

Garcia, Juan

UIIIII

υ

January 17, 2022

16023 Swinglev Ridge Rd Chesterfield, MO 63017

Date

1/17/2022

1/17/2022

1/17/2022

MiTek USA, Inc. 314-434-1200

RE: B220055 Lot 146 CB

Site Information:

Customer: Project Name: B220055 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2012/TPI2007 Wind Code: Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.4 Wind Speed: 115 mph Floor Load: N/A psf

Truss Name

V2

V3

V4

JUAN

GARCA

AREF

This package includes 23 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. Seal# Truss Name 1 149723899 A1 2 149723900 A2 3 149723901 A3 4 149723902 A4 5 149723903 B1 6 149723906 B2 7 149723906 B4 9 149723907 B5 10 149723908 B6 11 149723909 B7 12 149723910 B8 13 149723912 B10 15 149723912 B10 15 149723913 C1 16 149723914 G1 17 149723915 J1 18 149723916 J2 19 149723917 LAY1 20 149723918 V1	Date 1/17/2022	No. 21 22 23	Seal# I49723919 I49723920 I49723921
--	--	-----------------------	--

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Missouri is December 31, 2022. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

										RELEAS		
Job		Truss		Truss Type		Qty	Ply	Lot 146 CB	;		TED FOR PLAN REVIEW	٦
B220055		A1		Common Support	ed Gable	1	1	Job Refere	nce (optional)		ELOPMENT SERVICES 149723899 S SUMMIT, MISSOURI	
Wheeler Lumber, V	Vaverly, KS - 6	66871,			Run: 8.43 S Oct 11			1 2021 MiTek Ir	ndustries, Inc. F		01/2022	2
					ID:AVXTMfOv7HTd	јет заруғад	ZVYTE-RIG (P	SB70Hq3NSgP	dur gan an a	WICD01-042JC-1		
		-0-1 0-1	0-8 	<u>16-0-0</u> 16-0-0		+		<u>32-</u> 16-			32-10-8 0-10-8	
		0.1				4x4=						
BOT CHORD 2 WEBS 2 OTHERS 2 BRACING TOP CHORD 3 BOT CHORD 4 WEBS 7 REACTIONS (III	Y): [30:0-2 Y): [30:0-2 Y]: [3x4 II 4 3x4 II 3 2 3 3 37 36 37 37 36 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code 2 2	8 ¹² 3x4 = 7 6 5 6 7 6 7 7 6 7 7 7 7 7 7 7 7 7 7 7	CSI TC 0 BC 0 WB 0 Matrix-R Max Grav 22=208 (LC 24=184 (LC 26=186 (LC 28=187 (LC 30=311 (LC 30=311 (LC 32=185 (LC)	11 11 11 11 11 11 11 11 11 11	L (LL) (TL) (TL) (TL) (TL) (TL) (TL) (C 16), 87 (LC 16), 87 (LC 16), 93 (LC 16), 93 (LC 15), 93 (LC 15), 93 (LC 15), 93 (LC 15), 93 (LC 15), 93 (LC 15), 944/223, 5=-148/178, 0=-96/292, 6, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4	3x4 14 15 16 17 16 17 16 17 17 18 19 10 10 12 20 21 21 21 21 21 21 21 21 21 21	16 17 17 16 17 16 17 16 17 16 17 16 17 17 17 17 17 17 17 17 17 17	h; TCDL=6.0psf closed; MWFRS eff and right expe ;; Lumber DOL= r wind loads in t xposed to wind (ustry Gable End d building desig MT20 unless ot ntinuous bottom heathed from or heathed from or heathed for or nconcurrent witt een designed for nconcurrent witt een designed for ord in all areas w 00-00 wide will fi	(3-second gust) V ; BCDL=6.0psf; h=25ft; ; 6 (envelope) exterior osed ; end vertical left 1.60 plate grip the plane of the truss (normal to the face), Details as applicable, ner as per ANSI/TPI 1. herwise indicated.	
	28 31 33 35	3=-77 (L0 I=-58 (L0 3=-69 (L0 5=-76 (L0	C 9), 27=-69 (LC 9), C 9), 29=-56 (LC 9), C 8), 32=-76 (LC 8), C 8), 34=-69 (LC 8), C 8), 36=-46 (LC 8), C 8), 38=-140 (LC 4),	NOTES	24-25=-135/164, 23-2 22-23=-135/164, 10-31 9-32=-145/100, 8-33= 5-35=-148/97, 4-36=- 12-29=-153/80, 13-28 14-27=-147/93, 16-26 17-25=-148/96, 18-24 19-23=-162/139 d roof live loads have b	I=-156/82, 147/93, 6 144/82, 3-3 3=-147/101 3=-147/94, I=-144/84,	-34=-146/93 87=-176/149		Contraction .	G F NUM C E-2000	AN AN ABER 1162101	
										Januar	ry 17,2022	

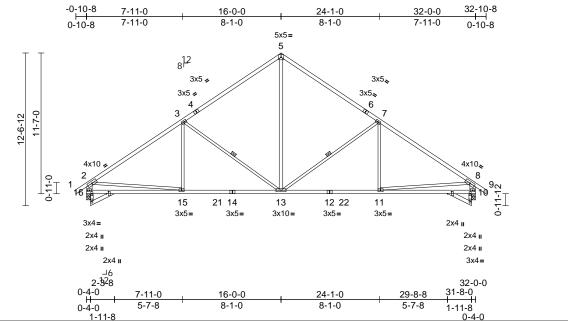
Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property incorporate this design into the applicability of design parameters and NUSTPH1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 146 CB	
B220055	A1	Common Supported Gable	1	1	Job Reference (optional	DEVELOPMENT SERVICES 149723899 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, I	KS - 66871,	Run: 8.43 S Oct ID:AVXTMfOv7H	11 2021 Print: TdJem99pvFd2	3.430 S Oct 1 zvy1L-RfC?F	1 2021 MiTek Industries, Inc. F sB70Hq3NSgPqnL8w3uITXbG	i Jan 14 15 47 14/01/29 22 KWrCDorrd 4 zJC ft 01/29 22

10) Provide mechanical connection (by others) of truss to

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 140 lb uplift at joint 38, 79 lb uplift at joint 22, 58 lb uplift at joint 31, 76 lb uplift at joint 32, 69 lb uplift at joint 33, 69 lb uplift at joint 34, 76 lb uplift at joint 35, 46 lb uplift at joint 36, 173 lb uplift at joint 37, 56 lb uplift at joint 29, 77 lb uplift at joint 28, 69 lb uplift at joint 27, 69 lb uplift at joint 26, 75 lb uplift at joint 25, 50 lb uplift at joint 24 and 156 lb uplift at joint 23

at joint 23.


LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 146 CB	AS NOTED FOR PLAN REVIEW
B220055	A2	Common	6	1		DEVELOPMENT SERVICES 149723900
B220033	R2	Continion	0	'	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fi Jan 14 (54796/01/26):22

Plate Offsets (X, Y): [18:0-2-0,0-1-15], [19:0-2-0,0-3-15]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.90	Vert(LL)	-0.11	13-15	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.60	Vert(TL)	-0.28	13-15	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.61	Horiz(TL)	0.06	10	n/a	n/a		
BCDL	10.0	Code	IRC2012/TPI2007	Matrix-S		Wind(LL)	0.05	13-15	>999	240	Weight: 141 lb	FT = 10%

LUMBER

Scale = 1:94.8

TOP CHORD 2x4 SPF No.2

TOP CHORD

BOT CHORD

REACTIONS (lb/size)

WEBS

FORCES

TOP CHORD

BOT CHORD

this design.

DOL=1.60

WEBS

NOTES

1)

2)

3)

4)

- BOT CHORD 2x4 SPF No.2
- 2x3 SPF No.2 *Except* 13-5:2x4 SPF No.2, WEBS 16-2,10-8:2x6 SPF No.2 BRACING

except end verticals.

Max Horiz 16=-322 (LC 6)

1 Row at midpt

bracing.

Tension

8-11=0/1070

Structural wood sheathing directly applied,

Rigid ceiling directly applied or 10-0-0 oc

Max Uplift 10=-186 (LC 9), 16=-186 (LC 8)

1-2=0/43, 2-3=-1925/229, 3-5=-1394/279, 5-7=-1394/279, 7-8=-1925/229, 8-9=0/43, 2-16=-1423/228, 8-10=-1423/227

5-13=-110/857, 7-13=-682/283, 7-11=0/260, 3-13=-682/284, 3-15=0/260, 2-15=0/1058,

15-16=-341/694, 13-15=-229/1630, 11-13=-56/1482, 10-11=-176/477

Unbalanced roof live loads have been considered for

Wind: ASCE 7-10; Vult=115mph (3-second gust) V

All plates are 3x5 MT20 unless otherwise indicated.

This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

(IRC2012)=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip

(lb) - Maximum Compression/Maximum

7-13, 3-13

10=1497/0-3-8, 16=1497/0-3-8

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to
- 6) bearing plate capable of withstanding 186 lb uplift at
- joint 16 and 186 lb uplift at joint 10.

LOAD CASE(S) Standard

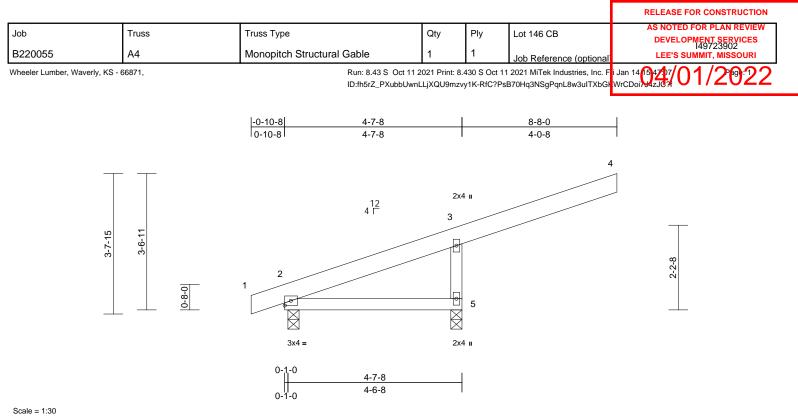
5)

MI 0 THE TRANSPROT IUAN ARCIA MBEB 200016210 8 S S/ONALE Think January 17,2022

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

							RELEASE	E FOR CONSTRUCTION	
Job	Truss	Truss Type		Qty	Ply	Lot 146 CB		ED FOR PLAN REVIEW	7
B220055	A3	Roof Special		3	1	Job Reference (option	1 5510	OPMENT SERVICES 149723901 SUMMIT, MISSOURI	
Wheeler Lumber	r, Waverly, KS - 66871,	•				2021 MiTek Industries, Inc	Fi Jan 14 15 47 07	01/2022	
	0.40.0			·		:B70Hq3NSgPqnL8w3uITXI		<u> </u>	
	-0-10-8 		<u>-0-0</u> -1-0	<u>24-1-0</u> 8-1-0	<u>28</u> 4-	<u>-5-0 31-10-4 3</u> 4-0 3-5-4 4	6-4-0 37-2-8 -5-12 0-10-8		
			5x5= 5						
	ΤŢ	812 81							
	21.0	3x6 🖌 3x5 🞜							
	2 12-6-12 8-3-5	4 3			^{3x5}				
	12-6-12 12 8			,	×	5x5 ≈ 12			
	2		⊗			7 2x4 II			
	4x10 ≠					8	-1-0		
		B						<u>1</u>	
		17 23 3x5= 3	16 15 3x6= 3x10=	24 1- 3>	4 13 (6= 3x4=	2	3x5 ∎	<u>-</u> ⊥	
	3х5 и 2х4 и					2x4 ။ 2x4 ။			
	2x4 I					2x4 II			
	2x4 i 2-3-8	I				6∟ 3x5= ¹ 3 1-10-4			
	0-4-0 0-4-0		<u>-0-0</u> -1-0	24-1-0 8-1-0			<u>6-3-0</u> 36-4-0 ∙4-12 0-1-0		
Scale = 1:90.9	<u> </u>	3-15]				0-2-4	010		—
Loading		2-0-0	CSI	DEF		in (loc) l/defl L	d PLATES	GRIP	_
TCLL (roof)	(psf) Spacing 25.0 Plate Grip DO	DL 1.15	TC	0.98 Vert	(LL) -0.	11 13-15 >999 36	0 MT20	197/144	
TCDL BCLL	10.0 Lumber DOL 0.0* Rep Stress Ir		BC WB	0.60 Vert 0.62 Horiz	. ,	28 13-15 >999 24 07 12 n/a n,			
BCDL	10.0 Code	IRC2012/TPI2007	Matrix-S	Wind	d(LL) 0.	06 13-15 >999 24	0 Weight: 152 lb	FT = 10%	_
LUMBER TOP CHORD	2x4 SPF No.2		E 7-10; Vult=115mp =91mph; TCDL=6.0p						
BOT CHORD WEBS	2x4 SPF No.2 2x3 SPF No.2 *Except* 15-5,11-9:2		C; Enclosed; MWFF						
	No.2, 18-2:2x6 SPF No.2		xposed; Lumber DOI						
BRACING TOP CHORD	Structural wood sheathing directly	applied 3) This truss	has been designed fo						
BOT CHORD	except end verticals. Rigid ceiling directly applied or 6-0-	0 oc 4) * This truss	s has been designed om chord in all areas	for a live load	of 20.0psf				
WEBS	bracing. 1 Row at midpt 3-15, 6-15, 7-1	2 3-06-00 tal	Il by 2-00-00 wide wil any other members,	ll fit between t	he bottom				
REACTIONS	(lb/size) 11=113/0-3-8, 12=1792/ 18=1480/0-3-8	0-3-8, 5) Provide me	echanical connection	(by others) of	f truss to				
	Max Horiz 18=-330 (LC 6) Max Uplift 11=-127 (LC 5), 12=-196	joint 18, 19	ate capable of withsta 96 lb uplift at joint 12						
	18=-187 (LC 8) Max Grav 11=145 (LC 20), 12=179		6) Standard						
	18=1480 (LC 1)								
FORCES	(lb) - Maximum Compression/Maxir Tension								
TOP CHORD	1-2=0/43, 2-3=-1898/230, 3-5=-136 5-6=-1363/278, 6-7=-1705/243, 7-8								
	8-9=-6/327, 9-10=0/23, 2-18=-1406 9-11=-136/142	5/229,							
BOT CHORD	17-18=-347/698, 15-17=-235/1612, 13-15=-59/1403, 12-13=-111/1226,						ILLE OF	WISSO!	
WERS	11-12=-246/27						S. III	NI DI	
WEBS	3-17=0/262, 3-15=-683/283, 5-15=- 6-15=-576/277 6-13=0/203 8-12=-							A. : =	


- NOTES
- 1) Unbalanced roof live loads have been considered for this design.

6-15=-576/277, 6-13=0/203, 8-12=-370/158, 2-17=0/1028, 7-13=0/274, 7-12=-1919/171

JUAN ARMA E-2000162101 January 17,2022

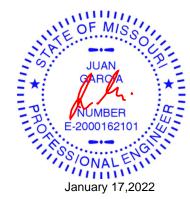
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.57	Vert(LL)	-0.02	2-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.19	Vert(TL)	-0.05	2-5	>984	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2012/TPI2007	Matrix-P							Weight: 25 lb	FT = 10%

- LUMBER
- TOP CHORD 2x6 SPF No.2
- BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2
- BRACING

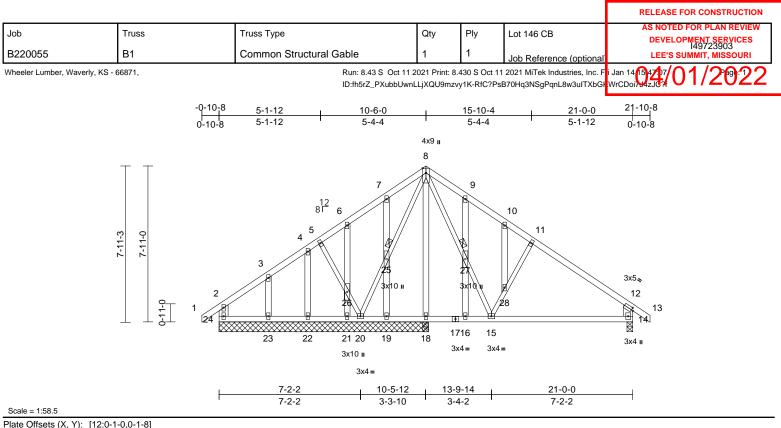
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	4-7-8 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.

REACTIONS	(lb/size)	2=133/0-3-8, 5=621/0-3-8
	Max Horiz	2=137 (LC 5)
	Max Uplift	2=-4 (LC 4), 5=-239 (LC 5)


FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=0/1, 2-3=-139/108, 3-4=-93/0,

3-5=-578/265 BOT CHORD 2-5=-25/19

NOTES


- Wind: ASCE 7-10; Vult=115mph (3-second gust) V (IRC2012)=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 239 lb uplift at joint 5 and 4 lb uplift at joint 2.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Loading		(psf)	Spacing	2-0-0		CSI	0.04	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) TCDL		25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.31 0.31	Vert(LL) Vert(TL)		14-15 14-15	>999 >869	360 240	MT20	197/144
BCLL		0.0*	Rep Stress Incr	YES		WB	0.31	Horiz(TL)	0.00	14-15	>009 n/a	240 n/a		
BCDL		10.0	Code		12/TPI2007	Matrix-S	0.40	Wind(LL)	0.00	16	>999	240	Weight: 115 lb	FT = 10%
UMBER				E	BOT CHORD	23-24=-155/149,	22-23=-1	55/149,						others) of truss to
FOP CHORD	2x4 SPF	No.2				21-22=-155/149,								ng 128 lb uplift at
BOT CHORD						19-20=-103/114,								uplift at joint 24, 5
VEBS		No.2 *Exce	pt* 24-2,14-12:2x6 S	SPF		16-18=-109/113,	15-16=-1	09/113,					o uplift at joint at joint 23.	nt 21, 13 lb uplift at
TUEDO	No.2			1	VEBS	14-15=-31/254 8-27=-147/486, 15-27=-151/518,					CASE(S			
THERS	2x4 SPF	N0.2		v	VED3	20-25=-136/56, 8				LOAD	SASE(S) Sta	ndard	
	0 , ,					15-28=-284/195,								
OP CHORD			athing directly applie cept end verticals.	d or		5-26=-119/83, 20		,	1/0,					
BOT CHORD			applied or 6-0-0 oc			7-25=-159/94, 19	25=-161	/90, 6-26=-11	9/67,					
	bracing,					21-26=-113/56, 4								
		c bracing: 1	4-15.			9-27=-135/62, 16	27=-169	/67, 10-28=-4	5/30					
JOINTS		at Jt(s): 25,		١	IOTES									
	27			1) Unbalanced	d roof live loads ha	ve been	considered fo	r					
REACTIONS (lb/size) 14=498/0-3-8, 18=609/10-7-8,					this design.									
		19=123/10	0-7-8, 20=210/10-7-8	3, 2		E 7-10; Vult=115m								
			0-7-8, 22=87/10-7-8,			91mph; TCDL=6.0 C; Enclosed; MWI								
			0-7-8, 24=135/10-7-8	3		ever left and right								
		24=-224 (,						ien					
	Max Uplift		LC 9), 19=-55 (LC 8)		DOL=1.60	exposed; Lumber DOL=1.60 plate grip								
			C 9), 21=-36 (LC 8), C 4), 23=-122 (LC 8)) Truss desid	ned for wind loads	in the pl	ane of the tru	ss					
		22=-13 (L 24=-35 (L		,		tuds exposed to wi								
	Max Grav		_C 20), 18=609 (LC ²	1)	see Standa	rd Industry Gable	End Deta	ils as applical	ole,					1117
	max orav		.C 19), 20=210 (LC 1			ualified building de			PI 1.				NOF /	MISSI
			C 19), 22=127 (LC	19), 4		re 2x4 MT20 unles							144	
		23=264 (L	C 15), 24=170 (LC	19) 5		fully sheathed from						~	18	
FORCES	(lb) - Max	kimum Com	pression/Maximum			inst lateral movem		liagonal web)					S: JUA	IN :2:
	Tension					s spaced at 2-0-0 o las been designed		0 pof bottom				= .	GAR	
FOP CHORD			31, 3-4=-36/101,			bad nonconcurrent			de			- *		Й. : * :
		,	7/155, 6-7=-20/184,			has been designe						-	: K /	4
		,	5/249, 9-10=-230/202	<u>,</u>		om chord in all area			poi			=7		BER C
			·12=-409/151, 50/46, 12-14=-434/1	70		by 2-00-00 wide w			m			-)	E-20001	62101 :4:-
	12-13=0/	+J, Z-Z4=-I	JU/+0, 12-14=-434/1	10	chord and a	any other members	5.					1	A	
													100	
													S/ONA	ENIN
													100	iiiii
													lonuon	17 2022

January 17,2022

Job B220055 Wheeler Lumber, Waverly, KS	Truss B2 - 66871,		Truss Type Common	Run: 8.43 S Oct 11 / ID:fh5rZ_PXubbUwn			es, Inc. F	
	ŀ)-10-8 -10-8	<u>5-1-12</u> 5-1-12	10-6-0 5-4-4	 <u>15-10-4</u> 5-4-4		<u>21-0-0</u> 5-1-12) <u>21-10-</u> 8
7-11-3	2-11-0 -11-0 1	2		8) ² 2x4 v 11 13		2x4 # 5		6 7 8

3x4= 3x4= 3x4= 7-2-2 13-9-14 21-0-0 7-2-2 6-7-12 7-2-2

6x10 u

Scale = 1:54.1 Plate Offsets (X, Y): [8:Edge.0-5-8]

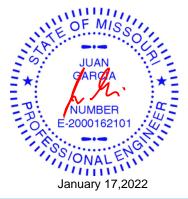
Plate Offsets (X, Y): [8:Edge,0-5-8]											
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.85 0.56 0.20	DEFL Vert(LL) Vert(TL) Horiz(TL)	in -0.20 -0.37 0.03	(loc) 9-11 9-11 8	l/defl >999 >669 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC2012/TPI2007	Matrix-S		Wind(LL)	0.08	9-11	>999	240	Weight: 78 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 2-2-1 oc purlins, exi Rigid ceiling directly bracing. 8-1002(0	athing directly applic	bearing pla joint 12 and F LOAD CASE(S	echanical connect te capable of with d 129 lb uplift at jo) Standard	nstanding 1							
	Max Horiz 12=-227 (Max Uplift 8=-129 (L	LC 6)										
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/43, 2-3=-1173 4-5=-1006/216, 5-6=	pression/Maximum 3/157, 3-4=-1006/21	6,									

WEBS

BOT CHORD

 Unbalanced roof live loads have been considered for this design.

3-11=-245/221


2-12=-908/167, 6-8=-908/167

11-12=-149/955, 9-11=0/675, 8-9=-41/856

4-9=-121/416, 5-9=-245/221, 4-11=-121/418,

- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) V (IRC2012)=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

6x10 u

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 146 CB	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 149723905
B220055	B3	Common	4	1	Job Reference (optional	
Wheeler Lumber, Waverly, KS -	66871,				1 2021 MiTek Industries, Inc. F sB70Hq3NSgPqnL8w3uITXbG	
	-0-10-8 0-10-8	5-1-12 10-6-0 5-1-12 5-4-4		<u>15-1</u> 5-4	0-4 21 -4 5-	-0-0 1-12
			4x5 I	ı		
_			4			
7-11-3	7-11-0	8 ¹² 2x4, 3	19-11-4		2x4 # 5	5x6、
		10 " 3x4=	12	[‡] 9 3x5=	8 3x4=	6 7 4x5=
		7-2-2	13-9-14 6-7-12		21-0-0	

Scale =	1:54.1
---------	--------

Scale = 1:54.1												
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		0.86	DEFL Vert(LL)	in -0.23	(loc) 8-10	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		0.72	Vert(TL)	-0.44	8-10	>562	240		
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC2012/TPI2007	WB Matrix-S	0.21	Horiz(TL) Wind(LL)	0.03 0.10	7 8-10	n/a >999	n/a 240	Weight: 77 lb	FT = 10%
BCDL	10.0	Code		Wathx-3		WIND(LL)	0.10	8-10	>999	240		FT = 1076
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce 7-6:2x8 SP DSS	ept* 11-2:2x6 SPF N	LOAD CASE(S)	Standard								
BRACING TOP CHORD	Structural wood she 2-2-0 oc purlins, exe	cept end verticals.										
BOT CHORD	Rigid ceiling directly bracing.	applied of 10-0-0 0	C									
	0	,	3)									
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=0/43, 2-3=-1173 4-5=-994/214, 5-6=- 2-11=-908/167, 6-7=	1157/155,	6,									
BOT CHORD WEBS	10-11=-162/945, 8-1 4-8=-118/400, 5-8=- 3-10=-244/221	,										
NOTES												
1) Unbalance this design	ed roof live loads have	been considered fo	r									
(IRC2012) Cat. II; Exp zone; canti and right e DOL=1.60		if; BCDL=6.0psf; h= S (envelope) exterio posed ; end vertical =1.60 plate grip	or							in in	ATE OF	MISSOURIAN
	has been designed for load nonconcurrent wi		do							= ^	: //	h. :*=
4) * This truss on the bott 3-06-00 tal	s has been designed f tom chord in all areas Il by 2-00-00 wide will any other members, w	or a live load of 20.0 where a rectangle fit between the botto	Dpsf om							Philip	E-20001	• 41-
5) Provide me bearing pla	echanical connection (ate capable of withstar d 103 lb uplift at joint 7	(by others) of truss t nding 129 lb uplift at	0								January	ALENGIII 17,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 146 CB	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 149723906
B220055	B4	Common	3	1	Job Reference (optional	
Wheeler Lumber, Waverly, KS - 6	66871,				2021 MiTek Industries, Inc. F 370Hq3NSgPqnL8w3uITXbGI	
	-0-10-8 0-10-8	5-1-12 10-6-0 5-1-12 5-4-4		<u>15-9-5</u> 5-3-5	20-10- 5-1-3	
			4x5 ॥			
7-11-3	-11-0	8 ¹² 2x4 ₁ 3	4 9-9-12		2x4 # 5	

T o

8

5x6、 6

7

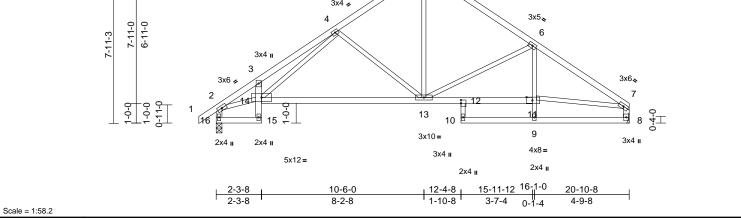
1-0-0

January 17,2022

TOP CHORD 2x4 SPF No.2 Soft CHORD 2x4 SPF No.2 2x3 SPF No.2 "Except" 11-2:2x6 SPF No.2, 7-6:2x8 SP DS BRACINO TOP CHORD Structural wood sheathing directly applied or 2-4-4 oc purifies, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (bisize) 7-913/ Mechanical, 11-995/0-3-8 Max Horiz 11-222 (LC 5) Max Upliff 7-101 (LC 9), 11-128 (LC 8) FORCES (b)- Maximum Compression/Maximum Tension TOP CHORD 1:2-0/43, 2-3-1165/157, 3-4=-999/215, 4-5=-949/213, 5-6=-1128/151, 2-11=9031(66, 67=-7977):45 BOT CHORD 10-11=-162/939, 8-10=-10/654, 7-8=-66/824 WEES 4-8=-118379, 5-8=-244/219, 4-10=-122/430, 3-10=-244/221 NOTES 1) Unbalanced roof live loads have been considered for this design. Vimic ASCE 7-10; Vult=115mph (3-second gust) V ((RC2012)=91mph; TCDL=6.0ps]; BCDL=6.0ps]; h=-25ft; Cat. II: Exp (WFRS) (envelope) exterior zone; canlilever left and right exposed; i cund erior zone; canlilever left and right exposed; i cund erior zone; canlilever left and right exposed; i cund erior zone; canlilever left and right exposed; i cund erior 200 CL=1.60 3) This truss has been designed for a 10.0 p5 bottom chord live load nonconcurrent with any other live loads.			\boxtimes		10	12	9	8					
13:0:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1			6x10 I		3x4 =		3x5=	3x4=				4x5 =	
Scale = 154.1 T-2.2 6-7.12 T-0.10 Loading (ps) Spacing 2-0-0 CSI 0.65 Vert(L) 0.24 8-16 5-989 960 MT20 197/144 CDL 0.01 Lumber DOL 1.15 BC 0.05 Vert(L) 0.24 8-10 5-989 240 Weight: 77.16 FT = 10%. CLUMBER Code Code RC2012/TP12007 Marrix-S 201 Horiz(L) 0.01 8-10 5-989 240 Weight: 77.16 FT = 10%. ULWBER Code Provide mechanical connection (by others) of truss to joint 11 and 101 b uplift at joint 7. 100 Codes 100 Codes 100 Codes 100 Codes 100 Codes 100 1100 100 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>_</th><th></th><th></th></td<>											_		
State = 154.1 Loading (pst) Spacing 2-0-0 CSI 0.6 DEFL in (tot) (tot) Mate Size GRIP TCDL 10.0 Lumber DOL 1.15 TC 0.65 Veri(LL) 0.04 8-10 3-299 240 MT20 197/144 BCDL 10.0 Code IRC2012/TPI2007 Watrix-S Horiz(TL) 0.03 7 n/a											-		
TCLL (roof) 25.0 Piate Grp DOL 1.15 TC 0.85 Vert (TL) -0.24 8-10 -5999 360 MT20 197/144 BCDL 0.00 Rep Bress Incr YES WE 0.21 Wert (TL) 0.00 7 v/s v/s<	Scale = 1:54.1			1-2-2		0-7-	12			7-0-1	0		
TCLL (roof) 25.0 Plate Gp DOL 1.15 TC 0.68 Verift -0.24 8-10 s-999 360 MT20 197/144 BCDL 0.00 Rep Brress Incr YES Verift -0.04 8-10 s-999 360 MT20 197/144 BCDL 0.00 Rep Brress Incr YES Verift -0.04 8-10 s-999 240 Weight: 77 Ib FT = 10% UMBER TOP CHORD 2x4 SPF No.2 Rep Br No.2 Secont 100 0.01 8.10 s-999 240 Weight: 77 Ib FT = 10% UMBER Code IRC2012/TE/2007 Markix-S 01 rules 0.11 at 0 197 4 begins plate capable of withstanding 128 lb uplit at joint 7. LOAD CASE(S) Standard Code Standard Code Standard Standard LOAD CASE(S) Standard							1						
TCDL 10.0 Lumber DOL 1.15 BC 0.72 Verif1U 0.04 8-10 -552 240 BCDL 10.0 Rep Stress Incr YES Weight: 77 Ib FT = 10% BCDL 10.0 Code Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 128 ib uplit at joint 7. Verifius 1000 FT = 10% LUMBER Code Structural wood sheathing directly applied or 4.256 SPF No.2. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 128 ib uplit at joint 7. LOAD CASE(S) Standard TOP CHORD Structural wood sheathing directly applied or 4.40 cp urins, except end verticals. Structural wood sheathing directly applied or 4.256 SPF No.2. LOAD CASE(S) Standard SROXING Structural wood sheathing directly applied or 4.00-0 oc bracing. Structural wood sheathing directly applied or 4.256 SPF No.2. LOAD CASE(S) Standard FORCES Night celling directly applied or 10-0-0 oc bracing. Merid No.2014 Standard Standard TOP CHORD Standard Te-103(06,677,3-466) Standard Standard Standard TOP CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. Standard Standard	•					0.95						-	
BCLL 0.0 Reg Stress Incr YES WB 0.21 Horiz (TL) 0.03 7 r/a r/a r/a BCDL 10.0 Code IRC2012/TPI2007 Marks S Umarks S Wind(LL) 0.11 8-10 >999 240 Weight: 77 lb FT = 10% UMDER TOP CHORD 2x4 SPF No.2 SPF No.2 SPF No.2 SPF No.2 Spr No.2 "Except" 11-2:2x6 SPF No.2. Spr No.2 "Except" 11-2:2x6 SPF No.2. CAD CASE(S) Standard Standar	. ,		1 1		-							MI 20	197/144
BCDL 10.0 Code IRC2012/TPI2007 Matrix-S Wind(L) 0.11 8-10 >999 240 Weight: 77 lb FT = 10% LUMBER TOP CHORD 2x4 SPF No.2					-								
 LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 2x3 SPF No.2 "Except" 11-2:x6 SPF No.2, 7-6:x8 SP DS.2 BRACING TOP CHORD 3 Structural wood sheathing directly applied or 2-4- do putlins, except end verticals. BOT CHORD 2010 Structural wood sheathing directly applied or 2-4- do putlins, except end verticals. BOT CHORD 10; Maximum Chorner 11-295/0-3-8 Max Upitit 7=-101 (LC 8), 11=-128 (LC 8) FORCES (b) - Maximum Chornerpassion/Maximum Tension TOP CHORD 10-11=-129:29, 9-10=-10654, 7-8=-68/824 WEBS 4-8=-118/379, 5-8=-244/219, 4-10=-12/2430, 3-10=-244/221 WOTES 10 Unbalanced roof live loads have been considered for this design. WIRK SC 7-10: Ultie-115mph (3-second gust) V (IRC2012)=10mph; TCDL=60; Str ha-25tr, Cat. II; Exp C; Enclosed; MWRS (envelope) exterior zone; canitiever left and right exposed; and vertical left and right exposed; Lumber DDL=1.60 plate grip DDL=1.60 30 This truss has been designed for a 10.0 pst botom chord live lead nonconcurrent with any other live loads, 4) "This truss has been designed for a 10.0 pst botom chord live load nonconcurrent with any other live loads, 5). Refer to gride(ts) for truss to truss connections. 						0.21						Weight [.] 77 lb	FT = 10%
 DrOP CHORD 2: 24: SPF No.2 bearing plate capable of withstanding 128 lb uplift at goint 7. bearing plate capable of withstanding 128 lb uplift at goint 7. both 11 and 101 lb uplift at goint 7. LOAD CASE(S) Standard Structural wood sheathing directly applied or 10-0-0 cb bracing. BRACINOS (Ib/size) 7-913/ Mechanical, 11-995/0-3-8 Max Horiz 11-221(LC 5) Max Uplift 7101 (LC 9), 11128 (LC 8) FORCES (Ib) - Maximum Compression/Maximum Tression TOP CHORD 1: 2-0/43, 2-3a-1165/157, 3-4a-999/215, 4-59-949/215, 5-6-2142/151, 2-11-930/168, 8-10-2142/19, 4-10122/430, 3-11-6-244/221 NOTES 1 U hubalanced roof live loads have been considered for this design. Vinct. ASCE 7-10; Vult=115mph 13-escond gust) V ((RC2012)=41mph 13-escond gust) V (IMCBER is conditioned indiversion and ing the sposed ; end vertical left and right esposed ; end vertica		10.0	0000						0.10	2000	210	troigitt. 11 lb	11 - 10%
BOT CHORD 2x4 SPF No.2 joint 11 and 101 ib uplif at joint 7. WEBS 2x3 SPF No.2 Kreept 11-2:2x6 SPF No.2, LOAD CASE(S) Standard 7-6:2x8 SP DSS File Structural wood sheathing directly applied or 2-4-4 oc purlins, except end verticals. LOAD CASE(S) Standard FOP CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. EXCENCE EXCENCE REACTIONS (bis/ze) 7-913/ Mechanical, 11=995/0-3-8 Max Hortz Max Hortz EXCENCE REACTIONS (bis/ze) 7-913/ Mechanical, 11=995/0-3-8 Max Hortz EXCENCE EXCENCE FORCES (b) - Maximum Compression/Maximum Tomosion/Maximum Tomosion/Maximum Compression/Maximum Compressinter Comprescondulated Compression/Maximum Compression/	LUMBER												
WEBS 2x3 SPF No.2 "Except" 11-2:2x6 SPF No.2, T-2:2x6 SPF NO.2, SPF							128 lb uplift a	t					
 7-6:2x8 SP DSS BRACING TOP CHORD Structural wood sheathing directly applied or 2-4-4 oc purifies, except end verticals. BGD CHORD Bgid ceiling directly applied or 10-0-0 oc bracing. REACTONS (Ibsize) 7-913/ Mechanical, 11=995/0-3-8 Max Horiz 11=222 (LC 5) Max Uplit 7-e-101 (LC 9), 11=-128 (LC 8) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 10-11=20/33, 2-3=-1165/157, 3-4=-999/215, 4-5=-949/213, 5-6=-1128/151, 2-11=-903/166, 6-78-797/135 BOT CHORD 10-11=162/339, 8-10=-10/654, 7-8=-66/824 WEES 4-8=-118/379, 5-8=-244/221 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) V ((RC2012)=91mph; TCDI=-6.0pst; BCDI=-6.0pst;			opt* 11 2:2v6 SDE No										
BRACINO TOP CHORD Structural wood sheathing directly applied or 2-4-4 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (b/size) 7-913/ Mechanical, 11=995/0-3-8 Max Uplit 7=-101 (LC 9), 11=-128 (LC 8) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=043, 2-3=-1165/157, 3-4=-999/215, 4-5=-949/213, 5-6=-1128/151, 2-11==903/166, 6-7=797/135 BOT CHORD 10-11=-E02903, 8-1010(654, 7.8=-68/24) 4-8=-118/379, 5-8=-244/219, 4-10=-122/430, 3-10=-244/221 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Winci. ASCE 7-10; 'Uult=115mph (3-second gust) V (IRC2012)=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Limber DDL=1.80 plate grip DOL=1.60 3) This truss has been designed for a 10.0 pf bottom chord and any other members, with BCDL = 10.0psf. 4) "This truss has been designed for a 10.0 pf bottom chord and right exposed; Limber do of 20.0psf or the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fib between the bottom chord and right exposed; chord of 20.0psf or the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fib between the bottom chord and right exposed; Limber 4.100, pdf 4.7 This truss has been designed for a 1:0.0psf.	WEB5		ept 11-2:2x6 SPF NO	.2, LOAD CASE(S) Standard								
TOP CHORD Structural wood sheathing directly applied or 2-4-4 oc purlins, except end verticals. BOT CHORD Rigid celling directly applied or 10-0-0 cc bracing. REACTIONS (bisize) 7-913/ Mechanical, 11-995/0-3-8 Max Horiz 11-222 (LC 5) Max Horiz 11-222 (LC 5) Max Horiz 11-222 (LC 5) Top CHORD 12-20/43, 2-3e-1165/157, 3-4e-999/215, 4-5-8-449/213, 5-6e-1128/151, 2-11-8/93/166, 6-7e-7877/135 BOT CHORD 10-11-162/939, 8-10e-10/654, 7-8-8-66/824 WEES 4-8e-118/379, 5-8e-244/221 NOTES 10 Vinci-ASCE 7-10; Vult=115mph (3-second gust) V (IRC2012)=91mph; TCDL=6.0ps; BCDL=6.0ps; h=25ft; CCL coll (LT exposed); cumber DoL=1.60 Vinci-ASCE 7-10; Vult=115mph (3-second gust) V (IRC2012)=91mph; TCDL=6.0ps; BCDL=6.0ps; h=25ft; CCL coll (LT exposed); cumber DoL=1.60 20 This truss has been designed for a 10.0 pst bottom chord live load shave been consoldered for this design. 30:10-24/221 Julan ST This truss has been designed for a 10.0 pst bottom chord in all areas where a rectangle 3-96-96.0 kall by 2-00.0 wide will the tween the bottom chord in all areas where a rectangle 3-96-90.0 kall by 2-00.0 wide will the tween the bottom chord any other remembers, with BCDL = 10.0.pst. ST	BRACING	1 0.200 01 2000											
BOT CHORD Rigit ceiling directly applied or 10-0-0 oc bracing. REACTIONS (b/size) 7-913/ Mechanical, 11=995/0-3-8 Max Horiz 11=222 (LC 5) Max Uplit 7-101 (LC 9), 11=-128 (LC 8) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/43, 2-3=-1165/157, 3-4=-999/215, 4-5=-949/213, 5-6=-1128/151, 2-11=-903/166, 6-7=-797/135 BOT CHORD 10-11=-162/939, 8-10=-10/654, 7-8=-66/824 WEBS 4-8=-118/379, 5-8=-244/219, 4-10=-122/430, 3-10=-244/221 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Win: ASCE 7-10, Vult=115mph (3-second gust) V (IRC2012)=91mph; TCDL=6.0ps; fbcDL=6.0ps; fb=-25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psł bottom chord live load nonconcurrent with any other live loads. 4) "This truss has been designed for a 10.0 psf bottom chord in bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss to truss connections.	TOP CHORD	Structural wood she	eathing directly applied	d or									
 bracing. REACTIONS (b)size) 7=913/ Mechanical, 11=995/0-3-8 Max Horiz 11=222 (LC 5) Max Uplit 7=-101 (LC 9), 11=-128 (LC 8) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/43, 2-3=-1165/157, 3-4=-999/215, 4-5=-949/213, 5-6=-1128/151, 2-11=-903/166, 6-7=-797/135 BOT CHORD 10-11=-1622/393, 8-10=-10654, 7-8=-66/824 WEBS 4-8=-118/379, 5-8=-244/219, 4-10=-122/430, 3-10=-244/221 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) V (IRC2012)=91mph; TCD=6.06, psf. h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; Lumber DQL=1.60 psf h=25ft; Cat. II; Exp C, Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; Lumber DQL=1.60 psf hex26ft; Cat. II; Exp C, Enclosed; Iumber DQL=1.60 psf hex26ft; OF MUMERER 3) This trues has been designed for a 10.0 psf bottom chord and any other members, with BCDL = 10.0 psf. 6) Refer to girder(s) for trus to tru		2-4-4 oc purlins, ex	cept end verticals.										
REACTIONS (Ib/size) 7=913/ Mechanical, 11=995/0-3-8 Max Horiz 11=222 (LC 5) Max Uplit 7=-101 (LC 9), 11=-128 (LC 8) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/43, 2-3=-1165/157, 3-4=-999/215, 4-5=-949/213, 5-6=-1128/151, 2-11=-903/166, 6-7=797/135 BOT CHORD 10-11=-162/939, 8-10=-10/654, 7-8=-66/824 WEBS 4-8=-118/379, 5-8=-244/219, 4-10=-122/430, 3-10=-244/221 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wint: ASCE 7-10; Vull=115mph (3-second gust) V (IRC2012)=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; HWFRS (envelope) exterior zone; cantilever left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) "This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with elo add 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fib devenent the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections.	BOT CHORD	0 0 ,	applied or 10-0-0 oc										
Max Horiz 11=222 (LC 5) Max Upift 7=-101 (LC 9), 11=-128 (LC 8) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/43, 2-3=-1165/157, 3-4=-999/215, 4-5=-949/213, 5-6=-1128/151, 2-11==903/166, 6-7=-797/135 BOT CHORD 10-11=-162/939, 8-10=-10/654, 7-8=-66/824 WEBS 4-8=-118/379, 5-8=-244/219, 4-10=-122/430, 3-10=-244/221 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) V (IRC2012)=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; UMVFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=-1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) *This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-0-00 wide will fit thetween the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections.		0											
Max Uplift 7=-101 (LC 9), 11=-128 (LC 8) FORCES (b)- Maximum Compression/Maximum Tension TOP CHORD 1-2=0/43, 2-3=-1165/157, 3-4=-999/215, 4-5=-949/213, 5-6=-1128/151, 2-11=-903/166, 6-7=797/135 BOT CHORD 10-11=-162/939, 8-10=-10/654, 7-8=-66/824 4-8=-118/379, 5-8=-244/219, 4-10=-122/430, 3-10=-244/221 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) V (IRC2012)=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load on concurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-0-00 wide will fit between the bottom chord in up other inve load of 20.0psf. 5) Refer to girder(s) for truss to truss connections.	REACTIONS	· /	,	3-8									
FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/43, 2-3=-1165/157, 3-4=-999/215, 4-5=-949/213, 5-6=-1128/151, 2-11=-903/166, 6-7=-797/135 BOT CHORD 10-11=-162/939, 8-10=-10/654, 7-8=-66/824 WEBS 3-8=-244/221 NOTES 10-11=-162/939, 8-10=-10/654, 7-8=-66/824 Vinci ASCE 7-10; Vult=115mph (3-second gust) V (IRC2012)=91mph; TCDL=6.0pst; BCDL=6.0pst; h=25ft; Cat. II; Exp C: Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DDL=1.60 plate grip DDL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load on concurrent with any other live loads. 4) *This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fill between the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections.		•	,										
Tension TOP CHORD 1-2=0/43, 2-3=-1165/157, 3-4=-999/215, 4-5=-949/213, 5-6=-1128/151, 2-11=-903/166, 6-7=-797/135 BOT CHORD 10-11=-162/939, 8-10=-10/654, 7-8=-66/824 WEBS 4-8=-118/379, 5-8=-244/219, 4-10=-122/430, 3-10=-244/221 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) V (IRC2012)=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Limber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load onconcurrent with any other live loads. 4) * This truss has been designed for a 10.0 psf. 5) Refer to girder(s) for truss to truss connections.	FORCES												
 4-5=-949/213, 5-6=-1128/151, 2-11=-903/166, 6-7=-797/135 BOT CHORD 10-11=-162/939, 8-10-E0/854, 7-8=-66/824 4-8=-118/379, 5-8=-244/219, 4-10=-122/430, 3-10=-244/221 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) V (IRC2012)=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf. 5) Refer to girder(s) for truss to truss connections. 	TOROLO		npression/maximum										
 2-11=-903/166, 6-7=-797/135⁶ BOT CHORD 10-11=-162/339, 8-10=-10/654, 7-8=-66/824 4-8=-118/379, 5-8=-244/219, 4-10=-122/430, 3-10=-244/221 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) V ((RC2012)=91mph; TCDL=6.0psf; BCDL=6.0psf; H=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; lumber DOL=1.60 public end vertical left and right exposed; lumber DOL=1.60 plate grip DOL=1.60 poly the loads have been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections. 	TOP CHORD	1-2=0/43, 2-3=-116	5/157, 3-4=-999/215,										
 BOT CHORD 10-11=-162/939, 8-10=-10/654, 7-8=-66/824 WEBS 4-8=-118/379, 5-8=-244/219, 4-10=-122/430, 3-10=-244/221 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) V (IRC2012)=91mph; TCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; cantiever left and right exposed; end vertical left and right exposed; conserver with any other live loads. 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections. 													
 WEBS 4-8118/379, 5-8244/219, 4-10=-122/430, 3-10=-244/221 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) V (IRC2012)=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; cand vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections. 		,		201									
 3-10=-244/221 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) V (IRC2012)=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a live loads. 4) * This truss has been designed for a live loads. 4) * This truss has been designed for a live loads. 5) Refer to girder(s) for truss to truss connections. 		,	,										
 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) V (I(RC2012)=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load on concurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections. 	WEB3		-244/219, 4-10=-122/4	,50,									
 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) V (IRC2012)=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections. 	NOTES	0.10 21.0221											
 this design. Wind: ASCE 7-10; Vult=115mph (3-second gust) V (IRC2012)=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Refer to girder(s) for truss to truss connections. 		ed roof live loads have	been considered for										
 (IRC2012)=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections. 													111.
 Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections. 												N'OF	MISH
 zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections. 												NE	Sol
and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections.											2	18	
 DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections. 											2	6: JU	AN 2
 chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 6) Refer to girder(s) for truss to truss connections. 			51								= .	GAR	
 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections. 											- 7		16- *-
on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections.												. ん	
3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections.				OST							=1	NUM	BER :
chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections.				n							1	O: E-2000	162101
5) Refer to girder(s) for truss to truss connections.											1	· ··· -·	
ONAL												1,000	ENGIN
												IT ON	ALSIN
lanuary 17 2022													

2

⊠

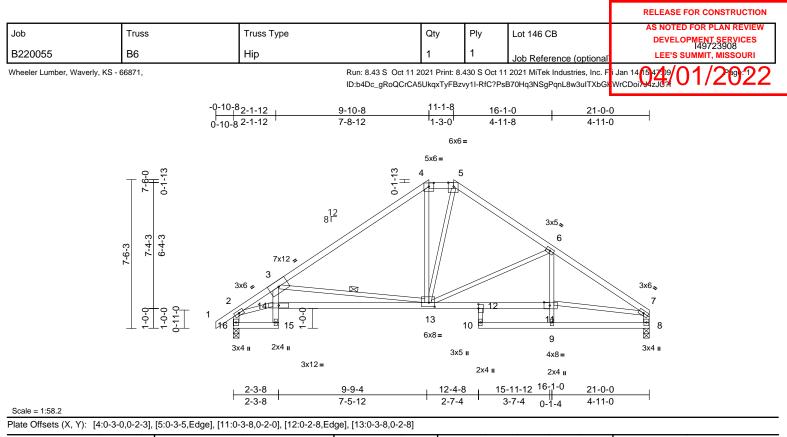

(H

0-11-0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

								RELEASE FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Lot 146 CB	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 149723907
B220055	B5		Roof Special		1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waver	iy, KS - 66871,		F	Run: 8.43 S Oct 11 2 D:b4Dc_gRoQCrCA5	021 Print: 8 5UkqxTyFB	.430 S Oct 11 zvy1I-RfC?Psl	l 2021 MiTek Industries, Inc. F B70Hq3NSgPqnL8w3uITXbGł	i Jan 14154708/01/219:22 WrCDoily4zJ07
		-0-10-8 ₂₋ 0-10-8 2-		10-6-0 4-4-14		<u>16-1-0</u> 5-7-0	<u>20-10-8</u> 4-9-8	—
					4x4=			
	7-11-3 7-11-0 6-11-0		8 ¹² 3x 3x4 II 3	4.	5		3x5. 6	

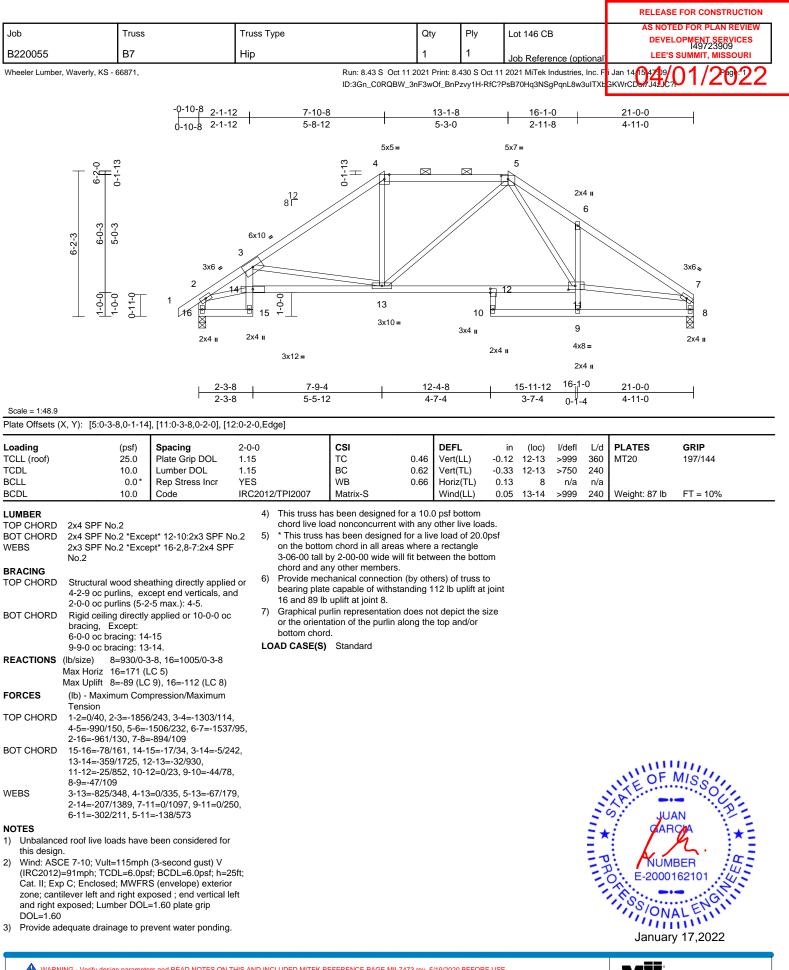
Plate Offsets (X, Y): [11:0-3-8,0-2-0], [12:0-2-0,Edge]


Plate Offsets ((X, Y): [11:0-3-8,0-2-0	j, [12:0-2-0,Edge]			-							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2012/TPI2007	CSI TC BC WB Matrix-S	0.36 0.57 0.48	DEFL Vert(LL) Vert(TL) Horiz(TL) Wind(LL)	in -0.15 -0.41 0.11 0.06	13-14 8	l/defl >999 >605 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 89 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 *Exce 2x3 SPF No.2 *Exce No.2 Structural wood she 3-11-14 oc purlins, or Rigid ceiling directly bracing.	pt* 16-2,8-7:2x4 SP athing directly applie except end verticals applied or 10-0-0 oc	on the bot 3-06-00 ta chord and 5) Refer to g 6) Provide m bearing pl joint 16 ar	s has been designe tom chord in all area Il by 2-00-00 wide w any other members irder(s) for truss to t echanical connectic ate capable of withs Id 103 lb uplift at join S) Standard	as where vill fit betw s. russ conr on (by oth standing 1	a rectangle veen the botto nections. ers) of truss to	o o					
REACTIONS	(lb/size) 8=924/ Me Max Horiz 16=220 (L Max Uplift 8=-103 (L											
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD		1021/176,	,									
BOT CHORD		5=-21/52, 4=-178/1100, -12=-67/1058,										
WEBS	4-14=-187/819, 4-13 5-13=-79/675, 6-13= 6-11=0/181, 2-14=-2	-498/215, 9-11=0/16									VIE OF	MISS
this design 2) Wind: AS((IRC2012) Cat. II; Ex zone; can and right of DOL=1.60 3) This truss	CE 7-10; Vult=115mph)=91mph; TCDL=6.0ps p C; Enclosed; MWFR tilever left and right exp exposed; Lumber DOL:	(3-second gust) V f; BCDL=6.0psf; h=2 S (envelope) exterio bosed ; end vertical I =1.60 plate grip r a 10.0 psf bottom	25ft; r left							Wint Phone	2 JU/ GAR 5 E-2000	BER 162101

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

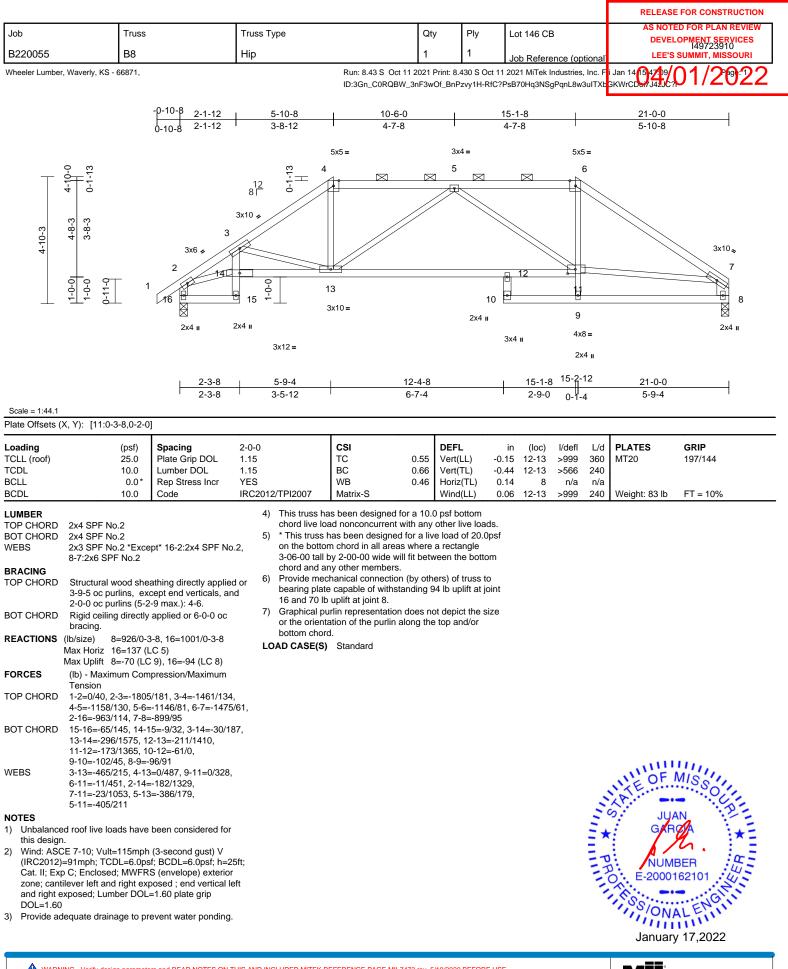
January 17,2022

58/ONAL ENT 17.202

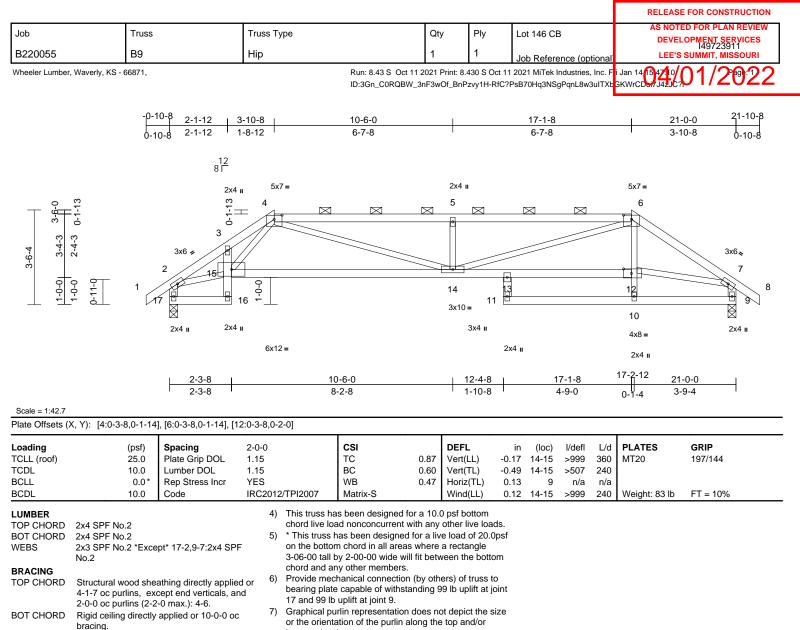


Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	2/TPI2007	CSI TC BC WB Matrix-S	0.75 0.68 0.67	DEFL Vert(LL) Vert(TL) Horiz(TL) Wind(LL)	-0.33 0.14	(loc) 13-14 13-14 8 13-14	l/defl >999 >748 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 91 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	No.2 Structural wood she	pt* 16-2,8-7:2x4 SPF athing directly applied cept end verticals, an	= 5) d or	 This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Provide mech bearing plate 	uate drainage to p s been designed f d nonconcurrent v as been designed n chord in all areas y 2-00-00 wide wil y other members. nanical connection capable of withst	or a 10. vith any for a liv s where I fit betw (by oth anding 1	D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t	ds. Opsf om					
BOT CHORD	Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 14 8-1-12 oc bracing: 1		7)) Graphical pu or the orienta bottom chord		does no		size					
WEBS REACTIONS				OAD CASE(S)	Standard								
FORCES	(lb) - Maximum Com												
TOP CHORD	Tension 1-2=0/40, 2-3=-1919 4-5=-831/179, 5-6=- 6-7=-1508/153, 2-16	,											
BOT CHORD	15-16=-93/174, 14-1 13-14=-513/2009, 12 11-12=-49/1066, 10- 8-9=-20/156											ILE OF	MISSO
WEBS	3-13=-1228/499, 4-1 5-13=-129/428, 6-13	3=-22/286, 3=-504/195, 9-11=0/1 280/1470, 7-11=-48/1	,								in the second se		NA
this design 2) Wind: ASC (IRC2012) Cat. II; Exp zone; cant	CE 7-10; Vult=115mph =91mph; TCDL=6.0ps p C; Enclosed; MWFR tilever left and right exp exposed; Lumber DOL	(3-second gust) V ff; BCDL=6.0psf; h=2 S (envelope) exterior bosed ; end vertical le									* 87.11	E-20001	LENGINI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



January 17,2022


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- REACTIONS (lb/size) 9=1003/0-3-8, 17=1003/0-3-8 Max Horiz 17=108 (LC 7) Max Uplift 9=-99 (LC 4), 17=-99 (LC 5)
- FORCES
 (lb) Maximum Compression/Maximum Tension

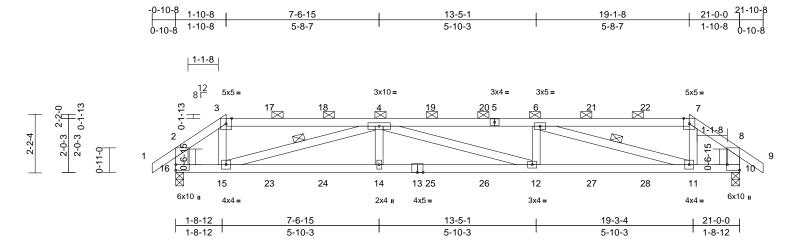
 TOP CHORD
 1-2=0/40, 2-3=-1809/244, 3-4=-1842/259, 4-5=-2503/391, 5-6=-2503/391, 6-7=-1634/203, 7-8=0/40, 2-17=-979/122, 7-9=-959/116

 BOT CHORD
 16-17=-60/98, 15-16=0/43, 3-15=-112/108,
- 14-15=-267/1360, 13-14=-157/1316, 12-13=-176/1186, 11-13=0/92, 10-11=-2/130, 9-10=-4/152

 WEBS
 4-15=-9/441, 4-14=-235/1247, 5-14=-565/228, 6-14=-259/1283, 40.425, 2.45, 0429, 2.45, 400/4254
 - 10-12=0/173, 6-12=0/233, 2-15=-192/1354, 7-12=-183/1161

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) V (IRC2012)=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

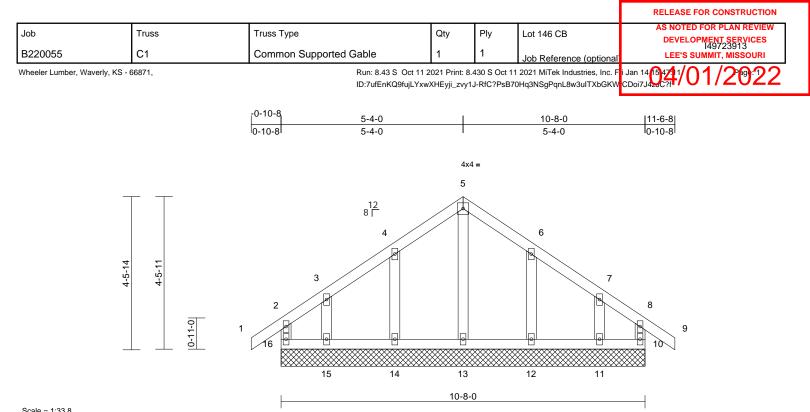
bottom chord.

LOAD CASE(S) Standard

	i					RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 146 CB	DEVELOPMENT SERVICES
B220055	B10	Hip Girder	1	1	Job Reference (optional	
Wheeler Lumber Weuerhalt	KG 00071	D			2024 MiTel: Industrian Inc. F	

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fi Jan 14 15 4710/01/210:220 ID:b4Dc_gRoQCrCA5UkqxTyFBzvy1I-RfC?PsB70Hq3NSgPqnL8w3uITXbGI WrCDoi794zJ0?

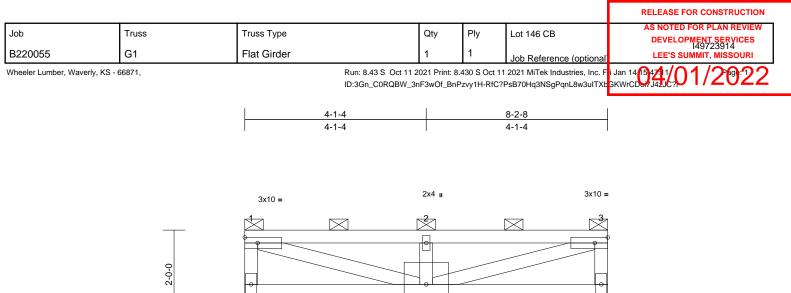
Scale = 1:42.9

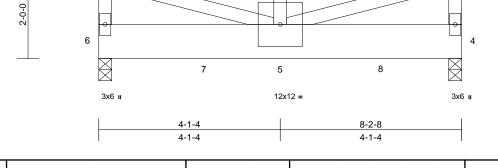

Plate Offsets (X, Y): [10:Edge,0-5-8]

	, 1). [10.∟uge,0-0-0												
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO		CSI TC BC WB	0.72 0.83 0.40	DEFL Vert(LL) Vert(TL) Horiz(TL)	in -0.20 -0.46 0.10	12-14 10	l/defl >999 >540 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC201	2/TPI2007	Matrix-S		Wind(LL)	0.21	12-14	>999	240	Weight: 80 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 *Exce No.2 Structural wood she	ept* 16-2,10-8:2x6 SP athing directly appliec cept end verticals, an- -8 max): 3-7	lor 6)	chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Provide mec bearing plate	is been designed as been designe nas been designe n chord in all area by 2-00-00 wide w ny other members hanical connectio c capable of withs 261 lb uplift at joir	with any d for a liv as where vill fit betv s. on (by oth tanding 2	other live loa e load of 20.0 a rectangle veen the botto ers) of truss t	Opsf om to					(B), 11=3 (B), 23=1 3), 27=1 (B), 28=1 (B)
BOT CHORD	Rigid ceiling directly bracing.	,	7)	or the orienta	Irlin representatio ation of the purlin			size					
WEBS	0	4-15, 6-11		bottom chore									
REACTIONS	(lb/size) 10=994/0 Max Horiz 16=75 (LC Max Uplift 10=-261 (,	8)	provided suf down and 52	other connection ficient to support bup at 1-10-8, down and 26 lb up	concentra 65 lb dov	ited load(s) 7 vn and 26 lb	up at					
FORCES	(lb) - Maximum Com	pression/Maximum			7-6-0, 65 lb down								
TOP CHORD	Tension 1-2=0/43, 2-3=-1016 4-6=-2613/820, 6-7=	5/306, 3-4=-723/245, -723/243, -0/43, 2-16=-785/201, -15=-825/2613,		lb down and at 13-6-0, 6 down and 26 up at 19-1-8 at 1-10-8, 1 and 13 lb up 11 lb down a	26 lb up at 11-6- 5 lb down and 26 6 lb up at 17-6-0, 9 on top chord, an 1 lb down and 13 at 5-6-0, 11 lb do 13 lb up at 9-	0, 65 lb c lb up at and 57 lk d 17 lb do lb up at own and 6-0, 11 lk	own and 26 15-6-0, and 6 down and 2 own and 13 ll 3-6-0, 11 lb d 13 lb up at 7 down and 1	lb up 55 lb 8 lb 5 up lown -6-0, 3 lb					900.
WEBS	3-15=-78/436, 4-15=	1975/616, 4-14=0/24 0/243, 6-11=-1975/62	,	down and 13 up at 17-6-0 on bottom ch	9, 11 lb down and 3 lb up at 15-6-0, 9, and 17 lb down 10rd. The design/	and 11 lt and 13 lt selection	down and 1 up at 19-0- of such	3 lb			1	TATE OF	MISSOU
NOTES 1) Unbalance this design	ed roof live loads have	been considered for	9)	In the LOAD	levice(s) is the rea CASE(S) section are noted as front	, loads a	plied to the	face			E*	o JU/ G/(R	
2) Wind: ASG (IRC2012) Cat. II; Ex zone; can: and right e DOL=1.60	CE 7-10; Vult=115mph)=91mph; TCDL=6.0ps p C; Enclosed; MWFR tilever left and right exp exposed; Lumber DOL	f; BCDL=6.0psf; h=25 S (envelope) exterior bosed ; end vertical le =1.60 plate grip	5ft; 1)	LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ht) Vert: 1-2=-70, 2-3=-70, 3-7=-70, 7-8=-70, 8-9=-70, 10-16=-20 Concentrated Loads (lb)								62101	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

January 17,2022




Scale = 1:33.8														
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	12/TPI2007	CSI TC BC WB Matrix-R	0.07 0.03 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 44 lb	GRIP 197/144 FT = 10%
FORCES TOP CHORD BOT CHORD WEBS NOTES	10-0-0 oc Rigid ceilin bracing. (Ib/size) Max Horiz Max Uplift Max Grav (Ib) - Maxi Tension 2-16=-121 3-4=-53/2 6-7=-39/7 8-10=-121 15-16=-64 12-13=-64 2-13=-137 6-12=-163 ed roof live Io	Jo.2 Jo.2 Jo.2 wood she purlins, e ng directly 10=128/11 14=198/11 16=128/11 16=128/11 16=128/11 16=128/11 16=133 (L 10=-33 (L 10=-33 (L 12=-73 (L 10=133 (L 14=202 (L 14=202 (L 14=202 (L 14=202 (L 16=142 (L) 16=142 (L) 1	LC 6) C 5), 11=-82 (LC 9), C 9), 14=-72 (LC 8), C 8), 16=-58 (LC 4) .C 20), 11=161 (LC 1 .C 16), 13=176 (LC 1 .C 15), 15=170 (LC 1 .C 16) pression/Maximum 0/40, 2-3=-75/77, /114, 5-6=-37/108, /59, 8-9=0/40, 5=-64/66, 13-14=-64// 162/99, 3-15=-120/9	d or 2), 2), 6), 7 (, 7 (, 7 (, 7 (, 7 (, 7) (, 7)((IRC2012)=5 Cat. II; Exp (zone; cantile and right exp DOL=1.60 Truss design only. For stu see Standar or consult qu All plates are braced again Gable studs Truss to be f braced again Gable studs This truss ha chord live loo; * This truss ha chord live loo; 3-06-00 tall li chord and an Provide mec bearing plate 16, 40 lb upl 	7-10; Vult=115m 11mph; TCDL=6.0 C; Enclosed; MWF ver left and right i loosed; Lumber DC ed for wind loads uds exposed to wid d Industry Gable I easified building es es continuous bot ully sheathed from st lateral moverne spaced at 2-0-00 is been designed ad nonconcurrent hanical connection e capable of withs fit at joint 10, 72 lt 15, 73 lb uplift at Standard	psf; BCE FRS (env exposed DL=1.60 in the pl nd (norm End Deta ssigner a s otherwi ttom choon n one face ent (i.e. c toc. for a 10. with any d for a liv as where vill fit betw s. n (by oth tanding s o uplifit at	DL=6.Ŏpsf; h=2 elope) exterio; ; end vertical i plate grip ane of the trus al to the face) ils as applicat s per ANSI/TF se indicated. d bearing. te or securely liagonal web). D psf bottom other live loar e load of 20.0 e load of 20.0 ers) of truss tr i8 lb uplift at j joint 14, 86 lb	r left ss , ble, Pl 1. ds. ppsf om opint				JUA GAR SS/ON	• 41-
													January	17.2022

January 17,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:26.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	(53)	Plate Grip DOL	1.15	TC	0.42	Vert(LL)	-0.05	(100)	>999		MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.30	Vert(TL)	-0.10	5	>908	240	-	
BCLL	0.0*	Rep Stress Incr	NO	WB	0.57	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2012/TPI2007	Matrix-P		Wind(LL)	0.03	5	>999	240	Weight: 53 lb	FT = 10%

TOP CHORD	2x4 SPF No.2
BOT CHORD	2x10 SP DSS
WEBS	2x4 SPF No.2
BRACING	
TOP CHORD	2-0-0 oc purlins (3-7-13 max.): 1-3, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
REACTIONS	(lb/size) 4=1758/0-3-8, 6=2547/0-3-8
	Max Horiz 6=56 (LC 5)
	Max Uplift 4=-249 (LC 5), 6=-344 (LC 4)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-6=-927/161, 1-2=-2171/299,
	2-3=-2171/299, 3-4=-927/161
BOT CHORD	5-6=-49/44, 4-5=-21/16
WEBS	1-5=-332/2316, 2-5=-311/156, 3-5=-332/2316

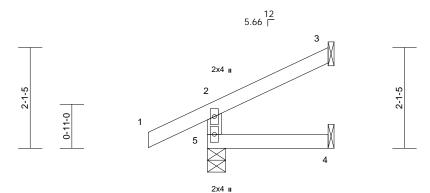
NOTES

- Wind: ASCE 7-10; Vult=115mph (3-second gust) V (IRC2012)=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 344 lb uplift at joint 6 and 249 lb uplift at joint 4.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

- Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 912 lb down and 111 lb up at 0-1-12, 893 lb down and 113 lb up at 2-4-8, and 893 lb down and 113 lb up at 4-4-8, and 893 lb down and 113 lb up at 6-4-8 on bottom chord. The design/selection of such connection device (s) is the responsibility of others.
- In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)
 - Vert: 1-3=-70, 4-6=-20
 - Concentrated Loads (lb)
 - Vert: 6=-912 (F), 5=-893 (F), 7=-893 (F), 8=-893 (F)



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 146 CB	AS NOTED FOR PLAN REVIEW
000	11033		Quy	l' ly	LOI 140 CD	DEVELOPMENT SERVICES 149723915
B220055	J1	Diagonal Hip Girder	2	1	Job Reference (optional	
		-				

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fi Jan 14 15 471/01/20:22 ID:7ufEnKQ9fujLYxwXHEyji_zvy1J-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKW CDoi7J4&c??I

2-6-5

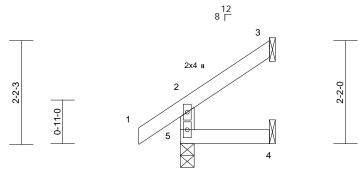
Scale =	1:24.1
---------	--------

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.15	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(TL)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2012/TPI2007	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 8 lb	FT = 10%
LUMBER												
TOP CHORD	2x4 SPF No.2											
BOT CHORD	2x4 SPF No.2											
WEBS	2x4 SPF No.2											
BRACING												
TOP CHORD	Structural wood she 2-6-5 oc purlins, ex		ed or									
BOT CHORD	Rigid ceiling directly		с									
201 0110112	bracing.		•									
REACTIONS	(lb/size) 3=57/ Me	chanical, 4=18/										
	Mechanic	al, 5=230/0-4-9										
	Max Horiz 5=58 (LC											
	Max Uplift 3=-40 (LC	<i>,, , , ,</i>										
	Max Grav 3=57 (LC (LC 1)	1), 4=42 (LC 3), 5=	230									
FORCES	()											
FORCES	(lb) - Maximum Com Tension	pression/iviaximum										
TOP CHORD		41, 2-3=-47/18										
BOT CHORD	4-5=0/0											
NOTES												
1) Wind: AS	CE 7-10; Vult=115mph	(3-second gust) V										
)=91mph; TCDL=6.0ps											
	p C; Enclosed; MWFR											
	tilever left and right ex exposed; Lumber DOL		left									1117
DOL=1.60		= 1.60 plate grip									Nº OF	MISSI
	has been designed fo	r a 10.0 psf bottom									NKE	
	load nonconcurrent w		ds.							-	×4	
	ss has been designed f		Opsf								S. JUA	AN
	ttom chord in all areas									24	GAR	CA :1=
	all by 2-00-00 wide will	tit between the botto	om							- 1	1	M :*=
	I any other members. jirder(s) for truss to tru	les connections								1	· h	
	nechanical connection		0								NUM	• 41.
e) 110110011		(2) 501010/ 01 0000									C. E-20001	162101

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 35 lb uplift at joint 5 and 40 lb uplift at joint 3.

LOAD CASE(S) Standard

AUMBER E-2000162101 January 17,2022


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

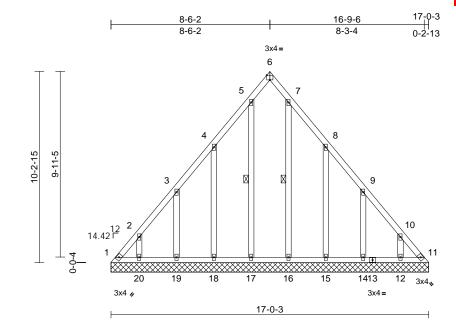
Job	Truss	Truss Type	Qty P	Ply 1	Lot 146 CB	DEVELOPMENT SERVICES 149723916
B220055	J2	Jack-Open	10 1	I .	Job Reference (optional	LEFTE CUMMIT, MICCOURT

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fi Jan 14 15 471/01/20:22 ID:7ufEnKQ9fujLYxwXHEyji_zvy1J-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKW CDoi7J4&c??I

-0-10-8	1-10-8
0-10-8	1-10-8

2x4 🛛

1-10-8


Scale = 1:24.2

Scale = 1:24.2												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2012/TPI2007	CSI TC BC WB Matrix-R	0.07 0.03 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in 0.00 0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 240 n/a	PLATES MT20 Weight: 7 lb	GRIP 197/144 FT = 10%
	10.0	Code	IRC2012/1912007	Maurix-R							Weight. 7 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she	eathing directly appli	ed or									
BOT CHORD		except end verticals. y applied or 10-0-0 o	с									
		C 8), 4=-4 (LC 8), 5=	,									
FORCES	()	npression/Maximum //40, 2-3=-49/22										
BOT CHORD	4-5=0/0											
 (IRC2012): Cat. II; Exp zone; canti and right e DOL=1.60 2) This truss I chord live I 3) * This truss on the bott 3-06-00 tal chord and 4) Refer to gii 5) Provide me bearing pla 	CE 7-10; Vult=115mpl =91mph; TCDL=6.0p o C; Enclosed; MWFF ilever left and right ex exposed; Lumber DOL has been designed fo load nonconcurrent w s has been designed tom chord in all areas I by 2-00-00 wide will any other members. rder(s) for truss to tru echanical connection ate capable of withsta ft at joint 4 and 41 lb	sf; BCDL=6.0psf; h= RS (envelope) exteric posed ; end vertical _=1.60 plate grip or a 10.0 psf bottom ith any other live load for a live load of 20.0 where a rectangle I fit between the botto uss connections. (by others) of truss t anding 7 lb uplift at jo	or left ds.)psf om								S JU GAF E-2000	MISSOUR HU
5, 4 lb upili LOAD CASE(S	•	upint at joint 5.									Januar	AL EN. y 17,2022

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

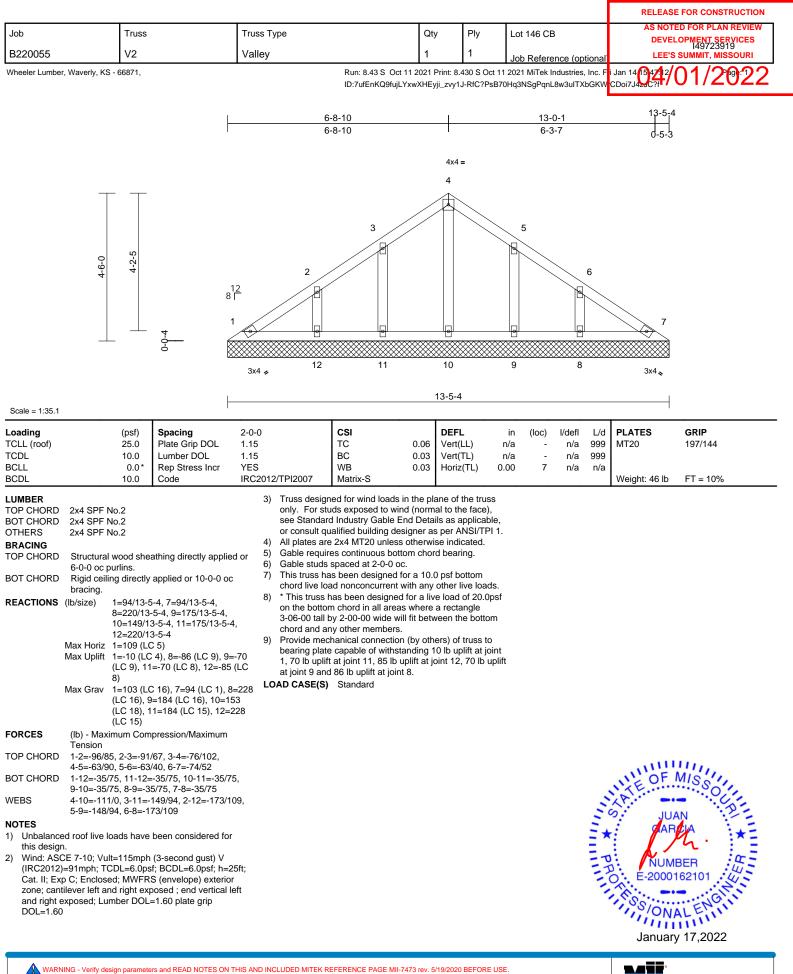
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 146 CB	AS NOTED FOR PLAN REVIEW
						DEVELOPMENT SERVICES 149723917
B220055	LAY1	Lay-In Gable	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
14/1	140 00074	P	0.40.0. 0.1.44.0004 D.1.1.0	400.0.0.1		

Scale =	1:61.7
---------	--------

Plate Offsets (X, Y): [6:Edge,0-3-1]

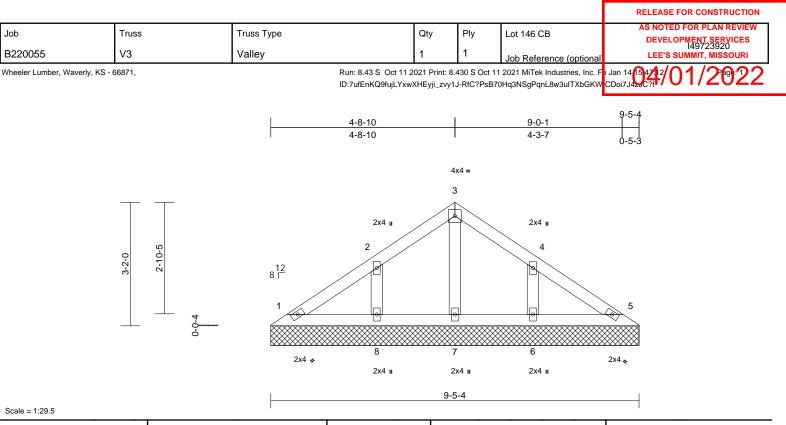
Flate Offsets ((A, T). [0.Euge,0-3-1]											-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	2/TPI2007	CSI TC BC WB Matrix-S	0.07 0.06 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 93 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	6-0-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 1=57/17-(12=162/1 15=184/1 19=183/1 Max Horiz 1=-272 (L Max Uplift 1=-158 (L 12=-137 (L 15=-177 (L 15=-177 (L 12=193 (L 12=193 (L 12=193 (L 12=194 (L 17=184 (L 17=184 (L)	LC 6), 11=-140 (LC 7), (LC 9), 14=-150 (LC 9), (LC 9), 16=-33 (LC 9), LC 8), 18=-174 (LC 8), (LC 8), 20=-137 (LC 8),	N d or 1) 2) , 3) , 3) , 3) , 3) , 3) , 4) , 5) , 6) , 5) , 7) 6), 8) 6), 8)	OTES Unbalanced this design. Wind: ASCE (IRC2012)== Cat. II; Exp 0 zone; cantile and right exp DOL=1.60 Truss desigr only. For stu see Standar or consult qu All plates are Gable require Gable require N/A This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa	2-20=-154/153, 3- 4-18=-180/197, 5- 8-15=-184/201, 9- 10-12=-154/153 roof live loads have 7-10; Vult=115m 91mph; TCDL=6.0 C; Enclosed; MWF ever left and right e posed; Lumber DC hed for wind loads uds exposed to wind d Industry Gable E aalified building de e 2x4 MT20 unless reas continuous bot as been designed ad nonconcurrent has been designed has been desi	17=-144 14=-177 we been oh (3-see psf; BCI RS (env exposed DL=1.60 in the pl nd (norm End Deta signer a s otherw tom choo for a 10. with any d for a lin swhere iil fit betw.	 /72, 7-16=-12 /175, considered for cond gust) V DL=6.0psf; h= elope) exterical plate grip ane of the tru ane of the tru ane of the tru is as applica s per ANSI/TI se indicated. d bearing. O psf bottom other live load e load of 20.0 a rectangle veen the bottom 	r 25ft; or left ss), ble, Pl 1. Dpsf om				UTE OF	MISSO
FORCES	(lb) - Maximum Corr Tension	npression/Maximum	9)	bearing plate	chanical connectio e capable of withs b uplift at joint 11,	tanding '	58 Ib uplift at				E	S JU/	N D
TOP CHORD	4-5=-119/69, 5-6=-6 7-8=-99/43, 8-9=-20 10-11=-484/221	2/109, 9-10=-355/171	,	150 lb uplift uplift at joint	at joint 19, 174 lb 17, 33 lb uplift at j lb uplift at joint 14	uplift at j joint 16,	oint 18, 48 lb 177 lb uplift a	t			*	NUM	HA. *
BOT CHORD	1-20=-142/328, 19-2 18-19=-142/328, 17- 16-17=-142/328, 15- 14-15=-142/328, 12- 11-12=-142/328	-18=-142/328, -16=-142/328,	L	TZ. OAD CASE(S)	Standard						in in	E-2000	62101

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



January 17,2022

												R	ELEASE FO			
Job	Truss			Truss Type			Qty	1	Ply	Lot 146 CE	в	A	AS NOTED FOR PLAN REVIEW			
B220055		V1			alley	1				ence (option		DEVELOPMENT SERVICES 149723918 LEE'S SUMMIT, MISSOURI				
Wheeler Lumber	r, Waverly, KS -					Run: 8.43 S Oct 11 2	 2021 Pri	nt: 8.43	30 S Oct 1'			_		1/2022		
						ID:7ufEnKQ9fujLYxw	vXHEyji_	zvy1J-F	RfC?PsB7	0Hq3NSgPqn/	⊾8w3uITXbGK	.WCDoi7J425		1/2022		
			I.		8-8-10	n	1			17-	-0-1		17-5-4			
			F		8-8-10					8-3			0-5-3			
							4x4	.4 =								
							5									
	\top	\top						~								
						4	$\geq $	\sim	6	j.						
						P			B							
	q	γ			3					\searrow	7					
	5-10-0	5-6-5			e	T				P	\sim					
			10		2							8				
			12 8 F	/							7					
		4	1										9			
	\perp	-0-0	,	ž								<u> </u>				
			KVVV	3x4 🍫	17 16	6 15	14	<u>~~~</u> ~	13	12	2 111	10	3x4 🔪			
											3x-	4 =				
			\vdash				17-5-	-4								
Scale = 1:42.4		——————————————————————————————————————				·	 _									
Loading TCLL (roof)		(psf) 25.0	Spacing Plate Grip DOL		0-0 15	CSI TC 0		DEFL Vert(LL	L)	in (loc) n/a -	l/defl L/ n/a 99			GRIP 197/144		
TCDL		10.0	Lumber DOL	1.1	15	BC 0	0.03 V	vert(TL	Ĺ) I	n/a -	n/a 99	99		דדו ווע		
BCLL BCDL		0.0* 10.0	Rep Stress Inci Code		ES RC2012/TPI2007	WB 0 Matrix-S	0.07 H	Horiz(T	Ľ) υ.	9.00	n/a n/	/a Weight:	66 lb _ F	T = 10%		
FORCES	2x4 SPF No 2x4 SPF No Structural w 6-0-0 oc pu Rigid ceiling bracing. (lb/size) 1 1 1 1 Max Horiz 1 Max Uplift 1 1 Max Grav 1 1 1 1 (lb) - Maxim Tension	o.2 o.2 o.2 wood shea urlins. ng directly a 1=93/17-5- 10=222/17 13=191/17 15=191/17 15=191/17 15=124 (LC 12=-66 (LC 12=-66 (LC 12=-66 (LC 115=-74 (LC 10=231 (LC 13=199 (LC 15=200 (LC 17=231 (LC 17=231 (LC num Comp	C 4) C 4), 10=-86 (LC 5 C 9), 13=-73 (LC C 8), 16=-66 (LC C 8) C 16), 9=93 (LC 1 LC 16), 12=173 (L C 16), 14=167 (L LC 15), 16=172 (L LC 15), 16=172 (L LC 15)	-0 oc , 7-5-4, 7-5-4, 7-5-4, 7-5-4, (2 9), C 9), C 8), 1), (LC 16), (LC 16), (LC 15), sum	 (IRC2012)=9 Cat. II; Exp C zone; cantilew and right expo DOL=1.60 3) Truss designe only. For stud see Standard or consult quad or consult quad All plates are 5) Gable require 6) Gable studs s 7) This truss has chord live load * This truss has on the bottom 3-06-00 tall by chord and an 9) Provide mech bearing plate 1, 74 lb uplift uplift at joint 1 	7-10; Vult=115mph (; P1mph; TCDL=6.0psf; C; Enclosed; MWFRS Ever left and right expo- bosed; Lumber DOL=1 and for wind loads in the ds exposed to wind (industry Gable End la lailified building design e 2x4 MT20 unless oth es continuous bottom spaced at 2-0-0 oc. as been designed for a ad nonconcurrent with has been designed for a has been designed for a has been designed for a has been designed	BCDL= S (envelo osed ; et e1.60 planet (normal 1 I Details in per as per therwise n chord b a 10.0 p h any oth or a live l vhere a r it betweet oy others ding 21 l ift at joint	=6.0psi ope) ex- and veri- ate grip te of the to the as apport ANS indica bearing osf bott ther live load of rectang en the s) of tru bupiff at 16, 8	sf; h=25ft; exterior rtical left p he truss face), pplicable, ISI/TPI 1. ated. ng. ttom ree loads. of 20.0psf ngle bottom russ to ff at joint 86 lb				OF M	15.011.		
TOP CHORD			110/82, 3-4=-93/9 9/123, 6-7=-58/63									NATE		0		
	7-8=-71/31,	, 8-9=-97/6	/64	з,							3	6	JUAN	PI		
BOT CHORD	15-16=-49/1	/102, 14-15	15=-49/102,								E	*	GAR	A 🚼		
	13-14=-49/1 10-12=-49/1	/102, 9-10=)=-49/102								E	_	Aru	~ E		
WEBS	5-14=-128/1	/1, 4-15=-1	159/98, 3-16=-13 3=-158/97, 7-12=-								-	A. F	NUMBE 2000162	R		
_	8-10=-175/1		= 100,0.,.	1017-2-7								-	2000101			
NOTES 1) Unbalance this design		ads have I	been considered	i for									ONAL			
												_	-			
	IING - Verify desiç	gn parameter	rs and READ NOTES	/ ON THIS د	AND INCLUDED MITEK RF	EFERENCE PAGE MII-7473 shown, and is for an individu	3 rev. 5/19	/2020 B!	EFORE US	Е.						


WARNING - Veniy design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2/02/ BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2012	2/TPI2007	CSI TC BC WB Matrix-S	0.06 0.03 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 197/144 FT = 10%
BOT CHORD 6-0-0 o Rigid c bracing REACTIONS (Ib/size) Max Hor	F No.2 F No.2 ral wood she c purlins. eiling directly 1=91/9-5- 6=231/9-5 8=231/9-5 z 1=-74 (LC		8) LO	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate	spaced at 2-0-0 or s been designed f ad nonconcurrent to has been designed n chord in all area by 2-00-00 wide wi by other members. hanical connection capable of withst at joint 8 and 91 l Standard	for a 10. with any I for a liv s where ill fit betw n (by oth anding S	other live load e load of 20.0 a rectangle veen the botto ers) of truss to b b uplift at joi)psf om o					

WEBS NOTES

FORCES

TOP CHORD

BOT CHORD

 Unbalanced roof live loads have been considered for this design.

(LC 8)

15)

(lb) - Maximum Compression/Maximum

1-2=-74/63, 2-3=-71/69, 3-4=-64/58,

1-8=-23/50, 7-8=-23/50, 6-7=-23/50,

3-7=-94/0, 2-8=-185/115, 4-6=-184/115

1=91 (LC 1), 5=91 (LC 1), 6=240 (LC 16), 7=125 (LC 1), 8=241 (LC

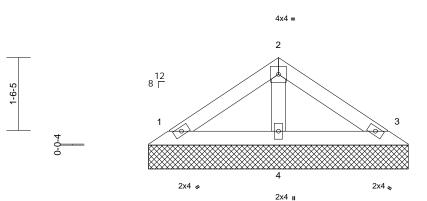
Max Grav

Tension

4-5=-56/43

5-6=-23/50

- Wind: ASCE 7-10; Vult=115mph (3-second gust) V (IRC2012)=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 Coble consult and the statistical designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

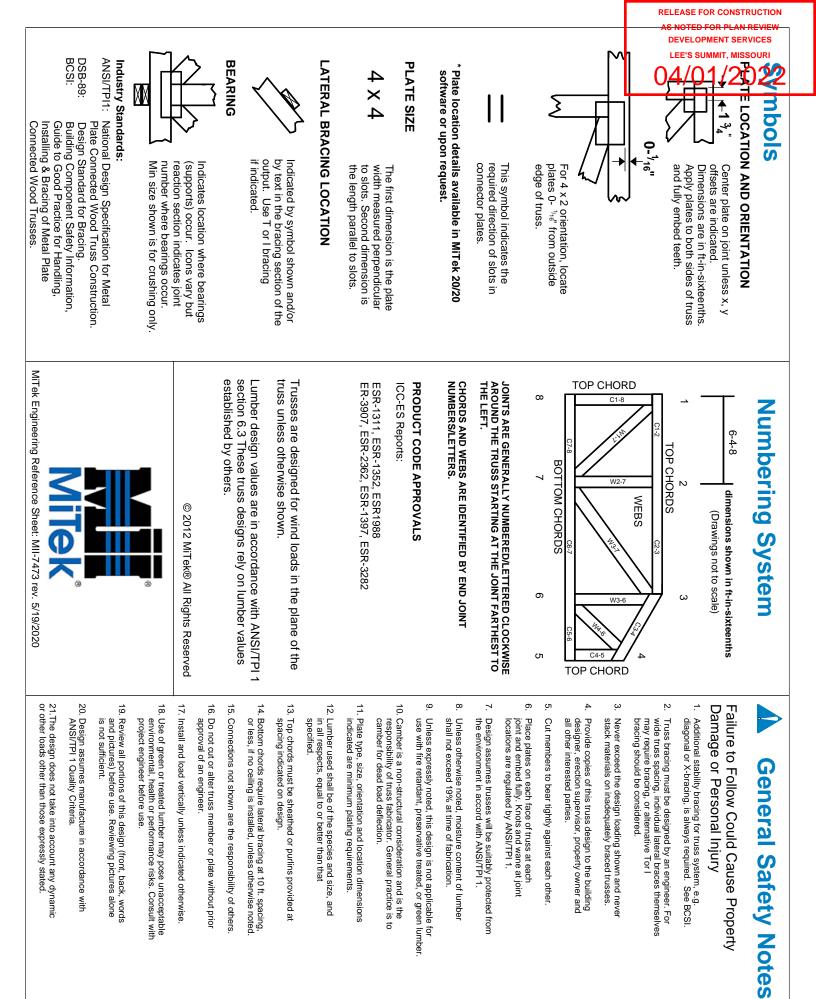

MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. ameters shown, and is for an individual building component, not n parameters and property incorporate this design into the overall

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 146 CB	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 149723921
B220055	V4	Valley	1	1	Job Reference (optiona	
Wheeler Lumber, Waverly	/, KS - 66871,	R	un: 8.43 S Oct 11 2021 Print: 8.4):7ufEnKQ9fujLYxwXHEyji_zvy1,	430 S Oct 1 J-RfC?PsB7	1 2021 MiTek Industries, Inc. ′0Hq3NSgPqnL8w3uITXbGK\	Fi Jan 14 0 12 0 1 / 2 0 2 2 W CDoi7 J 4 x C?1
					5-5-4	4
			2-8-10		5-0-1	
			2-8-10		2-3-7 0-5-3	3

5-5-4

Scale =	1.2/1 1
Scale =	1.24.1


1-10-0

00010 - 112 111													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.09	Vert(LL)	n/a	-	n/a	999	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horiz(TL)	0.00	3	n/a	n/a			
BCDL	10.0	Code	IRC2012/TPI2007	Matrix-P							Weight: 14 lb	FT = 10%	
LUMBER				chanical connectio									
TOP CHORD				te capable of withs	tanding 2	24 lb uplift at j	oint						
BOT CHORD				uplift at joint 3.									
OTHERS	2x4 SPF No.2		LOAD CASE(S) Standard									
BRACING TOP CHORD	Structural wood she	athing directly applie	ad or										
TOP CHORD	5-6-0 oc purlins.	atiling unectly applie											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	C										
	bracing.												
REACTIONS	(lb/size) 1=111/5-5 4=187/5-5	5-4, 3=111/5-5-4, 5-4											
	Max Horiz 1=-39 (LC	2 4)											
	Max Uplift 1=-24 (LC	C 8), 3=-30 (LC 9)											
FORCES	(lb) - Maximum Com	pression/Maximum											
	Tension	105											
TOP CHORD BOT CHORD	,												
WEBS	2-4=-131/33	0											
NOTES	2 1- 101/00												
	ed roof live loads have	been considered fo	r										
this design			•										
	CE 7-10; Vult=115mph	(3-second gust) V											
)=91mph; TCDL=6.0ps												
	p C; Enclosed; MWFR											1117	
	tilever left and right exp exposed; Lumber DOL		left								Nº OF /	MISSI	
DOL=1.60		= 1.00 plate grip									NXE		
	igned for wind loads in	the plane of the true	SS							~	X4		
	studs exposed to wind									20	S JUA	IN SPE	
	lard Industry Gable En									24	GAR		e.
	qualified building design		기 1.									lu in	
	uires continuous botto ds spaced at 2-0-0 oc.	m chora bearing.								1	: h		
	has been designed for	r a 10.0 psf bottom									NUME	• 41-	
	load nonconcurrent wi		ds.							-	C: É-20001	62101 :4	
	s has been designed f									1	~~···		
	tom chord in all areas										1,581	ENGIN	
	Il by 2-00-00 wide will	fit between the botto	m								UNA	1L SIN	
chord and	any other members.											17 0000	

January 17,2022

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

