	, 25.0 15.0	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC 0.49	DEFL. Vert(LL)	in (n/a	(loc) l/defl L/d - n/a 999	PLATES GRIP MT20 197/144
TCDL	10.0	Lumber DOL Rep Stress Incr	1.15 NO	BC 0.07 WB 0.93	Vert(CT) Horz(CT)	n/a -0.00	- n/a 999 4 n/a n/a	
BCLL BCDL	0.0 * 10.0	Code IBC2018/TP	'12014	Matrix-P				Weight: 62 lb FT = 10%
LUMBER- TOP CHORD	2x6 SPF 16	50F 1.5E			BRACING- TOP CHORD	2-0-0 0	c purlins: 1-3, except end	verticals.
BOT CHORD	2x8 DF 1950 2x4 SPF No	0F 1.7E			BOT CHORD WEBS	Rigid ce	eiling directly applied or 6-0	
REACTIONS.		5=5-8-8, 4=5-8-8			WEBG	11000		7, 20, 27
REACTIONS.	Max Horz 5	5=249(LC 36)	C 22)					
		5=-2644(LC 29), 4=-2645(L 5=2737(LC 50), 4=2744(LC						
		p./Max. Ten All forces 25	50 (lb) or less excer	ot when shown.				
TOP CHORD BOT CHORD	1-2=-863/8 4-5=-812/7	886, 2-3=-911/886 779						
WEBS	2-5=-2782	2/2806, 2-4=-2781/2806						
NOTES- 1) Wind: ASCE	7-16 [.] Vult=1	15mph (3-second gust) Va	asd=91mph ⁻ TCDI =	=6 0psf [.] BCDI =6 0r	osf h=25ft Cat II F	Exp C [.] En	closed [.]	
MWFRS (env	velope); cant	tilever left and right expose 5.0 psf (roof LL: Lum DOL=	d; end vertical left	and right exposed;	Lumber DOL=1.33	plate grip	DOL=1.33	
Rough Cat C	; Fully Exp.;	Ce=0.9; Cs=1.00; Ct=1.10)	10), 1 1–10.0 p31 (Eu		, DOL-1.1	0), 13–1.0,	
4) Gable require	es continuou	ge to prevent water ponding is bottom chord bearing.	0					
		gned for a 10.0 psf bottom signed for a live load of 20.0				-6-0 tall by	y 2-0-0 wide	
		n chord and any other men ection (by others) of truss t			og 2644 lb uplift at ig	oint 5 and	2645 lb uplift	Amarica
at joint 4.		accordance with the 2018 I	01 1		,			SE OF MISSO
	is been desig	gned for a total drag load of	f 300 plf. Lumber D					SCOTT M.
9) This truss ha	ourlin represe	I from 0-0-0 to 5-8-8 for 300 entation does not depict the	size or the orientat					SEVIER
9) This truss has loads along b 10) Graphical p	on Strong-Tid	e LUS24 (4-10d Girder, 2-1 to 4-11-0 to connect truss(lent spaced at 2-0-	0 oc max.	starting at	& the steries
9) This truss has loads along b 10) Graphical p 11) Use Simpso			mber				~	NUMBER
9) This truss has loads along b 10) Graphical p 11) Use Simpso 0-11-0 from 12) Fill all nail h	n the left end noles where h	hanger is in contact with lui		re noted as front (F) or back (B).		U U	P DE ADDIALONDE INN
 9) This truss has loads along b 10) Graphical p 11) Use Simpso 0-11-0 from 12) Fill all nail h 13) In the LOAD 	n the left end noles where h D CASE(S) s	hanger is in contact with lui section, loads applied to the		re noted as front (F) or back (B).		Y	PE-2001018807
 9) This truss has loads along b 10) Graphical b 11) Use Simpso 0-11-0 from 12) Fill all nail h 13) In the LOAD LOAD CASE(S) 1) Dead + Snow 	n the left end holes where h D CASE(S) s) Standard w (balanced):		e face of the truss a	·) or back (B).		y	ATA ATA
 9) This truss has loads along b 10) Graphical p 11) Use Simpsc 0-11-0 from 12) Fill all nail h 13) In the LOAE LOAD CASE(S) 1) Dead + Snow Uniform Load 	n the left end holes where h D CASE(S) s) Standard w (balanced):	section, loads applied to the : Lumber Increase=1.15, P	e face of the truss a	·	[:]) or back (B).		Y	FISSIONAL ENGINE
 b) This truss has loads along b loads along b <liloads along="" b<="" li=""></liloads>	n the left end noles where h D CASE(S) s) Standard w (balanced): ds (plf) :: 1-3=-50, 4-:	section, loads applied to the : Lumber Increase=1.15, P	e face of the truss a	·	[;]) or back (B).		Y	ATAL STA

besign value to be only with these comparison in the constraint of the second of the s


Job	Truss	Truss Type	Qty	Ply	Haren Companies
	0.7.00				148373180
J211477-R	CD02	Flat Girder	1	1	
					Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:09:38 2021 Page 2
		ID:EEJQKmcefGLHjdidLw1DuGyWB4A-gewG8llE0OV5eqso_PAPOVdbD9tZ85W3Nt2bJHyTD3R			

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 2=-220(F) 6=-226(F) 7=-229(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Mitek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Haren Companies
					I48373181
J211477-R	CD03	Flat Girder	1	1	
					Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:09:42 2021 Page 2

ID:EEJQKmcefGLHjdidLw1DuGyWB4A-YP9mz6ok3c?X7S9aDEFLYLo8omFv4wPfIV0pS2yTD3N

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

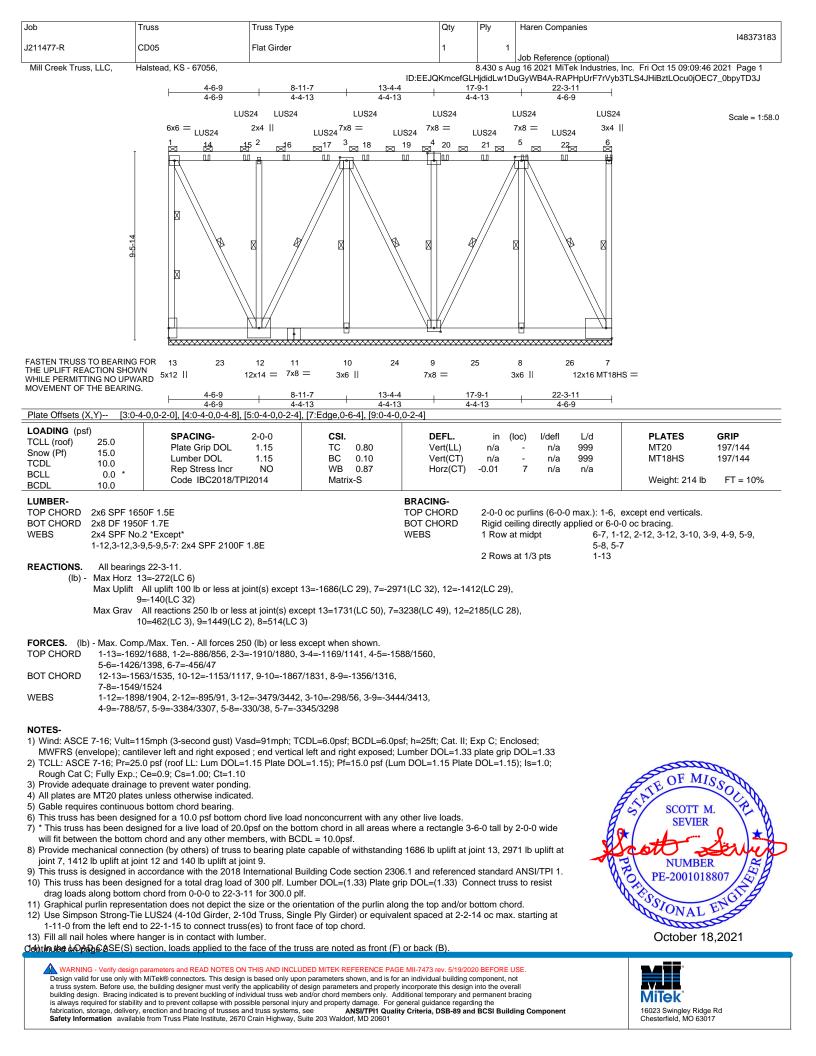
Uniform Loads (plf) Vert: 1-5=-50, 6-11=-20 Concentrated Loads (lb)

Vert: 5=-240(F) 2=-220(F) 12=-220(F) 13=-220(F) 14=-220(F) 15=-220(F) 16=-220(F) 17=-220(F) 18=-220(F) 19=-220(F)

Job	Truss	Truss Type		Qty	Ply	Haren Companies	148373182
211477-R	CD04	Flat Girder		1	1	Job Reference (optional)	
Mill Creek Truss, LLC,	Halstead, KS - 67056,					ug 16 2021 MiTek Industries,	Inc. Fri Oct 15 09:09:43 2021 Page 1 nnyma5ZLRrAbkpLloW9IM_UyTD3M
			2-10-4	5-8-8 2-10-4			
				LUS24 LUS24			Scale = 1:54.9
			^{2x4} LUS24 7x	8 = ^{2x4}			
		I					
		8-8-10					
			<u> </u>				
		l		****	THE UP	N TRUSS TO BEARING FOR	
			5 8 10x12 =	9 4 10x12 =		PERMITTING NO UPWARD IENT OF THE BEARING.	
			5-8				
Plate Offsets (X,Y) [4	4:Edge,0-6-4], [5:Edge,0-6-4]		5-8	3-8 '			
LOADING (psf) TCLL (roof) 25.0	SPACING-	2-0-0	CSI.	DEFL.		(loc) I/defl L/d	PLATES GRIP
Snow (Pf) 15.0 TCDL 10.0	Plate Grip DOL Lumber DOL Rop Stross Iper	1.15 1.15 NO	TC 0.49 BC 0.07 WB 0.93	Vert(LL) Vert(CT)	n/a n/a -0.00	- n/a 999 - n/a 999 4 n/a n/a	MT20 197/144
BCLL 0.0 * BCDL 10.0	Rep Stress Incr Code IBC2018/T		WB 0.93 Matrix-P	Horz(CT)	-0.00	4 n/a n/a	Weight: 62 lb FT = 10%
LUMBER- TOP CHORD 2x6 SPF	1650F 1.5E			BRACING- TOP CHORD	2-0-0 0	c purlins: 1-3, except end v	erticals.
	1950F 1.7E			BOT CHORD WEBS	Rigid ce	eiling directly applied or 6-0-	
REACTIONS. (size)	5=5-8-8, 4=5-8-8					•	
Max Up	rz 5=-249(LC 6) lift 5=-2647(LC 29), 4=-2648 av 5=2696(LC 36), 4=2796(L	· /					
	Comp./Max. Ten All forces 2		pt when shown.				
BOT CHORD 4-5=-8	11/886, 2-3=-911/886, 3-4=-3 12/779 782/2807, 2-4=-2782/2806	371/16					
NOTES-	102/2007, 2-4=-2702/2000						
1) Wind: ASCE 7-16; Vu	It=115mph (3-second gust) \ cantilever left and right expos						
2) TCLL: ASCE 7-16; Pr	=25.0 psf (roof LL: Lum DOL xp.; Ce=0.9; Cs=1.00; Ct=1.1	=1.15 Plate DOL=1					
3) Provide adequate dra	inage to prevent water pondi uous bottom chord bearing.						
5) This truss has been d	esigned for a 10.0 psf bottom designed for a live load of 20				6-0 tall by	/ 2-0-0 wide	
will fit between the bo	ttom chord and any other me onnection (by others) of truss	mbers, with BCDL	= 10.0psf.	0	,		A MARINE
at joint 4.	in accordance with the 2018	0.		• • •		•	STE OF MISSO
9) This truss has been d	esigned for a total drag load hord from 0-0-0 to 5-8-8 for 3	of 300 plf. Lumber I					SCOTT M.
	resentation does not depict th g-Tie LUS24 (4-10d Girder, 2						
	nd to 5-6-12 to connect truss are hanger is in contact with I		top chord.				fott Service
13) In the LOAD CASE	S) section, loads applied to the	ne face of the truss	are noted as front (F) or back (B).		No.	PE-2001018807
	ard ed): Lumber Increase=1.15,	Plate Increase=1.15	5				SSIONAL ENGL
Uniform Loads (plf) Vert: 1-3=-50), 4-5=-20						CONAL STOR
Continued on page 2							October 18,2021
	sign parameters and READ NOTES C						
a truss system. Before u	y with MiTek® connectors. This desiguse, the building designer must verify g indicated is to prevent buckling of in	the applicability of desig	n parameters and properly	y incorporate this design	into the ove	rall	
is always required for st	ability and to prevent collapse with privery, erection and bracing of trusses	ossible personal injury ar	nd property damage. For		ing the	-	16023 Swingley Ridge Rd

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria**, DSB-89 and BCSI Building Component **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

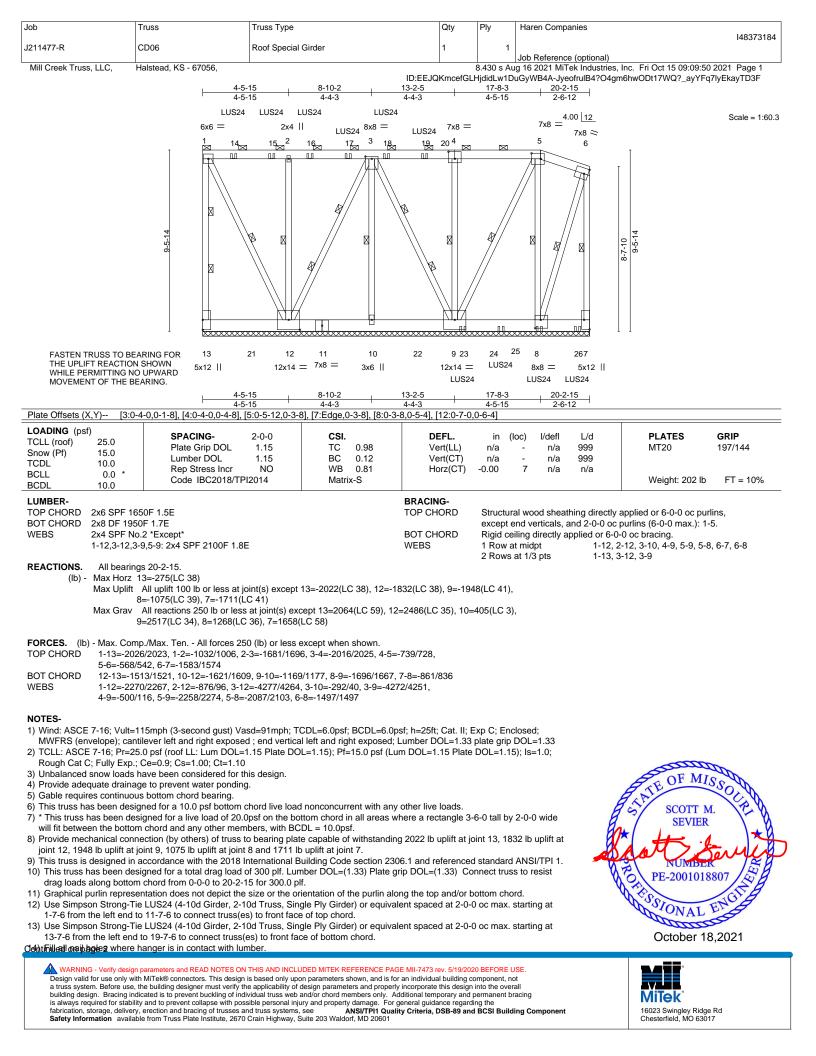

Job		Truss	Truss Type	Qty	Ply	Haren Companies
						148373182
J21	1477-R	CD04	Flat Girder	1	1	
						Job Reference (optional)
M	ill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:09:43 2021 Page 2

ID:EEJQKmcefGLHjdidLw1DuGyWB4A-0cj9BSpMqw7Okbkmnyma5ZLRrAbkpLloW9IM_UyTD3M

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 3=-247(F) 6=-220(F) 7=-220(F)

Job	Truss	Truss Type	Qty	Ply	Haren Companies			
1044477 D	0005				148373183			
J211477-R	CD05	Flat Girder	1	1	Ich Deference (entional)			
					Job Reference (optional)			
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:09:47 2021 Page 2			
		ID:EEJQKmcefGLHjdidLw1DuGyWB4A-vNzf0qstu9dpDD2X0orWFPV25ny7IAeORnja7GyTD3I						


LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

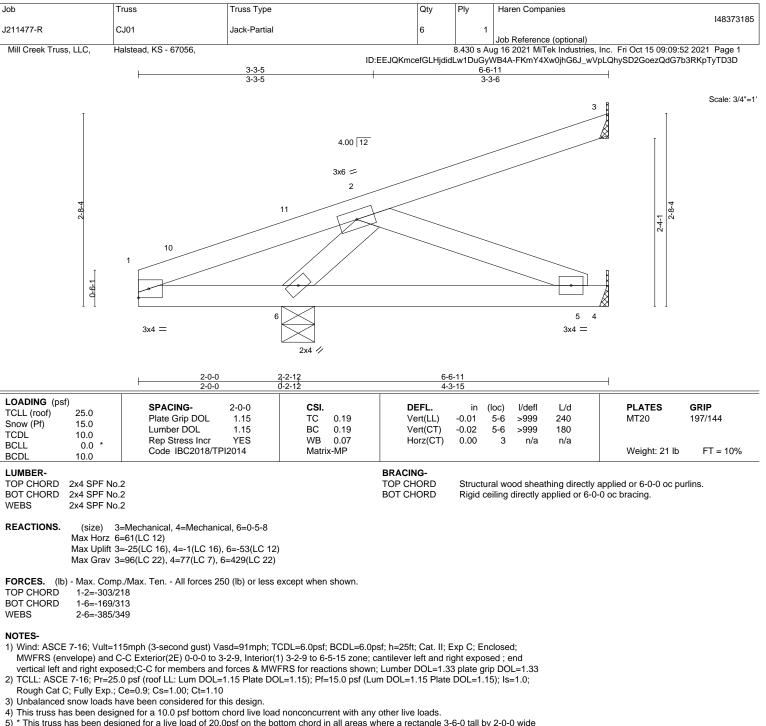
Uniform Loads (plf) Vert: 1-6=-50, 7-13=-20 Concentrated Loads (lb)

Vert: 6=-239(F) 5=-220(F) 14=-220(F) 15=-220(F) 16=-220(F) 17=-220(F) 18=-220(F) 19=-220(F) 20=-220(F) 21=-220(F) 22=-220(F)

Job	Truss	Truss Type	Qty	Ply	Haren Companies
					148373184
J211477-R	CD06	Roof Special Girder	1	1	
					Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:09:51 2021 Page 2
		ID:EEJQKr	ncefGLHjo	lidLw1DuG	wWB4A-n8CAsBvNyN7FigLIFdvSPFghAPJph?V_MPhnG1yTD3E

NOTES-

15) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).


LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-5=-50, 5-6=-50, 7-13=-20 Concentrated Loads (lb)

Vert: 8=-207(F) 14=-220(F) 15=-272(F) 16=-185(F) 17=-185(F) 18=-185(F) 19=-185(F) 23=-277(F) 25=-229(F) 26=-212(F)

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 3, 1 lb uplift at joint 4 and 53 lb uplift at joint 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

MITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

3=Mechanical, 4=Mechanical, 6=0-5-8 REACTIONS. (size) Max Horz 6=77(LC 14) Max Uplift 3=-23(LC 16), 4=-40(LC 17), 6=-273(LC 14) Max Grav 3=61(LC 22), 4=86(LC 14), 6=219(LC 22)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 2-6=-181/252

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 4-4-14 zone; cantilever left and right exposed ; end
- vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

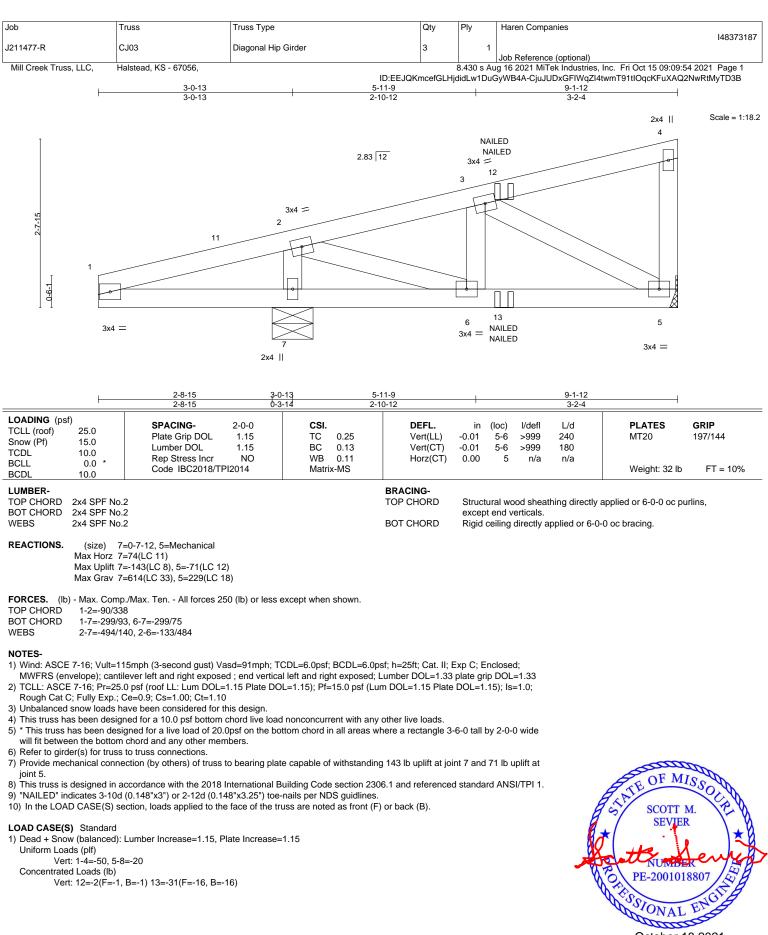
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 23 lb uplift at joint 3, 40 lb uplift at joint 4 and 273 lb uplift at joint 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

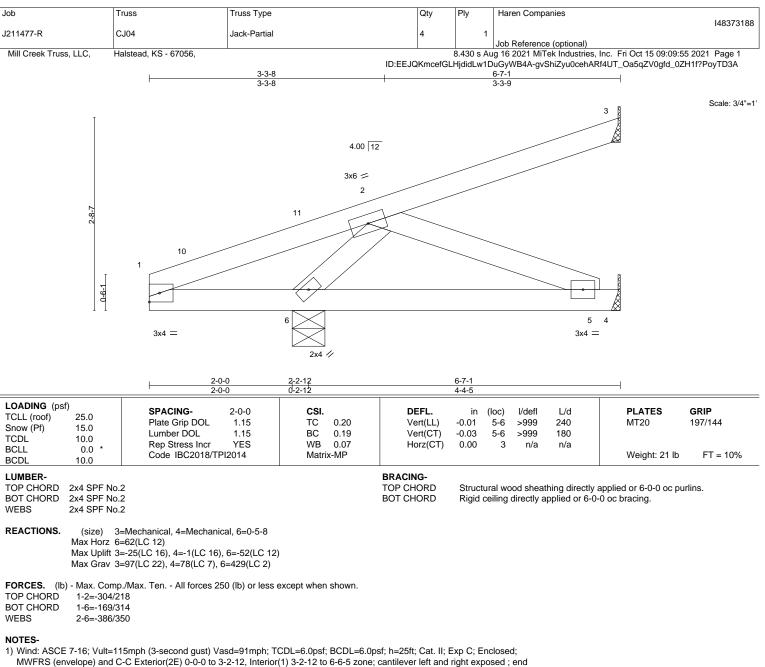
LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Trapezoidal Loads (plf)

Vert: 1=0(F=25, B=25)-to-3=-56(F=-3, B=-3), 7=0(F=10, B=10)-to-4=-22(F=-1, B=-1)

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017



Vert: 12=-2(F=-1, B=-1) 13=-31(F=-16, B=-16)

E

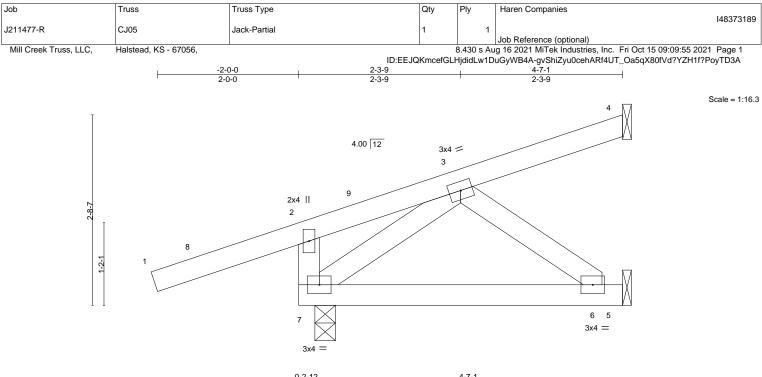
MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-2-12, Interior(1) 3-2-12 to 6-6-5 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 3, 1 lb uplift at joint 4 and 52 lb uplift at joint 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

16023 Swingley Ridge Rd Chesterfield, MO 63017

				0-2-12			4-7-1					
LOADING (psf TCLL (roof) Snow (Pf) TCDL BCLL) 25.0 15.0 10.0 0.0 *	Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15 YES	CSI. TC BC WB	0.35 0.20 0.04	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.00	(loc) 6-7 6-7 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code IBC2018/TPI20	014	Matri	x-MP						Weight: 20 lb	FT = 10%
LUMBER-						BRACING.						

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 4-7-1 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 4=Mechanical, 5=Mechanical, 7=0-3-8 Max Horz 7=61(LC 12) Max Uplift 4=-24(LC 12), 5=-2(LC 16), 7=-73(LC 12) Max Grav 4=83(LC 23), 5=94(LC 7), 7=389(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-7=-310/318

NOTES-

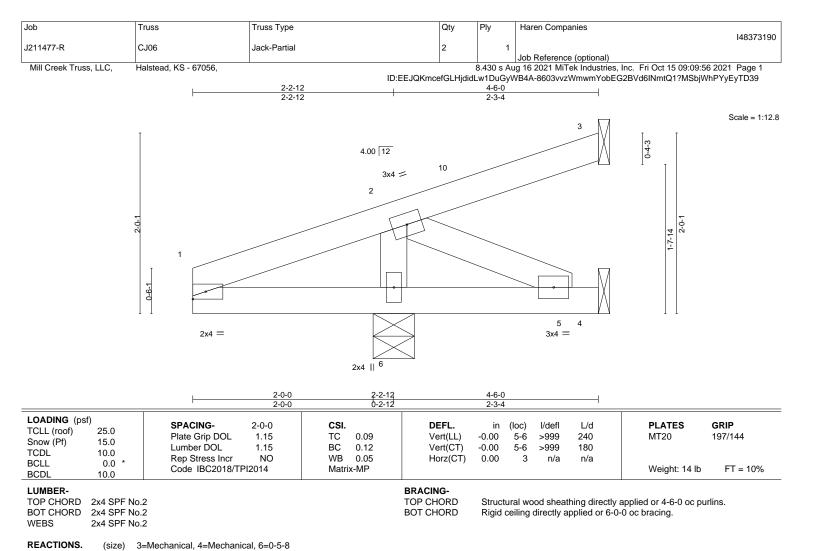
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -2-0-9 to 0-11-7, Interior(1) 0-11-7 to 4-6-5 zone; cantilever left and right exposed; end wortiged left and right exposed; conduct and forces of envelopment POL 1 23 plate aris POL 1.23
- vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

 This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 4, 2 lb uplift at joint 5 and 73 lb uplift at joint 7.

9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

16023 Swingley Ridge Rd Chesterfield, MO 63017

Max Horz 6=77(LC 14) Max Uplift 3=-23(LC 16), 4=-39(LC 17), 6=-272(LC 14) Max Grav 3=62(LC 22), 4=86(LC 14), 6=220(LC 22)

(size)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 2-6=-182/252

NOTES-

REACTIONS.

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 4-5-4 zone; cantilever left and right exposed ; end
- vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

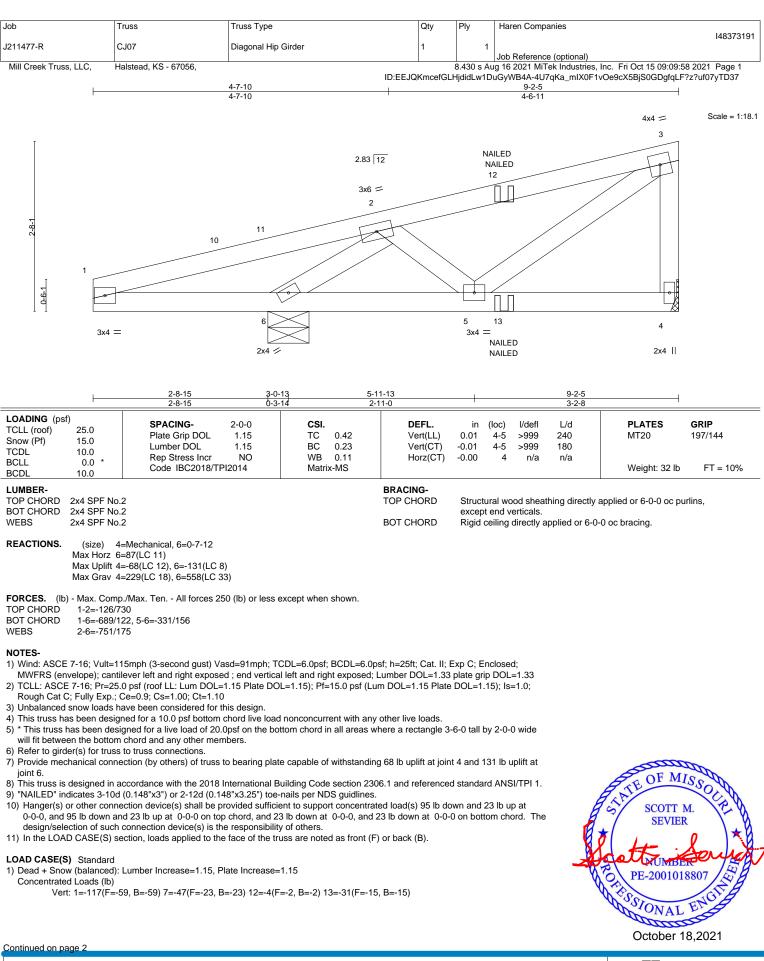
6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 23 lb uplift at joint 3, 39 lb uplift at joint 4 and 272 lb uplift at joint 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

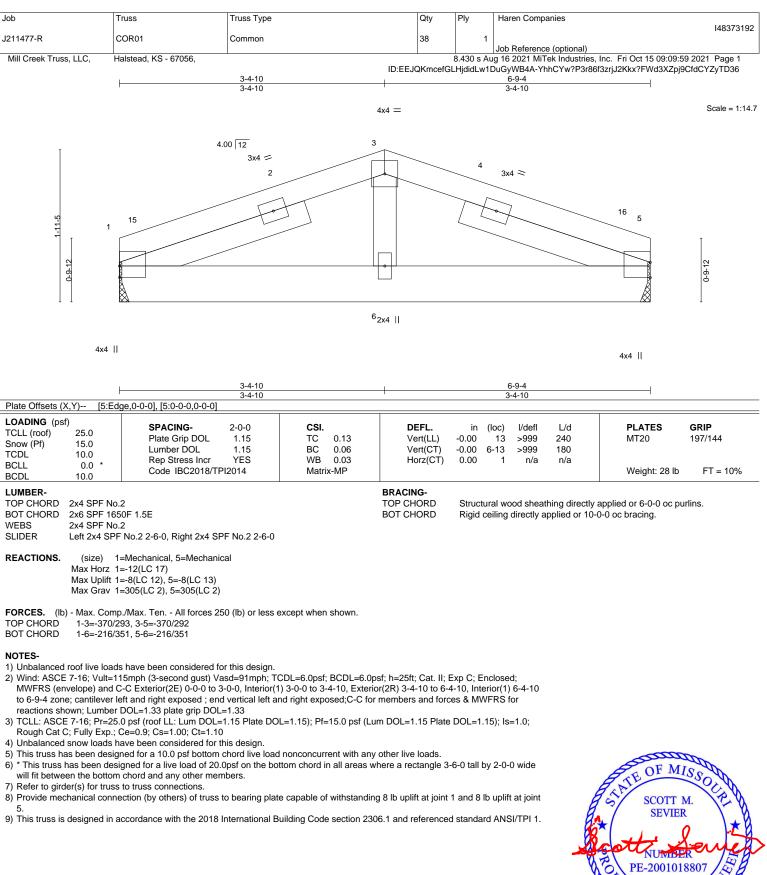
9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

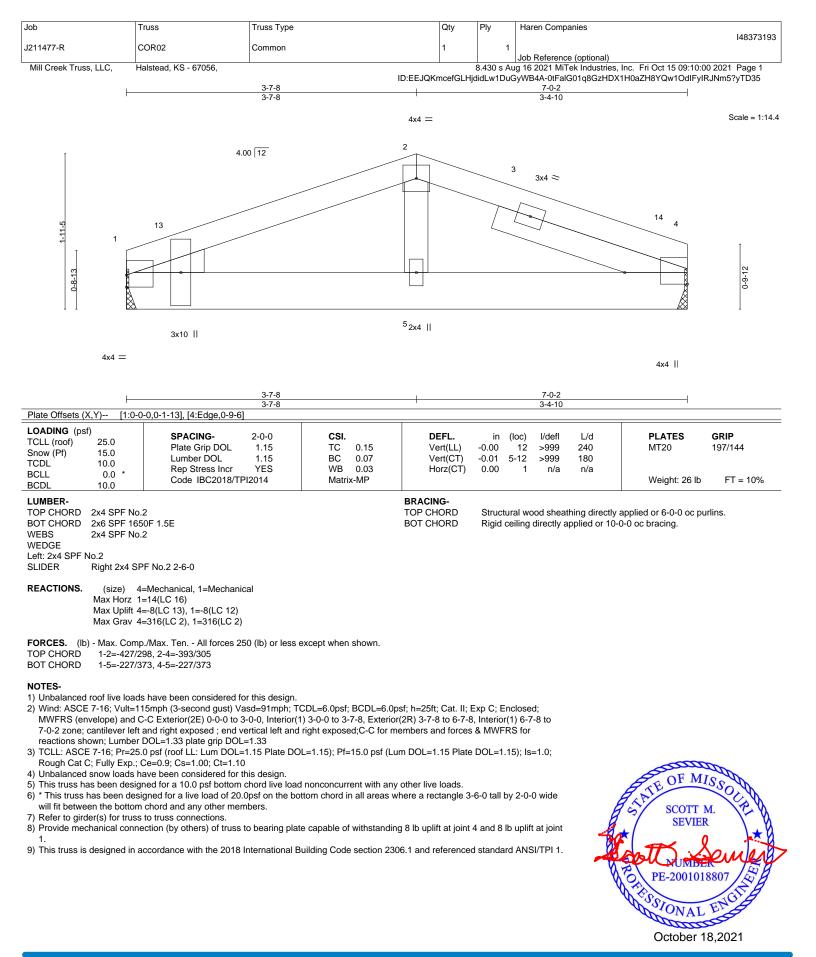
Trapezoidal Loads (plf)

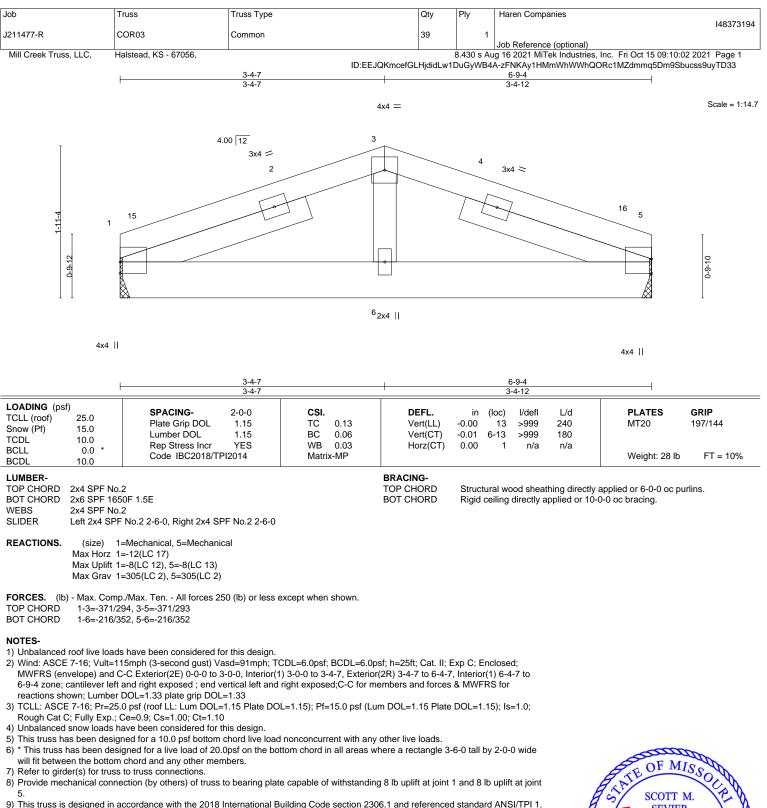
Vert: 1=0(F=25, B=25)-to-3=-56(F=-3, B=-3), 7=0(F=10, B=10)-to-4=-22(F=-1, B=-1)


MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

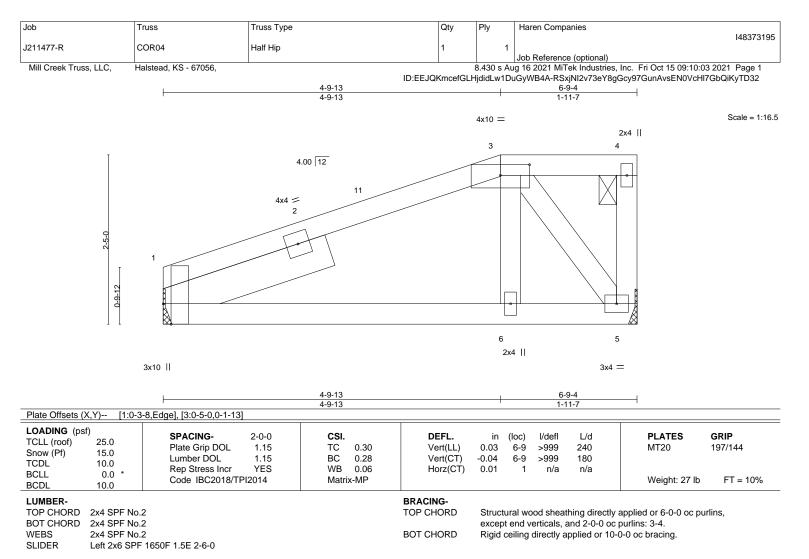
Job	Truss	Truss Type	Qty	Ply	Haren Companies			
	0.107				I48373191			
J211477-R	CJ07	Diagonal Hip Girder	1	1				
					Job Reference (optional)			
Mill Creek Truss, LLC,	Halstead, KS - 67056,		-	8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:09:58 2021 Page 2			
		ID:EEJQKmcefGLHjdidLw1DuGyWB4A-4U7qKa_mIX0F1vOe9cX5BjS0GDgfqLF?z?uf07yTD37						

LOAD CASE(S) Standard


Trapezoidal Loads (pf) Vert: 1=0(F=25, B=25)-to-11=-35(F=7, B=7), 11=0(F=25, B=25)-to-3=-80(F=-15, B=-15), 7=0(F=10, B=10)-to-6=-14(F=3, B=3), 6=0(F=10, B=10)-to-4=-32(F=-6, B=-6)



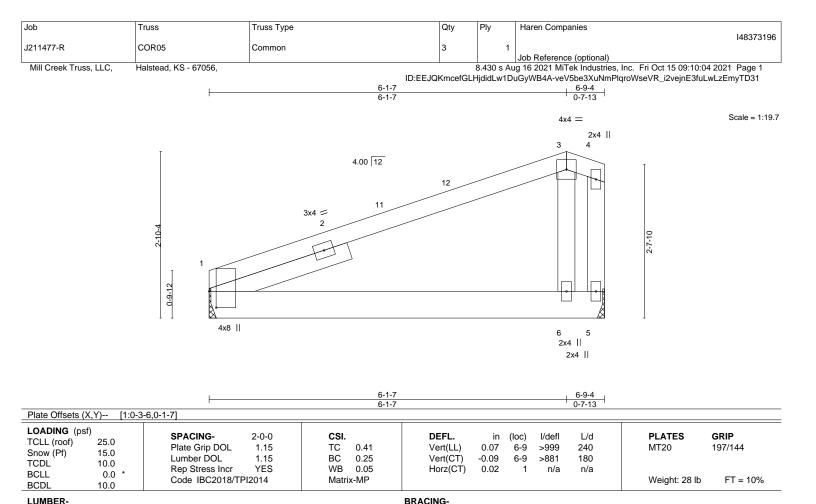
MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017


16023 Swingley Ridge Rd Chesterfield, MO 63017

October 18,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

REACTIONS. (size) 1=Mechanical, 5=Mechanical Max Horz 1=67(LC 15) Max Uplift 1=-12(LC 12), 5=-18(LC 12) Max Grav 1=322(LC 37), 5=298(LC 2)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-5=-350/242

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 4-9-13, Exterior(2E) 4-9-13 to 6-7-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 1 and 18 lb uplift at joint 5.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

REACTIONS.

WEBS

SLIDER

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-3=-465/213

(size) 1=Mechanical, 5=Mechanical

Max Uplift 1=-10(LC 12), 5=-15(LC 12) Max Grav 1=298(LC 2), 5=298(LC 2)

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 6-1-7, Exterior(2E) 6-1-7 to 6-7-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.

2x4 SPF No.2

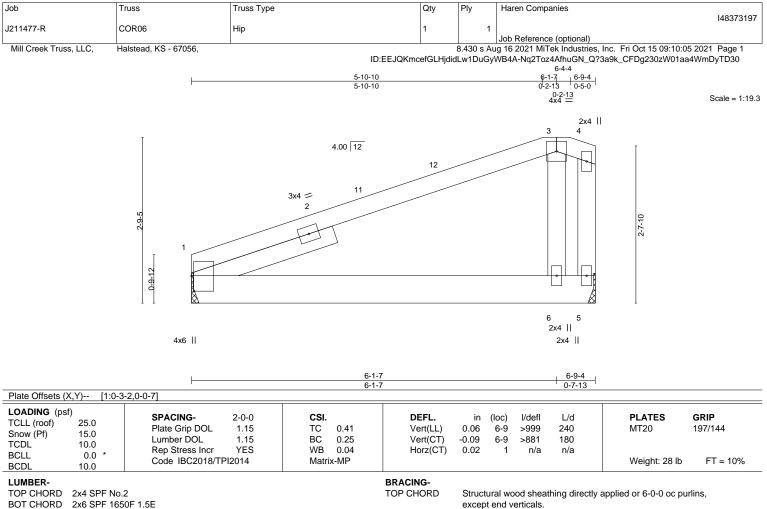
2x4 SPF No.2

2x6 SPF 1650F 1.5E

Left 2x4 SPF No.2 2-6-0

Max Horz 1=72(LC 15)

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10 lb uplift at joint 1 and 15 lb uplift at joint 5.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

2x6 SPF 1650F 1.5E 2x4 SPF No.2 BOT CHORD Left 2x4 SPF No.2 2-6-0

except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=Mechanical, 5=Mechanical Max Horz 1=72(LC 15) Max Uplift 1=-10(LC 12), 5=-15(LC 12) Max Grav 1=298(LC 2), 5=298(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-3=-420/212

NOTES-

WEBS

SLIDER

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 6-1-7, Exterior(2E) 6-1-7 to 6-7-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

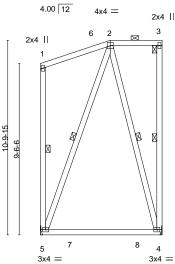
3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.


8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10 lb uplift at joint 1 and 15 lb uplift at joint 5.

9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type			Qty	Ply	Haren Companies
							148373198
J211477-R	COR07	Half Hip			1	1	
							Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,						ug 16 2021 MiTek Industries, Inc. Fri Oct 15 09:10:06 2021 Page 1
				ID:EI	EJQKmcef	GLHjdidLw1	DuGyWB4A-r1cr0J4oQ_07?8?BdHgzWPoQ9SI1iyhBpEq4IfyTD3?
		F	3-10-		9-4		
			3-10-	10 2-1	0-10		
		4	.00 12	4x4 =			Scale: 3/16"=1'

3-10-10 6-9-4 3-10-10 2-10-10

LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.30 BC 0.65 WB 0.08 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.19 -0.29 -0.00	(loc) 4-5 4-5 4	l/defl >411 >264 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 62 lb	GRIP 197/144 FT = 10%
LUMBER-			BRACING-						

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins: 2-3. Rigid ceiling directly applied or 10-0-0 oc bracing. 1 Row at midpt 3-4, 2-4, 1-5, 2-5

REACTIONS. 4=Mechanical, 5=Mechanical (size) Max Horz 5=36(LC 12) Max Uplift 4=-69(LC 12) Max Grav 4=329(LC 3), 5=330(LC 39)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 2-4=-142/276

NOTES-

1.

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 3-10-10, Exterior(2E) 3-10-10 to 6-7-8 zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 7) will fit between the bottom chord and any other members, with BCDL = 10.0psf.

8) Refer to girder(s) for truss to truss connections.

- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 69 lb uplift at joint 4.
- 10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI

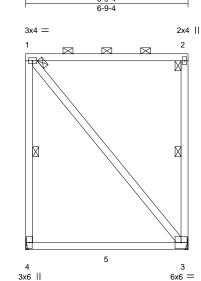
11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job	Truss	Truss Type	Qty	Ply	Haren Companies	148373199
J211477-R	COR08	Half Hip	1	1		140373133
Mill Creek Truss, LLC,	Halstead, KS - 67056,					Inc. Fri Oct 15 09:10:08 2021 Page 1
		₁ 1-10-10	ID:EEJQKmcefG 6-9-4	LHjdidLw1I	DuGyWB4A-nPkcR?62ycHrE	R9ZlijRbqtfQF5IAgCUGYJBMYyTD2z
		1-10-10	4-10-10			
		4.00 12 4x10 =	2x4			Scale = 1:60.8
		3x4 = 2	Z 8 ³			
		$\begin{array}{c} 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 $	9 4 6x6 =			
		<u>1-10-10</u> -10-10	6-9-4 4-10-10			
Plate Offsets (X,Y) [2: LOADING (psf)	0-5-0,0-1-13]					
TCLL (roof) 25.0 Snow (Pf) 15.0	SPACING- Plate Grip DOL Lumber DOL	2-0-0 CSI. 1.15 TC 0.76 1.15 BC 0.21	DEFL. Vert(LL) Vert(CT)		loc) I/defl L/d 4-5 >999 240 4-5 >999 180	PLATES GRIP MT20 197/144
TCDL 10.0 BCLL 0.0 * BCDL 10.0	Rep Stress Incr Code IBC2018/TP	YES WB 0.84 I2014 Matrix-MP	Horz(CT)	0.00	4 n/a n/a	Weight: 70 lb FT = 10%
			BRACING- TOP CHORD BOT CHORD WEBS	except e	al wood sheathing directly end verticals, and 2-0-0 oc illing directly applied or 8-4- tt midpt 3-4, 2-1	purlins: 2-3.
Max Horz Max Uplif	6=Mechanical, 4=Mechanic 2 6=306(LC 13) t 6=-207(LC 12), 4=-252(LC - 7 6=459(LC 30), 4=442(LC 4(13)				
TOP CHORD 1-6=-66 BOT CHORD 5-6=-48		0 (lb) or less except when shown. 2/641				

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 1-10-10, Exterior(2R) 1-10-10 to 6-1-8, Interior(1) 6-1-8 to 6-7-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 207 lb uplift at joint 6 and 252 lb uplift at joint 4.
- 10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job		Truss	Truss Type		Qty	Ply	Haren Companies	
J0D J211477-R		COR09	Flat		Qty 1	Piy 1		148373200
Mill Creek Truss	<u>s C</u>	Halstead, KS - 67056,					Job Reference (optional)	Inc. Fri Oct 15 09:10:09 2021 Page 1
Will Ofeck Trust	5, LLO,	Haisteau, NO - 07000,		6-9-	ID:EEJQKmcefG			pjmIPEg82QrZfLOvGudVC3ku_yTD2y
				6-9-				
				3x4 =	2x4	I		Scale = 1:55.0
			9-5-15					
			l	4	5 3			
				3x6	6x6 =			
				6-9- 6-9-				
LOADING (psf TCLL (roof) Snow (Pf) TCDL BCLL BCDL	() 25.0 15.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TP	2-0-0 1.15 1.15 YES 2014	CSI. TC 0.67 BC 0.61 WB 0.30 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	-0.17	loc) l/defl L/d 3-4 >455 240 3-4 >281 180 3 n/a n/a	PLATES GRIP MT20 197/144 Weight: 48 lb FT = 10%
	2x4 SPF 2 2x4 SPF N 2x4 SPF 2 1-3: 2x4 SI	o.2 100F 1.8E *Except*			BRACING- TOP CHORD BOT CHORD WEBS		c purlins: 1-2, except end v illing directly applied or 7-1 at midpt 1-4, 2-	0-14 oc bracing.
REACTIONS.	Max Horz Max Uplift	4=Mechanical, 3=Mechanic 4=-279(LC 12) 4=-213(LC 10), 3=-213(LC 4=448(LC 26), 3=424(LC 25	11)					
FORCES. (Ib) TOP CHORD BOT CHORD WEBS			0 (lb) or less exce	ept when shown.				
MWFRS (en and forces & 2) TCLL: ASCE Rough Cat C 3) Provide aded 4) This truss ha 5) * This truss h will fit betwee 6) Refer to gird 7) Provide mec joint 3. 8) This truss is	velope) and MWFRS fc 57-16; Pr=2 2; Fully Exp. quate draina as been des has been des en the botto er(s) for trus thanical con designed in	115mph (3-second gust) Va I C-C Corner(3) zone; cantile r reactions shown; Lumber I 5.0 psf (roof LL: Lum DOL=' ; Ce=0.9; Cs=1.00; Ct=1.10 age to prevent water ponding igned for a 10.0 psf bottom c signed for a live load of 20.0 m chord and any other mem ss to truss connections. nection (by others) of truss t accordance with the 2018 la ntation does not depict the s	ver left and right of ODL=1.33 plate gi .15 Plate DOL=1 shord live load noi psf on the bottom bers, with BCDL = o bearing plate can anternational Buildi	exposed ; end vertica rip DOL=1.33 .15); Pf=15.0 psf (Lur nconcurrent with any n chord in all areas wh = 10.0psf. upable of withstanding ing Code section 2300	I left and right expo n DOL=1.15 Plate other live loads. here a rectangle 3-6 g 213 lb uplift at joir 6.1 and referenced	sed;C-C DOL=1.1 6-0 tall by at 4 and 2 standard	for members 5); Is=1.0; 2-0-0 wide 13 lb uplift at ANSI/TPI 1.	STATE OF MISSOL
								PE-2001018807



Job	Truss	Truss Type	Qty	Ply	Haren Companies	
	COR10	Flat	1	1		148373201
Mill Creek Truss, LLC,	Halstead, KS - 67056,			3.430 s A	Job Reference (optional) ug 16 2021 MiTek Industries,	Inc. Fri Oct 15 09:10:09 2021 Page 1
		1	ID:EEJQKmcefG 6-9-4	LHjdidLw	1DuGyWB4A-Gcl_eL7gjvPist	pjmIPEg82QnRfLZvHrdVC3ku_yTD2y
			6-9-4			
		3x4 =	2x4 2	П		Scale = 1:51.3
		8-5-12 B-5-12 B-12 B-12 B-12 B-12 B-12 B-12 B-12 B				
		4 3x6	5 3 6x6 =	-		
			6-9-4	-		
	1		6-9-4			
LOADING (psf) TCLL (roof) 25.0	SPACING- Plate Grip DOL	2-0-0 CSI. 1.15 TC 0.93	DEFL. Vert(LL)	in (-0.17	(loc) l/defl L/d 3-4 >469 240	PLATES GRIP MT20 197/144
Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	Lumber DOL Rep Stress Incr Code IBC2018/TP	1.15 BC 0.59 YES WB 0.24	Vert(CT) Horz(CT)	-0.27 0.00	3-4 >286 180 3 n/a n/a	Weight: 46 lb FT = 10%
LUMBER- TOP CHORD 2x4 SPF 21 BOT CHORD 2x4 SPF No WEBS 2x4 SPF No	o.2		BRACING- TOP CHORD BOT CHORD WEBS	Rigid ce	c purlins: 1-2, except end v eiling directly applied or 8-2- at midpt 1-4, 2-3	7 oc bracing.
Max Horz Max Uplift	4=Mechanical, 3=Mechanic 4=-259(LC 12) 4=-185(LC 10), 3=-185(LC 4=426(LC 26), 3=402(LC 25	11)				
	671, 2-3=-227/298 457	0 (Ib) or less except when shown.				
 MWFRS (envelope) and and forces & MWFRS for 2) TCLL: ASCE 7-16; Pr=22; Rough Cat C; Fully Exp.; 3) Provide adequate draina 4) This truss has been desi 5) * This truss has been desi will fit between the bottor 6) Refer to girder(s) for trus 7) Provide mechanical conr joint 3. 8) This truss is designed in 	C-C Corner(3) zone; cantile r reactions shown; Lumber I 5.0 psf (roof LL: Lum DOL=' ; Ce=0.9; Cs=1.00; Ct=1.10 ge to prevent water ponding gned for a 10.0 psf bottom of signed for a live load of 20.0 m chord and any other mem is to truss connections. nection (by others) of truss t accordance with the 2018 I	hord live load nonconcurrent with a post on the bottom chord in all areas	ical left and right expo Lum DOL=1.15 Plate ny other live loads. where a rectangle 3-6 ding 185 lb uplift at joir 2306.1 and referenced	Sed;C-C DOL=1.1 G-0 tall by t 4 and 1 standard	for members 5); ls=1.0; / 2-0-0 wide 85 lb uplift at d ANSI/TPI 1.	STATE OF MISSOL
						SEVIER SEVIER NUMBER PE-2001018807 SSIONAL ENGINE

October 18,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Haren Companies
J211477-R	COR11	Flat	4	1	148373202
J2114/7-R	CORTI	Flat	1	1	Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,	1		8.430 s Au	ig 16 2021 MiTek Industries, Inc. Fri Oct 15 09:10:10 2021 Page 1
			ID:EEJQKmcef0	LHjdidLw1	DuGyWB4A-kosMrh8ITDXYUIIys7IvhFy_N3g1ecJnksoHQQyTD2x

		6-9-4 6-9-4							
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.79 BC 0.58 WB 0.74 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.27 0.00	(loc) 3-4 3-4 3	l/defl >487 >293 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 44 lb	GRIP 197/144 FT = 10%

TOP CHORD

BOT CHORD

WEBS

2-0-0 oc purlins: 1-2. except end verticals.

1 Row at midpt

Rigid ceiling directly applied or 8-6-8 oc bracing.

1-4, 2-3

LUMBER-

TOP CHORD 2x4 SPF 2100F 1.8E BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

REACTIONS. 4=Mechanical, 3=Mechanical (size) Max Horz 4=-239(LC 12) Max Uplift 4=-159(LC 10), 3=-159(LC 11) Max Grav 4=405(LC 26), 3=380(LC 25)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD

1-4=-431/615, 2-3=-227/298 BOT CHORD 3-4--409/422

WEBS 1-3=-411/411

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

3-1-15

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 159 lb uplift at joint 4 and 159 lb uplift at joint 3.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Scale: 1/4"=1'

Job	Truss	Truss Type		Qty	Ply	Haren Companies	
211477-R	COR12	Flat		1			14837320
Mill Creek Truss, LLC,	Halstead, KS - 67056,						, Inc. Fri Oct 15 09:10:11 2021 Page 1
		L	6-9-4	EJQKmcefGLHjc	lidLw1Du	GyWB4A-C_Qk318wEXfP5v	t8QqG8DTVB7T1ZNClwyWYrzsyTD2w
		I	6-9-4		I		
		3x4 =			2x4 2		Scale = 1:44
			、	k			
			$\langle \rangle$				
		2					
		7-5-15) (A)	\			
					5		
		- 4	5		3		
		3x6		6x	6 =		
		L	6-9-4				
OADING (psf)			6-9-4				
TCLL (roof) 25.0 Snow (Pf) 15.0	SPACING- Plate Grip DOL	2-0-0 CS 1.15 TC	. 0.66	DEFL. Vert(LL)	in -0.15	(loc) l/defl L/d 3-4 >510 240	PLATES GRIP MT20 197/144
TCDL 10.0	* Lumber DOL Rep Stress Inc	1.15 BC YES WE	0.56 0.15	Vert(CT) Horz(CT)	-0.26 0.00	3-4 >302 180 3 n/a n/a	
BCLL 0.0 BCDL 10.0	Code IBC2018	/TPI2014 Ma	rix-MP	. ,			Weight: 42 lb FT = 10%
LUMBER- TOP CHORD 2x4 SF	PF 2100F 1.8E			RACING- OP CHORD	2-0-0 0	oc purlins: 1-2, except end	verticals
BOT CHORD 2x4 SF	PF No.2 PF No.2		B	OT CHORD EBS	Rigid c	ceiling directly applied or 8- at midpt 1-3	
	e) 4=Mechanical, 3=Mech	anical					
Max H	lorz 4=-219(LC 12) lplift 4=-136(LC 10), 3=-136(
	brav 4=385(LC 26), 3=361(L						
FORCES. (Ib) - Max.	Comp./Max. Ten All forces	s 250 (lb) or less except whe	n shown.				
BOT CHORD 3-4=-	-379/564, 2-3=-227/298 -374/386						
WEBS 1-3=	-358/358						
NOTES- 1) Wind: ASCE 7-16; \	/ult=115mph (3-second gust	Vasd=91mph; TCDL=6.0ps	f; BCDL=6.0psf; !	h=25ft; Cat. II; E	Exp C; Er	nclosed;	
	and C-C Corner(3) zone; ca			ft and right expo	osed;C-C	for members	
	Pr=25.0 psf (roof LL: Lum DC Exp.; Ce=0.9; Cs=1.00; Ct=1		i=15.0 psf (Lum D	OOL=1.15 Plate	DOL=1.	15); Is=1.0;	
Provide adequate d	rainage to prevent water pon designed for a 10.0 psf botto	ding.	rrent with any oth	er live loads			
5) * This truss has bee	n designed for a live load of pottom chord and any other r	20.0psf on the bottom chord	in all areas where		6-0 tall b	y 2-0-0 wide	
6) Refer to girder(s) for	r truss to truss connections. connection (by others) of tru			36 lb unlift at iou	at 1 and	136 lh unlift at	James
joint 3.	ed in accordance with the 20		-				SE OF MISSO
	resentation does not depict t						SCOTT M.
						la l	SEVIER
						B.	In the stand
							PE-2001018807
							STONAL EN
							October 18,2021

Job	Truss	Truss Type		Qty	Ply	Haren Companies	
J211477-R	COR13	Flat		1	1		148373204
Mill Creek Truss, LLC,	Halstead, KS - 67056,				8.430 s A	Job Reference (optional) ug 16 2021 MiTek Industries	s, Inc. Fri Oct 15 09:10:12 2021 Page 1
			1	ID:EEJQKmcefGLHj 6-9-4	didLw1DuG	yWB4A-gBz6GN9Z?qnGj3SI	L_YnNmg2MPsN96aL3BAHOVJyTD2v
				6-9-4			
			3x4 =		2x4		Scale = 1:40.
		I					
		10		\backslash			
		6-9-15					
				``			
		1	<u>.</u>	5			
			4	-	3		
		3	x6		6x6 =		
			H	6-9-4 6-9-4			
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in	(loc) I/defl L/d	PLATES GRIP
TCLL (roof) 25.0 Snow (Pf) 15.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC 0.63 BC 0.54	Vert(LL) Vert(CT)	-0.14 -0.25	3-4 >541 240 3-4 >312 180	MT20 197/144
TCDL 10.0 BCLL 0.0 *	Rep Stress Inci Code IBC2018	YES	WB 0.45 Matrix-MP	Horz(CT		3 n/a n/a	Weight: 40 lb FT = 10%
BCDL 10.0				BRACING			
	2100F 1.8E			BRACING- TOP CHORD		c purlins: 1-2, except end	
BOT CHORD2x4 SPFWEBS2x4 SPF				BOT CHORD	Rigid c	eiling directly applied or 9-4	4-3 oc bracing.
REACTIONS. (size)	4=Mechanical, 3=Mecha	anical					
	z 4=-198(LC 12) ft 4=-114(LC 10), 3=-114(LC 11)					
	v 4=366(LC 26), 3=342(L0						
	omp./Max. Ten All forces	s 250 (lb) or less	except when shown.				
BOT CHORD 3-4=-33							
WEBS 1-3=-30	8/308						
NOTES- 1) Wind: ASCE 7-16; Vult	=115mph (3-second gust)	Vasd=91mph;	CDL=6.0psf; BCDL=	6.0psf; h=25ft; Cat. II	; Exp C; En	closed;	
	d C-C Corner(3) zone; ca for reactions shown; Lumb			ertical left and right ex	posed;C-C	for members	
2) TCLL: ASCE 7-16; Pr=	25.0 psf (roof LL: Lum DC b.; Ce=0.9; Cs=1.00; Ct=1	L=1.15 Plate D		f (Lum DOL=1.15 Pla	te DOL=1.1	5); Is=1.0;	
 Provide adequate drain 	hage to prevent water pon signed for a 10.0 psf botto	ding.		any other live loads			
5) * This truss has been of	lesigned for a live load of	20.0psf on the b	ottom chord in all are		3-6-0 tall b	y 2-0-0 wide	
6) Refer to girder(s) for tr							ADDEC
Provide mechanical co joint 3.	nnection (by others) of tru	ss to bearing pla	te capable of withsta	nding 114 lb uplift at	oint 4 and '	114 lb uplift at	TE OF MISSOL
	in accordance with the 20 entation does not depict the						SCOTT M.
-,				3 1 1			SEVIER SEVIER
							Jatt Server
						Y	PE-2001018807
							A Part of the second second
							SJONAL ENCE
							October 18,2021

Job	Truss	Truss Type		Qty	Ply	Haren Companies	14007000
211477-R	COR14	Flat		1	1	leb Deferrer (148373205
Mill Creek Truss, LLC,	Halstead, KS - 67056,						, Inc. Fri Oct 15 09:10:12 2021 Page 1
		L	6-9-4	fGLHjdid	ILw1DuGy	WB4A-gBz6GN9Z?qnGj3SL	_YnNmg2MQsNX6c_3BAHOVJyTD2v
		I	6-9-4		I		
		3x4 =			2x4	II	Scale = 1:36
				\boxtimes	Ŕ		
		6-1-15					
				\backslash			
			5				
		4	, ,		3		
		3x6			6x6 =		
			6-9-4 6-9-4				
.OADING (psf)	SPACING-	2-0-0 CSI.	DE	FL.	in (loc) l/defl L/d	PLATES GRIP
CLL (roof) 25.0 Snow (Pf) 15.0	Plate Grip DC	DL 1.15 TC 0.6	53 Vei	t(LL)	-0.13	3-4 >583 240	MT20 197/144
TCDL 10.0 BCLL 0.0	Lumber DOL Bon Stross In	1.15 BC 0.8 cr YES WB 0.3		t(CT) rz(CT)	-0.24 0.00	3-4 >325 180 3 n/a n/a	
3CDL 10.0		8/TPI2014 Matrix-MI		. ,			Weight: 38 lb FT = 10%
LUMBER-	DE 2100E 1 9E		BRACING TOP CHO		2000	purlins: 1-2, except end	vorticals
BOT CHORD 2x4 SI	PF No.2		BOT CHC			eiling directly applied or 9-1	
	PF No.2						
	e) 4=Mechanical, 3=Mec lorz 4=-178(LC 12)	hanical					
Max L	Jplift 4=-95(LC 10), 3=-95(L Grav 4=347(LC 26), 3=325						
		,					
FOP CHORD 1-4=	-290/474, 2-3=-227/298	es 250 (lb) or less except when sho	own.				
	-305/314 -263/263						
NOTES-							
) Wind: ASCE 7-16; \		st) Vasd=91mph; TCDL=6.0psf; BC					
and forces & MWFF	RS for reactions shown; Lur	antilever left and right exposed ; er nber DOL=1.33 plate grip DOL=1.33	3	• •			
	Pr=25.0 psf (roof LL: Lum [Exp.; Ce=0.9; Cs=1.00; Ct:	0OL=1.15 Plate DOL=1.15); Pf=15.0 ₌1.10) psf (Lum DOL=1. ²	15 Plate	DOL=1.1	5); ls=1.0;	
) Provide adequate d	rainage to prevent water po		with any other live I	shen			
 * This truss has bee 	en designed for a live load o	f 20.0psf on the bottom chord in all			6-0 tall by	2-0-0 wide	
) Refer to girder(s) fo	r truss to truss connections						ADDEC
 Provide mechanical joint 3. 	connection (by others) of t	russ to bearing plate capable of with	nstanding 95 lb upli	ft at joint	t 4 and 95	lb uplift at	SE OF MISSO
) This truss is design		018 International Building Code set the size or the orientation of the pu					BAY VAN
							SEVIER
						B	*
						8	Scatt Sources
						7	PE-2001018807
							A FROM OF A
							SIONAL EN
							Vana

Job	Truss	Truss Type		Qty	Ply	Haren C	Companies		140070000
J211477-R	COR15	Flat		1					148373206
Mill Creek Truss, LLC,	Halstead, KS - 67056,				8 430 s /		erence (optional) 1 MiTek Industries	Inc. Fri Oct 15 09:10:1	3 2021 Page 1
	,,,,,			EEJQKmcefGL				D1XXFIcluaXAGker4XI	
		H	<u>6-9-4</u> 6-9-4						
		3x4	=		2	2x4			Scale = 1:33
		1		\bowtie		\$			
	Ī	-				Ð			
	5.5. 15	4				3			
		3x6			6x6	=			
			<u>6-9-4</u> 6-9-4						
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TP	2-0-0 1.15 1.15 YES	CSI. TC 0.63 BC 0.46 WB 0.26 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.21 0.00	3-4 >7 3-4 >3		PLATES MT20 Weight: 36 lb	GRIP 197/144 FT = 10%
BCDL 10.0		12014						Weight: 50 ib	11 = 1070
LUMBER- TOP CHORD 2x4 SPF 2 BOT CHORD 2x4 SPF 2 WEBS 2x4 SPF 2			Т	Racing- DP Chord DT Chord			1-2, except end vo		
Max Horz Max Uplit	4=Mechanical, 3=Mechanic 2 4=158(LC 11) it 4=-78(LC 10), 3=-78(LC 11) / 4=291(LC 2), 3=291(LC 2)								
	omp./Max. Ten All forces 25 2/437, 2-3=-227/298 0/279	0 (lb) or less e	except when shown.						
MWFRS (envelope) an and forces & MWFRS t	=115mph (3-second gust) Va d C-C Corner(3) zone; cantile for reactions shown; Lumber I 25.0 psf (roof LL: Lum DOL=	ever left and ri DOL=1.33 pla	ght exposed ; end vertical le te grip DOL=1.33	ft and right exp	osed;C-C	for memb			

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

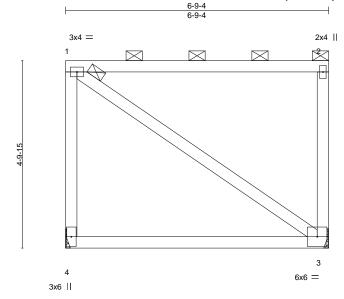
3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 78 lb uplift at joint 4 and 78 lb uplift at joint 3.


8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Haren Companies	
				-	1483	373207
J211477-R	COR16	Flat	1	1		
					Job Reference (optional)	
Mill Creek Truss 11 C	Halstead KS - 67056		•	8 430 s Au	a 16 2021 MiTek Industries Inc. Fri Oct 15 09 10 14 2021 Pag	e 1

		<u> </u>							
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.63 BC 0.46	+ DEFL. Vert(LL) Vert(CT)	in -0.11 -0.21	(loc) 3-4 3-4	l/defl >736 >368	L/d 240 180	PLATES MT20	GRIP 197/144
TCDL 10.0 BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IBC2018/TPI2014	WB 0.20 Matrix-MP	Horz(CT)	0.00	3	n/a	n/a	Weight: 34 lb	FT = 10%

```
LUMBER-
```

 TOP CHORD
 2x4 SPF 2100F 1.8E

 BOT CHORD
 2x4 SPF No.2

 WEBS
 2x4 SPF No.2

BRACING-TOP CHORD BOT CHORD

2-0-0 oc purlins: 1-2, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

ID:EEJQKmcefGLHjdidLw1DuGyWB4A-cZ5th2BpXS1_yMcj5zqrr57ixg4taYpMfUmVZByTD2t

Scale = 1:29.7

REACTIONS. (size) 4=Mechanical, 3=Mechanical Max Horz 4=-138(LC 12) Max Uplift 4=-62(LC 10), 3=-62(LC 11) Max Grav 4=291(LC 2), 3=291(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-4=-227/403, 2-3=-227/298

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 62 lb uplift at joint 4 and 62 lb uplift at joint 3.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

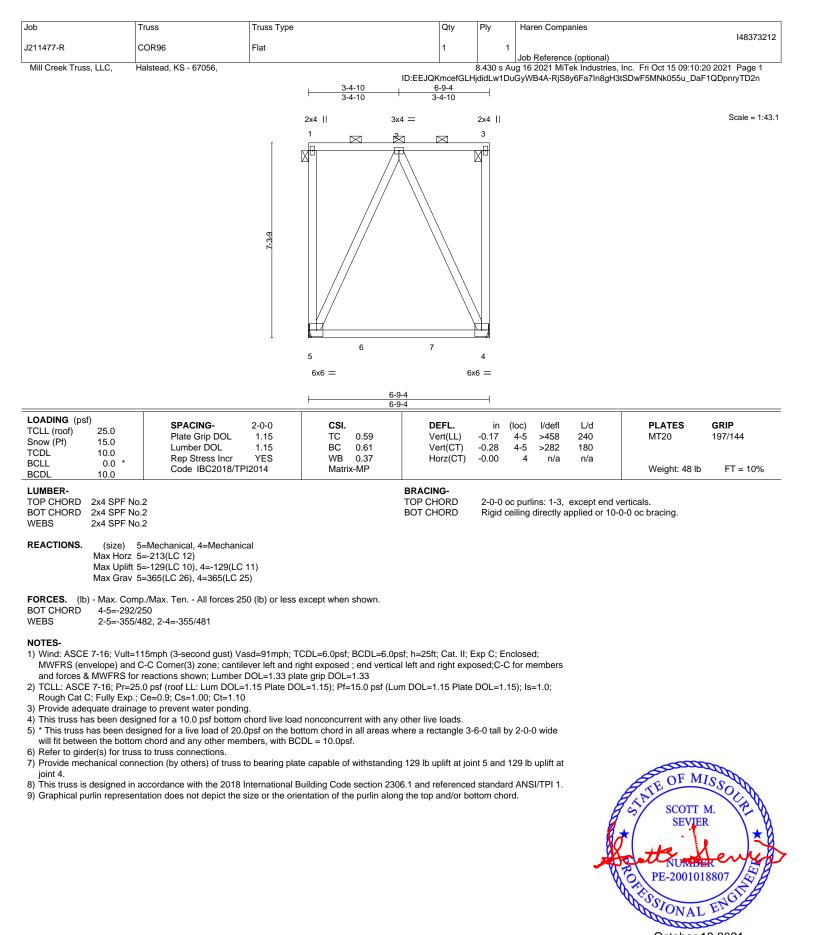
9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

	COR92 Halstead, KS - 67056, D-7-8,0-2-0], [3:0-7-8,0-2-0] SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TPI	2-0-0 1.15 1.15 YES YES	$\frac{1 \cdot 3 \cdot 10}{1 \cdot 3 \cdot 10} = \frac{5 \cdot 5}{4}$ $\frac{4 \cdot 00}{6 \times 12} \text{ MT1BHS} =$ $4 \times 6 \text{ II}$ 1 1 $4 \times 6 \text{ II}$ 1 $3 \times 6 \text{ II}$ $\frac{8}{6 \times 6} =$ $3 \times 6 \text{ II}$ $1 \cdot 3 \cdot 10 = 5 \cdot 5$	Qty 1 ID:EEJQKmcefGLHj 2-0 1-3-10 4x6 6x12 MT18HS = 3 4 6 5 6x6 = 3x6 5-10 6-9-4 2-0 1-3-10	didLw1DuG		e (optional) Fek Industries,	I48373208 Inc. Fri Oct 15 09:10:16 2021 Page 1 n6DNsJwWC0_Uh62Mvf6oFce4yTD2r Scale = 1:66.3
Plate Offsets (X,Y) [2:0 LOADING (psf) 7 TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCDL 10.0 LUMBER- 10.0	Halstead, KS - 67056, Halstead, KS - 67056, SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	$\begin{array}{c c} 1 & -3 & -10 & 5 & -5 \\ \hline 1 & -3 & -10 & 4 & -5 & -5 \\ \hline 4 & 4 & 0.00 & 12 & -5 & -5 \\ \hline 6 & x12 & MT18HS = & \\ \hline 4 & x6 & II & 2 & \\ \hline 1 & & & & & \\ \hline 4 & x6 & II & 2 & \\ \hline 1 & & & & & \\ \hline 1 & & & & & \\ \hline 8 & 7 & 7 &$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	didLw1DuG	ig 16 2021 Mi⊺ yWB4A-YyDd	Tek Industries, 6kC333HiCgm	n6DNsJwWC0_Uh62Mvf6oFce4yTD2r Scale = 1:66.
Plate Offsets (X,Y) [2:0 LOADING (psf) TCLL (roof) 25:0 Snow (Pf) 15:0 TCDL Snow (Pf) 15:0 TCDL BCDL 10:0 * BCDL 10:0 * LUMBER- * *	D-7-8,0-2-0], [3:0-7-8,0-2-0] SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	$\begin{array}{c c} 1 & -3 & -10 & 5 & -5 \\ \hline 1 & -3 & -10 & 4 & -5 & -5 \\ \hline 4 & 4 & 0.00 & 12 & -5 & -5 \\ \hline 6 & x12 & MT18HS = & \\ \hline 4 & x6 & II & 2 & \\ \hline 1 & & & & & \\ \hline 4 & x6 & II & 2 & \\ \hline 1 & & & & & \\ \hline 1 & & & & & \\ \hline 8 & 7 & 7 &$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	didLw1DuG	ywB4A-YyDd	6kC333HiCgm	n6DNsJwWC0_Uh62Mvf6oFce4yTD2r Scale = 1:66.
LOADING (psf) F TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0 LUMBER- K	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	$\begin{array}{c c} 1-3-10 & 4-\\ 4.00 & 12\\ 6x12 \text{ MT18HS} = \\ 4x6 \text{ II} & \\ 1 & $	2-0 $1-3-10$ 4x6 6x12 MT18HS = 3 4 4 6 5 6 5 6x6 = 3x6 5-10 6-9-4 2-0 $1-3-10$ DEFL. Vert(LL)	6-11-8 1000000000000000000000000000000000	oc) l/defl		
LOADING (psf) F TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0 LUMBER- K	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	6x12 MT18HS = $4x6 II$ $1 Constant$ $4x6 II$ $1 Constant$ $8 Constant$ $8 Constant$ $8 Constant$ $7 Constant$ $1 Cons$	6x12 MT18HS = 3 4 3 4 4 5 6 5 6x6 = 3x6 510 6-9-4 2-0 1-3-10 DEFL. Vert(LL)	6-11-8 1000000000000000000000000000000000	oc) l/defl		
LOADING (psf) F TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0 LUMBER- K	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	4x6 1 2 1 1 2 3 1 3 4 1 1 3 4 1 1 3 3 3 3 3 3 1 1 1 3 3 3 3 3 3 3 3	6x12 MT18HS = 3 4 3 4 4 5 6 5 6x6 = 3x6 510 6-9-4 2-0 1-3-10 DEFL. Vert(LL)	6-11-8 1000000000000000000000000000000000	oc) l/defl		PLATES GRIP
LOADING (psf) F TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0 LUMBER- K	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	$ \begin{array}{c} 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$ \begin{array}{c c} \hline & & \\ & & \\ & & \\ \hline & & \\ & & \\ & & \\ \hline & & \\ & & \\ & & \\ \hline & & \\ & & \\ & & \\ \hline & & \\ & & \\ \hline & & \\ & & \\ & & \\ \hline & & \\ & & \\ & & \\ \hline & & \\ & & \\ & & \\ \hline & & \\ & & \\ & & \\ \hline & & \\ & \\ $	in ((oc) l/defl		PLATES GRIP
LOADING (psf) F TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0 LUMBER- K	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	8 7 6x6 = 3x6 <u>1-3-10 5-4</u> <u>1-3-10 4</u> CSI. TC 0.72 BC 0.79	6 5 6x6 = 3x6 5-10 6-9-4 2-0 1-3-10 DEFL. Vert(LL)	in ((oc) l/defi		PLATES GRIP
LOADING (psf) F TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0 LUMBER- K	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	6x6 = $3x6 $ $1-3-10 - 5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-$	6x6 = 3x6 -10 6-9-4 2-0 1-3-10 DEFL. Vert(LL)	0.08	oc) l/defl		PLATES GRIP
LOADING (psf) F TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0 LUMBER- K	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	3x6 <u>1-3-10 5-</u> <u>1-3-10 4-</u> CSI. TC 0.72 BC 0.79	3x6 5-10 <u>6-9-4</u> 2-0 1-3-10 DEFL. Vert(LL)	0.08	oc) l/defl		PLATES GRIP
LOADING (psf) F TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0 LUMBER- K	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	<u>1-3-10</u> 5-5 1-3-10 4- CSI. TC 0.72 BC 0.79	5-10 6-9-4 2-0 1-3-10 DEFL. Vert(LL)	0.08	oc) l/defl		PLATES GRIP
LOADING (psf) F TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0 LUMBER- K	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	<u>1-3-10</u> 4- С SI. TC 0.72 BC 0.79	2-0 1-3-10 DEFL. Vert(LL)	0.08	oc) l/defl	L /d	PLATES GRIP
LOADING (psf) F TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0 LUMBER- K	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	CSI. TC 0.72 BC 0.79	DEFL. Vert(LL)	0.08	oc) l/defl	L /d	PLATES GRIP
TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0 LUMBER-	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	TC 0.72 BC 0.79	Vert(LL)	0.08	oc) l/defl	L /d	PLATES GRIP
Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	Lumber DOL Rep Stress Incr	1.15 YES	BC 0.79			,		NT00 407/444
BCLL 0.0 * BCDL 10.0 *			W/B 0.61	1 1011(01)	-0.08	6-7 >999 6-7 >999	240 180	MT20 197/144 MT18HS 197/144
LUMBER-		12014	Matrix-MS	Horz(CT)	0.00	5 n/a	n/a	Weight: 79 lb FT = 10%
				BRACING-				
				TOP CHORD				applied or 6-9-4 oc purlins,
BOT CHORD 2x4 SPF 2 WEBS 2x4 SPF N				BOT CHORD				purlins (6-0-0 max.): 2-3. 0-14 oc bracing.
REACTIONS. (size)	8=Mechanical, 5=Mechanica	al		WEBS	1 Row a	t midpt	2-7, 3-	6, 1-8, 2-8, 4-5, 3-5
Max Horz	8=-282(LC 14)							
	8=-216(LC 12), 5=-216(LC 2) 8=440(LC 30), 5=440(LC 2)							
TOP CHORD 1-2=-291 BOT CHORD 7-8=-314	np./Max. Ten All forces 25 /316, 3-4=-291/314, 1-8=-39 //340, 6-7=-302/329, 5-6=-29 //780, 3-6=-703/779, 2-8=-13	95/416, 4-5=-394/4 93/318	11					
 Wind: ASCE 7-16; Vult= MWFRS (envelope) and members and forces & M TCLL: ASCE 7-16; Pr=2 Rough Cat C; Fully Exp. Unbalanced snow loads Provide adequate draina All plates are MT20 plate This truss has been des * This truss has been des 8) * This truss has been de to girder(s) for trus Refer to girder(s) for trus Provide mechanical co at joint 5. This truss is designed in 1. 	ads have been considered for 115mph (3-second gust) Vas 4 C-C Exterior(2E) zone; can WWFRS for reactions shown 5:0 psf (roof LL: Lum DOL=1 .; Ce=0.9; Cs=1.00; Ct=1.10 have been considered for th age to prevent water ponding es unless otherwise indicated signed for a 10.0 psf bottom co asigned for a live load of 20.0 om chord and any other mem ss to truss connections. nnnection (by others) of truss in accordance with the 2018 sentation does not depict the	sd=91mph; TCDL= tilever left and right ; Lumber DOL=1.3 1.15 Plate DOL=1. d. chord live load non- opsf on the bottom bers, with BCDL = to bearing plate ca International Build	t exposed ; end ver 3 plate grip DOL=1 15); Pf=15.0 psf (Lu concurrent with any chord in all areas v 10.0psf. apable of withstand ling Code section 2	tical left and right e .33 Im DOL=1.15 Plate r other live loads. r/here a rectangle 3 ing 216 lb uplift at j 306.1 and referenc	DOL=1.15	C for 5); ls=1.0; 2-0-0 wide 216 lb uplift d ANSI/TPI		SCOTT M. SEVIER NUMBER PE-2001018807 DCtober 18,2021

MITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

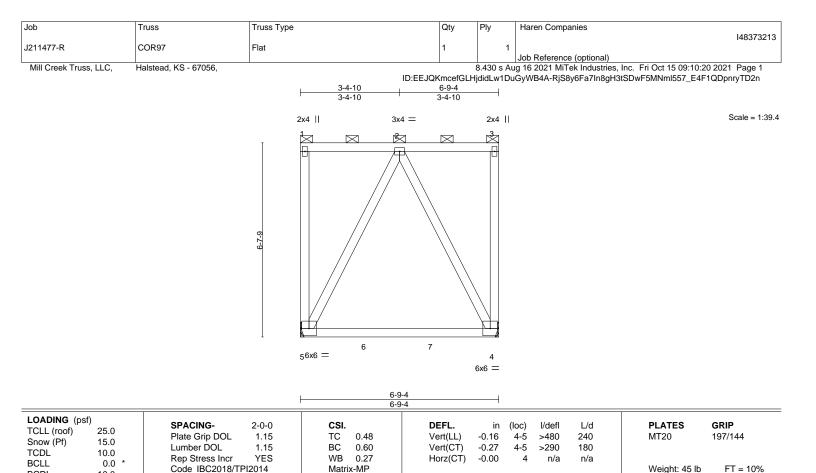
			Taura Tura		Oh	Div		
Job		russ	Truss Type		Qty	Ply	Haren Companies	148373209
J211477-R		COR93	Flat		1	1	Job Reference (optional)	
Mill Creek Trus	s, LLC, H	alstead, KS - 67056,			ID:EEJQKmcefGL			, Inc. Fri Oct 15 09:10:17 2021 Page 1 pqLIm5NYTkl7Kt3InvCoLS?9AWyTD2q
				<u>3-4-10</u> 3-4-10 +	6-9-4 3-4-10		, , ,	
				2x4	2x4	п		Scale = 1:53.9
				3X4	-	11		
			Ī					
					\\ _			
			9-3-9					
					<u>\</u>			
				5 6	7 4			
				6x6 =	6x6 =	=		
				6-9-				
LOADING (ps	sf)			6-9·				
TCLL (roof)	25.0	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC 1.00	DEFL. Vert(LL)	in -0.18	(loc) l/defl L/d 4-5 >423 240	PLATES GRIP MT20 197/144
Snow (Pf) TCDL	15.0 10.0	Lumber DOL Rep Stress Incr	1.15 YES	BC 0.64 WB 0.22	Vert(CT) Horz(CT)	-0.29 -0.00	4-5 >268 180 4 n/a n/a	
BCLL BCDL	0.0 * 10.0	Code IBC2018/TP		Matrix-MP	1012(01)	-0.00	4 11/a 11/a	Weight: 56 lb FT = 10%
LUMBER-		1			BRACING-			
TOP CHORD BOT CHORD	2x4 SPF No. 2x4 SPF No.				TOP CHORD BOT CHORD		oc purlins: 1-3, except end ceiling directly applied or 9-9	
WEBS	2x4 SPF No.				WEBS			-4, 2-5, 2-4
REACTIONS.		=Mechanical, 4=Mechanic	al					
		=-273(LC 10) =-204(LC 10), 4=-204(LC	11)					
	Max Grav 5	=427(LC 26), 4=427(LC 2	5)					
	<i>,</i> .	o./Max. Ten All forces 25	i0 (lb) or less exc	cept when shown.				
BOT CHORD WEBS	4-5=-332/3 2-5=-517/6	39, 2-4=-517/639						
NOTES-								
		15mph (3-second gust) Va C-C Corner(3) zone; cantile						
and forces &	& MWFRS for	reactions shown; Lumber	DOL=1.33 plate	grip DOL=1.33				
		.0 psf (roof LL: Lum DOL= Ce=0.9; Cs=1.00; Ct=1.10		:1.15); Pt=15.0 pst (Lui	n DOL=1.15 Plate	DOL=1.	15); IS=1.0;	
		e to prevent water ponding ned for a 10.0 psf bottom		onconcurrent with any	other live loads.			
5) * This truss	has been desi	igned for a live load of 20.	Opsf on the botto	m chord in all areas wi		6-0 tall b	y 2-0-0 wide	
6) Refer to gire	der(s) for truss	chord and any other men to truss connections.						
 Provide mee joint 4. 	chanical conne	ection (by others) of truss	to bearing plate of	capable of withstanding	g 204 lb uplift at joi	nt 5 and :	204 lb uplift at	A DESTRUCTION
		accordance with the 2018 I tation does not depict the s						SE OF MISSO
9) Oraphical p	unin represent	lation does not depict the					<i>i</i> .	SCOTT M.
							1 Å	SEVIER SEVIER
							X	1 the law int
								NUMBER
							y	PE-2001018807

	Truss	Truss Type		Qty	Ply	Haren Companies	1/00-00
11477-R	COR94	Flat		1	1		I4837321
Mill Creek Truss, LLC,	Halstead, KS - 67056,				8.430 s A	Job Reference (optional) ug 16 2021 MiTek Industries,	Inc. Fri Oct 15 09:10:18 2021 Page 1
, -,			ID:				vUKoun?xHKRHP5WNByZ6kjizyTD2p
			3-4-10	3-4-10			
			2x4 3x4	2x4	F		Scale = 1:50
				3			
			v¶ /Ţ				
		0					
		8-7-9					
			6 5	7 4			
			6x6 =	6x6	=		
			6-9- 6-9-				
.OADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc) l/defl L/d	PLATES GRIP
CLL (roof) 25.0 Snow (Pf) 15.0	Plate Grip DOL	1.15	TC 0.85	Vert(LL)	-0.18	4-5 >432 240	MT20 197/144
CDL 10.0	Lumber DOL Rep Stress Incr	1.15 YES	BC 0.63 WB 0.17	Vert(CT) Horz(CT)	-0.29 -0.00	4-5 >272 180 4 n/a n/a	
BCLL 0.0 BCDL 10.0	Code IBC2018/	PI2014	Matrix-MP				Weight: 53 lb FT = 10%
UMBER-				BRACING-	2000		(attian)a
OP CHORD 2x4 SPF OT CHORD 2x4 SPF	No.2			TOP CHORD BOT CHORD	Rigid ce	c purlins: 1-3, except end v eiling directly applied or 10-	0-0 oc bracing.
VEBS 2x4 SPF	No.2			WEBS	1 Row a	at midpt 1-5, 3-	-4, 2-5, 2-4
· · ·	5=Mechanical, 4=Mechar rz 5=-253(LC 12)	nical					
Max Up	lift 5=-177(LC 10), 4=-177(L						
Max Gr	av 5=405(LC 26), 4=405(LC	25)					
	Comp./Max. Ten All forces : 18/287	250 (lb) or less e	except when shown.				
	59/582, 2-4=-458/581						
IOTES-							
	It=115mph (3-second gust) \ Ind C-C Corner(3) zone; can						
and forces & MWFRS	for reactions shown; Lumbe =25.0 psf (roof LL: Lum DOL	r DOL=1.33 pla	te grip DOL=1.33	. .			
Rough Cat C; Fully E	xp.; Ce=0.9; Cs=1.00; Ct=1.	0	L=1.15); PI=15.0 pSI (Lun	II DOL=1.15 Plate	DOL=1.1	5); IS=1.0;	
	inage to prevent water pond esigned for a 10.0 psf bottor		nonconcurrent with any o	other live loads.			
) * This truss has been	designed for a live load of 2	0.0psf on the bo	ttom chord in all areas wh		6-0 tall by	2-0-0 wide	
) Refer to girder(s) for	ttom chord and any other me russ to truss connections.		·				
 Provide mechanical or joint 4. 	onnection (by others) of trus	s to bearing plat	e capable of withstanding	177 lb uplift at joir	nt 5 and 1	77 lb uplift at	A PROPERTY A
) This truss is designed	in accordance with the 2018 sentation does not depict the						SE OF MISSO
	semanon does not depict the	size of the offe	manon or the putlin along	ו מוש נטף מווט/טר 100		u.	SCOTT M. E
						-A	SEVIER
						VQ	A de la la
							NUMBER NE
						V V	PE-2001018807



 \mathbf{V}^{I} MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type		Qty	Ply	Haren Companies	
J211477-R	COR95	Flat		1		1	I4837321
Mill Creek Truss, LLC,	Halstead, KS - 67056,				8.430 s /	Job Reference (optional) Aug 16 2021 MiTek Industrie	s, Inc. Fri Oct 15 09:10:19 2021 Page 1
			ID:	EEJQKmcefGLHjdio 6-9-4			UhuWP0Y9qXFhITFp25omUGFPyTD2o
			3-4-10	3-4-10			
			2x4 3x4		x4		Scale = 1:46
		Ţ		1 🖂	3		
		7-11-9					
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0	SPACING- Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	6-9 6-9 CSI. TC 0.72 BC 0.62 WD 0.12	-4 DEFL. Vert(LL) Vert(CT)	-0.18 -0.28	(loc) l/defi L/d 4-5 >443 240 4-5 >276 180	PLATES GRIP MT20 197/144
BCLL 0.0 * BCDL 10.0	Rep Stress Incr Code IBC2018/TP	YES 12014	WB 0.13 Matrix-MP	Horz(CT)	-0.00	4 n/a n/a	Weight: 51 lb FT = 10%
LUMBER- TOP CHORD 2x4 SPF BOT CHORD 2x4 SPF WEBS 2x4 SPF	No.2		I	BRACING- TOP CHORD BOT CHORD WEBS	Rigid o	oc purlins: 1-3, except end ceiling directly applied or 1 v at midpt 2-5,	0-0-0 oc bracing.
Max Upl	5=Mechanical, 4=Mechanic rz 5=-233(LC 12) lift 5=-152(LC 10), 4=-152(LC av 5=385(LC 26), 4=385(LC 26)	11)					
BOT CHORD 4-5=-3	comp./Max. Ten All forces 25 04/268 05/529, 2-4=-404/529	0 (lb) or less	except when shown.				
MWFRS (envelope) a and forces & MWFRS 2) TCLL: ASCE 7-16; Pr Rough Cat C; Fully Es 3) Provide adequate dra 4) This truss has been dr 5) * This truss has been will fit between the bor 6) Refer to girder(s) for t 7) Provide mechanical co joint 4. 8) This truss is designed	It=115mph (3-second gust) Va nd C-C Corner(3) zone; cantile for reactions shown; Lumber I =25.0 psf (roof LL: Lum DOL= qp.; Ce=0.9; Cs=1.00; Ct=1.10 inage to prevent water ponding esigned for a 10.0 psf bottom of designed for a live load of 20.0 tom chord and any other merr russ to truss connections. onnection (by others) of truss t in accordance with the 2018 I sentation does not depict the s	ever left and r DOL=1.33 plat 1.15 Plate DC g. chord live loar Opsf on the bo obers, with BC o bearing pla nternational E	ght exposed ; end vertica te grip DOL=1.33 VL=1.15); Pf=15.0 psf (Lur d nonconcurrent with any ttom chord in all areas wh DL = 10.0psf. te capable of withstanding suilding Code section 230	I left and right expo m DOL=1.15 Plate other live loads. here a rectangle 3- g 152 lb uplift at join 6.1 and referenced	DOL=1. 6-0 tall b nt 5 and	C for members 15); Is=1.0; by 2-0-0 wide 152 lb uplift at rd ANSI/TPI 1.	SCOTT M. SEVIER



E

BRACING-TOP CHORD

BOT CHORD

2-0-0 oc purlins: 1-3. except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

BCDL

TOP CHORD 2x4 SPF No 2 2x4 SPF No.2 BOT CHORD WEBS 2x4 SPF No.2

10.0

REACTIONS. 5=Mechanical, 4=Mechanical (size) Max Horz 5=-192(LC 12) Max Uplift 5=-108(LC 10), 4=-108(LC 11) Max Grav 5=347(LC 26), 4=347(LC 25)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

BOT CHORD

4-5=-282/233 WEBS 2-5=-311/440, 2-4=-311/440

NOTES-

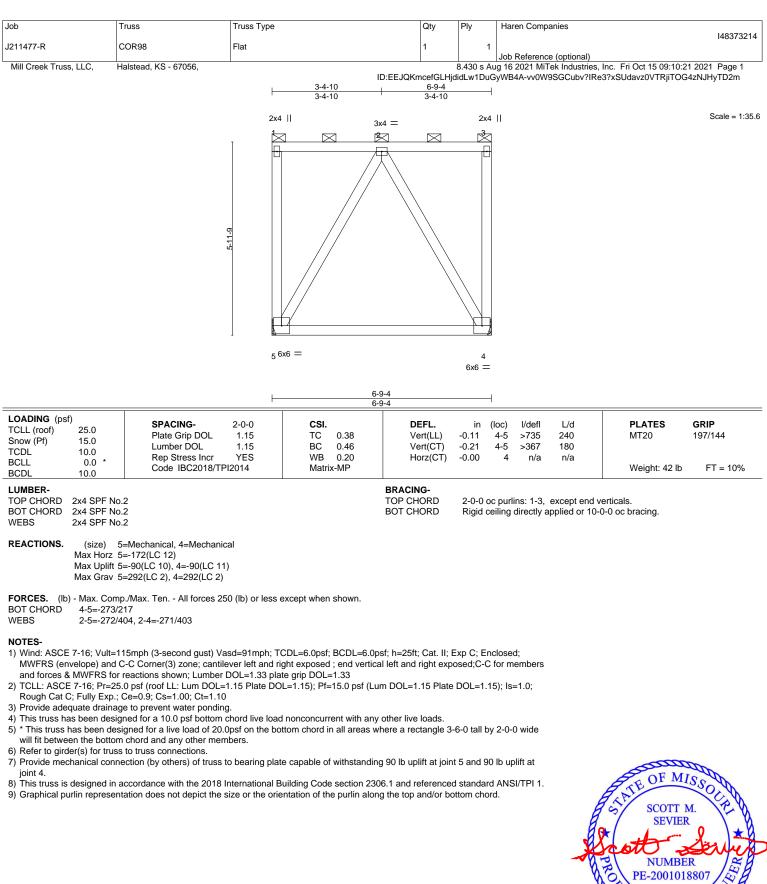
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Provide adequate drainage to prevent water ponding.

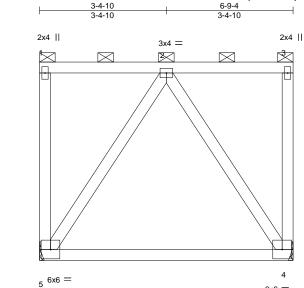
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Refer to girder(s) for truss to truss connections.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 108 lb uplift at joint 5 and 108 lb uplift at ioint 4.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



Job	Truss	Truss Type	Qty	Ply	Haren Companies
J211477-R	COR99	Flat	1	1	148373215
-					Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	ug 16 2021 MiTek Industries, Inc. Fri Oct 15 09:10:22 2021 Page 1

Mill Creek Truss, LLC, Halstead, KS - 67056,

6x6 =

2-0-0 oc purlins: 1-3. except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

ID:EEJQKmcefGLHjdidLw1DuGyWB4A-N6auNnHqfv1rwbDGZezjAnS96upfSAaYUkiwskyTD2I

Scale = 1:30.8

					0-	9-4						
LOADING (psf) TCLL (roof) Snow (Pf) TCDL BCLL	25.0 15.0 10.0 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC BC WB	0.30 0.46 0.15	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.21 -0.00	(loc) 4-5 4-5 4	l/defl >735 >367 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code IBC2018/TPI2	2014	Matri	x-MP						Weight: 39 lb	FT = 10%
LUMBER-						BRACING-						

TOP CHORD

BOT CHORD

6-9-4

```
LUMBER-
```

TOP CHORD 2x4 SPF No 2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

REACTIONS. 5=Mechanical, 4=Mechanical (size) Max Horz 5=-152(LC 12) Max Uplift 5=-73(LC 10), 4=-73(LC 11) Max Grav 5=292(LC 2), 4=292(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 4-5=-267/201

0-2-0

BOT CHORD

WEBS 2-5=-238/374, 2-4=-237/374

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

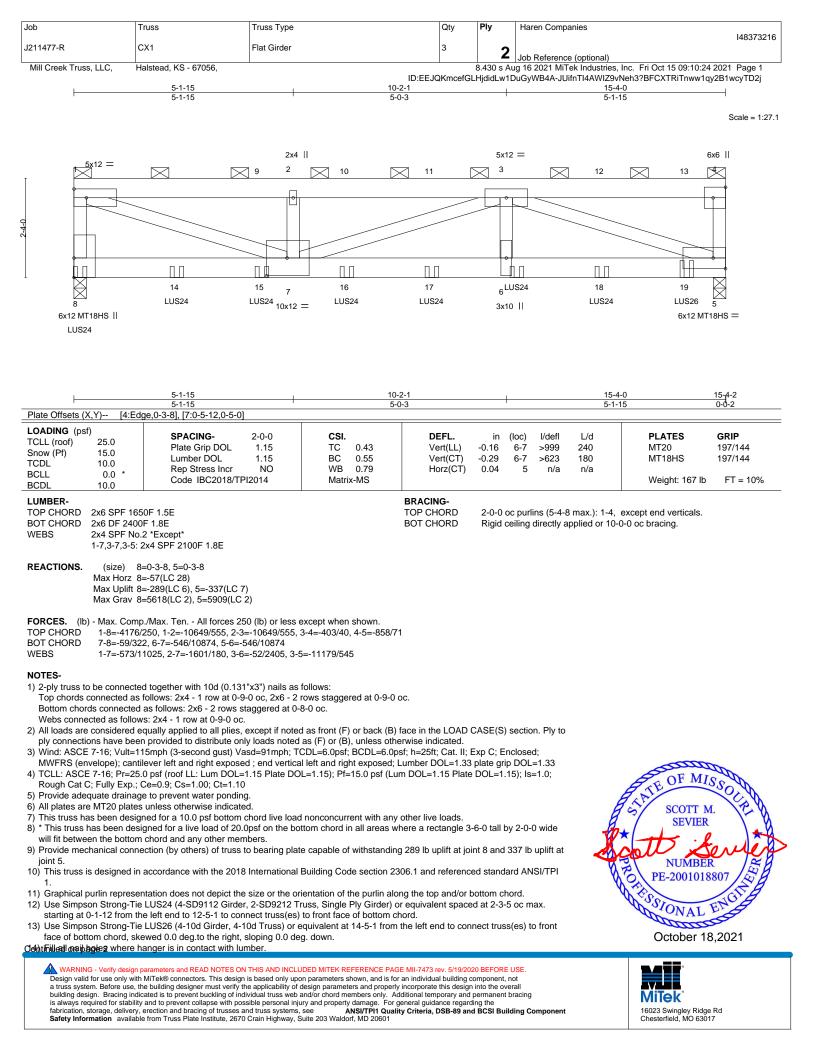
2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Refer to airder(s) for truss to truss connections.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 73 lb uplift at joint 5 and 73 lb uplift at joint 4.

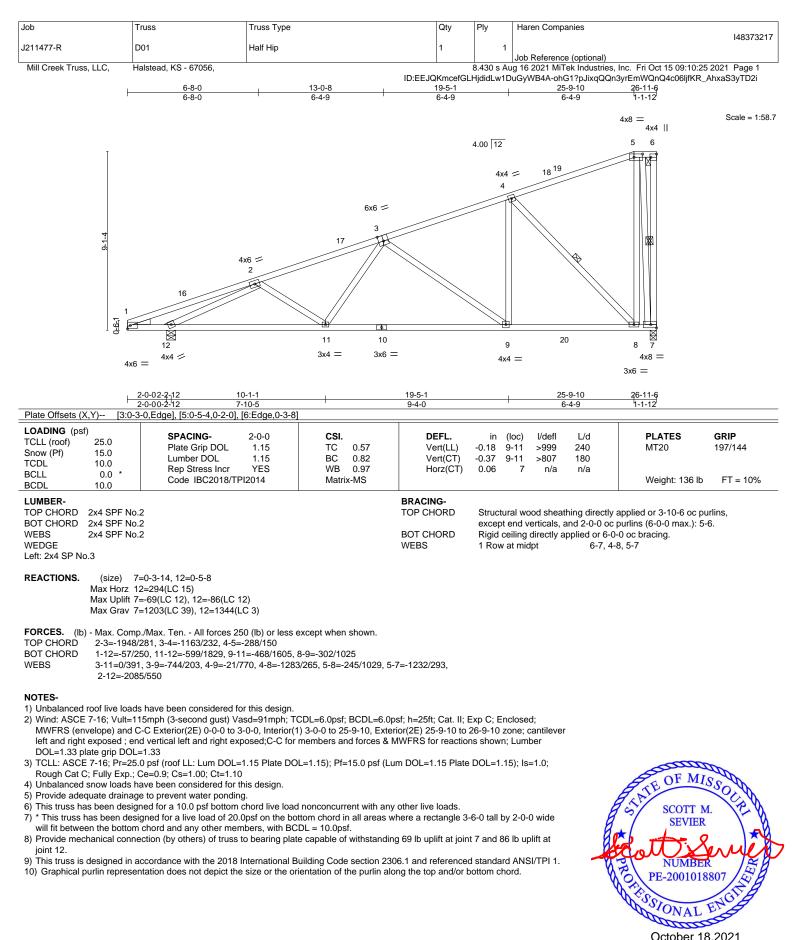
8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job	Truss	Truss Type	Qty	Ply	Haren Companies
					148373216
J211477-R	CX1	Flat Girder	3	2	
				_	Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:10:24 2021 Page 2
		ID:EE	JQKmcefGL	HjdidLw1D	uGyWB4A-JUifnTI4AWIZ9vNeh3?BFCXTRiTnww1qy2B1wcyTD2j

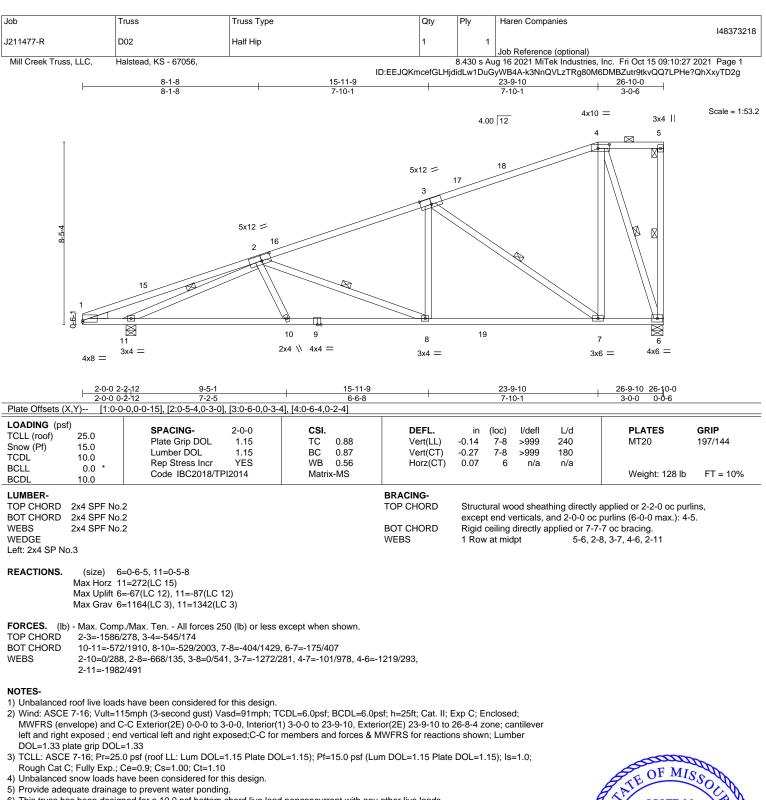
NOTES-

15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 934 lb down and 109 lb up at 4-5-1, 526 lb down and 33 lb up at 6-5-1, 516 lb down and 35 lb up at 8-5-1, 517 lb down and 37 lb up at 10-5-1, and 578 lb down and 40 lb up at 12-5-1, and 527 lb down and 45 lb up at 14-5-1 on top chord. The design/selection of such connection device(s) is the responsibility of others.

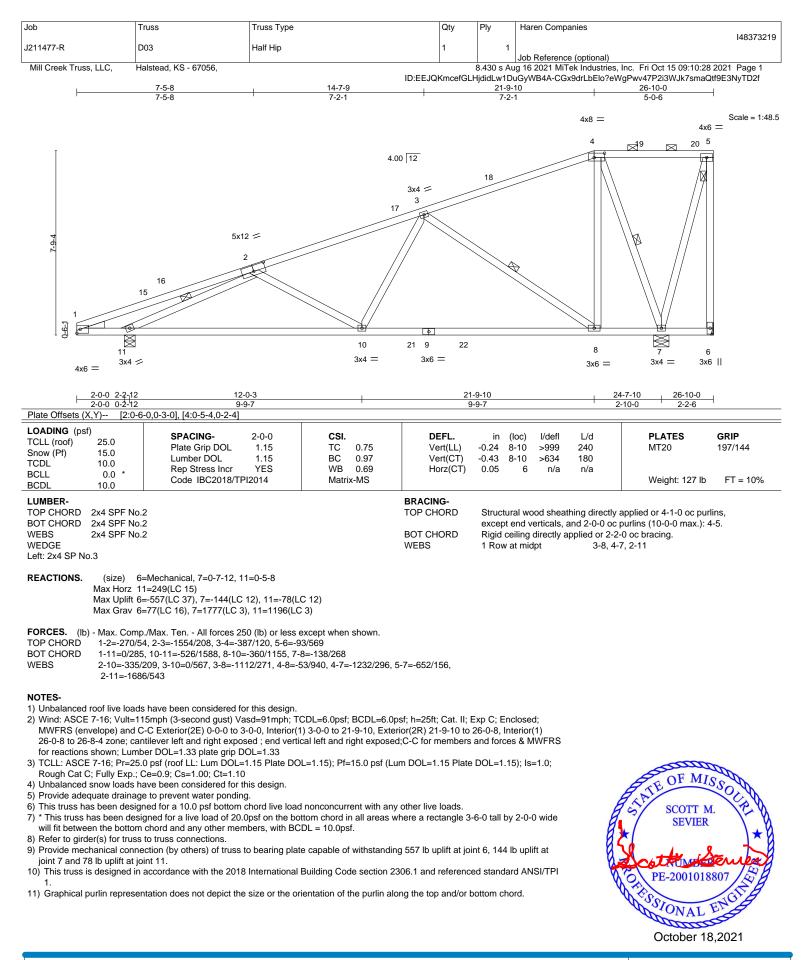

LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

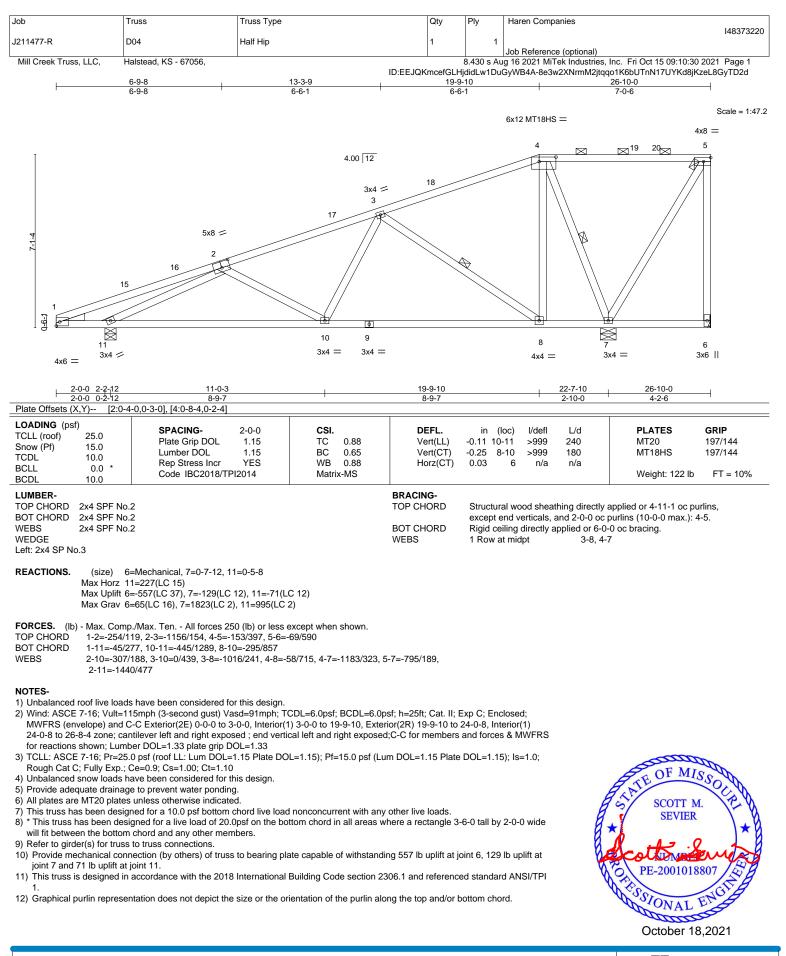
Uniform Loads (plf)

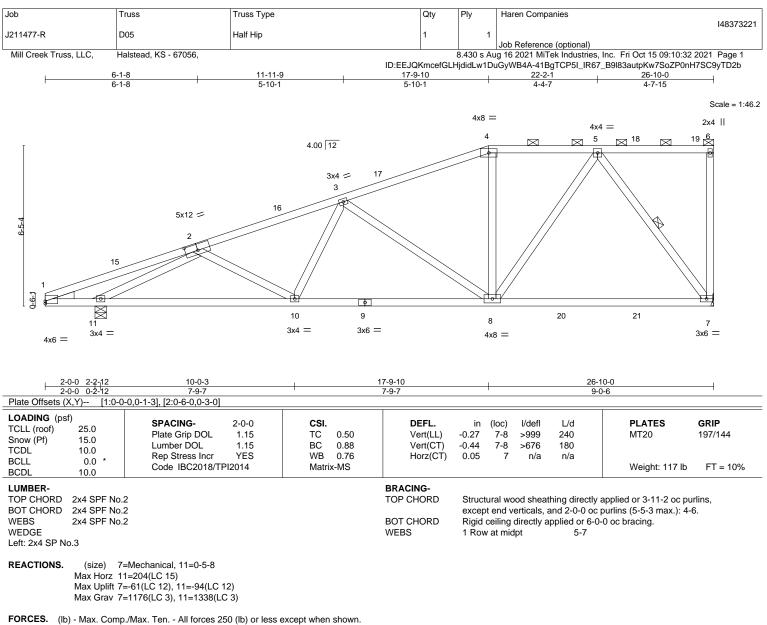
Vert: 1-4=-50, 5-8=-20 Concentrated Loads (lb)


Vert: 8=-678(F) 6=-671(F) 3=-485 9=-934 10=-526 11=-468 12=-578 13=-526 14=-671(F) 15=-671(F) 16=-671(F) 17=-671(F) 18=-671(F) 19=-895(F)

October 18,2021

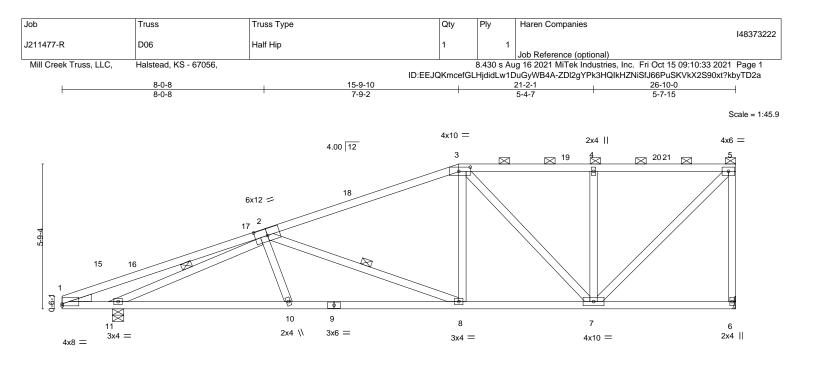



- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 67 lb uplift at joint 6 and 87 lb uplift at joint 11.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


NITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

16023 Swingley Ridge Rd Chesterfield, MO 63017

16023 Swingley Ridge Rd Chesterfield, MO 63017


- TOP CHORD 2-3=-1945/319, 3-4=-1238/280, 4-5=-1120/289
- BOT CHORD 1-11=-65/267, 10-11=-557/1796, 8-10=-481/1671, 7-8=-237/689
- WEBS 3-10=0/283, 3-8=-806/208, 5-8=-126/810, 5-7=-1127/309, 2-11=-2048/597

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 17-9-10, Exterior(2R) 17-9-10 to 22-2-1, Interior(1) 22-2-1 to 26-8-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 61 lb uplift at joint 7 and 94 lb uplift at joint 11.
- 10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

2-0-0 2-2-12		15-9-10		21-2-1		26-10-0	
2-0-0 0-2-12		6-9-7		5-4-7	1	5-7-15	I
Plate Offsets (X,Y) [1	:0-0-0,0-0-15], [2:0-6-0,0-3-4], [3:0-5-8,0-2	-0]					
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIBC2018/TPI2014	CSI. TC 0.86 BC 0.75 WB 0.58 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.10 8-10 -0.21 8-10 0.05 6	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 118 lb	GRIP 197/144 FT = 10%
LUMBER- TOP CHORD 2x4 SPF BOT CHORD 2x4 SPF WEBS 2x4 SPF WEDGE Left: 2x4 SP No.3	No.2		BRACING- TOP CHORD BOT CHORD WEBS	except end ve	erticals, and 2-0-0 of lirectly applied or 7-9	0	
Max Upl	6=Mechanical, 11=0-5-8 z 11=182(LC 15) ift 6=-59(LC 12), 11=-95(LC 12) v 6=1110(LC 2), 11=1292(LC 2)						
TOP CHORD 2-3=-14 BOT CHORD 10-11= WEBS 2-10=0	omp./Max. Ten All forces 250 (lb) or less 427/315, 3-4=-911/267, 4-5=-911/267, 5-6= -552/1882, 8-10=-518/1918, 7-8=-364/127 /296, 2-8=-856/164, 3-8=0/432, 3-7=-596/1 2048/525	=-1057/269 3	82/1264,				
/	pads have been considered for this design t=115mph (3-second qust) Vasd=91mph.⊺		sf; h=25ft; Cat. II;	Exp C; Enclosed	:		

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0pst; BCDL=6.0pst; h=25ft; Cat. II; Exp C; Enclosed

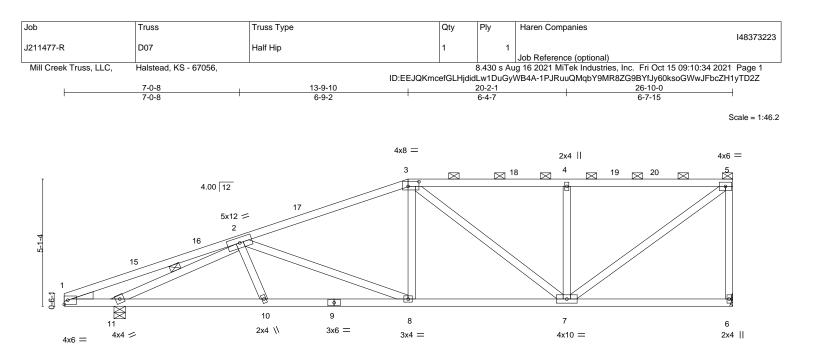
MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 15-9-10, Exterior(2R) 15-9-10 to 20-0-8, Interior(1) 20-0-8 to 26-8-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Refer to girder(s) for truss to truss connections.


9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 59 lb uplift at joint 6 and 95 lb uplift at joint 11.

10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

20-2-1

6-4-7

in (loc)

8-10

8-10

1 Row at midpt

6

-0.10

-0.18

0.05

l/defl

>999

>999

n/a

L/d

240

180

n/a

Rigid ceiling directly applied or 6-0-0 oc bracing.

Structural wood sheathing directly applied or 3-10-7 oc purlins,

except end verticals, and 2-0-0 oc purlins (4-7-1 max.): 3-5.

2-11

DEFL.

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

WEBS

13-9-10

5-9-7

CSI.

тс

BC

WB

Matrix-MS

0.68

0.70

0.57

2-0-0 2-2-12 2-0-0 0-2-12

25.0

15.0

10.0

10.0

0.0

2x4 SPF No.2

2x4 SPF No.2

2x4 SPF No.2

Plate Offsets (X,Y)--LOADING (psf)

TCLL (roof)

Snow (Pf)

LUMBER-

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

WEBS

7)

joint 11.

Left: 2x4 SP No.3 REACTIONS.

TCDL

BCLL

BCDL

WEBS

WEDGE

[3:0-5-4,0-2-4]

SPACING-

(size) 6=Mechanical, 11=0-5-8 Max Horz 11=160(LC 15)

1) Unbalanced roof live loads have been considered for this design.

for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design.

5) Provide adequate drainage to prevent water ponding.

8) Refer to girder(s) for truss to truss connections.

will fit between the bottom chord and any other members.

Max Uplift 6=-58(LC 12), 11=-97(LC 12) Max Grav 6=1109(LC 2), 11=1293(LC 2)

Plate Grip DOL

Rep Stress Incr

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

10-11=-531/1839, 8-10=-497/1871, 7-8=-391/1459

2-3=-1611/343, 3-4=-1181/303, 4-5=-1181/303, 5-6=-1048/263

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Code IBC2018/TPI2014

Lumber DOL

2-0-0

1.15

1.15

YES

2-8=-606/112, 3-8=0/352, 3-7=-454/120, 4-7=-606/207, 5-7=-305/1437, 2-11=-2090/534

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 13-9-10, Exterior(2R) 13-9-10 to 18-0-8, Interior(1) 18-0-8 to 26-8-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS

3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 58 lb uplift at joint 6 and 97 lb uplift at

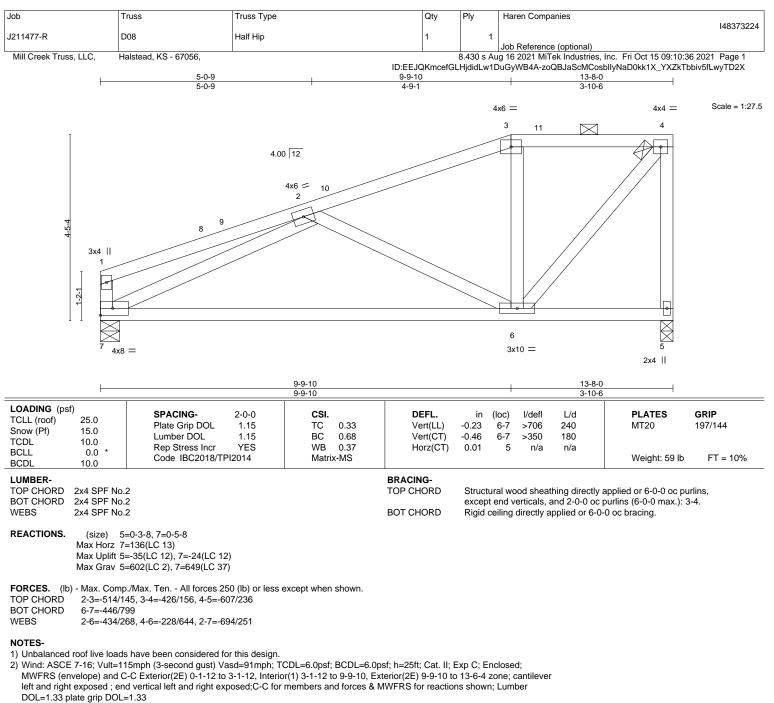
10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI

26-10-0

6-7-15

PLATES

Weight: 113 lb


MT20

GRIP

197/144

FT = 10%

3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

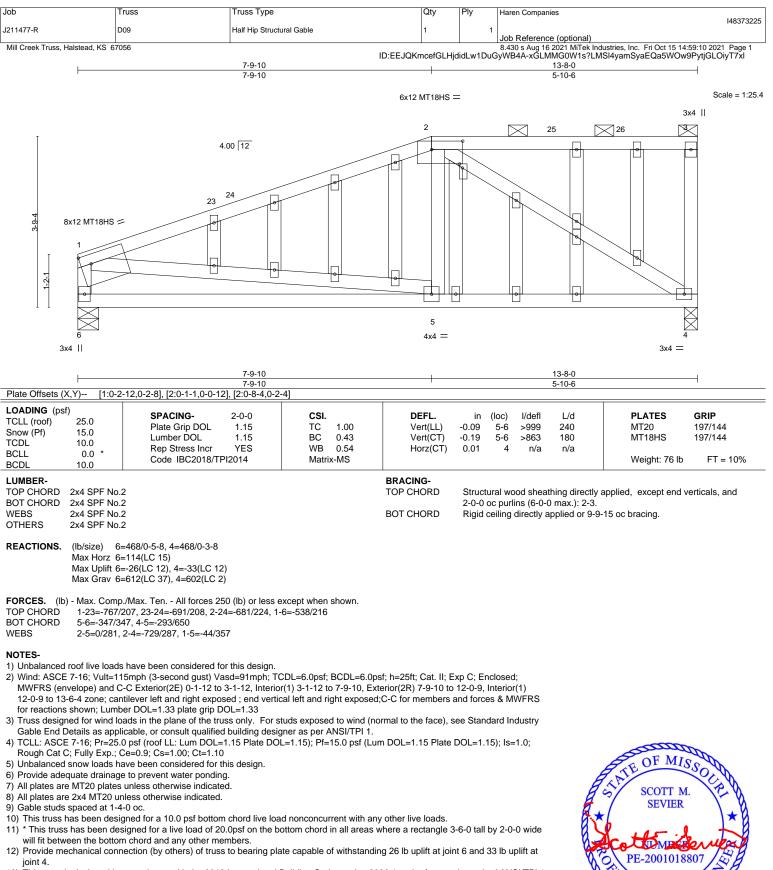
4) Unbalanced snow loads have been considered for this design.

5) Provide adequate drainage to prevent water ponding.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

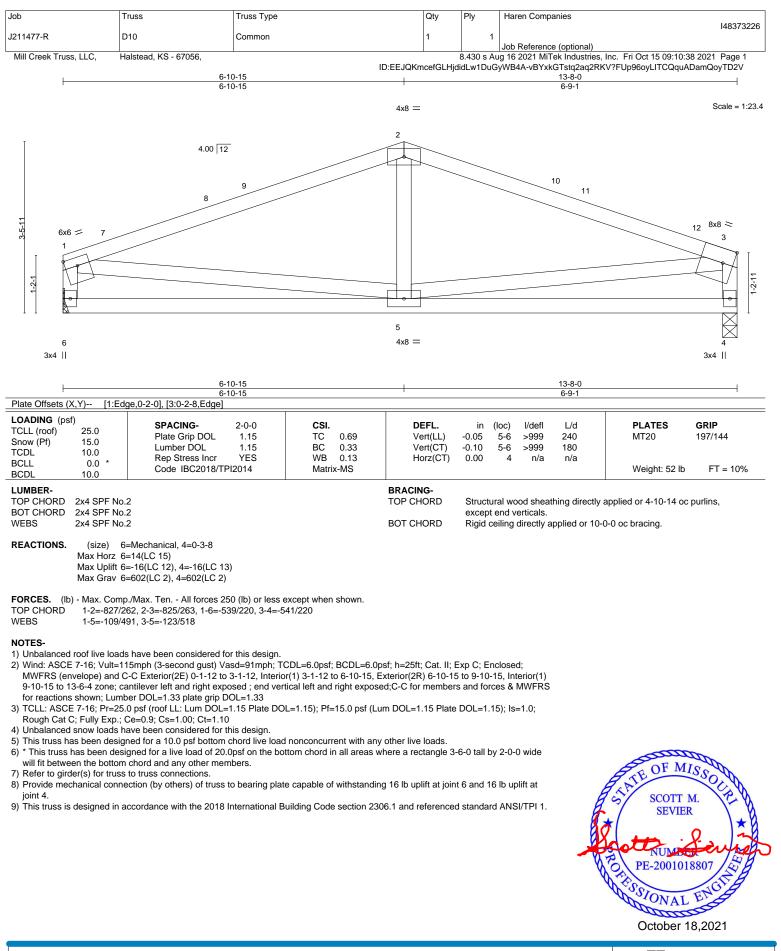
7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 35 lb uplift at joint 5 and 24 lb uplift at joint 7.

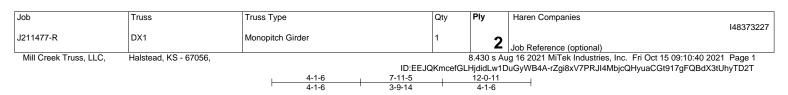

9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

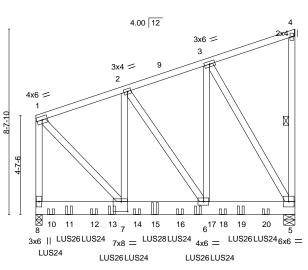
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017



- 13) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.




October 18,2021

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

[7:0 0 0 0		ŀ	<u>4-1-6</u> 4-1-6		7-11-5 3-9-14	<u> 12-0-1</u> 4-1-6					
[7:0-3-8,0	J-5-8]										
	SPACING-	2-0-0	CSI.		DE	FL. in	(loc)	l/defl	L/d	PLATES	GRIP
	Plate Grip DOL	1.15	TC	0.15	Ve	rt(LL) -0.02	6-7	>999	240	MT20	197/144
	Lumber DOL	1.15	BC	0.19	Ve	rt(CT) -0.04	6-7	>999	180		
*	Rep Stress Incr	NO	WB	0.44	Ho	rz(CT) 0.00	5	n/a	n/a		
	Code IBC2018/TI	PI2014	Matri	x-MS						Weight: 193 lb	FT = 10%

BCDL

Snow (Pf)

TCDL

BCLL

Plate Offsets (X,Y)-- [7 LOADING (psf) TCLL (roof)

25.0

15.0

10.0

10.0

0.0

LUMBER-		BRACING-	
TOP CHORD	2x4 SPF No.2	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins,
BOT CHORD	2x8 DF 1950F 1.7E		except end verticals.
WEBS	2x4 SPF No.2	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
		WEBS	1 Row at midpt 4-5
REACTIONS	(size) 8-0-3-8 5-0-6-4		

Max Horz 8=259(LC 9) Max Uplift 8=-605(LC 8), 5=-809(LC 9) Max Grav 8=3604(LC 2), 5=1997(LC 54)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-2=-1895/357, 2-3=-1138/385, 1-8=-2549/491 TOP CHORD

- BOT CHORD 6-7=-459/1757, 5-6=-403/989
- WFBS 2-7=-117/1137, 2-6=-1357/99, 3-6=-681/1777, 3-5=-1945/691, 1-7=-485/2516

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-7-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33 4) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 7)
- will fit between the bottom chord and any other members. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 605 lb uplift at joint 8 and 809 lb uplift at
- ioint 5. 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 10) Use Simpson Strong-Tie LUS26 (4-SD9112 Girder, 4-SD9212 Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 1-6-7 from the left end to 3-6-7 to connect truss(es) to front face of bottom chord.
- 11) Use Simpson Strong-Tie LUS28 (6-10d Girder, 4-10d Truss) or equivalent at 5-6-7 from the left end to connect truss(es) to front face of bottom chord, skewed 0.0 deg.to the right, sloping 0.0 deg. down.
- 12) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss, Single Ply Girder) or equivalent at 7-6-7 from the left end to connect truss(es) to front face of bottom chord, skewed 0.0 deg to the right, sloping 0.0 deg. down.
- 13) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss, Single Ply Girder) or equivalent at 9-6-7 from the left end to connect truss(es) to front face of bottom chord, skewed 0.0 deg.to the right, sloping 0.0 deg. down.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

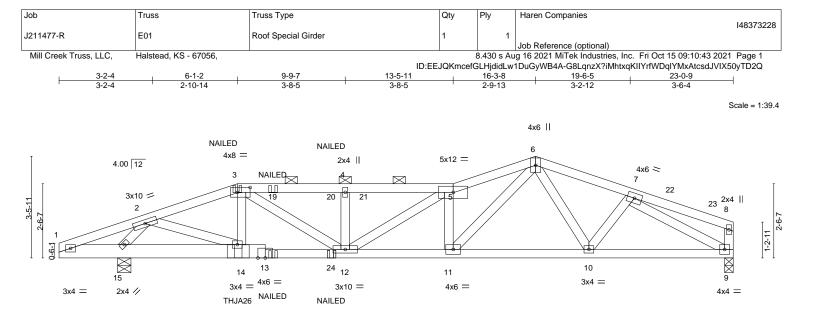
Scale = 1:53.6

Job	Truss	Truss Type	Qty	Ply	Haren Companies
					148373227
J211477-R	DX1	Monopitch Girder	1	2	
				2	Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:10:40 2021 Page 2
		ID:EE	JQKmcefGL	HjdidLw1D	uGyWB4A-rZgi8xV7PRJI4MbjcQHyuaCGt917gFQBdX3tUhyTD2T

NOTES-

14) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 0-8-7 from the left end to 10-8-7 to connect truss(es) to back face of bottom chord.

15) Fill all nail holes where hanger is in contact with lumber.


LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-4=-50, 5-8=-20 Concentrated Loads (lb)

Vert: 10=-211(B) 11=-1080(F) 12=-207(B) 13=-1026(F) 14=-207(B) 15=-962(F) 16=-207(B) 17=195(F) 18=-207(B) 19=213(F) 20=-207(B)

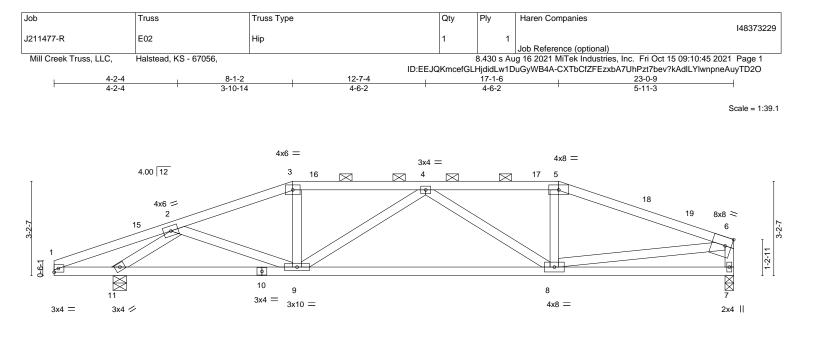
<u>2-0-0 2-2-12</u> 2-0-0 0-2-12	<u>6-1-2</u> 9-9-7 3-10-6 3-8-5			<u> 18-1-6</u> 4-7-11		<u>23-0-9</u> 4-11-3	
Plate Offsets (X,Y) [3:0-5							
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IBC2018/TPI2014	CSI. TC 0.31 BC 0.62 WB 0.40 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl -0.11 11-12 >999 -0.19 11-12 >999 0.04 9 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 95 lb	GRIP 197/144 FT = 10%
LUMBER- TOP CHORD 2x4 SPF No.: BOT CHORD 2x4 SPF No.:	2 *Except* F 1650F 1.5E	1	BRACING- TOP CHORD BOT CHORD	except end verticals	, and 2-0-0 oc applied or 10-0	applied or 3-7-11 oc p purlins (3-9-11 max.):)-0 oc bracing, Exce	3-5.
Max Horz 19 Max Uplift 9	=0-3-8, 15=0-5-8 5=32(LC 102) =-31(LC 9), 15=-161(LC 8) =955(LC 2), 15=1172(LC 2)						
TOP CHORD 2-3=-1555/2 BOT CHORD 14-15=-118 WEBS 2-14=-84/7	n/Max. Ten All forces 250 (lb) or less 210, 3-4=-2168/231, 4-5=-2168/231, 5- 3/706, 12-14=-179/1425, 11-12=-135/22 72, 3-14=-262/57, 3-12=-36/868, 4-12= 1362, 7-9=-1435/67, 2-15=-1252/204	6=-2452/211, 6-7=-1484/9 42, 10-11=-54/1372, 9-10					
 Wind: ASCE 7-16; Vult=11 MWFRS (envelope); cantil TCLL: ASCE 7-16; Pr=25.1 Rough Cat C; Fully Exp.; O Unbalanced snow loads ha Provide adequate drainagg This truss has been desigg * This truss has been desigg * This truss has been design This truss has been design This truss has been design This truss has been design * This truss is designed in at O Graphical purlin represent Use Simpson Strong-Tie front face of bottom chord Fill all nail holes where ha "NAILED" indicates 3-100 	ave been considered for this design.	al left and right exposed; I PL=1.15); Pf=15.0 psf (Lui d nonconcurrent with any ttom chord in all areas wi the capable of withstanding cuilding Code section 230 ientation of the purlin alo dip) or equivalent at 6-1-8 0.0 deg. down. e-nails per NDS guidlines	Lumber DOL=1.33 m DOL=1.15 Plate other live loads. here a rectangle 3 g 31 lb uplift at join 6.1 and reference ng the top and/or l from the left end	plate grip DOL=1.33 DOL=1.15); Is=1.0; -6-0 tall by 2-0-0 wide t 9 and 161 Ib uplift at d standard ANSI/TPI 1 pottom chord.		STATE OF M. SEVIET SEVIET NUMBE PE-200101	M. F.
LOAD CASE(S) Standard						SSIONAL Cotches	

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

October 18,2021

Job	Truss	Truss Type	Qty	Ply	Haren Companies
					148373228
J211477-R	E01	Roof Special Girder	1	1	
					Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:10:43 2021 Page 2
		ID:EE	JQKmcef	GLHjdidLw	1DuGyWB4A-G8LqnzX?iMhtxqKIIYrfWDqIYMxAtcsdJVIX50yTD2Q


LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-50, 3-5=-50, 5-6=-50, 6-8=-50, 9-16=-20 Concentrated Loads (lb)

Vert: 3=-33(F) 13=26(F) 14=-19(F) 19=-33(F) 20=-4(F) 24=-78(F)

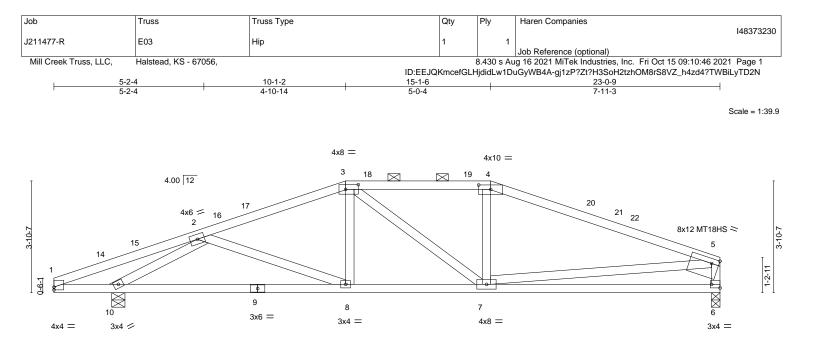
	<u>2-2-12 8-1-2</u> 0-2-12 5-10-6			<u>17-1-6</u> 9-0-4				<u>23-0-9</u> 5-11-3	———————————————————————————————————————
Plate Offsets (X,Y)-				3-0-4				5-11-5	
Snow (Pf) 15 TCDL 10 BCLL 0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1.15 T(1.15 B(YES W	C 0.61	DEFL. Vert(LL) Vert(CT) Horz(CT)		bc) l/defl 3-9 >999 3-9 >903 7 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 86 lb	GRIP 197/144 FT = 10%
BOT CHORD 2x4 WEBS 2x4 REACTIONS. Ma Ma	I SPF No.2 I SPF No.2 I SPF No.2 I SPF No.2 (size) 7=0-3-8, 11=0-5-8 ix Horz 11=30(LC 20) ix Uplift 7=-39(LC 13), 11=-88(L ix Grav 7=933(LC 2), 11=1129(I	/	т	RACING- OP CHORD SOT CHORD	except e	nd verticals,		applied or 3-10-5 oc p ourlins (4-8-7 max.): 3 0 oc bracing.	
TOP CHORD 1 6 BOT CHORD 9	lax. Comp./Max. Ten All forces -2=-236/277, 2-3=-1532/317, 3-4 -7=-881/230 -11=-263/1096, 8-9=-383/1672 -9=-35/417, 4-9=-385/158, 4-8=-	I=-14Ì7∕́323, 4-5=-1427/34	l6, 5-6=-1559/336,	,					
2) Wind: ASCE 7-1 MWFRS (envelo 17-1-6, Exterior(exposed;C-C for 3) TCLL: ASCE 7-1 Rough Cat C; Fu	live loads have been considered 6; Vult=115mph (3-second gust) pe) and C-C Exterior(2E) 0-0-0 1 2R) 17-1-6 to 21-4-5, Interior(1) members and forces & MWFRS 6; Pr=25.0 psf (roof LL: Lum DC ully Exp.; Ce=0.9; Cs=1.00; Ct=1 w loads have been considered for	Vasd=91mph; TCDL=6.0 to 3-0-0, Interior(1) 3-0-0 to 21-4-5 to 22-10-13 zone; c 6 for reactions shown; Lum U=1.15 Plate DOL=1.15); .10	8-1-2, Exterior(2F antilever left and r ber DOL=1.33 plat	R) 8-1-2 to 12-7- right exposed ; e te grip DOL=1.3	4, Interior(nd vertical 3	1) 12-7-4 to left and righ	t		

Unbalanced snow loads have been considered for this design.

5) Provide adequate drainage to prevent water ponding.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 7 and 88 lb uplift at ioint 11.

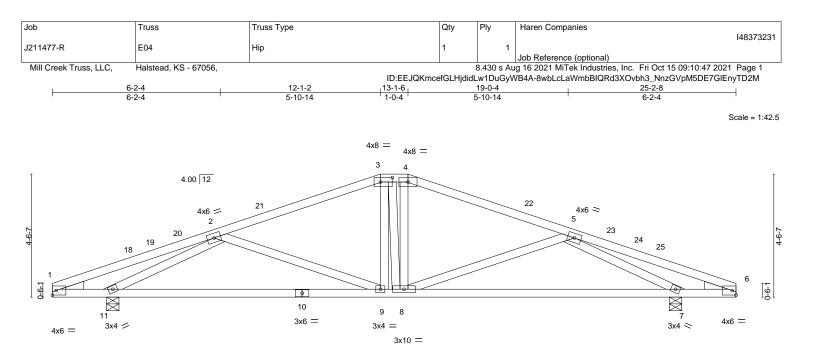
9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

OF MISS TE 0 SCOTT M. SEVIER **IIIMBE** DEPERSIONAL PE-2001018807 E

October 18,2021

2-0-0 2-2-12 2-0-0 0-2-12 Plate Offsets (X,Y) [1:0-0	<u>10-1-2</u> 7-10-6)-0,0-1-3], [3:0-5-4,0-2-0], [4:0-5-0,0-1-13	 3], [5:Edge,0-2-0], [6:Edg	15-1-6 5-0-4 je,0-1-8]			23-0-9 7-11-3		
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.72 BC 0.56 WB 0.40 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	••••	oc) l/defl 5-7 >999 5-7 >978 6 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 88 lb	GRIP 197/144 197/144 FT = 10%
LUMBER- TOP CHORD 2x4 SPF No 4-5: 2x4 SPF BOT CHORD 2x4 SPF No WEBS 2x4 SPF No		BRACING- TOP CHORD BOT CHORD	except er	nd verticals, a	and 2-0-0 oc	applied or 4-5-2 oc pu purlins (4-9-6 max.): 3)-0 oc bracing.	,	
Max Horz 1 Max Uplift 6	i=0-3-9, 10=0-5-8 0=37(LC 20) i=-34(LC 13), 10=-82(LC 12) i=935(LC 2), 10=1135(LC 40)							

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


- TOP CHORD 1-2=-285/191, 2-3=-1450/350, 3-4=-1345/374, 4-5=-1508/355, 5-6=-854/249
- BOT CHORD 1-10=-119/298, 8-10=-345/1306, 7-8=-271/1323, 6-7=-86/360
- WEBS 2-10=-1625/646, 5-7=-194/1032

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 10-1-2, Exterior(2R) 10-1-2 to 14-4-1, Interior(1) 14-4-1 to 15-1-6, Exterior(2R) 15-1-6 to 19-4-5, Interior(1) 19-4-5 to 22-10-13 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are MT20 plates unless otherwise indicated
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 34 lb uplift at joint 6 and 82 lb uplift at joint 10.
- This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

2-0-0 2-2-12 2-0-0 0-2-12 Plate Offsets (X,Y) [3:0-5-4,	<u>12-1-2</u> 9-10-6 0-2-0]	13-1-6 1-0-4	<u>22-11-12</u> 9-10-6	<u>23-2-8</u> <u>25-2-8</u> 0-2-12 <u>2-0-0</u>
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. DEFL. TC 0.49 Vert(LL) BC 0.78 Vert(CT) WB 0.70 Horz(CT) Matrix-MS Vert Vert	in (loc) l/defl L/d -0.20 9-11 >999 240 -0.41 9-11 >625 180 0.05 7 n/a n/a	PLATES GRIP MT20 197/144 Weight: 101 lb FT = 10%
LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 WEDGE		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing directly a except 2-0-0 oc purlins (4-10-3 max.): 3-4. Rigid ceiling directly applied or 6-0-	

Left: 2x4 SP No.3 , Right: 2x4 SP No.3

REACTIONS. (size) 11=0-5-8, 7=0-5-8 Max Horz 11=-42(LC 21)

Max Uplift 11=-74(LC 12), 7=-74(LC 13) Max Grav 11=1246(LC 40), 7=1246(LC 40)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

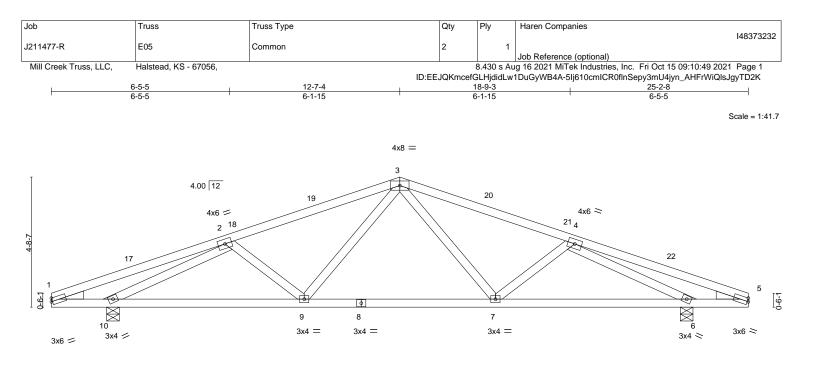
- TOP CHORD 1-2=-302/120, 2-3=-1455/265, 3-4=-1308/277, 4-5=-1457/266, 5-6=-301/123
- BOT CHORD 1-11=-40/318, 9-11=-282/1572, 8-9=-123/1306, 7-8=-269/1572, 6-7=-43/318 WEBS
 - 2-9=-298/169, 4-8=-11/275, 5-8=-297/171, 2-11=-1827/643, 5-7=-1830/644

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 12-1-2, Exterior(2E) 12-1-2 to 13-1-6, Exterior(2R) 13-1-6 to 17-4-5, Interior(1) 17-4-5 to 25-2-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10


4) Unbalanced snow loads have been considered for this design.

5) Provide adequate drainage to prevent water ponding.

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 74 lb uplift at joint 11 and 74 lb uplift at ioint 7. 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

<u>2-0-0 2-2-12</u> 2-0-0 0-2-12	<u>9-1-12</u> 6-11-0	16-0-12 6-11-0		<u>22-11-12</u> 6-11-0	23-2-8 25-2-8 0-2-12 2-0-0
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. DEFL. TC 0.51 Vert(LL) BC 0.58 Vert(CT) WB 0.75 Horz(CT) Matrix-MS Horz(CT) Horz(CT)	in (loc) -0.09 7-9 -0.17 7-9 0.05 6	>999 180	PLATES GRIP MT20 197/144 Weight: 93 lb FT = 10%
LUMBER-		BRACING-			

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No 2 2x4 SPF No.2 BOT CHORD WEBS 2x4 SPF No.2 WEDGE

Left: 2x4 SP No.3 , Right: 2x4 SP No.3

REACTIONS. (size) 10=0-5-8, 6=0-5-8 Max Horz 10=-44(LC 17) Max Uplift 10=-72(LC 12), 6=-72(LC 13) Max Grav 10=1134(LC 2), 6=1134(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

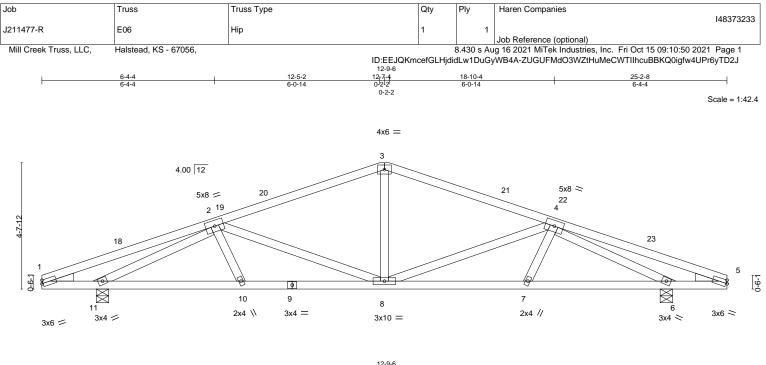
TOP CHORD 2-3=-1488/272, 3-4=-1488/272

- BOT CHORD 9-10=-238/1479, 7-9=-122/1146, 6-7=-233/1479
- WEBS 3-7=-3/364, 3-9=-3/364, 2-10=-1764/527, 4-6=-1764/527

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0. Interior(1) 3-0-0 to 12-7-4. Exterior(2R) 12-7-4 to 15-7-4. Interior(1) 15-7-4 to 25-2-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 72 lb uplift at joint 10 and 72 lb uplift at joint 6.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 4-2-6 oc purlins.

Rigid ceiling directly applied or 6-0-0 oc bracing.

2-0		7-3-15 5-1-3		12-5-2 5-1-3		12-9-0 12-7-4 0-2-2 0-2-2		7-10-9 5-1-3				22-11-12 5-1-3	23-2-8 0-2-12	25-2-8 2-0-0
LOADING (psf) TCLL (roof) Snow (Pf) TCDL BCLL BCDL	25.0 15.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matri	0.48 0.58 0.71 x-MS		DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.13 0.05	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a		PLATES MT20 Weight: 97 lb	GRIP 197/144 FT = 10%
LUMBER-						BRA	CING-							

TOP CHORD

BOT CHORD

LUMBER-

2x4 SPF No 2 TOP CHORD 2x4 SPF No.2 BOT CHORD WEBS 2x4 SPF No.2 WEDGE

Left: 2x4 SP No.3 , Right: 2x4 SP No.3

REACTIONS. (size) 11=0-5-8, 6=0-5-8 Max Horz 11=-44(LC 17)

Max Uplift 11=-72(LC 12), 6=-72(LC 13) Max Grav 11=1134(LC 2), 6=1134(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1317/284, 3-4=-1317/284

BOT CHORD 10-11=-239/1483, 8-10=-204/1512, 7-8=-196/1512, 6-7=-231/1483 WEBS 2-8=-448/80, 4-8=-448/80, 2-11=-1768/472, 4-6=-1768/472, 3-8=0/401

NOTES-

1) Unbalanced roof live loads have been considered for this design.

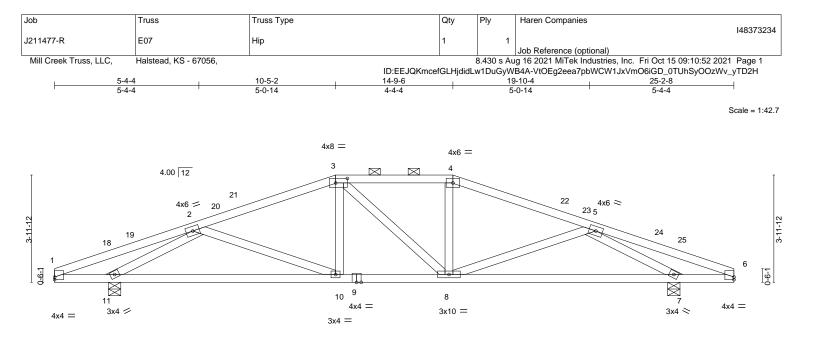
2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

- MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 12-7-4, Exterior(2R) 12-7-4 to 16-10-3, Interior(1) 16-10-3 to 25-2-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 72 lb uplift at joint 11 and 72 lb uplift at joint 6.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 4-7-14 oc purlins.

Rigid ceiling directly applied or 6-0-0 oc bracing.

<u>2-0-0</u> 2-2-12 2-0-0 0-2-12 Plate Offsets (X,Y) [1:0-0	<u>10-5-2</u> 8-2-6)-0,0-1-3], [3:0-5-4,0-2-0], [6:0-0-0,0-1-3]	14-9-6 4-4-4		<u>22-11-12</u> 8-2-6	23-2-8 25-2-8 0-2-12 2-0-0
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.38 BC 0.60 WB 0.44 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl L/d -0.13 10-11 >999 240 -0.27 10-11 >960 180 0.05 7 n/a n/a	PLATES GRIP MT20 197/144 Weight: 94 lb FT = 10%
LUMBER- TOP CHORD 2x4 SPF No. BOT CHORD 2x4 SPF No. WEBS 2x4 SPF No.	2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing directly except 2-0-0 oc purlins (4-9-10 max.): 3-4. Rigid ceiling directly applied or 6-0-	
Max Horz 1 Max Uplift 1	1=0-5-8, 7=0-5-8 1=36(LC 20) 1=-81(LC 12), 7=-81(LC 13) 1=1160(LC 40), 7=1160(LC 40)				

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-289/179, 2-3=-1454/326, 3-4=-1324/316, 4-5=-1454/313, 5-6=-288/179

BOT CHORD 1-11=-106/301, 10-11=-285/1345, 8-10=-197/1324, 7-8=-259/1345, 6-7=-106/301

WEBS 2-11=-1664/639, 5-7=-1664/627

NOTES-

1) Unbalanced roof live loads have been considered for this design.

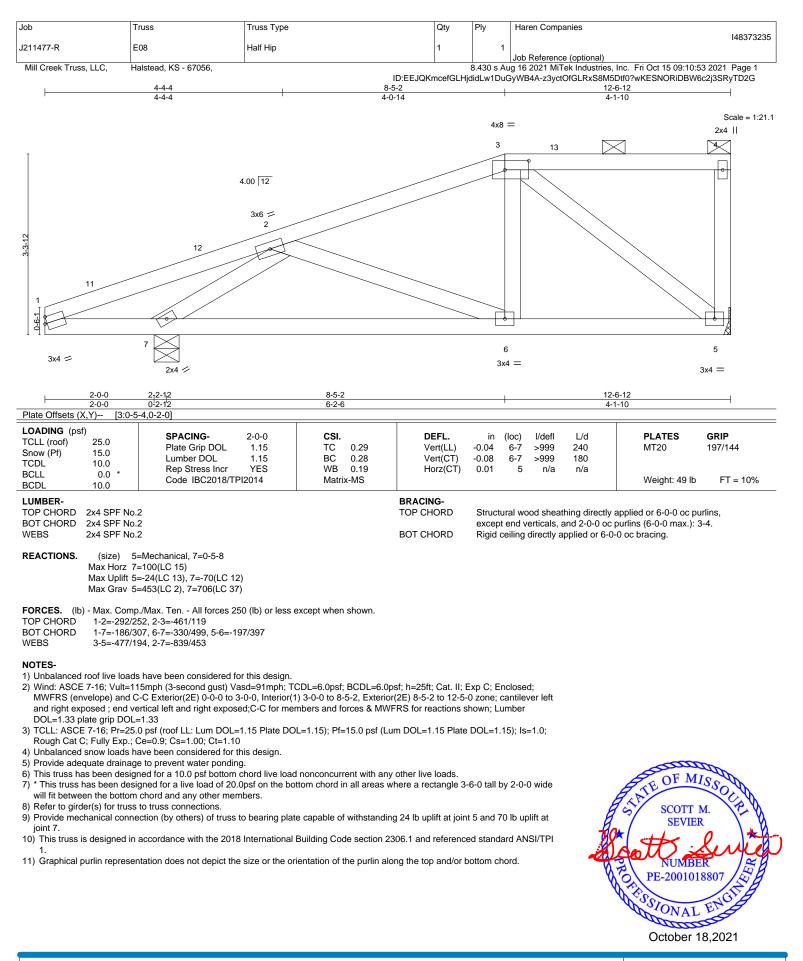
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 10-5-2, Exterior(2E) 10-5-2 to 14-9-6, Exterior(2R) 14-9-6 to 19-0-5, Interior(1) 19-0-5 to 25-2-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

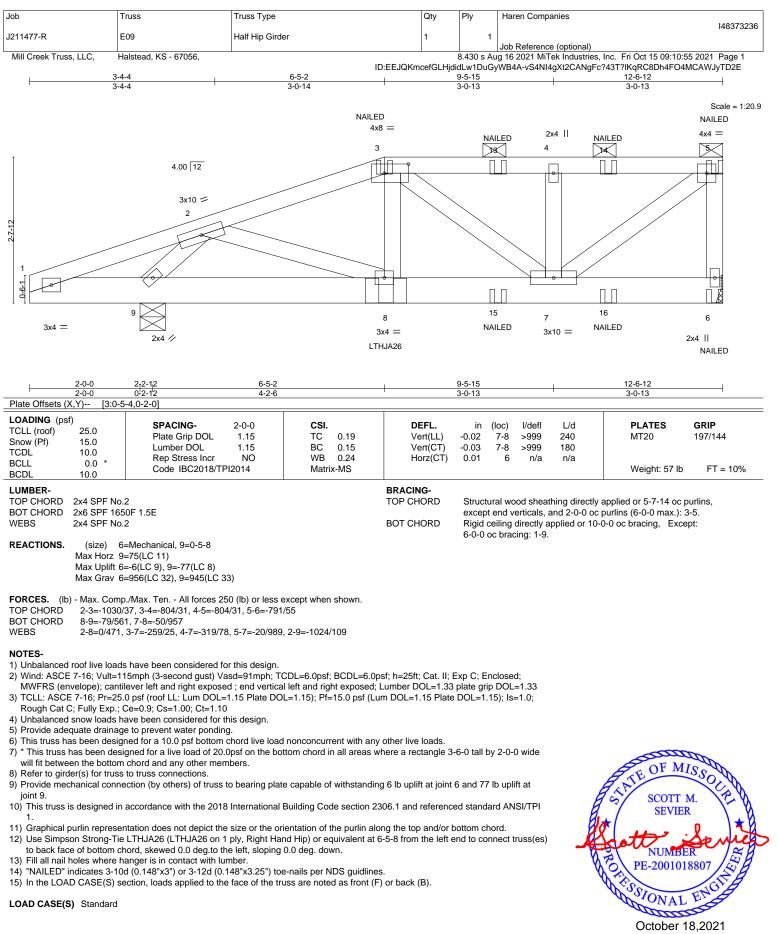
5) Provide adequate drainage to prevent water ponding.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 81 lb uplift at joint 11 and 81 lb uplift at joint 7.

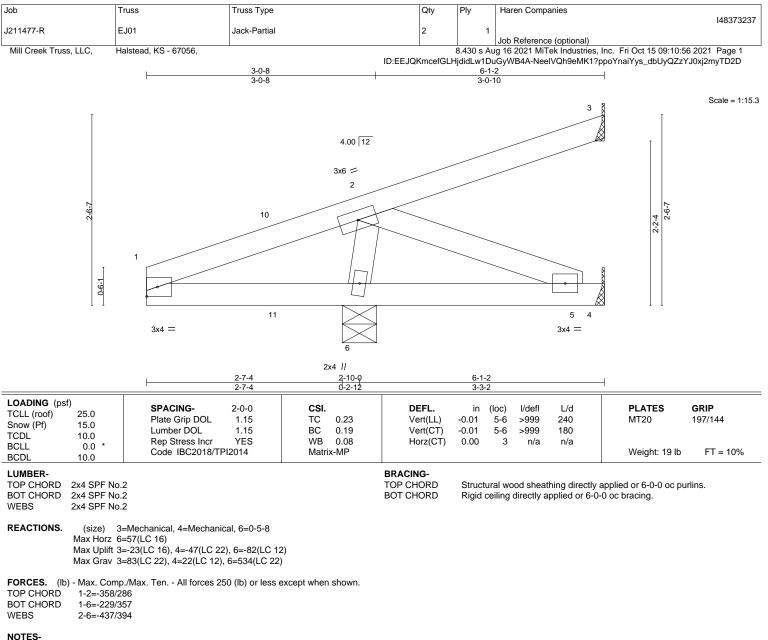
9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.


10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Haren Companies
1044477 D	500				148373236
J211477-R	E09	Half Hip Girder	1	1	leb Reference (entional)
					Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:10:55 2021 Page 2
		ID:EEJQKm	cefGLHjdi	dLw1DuGy	WB4A-vS4NI4gXt2CANgFc?43T?IKqRC8Dh4FO4MCAWJyTD2E

LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-50, 3-5=-50, 6-10=-20

Concentrated Loads (lb)

Vert: 6=-99(B) 8=-281(B) 3=-61(B) 5=-88(B) 13=-61(B) 14=-61(B) 15=-89(B) 16=-89(B)

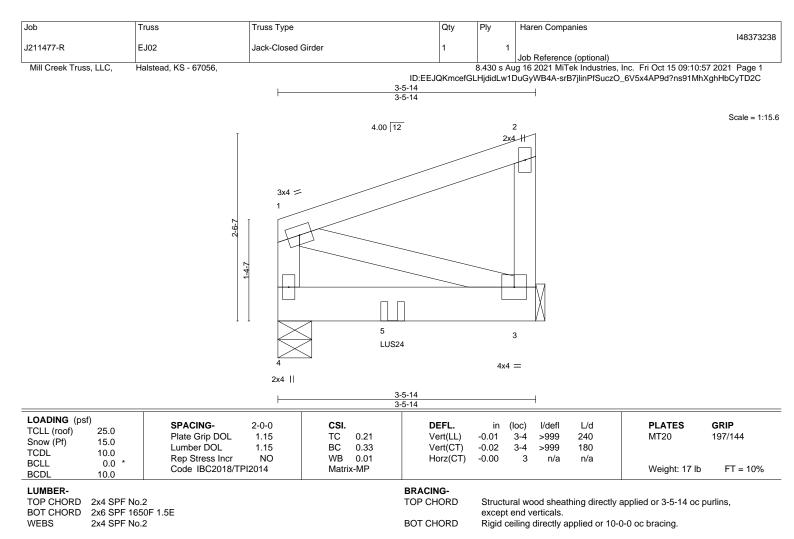
1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 2-11-13, Interior(1) 2-11-13 to 6-0-6 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 23 lb uplift at joint 3, 47 lb uplift at joint 4 and 82 lb uplift at joint 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

REACTIONS. (size) 4=0-5-8, 3=Mechanical Max Horz 4=67(LC 9)

Max Uplift 4=-22(LC 8), 3=-31(LC 9) Max Grav 4=470(LC 2), 3=400(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 4 and 31 lb uplift at joint 3.

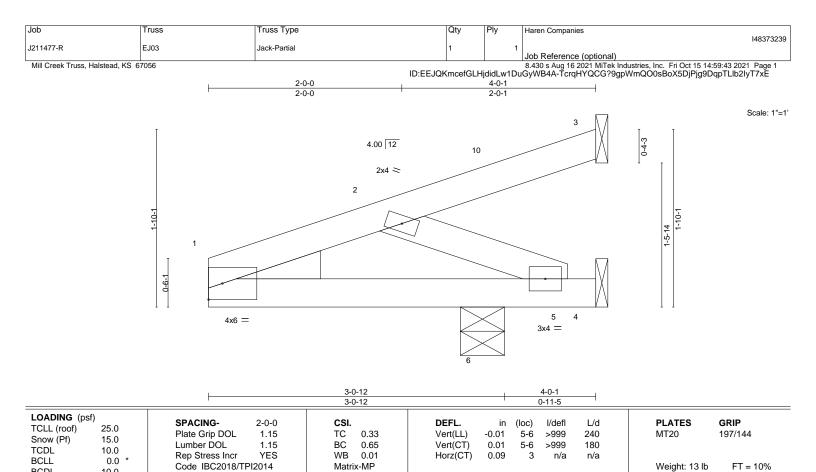
8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
 9) Use Simpson Strong-Tie LUS24 (4-SD9112 Girder, 2-SD9212 Truss, Single Ply Girder) or equivalent at 1-6-10 from the left end to

connect truss(es) to front face of bottom chord, skewed 0.0 deg.to the right, sloping 0.0 deg. down

10) Fill all nail holes where hanger is in contact with lumber.

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-50 3-4=-20

Concentrated Loads (lb) Vert: 5=-517(F)

BCDL
LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF 2100F 1.8E WEBS 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2

10.0

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-0-1 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. 3=57/Mechanical, 4=-271/Mechanical, 6=490/0-5-8 (lb/size) Max Horz 6=37(LC 12) Max Uplift 3=-20(LC 12), 4=-363(LC 22), 6=-127(LC 12) Max Grav 3=81(LC 22), 4=75(LC 12), 6=644(LC 22)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES

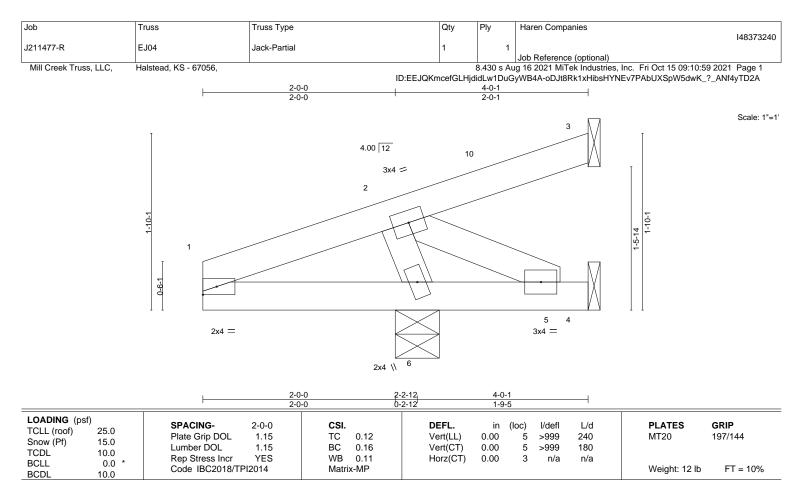
1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 3-11-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 20 lb uplift at joint 3, 363 lb uplift at joint 4 and 127 lb uplift at joint 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-0-1 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 4=Mechanical, 6=0-5-8 Max Horz 6=37(LC 12) Max Uplift 3=-16(LC 16), 4=-116(LC 22), 6=-76(LC 12) Max Grav 3=47(LC 22), 4=27(LC 12), 6=431(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-271/169

BOT CHORD 1-6=-130/263, 5-6=-281/344

WEBS 2-6=-405/513, 2-5=-382/312

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 3-11-5 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

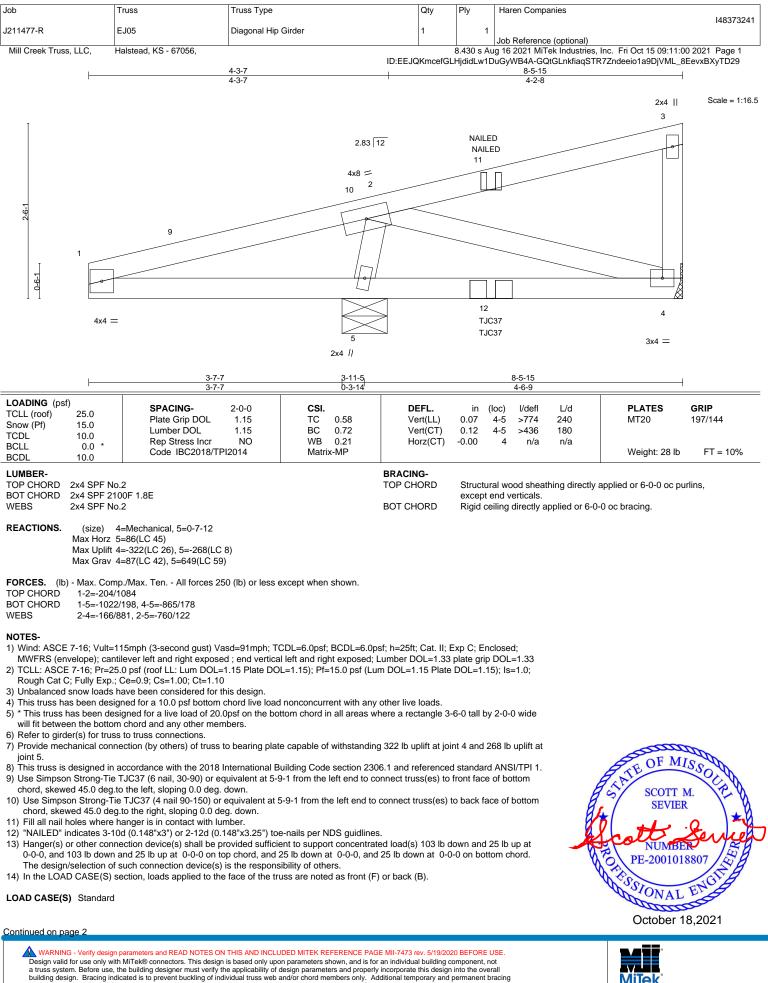
2) TCLL: ASCE 7-16; PT=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exo.; Ce=0.9; Cs=1.00; Ct=1.10

Cough Cat C, Fully Exp., Ce=0.9, Cs=1.00, Cl=1.10
 Unbalanced snow loads have been considered for this design.

a) This trues has been designed for a 40.0 per better should live lead non.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 16 lb uplift at joint 3, 116 lb uplift at joint 4 and 76 lb uplift at joint 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

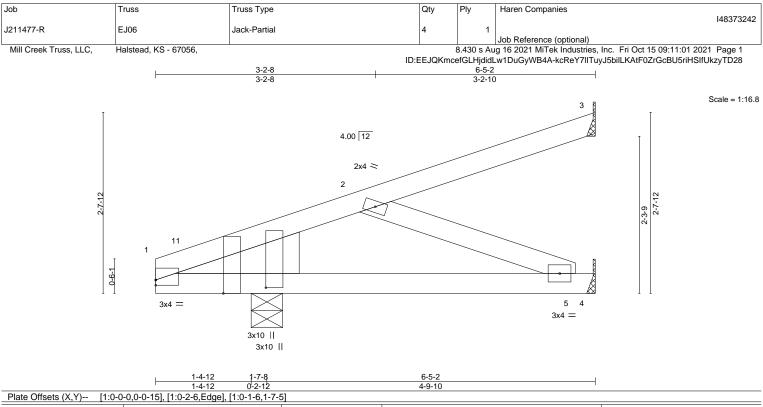
MITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Т	Truss	Truss Type	Qty	Ply	Haren Companies
						148373241
J211477-R	E	EJ05	Diagonal Hip Girder	1	1	
			.			Job Reference (optional)
Mill Creek T	russ, LLC, H	lalstead, KS - 67056,			3.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:11:00 2021 Page 2
			ID:EEJC	KmcefGL		uGyWB4A-GQtGLnkfiaqSTR7Zndeeio1a9DjVML_8EevxBXyTD29

LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Concentrated Loads (lb) Vert: 1=-127(F=-63, B=-63) 6=-51(F=-25, B=-25) 11=-16(F) 12=244(F=174, B=70)

Trapezoidal Loads (plf)

Vert: 1=0(F=25, B=25)-to-10=-49(F=1, B=1), 10=0(F=25, B=25)-to-3=-57(F=-4, B=-4), 6=0(F=10, B=10)-to-5=-20(F=0, B=0), 5=-0(F=10, B=10)-to-4=-23(F=-1, B=-1), B=-10-to-4=-23(F=-1, B=-1), B=-10-to-4=-2

LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.17 BC 0.16 WB 0.05 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 5-10 5-10 1	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 24 lb	GRIP 197/144 FT = 10%
LUMBER- TOP CHORD 2x4 SPF No	0.2		BRACING- TOP CHORD	Struc	tural wo	ood sheat	thing directly	applied or 6-0-0 oc pu	ırlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 WEDGE

Left: 2x8 DF 1950F 1.7E

REACTIONS. (size) 3=Mechanical, 4=Mechanical, 1=0-5-8 Max Horz 1=60(LC 12) Max Uplift 3=-29(LC 12), 1=-3(LC 12)

Max Grav 3=111(LC 22), 4=109(LC 7), 1=370(LC 22)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

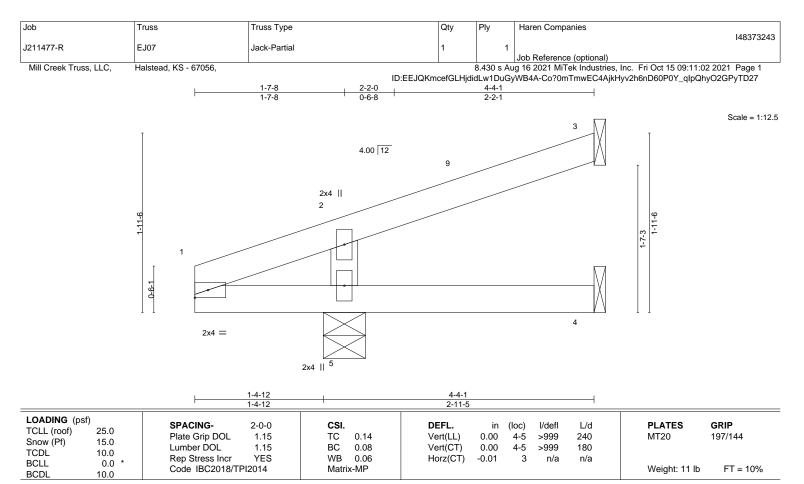
NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 2-11-12, Interior(1) 2-11-12 to 6-4-6 zone; cantilever left and right exposed ; end
- vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.


6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 29 lb uplift at joint 3 and 3 lb uplift at joint 1.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-4-1 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 4=Mechanical, 5=0-5-8 Max Horz 5=40(LC 12) Max Uplift 3=-26(LC 16), 5=-42(LC 12)

Max Grav 3=67(LC 22), 4=35(LC 7), 5=320(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-5=-232/284

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 4-3-5 zone; cantilever left and right exposed; end

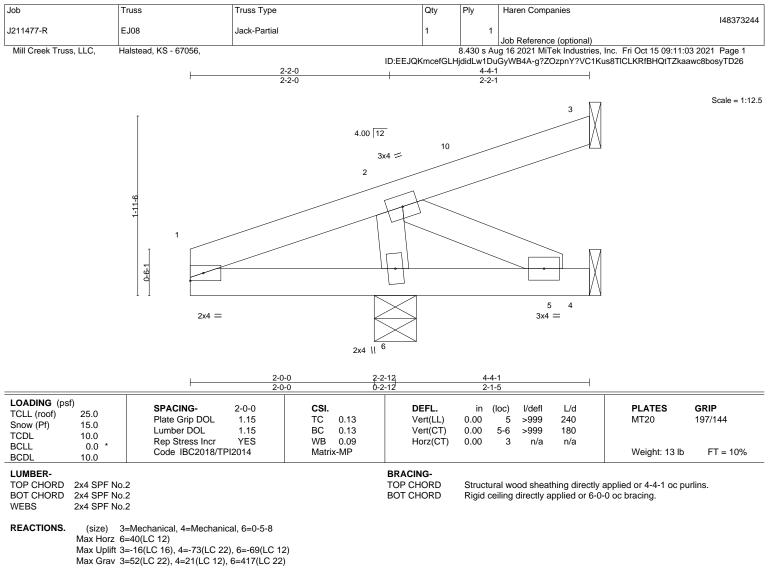
vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33 (2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Refer to girder(s) for truss to truss connections.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 26 lb uplift at joint 3 and 42 lb uplift at joint 5.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD

BOT CHORD 1-6=-152/296

WEBS 2-6=-350/431

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 4-3-5 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

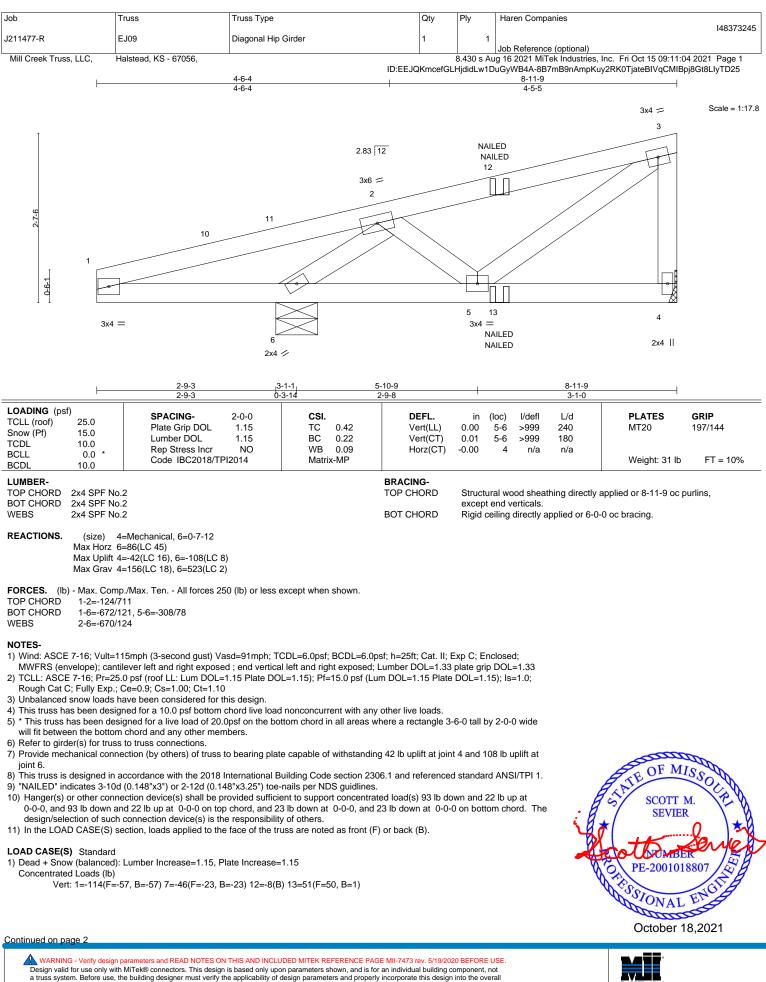
2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

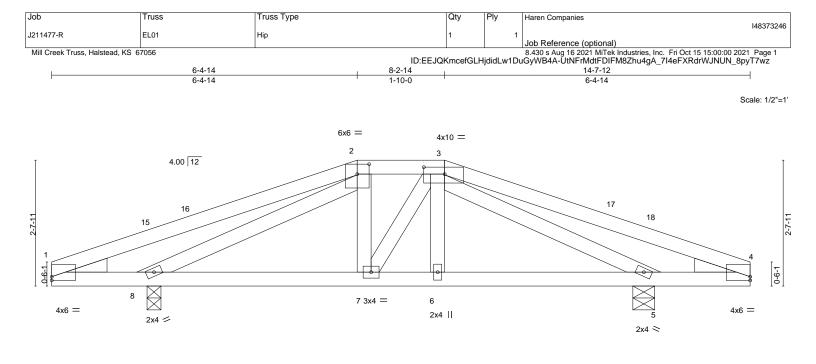

1-2=-300/193

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 16 lb uplift at joint 3, 73 lb uplift at joint 4 7) and 69 lb uplift at joint 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

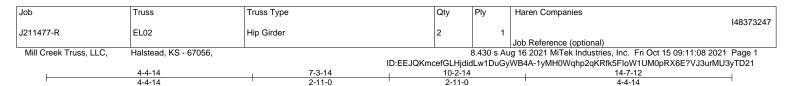
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Mitek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

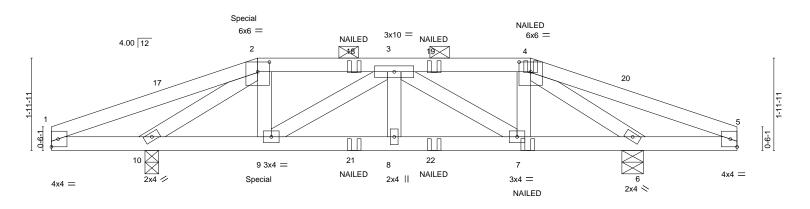
Job	Truss	Truss Type	Qty	Ply	Haren Companies
1044477 D	E 100				148373245
J211477-R	EJ09	Diagonal Hip Girder	1	1	
					Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:11:04 2021 Page 2
		ID:EEJC	KmcefGL	HjdidLw1D	uGyWB4A-8B7mB9nAmpKuy2RK0TjateBIVqCMIBpj8Gt8LlyTD25

LOAD CASE(S) Standard

Trapezoidal Loads (pf) Vert: 1=0(F=25, B=25)-to-11=-36(F=7, B=7), 11=0(F=25, B=25)-to-3=-76(F=-13, B=-13), 7=0(F=10, B=10)-to-6=-14(F=3, B=3), 6=-0(F=10, B=10)-to-4=-31(F=-5, B=-5)



	1-12 6-4-14 1-12 4-3-2	8-2-1		12-5-0 4-2-2	<u>12-7-12</u> 14-7-12 0-2-12 2-0-0
	ge,0-0-15], [2:0-3-0,0-2-8], [3:0-5-4,0-1-		-0	4-2-2	0-2-12 2-0-0
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.51 BC 0.60 WB 0.30 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl L/d -0.01 6-7 >999 240 -0.03 7-8 >999 180 0.01 5 n/a n/a	PLATES GRIP MT20 197/144 Weight: 55 lb FT = 10%
LUMBER- TOP CHORD 2x4 SPF No. BOT CHORD 2x4 SPF No. WEBS 2x4 SPF No. WEDGE Left: 2x4 SPF No.2 , Right: 2	2 2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing direct 2-0-0 oc purlins (6-0-0 max.): 2- Rigid ceiling directly applied or 6	
Max Horz 8 Max Uplift 8	=508/0-3-8, 5=517/0-5-8 =-22(LC 21) =-63(LC 12), 5=-65(LC 13) =686(LC 40), 5=698(LC 40)				
TOP CHORD 2-3=-525/1 BOT CHORD 7-8=-102/5	o./Max. Ten All forces 250 (lb) or less (96 24, 6-7=-69/520, 5-6=-73/519 92, 3-5=-705/328	except when shown.			
 Wind: ASCE 7-16; Vult=1 MWFRS (envelope) and C to 12-5-13, Interior(1) 12-6 and forces & MWFRS for TCLL: ASCE 7-16; Pr=25. Rough Cat C; Fully Exp.; Unbalanced snow loads h Provide adequate drainag This truss has been desig * This truss has been desig * This truss has been desig will fit between the bottom Provide mechanical connections Provide mechanical connection This truss is designed in a 	ave been considered for this design.) 3-0-0 to 6-4-14, Exterior right exposed ; end vertic te grip DOL=1.33 L=1.15); Pf=15.0 psf (Lun nonconcurrent with any of tom chord in all areas wh e capable of withstanding uilding Code section 2306	r(2E) 6-4-14 to 8-2 al left and right exp n DOL=1.15 Plate other live loads. iere a rectangle 3-6 63 lb uplift at joint 6.1 and referenced	-14, Exterior(2R) 8-2-14 posed;C-C for members DOL=1.15); Is=1.0; 6-0 tall by 2-0-0 wide 8 and 65 lb uplift at standard ANSI/TPI 1.	SCOTT M. SEVIER NUMBER PE-2001018807


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 October 18,2021

HSSIONAL ET

Scale = 1:24.6

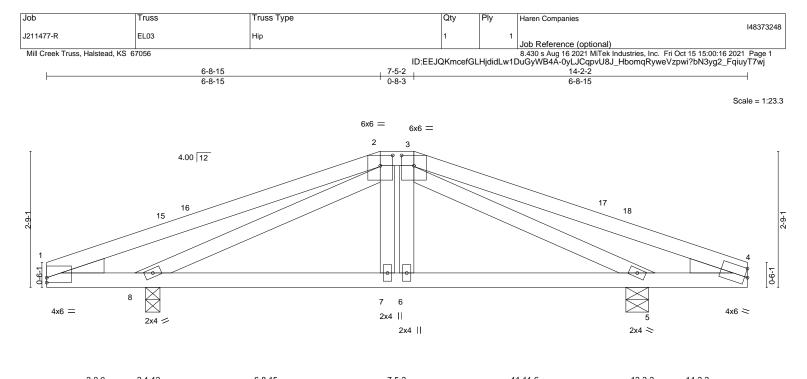
		1-12 4-4-14	I	7-3-14		10-2-14				12-5-0	12 _г 7-¦12	14-7-12	
		1-12 2-3-2	I	2-11-0	I	2-11-0)			2-2-2	0-2-12	2-0-0	1
Plate Offsets	(X,Y) [2:0-3	-0,0-2-8], [4:0-3-0,0-2-8]											
LOADING (p	sf)	CRACING	2.0.0	661		DEEL		(100)	l/al a fi	I /d		TEC	CDID
TCLL (roof)	25.0	SPACING- Plate Grip DOL	2-0-0 1.15	TC	0.28	DEFL. Vert(LL)	-0.02	(loc) 8	l/defl >999	L/d 240	MT2	TES	GRIP 197/144
Snow (Pf)	15.0	Lumber DOL	1.15	BC	0.28	Vert(CT)	-0.02	8	>999	180	10112	.0	137/144
TCDL	10.0	Rep Stress Incr	NO	WB	0.30	Horz(CT)	0.02	6	>333 n/a	n/a			
BCLL	0.0 *	Code IBC2018/T		Matri		11012(01)	0.01	0	n/a	n/a	Wei	ght: 52 lb	FT = 10%
BCDL	10.0	0000 1202010/1											
LUMBER-						BRACING-							
TOP CHORD	2x4 SPF No.	2				TOP CHORD	Struc	tural wo	ood shea	athing directly	y applied or 1	0-0-0 oc p	ourlins,
BOT CHORD	2x4 SPF No.	2					excep	ot					
WEBS	2x4 SPF No.	2								-0 max.): 2-4			
						BOT CHORD	Rigid	ceiling	directly	applied or 6-	0-0 oc bracin	.g.	
REACTIONS.	()	=0-5-8, 10=0-3-8											
		0=-15(LC 13)											
		=-143(LC 9), 10=-160(LC											
	Wax Glav O	=574(LC 52), 10=535(LC	, 2)										
FORCES. (b) - Max Comr	./Max. Ten All forces 2	250 (lb) or less	except when	shown								
TOP CHORD		7, 2-3=-367/169, 3-4=-3			chief fin								
BOT CHORD		373, 8-9=-175/579, 7-8=	,										
WEBS		215, 3-9=-266/47, 4-6=-6	,										
 Wind: ASC MWFRS (e TCLL: ASC Rough Cat Unbalance Provide ad This truss This truss will fit betw Provide me joint 10. This truss i Graphical "NAILED" Hanger(s 4-4-14 on is the respiration 	E 7-16; Vult=1 envelope); canti E 7-16; Pr=25. C; Fully Exp.; (d snow loads h equate drainag has been desig s has been desig s has been desig s has been desig s designed in a l purlin represer ' indicates 3-10) or other conne top chord, and ponsibility of oth	s have been considered 1 15mph (3-second gust) V lever left and right expose 0 psf (roof LL: Lum DOL Ce=0.9; Cs=1.00; Ct=1.1 ave been considered for e to prevent water pondi med for a 10.0 psf bottom gned for a live load of 2C chord and any other me action (by others) of truss ccordance with the 2018 thation does not depict th d (0.148"x3") or 3-12d (0 action device(s) shall be 28 lb down and 204 lb u ners.	Yasd=91mph; ed; end vertic =1.15 Plate D(0 this design. ng. h chord live loa .0psf on the b mbers. to bearing pla International te size or the c .148"x3.25") to provided suffic p at 4-4-14 of	FCDL=6.0psf; al left and rig DL=1.15); Pf= d nonconcurr ottom chord in ate capable of Building Code rrientation of f be-nails per N cient to suppo n bottom chor	nt exposed; 15.0 psf (Lu ent with any n all areas w withstandin e section 230 he purlin alo DS guidlines rt concentrat d. The desig	Lumber DOL=1.33 m DOL=1.15 Plate other live loads. here a rectangle 3- g 143 lb uplift at joi 16.1 and referenced ng the top and/or b s. red load(s) 71 lb do gn/selection of sucl	plate gr DOL=1 -6-0 tall nt 6 and d standa bottom c wn and	rip DOL .15); Is: by 2-0- d 160 lb ard ANS :hord. 47 lb u	=1.33 =1.0; 0 wide uplift at SI/TPI 1. p at		fort	SEVIER NUMBE	Service
,	. ,					,					PE PE	-200101	Soul ZA
				4.45							NºSo.		SO H
		Lumber Increase=1.15,	Plate Increase	=1.15							Pol	ONAL	Erg
Uniform Lo	aus (pii)										and the second s	THE	

Vert: 1-2=-50, 2-4=-50, 4-5=-50, 11-14=-20

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

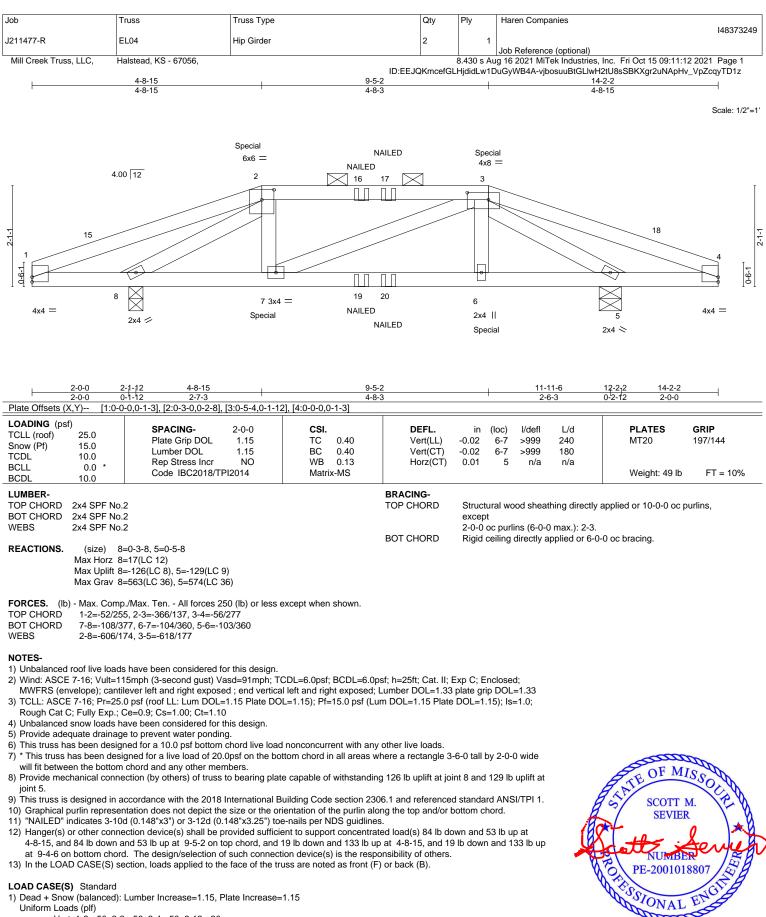
October 18,2021


Job	Truss	Truss Type	Qty	Ply	Haren Companies
					148373247
J211477-R	EL02	Hip Girder	2	1	
					Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:11:09 2021 Page 2

8.430 s Aug 16 2021 MiTek Industries, Inc. Fri Oct 15 09:11:09 2021 Page 2 ID:EEJQKmcefGLHjdidLw1DuGyWB4A-V8wfEsrJaLyB3pJIp0JlaivBYrtLzSkSIYbv0VyTD20

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 2=-20(F) 4=-10(F) 9=94(F) 7=39(F) 18=-10(F) 19=-10(F) 21=39(F) 22=39(F)


	-1-12 6-8-15	7-5-2	11-11-6	12-2 ₁ 2 14-2-2
	-1-12 4-7-3	0-8-3	4-6-3	0-2-12 2-0-0
Plate Offsets (X,Y) [1:Ed	ge,0-1-3], [2:0-3-0,0-2-8], [3:0-3-0,0-2-8]	, [4:Edge,0-2-2]		
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI.DEFL.TC0.56Vert(LlBC0.63Vert(CWB0.33Horz(CMatrix-MSVert(C	_) -0.01 7-8 >999 240 T) -0.03 7-8 >999 180	PLATES GRIP MT20 197/144 Weight: 53 lb FT = 10%
LUMBER- TOP CHORD 2x4 SPF No. BOT CHORD 2x4 SPF No. WEBS 2x4 SPF No. WEDGE Left: 2x4 SPF No.2 , Right: 2	2 2	BRACING- TOP CHORI BOT CHORI	2-0-0 oc purlins (6-0-0 max.): 2	
Max Horz 8 Max Uplift 8 Max Grav 8 FORCES. (Ib) - Max. Comp TOP CHORD 2-3=-503/1 BOT CHORD 7-8=-67/50	=-60(LC 12), 5=-62(LC 13) =692(LC 40), 5=704(LC 40) o./Max. Ten All forces 250 (lb) or less € 66 1, 6-7=-60/503, 5-6=-60/501	xcept when shown.		
 NOTES- 1) Unbalanced roof live loads 2) Wind: ASCE 7-16; Vult=1⁻¹ MWFRS (envelope) and C 11-8-1, Interior(1) 11-8-1 t forces & MWFRS for react 3) TCLL: ASCE 7-16; Pr=25. Rough Cat C; Fully Exp.; (4) Unbalanced snow loads h 5) Provide adequate drainag 6) This truss has been desig 7) * This truss has been desig will fit between the bottom 	ave been considered for this design.) 3-0-0 to 6-8-15, Exterior(2E) 6-8-15 to kposed ; end vertical left and right expo p DOL=1.33 =1.15); Pf=15.0 psf (Lum DOL=1.15 P nonconcurrent with any other live load tom chord in all areas where a rectang a capable of withstanding 60 lb uplift at	9 7-5-2, Exterior(2R) 7-5-2 to sed;C-C for members and late DOL=1.15); Is=1.0; s. e 3-6-0 tall by 2-0-0 wide	STATE OF MISSOL

9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

October 18,2021

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

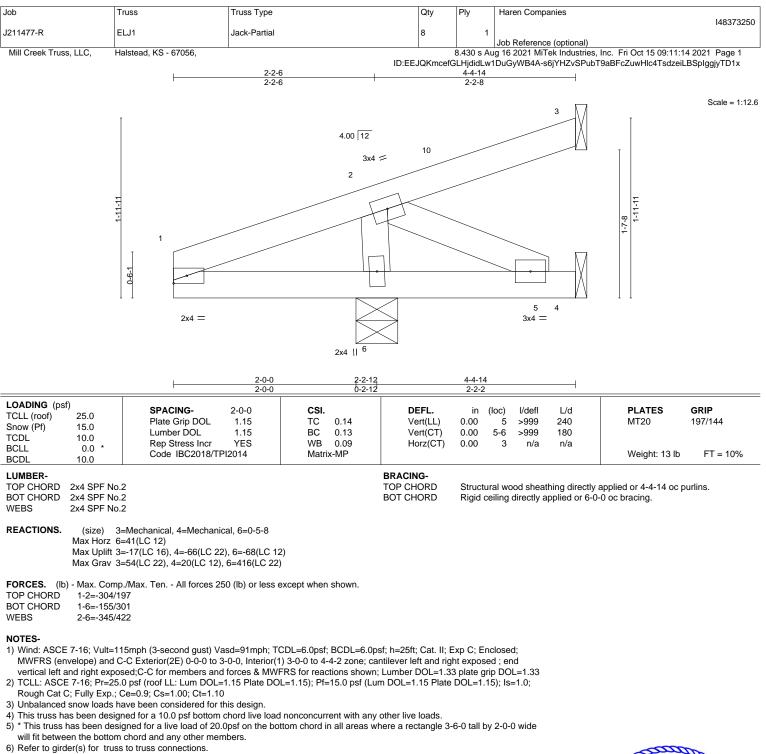
Uniform Loads (plf)

Vert: 1-2=-50, 2-3=-50, 3-4=-50, 9-12=-20

Continued on page 2

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

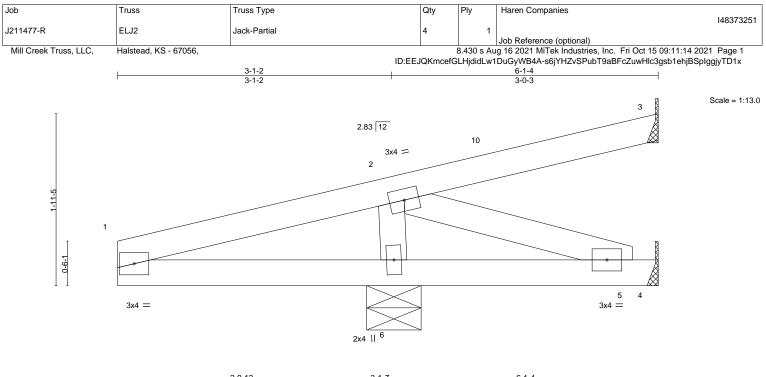
MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017


October 18,2021

[Job	Truss	Truss Type	Qty	Ply	Haren Companies
	1044 (77 D	51.04				148373249
	J211477-R	EL04	Hip Girder	2	1	leb Deference (anti-nel)
						Job Reference (optional)
	Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:11:13 2021 Page 2
			ID:EEJQKr	ncefGLHjd	lidLw1DuG	yWB4A-Ow9A4EupeaTcXRd32sNhkY3rbSEcvFX2D9Z78HyTD1y

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 2=-34(B) 3=-34(B) 7=60(B) 6=60(B) 16=-17(B) 17=-17(B) 19=26(B) 20=26(B)



7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 17 lb uplift at joint 3, 66 lb uplift at joint 4 and 68 lb uplift at joint 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

16023 Swingley Ridge Rd Chesterfield, MO 63017

	\vdash		<u>2-9-12</u> 2-9-12		0-3-1				<u>6-1-4</u> 2-11-13			
Snow (Pf) 1 TCDL 1	25.0 5.0 0.0 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC BC WB	0.25 0.26 0.13	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.01 0.01 0.01	(loc) 5-6 5-6 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
	0.0	Code IBC2018/TF	912014	Matri	x-MP						Weight: 18 lb	FT = 10%
LUMBER-						BRACING-						

TOP CHORD

BOT CHORD

```
LUMBER-
```

TOP CHORD 2x4 SPF No 2 BOT CHORD WEBS

2x4 SPF No.2 2x4 SPF No.2

REACTIONS. 3=Mechanical, 4=Mechanical, 6=0-7-6 (size) Max Horz 6=40(LC 12) Max Uplift 3=-21(LC 16), 4=-90(LC 22), 6=-108(LC 12) Max Grav 3=70(LC 22), 4=38(LC 12), 6=568(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-567/344

BOT CHORD 1-6=-302/563, 5-6=-323/474

WEBS 2-6=-466/612, 2-5=-501/342

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) 0-0-0 to 4-2-15, Exterior(2R) 4-2-15 to 6-0-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

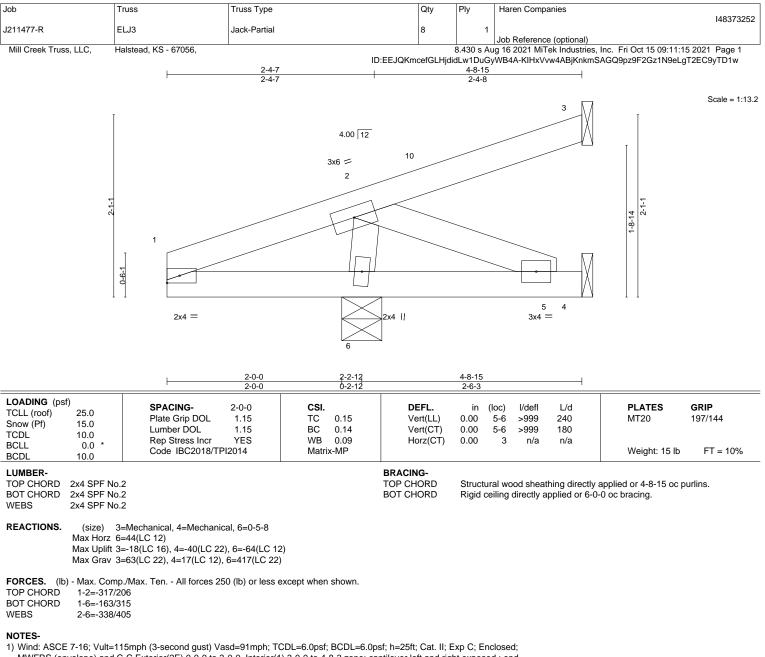
3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 3, 90 lb uplift at joint 4 and 108 lb uplift at joint 6.


8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 6-0-0 oc bracing.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

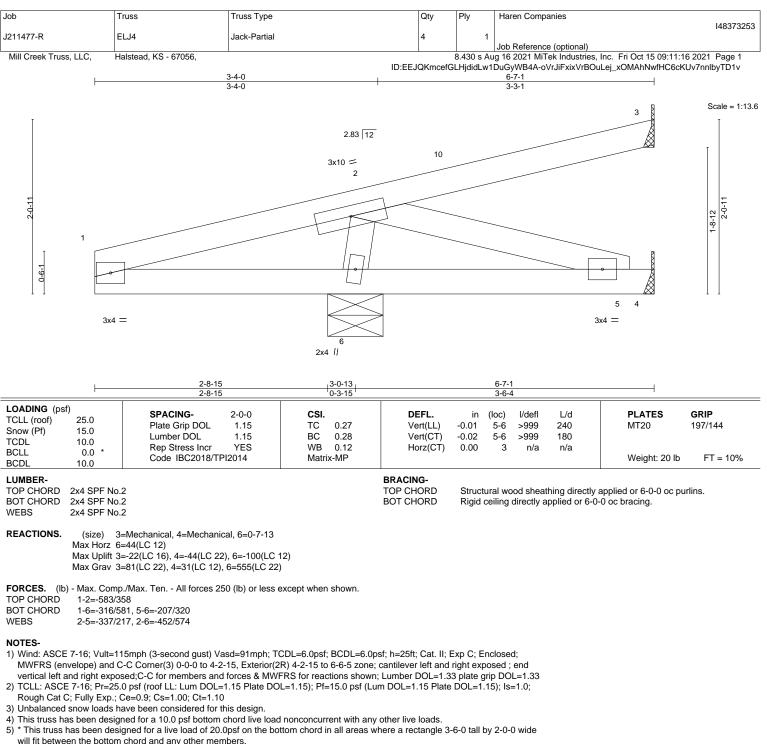
MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 4-8-3 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

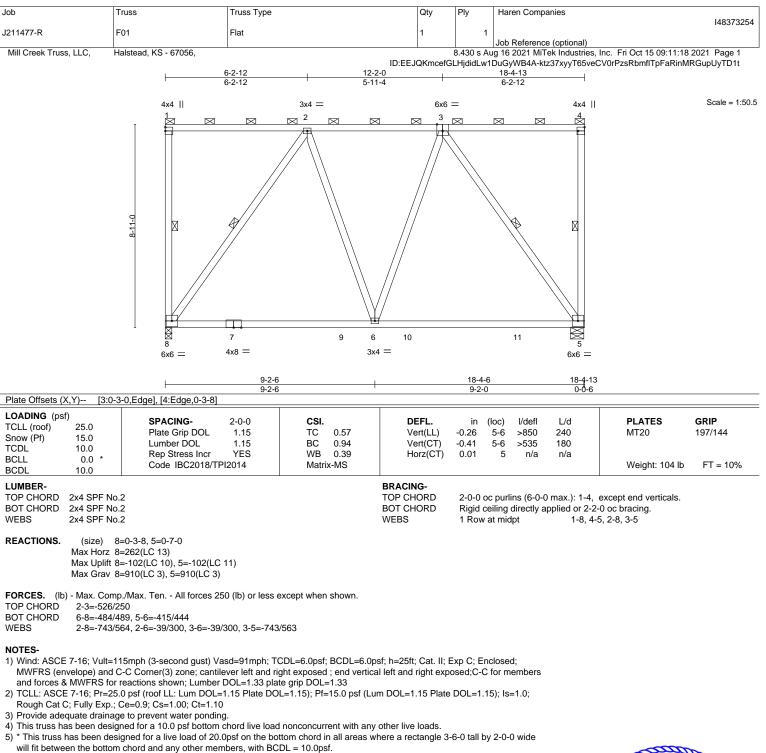
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 3, 40 lb uplift at joint 4 and 64 lb uplift at joint 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

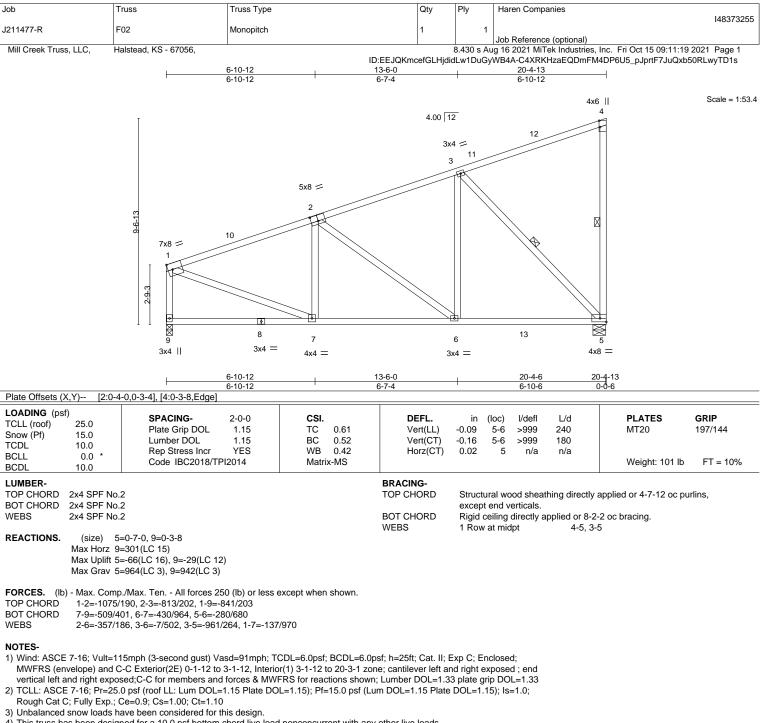
will lit between the bottom chord and any other m


6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 3, 44 lb uplift at joint 4 and 100 lb uplift at joint 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

16023 Swingley Ridge Rd Chesterfield, MO 63017

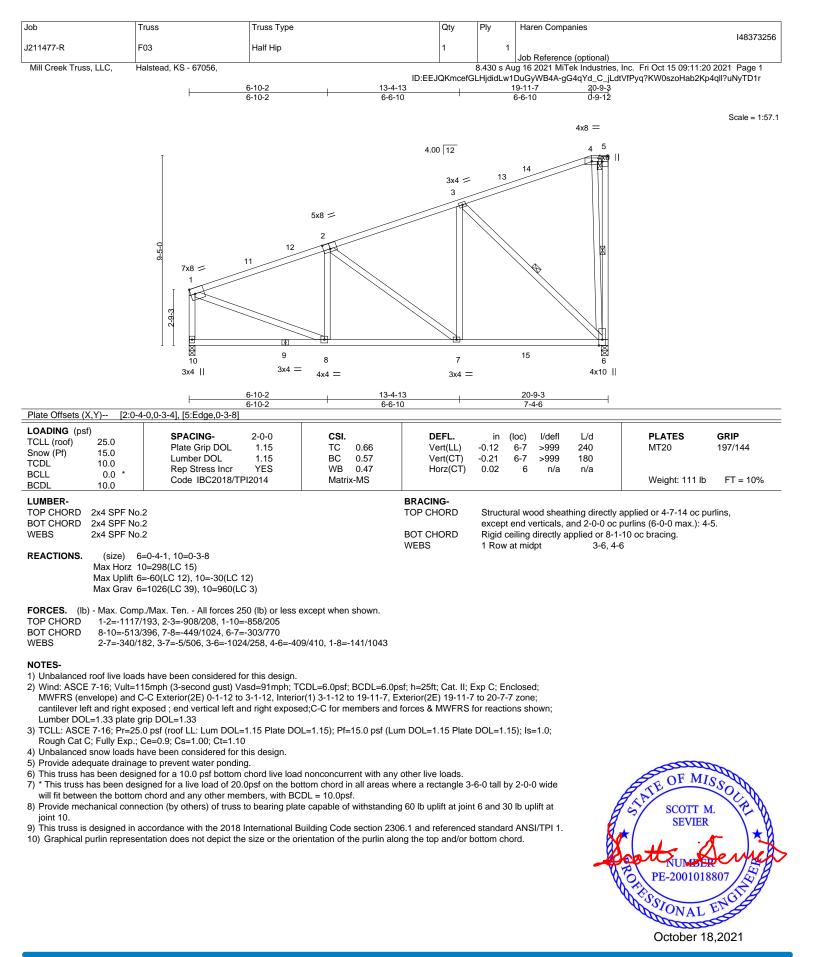

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 102 lb uplift at joint 8 and 102 lb uplift at joint 5.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

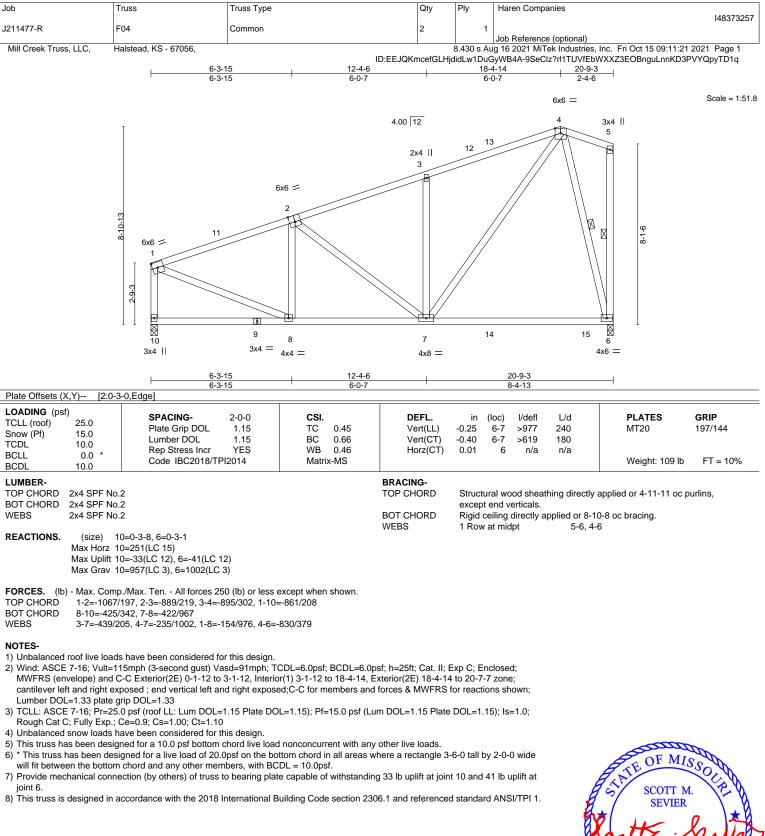
8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

NITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

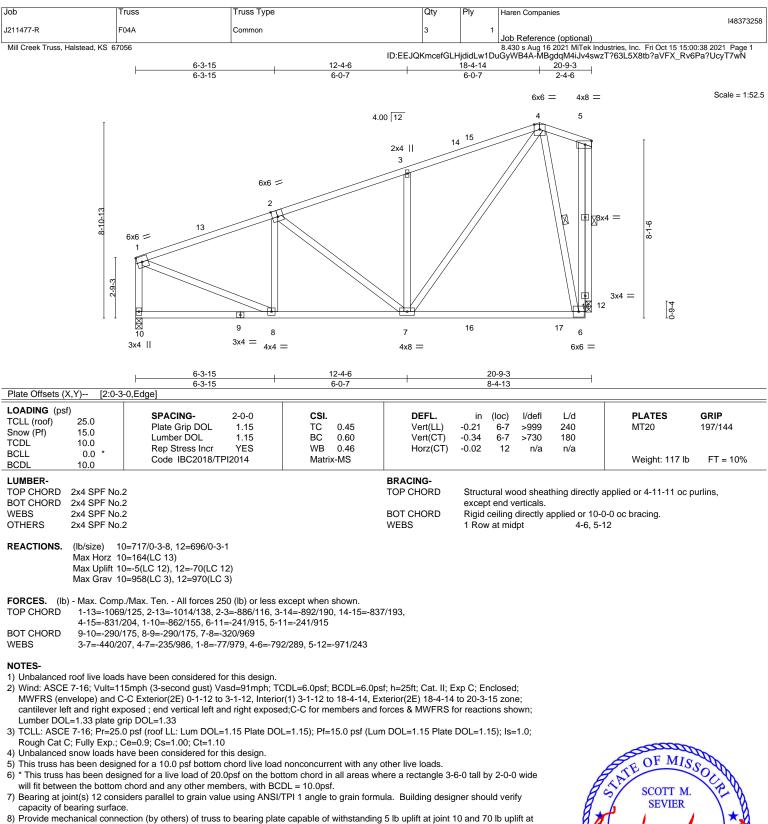
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 66 lb uplift at joint 5 and 29 lb uplift at joint 9

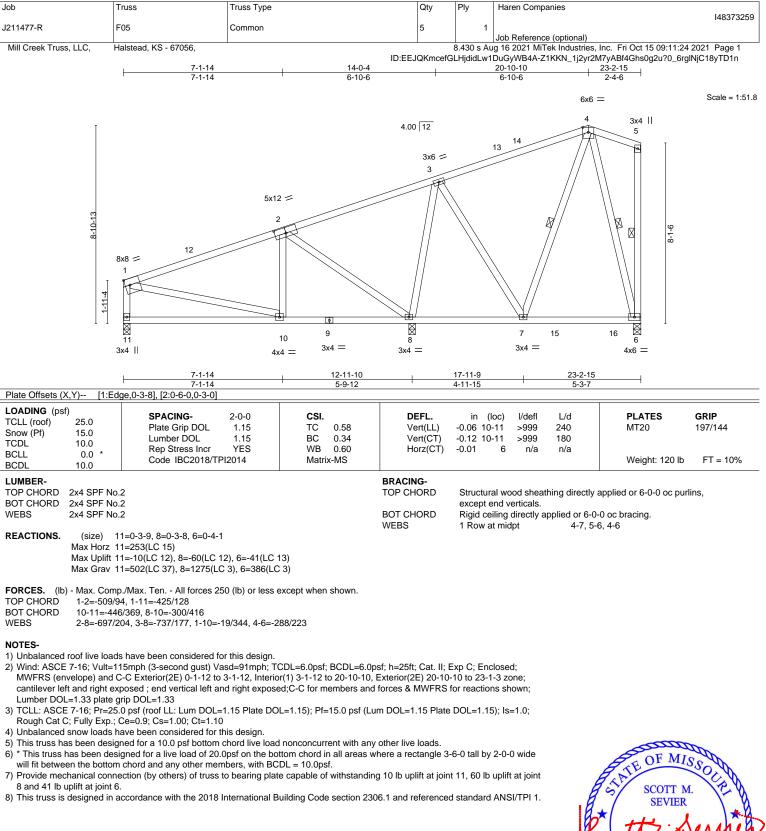

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017



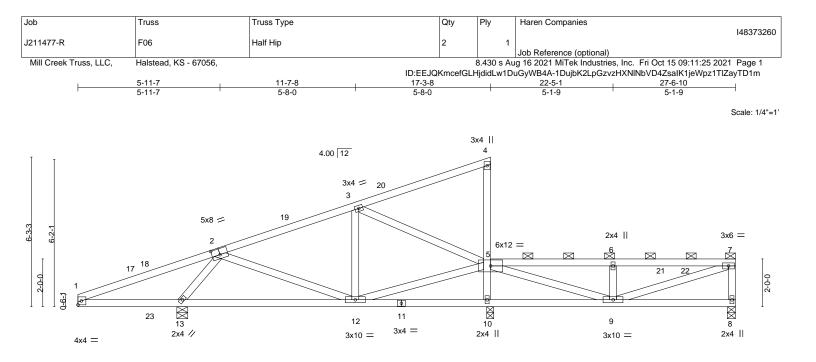
October 18,2021

NITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017


Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 5 lb uplift at joint 10 and 70 lb uplift at joint 12.

9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters shown, and is for an individual building design runs verify the applicability of design parameters shown, and the morpary and permanent bracing building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see MSISTPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


MITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

October 18,2021

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

L	4-1-12	4-4-78	11-7-8		1	17-3-5	17-3-8	22-5-1	1	27-6-10	
I	4-1-12	0-2-12	7-3-0		I	5-7-13	0-0-3	5-1-9	1	5-1-9	I
late Offsets (2	X,Y) [2:0-4-0),0-3-0]									
OADING (ps	,	SPACING-	2-0-0	CSI.		DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.53	Vert(LL)	-0.06 12-13	>999	240	MT20	197/144
now (Pf) CDL	15.0 10.0	Lumber DOL	1.15	BC	0.42	Vert(CT)	-0.11 12-13	>999	180		
	0.0 *	Rep Stress Incr	YES	WB	0.32	Horz(CT)	-0.00 8	n/a	n/a		
	10.0	Code IBC2018/TF	912014	Matri	x-MS					Weight: 112 lb	FT = 10%
BCDL	10.0										
LUMBER-						BRACING-					
	2v4 CDE No 2						Christernal		باللم متألم بمصاطل	applied or 6.0.0 op pur	

OP CHORD TOP CHORE Structural wood sheathing directly applied or 6-0-0 oc purlins BOT CHORD 2x4 SPF No.2 except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 5-10, 5-7. WEBS 2x4 SPF No.2 BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 10=0-3-8, 8=0-4-1, 13=0-5-8 Max Horz 13=256(LC 16) Max Uplift 10=-51(LC 13), 8=-27(LC 13), 13=-128(LC 12)

Max Grav 10=1044(LC 2), 8=477(LC 36), 13=1044(LC 37)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-510/545, 2-3=-575/7, 5-10=-924/278, 5-6=-784/149, 6-7=-784/149, 7-8=-423/114

BOT CHORD 1-13=-449/510, 12-13=-220/267

WFBS 2-12=-71/255, 3-5=-499/69, 5-12=-185/590, 5-9=-139/976, 6-9=-461/163, 7-9=-151/764, 2-13=-1061/450

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 27-4-14 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

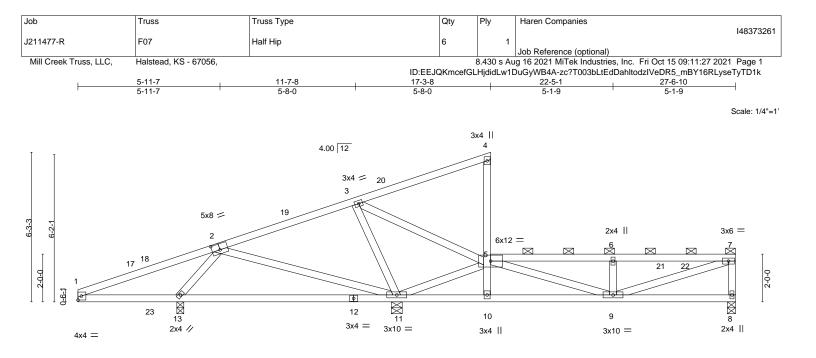
Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) Provide adequate drainage to prevent water ponding.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

7) will fit between the bottom chord and any other members.


8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 51 lb uplift at joint 10, 27 lb uplift at joint 8 and 128 lb uplift at joint 13.

9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

1	4-1-12	4-3-8	13-4-5		17-3-8	1	22-5-1		27-6-10	1
I	4-1-12	0-1-12	9-0-13		3-11-3	I	5-1-9	1	5-1-9	I
Plate Offsets ()	K,Y) [2:0-4-0,0	0-3-0]								
LOADING (psf TCLL (roof) Snow (Pf) TCDL 3CLL 3CDL	f) 25.0 15.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC 0.51 BC 0.47 WB 0.32 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.14 11-13 -0.27 11-13 -0.00 8	l/defl >785 >410 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 113 lb	GRIP 197/144 FT = 10%
LUMBER- TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2		·		BRACING- TOP CHORD				applied or 6-0-0 oc purl purlins (5-7-10 max.): 5	

BOT CHORD

Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 8=0-4-1, 11=0-5-8, 13=0-3-8 Max Horz 13=256(LC 16) Max Uplift 8=-31(LC 13), 11=-62(LC 16), 13=-124(LC 12)

Max Grav 8=526(LC 36), 11=1349(LC 2), 13=743(LC 50)

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 1-2=-529/519, 2-3=-277/417, 5-6=-930/175, 6-7=-930/175, 7-8=-474/127

BOT CHORD 1-13 = -426/527

2x4 SPF No.2

3-11=-883/340, 3-5=-236/727, 5-11=-802/224, 5-9=-107/836, 6-9=-460/164, WFBS 7-9=-189/918, 2-13=-655/419

NOTES-

WEBS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 27-4-14 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

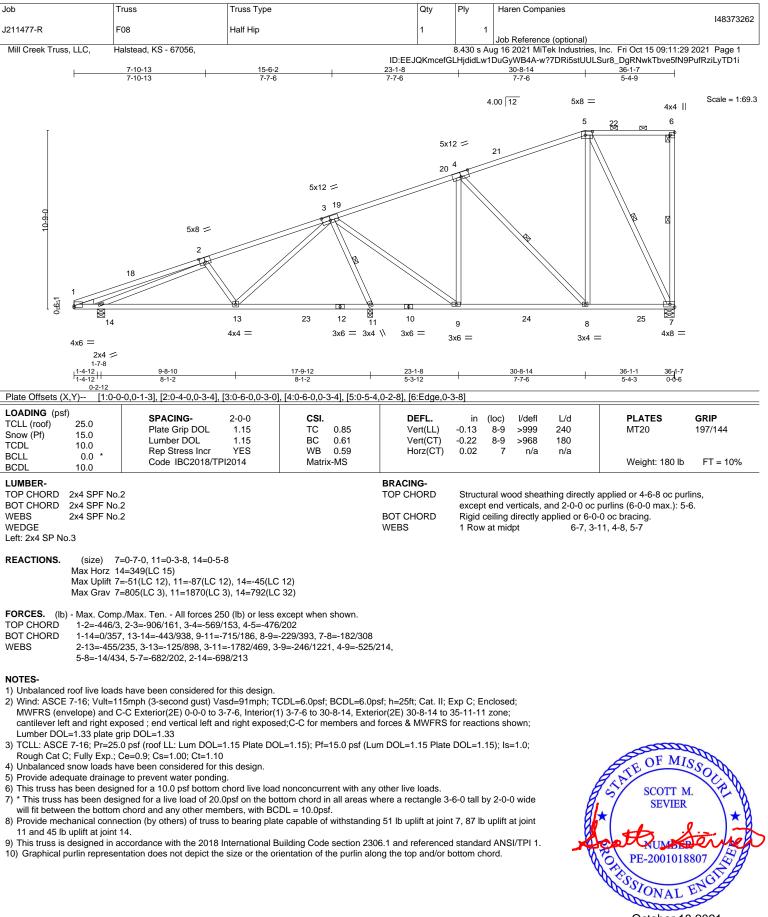
Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) Provide adequate drainage to prevent water ponding.

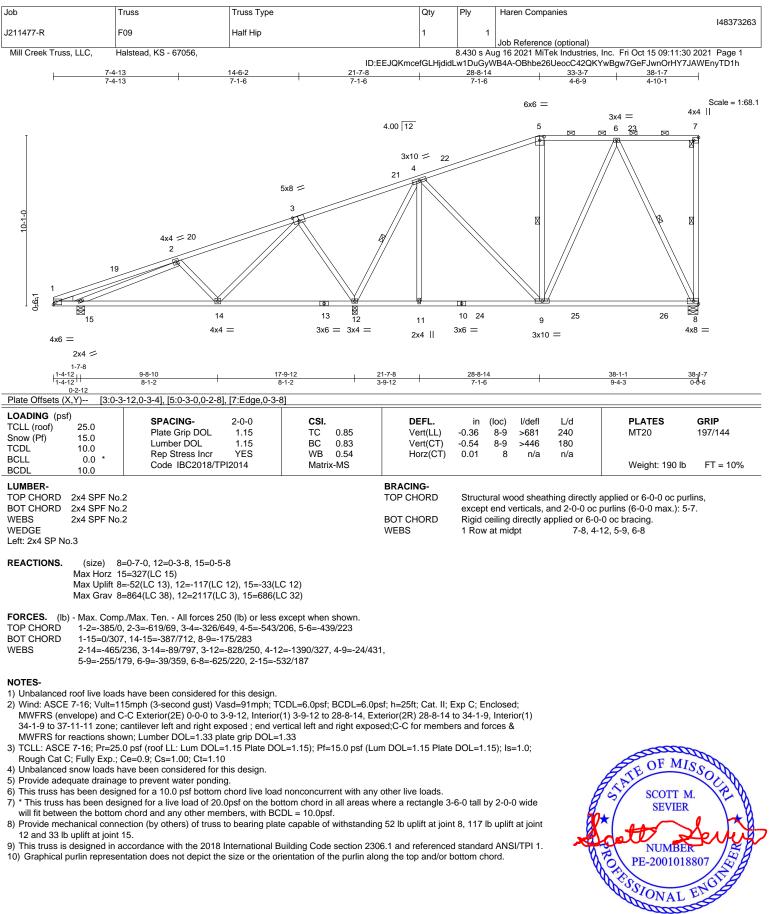
6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 7)

will fit between the bottom chord and any other members.

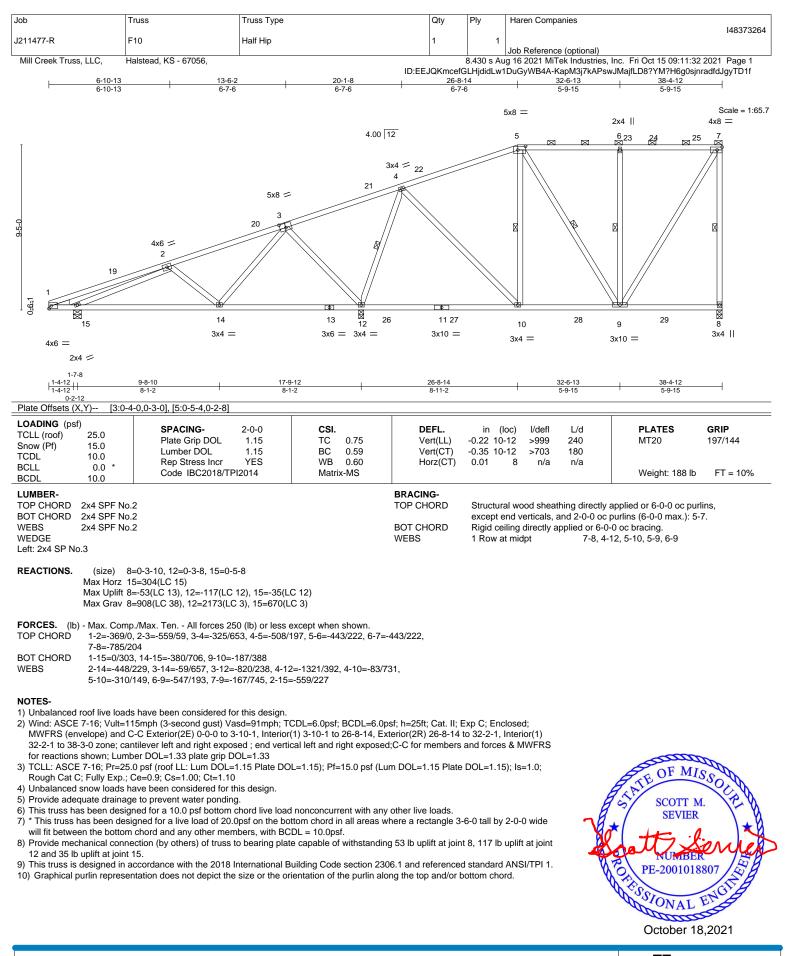

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 lb uplift at joint 8, 62 lb uplift at joint 11 and 124 lb uplift at joint 13.

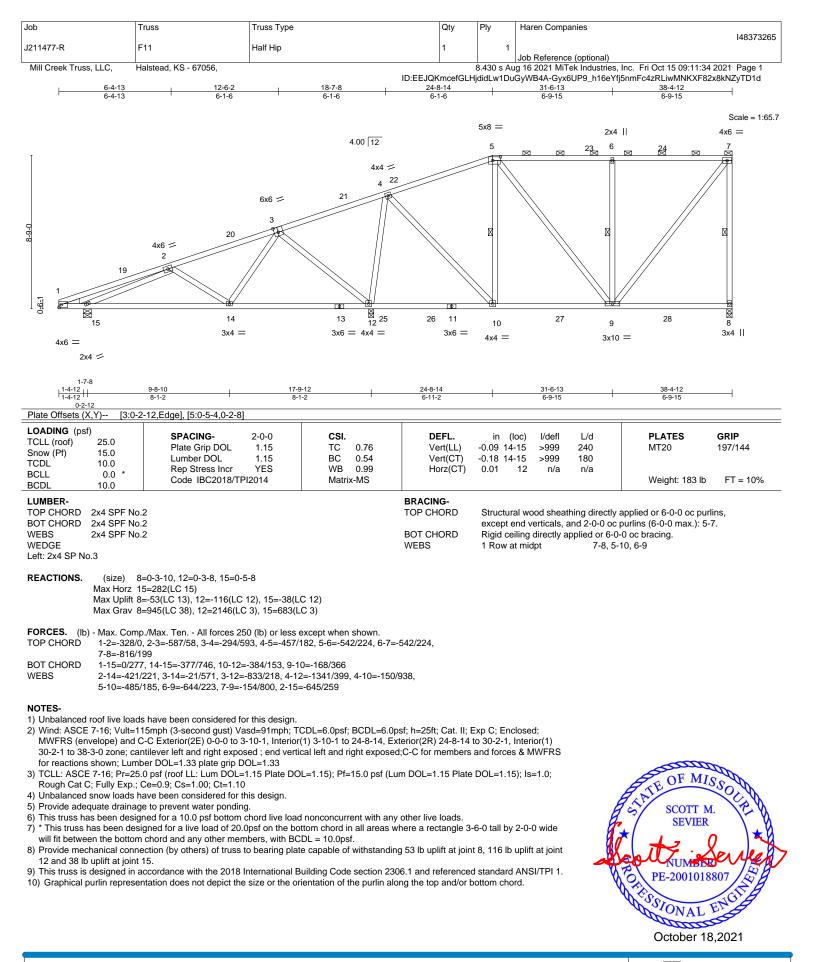
9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

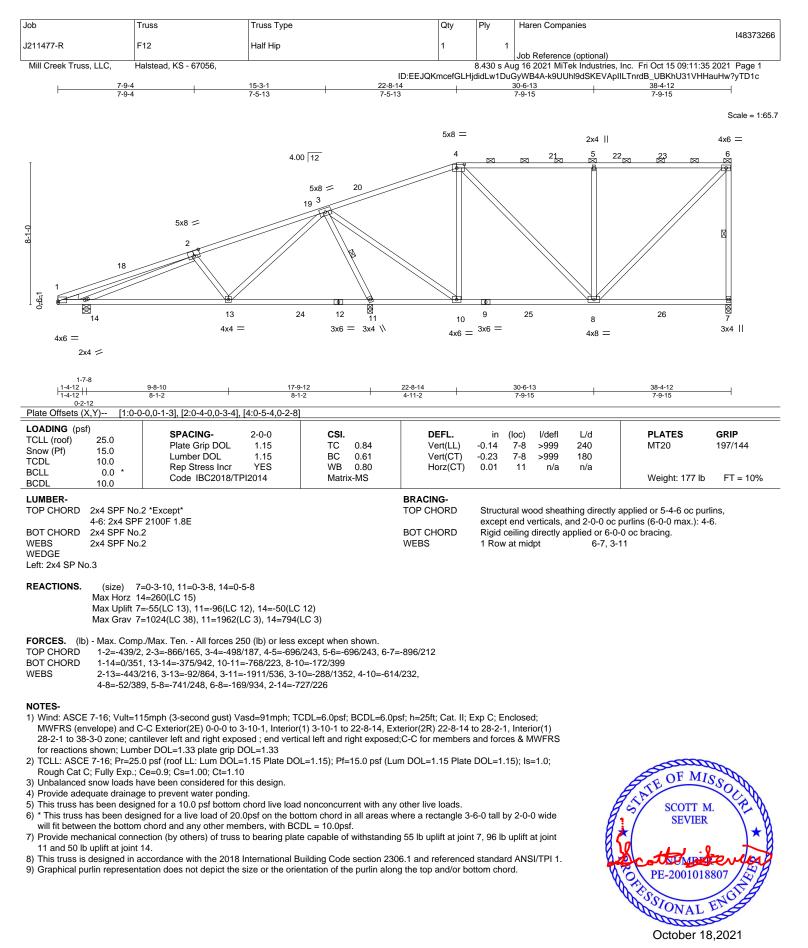


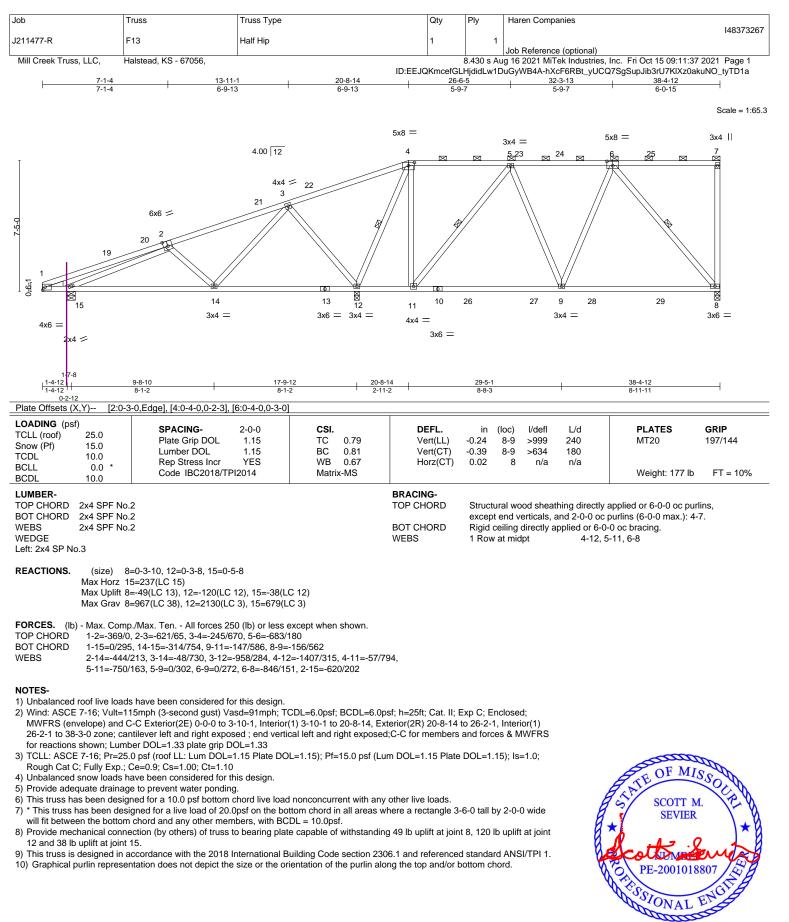
MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017


October 18,2021

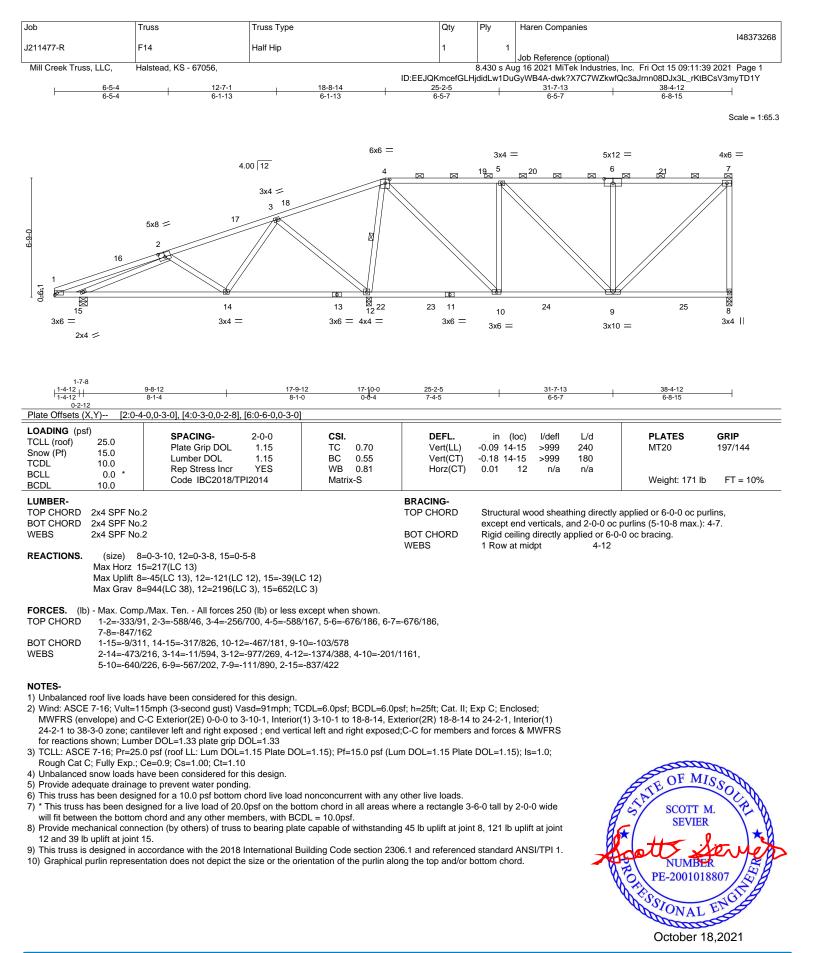


October 18,2021

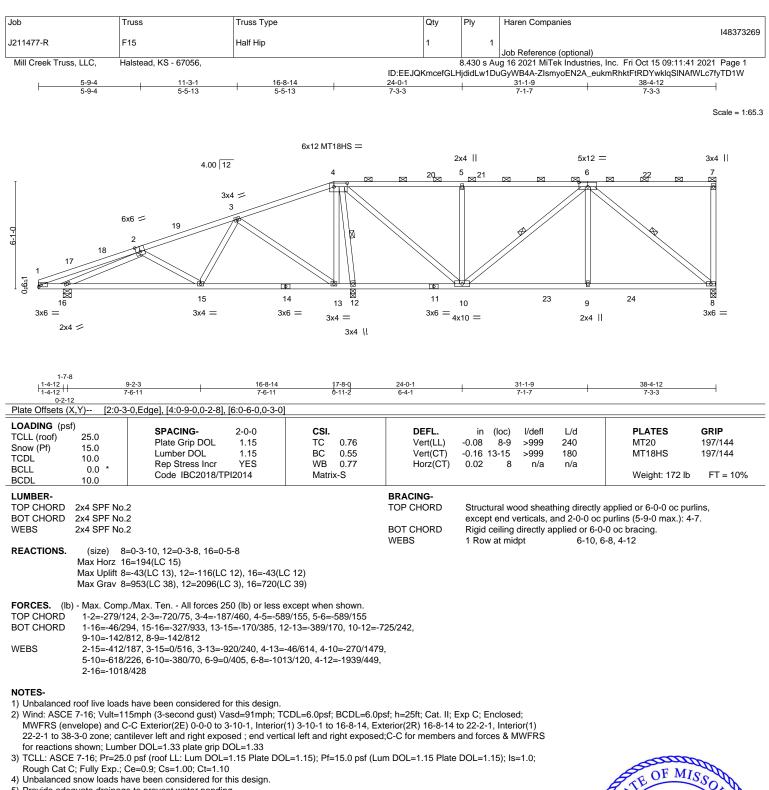


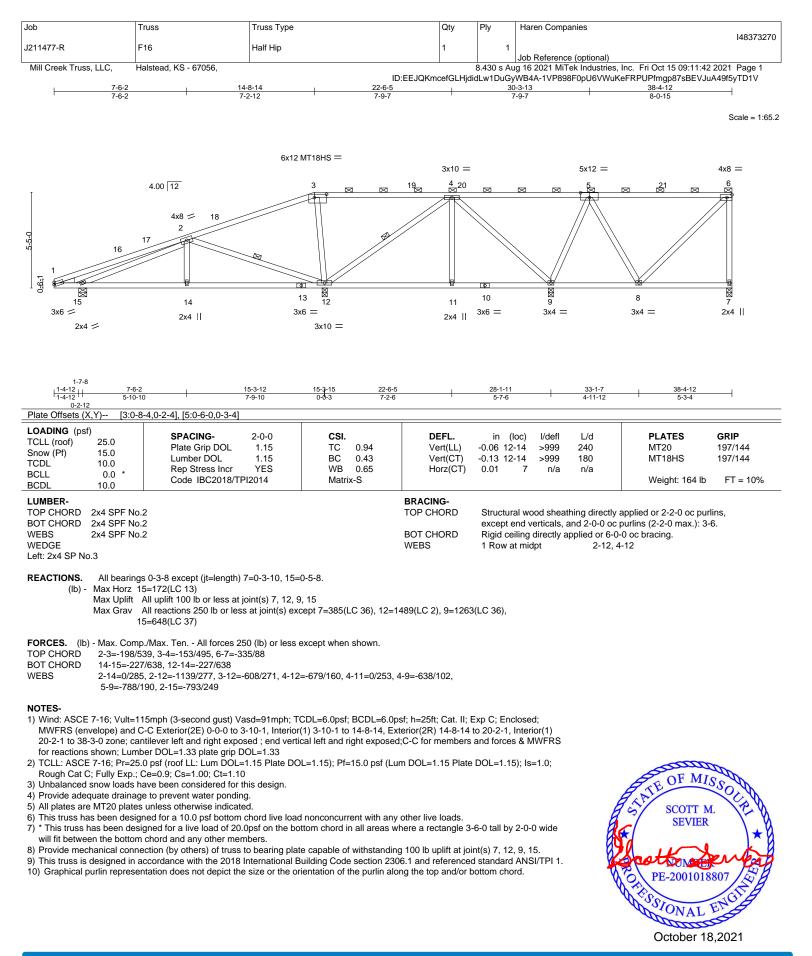

EFORE USE. soment, not the overall manent bracing the SI Building Component Chesterfield, MO 63017

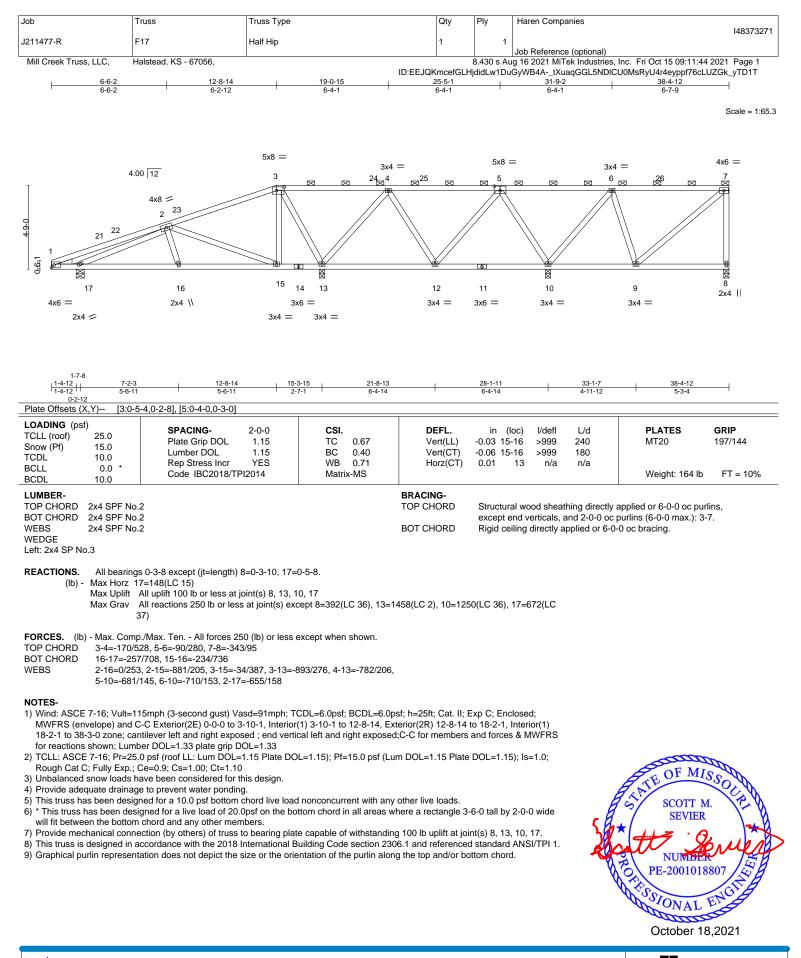
2020 BEFORE USE. g component, not ign into the overall nd permanent bracing arding the and BCSI Building Component and BCSI Building Component

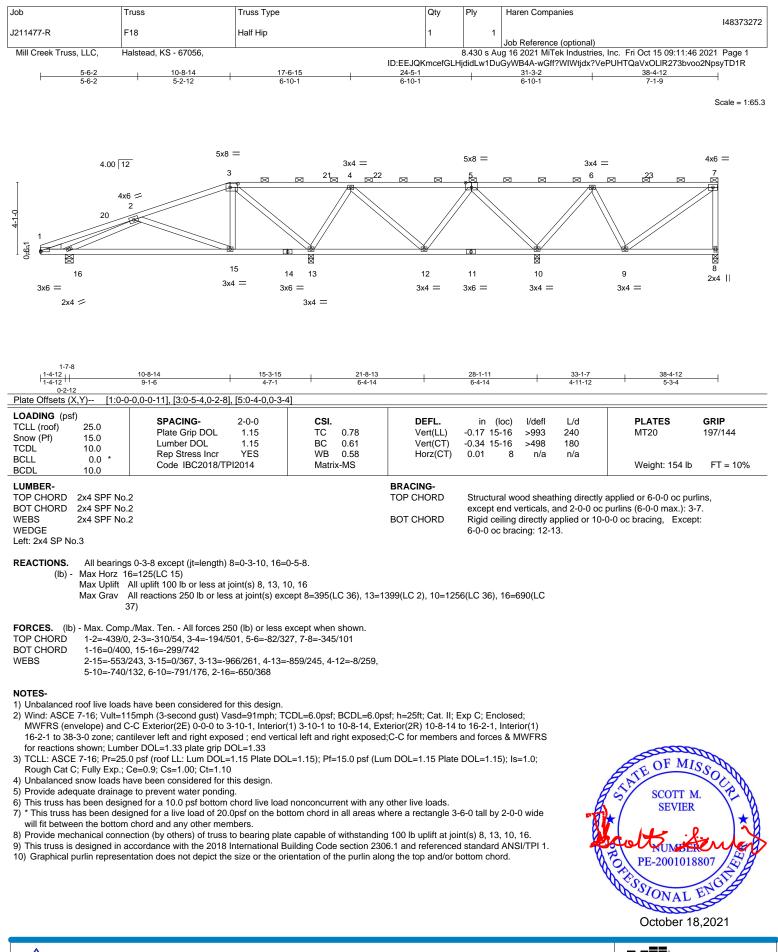


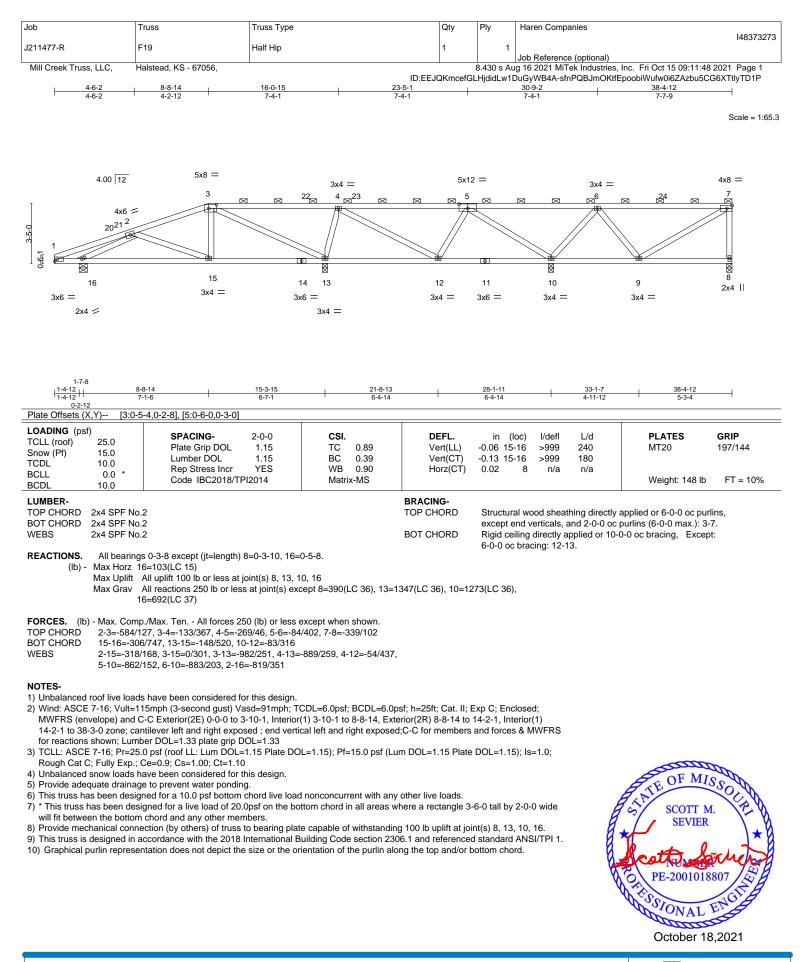
Mitek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

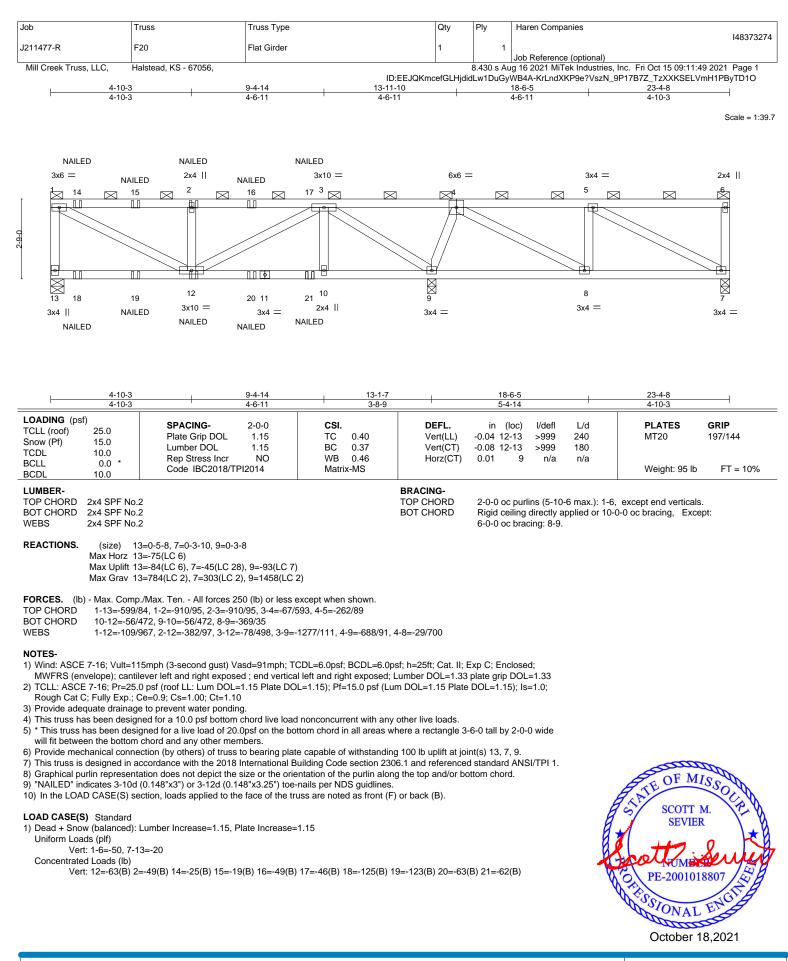

October 18,2021

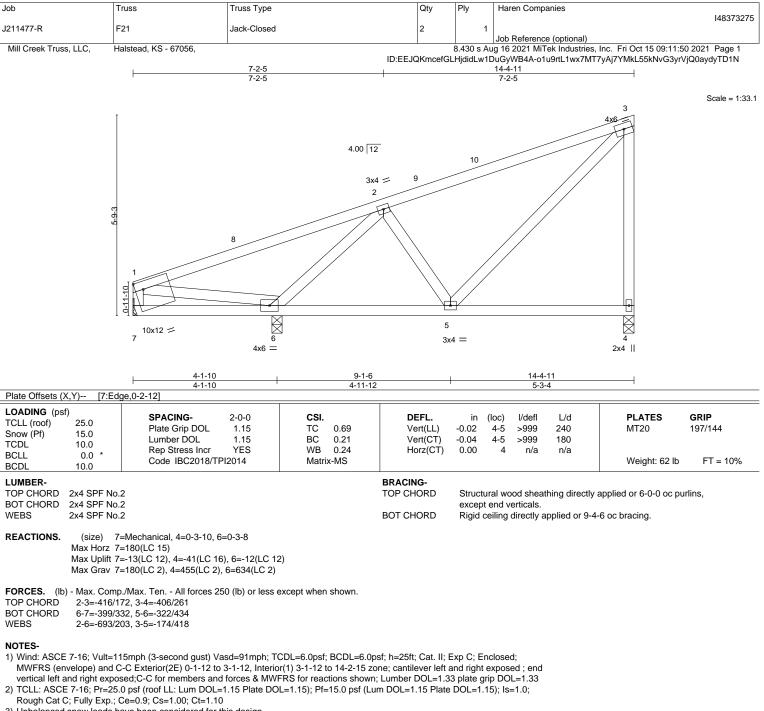

NITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017


- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are MT20 plates unless otherwise indicated
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 8) will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 43 lb uplift at joint 8, 116 lb uplift at joint 12 and 43 lb uplift at joint 16.
- 10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.




16023 Swingley Ridge Rd Chesterfield, MO 63017

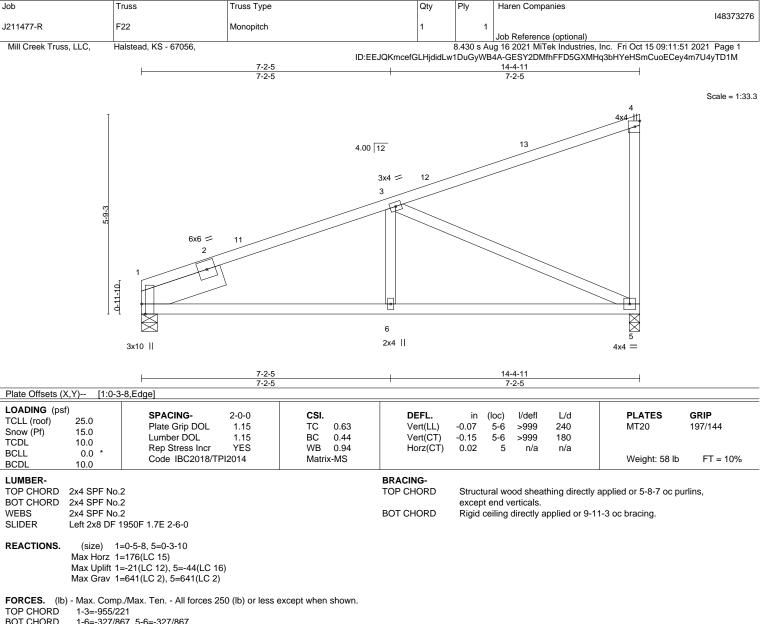

t 16023 Swingley Ridge Rd Chesterfield, MO 63017


Mitek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

16023 Swingley Ridge Rd Chesterfield, MO 63017

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 4, 6.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

BOT CHORD

WEBS 3-6=0/295, 3-5=-917/284

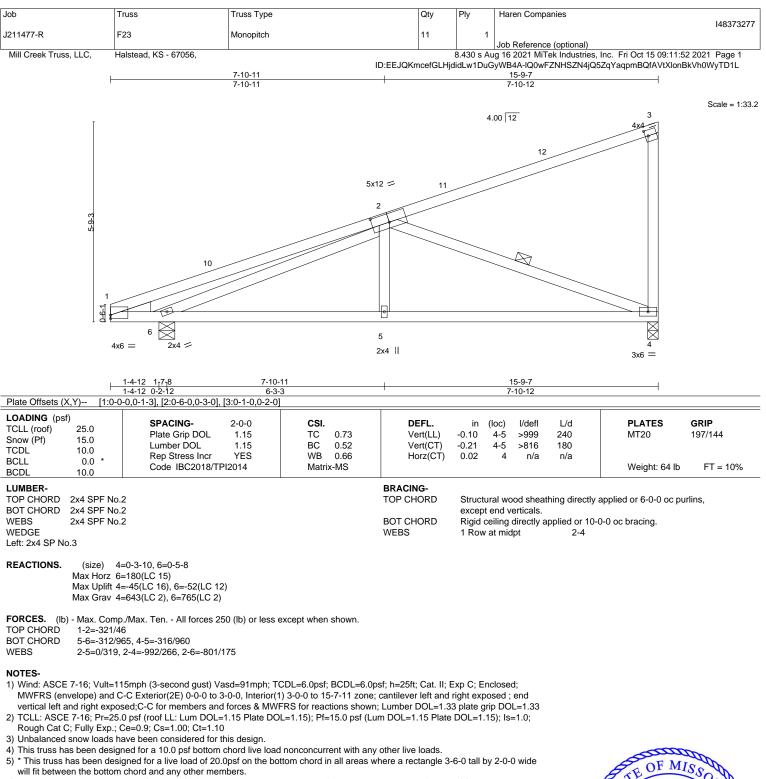
NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 14-2-15 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

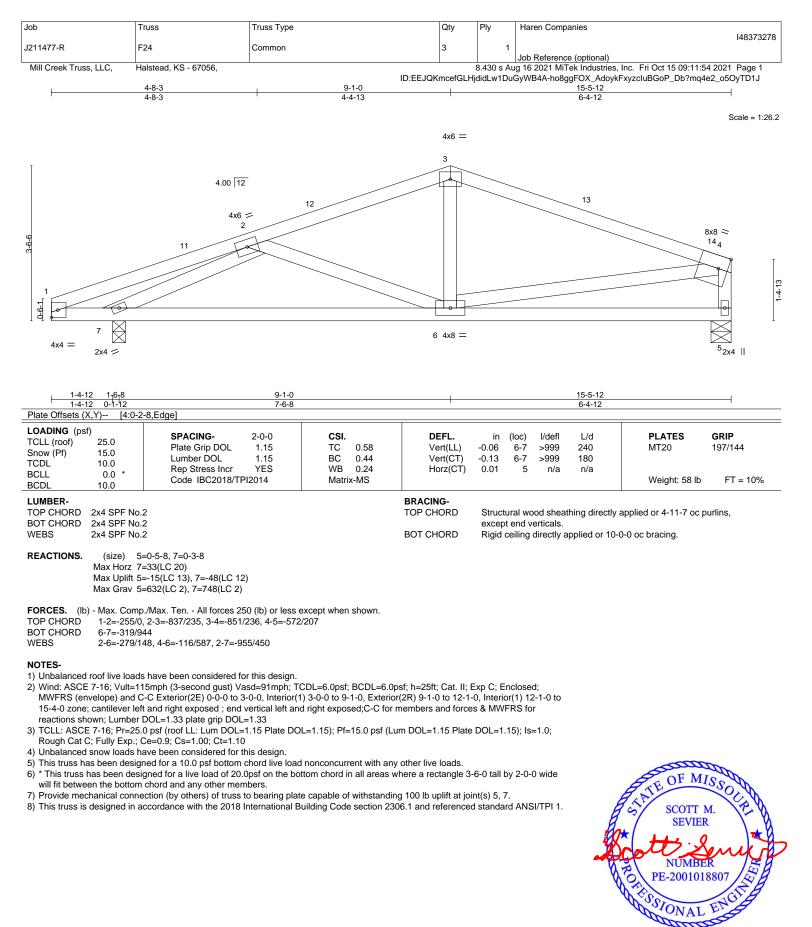
3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

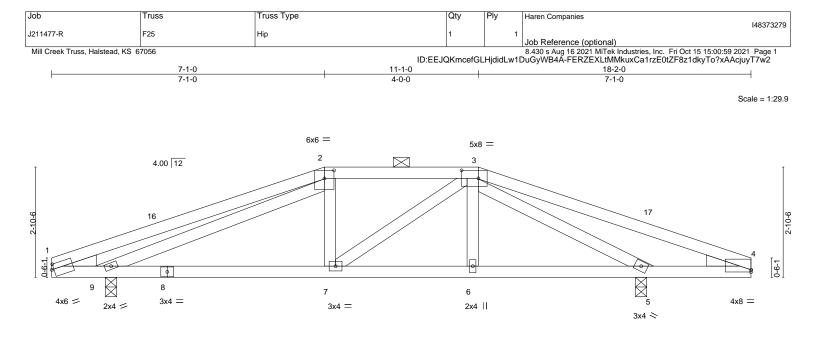
6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



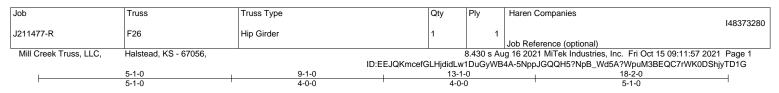
6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 6.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

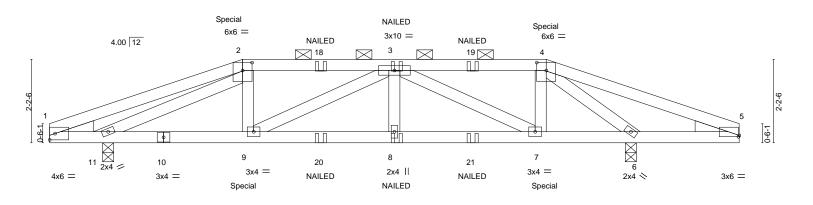


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

October 18,2021



1-4-12 1-6 ₁ 8	7-1-0 5-6-8	11-1-		<u>15-3-12</u> 4-2-12	15-5-8 0-1-12		
	-0-11,0-1-10], [2:0-3-0,0-2-8], [3:0-5-4,0-2		0	4-2-12	0-1-12	2-0-0	
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.69 BC 0.82 WB 0.51 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl -0.03 6-7 >999 -0.07 7-9 >999 0.02 5 n/a	240 r 180 n/a		GRIP 197/144 FT = 10%
LUMBER- TOP CHORD 2x4 SPF N BOT CHORD 2x4 SPF N WEBS 2x4 SPF N WEDGE Left: 2x4 SPF No.2 , Right:	o.2 o.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheath 2-0-0 oc purlins (6-0-0 Rigid ceiling directly ap 6-0-0 oc bracing: 4-5.	max.): 2-3.		•
Max Horz Max Uplift	9=574/0-3-8, 5=698/0-3-8 9=25(LC 16) 9=-54(LC 12), 5=-88(LC 13) 9=738(LC 2), 5=897(LC 2)						
TOP CHORD 1-16=-43 BOT CHORD 1-9=-26/3	np./Max. Ten All forces 250 (lb) or less ()/82, 2-16=-329/105, 2-3=-869/282, 3-17-)12, 8-9=-188/869, 7-8=-188/869, 6-7=-96 /169, 3-5=-1143/484	-276/392, 4-17=-289/282					
 Wind: ASCE 7-16; Vult= MWFRS (envelope) and 15-3-15, Interior(1) 15-3 forces & MWFRS for rea TCLL: ASCE 7-16; Pr=2 Rough Cat C; Fully Exp. Unbalanced snow loads Provide adequate draina This truss has been des * This truss has been des * This truss has been des * This truss has been des Provide mechanical con joint 5. This truss is designed in 	ds have been considered for this design. 115mph (3-second gust) Vasd=91mph; T C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(15 to 18-2-0 zone; cantilever left and righ ctions shown; Lumber DOL=1.33 plate gr 5.0 psf (roof LL: Lum DOL=1.15 Plate DO ; Ce=0.9; Cs=1.00; Ct=1.10 have been considered for this design. ge to prevent water ponding. gned for a 10.0 psf bottom chord live load signed for a live load of 20.0psf on the bo m chord and any other members. hection (by others) of truss to bearing plat accordance with the 2018 International E entation does not depict the size or the or) 3-0-0 to 7-1-0, Exterior(3 t exposed ; end vertical le ip DOL=1.33 L=1.15); Pf=15.0 psf (Lurr nonconcurrent with any o ttom chord in all areas wh e capable of withstanding uilding Code section 2306	2E) 7-1-0 to 11-1-0 ft and right expose n DOL=1.15 Plate other live loads. ere a rectangle 3-6 54 lb uplift at joint 6.1 and referenced	 p), Exterior(2R) 11-1-0 to ed; C-C for members and DOL=1.15); Is=1.0; 6-0 tall by 2-0-0 wide 9 and 88 lb uplift at standard ANSI/TPI 1. 	A cot	E OF MIS SCOTT M. SEVIER NUMBER E-200101880	me


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

October 18,2021

Scale = 1:30.3

1-4-12 1-6 ₇ 8	5-1-0 3-6-8	9-1-0	13- ⁻ 4-0			15-3-12 2-2-12	<u>15-5-8 18-2-</u> 0-1-12 2-8-8	
	3-0,0-2-8], [4:0-3-0,0-2-8], [5:0-0-4,0-0		4-0	-0		2-2-12	0-1-12 2-0-0	
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IBC2018/TPI2014	CSI. TC 0.43 BC 0.49 WB 0.23 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.04 8 -0.05 8-9 0.02 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 68	GRIP 197/144 b FT = 10%
BCDL 10.0 LUMBER- TOP CHORD 2x4 SPF No. BOT CHORD 2x4 SPF No. WEBS 2x4 SPF No. WEDGE Left: 2x4 SP No.3, Right: 2x Right: 2x	2 2 2		BRACING- TOP CHORD BOT CHORD	2-0-0 oc pur	lins (6-0-0) max.): 2-4	ly applied or 6-0-0 oc	
Max Horz 1 Max Uplift 1	1=0-3-8, 6=0-3-8 1=18(LC 84) 1=-126(LC 8), 6=-190(LC 9) 1=640(LC 51), 6=742(LC 2)							
TOP CHORD 2-3=-742/2 BOT CHORD 9-11=-164/	o./Max. Ten All forces 250 (lb) or les 102, 3-4=-475/179, 4-5=-85/421 1733, 8-9=-222/996, 7-8=-222/996, 6- (186, 3-9=-283/86, 3-7=-599/96, 4-7=-							
 Wind: ASCE 7-16; Vult=1 MWFRS (envelope); canti TCLL: ASCE 7-16; Pr=25 Rough Cat C; Fully Exp.; Unbalanced snow loads h Provide adequate drainag This truss has been desig * This truss has been desig * This truss has been desig Brovide mechanical connection Provide mechanical connection Graphical purlin represe "NAILED" indicates 3-10 Hanger(s) or other connection of the dottom of the dottom of the dottom connection of the dottom connection 	s have been considered for this desig 15mph (3-second gust) Vasd=91mph ilever left and right exposed ; end vert 0 psf (roof LL: Lum DOL=1.15 Plate I Ce=0.9; Cs=1.00; Ct=1.10 have been considered for this design. le to prevent water ponding. ned for a 10.0 psf bottom chord live lof igned for a live load of 20.0psf on the a chord and any other members. ection (by others) of truss to bearing p accordance with the 2018 Internationan ntation does not depict the size or the id (0.148"x3") or 3-12d (0.148"x3.25") ection device(s) shall be provided suff ad 204 lb up at 13-1-0 on top chord, a rod. The design/selection of such con- ection, loads applied to the face of the	TCDL=6.0psf; BCDL=6.0p cal left and right exposed; VOL=1.15); Pf=15.0 psf (Lu ad nonconcurrent with any pottom chord in all areas v late capable of withstandir Building Code section 23 orientation of the purlin all toe-nails per NDS guidline cient to support concentra nd 23 lb down and 138 lb nection device(s) is the res	Lumber DOL=1.33 um DOL=1.15 Plate y other live loads. where a rectangle 3 ing 100 lb uplift at joi 06.1 and reference ong the top and/or t is. ted load(s) 93 lb do up at 5-1-0, and 15 ponsibility of others	e-6-0 tall by 2-0- int(s) except (jt d standard ANS bottom chord.	_=1.33 ==1.0; 0 wide =Ib) SI/TPI 1.		STATE OF M SCOT SEVI OF PE-2001	ER *

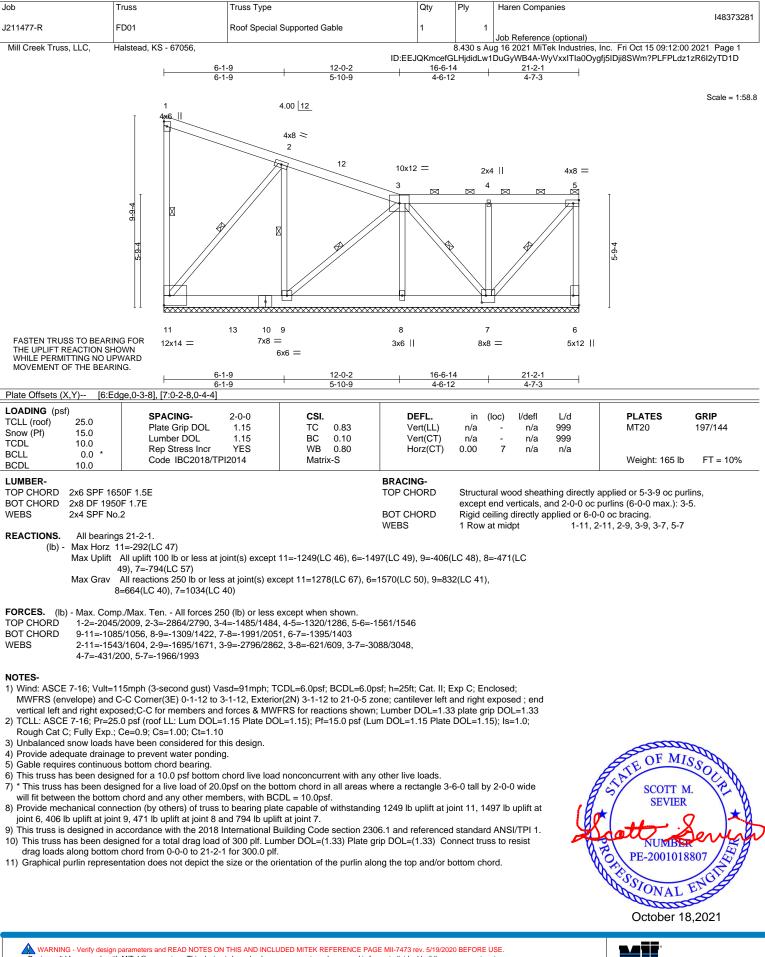
Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

October 18,2021

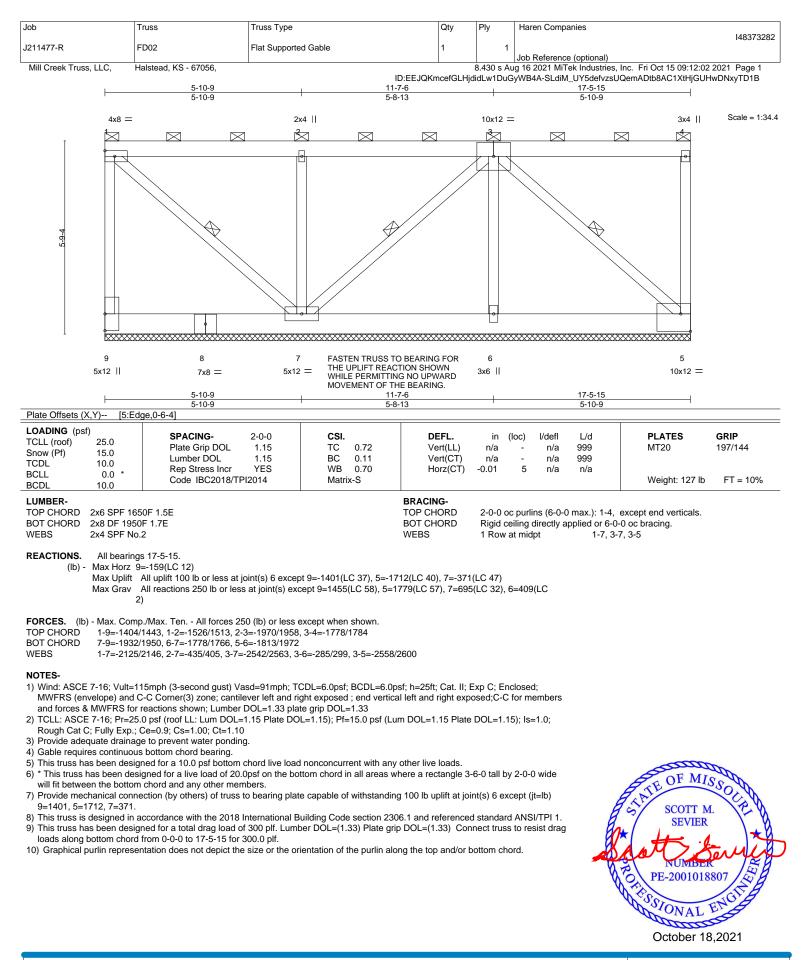
[Job	Truss	Truss Type	Qty	Ply	Haren Companies
	J211477-R	F26	Llin Cirder	4	1	148373280
	J211477-R	F26	Hip Girder	1	- I	Job Reference (optional)
ι	Mill Creek Truss, LLC,	Halstead, KS - 67056,				g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:11:58 2021 Page 2
			ID:EEJQKr			WB4A-ZaNBWcR22P7ERLZjBohE31QXpbafxa5gZfy?EAyTD1F

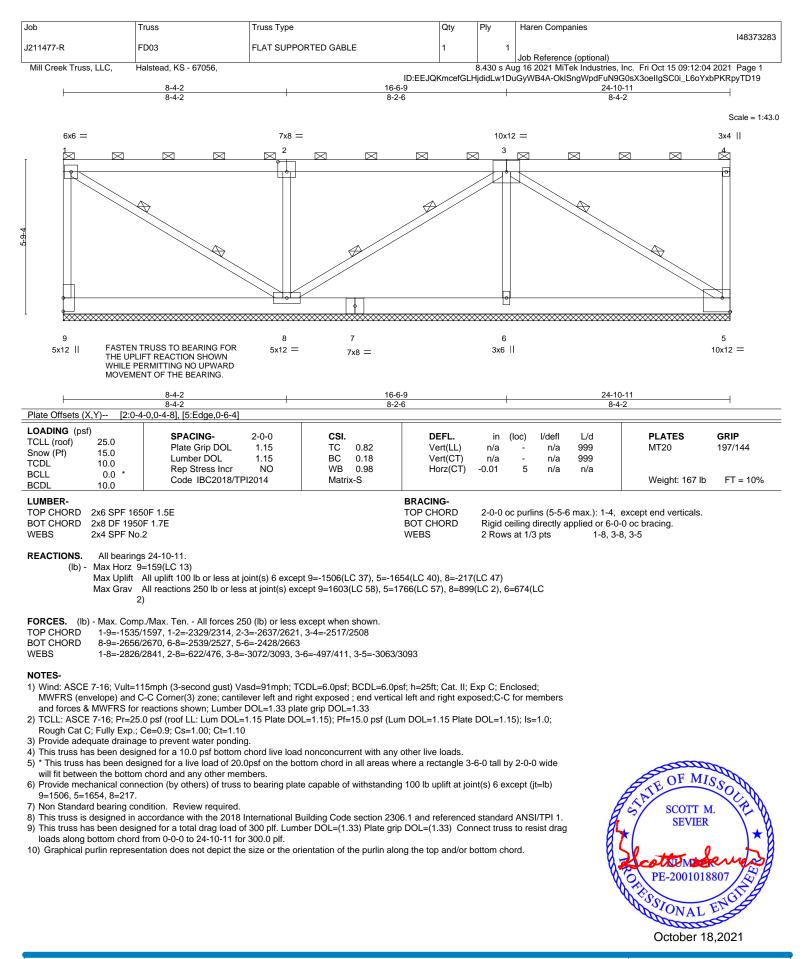
LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-50, 2-4=-50, 4-5=-50, 12-15=-20

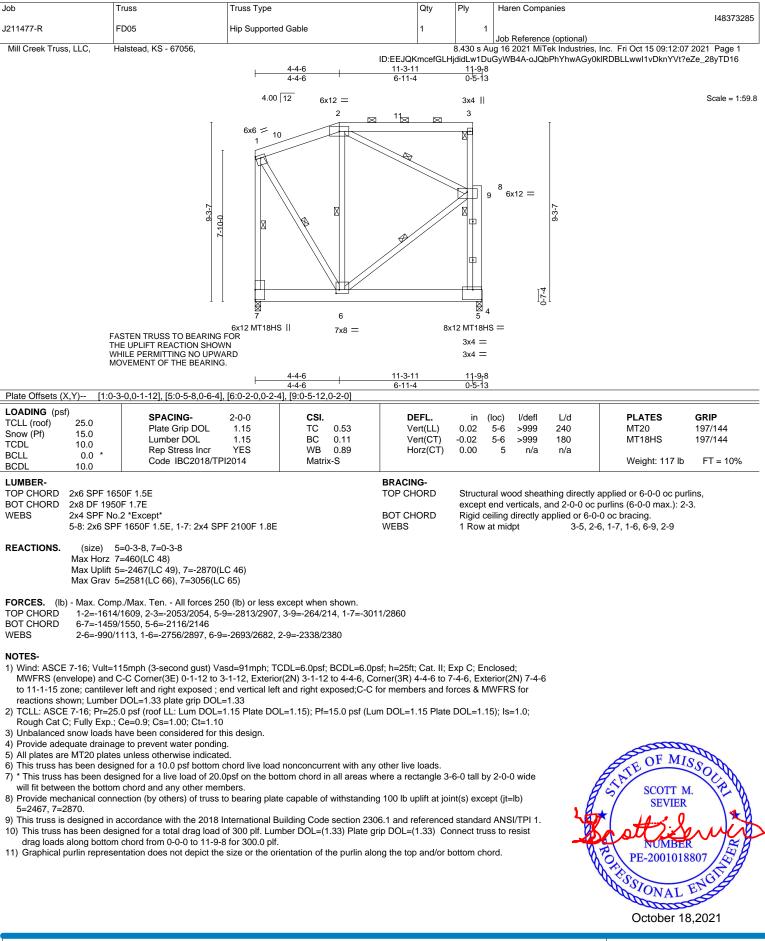
Concentrated Loads (lb)

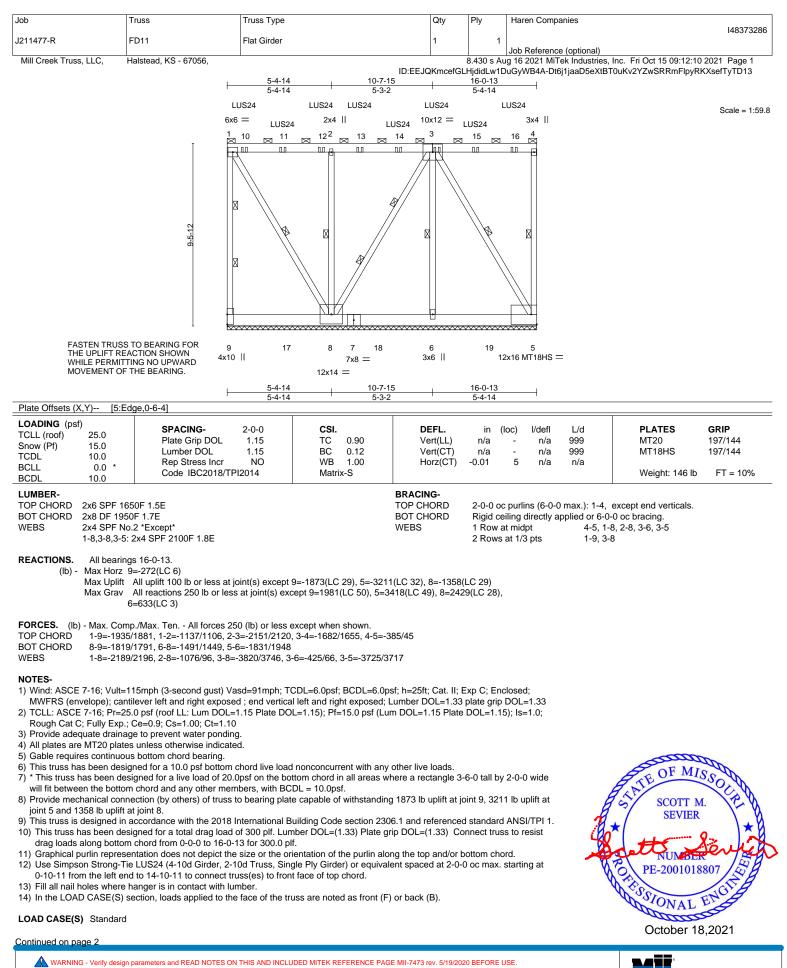

Vert: 2=-43(B) 4=66(B) 9=61(B) 8=26(B) 7=27(B) 3=-21(B) 18=-21(B) 19=-21(B) 20=26(B) 21=26(B)



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Mitek° 16023 Swingley Ridge Rd Chesterfield, MO 63017



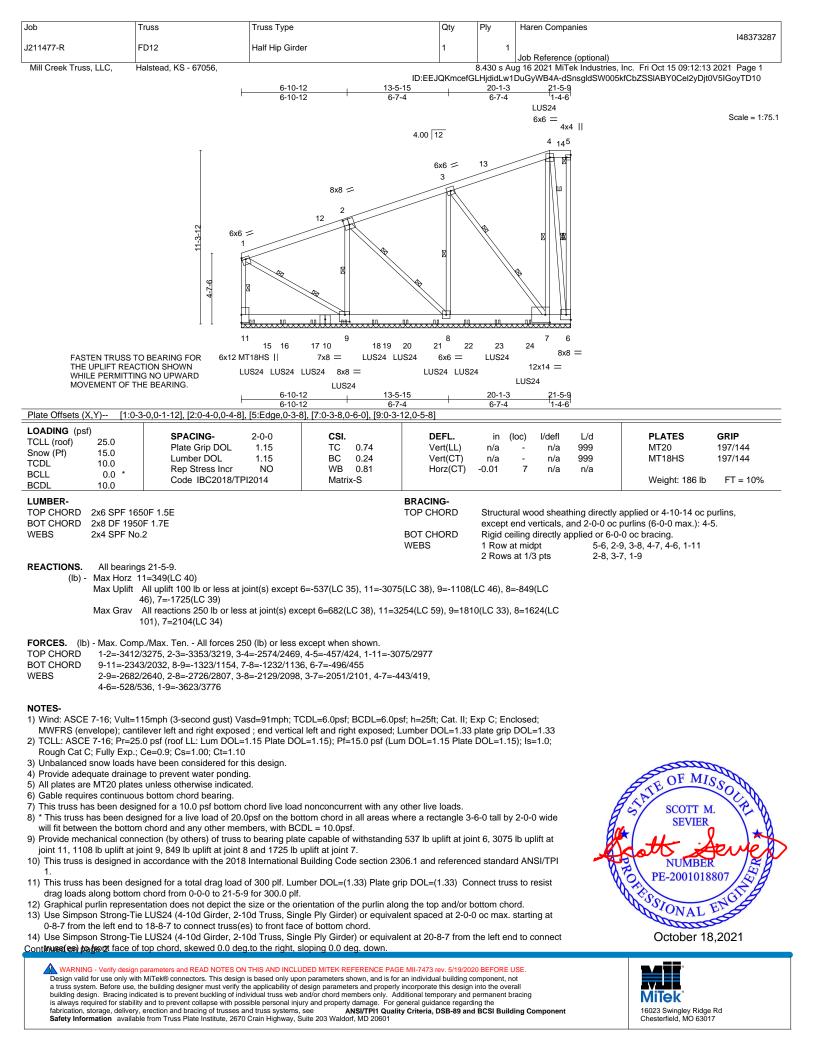


Job		Truss	Truss Type	Qty	Ply	Haren Companies	
J211477-R		FD04	Monopitch Supported Gable	1	1		148373284
Mill Creek Truss	s, LLC,	Halstead, KS - 67056,			8.430 s A	Job Reference (optional) ug 16 2021 MiTek Industries	, Inc. Fri Oct 15 09:12:05 2021 Page 1
				ID:EEJQKmcefGLH 6-2-0			Qb35nJtrVDe8Q2S4eGiAF9tzGyTD18
				6-2-0			
			2	4.00 12	2x4		Scale = 1:41.9
			Ţ		2		
			6x12 MT18HS =				
			Z-0-12				
				$\langle \phi \rangle$			
			5-0-1				
					\ge		
				****	******		
		FASTEN TRUSS TO THE UPLIFT REACT WHILE PERMITTING	ION SHOWN		3		
		MOVEMENT OF TH			10x12 =		
			ł				
Plate Offsets (X		Edge,0-6-4], [4:0-6-4,0-1-8]					
LOADING (psf TCLL (roof)	f) 25.0	SPACING-	2-0-0 CSI. 1.15 TC 0.74	DEFL.		loc) l/defl L/d - n/a 999	PLATES GRIP MT20 197/144
Snow (Pf) TCDL	15.0 10.0	Plate Grip DOL Lumber DOL	1.15 BC 0.10	Vert(LL) Vert(CT)	n/a n/a	- n/a 999	MT18HS 197/144
BCLL	0.0 *	Rep Stress Incr Code IBC2018/TI	YES WB 0.65 Pl2014 Matrix-P	Horz(CT)	-0.00	3 n/a n/a	Weight: 48 lb FT = 10%
BCDL	10.0			BRACING-			
TOP CHORD	2x6 SPF 1 2x8 DF 19	1650F 1.5E		TOP CHORD		al wood sheathing directly end verticals.	applied or 6-0-0 oc purlins,
WEBS	2x4 SPF N			BOT CHORD	Rigid ce	eiling directly applied or 6-0)-0 oc bracing.
REACTIONS.	(size)	4=6-2-0, 3=6-2-0		WEBS	1 Row a	at midpt 1-3	
		: 4=203(LC 47) t 4=-1987(LC 45), 3=-1459(C 48)				
		4=2145(LC 52), 3=1471(L					
	,	•	50 (lb) or less except when shown.				
TOP CHORD BOT CHORD	1-4=-208 3-4=-206	86/2055, 1-2=-1872/1817, 2 63/1975	3=-219/316				
WEBS	1-3=-255						
NOTES-							
			asd=91mph; TCDL=6.0psf; BCDL= 3-1-12, Exterior(2N)				
			forces & MWFRS for reactions sh 1.15 Plate DOL=1.15); Pf=15.0 psi				
Rough Cat C	C; Fully Exp	o.; Ce=0.9; Cs=1.00; Ct=1.10)			-,, ,,	
4) All plates are	e MT20 pla	s have been considered for tes unless otherwise indicat					
		ous bottom chord bearing. signed for a 10.0 psf bottom	chord live load nonconcurrent with	any other live loads.			ATTER
		esigned for a live load of 20 om chord and any other mei	Opsf on the bottom chord in all area	as where a rectangle 3-	6-0 tall by	2-0-0 wide	SE OF MISSO
8) Provide mec	chanical cor		to bearing plate capable of withsta	nding 100 lb uplift at joi	nt(s) exce	pt (jt=lb)	BAR CAN
	designed i		International Building Code section				SCOTT M.
		esigned for a total drag load om chord from 0-0-0 to 6-2-0	of 300 plf. Lumber DOL=(1.33) Pla for 300.0 plf.	ate grip DOL=(1.33) Co	nnect trus	is to resist	*
	5					4	the server
						~	PE-2001018807
							NTA ISA
							SSIONAL ENGL
							and
							October 18,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

nponent 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Haren Companies
1044477 D	5544				148373286
J211477-R	FD11	Flat Girder	1	1	
					Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:12:10 2021 Page 2
		ID:EEJC	KmcefGL	HjdidLw1D	uGyWB4A-Dt6j1jaaD5eXtBT0uKv2YZwSRRmFlpyRKXsefTyTD13


LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-50, 5-9=-20 Concentrated Loads (lb)

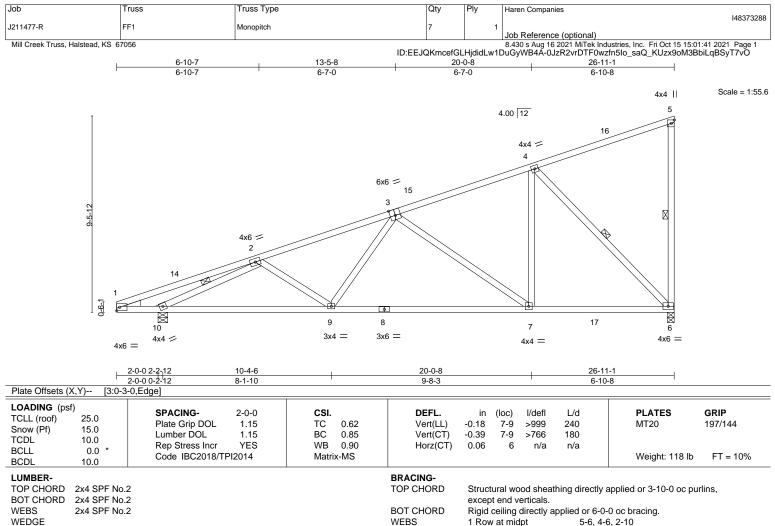
Vert: 3=-221(F) 10=-227(F) 11=-221(F) 12=-221(F) 13=-221(F) 14=-221(F) 15=-221(F) 16=-221(F)

Job	Truss	Truss Type	Qty	Ply	Haren Companies
1044477 D	5540				148373287
J211477-R	FD12	Half Hip Girder	1	1	lab Deference (antional)
					Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:12:14 2021 Page 2
		ID:EEJ	QKmcefGL	.HjdidLw1[DuGyWB4A-5fLEt4e4HJ9yMpnn7Az_iP5By25Hhgz1F9qroEyTD1?

NOTES-

15) Fill all nail holes where hanger is in contact with lumber.

16) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).


LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-50, 4-5=-50, 6-11=-20

Concentrated Loads (lb)

Vert: 9=-207(F) 14=-193(F) 15=-211(F) 16=-207(F) 17=-207(F) 18=-207(F) 20=-207(F) 21=-207(F) 22=-207(F) 23=-295(F) 24=-251(F)

WEDGE Left: 2x4 SPF No.2

REACTIONS. (lb/size) 6=866/0-3-14, 10=1009/0-5-8 Max Horz 10=305(LC 15) Max Uplift 6=-76(LC 16), 10=-84(LC 12)

Max Grav 6=1179(LC 3), 10=1342(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1934/278, 3-15=-1050/221, 4-15=-929/223

- BOT CHORD 9-10=-594/1840, 8-9=-448/1543, 7-8=-448/1543, 7-17=-273/913, 6-17=-273/913
- WEBS 3-9=0/430, 3-7=-781/214, 4-7=-29/801, 4-6=-1292/263, 2-10=-2080/548

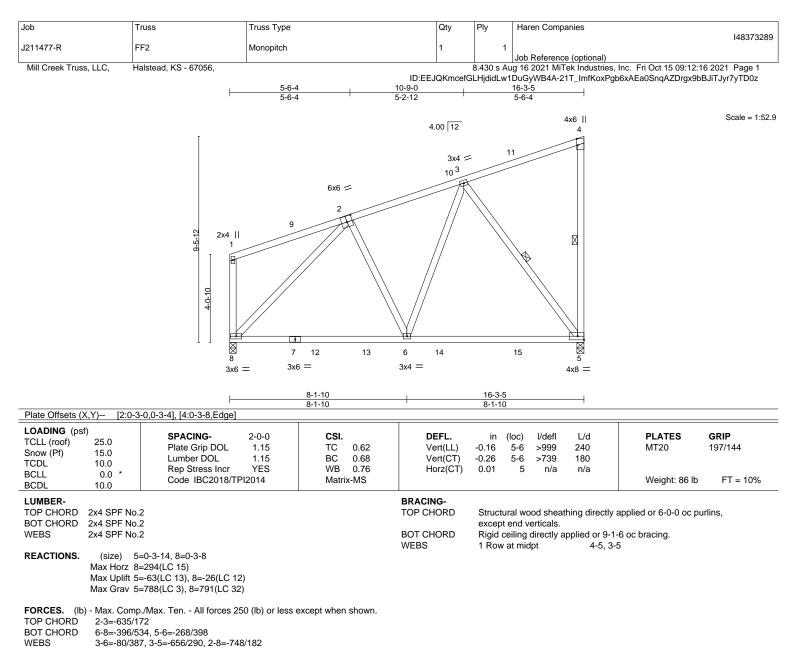
NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 26-9-5 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 76 lb uplift at joint 6 and 84 lb uplift at ioint 10

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

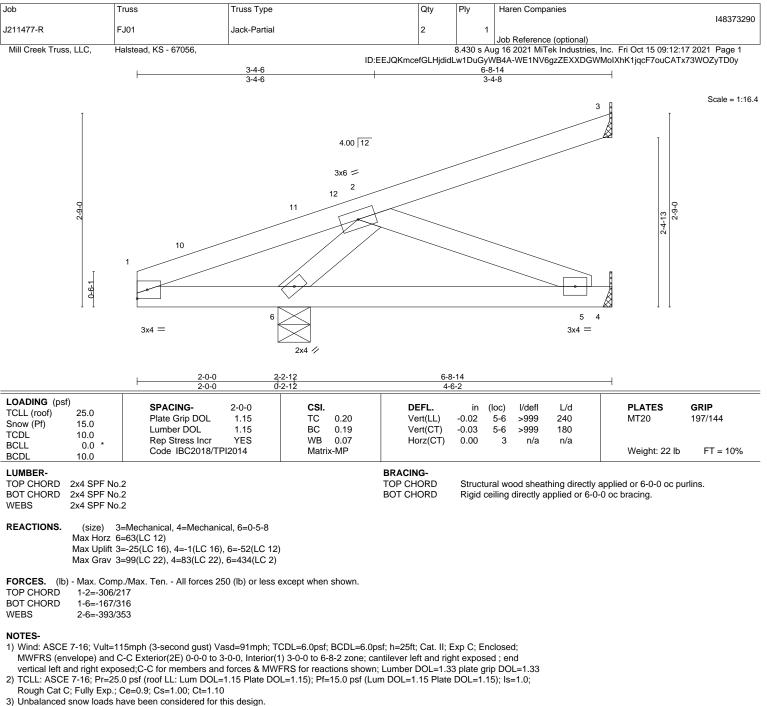
NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 16-1-9 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

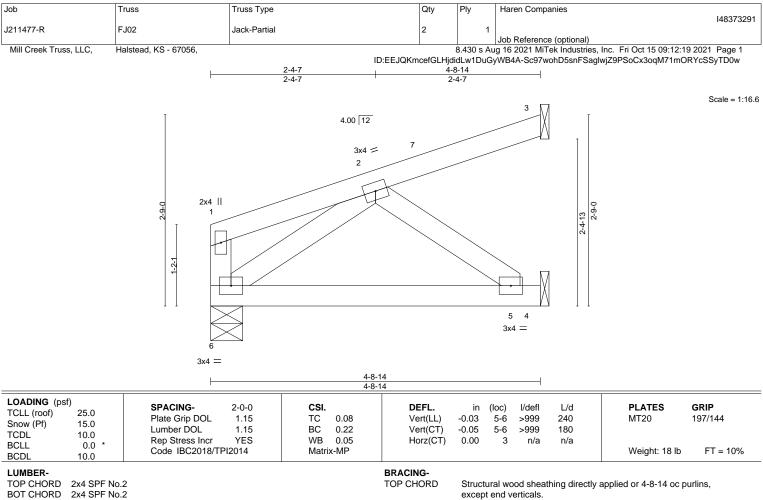

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 63 lb uplift at joint 5 and 26 lb uplift at joint 8.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 3, 1 lb uplift at joint 4 and 52 lb uplift at joint 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 3=Mechanical, 4=Mechanical, 6=0-5-8 (size)

Max Horz 6=48(LC 13) Max Uplift 3=-17(LC 16), 4=-9(LC 16)

2x4 SPF No.2

Max Grav 3=69(LC 22), 4=143(LC 22), 6=212(LC 22)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

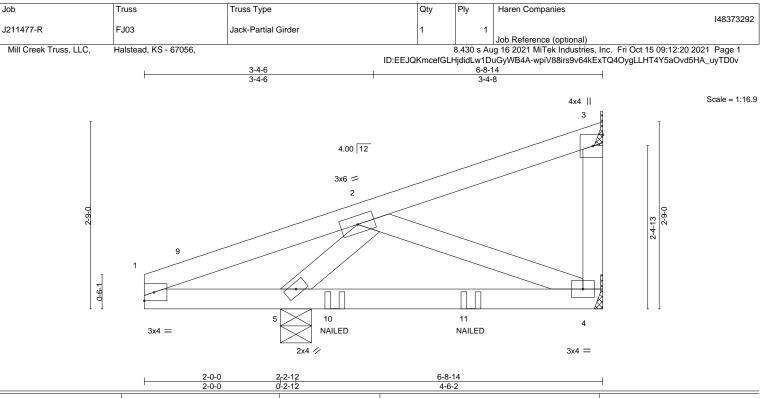
WEBS

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 4-8-2 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 17 lb uplift at joint 3 and 9 lb uplift at ioint 4.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

	2-0-0	0-2-12	4-6-2	I	
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	CSI. TC 0.17 BC 0.51 WB 0.04	Vert(LL) -0.04 4-5 >9 Vert(CT) -0.07 4-5 >	defl L/d 999 240 781 180 n/a n/a	PLATES GRIP MT20 197/144
BCDL 10.0	Code IBC2018/TPI2014	Matrix-MP			Weight: 24 lb FT = 10%
			RPACING-		

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 4=Mechanical, 5=0-5-8 Max Horz 5=79(LC 11) Max Uplift 3=-20(LC 9), 4=-16(LC 12), 5=-92(LC 8) Max Grav 3=99(LC 18), 4=191(LC 2), 5=628(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-5=-333/169

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

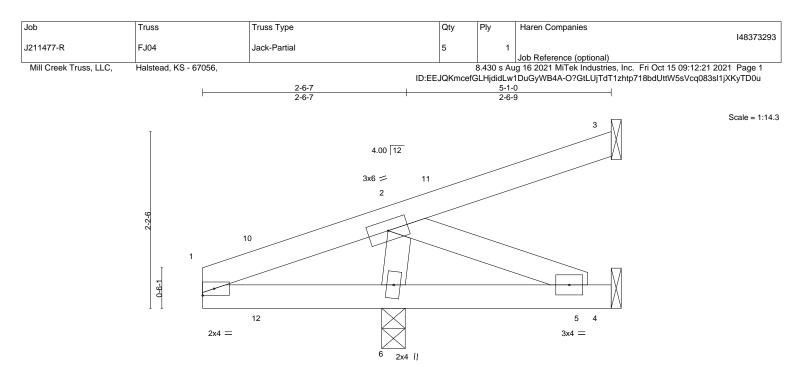
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 20 lb uplift at joint 3, 16 lb uplift at joint 4 and 92 lb uplift at joint 5.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

9) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).


LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-50, 4-6=-20 Concentrated Loads (lb) Vert: 10=-115(B) 11=-115(B)

		2-2-12 2-2-12		2-4-8 0-1-12		5-1 2-8	-				
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TPl2	2-0-0 1.15 1.15 YES 2014	CSI. TC BC WB Matrix	0.17 0.14 0.08 (-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 5-6 5-6 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 16 lb	GRIP 197/144 FT = 10%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No 2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

REACTIONS. 3=Mechanical, 4=Mechanical, 6=0-3-8 (size) Max Horz 6=48(LC 12) Max Uplift 3=-20(LC 16), 4=-41(LC 22), 6=-68(LC 12) Max Grav 3=69(LC 22), 4=18(LC 12), 6=448(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD

BOT CHORD 1-6=-180/286

1-2=-286/227

WEBS 2-6=-364/356

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 5-0-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

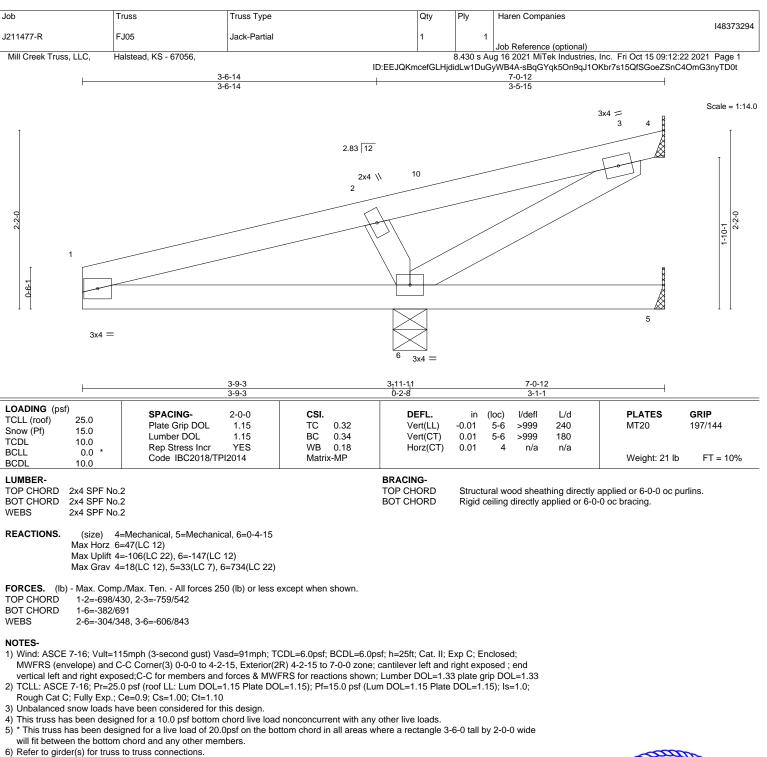
3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

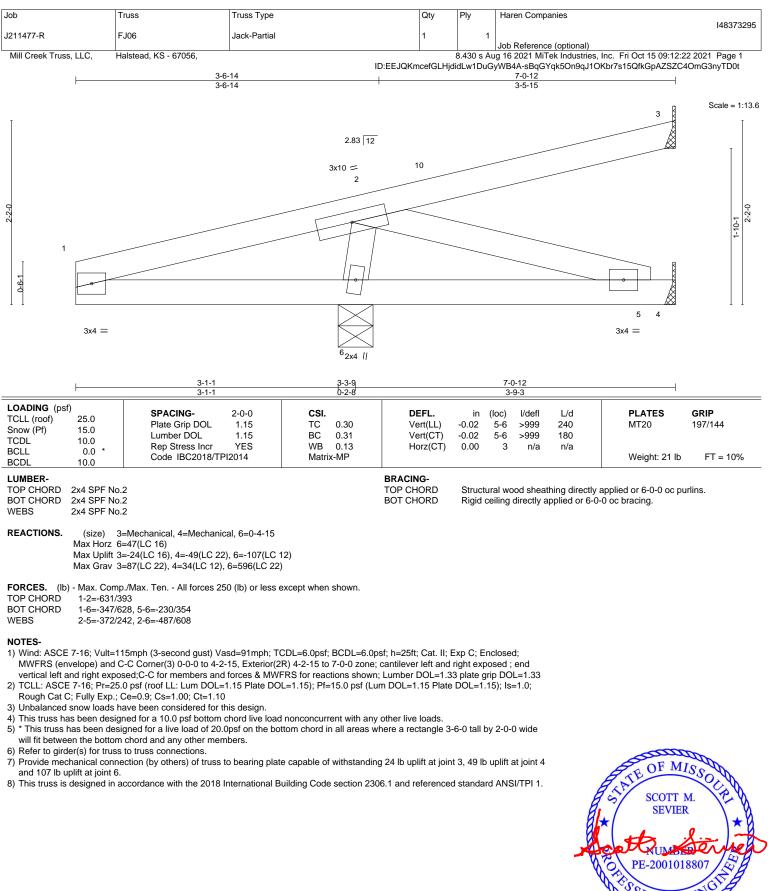
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 20 lb uplift at joint 3, 41 lb uplift at joint 4 and 68 lb uplift at joint 6.


8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 5-1-0 oc purlins.

Rigid ceiling directly applied or 6-0-0 oc bracing.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017



7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 106 lb uplift at joint 4 and 147 lb uplift at joint 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job		Truss	Truss Type	Qty	Ply	Haren Companies	
J211477-R		FX1	Roof Special Girder	1	-		148373296
Mill Creek Truss	s, LLC, H	Halstead, KS - 67056,			8.430 s Au		Inc. Fri Oct 15 09:12:26 2021 Page 1
			3-8-7 9-2-6	ID:EEJQKmcefGLH 12-4-8	HjdidLw1Du 15-10-3		i5qhBoBxbMVtDoV7mo?0kUCYyTD0p
			3-8-7 5-5-15	3-2-2	3-5-10 JS24		
			4.00 12 5	Special Special	LUS	\$24	Scale = 1:74.1
			Special LUS24 Special 14	$6x6 = LUS24^{3x10}$	0 =	3x4	
			1 4x4 = 6x6 =		a ¹⁸ 🖂 ¹⁹		
			1 LUS24 13		A)		
				<u>س // ا</u>	m/ m	1	
						×	
				. //			
				$\parallel \parallel \parallel \parallel \parallel$	//		
					\ 	W	
			10 9 20 21	8 22 7		6	
			3x6 4x6 = HHUS26-2	4x8 = 3x6 HHUS26-2		6x6 =	
			3-8-7 9-2-6	12-4-8	15-10-3		
LOADING (psi	f)	SPACING	3-8-7 5-5-15	3-2-2	3-5-10		PLATES GRIP
TCLL (roof) Snow (Pf)	25.0 15.0	SPACING- Plate Grip DOL	2-0-0 CSI. 1.15 TC 0.25	DEFL. Vert(LL)	-0.02	loc) l/defl L/d 8-9 >999 240	PLATES GRIP MT20 197/144
TCDL BCLL	10.0 0.0 *	Lumber DOL Rep Stress Incr	1.15 BC 0.07 NO WB 0.69	Vert(CT) Horz(CT)	-0.04 0.00	8-9 >999 180 6 n/a n/a	
BCDL	10.0	Code IBC2018/TF	PI2014 Matrix-MS				Weight: 347 lb FT = 10%
LUMBER- TOP CHORD	2x6 SPF 165	50F 1.5E		BRACING- TOP CHORD	Structur	al wood sheathing directly	applied or 6-0-0 oc purlins,
BOT CHORD WEBS	2x8 DF 1950 2x4 SPF No.			BOT CHORD		end verticals, and 2-0-0 oc ailing directly applied or 10-	purlins (6-0-0 max.): 1-2, 3-5. 0-0 oc bracing.
REACTIONS.		10=0-6-2, 6=0-6-2		WEBS	1 Row a		
	Max Horz 1	10=332(LC 9) 10=-178(LC 8), 6=-341(LC	: 9)				
		10=1911(LC 2), 6=1781(LC					
FORCES. (Ib)	, ,	•	50 (lb) or less except when shown. 862/132, 3-4=-660/139, 5-6=-268/65				
BOT CHORD	9-10=-304/	/197, 8-9=-256/619, 7-8=-	206/453, 6-7=-206/453	0			
WEBS	1-9=-179/1	.662, 2-9=-1214/230, 3-8=	=-583/39, 4-8=-143/763, 4-6=-1522/34	5			
		ed together with 10d (0.13					
Bottom chor	ds connected	l as follows: 2x8 - 2 rows s) oc.			
		ws: 2x4 - 1 row at 0-9-0 oc equally applied to all plies,	c. , except if noted as front (F) or back (B) face in the LOAD C	CASE(S) ຣ	section. Ply to	
		n provided to distribute or Is have been considered for	nly loads noted as (F) or (B), unless oth or this design.	nerwise indicated.			
			asd=91mph; TCDL=6.0psf; BCDL=6.0 ed ; end vertical left and right exposed;				
5) TCLL: ASCE	E 7-16; Pr=25		=1.15 Plate DOL=1.15); Pf=15.0 psf (L				America
6) Unbalanced	snow loads h	have been considered for t ge to prevent water pondin	this design.				SE OF MISSO
8) This truss ha	as been desig	ned for a 10.0 psf bottom	chord live load nonconcurrent with an .0psf on the bottom chord in all areas v			(2.0.0.wide	SCOTT M.
will fit betwe	en the bottom	n chord and any other mer	mbers, with BCDL = 10.0psf.			8	SEVIER
at joint 6.			s to bearing plate capable of withstand	,			the south
Í 1.	Ū.		8 International Building Code section 2			- V	PE-2001018807
13) Use Simps	on Strong-Tie	e HHUS26-2 (14-10d Girde	e size or the orientation of the purlin al er, 4-10d Truss) or equivalent at 4-5-5				ATTAL STA
14) Use Simps	on Strong-Tie	e HHUS26-2 (14-10d Gird	left, sloping 0.0 deg. down. er, 4-10d Truss) or equivalent at 11-5-	12 from the left end t	to connec	t truss(es) to	NAL EN
	of bottom chor on Strong-Tie		10d Truss, Single Ply Girder) or equiva	alent spaced at 8-0-0) oc max.	starting at	October 18,2021
			ss(es) to back face of top chord.			-	
Design valid	d for use only with	h MiTek® connectors. This design	N THIS AND INCLUDED MITEK REFERENCE PA n is based only upon parameters shown, and is fe	or an individual building co	omponent, no	ot	
building des	sign. Bracing indi	icated is to prevent buckling of ind	the applicability of design parameters and proper dividual truss web and/or chord members only. A ssible personal injury and property damage. For	Additional temporary and p	permanent bi	all racing	
fabrication,	storage, delivery,	, erection and bracing of trusses a	and truss systems, see ANSI/TPI1 Qua 0 Crain Highway, Suite 203 Waldorf, MD 20601	ality Criteria, DSB-89 and		ling Component	16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Haren Companies
					148373296
J211477-R	FX1	Roof Special Girder	1	2	
				L	Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:12:26 2021 Page 2
		ID:EEJQI	KmcefGLH	ljdidLw1Du	GyWB4A-ly4mOBncS?fFofi5qhBoBxbMVtDoV7mo?0kUCYyTD0p

NOTES-

16) Fill all nail holes where hanger is in contact with lumber.

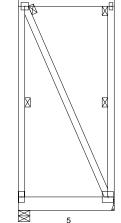
17) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 285 lb down and 21 lb up at 4-10-5, 285 lb down and 21 lb up at 6-10-5, and 261 lb down and 31 lb up at 8-10-5, and 33 lb down and 20 lb up at 11-5-13 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-50, 2-3=-50, 3-5=-50, 6-10=-20

Concentrated Loads (lb)


Vert: 11=-228(B) 12=-221(B) 13=-221(B) 14=-221(B) 15=-203(B) 16=-183(B) 17=-12(F) 18=-183(B) 19=-187(B) 20=-242(F) 22=-106(F)

lob	Truss	Truss Type	Qty	Ply	Haren Companies	148373297
l211477-R	FX2	JACK-CLOSED	1	2	Job Reference (optional)	146373297
Mill Creek Truss, LLC,	Halstead, KS - 67056,		ID:EEJQKmcefGLHic	8.430 s Au	ug 16 2021 MiTek Industries,	Inc. Fri Oct 15 09:12:27 2021 Page 1 IHOOi1k87ZCHaWEjcxEgU1k_yTD0o
		⊢	4-2-14 4-2-14			
		4.00				Scale = 1:60.2
		4x4 ==				
		4 3x6 Ⅱ ⊢	4-2-14 4-2-14			
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TF	5-0-0 CSI. 1.15 TC 0.13 1.15 BC 0.04 NO WB 0.08 Pl2014 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)		loc) I/defl L/d 3-4 >999 240 3-4 >999 180 3 n/a n/a	PLATES GRIP MT20 197/144 Weight: 106 lb FT = 10%
BOT CHORD 2x8 DF 1 WEBS 2x4 SPF REACTIONS. (size) Max Hor Max Upl	4=0-6-4, 3=Mechanical z 4=93(LC 12) ift 3=-259(LC 12)		BRACING- TOP CHORD BOT CHORD WEBS	(Switche	c purlins, except end vertic ed from sheeted: Spacing s siling directly applied or 10- at midpt 1-4, 2-	> 2-10-0). 0-0 oc bracing.
FORCES. (Ib) - Max. C	55/0, 2-3=-355/353) 50 (Ib) or less except when shown.				
Top chords connected Bottom chords connect Webs connected as fc 2) All loads are consider ply connections have l 3) Wind: ASCE 7-16; Vul MWFRS (envelope) al members and forces & 4) TCLL: ASCE 7-16; Pri Rough Cat C; Fully E5 5) Unbalanced snow load 6) This truss has been di 7) * This truss has been di 7) * This truss has been di 7) * Refer to girder(s) for f 9) Provide mechanical co	sted as follows: 2x8 - 2 rows s follows: 2x4 - 1 row at 0-9-0 oc ed equally applied to all plies, been provided to distribute on t=115mph (3-second gust) Va nd C-C Exterior(2E) 0-1-12 to k MWFRS for reactions shows =25.0 psf (roof LL: Lum DOL= p; Ce=0.9; Cs=1.00; Ct=1.10 ds have been considered for t asigned for a 10.0 psf bottom designed for a 10.0 psf bottom designed for a 10.0 psf bottom designed for a 10.0 psf bottom com chord and any other mer russ to truss connections.	-0 oc, 2x6 - 2 rows staggered at 0-9 taggered at 0-9-0 oc. - except if noted as front (F) or back (ly loads noted as (F) or (B), unless c asd=91mph; TCDL=6.0psf; BCDL=6. 3-1-12, Interior(1) 3-1-12 to 4-1-2 zc n; Lumber DOL=1.33 plate grip DOL: 1.15 Plate DOL=1.15); Pf=15.0 psf () his design. chord live load nonconcurrent with a 0psf on the bottom chord in all areas	B) face in the LOAD (therwise indicated. 0psf; h=25ft; Cat. II; F one; cantilever left and =1.33 Lum DOL=1.15 Plate ny other live loads. where a rectangle 3- ding 259 lb uplift at joi	Exp C; End d right exp DOL=1.1! -6-0 tall by nt 3. ed standar	closed; osed ;C-C for 5); Is=1.0; 2-0-0 wide rd ANSI/TPI	STATE OF MISSOL
1.	esentation does not depict the	e size or the orientation of the purlin a	along the top and/or b	oottom cho	ira.	NUMBER PE-2001018807

16023 Swingley Ridge Rd Chesterfield, MO 63017

)	Truss	Truss Type		Qty	Ply	Haren Companies
				1		148373298
11477-R	FX3	FLAT		1	2	
					Z	Job Reference (optional)
lill Creek Truss, LLC,	Halstead, KS - 67056,				8.430 s Au	ug 16 2021 MiTek Industries, Inc. Fri Oct 15 09:12:28 2021 Page 1
			ID:EEJQK	ncefGLHjo	didLw1DuG	GyWB4A-hLBXptos_dvz1ysUx6DGHMgkAhwszB25TKDbHQyTD0n
			4-3-13 4-3-13			
			4-3-13			
						Scale = 1:51.8
			1	2		
		1	$4x4 = \square$	2x4		
			48	MA		

4_{3x6} || 5 6x6 = 3

4-3-13

BRACING-

TOP CHORD

BOT CHORD

WEBS

2-0-0 oc purlins, except end verticals

1 Row at midpt

(Switched from sheeted: Spacing > 2-10-0).

Rigid ceiling directly applied or 10-0-0 oc bracing.

1-4, 2-3

4-3	-13				
CSI. TC 0.11 BC 0.03 WB 0.00 Matrix-MP	Vert(CT) -0.	00 3-4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 100 lb
	CSI. TC 0.11 BC 0.03 WB 0.00	TC 0.11 Vert(LL) -0. BC 0.03 Vert(CT) -0. WB 0.00 Horz(CT) -0.	CSI. DEFL. in (loc) TC 0.11 Vert(LL) -0.00 3-4 BC 0.03 Vert(CT) -0.00 3-4 WB 0.00 Horz(CT) -0.00 3	CSI. DEFL. in (loc) I/defl TC 0.11 Vert(LL) -0.00 3-4 >999 BC 0.03 Vert(CT) -0.00 3-4 >999 WB 0.00 Horz(CT) -0.00 3 n/a	CSI. DEFL. in (loc) l/defl L/d TC 0.11 Vert(LL) -0.00 3-4 >999 240 BC 0.03 Vert(CT) -0.00 3-4 >999 180 WB 0.00 Horz(CT) -0.00 3 n/a n/a

9-7-12

LUMBER-

 TOP CHORD
 2x6 SPF 1650F 1.5E

 BOT CHORD
 2x8 DF 1950F 1.7E

 WEBS
 2x4 SPF No.2

- REACTIONS. (size) 4=0-6-4, 3=Mechanical Max Uplift 4=-18(LC 10), 3=-18(LC 10) Max Grav 4=420(LC 3), 3=390(LC 3)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown. TOP CHORD 1-4=-282/363, 2-3=-282/363

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

- Top chords connected as follows: 2x4 1 row at 0-9-0 oc, 2x6 2 rows staggered at 0-9-0 oc.
- Bottom chords connected as follows: 2x8 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

4) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

5) Provide adequate drainage to prevent water ponding.

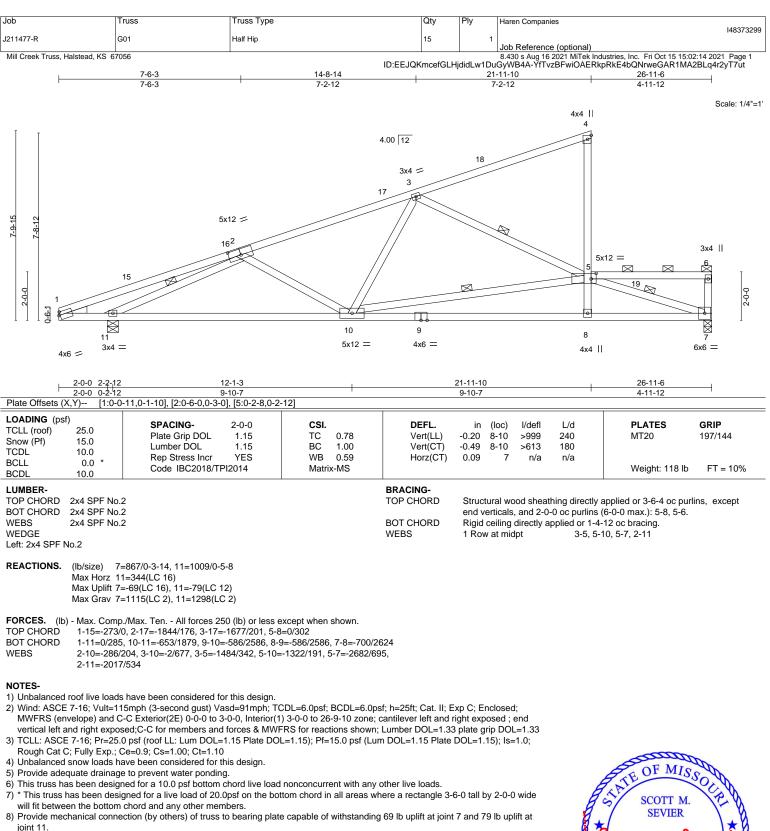
6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

8) Refer to girder(s) for truss to truss connections.

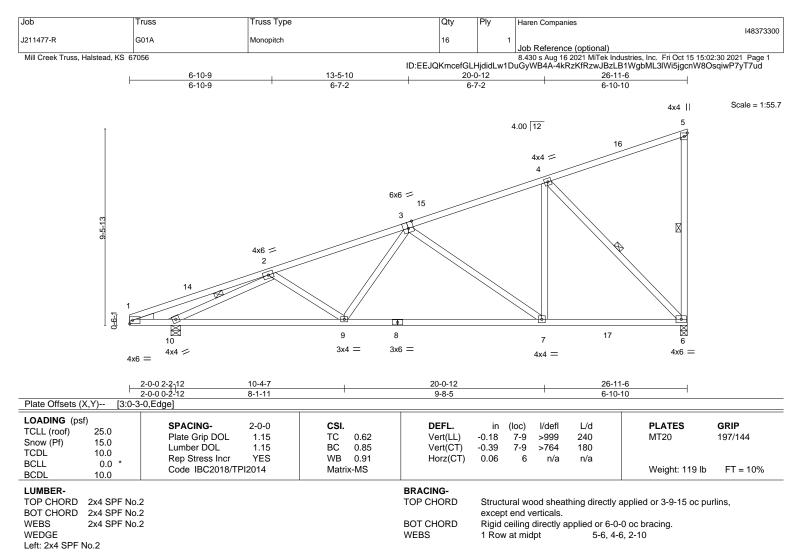
9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 4 and 18 lb uplift at joint 3.

10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.


11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

GRIP 197/144

FT = 10%



9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

SCOTT M. SEVIER PE-2001018807

October 18,2021

NITEK° 16023 Swingley Ridge Rd Chesterfield, MO 63017

REACTIONS. (lb/size) 6=867/0-3-14, 10=1010/0-5-8 Max Horz 10=305(LC 15) Max Uplift 6=-76(LC 16), 10=-84(LC 12) Max Grav 6=1180(LC 3), 10=1344(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1937/278, 3-15=-1051/222, 4-15=-931/223

- BOT CHORD 9-10=-595/1844, 8-9=-448/1545, 7-8=-448/1545, 7-17=-273/914, 6-17=-273/914
- WEBS 3-9=0/431, 3-7=-782/214, 4-7=-29/802, 4-6=-1293/264, 2-10=-2083/549

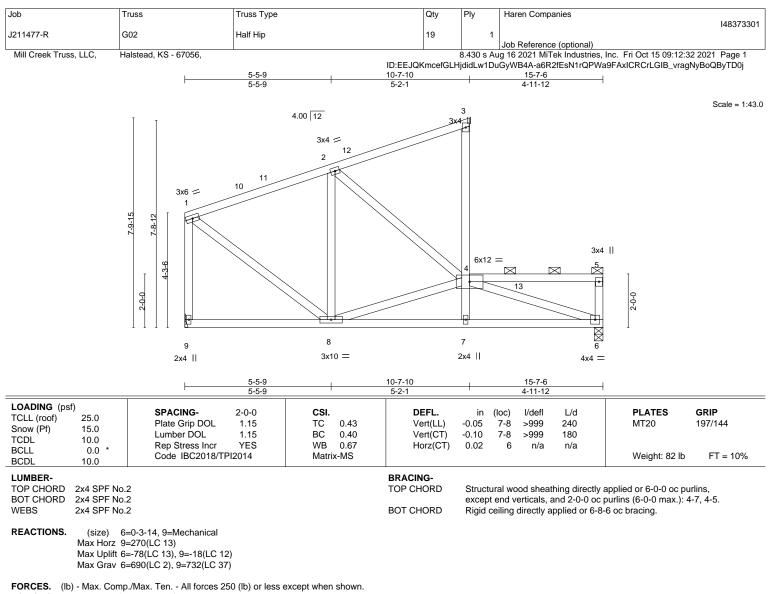
NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 26-9-10 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 76 lb uplift at joint 6 and 84 lb uplift at joint 10.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

1-2=-559/72, 1-9=-685/147 TOP CHORD

BOT CHORD 8-9=-498/276, 7-8=-681/1341, 6-7=-774/1400

WEBS 2-4=-597/342, 4-8=-932/254, 4-6=-1401/767, 1-8=-73/572

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 15-5-10 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

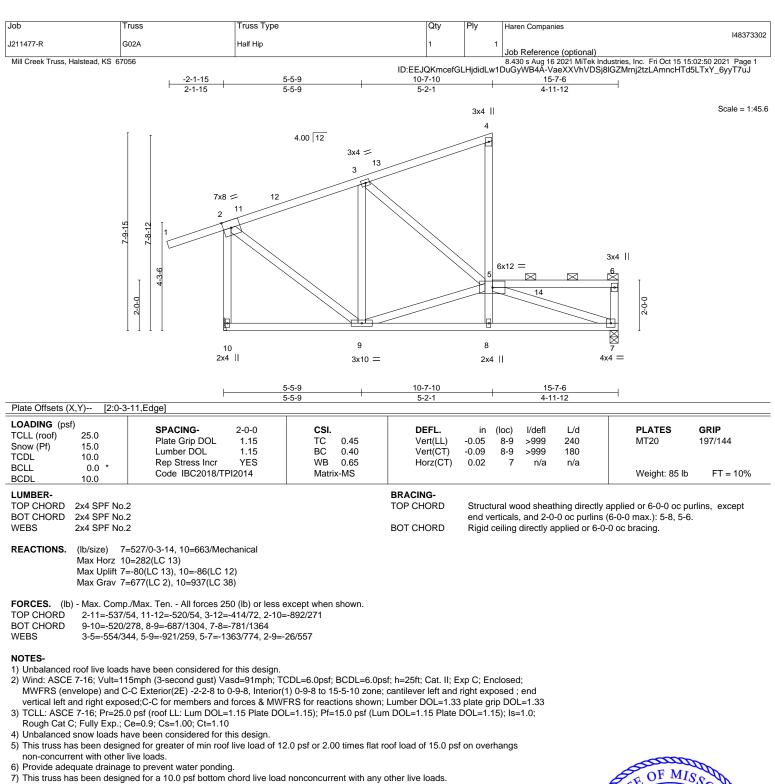
Unbalanced snow loads have been considered for this design.

5) Provide adequate drainage to prevent water ponding.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

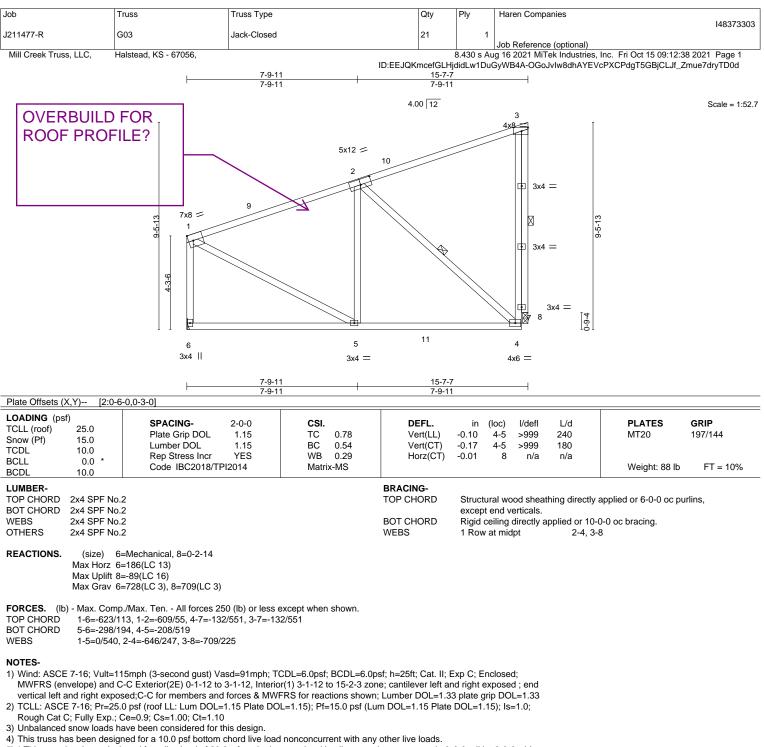
8) Refer to girder(s) for truss to truss connections


9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 78 lb uplift at joint 6 and 18 lb uplift at joint 9.

10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017



- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 80 lb uplift at joint 7 and 86 lb uplift at ioint 10
- 11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

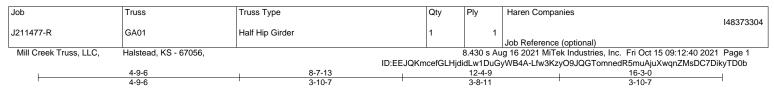
OF MISS FATE SCOTT M. SEVIER UMBER ROFFESSIONAL PE-2001018807

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

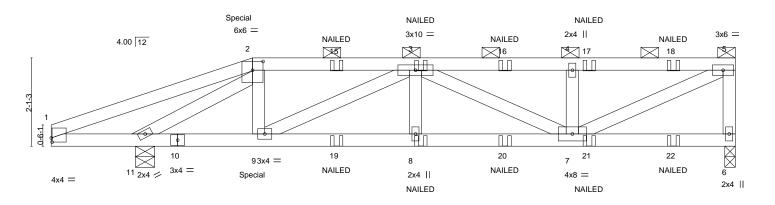
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

7) Bearing at joint(s) 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.


8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 8.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 89 lb uplift at joint 8.

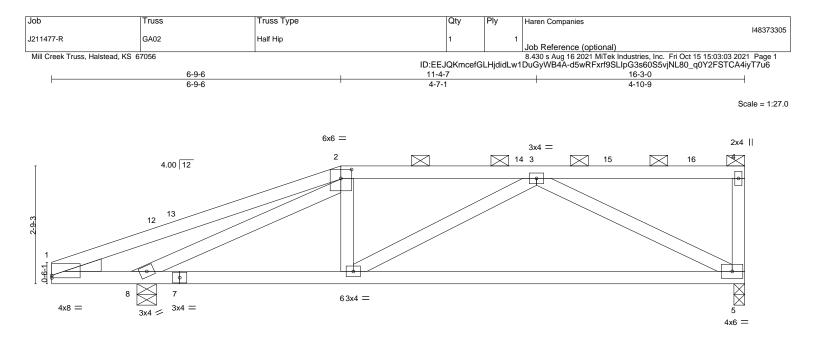

10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1

Scale = 1:27.4

	2-2-12 4-9-6 0-2-12 2-6-10		8-7-13 3-10-7			12-4-9 3-8-11		<u>16-3-0</u> 3-10-7	
Plate Offsets (X,Y) [1:	0-0-4,0-1-3], [2:0-3-0,0-2-8								
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/	2-0-0 1.15 1.15 NO IPI2014	BC	0.32 0.41 0.30 MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.05 8 -0.07 7-8 0.02 6	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 61 lb	GRIP 197/144 FT = 10%
LUMBER- TOP CHORD 2x4 SPF 1 BOT CHORD 2x4 SPF 1 WEBS 2x4 SPF 1 REACTIONS. (size) Max Horz Max Uplif	No.2 No.2 6=0-3-0, 11=0-5-8 : 11=59(LC 11) t 6=-98(LC 9), 11=-141(LC		-		BRACING- TOP CHORD BOT CHORD	except end	verticals, and 2-0-0 of directly applied or 1	lly applied or 10-0-0 oc oc purlins (5-3-9 max.): 0-0-0 oc bracing, Exco	2-5.
FORCES. (Ib) - Max. Co TOP CHORD 1-2=-60/ BOT CHORD 9-11=-10	✓ 6=752(LC 32), 11=768(L mp./Max. Ten All forces /274, 2-3=-739/147, 3-4=-1 68/719, 8-9=-225/1304, 7-1 82/189, 2-9=-41/257, 3-9=:	250 (lb) or less 142/167, 4-5=-1 3=-225/1304	142/167, 5-6=	-672/102					
 TCLL: ASCE 7-16; Pr= Rough Cat C; Fully Exp Unbalanced snow load Provide adequate drain This truss has been deated the structure of the struc	=115mph (3-second gust) intilever left and right expo 25.0 psf (roof LL: Lum DO 0.; Ce=0.9; Cs=1.00; Ct=1. s have been considered fo age to prevent water pond signed for a 10.0 psf bottor esigned for a live load of 2 orn chord and any other m innection (by others) of trus n accordance with the 201 sentation does not depict t 10d (0.148"x3") or 3-12d (nnection device(s) shall be d 18 lb down and 126 lb u hers.	Vasd=91mph; T sed; end vertica =1.15 Plate DC 10 t this design. ing. n chord live load 0.0psf on the bo embers. s to bearing plat 8 International E he size or the or 0.148"x3.25") to provided suffici p at 4-9-6 on bo	al left and right L=1.15); Pf=1 d nonconcurrent tom chord in the capable of v suilding Code s ientation of the e-nails per ND ent to support totom chord. T	exposed; L 5.0 psf (Lur nt with any all areas wh vithstanding section 230 e purlin alor DS guidlines concentrate The design/s	Lumber DOL=1.33 m DOL=1.15 Plate other live loads. here a rectangle 3- g 98 lb uplift at joint 6.1 and referenced ng the top and/or b see load(s) 71 lb do selection of such c	plate grip DO DOL=1.15); I 6-0 tall by 2-0 6 and 141 lb I standard AN ottom chord. wn and 54 lb	L=1.33 s=1.0; -0 wide uplift at SI/TPI 1. up at	STATE OF M SCOTT SEVIE	R AL
LOAD CASE(S) Standar 1) Dead + Snow (balance Uniform Loads (plf)	d							SSIONAL	ENGINE

Continued on page 2

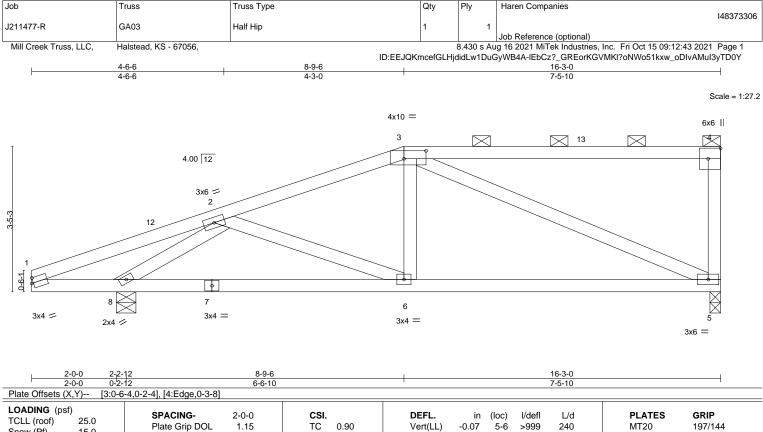
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

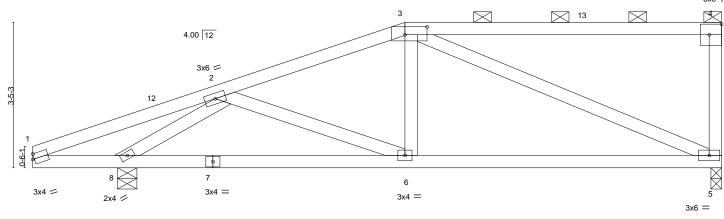

October 18,2021

Job	Truss	Truss Type	Qty	Ply	Haren Companies	
					148373304	
J211477-R	GA01	Half Hip Girder	1	1		
					Job Reference (optional)	
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:12:41 2021 Page 2	
		ID:EEJQ	ID:EEJQKmcefGLHjdidLw1DuGyWB4A-prURYJz0wcY75yLzCKyKI5iuewG3W0c?SstnEAyTD0a			

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 2=-35(B) 9=57(B) 8=25(B) 3=-17(B) 15=-17(B) 16=-18(B) 19=25(B) 20=4(B) 21=-53(B) 22=-53(B)

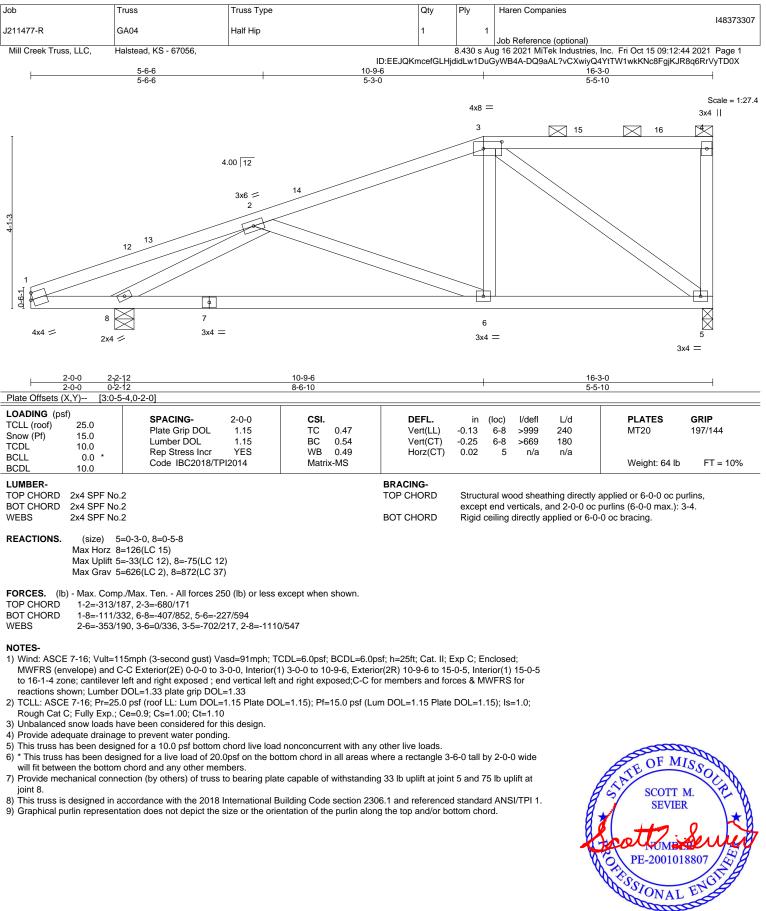



<u>2-0-0</u> 2-2-1 2-0-0 0-2-1 Plate Offsets (X,Y) [1:Edg				16-3-0 9-5-10		
Plate Offsets (X,Y) [1:Edg LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL TCDL 10.0 BCLL 0.0 * BCDL 10.0 10.0 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.60 BC 0.69 WB 0.54 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl -0.19 5-6 >889 -0.40 5-6 >432 0.02 5 n/a	L/d 240 180 n/a	PLATES GRIP MT20 197/144 Weight: 61 lb FT = 10%
LUMBER- TOP CHORD 2x4 SPF No.: BOT CHORD 2x4 SPF No.: WEBS 2x4 SPF No.: WEDGE Left: 2x4 SPF No.2	2		BRACING- TOP CHORD BOT CHORD		, and 2-0-0 oc	applied or 10-0-0 oc purlins, purlins (6-0-0 max.): 2-4. -0 oc bracing.
Max Horz 8= Max Uplift 5=	=488/0-3-0, 8=639/0-5-8 =81(LC 15) =-33(LC 13), 8=-77(LC 12) =667(LC 36), 8=822(LC 2)					
TOP CHORD 2-14=-872/2 BOT CHORD 7-8=-248/86	./Max. Ten All forces 250 (lb) or less 210, 3-14=-872/210 56, 6-7=-248/866, 5-6=-270/845 337, 3-5=-892/289	except when shown.				
 2) Wind: ASCE 7-16; Vult=11 MWFRS (envelope) and C 16-1-4 zone; cantilever left reactions shown; Lumber I 3) TCLL: ASCE 7-16; Pr=25. Rough Cat C; Fully Exp.; C 4) Unbalanced snow loads ha 5) Provide adequate drainage 6) This truss has been desigr 7) * This truss has been design will fit between the bottom 8) Provide mechanical conne joint 8. 9) This truss is designed in ad 	ave been considered for this design.	 3-0-0 to 6-9-6, Exterior d right exposed;C-C for L=1.15); Pf=15.0 psf (L nonconcurrent with an ittom chord in all areas view capable of withstandii suilding Code section 23 	or(2R) 6-9-6 to 11-0- members and forces um DOL=1.15 Plate by other live loads. where a rectangle 3- ng 33 lb uplift at joint 306.1 and referenced	5, Interior(1) 11-0-5 to s & MWFRS for DOL=1.15); Is=1.0; 6-0 tall by 2-0-0 wide 5 and 77 lb uplift at I standard ANSI/TPI 1.		SCOTT M. SEVIER NUMBER PE-2001018807

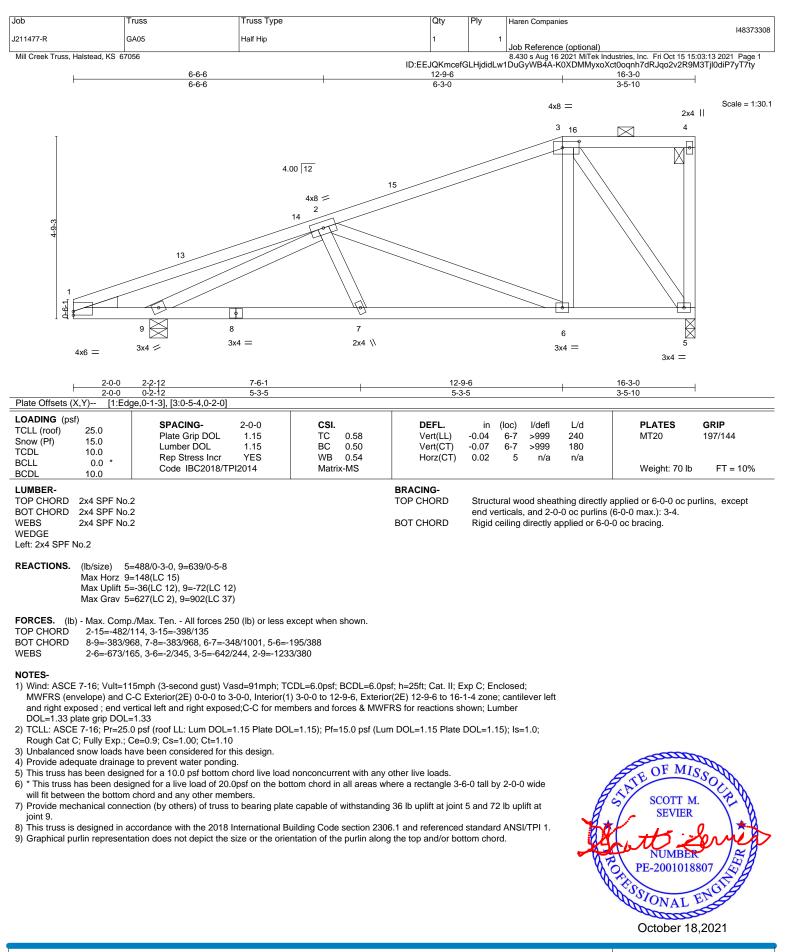
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

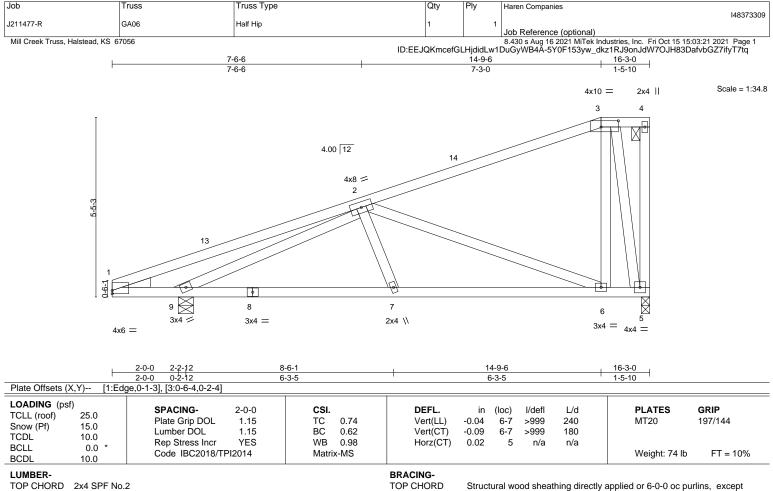
16023 Swingley Ridge Rd Chesterfield, MO 63017

October 18,2021



2-0-0 2-2-12 8-9-6 2-0-0 0-2-12 6-6-10			16·3·0 7-5-10					
	6-6-10 6-4,0-2-4], [4:Edge,0-3-8]					5-10		
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.90 BC 0.45 WB 0.80 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.07 5-6 -0.14 5-6 0.02 5		L/d 240 180 n/a	PLATES MT20 Weight: 61 lb	GRIP 197/144 FT = 10%
LUMBER- TOP CHORD2x4 SPF No.BOT CHORD2x4 SPF No.WEBS2x4 SPF No.	2		BRACING- TOP CHORD BOT CHORD		erticals, an	d 2-0-0 oc pu	plied or 6-0-0 oc pr rlins (3-1-0 max.): : oc bracing.	
Max Horz 8 Max Uplift 5	=0-3-0, 8=0-5-8 =103(LC 15) =-31(LC 12), 8=-78(LC 12) =624(LC 2), 8=828(LC 37)							
TOP CHORD 1-2=-272/2 BOT CHORD 1-8=-192/2	b./Max. Ten All forces 250 (lb) or less 59, 2-3=-843/211, 4-5=-300/126 88, 6-8=-353/727, 5-6=-259/765 3-5=-757/224, 2-8=-1073/478	except when shown.						
 Wind: ASCE 7-16; Vult=1 MWFRS (envelope) and C 16-1-4 zone; cantilever lef reactions shown; Lumber TCLL: ASCE 7-16; Pr=25. Rough Cat C; Fully Exp.; (4) Unbalanced snow loads h Provide adequate drainag This truss has been desig * This truss has been desig * This truss has been desig mil fit between the bottom Provide mechanical connergiont 8. 	s have been considered for this design. 15mph (3-second gust) Vasd=91mph; T -C Exterior(2E) 0-0-0 to 3-0-0, Interior(t and right exposed ; end vertical left ar DOL=1.33 plate grip DOL=1.33 0 psf (roof LL: Lum DOL=1.15 Plate DO Ce=0.9; Cs=1.00; Ct=1.10 ave been considered for this design. e to prevent water ponding. ned for a 10.0 psf bottom chord live loa gned for a live load of 20.0psf on the bu- chord and any other members. action (by others) of truss to bearing pla- ccordance with the 2018 International F	 3-0-0 to 8-9-6, Exterior d right exposed;C-C for r Pf=15.0 psf (Lu nonconcurrent with any ttom chord in all areas w capable of withstandin 	r(2R) 8-9-6 to 13-0 members and force im DOL=1.15 Plate other live loads. where a rectangle 3	-5, Interior(1) 13 ss & MWFRS for DOL=1.15); Is= -6-0 tall by 2-0-0	-0-5 to r =1.0;) wide		STATE OF M	ISSOURI





October 18,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

16023 Swingley Ridge Rd Chesterfield, MO 63017

BOT CHORD

 TOP CHORD
 2x4 SPF No.2

 BOT CHORD
 2x4 SPF No.2

 WEBS
 2x4 SPF No.2

 WEDGE
 Left: 2x4 SPF No.2

REACTIONS. (lb/size) 5=489/0-3-0, 9=639/0-5-8 Max Horz 9=171(LC 15)

Max Uplift 5=-38(LC 12), 9=-70(LC 12) Max Grav 5=640(LC 37), 9=918(LC 37)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

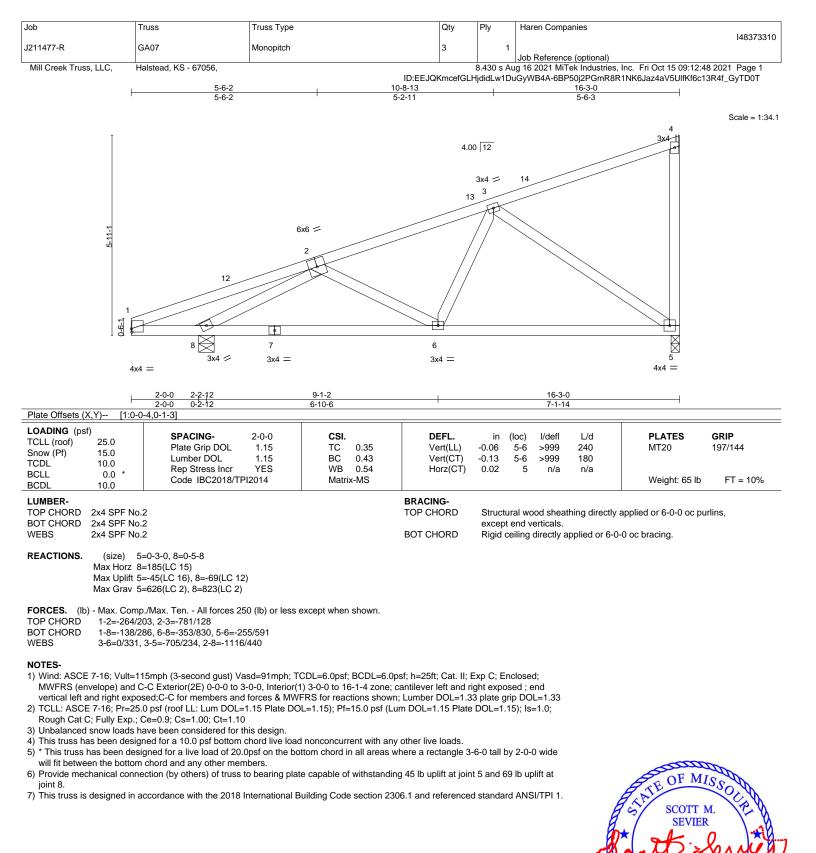
 TOP CHORD
 2-14=-300/76

 BOT CHORD
 8-9=-363/997, 7-8=-363/997, 6-7=-329/1035

WEBS 2-7=0/282, 2-6=-905/219, 3-6=-34/441, 3-5=-793/274, 2-9=-1188/366

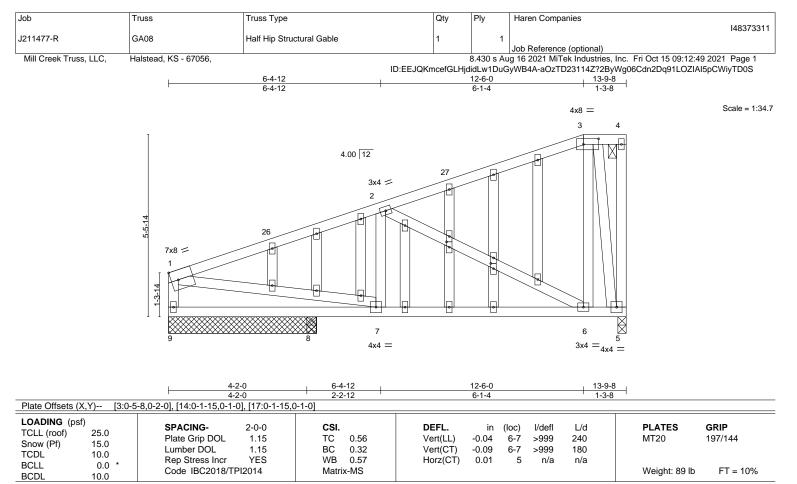
NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 14-9-6, Exterior(2E) 14-9-6 to 16-1-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33


- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 38 lb uplift at joint 5 and 70 lb uplift at joint 9.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-4.

Rigid ceiling directly applied or 6-0-0 oc bracing.


NUMBER

PE-2001018807

October 18,2021

SSIONAL

ROFE

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

 TOP CHORD
 2x4 SPF No.2

 BOT CHORD
 2x4 SPF No.2

 WEBS
 2x4 SPF No.2

 OTHERS
 2x4 SPF No.2

Structural wood sheathing directly applied or 5-6-12 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-4. Rigid ceiling directly applied or 9-8-12 oc bracing.

REACTIONS. (size) 5=0-3-0, 9=4-5-8, 8=0-3-8 Max Horz 9=171(LC 15) Max Uplift 5=-46(LC 12), 9=-38(LC 12) Max Grav 5=593(LC 37), 9=608(LC 37), 8=128(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-862/211, 1-9=-579/188

BOT CHORD 8-9=-355/286, 7-8=-355/286, 6-7=-366/751

WEBS 2-6=-678/277, 3-6=-72/440, 3-5=-720/278, 1-7=-103/638

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 12-6-0, Exterior(2E) 12-6-0 to 13-7-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

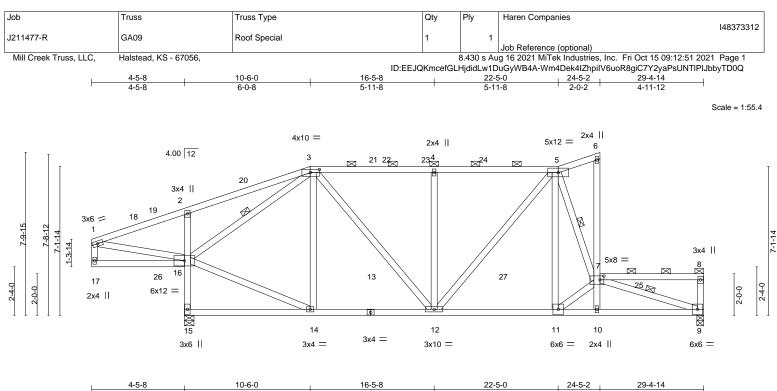
5) Provide adequate drainage to prevent water ponding.

6) All plates are 2x4 MT20 unless otherwise indicated.

7) Gable studs spaced at 1-4-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 46 lb uplift at joint 5 and 38 lb uplift at joint 9.

11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

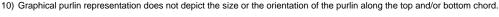
12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

	4-5-8	6-0-8	5-11-8	3	5-11-8	2-0-2	4-11-12	
Plate Offsets (X,Y) [3:0-5	-4,0-1-12], [7:0-2-4,0-2-4	1]						
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/T	2-0-0 1.15 1.15 YES Pl2014	CSI. TC 0.58 BC 0.79 WB 0.47 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl -0.16 11-12 >999 -0.27 11-12 >999 0.05 9 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 161 lb	GRIP 197/144 FT = 10%
LUMBER- TOP CHORD 2x4 SPF No. BOT CHORD 2x4 SPF No. WEBS 2x4 SPF No.	2			BRACING- TOP CHORD BOT CHORD	Structural wood shea except end verticals, 7-8. Rigid ceiling directly a	and 2-0-0 oc pi	urlins (5-1-9 max.): 3-	

WEBS

1 Row at midpt

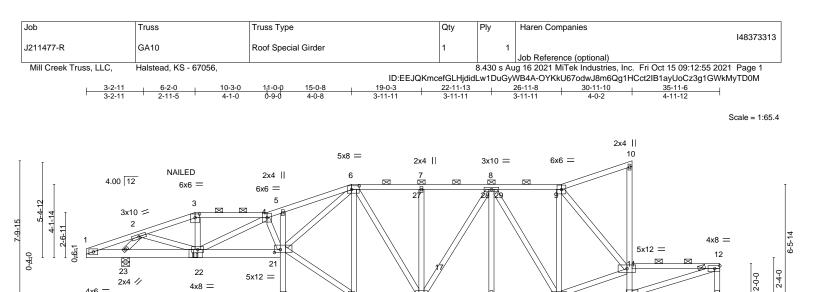
REACTIONS. (size) 9=0-3-14, 15=0-5-8 Max Horz 15=246(LC 16) Max Uplift 9=-60(LC 16), 15=-155(LC 12) Max Grav 9=1172(LC 50), 15=1632(LC 3)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 1-2=-301/374, 2-3=-229/358, 3-4=-1084/168, 4-5=-1084/168
- BOT CHORD 15-16=-1540/627, 2-16=-504/199, 14-15=-428/228, 12-14=-378/721, 11-12=-295/857, 10-11=-538/2609, 9-10=-615/2696
- WEBS 14-16=-21/764, 3-16=-1242/355, 3-12=-91/556, 4-12=-559/188, 5-12=-132/346, 5-11=-220/1749, 5-7=-2372/402, 7-11=-2349/409, 7-9=-2744/609, 1-16=-360/364

NOTES-

1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 10-6-0, Exterior(2R) 10-6-0 to 13-6-0, Interior(1) 13-6-0 to 29-3-2 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 60 lb uplift at joint 9 and 155 lb uplift at joint 15.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

3-16, 5-7, 7-9

18

4x8 =

3x6 =

16

2x4 ||

15

3x10 =

2-0-0 2-2-12	6-2-0 11-0-0 3-11-4 4-10-0	<u>11-2-12</u> 15-0-8 0-2-12 3-9-12	19-0-3 3-11-11	22-11-13	26-11-8 3-11-11	<u>30-11-10</u> 4-0-2	35-11-6	
	-0,0-2-8], [6:0-5-4,0-2-8], [21							
OADING (psf) CLL (roof) 25.0 Snow (Pf) 15.0 CDL 10.0 SCLL 0.0 * SCDL 10.0	Plate Grip DOL	-0-0 CSI. 1.15 TC 1.15 BC NO WB 014 Matrix	0.71 0.78 0.88 x-MS	Vert(LL) -0.14	(loc) l/defl 14-15 >999 14-15 >999 20 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 198 lb	GRIP 197/144 FT = 10%
UMBER- OP CHORD 2x4 SPF No. 30T CHORD 2x4 SPF No. 1-21: 2x6 SP VEBS 2x4 SPF No.	2 *Except* PF 1650F 1.5E		TOP	exce 11-14	pt end verticals, 4, 11-12.	0 7 1	pplied or 6-0-0 oc purl Irlins (2-11-10 max.): oc bracing.	,

Max Uplift 13=-25(LC 74), 20=-152(LC 12), 23=-96(LC 8) Max Grav 13=1001(LC 2), 20=1987(LC 2), 23=527(LC 48) FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

4x8 =

ð

20

3x4 =

19

3x4 =

LTHJA26

4x6 =

TOP CHORD 2-3=-263/243, 4-5=-171/1095, 5-6=-146/1105, 6-7=-702/49, 7-8=-702/49, 8-9=-878/36, 11-14=-829/100. 11-12=-2652/125. 12-13=-930/52 BOT CHORD 22-23=-332/162, 21-22=-896/36, 20-21=-1952/173, 5-21=-316/60, 18-19=-116/255,

16-18=-115/902, 15-16=-115/902, 14-15=-81/2576 WEBS 3-22=-307/81, 4-22=-190/1031, 4-21=-404/77, 19-21=-138/322, 6-21=-1741/67, 6-18=-29/868, 7-18=-342/68, 8-18=-390/4, 9-15=-4/789, 9-11=-1338/85, 11-15=-1826/79, 12-14=-118/2692, 2-23=-483/117

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 7) will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 13, 152 lb uplift at joint 20 and 96 lb uplift at joint 23.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 11) Use Simpson Strong-Tie LTHJA26 (LTHJA26 on 1 ply, Right Hand Hip) or equivalent at 6-2-6 from the left end to connect truss(es) to back face of bottom chord, skewed 0.0 deg.to the right, sloping 0.0 deg. down.
- 12) Fill all nail holes where hanger is in contact with lumber.
- "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines. 13)
- 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

COAR 64SE(S)geStandard

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

X

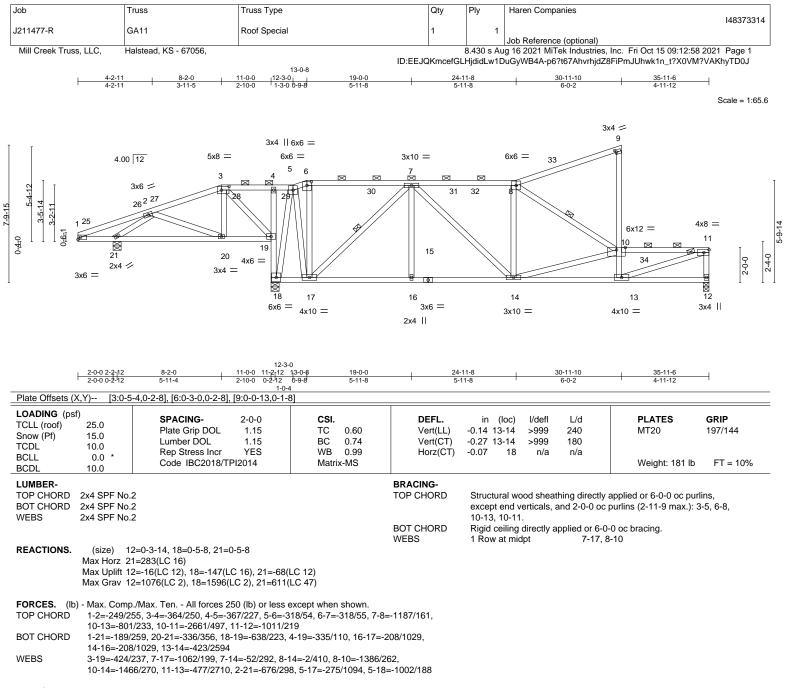
13

3x4 ||

14

5x8 =

Job	Truss	Truss Type	Qty	Ply	Haren Companies
					148373313
J211477-R	GA10	Roof Special Girder	1	1	
					Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:12:55 2021 Page 2
		1	D:EEJQKmcefGLHjdic	Lw1DuGy\	VB4A-OYKkU67odwJ8m6Qg1HCct2IB1ayUoCz3g1GWkMyTD0M


LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-50, 3-4=-50, 4-6=-50, 6-9=-50, 9-10=-50, 11-12=-50, 21-24=-20, 13-20=-20

Concentrated Loads (lb) Vert: 3=-89(B) 22=-141(B)

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-7-2, Interior(1) 3-7-2 to 8-2-0, Exterior(2R) 8-2-0 to 11-9-2, Interior(1) 11-9-2 to 13-0-8, Exterior(2R) 13-0-8 to 16-7-10, Interior(1) 16-7-10 to 35-9-10 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

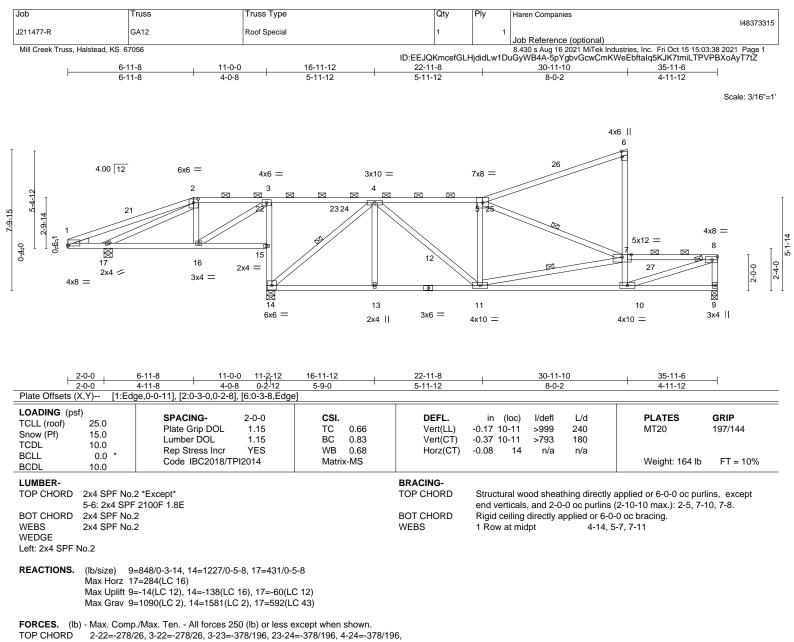
3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) Provide adequate drainage to prevent water ponding.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 16 lb uplift at joint 12, 147 lb uplift at joint 18 and 68 lb uplift at joint 21.

9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

16023 Swingley Ridge Rd Chesterfield, MO 63017

- 4-25=-1397/153, 5-25=-1397/153, 7-10=-792/243, 6-7=-300/157, 7-27=-2731/480, 8-27=-2728/481, 8-9=-1029/223 BOT CHORD 16-17=-233/289, 14-15=-667/267, 3-15=-622/280, 13-14=-167/989, 12-13=-167/989,
- 11-12=-167/989, 10-11=-386/2664 WEBS 2-17=-422/144, 3-16=-284/457, 4-14=-1361/230, 4-11=-98/567, 5-7=-1462/251, 7-11=-1294/206, 8-10=-460/2785

NOTES-

1) Unbalanced roof live loads have been considered for this design.

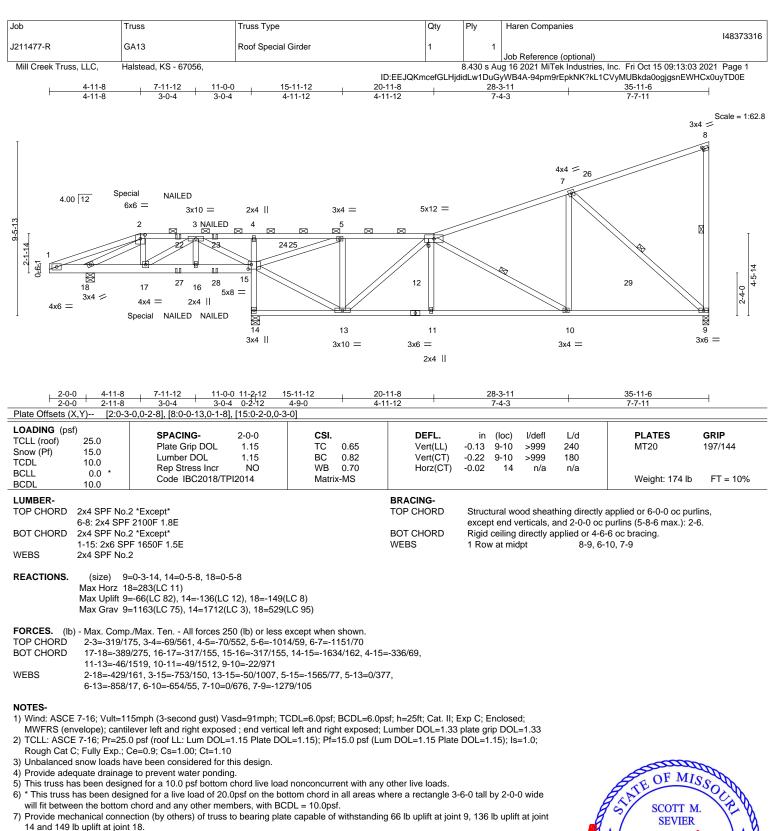
2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-7-2, Interior(1) 3-7-2 to 6-11-8, Exterior(2R) 6-11-8 to 10-6-10, Interior(1) 10-6-10 to 35-9-10 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 14 lb uplift at joint 9, 138 lb uplift at joint 14 and 60 lb uplift at joint 17.

9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 80 lb down and 88 lb up at

4-11-8 on top chord, and 82 lb down and 165 lb up at 4-11-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B)

LOAD CASE(S) Standard

Continued on page 2

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

VUMBER

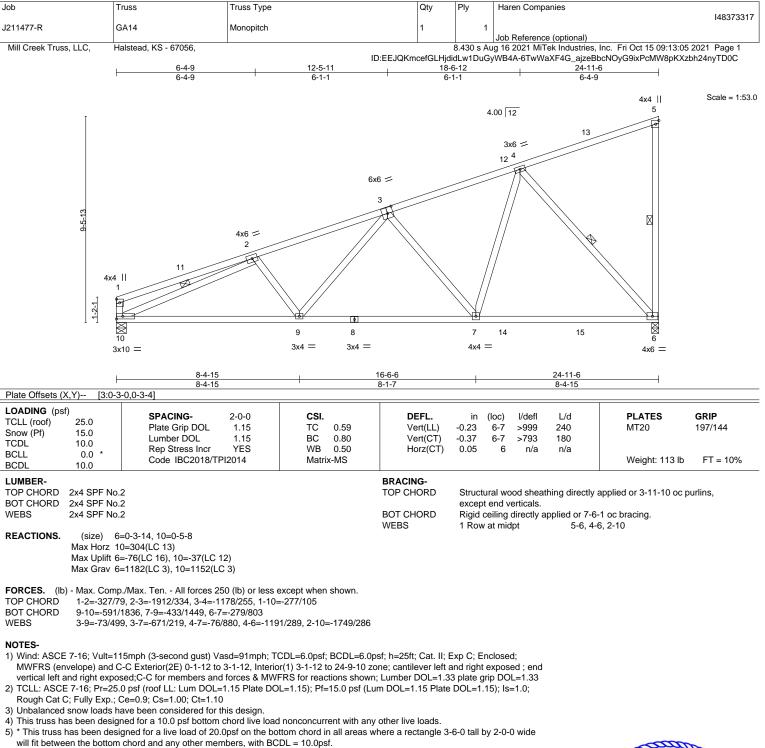
PE-2001018807

October 18,2021

E

ROFFESSIONAL

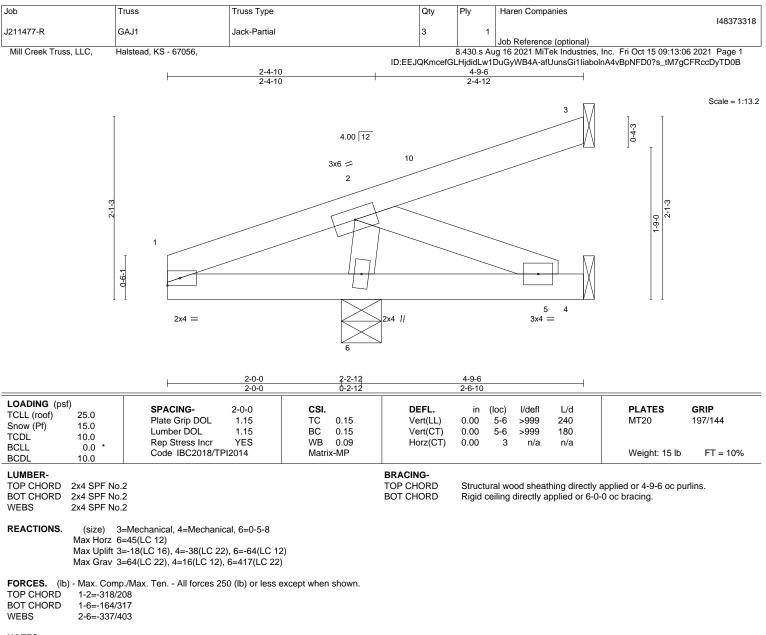
Job		Truss	Truss Type	Qty	Ply	Haren Companies
						148373316
J211477-	R	GA13	Roof Special Girder	1	1	
						Job Reference (optional)
Mill Cre	ek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:13:04 2021 Page 2
			ID:EEJQKr	ncefGLHjd	idLw1DuG	yWB4A-eGN8NBERVhSsMUcO2gtjky9lmC0yPJ0OkxyVYLyTD0D


LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-50, 2-6=-50, 6-8=-50, 15-19=-20, 9-14=-20 Concentrated Loads (lb)

Vert: 2=-29(F) 17=58(F) 22=-20(F) 23=-20(F)



6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 76 lb uplift at joint 6 and 37 lb uplift at joint 10.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

NOTES-

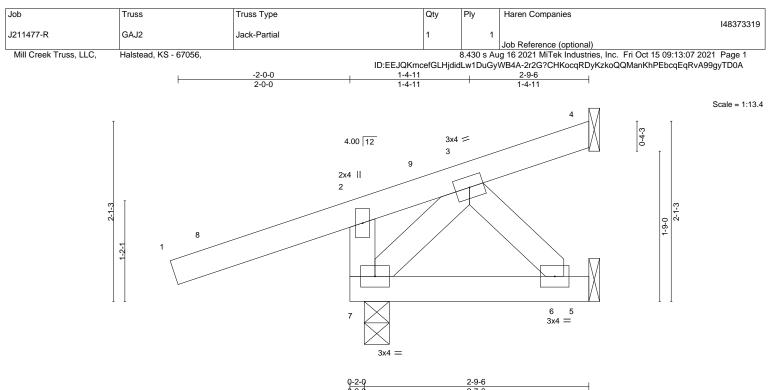
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 4-8-10 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 3, 38 lb uplift at joint 4 and 64 lb uplift at joint 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.35 BC 0.06 WB 0.03 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.00 6-7 -0.00 6-7 0.00 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 13 lb	GRIP 197/144 FT = 10%
--	---	--	--	--	-------------------------------	--------------------------	---------------------------------	------------------------------------

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 2-9-6 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bra

REACTIONS. (size) 4=Mechanical, 5=Mechanical, 7=0-3-8 Max Horz 7=46(LC 13) Max Uplift 4=-21(LC 12), 5=-63(LC 22), 7=-82(LC 12) Max Grav 4=68(LC 23), 5=37(LC 7), 7=352(LC 23)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-7=-371/372

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -2-0-9 to 0-11-7, Interior(1) 0-11-7 to 2-8-10 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Unbalanced snow loads have been considered for this design.

 This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 4, 63 lb uplift at joint 5 and 82 lb uplift at joint 7.

9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	Haren Companies
					148373320
J211477-R	GAJ3	Jack-Partial	2	1	
					Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Ai	ug 16 2021 MiTek Industries, Inc. Fri Oct 15 09:13:08 2021 Page 1

1-4-11

2-9-6 1-4-11 1-4-11 4.00 12 3 0-4-3 3x4 📁 2 2x4 || 2-1-3 1-3 0-6-1 -2-1 5 4 6 3x4 = 3x4 =

			0 <u>-2-0</u> 0-2-0			2-9-6 2-7-6							
LOADING (psf TCLL (roof) Snow (Pf) TCDL BCLL	;) 25.0 15.0 10.0 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC BC WB	0.03 0.07 0.03		DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 -0.01 0.00	(loc) 5-6 5-6 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code IBC2018/TF	PI2014	Matri	x-MP							Weight: 11 lb	FT = 10%
LUMBER-						BRA	ACING-						

TOP CHORD 2x4 SPE No 2

2x4 SPF No.2 BOT CHORD WEBS 2x4 SPF No.2 TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 2-9-6 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

ID:EEJQKmcefGLHjdidLw1DuGyWB4A-W2cfCYHyZvyIq6vAHVxfuoKaQpZiLHWzfYwih6yTD09

Scale = 1:13.4

REACTIONS. 3=Mechanical, 4=Mechanical, 6=0-3-8 (size) Max Horz 6=35(LC 13) Max Uplift 3=-10(LC 16), 4=-7(LC 16)

Max Grav 3=41(LC 2), 4=75(LC 2), 6=116(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

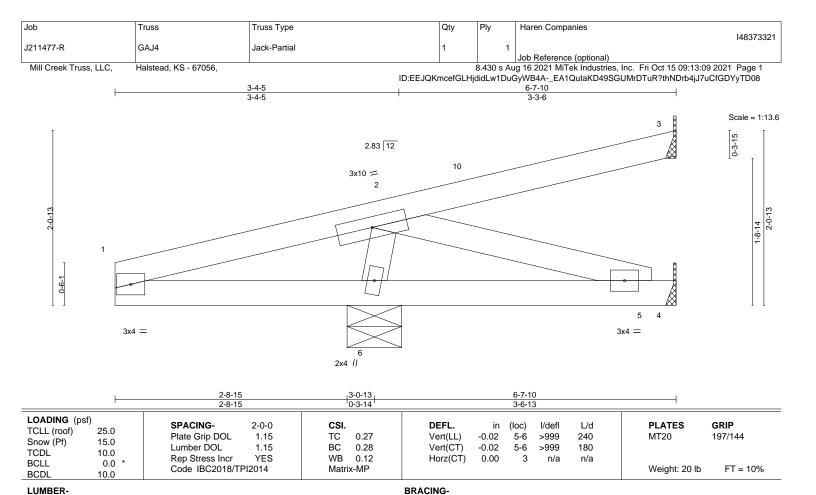
NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10 lb uplift at joint 3 and 7 lb uplift at ioint 4.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

WEBS 2x4 SPF No.2

REACTIONS. 3=Mechanical, 4=Mechanical, 6=0-7-12 (size) Max Horz 6=44(LC 12) Max Uplift 3=-23(LC 16), 4=-40(LC 22), 6=-99(LC 12) Max Grav 3=82(LC 22), 4=31(LC 12), 6=555(LC 22)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-585/360

BOT CHORD 1-6=-317/583, 5-6=-195/306

2x4 SPF No.2

2x4 SPF No.2

WEBS 2-5=-321/205, 2-6=-453/574

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) 0-0-0 to 4-2-15, Exterior(2R) 4-2-15 to 6-6-14 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 23 lb uplift at joint 3, 40 lb uplift at joint 4 7) and 99 lb uplift at joint 6.


8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 6-0-0 oc bracing.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 4-2-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=Mechanical, 3=Mechanical, 4=0-5-8 Max Horz 4=71(LC 13)

Max Horz 4=71(LC 13) Max Uplift 2=-32(LC 16), 4=-6(LC 12)

Max Grav 2=139(LC 22), 3=77(LC 7), 4=178(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

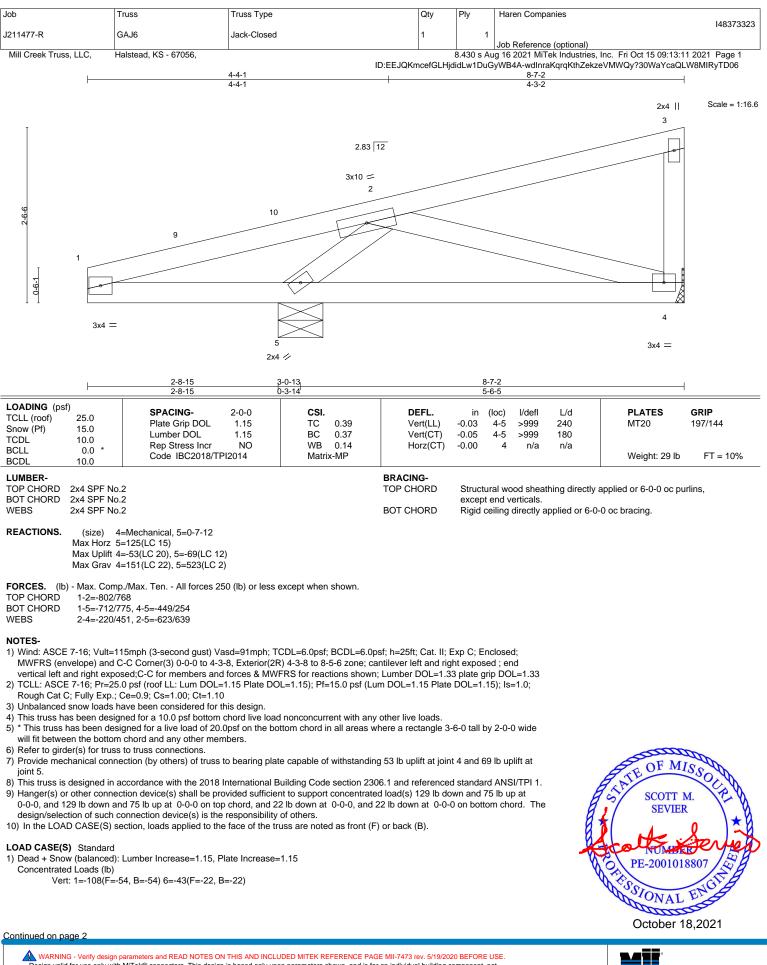
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 4-0-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

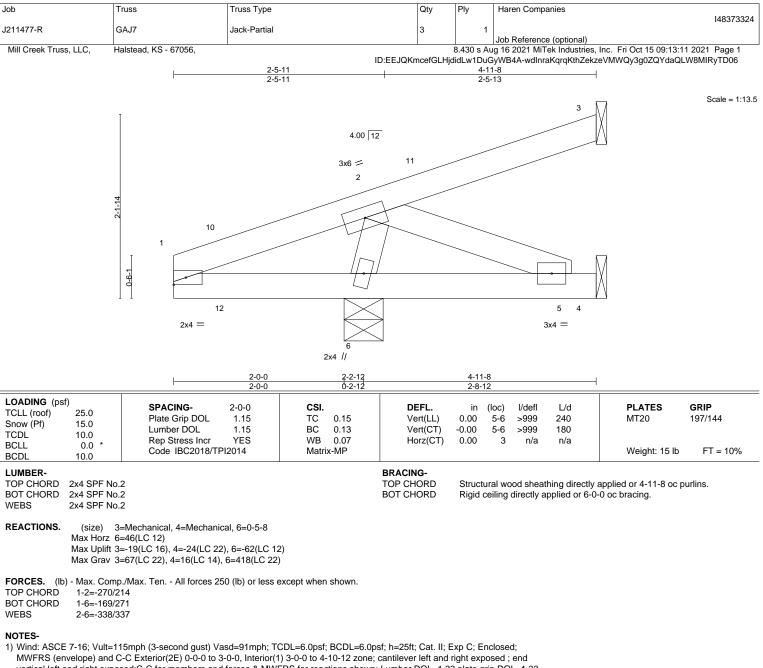

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint 2 and 6 lb uplift at joint 4.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

9) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017


MiTek

J	ob	Truss	Truss Type	Qty	Ply	Haren Companies			
	011177 D	CAIC	look Closed	1	1	148373323			
1	211477-R	GAJ6	Jack-Closed	1	1	Job Reference (optional)			
L	Mill Creek Truss, LLC,	Halstead. KS - 67056.				g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:13:11 2021 Page 2			
		. laiotoad, 110 01000,	ID:EEJQKmcefGLHjidLwi1DuGy/WB4A-wdInraKgrqKthZekzeVMWQy/30WaYcaQL/W8MIKyTD06						

LOAD CASE(S) Standard

Trapezoidal Loads (plf) Vert: 1=0(F=25, B=25)-to-10=-36(F=7, B=7), 10=0(F=25, B=25)-to-3=-72(F=-11, B=-11), 6=0(F=10, B=10)-to-5=-14(F=3, B=3), 5=0(F=10, B=10)-to-4=-29(F=-4, B=-4)

vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

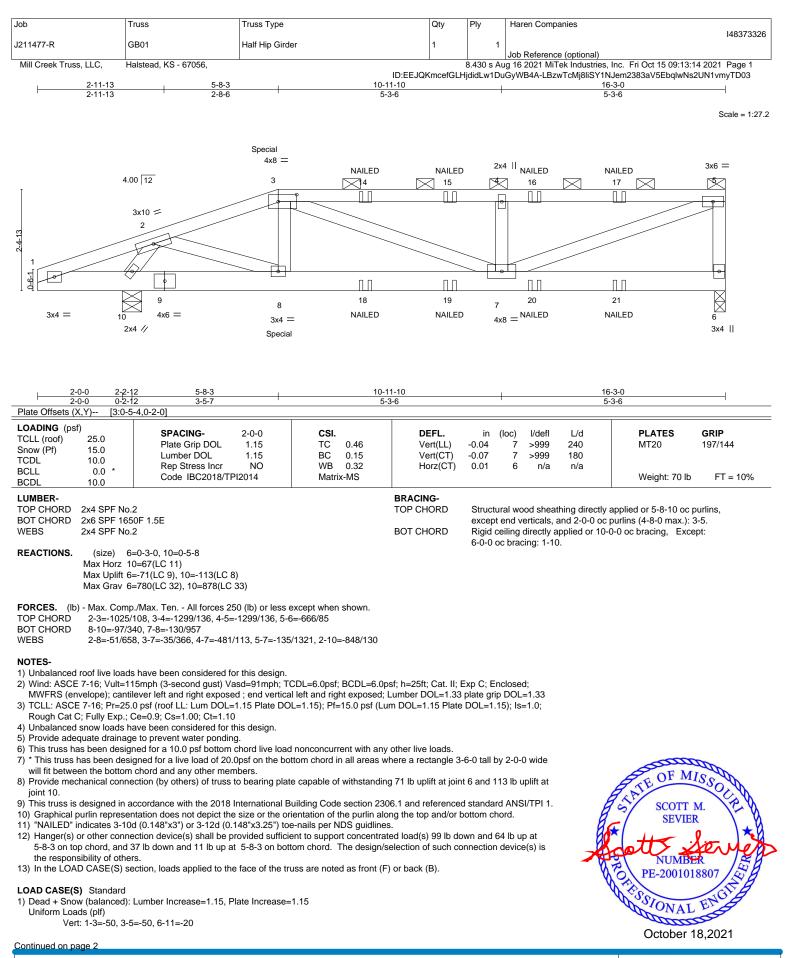

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 3, 24 lb uplift at joint 4 and 62 lb uplift at joint 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Continued on page 2

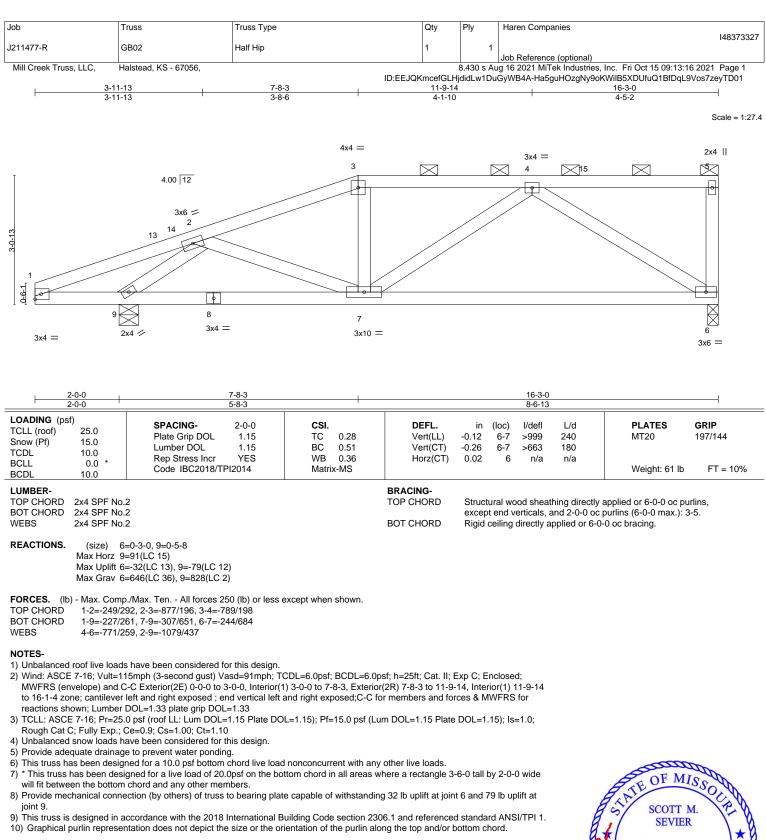
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Mitek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Haren Companies
					148373325
J211477-R	GAJ8	Jack-Partial	1	1	
					Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:13:12 2021 Page 2
		ID:EEJQKi	mcefGLHjo	didLw1Du0	GyWB4A-Pps92wLTc8SkJjDxWL0b3eVCCQthH4EZaAuwqtyTD05

LOAD CASE(S) Standard

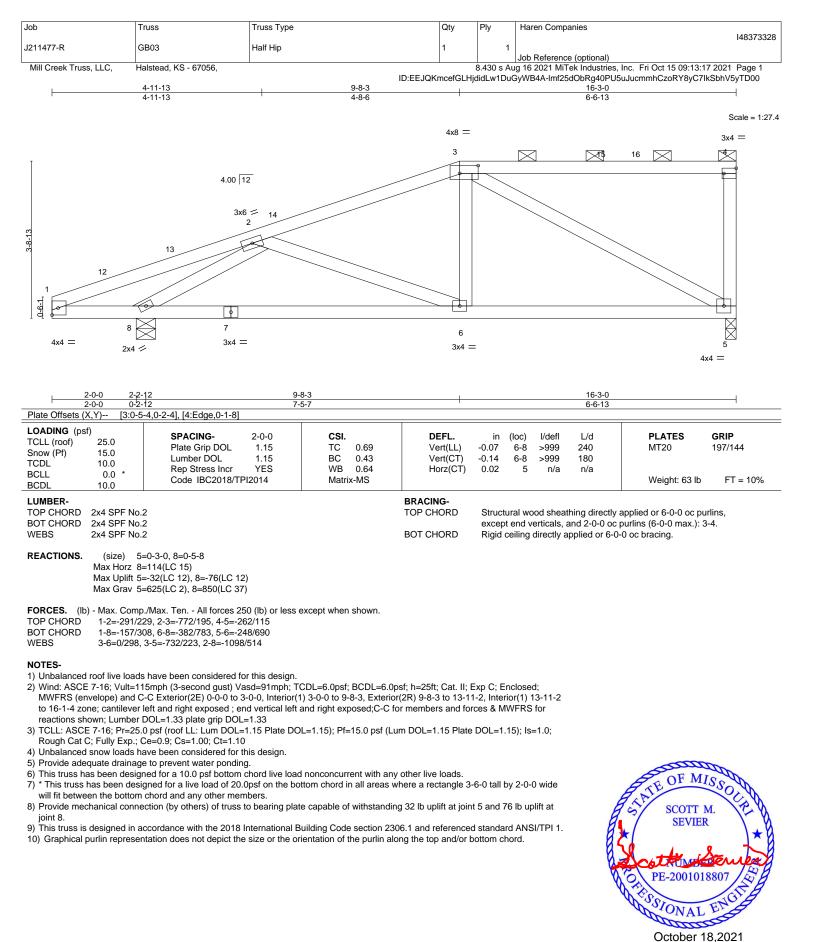
Trapezoidal Loads (plf) Vert: 1=0(F=25, B=25)-to-10=-38(F=6, B=6), 10=0(F=25, B=25)-to-3=-48(F=1, B=1), 7=0(F=10, B=10)-to-6=-15(F=2, B=2), 6=0(F=10, B=10)-to-4=-19(F=0, B=0)

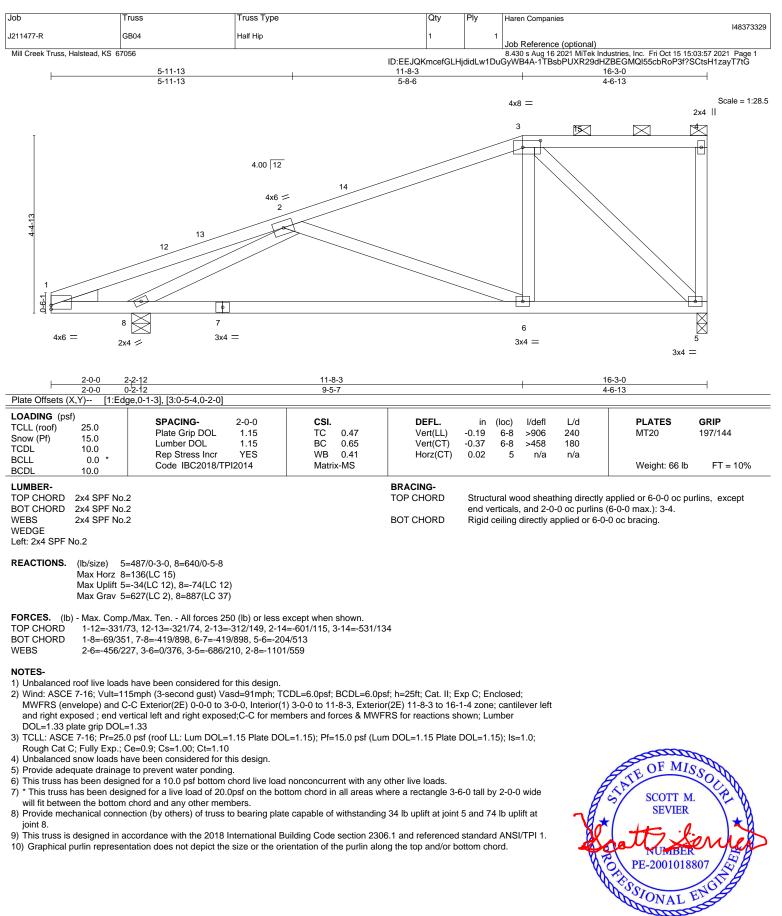


[Job	Truss	Truss Type	Qty	Ply	Haren Companies			
	J211477-R	GB01	Half Hip Girder	4	1	148373326			
	J2114/7-K	GB01	Hair Hip Girder	1	1	Job Reference (optional)			
ι	Mill Creek Truss, LLC,	Halstead, KS - 67056,		-		g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:13:15 2021 Page 2			
			ID:EEJQKmcefGLHjdidLw1DuGyWB4A-pOXIgxNLv3qIABxWCTZIgG7gqew3UNd?G86aRCyTD02						

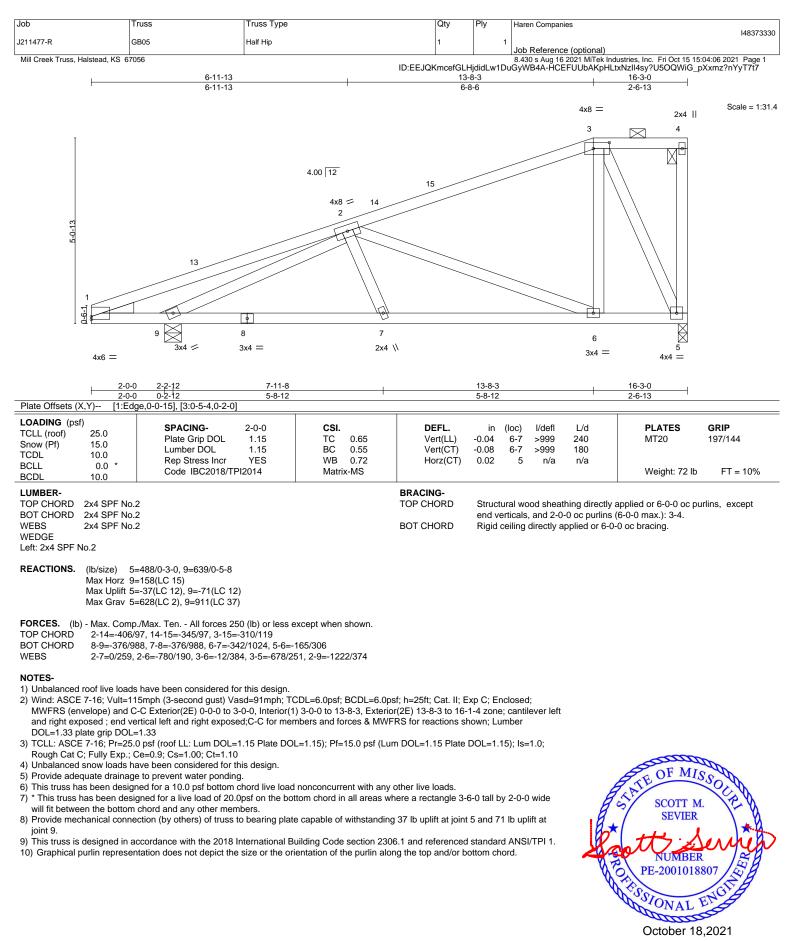
LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 3=-64(F) 8=-22(F) 14=-30(F) 15=-30(F) 16=-27(F) 17=-6(F) 18=1(F) 19=1(F) 20=-16(F) 21=-85(F)

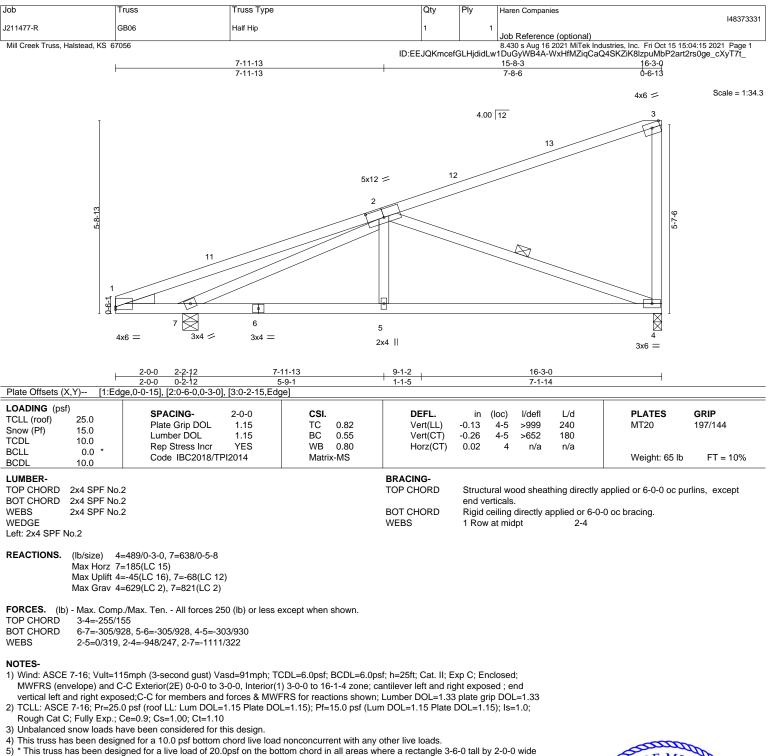



October 18,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

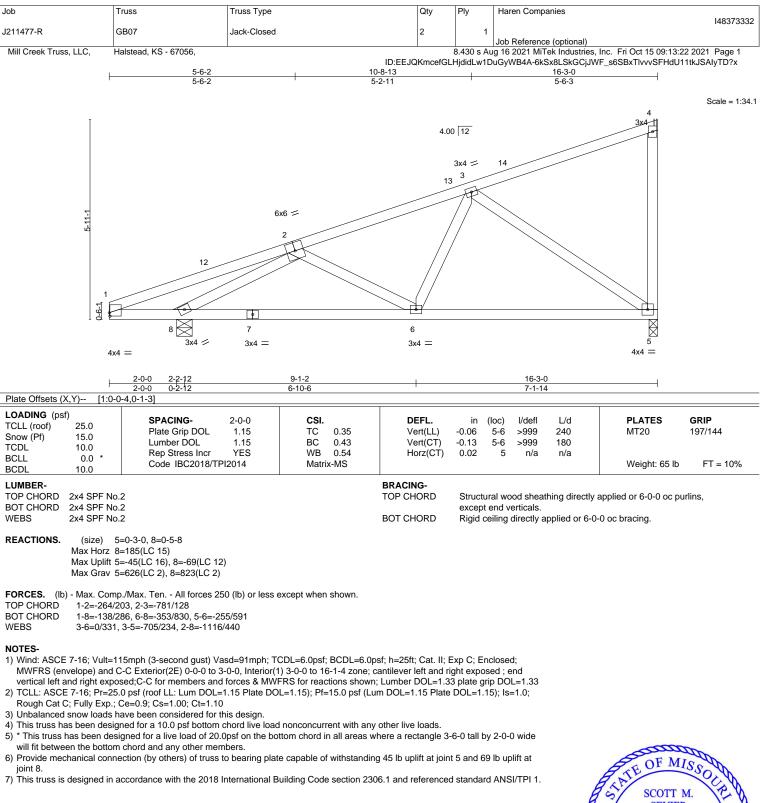
NITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017



October 18,2021

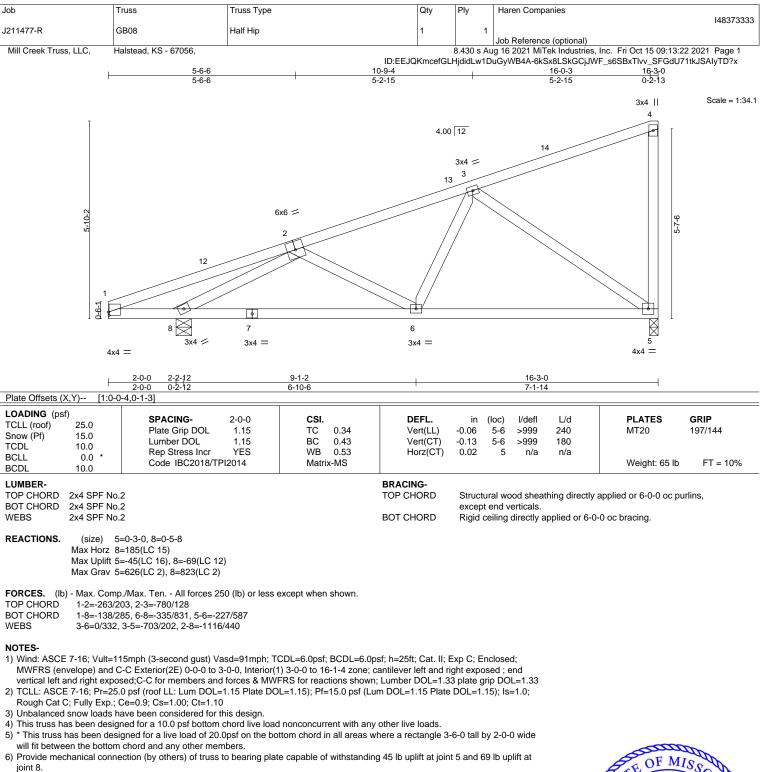
Mitek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0 will fit between the bottom chord and any other members.

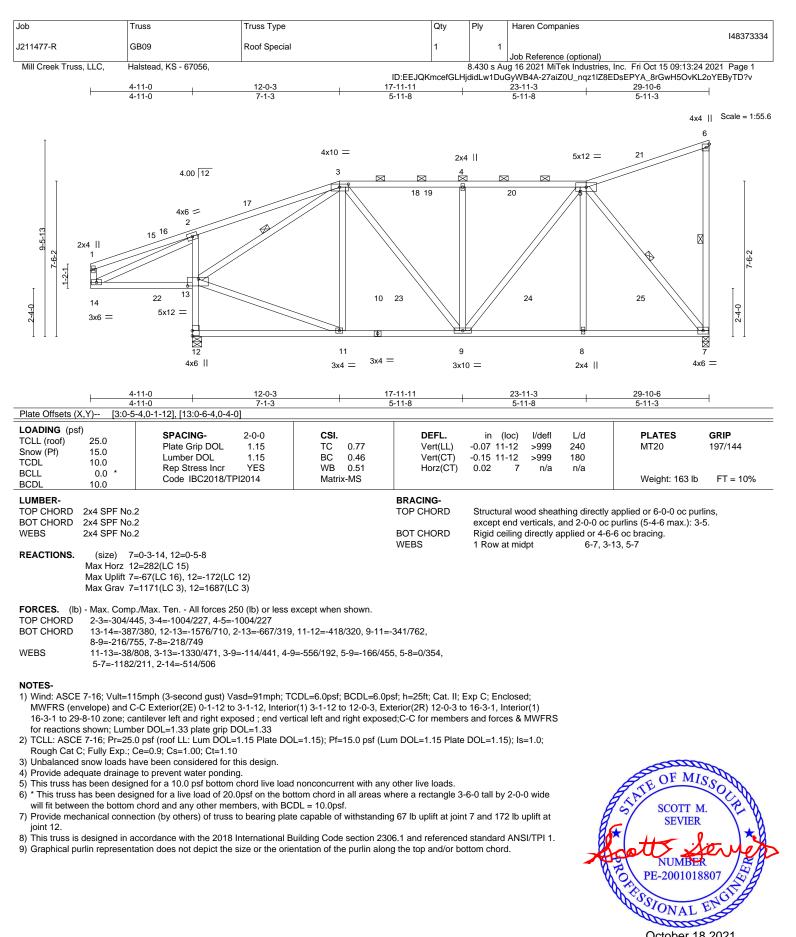

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 45 lb uplift at joint 4 and 68 lb uplift at joint 7.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

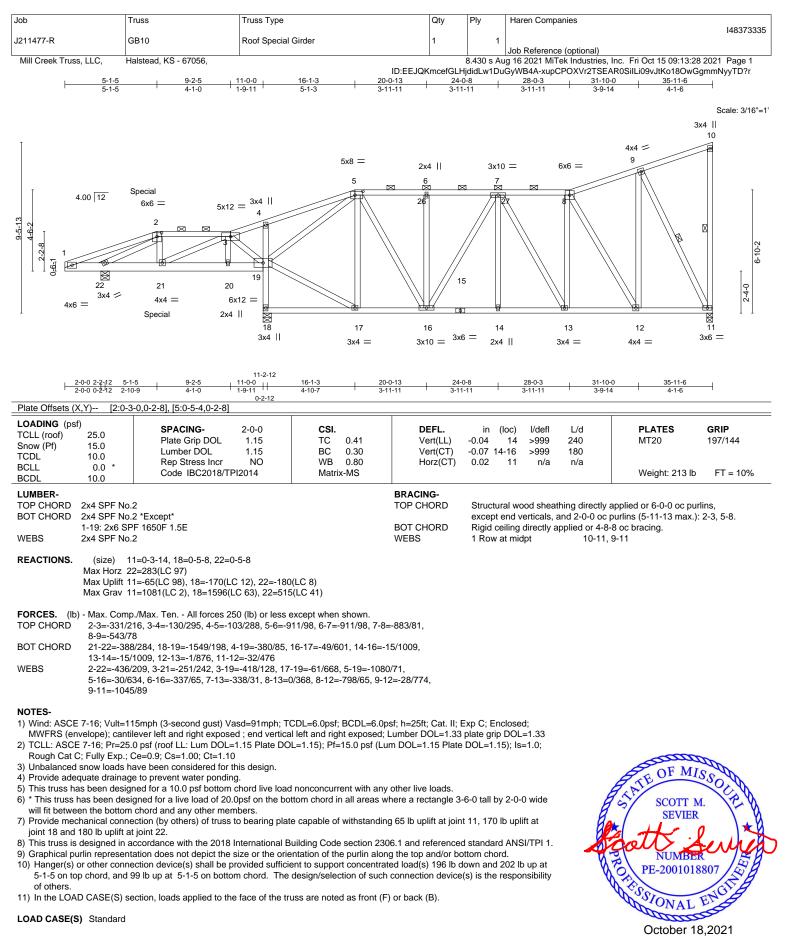
October 18,2021


16023 Swingley Ridge Rd Chesterfield, MO 63017

October 18,2021


MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



NiTek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 October 18,2021

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

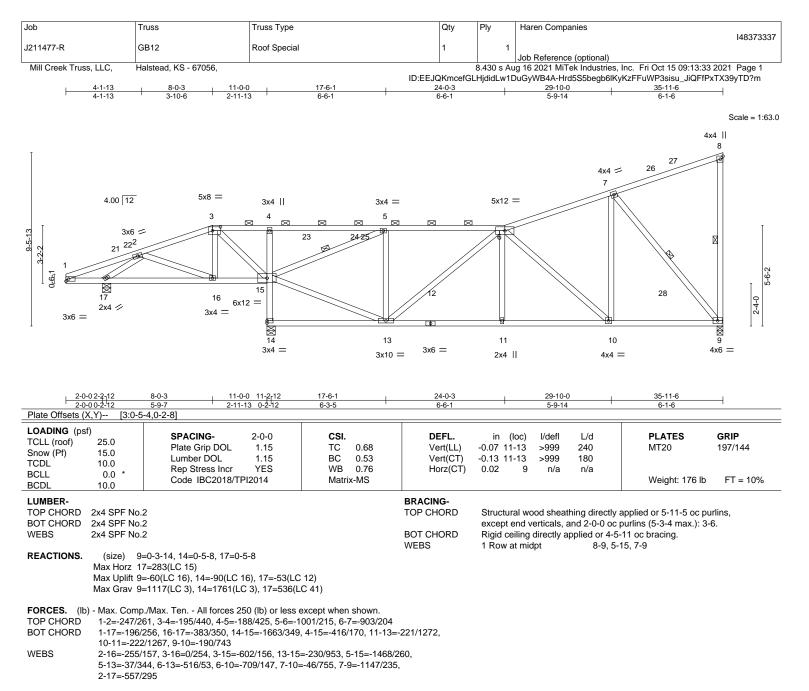
Job	Truss	Truss Type	Qty	Ply	Haren Companies			
					148373335			
J211477-R	GB10	Roof Special Girder	1	1				
					Job Reference (optional)			
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:13:28 2021 Page 2			
		ID:EEJQKmcefGLHjdidLw1DuGyWB4A-xupCPOXVr2TSEAR0SilLi09vJtKo18OwGgmmNyyTD?r						

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-50, 2-3=-50, 3-5=-50, 5-8=-50, 8-10=-50, 19-23=-20, 11-18=-20 Concentrated Loads (lb)

Vert: 2=-50(F) 21=61(F)



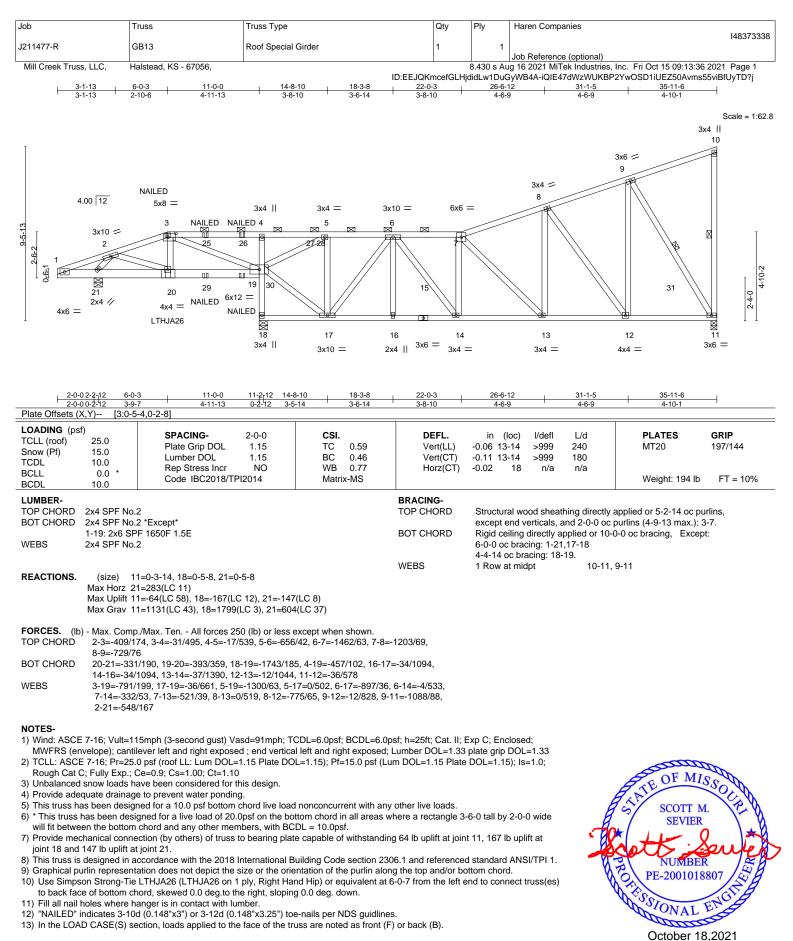
2-0	0-00-2-12	4-10-9 3-10	-11 0-2-12 2-	10-7	5-11-8		5-11-8		1		9-11-3	
Plate Offsets (X,	Y) [1:Edge	e,0-0-11], [2:0-5-4,0-2-8			0-2-0]							
LOADING (psf) TCLL (roof) Snow (Pf) TCDL	25.0 15.0 10.0	SPACING- Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI. TC BC	0.64 1.00	DEFL. Vert(LL) Vert(CT)	-0.50 -0.80	9-10	l/defl >589 >369	L/d 240 180	PLATES MT20	GRIP 197/144
BCLL BCDL	0.0 * 10.0	Rep Stress Incr Code IBC2018/T	YES PI2014	WB Matr	0.42 ix-MS	Horz(CT)	0.02	9	n/a	n/a	Weight: 180 lb	FT = 10%
LUMBER- TOP CHORD 2 BOT CHORD 2	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2					BRACING- TOP CHORD BOT CHORD WEBS	excep Rigid	ot end v	erticals, directly a	and 2-0-0 oc pplied or 2-2	v applied or 4-10-15 oc p : purlins (4-11-8 max.): 2 2-0 oc bracing. i-13, 5-10, 7-9	
	Max Horz 17⊧ Max Uplift 9≕	833/0-3-14, 14=1283/0- =283(LC 15) -62(LC 16), 14=-82(LC 1156(LC 3), 14=1710(L	16), 17=-55(LC	12)								
FORCES. (Ib) - TOP CHORD	2-22=-236/3	/Max. Ten All forces 2 53, 3-22=-236/353, 3-4= 252, 24-25=-1258/252,	=-232/403, 4-23	=-503/164,	5-23=-503/16	64,						
BOT CHORD	16-17=-289/3	320, 15-16=-284/325, 1 1059, 10-28=-195/585,	4-15=-1687/34), 12-13=-25	53/1059, 11-1	2=-253/1059,						
WEBS	2-17=-322/1	1039, 10-28=-195/383, 65, 2-15=-650/218, 13- 56, 5-10=-44/284, 6-10=	15=-213/514, 4-	15=-1175/2	55, 4-13=-51							
MWFRS (envo 14-1-3, Exterio exposed;C-C 2) TCLL: ASCE Rough Cat C; 3) Unbalanced s 4) Provide adequ 5) This truss has 6) * This truss has will fit between 7) Provide mech- and 55 lb uplif 8) This truss is d	elope) and C- or(2R) 14-1-3 for members a 7-16; Pr=25.0 Fully Exp.; Cd now loads hav uate drainage been design as been design anical connect t at joint 17. lesigned in acc	Simph (3-second gust) V C Exterior(2E) 0-0-0 to to 17-8-5, Interior(1) 17 and forces & MWFRS fic psf (roof LL: Lum DOL- e=0.9; Cs=1.00; Ct=1.1) we been considered for to prevent water pondir ed for a 10.0 psf bottom ned for a live load of 20 shord and any other me tion (by others) of truss cordance with the 2018 tion does not depict the	3-7-2, Interior(1 -8-5 to 35-9-10 pr reactions sho =1.15 Plate DO 0 this design. ng. chord live load .0psf on the bo mbers, with BC to bearing plat International B) 3-7-2 to 7- zone; cantil wn; Lumber L=1.15); Pf= nonconcurr ttom chord in DL = 10.0ps e capable of uilding Code	1-5, Exterior(ever left and DOL=1.33 p 15.0 psf (Lur ent with any n all areas wh f. withstanding e section 2300	2R) 7-1-5 to 10-8-7 right exposed ; end late grip DOL=1.33 n DOL=1.15 Plate I other live loads. here a rectangle 3-6 i 62 lb uplift at joint 6.1 and referenced	7, Interica 1 vertica 2 DOL=1. 6-0 tall k 9, 82 lb standa	or(1) 10 al left an 15); Is= by 2-0-0 o uplift a rd ANS	-8-7 to d right 1.0; wide t joint 14		STATE OF MIS SCOTT M. SEVIER PE-20010188 PE-20010188 PE-20010188	erter 07 E

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

October 18,2021

- NOTES-
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0 to 3-7-2, Interior(1) 3-7-2 to 8-0-3, Exterior(2R) 8-0-3 to 13-1-3, Interior(1) 13-1-3 to 35-9-10 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10


3) Unbalanced snow loads have been considered for this design.

4) Provide adequate drainage to prevent water ponding.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 60 lb uplift at joint 9, 90 lb uplift at joint
- 14 and 53 lb uplift at joint 17. 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

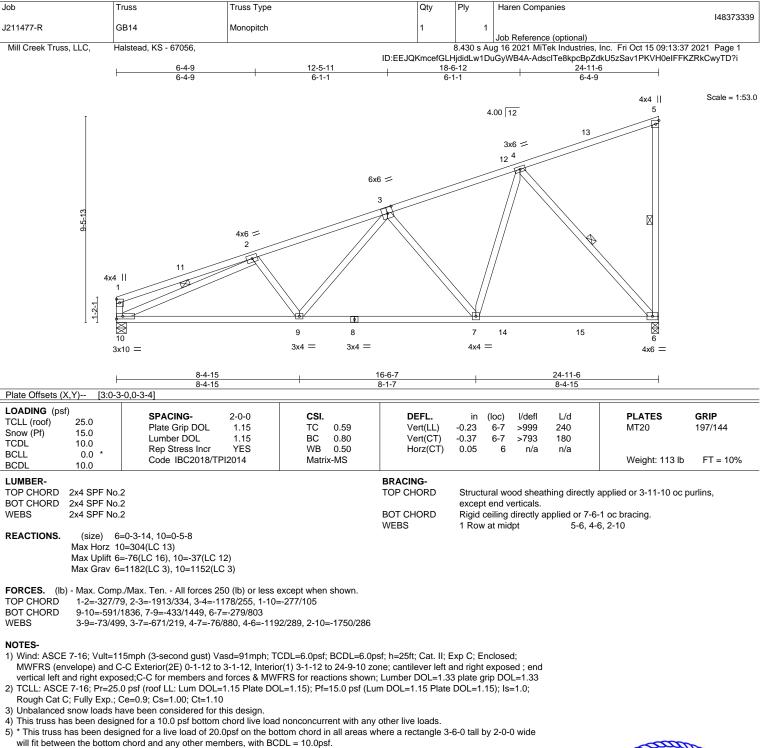
COAR 6ASE (S)geStandard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

[Job	Truss	Truss Type	Qty	Ply	Haren Companies
						148373338
	J211477-R	GB13	Roof Special Girder	1	1	
						Job Reference (optional)
	Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:13:36 2021 Page 2
			ID:EEJQKr	ncefGLHjo	lidLw1DuG	yWB4A-iQIE47dWzWUKBP2YwOSD1iUEZ50Avms55viBfUyTD?j

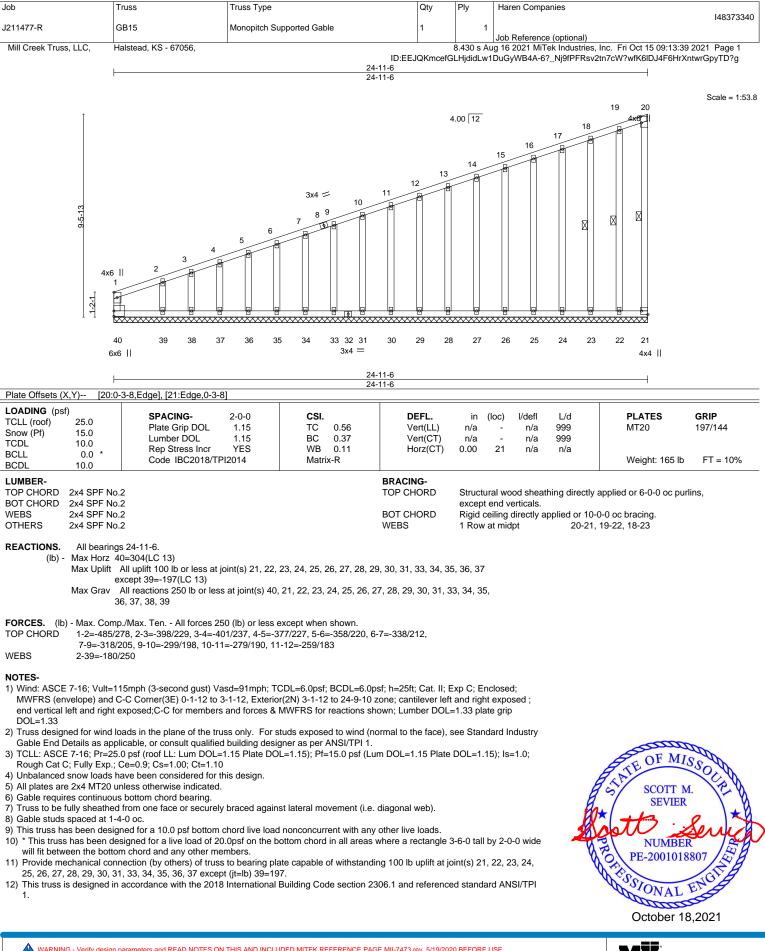
LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

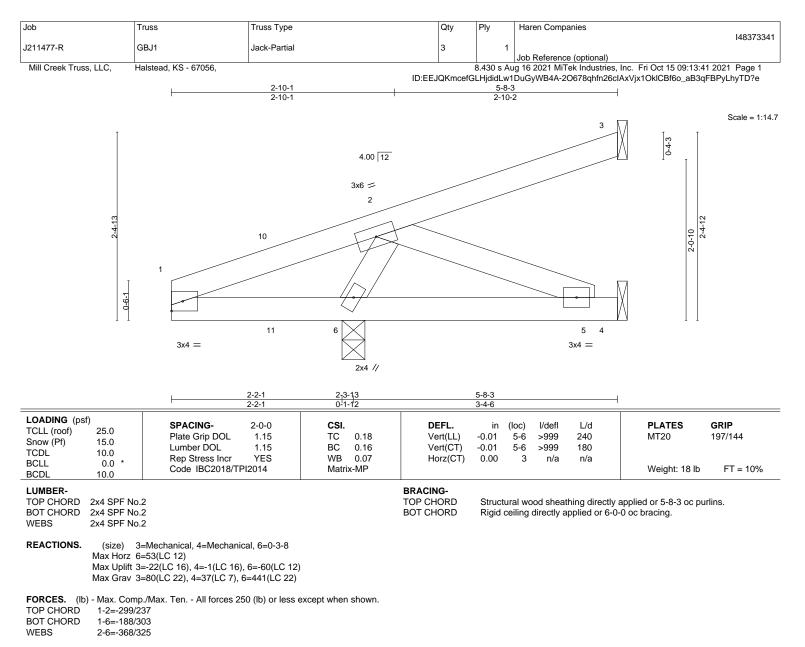
Vert: 1-3=-50, 3-7=-50, 7-10=-50, 19-22=-20, 11-18=-20 Concentrated Loads (lb)

Vert: 3=-61(B) 20=-74(B) 25=-61(B) 26=-61(B) 29=2(B) 30=2(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 76 lb uplift at joint 6 and 37 lb uplift at joint 10.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.


16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 2-9-6, Interior(1) 2-9-6 to 5-7-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

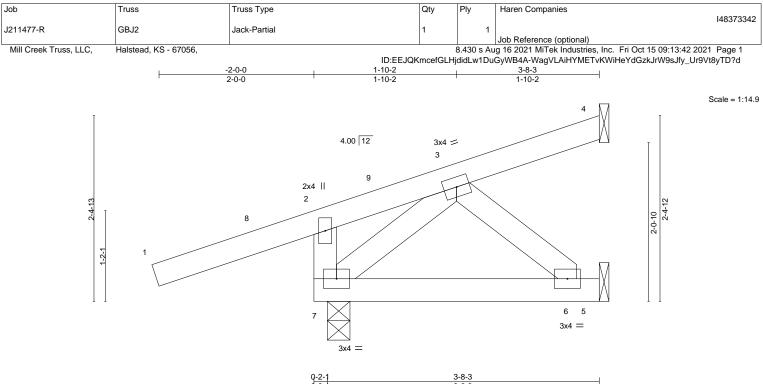
Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

				0-2-1			3-6-2					
LOADING (ps TCLL (roof) Snow (Pf) TCDL	25.0 15.0 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC BC WB	0.35 0.12 0.03	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 6-7 6-7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCLL BCDL	0.0 * 10.0	Code IBC2018/TPI2			x-MP	1012(01)	0.00		174	174	Weight: 16 lb	FT = 10%

LUMBER-

REACTIONS.

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

(size)

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 3-8-3 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

4=Mechanical, 5=Mechanical, 7=0-3-8

Max Horz 7=52(LC 13) Max Uplift 4=-23(LC 12), 5=-25(LC 22), 7=-76(LC 12)

Max Grav 4=77(LC 23), 5=66(LC 7), 7=380(LC 23)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-7=-343/336

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -2-0-9 to 0-11-7, Interior(1) 0-11-7 to 3-7-7 zone; cantilever left and right exposed; end writing the negative constraints of the second constraints of the second constraints and the second constraints a
- vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

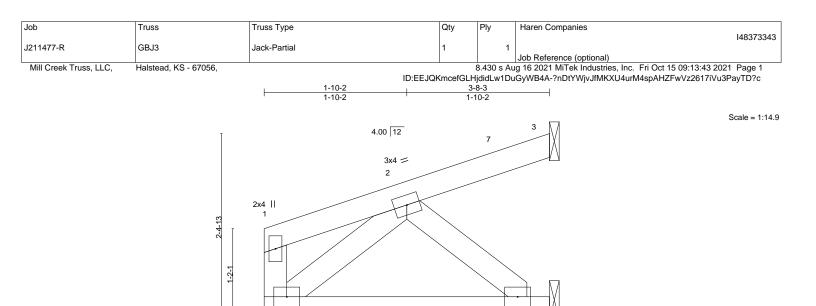
Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
 Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.


8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5, 7.

9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	0 <u>-2-1</u> 0-2-1		3-8-3 3-6-2						
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.05 BC 0.12 WB 0.04 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 5-6 5-6 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 197/144 FT = 10%
LUMBER-			BRACING-						

TOP CHORD 2x4 SPE No 2

2x4 SPF No.2 BOT CHORD WEBS 2x4 SPF No.2

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 3-8-3 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

5 4 3x4 =

REACTIONS. 3=Mechanical, 4=Mechanical, 6=0-3-8 (size)

Max Horz 6=41(LC 13)

Max Uplift 3=-13(LC 16), 4=-8(LC 16) Max Grav 3=53(LC 22), 4=105(LC 22), 6=157(LC 22)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 3-7-7 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

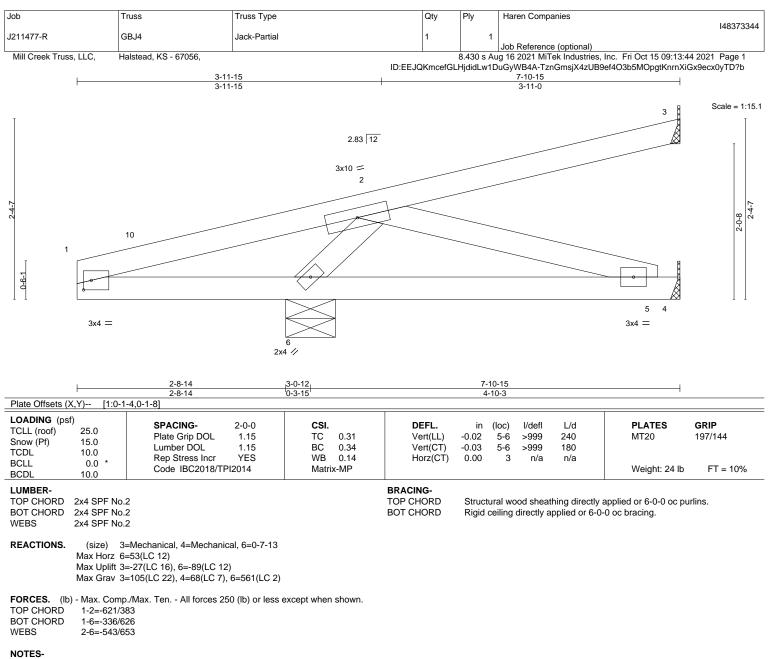
3x4

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Refer to girder(s) for truss to truss connections.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

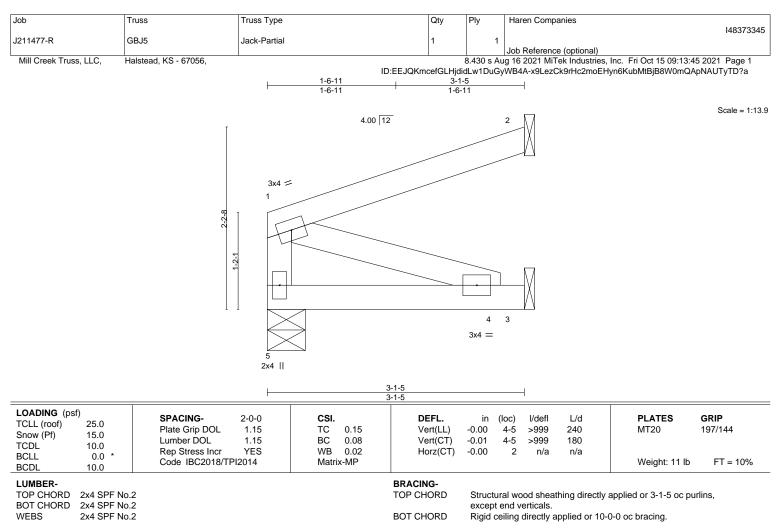
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) 0-0-0 to 3-11-7, Exterior(2R) 3-11-7 to 7-10-3 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Refer to girder(s) for truss to truss connections.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 6.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

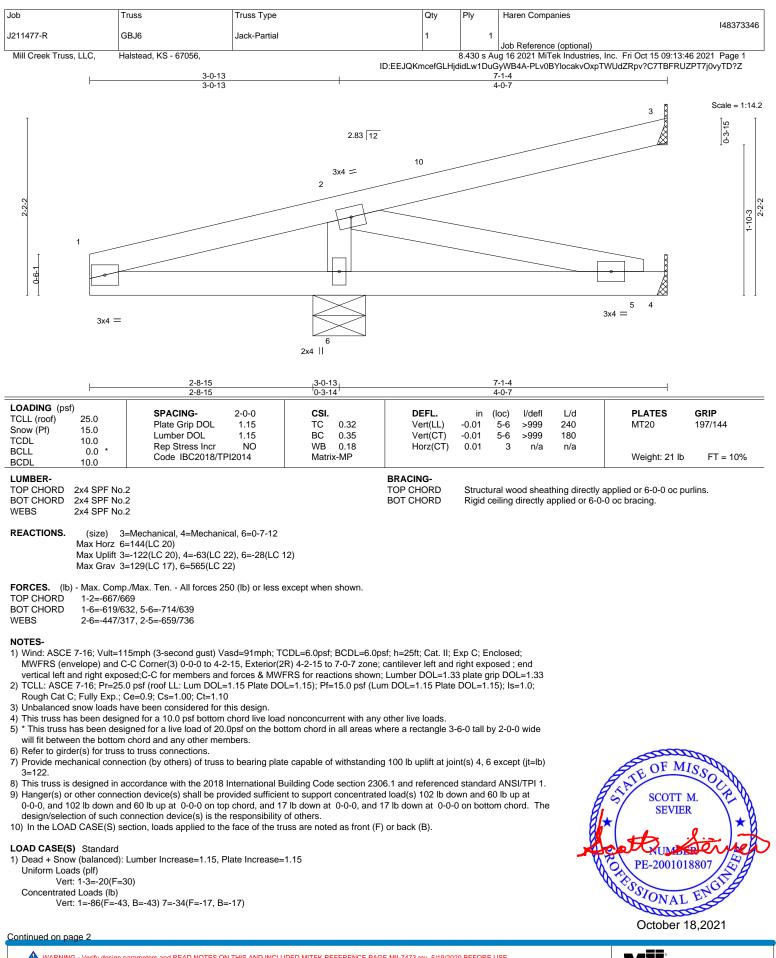
REACTIONS. (size) 5=0-5-8, 2=Mechanical, 3=Mechanical Max Horz 5=37(LC 13) Max Uplift 2=-28(LC 12)

Max Grav 5=131(LC 2), 2=102(LC 2), 3=58(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10


3) Unbalanced snow loads have been considered for this design.

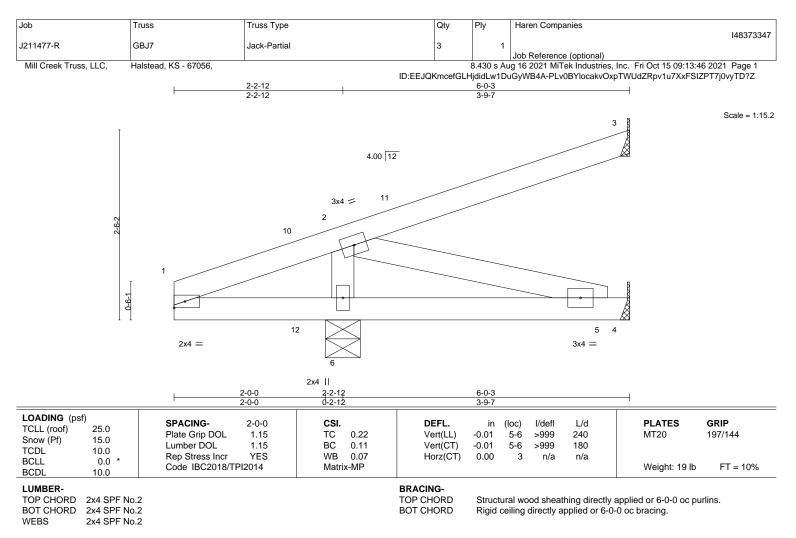
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

MiTek


Job	Truss	Truss Type	Qty	Ply	Haren Companies
1044477 D		la de Dartial			148373346
J211477-R	GBJ6	Jack-Partial	1	1	Job Reference (optional)
					Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:13:46 2021 Page 2
		ID:EEJQKr	ncefGLHjd	idLw1DuG	yWB4A-PLv0BYlocakvOxpTWUdZRpv?C7TBFRUZPT7j0vyTD?Z

LOAD CASE(S) Standard

Trapezoidal Loads (plf) Vert: 7=0(F=10, B=10)-to-6=-34(F=-7, B=-7), 6=-0(F=10, B=10)-to-4=-51(F=-15, B=-15)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

REACTIONS. (size) 3=Mechanical, 4=Mechanical, 6=0-5-8 Max Horz 6=56(LC 12) Max Uplift 3=-30(LC 16), 6=-59(LC 12)

Max Grav 3=111(LC 22), 4=42(LC 7), 6=450(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-6=-366/323

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 5-11-7 zone; cantilever left and right exposed; end

vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33 (2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

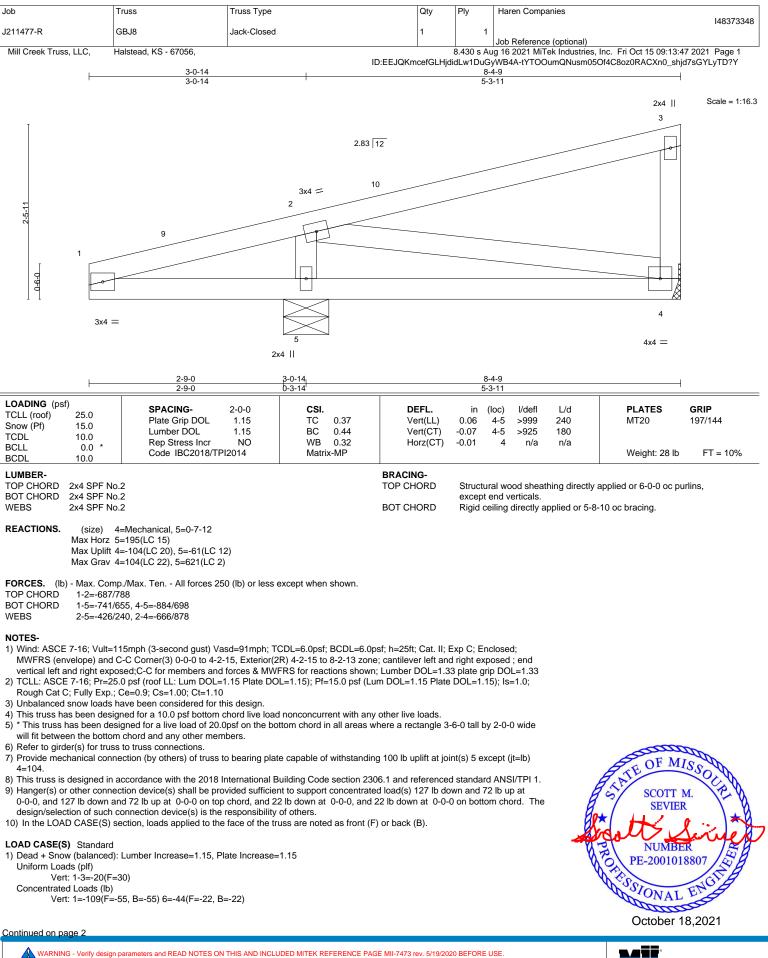
Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

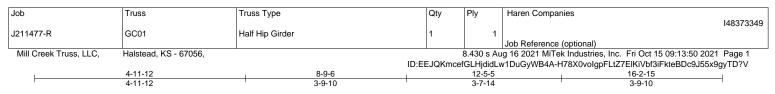

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

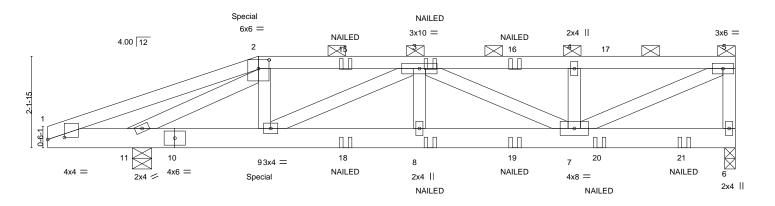
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Mitek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017


Job	Truss	Truss Type	Qty	Ply	Haren Companies
1044477 D					148373348
J211477-R	GBJ8	Jack-Closed	1	1	
					Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:13:48 2021 Page 2
		ID:EEJQ	KmcefGL	-IjdidLw1D	uGyWB4A-Lk1mcEm28C_ddFzsdvf1WE_Lxx7FjJxssncq4oyTD?X

LOAD CASE(S) Standard


Trapezoidal Loads (plf) Vert: 6=0(F=10, B=10)-to-5=-34(F=-7, B=-7), 5=-0(F=10, B=10)-to-4=-73(F=-26, B=-26)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:27.2

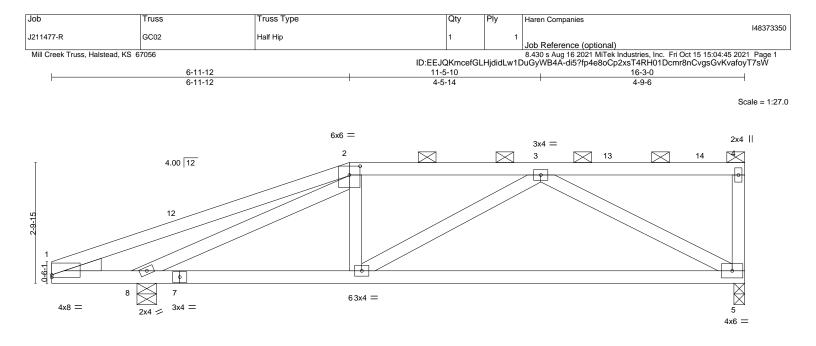
<u>2-0-0 2-2-</u> 2-0-0 0-2-		<u>8-9-6</u> 3-9-10		12-5-5 3-7-14		<u>16-2-15</u> 3-9-10	
Plate Offsets (X,Y) [1:0-4	-11,0-0-9], [2:0-3-0,0-2-8]						
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IBC2018/TPI2014	CSI. TC 0.32 BC 0.19 WB 0.30 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)		l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 71 lb	GRIP 197/144 FT = 10%
LUMBER- TOP CHORD 2x4 SPF No BOT CHORD 2x6 SPF 164 WEBS 2x4 SPF No REACTIONS. (size) 6	50F 1.5E		BRACING- TOP CHORD BOT CHORD	except end ve	rticals, and 2-0-0 oc irectly applied or 10	r applied or 6-0-0 oc pu c purlins (5-3-0 max.): 2 -0-0 oc bracing, Exce	-5.
TOP CHORD 2-3=-805/3 BOT CHORD 9-11=-351	o./Max. Ten All forces 250 (lb) or less (29, 3-4=-1164/214, 4-5=-1164/214, 5-6 (786, 8-9=-330/1394, 7-8=-330/1394 (321, 3-9=-656/0, 3-7=-268/122, 4-7=-3	6=-683/125					
 Wind: ASCE 7-16; Vult=1 MWFRS (envelope); cant TCLL: ASCE 7-16; Pr=25 Rough Cat C; Fully Exp.; Unbalanced snow loads H Provide adequate drainage This truss has been desig * This truss is designed in a Graphical purlin represe MAILED" indicates 3-10 Hanger(s) or other conn 4-11-12 on top chord, ar responsibility of others. In the LOAD CASE(S) S 	ned for a 10.0 psf bottom chord live loa igned for a live load of 20.0psf on the b i chord and any other members. action (by others) of truss to bearing pla incoordance with the 2018 International intation does not depict the size or the of d (0.148"x3") or 3-12d (0.148"x3.25") it action device(s) shall be provided suffic id 126 lb up at 4-11-12 on bottom chord ection, loads applied to the face of the Lumber Increase=1.15, Plate Increase	FCDL=6.0psf; BCDL=6.0ps al left and right exposed; Li DL=1.15); Pf=15.0 psf (Lurr ad nonconcurrent with any o ottom chord in all areas wh ate capable of withstanding Building Code section 2300 prientation of the purlin alon be-nails per NDS guidlines. tient to support concentrate d. The design/selection of truss are noted as front (F)	umber DOL=1.33 n DOL=1.15 Plate other live loads. ere a rectangle 3 100 lb uplift at joi 6.1 and reference g the top and/or b d load(s) 175 lb c such connection	plate grip DOL= DOL=1.15); Is= -6-0 tall by 2-0-0 nt(s) except (jt=1 d standard ANSI oottom chord.	1.33 1.0; wide b) /TPI 1.	STATE OF MI SCOTT I SEVIER PE-200101	enie 2 8807 El

Vert: 1-2=-50, 2-5=-50, 6-12=-20

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

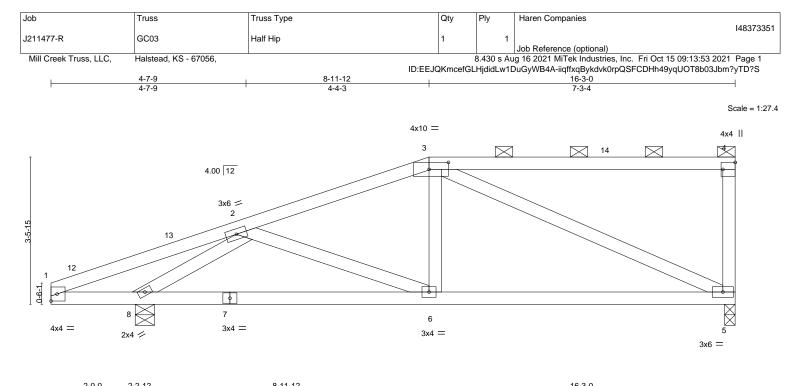
October 18,2021


Job	Truss	Truss Type	Qty	Ply	Haren Companies
					148373349
J211477-R	GC01	Half Hip Girder	1	1	
					Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:13:50 2021 Page 2
		ID:E	EJQKmce	GLHjdidLv	v1DuGyWB4A-H78X0volgpFLtZ7ElKiVbf3iFkteBDc9J55x9gyTD?V

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 2=-20(B) 9=75(B) 3=-20(B) 15=-20(B) 16=-20(B) 19=3(B) 20=-74(B) 21=-74(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

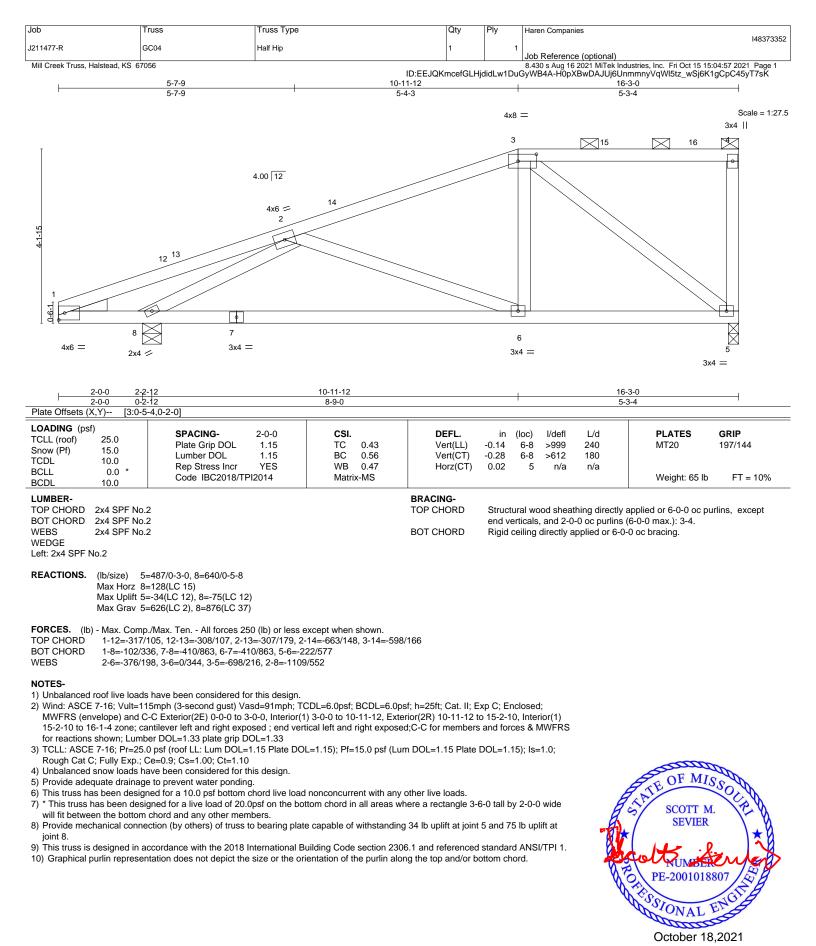


<u>2-0-0</u> 2-2 2-0-0 0-2	2 6-11-12 2 4-9-0			<u>16-3-0</u> 9-3-4		
	ge,0-0-11], [2:0-3-0,0-2-8]					
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.63 BC 0.72 WB 0.57 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl -0.18 5-6 >968 -0.36 5-6 >469 0.02 5 n/a	240 MT 180 n/a	ATES GRIP 120 197/144 eight: 61 lb FT = 10%
LUMBER- TOP CHORD 2x4 SPF No. BOT CHORD 2x4 SPF No. WEBS 2x4 SPF No. WEDGE Left: 2x4 SPF No.2	2		BRACING- TOP CHORD BOT CHORD	Structural wood sheath except end verticals, ar Rigid ceiling directly ap	nd 2-0-0 oc purlins (6-	0-0 max.): 2-4.
Max Horz 8 Max Uplift 5	=488/0-3-0, 8=639/0-5-8 =83(LC 15) =-33(LC 13), 8=-77(LC 12) =664(LC 36), 8=821(LC 2)					
TOP CHORD 2-3=-864/2 BOT CHORD 7-8=-251/8	n/Max. Ten All forces 250 (lb) or less 6 16 59, 6-7=-251/859, 5-6=-262/807 339, 3-5=-863/286	except when shown.				
 Wind: ASCE 7-16; Vult=1⁻¹ MWFRS (envelope) and C 11-5-10 to 16-1-4 zone; cc for reactions shown; Lumt TCLL: ASCE 7-16; Pr=25. Rough Cat C; Fully Exp.; (Unbalanced snow loads h Provide adequate drainag This truss has been desig * This truss has been desig * This truss has been desig Provide mechanical conne joint 8. This truss is designed in a 	ave been considered for this design.) 3-0-0 to 6-11-12, Exteri ical left and right expose L=1.15); Pf=15.0 psf (Lui nonconcurrent with any tom chord in all areas wi e capable of withstanding uilding Code section 230	ior(2R) 6-11-12 to d;C-C for members m DOL=1.15 Plate other live loads. here a rectangle 3- g 33 lb uplift at join 6.1 and referenced	11-5-10, Interior(1) s and forces & MWFRS DOL=1.15); Is=1.0; 6-0 tall by 2-0-0 wide t 5 and 77 Ib uplift at d standard ANSI/TPI 1.	TROFFICSSIT	OF MISSOUR SCOTT M. SEVIER NUMBER -2001018807

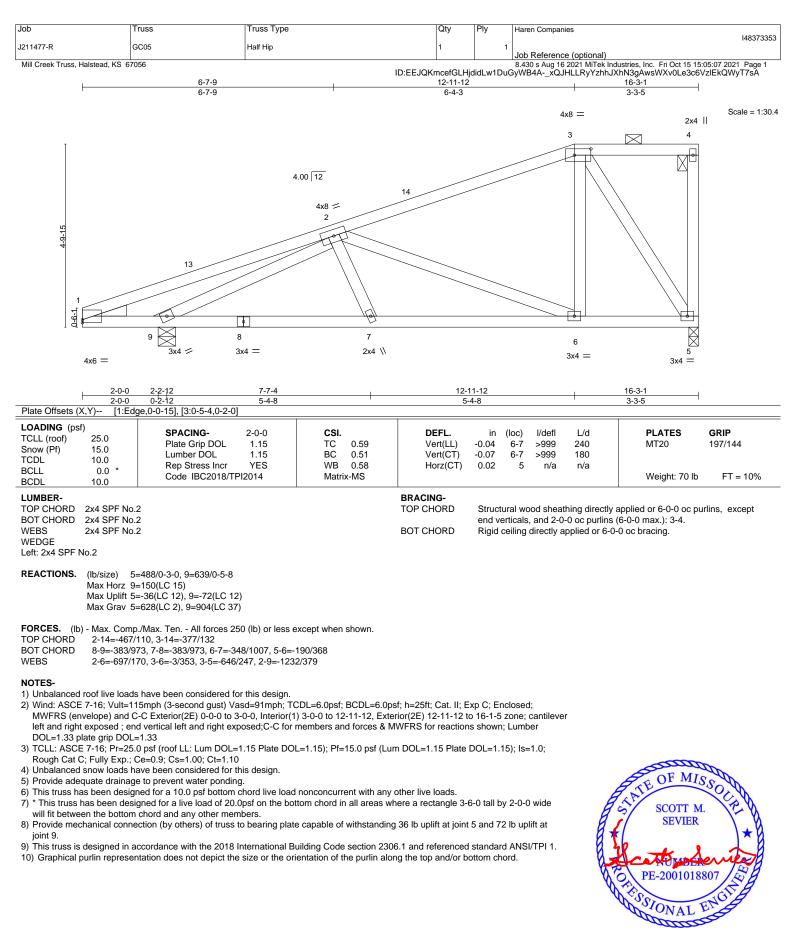
October 18,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

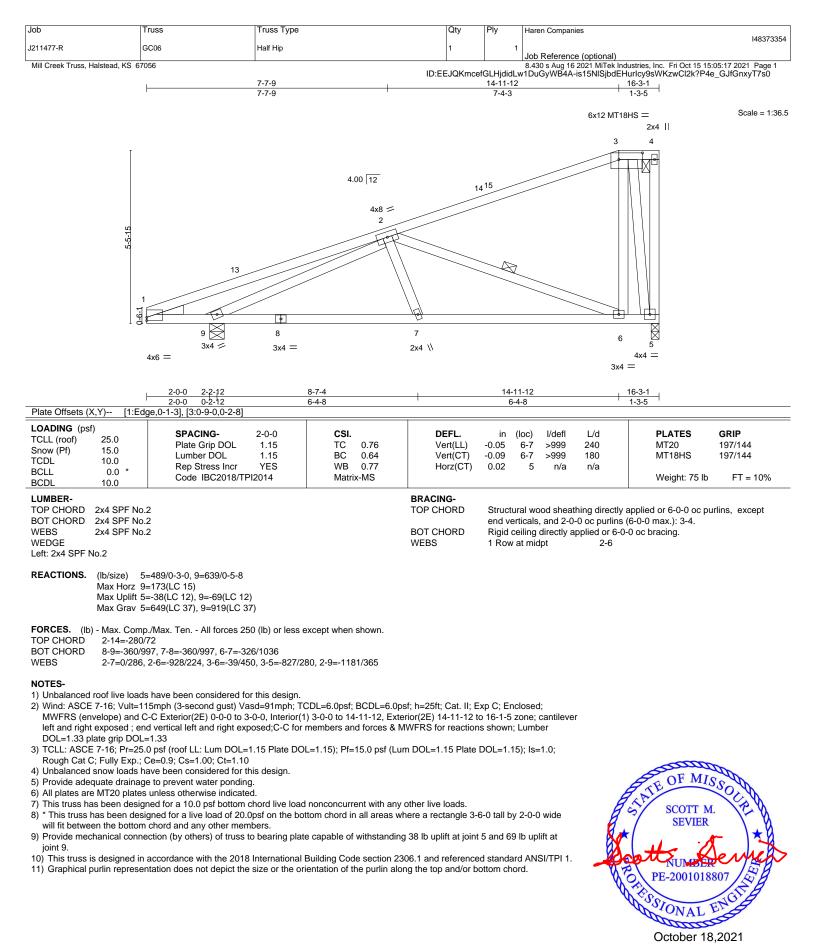
16023 Swingley Ridge Rd Chesterfield, MO 63017



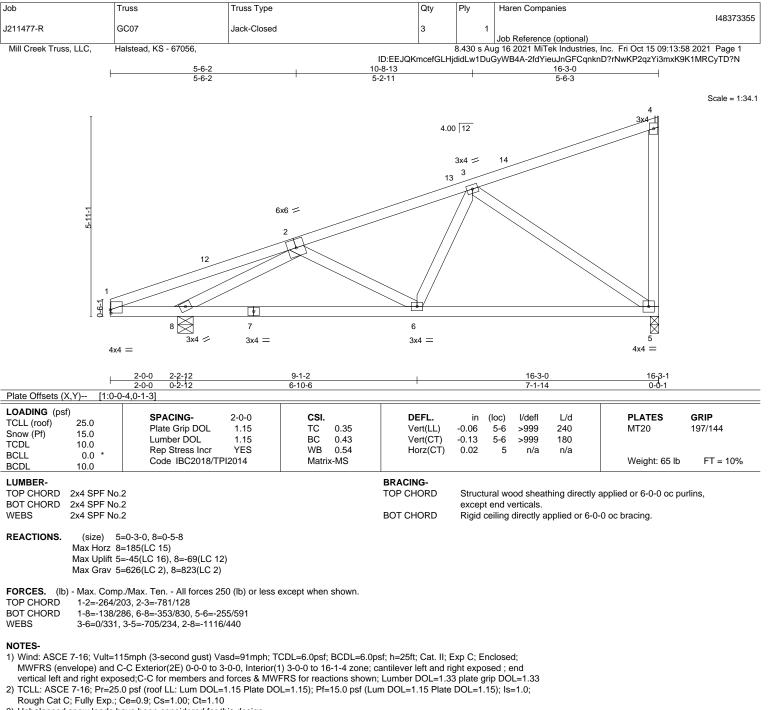
2-0-0 2-2-12	8-11-12				16-3-0	
2-0-0 0-2-12 Plate Offsets (X,Y) [3:0-5-8,0	0-2-0], [4:Edge,0-3-8]				7-3-4	
	J-2-0], [4.Euge,0-3-6]					
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.85 BC 0.43 WB 0.77 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl -0.06 5-6 >999 -0.12 5-6 >999 0.02 5 n/a	L/d 240 180 n/a	PLATES GRIP MT20 197/144 Weight: 62 lb FT = 10%
LUMBER-			BRACING-			
TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2			TOP CHORD		and 2-0-0 oc p	applied or 6-0-0 oc purlins, purlins (6-0-0 max.): 3-4. 0 oc bracing.
Max Grav 5=62	6(LC 15) 2(LC 12), 8=-77(LC 12) 4(LC 2), 8=833(LC 37)					
TOP CHORD1-2=-276/253,BOT CHORD1-8=-185/293,	ax. Ten All forces 250 (lb) or less 6 2-3=-828/208, 4-5=-291/122 6-8=-363/741, 5-6=-257/748 =-752/225, 2-8=-1077/487	xcept when shown.				
 MWFRS (envelope) and C-C I 13-2-11 to 16-1-4 zone; cantile for reactions shown; Lumber I TCLL: ASCE 7-16; Pr=25.0 ps Rough Cat C; Fully Exp.; Ce= Unbalanced snow loads have Provide adequate drainage to This truss has been designed * This truss has been designed * This truss has been designed will fit between the bottom chor 7) Provide mechanical connectio This truss is designed in acco 	been considered for this design. prevent water ponding. for a 10.0 psf bottom chord live load d for a live load of 20.0psf on the bot) 3-0-0 to 8-11-12, Extended and right exposion of the second sec	rior(2R) 8-11-12 to ed;C-C for member um DOL=1.15 Plate y other live loads. where a rectangle 3- ng 100 lb uplift at joi 06.1 and referenced	13-2-11, Interior(1) s and forces & MWFRS DOL=1.15); Is=1.0; -6-0 tall by 2-0-0 wide nt(s) 5, 8. d standard ANSI/TPI 1.		STATE OF MISSOL


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


October 18,2021

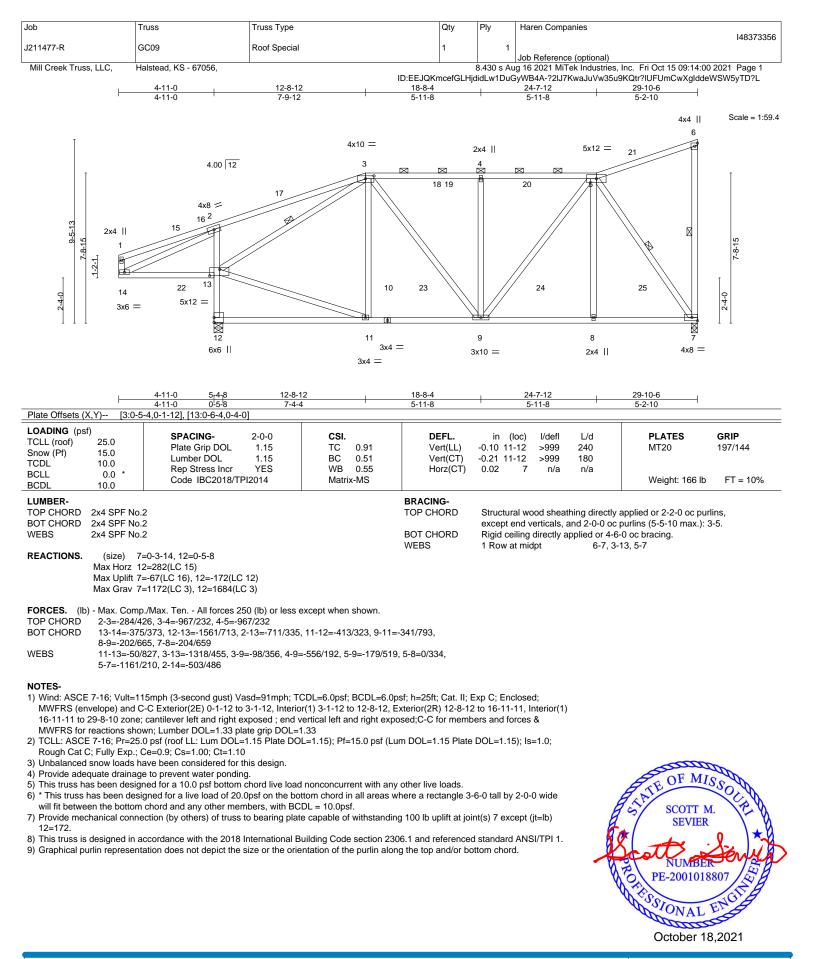
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Mitek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

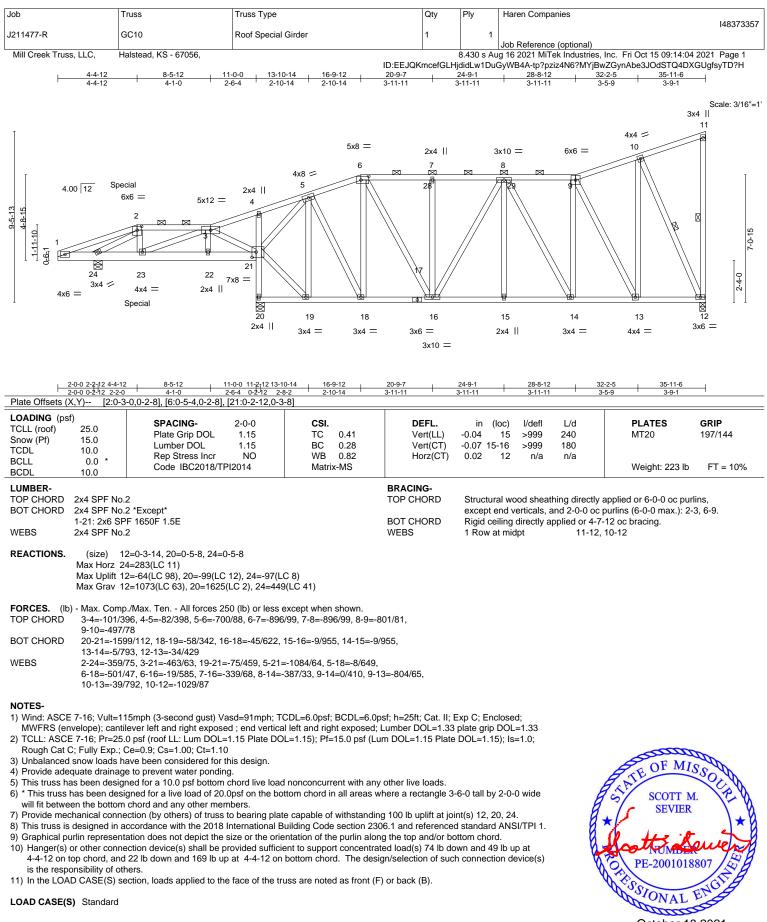
3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 8.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEX REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSITPII Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 October 18,202

16023 Swingley Ridge Rd Chesterfield, MO 63017

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Continued on page 2

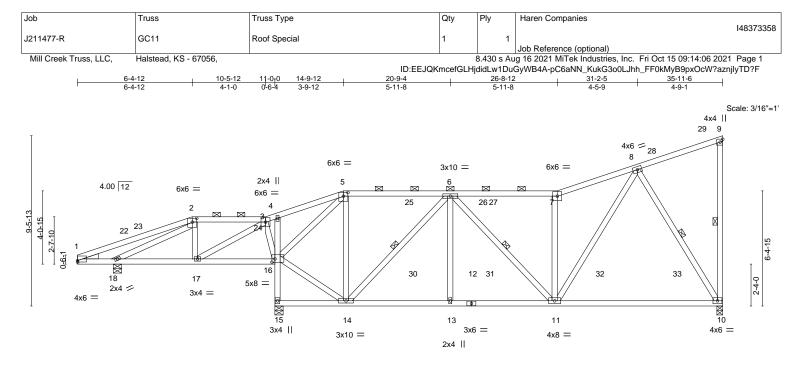
🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

E

October 18,2021

Job	Truss	Truss Type	Qty	Ply	Haren Companies
					148373357
J211477-R	GC10	Roof Special Girder	1	1	
					Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:14:04 2021 Page 2
		ID:EEJQK	mcefGLHj	didLw1Du0	GyWB4A-tp?pziz4N6?MYjBwZGynAbe3JOdSTQ4DXGUgfsyTD?H

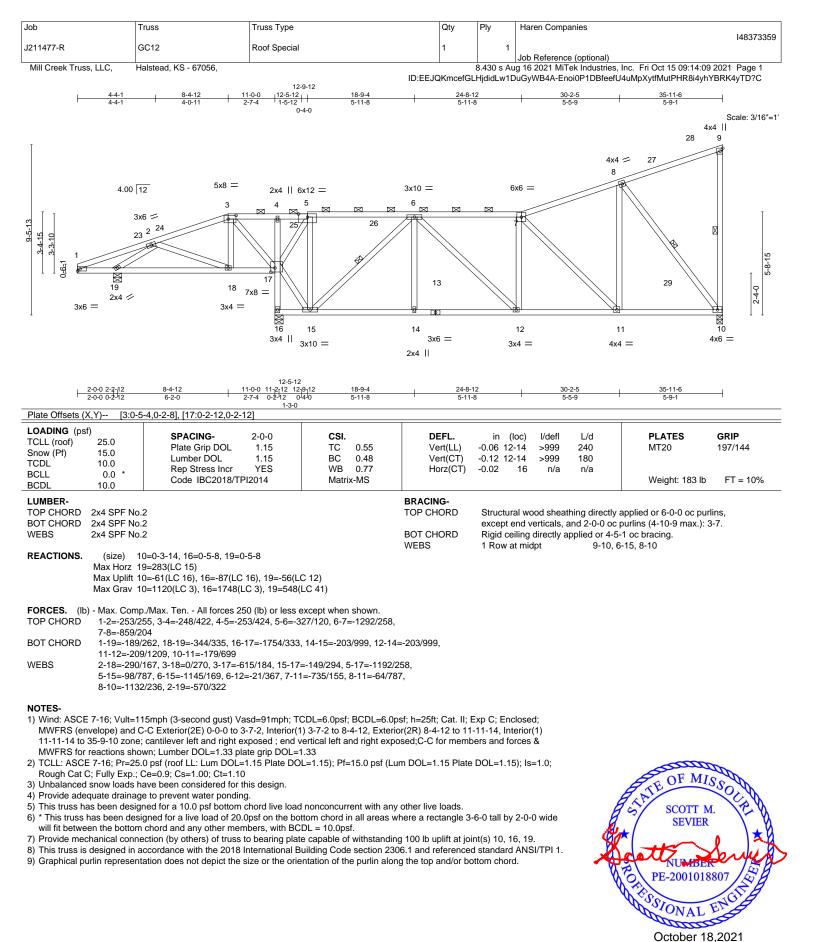
LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

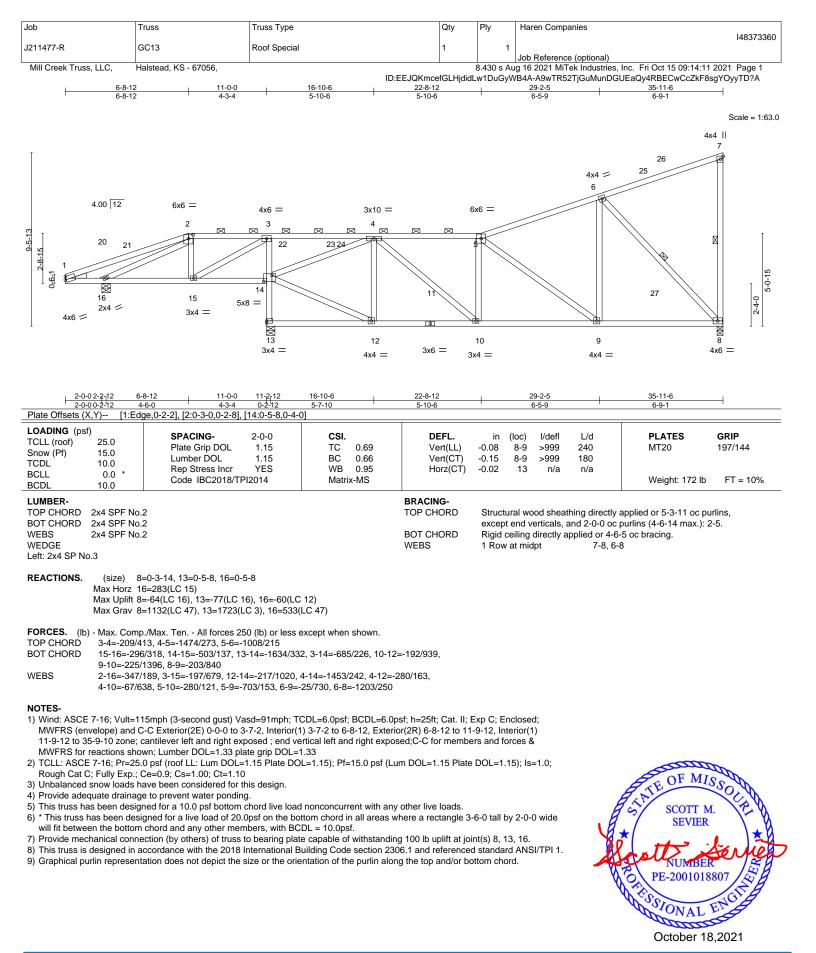
Uniform Loads (plf) Vert: 1-2=-50, 2-3=-50, 3-6=-50, 6-9=-50, 9-11=-50, 21-25=-20, 12-20=-20

Concentrated Loads (lb) Vert: 2=-24(B) 23=79(B)

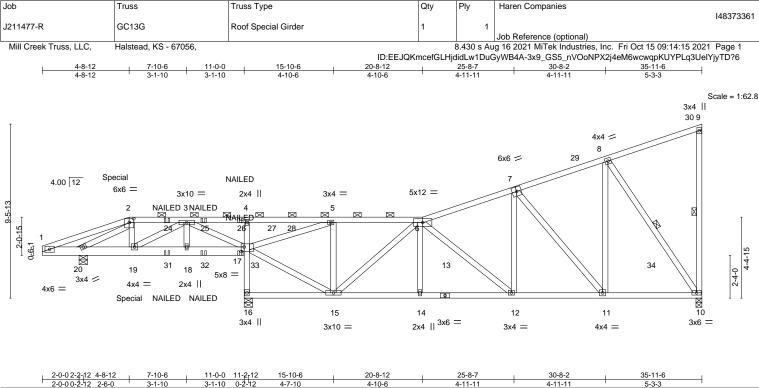
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



	2002242	6-4-12 11-0-0	11 2 12 1	10.10	20-	0.4	26-8-12			35-11-6	
ł	2-0-02-2-12	6-4-12 11-0-0 4-2-0 4-7-4	<u>11-2-12</u> 14 0-2-12 3	-9-12 3-7-0		1-8	5-11-8			9-2-10	
Plate Offsets	s (X,Y) [1:0-0	0-0,0-0-15], [2:0-3-0,0-2-8],	[5:0-3-0,0-2-8], [16:0-2-0	,0-2-4]						
LOADING (nsf)										
TCLL (roof)	25.0	SPACING-	2-0-0	CSI.		DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
Snow (Pf)	15.0	Plate Grip DOL	1.15	TC	0.59	Vert(LL)	-0.38 10-11	>782	240	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.86 0.56	Vert(CT)	-0.60 10-11	>490	180		
BCLL	0.0 *	Rep Stress Incr Code IBC2018/TPI	YES	WB Motri	0.56 x-MS	Horz(CT)	-0.02 15	n/a	n/a	Weight: 184 lb	FT = 10%
BCDL	10.0		2014	Iviati	X-1VI3					Weight. 164 lb	FT = 10%
LUMBER-						BRACING-					
TOP CHORE	D 2x4 SPF No	2				TOP CHORD	Structural wo	od sheat	hing directly	y applied or 5-0-5 oc pu	rlins,
BOT CHORE	D 2x4 SPF No.	2					except end v	erticals, a	and 2-0-0 of	c purlins (5-0-7 max.): 2	-3, 5-7.
WEBS	2x4 SPF No	2				BOT CHORD	Rigid ceiling	directly a	pplied or 4-	5-9 oc bracing.	
WEDGE						WEBS	1 Row at mic	lpt	9-10,	6-14, 6-11, 8-10	
Left: 2x4 SP	No.3										
REACTIONS	Max Horz 1 Max Uplift 1	0=0-3-14, 15=0-5-8, 18=0- 8=283(LC 15) 0=-62(LC 16), 15=-82(LC ^ 0=1181(LC 3), 15=1737(L(l6), 18=-57(LC								
FORCES. TOP CHORE		o./Max. Ten All forces 25 6, 3-4=-275/349, 4-5=-229									
	7-8=-1331	/308									
BOT CHORE		7/355, 16-17=-322/127, 15-	16=-1695/355	, 4-16=-323	3/129, 13-14	=-256/1123,					
		6/1123, 10-11=-187/561									
WEBS		(191, 3-17=-208/554, 3-16=									
	5-14=-24/5	49, 6-14=-862/135, 7-11=-	008/217, 8-11:	=-180/1159	, 8-10=-105	4/240					
NOTES-											
	CE 7-16: Vult=1	15mph (3-second gust) Va	sd=91mph: TC	DL=6.0psf	BCDL=6.0	osf: h=25ft: Cat. II:	Exp C: Enclose	d:			
		C-C Exterior(2E) 0-0-0 to 3-									
9-11-14 to	o 14-9-12, Exteri	or(2R) 14-9-12 to 18-4-14,	Interior(1) 18-	4-14 to 35-	9-10 zone; c	antilever left and ri	ght exposed ; e	nd			
		sed;C-C for members and								ann	Th
		.0 psf (roof LL: Lum DOL=1	.15 Plate DOL	.=1.15); Pf=	=15.0 psf (Lu	um DOL=1.15 Plate	e DOL=1.15); Is	=1.0;		STATE OF MI	de a
		Ce=0.9; Cs=1.00; Ct=1.10 ave been considered for th	ia design							RAL	20.0
,		e to prevent water ponding	0							AN MONT	Ne
		ned for a 10.0 psf bottom c		nonconcur	rent with any	other live loads			6	5 SCOTT	1. YE Y
		igned for a live load of 20.0					-6-0 tall by 2-0-	0 wide	E	7 / SEVIER	· \
will fit betw	ween the bottom	chord and any other mem	bers, with BCI	DL = 10.0ps	sf.	0	-		Й	Č.	1 * 8
		ection (by others) of truss to							R		
		accordance with the 2018 Ir						SI/TPI 1.	Y Y	Column	rever
9) Graphical	purlin represen	tation does not depict the s	ize or the orier	ntation of th	e purlin alor	ng the top and/or bo	ottom chord.		7	A PE-200101	3807 / SA
										N TO I	120
										Essional	NOT
										ONAL	ELA
										CONAL	5


October 18,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


0000001 10,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Mitek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

Plate Offsets (X,Y) [2	0-3-0,0-2-8], [17:0-2-0,0-3-0]					
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCodeIBC2018/TPI2014	CSI. TC 0.45 BC 0.51 WB 0.78 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl -0.07 12-14 >999 -0.13 12-14 >999 -0.02 16 n/a	L/d PLATES 240 MT20 180 n/a Weight: *	197/144
LUMBER- TOP CHORD 2x4 SPF BOT CHORD 2x4 SPF			BRACING- TOP CHORD		ing directly applied or 4-9-1 nd 2-0-0 oc purlins (5-8-0 ma	

1-17: 2x6 SPF 1650F 1.5E BOT CHORD Rigid ceiling directly applied or 4-7-13 oc bracing. WEBS 2x4 SPF No.2 WEBS 1 Row at midpt 9-10, 8-10

REACTIONS. (size) 10=0-3-14, 16=0-5-8, 20=0-5-8 Max Horz 20=283(LC 11) Max Uplift 10=-65(LC 82), 16=-134(LC 12), 20=-99(LC 8) Max Grav 10=1157(LC 75), 16=1632(LC 3), 20=472(LC 95)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

3-4=-52/538, 4-5=-55/529, 5-6=-1017/50, 6-7=-1317/69, 7-8=-808/76 TOP CHORD

- BOT CHORD 19-20=-321/195, 18-19=-316/138, 17-18=-316/138, 16-17=-1558/159, 4-17=-332/67,
- 14-15=-43/1515, 12-14=-45/1509, 11-12=-21/1142, 10-11=-34/653 WFBS
 - 2-20=-351/85, 3-17=-669/116, 15-17=-42/1020, 5-17=-1542/68, 5-15=-6/359,
 - 6-15=-842/20, 6-12=-501/39, 7-12=0/485, 7-11=-778/67, 8-11=-3/822, 8-10=-1139/90

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

- Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 6) will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 20 except (it=lb) 16=134.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 84 lb down and 53 lb up at 4-8-12 on top chord, and 20 lb down and 136 lb up at 4-8-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

12) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

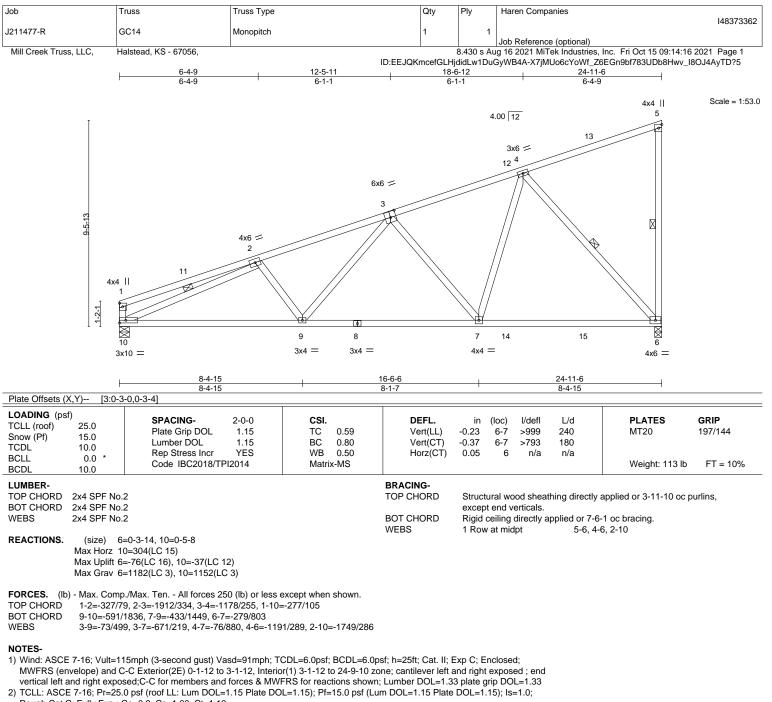
Continued on page 2

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Haren Companies		
					I48373361		
J211477-R	GC13G	Roof Special Girder	1	1			
					Job Reference (optional)		
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:14:15 2021 Page 2		
		ID:EEJQK	ID:EEJQKmcefGLHjdidLw1DuGyWB4A-3x9_GS5_nVOoNPX2j4eM6wcwqpKUYPLq3UelYjyTD?6				

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-2=-50, 2-6=-50, 6-9=-50, 17-21=-20, 10-16=-20

Concentrated Loads (lb)

Vert: 2=-33(F) 19=62(F) 24=-17(F) 25=-17(F) 26=-17(F) 31=27(F) 32=27(F) 33=27(F)

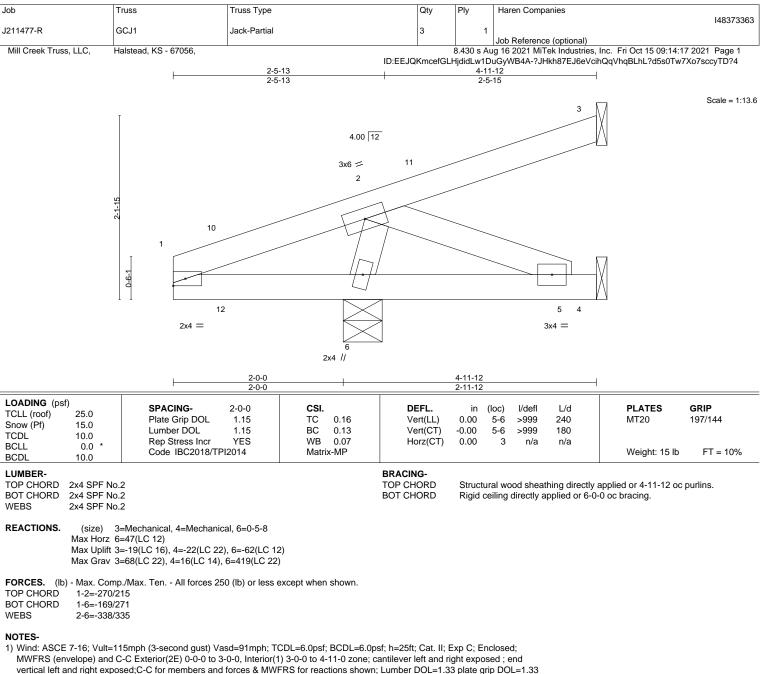
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5)

will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 10.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.3
 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

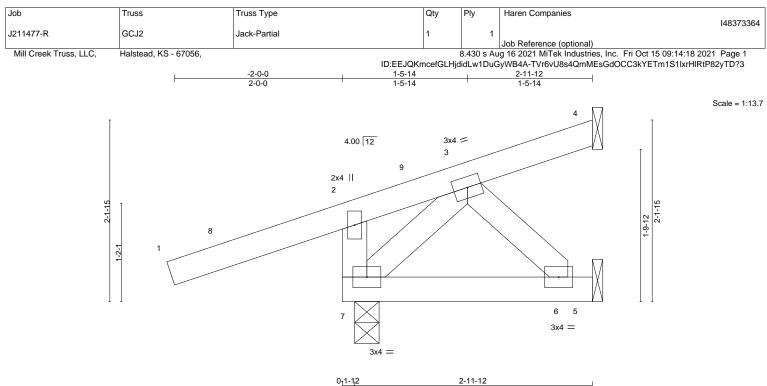
3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

NITEK° 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

					0 ⁻ 1-1 ²		2-10-0			I		
LOADING (pst TCLL (roof)	25.0	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC	0.35	DEFL. Vert(LL)	in -0.00	(loc) 6-7	l/defl >999	L/d 240	PLATES MT20	GRIP 197/144
Snow (Pf) TCDL	15.0 10.0	Lumber DOL Rep Stress Incr	1.15 YES	BC	0.07 0.03	Vert(CT) Horz(CT)	-0.01 0.00	6-7 4	>999 n/a	180 n/a		
BCLL BCDL	0.0 * 10.0	Code IBC2018/TF	912014	Matri	x-MP						Weight: 14 lb	FT = 10%

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING-TOP CHORD

BOT CHORD

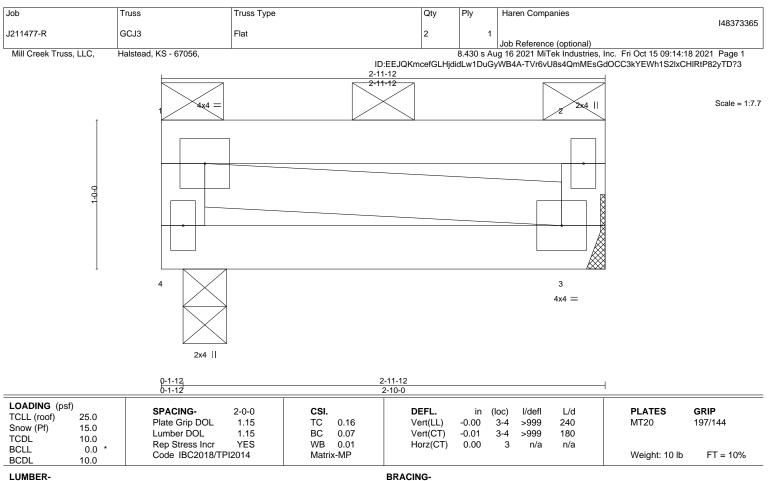
Structural wood sheathing directly applied or 2-11-12 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 4=Mechanical, 5=Mechanical, 7=0-3-8 Max Horz 7=47(LC 13) Max Uplift 4=-22(LC 12), 5=-54(LC 22), 7=-80(LC 12) Max Grav 4=70(LC 23), 5=43(LC 7), 7=359(LC 23)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-7=-365/362

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -2-0-9 to 0-11-7, Interior(1) 0-11-7 to 2-11-0 zone; cantilever left and right exposed; end vertical left and right exposed of C G for graphene and forces 0. NW/EPS for reactione about the under X-0.
- vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10


Unbalanced snow loads have been considered for this design.

- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5, 7.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

2-0-0 oc purlins: 1-2, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

REACTIONS. 4=0-3-8, 3=Mechanical (size) Max Horz 4=-22(LC 12) Max Uplift 4=-9(LC 10), 3=-9(LC 11)

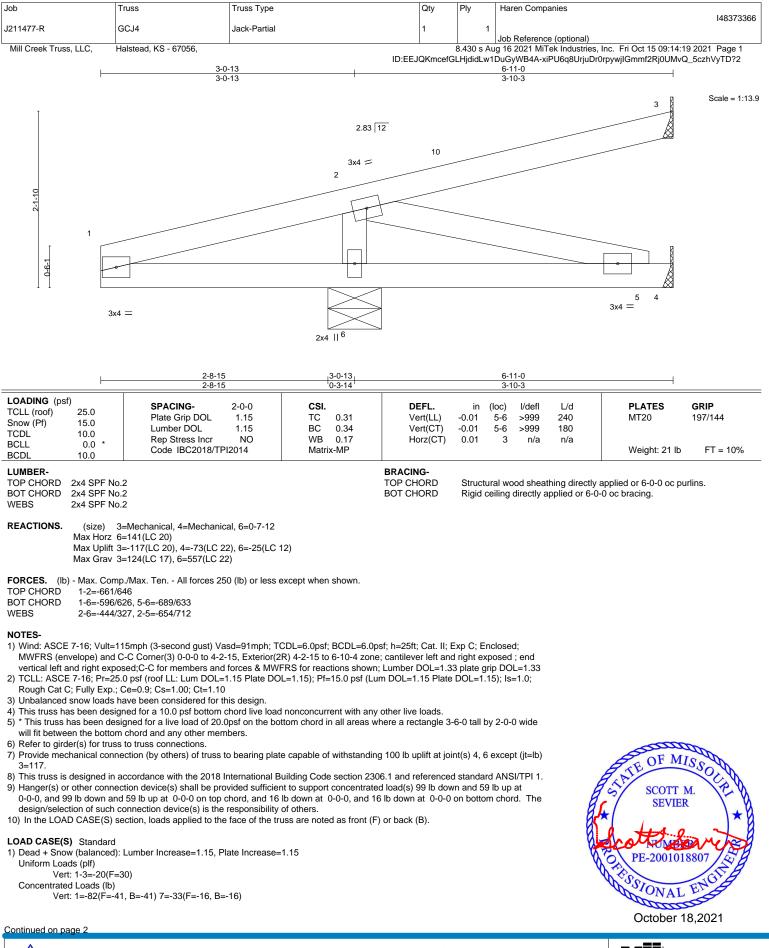
Max Grav 4=121(LC 2), 3=121(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

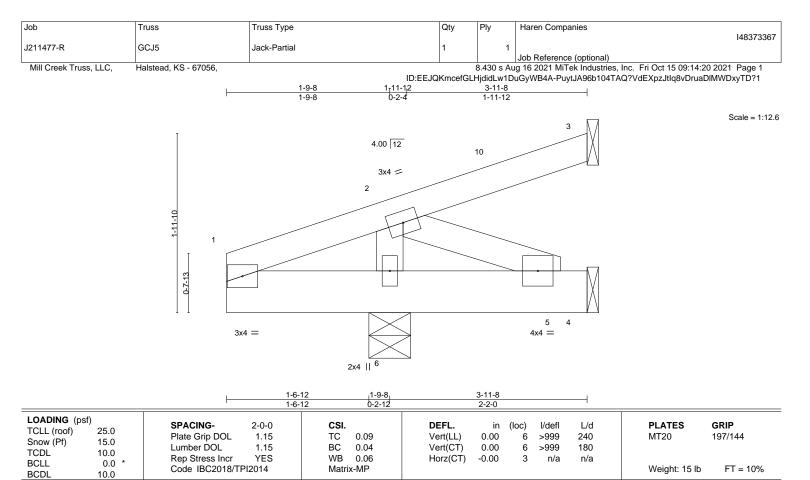
3) Provide adequate drainage to prevent water ponding.


- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 3.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUMBER-

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	Haren Companies	
J211477-R	GCJ4	Jack-Partial	1	1	148373366	
J211477-R	GCJ4	Jack-Parlia	1	1	Job Reference (optional)	
Mill Creek Truss, LLC.	Halstead. KS - 67056.	8.430 s Aug 16 2021 MiTek Industries, Inc. Fri Oct 15 09:14:19 2021 Page 2				
		ID:EEJ	EEJQKmcefGLHjdidLw1DuGyWB4A-xiPU6q8UrjuDr0rpywjIGmmf2Rj0UMvQ_5czhVyTD?2			

LOAD CASE(S) Standard

Trapezoidal Loads (plf) Vert: 7=0(F=10, B=10)-to-6=-34(F=-7, B=-7), 6=-0(F=10, B=10)-to-4=-47(F=-14, B=-14)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

BOT CHORD

LUMBER-	

 TOP CHORD
 2x4 SPF No.2

 BOT CHORD
 2x6 SPF 1650F 1.5E

 WEBS
 2x4 SPF No.2

REACTIONS. (size) 3=Mechanical, 4=Mechanical, 6=0-5-8 Max Horz 6=37(LC 12) Max Uplift 3=-17(LC 16), 4=-32(LC 22), 6=-49(LC 12) Max Grav 3=58(LC 22), 4=13(LC 12), 6=331(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-6=-239/270

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 3-10-12 zone; cantilever left and right exposed; end

vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33 (2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

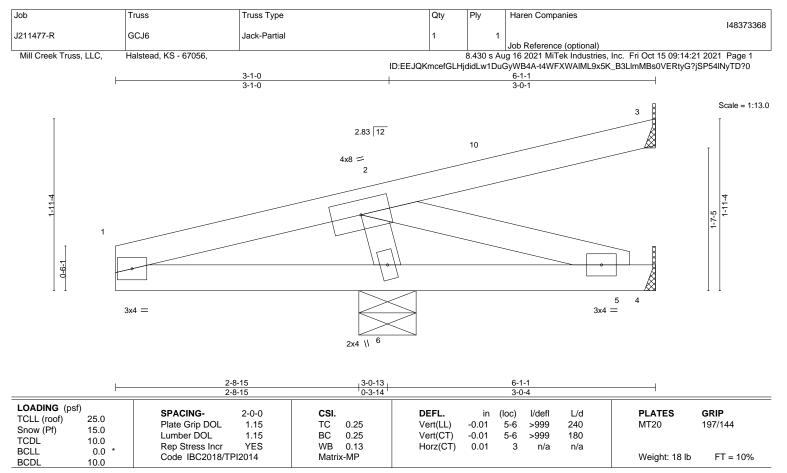
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



Structural wood sheathing directly applied or 3-11-8 oc purlins.

Rigid ceiling directly applied or 6-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 4=Mechanical, 6=0-7-12 Max Horz 6=40(LC 12) Max Uplift 3=-21(LC 16), 4=-89(LC 22), 6=-107(LC 12) Max Grav 3=72(LC 22), 4=38(LC 12), 6=564(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-559/337

BOT CHORD 1-6=-296/554, 5-6=-327/479

WEBS 2-5=-506/345, 2-6=-464/609

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) 0-0-0 to 4-2-15, Exterior(2R) 4-2-15 to 6-0-5 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

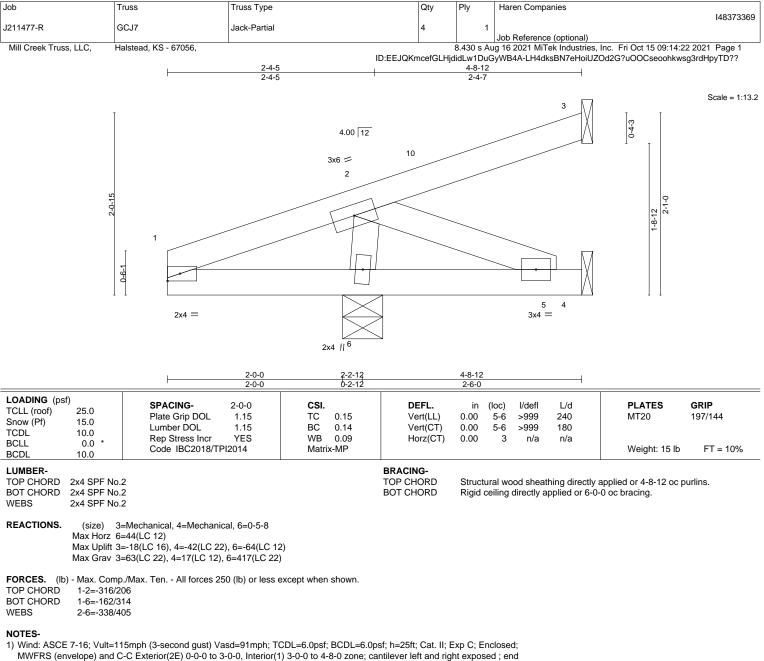
Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4 except (jt=lb) 6=107.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

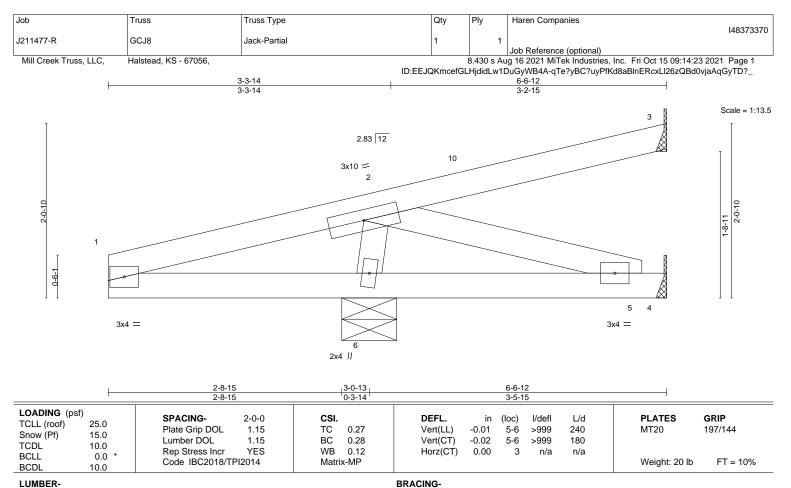
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5)

will fit between the bottom chord and any other members.


6) Refer to girder(s) for truss to truss connections.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 6.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD WEBS

2x4 SPF No.2 2x4 SPF No.2

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. 3=Mechanical, 4=Mechanical, 6=0-7-12 (size) Max Horz 6=44(LC 12) Max Uplift 3=-22(LC 16), 4=-46(LC 22), 6=-100(LC 12) Max Grav 3=80(LC 22), 4=32(LC 12), 6=555(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-582/357

BOT CHORD 1-6=-315/580, 5-6=-211/326

WEBS 2-5=-343/222, 2-6=-451/574

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) 0-0-0 to 4-2-15, Exterior(2R) 4-2-15 to 6-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

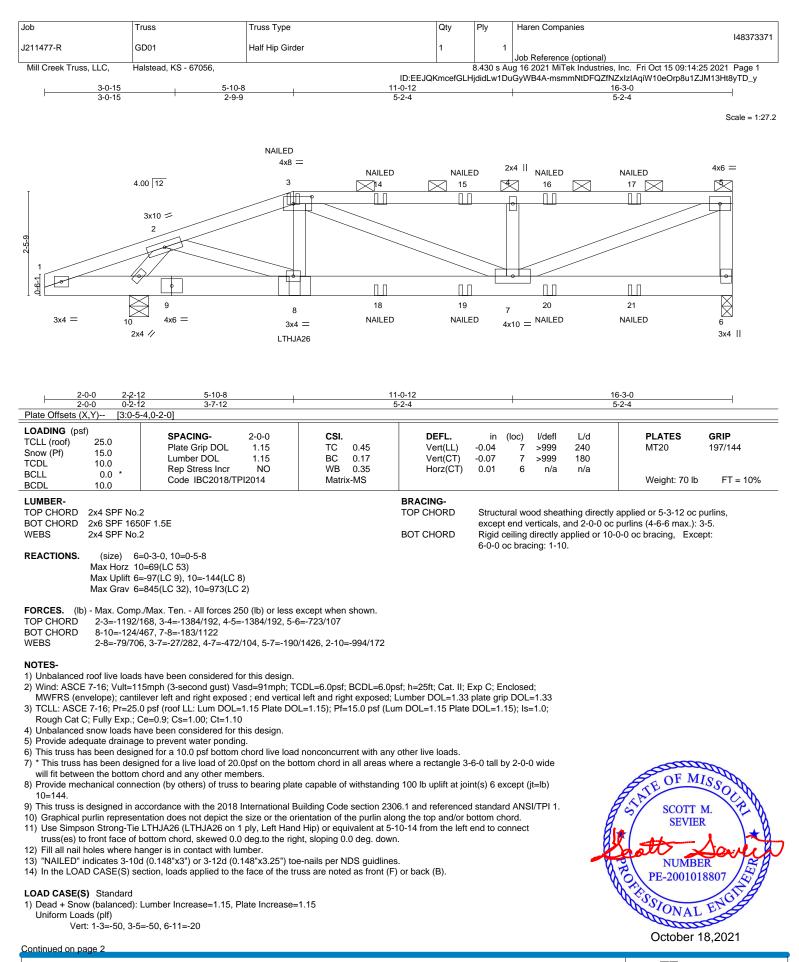
Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

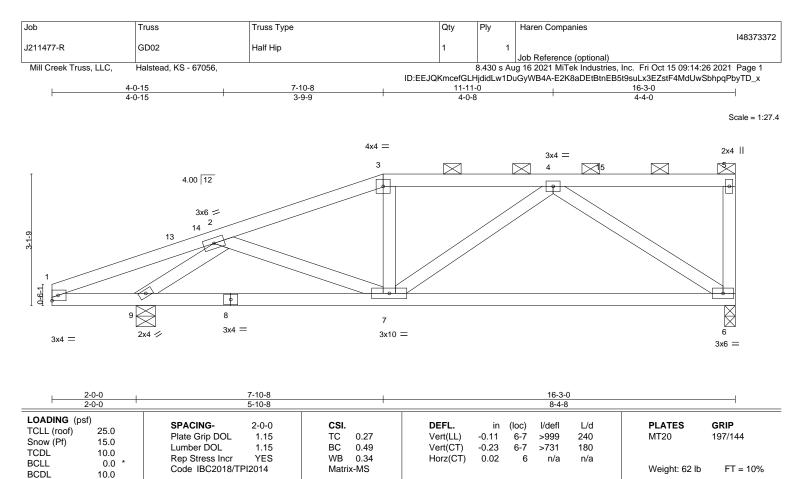

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	Haren Companies			
					I48373371			
J211477-R	GD01	Half Hip Girder	1	1				
					Job Reference (optional)			
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	ug 16 2021 MiTek Industries, Inc. Fri Oct 15 09:14:25 2021 Page 2			
			ID:EEJQKmcefGLHjdidLw1DuGyWB4A-msmmNtDFQZfNZxIzIAqiW10eOrp8u1ZJM13Ht8yTD_y					

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 3=-33(F) 8=-145(F) 14=-33(F) 15=-33(F) 16=-13(F) 17=-7(F) 18=-4(F) 19=-4(F) 20=-59(F) 21=-86(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2

WEBS 2x4 SPF No.2

REACTIONS. (size) 6=0-3-0, 9=0-5-8 Max Horz 9=93(LC 15) Max Uplift 6=-32(LC 13), 9=-79(LC 12) Max Grav 6=642(LC 36), 9=827(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-253/287, 2-3=-868/196, 3-4=-779/198

BOT CHORD 1-9=-222/265, 7-9=-318/671, 6-7=-238/655

WEBS 4-6=-750/255, 2-9=-1084/446

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 7-10-8, Exterior(2R) 7-10-8 to 11-11-0, Interior(1) 11-11-0 to 16-1-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS

for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) Provide adequate drainage to prevent water ponding.

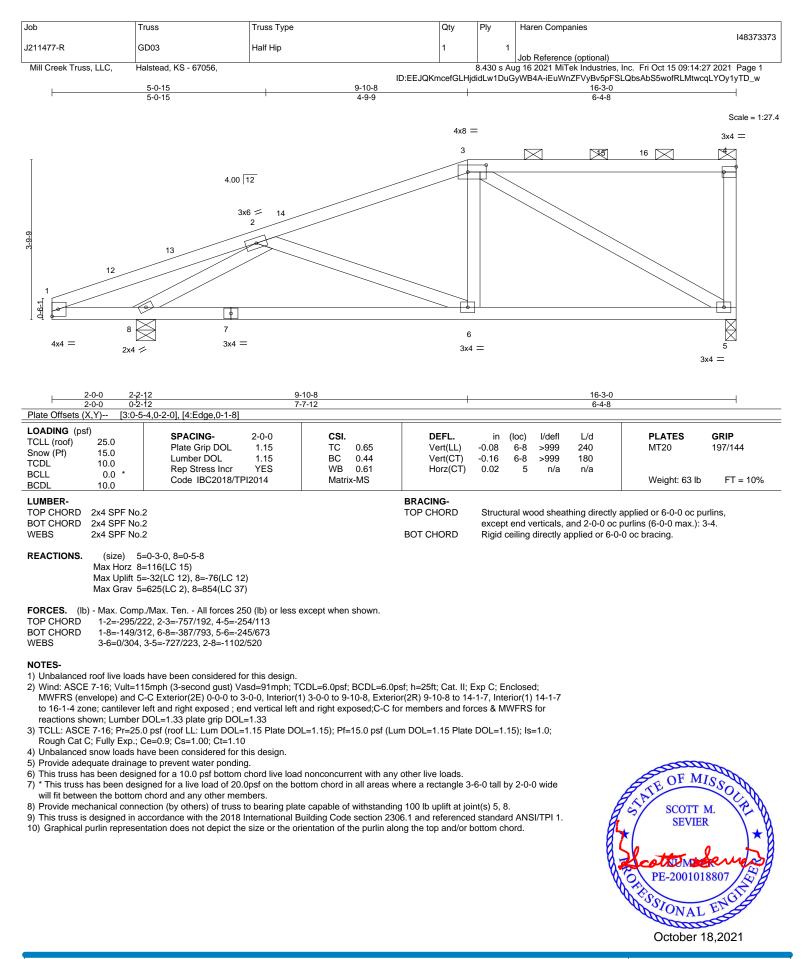
6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 9.

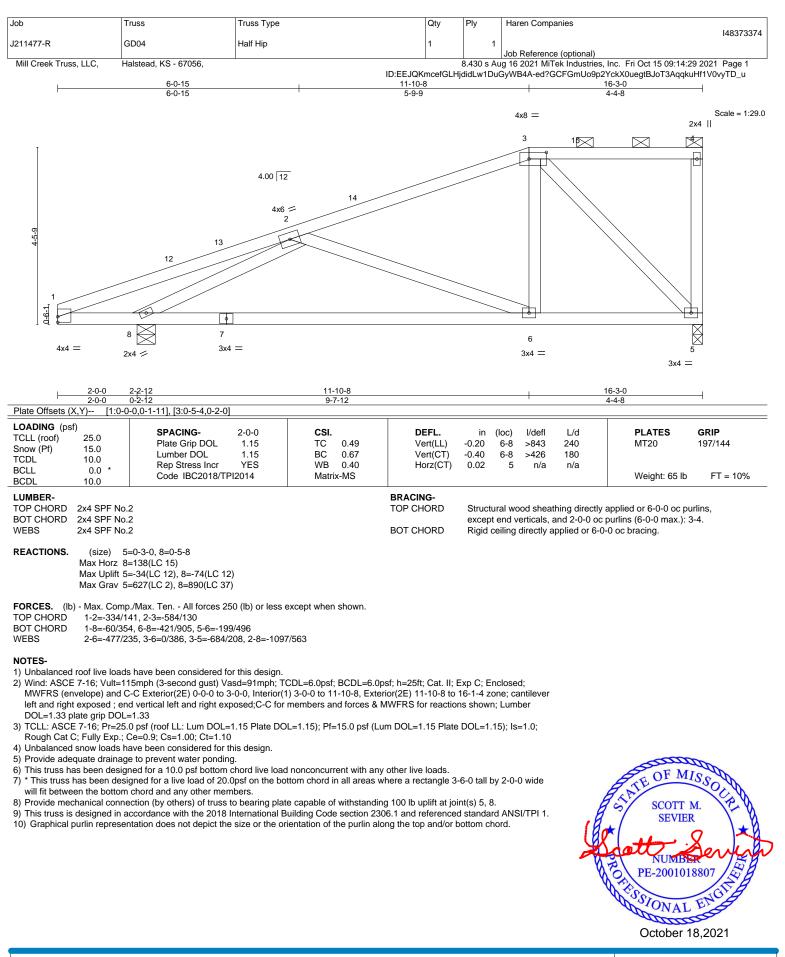
9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

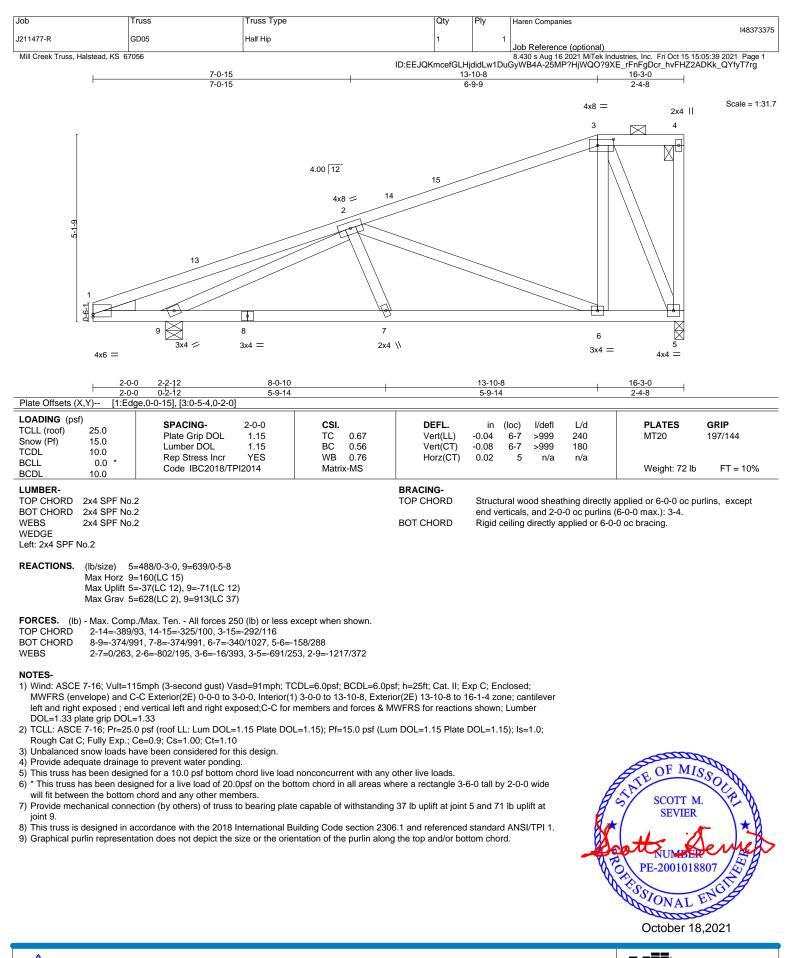
10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


Structural wood sheathing directly applied or 6-0-0 oc purlins,

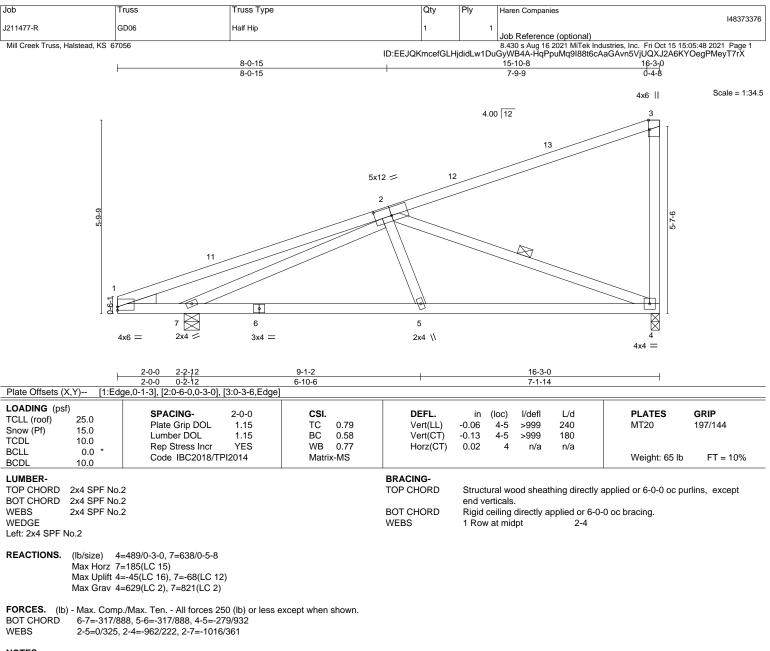
except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-5.

Rigid ceiling directly applied or 6-0-0 oc bracing.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Mitek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 16-1-4 zone; cantilever left and right exposed ; end

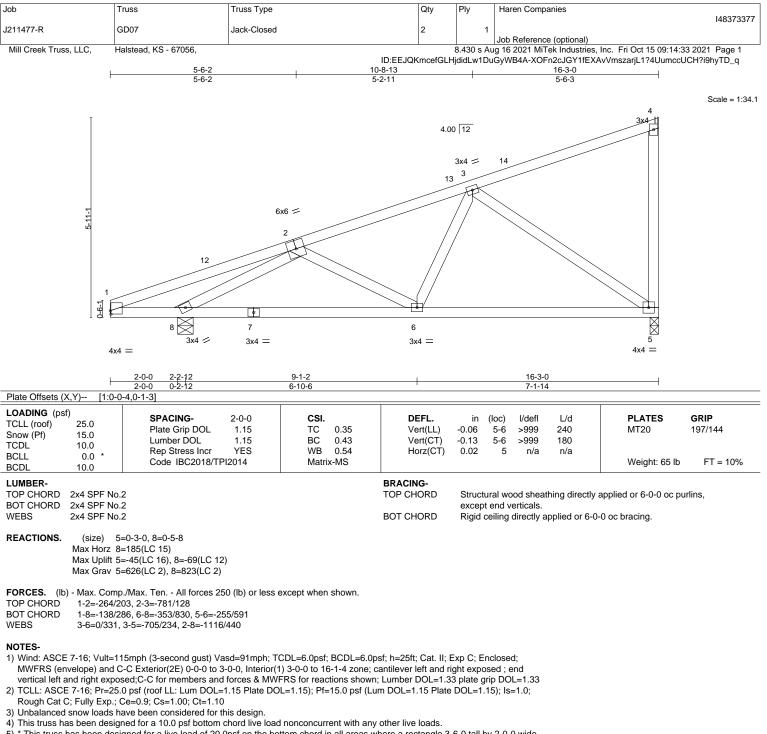
vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

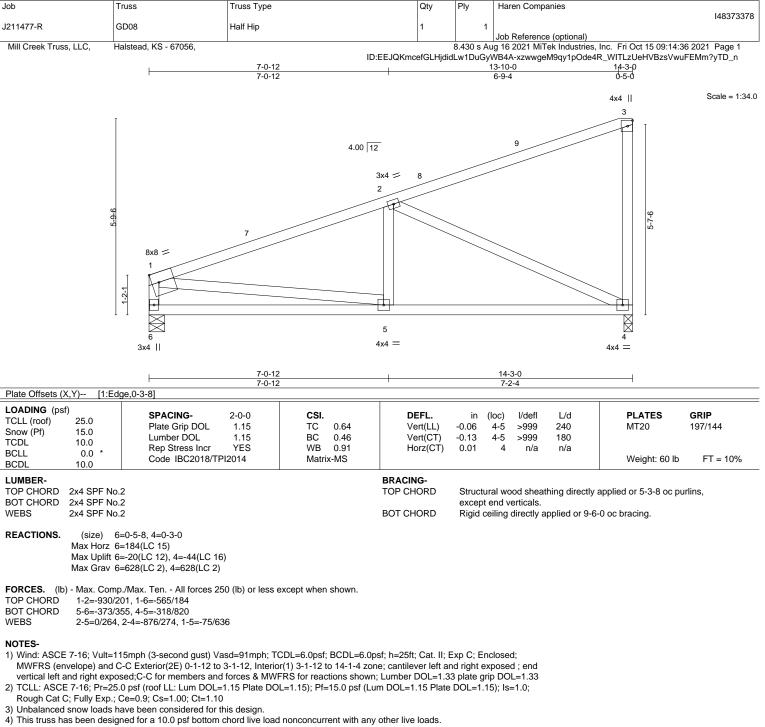
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 45 lb uplift at joint 4 and 68 lb uplift at ioint 7.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

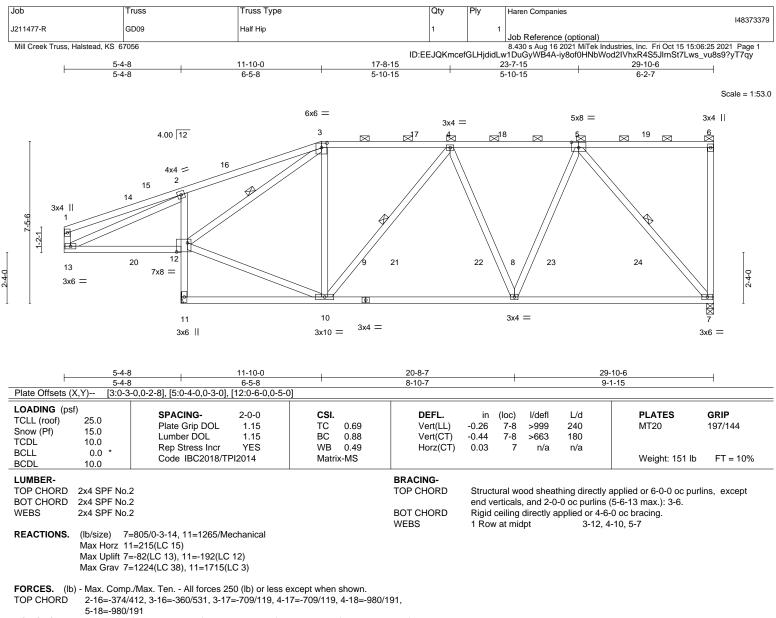
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 8.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss systems. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems. See **ANS/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

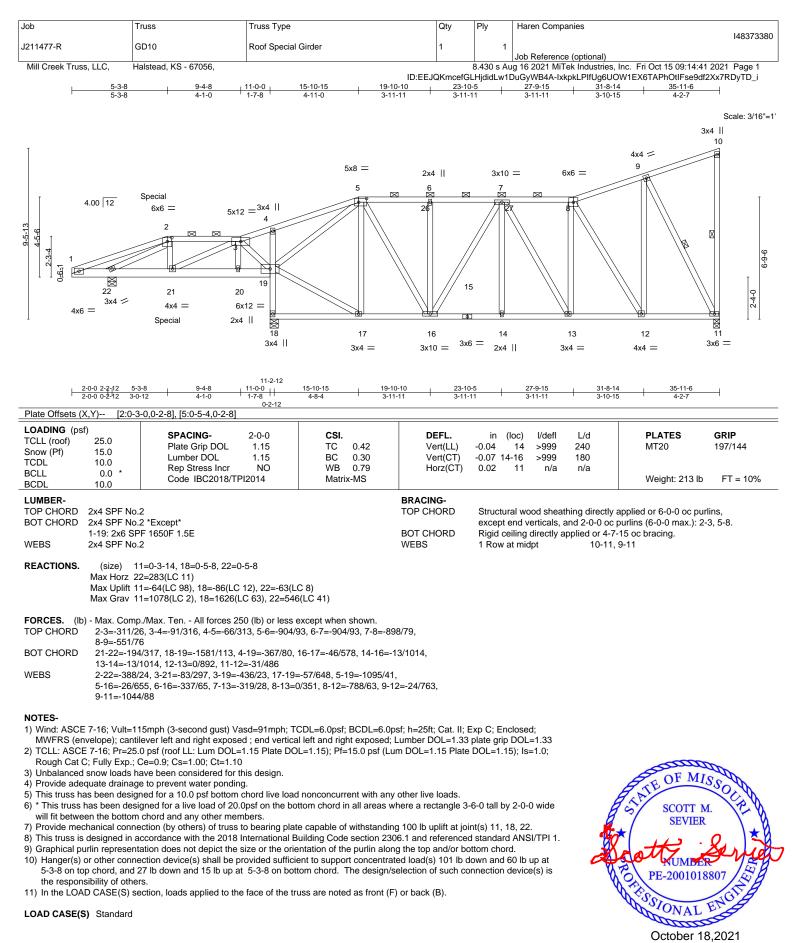
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 4.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- BOT CHORD 13-20=-454/434, 12-20=-450/435, 11-12=-1628/748, 2-12=-651/315, 10-11=-304/241, 9-10=-261/1000, 9-21=-261/1000, 21-22=-261/1000, 8-22=-261/1000, 8-23=-217/783, 23-24=-217/783, 7-24=-217/783 WERS 10-260/255, 3-10=-25/388, 4-10=-468/155, 5-8=0/515, 5-7=-1177/2
- WEBS 10-12=0/755, 3-12=-1356/526, 3-10=-25/388, 4-10=-468/155, 5-8=0/515, 5-7=-1177/236, 2-13=-597/607


NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 11-10-0, Exterior(2R) 11-10-0 to 16-0-14, Interior(1) 16-0-14 to 29-8-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 82 lb uplift at joint 7 and 192 lb uplift at joint 11.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

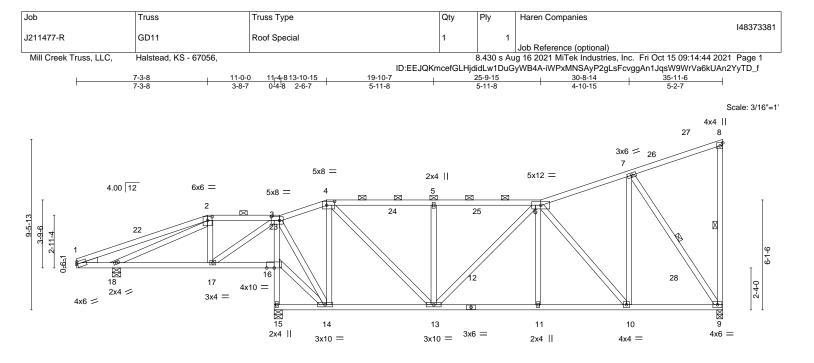
Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Haren Companies			
					148373380			
J211477-R	GD10	Roof Special Girder	1	1				
					Job Reference (optional)			
Mill Creek Truss, LLC,	Halstead, KS - 67056,	8.430 s Aug 16 2021 MiTek Industries, Inc. Fri Oct 15 09:14:42 2021 Page 2						
			ID:EEJQKmcefGLHjdidLw1DuGyWB4A-m7IBxhQwQooy6Y5EoFdiicDZdib5NctpHAhh fyTD h					

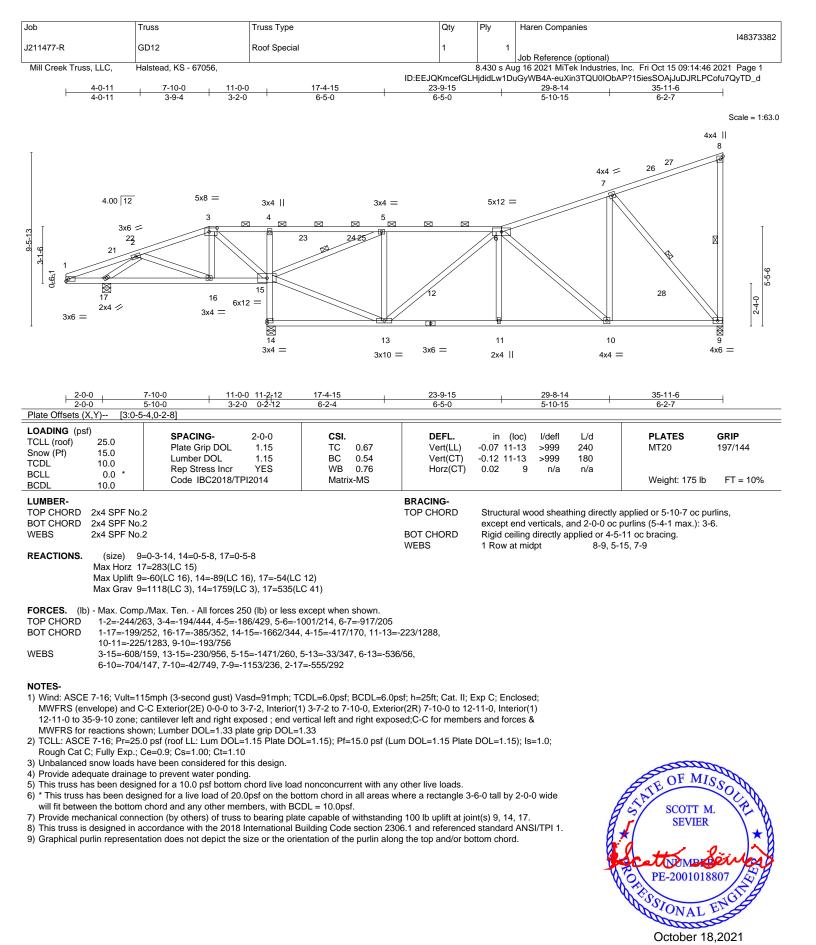
LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-50, 2-3=-50, 3-5=-50, 5-8=-50, 8-10=-50, 19-23=-20, 11-18=-20 Concentrated Loads (lb)

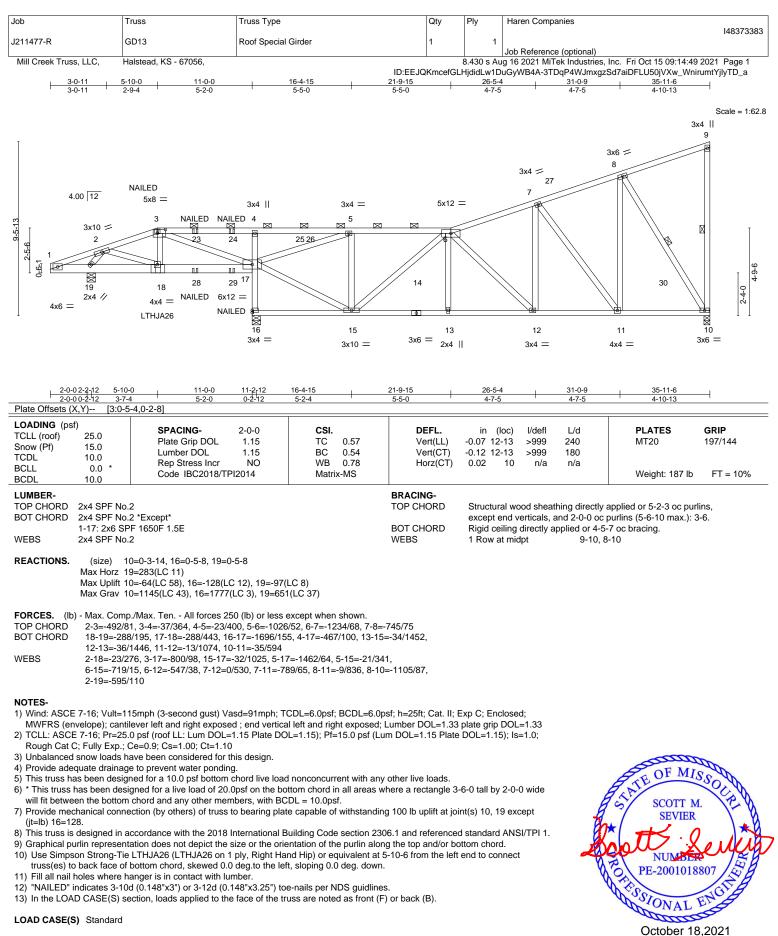
Vert: 2=-51(F) 21=3(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



2-0-0 2-2-12	7-3-8 5-0-12	<u>11-0-0 11-2-12 13-1</u> 3-8-7 0-2-12 2-	0-15	19-10-7 5-11-8		25-9-15 5-11-8		30-8-14 4-10-15	35-11-6	
Plate Offsets (X,Y) [1:0-0										
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DO Lumber DOL Rep Stress In Code IBC20	ncr YES	BC C	0.69 0.75 0.84 MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.07 11-13 -0.12 11-13 -0.02 15	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 188 lb	GRIP 197/144 FT = 10%
LUMBER- TOP CHORD 2x4 SPF No. BOT CHORD 2x4 SPF No. WEBS 2x4 SPF No. WEDGE Left: 2x4 SP No.3	2			Ī	BRACING- TOP CHORD BOT CHORD WEBS	except end v	erticals, directly a	and 2-0-0 of	y applied or 6-0-0 oc pu c purlins (4-11-5 max.): 7-15 oc bracing. 7-9	
REACTIONS. (size) 9=0-3-14, 15=0-5-8, 18=0-5-8 Max Horz 18=283(LC 15) Max Uplift 9=-66(LC 16), 15=-68(LC 16), 18=-67(LC 12) Max Grav 9=1169(LC 3), 15=1565(LC 3), 18=635(LC 55)										
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-417/117, 3-4=-653/199, 4-5=-1236/305, 5-6=-1236/305, 6-7=-815/212 BOT CHORD 17-18=-290/397, 15-16=-1547/334, 3-16=-1406/312, 13-14=-165/498, 11-13=-224/1199, 10-11=-225/1195, 9-10=-178/662 WEBS 2-18=-513/231, 3-17=-207/464, 3-14=-159/912, 4-14=-753/252, 4-13=-139/928, 5-13=-562/193, 6-10=-827/188, 7-10=-110/871, 7-9=-1168/252										
 NOTES- 1) Wind: ASCE 7-16; Vult=11 MWFRS (envelope) and C 10-10-11 to 13-10-15, Ext vertical left and right expose 2) TCLL: ASCE 7-16; PT=25. Rough Cat C; Fully Exp.; (3) Unbalanced snow loads h 4) Provide adequate drainag 5) This truss has been desig (6) * This truss has been desig (7) Provide mechanical connection (8) This truss is designed in a (9) Graphical purlin represent 	C-C Exterior(2E) 0-0- erior(2R) 13-10-15 to sed;C-C for member 0 psf (roof LL: Lum I Ce=0.9; Cs=1.00; Ct ave been considered ave been considered to prevent water p ned for a 10.0 psf bc gned for a live load chord and any othe action (by others) of ccordance with the 2	0 to 3-7-2, Interior(1 o 17-6-1, Interior(1) s and forces & MWI DOL=1.15 Plate DO =1.10 d for this design. onding. ottom chord live load of 20.0psf on the bo r members, with BC truss to bearing plat 2018 International B) 3-7-2 to 7-3-1 17-6-1 to 35-9- RS for reactio L=1.15); Pf=15 nonconcurren tom chord in a DL = 10.0psf. e capable of w uilding Code s	8, Exterior(2 -10 zone; ca ons shown; L 5.0 psf (Lum ht with any of all areas whe vithstanding section 2306.	R) 7-3-8 to 10-11 ntilever left and umber DOL=1.3 DOL=1.15 Plate ther live loads. ere a rectangle 3 100 lb uplift at joi 1 and reference	0-11, Interior(1) right exposed ; 3 plate grip DC • DOL=1.15); Is -6-0 tall by 2-0- int(s) 9, 15, 18. d standard ANS	end L=1.33 =1.0; 0 wide		CHIE OF MI SEVIER	4. P- 8.007

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


NITEK° 16023 Swingley Ridge Rd Chesterfield, MO 63017

October 18,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

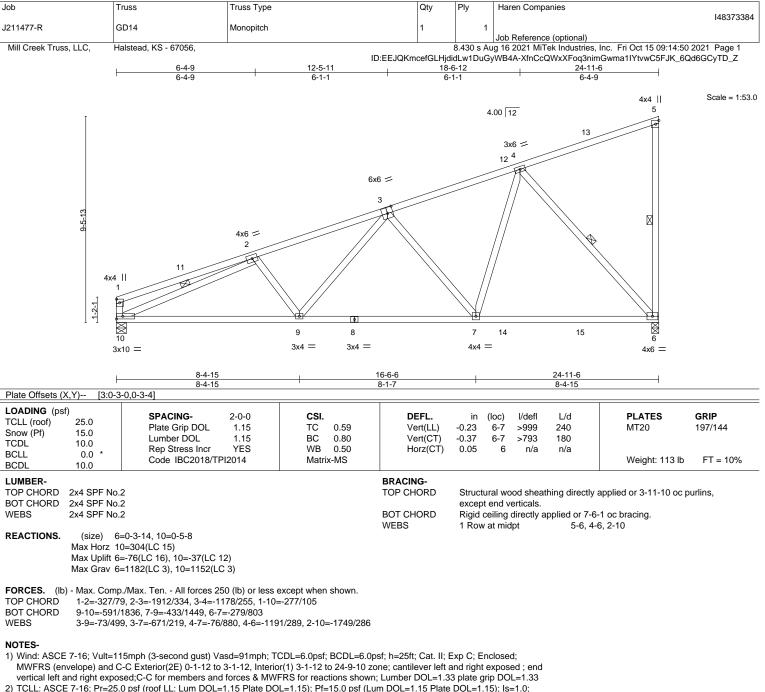
16023 Swingley Ridge Rd Chesterfield, MO 63017

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Haren Companies			
1044477 D	0040	De ef Ceneriel Oinder			148373383			
J211477-R	GD13	Roof Special Girder	1	1	lah Deference (antional)			
					Job Reference (optional)			
Mill Creek Truss, LLC,	Halstead, KS - 67056,	8.430 s Aug 16 2021 MiTek Industries, Inc. Fri Oct 15 09:14:49 2021 Page 2						
		ID:EEJQ	ID:EEJQKmcefGLHjdidLw1DuGyWB4A-3TDgP4WJmxgzSd7aiDFLU50jVXw_WnirumtYjIyTD_a					

LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-50, 3-6=-50, 6-9=-50, 17-20=-20, 10-16=-20

Concentrated Loads (lb) Vert: 3=-33(B) 18=-148(B) 23=-33(B) 24=-33(B) 28=-12(B) 29=-12(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

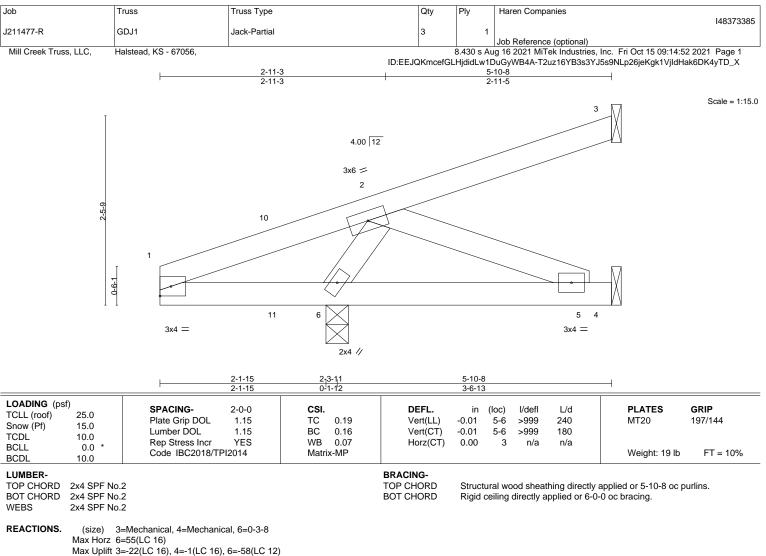
2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5)

will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 10.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Grav 3=83(LC 22), 4=46(LC 7), 6=443(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 1-2=-302/239

TOP CHORD

BOT CHORD 1-6=-188/307

WEBS 2-6=-376/329

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 2-10-8, Interior(1) 2-10-8 to 5-9-12 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

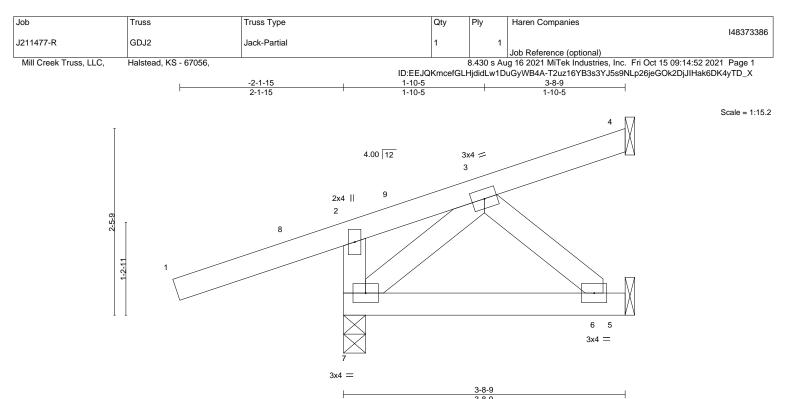
3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5)

will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

				3-8-9					
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.40 BC 0.12 WB 0.03 Matrix-MP	- ()	-0.01	6-7 >	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 17 lb	GRIP 197/144 FT = 10%

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-8-9 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 4=Mechanical, 5=Mechanical, 7=0-3-8 Max Horz 7=54(LC 13)

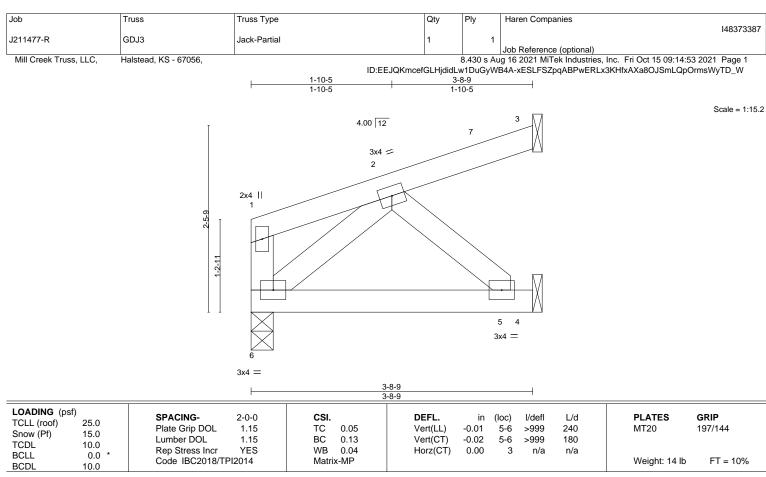
Max Uplift 4=-24(LC 12), 5=-35(LC 22), 7=-83(LC 12)

Max Grav 4=80(LC 23), 5=64(LC 7), 7=400(LC 23)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-7=-374/366

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -2-2-8 to 0-9-8, Interior(1) 0-9-8 to 3-7-13 zone; cantilever left and right exposed; end wortical left and right exposed; C for emphase and forces and forces is NM/EPS for coordinate advance in the provided of the


Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5, 7.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 3-8-9 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 4=Mechanical, 6=0-3-8

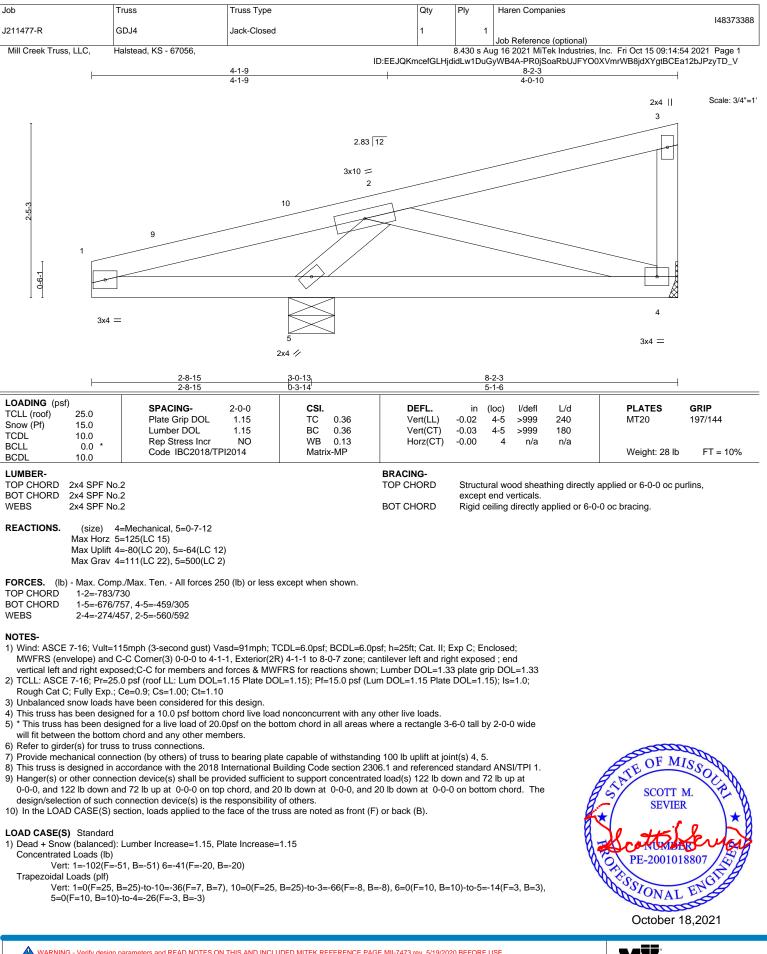
Max Horz 6=42(LC 13)

Max Uplift 3=-13(LC 16), 4=-9(LC 16) Max Grav 3=53(LC 22), 4=106(LC 22), 6=159(LC 22)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

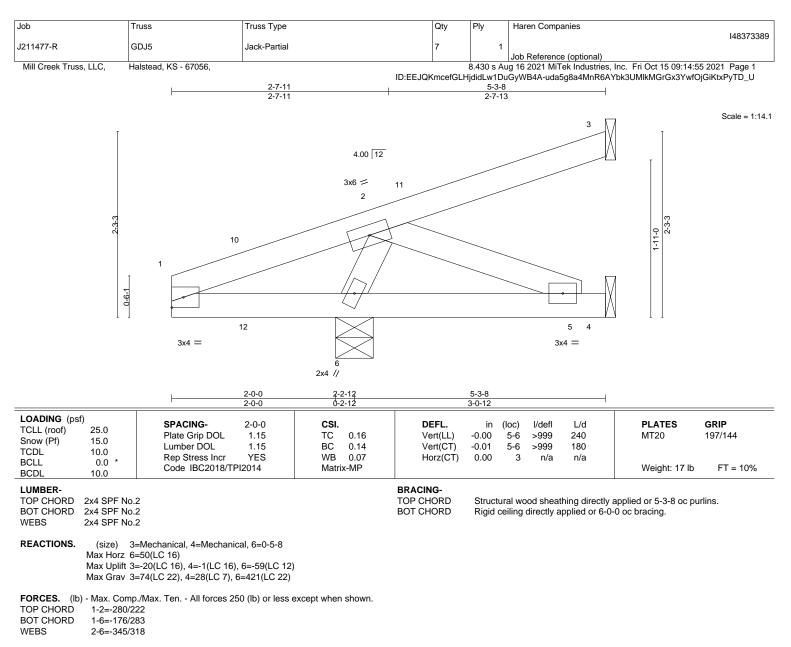
NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 3-7-13 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10


Cough Cat C, Fully Exp., Ce=0.9, Cs=1.00, Ct=1.10
 Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

MiTek

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 5-2-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

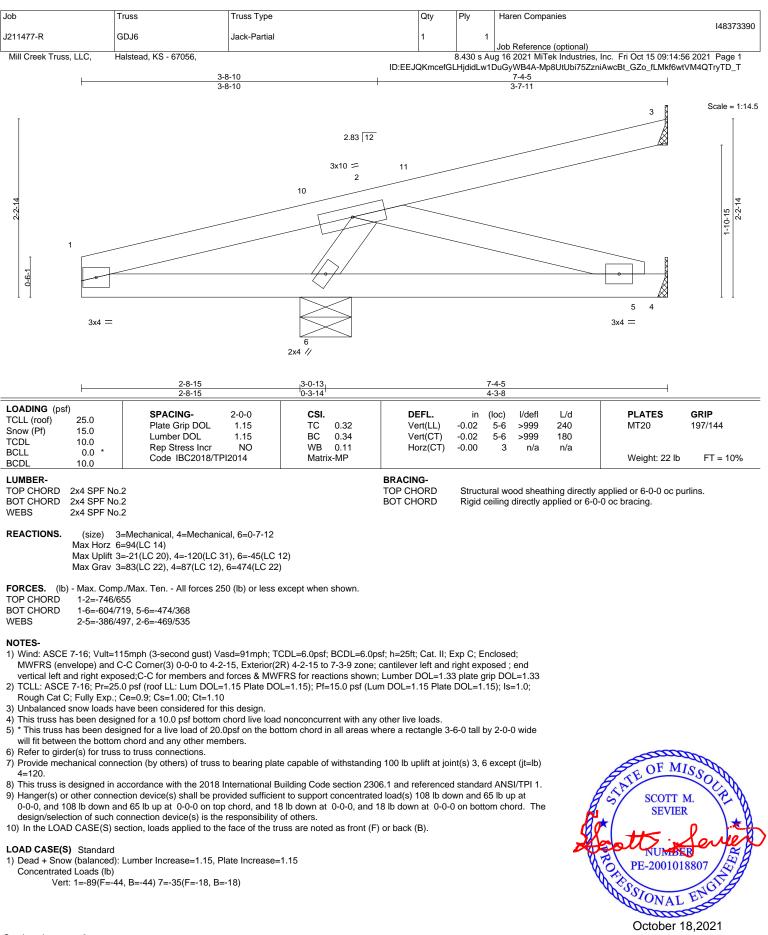
Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 6.

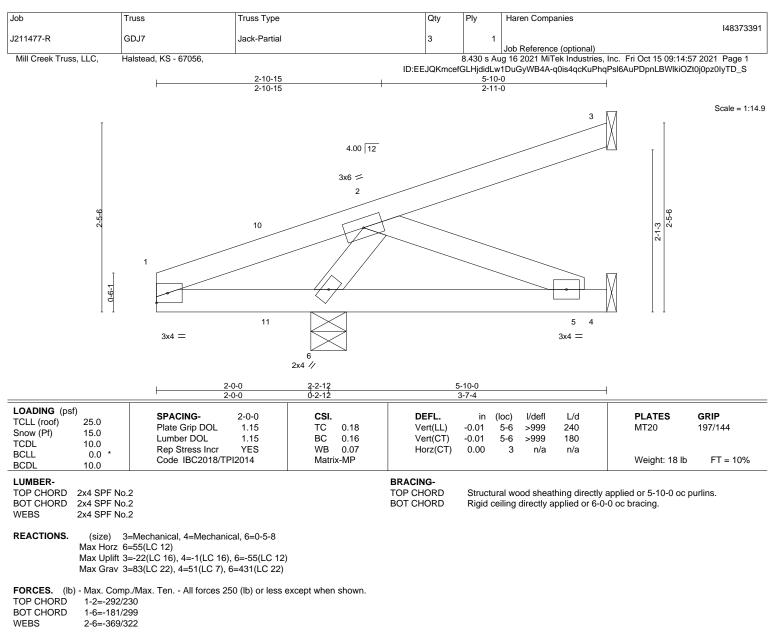
8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NITEK° 16023 Swingley Ridge Rd Chesterfield, MO 63017


Job	Truss	Truss Type	Qty	Ply	Haren Companies			
					148373390			
J211477-R	GDJ6	Jack-Partial	1	1				
					Job Reference (optional)			
Mill Creek Truss, LLC,	Halstead, KS - 67056,	8.430 s Aug 16 2021 MiTek Industries, Inc. Fri Oct 15 09:14:56 2021 Page 2						
		ID:EEJQKmcefGLHjdidLw1DuGyWB4A-Mp8UtUbi75ZzniAwcBt_GZo_fLMkf6wtVM4QTryTD_T						

LOAD CASE(S) Standard

Trapezoidal Loads (plf) Vert: 1=0(F=25, B=25)-to-10=-37(F=6, B=6), 10=0(F=25, B=25)-to-3=-55(F=-2, B=-2), 7=0(F=10, B=10)-to-6=-15(F=3, B=3), 6=-0(F=10, B=10)-to-4=-22(F=-1, B=-1) B=-1)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 2-10-4, Interior(1) 2-10-4 to 5-9-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

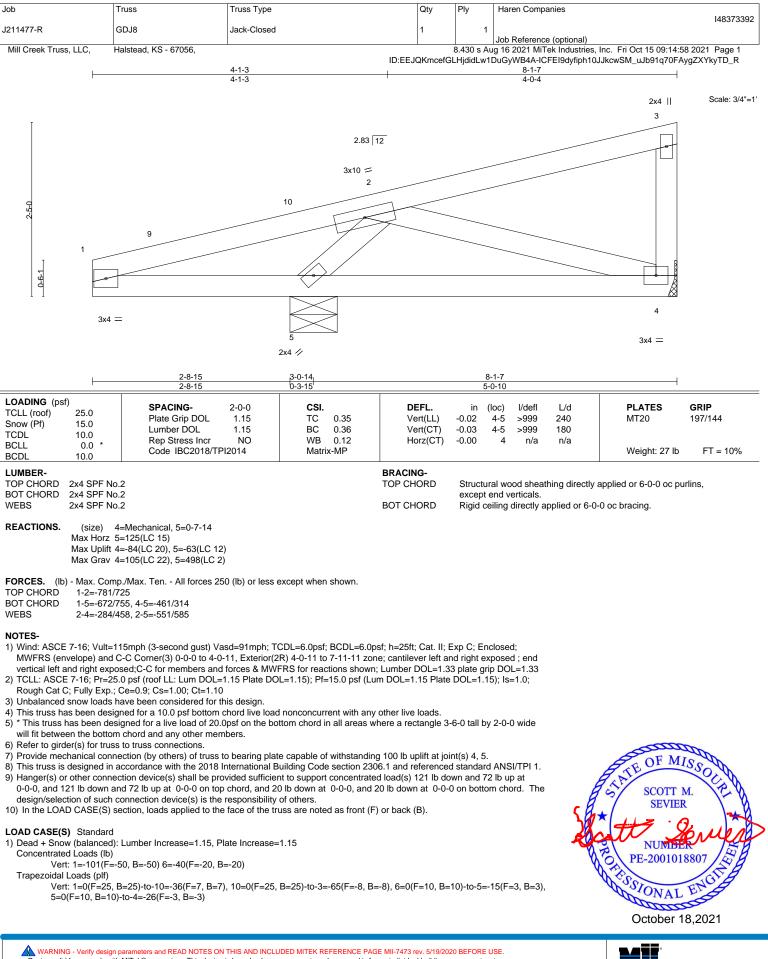
Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

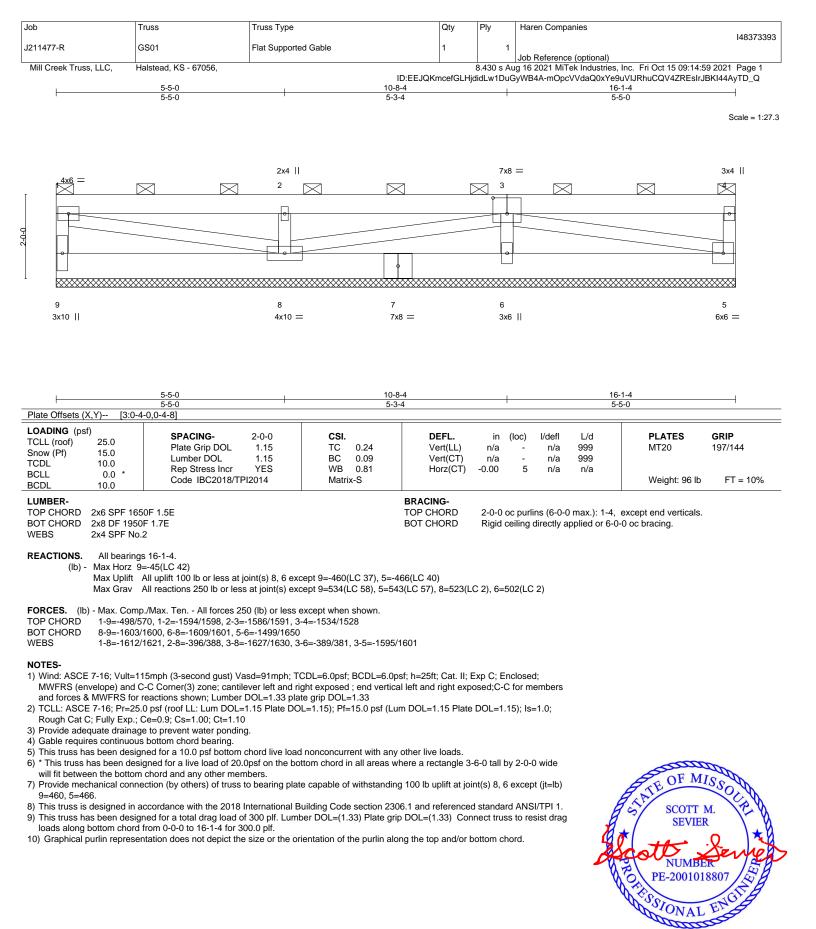
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 6.

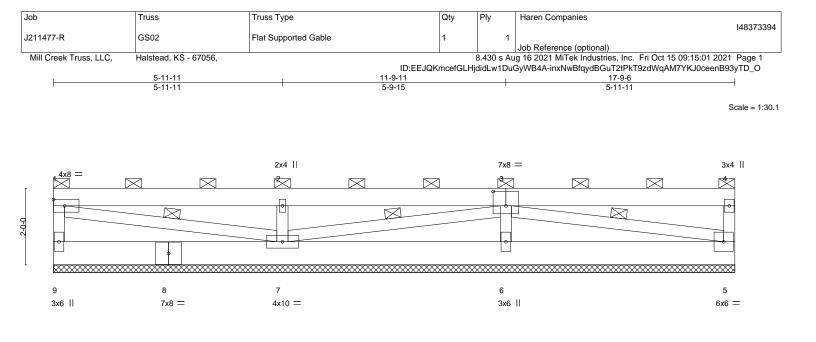
8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017


MiTek

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

October 18,2021

	5-11-11 5-11-11	<u>11-9-</u> 5-9-1				<u> </u>		
Plate Offsets (X,Y) [3:0-4	-0,0-4-8]	5-9-1	5			5-11	-11	
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.27 BC 0.10 WB 0.38 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a - 0.00 5	n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 105 lb	GRIP 197/144 FT = 10%
LUMBER- TOP CHORD 2x6 SPF 165 BOT CHORD 2x8 DF 1950 WEBS 2x4 SPF No.	F 1.7E				g directly a		except end verticals. ·0 oc bracing. 7, 3-5	

REACTIONS. All bearings 17-9-6.

Max Horz 9=-45(LC 38) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 7, 6 except 9=-463(LC 37), 5=-467(LC 40)

Max Grav All reactions 250 lb or less at joint(s) except 9=545(LC 58), 5=552(LC 57), 7=576(LC 2), 6=558(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

1-9=-506/580, 1-2=-1768/1774, 2-3=-1753/1758, 3-4=-1692/1687 TOP CHORD

BOT CHORD 7-9=-1765/1761, 6-7=-1775/1768, 5-6=-1653/1821

WFBS 1-7=-1770/1779, 2-7=-438/410, 3-7=-1783/1785, 3-6=-433/405, 3-5=-1746/1751

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

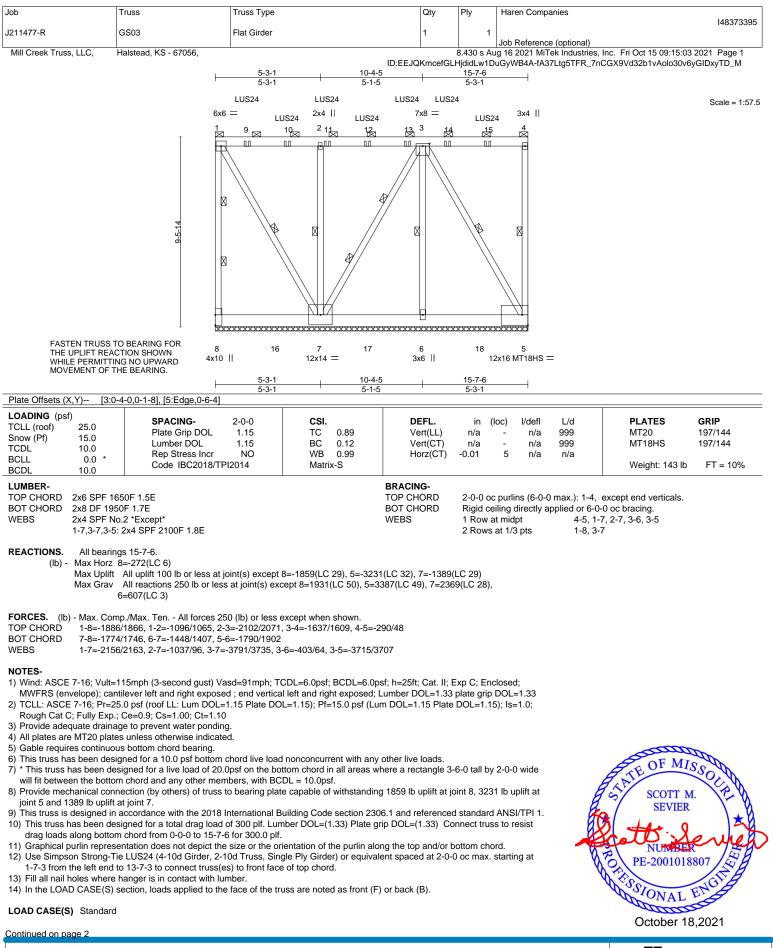
2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Provide adequate drainage to prevent water ponding.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 6 except (jt=lb) 9=463, 5=467


8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1. 9) This truss has been designed for a total drag load of 300 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 17-9-6 for 300.0 plf.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

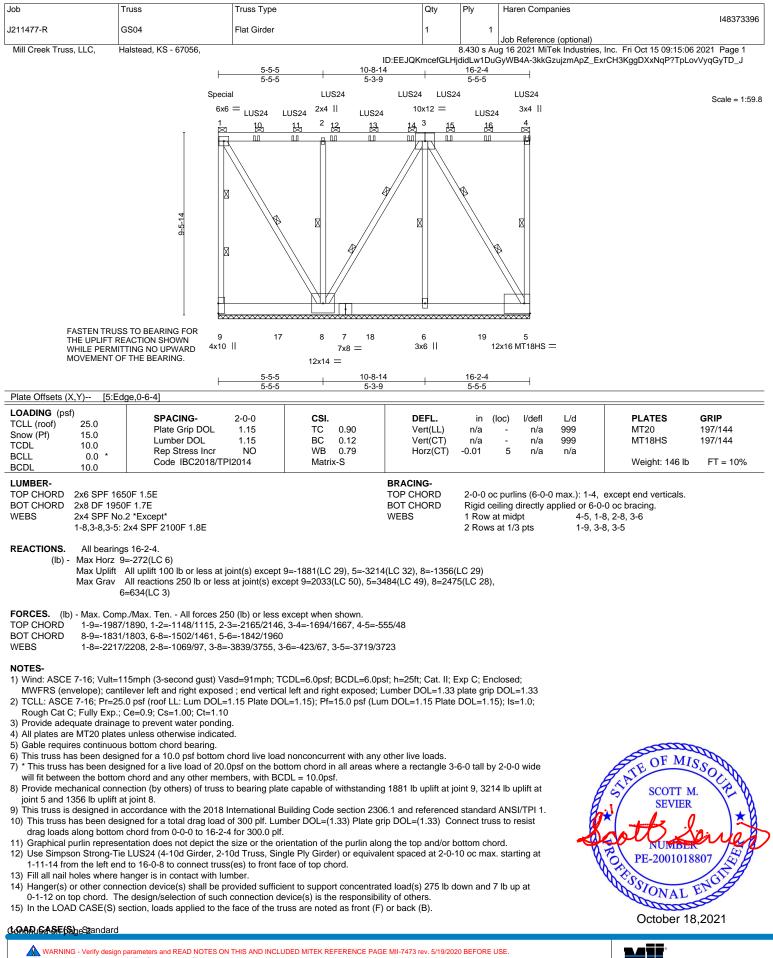
16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Haren Companies		
					148373395		
J211477-R	GS03	Flat Girder	1	1			
					Job Reference (optional)		
Mill Creek Truss, LLC,	Halstead, KS - 67056,	8.430 s Aug 16 2021 MiTek Industries, Inc. Fri Oct 15 09:15:04 2021 Pa					

ID:EEJQKmcefGLHjdidLw1DuGyWB4A-7MdVYDhjEYZrlxnS4t1sbF8Cfa8_XWG2Kc0rlOyTD_L

LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-50, 5-8=-20 Concentrated Loads (lb)

Vert: 9=-221(F) 10=-221(F) 11=-221(F) 12=-221(F) 13=-221(F) 14=-221(F) 15=-221(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

MiTek

Job	Truss	Truss Type	Qty	Ply	Haren Companies			
					148373396			
J211477-R	GS04	Flat Girder	1	1				
					Job Reference (optional)			
Mill Creek Truss, LLC,	Halstead, KS - 67056,	8.430 s Aug 16 2021 MiTek Industries, Inc. Fri Oct 15 09:15:06 2021 Page 2						
		ID:EEJQKmcefGLHjdidLw1DuGyWB4A-3kkGzujzmApZ_ExrCH3KggDXxNqP?TpLovVyqGyTD_J						

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-50, 5-9=-20 Concentrated Loads (lb)

Vert: 1=-250(F) 4=-244(F) 10=-221(F) 11=-221(F) 12=-221(F) 13=-221(F) 14=-221(F) 15=-221(F) 16=-221(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

lah			01/	Dh	Haran Componias	
Job	Truss	Truss Type	Qty	Ply	Haren Companies	148373397
J211477-R	GS05	Flat Girder	1	1	Job Reference (optional)	
Mill Creek Truss, LLC,	Halstead, KS - 67056,		ID:EEJQKmcefGLF			Inc. Fri Oct 15 09:15:08 2021 Page 1 4EJi5om5I_qBWkTL9eFD_3u9yTD_H
		<u>2-10-12</u> 2-10-12	<u>5-9-8</u> 2-10-12			
			LUS24			Scale = 1:54.9
		^{2x4} LUS24	LUS24			
			2 Z 3			
			·/ \\			
		8-8-10				

	THE UPLIFT R	SS TO BEARING FOR 5 8 EACTION SHOWN 10x12 =	9 4 10x12 =			
		F THE BEARING.	5-9-8			
Plate Offsets (X,Y)	[4:Edge,0-6-4], [5:Edge,0-6-4]		5-9-8			
LOADING (psf)	SPACING-	2-0-0 CSI .	DEFL.	in ((loc) l/defl L/d	PLATES GRIP
TCLL (roof) 25.0 Snow (Pf) 15.0	Plate Grip DOL	1.15 TC 0.49	Vert(LL)	n/a	- n/a 999	MT20 197/144
TCDL 10.0 BCLL 0.0	* Lumber DOL Rep Stress Incr	1.15 BC 0.07 NO WB 0.93	Vert(CT) Horz(CT)	n/a -0.00	- n/a 999 4 n/a n/a	
BCDL 10.0	Code IBC2018/TF	PI2014 Matrix-P				Weight: 63 lb FT = 10%
LUMBER- TOP CHORD 2x6 SP	F 1650F 1.5E		BRACING- TOP CHORD	2-0-0 o	c purlins: 1-3, except end	verticals.
BOT CHORD 2x8 DF	1950F 1.7E 2F No.2		BOT CHORD WEBS	Rigid ce	eiling directly applied or 6-0	
	e) 5=5-9-8, 4=5-9-8		11200	111001	armapt 10,0	1, 20, 21
Max H	orz 5=249(LC 31)					
	plift 5=-2644(LC 29), 4=-2646(rav 5=2694(LC 36), 4=2805(LC					
FORCES. (Ib) - Max.	Comp./Max. Ten All forces 2	50 (lb) or less except when shown.				
	924/898, 2-3=-924/899, 3-4=-3 822/789	84/17				
	2783/2808, 2-4=-2783/2808					
NOTES-						
		asd=91mph; TCDL=6.0psf; BCDL=6. ed ; end vertical left and right exposed				
	Pr=25.0 psf (roof LL: Lum DOL= Exp.; Ce=0.9; Cs=1.00; Ct=1.10	=1.15 Plate DOL=1.15); Pf=15.0 psf ()	Lum DOL=1.15 Plate	: DOL=1.1	5); ls=1.0;	
3) Provide adequate dr	ainage to prevent water pondin nuous bottom chord bearing.					
5) This truss has been	designed for a 10.0 psf bottom	chord live load nonconcurrent with a		0.04-11-1-		
will fit between the b	ottom chord and any other mer		Ū			Sugar
 Provide mechanical at joint 4. 	connection (by others) of truss	to bearing plate capable of withstand	ling 2644 lb uplift at j	oint 5 and	2646 lb uplift	SE OF MISS
		International Building Code section 2 of 300 plf. Lumber DOL=(1.33) Plate (SCOTT M.
	chord from 0-0-0 to 5-9-8 for 30	0.0 plf. e size or the orientation of the purlin a	along the top and/or l	bottom ch	ord	SEVIER SEVIER
11) Use Simpson Stror	ng-Tie LUS24 (4-10d Girder, 2-	10d Truss, Single Ply Girder) or equiv				* 4. 8 ×
12) Fill all nail holes whether the test of te	t end to 5-7-12 to connect truss here hanger is in contact with lu	imber.				NUMBEREIJEA
13) In the LOAD CASE	(S) section, loads applied to the	e face of the truss are noted as front	(F) or back (B).		y	PE-2001018807
1) Dead + Snow (balar	dard iced): Lumber Increase=1.15, F	Plate Increase=1.15				A SSIGNER OF
Uniform Loads (plf) Vert: 1-3=-5						NAL DU
	3, 10-20					October 18,2021
Continued on page 2						
Design valid for use or	nly with MiTek® connectors. This design	N THIS AND INCLUDED MITEK REFERENCE F n is based only upon parameters shown, and is	s for an individual building c	component, n	not	
building design. Braci	ng indicated is to prevent buckling of ind	the applicability of design parameters and prop dividual truss web and/or chord members only. ssible personal injury and property damage. For	Additional temporary and	permanent b	pracing	MiTek °
fobrigation storage d	elivery, erection and bracing of trusses	and trues evetame see ANSI/TDI1 O	uality Criteria. DSB-89 an		ding Component	16023 Swingley Ridge Rd

building design. Bracing indicated is to building using the must very the apprication we be add/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss we be add/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss we be add/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Haren Companies	
					148373397	
J211477-R	GS05	Flat Girder	1	1		
					Job Reference (optional)	
Mill Creek Truss, LLC,	Halstead, KS - 67056,		8.430 s Aug 16 2021 MiTek Industries, Inc. Fri Oct 15 09:15:08 202			

ID:EEJQKmcefGLHjdidLw1DuGyWB4A-?7s0OakDIn4GEY4EJi5om5I_qBWkTL9eFD_3u9yTD_H

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 3=-250(F) 6=-221(F) 7=-221(F)

Job	T		Truss Type		Qty	Ply	Haren Companies		
J211477-R		3806	Flat Girder		1	1	naren oompanies		I48373398
					-		Job Reference (optional)	a Ina Fri Oat 15 00:15:10 3	001 Dage 1
Mill Creek Truss	s, LLC, H	lalstead, KS - 67056,			ncefGLHjdidL	.w1DuGyV		s, Inc. Fri Oct 15 09:15:10 2 sEcR77GrWNEX_BTxE1xjX	
			4-11-8	<u>9-9-3</u> 4-9-12		14-8-11 4-11-8			
				LUS24	LUS24	L	US24		Scale = 1:57.5
			$6x6 = LUS24 \qquad LUS24^{2x4}$	II LUS24		US24	3x4		
		I				¹³ 🖂			
				/	HR.				
				//					
		9-5-14		\$		10			
						\	$\langle \rangle $		
						[
		l					XXXXX		
		ISS TO BEARING FOR REACTION SHOWN	8 15 7	16	6	17	5		
	WHILE PERM	4 AITTING NO UPWARD 4 OF THE BEARING.	x10 12x14	=	3x6	12x1	16 MT18HS =		
			4-11-8	<u>9-9-3</u> 4-9-12		14-8-11 4-11-8			
Plate Offsets (X		1-0,0-1-8], [5:Edge,0-6-4]		I					
LOADING (psf TCLL (roof)	f) 25.0	SPACING-	2-0-0 CSI .		DEFL.		loc) I/defl L/d	-	GRIP
Snow (Pf) TCDL	15.0 10.0	Plate Grip DOL Lumber DOL	1.15 TC 1.15 BC	0.12	Vert(LL) Vert(CT)	n/a n/a	- n/a 999 - n/a 999		197/144 197/144
BCLL	0.0 *	Rep Stress Incr Code IBC2018/7	NO WB PI2014 Matrix		Horz(CT)	-0.01	5 n/a n/a	Weight: 139 lb	FT = 10%
BCDL	10.0			BRAC	ING.				
TOP CHORD	2x6 SPF 165			TOP (CHORD		purlins (6-0-0 max.): 1-4		
BOT CHORD WEBS	2x8 DF 1950 2x4 SPF No.	.2 *Except*		WEBS	CHORD	1 Row a		-0-0 oc bracing. 1-7, 2-7, 3-7, 3-6, 3-5	
	1-7,3-7,3-5:2	2x4 SPF 2100F 1.8E				2 Rows	at 1/3 pts 1-8		
REACTIONS.	All bearing: Max Horz 8								
(10)	Max Uplift	All uplift 100 lb or less a	i joint(s) except 8=-1827(LC						
		aireactions 250 ib or le =568(LC 3)	ss at joint(s) except 8=1875(LC 50), 5=3462(LC	49), 7=231	9(LC 28),			
FORCES. (Ib)) - Max. Comr	o./Max. Ten All forces	250 (lb) or less except when	shown.					
TOP CHORD	1-8=-1832/		3=-2003/1972, 3-4=-1548/1						
WEBS		, ,	-3748/3706, 3-6=-375/59, 3-	5=-3685/3684					
NOTES-									
			/asd=91mph; TCDL=6.0psf; ed ; end vertical left and right						
2) TCLL: ASCE	E 7-16; Pr=25.		=1.15 Plate DOL=1.15); Pf=						
3) Provide adeo	quate drainag	e to prevent water pond	ng.						
		s unless otherwise indica s bottom chord bearing.	ted.						
			n chord live load nonconcurr).0psf on the bottom chord ir			S₌0 tall by	2-0-0 wide	F OF MIS	and a second
will fit betwee	en the bottom	chord and any other me	mbers, with BCDL = 10.0ps	f.				AND -	N 200
	444 lb uplift a		s to bearing plate capable of	withstanding 1827	o uplint at jo	Int 8, 325	3 ID UPIIIT AT	SCOTT M. SEVIER	12 A
			International Building Code d of 300 plf. Lumber DOL=(1						*
drag loads	along bottom	chord from 0-0-0 to 14-8		, .	. ,			foott &	ener
12) Use Simpso	on Strong-Tie	e LUS24 (4-10d Girder, 2	-10d Truss, Single Ply Girde	r) or equivalent spa				PE-20010188	07
		to 13-11-4 to connect tru anger is in contact with l	ss(es) to front face of top ch umber.	ord.				N TAL	18A
			he face of the truss are note	d as front (F) or bac	k (B).			SSIONAL F	N
LOAD CASE(S) Standard							ALLER	2004
Continued on pa	age 2							October 18,	2021
	•								

Job	Truss	Truss Type	Qty	Ply	Haren Companies
					148373398
J211477-R	GS06	Flat Girder	1	1	
					Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:15:11 2021 Page 2

ID:EEJQKmcefGLHjdidLw1DuGyWB4A-QiY91cn6biSr5?po?rfVNkwPHOXiggH4xBCjVUyTD_E

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-50, 5-8=-20

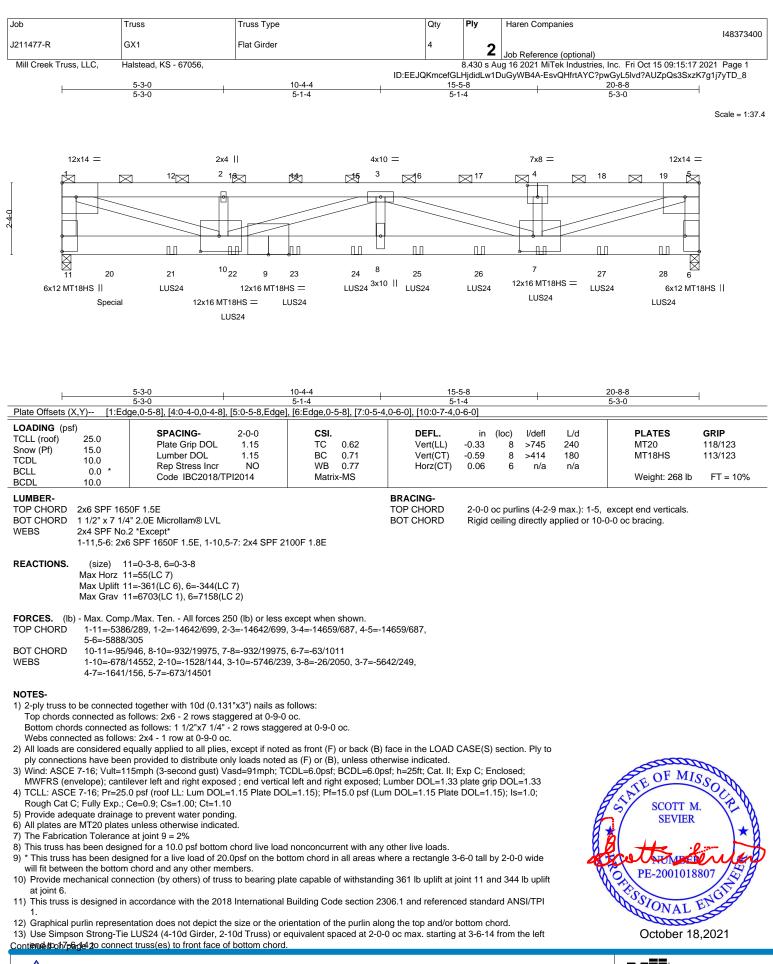
Concentrated Loads (lb)

Vert: 3=-221(F) 9=-221(F) 10=-221(F) 11=-221(F) 12=-221(F) 13=-221(F) 14=-230(F)

Job	Truss	Truss Type	Qty	Ply	Haren Companies	
J211477-R	GS07	Flat Girder	1	1		148373399
Mill Creek Truss, LLC,	Halstead, KS - 67056,		•		Job Reference (optional)	s, Inc. Fri Oct 15 09:15:12 2021 Page 1
Will Creek Truss, LLC,	Haisieau, KS - 07050,		ID:EEJQKmcefGLH	HjdidLw1D		90?YYAkwxTbsot5P8dDAryG1wyTD_D
		4-3-12 8-5- 4-3-12 4-2			-	
		LUS24 LUS24	LUS24			Scale = 1:57.5
			LUS24 7x8 =	LUS24 3	x4	
	T	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			4	
					-	
	9-5-14					
	5-6			٦ \\		
		12x16 MT18HS =	12x14 =			
	-	*****		XXXXXXX		
	N TRUSS TO BEARING FOR PLIFT REACTION SHOWN	8 _{4x10} 15 7 16	3x6 ₆ 1	17	5	
WHILE	PERMITTING NO UPWARD MENT OF THE BEARING.	4-3-12 8-5-	13 12-9	9-9		
		4-3-12 4-2				
Plate Offsets (X,Y) [3:0 LOADING (psf)	0-4-0,0-1-12], [5:Edge,0-6-4]					
TCLL (roof) 25.0	SPACING- Plate Grip DOL	2-0-0 CSI. 1.15 TC 0.81	DEFL. Vert(LL)	in (n/a	loc) l/defl L/d - n/a 999	PLATES GRIP MT20 197/144
Snow (Pf) 15.0 TCDL 10.0	Lumber DOL Rep Stress Incr	1.15 BC 0.11 NO WB 0.90	Vert(CT) Horz(CT)	n/a -0.00	- n/a 999 5 n/a n/a	MT18HS 197/144
BCLL 0.0 * BCDL 10.0	Code IBC2018/TP			-0.00	5 1/a 1/a	Weight: 129 lb FT = 10%
LUMBER-		I	BRACING-			
TOP CHORD 2x6 SPF 1 BOT CHORD 2x8 DF 19	650F 1.5E 50F 1.7E		TOP CHORD BOT CHORD		c purlins (6-0-0 max.): 1-4 ailing directly applied or 6-	
WEBS 2x4 SPF N	No.2 *Except*		WEBS	1 Row a	at midpt 4-5, 1	1-7, 2-7, 3-7, 3-6, 3-5
	5: 2x4 SPF 2100F 1.8E			Z RUWS	at 1/3 pts 1-8	
(lb) - Max Horz	ngs 12-9-9. 8=-272(LC 30)					
		oint(s) except 8=-1758(LC 29), 5=-33 s at joint(s) except 8=1804(LC 50), 5=				
	6=475(LC 3)		0112(20 10), 1-2210	,(20 20),		
FORCES. (Ib) - Max. Co	mp./Max. Ten All forces 25	50 (lb) or less except when shown.				
	66/1756, 1-2=-861/831, 2-3= 92/1464, 6-7=-1187/1150, 5-0	-1781/1751, 3-4=-1355/1247, 4-5=-25 6=-1646/1609	58/46			
		8667/3648, 3-6=-306/50, 3-5=-3619/3	641			
NOTES-						
		sd=91mph; TCDL=6.0psf; BCDL=6.0 d ; end vertical left and right exposed				
2) TCLL: ASCE 7-16; Pr=2	25.0 psf (roof LL: Lum DOL=	1.15 Plate DOL=1.15); Pf=15.0 psf (L				
3) Provide adequate drain	 age to prevent water ponding 	g.				
 All plates are MT20 plat Gable requires continuo 	tes unless otherwise indicate	d.				
6) This truss has been des	signed for a 10.0 psf bottom	chord live load nonconcurrent with an				TE OF MISSO
will fit between the botto	om chord and any other men		-	-		ALE SOLA
 Provide mechanical cor joint 5 and 1555 lb uplifi 		to bearing plate capable of withstandi	ng 1758 lb uplift at joi	int 8, 331	1 lb uplift at	SEVIER SEVIER
		nternationa <mark>l Building Code section 23</mark> of 300 plf. Lumber DOL=(1.33) Plate				
drag loads along botto	om chord from 0-0-0 to 12-9-9	9 for 300.0 plf.			R	Soutt? Survey
		e size or the orientation of the purlin al 0d Truss, Single Ply Girder) or equiva				PE-2001018807
	I to 11-2-9 to connect truss(e e hanger is in contact with lu					
	0	e face of the truss are noted as front (F) or back (B).			STONAL ENG
LOAD CASE(S) Standard	d					Conno
Continued on page 2						October 18,2021
				ļ.		

Job	Truss	Truss Type	Qty	Ply	Haren Companies
					148373399
J211477-R	GS07	Flat Girder	1	1	
					Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,		-	8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:15:13 2021 Page 2

ID:EEJQKmcefGLHjdidLw1DuGyWB4A-M5fvRIoM7JiZKJzB6FhzT9?mcCDK7btNPVhqaMyTD_C


LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-50, 5-8=-20 Concentrated Loads (lb)

Vert: 9=-221(F) 10=-221(F) 11=-221(F) 12=-221(F) 13=-221(F) 14=-221(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Mitek* 16023 Swingley Ridge Rd Chesterfield, MO 63017

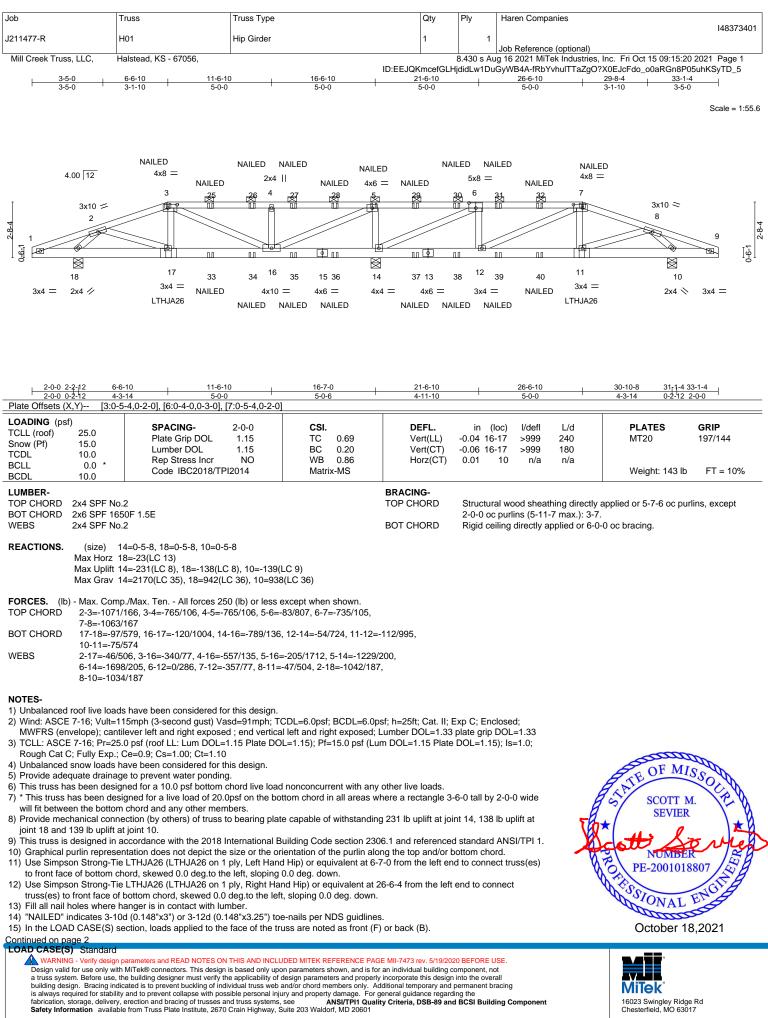
Job	Truss	Truss Type	Qty	Ply	Haren Companies	
					148373400	
J211477-R	GX1	Flat Girder	4	2		
				∠	Job Reference (optional)	
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:15:17 2021 Page 2	
		ID:EEJQKmcefGLHjdidLw1DuGyWB4A-EsvQHfrtAYC?pwGyL5lvd?AUZpQs3SxzK7g1j7yTD_8				

NOTES-

- 14) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss) or equivalent at 19-6-14 from the left end to connect truss(es) to front face of bottom chord, skewed 0.0 deg.to the left, sloping 0.0 deg. down.
- 15) Fill all nail holes where hanger is in contact with lumber.
- 16) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 730 lb down and 74 lb up at 3-6-14, 596 lb down and 36 lb up at 5-6-14, 555 lb down and 36 lb up at 9-6-14, 558 lb down and 40 lb up at 11-6-14, 559 lb down and 48 lb up at 13-6-14, 556 lb down and 48 lb up at 13-6-14, and 559 lb down and 48 lb up at 15-6-14, and 556 lb down and 48 lb up at 15-6-14, and 556 lb down and 48 lb up at 17-6-14, and 559 lb down and 48 lb up at 19-6-14 on top chord, and 917 lb down and 101 lb up at 1-6-14 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)

Vert: 1-5=-50, 6-11=-20

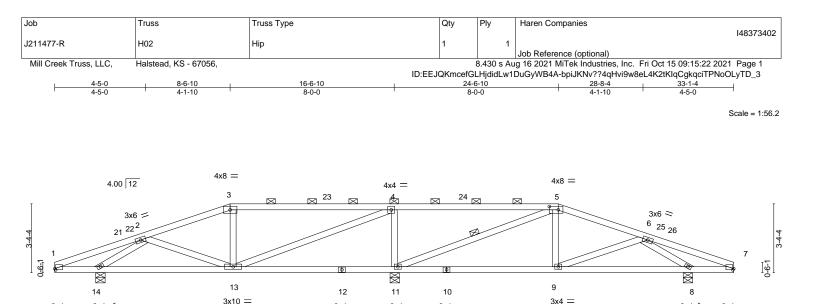
Concentrated Loads (lb)

Vert: 4=-551 7=-712(F) 12=-730 13=-596 14=-548 15=-485 16=-539 17=-554 18=-551 19=-554 20=-917(B) 21=-712(F) 22=-712(F) 23=-712(F) 24=-712(F) 25=-712(F) 26=-712(F) 27=-712(F) 28=-545(F)

Job	Truss	Truss Type	Qty	Ply	Haren Companies
					I48373401
J211477-R	H01	Hip Girder	1	1	
					Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:15:20 2021 Page 2

ID:EEJQKmcefGLHjdidLw1DuGyWB4A-fRbYvhuITTaZgO?X0EJcFdo_o0aRGn8P05uhKSyTD_5

LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-50, 3-7=-50, 7-9=-50, 19-22=-20

Concentrated Loads (lb)

Vert: 3=-79(F) 7=-79(F) 17=-158(F) 5=-74(F) 11=-158(F) 25=-79(F) 26=-79(F) 27=-79(F) 28=-79(F) 29=-79(F) 30=-79(F) 31=-79(F) 32=-79(F) 33=-6(F) 34=-6(F) 35=-6(F) 36=-6(F) 37=-6(F) 38=-6(F) 39=-6(F) 40=-6(F)

2-0-0	0-2-12	6-3-14		8-0-5		7-1	1-10			6-3-14	0-2-12 2-	0-0 ¹
Plate Offsets (X,Y) [1:0-0	-8,0-0-11], [5:0-5-4,0-2-0]	[7:0-0-8,0-0-	11]								
LOADING (ps TCLL (roof) Snow (Pf) TCDL BCLL BCDL	f) 25.0 15.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TP	2-0-0 1.15 1.15 YES I2014	-	0.69 0.47 0.29 -MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc -0.06 11-13 -0.12 11-13 0.02	, 3 >999	L/d 240 180 n/a		PLATES MT20 Weight: 121 lb	GRIP 197/144 FT = 10%
LUMBER- TOP CHORD	2x4 SPF No. 3-5: 2x4 SPF					BRACING- TOP CHORD	Structural 2-0-0 oc p				ed or 6-0-0 oc purl	lins, except

3x4 =

3x4 =

24-6-10

3x4 =

16-7-0

	3-5: 2x4 SPF 2100F 1.8E		2-0-0 oc purlins (6-0-0 max.): 3	-5.
BOT CHORD	2x4 SPF No.2	BOT CHORD	Rigid ceiling directly applied or	6-0-0 oc bracing.
WEBS	2x4 SPF No.2	WEBS	1 Row at midpt 5-1	1

REACTIONS. (size) 11=0-5-8, 14=0-5-8, 8=0-5-8 Max Horz 14=30(LC 16) Max Uplift 11=-63(LC 12), 14=-75(LC 12), 8=-77(LC 13) Max Grav 11=1448(LC 39), 14=778(LC 40), 8=-776(LC 40)

8-6-10

2x4 🖉

2-0-0 2-2-12

3x4 =

_

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 1-2=-247/262, 2-3=-735/143, 3-4=-647/149, 5-6=-726/139, 6-7=-247/261
- BOT CHORD 1-14=-195/258, 13-14=-112/646, 9-11=-32/652, 8-9=-103/640, 7-8=-195/258
- WEBS 4-13=-134/846, 4-11=-1021/312, 5-11=-863/138, 5-9=0/260, 2-14=-989/403, 6-8=-981/405

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-3-12, Interior(1) 3-3-12 to 8-6-10, Exterior(2R) 8-6-10 to 13-2-13, Interior(1) 13-2-13 to 24-6-10, Exterior(2R) 24-6-10 to 29-2-13, Interior(1) 29-2-13 to 33-1-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

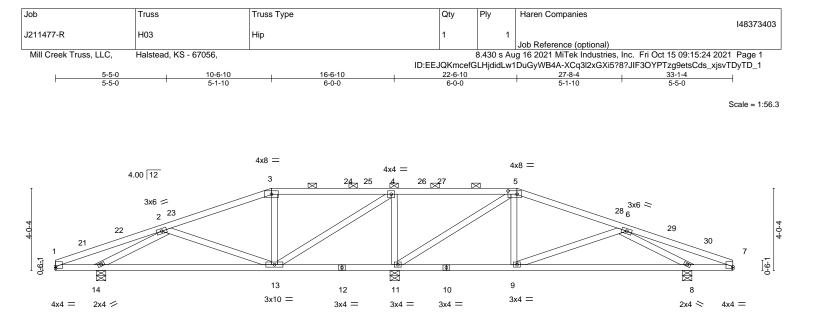
3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) Provide adequate drainage to prevent water ponding.

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 63 lb uplift at joint 11, 75 lb uplift at joint 14 and 77 lb uplift at joint 8.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

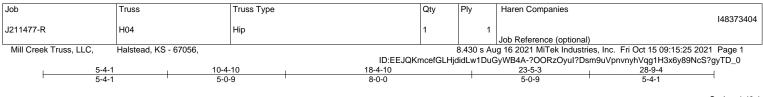
10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


2x4 📚

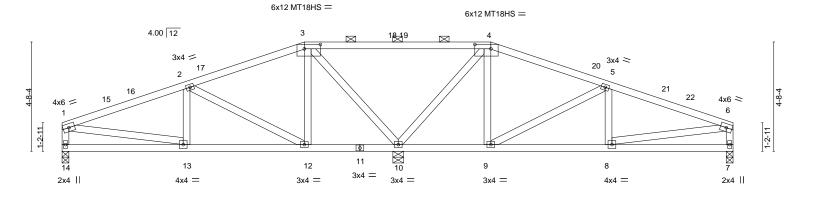
31₁-4 33-1-4

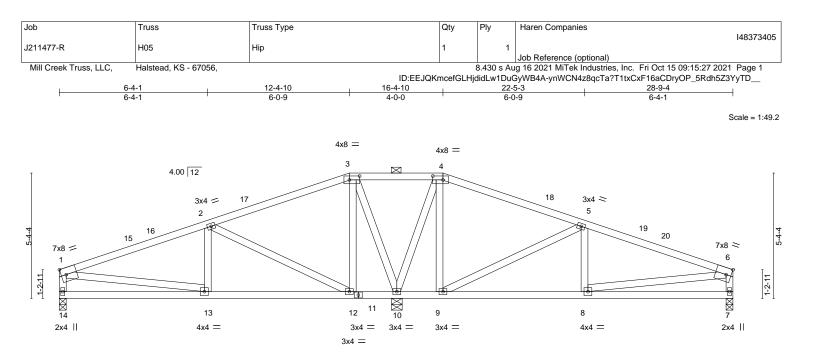
30-10-8

3x4 =



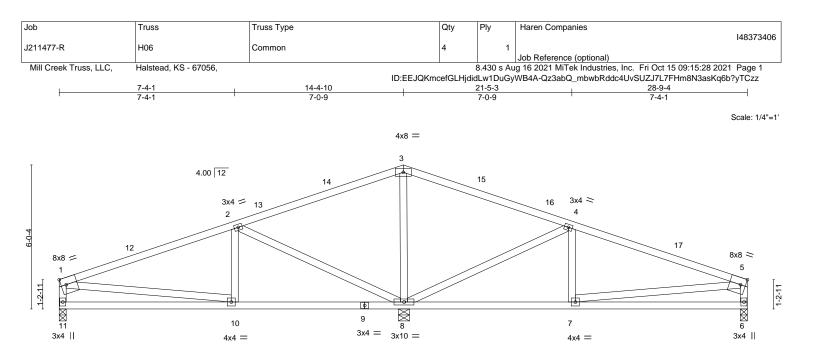
2-0-0 2-2-12	10-6-10 8-3-14	16-7-0 6-0-5	22-6-10 5-11-10		<u> </u>	31-1-4 33-0-2-12 2-		
	-0,0-1-3], [5:0-5-4,0-2-0], [7:0-0-0,0-1-3]		5-11-10		0-3-14	0-2-12 2-	-0	
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.66 BC 0.49 WB 0.75 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.12 8-9 -0.23 8-9 0.02 8	l/defl L/d >999 240 >759 180 n/a n/a	PLATES MT20 Weight: 125 lb	GRIP 197/144 FT = 10%	
LUMBER- TOP CHORD 2x4 SPF No.: BOT CHORD 2x4 SPF No.: WEBS 2x4 SPF No.:	2		BRACING- TOP CHORD BOT CHORD	2-0-0 oc purl	bod sheathing directly lins (6-0-0 max.): 3-5. directly applied or 6-0	applied or 6-0-0 oc pur -0 oc bracing.	ins, except	
REACTIONS. (size) 11=0-5-8, 14=0-5-8, 8=0-5-8 Max Horz 14=37(LC 20) Max Uplift 11=-68(LC 12), 14=-68(LC 12), 8=-71(LC 13) Max Grav 11=1560(LC 2), 14=758(LC 40), 8=756(LC 40)								
TOP CHORD 1-2=-287/19 BOT CHORD 1-14=-123/3 7-8=-123/3 WEBS 2-13=-400/	./Max. Ten All forces 250 (lb) or less (99, 2-3=-489/74, 3-4=-396/93, 4-5=-45// 300, 13-14=-119/677, 11-13=-444/188, 01 173, 4-13=-161/902, 4-11=-967/288, 5-7 72, 2-14=-897/442, 6-8=-891/444	449, 5-6=-480/75, 6-7=-2 9-11=0/406, 8-9=-110/6	71,					
 NOTES- 1) Unbalanced roof live loads 2) Wind: ASCE 7-16; Vult=11 MWFRS (envelope) and C 15-2-13 to 22-6-10, Exterin left and right exposed;C-C 3) TCLL: ASCE 7-16; Pr=25. Rough Cat C; Fully Exp.; C 4) Unbalanced snow loads ha 5) Provide adequate drainagg (a) This truss has been desigg 7) * This truss has been desigg will fit between the bottom 	have been considered for this design. 5mph (3-second gust) Vasd=91mph; Ti-C Exterior(2E) 0-0-0 to 3-3-12, Interior or(2R) 22-6-10 to 27-2-13, Interior(1) 27 for members and forces & MWFRS for 0 psf (roof LL: Lum DOL=1.15 Plate DO 2=0.9; Cs=1.00; Ct=1.10 ave been considered for this design.	(1) 3-3-12 to 10-6-10, E5 -2-13 to 33-1-4 zone; ca reactions shown; Lumbe L=1.15); Pf=15.0 psf (Lu I nonconcurrent with any ttom chord in all areas w	<pre>kterior(2R) 10-6-10 t intilever left and righ or DOL=1.33 plate g im DOL=1.15 Plate v other live loads. v other live loads. vhere a rectangle 3-</pre>	to 15-2-13, Intent at exposed ; en prip DOL=1.33 DOL=1.15); Is 6-0 tall by 2-0-	erior(1) Id vertical =1.0; 0 wide	State OF MI, SCOTT M SEVIER	SSOURI	


- 14 and 71 lb uplift at joint 8.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



Scale = 1:49.4

5-4-1	10-4-10	14-5-0	18-4-10		23-5-3	28-9-4	
5-4-1 Plate Offsets (X,Y) [3:0-4	5-0-9 3-4,0-2-4], [4:0-8-4,0-2-4]	4-0-5	3-11-10		5-0-9	5-4-1	
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.74 BC 0.24 WB 0.63 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	-0.02 12-13	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 MT18HS Weight: 120 lb	GRIP 197/144 197/144 FT = 10%
LUMBER- TOP CHORD 2x4 SPF No 3-4: 2x4 SPF BOT CHORD 2x4 SPF No WEBS 2x4 SPF No	= 2100F 1.8E .2		BRACING- TOP CHORD BOT CHORD	except end ve		r applied or 6-0-0 oc pu purlins (10-0-0 max.): 0-0 oc bracing.	,
Max Horz 1 Max Uplift 1	4=0-3-8, 10=0-5-8, 7=0-3-8 4=14(LC 16) 4=-27(LC 12), 10=-43(LC 13), 7=-26(LC 4=510(LC 55), 10=1636(LC 2), 7=507(I						
TOP CHORD 1-2=-689/1 BOT CHORD 12-13=-11 WEBS 2-12=-645	D./Max. Ten All forces 250 (lb) or less 29, 3-4=-82/651, 5-6=-683/142, 1-14= 0/603, 8-9=-75/598 /145, 3-12=-11/385, 3-10=-1052/271, 4- 42, 1-13=-51/497, 6-8=-59/491	161/119, 6-7=-458/112	85,				
 Wind: ASCE 7-16; Vult=1 MWFRS (envelope) and (14-7-9 to 18-4-10, Exteric and right exposed;C-C fo TCLL: ASCE 7-16; Pr=25 Rough Cat C; Fully Exp.; Unbalanced snow loads f Provide adequate drainag All plates are MT20 plates This truss has been desig * This truss has been desig * This truss has been desig Provide mechanical conn 10 and 26 lb uplift at joint 10) This truss is designed in 1. 	s unless otherwise indicated. ned for a 10.0 psf bottom chord live loa igned for a live load of 20.0psf on the bo i chord and any other members. ection (by others) of truss to bearing pla	or(1) 3-1-12 to 10-4-10, È 9 to 28-7-8 zone; cantile ctions shown; Lumber Di DL=1.15); Pf=15.0 psf (Lu d nonconcurrent with any ottom chord in all areas w te capable of withstandin Building Code section 23	ixterior(2R) 10-4-10 wer left and right ex OL=1.33 plate grip im DOL=1.15 Plate other live loads. where a rectangle 3- g 27 lb uplift at join 306.1 and reference) to 14-7-9, Interi cposed ; end vert DOL=1.33 DOL=1.15); Is= -6-0 tall by 2-0-0 t 14, 43 lb uplift a ed standard ANS	or(1) ical left 1.0; wide at joint	STATE OF MI SEVIER NUMB PE-200101 PE-200101 SIONAL October 1	8807 C



6-4-1	12-4-10 6-0-9	<u>14-5-0</u> 2-0-5	16-4-10	<u>22-5-3</u> 6-0-9		<u>28-9-4</u> 6-4-1	
	4,0-2-0], [4:0-5-4,0-2-0], [6:0-2-8,Edge]	2-0-3	1-11-10	0-0-9		0-4-1	
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIBC2018/TPI2014	CSI. TC 0.61 BC 0.31 WB 0.72 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/de -0.03 13-14 >99 -0.07 13-14 >99 0.01 7 n/	9 240 9 180	PLATES MT20 Weight: 126 lb	GRIP 197/144 FT = 10%
LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2	2		BRACING- TOP CHORD BOT CHORD		s, and 2-0-0 oc	applied or 6-0-0 oc pur purlins (10-0-0 max.): 3 -0 oc bracing.	
Max Horz 14 Max Uplift 14	l=0-3-8, 10=0-5-8, 7=0-3-8 l=-21(LC 17) l=-23(LC 16), 10=-36(LC 13), 7=-25(LC l=498(LC 55), 10=1689(LC 40), 7=495(
TOP CHORD 1-2=-647/10 6-7=-438/10 BOT CHORD 12-13=-83/5	557, 10-12=-282/160, 9-10=-291/146, 8	85, 5-6=-641/119, 1-14 9=-49/551					
	204, 3-12=-19/463, 3-10=-889/204, 4-10)2, 1-13=-19/417, 6-8=-27/411	=-888/187, 4-9=-18/463	i,				
 Wind: ASCE 7-16; Vult=11 MWFRS (envelope) and C. Exterior(2R) 16-4-10 to 20- exposed;C-C for members TCLL: ASCE 7-16; Pr=25.0 Rough Cat C; Fully Exp.; C Unbalanced snow loads ha Provide adequate drainage This truss has been design * This truss has been design * This truss has been design Provide mechanical conne 10 and 25 lb uplift at joint 7 This truss is designed in ac 	ave been considered for this design. to prevent water ponding. led for a 10.0 psf bottom chord live load gned for a live load of 20.0psf on the bo chord and any other members. ction (by others) of truss to bearing plat	r(1) 3-1-12 to 12-4-10, É antilever left and right e wn; Lumber DOL=1.33 _=1.15); Pf=15.0 psf (Lu nonconcurrent with any tom chord in all areas w e capable of withstandin uilding Code section 230	Exterior(2E) 12-4-10 xposed ; end vertice plate grip DOL=1.3 im DOL=1.15 Plate v other live loads. where a rectangle 3 g 23 lb uplift at join D6.1 and reference	0 to 16-4-10, al left and right 3 9 DOL=1.15); Is=1.0; -6-0 tall by 2-0-0 wide at 14, 36 lb uplift at joi d standard ANSI/TPI	nt	STATE OF MI SCOTT M SEVIER	enter

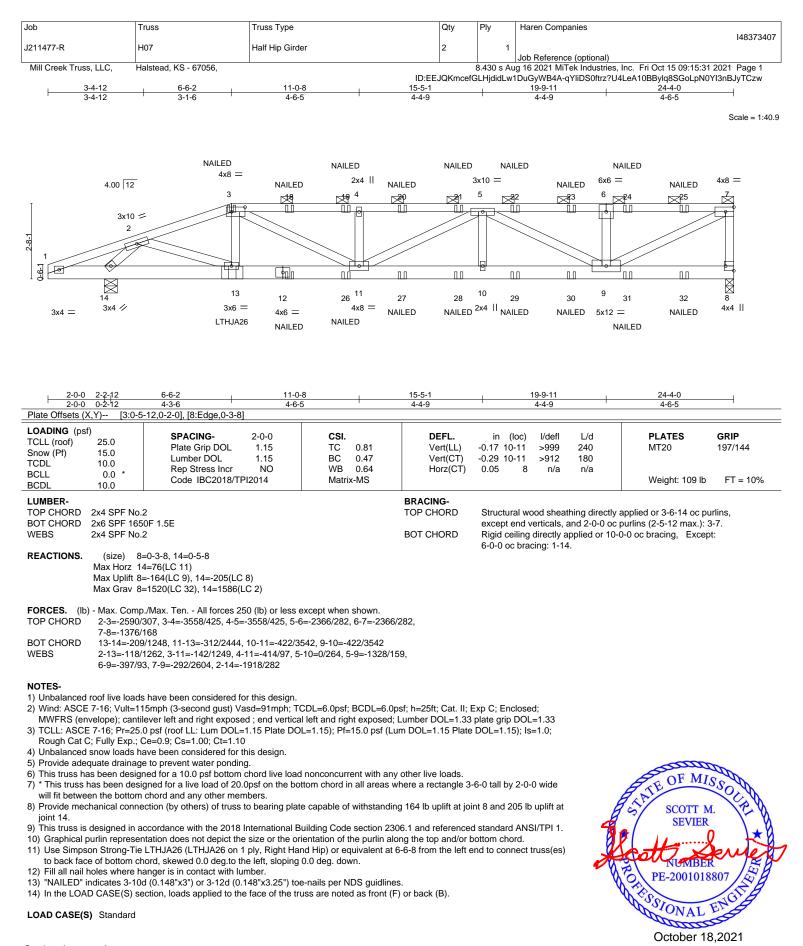
	7-4			14-5-0 7-0-15			21-5-3 7-0-3			-	<u>28-9-4</u> 7-4-1	
Plate Offsets (X	,Y) [1:Edge	e,0-3-8], [5:0-2-8,Edge]										
LOADING (psf) TCLL (roof) Snow (Pf) TCDL BCLL BCDL	25.0 15.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TI	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matri	0.73 0.37 1.00 x-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.13 0.01	(loc) 6-7 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 115 lb	GRIP 197/144 FT = 10%
BOT CHORD WEBS REACTIONS.	Max Horz 11= Max Uplift 11=	=0-3-8, 8=0-5-8, 6=0-3-i =28(LC 16) =-25(LC 16), 8=-18(LC =496(LC 35), 8=1685(L1	12), 6=-28(LC	,		BRACING- TOP CHORD BOT CHORD	excep	ot end v	erticals.		y applied or 6-0-0 oc purl)-0-0 oc bracing.	ins,
FORCES. (Ib) TOP CHORD BOT CHORD WEBS	1-2=-602/104 8-10=-57/505	Max. Ten All forces 2 4, 2-3=-42/552, 3-4=-35 5, 7-8=-45/499 0, 4-8=-932/225, 4-7=0/	/555, 4-5=-595	5/103, 1-11=-	429/124, 5							
		nave been considered f		CDL=6.0psf:	BCDL=6.0	osf: h=25ft: Cat. II: I	Exd C: E	nclose	d:			

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; ICDL=6.0pst; BCDL=6.0pst; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 14-4-10, Exterior(2R) 14-4-10 to 17-4-10, Interior(1) 17-4-10 to 28-7-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 11, 18 lb uplift at joint 8 and 28 lb uplift at joint 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

16023 Swingley Ridge Rd Chesterfield, MO 63017

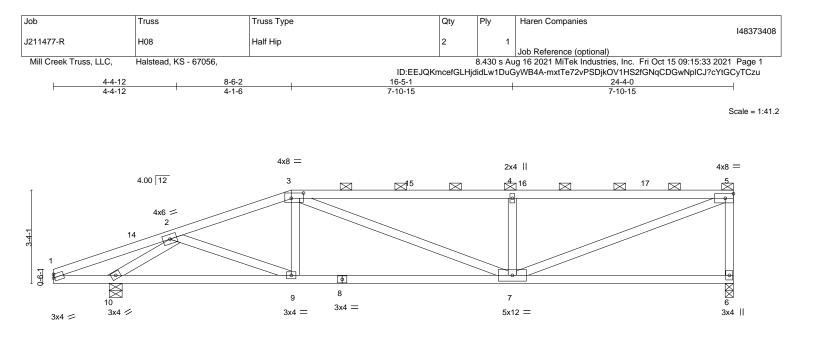
Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type		Qty	Ply	Haren Companies
						148373407
J211477-R	H07	Half Hip Girder		2	1	
						Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,				8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:15:31 2021 Page 2
			ID:EEJ	QKmcef	GLHjdidLw1	DuGyWB4A-qYliDS0ftrz?U4LeA10BBylq8SGoLpN0Yl3nBJyTCzw

LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-50, 3-7=-50, 8-15=-20

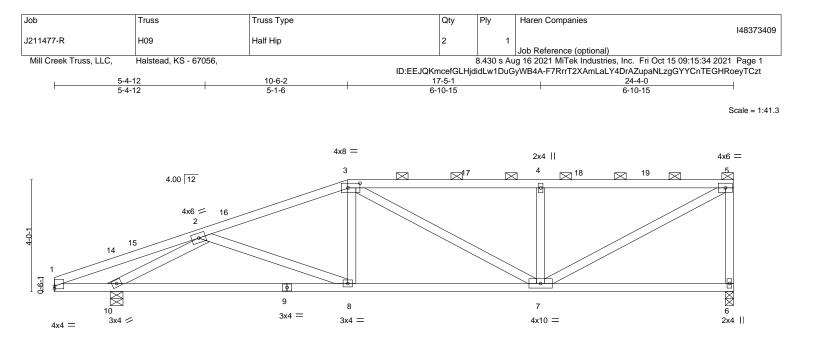
Concentrated Loads (lb)

Vert: 3=-45(B) 12=-52(B) 13=-254(B) 18=-45(B) 19=-45(B) 20=-45(B) 21=-45(B) 22=-45(B) 23=-45(B) 24=-45(B) 25=-16(B) 26=-52(B) 27=-52(B) 28=-52(B) 29=-52(B) 30=-52(B) 31=-52(B) 32=-114(B)

<u>2-0-0 2-2-12</u> 2-0-0 0-2-12	8-6-2 6-3-6	16- 7-10	5-1)-15					24-4-0 -10-15	
Plate Offsets (X,Y) [3:0	-5-4,0-2-4]								
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.64 BC 0.59 WB 0.49 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.21 0.03	(loc) 6-7 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 92 lb	GRIP 197/144 FT = 10%
			BRACING- TOP CHORD BOT CHORD	excep	t end v	erticals,	and 2-0-0 o	y applied or 4-4-12 oc p c purlins (4-7-1 max.): 3 0-0 oc bracing.	

REACTIONS. (size) 6=0-3-8, 10=0-5-8 Max Horz 10=100(LC 15) Max Uplift 6=-49(LC 13), 10=-96(LC 12) Max Grav 6=1067(LC 36), 10=1185(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.


- TOP CHORD 1-2=-248/257, 2-3=-1666/315, 3-4=-1923/382, 4-5=-1923/382, 5-6=-994/229
- BOT CHORD 1-10=-192/259, 9-10=-368/1222, 7-9=-347/1540
- WEBS 2-9=-32/481, 3-7=-73/464, 4-7=-733/254, 5-7=-359/1993, 2-10=-1687/529

NOTES-

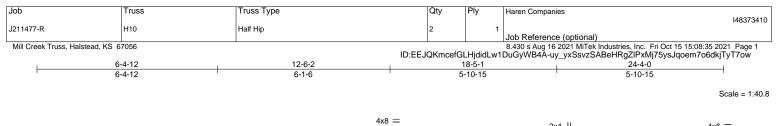
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 8-6-2, Exterior(2R) 8-6-2 to 12-9-1, Interior(1) 12-9-1 to 24-2-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 49 lb uplift at joint 6 and 96 lb uplift at joint 10.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

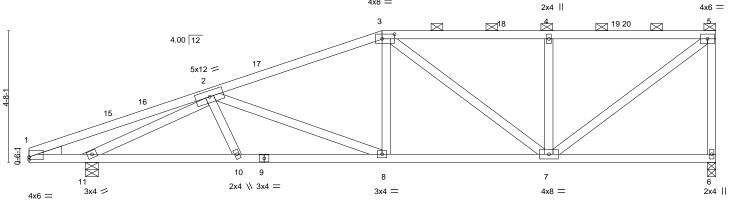
OF MISS STATE OF MISS SCOTT M. SEVIER PE-2001018807 PE-2001018807 October 18,2021

> NITEK° 16023 Swingley Ridge Rd Chesterfield, MO 63017

Plate Offsets (X,Y)- [1:0-0-0,0-1:3], [3:0-5:4,0-2:0] LOADING (ps) Snow (Pt) Spacking- top Space (pp DL) 1:15 Lumber DOL TC OT DEFL. in (loc) Udeft L/d Snow (Pt) 15.0 Plate Gnp DOL 1:15 Lumber DOL TC 0.77 Vert(L1) -0.12 ± 30:-599.240 MT20 197/144 PCDL 0.0 Code IBC2018/TPI2014 Matrix-MS DEFL. in (loc) Uefft MT20 197/144 UDBER. Code IBC2018/TPI2014 Matrix-MS DEFL. in (loc) Weight: 96 lb FT = 10% LUMBER. Code IBC2018/TPI2014 Matrix-MS BRACING- TOP CHORD 2x4 SPF No.2 BOT CHORD Structural wood sheathing directly applied or 4-5-9 oc purlins, except end verticals, and 2-0-0 oc purlins (3-9-12 max.): 3-5. WEBS 2x4 SPF No.2 BOT CHORD XH Arz 10-123(LC 15) Max Arav Enologian (2, 10) -9-440(Z 12) Max Grav Enologian (2, 3-8-1389/321, 5-8-969/325 BOT CHORD 1-0-142/2/2, 8-0-457.4149 WEBS 3-8-0269, 47-8-422223, 5-7-3101535, 2-10-1748/617 NOTES 1) 10 Inbalanced roof live loads have been considered for this design. 2) 10/14.43	2-0-0 2-2-12 2-0-0 0-2-12	<u> </u>		<u>17-5-1</u> 6-10-15			<u>24-4-0</u> 6-10-15	
TCLL (roof) 25.0 PFACINC 20-0 CSL Display (Composition of the composition of the compositem of the compositis densitient of the compositem of the composit	Plate Offsets (X,Y) [1:0-0	-0,0-1-3], [3:0-5-4,0-2-0]						
TOP CHORD 2x4 SPF No.2 TOP CHORD Structural wood sheathing directly applied or 4-5-9 co purlins, except end verticals, and 2-0-0 oc purlins (3-9-12 max.): 3-5. BOT CHORD 2x4 SPF No.2 BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 6=0-3-8, 10=0-5-8 Max Horz 10=123(LC 15) Max Grav 6=1034(LC 36), 10=1483(LC 12) Max Grav 6=1034(LC 36), 10=1183(LC 2) Rigid ceiling directly applied or 6-0-0 oc bracing. FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-283/188, 2-3=-1582/310, 3-4=-1386/321, 5-6=-969/235 BOT CHORD 1-10=+114/297, 8-10=-8-352/1449 WEBS 3-8=0/269, 4-7=-642/223, 5-7=-310/1535, 2-10=-1748/617 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) 2) Wind: ASCE 7-16; Vull=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; h=25f; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0 to 3-0-0, Interior(1) 3-0-0 to 10-6-2; Exterior(2R) 10-6-2 to 14-9-1, Interior(1) 14-9-1 to 24-24 cone; canile vertile tand right exposed; -C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.15; Pl=15.0 psf (Lum DOL=1.15) Plate DOL=1.15; Is=1.0; Rough Cat; Fully Exp; Ce=0.0; Ce=1.10 4) Unbalanced snow loads have been considered for this design. 3) TCL:: ASCE 7-16; PT=25.0 psf (roof LL: Lum DOL=1.15); Pl=15.0 psf (Lum DOL=1.15); Is=1.0; Rough Cat; Fully Exp; Ce=0.0; Ce=1.10 4) Unbalanced snow loads have been considered for this design. 5) Provide ade	TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 *	Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	TC 0.77 BC 0.60 WB 0.47	Vert(LL) Vert(CT)	-0.12 8-10 -0.25 8-10	>999 240 >999 180	MT20	197/144
Max Horz 10=123(LC 15) Max Uplit 6=-50(LC 12), 10=-94(LC 12) Max Grav 6=1034(LC 36), 10=1183(LC 2) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-283/188, 2-3=-1582/310, 3-4=-1386/321, 4-5=-1386/321, 5-6=-969/235 BOT CHORD 1-10=-114/297, 8-10=-457/1430, 7-8=-352/1449 WEBS 3-8=0/269, 4-7=-642/223, 5-7=-310/1535, 2-10=-1748/617 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 10-6-2, Exterior(2R) 10-6-2 to 14-9-1, Interior(1) 14-9-1 to 24-2-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33 3) TCLL: ASCE 7-16; Pr=250, 0psf (mot LL: Lum DOL=1.15); Pt=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Cl=1.10 4) Unbalanced snow been considered for this design. 5) Provide adeguate drainage to prevent water ponding. 6) This truss has been designed for a 10.0 psf bottom chord in ell areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 8) Provide anechanical connection (by others) of truss to bearing plate capable of withstanding 50 lb uplift at joint 6 and 94 lb uplift at joint 10.	LUMBER- TOP CHORD 2x4 SPF No.: BOT CHORD 2x4 SPF No.:	2		TOP CHORD	except end v	verticals, and 2-0-0) oc purlins (3-9-12 max.)	
 TOP CHORD 1-2=-283/188, 2-3=-1582/310, 3-4=-1386/321, 4-5=-1386/321, 5-6=-969/235 BOT CHORD 1-10=-114/297, 8-10=-457/1430, 7-8=-352/1449 WEBS 3-8=0/269, 4-7=-642/223, 5-7=-310/1535, 2-10=-1748/617 NOTES- Unbalanced roof live loads have been considered for this design. Wind SCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 10-6-2, Exterior(2R) 10-6-2 to 14-9-1, Interior(1) 14-9-1 to 24-2-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15; Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 50 lb uplift at joint 6 and 94 lb uplift at joint 6 and 94 lb uplift at joint 10. 	Max Horz 10 Max Uplift 6	D=123(LC 15) =-50(LC 12), 10=-94(LC 12)						
 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 10-6-2, Exterior(2R) 10-6-2 to 14-9-1, Interior(1) 14-9-1 to 24-2-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp; Ce=-0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and on other members. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 50 lb uplift at joint 6 and 94 lb uplift at joint 10. 	TOP CHORD 1-2=-283/1 BOT CHORD 1-10=-114/2	88, 2-3=-1582/310, 3-4=-1386/321, 4-5= 297, 8-10=-457/1430, 7-8=-352/1449	-1386/321, 5-6=-969/23	5				
10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.	 Unbalanced roof live loads Wind: ASCE 7-16; Vult=11 MWFRS (envelope) and C to 24-2-4 zone; cantilever reactions shown; Lumber I TCLL: ASCE 7-16; Pr=25. Rough Cat C; Fully Exp.; (Unbalanced snow loads hi Provide adequate drainage This truss has been design * This truss has been design * This truss has been design Provide mechanical conne joint 40. This truss is designed in a 	15mph (3-second gust) Vasd=91mph; Ti -C Exterior(2E) 0-0-0 to 3-0-0, Interior(1 left and right exposed ; end vertical left DOL=1.33 plate grip DOL=1.33 0 psf (roof LL: Lum DOL=1.15 Plate DO Ce=0.9; Cs=1.00; Ct=1.10 ave been considered for this design. e to prevent water ponding. hed for a 10.0 psf bottom chord live load gned for a 10.0 psf bottom chord live load gned for a live load of 20.0psf on the bo chord and any other members. ection (by others) of truss to bearing plat ccordance with the 2018 International B) 3-0-0 to 10-6-2, Exteri and right exposed;C-C fo L=1.15); Pf=15.0 psf (Lu nonconcurrent with any tom chord in all areas w e capable of withstandin uilding Code section 230	or(2R) 10-6-2 to 14 or members and for im DOL=1.15 Plate other live loads. where a rectangle 3- ig 50 lb uplift at join 06.1 and referenced	-9-1, Interior(1) ces & MWFRS DOL=1.15); Is -6-0 tall by 2-0- t 6 and 94 lb up d standard ANS) 14-9-1 5 for =1.0; 0 wide Dlift at	STATE OF M	M. R

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



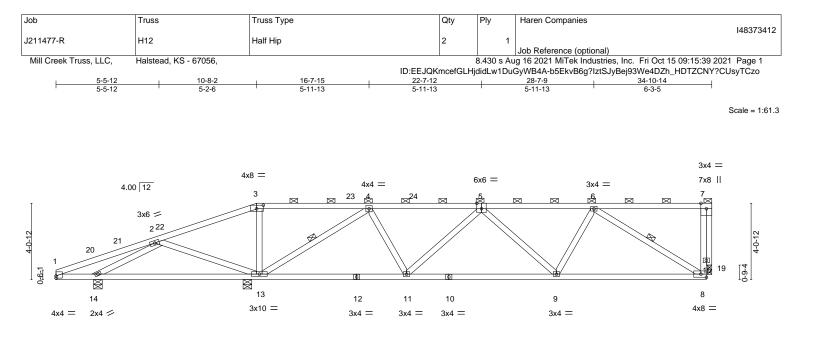

ESSIONAL EN

PE-200101880

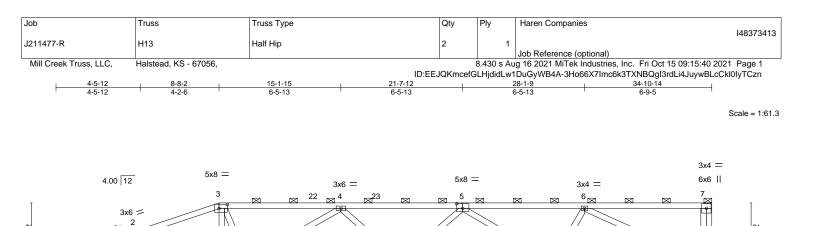
October 18,2021

C

2-0-0 2-2-12	7-4-7 5-1-11	<u>12-6-2</u> 5-1-11		18-5-1 5-10-15		24-4-0 5-10-15	
	ge,0-1-3], [3:0-5-4,0-2-0]	5-1-11		5-10-15		5-10-15	
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0- Plate Grip DOL 1.1: Lumber DOL 1.1: Rep Stress Incr YES Code IBC2018/TPI2014	5 TC 0.56 5 BC 0.60 S WB 0.76	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/de -0.07 8-10 >99 -0.13 8-10 >99 0.04 6 n/	9 240 9 180	PLATES MT20 Weight: 102 II	GRIP 197/144 b FT = 10%
BCDL 10.0 LUMBER- TOP CHORD 2x4 SPF No. BOT CHORD 2x4 SPF No. WEBS 2x4 SPF No. WEDGE Left: 2x4 SPF No.2 SPF No.2	2		BRACING- TOP CHORD BOT CHORD		ls, and 2-0-0 oc	applied or 4-5-13 oc purlins (5-2-7 max.):	purlins,
Max Horz 1 Max Uplift 6	=774/0-3-8, 11=919/0-5-8 1=145(LC 15) =-52(LC 12), 11=-92(LC 12) =995(LC 2), 11=1182(LC 2)						
TOP CHORD 2-17=-1427 19-20=-103 BOT CHORD 10-11=-472 WEBS 2-8=-487/8 NOTES- 1) Unbalanced roof live loads 2) Wind: ASCE 7-16; Vult=11 MWFRS (envelope) and C 24-2-4 zone; cantilever lef reactions shown; Lumber 3) TCLL: ASCE 7-16; Pr=25. Rough Cat C; Fully Exp.; (4) Unbalanced snow loads h: 5) Provide adequate drainag (6) This truss has been desig (7) * This truss has been desig will fit between the bottom 8) Provide mechanical conne joint 11. 9) This truss is designed in a	36/273, 5-20=-1036/273, 5-6=-94 2/1575, 9-10=-437/1604, 8-9=-43 9, 3-8=0/309, 3-7=-407/111, 4-7 s have been considered for this of (5mph (3-second gust) Vasd=91 6-C Exterior(2E) 0-0-0 to 3-0-0, I t and right exposed ; end vertica DOL=1.33 plate grip DOL=1.33 0 psf (roof LL: Lum DOL=1.15 P C==0.9; Cs=1.00; Ct=1.10 ave been considered for this des to prevent water ponding, ned for a 10.0 psf bottom chord gned for a live load of 20.0psf or chord and any other members. ection (by others) of truss to beau ccordance with the 2018 Interna	036/273, 4-18=-1036/273, 4-19= 41/238 37/1604, 7-8=-354/1291 =-549/191, 5-7=-273/1275, 2-11 design. mph; TCDL=6.0psf; BCDL=6.0p nterior(1) 3-0-0 to 12-6-2, Exteri- il left and right exposed;C-C for r late DOL=1.15); Pf=15.0 psf (Lu	=-1863/493 psf; h=25ft; Cat. II; E por(2R) 12-6-2 to 16- members and forces Im DOL=1.15 Plate r other live loads. r/here a rectangle 3-1 g 52 lb uplift at joint 06.1 and referenced	9-1, interior(1) 16-9- s & MWFRS for DOL=1.15); Is=1.0; 6-0 tall by 2-0-0 wide 6 and 92 lb uplift at standard ANSI/TPI	1.	STATE OF MI SEVIER PE-2001018 PE-2001018	enter


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

October 18,2021



$ \frac{2 - 0 - 0}{2 - 0 - 0} \frac{6 - 2 - 8}{4 - 2 - 8}$		12-8-2 2-6-10	<u>20-1-10</u> 7-5-8		27-5-6 7-3-12		<u>34-10-14</u> 7-5-8	ł
	0-0,0-1-7], [3:0-5-12,0-2-0],							
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/TPI	2-0-0 1.15 1.15 YES 2014	CSI. TC 0.85 BC 0.57 WB 0.61 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/de -0.12 9-12 >99 -0.24 9-12 >99 0.05 19 n/	9 240 9 180	PLATES MT20 Weight: 141 lb	GRIP 197/144 FT = 10%
LUMBER- TOP CHORD 2x4 SPF No 3-5: 2x4 SPF BOT CHORD 2x4 SPF No WEBS 2x4 SPF No OTHERS 2x4 SPF No REACTIONS. (size) 1	F 2100F 1.8E .2 .2	-14		BRACING- TOP CHORD BOT CHORD WEBS		s, and 2-0-0 oc	/ applied or 4-4-13 oc pu ; purlins (4-3-8 max.): 3-)-0 oc bracing.	
FORCES. (lb) - Max. Com TOP CHORD 1-2=-131/7 6-15=-138 BOT CHORD 1-14=-649 7-8=-301/1 WEBS 2-12=-266	783, 2-3=-1345/291, 3-4=-2 /1074 /156, 13-14=-506/0, 12-13= 1731 /1677, 3-12=-514/176, 3-9=	37), 19=1326(LC 3 0 (lb) or less excep 154/414, 4-5=-2154 506/0, 9-12=-312/ 137/1074, 4-9=-64	t when shown. 4/414, 7-15=-13 /1232, 8-9=-30 44/228, 5-9=-13	//1731,				
NOTES- 1) Wind: ASCE 7-16; Vult=1 MWFRS (envelope) and 0 17-7-6 to 34-5-10 zone; c for reactions shown; Lurm 2) TCLL: ASCE 7-16; Pr=25 Rough Cat C; Fully Exp.; 3) Unbalanced snow loads f 4) Provide adequate drainag 5) This truss has been desig 6) * This truss has been desig	C-C Exterior(2E) 0-0-0 to 3- antilever left and right expo ber DOL=1.33 plate grip DC Coe.0.9; Cs=1.00; Ct=1.10 have been considered for th ge to prevent water ponding ned for a 10.0 psf bottom c igned for a live load of 20.0 n chord and any other mem siders parallel to grain value ection (by others) of truss to ection (by others) of truss to accordance with the 2018	sd=91mph; TCDL= -5-14, Interior(1) 3-8 -sed ; end vertical le DL=1.33 I.15 Plate DOL=1.1 	6.0psf; BCDL= 5-14 to 12-8-2, eft and right exp 5); Pf=15.0 psf concurrent with chord in all area angle to grain pint(s) 19. able of withstar ng Code sectio	Exterior(2R) 12-8-2 to bosed;C-C for member (Lum DOL=1.15 Plate any other live loads. is where a rectangle 3 formula. Building desi nding 96 lb uplift at joir n 2306.1 and reference	17-7-6, Interior(1) rs and forces & MWFI e DOL=1.15); Is=1.0; e-6-0 tall by 2-0-0 wide igner should verify nt 14 and 70 lb uplift a sed standard ANSI/TP	t	SCOTT M SEVIER PE-2001018 PE-2001018 October 18	evier !!

2-0-0 2-2-12	<u>9-11-8</u> 7-8-12	10-8-2 0-8-10	18-7-14 7-11-12		26-7-10 7-11-12	3	34-10-14 8-3-4	-1
	0-0,0-1-7], [3:0-4-4,0-2				-11-12		6-3-4	
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DC Lumber DOL Rep Stress In Code IBC201	1.15 cr YES	CSI. TC 0.72 BC 0.56 WB 0.50 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl -0.11 13-14 >991 -0.21 13-14 >516 0.04 19 n/a	240 180	PLATES MT20 Weight: 139 lb	GRIP 197/144 FT = 10%
LUMBER- TOP CHORD 2x4 SPF No BOT CHORD 2x4 SPF No WEBS 2x4 SPF No OTHERS 2x4 SPF No	.2 .2			BRACING- TOP CHORD BOT CHORD WEBS		, and 2-0-0 oc p	0	
Max Horz 1 Max Uplift 1	3=0-5-8, 14=0-5-8, 19 4=92(LC 16) 3=-122(LC 12), 14=-7 3=2031(LC 2), 14=40	114(LC 52), 19=-43						
8-15=-79/8 BOT CHORD 1-14=-147, WEBS 2-13=-653,	p./Max. Ten All forc. 226, 2-3=-255/1010, 3 310, 7-15=-79/810 /307, 13-14=-541/42, /257, 3-13=-660/236, , 6-8=-1360/219, 2-14	-4=-203/957, 4-5= 11-13=-101/721, 9 4-13=-1997/372, 4	-1016/126, 5-6=-1390 -11=-217/1450, 8-9= -11=-20/632, 5-11=-5	198/1271				
 NOTES- Unbalanced roof live load Wind: ASCE 7-16; Vult=1 MWFRS (envelope) and 0 15-7-6 to 34-5-10 zone; c for reactions shown; Lumi TCLL: ASCE 7-16; Pr=25 Rough Cat C; Fully Exp.; Unbalanced snow loads f Provide adequate drainage This truss has been desige This truss has been desige * This truss has been desige * This truss has been desige provide mechanical connigont 14 and 43 lb uplift a This truss is designed in 1. 	15mph (3-second gus C-C Exterior(2E) 0-0-0 antilever left and right ber DOL=1.33 plate g Ce=0.9; Cs=1.00; Ct= nave been considered ge to prevent water po ned for a 10.0 psf bol igned for a 10.0 psf bol igned for a live load o n chord and any other siders parallel to grain se. ection (by others) of ti nection (by others) of ti a accordance with the	t) Vasd=91mph; T 0 to 3-5-14, Interior exposed ; end ver rip DOL=1.33 90L=1.15 Plate DO 1.10 for this design. Inding. tom chord live load f 20.0psf on the bo members. Value using ANSI russ to bearing pla truss to bearing pla 2018 International	(1) 3-5-14 to 10-8-2, tical left and right exp DL=1.15); Pf=15.0 psf d nonconcurrent with ottom chord in all area /TPI 1 angle to grain to te at joint(s) 19. ate capable of withsta Building Code sectio	Exterior(2R) 10-8-2 to loosed;C-C for member (Lum DOL=1.15 Plate any other live loads. s where a rectangle 3 formula. Building desi anding 122 lb uplift at j n 2306.1 and reference	15-7-6, Interior(1) rs and forces & MWFR DOL=1.15); Is=1.0; -6-0 tall by 2-0-0 wide igner should verify toint 13, 114 lb uplift at red standard ANSI/TPI	S.	STATE OF MI SEVIER NUMBE PE-200101 PE-200101 October 1	ENGINE

10

4x4 =

9

3x4 =

12

3x4 =

11

4x4 =

3-4-12

-9-6-0

20

8

4x8 =

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

3-4-12

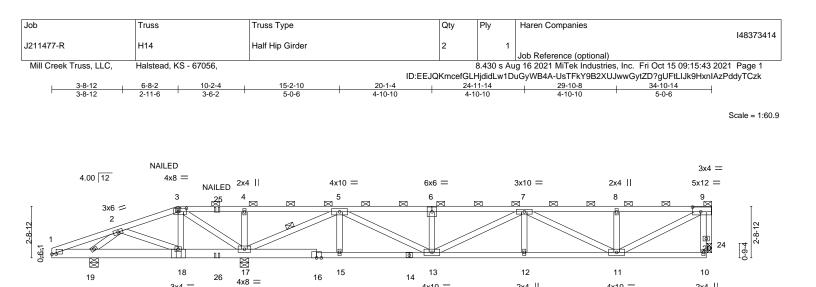
0<u>-6-</u>1

3x4 =

21

X 14

13


^{3x4} = _{3x6} =

X

2x4 💋

15

2-0-0 0-2-12	8-8-2 10-2-4 6-5-6 1-6-2	<u>18-3-15</u> 8-1-11		6-5-10 -1-11			<u>34-10-14</u> 8-5-3	
Plate Offsets (X,Y) [1:0-	0-0,0-0-15], [3:0-5-4,0-2-8], [5:0-4-0	-						
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.95 BC 0.60 WB 0.47 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.11 9-11 -0.23 8-9 0.04 20	>999 >999	L/d 240 180 n/a	PLATES MT20 Weight: 135 lb	GRIP 197/144 • FT = 10%
LUMBER- TOP CHORD2x4 SPF NoBOT CHORD2x4 SPF NoWEBS2x4 SPF NoOTHERS2x4 SPF No	0.2 0.2		BRACING- TOP CHORD BOT CHORD WEBS	except end	verticals, a g directly a	and 2-0-0 oc	applied or 6-0-0 oc pu purlins (2-2-0 max.): 3 3-3 oc bracing. 6-8	
Max Horz Max Uplift	13=0-5-8, 15=0-5-8, 20=0-2-14 15=73(LC 16) 13=-118(LC 12), 15=-261(LC 37), 20 13=2273(LC 37), 15=319(LC 38), 20							
TOP CHORD 1-2=-261/ 8-16=-73/ BOT CHORD 1-15=-187 8-9=-253/ WEBS 2-14=-594	p./Max. Ten All forces 250 (lb) or 256, 2-3=-220/1201, 3-4=-280/1537 789, 7-16=-73/789 /271, 14-15=-668/41, 13-14=-1105/ 1622 //203, 3-13=-1016/257, 4-13=-2350/ , 6-8=-1621/261, 2-15=-163/742, 7-	4-5=-1145/136, 5-6=-1707/ 184, 11-13=-88/457, 9-11=-2 146, 4-11=-50/963, 5-11=-75	263/1694,					
MWFRS (envelope) and to 34-5-10 zone; cantilev reactions shown; Lumbe 2) TCLL: ASCE 7-16; Pr=2t Rough Cat C; Fully Exp.; 3) Unbalanced snow loads 4) Provide adequate draina 5) This truss has been desi 6) * This truss has been desi will fit between the bottor	15mph (3-second gust) Vasd=91m C-C Exterior(2E) 0-0-0 to 3-5-14, In er left and right exposed ; end vertic DOL=1.33 plate grip DOL=1.33 5.0 psf (roof LL: Lum DOL=1.15 Plat Ce=0.9; Cs=1.00; Ct=1.10 have been considered for this desig ge to prevent water ponding, gned for a 10.0 psf bottom chord live signed for a live load of 20.0psf on th n chord and any other members. siders parallel to grain value using <i>I</i> ce.	erior(1) 3-5-14 to 8-8-2, Exte al left and right exposed;C-C e DOL=1.15); Pf=15.0 psf (L n. load nonconcurrent with an le bottom chord in all areas of NSI/TPI 1 angle to grain for	rior(2R) 8-8-2 to 13 for members and f um DOL=1.15 Plate y other live loads. where a rectangle 3	3-7-6, Interior(orces & MWF a DOL=1.15); I -6-0 tall by 2-0 igner should v	1) 13-7-6 RS for s=1.0;)-0 wide erify		STATE OF M SCOTT SEVIE NUMBE PE-200101	Senta

4x10 =

3x4 =

2x4 ||

4x10 =

2x4 ||

3x4 =

LTHJA26

NAILED

4x6 =

2x4 ||

3x4 = 2x4 🛷

2-0-0 2-2-	-12 4-5-6	10-2-4 3-6-2	15-2-10 5-0-6	20-1-4 4-10-10		4-11-14 -10-10	29-10-8 4-10-10	34-10-14 5-0-6	1
Plate Offsets (X,	<u>Y) [1:0-2-11</u>	1,0-0-1], [3:0-5-4,0-2-4], [9:0-5-4,0-3-0]						
LOADING (psf) TCLL (roof) Snow (Pf) TCDL BCLL BCDL	25.0 15.0 10.0 0.0 * 10.0		2-0-0 CSI 1.15 TC 1.15 BC NO WB 014 Mat	0.86 0.66	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.15 12-13 -0.25 12-13 0.03 24	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 146 lb	GRIP 197/144 FT = 10%
LUMBER- TOP CHORD 2 BOT CHORD 2 WEBS 2	2x4 SPF No.2				BRACING- TOP CHORD BOT CHORD WEBS	except end ve	rticals, and 2-0-0 oc p lirectly applied or 6-0-0	applied or 10-0-0 oc pu ourlins (4-0-3 max.): 3- 0 oc bracing.	
	Max Horz 19=5 Max Uplift 17=-	0-5-8, 19=0-5-8, 24=0-2- ² 55(LC 52) ·194(LC 8), 19=-256(LC 4 2572(LC 33), 19=427(LC	41), 24=-46(LC 51)						
FORCES. (Ib) TOP CHORD		/lax. Ten All forces 250 , 3-4=-91/1872, 4-5=-91/1			3=-1675/77,				
BOT CHORD		9, 17-18=-846/156, 15-17	′=-42/523, 13-15=-42/5	21, 12-13=-111	/2277,				
WEBS	5-13=-68/1541	9, 3-18=-53/361, 3-17=-1 1, 6-13=-394/80, 7-13=-4 5, 2-19=-326/547, 9-24=-	21/22, 7-11=-672/34, 8		26,				
 2) Wind: ASCE 1 MWFRS (env 3) TCLL: ASCE Rough Cat C; 4) Unbalanced s 5) Provide adeq 6) This truss has 7) * This truss has 9) Provide adeq 8) Bearing at join capacity of be 9) Provide mech joint 19 and 11) This truss is 12) Graphical pu 13) Use Simpso 	7-16; Vult=115n elope); cantilevo 7-16; Pr=25.0 p ; Fully Exp.; Ce snow loads have uate drainage to s been designed as been designed as been designed as been designed aring surface. hanical connection chanical connect de lb uplift at joi designed in acc urlin representat n Strong-Tie LT	ave been considered for t nph (3-second gust) Vasc er left and right exposed 0.sf (roof LL: Lum DOL=1. =0.9; Cs=1.00; Ct=1.10 a been considered for this o prevent water ponding. d for a 10.0 psf bottom ch ed for a live load of 20.0p nord and any other memb ars parallel to grain value on (by others) of truss to tion (by others) of truss to int 24. cordance with the 2018 Ir tion does not depict the s THJA26 (LTHJA26 on 1 p d, skewed 0.0 deg.to the	d=91mph; TCDL=6.0ps ; end vertical left and ri 15 Plate DOL=1.15); P s design. ord live load nonconcu isf on the bottom chord ers. using ANSI/TPI 1 angl bearing plate at joint(s o bearing plate at joint(s o bearing plate capable nternational Building Co ize or the orientation of ly, Right Hand Hip) or o	ght exposed; Lu =15.0 psf (Lum rrent with any c in all areas wh e to grain formu 24. of withstanding ode section 230 the purlin alon equivalent at 6-	umber DOL=1.33 h DOL=1.15 Plate other live loads. ere a rectangle 3 ula. Building des g 194 lb uplift at 06.1 and reference g the top and/or	3 plate grip DOL= e DOL=1.15); Is= 3-6-0 tall by 2-0-0 igner should verif joint 17, 256 lb up ced standard ANS bottom chord.	vide vide v blift at	STATE OF MI SCOTT M SEVIER NUMBER PE-2001018 PE-2001018 October 18	ROT LE ROT
Design valid f a truss systen building desig is always requ fabrication, st	or use only with MiT n. Before use, the bi n. Bracing indicate uired for stability and orage, delivery, ered	meters and READ NOTES ON T rek® connectors. This design is uilding designer must verify the d is to prevent buckling of indivi d to prevent collapse with possii ction and bracing of trusses and m Truss Plate Institute, 2670 C	based only upon parameters applicability of design param dual truss web and/or chord r ble personal injury and proper truss systems, see	shown, and is for a eters and properly in nembers only. Add ty damage. For ge ANSI/TPI1 Quality	an individual building ncorporate this desig litional temporary and neral guidance regar	component, not n into the overall I permanent bracing	mponent	NiTek* 16023 Swingley Ridge Chesterfield, MO 6301	rRd 7

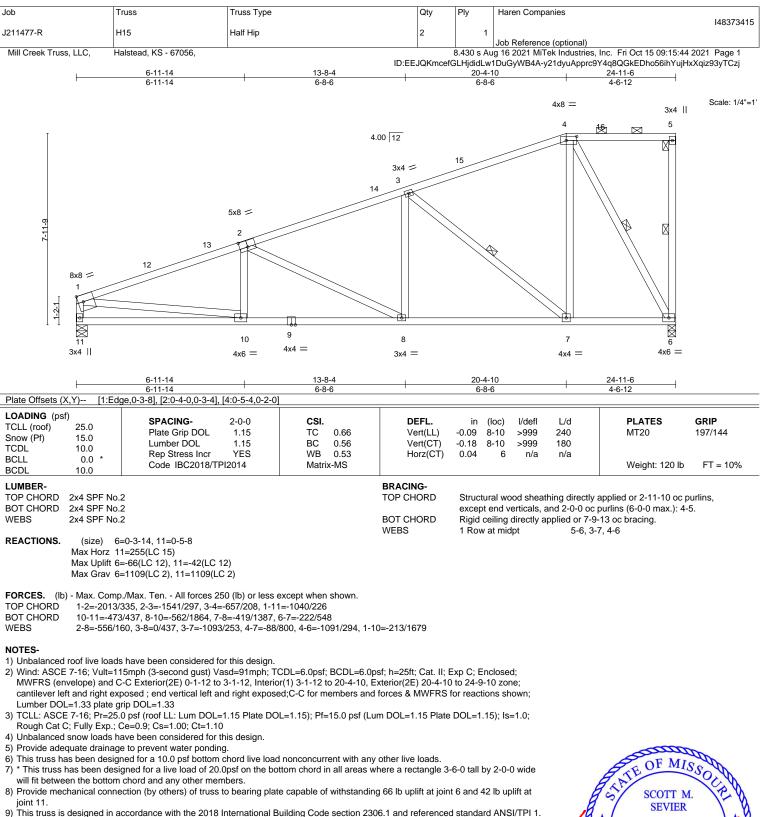
Job	Truss	Truss Type	Qty	Ply	Haren Companies
					148373414
J211477-R	H14	Half Hip Girder	2	1	
					Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:15:43 2021 Page 2
		ID:EEJC	KmcefGLI	- - - - - - - - - - - - - - - - - - -	uGyWB4A-UsTFkY9B2XUJwwGytZD?gUFtLIJk9HxnIAzPddyTCzk

NOTES-

14) Fill all nail holes where hanger is in contact with lumber.

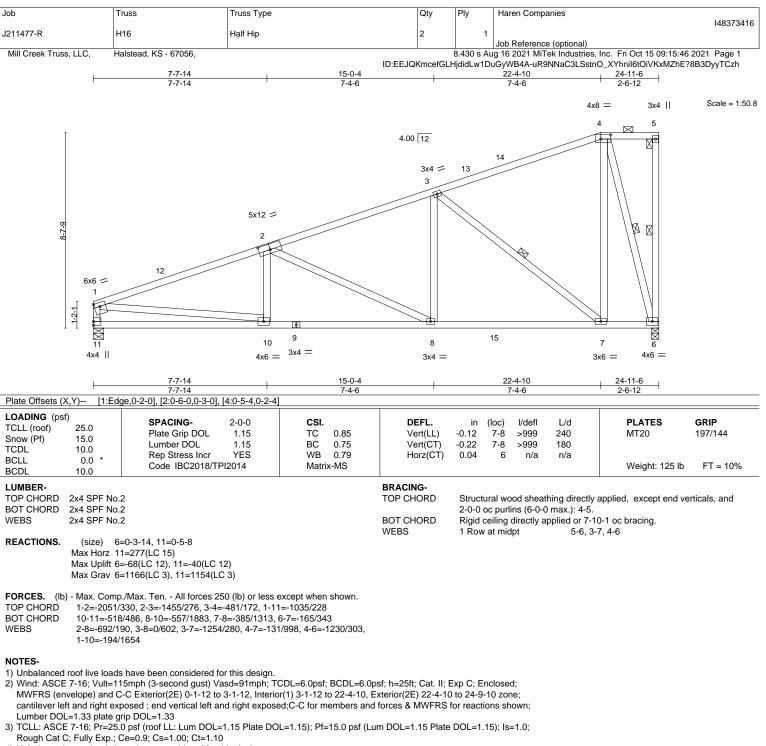
15) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

16) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).


LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-50, 3-9=-50, 10-21=-20

Concentrated Loads (lb)


Vert: 3=-48(B) 18=-207(B) 25=-48(B) 26=-60(B)

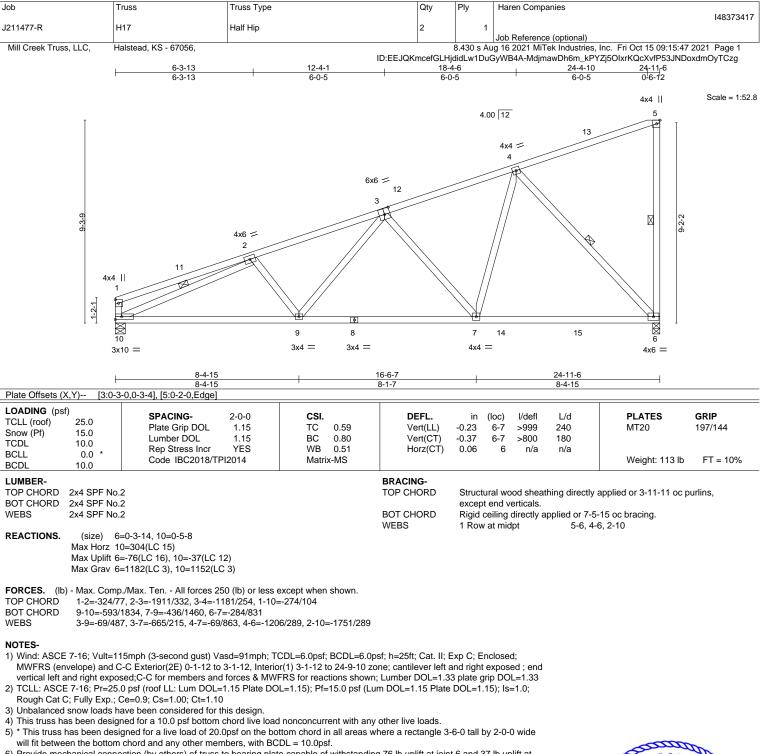
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

4) Unbalanced snow loads have been considered for this design.

5) Provide adequate drainage to prevent water ponding.

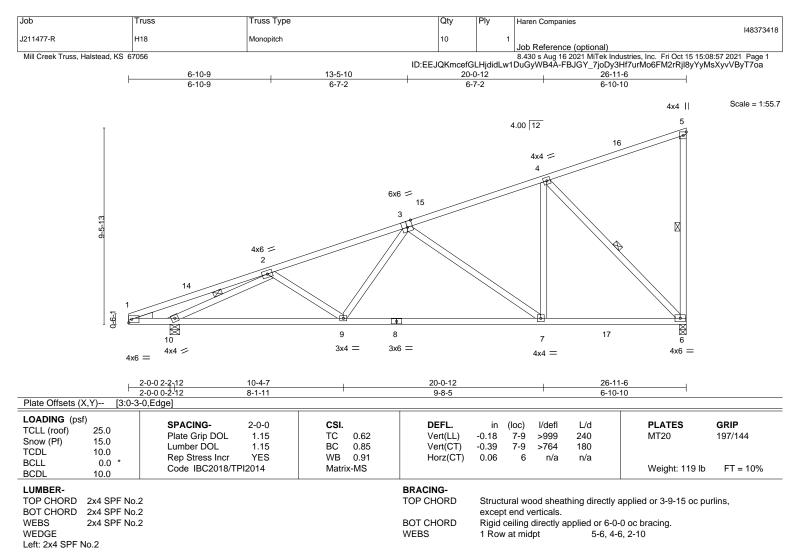
6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 68 lb uplift at joint 6 and 40 lb uplift at joint 11.

9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

October 18,2021



6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 76 lb uplift at joint 6 and 37 lb uplift at joint 10.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

MITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

REACTIONS. (lb/size) 6=866/0-3-14, 10=1010/0-5-8 Max Horz 10=305(LC 15) Max Uplift 6=-76(LC 16), 10=-84(LC 12) Max Grav 6=1180(LC 3), 10=1344(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1937/278, 3-15=-1051/222, 4-15=-931/223

- BOT CHORD 9-10=-595/1843, 8-9=-448/1544, 7-8=-448/1544, 7-17=-273/914, 6-17=-273/914
- WEBS 3-9=0/431, 3-7=-782/214, 4-7=-29/802, 4-6=-1293/264, 2-10=-2083/549

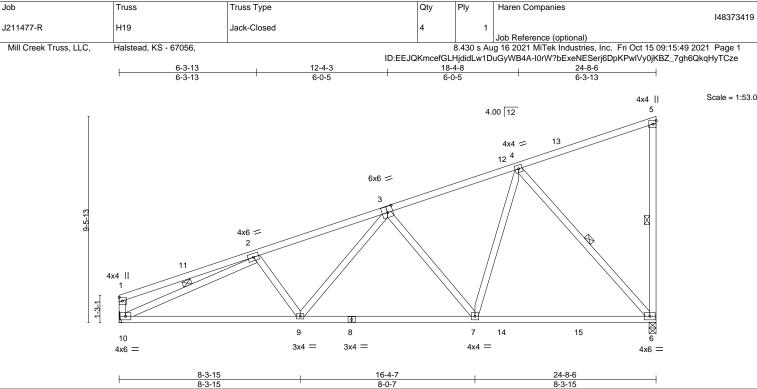
NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 26-9-10 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 76 lb uplift at joint 6 and 84 lb uplift at joint 10.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Plate Offsets (X,Y) [3:0-3-0	,0-3-4]	5-0-7	0-0-10	
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIBC2018/TPI2014	BC 0.78 Ver	FL. in (loc) l/defl L/d rt(LL) -0.22 6-7 >999 240 rt(CT) -0.36 6-7 >817 180 rz(CT) 0.05 6 n/a n/a	PLATES GRIP MT20 197/144 Weight: 113 lb FT = 10%
LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2		BRACING TOP CHC		applied or 4-0-10 oc purlins,

WEBS 2x4 SPF No.2 BOT CHORD Rigid ceiling directly applied or 7-6-4 oc bracing. WEBS 1 Row at midpt REACTIONS. (size) 10=Mechanical, 6=0-3-14 Max Horz 10=304(LC 15)

Max Uplift 10=-37(LC 12), 6=-75(LC 16) Max Grav 10=1140(LC 3), 6=1170(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-10=-265/103, 1-2=-294/78, 2-3=-1848/326, 3-4=-1152/252

BOT CHORD

9-10=-590/1762, 7-9=-435/1408, 6-7=-287/784 WFBS

2-10=-1712/280, 3-9=-74/472, 3-7=-654/214, 4-7=-76/865, 4-6=-1173/301

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 24-6-10 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

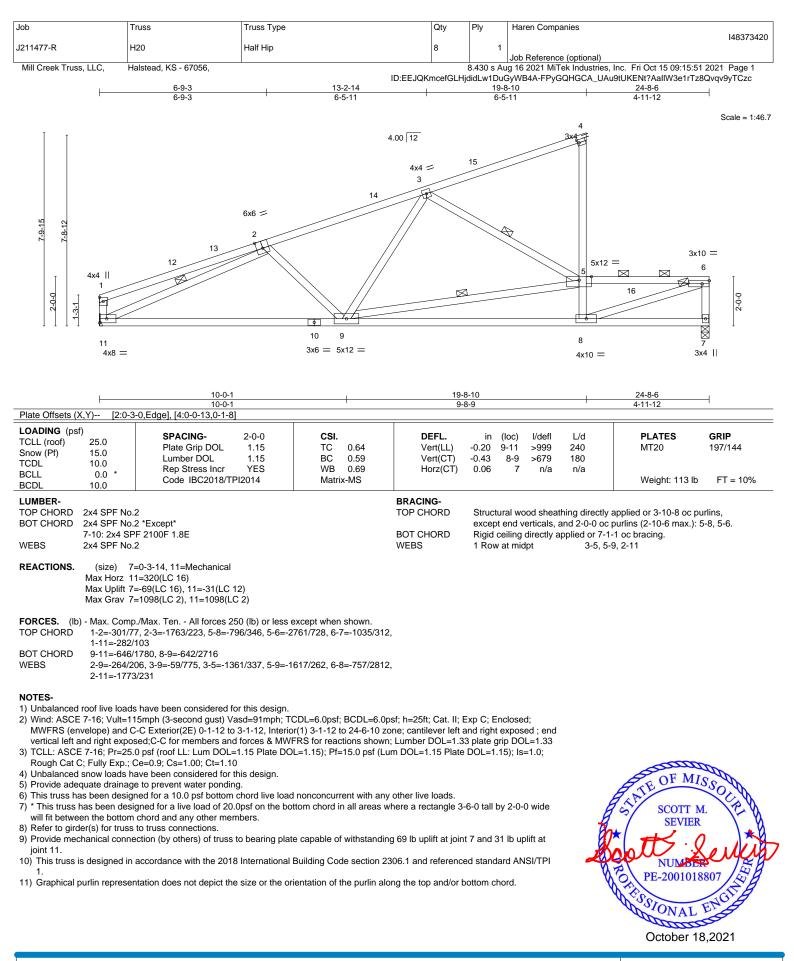
3) Unbalanced snow loads have been considered for this design.

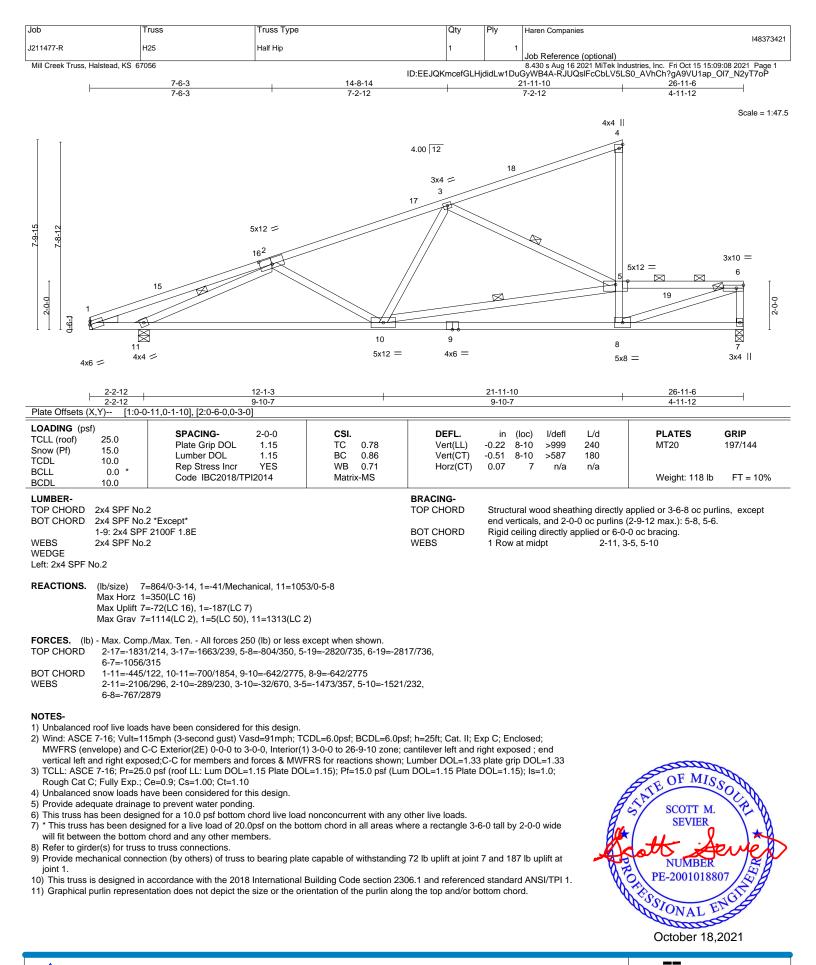
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5)

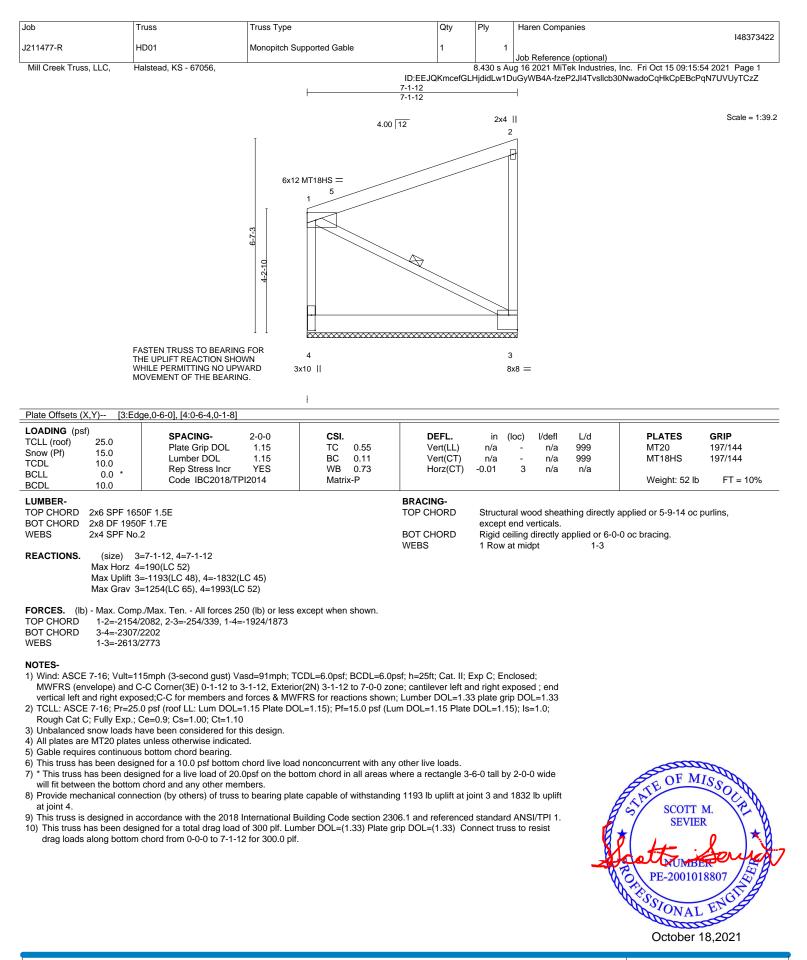
will fit between the bottom chord and any other members, with BCDL = 10.0psf.

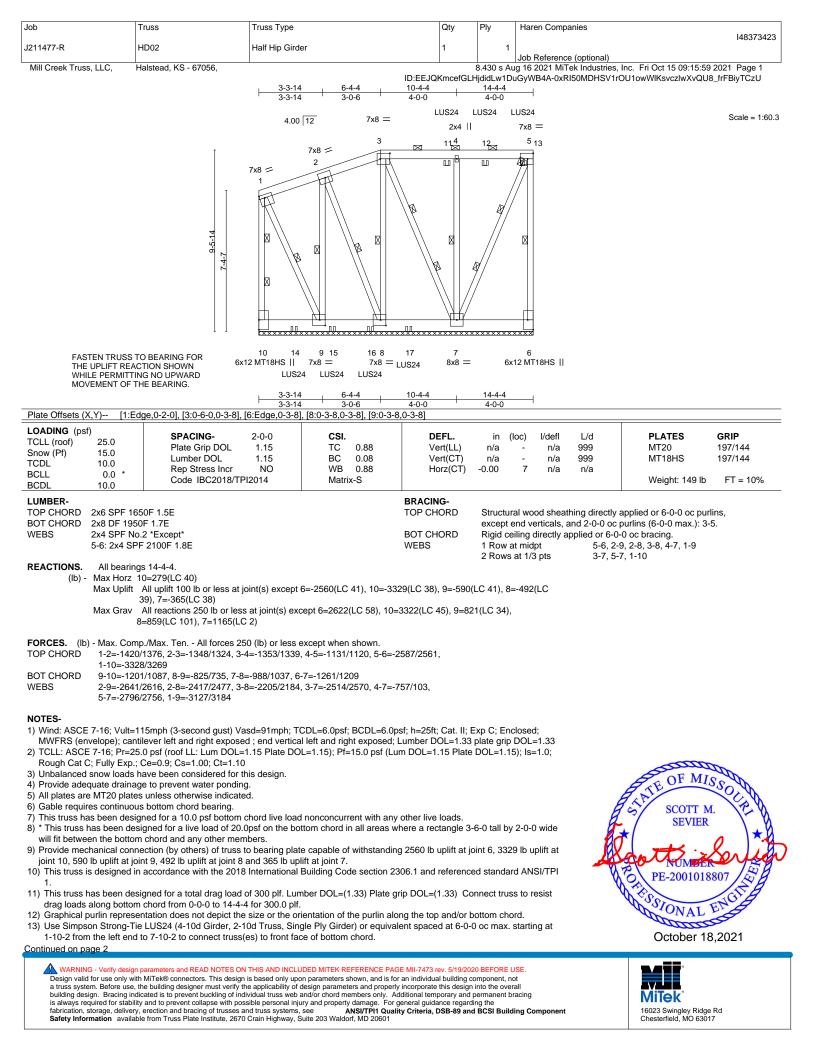
6) Refer to girder(s) for truss to truss connections.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 37 lb uplift at joint 10 and 75 lb uplift at joint 6.


8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

5-6, 2-10, 4-6



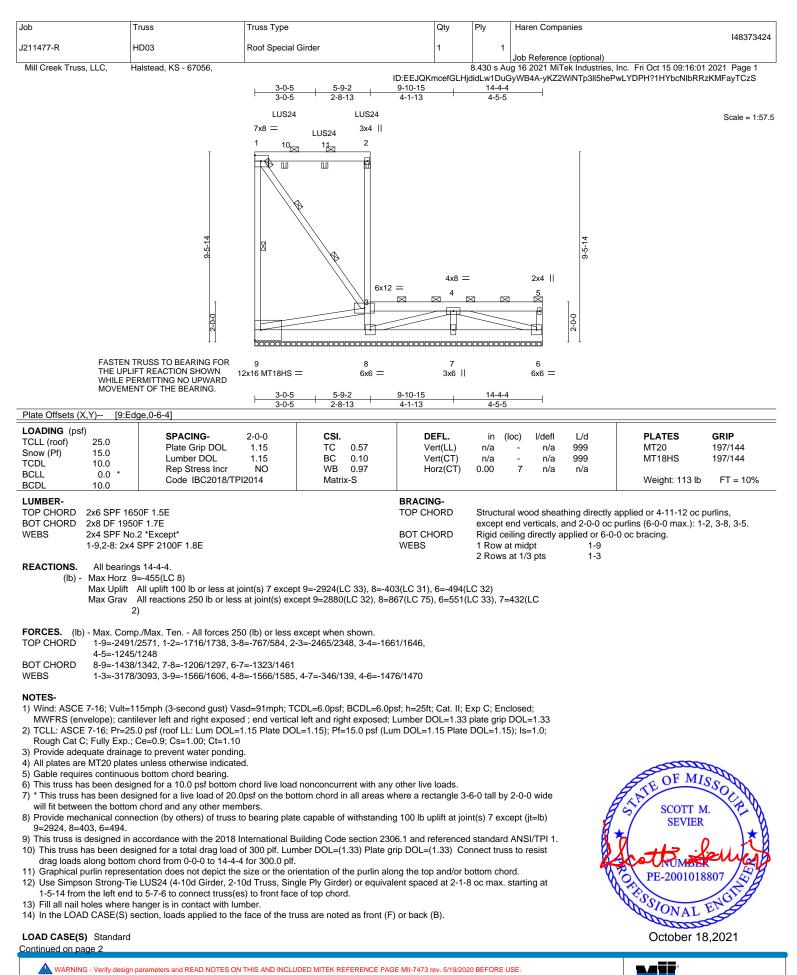


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Mitek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Haren Companies	
					148373423	
J211477-R	HD02	Half Hip Girder	1	1		
					Job Reference (optional)	
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:15:59 2021 Page 2	
		ID:EEJQI	ID:EEJQKmcefGLHjdidLw1DuGyWB4A-0xRI50MDHSV1rOU1owWlKsvczlwXvQU8_frFBiyTCzU			

NOTES-

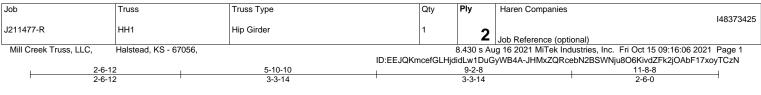

14) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent at 3-10-2 from the left end to connect truss(es) to front face of bottom chord, skewed 0.0 deg.to the left, sloping 0.0 deg. down.

- 15) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent at 5-10-2 from the left end to connect truss(es) to front face of bottom chord,
- skewed 0.0 deg. to the left, sloping 0.0 deg. down. 16) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 9-10-2 from the left end to 13-10-2 to
- connect truss(es) to front face of top chord. 17) Fill all nail holes where hanger is in contact with lumber.
- In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

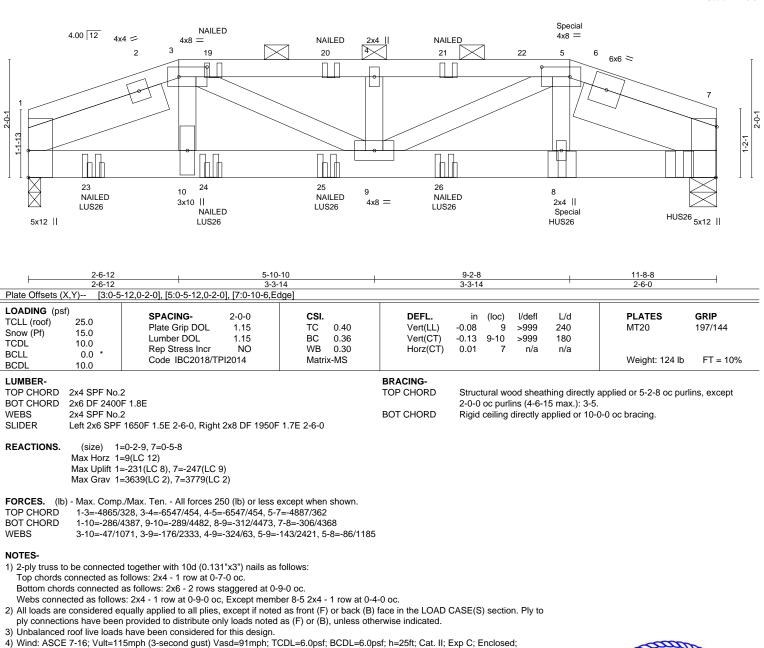
LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (plf) Vert: 1-3=-50, 3-5=-50, 6-10=-20
 - Concentrated Loads (lb)
 - Vert: 11=-221(F) 12=-221(F) 13=-237(F) 14=-207(F) 15=-207(F) 16=-207(F) 17=-247(F)

ſ	Job	Truss	Truss Type	Qty	Ply	Haren Companies		
						148373424		
	J211477-R	HD03	Roof Special Girder	1	1			
						Job Reference (optional)		
	Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:16:02 2021 Page 2		
			ID:EEJQ	ID:EEJQKmcefGLHjdidLw1DuGyWB4A-QW7Qk2O5aNtcirDcU23SyUXB1yxr6Iraqd3wo0yTCzR				


LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-2=-50, 3-5=-50, 6-9=-20 Concentrated Loads (lb)

Vert: 2=-221(F) 10=-221(F) 11=-221(F)

Scale = 1:19.6

4) Wind: ASCE 7-16; Vull=115mpn (3-second gust) Vasd=91mpn; TCDL=6.0pst; BCDL=6.0pst; h=25t; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33 5) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp; Ce=0.9; Cs=1.00; Ct=1.10

- 6) Unbalanced snow loads have been considered for this design.
- Provide adequate drainage to prevent water ponding.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 1.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=231, 7=247.
- 12) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) Use Simpson Strong-Tie LUS26 (4-SD9112 Girder, 4-SD9212 Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 1-0-15 from the left end to 7-0-15 to connect truss(es) to back face of bottom chord.

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Haren Companies
					148373425
J211477-R	HH1	Hip Girder	1	ົ່	
				_	Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:16:06 2021 Page 2
		ID:EEJQKn	ncefGLHjd	idLw1DuG	WB4A-JHMxZQRcebN2BSWNju8O6KivdZFk2jOAbF17xoyTCzN

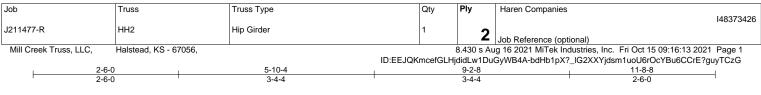
NOTES-

15) Use Simpson Strong-Tie HUS26 (14-10d Girder, 4-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 9-0-15 from the left end to 11-0-15 to connect truss(es) to back face of bottom chord.

Fill all nail holes where hanger is in contact with lumber.
 Fill all nail holes where hanger is in contact with lumber.
 "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

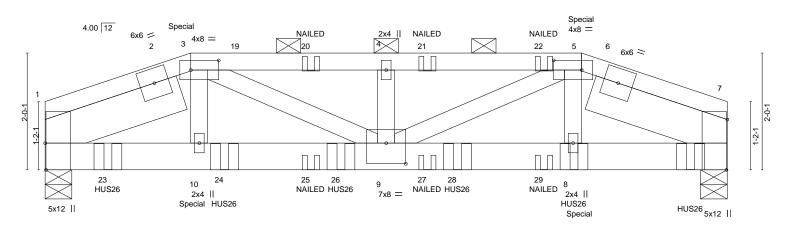
18) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 75 lb down and 49 lb up at 9-2-8 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-50, 3-5=-50, 5-7=-50, 11-15=-20

Concentrated Loads (lb)


Vert: 5=-25(F) 8=-778(F=83, B=-860) 17=-864(B) 19=-12(F) 20=-12(F) 21=-12(F) 23=-1137(F=-82, B=-1055) 24=-1020(F=35, B=-1055) 25=-1020(F=35, B=-1055) 25=-100(F=35, B=-1055) 25=-100(F=35, B=-1055) 25=-100(F=35, B=-1055) 25=-100(F=35, B=-1055) 25=-100(F=35, B=-1055) 25=-100(F=35, B=-100(F=35, B=-100) 25=-100(F=35, B=-100(F=35, B=-100) 25=-100(F=35, B=-100(F=35, B=-100(F=35, B=-100) 25=-100(F=35, B=-100(F=35, B=-100) 25=-100(F=35, B=-100(F=35, B=-100(F=35, B=-100(F=35, B=-100(F=35, B=-100(F=35, B=-100(F=35, B=-100(F=35, B=-100(F=35, B=-100(F=35, B=-100(F= 26=-1020(F=35, B=-1055)

Scale = 1:19.8

16023 Swingley Ridge Rd Chesterfield, MO 63017

	<u>2-6-0</u> 2-6-0		<u>5-10-4</u> 3-4-4		-	<u>9-2-8</u> 3-4-4		<u>11-8-8</u> 2-6-0	———————————————————————————————————————
Plate Offsets (X	,Y) [1:0-5	-8,Edge], [3:0-5-12,0-2-	0], [5:0-5-12,0-2-	0], [7:0-10-6,Edge], [9:0-4-0,0-4-4]				
LOADING (psf TCLL (roof) Snow (Pf) TCDL BCLL BCDL	25.0 15.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018/T	2-0-0 1.15 1.15 NO 'PI2014	CSI. TC 0.40 BC 0.48 WB 0.30 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/de -0.07 9 >99 -0.12 9 >99 0.01 7 n	9 240 9 180	PLATES MT20 Weight: 121 lb	GRIP 197/144 FT = 10%
WEBS	2x6 SPF 165 2x4 SPF No. Left 2x8 DF 1 (size) 1:	0F 1.5E 2 1950F 1.7E 2-6-0, Right =0-5-8, 7=0-5-8	2x8 DF 1950F 1	.7E 2-6-0	BRACING- TOP CHORD BOT CHORD	Structural wood sł except 2-0-0 oc purlins (4 Rigid ceiling direct	-7-10 max.): 3-5.		rlins,
	Max Horz 1=9(LC 84) Max Uplift 1=-244(LC 8), 7=-269(LC 9) Max Grav 1=3517(LC 2), 7=3740(LC 2) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.								
TOP CHORD BOT CHORD WEBS									
 Top chords of Bottom chord Webs conner- member 9-5 2) All loads are ply connection 3) Unbalanced 4) Wind: ASCE MWFRS (emposed) 5) TCLL: ASCE Rough Cat C 6) Unbalanced 7) Provide aded 8) This truss h will fit betweet 10) Provide me 1=244, 7=2 11) This truss is 1. 12) Graphical p 13) Use Simpsor end to 7-0-C 	onnected as s connected cted as follow 2x4 - 1 row a: considered e ns have beer roof live loads 7-16; Vult=11 7-16; Pr=25. ; Fully Exp.; (snow loads h quate drainag as been design as been design as been design as been design as been design the bottom chanical conr 69. s designed in urlin represer on Strong-Tie 15 to connect ge 2	qually applied to all plies a provided to distribute of s have been considered [5mph (3-second gust) \ lever left and right expos 0 psf (roof LL: Lum DOL Ce=0.9; Cs=1.00; Ct=1.' ave been considered for e to prevent water pondi- ned for a 10.0 psf botton gned for a live load of 20 chord and any other me tection (by others) of tru accordance with the 20 ntation does not depict th HUS26 (14-10d Girder, truss(es) to front face o	-7-0 oć. staggered at 0-7 c, Except if noted inly loads noted a for this design. /asd=91mph; TC ed; end vertical =1.15 Plate DOL 10 this design. ng. nc. hord live load 0.0psf on the bott embers. ss to bearing plai 18 International E he size or the orie 4-10d Truss) or 15 bottom chord.	7-0 oc. er 9-3 2x4 - 1 row at (l as front (F) or back (as (F) or (B), unless o CDL=6.0psf; BCDL=6. left and right exposed _=1.15); Pf=15.0 psf (nonconcurrent with a tom chord in all areas te capable of withstar Building Code section entation of the purlin a equivalent spaced at	B) face in the LOAD therwise indicated. 0psf; h=25ft; Cat. II; d; Lumber DOL=1.33 Lum DOL=1.15 Plate ny other live loads. where a rectangle 3 nding 100 lb uplift at j 2306.1 and referenc along the top and/or l 2-0-0 oc max. startin	CASE(S) section. Ply Exp C; Enclosed; plate grip DOL=1.33 DOL=1.15); Is=1.0; -6-0 tall by 2-0-0 wid oint(s) except (jt=lb) ed standard ANSI/TF pottom chord. g at 1-0-15 from the	e e	State OF MIL SCOTT M SEVIER NUMBER PE-2001018 PE-2001018 October 18	ROT RUNCH
Design valid a truss syste building desi	for use only with m. Before use, th gn. Bracing indic	arameters and READ NOTES (MiTek® connectors. This desi he building designer must verify ated is to prevent buckling of i and to prevent collapse with p	gn is based only upor the applicability of denotive the second s	n parameters shown, and is lesign parameters and prop ind/or chord members only.	for an individual building of erly incorporate this design Additional temporary and	component, not into the overall permanent bracing		MiTek	

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Haren Companies
					148373426
J211477-R	HH2	Hip Girder	1	2	
				_	Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:16:13 2021 Page 2
		ID:EEJQK	(mcefGLH	didLw1Du	GyWB4A-bdHb1pX?_IG2XXYjdsm1uoU6rOcYBu6CCrE?guyTCzG

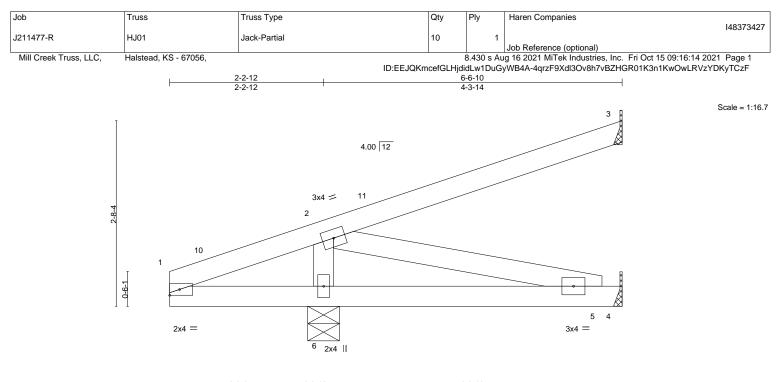
NOTES-

14) Use Simpson Strong-Tie HUS26 (14-10d Girder, 4-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 9-0-15 from the left end to 11-0-15 to connect truss(es) to front face of bottom chord.

15) Fill all hall holes where hanger is in contact with lumber.
16) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

17) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 75 lb down and 49 lb up at 2-6-0, and 75 lb down and 49 lb up at 9-2-8 on top chord, and 25 lb down and 181 lb up at 2-6-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-50, 3-5=-50, 5-7=-50, 11-15=-20

Concentrated Loads (lb)

Vert: 3=-25(B) 5=-25(B) 10=83(B) 8=-778(F=-860, B=83) 17=-864(F) 20=-12(B) 21=-12(B) 22=-12(B) 23=-1055(F) 24=-1055(F) 25=35(B) 26=-1055(F) 27=35(B) 26=-1055(F) 27=-1055(F) 27=-1055(F 28=-1055(F) 29=35(B)

	2-0-0	<u>2-2-12</u> 0-2-12	<u> </u>		-1
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.25 BC 0.12 WB 0.07 Matrix-MP	Vert(LL) -0.01	(loc) l/defl L/d 5-6 >999 240 5-6 >999 180 3 n/a n/a	PLATES GRIP MT20 197/144 Weight: 21 lb FT = 10%
LUMBER-			BRACING-		

LUMBER-

2x4 SPF No 2 TOP CHORD BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. 3=Mechanical, 4=Mechanical, 6=0-5-8 (size) Max Horz 6=61(LC 12) Max Uplift 3=-34(LC 16), 6=-58(LC 12)

Max Grav 3=129(LC 22), 4=58(LC 7), 6=445(LC 22)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 2-6=-361/328 WEBS

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 6-5-14 zone; cantilever left and right exposed ; end

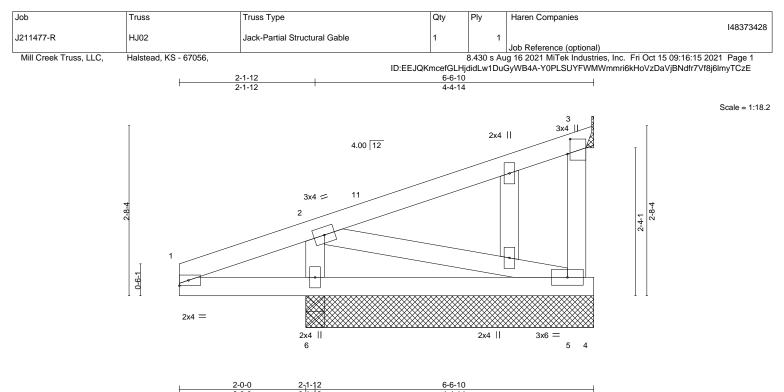
vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Plate Offsets (X,Y) [3:0-2-13	3,0-0-8]	0-1-12	4-4-14		T		
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.25 BC 0.12 WB 0.07 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	-0.01 5-6	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 25 lb	GRIP 197/144 FT = 10%
LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2			BRACING- TOP CHORD	Structural woo except end ver	d sheathing directly a ticals.	pplied or 6-0-0 oc pu	rlins,

 BOT CHORD
 2x4 SPF No.2
 except end verticals.

 WEBS
 2x4 SPF No.2
 BOT CHORD
 Rigid ceiling directly applied or 6-0-0 oc bracing.

 OTHERS
 2x4 SPF No.2
 BOT CHORD
 Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 4-6-10 except (jt=length) 3=Mechanical.

(lb) - Max Horz 6=75(LC 15)

2-6=-356/340

Max Uplift All uplift 100 lb or less at joint(s) 3. 6

Max Grav All reactions 250 lb or less at joint(s) 3, 5 except 6=441(LC 22), 6=334(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

WEBS

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 6-3-6 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

3) TOLL: ASOE 7-16; PF=25.0 pst (root LL: Lum DOL=1.15 Plate DOL=1.15); PF=15.0 pst (Lum DOL=1.15 Plate DOL=1.15); IS=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

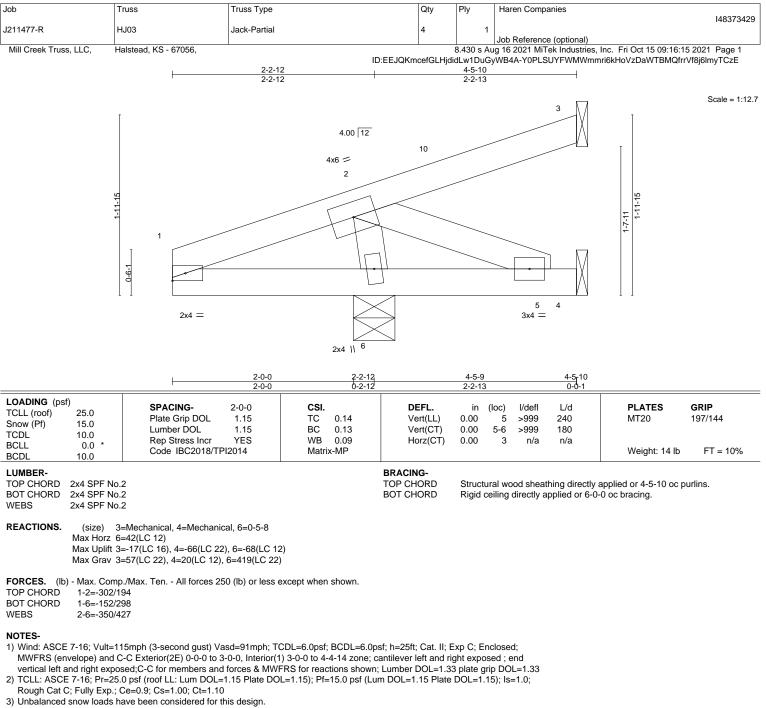
4) Unbalanced snow loads have been considered for this design.

5) Gable studs spaced at 1-4-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

8) Refer to girder(s) for truss to truss connections.


9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 6.

10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI

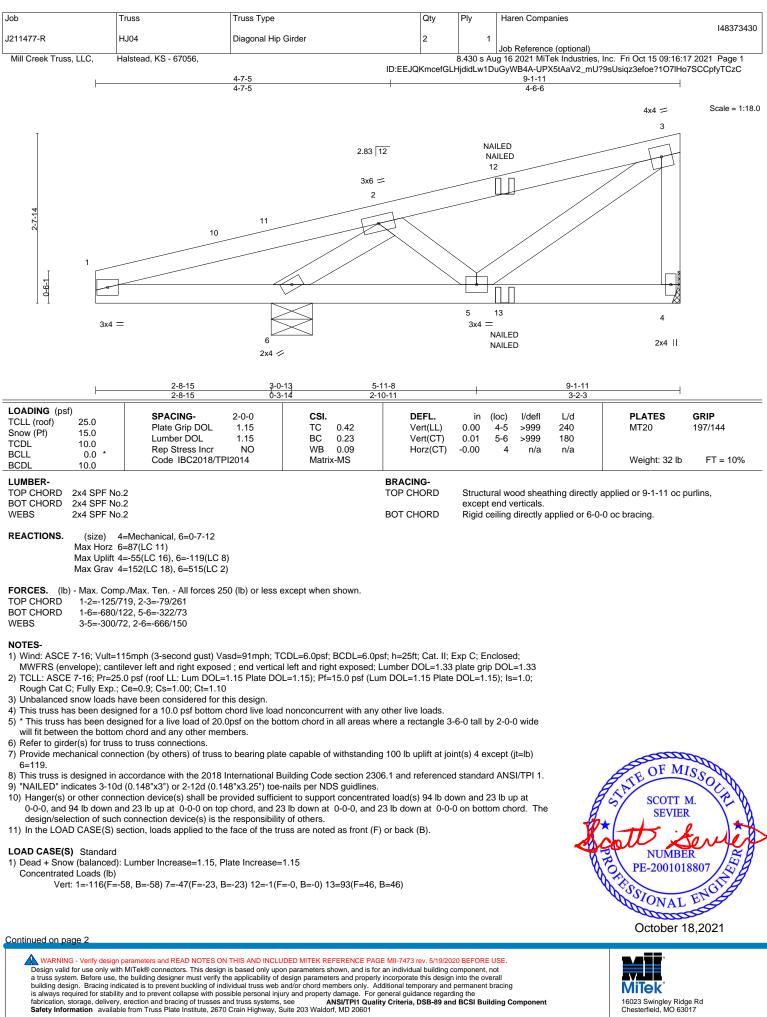
11) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

16023 Swingley Ridge Rd Chesterfield, MO 63017

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

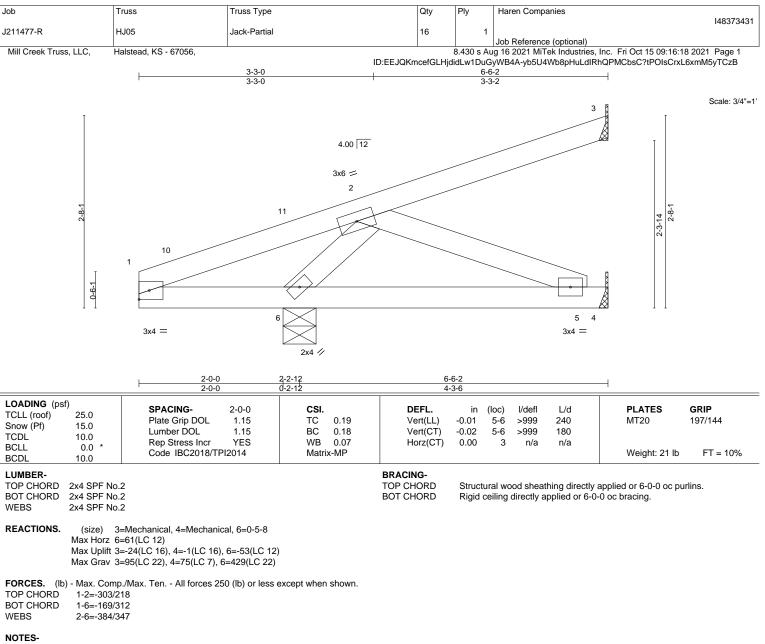
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.


Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.


16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Haren Companies		
					148373430		
J211477-R	HJ04	Diagonal Hip Girder	2	1			
					Job Reference (optional)		
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:16:17 2021 Page 2		
		ID:EEJQ	ID:EEJQKmcefGLHjdidLw1DuGyWB4A-UPX5tAaV2_mU?9sUsiqz3efoe?107IHo7SCCpfyTCzC				

LOAD CASE(S) Standard

Trapezoidal Loads (pf) Vert: 1=0(F=25, B=25)-to-11=-35(F=7, B=7), 11=0(F=25, B=25)-to-3=-79(F=-15, B=-15), 7=0(F=10, B=10)-to-6=-14(F=3, B=3), 6=-0(F=10, B=10)-to-4=-32(F=-6, B=-6)

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-2-5, Interior(1) 3-2-5 to 6-5-6 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

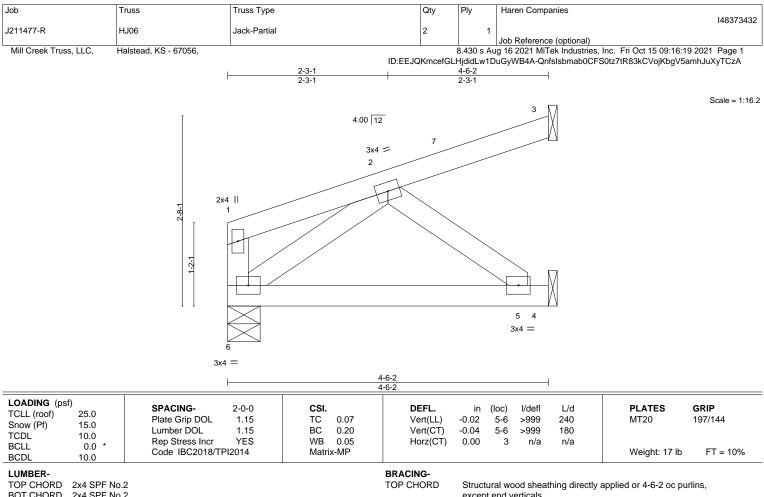
2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

BOT CHORD

BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 3=Mechanical, 4=Mechanical, 6=0-5-8 (size)

Max Horz 6=47(LC 13) Max Uplift 3=-16(LC 16), 4=-8(LC 16)

Max Grav 3=66(LC 22), 4=134(LC 22), 6=200(LC 22)

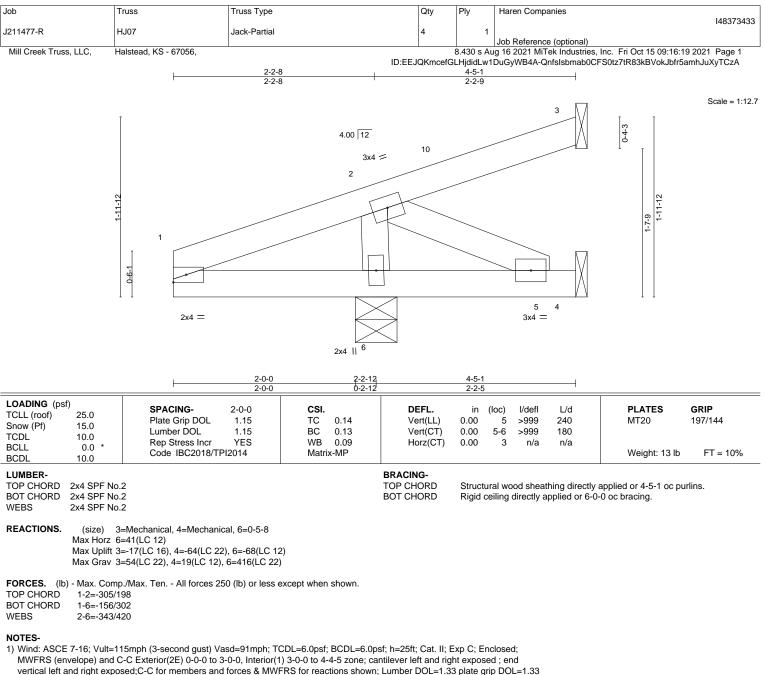
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 4-5-6 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

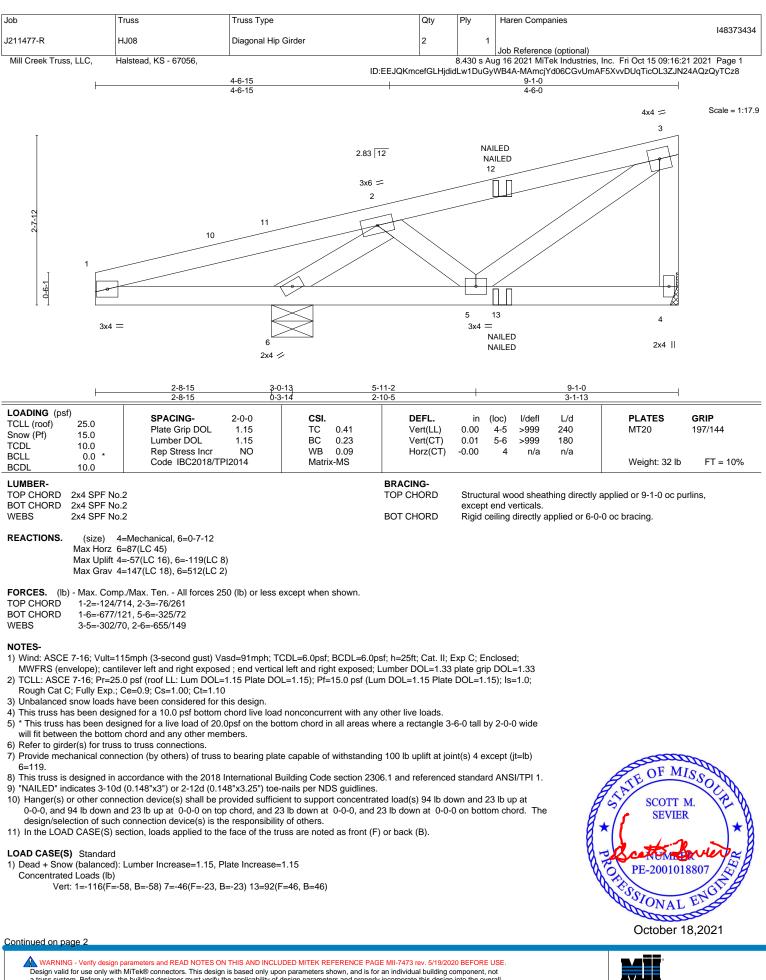
Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.


6) Refer to girder(s) for truss to truss connections.

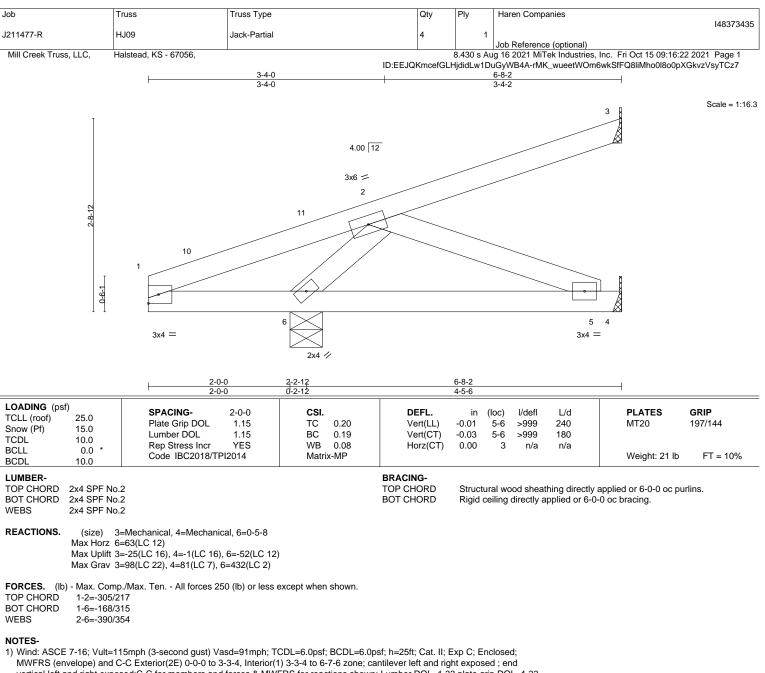
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017


MiTek

Job	Truss	Truss Type	Qty	Ply	Haren Companies		
1044477 D	11100	Diagonal I lin Oindea			148373434		
J211477-R	HJ08	Diagonal Hip Girder	2	1	Job Reference (optional)		
					Job Reference (optional)		
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:16:21 2021 Page 2		
		ID:EEJQKmcefGLHjdidLw1DuGyWB4A-MAmcjYd06CGvUmAF5XvvDUqTicOL3ZJN24AQzQyTCz8					

LOAD CASE(S) Standard

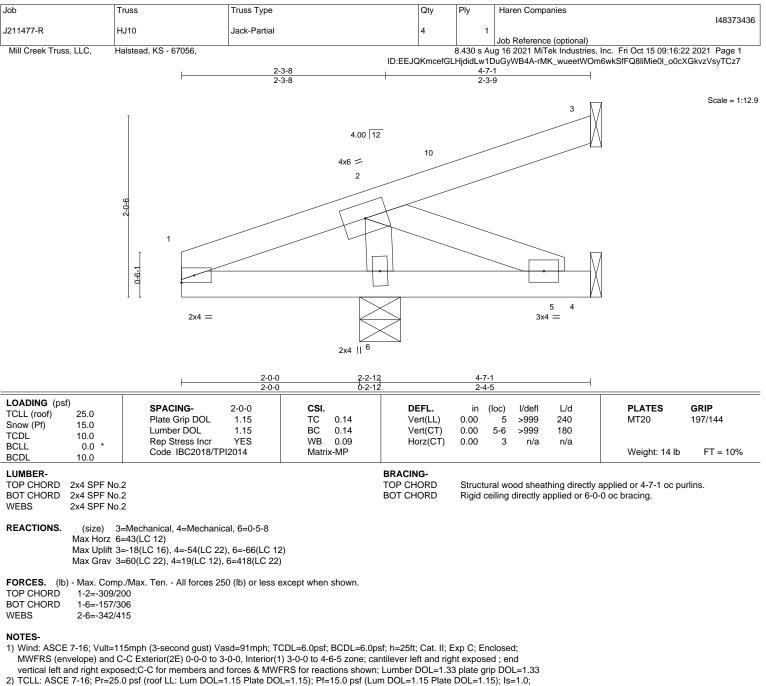
Trapezoidal Loads (plf) Vert: 1=0(F=25, B=25)-to-11=-35(F=7, B=7), 11=0(F=25, B=25)-to-3=-78(F=-14, B=-14), 7=0(F=10, B=10)-to-6=-14(F=3, B=3), 6=0(F=10, B=10)-to-4=-31(F=-6, B=-6)

- vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 6.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

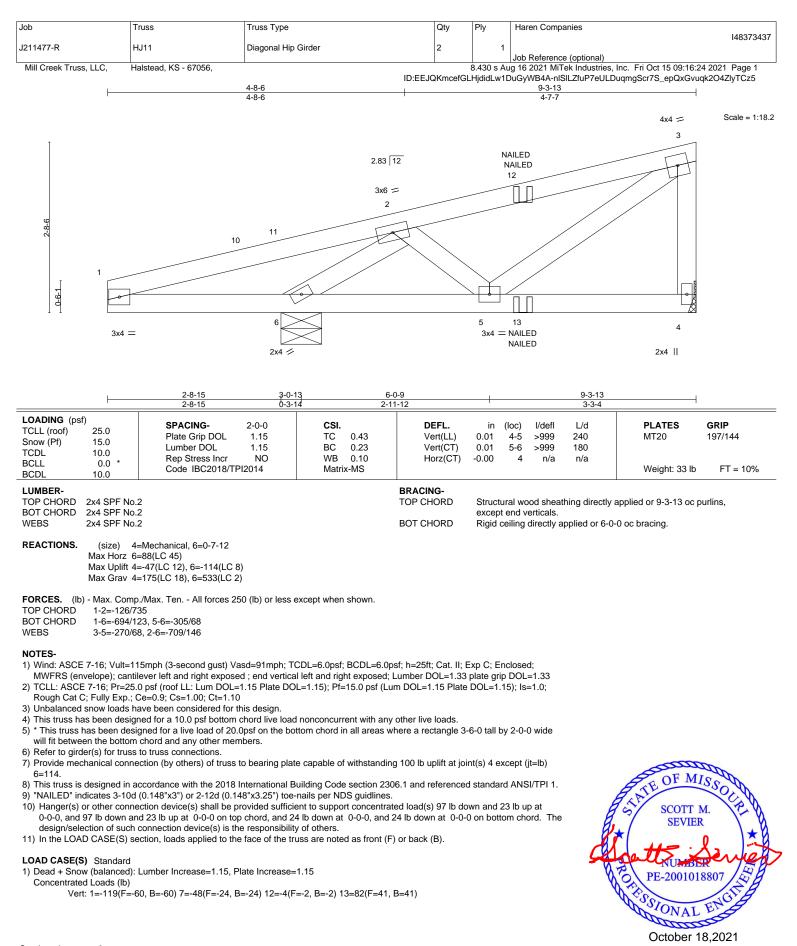
Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

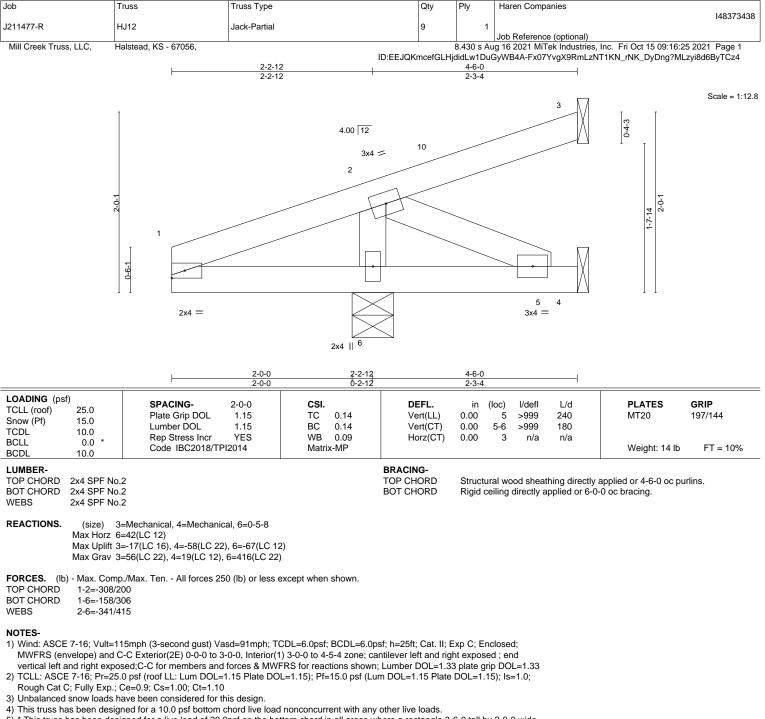

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Haren Companies		
					148373437		
J211477-R	HJ11	Diagonal Hip Girder	2	1			
					Job Reference (optional)		
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:16:24 2021 Page 2		
		ID:EEJQKmcefGLHjdidLw1DuGyWB4A-nISILZfuP7eULDuqmgScr7S_epQxGvuqk2O4ZlyTCz5					

LOAD CASE(S) Standard

Trapezoidal Loads (pf) Vert: 1=0(F=25, B=25)-to-11=-35(F=7, B=7), 11=0(F=25, B=25)-to-3=-81(F=-16, B=-16), 7=0(F=10, B=10)-to-6=-14(F=3, B=3), 6=-0(F=10, B=10)-to-4=-33(F=-6, B=-6)

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

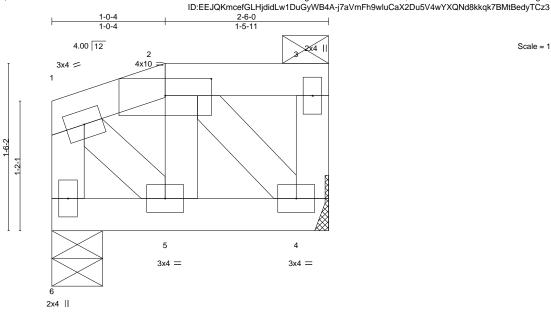
6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	Haren Companies	
J211477-R	HJ13	Half Hip	1	1	I4837343	,

8.430 s Aug 16 2021 MiTek Industries, Inc. Fri Oct 15 09:16:26 2021 Page 1


Structural wood sheathing directly applied or 2-6-0 oc purlins,

except end verticals, and 2-0-0 oc purlins: 2-3.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Scale = 1:10.4

Mill Creek Truss, LLC, Halstead, KS - 67056,

LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.03 BC 0.02 WB 0.02	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 -0.00 -0.00	(loc) 5 5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCLL 0.0 * BCDL 10.0	Code IBC2018/TPI2014	Matrix-MP						Weight: 11 lb	FT = 10%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

REACTIONS. (size) 6=0-5-8, 4=Mechanical

Max Horz 6=38(LC 13) Max Uplift 6=-9(LC 12), 4=-14(LC 13)

Max Grav 6=99(LC 2), 4=102(LC 36)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for

members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

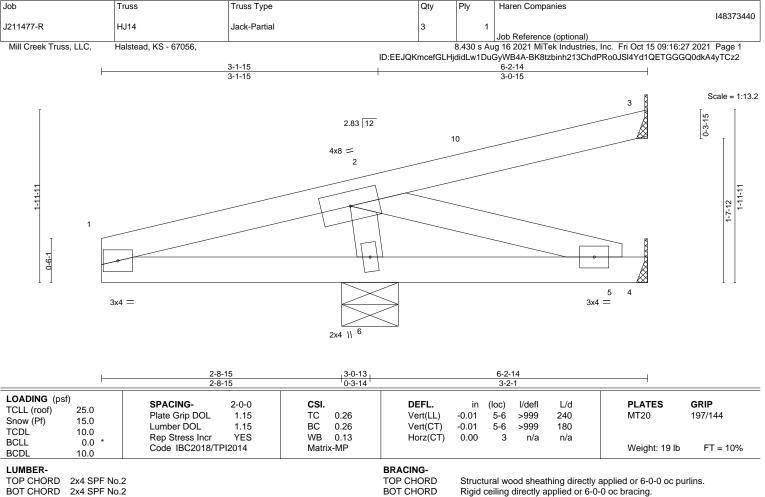
3) Unbalanced snow loads have been considered for this design.

4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 6) will fit between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections.


8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 4.

9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

REACTIONS. 3=Mechanical, 4=Mechanical, 6=0-7-12 (size) Max Horz 6=41(LC 12) Max Uplift 3=-21(LC 16), 4=-74(LC 22), 6=-105(LC 12) Max Grav 3=75(LC 22), 4=36(LC 12), 6=560(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-567/344

BOT CHORD 1-6=-302/563, 5-6=-288/426

WEBS 2-5=-449/303, 2-6=-454/591

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) 0-0-0 to 4-2-15, Exterior(2R) 4-2-15 to 6-2-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

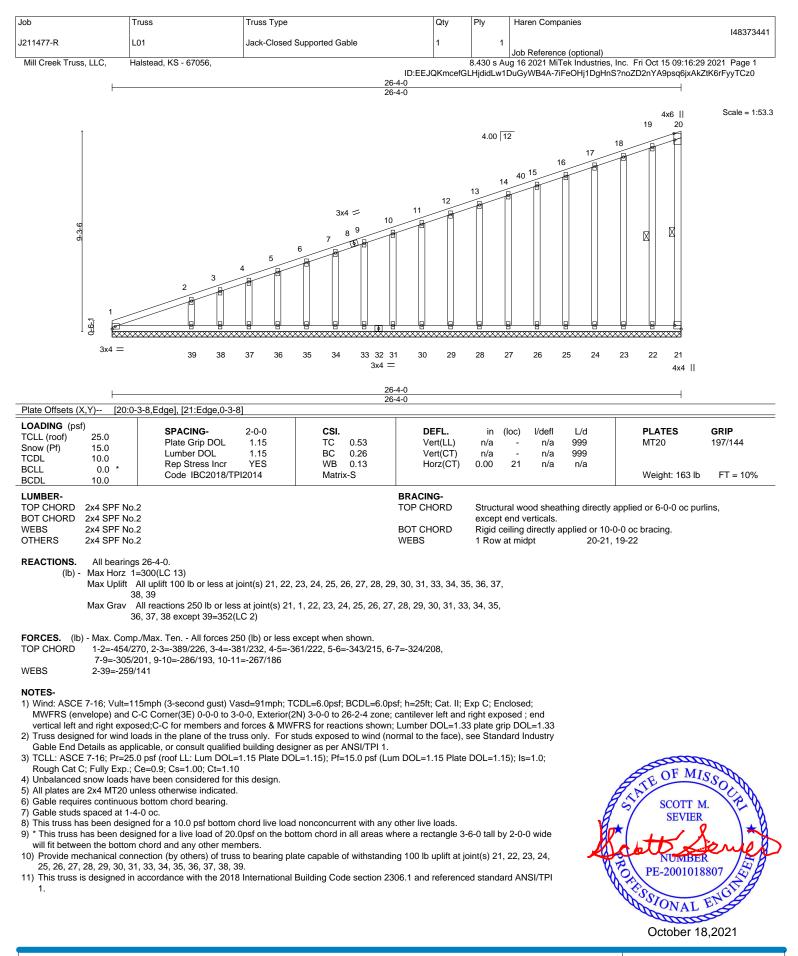
2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

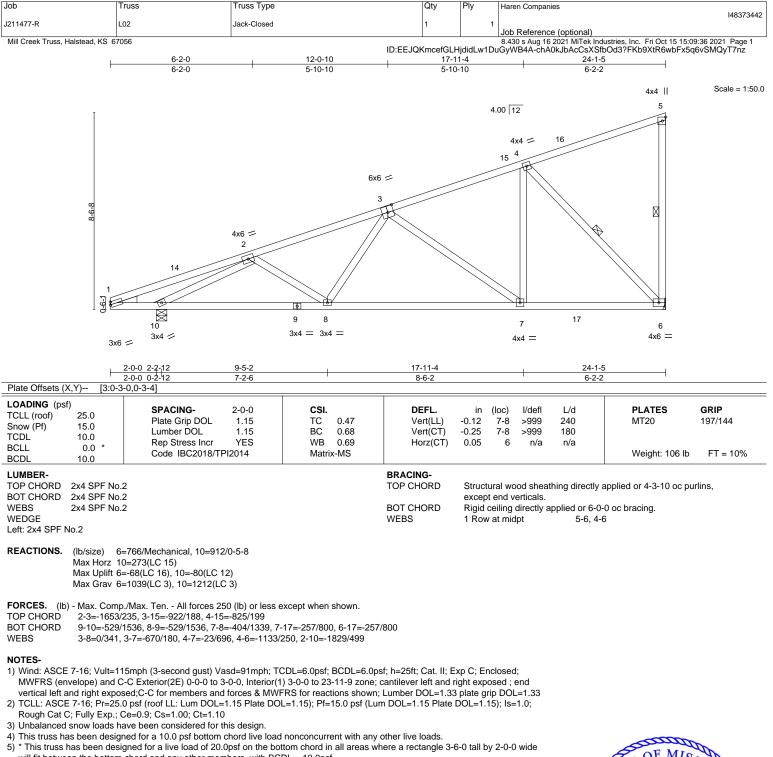
3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.


6) Refer to girder(s) for truss to truss connections.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4 except (jt=lb) 7) 6=105

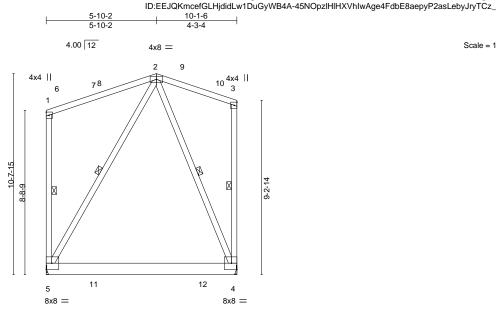

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

16023 Swingley Ridge Rd Chesterfield, MO 63017

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 68 lb uplift at joint 6 and 80 lb uplift at joint 10.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Mitek* 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Haren Companies
				1	
J211477-R	L02A	Common	1	1	
5211477-10			1		Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:16:31 2021 Page 1

Note 25.0 Plate Grip DOL 1.15 TC 0.58 Snow (Pf) 15.0 Lumber DOL 1.15 BC 0.21 TCDL 10.0 Rep Stress Incr YES WB 0.23 BCLL 0.0 Code IBC2018/TPI2014 Matrix-MS	Vert(LL) Vert(CT) Horz(CT)	-0.09 -0.13 -0.00	4-5 4-5 4	>999 >877 n/a	240 180 n/a	MT20 Weight: 84 lb	197/144 FT = 10%
--	----------------------------------	-------------------------	-----------------	---------------------	-------------------	-----------------------	---------------------

TOP CHORD

BOT CHORD

WEBS

```
LUMBER-
```

TOP CHORD 2x4 SPF No 2 BOT CHORD 2x8 DF 1950F 1.7E WEBS 2x4 SPF No.2

REACTIONS. 5=Mechanical, 4=Mechanical (size) Max Horz 5=260(LC 15) Max Uplift 5=-108(LC 12), 4=-122(LC 13) Max Grav 5=540(LC 30), 4=526(LC 29)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. BOT CHORD 4-5=-297/288

WEBS 2-5=-373/392. 2-4=-429/498

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 5-10-2, Exterior(2R) 5-10-2 to 8-10-2, Interior(1) 8-10-2 to 9-11-10 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 6) will fit between the bottom chord and any other members, with BCDL = 10.0psf.

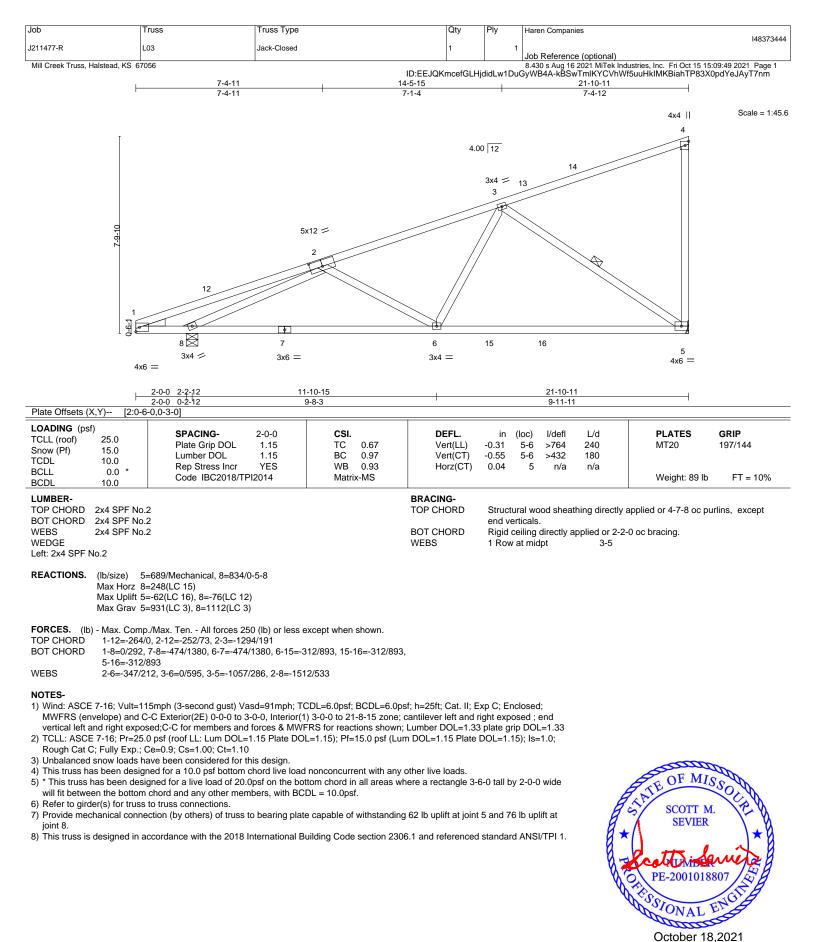
7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 5=108, 4=122.

9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

1-5, 2-5, 3-4, 2-4


Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

1 Row at midpt

Scale = 1:61.1

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job		russ	Truss Type		Qty	Ply	Haren Companies	14837344
J211477-R		.03A	COMMON		1	2		1)
Mill Creek Truss,	Halstead, KS 670	056		4.0.0		HjdidLw1Du	8.430 s Aug 16 2021 MiTek l GyWB4A-I18NFBUWo0y	Industries, Inc. Mon Oct 18 08:33:46 2021 Page 1 7UoSzIgIRR_nFhmtnw4yHTUqRFOySEJ3
				4-2-2	8-0-13 3-10-10	10-1-6 2-0-9		
				4.00 12	4x	6 =		Scale = 1:60.
					3		x4 🗢	
			Ī	3x10 2	12		T	
			;	3x4 11 2			Т	
			Ī	1		2x4		
						4x4		
			-15				2	
			10-7-15				9-11-12 8-11-9	
				II A A A A A A A A A A A A A A A A A A			6, 1-8	
			N 10					
			1 1	7 6			1 1	
				2×4 11	=			
				4-2-2	10-1-6 5-11-4			
LOADING (ps	,	SPACING-	2-0-0	CSI.	DEFL.	in ((loc) l/defl L/d	PLATES GRIP
TCLL (roof) Snow (Pf)	25.0 15.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC 0.55 BC 0.58	Vert(LL) Vert(CT)		5-6 >283 240 5-6 >302 180	MT20 197/144
TCDL BCLL	10.0 0.0 *	Rep Stress Incr Code IBC2018/1	NO	WB 0.06 Matrix-MS	Horz(CT)	-0.90	8 n/a n/a	Weight: 144 lb FT = 10%
BCDL	10.0	Code IBC2018/1	F12014	Wattix-WS	DRADING			Weight. 144 lb PT = 10%
LUMBER- TOP CHORD	2x4 SPF No.				BRACING- TOP CHORD		ed or 6-0-0 oc purlins, e	
BOT CHORD WEBS	2x6 SPF 165 2x4 SPF No.				BOT CHORD WEBS		eiling directly applied or at midpt 1-7	5
REACTIONS.	(size) 7	=Mechanical, 5=Mechan	ical, 8=Mechani	cal				
		=175(LC 13) =-11(LC 12), 5=-49(LC 1	3). 8=-55(LC 13)				
		=623(LC 2), 5=597(LC 2						
		o./Max. Ten All forces 2 311, 3-12=-362/325, 3-4			74			
BOT CHORD	6-7=-392/2	84	,	,	74			
WEBS	2-6=-175/2 2-10=-357/	61, 2-9=-362/362, 4-8=-2 208	266/242, 4-9=-39	90/391, 6-10=-389/537,				
NOTES-								
		d together with 10d (0.13 follows: 2x4 - 1 row at 0-		ollows:				
Bottom cho	rds connected	as follows: 2x6 - 2 rows vs: 2x4 - 1 row at 0-9-0 o	staggered at 0-9	-0 oc.				
2) All loads are	e considered e	qually applied to all plies	, except if noted			CASE(S) s	ection. Ply to	
3) Unbalanced	I roof live load	n provided to distribute o s have been considered	for this design.					
MWFRS (er	nvelope) and C	15mph (3-second gust) \ C-C Exterior(2E) 0-1-12 to	o 3-1-12, Interior	(1) 3-1-12 to 8-0-13, Ex	terior(2E) 8-0-13 to	9-11-10 z	one; cantilever	Aller
0	t exposed ; en plate grip DOL:	d vertical left and right e =1.33	<posed;c-c for="" r<="" td=""><td>nembers and forces & N</td><td>IWFRS for reaction</td><td>ns shown;</td><td>Lumber</td><td>E OF MISS</td></posed;c-c>	nembers and forces & N	IWFRS for reaction	ns shown;	Lumber	E OF MISS
		0 psf (roof LL: Lum DOL Ce=0.9; Cs=1.00; Ct=1.1		.=1.15); Pf=15.0 psf (Lu	m DOL=1.15 Plate	DOL=1.15	5); Is=1.0;	ALL CLA
		ave been considered for e made by the building d		or -0.90in of horizontal	movement due to l	ive load an	nd 0.83in due	SCOTT M. SEVIER
to total load		ned for a 10.0 psf bottom	0			i i o i o a a a		the o the
9) * This truss	has been desi	gned for a live load of 20	.0psf on the bott			-6-0 tall by	2-0-0 wide	Gol sevel
10) Refer to gi	rder(s) for trus	chord and any other me s to truss connections.						PE-2001018807
and 55 lb u	uplift at joint 8.		0.					SS ENGI
12) This truss	is designed in	accordance with the 201	8 International E	Building Code section 23	306.1 and reference	ed standar	d ANSI/TPI 1.	ONAL EN
LOAD CASE(S) Standard							October 18,2021
Continued on p							~_	
Design valid	for use only with I	arameters and READ NOTES OF MiTek® connectors. This design	is based only upon	parameters shown, and is for	an individual building co	mponent, not		
building desi	gn. Bracing indica	e building designer must verify t ated is to prevent buckling of in	lividual truss web an	d/or chord members only. Ad	ditional temporary and p	ermanent bra	acing	MiTek

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Cuality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Mitek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Haren Companies
					1483734
J211477-R	L03A	COMMON	1	<u> </u>	
				Z	Job Reference (optional)
Mill Creek Truss, Halstead, KS 67056				8	8.430 s Aug 16 2021 MiTek Industries, Inc. Mon Oct 18 08:33:46 2021 Page 2

ID:EEJQKmcefGLHjdidLw1DuGyWB4A-I18NFBUWo0y7UoSzIgIRR_nFhmtnw4yHTUqRFOySEJ3

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-50, 3-4=-50, 6-7=-20, 5-6=-100(F=-80)

Job	Truss	Truss Type		Qty	Ply	Haren Companies	
J211477-R	L03B	Jack-Partial		1	1		148373446
						Job Reference (optional)	
Mill Creek Truss, LLC,	Halstead, KS - 67056,					ug 16 2021 MiTek Industries, Inc. Fri Oct 15 09:16:34 2021	
					LHjdidLw1	DuGyWB4A-Ug3XR_nA2Cv3YmflMmeyFEsc4rqicR?I1cpcvA	уТСух
			2-9-6	<u>5-6-11</u> 2-9-6			
			2-9-6	2-9-0			
			4.00 12			Sc	ale = 1:54
			3x4 =		3		
			2 9		1		
			3x6 8				
			1				
		_					
			I H //\\				
				\			
				\			
			// '	11			
		-9-9- 5-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-		//			
		4		10			
		13	Z-11-8	114			
		7-7-13	FZ //	//			
		7		11			

Show (Pf) TCDL BCLL BCDL	15.0 10.0 0.0 * 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	BC 0.21 WB 0.13 Matrix-MP	Vert(CT) Horz(CT)	-0.03 5-6 >99 -0.00 4 n/		Weight: 41 lb	FT = 10%
LUMBER- TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2			BRACING- TOP CHORD	except end vertica	ils.	applied or 5-6-11 oc pu	rlins,
WEBS	2x4 SPF No.2			BOT CHORD WEBS	Rigid ceiling direct 1 Row at midpt	ly applied or 6-0: 2-7, 2-	•	

10

5-6-11

5-0-4

DEFL.

Vert(LL)

7 6 3x4 =

0-6-7

0.75

CSI.

тс

⁵4 11

3x4 =

in (loc)

5-6

-0.02

l/defl

>999

L/d

240

PLATES

MT20

GRIP

197/144

REACTIONS. All bearings Mechanical except (jt=length) 6=0-7-6.

Max Horz 7=101(LC 30), 1=-130(LC 29) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 4, 7, 1

SPACING-

Plate Grip DOL

Max Grav All reactions 250 lb or less at joint(s) 4, 7, 1 except 6=336(LC 24)

2-0-0

1.15

NOTES-

LOADING (psf)

25.0

15.0

TCLL (roof)

Snow (Pf)

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 5-6-11 zone; cantilever left and right exposed ; end

vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

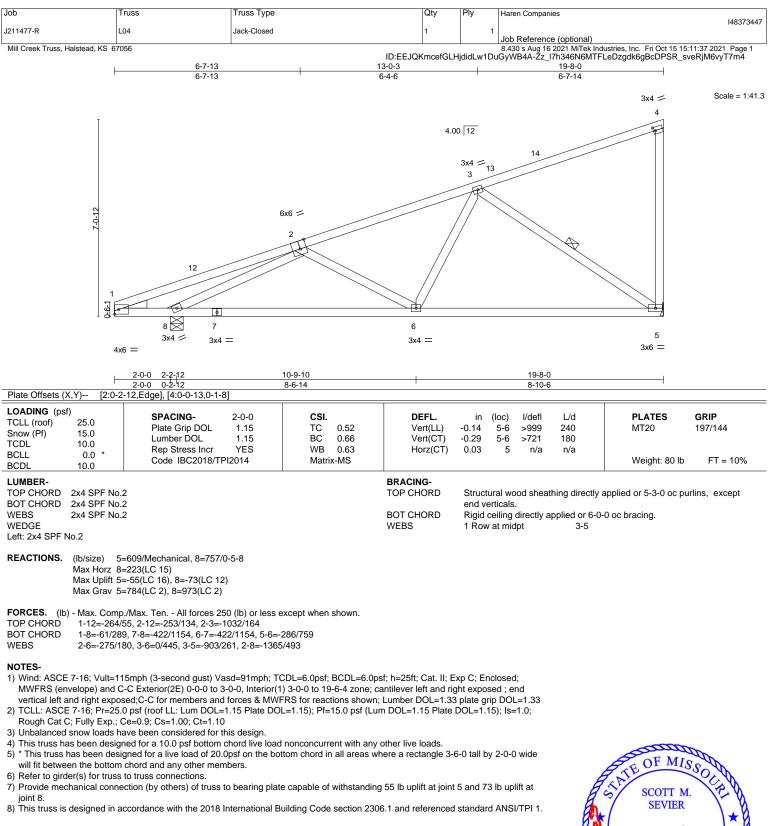
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 7, 1.

8) Non Standard bearing condition. Review required.


9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

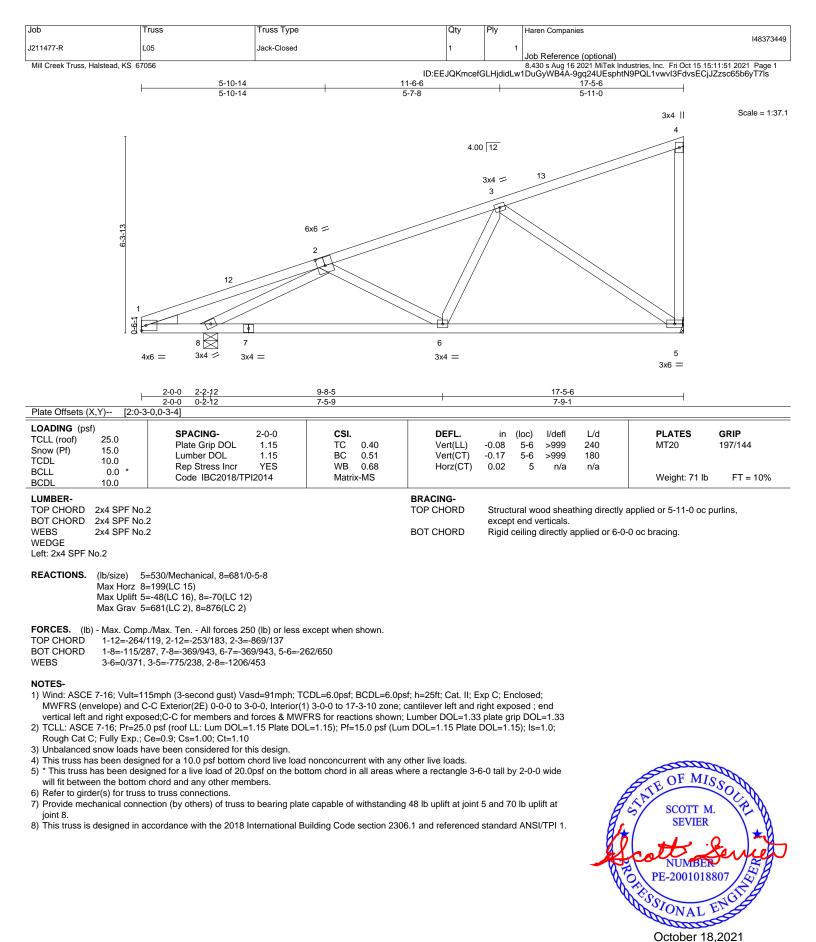
10) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-7=-329/216

October 18,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

lob	Truce		1	Otv	Div	Haron Componies	
Job	Truss	Truss Type		Qty	Ply	Haren Companies	148373448
J211477-R	L04A	Jack-Closed		1	1		
Mill Creek Truss, LLC,	Halstead, KS - 67056,				8.430 s A	Job Reference (optional) ug 16 2021 MiTek Industries,	Inc. Fri Oct 15 09:16:36 2021 Page 1
	, ,	5.0.11	ID:EEJQK	mcefGLH			3p8TBgQKfx1EfRO4LZbUwljz2yTČyv
		<u>5-0-11</u> 5-0-11		10-1-6 5-0-11		1	
		[4.00	40		3	ι τ ^ι ρ τ	Coole 4/52
			12 2x4				Scale = 1:53.
			2 9				
		7 8					
		6x6 =					
		4 /				10 4	
		10-7-4				10-0-15 10-7-4	
						9	
		22-12					
			\mathbb{N}				
					1		
		6	5		4		
		3x4	3x4 =				
			574 -				
		<u>5-0-11</u> 5-0-11		10-1-6 5-0-11		4	
Plate Offsets (X,Y) [1	:0-2-12,0-2-8]			0011			
LOADING (psf)	SPACING-	2-0-0 CSI .	DE	CI	in	(loc) I/defl L/d	PLATES GRIP
TCLL (roof) 25.0	Plate Grip DOL	1.15 TC 0.39		г с. t(LL)	in (0.33	(loc) I/defl L/d 5 >363 240	MT20 197/144
Snow (Pf) 15.0 TCDL 10.0	Lumber DOL	1.15 BC 0.51	Ver	t(CT)	-0.31	5 >377 180	
BCLL 0.0 *	Rep Stress Incr Code IBC2018/	YES WB 0.12 PI2014 Matrix-MS	Hoi	z(CT)	-0.47	3 n/a n/a	Weight: 63 lb FT = 10%
BCDL 10.0							
LUMBER-			BRACING		0	and some of the notifier of the other	
	1650F 1.5E 1650F 1.5E		TOP CHO	DRD		ral wood sheathing directly end verticals.	applied or 6-0-0 oc purlins,
WEBS 2x4 SPF			BOT CHO	ORD	Rigid ce	eiling directly applied or 10-	0-0 oc bracing.
REACTIONS. (size)	6=Mechanical, 3=Mecha	nical 4-Machanical	WEBS		1 Row	at midpt 1-5, 2-	5
	z 6=192(LC 13)						
	ift 3=-71(LC 16), 4=-21(LC						
Max Gra	v 6=446(LC 2), 3=276(LC 2	22), 4=179(LC 2)					
FORCES. (Ib) - Max. C	omp./Max. Ten All forces	250 (lb) or less except when shown.					
TOP CHORD 1-6=-2							
BOT CHORD 5-6=-33 WEBS 1-5=-35							
1) Wind: ASCE 7-16: Vul	t=115mph (3-second quet)	/asd=91mph; TCDL=6.0psf; BCDL=	3 Onsf: h-25#+	Cat II. F	xn C: En	closed:	
		o 3-1-12, Interior(1) 3-1-12 to 10-0-1					
		nd forces & MWFRS for reactions sho					
	=25.0 psf (roof LL: Lum DOI .p.; Ce=0.9; Cs=1.00; Ct=1.	.=1.15 Plate DOL=1.15);	(LUIII DOL=1.1	o Plate	DOL=1.1	5), 1S = 1.0;	
3) Unbalanced snow load	s have been considered fo	this design.					
		n chord live load nonconcurrent with 0.0psf on the bottom chord in all area				(2.0.0.wide	
					0 0 10 III 01		


6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

nt 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Haren Companies	
J211477-R	L05A	Jack-Closed	1	1		148373450
					Job Reference (optional)	
Mill Creek Truss, LLC,	Halstead, KS - 67056,					nc. Fri Oct 15 09:16:38 2021 Page 1 NzXbcivP41IhTBsYDwuyDnq2xyTCyt
		5-0-11	10-1-6	IJUIULWID		
		5-0-11	5-0-11			
		4.00 12		4x6 3		Scale = 1:55.0
		0.1	•	4		
		5-0-11	10-1-6		4	
Plate Offsets (X,Y) [3:0)-3-8,Edge]	5-0-11	5-0-11		1	
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0	SPACING- Plate Grip DOL Lumber DOL	2-0-0 CSI. 1.15 TC 0.71 1.15 BC 0.26	DEFL. Vert(LL) Vert(CT)	in (-0.03 -0.04	4-5 >999 240 4-5 >999 180	PLATES GRIP MT20 197/144
BCLL 0.0 * BCDL 10.0	Rep Stress Incr Code IBC2018/TP	YES WB 0.19 I2014 Matrix-MS	Horz(CT)	-0.01	4 n/a n/a	Weight: 69 lb FT = 10%
LUMBER- TOP CHORD 2x4 SPF N BOT CHORD 2x4 SPF N WEBS 2x4 SPF N REACTIONS. (size) Max Horz Max Uplift	lo.2 lo.2	- I N 3)	BRACING- TOP CHORD BOT CHORD WEBS	except Rigid ce	ral wood sheathing directly a end verticals. eiling directly applied or 7-11 at midpt 3-4, 2-4	-11 oc bracing.

BOT CHORD 5-6=-533/443, 4-5=-350/371

WEBS 1-5=-178/382, 2-4=-454/443

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 9-11-10 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 4=134.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

16023 Swingley Ridge Rd Chesterfield, MO 63017

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 42 lb uplift at joint 4 and 66 lb uplift at joint 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Mitek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type			Qty	Ply	Haren Companies
							1483734
J211477-R	L06A	Jack-Closed			1	1	
							Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,						ug 16 2021 MiTek Industries, Inc. Fri Oct 15 09:16:40 2021 Page 1
				ID:I			IDuGyWB4A-JqQoi2sxd2fDGh6vi1INUV6gyGth088APXGw7pyTCyr
		L	5-0-11		10-1-		
		I.	5-0-11		5-0-1	1	•
							0l. 11
				4.00 12		4x4	4 Scale = 1:5
		-					3
							E
				3x4 📁	/	\sim	
				2 9	\bigcirc		
			_	8			
			7	1			
		3x6 =	\sim		\		
		1					
		IFA					

Ø

4

6x6 =

except end verticals.

1 Row at midpt

Rigid ceiling directly applied or 8-3-4 oc bracing.

3-4, 2-4

10

10-1-6

5-0-11

LOADING (ps TCLL (roof) Snow (Pf) TCDL BCLL BCDL	sf) 25.0 15.0 10.0 0.0 * 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.60 BC 0.23 WB 0.15 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	0.03	loc) l/defl 4-5 >999 4-5 >999 4 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 65 lb	GRIP 197/144 FT = 1
LUMBER- TOP CHORD	2x4 SPF No.2	1		BRACING- TOP CHORD	Structura	al wood she	athing directly	applied or 6-0-0 oc pu	urlins,

5-0-11

5-0-11

5

3x4 =

BOT CHORD

WEBS

LUWIDER-	

TOP CHORD BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

REACTIONS. 6=Mechanical, 4=Mechanical (size) Max Horz 6=277(LC 15) Max Uplift 6=-43(LC 12), 4=-113(LC 13) Max Grav 6=527(LC 30), 4=477(LC 5)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-6=-460/235, 1-2=-289/96

BOT CHORD 5-6=-501/411, 4-5=-336/362

WEBS 1-5=-153/372, 2-4=-423/402

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 9-11-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

9-1-7

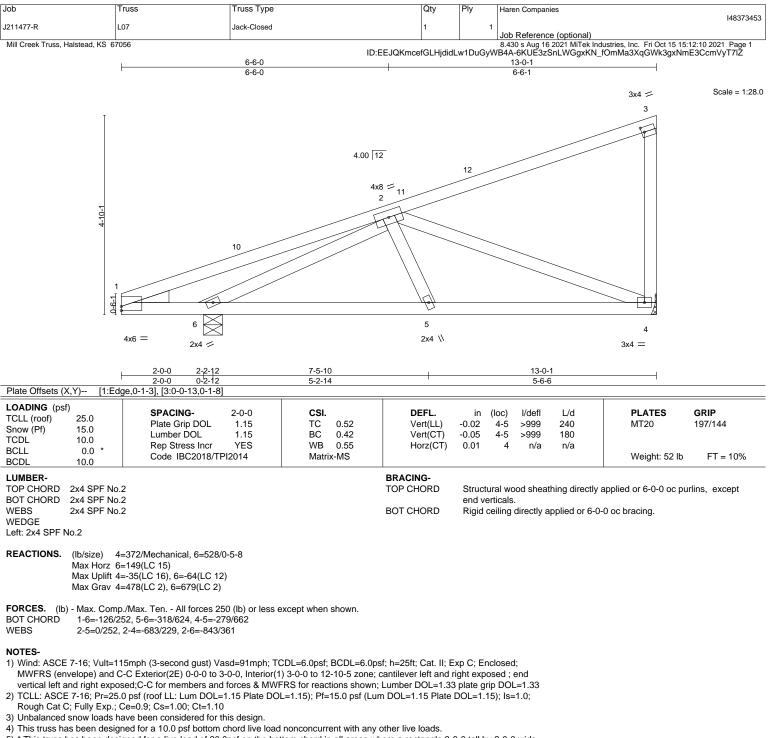
0-6-6

6

2x4 ||

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

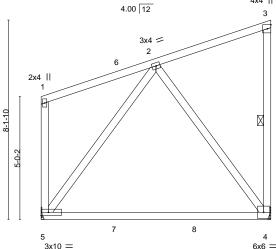

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 4=113

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

10%

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 35 lb uplift at joint 4 and 64 lb uplift at joint 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

	Haren Companies	Ply	Qty		Truss Type	Truss	Job
148373454							
		1	1		Jack-Closed	L07A	J211477-R
	Job Reference (optional)						
Inc. Fri Oct 15 09:16:41 2021 Page 1	g 16 2021 MiTek Industries, Inc. F	8.430 s Au				Halstead, KS - 67056,	Mill Creek Truss, LLC,
4urh5GkGc1iftFg8flYIKeB0UfGyTCyq	DuGyWB4A-n0_AvNsZOMn4urh5	LHjdidLw1	JQKmcefG				
		-	9-4-7	4-8-3	L		
			4-8-3	4-8-3			
Scale = 1:47.0	II	4x4					
	3	3		4.00 12			
	-	_			T		

	F		4-7 4-7						
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 *	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.50 BC 0.57 WB 0.35	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.33 -0.54 -0.00	(loc) 4-5 4-5 4	l/defl >328 >200 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL 10.0	Code IBC2018/TPI2014	Matrix-MS						Weight: 53 lb	FT = 10%
LUMBER-			BRACING-						

TOP CHORD

BOT CHORD

WEBS

LUMBER-

2x4 SPF No 2 TOP CHORD BOT CHORD 2x4 SPF 2100F 1.8E WEBS 2x4 SPF No.2

REACTIONS. 5=Mechanical, 4=Mechanical (size) Max Horz 5=246(LC 15) Max Uplift 5=-36(LC 12), 4=-95(LC 13) Max Grav 5=493(LC 30), 4=450(LC 5)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

BOT CHORD 4-5=-342/309

WEBS 2-5=-265/190. 2-4=-330/425

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 9-2-11 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

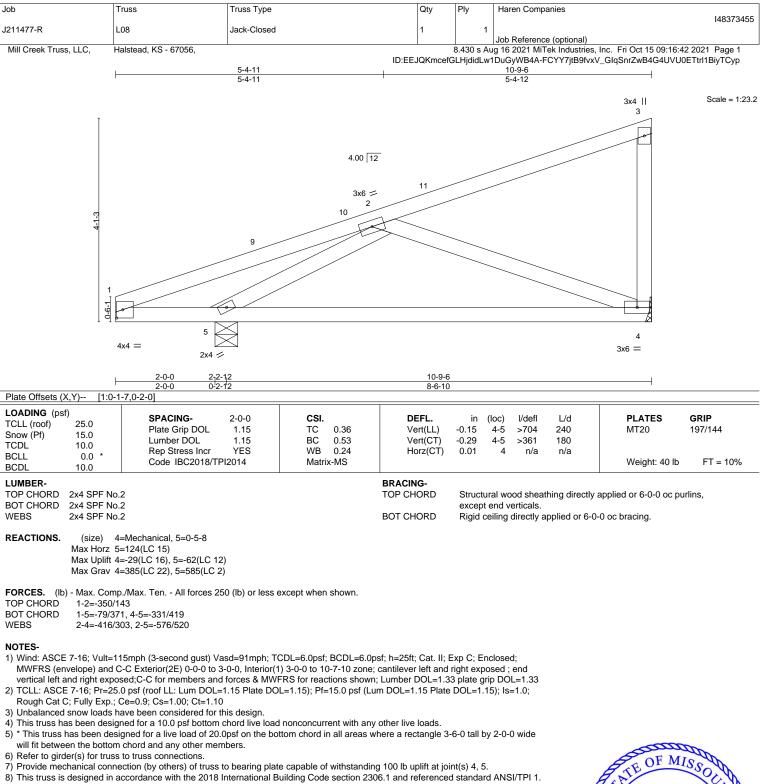
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins,


3-4

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

1 Row at midpt

Job	Truss	Truss Type		Qty	Ply	Haren Com	panies		
211477-R	L08A	Jack-Closed		1		1			14837345
2114/7-K	LUOA	Jack-Closed		1		Job Referen	ce (optional)		
Mill Creek Truss, LLC,	Halstead, KS - 67056,							Inc. Fri Oct 15 09:16:4	
		1		7-7-2	LHJalaLwi	IDUGYWB4A-JP	5WK3upwz2078	BrUN9I467kBwUpnDVi	05 V Vaj8y I Cyo
		Г		7-7-2					
			_		2x4	4			Scale = 1:3
			4.00 1	2		2			
		T				F			
					\sim				
			6						
		3x4	1 = 5						
		1							
			The second secon						
		6-9-10							
		9-9							
		4							
		4-3-4							
				\sim	\sim				
					\searrow				
			£			&			
		2	Ļ			3			
		2x4	11		6x6	=			
		ł		7-7-2 7-7-2					
LOADING (psf)									
TCLL (roof) 25.0	SPACING- Plate Grip DC	2-0-0 DL 1.15	CSI. TC 0.62	DEFL. Vert(LL)	in -0.17	(loc) l/defl 3-4 >514	L/d 240	PLATES MT20	GRIP 197/144
Snow (Pf) 15.0	Lumber DOL	1.15	BC 0.59	Vert(CT)	-0.34	3-4 >257	180	101120	13//144
TCDL 10.0 BCLL 0.0	Rep Stress Ir		WB 0.08	Horz(CT)	-0.00	3 n/a	n/a		
BCDL 10.0	Code IBC20	18/TPI2014	Matrix-MP					Weight: 40 lb	FT = 10%
UMBER-				BRACING-					
	2400F 2.0E			TOP CHORD				applied or 6-0-0 oc p	urlins,
3OT CHORD 2x4 SPF WEBS 2x4 SPF				BOT CHORD		t end verticals. ceiling directly		0 oc bracing	
.LDG 2A4 OFT	110.2			WEBS		at midpt	1-3	o oo braoniy.	
) 4=Mechanical, 3=Mec	hanical							
	orz 4=204(LC 15) Ilift 4=-31(LC 12), 3=-82(I	C 13)							
	av 4=329(LC 2), 3=342(L								
	· · ·	050 (11)							
	Comp./Max. Ten All forc 257/218, 2-3=-269/276	es 250 (ID) or less	except when shown.						
	04/318								

WEBS

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 7-5-6 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

 TCLL: ASCE 7-16; Pr=25.0 psf (root LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); ls=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

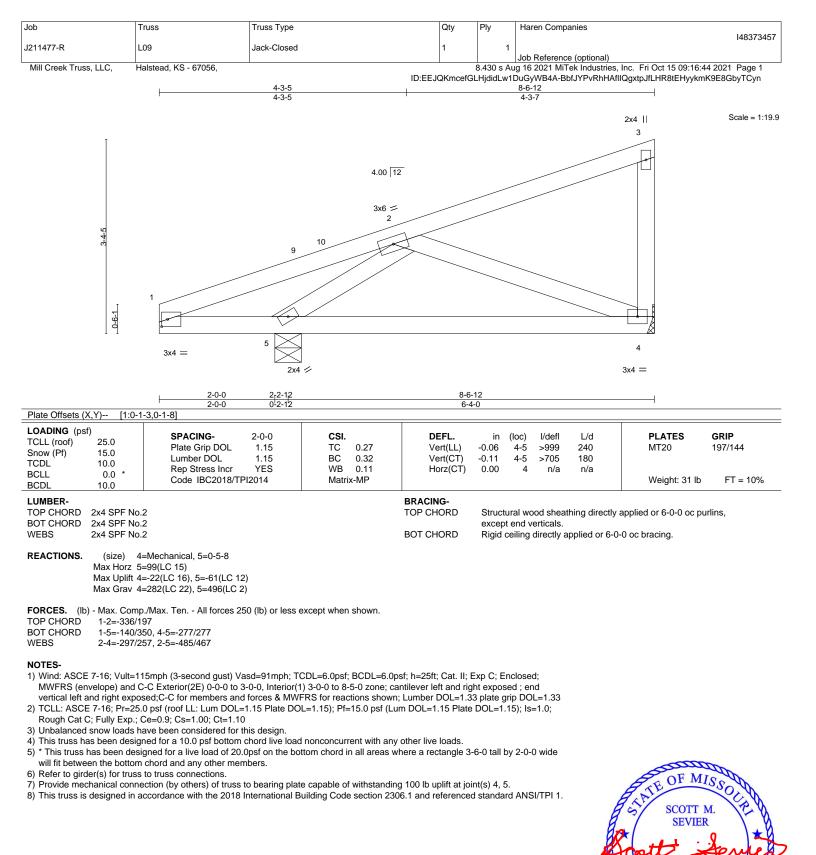
3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.


1-3=-259/368

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 3.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

16023 Swingley Ridge Rd Chesterfield, MO 63017

NUMBER

PE-2001018807

F

B

Job	Truss	Truss Type	Qty	Ply	Haren Comp	oanies		
l211477-R	L09A	Jack-Partial	1		1			148373458
					Job Reference	ce (optional)		
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s	Aug 16 2021 Mi	Tek Industries, I	Inc. Fri Oct 15 09:16:4 VaLYBYpXDHZrhNBv	45 2021 Page 1
		2-10	-14 5-9	9-13		niv3SalvviviS?t	ValiBipXDHZmiNBv	vzp_no1y1Cym
		2-10	-14 2-1	0-14				
			4.00 12					Scale: 3/8"=
		Т			3			
			3x4 🚍					
			2					
		7	A					
		3x6						
		2-2-10						
			// \`	\backslash				
		3-6-6	/ \	$\langle \rangle$				
		3-2-11		$\langle \rangle$				
					\backslash			
					±+-₩			
					<u>N</u> 5			
		₆ ^{3x4} =			5 4			
		Ŭ		3x4	. =			
			5-9-13		1			
			5-9-13					
LOADING (psf)	SPACING-	2-0-0 CSI.	DEFL.	in	(loc) l/defl	L/d	PLATES	GRIP
TCLL (roof) 25.0	Plate Grip DOL	1.15 TC 0.6		-0.05	5-6 >999	240	MT20	197/144
Snow (Pf) 15.0 TCDL 10.0	Lumber DOL	1.15 BC 0.3		-0.10	5-6 >654	180		
BCLL 0.0 *	Rep Stress Incr Code IBC2018/	YES WB 0.2 TPI2014 Matrix-MF		-0.00	4 n/a	n/a	Weight: 28 lb	FT = 10%
BCDL 10.0							weight. 20 b	FT = 10%
LUMBER-			BRACING-					
TOP CHORD 2x4 SPF			TOP CHORD			thing directly a	applied or 5-9-13 oc	purlins,
BOT CHORD 2x4 SPF WEBS 2x4 SPF			BOT CHORD		t end verticals. ceiling directly a	applied or 6-0-0	0 oc bracing	
			201 01.010		seeing an oblig t		»	

Max Horz 6=347(LC 7), 1=-347(LC 7) Max Uplift 4=-85(LC 13), 1=-151(LC 22) Max Grav 4=118(LC 2), 6=490(LC 7), 1=7(LC 13)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 1-2=-111/385

TOP CHORD

WEBS 2-6=-505/199. 2-5=-76/284

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 2-10-14, Interior(1) 2-10-14 to 5-9-13 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

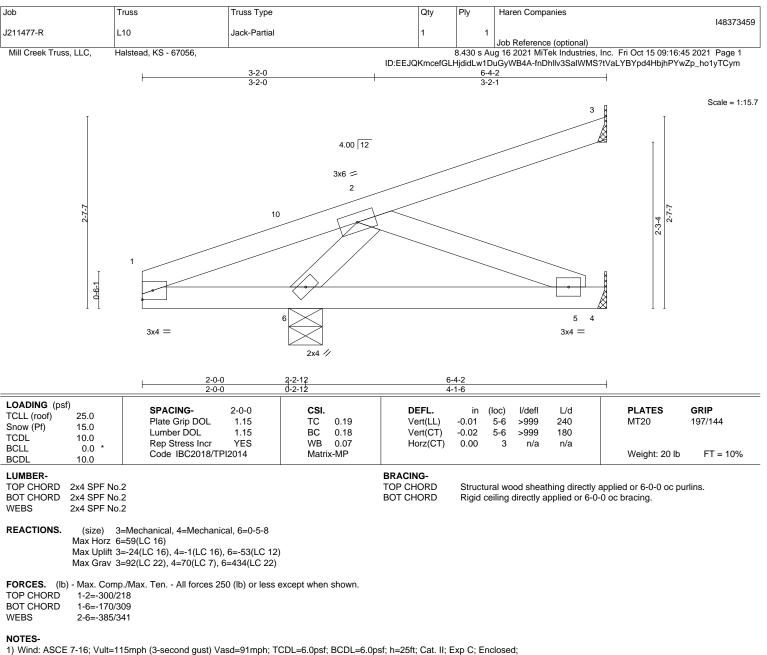
3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 1=151.


8) Non Standard bearing condition. Review required.

9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

10) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

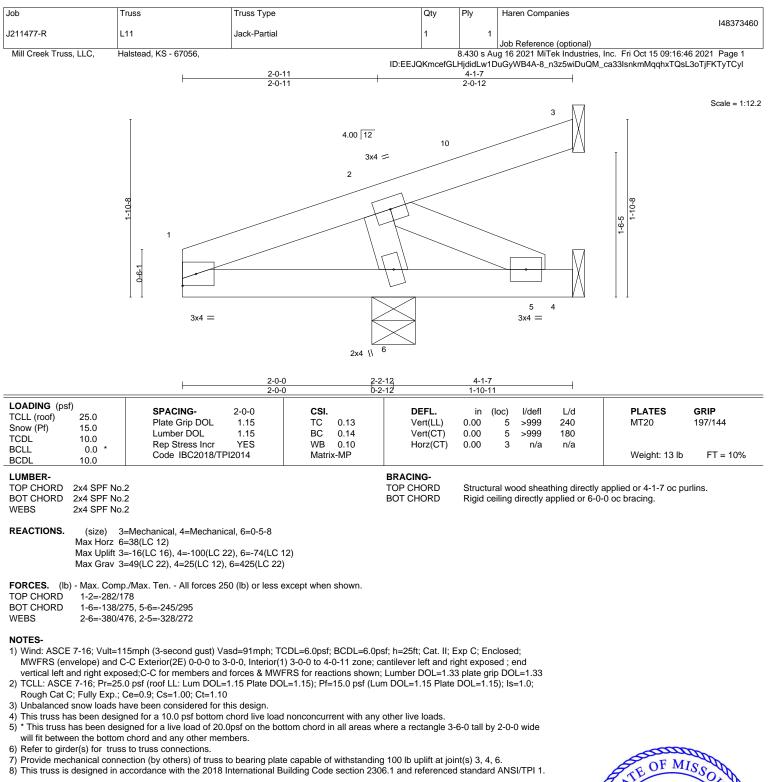
- While ASCE 7-16, Valle Frompt (seecond gust) Vasues miph, TCDE=6.0pst, BCDE=6.0pst, n=25t, Cat. II, Exp C, Endosed, MWFRS (envelope) and C-C Exterior(2E) 0-0 to 3-1-4, Interior(1) 3-1-4 to 6-3-6 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

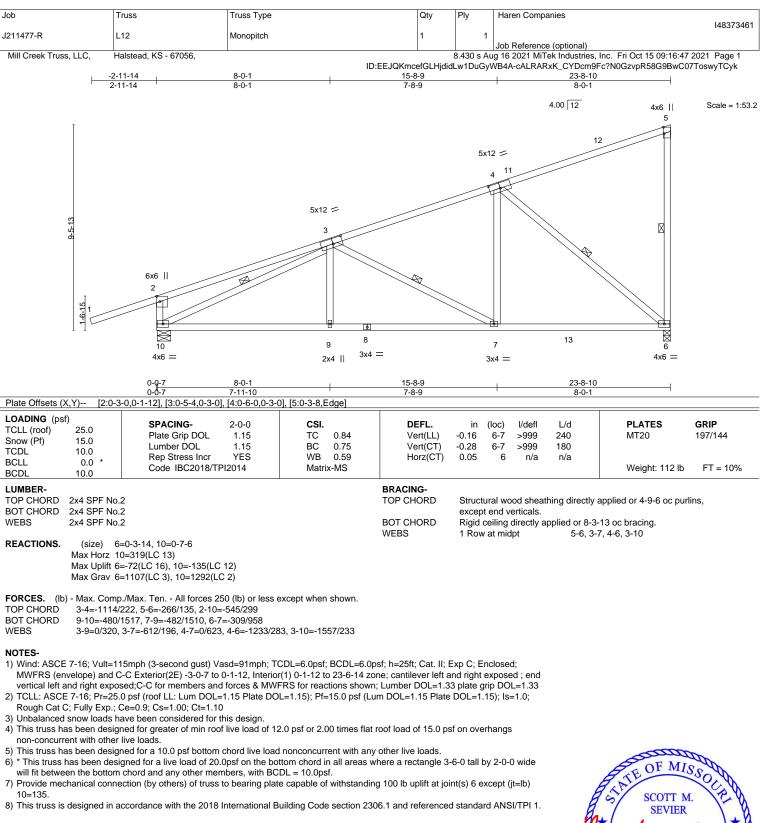
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

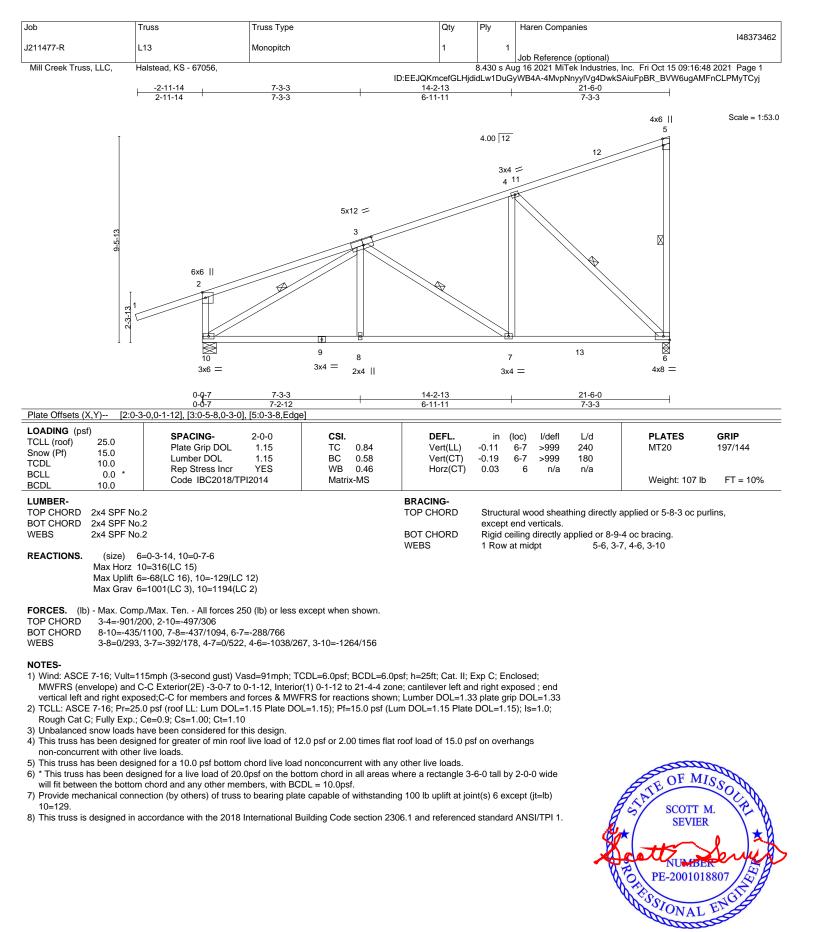
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

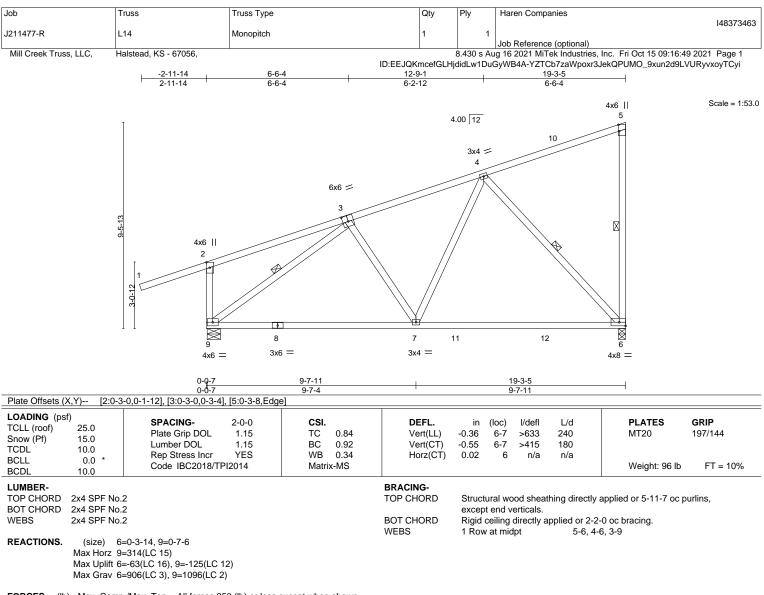

Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.






October 18,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 3-4=-872/176, 2-9=-464/302

BOT CHORD 7-9=-418/757, 6-7=-285/559

WEBS 4-7=-41/480, 4-6=-806/285, 3-9=-969/147

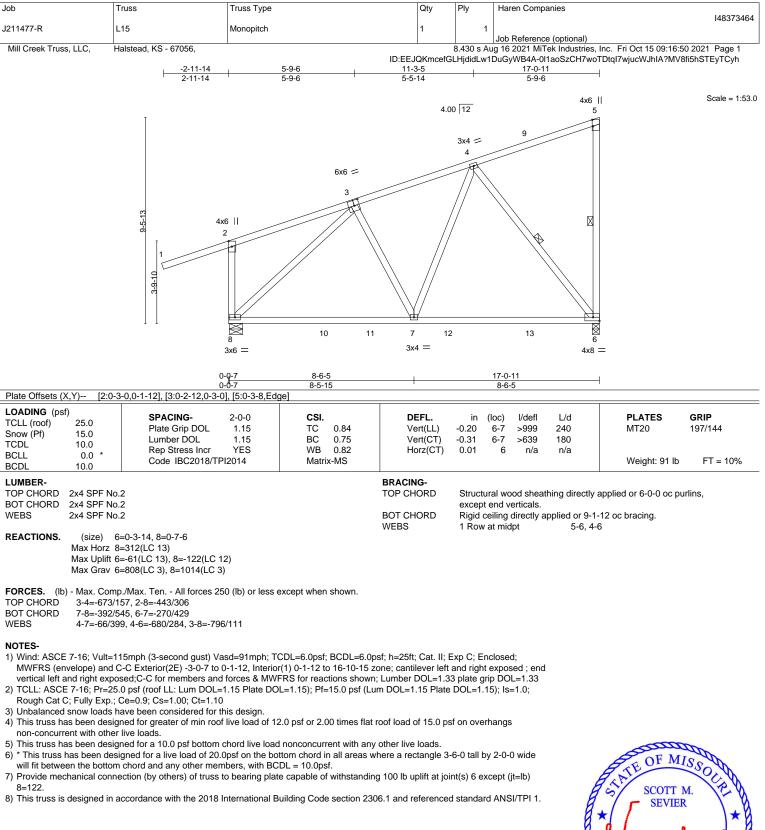
NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -3-0-7 to 0-1-12, Interior(1) 0-1-12 to 19-1-9 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

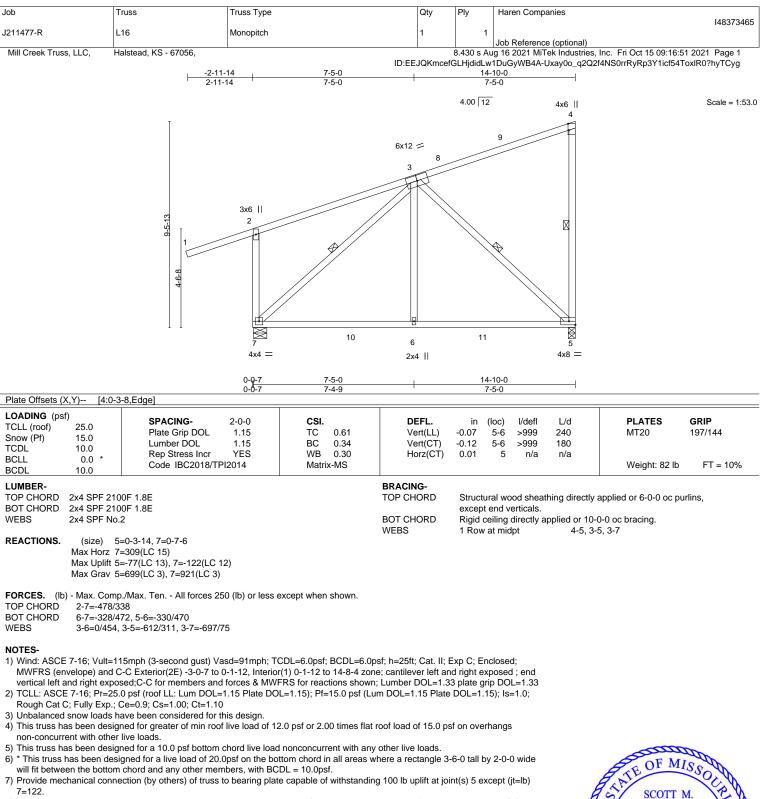
4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

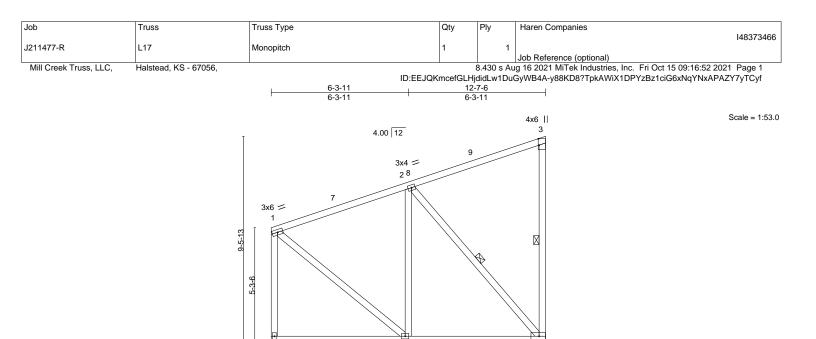

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 9=125.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.


October 18,20

October 18,2021


16023 Swingley Ridge Rd Chesterfield, MO 63017

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

16023 Swingley Ridge Rd Chesterfield, MO 63017

5

3x4 =

X

1

4x8 =

l/defl

>999

>999

n/a

L/d

240

180

n/a

10

12-7-6

6-3-11

in (loc)

4-5

4-5

4

-0.06

-0.09

-0.01

DEFL.

Vert(LL)

Vert(CT)

Horz(CT)

BCDL	10.0					
LUMBER-			BRACING-			
TOP CHORD	2x4 SPF No.	2	TOP CHORD	Structural wood sheathin	g directly app	blied or 6-0-0 oc purlins,
BOT CHORD	2x4 SPF No.	2		except end verticals.		
WEBS	2x4 SPF No.	2	BOT CHORD	Rigid ceiling directly appl	lied or 8-3-2 c	oc bracing.
			WEBS	1 Row at midpt	3-4, 2-4	
REACTIONS.	(size) 6	=0-7-9, 4=0-5-5				

EACTIONS. (SiZe) 6=0-7-9, 4=0-5-5 Max Horz 6=291(LC 15) Max Uplift 6=-34(LC 12), 4=-93(LC 13) Max Grav 6=626(LC 30), 4=596(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

SPACING-

Plate Grip DOL

Rep Stress Incr

Code IBC2018/TPI2014

Lumber DOL

TOP CHORD 1-2=-422/118, 1-6=-541/224

Plate Offsets (X,Y)-- [3:0-3-8,Edge]

25.0

15.0

10.0

10.0

0.0

LOADING (psf)

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BOT CHORD 5-6=-495/413, 4-5=-327/420

WEBS 2-4=-475/336, 1-5=-133/461

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 12-5-10 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

 \ge

6

2x4 ||

2-0-0

1.15

1.15

YES

6-3-11

6-3-11

CSI.

тс

BC

WB

Matrix-MS

0.64

0.37

0.19

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 4.

7) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

PLATES

Weight: 72 lb

MT20

GRIP

197/144

FT = 10%

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Haren Companies
					148373467
J211477-R	L18	Jack-Partial	1	1	
					Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:16:53 2021 Page 1

ID:EEJQKmcefGLHjdidLw1DuGyWB4A-QKiiRU05Z2INKhcPzGUQWE8wGWH5Z1C5P3w64ZyTCye 6-10-12 3-5-6 3-5-6 3-5-6 4.00 12 3 3x4 📁 72 6 3x6 || 8-11-2 6-7-8 6-3-13 \ge 8 9 5 3x4 = 3x4 = 4

<u>6-10</u>-12 <u>0-0-5</u> 6-10-6 6-10-6 LOADING (psf) SPACING-2-0-0 CSI. DEFL. l/defl L/d PLATES GRIP in (loc) TCLL (roof) 25.0 Plate Grip DOL тс Vert(LL) -0.12 >641 240 197/144 1.15 0.50 4-5 MT20 Snow (Pf) 15.0 Lumber DOL 1.15 BC 0.34 Vert(CT) -0.19 4-5 >400 180 TCDI 10.0 Rep Stress Incr YES WB 0.09 Horz(CT) 0.00 4 n/a n/a BCLL 0.0 Code IBC2018/TPI2014 Matrix-MP Weight: 44 lb FT = 10% BCDL 10.0 LUMBER-BRACING-TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, 2x4 DF 2400F 2.0E TOP CHORD except end verticals.

BOT CHORD

WEBS

Rigid ceiling directly applied or 10-0-0 oc bracing.

2-5, 2-4

1 Row at midpt

BOT CHORD 2x4 DF 2400F 2.0E WEBS 2x4 SPF No.2

REACTIONS. 1=Mechanical, 5=Mechanical, 4=0-6-12 (size) Max Horz 1=116(LC 13), 5=-74(LC 14) Max Uplift 1=-80(LC 22), 5=-29(LC 13), 4=-61(LC 13) Max Grav 1=75(LC 23), 5=306(LC 3), 4=355(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 2-4=-290/286

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 6-10-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

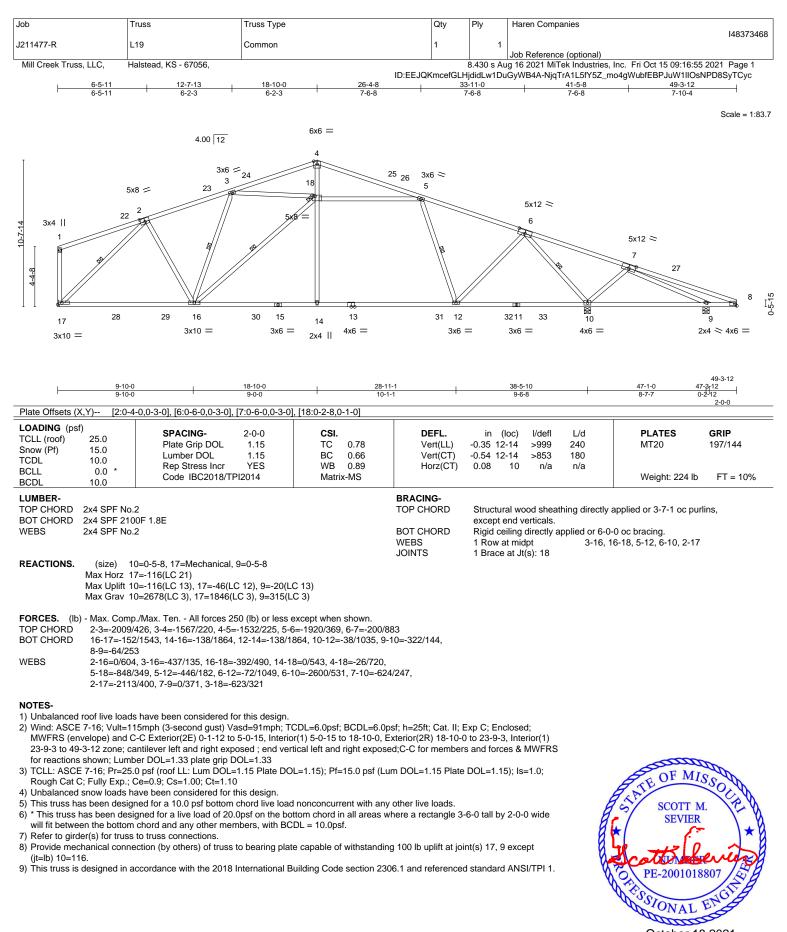
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

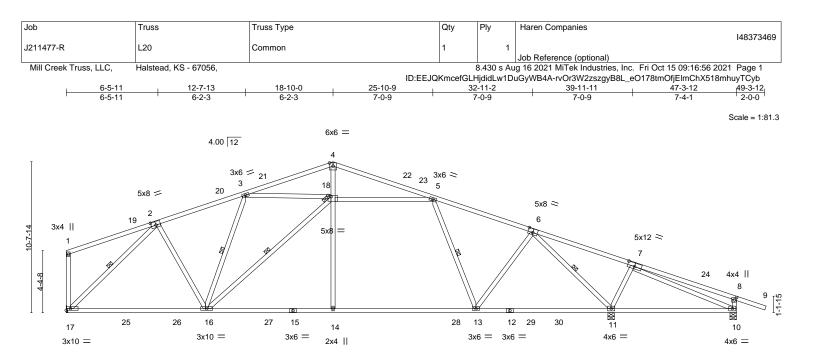
6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 4.

8) Non Standard bearing condition. Review required.


9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

10) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.


Scale = 1:51.7

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

October 18,2021

MITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

9-10-		28	3-11-1	38-5-10		47-3-12	
9-10-	0 9-0-0	1	0-1-1	9-6-8	1	8-10-3	I
Plate Offsets (X,Y) [2:0-4	-0,0-3-0], [6:0-4-0,0-3-4], [7:0-6-0,0-3-0]	, [8:0-2-0,0-1-12], [18:0-	2-8,0-1-0]				
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIBC2018/TPI2014	CSI. TC 0.68 BC 0.66 WB 0.88 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl -0.34 13-14 >999 -0.54 13-14 >858 0.08 11 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 224 lb	GRIP 197/144 FT = 10%
LUMBER- TOP CHORD 2x4 SPF No.: BOT CHORD 2x4 SPF 210 WEBS 2x4 SPF No.:	0F 1.8E		BRACING- TOP CHORD BOT CHORD WEBS JOINTS	except end verticals.	pplied or 10-	applied or 3-8-6 oc purl 0-0 oc bracing, Excep 5-13, 6-11, 2-17, 16-18	,
Max Horz 1 Max Uplift 1 Max Grav 1	1=0-5-8, 17=Mechanical, 10=0-5-8 7=-103(LC 21) 1=-100(LC 13), 17=-48(LC 12), 10=-54(L 1=2618(LC 3), 17=1859(LC 3), 10=327(L ./Max. Ten All forces 250 (lb) or less e	LC 2)					

TOP CHORD 2-3=-2027/432, 3-4=-1531/183, 4-5=-1493/189, 5-6=-1965/400, 6-7=-83/700, 8-10=-431/239

 BOT CHORD
 16-17=-152/1556, 14-16=-149/1902, 13-14=-149/1902, 11-13=-93/1310, 10-11=-344/147

 WEBS
 2-16=0/613, 3-16=-433/153, 3-18=-708/367, 14-18=0/543, 4-18=-60/706, 5-18=-960/412, 5-13=-367/140, 6-13=-11/849, 6-11=-2587/470, 7-11=-553/236, 2-17=-2132/408, 7-10=-152/545, 16-18=-426/478

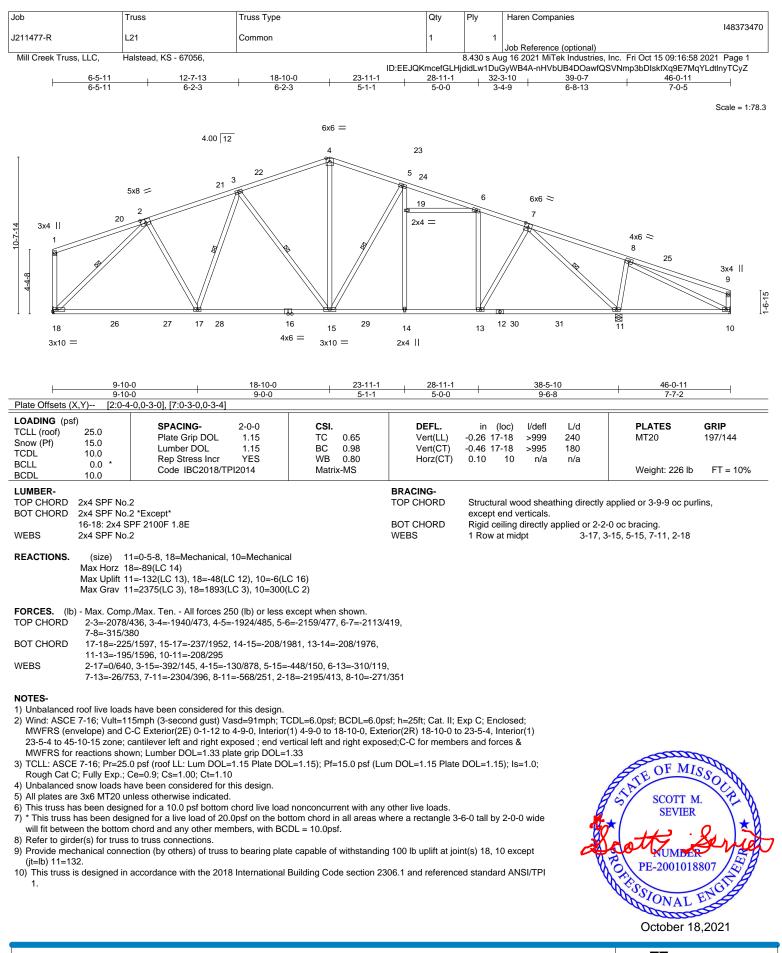
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 4-10-8, Interior(1) 4-10-8 to 18-10-0, Exterior(2R) 18-10-0 to 23-6-13, Interior(1) 23-6-13 to 49-4-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

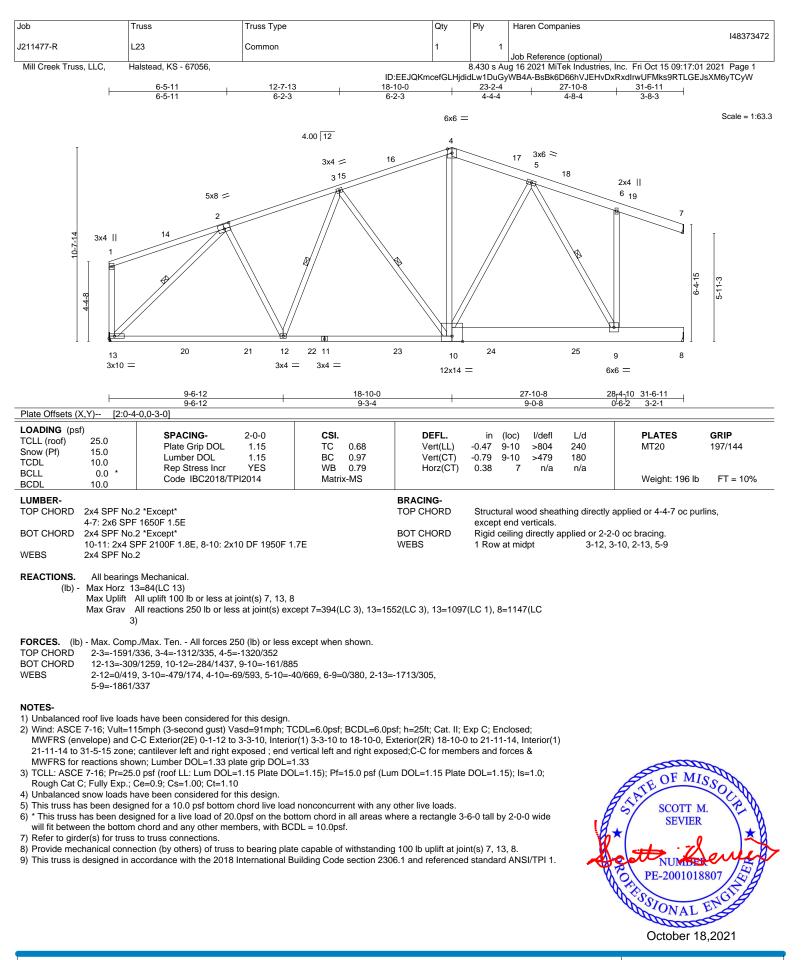
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

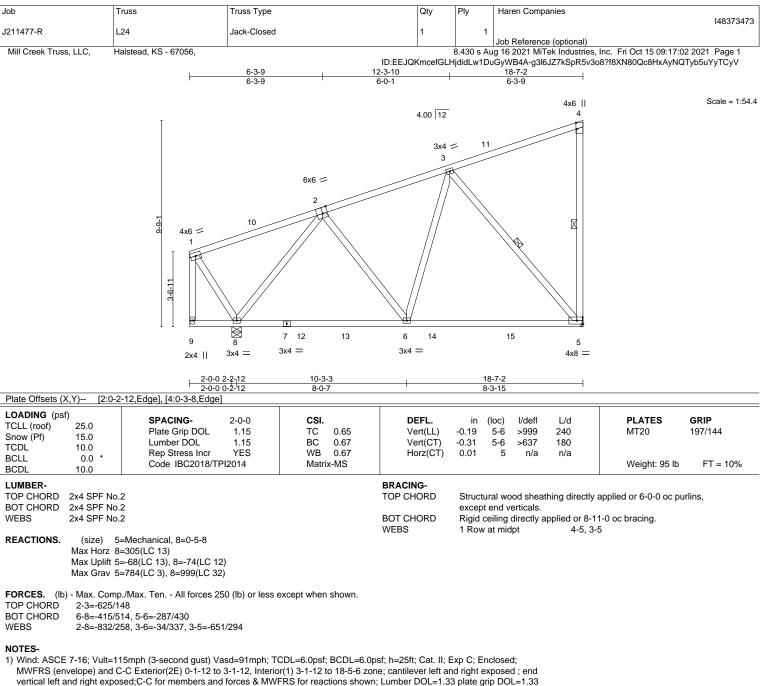

Refer to girder(s) for truss to truss connections.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 17, 10.

10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.



MITEK° 16023 Swingley Ridge Rd Chesterfield, MO 63017



October 18,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

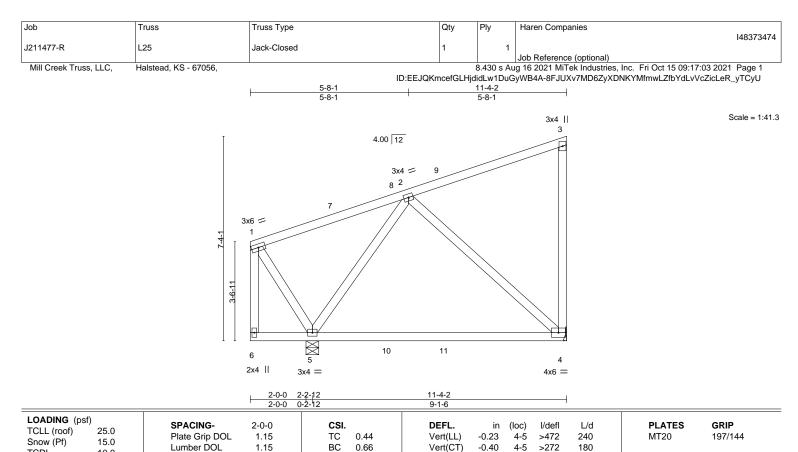
16023 Swingley Ridge Rd Chesterfield, MO 63017

vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.32) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 8.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

TCDL	10.0	Lumber DOL	1.10
BCLL		Rep Stress Incr	YES
BULL	0.0 *	Code IBC2018/TP	12014
BCDL	10.0	Code IBC2010/1F	12014

LUMBER-

TOP CHORD 2x4 SPF No 2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

BRACING-TOP CHORD

BOT CHORD

Horz(CT)

-0.00

4

n/a

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

Weight: 57 lb

FT = 10%

n/a

REACTIONS. 5=0-5-8, 4=Mechanical (size) Max Horz 5=224(LC 13) Max Uplift 5=-72(LC 12), 4=-77(LC 13) Max Grav 5=667(LC 30), 4=414(LC 5)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 4-5=-326/314

BOT CHORD

WEBS 2-5=-391/266, 2-4=-290/333

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 11-2-6 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

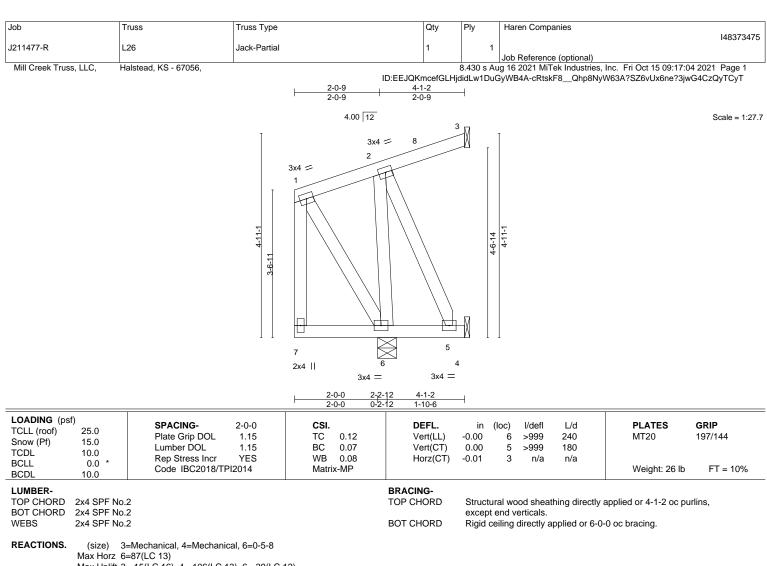
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4.

YES

WB


Matrix-MS

0.29

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Max Uplift 3=-15(LC 16), 4=-106(LC 13), 6=-39(LC 12) Max Grav 3=54(LC 22), 4=41(LC 14), 6=386(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-6=-295/194

NOTES-

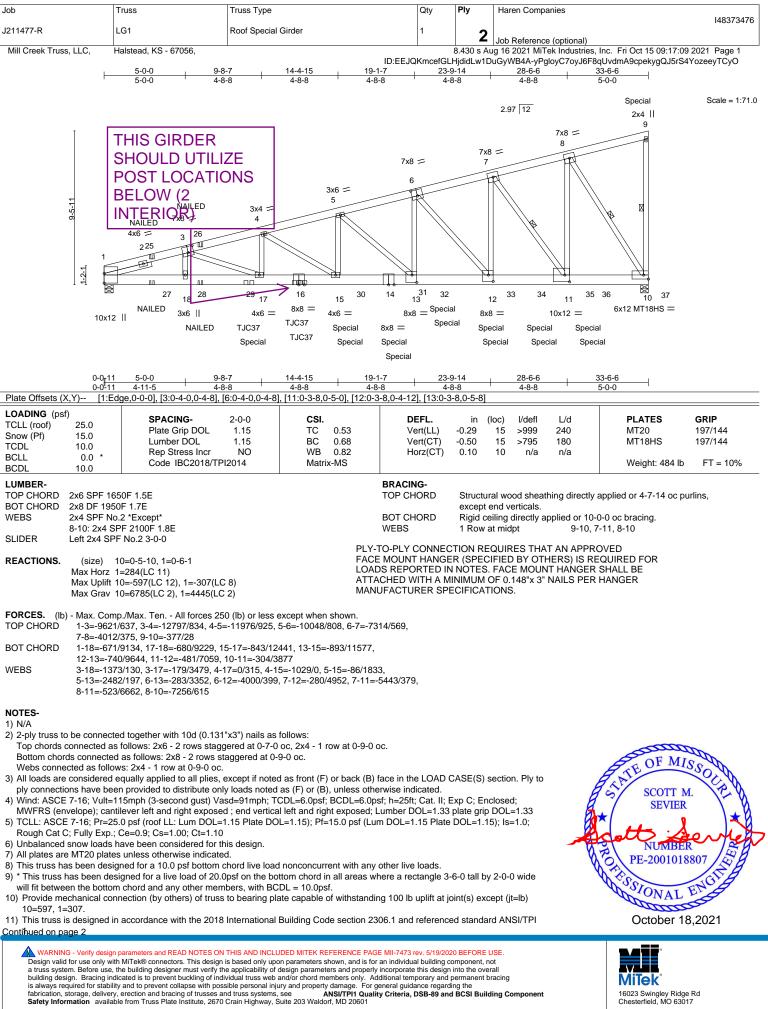
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 4-0-6 zone; cantilever left and right exposed; end over the formation of the second seco

vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33 (2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0ps on the obtion chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

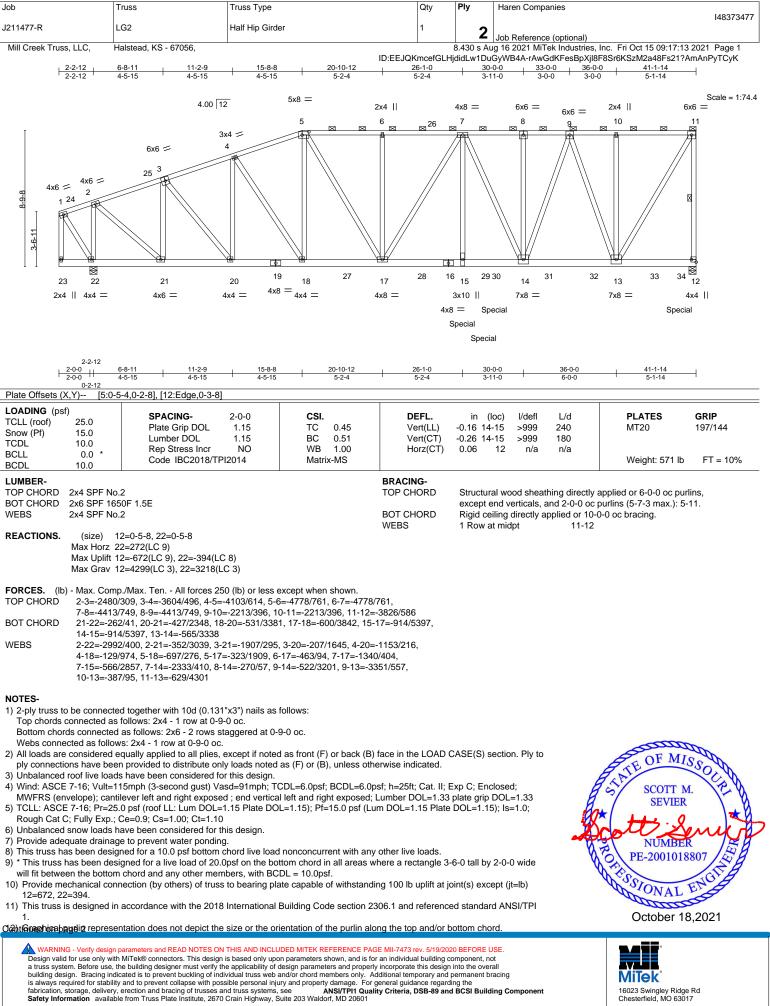

6) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 6 except (jt=lb) 4=106.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Haren Companies
			-		148373476
J211477-R	LG1	Roof Special Girder	1	2	
				_	Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	ug 16 2021 MiTek Industries, Inc. Fri Oct 15 09:17:09 2021 Page 2
			ID:EEJQKmcefGI	HididLw1D	uGvWB4A-vPalovC7ovJ6F8aUvdmA9cpekvaQJ5rS4YozeevTCvO


NOTES-

- 12) Use Simpson Strong-Tie TJC37 (6 nail, 30-90) or equivalent spaced at 2-11-14 oc max. starting at 8-11-1 from the left end to 11-10-15 to connect truss(es) to front face of bottom chord.
- 13) Use Simpson Strong-Tie TJC37 (6 nail, 30-90) or equivalent at 12-2-5 from the left end to connect truss(es) to back face of bottom chord, skewed 48.0 deg.to the left, sloping 0.0 deg. down.
- 14) Fill all nail holes where hanger is in contact with lumber.
- 15) "NAILED" indicates 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 16) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 257 lb down and 20 lb up at 33-4-10 on top chord, and 451 lb down at 9-2-7, 448 lb down and 65 lb up at 14-10-13, 392 lb down and 66 lb up at 15-2-3, 552 lb down and 72 lb up at 17-10-11, 415 lb down and 73 lb up at 18-2-0, 651 lb down and 78 lb up at 20-10-9, 424 lb down and 84 lb up at 21-1-14, 754 lb down and 85 lb up at 23-10-7, 416 lb down at 24-1-12, 878 lb down and 91 lb up at 26-10-5, 414 lb down and 32 lb up at 27-1-10, 970 lb down and 98 lb up at 29-10-3, and 426 lb down and 137 lb up at 30-1-8, and 31 lb down and 58 lb up at 32-10-1 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

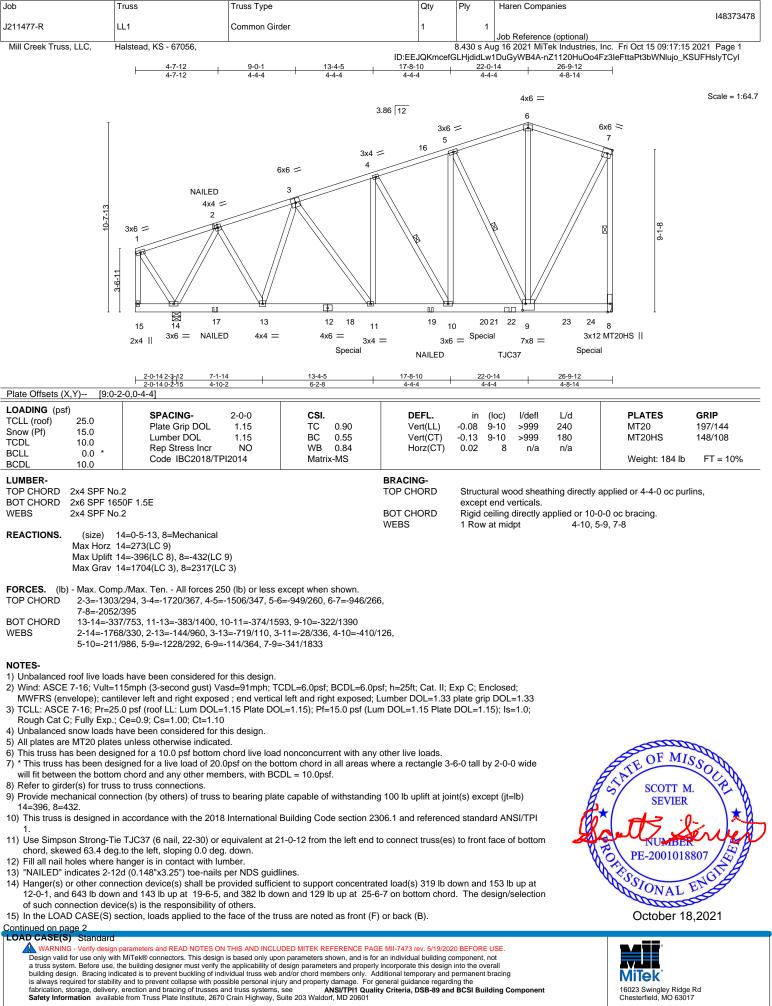
- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
- Vert: 1-9=-50, 10-19=-20
- Concentrated Loads (lb)
 - Vert: 9=-239(B) 16=-639(F=-355, B=-284) 12=-700(F) 26=-22(F) 27=64(F) 28=-31(F) 29=-678(F=-252, B=-426) 30=-782(F=-448, B=-334) 31=-892(F=-535, B=-357) 32=-972(F=-615, B=-357) 33=-359(B) 34=-1130(F=-796, B=-335) 35=-1272(F=-894, B=-378) 37=-31

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Haren Companies		
					148373477		
J211477-R	LG2	Half Hip Girder	1	2			
				_	Job Reference (optional)		
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:17:13 2021 Page 2		
			ID:EEJQKmcefGLHjdidLw1DuGyWB4A-rAwGdKFesBpXjl8F8Sr6KSzM2a48Fs21?AmAnPyTCyK				

NOTES-

13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 2230 lb down and 508 lb up at 26-1-0, 544 lb down and 120 lb up at 27-5-8, and 425 lb down and 143 lb up at 28-1-13, and 440 lb down and 146 lb up at 40-1-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.


LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-5=-50, 5-11=-50, 12-23=-20

Concentrated Loads (lb)

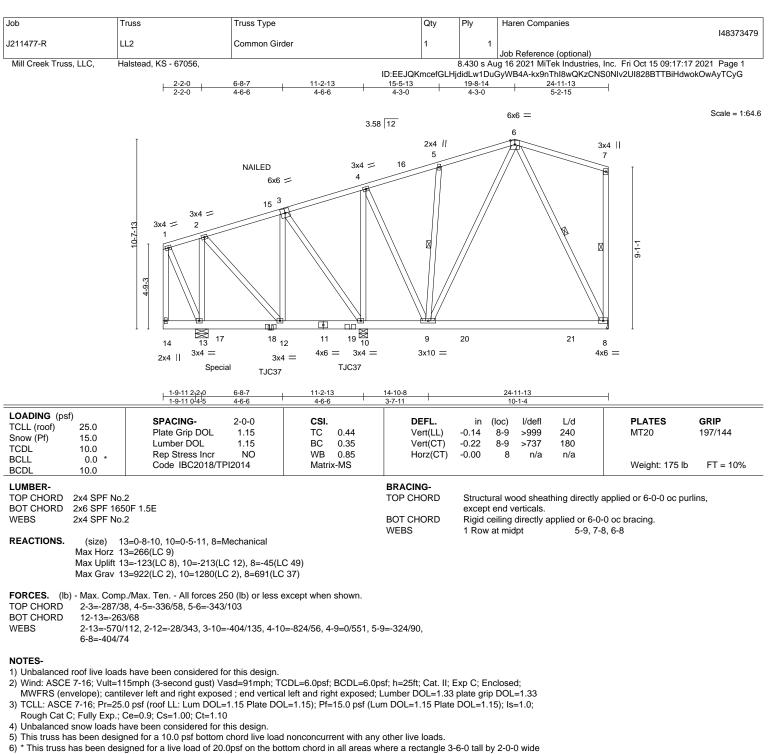
Vert: 15=-1979(F) 29=-451(B) 30=-415(F) 34=-365(F)

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Haren Companies
					148373478
J211477-R	LL1	Common Girder	1	1	
					Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:17:15 2021 Page 2

ID:EEJQKmcefGLHjdidLw1DuGyWB4A-nZ1120HuOo4Fz3leFttaPt3bWNlujo_KSUFHslyTCyl

LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-6=-50, 6-7=-50, 8-15=-20

Concentrated Loads (lb)

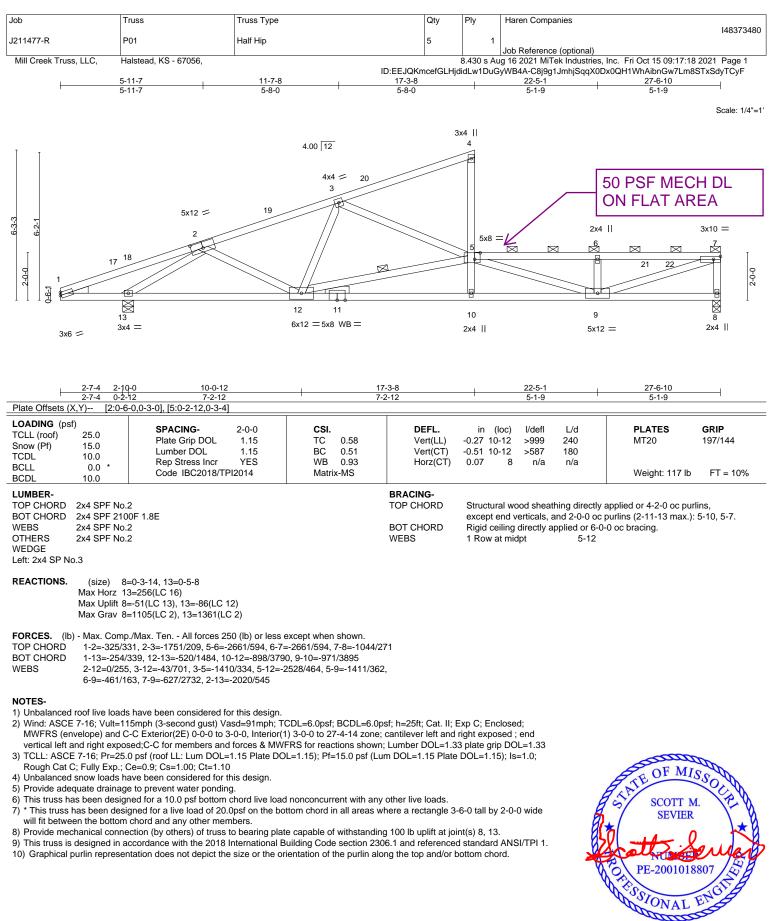
Vert: 17=103(B) 18=-319(B) 19=-99(F) 20=-606(B) 22=-297(F) 24=-382(F)

- will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8 except (jt=lb) 13=123, 10=213.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
 10) Use Simpson Strong-Tie TJC37 (6 nail, 22-30) or equivalent at 6-0-7 from the left end to connect truss(es) to back face of bottom
- chord, skewed 63.4 deg.to the left, sloping 0.0 deg. down.
- 11) Use Simpson Strong-Tie TJC37 (4 nail, 22-30) or equivalent at 10-6-1 from the left end to connect truss(es) to back face of bottom chord, skewed 63.4 deg.to the left, sloping 0.0 deg. down.
- 12) Fill all nail holes where hanger is in contact with lumber.
- 13) "NAILED" indicates 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 232 lb down and 70 lb up at 3-1-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 15) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

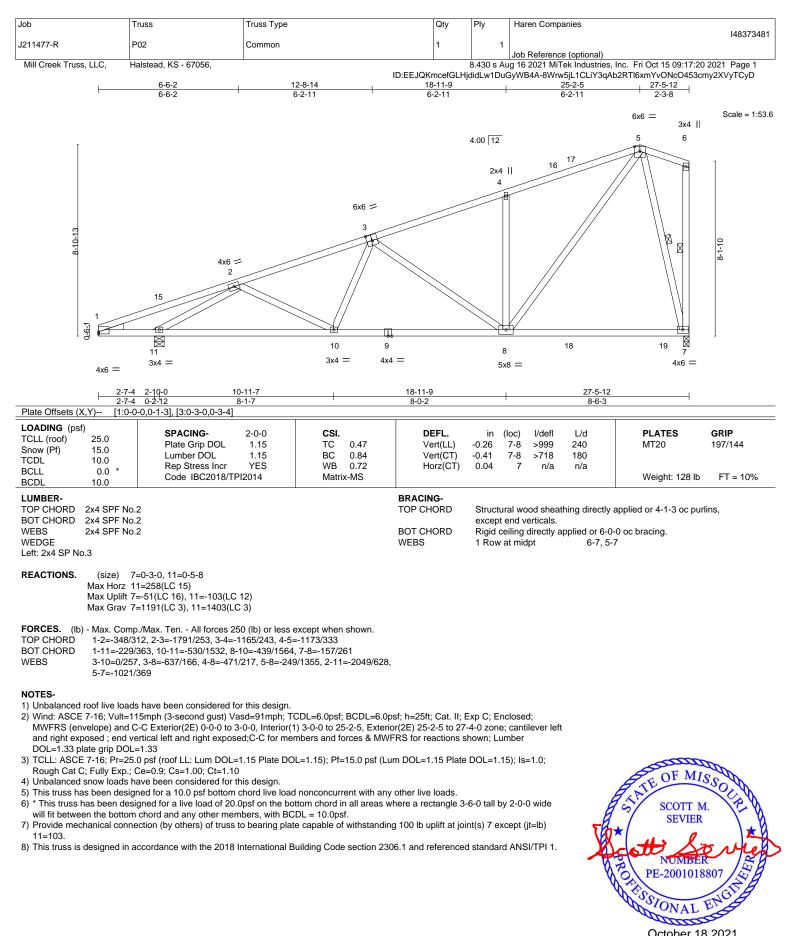
Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Haren Companies	
044477 D					148373479	
J211477-R	LL2	Common Girder	1	1		
					Job Reference (optional)	
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:17:17 2021 Page 2	
		ID:EEJQKmcefGLHjdidLw1DuGyWB4A-kx9nThI8wQKzCNS0NIv2UI828BTTBiHdwokOwAyTCyG				

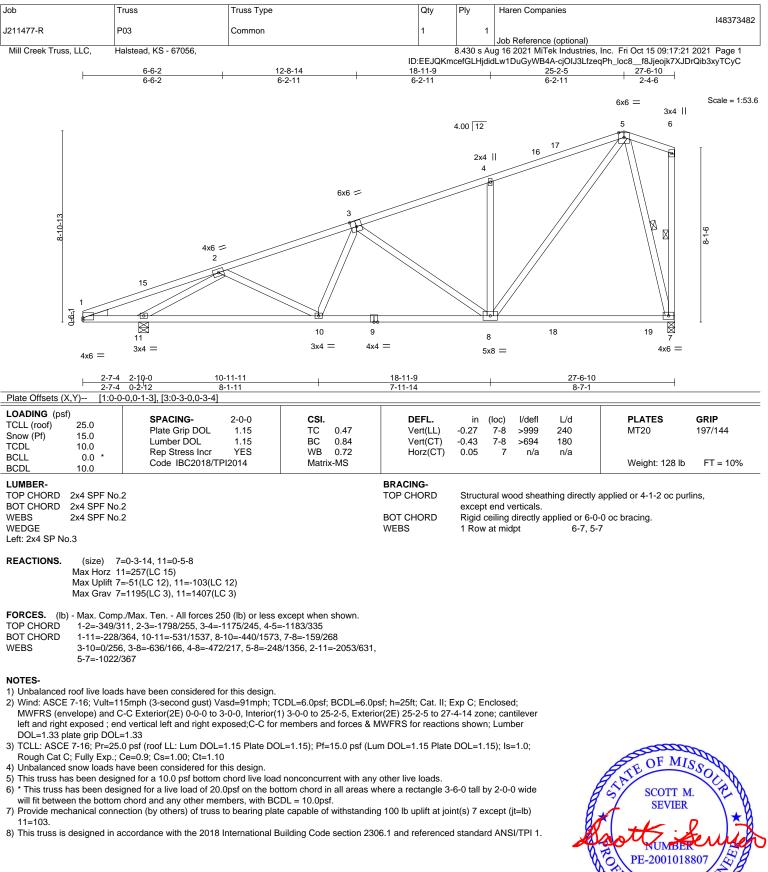

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

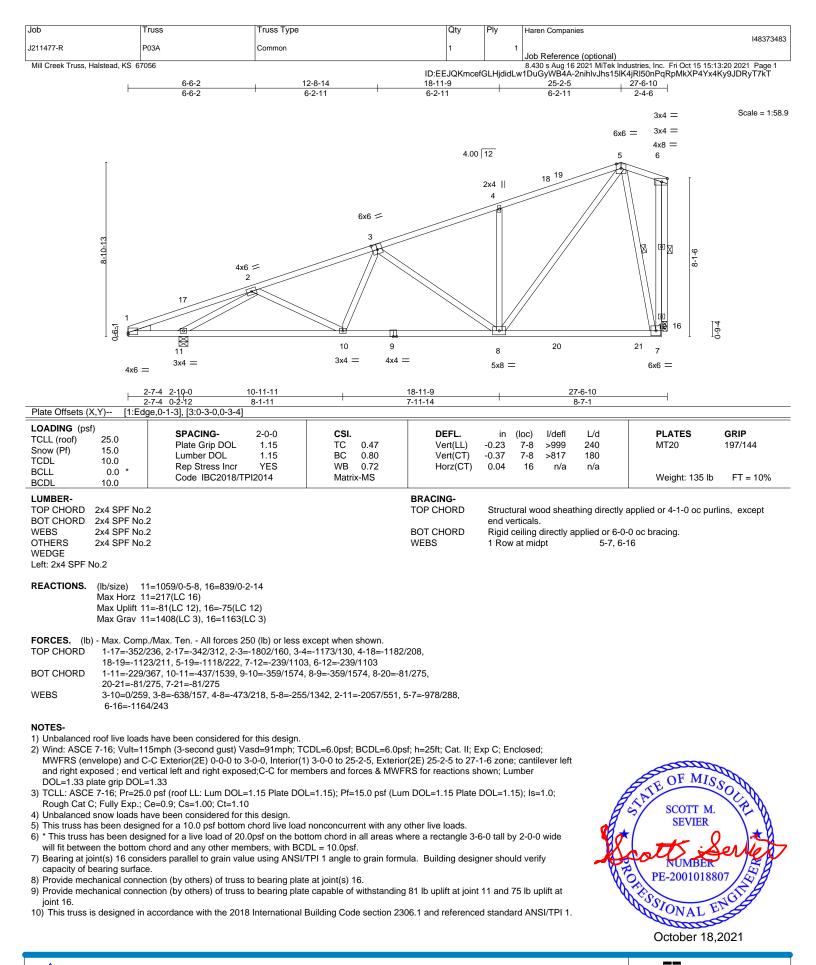
Uniform Loads (pf) Vert: 1-6=-50, 6-7=-50, 8-14=-20 Concentrated Loads (lb)

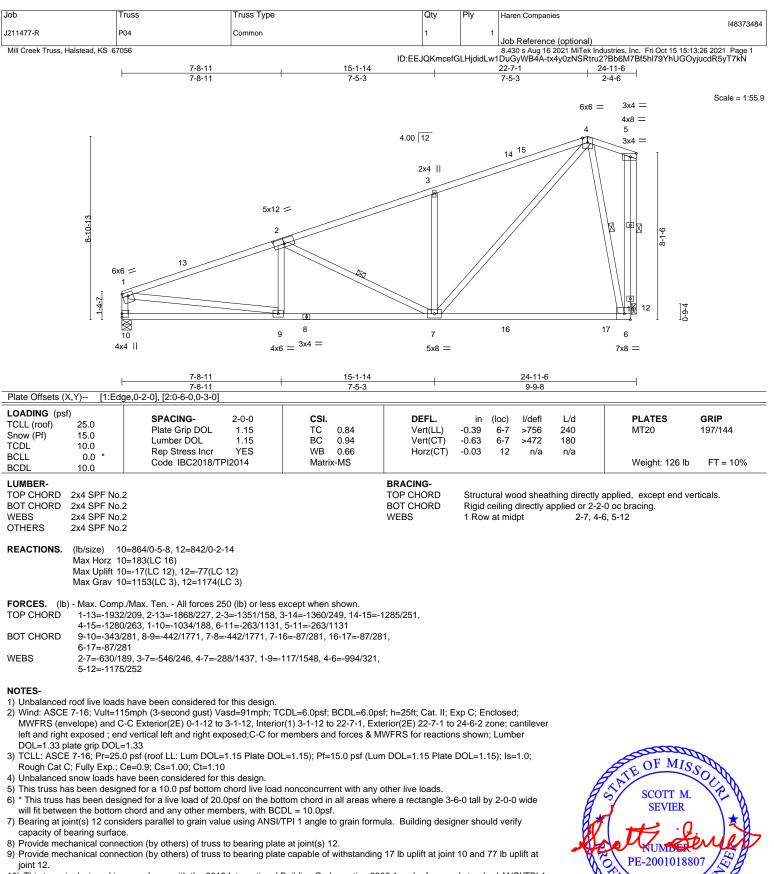

Vert: 15=37(B) 17=-200(F) 18=-209(B) 19=-148(B)

October 18,2021


16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


October 18,2021



NOTESSIONAL E October 18,2021

10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

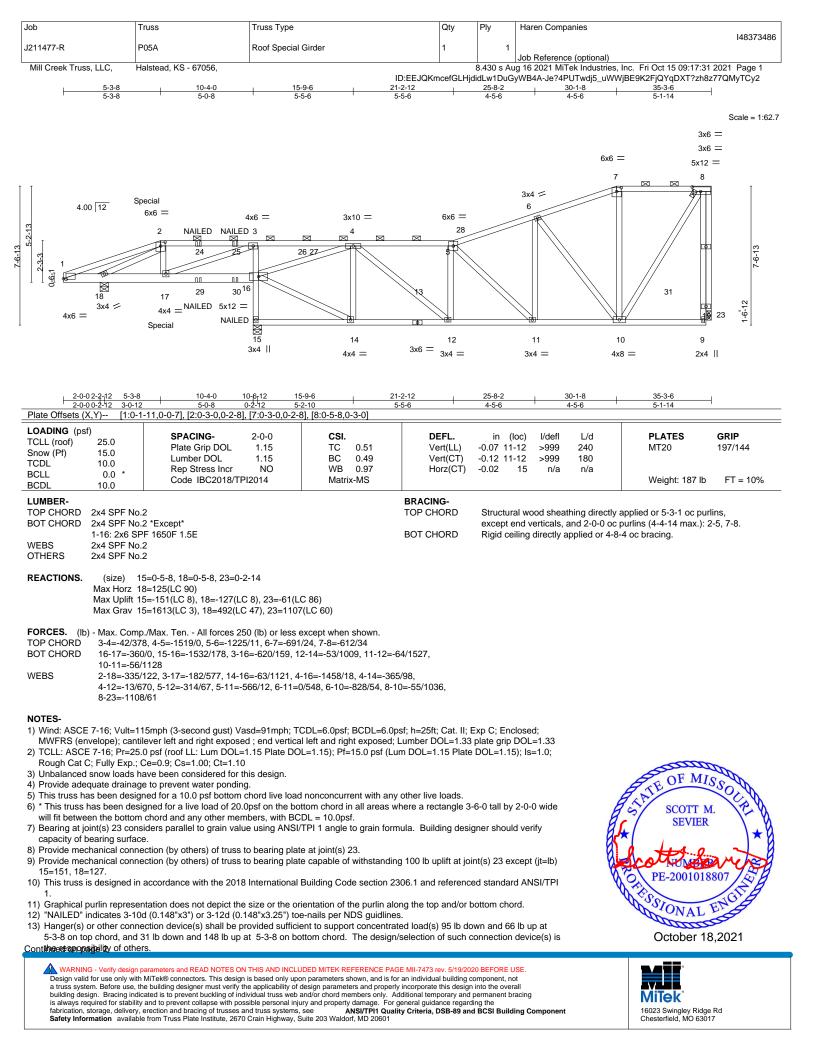
MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Haren Companies		
					148373485		
J211477-R	P05	Roof Special Girder	1	1			
					Job Reference (optional)		
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:17:28 2021 Page 2		
		ID:EEJQKmcefGLHididLw1DuGvWB4A-v3KxnSR2KoiP13n8W6cdRd5vxdB5GkMFS?uTp1vTCv5					

NOTES-

14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 106 lb down and 66 lb up at 5-3-8 on top chord, and 31 lb down and

148 lb up at 5-3-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 15) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).


LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

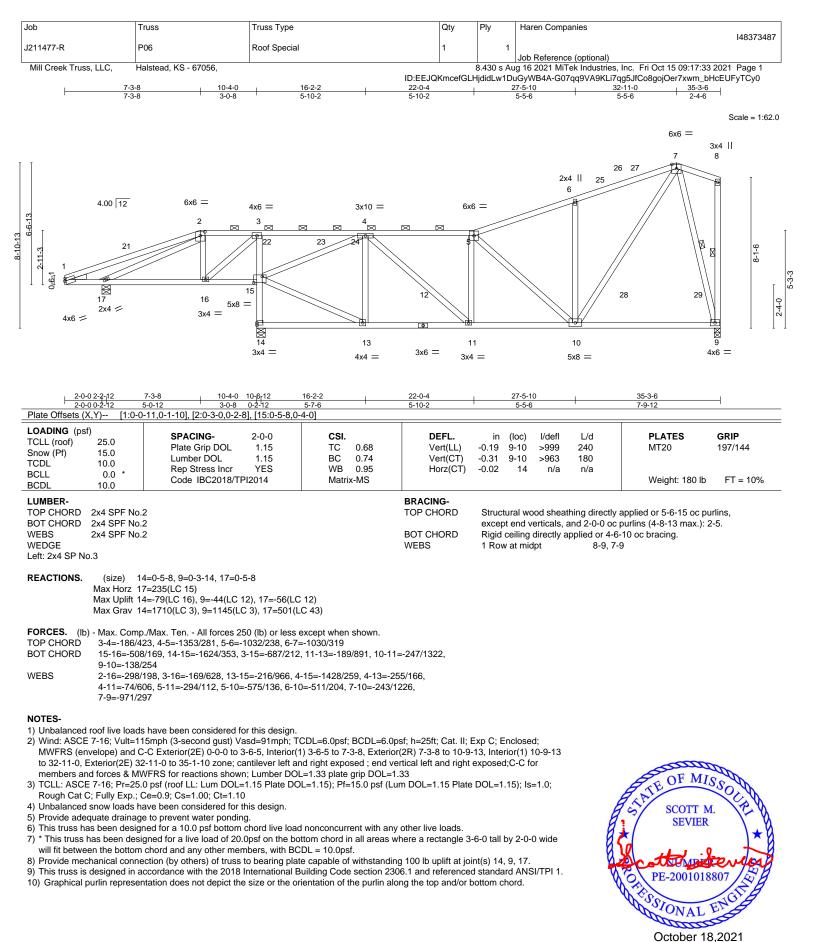
Uniform Loads (plf) Vert: 1-2=-50, 2-5=-50, 5-8=-50, 8-9=-50, 17-21=-20, 10-16=-20

Concentrated Loads (lb)

Vert: 2=-44(B) 18=67(B) 25=-24(B) 26=-24(B) 31=1(B) 32=1(B)

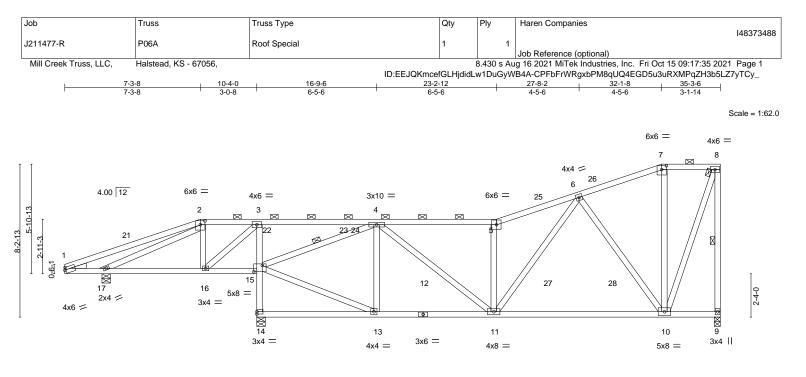
Job	Truss	Truss Type	Qty	Ply	Haren Companies
					148373486
J211477-R	P05A	Roof Special Girder	1	1	
					Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:17:31 2021 Page 2
		ID:EEJQk	mcefGLHjc	lidLw1DuG	yWB4A-Je?4PUTwdj5_uWWjBE9K2FjQYqDXT?zh8z77QMyTCy2

NOTES-


14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

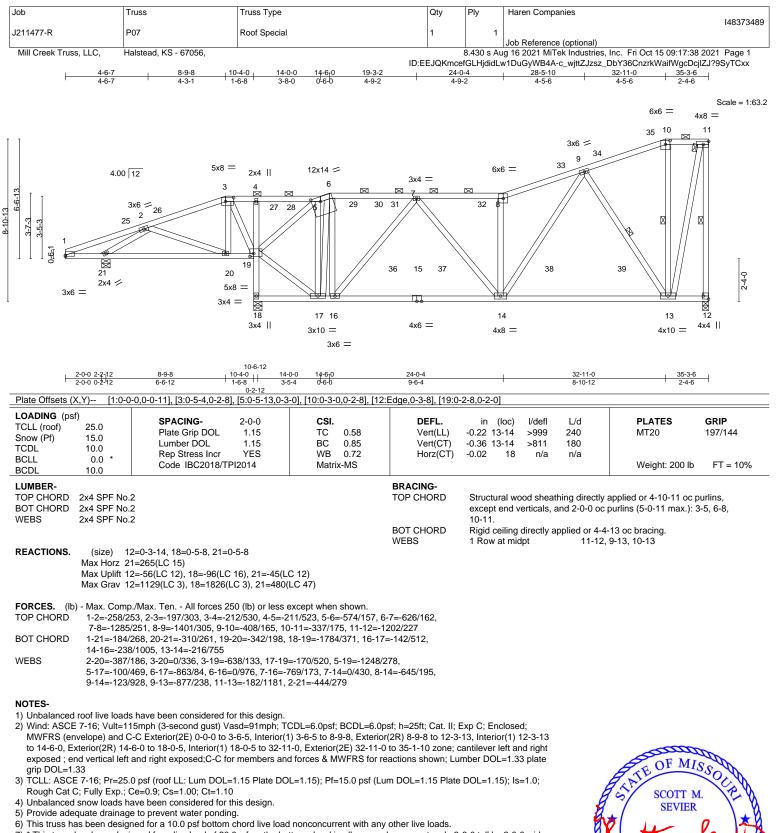
LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-50, 2-5=-50, 5-7=-50, 7-8=-50, 16-20=-20, 9-15=-20


Concentrated Loads (lb) Vert: 2=-44(F) 17=67(F) 24=-24(F) 25=-24(F) 29=1(F) 30=1(F)

ORE USE. Hent, not be overall

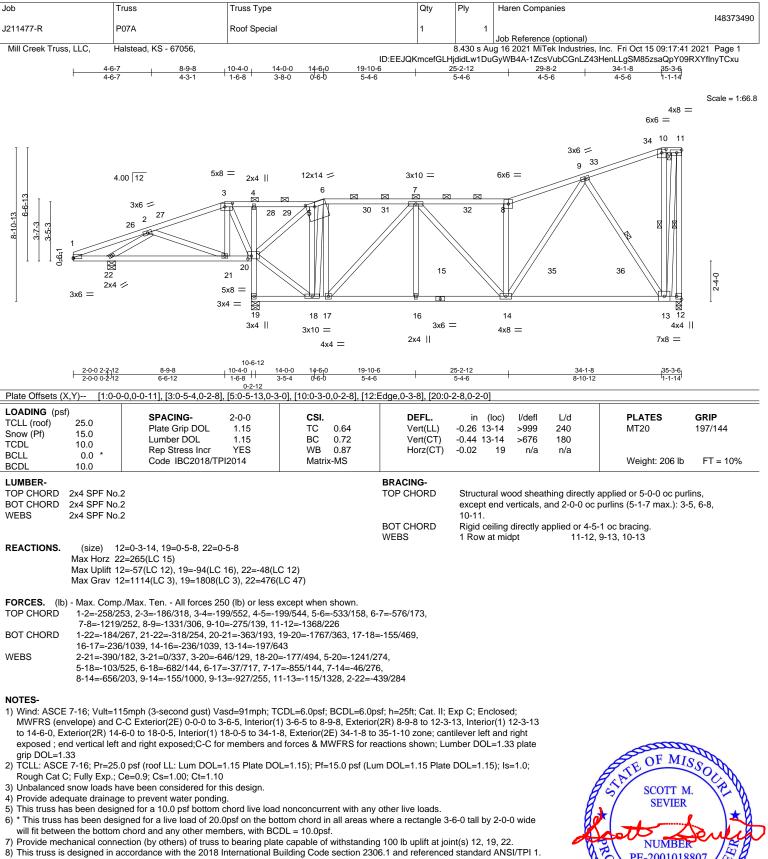
> Mitek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017



2-0-0 2-2-12 2-0-0 0-2-12	7-3-8 10-4-0 10-6 ₁ 12 5-0-12 3-0-8 0-2-12	<u> </u>	23-2-12 6-5-6	32-1-8	35-3-6
	0-11,0-1-10], [2:0-3-0,0-2-8], [7:0-3-0,0-				
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.68 BC 0.76 WB 0.93 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl L/d -0.26 10-11 >999 240 -0.44 10-11 >667 180 -0.02 14 n/a n/a	PLATES GRIP MT20 197/144 Weight: 180 lb FT = 10%
LUMBER- TOP CHORD 2x4 SPF No BOT CHORD 2x4 SPF No WEBS 2x4 SPF No WEDGE Left: 2x4 SP No.3	.2		BRACING- TOP CHORD BOT CHORD WEBS	Rigid ceiling directly applied or 4	oc purlins (4-4-14 max.): 2-5, 7-8.
Max Horz 1 Max Uplift 9	9=0-3-14, 14=0-5-8, 17=0-5-8 7=243(LC 15) 9=-58(LC 12), 14=-79(LC 16), 17=-56(L)=1127(LC 3), 14=1725(LC 3), 17=506	/			
TOP CHORD 3-4=-176/2 8-9=-1168 BOT CHORD 15-16=-53 WEBS 2-16=-295	p./Max. Ten All forces 250 (lb) or less 130, 4-5=-1433/267, 5-6=-1564/325, 6- /216 0/171, 14-15=-1621/357, 3-15=-708/21 /195, 3-16=-163/630, 13-15=-239/1036 566, 5-11=-776/227, 6-11=-125/930, 6-	7=-513/173, 7-8=-438/18 7, 11-13=-210/978, 10-1 , 4-15=-1510/269, 4-13≕	1=-238/884 -254/164,		
 MWFRS (envelope) and 0 to 32-1-8, Exterior(2E) 32 members and forces & M TCLL: ASCE 7-16; Pr=25 Rough Cat C; Fully Exp.; Unbalanced snow loads H Provide adequate drainage This truss has been desige * This truss is designed in a 	15mph (3-second gust) Vasd=91mph; C-C Exterior(2E) 0-0-0 to 3-6-5, Interior -1-8 to 35-1-10 zone; cantilever left and WFRS for reactions shown; Lumber DC .0 psf (roof LL: Lum DOL=1.15 Plate D Ce=0.9; Cs=1.00; Ct=1.10 have been considered for this design. ge to prevent water ponding. Interform a 10.0 psf bottom chord live loa igned for a 10.0 psf bottom chord live loa igned for a live load of 20.0psf on the b n chord and any other members, with B ection (by others) of truss to bearing pla accordance with the 2018 International tation does not depict the size or the or	(1) 3-6-5 to 7-3-8, Exterio tright exposed ; end veri JL=1.33 plate grip DOL= OL=1.15); Pf=15.0 psf (L ad nonconcurrent with an ottom chord in all areas CDL = 10.0psf. ate capable of withstandi Building Code section 23	or(2R) 7-3-8 to 10-9- tical left and right ex 1.33 um DOL=1.15 Plate by other live loads. where a rectangle 3 ng 100 lb uplift at joi 306.1 and reference	-13, Interior(1) 10-9-13 posed;C-C for • DOL=1.15); Is=1.0; -6-0 tall by 2-0-0 wide int(s) 9, 14, 17. d standard ANSI/TPI 1.	SCOTT M. SEVIER PE-2001018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

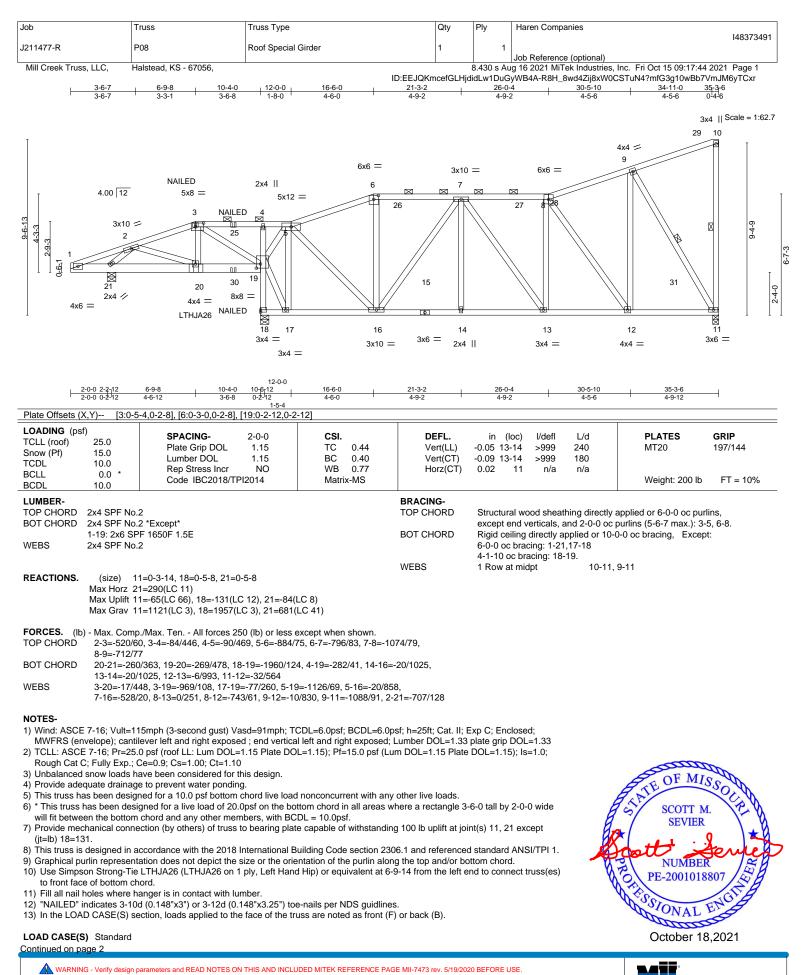
October 18,2021



7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 18, 21.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

October 18,2021


16023 Swingley Ridge Rd Chesterfield, MO 63017

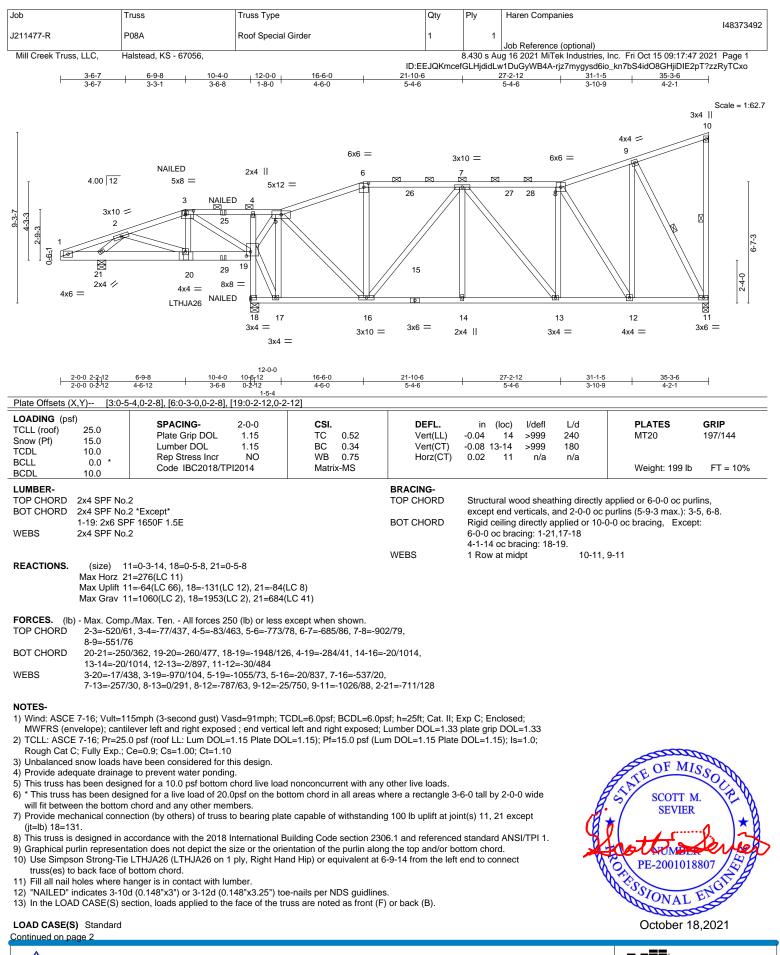
9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

NUMBER PE-2001018807

> 16023 Swingley Ridge Rd Chesterfield, MO 63017

ent 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Haren Companies		
					148373491		
J211477-R	P08	Roof Special Girder	1	1			
					Job Reference (optional)		
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:17:44 2021 Page 2		
		ID:EEJQKmcefGLHjdidLw1DuGyWB4A-R8H_8wd4Zij8xW0CSTuN4?mfG3g10wBb7VmJM6yTCxr					


LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-50, 3-5=-50, 5-6=-50, 6-8=-50, 8-10=-50, 19-22=-20, 11-18=-20 Concentrated Loads (lb)

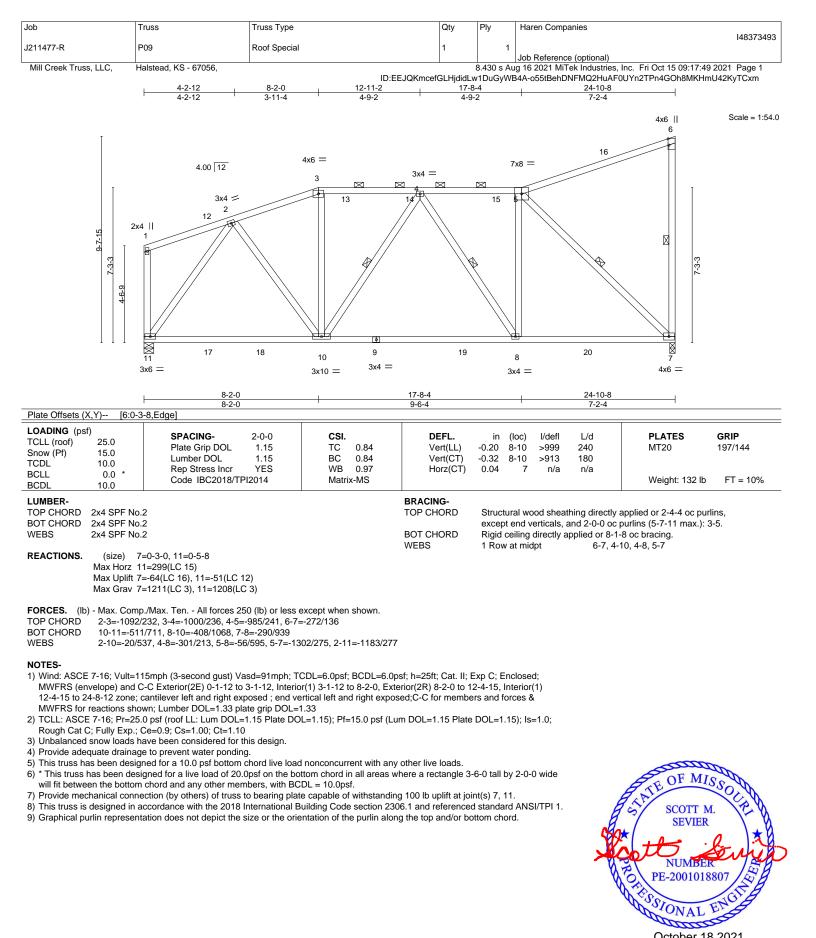
Vert: 3=-20(F) 20=-350(F) 25=-20(F) 30=-124(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

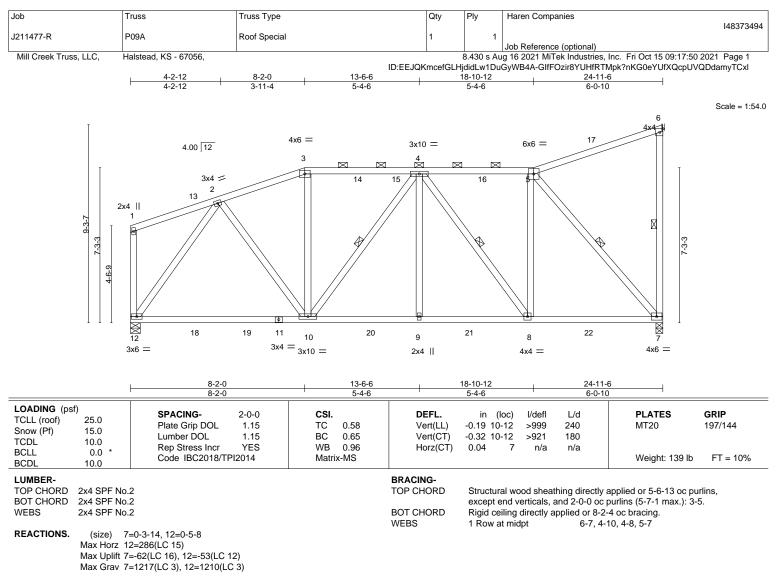
MiTek

Job	Truss	Truss Type	Qty	Ply	Haren Companies		
J211477-R	P08A	Roof Special Girder	1	1	148373492		
			•		Job Reference (optional)		
Mill Creek Truss, LLC,	Halstead, KS - 67056,	8.430 s Aug 16 2021 MiTek Industries, Inc. Fri Oct 15 09:17:47 2021 Page 2					
		ID:EEJQKmcefGLHjdidLw1DuGyWB4A-rjz7mygysd6io_kn7bS4idO8GHjiDIE2pT?zzRyTCxo					


LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-50, 3-5=-50, 5-6=-50, 6-8=-50, 8-10=-50, 19-22=-20, 11-18=-20 Concentrated Loads (lb)


Vert: 3=-20(B) 20=-350(B) 25=-20(B) 29=-124(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 October 18,2021

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1082/238, 3-4=-991/242, 4-5=-876/232

- BOT CHORD 10-12=-497/706, 9-10=-389/1109, 8-9=-389/1109, 7-8=-259/823
- WEBS 2-10=-26/539, 4-10=-294/71, 4-8=-481/214, 5-8=-75/658, 5-7=-1258/264, 2-12=-1167/284

NOTES-

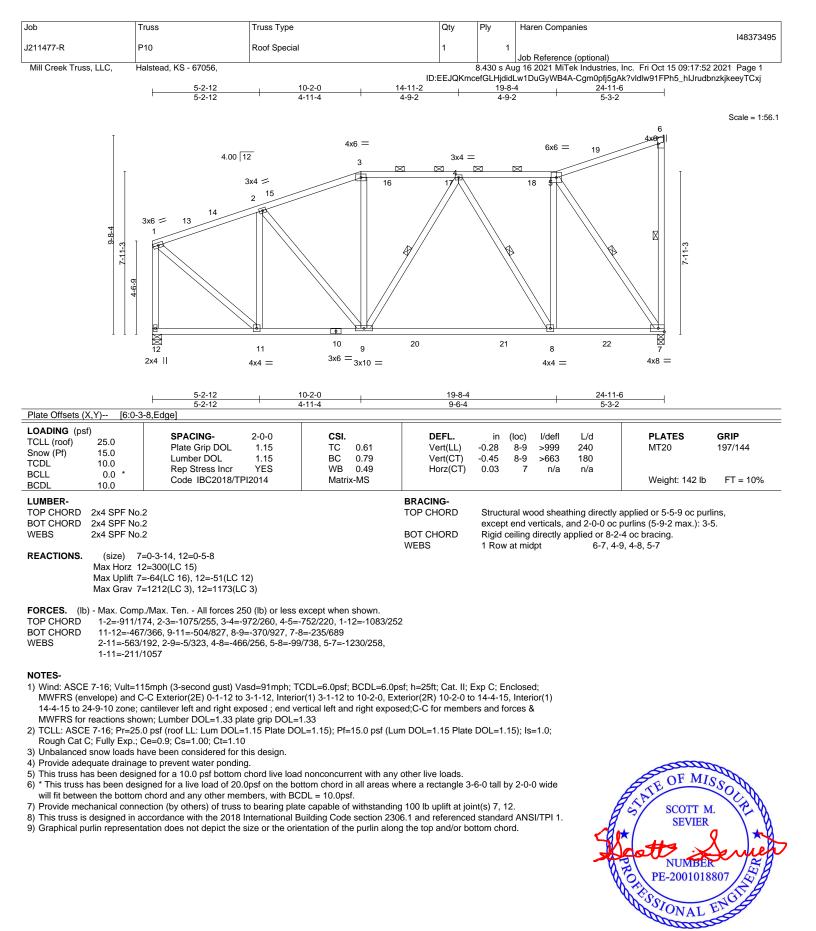
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 8-2-0, Exterior(2R) 8-2-0 to 12-4-15, Interior(1) 12-4-15 to 24-9-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

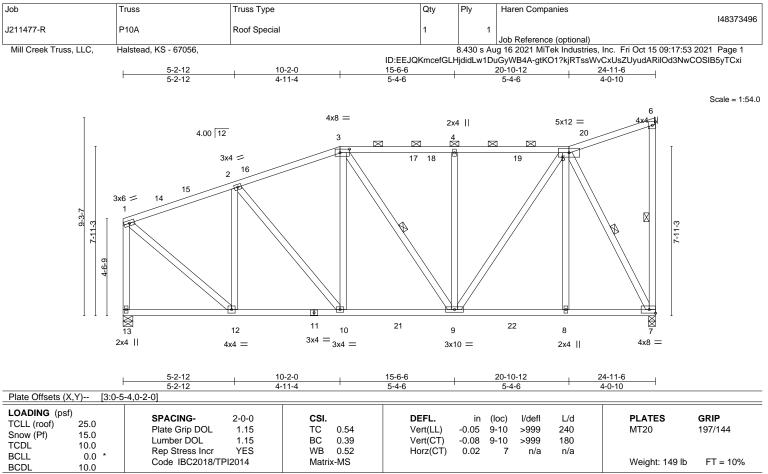
4) Provide adequate drainage to prevent water ponding.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 12.

- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



NiTek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 October 18,2021

BRACING-

TOP CHORD

BOT CHORD

WEBS

т	ш	M	R	F	R-

LOWIDER	
TOP CHORD	2x4 SPF No.2
BOT CHORD	2x4 SPF No.2

.2 WEBS 2x4 SPF No.2

REACTIONS. (size) 7=0-3-14, 13=0-5-8 Max Horz 13=286(LC 15) Max Uplift 7=-62(LC 16), 13=-53(LC 12) Max Grav 7=1188(LC 3), 13=1169(LC 3)

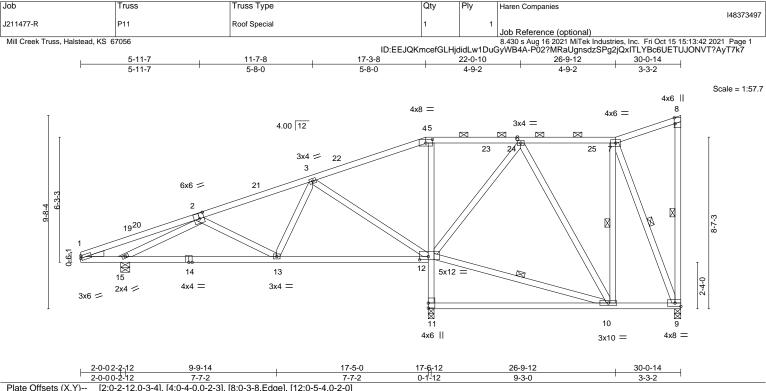
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 1-2=-915/172, 2-3=-1047/264, 3-4=-939/277, 4-5=-939/277, 1-13=-1089/250
- 12-13=-445/350, 10-12=-486/830, 9-10=-420/946, 8-9=-202/536, 7-8=-204/532 2-12=-543/206, 2-10=-22/284, 4-9=-504/184, 5-9=-248/696, 5-7=-1161/257, BOT CHORD
- WFBS

1-12=-208/1064

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 10-2-0, Exterior(2R) 10-2-0 to 14-4-15, Interior(1) 14-4-15 to 24-9-10 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 6) will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 13.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


Structural wood sheathing directly applied or 5-6-7 oc purlins,

6-7, 3-9, 5-7

except end verticals, and 2-0-0 oc purlins (5-9-6 max.): 3-5.

Rigid ceiling directly applied or 8-5-12 oc bracing.

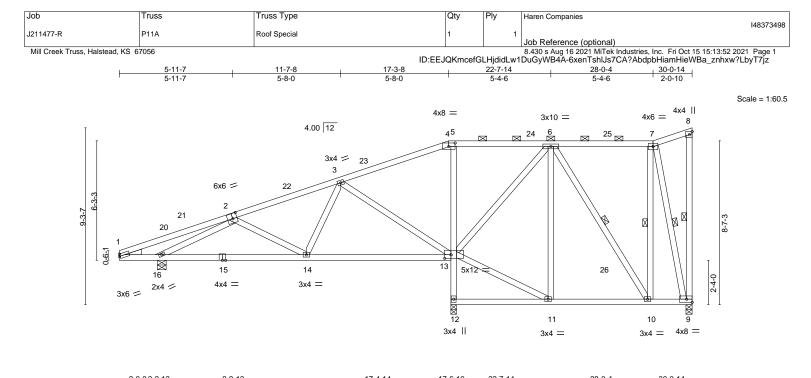
1 Row at midpt

Plate Offsets (X,Y) [2:0-2-12	,0-3-4], [4:0-4-0,0-2-3], [8:0-3-8,Edg	e], [12:0-5-4,0-2-0]	0-1-12	9-3-0	3-3-2
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.58 BC 0.49 WB 0.84 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) I/defl L/d -0.15 10-11 >966 240 -0.31 10-11 >481 180 0.01 9 n/a n/a	PLATES GRIP MT20 197/144 Weight: 161 lb FT = 10%
LUMBER- TOP CHORD 2x4 SPF No.2			BRACING- TOP CHORD	Structural wood sheathing directly	applied or 6-0-0 oc purlins, except

TOP CHORD	2x4 SPF No.2	TOP CHORD	Structural wood sheathing	directly applied or 6-0-0 oc purlins, except
BOT CHORD	2x4 SPF No.2		end verticals, and 2-0-0 oc	purlins (6-0-0 max.): 4-7.
WEBS	2x4 SPF No.2	BOT CHORD	Rigid ceiling directly applie	d or 4-8-6 oc bracing.
WEDGE		WEBS	1 Row at midpt	8-9, 10-12, 7-10, 7-9
Left: 2x4 SPF N	No.2			

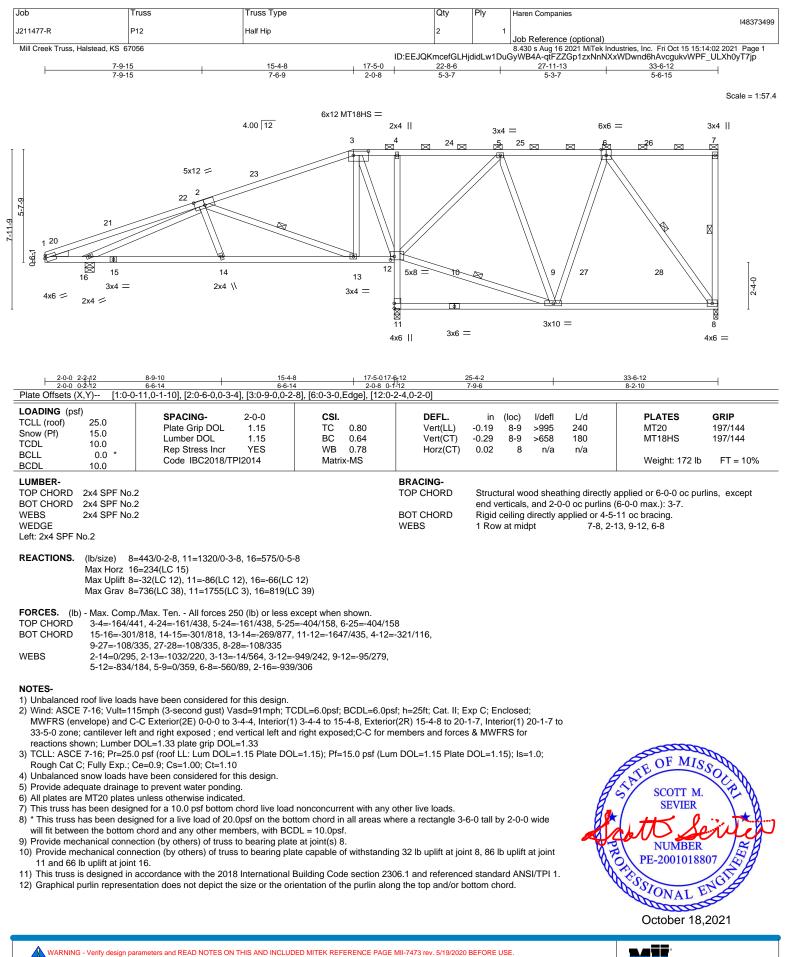
REACTIONS. (Ib/size) 9=295/0-3-14, 11=1219/0-3-8, 15=581/0-5-8 Max Horz 15=290(LC 15) Max Uplift 9=-31(LC 12), 11=-79(LC 16), 15=-66(LC 12) Max Grav 9=378(LC 2), 11=1569(LC 2), 15=767(LC 41)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

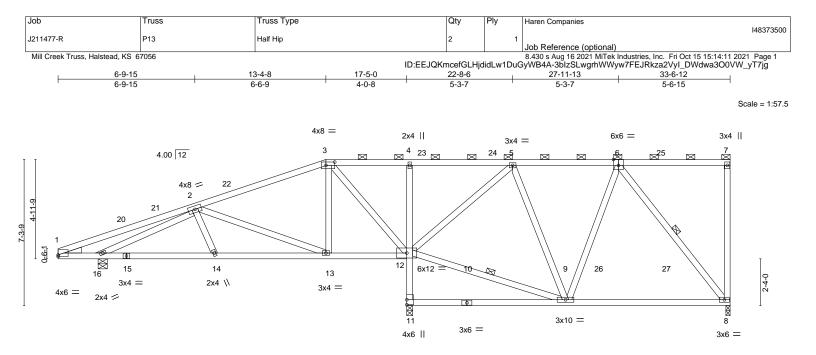

- TOP CHORD 2-21=-652/71, 3-21=-520/91, 3-22=-212/315, 4-22=-200/427, 4-5=-150/346,
- 5-23=-151/357, 23-24=-151/357, 6-24=-151/357 BOT CHORD 1-15=-117/264, 14-15=-390/835, 13-14=-390/835, 12-13=-249/412, 11-12=-1489/409, 5-12=-462/228
 - WEBS 2-13=-323/175, 3-13=0/395, 3-12=-920/223, 6-12=-617/164, 6-10=0/286, 7-9=-365/93, 2-15=-1024/394

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-1, Interior(1) 3-0-1 to 17-3-8, Exterior(2R) 17-3-8 to 21-6-9, Interior(1) 21-6-9 to 29-11-2 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 lb uplift at joint 9, 79 lb uplift at joint 11 and 66 lb uplift at joint 15.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


16023 Swingley Ridge Rd Chesterfield, MO 63017

2-0-	02-2- <mark>1</mark> 2 9-9-13	17-4-14	17-6 ₁ 10	22-7-14		28-0-4	30-0-14	
	00-2-12 7-7-1 2-12,0-3-4], [4:0-4-0,0-2-3], [13:0-4-0,0-2		0-1 ¹ 12	5-1-4	1	5-4-6	2-0-10	
	12,0 0 4], [4.0 4 0,0 2 0], [10.0 4 0,0 2	<u></u>]						
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.51 BC 0.53 WB 0.84	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.08 13-14 -0.16 13-14 0.01 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL 10.0	Code IBC2018/TPI2014	Matrix-MS					Weight: 166 lb	FT = 10%
LUMBER- TOP CHORD 2x4 SPF No BOT CHORD 2x4 SPF No WEBS 2x4 SPF No WEDGE Left: 2x4 SPF No.2	2		BRACING- TOP CHORD BOT CHORD WEBS	end verticals	, and 2-0- directly ap	0 oc purlins oplied or 4-6-	applied or 6-0-0 oc pur (6-0-0 max.): 4-7. -13 oc bracing. 10, 7-10, 7-9	lins, except
Max Horz 1 Max Uplift 9	=290/0-3-14, 12=1228/0-3-8, 16=577/0- 6=276(LC 15) =-28(LC 12), 12=-82(LC 16), 16=-66(LC =437(LC 46), 12=1643(LC 3), 16=779(L	12)						
TOP CHORD 2-22=-690	o./Max. Ten All forces 250 (lb) or less (/65, 3-22=-584/85, 3-23=-197/325, 4-23= /370, 6-24=-136/370							
5-13=-482 WEBS 2-14=-325	/265, 15-16=-375/829, 14-15=-375/829, /227 /172, 3-14=0/447, 3-13=-919/221, 6-13= 15, 2-16=-1018/390	,	,					
 NOTES- 1) Wind: ASCE 7-16; Vult=1 MWFRS (envelope) and (29-11-2 zone; cantilever l reactions shown; Lumber 2) TCLL: ASCE 7-16; Pr=25 Rough Cat C; Fully Exp.; 3) Unbalanced snow loads f 4) Provide adequate drainag 5) This truss has been desig 6) * This truss has been desig 6) * This truss has been desig 7) Provide mechanical conn and 66 lb uplift at joint 16 8) This truss is designed in a 	15mph (3-second gust) Vasd=91mph; Tr C-C Exterior(2E) 0-0-0 to 3-0-1, Interior(1 eft and right exposed ; end vertical left a DOL=1.33 plate grip DOL=1.33 .0 psf (roof LL: Lum DOL=1.15 Plate DO Ce=0.9; Cs=1.00; Ct=1.10 ave been considered for this design. le to prevent water ponding. ned for a 10.0 psf bottom chord live load igned for a live load of 20.0psf on the bo ection (by others) of truss to bearing plate) 3-0-1 to 17-3-8, Exterior and right exposed;C-C for r L=1.15); Pf=15.0 psf (Lun nonconcurrent with any of ttom chord in all areas wh DL = 10.0psf. e capable of withstanding uilding Code section 2306	r(2R) 17-3-8 to 21 members and forc n DOL=1.15 Plate other live loads. here a rectangle 3- p 28 lb uplift at join 6.1 and referenced	-6-9, Interior(1) es & MWFRS fo DOL=1.15); Is= 6-0 tall by 2-0-0 t 9, 82 lb uplift a d standard ANSI	21-6-9 to or 1.0;) wide t joint 12		STATE OF MIS SCOTT M. SEVIER NUMBER PE-20010188 PE-20010188	mat


October 18,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

2-0-02-2-12	7-9-10	13-4-8	17-	·5-0 17-6-1		25-4-2				33-6-12	1
2-0-0 0-2-12	5-6-14	5-6-14		0-8 0-1 <mark>-</mark> 12		7-9-6		1		8-2-10	
Plate Offsets (X,Y) [1:Ee	dge,0-0-15], [3:0-5-4,0-2	-0], [6:0-3-0,Edge]								
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IBC2018	2-0-0 1.15 1.15 YES TPI2014	BC 0).64).62).70 AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.28 0.02	(loc) 8-9 8-9 8	l/defl >999 >686 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 165 lb	GRIP 197/144 FT = 10%
BCDL 10.0	0000 1202010		mannet							Trongina roo io	
LUMBER- TOP CHORD 2x4 SPF No BOT CHORD 2x4 SPF No WEBS 2x4 SPF No WEDGE Left: 2x4 SPF No.2	0.2			T B	RACING- OP CHORD OT CHORD	end v Rigid 6-0-0 4-6-3	erticals ceiling oc bra	, and 2-0 directly a cing: 1-10 cing: 11-)-0 oc purlins applied or 10 6	y applied or 6-0-0 oc purl s (6-0-0 max.): 3-7. D-0-0 oc bracing, Excep	•
Max Horz Max Uplift	8=455/0-2-8, 11=1296/0 16=211(LC 15) 8=-32(LC 12), 11=-82(L0 8=735(LC 38), 11=1724	C 12), 16=-69(LC	12)	, in the second s	200	1100	, at nin	ι μ ι	5 12,		
FORCES. (Ib) - Max. Com TOP CHORD 2-22=-285 5-6=-432/	5/73, 3-4=-164/417, 4-23										
	7/843, 14-15=-317/843, 8/367, 26-27=-108/367, 8		11-12=-1615/4	410, 4-12=-40	6/153,						
WEBS 2-13=-791	/173, 3-13=-4/469, 3-12 94, 2-16=-1079/331		-90/311, 5-12=	-842/178, 5-9	9=0/325,						
NOTES- 1) Unbalanced roof live load 2) Wind: ASCE 7-16; Vult= MWFRS (envelope) and	15mph (3-second gust)	Vasd=91mph; TC)		

MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-4-4, Interior(1) 3-4-4 to 13-4-8, Exterior(2R) 13-4-8 to 18-1-7, Interior(1) 18-1-7 to 33-5-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

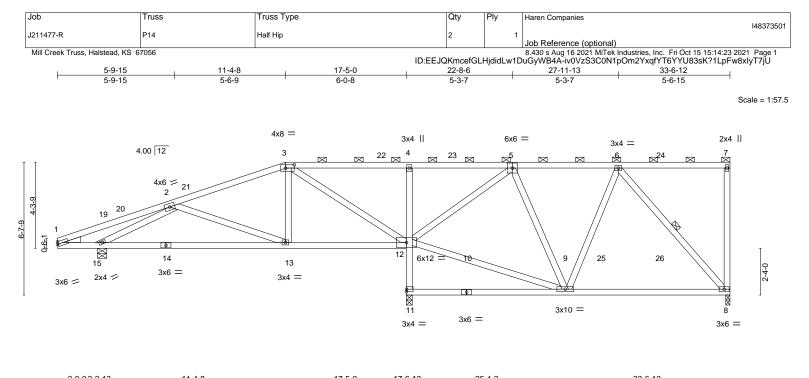
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

5) Provide adequate drainage to prevent water ponding.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

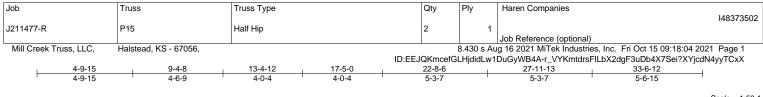
7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

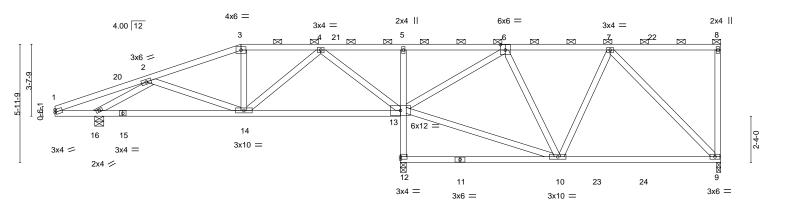
8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 8.


 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint 8, 82 lb uplift at joint 11 and 69 lb uplift at joint 16.

10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

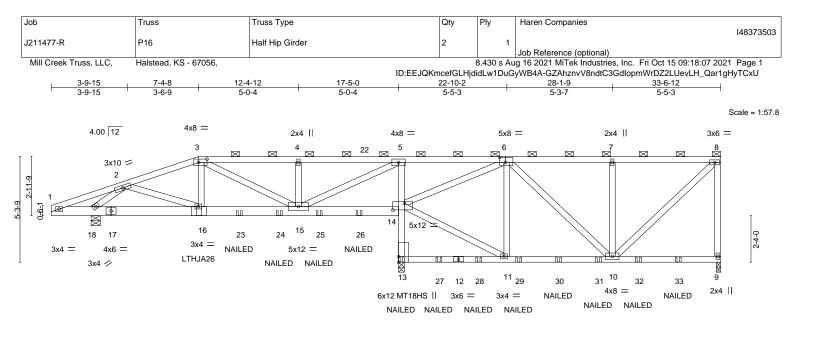

16023 Swingley Ridge Rd Chesterfield, MO 63017


2-0-02-2-12	11-4-8	17-5-0	17-6-12	25-4-2	1		33-6-12	
2-0-00-2-12	9-1-12	6-0-8	0-1-12	7-9-6	1		8-2-10	
Plate Offsets (X,Y) [3:0-5	-4,0-2-0]							
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.60	DEFL Vert(I	L) -0.17 8-9	>999	L/d 240	PLATES MT20	GRIP 197/144
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	BC 0.69 WB 0.88 Matrix-MS	Vert(Horz(,		180 n/a	Weight: 156 lb	FT = 10%
BCDL 10.0							_	
LUMBER-	_		BRACING-					
TOP CHORD 2x4 SPF No.			TOP CHOR				applied or 6-0-0 oc pu	rlins, except
BOT CHORD 2x4 SPF No.			DOT OUOD				6-0-0 max.): 3-7.	
WEBS 2x4 SPF No.	2		BOT CHOR	0			7-8 oc bracing.	
WEDGE Left: 2x4 SPF No.2			WEBS	1 Row at m	idpt	6-8		
Leit. 2X4 SPP NU.2								
Max Horz 19 Max Uplift 8	=481/0-2-8, 11=1242/0-3-8, 15=616/0 5=189(LC 15) =-30(LC 12), 11=-90(LC 13), 15=-69(L =752(LC 38), 11=1647(LC 3), 15=862	_C 12)						
FORCES. (Ib) - Max. Comp	./Max. Ten All forces 250 (lb) or les	s except when shown.						
	84, 19-20=-291/93, 2-20=-281/167, 2-		4/110,					
3-22=-148/	318, 4-22=-148/318, 4-23=-150/334, 5	5-23=-150/334, 5-6=-48	88/139					
BOT CHORD 1-15=-88/3	15, 14-15=-354/822, 13-14=-354/822,	12-13=-157/516, 11-1	2=-1537/384,					
	187, 9-25=-110/419, 25-26=-110/419,							
	208, 3-13=0/418, 3-12=-982/229, 9-12	2=-91/366, 5-12=-797/1	178, 5-9=0/255,					
6-8=-619/9	8, 2-15=-1040/493							
 2) Wind: ASCE 7-16; Vult=11 MWFRS (envelope) and C 33-5-0 zone; cantilever lef reactions shown; Lumber 3) TCLL: ASCE 7-16; Pr=25. Rough Cat C; Fully Exp.; Q 4) Unbalanced snow loads h 5) Provide adequate drainagg 6) This truss has been desigi 7) * This truss has been desigi 9) Provide mechanical connerging and 69 lb uplift at joint 15. 10) This truss is designed in 	ave been considered for this design.	TCDL=6.0psf; BCDL= r(1) 3-4-4 to 11-4-8, Ex and right exposed;C-C DOL=1.15); Pf=15.0 psf ad nonconcurrent with bottom chord in all area 3CDL = 10.0psf. ate at joint(s) 8. late capable of withstar al Building Code sectio	tterior(2R) 11-4-8 for members and f (Lum DOL=1.15 any other live load as where a rectang nding 30 lb uplift a on 2306.1 and refe	o 16-1-7, Interior(1 brces & MWFRS fo late DOL=1.15); Is le 3-6-0 tall by 2-0 joint 8, 90 lb uplift enced standard Al) 16-1-7 to or -0 wide at joint 11		State OF MIS SCOTT M SEVIER NULSEER PE-20010185	enter 807 E

October 18,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

Scale = 1:58.1



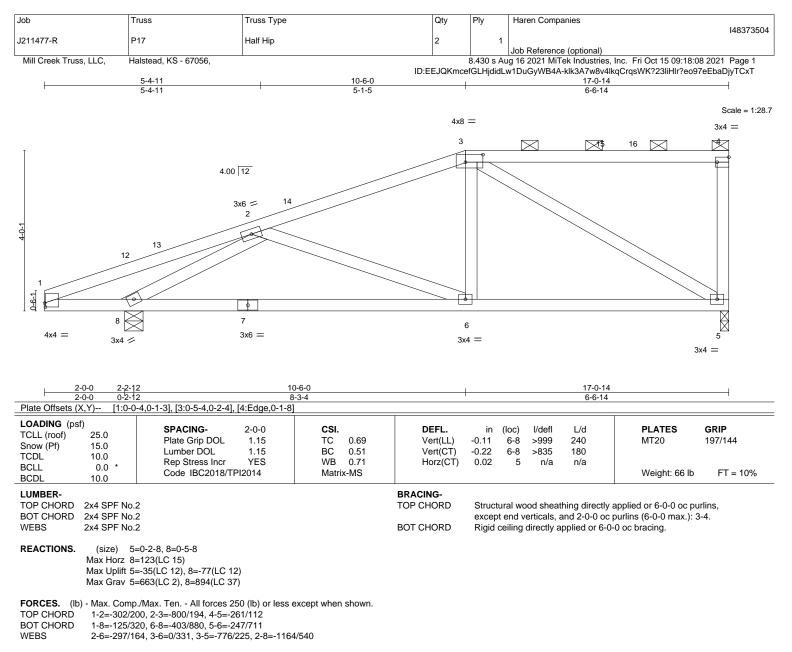
2-0-02-2-12	9-4-8	<u>17-5-0</u> 8-0-8	<u>17-6-12</u> 0-1-12	<u>25-4-2</u> 7-9-6		<u>33-6-12</u> 8-2-10	
	3-0.0-3-4]	8-0-8	0-1-12	7-9-0		0-2-10	
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.4: BC 0.6 WB 0.6 Matrix-MS	2 Ve 0 Ve 9 Ho	FL. in (loc) rt(LL) -0.15 9-10 rt(CT) -0.25 9-10 rz(CT) 0.02 9	>999 240 >775 180	PLATES MT20 Weight: 152 It	GRIP 197/144 p FT = 10%
LUMBER- TOP CHORD 2x4 SPF No. BOT CHORD 2x4 SPF No. WEBS 2x4 SPF No.	2		BRACIN TOP CHO BOT CHO	ORD Structural w except end		ctly applied or 6-0-0 oc pi) oc purlins (6-0-0 max.): 4-6-1 oc bracing.	
Max Horz 1 Max Uplift 9	=0-2-8, 12=0-3-8, 16=0-5-8 6=166(LC 15) =-34(LC 12), 12=-88(LC 13), 16=- =732(LC 38), 12=1702(LC 38), 16						
TOP CHORD 1-2=-255/2 BOT CHORD 1-16=-182/ 9-10=-116/ 9-10=-116/ WEBS 4-14=-70/5	04, 4-13=-894/243, 10-13=-98/41	4-5=-156/402, 5-6=-148 /304, 12-13=-1602/355	8/413, 6-7=-512/14 , 5-13=-386/128,	2			
 MWFRS (envelope) and C 33-5-0 zone; cantilever let reactions shown; Lumber 2) TCLL: ASCE 7-16; Pr=25. Rough Cat C; Fully Exp.; 3) Unbalanced snow loads h 4) Provide adequate drainag 5) This truss has been desig 6) * This truss has been desig 6) * This truss has been desig 6) * This truss has been desig 7) Provide mechanical conne 8) Provide mechanical conne 9) This truss is designed in a 	15mph (3-second gust) Vasd=91n C-C Exterior(2E) 0-0-0 to 3-4-4, Int t and right exposed ; end vertical DOL=1.33 plate grip DOL=1.33 0 psf (roof LL: Lum DOL=1.15 Pla Ce=0.9; Cs=1.00; Ct=1.10 ave been considered for this desig	erior(1) 3-4-4 to 9-4-8, l eft and right exposed;C tte DOL=1.15); Pf=15.0 gn. re load nonconcurrent w the bottom chord in all a ith BCDL = 10.0psf. ng plate at joint(s) 9. ng plate capable of with- onal Building Code sect	Exterior(2R) 9-4-8 C-C for members a psf (Lum DOL=1. vith any other live areas where a rec standing 100 lb up tion 2306.1 and re	to 14-1-7, Interior(1) 1 nd forces & MWFRS f 15 Plate DOL=1.15); I oads. angle 3-6-0 tall by 2-0 lift at joint(s) 9, 12, 16 ferenced standard AN	14-1-7 to or s=1.0; 0-0 wide	STATE OF M SCOTT SEVIE NUNTER PE-200101	Server

October 18,2021

2-0-02-2-12	7-4-8	12-4-12	17-5-0	17-6-12	22-10-2		28-1-9	33-6-12	
2-0-00-2-12	5-1-12	5-0-4	5-0-4	0-1-12	5-3-7	I	5-3-7	5-5-3	_
Plate Offsets (X,Y)	[3:0-5-4,0-2-0], [6:0-3-8	8,0-3-0], [14:0-7-0,0-4-0]							
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	* Rep Stres	DOL 1.15 OL 1.15	CSI. TC 0.53 BC 0.58 WB 0.75 Matrix-MS		DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.07 11-13 -0.11 11-13 0.01 9	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 MT18HS Weight: 162 lb	GRIP 197/144 197/144 FT = 10%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S 1-17,1	PF No.2	.5E, 12-13: 2x4 SPF 21(00F 1.8E	TOF	ACING- P CHORD	except end v		ctly applied or 4-6-10 oc pi) oc purlins (4-8-11 max.): ∶ 3-7-7 oc bracing.	
Max I Max I	ze) 9=0-2-8, 13=0-3-8, Horz 18=144(LC 11) Jplift 13=-147(LC 9), 18 Grav 9=985(LC 32), 13=	=-128(LC 8)	LC 2)						
TOP CHORD 2-3= 8-9=	. Comp./Max. Ten All -1564/156, 3-4=-1272/1 -879/0	45, 4-5=-1272/145, 5-6=	=-47/535, 6-7=-750	6/0, 7-8=-7	,				
10-1 WEBS 2-16	8=-173/1001, 15-16=-17 1=0/663 =-11/576, 3-16=-6/390, 4=-1307/27, 7-10=-469/	3-15=-372/34, 4-15=-42	7/93, 5-15=-157/1	,	,				
 MWFRS (envelope 2) TCLL: ASCE 7-16; Rough Cat C; Fully 3) Unbalanced snow I 4) Provide adequate of 5) All plates are MT2C 6) This truss has beer 7) * This truss has beer 8) Provide mechanica 13=147, 18=128. 10) This truss is designation of the second state of the second state	where hanger is in contact s 3-10d (0.148"x3") or 3 E(S) section, loads appl	ti exposed ; end vertical m DDL=1.15 Plate DOL ct=1.10 ered for this design. if ponding. indicated. f bottom chord live load ad of 20.0psf on the bott ther members. of truss to bearing plate of truss to bearing plate the 2018 International E lepict the size or the orie A26 on 1 ply, Left Hand ct with lumber. B-12d (0.148"x3.25") toe	left and right expo =1.15); Pf=15.0 p nonconcurrent with om chord in all are at joint(s) 9. capable of withsta wilding Code sect entation of the purk Hip) or equivalent	h any other anding 100 ion 2306.1 in along th at 7-4-14 f	er DOL=1.33 IL=1.15 Plate live loads. a rectangle 3- lb uplift at joi and reference e top and/or t rom the left e	plate grip DOL DOL=1.15); Is- 6-0 tall by 2-0-0 nt(s) except (jt= ed standard AN pottom chord.	=1.33 =1.0; 0 wide =lb) SI/TPI	Cottooling October 12	A. A
LOAD CASE(S) Star WARNING - Verify Design valid for use a truss system. Befo building design. Bra is always required fo fabrication, storage,	ndard r design parameters and READ only with MiTek® connectors. re use, the building designer m cing indicated is to prevent buc r stability and to prevent collap delivery, erection and bracing (available from Truss Plate Ins	This design is based only upon nust verify the applicability of de ckling of individual truss web ar use with possible personal injur of trusses and truss systems, s	parameters shown, ar ssign parameters and p nd/or chord members o y and property damage ee ANSI/TPI	nd is for an incorreported in the property incorreport of the property incorreport of the property incorrect of the property in the property of the property o	ividual building c orate this design I temporary and guidance regard	omponent, not into the overall permanent bracing	omponent	16023 Swingley Ridg Chesterfield, MO 630	

[Job	Truss	Truss Type	Qty	Ply	Haren Companies
	1044477 D	D 10		0		148373503
	J211477-R	P16	Half Hip Girder	2	1	Job Reference (optional)
_ [JOB Reference (optional)
	Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:18:07 2021 Page 2
			ID:EEJQKn	ncefGLHjd	idLw1DuG	yWB4A-GZAhznvV8ndtC3GdlopmWrDZ2LUevLH_Qar1gHyTCxU

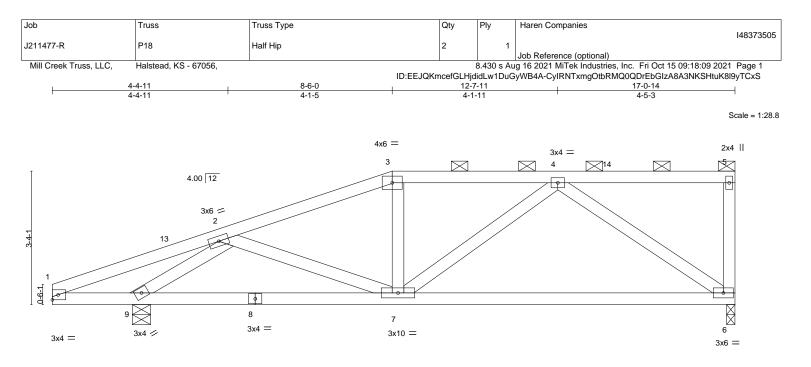
LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-50, 3-8=-50, 14-19=-20, 9-13=-20

Concentrated Loads (lb)

Vert: 16=-363(F) 14=-92(F) 23=-92(F) 24=-92(F) 25=-92(F) 26=-92(F) 27=-143(F) 28=-143(F) 29=-16(F) 30=-80(F) 31=-80(F) 32=-80(F) 33=-80(F) 33=-80(F) 32=-80(F) 33=-80(F) 33=-80(



NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 10-6-0, Exterior(2R) 10-6-0 to 14-8-15, Interior(1) 14-8-15 to 16-11-2 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Provide adequate drainage to prevent water ponding.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 8.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

2-0-0 2-2-12 2-0-0 0-2-12	<u>8-6-0</u> 6-3-4	+				17-0- 8-6-			
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.30 BC 0.52 WB 0.39 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.12 -0.25 0.02	(loc) 6-7 6-7 6	l/defl >999 >716 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 65 lb	GRIP 197/144 FT = 10%

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SPF No.2 2x4 SPF No.2 BOT CHORD WEBS 2x4 SPF No.2

REACTIONS. 6=0-2-8, 9=0-5-8 (size) Max Horz 9=100(LC 15) Max Uplift 6=-33(LC 13), 9=-80(LC 12) Max Grav 6=674(LC 36), 9=863(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-2=-259/278, 2-3=-924/203, 3-4=-828/206 TOP CHORD

BOT CHORD 1-9=-210/273, 7-9=-344/777, 6-7=-238/670

WEBS 4-7=-11/272, 4-6=-783/256, 2-9=-1166/471

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 8-6-0, Exterior(2R) 8-6-0 to 12-7-11, Interior(1) 12-7-11 to 16-11-2 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp; (ce-0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.

4) Provide adequate drainage to prevent water ponding.

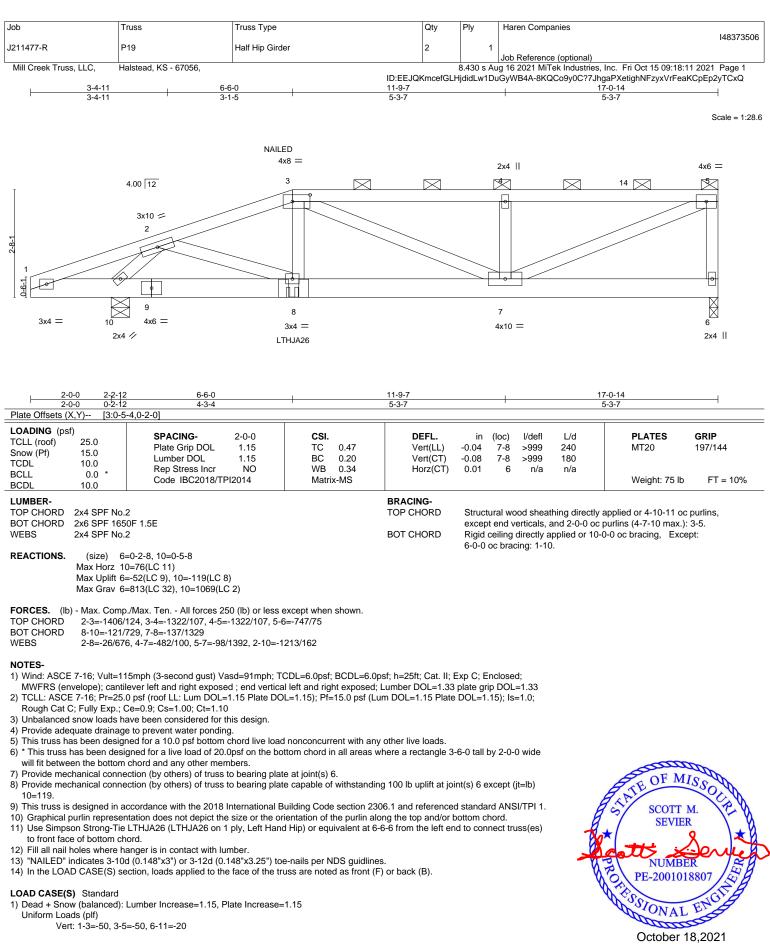
5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 9.

- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


OF MISS TE SCOTT M. SEVIER **IN** NOTESSIONAL PE-2001018807 E October 18,2021

Structural wood sheathing directly applied or 5-11-1 oc purlins,

except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-5.

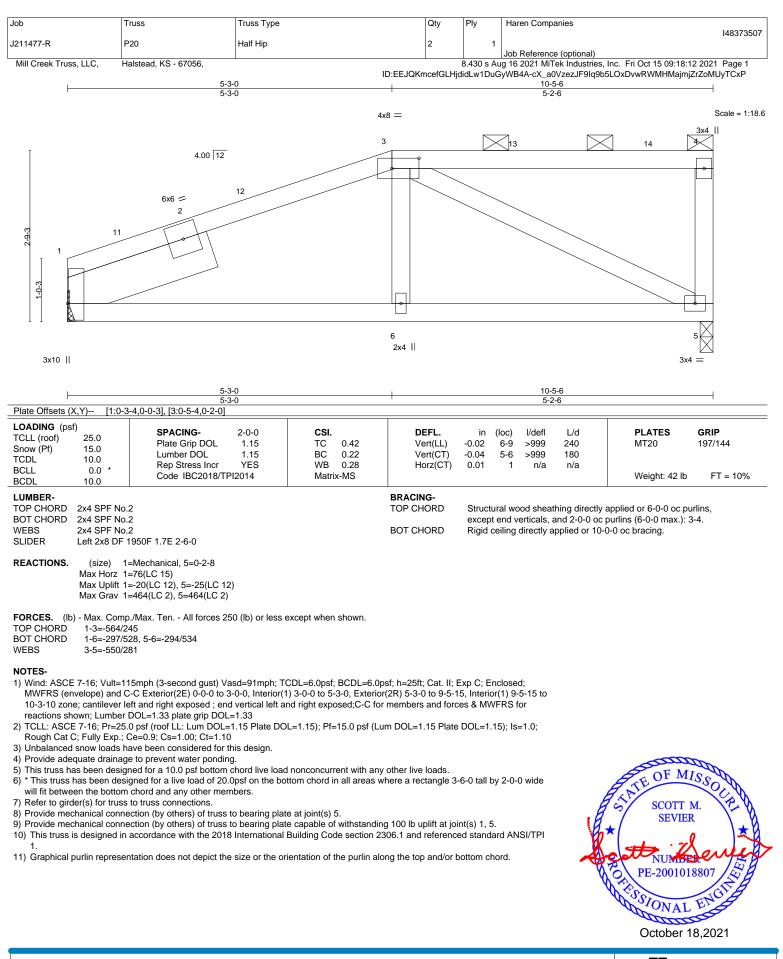
Rigid ceiling directly applied or 6-0-0 oc bracing.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

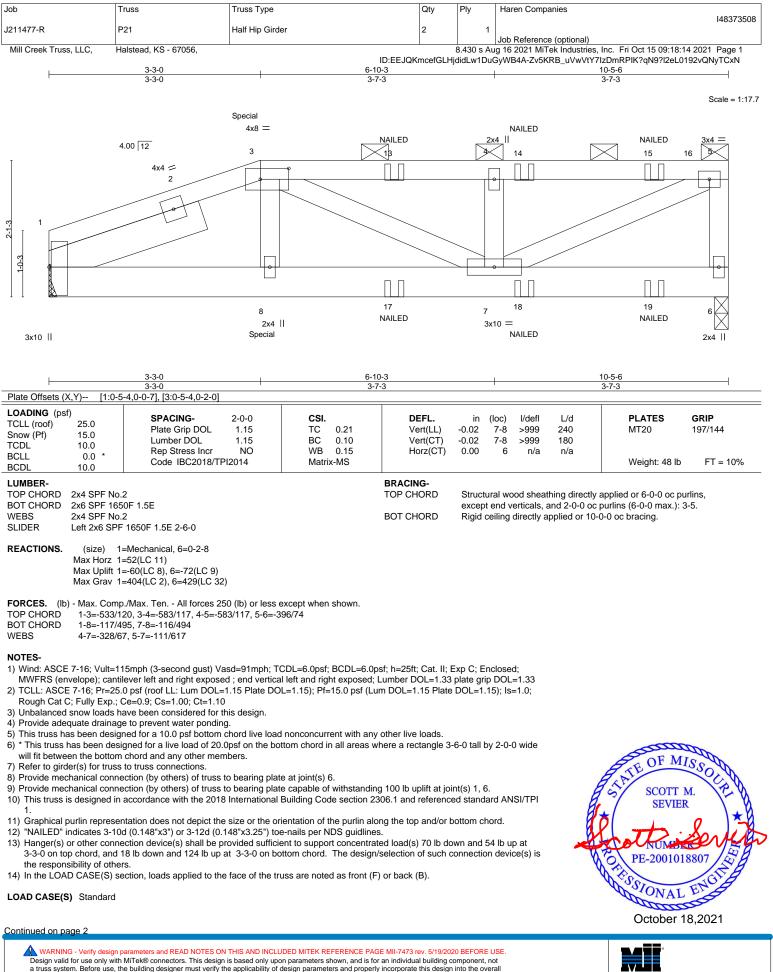
Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Mitek° 16023 Swingley Ridge Rd Chesterfield, MO 63017


Job	Truss	Truss Type	Qty	Ply	Haren Companies
					148373506
J211477-R	P19	Half Hip Girder	2	1	
					Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:18:11 2021 Page 2

ID:EEJQKmcefGLHjdidLw1DuGyWB4A-8KQCo9y0C?7JhgaPXetighNFzyxVrFeaKCpEp2yTCxQ

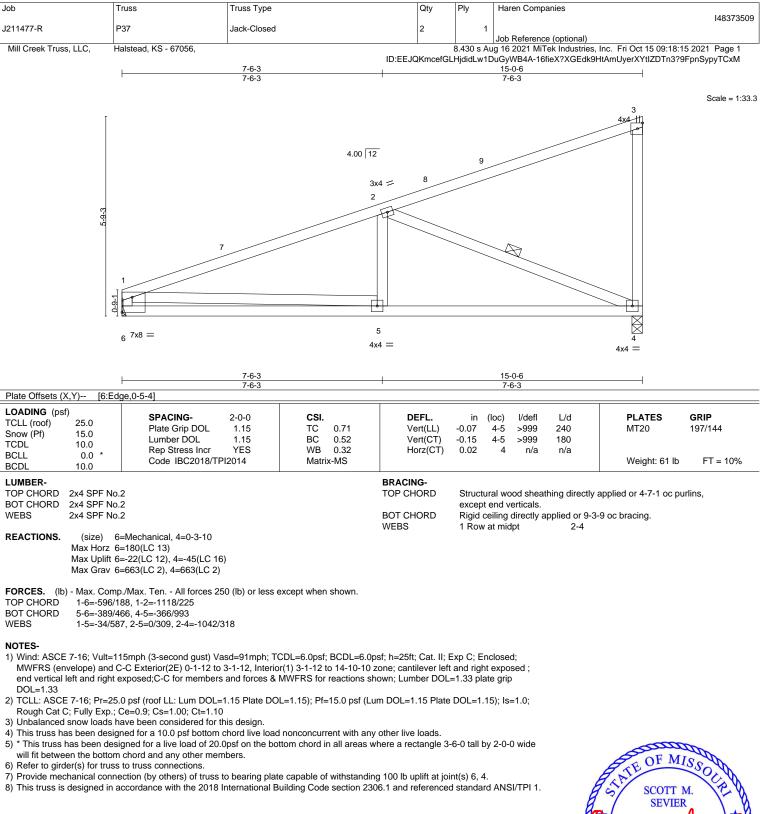

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 3=-16(F) 8=-315(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

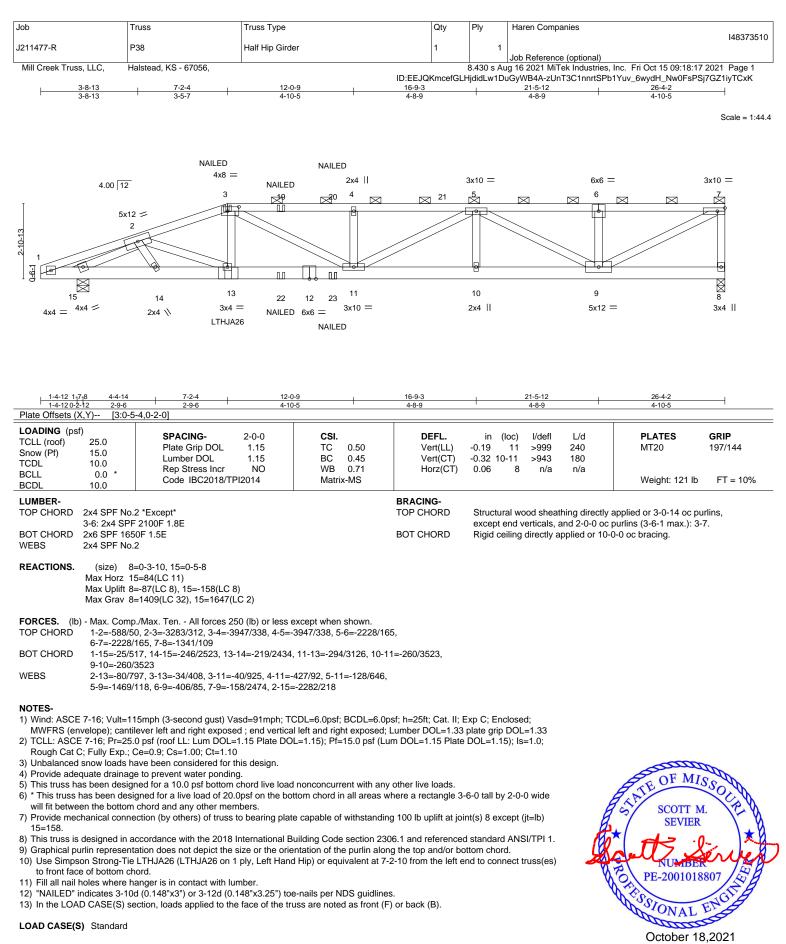
Job	Truss	Truss Type	Qty	Ply	Haren Companies
	_				148373508
J211477-R	P21	Half Hip Girder	2	1	
					Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:18:14 2021 Page 2
		ID:EEJQK	mcefGLHj	didLw1Du0	GyWB4A-Zv5KRB_uVwVtY7IzDmRPIK?qN9?I2eL0192vQNyTCxN


LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-50, 3-5=-50, 6-9=-20 Concentrated Loads (lb)

Vert: 3=-35(F) 8=56(F) 13=-17(F) 14=-17(F) 15=-18(F) 17=25(F) 18=25(F) 19=25(F)



October 18,2021

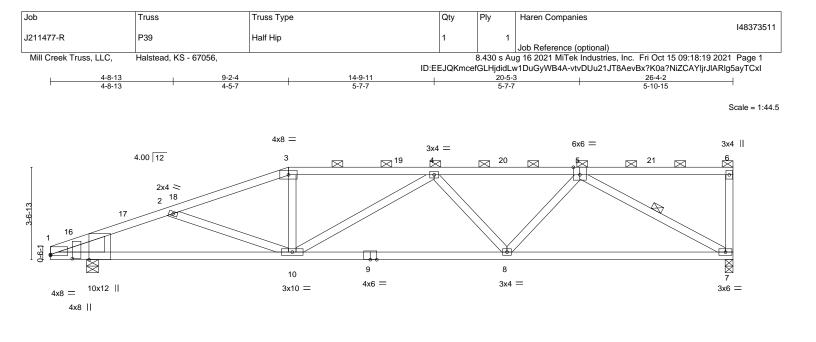
16023 Swingley Ridge Rd Chesterfield, MO 63017

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

	Job	Truss	Truss Type	Qty	Ply	Haren Companies
	1044477 D	Doo				148373510
	J211477-R	P38	Half Hip Girder	1	- T	Job Reference (optional)
l						
	Mill Creek Truss, LLC,	Halstead, KS - 67056,			3.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:18:17 2021 Page 2
			ID:EEJQ	KmcefGLH	jdidLw1Du	JGyWB4A-zUnT3C1nnrtSPb1Yuv_6wydH_Nw0FsPSj7GZ1iyTCxK

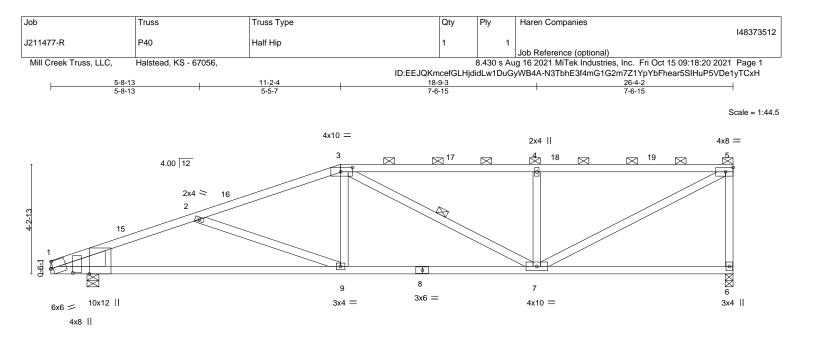

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (pf) Vert: 1-3=-50, 3-7=-50, 8-16=-20 Concentrated Loads (lb)

Vert: 3=-57(F) 13=-339(F) 19=-57(F) 20=-26(F) 22=-84(F) 23=-139(F)

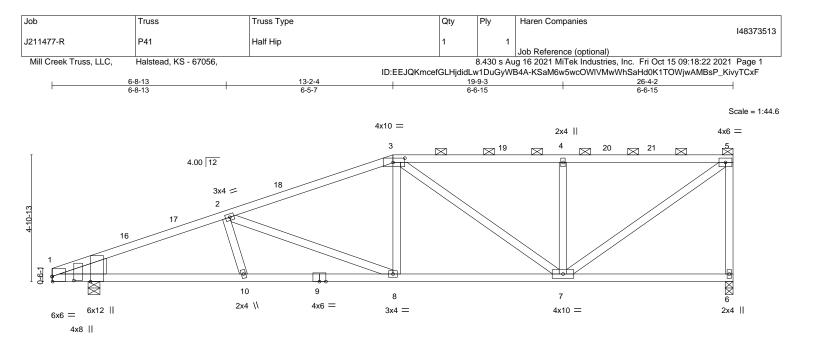
1-4-12 1 ₁ 7 ₁ 8 1-4-12 0-2-12	9-2-4		-7-7 5-3				6-4-2	
	6,Edge], [1:0-1-14,0-10-2], [1:0-0-0,0-0					0	011	
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIBC2018/TPI2014	CSI. TC 0.71 BC 0.75 WB 0.42 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (lo -0.15 8-1 -0.31 8-1 0.07	0 >999	L/d 240 180 n/a	PLATES MT20 Weight: 102 lb	GRIP 197/144 FT = 10%
LUMBER- TOP CHORD 2x4 SPF No.2 1-3: 2x4 SPF BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 WEDGE Left: 2x8 DF 1950F 1.7E	2100F 1.8E		BRACING- TOP CHORD BOT CHORD WEBS	except er	d verticals, ng directly a	and 2-0-0 of	y applied or 4-2-11 oc pu c purlins (3-10-1 max.): 3 3-0 oc bracing.	
Max Horz 1= Max Uplift 7= Max Grav 7= FORCES. (lb) - Max. Comp. TOP CHORD 1-2=-1885/4	0-3-10, 1=0-5-8 108(LC 15) -57(LC 12), 1=-59(LC 12) 1187(LC 36), 1=1245(LC 2) /Max. Ten All forces 250 (lb) or less 6 01, 2-3=-1979/402, 3-4=-1863/406, 4-5 665, 8-10=-476/2179, 7-8=-356/1632							
	2, 3-10=0/292, 4-10=-482/91, 4-8=-319	9/166, 5-8=-23/569, 5-7=	-1825/373					
MWFRS (envelope) and C- 26-2-6 zone; cantilever left reactions shown; Lumber D 2) TCLL: ASCE 7-16; Pr=25.0 Rough Cat C; Fully Exp.; C 3) Unbalanced snow loads ha 4) Provide adequate drainage 5) This truss has been design	ve been considered for this design.	1) 3-0-0 to 9-2-4, Exterio d right exposed;C-C for DL=1.15); Pf=15.0 psf (Lu d nonconcurrent with any	r(2R) 9-2-4 to 13-5 members and force um DOL=1.15 Plate v other live loads.	-3, Interior(1 s & MWFRS DOL=1.15)) 13-5-3 to 5 for ; Is=1.0;		STATE OF MI	1550UR


will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 1.
 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017



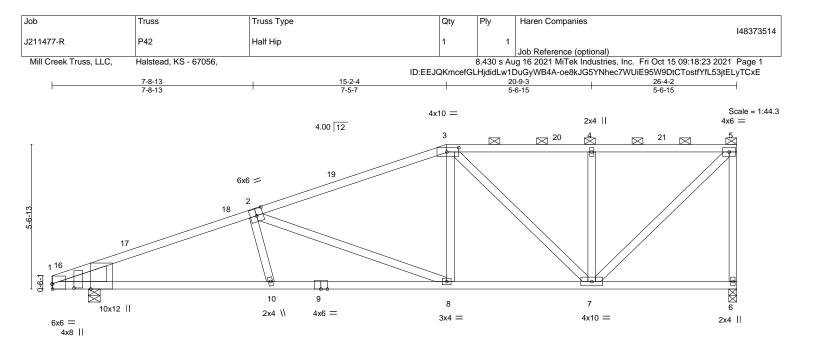
1-4-12 1 ₁ 7 ₁ 8 1-4-12 0-2-12	11-2-4 9-6-12		18-9-3 7-6-15		-	<u>26-4-2</u> 7-6-15	
Plate Offsets (X,Y) [1:0-2	2-6,Edge], [1:0-1-14,0-10-2], [1:Edge,0-3	-3], [3:0-5-8,0-2-0]					
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.93 BC 0.94 WB 0.44 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.17 7-9 -0.28 7-9 0.05 6	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 104 lb	GRIP 197/144 FT = 10%
LUMBER- TOP CHORD 2x4 SPF 211 3-5: 2x4 SPF BOT CHORD 2x4 SPF No WEBS 2x4 SPF No WEDGE Left: 2x8 DF 1950F 1.7E REACTIONS. (size) 6 Max Horz 1 Max Uplift 6	= No.2 .2 .2 =0-3-10, 1=0-5-8 =130(LC 15) =-58(LC 12), 1=-58(LC 12)		BRACING- TOP CHORD BOT CHORD WEBS	except end v	verticals, and 2-0-0 directly applied or	0	
FORCES. (lb) - Max. Composition TOP CHORD 1-2=-2002. BOT CHORD 1-9=-551/1	=1150(LC 36), 1=1245(LC 2) 5./Max. Ten All forces 250 (Ib) or less 6 (428, 2-3=-1847/382, 3-4=-1607/373, 4-5 798, 7-9=-426/1723 79, 3-9=0/312, 3-7=-312/71, 4-7=-698/2	5=-1607/373, 5-6=-108	1/264				
MWFRS (envelope) and (to 26-2-6 zone; cantilever reactions shown; Lumber 2) TCLL: ASCE 7-16; Pr=25 Rough Cat C; Fully Exp.; 3) Unbalanced snow loads h 4) Provide adequate drainag 5) This truss has been desig 6) * This truss has been des will fit between the bottom	15mph (3-second gust) Vasd=91mph; Ti C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1 left and right exposed ; end vertical left : DOL=1.33 plate grip DOL=1.33 .0 psf (roof LL: Lum DOL=1.15 Plate DO Ce=0.9; Cs=1.00; Ct=1.10 lave been considered for this design. le to prevent water ponding. ned for a 10.0 psf bottom chord live loac igned for a live load of 20.0psf on the bo a chord and any other members. ection (by others) of truss to bearing plat) 3-0-0 to 11-2-4, Exte and right exposed;C-C L=1.15); Pf=15.0 psf (I nonconcurrent with a tom chord in all areas	rior(2R) 11-2-4 to 15 for members and fo Lum DOL=1.15 Plate ny other live loads. where a rectangle 3	5-5-3, Interior(1) rces & MWFRS ∋ DOL=1.15); Is -6-0 tall by 2-0-) 15-5-3 5 for =1.0;	STATE OF MI SCOTT M SEVIER	SSOUR-

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 to up init at joint(s) 6, 1.
 This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

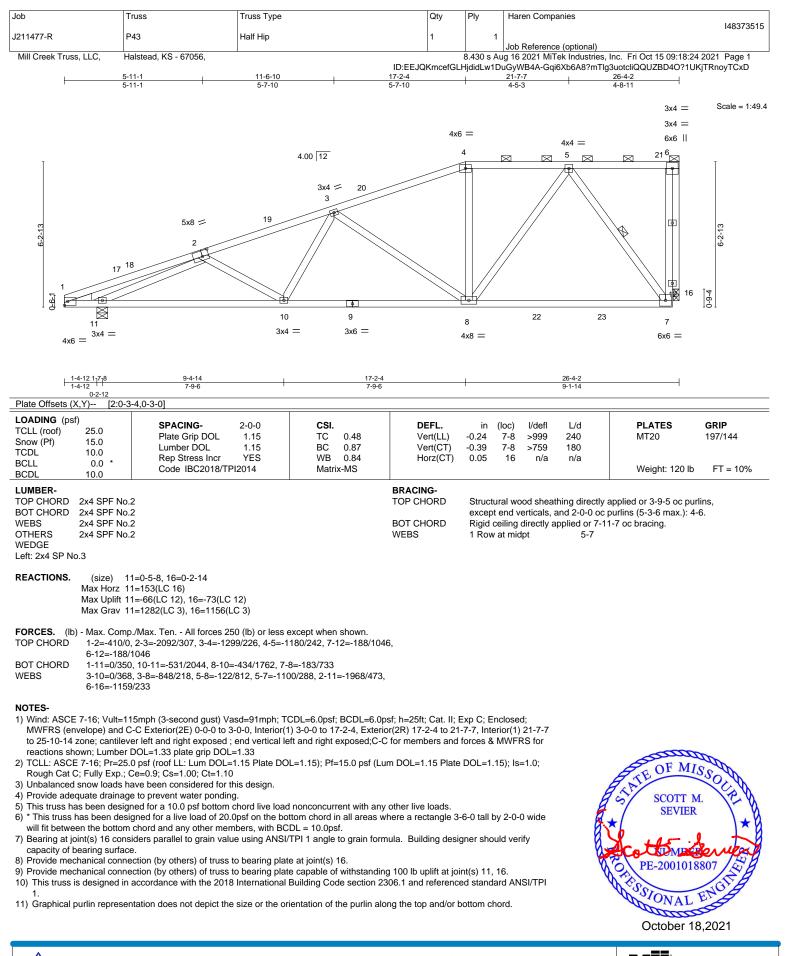
<u>1-4-12 1₁7₁8</u> 1-4-120-2-12	7-4-14	13-2-4		9-9-3	1	26-4-2	
	5-9-6	5-9-6	6	-6-15	I	6-6-15	I
Plate Offsets (X,Y) [1:0-2	-6,Edge], [1:0-1-14,0-10-2], [1:0-0-4,Ed	gej, [3:0-5-8,0-2-0]				1	
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IBC2018/TPI2014	CSI. TC 0.90 BC 0.93 WB 0.53 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.18 8-10 -0.34 8-10 0.05 6	l/defl L/d >999 240 >934 180 n/a n/a	PLATES MT20 Weight: 108 lb	GRIP 197/144 FT = 10%
Max Horz 1: Max Uplift 6:	2 *Except* 2100F 1.8E 2 =0-3-10, 1=0-5-8		BRACING- TOP CHORD BOT CHORD	except end v		ctly applied or 2-2-0 oc pu) oc purlins (4-6-6 max.): 3- 2-2-0 oc bracing.	
TOP CHORD 1-2=-2048/. BOT CHORD 1-10=-558/. WEBS 2-8=-498/1 NOTES- 1) Wind: ASCE 7-16; Vult=11 MWFRS (envelope) and C to 26-2-6 zone; cantilever	./Max. Ten All forces 250 (lb) or less 405, 2-3=-1690/369, 3-4=-1226/316, 4- 1867, 8-10=-527/1848, 7-8=-415/1548 18, 3-8=0/360, 3-7=-496/133, 4-7=-608 15mph (3-second gust) Vasd=91mph; T i-C Exterior(2E) 0-0-0 to 3-0-0, Interior(left and right exposed ; end vertical left DOL=1.33 plate grip DOL=1.33	5=-1226/316, 5-6=-1051 /207, 5-7=-317/1477 CDL=6.0psf; BCDL=6.0 1) 3-0-0 to 13-2-4, Exteri	osf; h=25ft; Cat. II; I or(2R) 13-2-4 to 17	-5-3, Interior(1)	17-5-3		

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

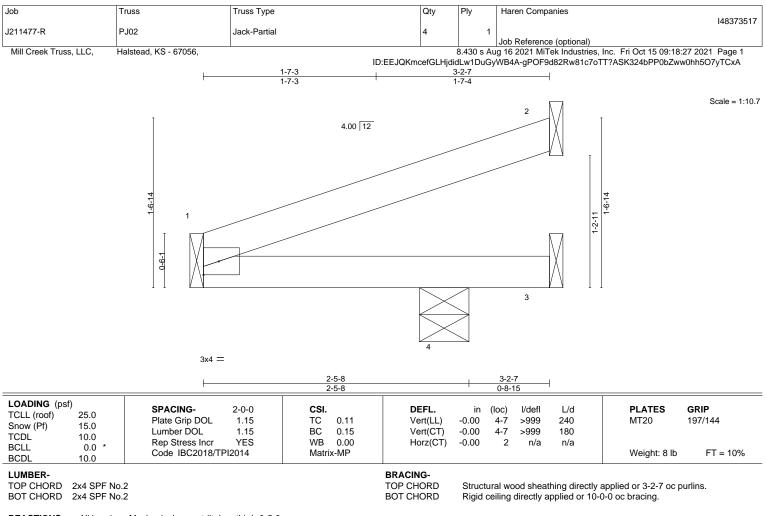

3) Unbalanced snow loads have been considered for this design.

4) Provide adequate drainage to prevent water ponding.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 1.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


16023 Swingley Ridge Rd Chesterfield, MO 63017

1-4-12 1 ₁ 7 ₁ 8 1-4-12 0-2-12	8-4-14	<u>15-2-4</u> 6-9-6		20-9-3 5-6-15	<u>26-4-2</u> 5-6-15	
	-6,Edge], [1:0-1-14,0-10-2], [1:0-0-4,Ed		-2-0]		0010	
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.95 BC 0.93 WB 0.85 Matrix-MS	()		L/d PLATES 240 MT20 180 n/a Weight: 111 lb	GRIP 197/144 FT = 10%
LUMBER- TOP CHORD 2x4 SPF No. 2-3: 2x4 SPF BOT CHORD 2x4 SPF 210 6-9: 2x4 SPF WEBS 2x4 SPF No. WEDGE Left: 2x8 DF 1950F 1.7E	2100F 1.8E 10F 1.8E *Except* No.2	ТО	ACING- P CHORD IT CHORD	except end verticals, an	ng directly applied or 1-11-14 oc d 2-0-0 oc purlins (5-7-1 max.): 3 blied or 2-2-0 oc bracing.	
Max Horz 1: Max Uplift 6 Max Grav 6 FORCES. (lb) - Max. Comp TOP CHORD 1-2=-2069/ BOT CHORD 1-10=-564/	=0-3-10, 1=0-5-8 =175(LC 15) =-60(LC 12), 1=-55(LC 12) =1113(LC 2), 1=1256(LC 37) b./Max. Ten All forces 250 (lb) or less 400, 2-3=-1486/334, 3-4=-938/274, 4-5 1883, 8-10=-541/1883, 7-8=-381/1343 71, 3-8=0/431, 3-7=-631/165, 4-7=-509	=-938/274, 5-6=-1058/269				
 NOTES- 1) Wind: ASCE 7-16; Vult=11 MWFRS (envelope) and C to 26-2-6 zone; cantilever reactions shown; Lumber 2) TCLL: ASCE 7-16; Pr=25. Rough Cat C; Fully Exp.; (3) Unbalanced snow loads h 4) Provide adequate drainag 5) This truss has been design 6) * This truss has been design will fit between the bottom 7) Provide mechanical conne 8) This truss is designed in a 	15mph (3-second gust) Vasd=91mph; T C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(left and right exposed ; end vertical left DOL=1.33 plate grip DOL=1.33 0 psf (roof LL: Lum DOL=1.15 Plate DO Ce=0.9; Cs=1.00; Ct=1.10 ave been considered for this design.	CDL=6.0psf; BCDL=6.0psf; h 1) 3-0-0 to 15-2-4, Exterior(2R and right exposed;C-C for me 0L=1.15); Pf=15.0 psf (Lum D0 d nonconcurrent with any othe totom chord in all areas where the capable of withstanding 100 Building Code section 2306.1 a	 15-2-4 to 19- embers and force OL=1.15 Plate I Prive loads. a rectangle 3-6 D lb uplift at join and referenced 	5-3, Interior(1) 19-5-3 xes & MWFRS for DOL=1.15); Is=1.0; 6-0 tall by 2-0-0 wide tt(s) 6, 1. standard ANSI/TPI 1.	STATE OF MI SEVIER SEVIER PE-200101	Server


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

MiTek

JSE. ot rall racing MITEK° 16023 Swingley Ridge Rd Chesterfield, MO 63017

REACTIONS. All bearings Mechanical except (jt=length) 4=0-5-8.

(lb) - Max Horz 4=30(LC 12)

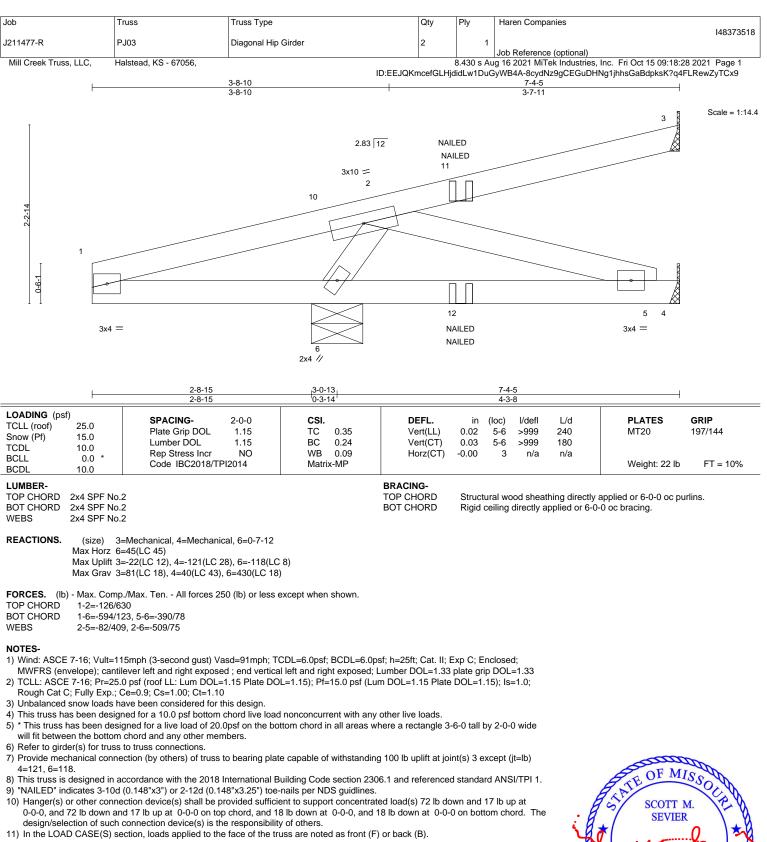
Max Uplift All uplift 100 lb or less at joint(s) 2, 3

Max Grav All reactions 250 lb or less at joint(s) 1, 2, 3, 4

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for
- members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10


Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 3.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

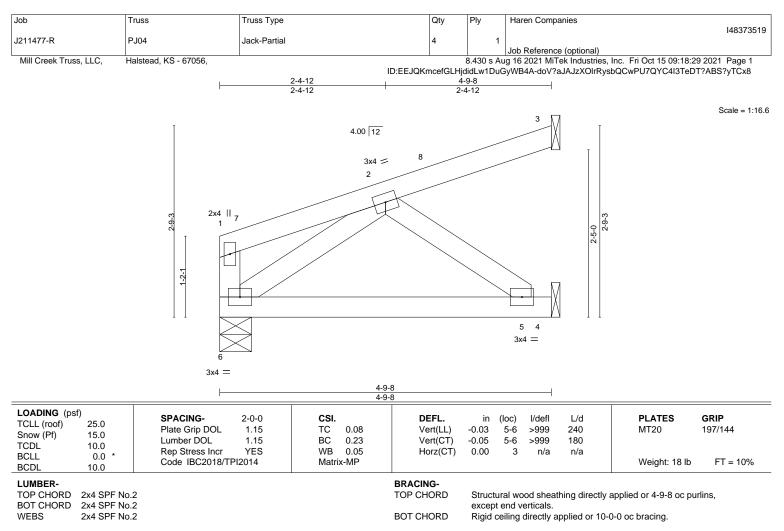
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Concentrated Loads (lb)

Vert: 1=-89(F=-44, B=-44) 7=-35(F=-18, B=-18) 11=-38(F=-19, B=-19) 12=71(F=36, B=36)

SCOTT M. SEVIER DE-2001018807 STONAL ENGINE

October 18,2021


Continued on page 2

[Job	Truss	Truss Type	Qty	Ply	Haren Companies			
				_		I48373518			
	J211477-R	PJ03	Diagonal Hip Girder	2	1				
						Job Reference (optional)			
	Mill Creek Truss, LLC,	Halstead, KS - 67056,	8.430 s Aug 16 2021 MiTek Industries, Inc. Fri Oct 15 09:18:28 2021 Page 2						
			ID:EEJQKmcefGLHjdidLw1DuGyWB4A-8cydNz9gCEGuDHNg1jhhsGaBdpksK?q4FLRewZyTCx9						

LOAD CASE(S) Standard

Trapezoidal Loads (plf) Vert: 1=0(F=25, B=25)-to-10=-37(F=6, B=6), 10=0(F=25, B=25)-to-3=-55(F=-2, B=-2), 7=0(F=10, B=10)-to-6=-15(F=3, B=3), 6=-0(F=10, B=10)-to-4=-22(F=-1, B=-1)

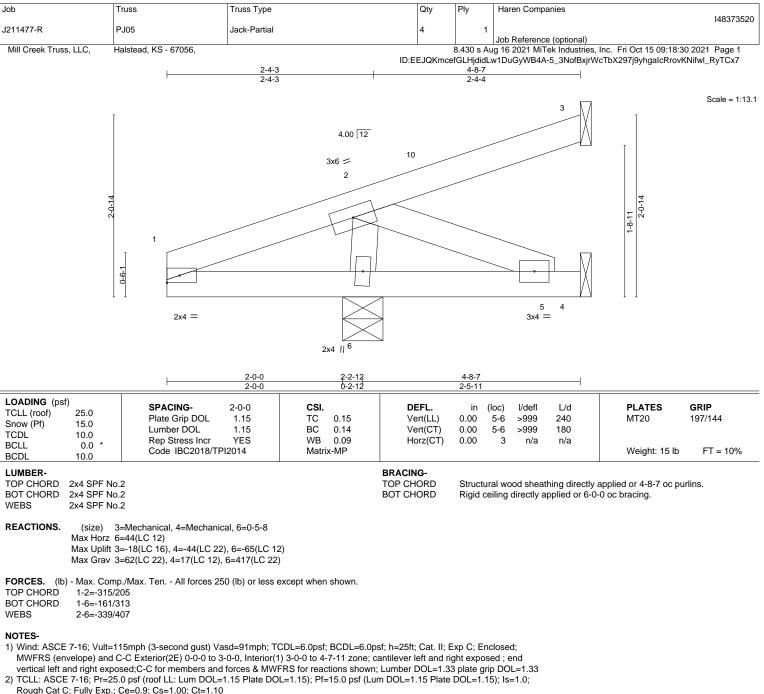
REACTIONS. (size) 3=Mechanical, 4=Mechanical, 6=0-5-8

Max Horz 6=49(LC 13)

Max Uplift 3=-17(LC 12), 4=-9(LC 16) Max Grav 3=70(LC 22), 4=144(LC 22), 6=214(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 4-8-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Cough Cat C, Fully Exp., Ce=0.9, Cs=1.00, Ct=1.10
 Unbalanced snow loads have been considered for this design.

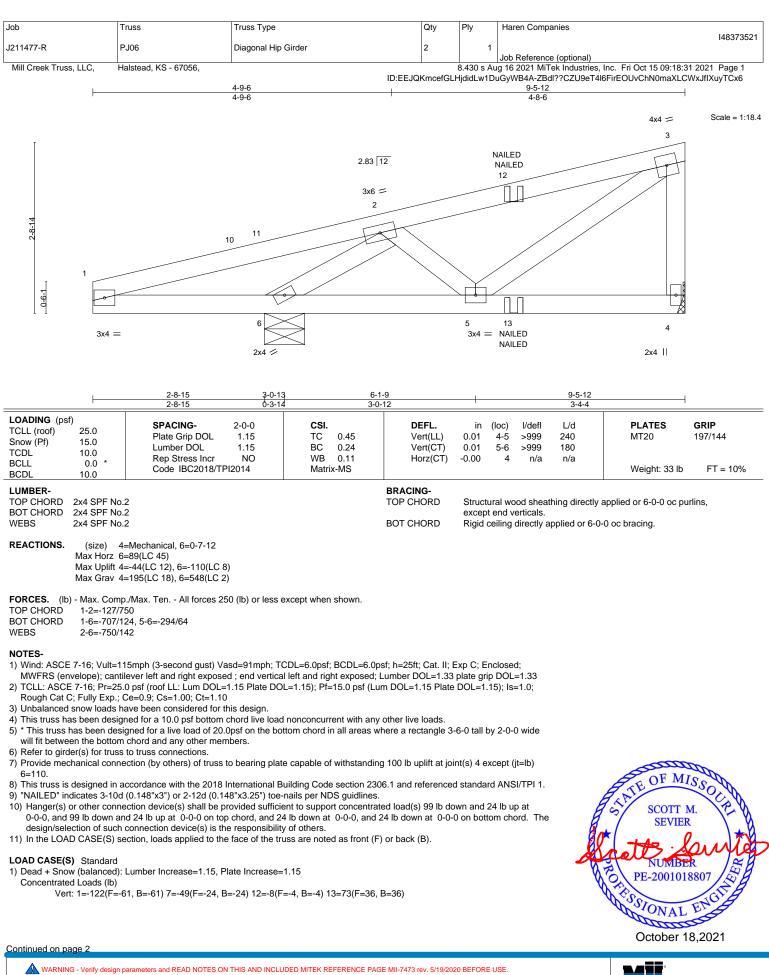
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

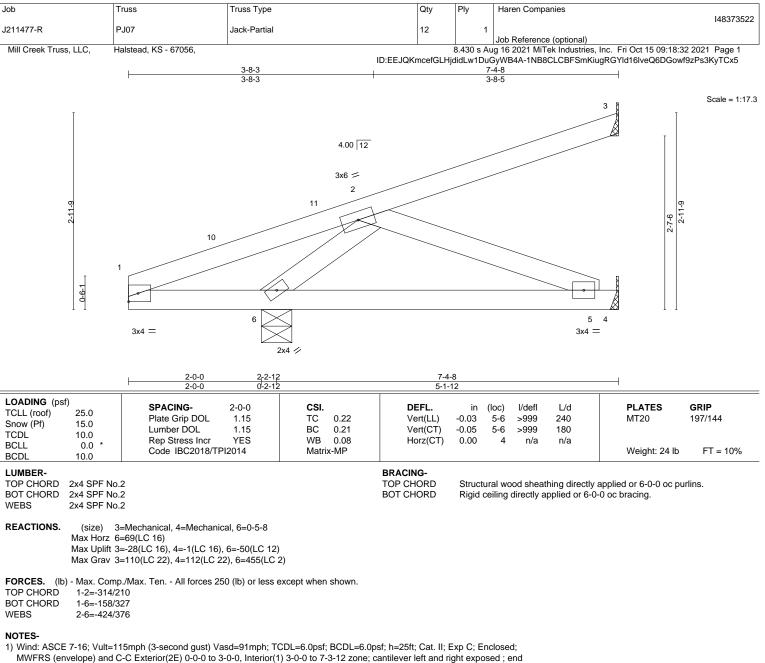
will fit between the bottom chord and any other members.


6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Mitek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Haren Companies		
					I48373521		
J211477-R	PJ06	Diagonal Hip Girder	2	1			
					Job Reference (optional)		
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:18:31 2021 Page 2		
		ID:EEJQKmcefGLHjdidLw1DuGyWB4A-ZBdl??CZU9eT4I6FirEOUvChN0maXLCWxJflXuyTCx6					

LOAD CASE(S) Standard

Trapezoidal Loads (plf) Vert: 1=0(F=25, B=25)-to-11=-35(F=8, B=8), 11=0(F=25, B=25)-to-3=-84(F=-17, B=-17), 7=0(F=10, B=10)-to-6=-14(F=3, B=3), 6=-0(F=10, B=10)-to-4=-33(F=-7, B=-7)

with RS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, interior(1) 3-0-0 to 7-3-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

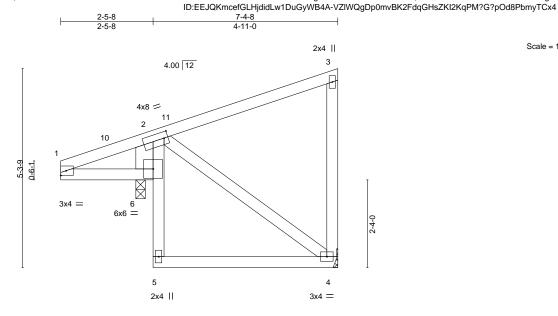
Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	Haren Companies	
			-	-	14837352	3
J211477-R	PJ07A	Jack-Closed	4	1		
					Job Reference (optional)	
Mill Creek Truss 11 C	Halstead KS - 67056			8 430 s Au	g 16 2021 MiTek Industries Inc. Fri Oct 15 09 18:33 2021 Page 1	_

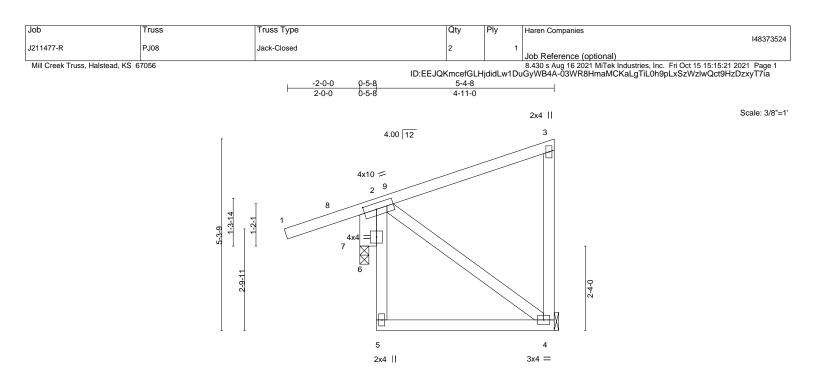
LOADING (psf) TCLL (roof) Snow (Pf) TCDL BCLL BCDL) 25.0 15.0 10.0 0.0 * 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIBC2018/TPI2014	CSI. TC BC WB Matri	0.35 0.41 0.03 x-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.06 0.02	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 34 lb	GRIP 197/144 FT = 10%
	2x4 SPF No.2 2x4 SPF No.2				BRACING- TOP CHORD			ood shea erticals.	thing directly	/ applied or 6-0-0 oc pu	ırlins,

WEBS 2x4 SPF No.2 *Except* BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. 2-6: 2x6 SPF 1650F 1.5E

REACTIONS. (size) 4=Mechanical, 6=0-3-0 Max Horz 6=142(LC 15) Max Uplift 4=-25(LC 16), 6=-72(LC 12) Max Grav 4=163(LC 22), 6=508(LC 2)

Plate Offsets (X,Y)-- [2:0-1-4,0-2-0]

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. BOT CHORD 2-6=-436/359


NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 7-2-12 zone; cantilever left and right exposed ; end
- vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;
- Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 6.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Scale = 1:30.7

5-4-8 4-11-0

LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.59 BC 0.22 WB 0.10	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.03 4-5 -0.06 4-5 -0.05 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCLL 0.0 * BCDL 10.0	Code IBC2018/TPI2014	Matrix-MP			100	110	Weight: 31 lb	FT = 10%

LUMBER-

TOP CHORD 2x4 SPF No.2 TOP CHORD BOT CHORD 2x4 SPF No.2 2x4 SPF No.2 *Except* BOT CHORD WEBS 2-6: 2x6 SPF 1650F 1.5E

Structural wood sheathing directly applied or 5-4-8 oc purlins, except end verticals

Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (lb/size) 4=155/Mechanical, 7=301/0-3-0 Max Horz 7=161(LC 15) Max Uplift 4=-26(LC 16), 7=-78(LC 12) Max Grav 4=217(LC 23), 7=405(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 2-7=-423/212

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -2-0-9 to 0-11-7, Interior(1) 0-11-7 to 5-2-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.0 psf on overhangs non-concurrent with other live loads

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 26 lb uplift at joint 4 and 78 lb uplift at joint 7.

10) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Truss Truss Type Qty Pb	Ply	Haren Companies
		14837352
10 Jack-Closed	1	Job Reference (optional)
Creek Truss, Halstead, KS 67056		8.430 s Aug 16 2021 MiTek Industries, Inc. Fri Oct 15 15:15:48 2021 Page 1
ID:EEJQKmcefGLHjdi	didLw1Du	8.430 s Aug 16 2021 MiTek Industries, Inc. Fri Oct 15 15:15:48 2021 Page 1 JGyWB4A-jGfepW5W?Vkl5q2uQBgUP1Z4hPB1leFsM_08QsyT7i9
ρ-5-8 5-4-8		
0-5-8 4-11-0		
		Scale: 3/8"=
4.00 12	2x4	Scale: 3/8
4.00 112		2
T	_	
8		
4x10 =		
17		
$\frac{1}{8}$		
		Ī
		φ
		2.4-0
	$\langle \rangle$	
	- L	
4	:	3
2x4	3x4	=

Plate Offsets (X,Y) [1:0-4-	10.0-2-0]	0-5-8 0-5-8	5-4-8 4-11-0						
LOADING (psf)	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.62 BC 0.23 WB 0.10 Matrix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.06 -0.05	(loc) 3-4 3-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 29 lb	GRIP 197/144 FT = 10%

L	U	M	BE	ER-	•

LUMBER-		BRACING-	
TOP CHORD	2x4 SPF No.2	TOP CHORD	Structural wood sheathing directly applied or 5-4-8 oc purlins, except
BOT CHORD	2x4 SPF No.2		end verticals.
WEBS	2x4 SPF No.2 *Except*	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
	1-5: 2x6 SPF 1650F 1.5E		

REACTIONS. (lb/size) 3=177/Mechanical, 6=147/0-3-0 Max Horz 6=148(LC 15) Max Uplift 3=-29(LC 12)

Max Grav 3=237(LC 23), 6=196(LC 23)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 1-6=-257/137

NOTES-

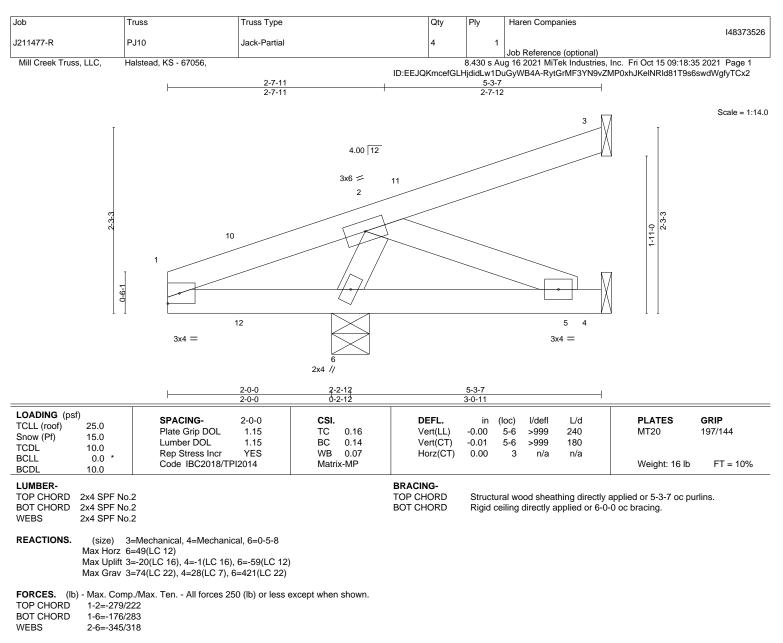
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-7-4 to 3-7-4, Interior(1) 3-7-4 to 5-2-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Refer to girder(s) for truss to truss connections.

7) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 29 lb uplift at joint 3.
- 9) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

NOTES-

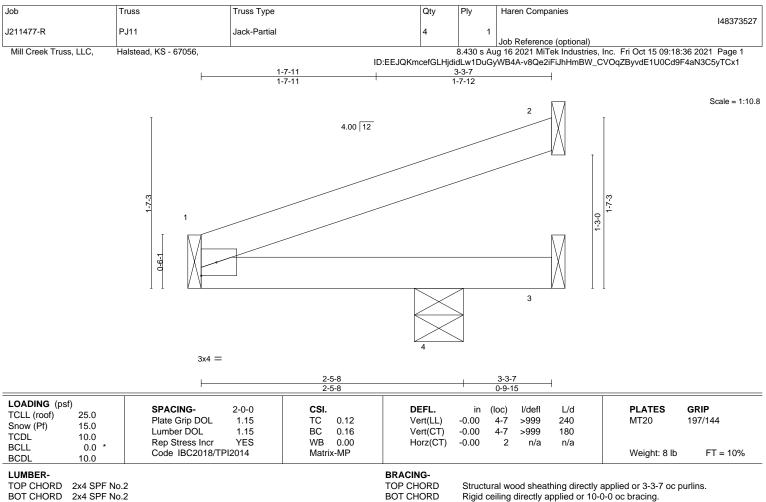
1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 5-2-11 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.


6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

BOT CHORD 2x4 SPF No.2

REACTIONS. All bearings Mechanical except (jt=length) 4=0-5-8.

Max Horz 4=31(LC 12) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 3

Max Grav All reactions 250 lb or less at joint(s) 1, 2, 3, 4

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for

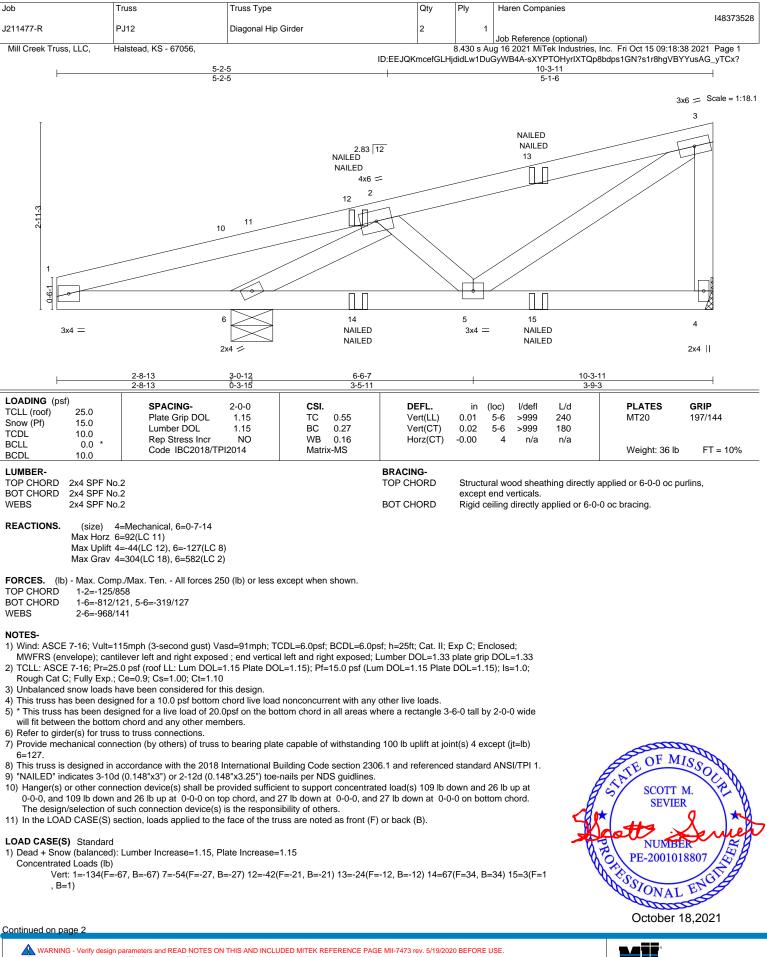
members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.


6) Refer to girder(s) for truss to truss connections.

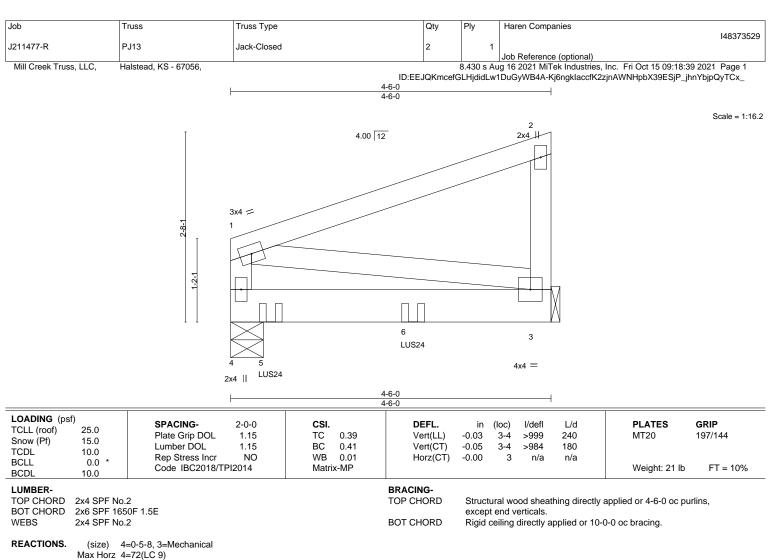
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 3.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

OF MISS TE SCOTT M. SEVIER PE-2001018807 SSIONAL E October 18,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Mitek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

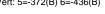
[Job	Truss	Truss Type	Qty	Ply	Haren Companies			
			51			148373528			
	J211477-R	PJ12	Diagonal Hip Girder	2	1				
						Job Reference (optional)			
	Mill Creek Truss, LLC,	Halstead, KS - 67056,	8.430 s Aug 16 2021 MiTek Industries, Inc. Fri Oct 15 09:18:38 2021 Page 2						
			ID:EEJQKmcefGLHjdidLw1DuGyWB4A-sXYPTOHyrIXTQp8bdps1GN?s1r8hgVBYYusAG_yTCx?						

LOAD CASE(S) Standard

Trapezoidal Loads (plf) Vert: 1=0(F=25, B=25)-to-10=-34(F=8, B=8), 10=0(F=25, B=25)-to-3=-94(F=-22, B=-22), 7=0(F=10, B=10)-to-6=-14(F=3, B=3), 6=-0(F=10, B=10)-to-4=-38(F=-9, B=-9)

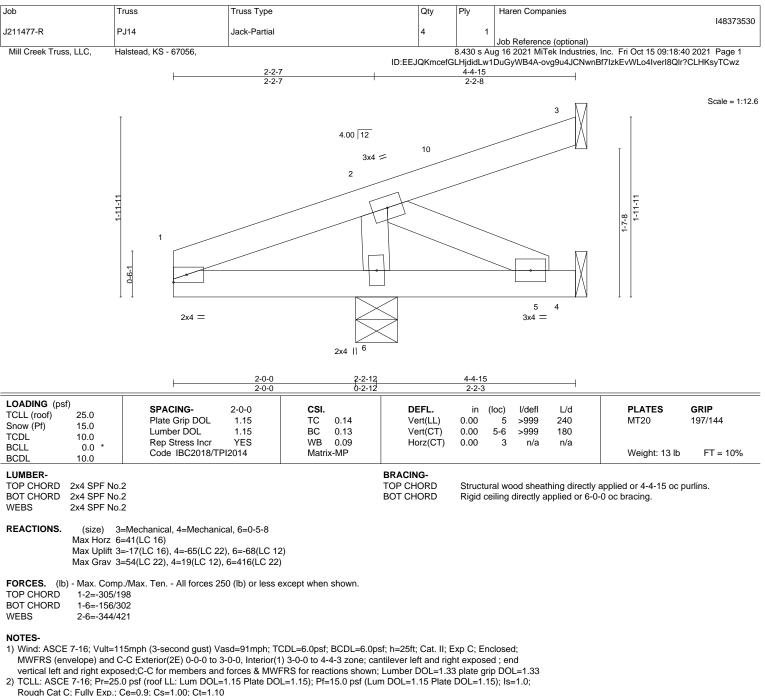
Max Uplift 4=-82(LC 8), 3=-39(LC 12)

Max Grav 4=730(LC 2), 3=483(LC 2)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;
- Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 3.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 9) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at
- 0-6-12 from the left end to 2-6-12 to connect truss(es) to back face of bottom chord.
- 10) Fill all nail holes where hanger is in contact with lumber.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

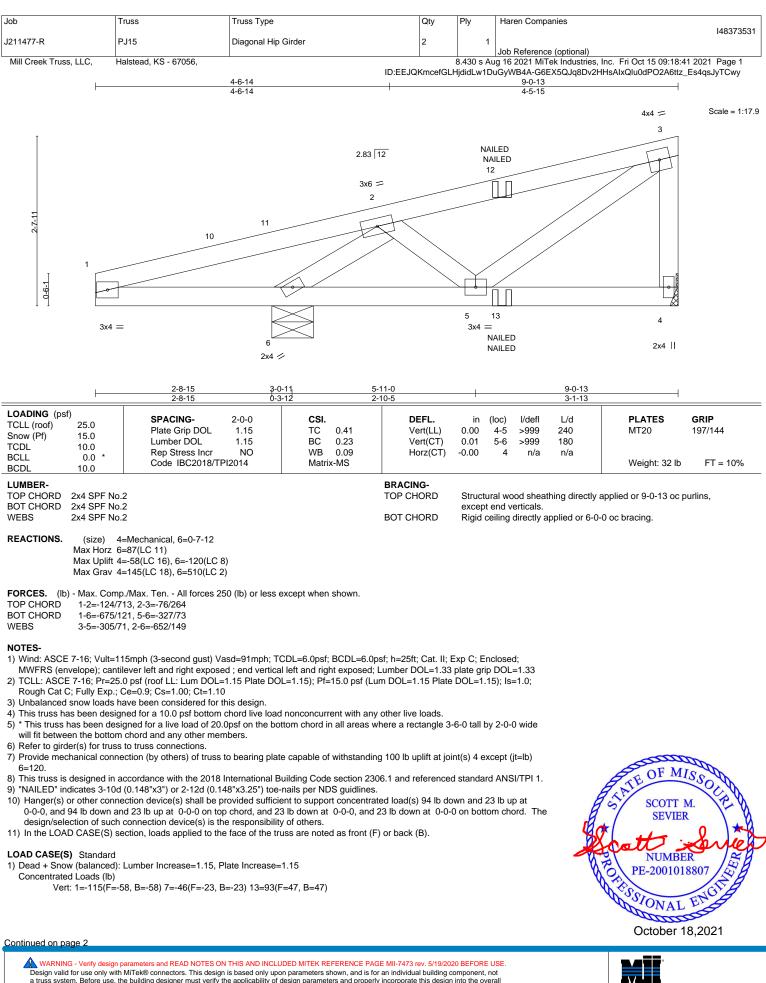

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
 - Vert: 1-2=-50, 3-4=-20 Concentrated Loads (lb)
 - Vert: 5=-372(B) 6=-436(B)

3) Unbalanced snow loads have been considered for this design.

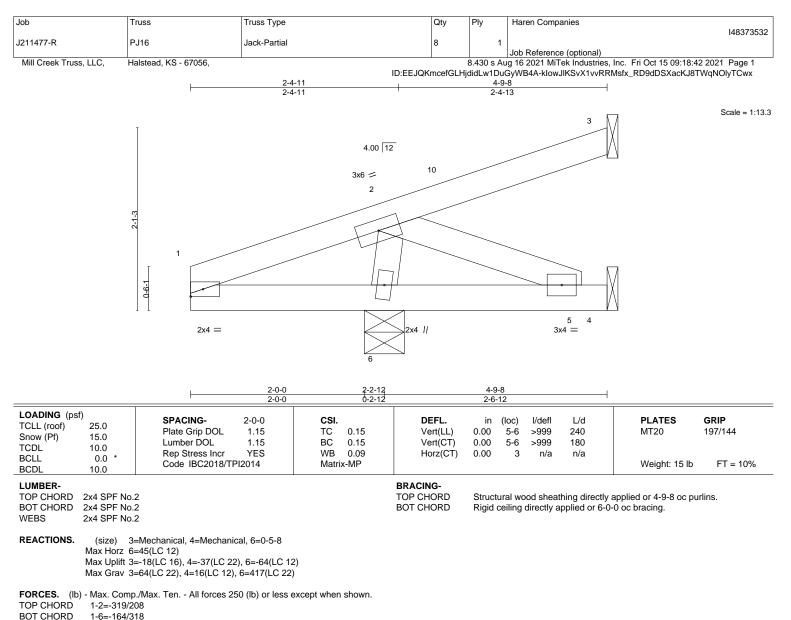
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.


6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.


MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Haren Companies		
					148373531		
J211477-R	PJ15	Diagonal Hip Girder	2	1			
					Job Reference (optional)		
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:18:41 2021 Page 2		
		ID:EEJQKmcefGLHjdidLw1DuGyWB4A-G6EX5QJq8Dv2HHsAlxQlu0dPO2A6ttz Es4qsJyTCwy					

LOAD CASE(S) Standard

Trapezoidal Loads (pf) Vert: 1=0(F=25, B=25)-to-11=-35(F=7, B=7), 11=0(F=25, B=25)-to-3=-78(F=-14, B=-14), 7=0(F=10, B=10)-to-6=-14(F=3, B=3), 6=0(F=10, B=10)-to-4=-31(F=-6, B=-6)

WEBS 2-6=-337/403

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 4-8-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

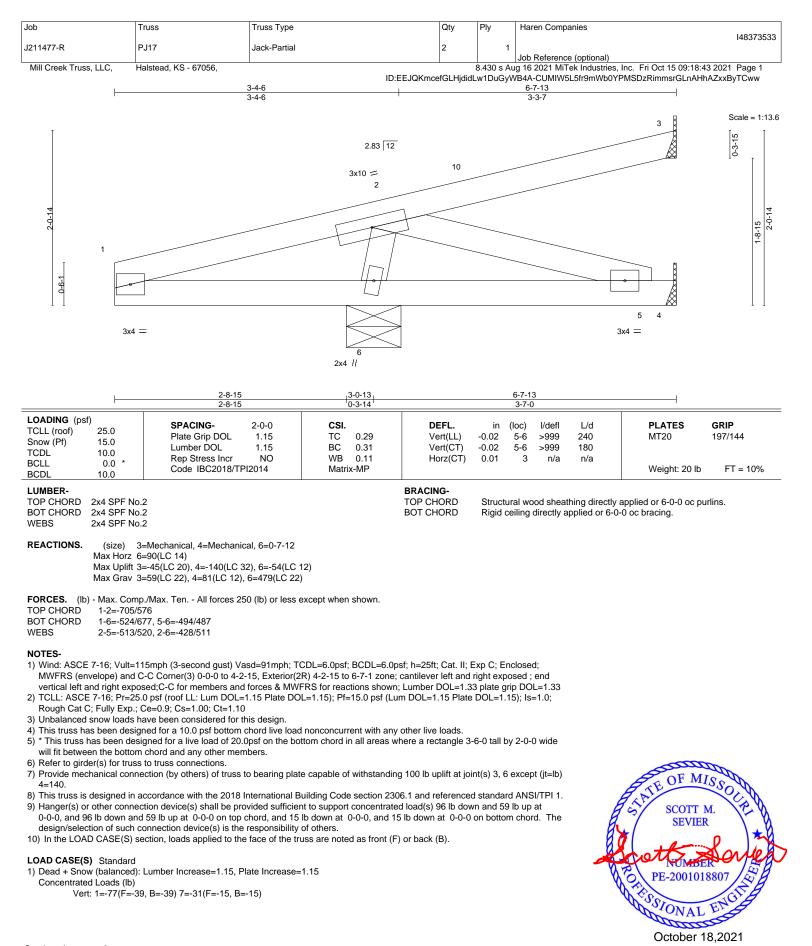
2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

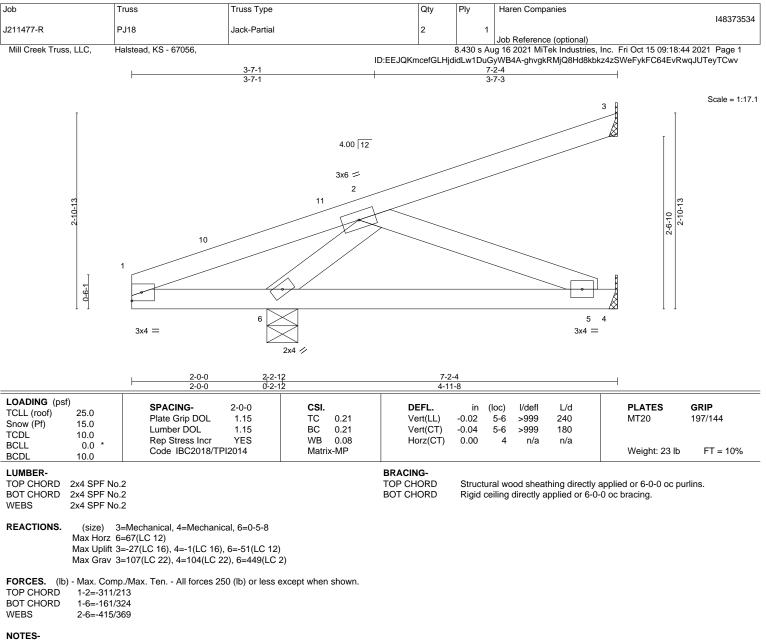
5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Continued on page 2



Job	Truss	Truss Type	Qty	Ply	Haren Companies			
					148373533			
J211477-R	PJ17	Jack-Partial	2	1				
					Job Reference (optional)			
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:18:43 2021 Page 2			
		ID:EEJQKmcefGLHjdidLw1DuGyWB4A-CUMIW5L5fr9mWb0YPMSDzRimmsrGLnAHhAZxxByTCww						

LOAD CASE(S) Standard

Trapezoidal Loads (plf) Vert: 1=0(F=25, B=25)-to-2=-42(F=4, B=4), 2=-4(F=23, B=23)-to-3=-45(F=2, B=2), 7=0(F=10, B=10)-to-6=-15(F=2, B=2), 6=-0(F=10, B=10)-to-4=-18(F=1, B=1)

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 7-1-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

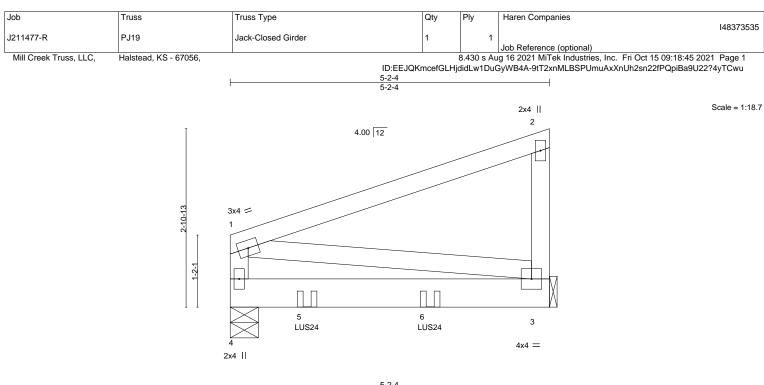
2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

						5-2-4 5-2-4						
LOADING (ps TCLL (roof) Snow (Pf)	25.0 15.0	SPACING- Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI. TC BC	0.56 0.78	DEFL. Vert(LL) Vert(CT)	in -0.08 -0.14	(loc) 3-4 3-4	l/defl >768 >414	L/d 240 180	PLATES MT20	GRIP 197/144
TCDL BCLL BCDL	10.0 0.0 * 10.0	Rep Stress Incr Code IBC2018/TP	NO 12014	WB Matri	0.01 x-MP	Horz(CT)	-0.00	3	n/a	n/a	Weight: 24 lb	FT = 10%

LUMBER-

 TOP CHORD
 2x4 SPF No.2

 BOT CHORD
 2x6 SPF 1650F 1.5E

 WEBS
 2x4 SPF No.2

BRACING-TOP CHORD

 TOP CHORD
 Structural wood sheathing directly applied or 5-2-4 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 9-9-3 oc bracing.

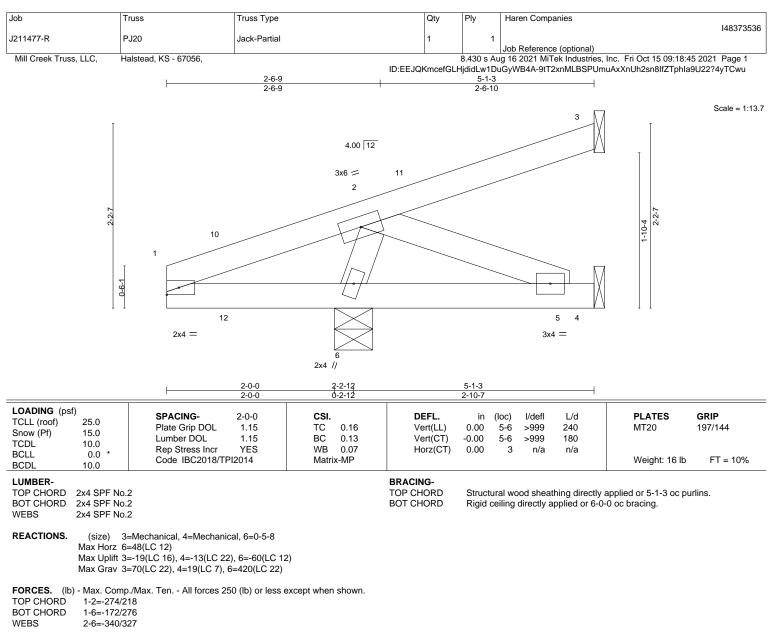
REACTIONS. (size) 4=0-5-8, 3=Mechanical Max Horz 4=80(LC 9) Max Uplift 4=-46(LC 8), 3=-46(LC 12)

Max Grav 4=954(LC 2), 3=773(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;
- Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 3.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.
- 9) Use Simpson Strong-Tie LUS24 (4-SD9112 Girder, 2-SD9212 Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max.
- starting at 1-3-0 from the left end to 3-3-0 to connect truss(es) to front face of bottom chord.
- 10) Fill all nail holes where hanger is in contact with lumber.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).


LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
 - Vert: 1-2=-50, 3-4=-20 Concentrated Loads (lb)
 - Vert: 5=-525(F) 6=-525(F)

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 5-0-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

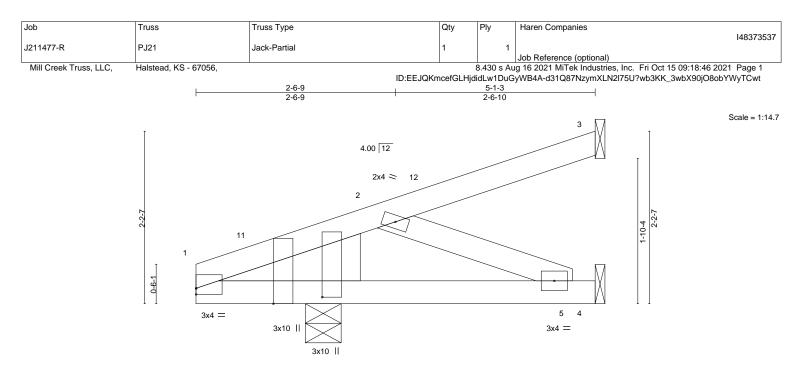
2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Plate Offsets (X,Y) [1:0-0	-0,0-0-15], [1:0-2-6,E	1-4-12 1-4-12 dge], [1:0-1-6,1	1-7-8 0-2-12 -7-5]		5-1-3 3-5-11						
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DO Lumber DOL Rep Stress Ind Code IBC201	1.15 or YES	CSI. TC BC WB Matr	0.10 0.08 0.04 ix-MP	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 -0.01 0.00	(loc) 6 5-10 1	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 20 lb	GRIP 197/144 FT = 10%
LUMBER- TOP CHORD 2x4 SPF No.:	2				BRACING- TOP CHORD	Struc	tural wo	ood sheat	hing directly	applied or 5-1-3 oc pu	rlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2

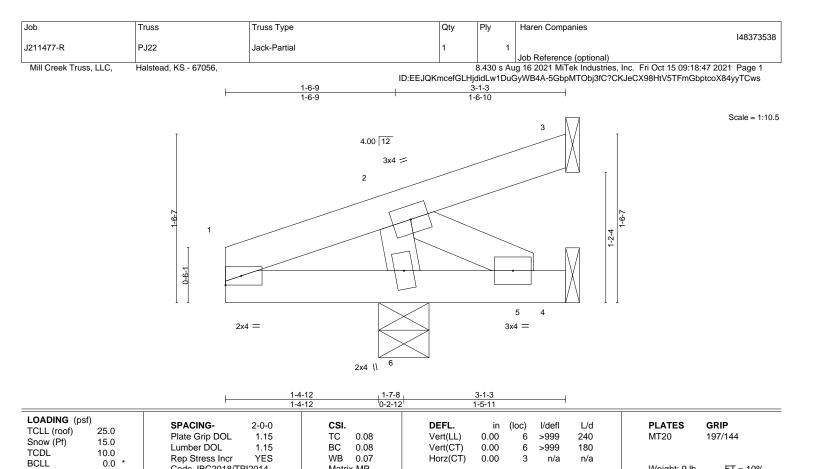
WEBS 2x4 SPF No.2 WEDGE

Left: 2x8 DF 1950F 1.7E

REACTIONS. (size) 3=Mechanical, 4=Mechanical, 1=0-5-8 Max Horz 1=48(LC 12)

Max Uplift 3=-22(LC 12), 1=-2(LC 12)

Max Grav 3=85(LC 22), 4=70(LC 7), 1=330(LC 22)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 5-0-7 zone; cantilever left and right exposed ; end
- vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;
- Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5)
- will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 1.
- 8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

BRACING-TOP CHORD

BOT CHORD

LUMBER	
--------	--

BCDL

TOP CHORD 2x4 SPF No.2 2x4 SPF No.2 BOT CHORD WEBS

10.0

2x4 SPF No.2 REACTIONS. 3=Mechanical, 4=Mechanical, 6=0-5-8 (size) Max Horz 6=29(LC 12)

Max Uplift 3=-12(LC 16), 4=-60(LC 2), 6=-51(LC 12)

Max Grav 3=34(LC 2), 4=15(LC 12), 6=300(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 2-6=-255/321

Code IBC2018/TPI2014

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

Matrix-MP

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

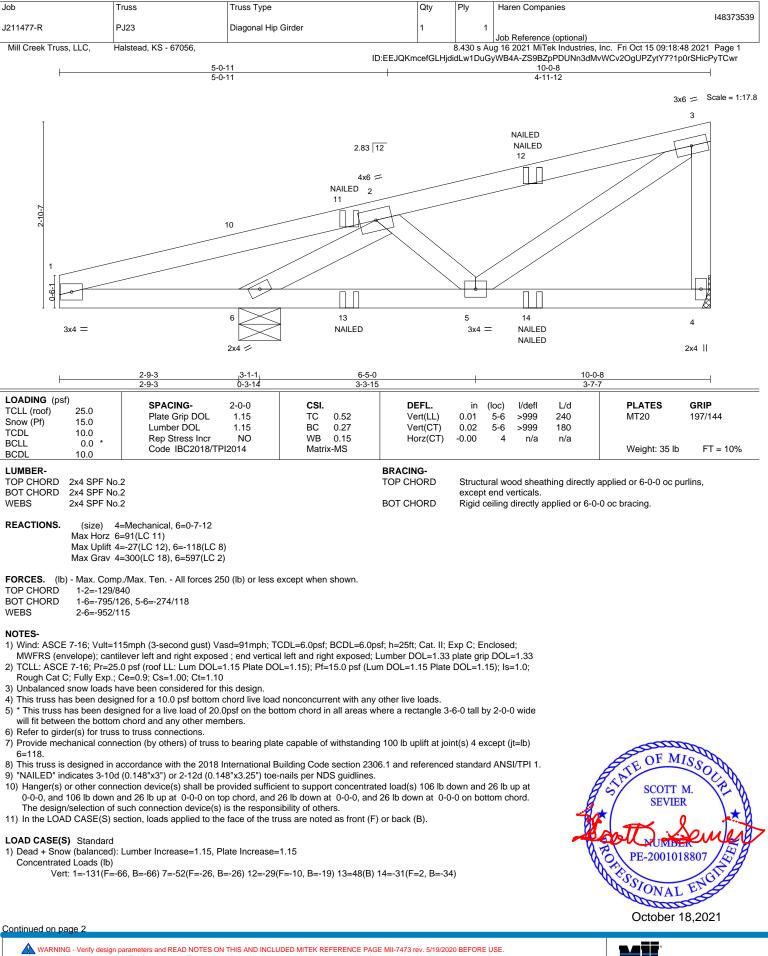
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 6.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.


Weight: 9 lb

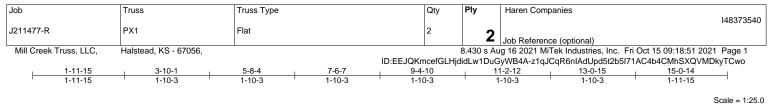
Structural wood sheathing directly applied or 3-1-3 oc purlins.

Rigid ceiling directly applied or 6-0-0 oc bracing.

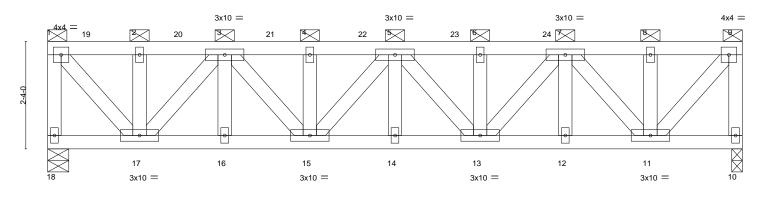
FT = 10%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017


MiTek

Job	Truss	Truss Type	Qty	Ply	Haren Companies			
	D 100				148373539			
J211477-R	PJ23	Diagonal Hip Girder	1	1				
					Job Reference (optional)			
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:18:49 2021 Page 2			
		ID:EEJQH	ID:EEJQKmcefGLHjdidLw1DuGyWB4A-1ejZn9QrFhwvEWUimdZdDiykiGuMkU3A460F8ryTCwq					


LOAD CASE(S) Standard

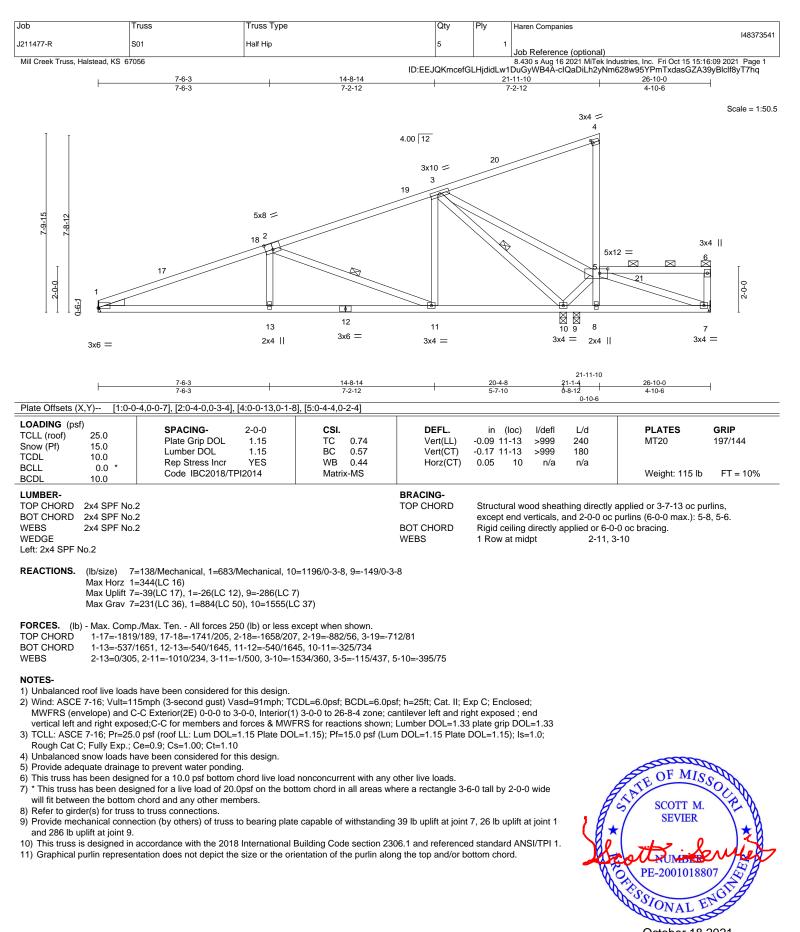
Trapezoidal Loads (plf) Vert: 1=0(F=25, B=25)-to-10=-35(F=8, B=8), 10=0(F=25, B=25)-to-3=-91(F=-20, B=-20), 7=0(F=10, B=10)-to-6=-14(F=3, B=3), 6=-0(F=10, B=10)-to-4=-36(F=-8, B=-8)

Scale = 1:25.0

1-11-15	3-10-1	5-8-4	7-6-7	9-4-10	1	11-2-12	1	13-0-15	5 15-0-14	
1-11-15	1-10-3	1-10-3	1-10-3	1-10-3		1-10-3		1-10-3	1-11-15	
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCDL 10.0	SPACING- Plate Grip DO Lumber DOL Rep Stress Ir Code IBC20	1.15 ncr YES	CSI. TC 0.13 BC 0.25 WB 0.20 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.05 0.02	Ì15	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 147 lb	GRIP 197/144 FT = 10%
LUMBER- TOP CHORD 2x4 SPF N BOT CHORD 2x4 SPF N WEBS 2x4 SPF N	0.2	1		BRACING- TOP CHORD BOT CHORD					except end verticals. 0-0 oc bracing.	
Max Horz Max Uplift	18=0-5-8, 10=0-2-12 18=-62(LC 10) 18=-79(LC 10) 18=1542(LC 2), 10=1	073(LC 2)								
5-6=-184	94/254, 1-2=-1151/232 5/475, 6-7=-1845/475,	2, 2-3=-1151/232, 3 7-8=-821/246, 8-9=	4=-2042/485, 4-5=-204 -821/246, 9-10=-1038/2	,						
12-13=-4	36/1798, 15-16=-436/ 08/1441, 11-12=-408/	1441	,	100						
	5/1659, 2-17=-516/79, 4/602, 7-11=-924/241,	,	5=-158/363, 5-13=-303	/62,						
 NOTES- 1) 2-ply truss to be connect Top chords connected a Bottom chords connected as Bottom chords connected as foll 2) All loads are considered ply connections have be 3) Wind: ASCE 7-16; Vult= MWFRS (envelope) and forces & MWFRS (fr 4) TCLL: ASCE 7-16; Pr=2 Rough Cat C; Fully Exp 5) Provide adequate draina: 6) All plates are 2x4 MT20 7) This truss has been des 8) * This truss is designed 10) Provide mechanical con 10) Provide mechanical con 11) This truss is designed 1. 12) Graphical purlin repres 13) Hanger(s) or other cor 0-10-14, and 387 lb de 	as follows: 2x4 - 1 row at das follows: 2x4 - 1 row ad as follows: 2x4 - 1 row ad as follows: 2x4 - 1 row as follows: 2x4 - 1 row at follows: 2x4 - 1 row as follows: 2x4 - 1	at 0-9-0 oc. bw at 0-9-0 oc. -0 oc. -0 oc. -0 ites, except if noted te only loads noted a st) Vasd=91mph; TC cantilever left and rig mber DOL=1.33 plat: DOL=1.15 Plate DOL =1.10 Donding. ated. ttom chord live load of 20.0psf on the both r members. rruss to bearing plate f truss to bearing plate f trus to bearing trus to bearing plate f trus to bearing plate f tr	as front (F) or back (B, as (F) or (B), unless off DL=6.0psf; BCDL=6.0 ht exposed ; end vertic e grip DOL=1.33 .=1.15); Pf=15.0 psf (Li nonconcurrent with any tom chord in all areas w e at joint(s) 10. te capable of withstand Building Code section 2 entation of the purlin all nt to support concentra own and 87 lb up at 4-	erwise indicated. psf; h=25ft; Cat. II; I al left and right exp um DOL=1.15 Plate y other live loads. where a rectangle 3 ing 100 lb uplift at j 306.1 and referenc ong the top and/or to ted load(s) 399 lb c 10-14 on top chord	Exp C; E osed;C-C DOL=1. -6-0 tall b oint(s) 18 ed stand bottom ch lown and . The de	nclosed; C for mei 15); Is=1 by 2-0-0 3. ard ANS nord. I 130 lb u isign/sele	mbers I.0; wide I/TPI ıp at	Ţ	STATE OF MI SCOTT M SEVIER NUMBER PE-2001018 PE-2001018 October 18	ROT AND
Design valid for use only w a truss system. Before use building design. Bracing ir is always required for stab fabrication, storage, delive	ith MiTek® connectors. This , the building designer must dicated is to prevent buckling	design is based only upor verify the applicability of d g of individual truss web a vith possible personal injur usses and truss systems, s	DED MITEK REFERENCE PA to parameters shown, and is for esign parameters and proper nd/or chord members only. A y and property damage. For see ANS/TP11 Qua uite 203 Waldorf, MD 20601	or an individual building on ly incorporate this design additional temporary and	component, i into the ov permanent ling the	not verall bracing	nponent		NITEK 16023 Swingley Ridge Chesterfield, MO 6301	

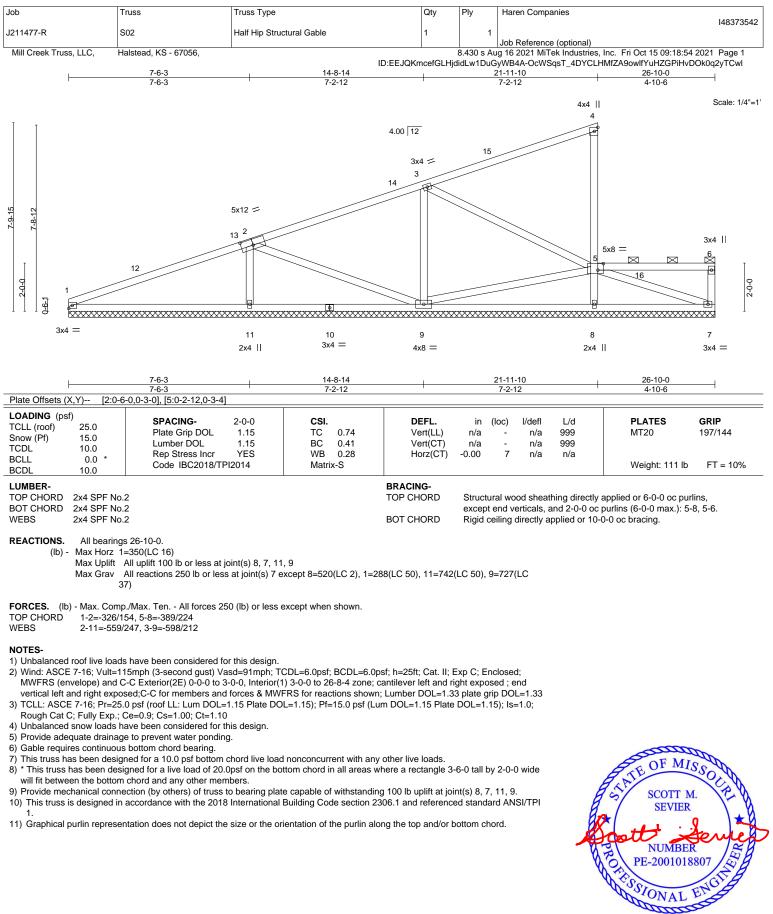
Job	Truss	Truss Type	Qty	Ply	Haren Companies
					148373540
J211477-R	PX1	Flat	2	2	
				2	Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:18:51 2021 Page 2

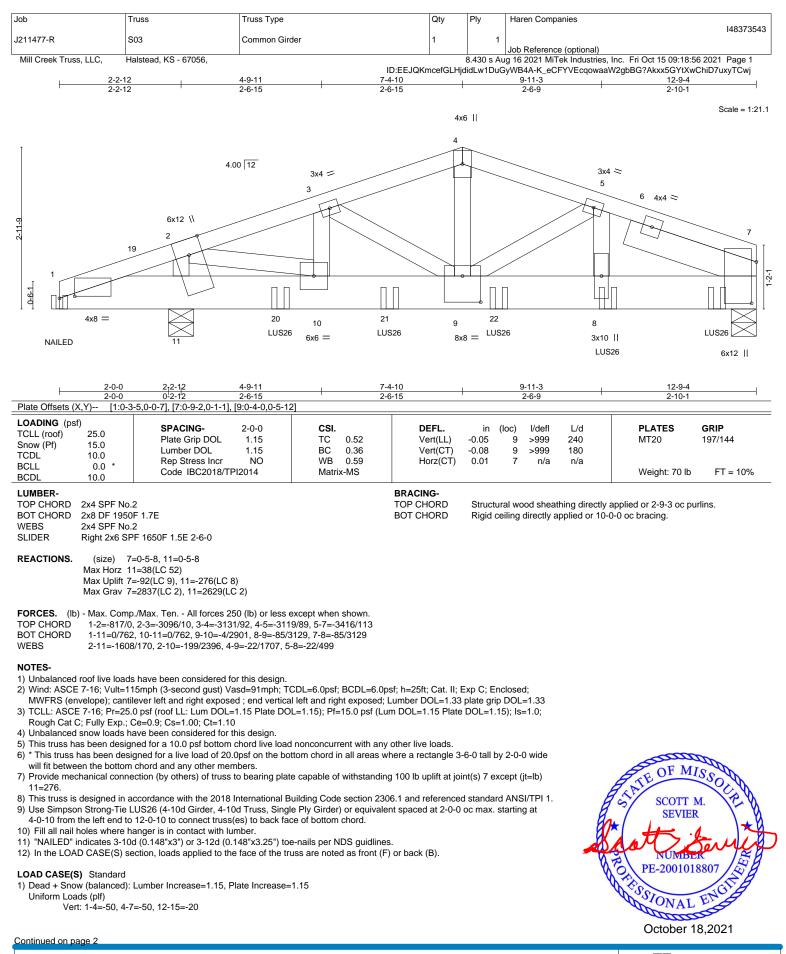
ID:EEJQKmcefGLHjdidLw1DuGyWB4A-z1qJCqR6nIAdUpd5t2b5I71AC4b4CMhSXQVMDkyTCwo


LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-9=-50, 10-18=-20 Concentrated Loads (lb)

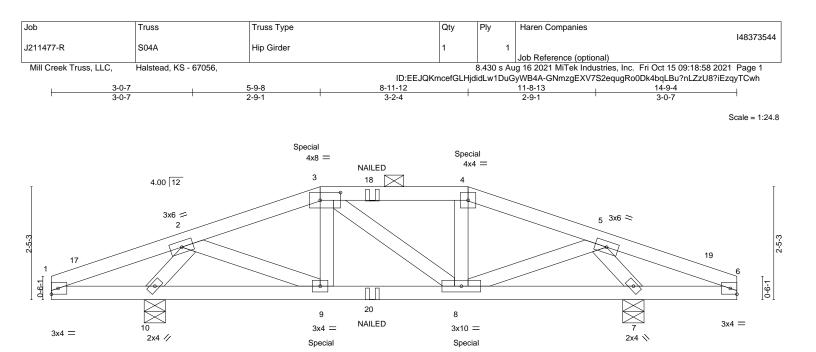

Vert: 8=-69 9=-79 19=-399 20=-387 21=-209 22=-69 23=-69 24=-69


October 18,2021

October 18,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	Haren Companies
1044477 D	502	Common Cirdor	4	1	148373543
J211477-R	S03	Common Girder	1	1	Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:18:56 2021 Page 2
		ID:EEJQKmcefGLHjdidLw1DuGyWB4A-K_eCFYVEcqowaaW2gbBG?Akxx5GYtXwChiD7uxyTCwj			

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 8=-791(B) 12=91(B) 17=-794(B) 20=-791(B) 21=-791(B) 22=-791(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

<u>2-0-0</u> 2-0-0 0	-2-12 5-9-8 -2-12 3-6-12	8-11-12	<u>12-6-8</u> 3-6-12	<u>12-9₁4</u> 14-9-4 0-2-12 2-0-0
	5-4,0-2-0]	5-2-4	3-0-12	0-2-12 2-0-0
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IBC2018/TPI2014	CSI. DEFL. TC 0.21 Vert(LL) BC 0.18 Vert(CT) WB 0.10 Horz(CT) Matrix-MS	in (loc) l/defl L/d -0.01 8-9 >999 240 -0.02 8-9 >999 180 0.01 7 n/a n/a	PLATES GRIP MT20 197/144 Weight: 52 lb FT = 10%
LUMBER- TOP CHORD 2x4 SPF No BOT CHORD 2x4 SPF No WEBS 2x4 SPF No	2	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire 2-0-0 oc purlins (6-0-0 max.): : Rigid ceiling directly applied or	
Max Horz 1 Max Uplift 1	0=0-5-8, 7=0-5-8 0=20(LC 84) 0=-247(LC 8), 7=-246(LC 9) 0=777(LC 36), 7=771(LC 36)			
TOP CHORD 1-2=-70/25 BOT CHORD 9-10=-162/	o./Max. Ten All forces 250 (lb) or less e 9, 2-3=-685/361, 3-4=-615/340, 4-5=-68 /295, 8-9=-311/642, 7-8=-141/292 /88, 5-8=-190/387, 2-10=-800/311, 5-7=-	2/355, 5-6=-70/259		
 2) Wind: ASCE 7-16; Vult=1 MWFRS (envelope); canti 3) TCLL: ASCE 7-16; Pr=25 Rough Cat C; Fully Exp.; 4) Unbalanced snow loads h 5) Provide adequate drainag 6) This truss has been desig 7) * This truss is designed in a 10=247, 7=246. 9) This truss is designed in a 10) Graphical purlin represe 11) "NAILED" indicates 3-10 12) Hanger(s) or other connic 5-9-8, and 175 lb down a at 8-11-0 on bottom chc 13) In the LOAD CASE(S) site Context of the second sec	lever left and right exposed ; end vertica 0 psf (roof LL: Lum DOL=1.15 Plate DO Ce=0.9; Cs=1.00; Ct=1.10 ave been considered for this design. le to prevent water ponding. ned for a 10.0 psf bottom chord live load igned for a live load of 20.0psf on the bot chord and any other members. action (by others) of truss to bearing plate incordance with the 2018 International B ntation does not depict the size or the ori d (0.148"x3") or 3-12d (0.148"x3.25") tog- action device(s) shall be provided sufficie- and 185 lb up at 8-11-12 on top chord, a	ent to support concentrated load(s) 175 lb nd 54 lb down and 59 lb up at 5-9-8, and ction device(s) is the responsibility of othe uss are noted as front (F) or back (B).	3 plate grip DOL=1.33 e DOL=1.15); ls=1.0; 3-6-0 tall by 2-0-0 wide pint(s) except (jt=lb) ed standard ANSI/TPI 1. bottom chord. down and 185 lb up at 54 lb down and 59 lb up	SCOTT M. SEVIER NUMBER PE-2001018807
Uniform Loads (plf)	4=-50, 4-6=-50, 11-14=-20			SoloNAL ENC.

LOAD CASE(S) Standard

Continued on page 2

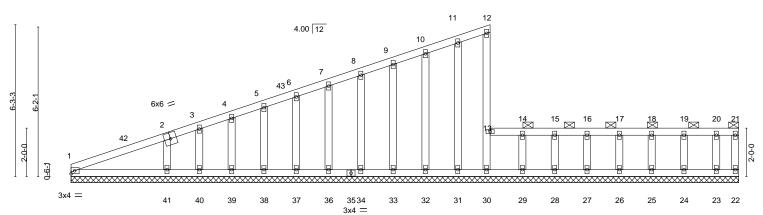
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

October 18,2021

Job	Truss	Truss Type	Qty	Ply	Haren Companies
					148373544
J211477-R	S04A	Hip Girder	1	1	
					Job Reference (optional)
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:18:58 2021 Page 2

8.430 s Aug 16 2021 MiTek Industries, Inc. Fri Oct 15 09:18:58 2021 Page 2 ID:EEJQKmcefGLHjdidLw1DuGyWB4A-GNmzgEXV7S2equgRo0Dk4bqLBu?nLZzU8?iEzqyTCwh

LOAD CASE(S) Standard


Concentrated Loads (lb) Vert: 3=-33(F) 4=-33(F) 9=-50(F) 8=-50(F) 18=-33(F) 20=-10(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

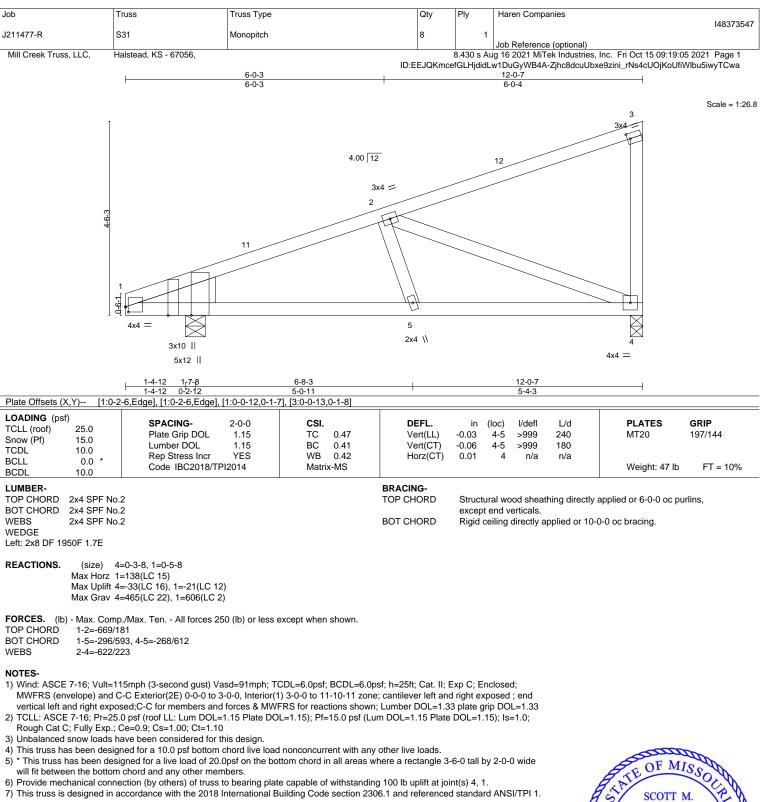
Job	Truss	Truss Type	Q	Qty	Ply	Haren Companies	
							148373545
J211477-R	S21	Half Hip Supported	1		1		
						Job Reference (optional)	
Mill Creek Truss, LLC,	Halstead, KS - 67056,	stead, KS - 67056, 8.430 s Aug 16 2021 MiTek Industries, Inc. Fri Oct 15 09:19:02 2021 Page 1				ri Oct 15 09:19:02 2021 Page 1	
ID:EEJQKmcefGLHididLw1DuGyWB4A-98?TVba?BgY3IVzC1sIgFR_1MWN?HOi43dgR6byTCwd						R_1MWN?HOi43dgR6byTCwd	
1		17-3-8			1	27-6-10	1
		17-3-8			1	10-3-2	

Scale: 1/4"=1'



	<u> </u>					27-6-10 10-3-2	
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.20 BC 0.10 WB 0.06 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a - 0.00 22	l/defl L/d n/a 999 n/a 999 n/a n/a	MT20	GRIP 197/144 FT = 10%
LUMBER- TOP CHORD 2x4 SPF No. BOT CHORD 2x4 SPF No. WEBS 2x4 SPF No. OTHERS 2x4 SPF No.	2 2	1	BRACING- TOP CHORD BOT CHORD	except end	verticals, and 2-0	lirectly applied or 6-0-0 oc pu 0-0 oc purlins (6-0-0 max.): 1 I or 6-0-0 oc bracing.	
Ange of the second seco	=262(LC 16) All uplift 100 lb or less at joint(s) 30, 22, 4, 23 All reactions 250 lb or less at joint(s) 30, 6, 25, 24, 23 except 41=408(LC 2) b./Max. Ten All forces 250 (lb) or less 142 s have been considered for this design. I5mph (3-second gust) Vasd=91mph; T -C Corner(3E) 0-0-0 to 3-0-0, Exterior(sed;C-C for members and forces & MW iads in the plane of the truss only. For icable, or consult qualified building des 0 psf (roof LL: Lum DOL=1.15 Plate DC Ce=0.9; Cs=1.00; Ct=1.10 ave been considered for this design. e to prevent water ponding. less otherwise indicated. bottom chord bearing.	, 22, 1, 31, 32, 33, 34, 36 except when shown. CDL=6.0psf; BCDL=6.0p 2N) 3-0-0 to 27-4-14 zon FRS for reactions showr studs exposed to wind (n gner as per ANSI/TPI 1. DL=1.15); Pf=15.0 psf (Lt ad nonconcurrent with ar pottom chord in all areas ate capable of withstand Building Code section 2	6, 37, 38, 39, 40, 29 psf; h=25ft; Cat. II; E le; cantilever left and r; Lumber DOL=1.3 normal to the face), s um DOL=1.15 Plate ny other live loads. where a rectangle 3 ling 100 lb uplift at jo 306.1 and reference	Exp C; Enclos d right expose 3 plate grip Di see Standard DOL=1.15); I 3-6-0 tall by 2: pint(s) 30, 22, ed standard A	d; end DL=1.33 Industry s=1.0; -0-0 wide 31, 32,	STATE OF MI SCOTT I SEVIER PE-200101	8807

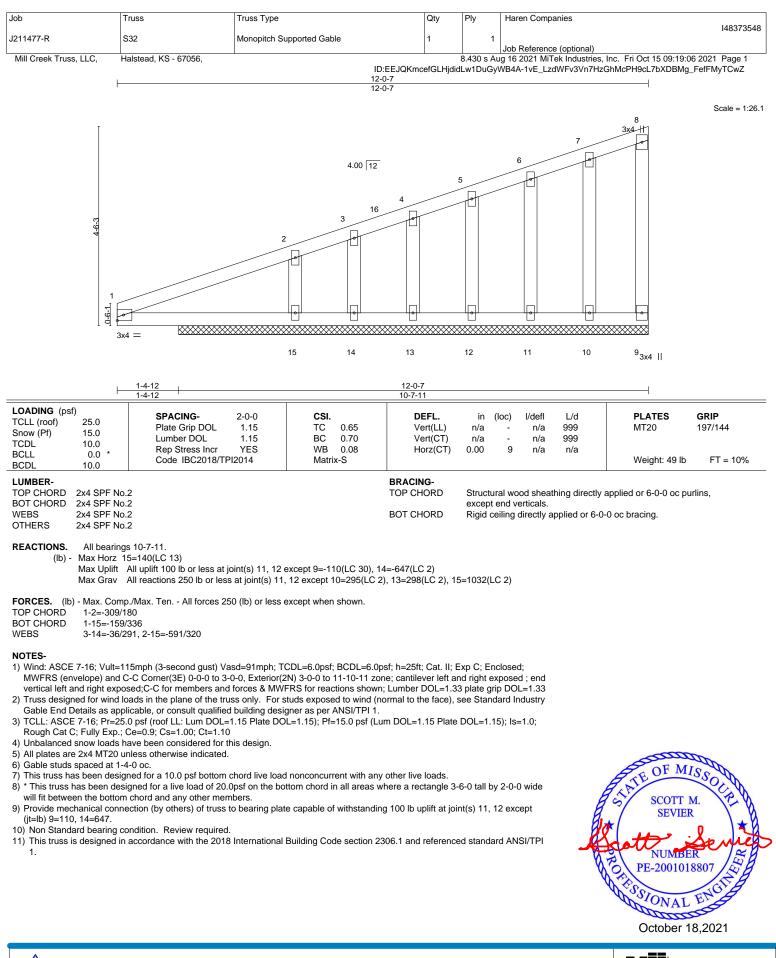
October 18,2021



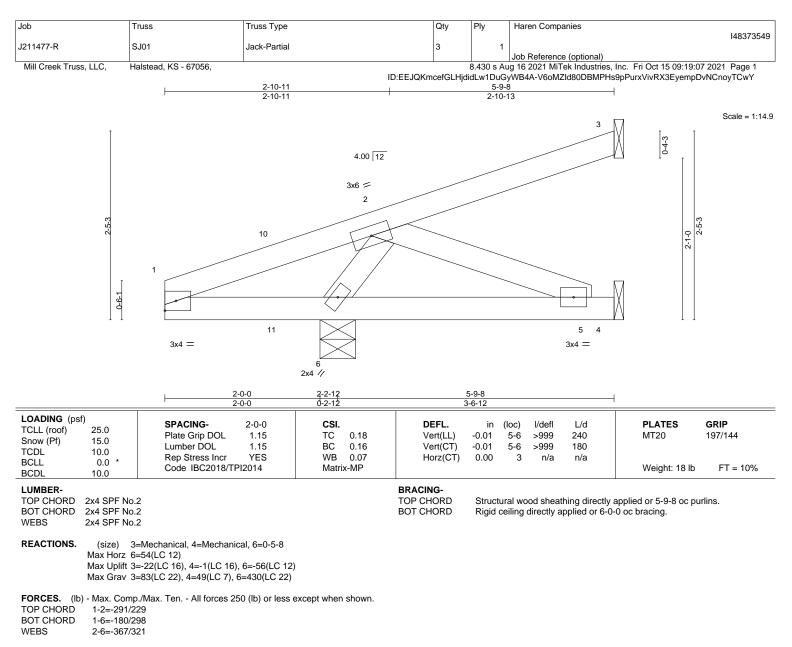
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEX REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven toukling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see MISI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Mitek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017



October 18,2021


16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 2-10-0, Interior(1) 2-10-0 to 5-8-12 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

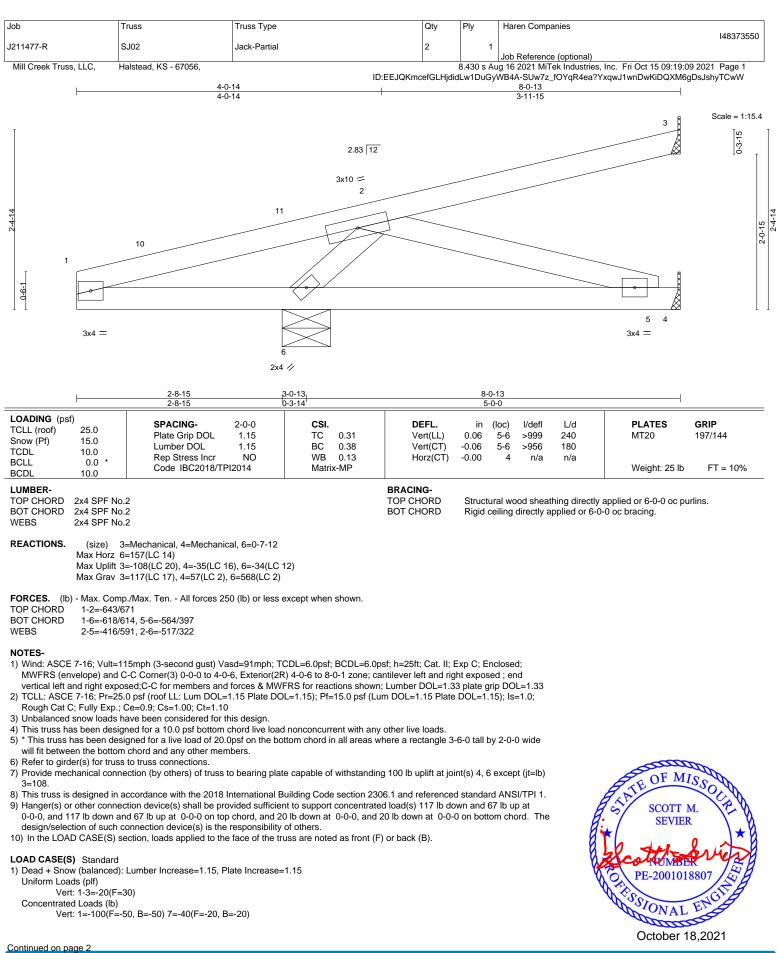
3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

C) Defer to sinder(a) for thus to thus connections

6) Refer to girder(s) for truss to truss connections.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 6.

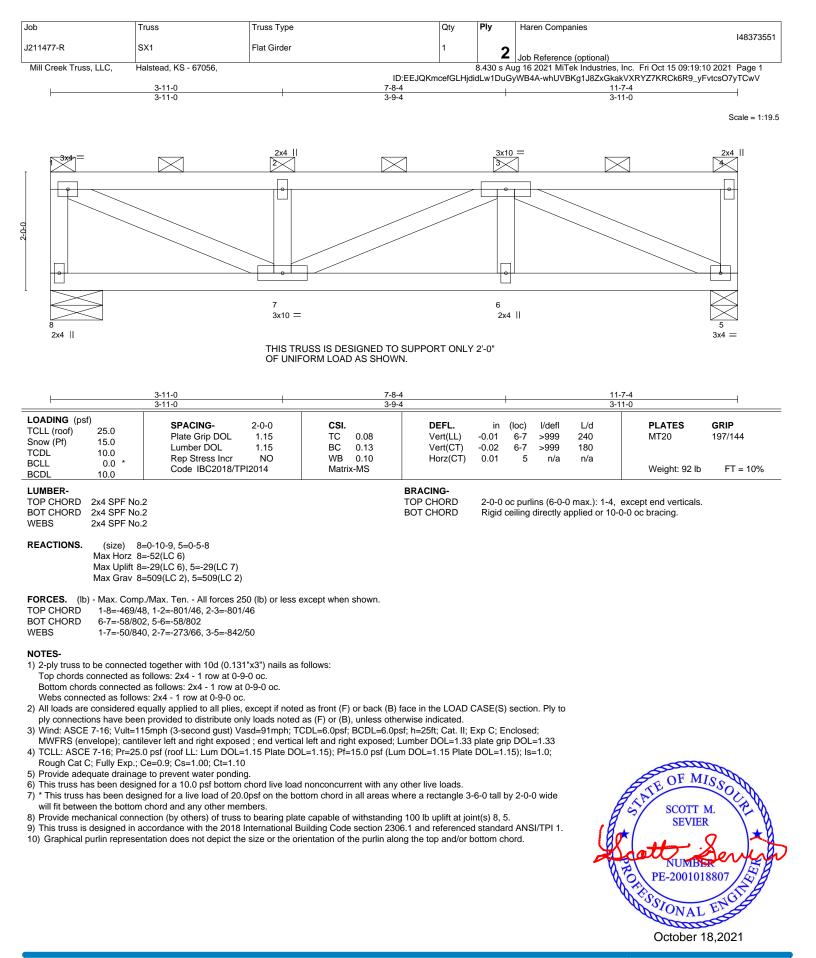
8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Job	Truss	Truss Type	Qty	Ply	Haren Companies	
1044477 D	0.100				148373550	
J211477-R	SJ02	Jack-Partial	2	1		
					Job Reference (optional)	
Mill Creek Truss, LLC,	Halstead, KS - 67056,			8.430 s Au	g 16 2021 MiTek Industries, Inc. Fri Oct 15 09:19:09 2021 Page 2	
		ID:EEJQKmcefGLHjdidLw1DuGyWB4A-SUw7z_fOYqR4ea?YxqwJ1wnDwKiDQXM6gDsJshyTCwW				

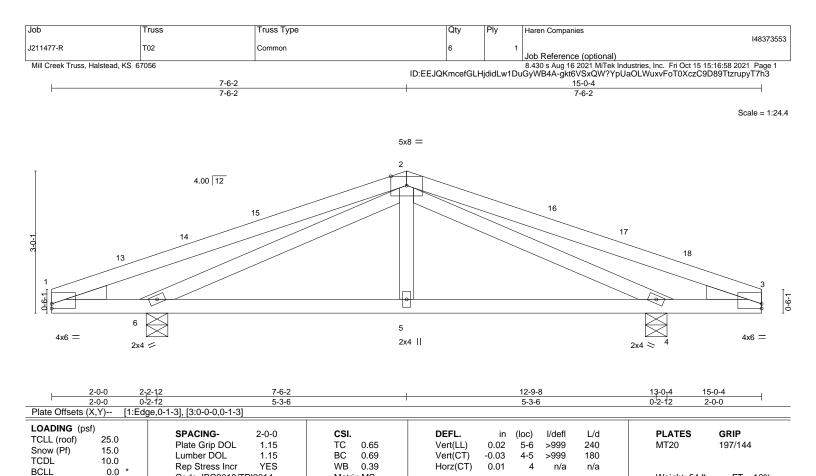
LOAD CASE(S) Standard

Trapezoidal Loads (plf) Vert: 7=0(F=10, B=10)-to-6=-31(F=-5, B=-5), 6=0(F=10, B=10)-to-4=-70(F=-25, B=-25)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/ITPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	2-12 7-6-2		1	12-9-8	13-0-4 15-0-4
	2-12 5-3-6 ge,0-1-3], [3:0-0-0,0-1-3]			5-3-6	0-2-12 2-0-0
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 15.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IBC2018/TPI2014	CSI. TC 0.65 BC 0.69 WB 0.39 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl L/d 0.02 5-6 >999 240 -0.03 4-5 >999 180 0.01 4 n/a n/a	PLATES GRIP MT20 197/144 Weight: 60 lb FT = 10%
LUMBER- TOP CHORD 2x4 SPF No.: BOT CHORD 2x4 SPF No.: WEBS 2x4 SPF No.: OTHERS 2x4 SPF No.: WEDGE Left: 2x4 SPF No.2 , Right: 22	2 2 2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing direct Rigid ceiling directly applied or 6	
Max Horz 6= Max Uplift 6- Max Grav 6= FORCES. (Ib) - Max. Comp BOT CHORD 5-6=-52/520	=526/0-5-8, 4=526/0-5-8 =26(LC 16) =-61(LC 12), 4=-61(LC 13) =676(LC 2), 4=676(LC 2) ./Max. Ten All forces 250 (lb) or less 6 6, 4-5=-52/526 79, 2-4=-634/278	xcept when shown.			
 NOTES- 1) Unbalanced roof live loads 2) Wind: ASCE 7-16; Vult=11 MWFRS (envelope) and C 15-0-4 zone; cantilever left reactions shown; Lumber I 3) Truss designed for wind lo Gable End Details as appli 4) TCLL: ASCE 7-16; Pr=25.0 Rough Cat C; Fully Exp.; C 5) Unbalanced snow loads ha 6) All plates are 2x4 MT20 ur 7) Gable studs spaced at 1-4 8) This truss has been desig will fit between the bottom 	s have been considered for this design. 5mph (3-second gust) Vasd=91mph; TG -C Exterior(2E) 0-0-0 to 3-0-0, Interior(1 and right exposed; end vertical left and DOL=1.33 plate grip DOL=1.33 ads in the plane of the truss only. For s icable, or consult qualified building desig 0 psf (roof LL: Lum DOL=1.15 Plate DO Ce=0.9; Cs=1.00; Ct=1.10 ave been considered for this design. nless otherwise indicated.) 3-0-0 to 7-6-2, Exterior I right exposed;C-C for n uds exposed to wind (no ner as per ANSI/TPI 1. _=1.15); Pf=15.0 psf (Lur nonconcurrent with any tom chord in all areas wi	(2R) 7-6-2 to 10-6- nembers and forces ormal to the face), s m DOL=1.15 Plate other live loads. here a rectangle 3-	2, Interior(1) 10-6-2 to s & MWFRS for see Standard Industry DOL=1.15); Is=1.0; 6-0 tall by 2-0-0 wide	STATE OF MISSOUR SCOTT M. SEVIER NUMBER PE-2001018807


11) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

MiTek°

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-

TOP CHORD

BOT CHORD

FORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown.

Code IBC2018/TPI2014

BOT CHORD 5-6=-52/526, 4-5=-52/526 WEBS 2-6=-634/279, 2-4=-634/278

10.0

2x4 SPF No.2

2x4 SPF No.2

Left: 2x4 SPF No.2 , Right: 2x4 SPF No.2

TOP CHORD 2x4 SPF No.2

NOTES-

BCDL

WEBS WEDGE

LUMBER-

BOT CHORD

REACTIONS.

1) Unbalanced roof live loads have been considered for this design.

(lb/size) 6=526/0-5-8, 4=526/0-5-8 Max Horz 6=-26(LC 21)

Max Uplift 6=-61(LC 12), 4=-61(LC 13) Max Grav, 6=676(LC 2), 4=676(LC 2)

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 7-6-2, Exterior(2R) 7-6-2 to 10-6-2, Interior(1) 10-6-2 to 15-0-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.33 plate grip DOL=1.33

Matrix-MS

3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=15.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 61 lb uplift at joint 6 and 61 lb uplift at joint 4.

8) This truss is designed in accordance with the 2018 International Building Code section 2306.1 and referenced standard ANSI/TPI 1.

Weight: 54 lb

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 6-0-0 oc bracing.

FT = 10%

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **MSIVTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

