

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

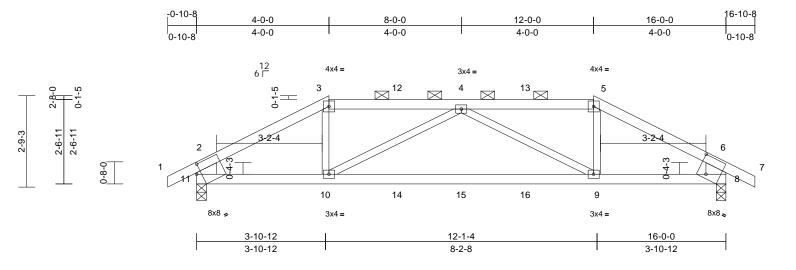
Re: B220010 Lot 105 RR

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Wheeler - Waverly.

Pages or sheets covered by this seal: I50129466 thru I50129505

My license renewal date for the state of Missouri is December 31, 2023.

Missouri COA: Engineering 001193



February 9,2022

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 105 RR	
B220010	A1	Hip Girder	1	1	Job Reference (optional	DEVELOPMENT SERVICES 150129466 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -	66871,	Run: 8.43 S Oct 11 2	2021 Print: 8.	430 S Oct 11		и Feb 011-32/00/29-92

ID:zEcocgpP_?gQw1xeOvrpbTyLCVu-RfC?PsB70Hq3NSgPqnL8w3uITXbGWrCDoilw42sc/f

Scale = 1:34.8

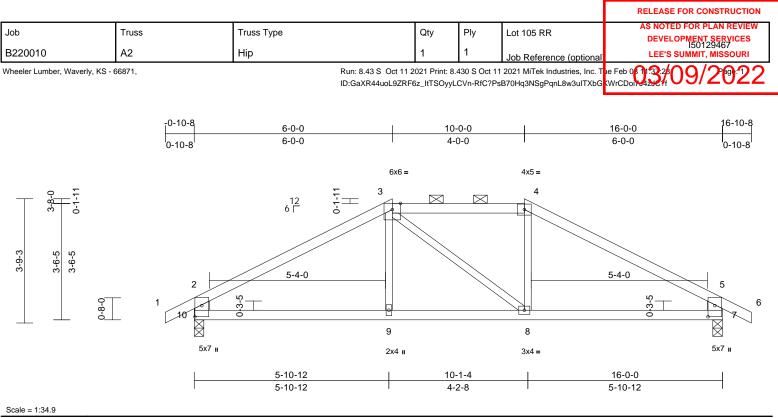
Plate Offsets (X, Y): [8:0-3-2,0-6-8], [11:0-1-10,0-3-4]

csi	DEFL i	n (loc)	l/defl	L/d	PLATES GRIP
TC 0.87		. ,	>967	360	MT20 197/144
BC 0.97	Vert(CT) -0.4	5 9-10	>413	240	
WB 0.32	Horz(CT) 0.0	4 8	n/a	n/a	
Matrix-S	Wind(LL) 0.1	3 9-10	>999	240	Weight: 53 lb FT = 10%
anical connection (by othe	ers) of truss to				
48 lb uplift at joint 8.	•				
lesigned in accordance wi	ith the 2018				
	e top and/or				
,	,				
ion device(s) is the respor	nsibility of others.				
CASE(S) section, loads ap	oplied to the face				
re noted as front (F) or bac	ck (B).				
Standard					
f Live (balanced): Lumber	Increase=1.15,				
se=1.15					Jane
ds (lb/ft)					STE OF MISSOL
-70, 2-3=-70, 3-5=-70, 5-6	6=-70, 6-7=-70,				T IE SON
				A	Nov I want
d Loads (lb)				B	SCOTT M. YEY
				B	SEVIER
	4=-25 (F),			2*	
), 16=-25 (F)				K	Lefe X The
	TC 0.87 BC 0.97 WB 0.32 Matrix-S anical connection (by oth capable of withstanding 2 48 lb uplift at joint 8. lesigned in accordance w Residential Code sections d referenced standard AN lin representation does no ion of the purlin along the other connection device(s cient to support concentra lb up at 4-0-0, 86 lb down down and 65 lb up at 8-0 lb up at 9-11-4, and 79 lb on top chord, and 220 lb of 11 lb down at 6-0-12, 31 l on device(s) is the respon CASE(S) section, loads ag e noted as front (F) or ba Standard t Live (balanced): Lumber se=1.15 ds (lb/ft) -70, 2-3=-70, 3-5=-70, 5-6 d Loads (lb) 6 (F), 5=-46 (F), 10=-220	$\begin{array}{c cccc} TC & 0.87 & Vert(LL) & -0.1 \\ BC & 0.97 & Vert(CT) & -0.4 \\ WB & 0.32 & Horz(CT) & 0.0 \\ Matrix-S & Wind(LL) & 0.1 \\ \end{array}$	TC 0.87 Vert(LL) -0.19 $9-10$ BC 0.97 Vert(CT) -0.45 $9-10$ WB 0.32 Horz(CT) 0.04 8Matrix-SWind(LL) 0.13 $9-10$ anical connection (by others) of truss to capable of withstanding 248 lb uplift at 48 lb uplift at joint 8.48lesigned in accordance with the 2018 Residential Code sections R502.11.1 and d referenced standard ANSI/TPI 1.1lin representation does not depict the size ion of the purlin along the top and/or50bther connection device(s) shall be cient to support concentrated load(s) 79 lb lb up at 4-0-0, 86 lb down and 65 lb up at down and 65 lb up at 4-00, and 220 lb down and 57 lb to botom chord. The design/selection of on device(s) is the responsibility of others.CASE(S) section, loads applied to the face e noted as front (F) or back (B).Standard i Live (balanced): Lumber Increase=1.15, se=1.15 ds (lb/ft)-70, 2-3=-70, 3-5=-70, 5-6=-70, 6-7=-70,d Loads (lb) 6 (F), 5=-46 (F), 10=-220 (F), 9=-220 (F), 12=-46 (F), 13=-46 (F), 14=-25 (F),	TC 0.87 Vert(LL) -0.19 9.10° >967 BC 0.97 Vert(CT) -0.45 9-10 >413 MB 0.32 Horz(CT) 0.04 8 n/a Matrix-S Wind(LL) 0.13 9-10 >999 anical connection (by others) of truss to capable of withstanding 248 lb uplift at 48 lb uplift at joint 8. lesigned in accordance with the 2018 Residential Code sections R502.11.1 and d referenced standard ANSI/TPI 1. lin representation does not depict the size ion of the purlin along the top and/or other connection device(s) shall be cient to support concentrated load(s) 79 lb lb up at 4-0-0, 86 lb down and 65 lb up at down and 65 lb up at 8-0-0, and 86 lb bl up at 9-11-4, and 79 lb down and 57 lb on top chord, and 220 lb down and 57 lb ti 1 lb down at 6-0-12, 31 lb down at 8-0-0, in at 9-11-4, and 220 lb down and 57 lb o not expensibility of others. CASE(S) section, loads applied to the face e noted as front (F) or back (B). Standard Live (balanced): Lumber Increase=1.15, se=1.15 ds (lb/ft) -70, 2-3=-70, 3-5=-70, 5-6=-70, 6-7=-70, d Loads (lb) 6 (F), 5=-46 (F), 10=-220 (F), 9=-220 (F), 12=-46 (F), 13=-46 (F), 14=-25 (F),	TC 0.87 Vert(LL) -0.19 9-10 >967 360 BC 0.97 Vert(CT) -0.45 9-10 >413 240 WB 0.32 Horz(CT) 0.04 8 n/a n/a Matrix-S Wind(LL) 0.13 9-10 >999 240 anical connection (by others) of truss to capable of withstanding 248 lb uplift at 48 lb uplift at joint 8. lesigned in accordance with the 2018 Residential Code sections R502.11.1 and d referenced standard ANSI/TPI 1. In representation does not depict the size ion of the purlin along the top and/or bther connection device(s) shall be cient to support concentrated load(s) 79 lb lb up at 4-0-0, 86 lb down and 65 lb up at down and 65 lb up at 8-0-0, and 86 lb bl up at 9-11-4, and 79 lb down and 67 lb on top chord, and 220 lb down and 57 lb 11 lb down at 6-0-12, 31 lb down at 8-0-0, m at 9-11-4, and 220 lb down and 57 lb on device(s) is the responsibility of others. CASE(S) section, loads applied to the face e noted as front (F) or back (B). Standard Live (balanced): Lumber Increase=1.15, se=1.15 ds (lb/ft) -70, 2-3=-70, 3-5=-70, 5-6=-70, 6-7=-70, d Loads (lb) 6 (F), 5=-46 (F), 10=-220 (F), 9=-220 (F), 12=-46 (F), 13=-46 (F), 14=-25 (F),

- right exposed; Lumber DOL=1.60 plate grip DOL=1.603) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NUMBER


PE-200101880

E

February 9,2022

HESSIONAL

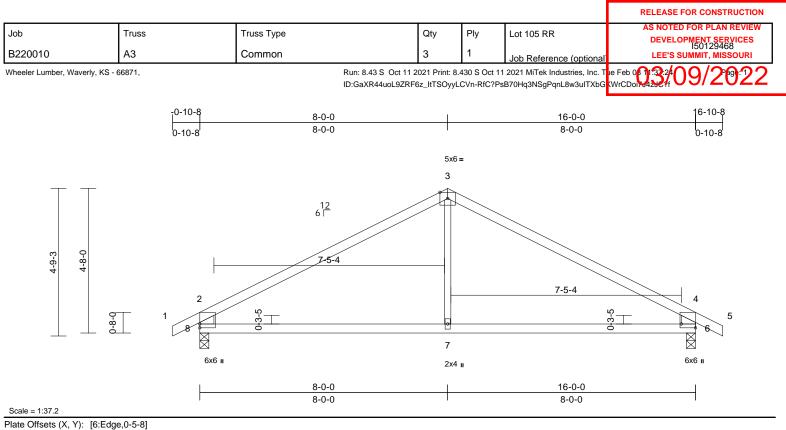
C

Plate Offsets (X, Y): [7:0-4-1,0-2-8], [10:0-4-1,0-2-8]

Plate Offsets ((X, Y): [7:0-4-1,0-2-8],	[10:0-4-1,0-2-8]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.58 0.35 0.08	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.04 -0.08 0.02 0.02	(loc) 8-9 8-9 7 8-9	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 51 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 5-1-12 oc purlins, e 2-0-0 oc purlins (6-0	athing directly applie xcept end verticals,	ed or 8)	bearing plate 10 and 97 lb This truss is International R802.10.2 a Graphical pu	hanical connection a capable of withs uplift at joint 7. designed in accor Residential Cod- nd referenced stat urlin representation ation of the purlin d.	standing 9 ordance wi e sections andard AN on does no	7 lb uplift at th the 2018 R502.11.1 a ISI/TPI 1. ot depict the	joint and					
BOT CHORD	Rigid ceiling directly bracing.	,	; L(DAD CASE(S)	Standard								
REACTIONS FORCES TOP CHORD	(Ib/size) 7=777/0-3 Max Horiz 10=61 (LC Max Uplift 7=-97 (LC (Ib) - Maximum Com Tension 1-2=0/35, 2-3=-980/	5 9), 10=-97 (LC 8) pression/Maximum 79, 3-4=-780/115,											
BOT CHORD WEBS NOTES	4-5=-980/78, 5-6=0/3 5-7=-708/140 9-10=-34/782, 8-9=- 3-9=0/189, 3-8=-114	36/780, 7-8=0/783											
 Unbalance this design Wind: ASC 	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC	(3-second gust)									Å	TATE OF J	MISSOL
cantilever right expose 3) Provide ac 4) This truss	Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 dequate drainage to pr has been designed for load nonconcurrent wi	; end vertical left and 0 plate grip DOL=1.6 event water ponding r a 10.0 psf bottom	d 50 I.							ð		SEV.	Seine

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



PE-200101880

E

February 9,2022

SIONAL

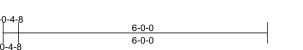
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.82	Vert(LL)	-0.07	7-8	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.50	Vert(CT)	-0.15	7-8	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.11	Horz(CT)	0.02	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.05	7-8	>999	240	Weight: 46 lb	FT = 10%

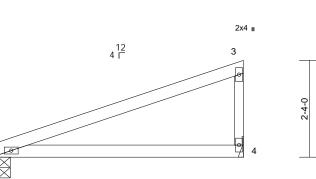
- LUMBER
- TOP CHORD
- 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 2x6 SPF No.2 *Except* 7-3:2x3 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) 6=777/0-3-8, 8=777/0-3-8 Max Horiz 8=-75 (LC 6) Max Uplift 6=-112 (LC 9), 8=-112 (LC 8) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/35, 2-3=-905/121, 3-4=-905/121, 4-5=0/35, 2-8=-717/168, 4-6=-717/168 BOT CHORD 7-8=-27/693, 6-7=-27/693 WEBS 3-7=0/345

NOTES

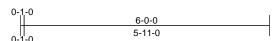
- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 112 lb uplift at joint 8 and 112 lb uplift at joint 6.

- 6) This truss is designed in accordance with the 2018
 - International Residential Code sections R502.11.1 and
- R802.10.2 and referenced standard ANSI/TPI 1.
- LOAD CASE(S) Standard




MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 105 RR	AS NOTED FOR PLAN REVIEW
000	11466	indee Type	aly	,	Lot 100 Kit	DEVELOPMENT SERVICES 150129469
B220010	B1	Monopitch	7	1	Job Reference (optional	
						00/00/0000


Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. The Feb 00132409/2021 ID:2ncXplsxOfbjlB6l7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi73409/2022

2x4 🛛

Scale = 1:27.8												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.64	Vert(LL)	-0.07	2-4	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.35	Vert(CT)	-0.13	2-4	>526	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 16 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2			•							•	

2

2x4 =

BRACING		
TOP CHORD	Structural	l wood sheathing directly applied or
	6-0-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	2=297/0-3-8, 4=257/ Mechanical
	Max Horiz	2=91 (LC 5)

2-5-3

0-4-0

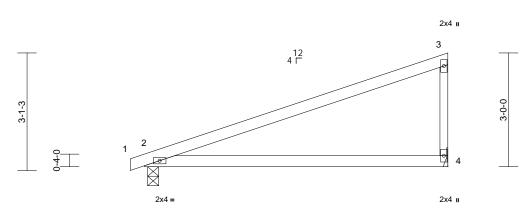
Max Uplift 2=-65 (LC 4), 4=-55 (LC 8) FORCES (lb) - Maximum Compression/Maximum

NOTES	
BOT CHORD	2-4=-28/22
TOP CHORD	1-2=0/6, 2-3=-79/52, 3-4=-200/89
	161131011

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 55 lb uplift at joint 4 and 65 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 105 RR	AS NOTED FOR PLAN REVIEW
D000010	Do					DEVELOPMENT SERVICES 150129470
B220010	B2	Monopitch	3	1	Job Reference (optional	

8-0-0 8-0-0

Wheeler Lumber, Waverly, KS - 66871,

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.77	Vert(LL)	-0.17	2-4	>553	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.42	Vert(CT)	-0.34	2-4	>276	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 21 lb	FT = 10%

- TOP CHORD 2x4 SPF 2100F 1.8E BOT CHORD 2x4 SPF 2100F 1.8E
- 2x3 SPF No.2 WEBS
- BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.
- REACTIONS (lb/size) 2=386/0-3-8, 4=348/ Mechanical Max Horiz 2=121 (LC 5) Max Uplift 2=-79 (LC 4), 4=-74 (LC 8)

FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/6, 2-3=-105/70, 3-4=-270/121

BOT CHORD 2-4=-38/29

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 74 lb uplift at joint 4 and 79 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

February 9,2022

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 105 RR	AS NOTED FOR PLAN REVIEW
B220010	C1	GABLE	1	1	Job Reference (optional	DEVELOPMENT SERVICES 150129471 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -	66871,				2021 MiTek Industries, Inc. T 70Hq3NSgPqnL8w3uITXbGKV	ие Feb 001132409/20022

Scale = $1:2$	8.2
---------------	-----

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.09 0.03 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 35 lb	GRIP 197/144 FT = 10%
	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (lb/size) 2=150/10 9=194/10 11=180/1 Max Horiz 2=158 (L0 Max Uplift 2=-22 (L0	 applied or 10-0-0 oc -0-0, 8=69/10-0-0, -0-0, 10=177/10-0-0, 0-0-0, 12=182/10-0-0 C 5) C 5) A), 8=-16 (LC 5), 9= D=-42 (LC 8), 11=-44 	7; d or 8; ; 9; 0 =-46 L	 chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 8, 22 lb uplift at joint 11, 4: 9. This truss is International 	s been designed ad nonconcurrent has been designe n chord in all are: by 2-00-00 wide v by other members hanical connectic capable of withs at joint 2, 52 lb u 2 lb uplift at joint designed in accoo Residential Code nd referenced sta Standard	with any ed for a liv as where vill fit betw s. on (by oth standing 1 uplift at joi 10 and 46 wrdance w e sections	other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 6 lb uplift at jo nt 12, 44 lb u 6 lb uplift at jo ith the 2018 s R502.11.1 a	ipsf om o oint olift int					
FORCES	(lb) - Maximum Com Tension	()											
TOP CHORD	1-2=0/6, 2-3=-129/2 4-5=-86/21, 5-6=-76 7-8=-53/22												
BOT CHORD	2-12=-50/37, 11-12= 9-10=-50/37, 8-9=-5		7,										
WEBS	,	=-141/67, 5-10=-138/	68,									OF	MISSO
Vasd=91m II; Exp C; E cantilever I right exposi only. For s see Standa or consult of 3) All plates a 4) Gable requ	CE 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er eft and right exposed ed; Lumber DOL=1.6 gned for wind loads in studs exposed to wind ard Industry Gable En qualified building desi tre 2x4 MT20 unless of uires continuous botto Is spaced at 2-0-0 oc.	EDL=6.0psf; h=25ft; C nvelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 the plane of the trus I (normal to the face) d Details as applicat gner as per ANSI/TP otherwise indicated.	e; d 60 ss , ole,									SCOT SEV SEV PE-2001 PE-2001	T M. HER 018807

						RELEASE FOR CONSTRUCTION			
Job	Truss	Truss Type	Qty	Ply	Lot 105 RR	AS NOTED FOR PLAN REVIEW			
D000040	00	New ender		1		DEVELOPMENT SERVICES 150129472			
B220010	C2	Monopitch	9	1	Job Reference (optional				
Wheeler Lumber, Waverly, KS -	Wheeler Lumber, Waverly, KS - 66871, Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. T								
	rCDoi7J42JO91								

-0-10-8 4-11-6 10-0-0 0-10-8 4-11-6 5-0-10 2x4 🛛 4 12 4 Г 3x4 = 3 10-0 3-11-3 2 0-9-1 5 6 2x4 = 3x4 =2x4 II

Scale = 1:33.2												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.30	Vert(LL)	-0.02	2-6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.26	Vert(CT)	-0.04	5-6	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.50	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.02	2-6	>999	240	Weight: 33 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2	•										

TOF CHORD	2X4 3FF N0.2
BOT CHORD	2x4 SPF No.2
WEBS	2x3 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6.0.0 as purling avaget and verticals

•	ctly applied or 10-0-0 oc
acing.	
size) 2=514 (Horiz 2=158	//0-3-8, 5=435/ Mechanical 8 (LC 5)
	acing. size) 2=514

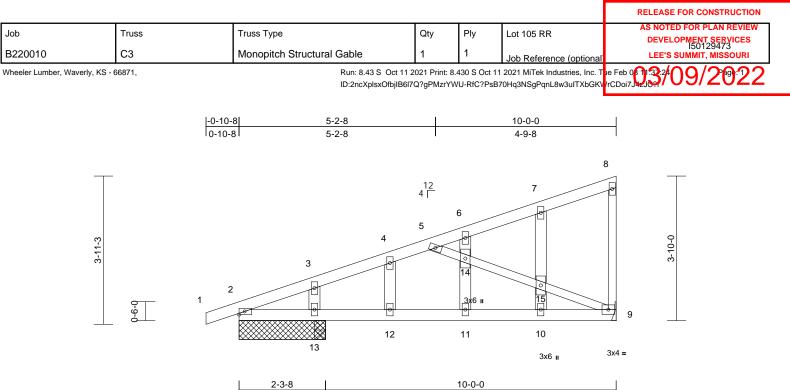
 Max Uplift
 2=-115 (LC 4), 5=-94 (LC 8)

 FORCES
 (lb) - Maximum Compression/Maximum Tension

 TOP CHORD
 1-2=0/6, 2-3=-782/113, 3-4=-109/21, 4-5=-141/57

 BOT CHORD
 2-6=-134/682, 5-6=-134/682

 WEBS
 3-6=0/228, 3-5=-714/178


NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 94 lb uplift at joint 5 and 115 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

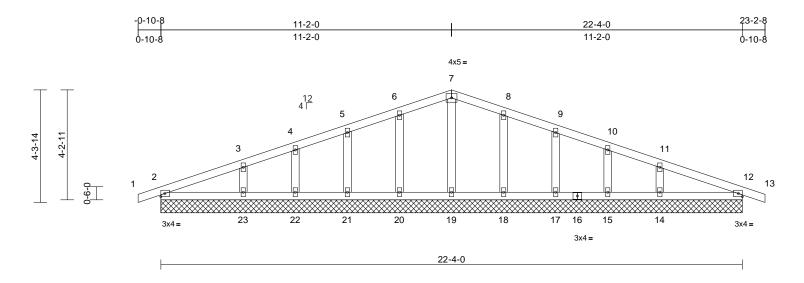
7-8-8

2-3-8

Scale = 1:30.5													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15			0.18	Vert(LL)		10-11	>999	360	MT20	197/144
CDL	10.0	Lumber DOL	1.15			0.28	Vert(CT)		10-11	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.30	Horz(CT)	0.01	9	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.03	10-11	>999	240	Weight: 38 lb	FT = 10%
UMBER			5)		as been designed for								
OP CHORD	2x4 SPF No.2				ad nonconcurrent wit								
OT CHORD	2x4 SPF No.2		6)		has been designed for)psf					
/EBS	2x3 SPF No.2				n chord in all areas								
THERS	2x4 SPF No.2				by 2-00-00 wide will f	fit betv	veen the botto	om					
RACING					ny other members.								
OP CHORD	Structural wood she		ed or 7)		er(s) for truss to trus								
	6-0-0 oc purlins, ex		8)		hanical connection (capable of withstan								
OT CHORD	Rigid ceiling directly	applied or 10-0-0 o	с		t at joint 2 and 53 lb			JIII					
	bracing.		0)		designed in accorda								
EACTIONS		3-8, 9=401/ Mechani	ical, ³⁾		Residential Code se			nd					
	13=207/2				nd referenced standa			na					
	Max Horiz 2=158 (LC	,	10	DAD CASE(S)									
	Max Uplift 2=-72 (LC (LC 8)	C 4), 9=-84 (LC 8), 1	3=-53	JAD CASE(S)	Stanuaru								
ORCES	(Ib) - Maximum Corr	pression/Maximum											
0.1020	Tension												
OP CHORD	1-2=0/6, 2-3=-591/5	1, 3-4=-587/83.											
	4-5=-526/94, 5-6=-1												
	7-8=-60/29, 8-9=-10												
OT CHORD	2-13=-94/524, 12-13	3=-94/524,											
	11-12=-94/524, 10-1	1=-94/524, 9-10=-9	4/524										
/EBS	5-14=-536/134, 14-1	15=-540/134,											
	9-15=-557/138, 3-13	8=-147/77, 4-12=0/8	7,										
	6-14=0/83, 11-14=0/	/90, 7-15=-100/51,										Son	m
	10-15=-53/42											F. OF	MISC
IOTES											1	750	W.OS
) Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)									B	STATE OF	N W
	nph; TCDL=6.0psf; BC										R	SEV	
	Enclosed; MWFRS (er										6	J SEV	
	left and right exposed												1 * 8
	sed; Lumber DOL=1.6										30	L H	·la · / N
	gned for wind loads in										¥4	CONT	Mer wet
	studs exposed to wind ard Industry Gable En										107	PE-2001	018807
	ard industry Gable En qualified building desi										N	The second	128
	are 2x4 MT20 unless of										Y	080	JO'B
All plates a	are 2x4 IVITZU UTILESS (merwise mulcated.										VI VI	- N D

4) Gable studs spaced at 2-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

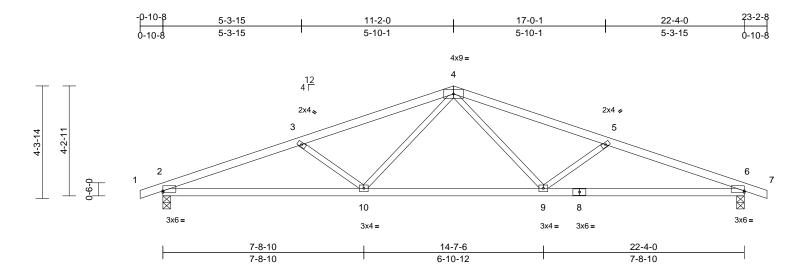

E

February 9,2022

SSIONAL

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 105 RR	AS NOTED FOR PLAN REVIEW
B220010	D1	Common Supported Gable	1	1	Job Reference (optional	DEVELOPMENT SERVICES 150129474 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -	66871,	Run: 8.43 S Oct 11 2	2021 Print: 8.	430 S Oct 1'	I 2021 MiTek Industries, Inc. T	

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. The Feb 06133409/2022 ID:2ncXplsxOfbjlB6l7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi734307

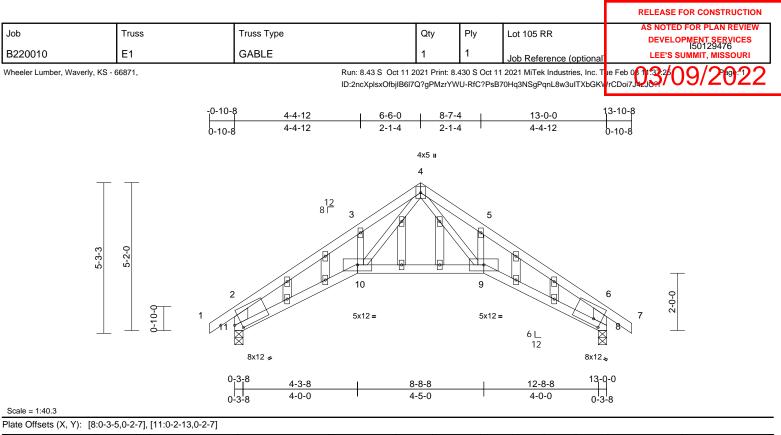

Scale = 1:44.3

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		тс	0.09	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.06	Vert(CT)	n/a	-	n/a	999	-	
BCLL		0.0*	Rep Stress Incr	YES		WB	0.03	Horz(CT)	0.00	12	n/a	n/a		
BCDL		10.0	Code		018/TPI2014	Matrix-S	0.00		0.00				Weight: 77 lb	FT = 10%
								I		-				
LUMBER						7-19=-123/0, 6-20								
TOP CHORD	2x4 SPF	No.2				4-22=-117/57, 3-2	23=-205/1	01, 8-18=-15	50/69,					
BOT CHORD	2x4 SPF	No.2				9-17=-144/69, 10	-15=-117	/57, 11-14=-2	205/99					
OTHERS	2x4 SPF	No.2			NOTES									
BRACING					1) Unbalanced	roof live loads ha	ve been	considered fo	or					
TOP CHORD	Structura	I wood she	athing directly applie	ed or	this design.									
	6-0-0 oc	purlins.			2) Wind: ASCE	7-16; Vult=115m	nph (3-seo	cond gust)						
BOT CHORD	Rigid ceil	ling directly	applied or 10-0-0 or	С	Vasd=91mp	h; TCDL=6.0psf;	BCDL=6.	0psf; h=25ft;	Cat.					
	bracing.	• •			II; Exp C; Er	nclosed; MWFRS	(envelop	e) exterior zo	ne;					
REACTIONS	(lb/size)	2=191/22	-4-0, 12=191/22-4-0			ft and right expos								
	(2-4-0, 15=145/22-4-			d; Lumber DOL=								
		17=187/2	2-4-0, 18=186/22-4-	0,		ned for wind loads								
		19=163/2	2-4-0, 20=186/22-4-	0,		uds exposed to w								
		21=187/2	2-4-0, 22=145/22-4-	0,		d Industry Gable								
		23=275/2	2-4-0			ualified building d								
	Max Horiz	2=-71 (LC	C 9)			e 2x4 MT20 unles								
	Max Uplift		C 4), 12=-54 (LC 5),			res continuous bo		d bearing.						
			C 9), 15=-36 (LC 5),			Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom								
			C 9), 18=-46 (LC 9),											
			C 8), 21=-44 (LC 8)		chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 20.0psf									
			.C 4), 23=-70 (LC 8)						Upst					
	Max Grav		C 1), 12=191 (LC 1),			m chord in all are								
			LC 22), 15=145 (LC			by 2-00-00 wide v ny other members		veen the bott	om					
			LC 1), 18=189 (LC 2			chanical connection		oro) of truco	to					1. Marija - 1
			LC 1), 20=189 (LC 2			e capable of withs							Same	JOD
			LC 1), 22=145 (LC 2	1),		t at joint 20, 44 lb							P OF I	MISO
		23=275 (,			22, 70 lb uplift at						1	4 SE	
FORCES	(lb) - Max Tension	kimum Con	npression/Maximum			lift at joint 17, 36 l						B	STATE OF I	N S NT
TOP CHORD		2-3	, 3-4=-47/60, 4-5=-2	8/75	uplift at joint	14 and 54 lb upli	ft at joint	12.				R	SEV.	
	,		/110, 7-8=-31/106,	0,70,		designed in acco						41	J SEV.	
			28/47, 10-11=-35/28,			Residential Code			and					1 ~ 0
		6/38, 12-13			R802.10.2 a	ind referenced sta	andard Al	ISI/TPI 1.				10	L H	
BOT CHORD			3/57, 21-22=-3/57,		LOAD CASE(S)	Standard						W A	COMM	A Weth
			=-3/57, 18-19=-3/57,		.,							W	PE-2001	018807
			=-3/57, 14-15=-3/57,									N	11-2001	128
	12-14=-3		,,									Y	100	IN B
													SSIONA	TENA
													UNA NA	

Course February 9,2022

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 105 RR	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
B220010	D2	Common	5	1	Job Reference (optional	DEVELOPMENT SERVICES 150129475 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -	66871,				2021 MiTek Industries, Inc. T 70Hq3NSgPqnL8w3uITXbGKV	

Scale = 1:44.3


Plate Offsets (X, Y): [2:Edge,0-0-10], [6:Edge,0-0-10]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.47	Vert(LL)	-0.12	9-10	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.69	Vert(CT)	-0.25	6-9	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.19	Horz(CT)	0.07	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.08	9-10	>999	240	Weight: 68 lb	FT = 10%
LUMBER			6) This truss is	designed in acc	ordance w	ith the 2018						
TOP CHORD	2x4 SPF No.2			I Residential Cod			and					
BOT CHORD	2x4 SPF No.2 R802.10.2 and referenced standard ANSI/TPI 1.											
WEBS	2x3 SPF No.2		LOAD CASE(S)	Standard								
BRACING												
TOP CHORD	Structural wood she	athing directly appli	ed or									
	3-7-2 oc purlins.											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	с									
	bracing.											
REACTIONS	(lb/size) 2=1063/0	-3-8, 6=1063/0-3-8										
	Max Horiz 2=71 (LC	8)										
	Max Uplift 2=-189 (L	_C 4), 6=-189 (LC 5)	1									
FORCES	(lb) - Maximum Con	npression/Maximum										
	Tension											
TOP CHORD	1-2=0/6, 2-3=-2232/	/355, 3-4=-1909/259	,									
	4-5=-1909/260, 5-6=	,										
BOT CHORD		10=-127/1406,										
	6-9=-280/2049											
WEBS	4-9=-59/541, 5-9=-4	18/221, 4-10=-58/54	41,									
	3-10=-418/221											
NOTES												
1) Unbalance	od roof live loads have	boon considered fo	r									

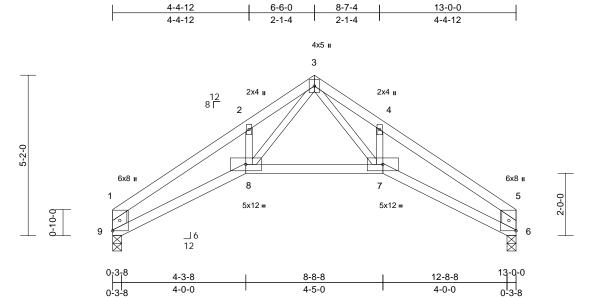
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 189 lb uplift at joint 2 and 189 lb uplift at joint 6.

			-										
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.69	Vert(LL)	-0.16	9-10	>968	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.61	Vert(CT)	-0.29	9-10	>511	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.17	Horz(CT)	0.27	8	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S	-	Wind(LL)	0.08	9-10	>999	240	Weight: 55 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x3 SPF No.2 *Exce 2x4 SPF No.2 Structural wood she 5-3-11 oc purlins, e Rigid ceiling directly bracing. (lb/size) 8=642/0-3	ept* 11-2,8-6:2x6 SP I athing directly applied xcept end verticals. applied or 10-0-0 oc 3-8, 11=642/0-3-8	8) DSS d or ⁹⁾	 chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Bearing at jousing ANSI/ designer shot Provide mecto bearing plate 	as been designed ad nonconcurrer has been design in chord in all are by 2-00-00 wide hy other member init(s) 11, 8 cons IPI 1 angle to gr puld verify capac hanical connecti a capable of with uplift at joint 8.	nt with any ed for a liv eas where will fit betw rs. iders para ain formula ity of bear ion (by oth	other live load e load of 20. a rectangle veen the bott llel to grain v a. Building ing surface. ers) of truss	Opsf tom ralue to					
	Max Horiz 11=-154 (Max Uplift 8=-88 (LC	2 9), 11=-88 (LC 8)	1	 This truss is International 	designed in acc Residential Coc	le sections	s R502.11.1 a	and					
FORCES	(lb) - Maximum Corr Tension	pression/Maximum			nd referenced st	andard AN	ISI/TPI 1.						
TOP CHORD			, L0	OAD CASE(S)	Standard								
BOT CHORD WEBS	, -	-10=0/624, 8-9=-11/1 31/204, 4-10=-219/59											
NOTES													
 Unbalance this desig Wind: ASI Vasd=91r II; Exp C; cantilever right expo Truss designed 	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 signed for wind loads in studs exposed to wind	(3-second gust) DL=6.0psf; h=25ft; C. vvelope) exterior zone ; end vertical left and 0 plate grip DOL=1.6(the plane of the truss	»; D							1		STATE OF J	

- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. All plates are 2x4 MT20 unless otherwise indicated. 4)
- Truss to be fully sheathed from one face or securely 5)
- braced against lateral movement (i.e. diagonal web).
- 6) Gable studs spaced at 1-4-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NUMBER


E

February 9,2022

PE-200101880

NOTESSIONAL

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 105 RR	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 150129477
B220010	E2	Roof Special	5	1	Job Reference (optional	
Wheeler Lumber, Waver	ly, KS - 66871,				11 2021 MiTek Industries, Inc. T B70Hq3NSgPqnL8w3uITXbGK\	

Scale - 1:37 1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.63	Vert(LL)	-0.25	7-8	>598	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.87	Vert(CT)	-0.46	7-8	>325	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.18	Horz(CT)	0.41	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.14	7-8	>999	240	Weight: 44 lb	FT = 10%
			6) Provide me	chanical conner	ction (by oth	ore) of truce	to					

LUMBER

- TOP CHORD 2x4 SPF No.2
- BOT CHORD 2x4 SPF No.2

DOT OTIOND	2/10/11	10.2
WEBS	2x3 SPF I	No.2 *Except* 9-1,6-5:2x6 SP DSS
BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	4-2-2 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	6=564/0-3-8, 9=564/0-3-8
	Max Horiz	9=-135 (LC 4)
	Max Uplift	6=-62 (LC 9), 9=-62 (LC 8)

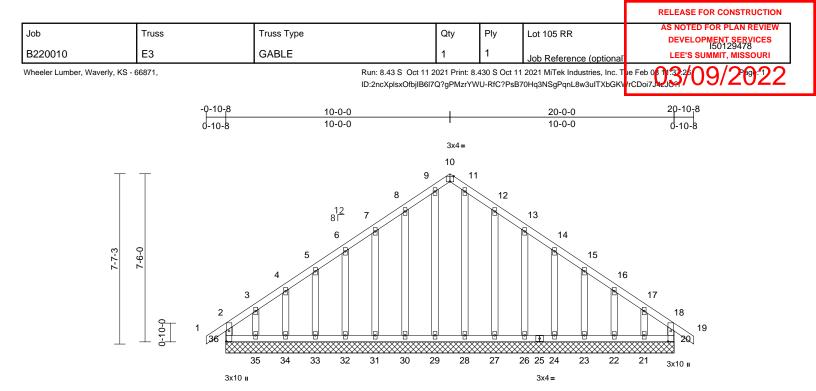
	1000000000000000000000000000000000000
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-1280/169, 2-3=-1096/288,
	3-4=-1096/228, 4-5=-1280/101,
	1-9=-899/147, 5-6=-899/100

BOT CHORD 8-9=-153/1074, 7-8=-3/606, 6-7=-39/1026 WEBS 3-7=-197/549, 4-7=-50/195, 3-8=-229/612, 2-8=-35/172

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 2) II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 9, 6 considers parallel to grain value 5) using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

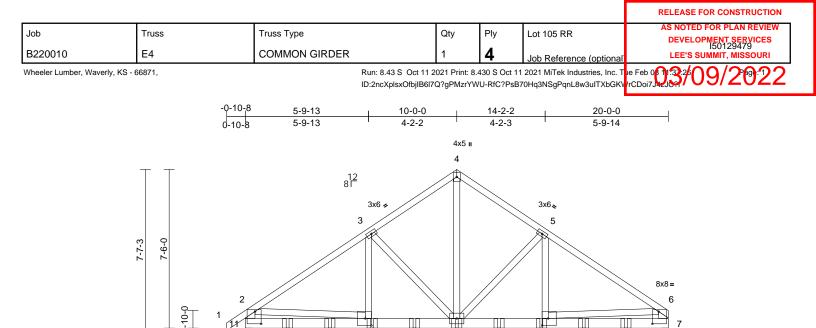
Provide mechanical connection (by others) of t bearing plate capable of withstanding 62 lb uplift at joint 9 and 62 lb uplift at joint 6.


This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

20-0-0


Scale = 1:51.4 Plate Offsets (X, Y): [10:0-2-0,Edge], [20:0-5-10,0-1-8], [36:0-5-10,0-1-8]

	(,,, ,). [o], [20:0 0 10,0 1 0], [t		1								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI:	2014 CSI TC BC WB Matrix-R	0.08 0.06 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 20	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 115 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins, ex	eathing directly applied xcept end verticals. y applied or 6-0-0 oc		33-34=-93/121	4-5=-102/10 -8=-64/150, 10-11=-35/1 , 12-13=-31, , 14-15=-49, 17-18=-129, , 34-35=-93, , 32-33=-93,	10, 5-6=-89/10 8-9=-54/184, 33, (128, (79, 15-16=-5: (94, 18-19=0/- (121, (121,	9/60,	 cho 9) * Th on * 3-0 cho cho 10) Pro bea 36, upli 	rd live lo nis truss the botto 6-00 tall ord and a vide me tring pla 53 lb up ft at join	bad no has be by 2-0 any oth chanic te capa blift at j t 34, 5	een designed for rd in all areas wh 00-00 wide will fit ler members. al connection (by able of withstandi oint 20, 133 lb up 1 lb uplift at joint 3	any other live loads. a live load of 20.0psf ere a rectangle between the bottom others) of truss to ng 96 lb uplift at joint lift at joint 35, 28 lb 33, 45 lb uplift at joint
REACTIONS	(Ib/size) 20=148/2 22=127/2 24=120/2 27=119/2 29=122/2 31=120/2 33=119/2 35=83/20 Max Horiz 36=-213 Max Uplift 20=-53 (I	LC 5), 21=-120 (LC 9)	, , , , WEBS	31-32=-93/121 29-30=-93/121 27-28=-93/121 24-26=-93/121 20-21=-93/121 3-35=-104/103 6-32=-98/62, 7 9-29=-119/9, 1 13-26=-98/63, 16-22=-99/57,	, 28-29=-93, , 26-27=-93, , 23-24=-93, , 21-22=-93, , 4-34=-99/5 -31=-98/63, 1-28=-108/0 14-24=-98/6	(121, (121, (121, (121, (121, 5, 5-33=-98/60, 8-30=-98/80, 0, 12-27=-101/ ;2, 15-23=-98/	/82,	upli 24, Ib u 11) This Inte	ft at join 50 lb up plift at jo s truss is ernationa 02.10.2	t 27, 4 blift at j bint 21 s desig al Resi and rel	7 lb uplift at joint a oint 23, 31 lb upli ned in accordanc dential Code sect erenced standard	ions R502.11.1 and
	24=-45 (27=-66 (31=-47 (33=-51 (35=-133 Max Grav 20=166 (LC 9), 23=-50 (LC 9), LC 9), 26=-47 (LC 9), LC 9), 30=-64 (LC 8), LC 8), 32=-45 (LC 8), LC 8), 34=-28 (LC 8), (LC 8), 36=-96 (LC 4) (LC 15), 21=137 (LC 1) (LC 22), 23=125 (LC 1)	this 2) Win Vas 6), II; E	alanced roof live loads design. d: ASCE 7-16; Vult=11! d=91mph; TCDL=6.0ps xp C; Enclosed; MWFR illever left and right exp	5mph (3-seo sf; BCDL=6.0 RS (envelope	cond gust) Dpsf; h=25ft; (e) exterior zor	Cat. ne;			Ħ	STATE OF M	MISSOLA
FORCES	24=124 (27=128 (29=146 (31=125 (33=126 (35=158 ((lb) - Maximum Cor	(LC 12), 23=125 (LC 1 (LC 16), 26=125 (LC 1 (LC 16), 28=135 (LC 1 (LC 18), 30=125 (LC 1 (LC 15), 32=124 (LC 1 (LC 15), 34=127 (LC 2 (LC 15), 36=201 (LC 1 npression/Maximum	o), righ 6), 3) 7), 3) 5), only 5), see (1), or c 6) 4) All µ 5) Gat	 right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) All plates are 2x4 MT20 unless otherwise indicated. 5) Gable requires continuous bottom chord bearing. 							ER SER DISSO7	
	Tension		bra	ced against lateral move ble studs spaced at 1-4-	ement (i.e. d						ESSIONA	L ENG

Gable studs spaced at 1-4-0 oc.

Course February 9,2022

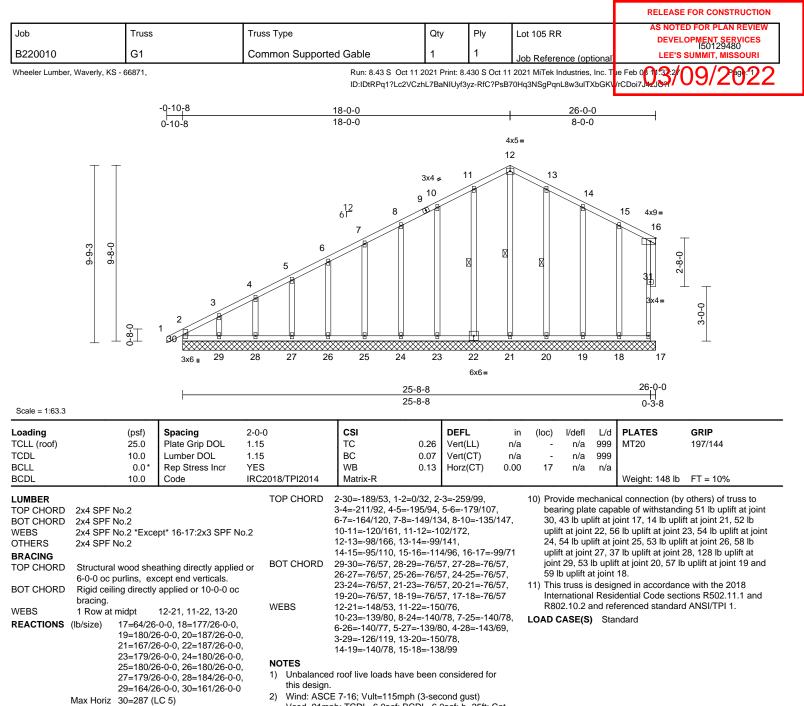
Ш

ЩĤ

ΠГ

7

			X													
			×	12	13	10	14		9	15	8		16	1	7	
			8x8=			00			0.0							
				HUS26	HUS26	8x8 =	HUS2	3	6x8=	HUS26	8	×8=		HUS	326	
				.0020		HUS26		́н	JS26	110020	HUS2	6 H	HUS26			
				5-	9-13		10-0-0	`		14-2-2			20	0-0-0		
					<u>9-13</u>		4-2-2			4-2-3				9-14		
Scale = 1:54.5				0	5 10		722			720			0	5 14		
-	X, Y): [6:0-3-8,0-7-0],	[8·0-3-8 0-4-0] [10	0-3-8 0	-4-01 [11.0.3-8.0-	7-01										
	Λ, Τ). [0.0-3-0,0-7-0],	[0.0-3-0,0-4-0], [10	0.0-3-0,0	-4-0], [11.0-5-0,0-	7-0j			-							
Loading	(psf)	Spacing	2-0-0	h		csi			DEFL		in (loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15			TC		0.49	Vert(L		```	'	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15			BC		0.28	Vert(,			>999	240		10//111
BCLL	0.0*	Rep Stress Incr	NO			WB		0.55	Horz(,	0.02	7	n/a	n/a		
BCDL	10.0	Code		0010/T	PI2014	Matrix-S		0.00	Wind	,			>999	240	Weight: 475 lb	FT = 10%
BCDL	10.0	Code	INCZ	2010/1	F12014	Watth-3			winu		.03	7-0	2999	240	Weight. 475 lb	FT = 1076
LUMBER				3) U	Inbalanced	roof live loa	ids have	been	conside	ered for						
TOP CHORD	2x4 SPF No.2			th	nis design.											
BOT CHORD	2x6 SP 2400F 2.0E			4) V	Vind: ASCE	7-16; Vult=	115mph	n (3-sed	cond gu	ist)						
WEBS	2x4 SPF No.2 *Exce	pt* 11-2,7-6:2x6 SI	P DSS	V	'asd=91mpl	h; TCDL=6.	0psf; BC	DL=6.	0psf; h=	=25ft; Cat.						
BRACING						closed; MV										
TOP CHORD	Structural wood she	athing directly appl	ied or			ft and right e										
	6-0-0 oc purlins, exc					d; Lumber D										
BOT CHORD	Rigid ceiling directly		oc			as been des										
	bracing.					ad nonconc										
REACTIONS	(lb/size) 7=8000/0-	-3-8, 11=8077/0-3-8	8			has been de										
	Max Horiz 11=205 (L	,	•			m chord in a										
	Max Uplift 7=-402 (L		8)			by 2-00-00 v		fit betw	veen th	e bottom						
	Max Grav 7=8050 (L					ny other me										
FORCES	(lb) - Maximum Com		,			hanical con										
FUNCES	Tension	pression/maximum	1			e capable of			u di 082	plint at						
TOP CHORD	1-2=0/43, 2-3=-1023	1/221 21-7102/	221			402 lb uplift				0040						
	4-5=-7487/331, 5-6=		551,			designed in Residential										
	2-11=-6433/283, 6-7					nd reference										
BOT CHORD	10-11=-289/3670, 9-					n Strong-Tie										
BOT ONORD	8-9=-246/8477, 7-8=					uivalent spa										
WEBS	4-9=-278/7959, 5-9=					ne left end to										
WEDO	5-8=-106/3646, 3-9=	,				bottom cho				155(85) 10						
	3-10=-35/3588, 2-10	,	2/5479			n Strong-Tie		5 (14-1)	nd Gird	er 6-10d					~	~
NOTES	0.10 00,0000, 2.10		_, 0 0			e Ply Girder									A	and
	to be connected toget	thor with 10d				ting at 6-0-0									B. OF I	AISS W
, , ,) nails as follows:					s(es) to bac								6	9 21	- ON
	s connected as follows	2x4 - 1 row at 0-0	9-0			oles where h								8	STATE OF M	M NP.
	rows staggered at 0-9					Standard	0							R	SEVI	
	ords connected as follo					of Live (bala	anced). I	umbei	Increa	se=1.15				0.	J SEVI	
	at 0-4-0 oc.	2			Plate Increa									8		
	ected as follows: 2x4 -	1 row at 0-9-0 oc.			Uniform Lo									8		Ser. T
	w/ 1/2" diam. bolts (AS					=-70, 2-4=-	70. 4-6=	-70. 7-	11=-20					2	Colling	ann
	ho mombor w/washors						· · · · · · · · · · · · · · · · · · ·	, ,	0					117		74


center of the member w/washers at 4-0-0 oc. All loads are considered equally applied to all plies, CASE(S) section. Ply to ply connections have been

2) except if noted as front (F) or back (B) face in the LOAD provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

Concentrated Loads (lb) Vert: 9=-1583 (B), 8=-1587 (B), 10=-1583 (B), 12=-1578 (B), 13=-1578 (B), 14=-1583 (B), 15=-1587 (B), 16=-1583 (B), 17=-1578 (B)

POPERSSIONAL PE-2001018807 EZ February 9,2022

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 3)
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated. 4) 5)
- Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely 6) braced against lateral movement (i.e. diagonal web). Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Max Uplift

Max Grav

Tension

FORCES

17=-43 (LC 4), 18=-59 (LC 9),

19=-57 (LC 9), 20=-53 (LC 9),

21=-14 (LC 7), 22=-52 (LC 8),

23=-56 (LC 8), 24=-54 (LC 8),

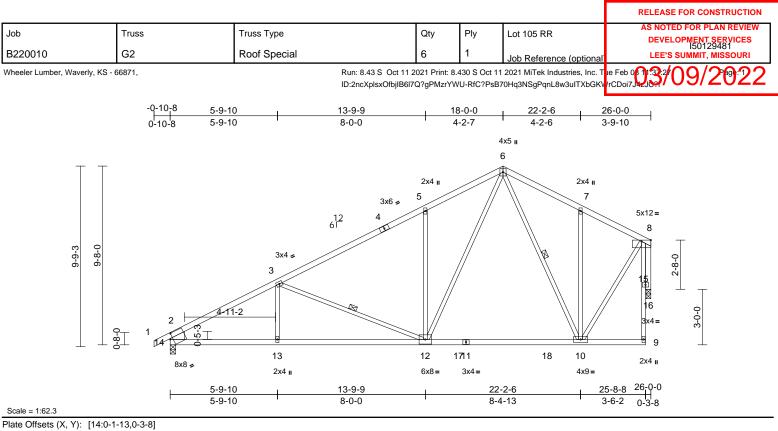
25=-54 (LC 8), 26=-53 (LC 8), 27=-58 (LC 8), 28=-37 (LC 8),

29=-128 (LC 8), 30=-51 (LC 4)

17=89 (LC 16), 18=177 (LC 22)

19=180 (LC 22), 20=189 (LC 22),

21=188 (LC 15), 22=190 (LC 21),


23=179 (LC 21), 24=180 (LC 1),

25=180 (LC 21), 26=180 (LC 1),

27=179 (LC 21), 28=184 (LC 1),

(lb) - Maximum Compression/Maximum

29=166 (LC 15), 30=225 (LC 16)

	(X, 1). [14.0-1-13,0-3-	-0]				_							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.78 0.97 0.72	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.37 0.16	(loc) 10-12 12-13 16 12-13	l/defl >999 >830 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 115 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	1.8E 2x4 SPF No.2 *Exce 2x3 SPF No.2 *Exce 2x4 SPF No.2 Structural wood she 3-8-6 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt	ept* 14-2:2x10 SP D eathing directly applie cept end verticals. applied or 2-2-0 oc 3-12, 6-10 0-3-8, 16=1121/0-3- LC 5) (LC 8), 16=-137 (LC	SS 5 ed or 6 7 2 L 8)	on the botto 3-06-00 tall 1 chord and a Bearing at jo using ANSI/ designer sho Provide mec bearing platt joint 14 and This truss is Internationa	has been designe m chord in all are by 2-00-00 wide in ny other member init(s) 16 conside TPI 1 angle to gri ould verify capaci chanical connecti e capable of with 137 lb uplift at jo designed in acco Residential Cod nd referenced st Standard	eas where will fit betw rs, with BC ers parallel ain formula ity of beari on (by oth standing 1 int 16. ordance w le sections	a rectangle veen the bott DL = 10.0ps to grain valu a. Building ing surface. ers) of truss 81 lb uplift a ith the 2018 \$ R502.11.1 a	om f. ie to t					
FORCES	(lb) - Maximum Com Tension	npression/Maximum											
TOP CHORD	5-6=-1361/332, 6-7=	0/250, 3-5=-1374/188 =-706/166, 7-8=-657/ 5/28, 2-14=-1129/200	/112,										
BOT CHORD	13-14=-375/1624, 1 10-12=-58/715, 9-10												The second se
WEBS		=0/228, 3-12=-524/22)=-378/102,	20,								B	STATE OF M	AISSOUR
 this design Wind: ASC Vasd=91n II; Exp C; cantilever right expo This truss 	ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DCL=1.6 has been designed fo load nonconcurrent w	a (3-second gust) IDL=6.0psf; h=25ft; C nvelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 r a 10.0 psf bottom	Cat. ne; d 60									Sevi Sevi NUM PE-20010	ER SNR D18807

February 9,2022

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1					
B220010 G3 Common 3 1 Job Reference (optional Densetional Densetional) LEES SUMMT, MISSOUR Wheeler Lumber, Waverly, KS - 66971. Run: 8.43 S Oct 11 2021 Print: 8.43 S Oct 11 2021 MTek Industries, Inc. The Feb 0134/09/2022 0.00/20022 -0-10-8 5-9-10 13-9-10 18-0-0 22-2-6 30-2-6 36-0-0 36-10-8 5-9-10 8-0-0 4-2-6 4-2-6 8-0-0 5-9-10 0-10-8 5-9-10 8-0-0 4-2-6 4-2-6 8-0-0 5-9-10 0-10-8 6	Job	Truss	Truss Type		Qty Ply	Lot 105 RR	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
D:2ncXpisxObjiBB07Q7gPMzYWU-RicCPrsB70Hq3NSgPqnLaw3ufTX5GKtrCDo7JedSe7/O2	B220010	G3	Common	:	3 1	Job Reference (optional	
$\begin{array}{c} \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	Wheeler Lumber, Waverly, KS	66871,					
5.5 = 6 + 3.6 + 3.4 +		0010					0000
$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	0-10-8	3 5-9-10	8-0-0			8-0-0	5-9-10 0-10-8
5-9-10 8-0-0 8-4-12 8-0-0 5-9-10 Scale = 1:66.2		3 3 17 8x8 = 5x5=		2x4 II 5 16 19 6x8= 1 22-1	1520 3x6= 2-6	7 3x6s 8 7 3x6s 7 3x65 7 3x65	9 10 11 13 5x5= 8x8 ₂

Plate Offsets (X, Y): [12:0-3-12,Edge], [18:0-3-12,Edge]

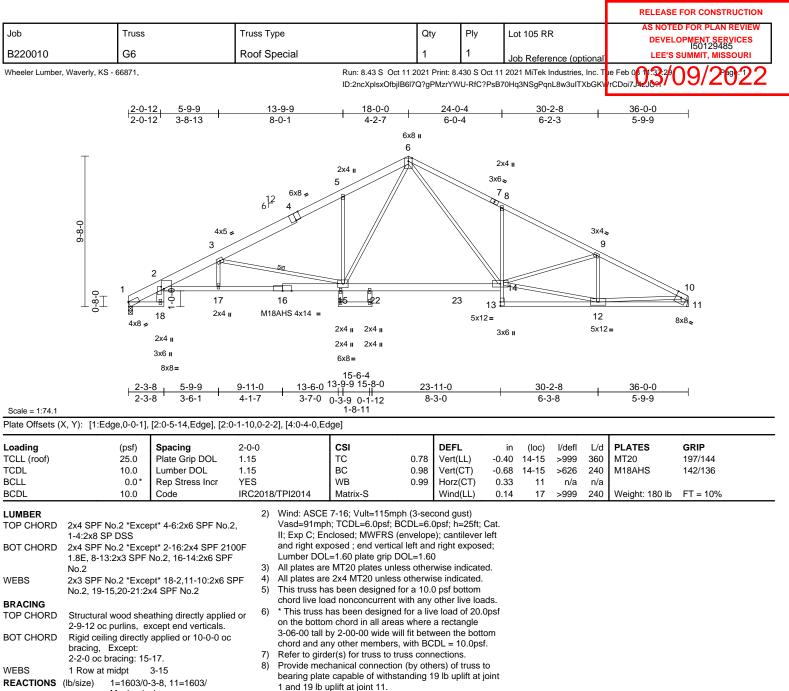
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	TPI2014	CSI TC BC WB Matrix-S	0.92 0.53 0.74	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.26 -0.43 0.08 0.11	(loc) 14-16 14-16 12 16-17	l/defl >999 >996 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 145 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS		athing directly applie applied or 10-0-0 or 9-14, 3-16 0-3-8, 18=1677/0-3- (LC 9) (LC 9), 18=-224 (LC	4) SPF 2d, 5) 2 6) 8 LOA 8)	chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Provide mecl bearing plate joint 18 and 2 This truss is International	s been designed f ad nonconcurrent f has been designed in chord in all area by 2-00-00 wide wi y other members, hanical connection capable of withst 224 lb uplift at join designed in accor Residential Code nd referenced star Standard	with any I for a liv s where ill fit betw with BC n (by oth anding 2 t 12. dance w sections	other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf ers) of truss t :24 lb uplift at ith the 2018 i R502.11.1 a	Dpsf Dm O					
FORCES	(lb) - Maximum Com		, _)										
TOP CHORD	Tension 1-2=0/35, 2-3=-2882 5-6=-2351/431, 6-7= 7-9=-2373/287, 9-10 2-18=-1638/249, 10-	=-235 ¹ /431,)=-2882/343, 10-11=	,										
BOT CHORD	17-18=-226/675, 16- 14-16=-63/1605, 13- 12-13=-89/598	-17=-383/2516,										CONTRA L	all a
this design 2) Wind: ASO Vasd=91n II; Exp C; cantilever	6-14=-284/1056, 7-1 9-14=-572/220, 9-13 6-16=-284/1056, 5-1 3-16=-572/220, 3-17 2-17=-157/1925, 10- ed roof live loads have	3=-42/164, 16=-500/276, 7=-42/164, -13=-144/1925 been considered for (3-second gust) DL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an	Cat. ne; d							C		CE NUMP PE-20010	ER DI18807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

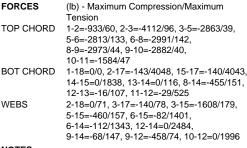
February 9,2022

										Γ	RELEASE	FOR CONSTR	UCTION	
Job	Tru	ISS	Truss Type		Qty	,	Ply	Lot 105 RF	२					1
B220010	G4	Ļ	Common		3		1	Job Refere	anco (ontic	mal		DPMENT SER 150129483 SUMMIT, MISS		
Wheeler Lumber, V	Waverly, KS - 66871	Ι,	1	Run: 8.43 S Oct 11	2021 P	Print: 8.43	30 S Oct 1					10/26	a:02	1
				ID:2ncXplsxOfbjIB6I	7Q?gPl	MzrYWU	-RfC?PsB	70Hq3NSgPqr	nL8w3ulTXb	GKV/r	CDoi7J42J09	<u>)3/2(</u>	<u> </u>	
	-0-10-8	5-9-10	13-9-10	18.0.0		22	26		30-2-6			36-0-0		
	0-10-8	5-9-10	8-0-0	4-2-6			- <u>2-6</u> 2-6	+	8-0-0			5-9-10		
					6x6	6=								
					6 4~			3x6 👟						
				2x4 II		\sim	. :	2x4 I						
			3x6 .	5	// `	$\langle \rangle$	\sim	7						
			6 4		/									
									\searrow					
9-9-3 9-8-0		3x4 =				//	//			\leq	3x4			
0, 0,		3									9			
	2		R						A				_ 10	
	- 1												A.	
⊥ ⊥ ¦⊣		16		15 18				13			12		<u>∽</u> 1 11	
	8x8 =	4x9=		6x8=				6x8=			4x9=		8x8 👟	
	 	5-9-10	13-9-10		22-2-			1	30-2-6			36-0-0		
	1	5-9-10	8-0-0	,	8-4-1	2		•	8-0-0		,	5-9-10		
Scale = 1:65.1 Plate Offsets (X	Y)· [11·0-3-12]	Edge], [12:0-2-8,0-2-0], [16.0-2-8 0-2-0] [17.0-3-	12 Edgel										-
										.		-		-
Loading TCLL (roof)	(psf 25.0		2-0-0 1.15	CSI TC	0.92	DEFL Vert(LL	_) -0	in (loc) .27 13-15			PLATES MT20	GRIP 197/144		
TCDL	10.0) Lumber DOL	1.15	BC	0.53	Vert(C	Ť) -0	.43 13-15	>994 2	240				
BCLL BCDL	0.0 10.0		YES IRC2018/TPI2014	WB Matrix-S	0.70	Horz(C Wind(L		.08 11 .08 15-16		n/a 240	Weight: 144 lb	FT = 10%		
LUMBER			3) This truss ha	s been designed for	a 10.0	psf bot	tom					-		-
TOP CHORD			chord live loa	ad nonconcurrent with	h any d	other liv	e loads.							
	2x4 SPF 2100F ² 2x3 SPF No.2 *E	1.8E Except* 17-2,11-10:2x6 S	<i>'</i>	nas been designed fo m chord in all areas w										
	No.2	•	3-06-00 tall t	by 2-00-00 wide will fing other members, wi										
BRACING TOP CHORD	Structural wood	sheathing directly applie	d. 5) Refer to gird	er(s) for truss to truss	s conn	ections.								
	except end vertic	cals. ctly applied or 10-0-0 oc	beering plots	hanical connection (b capable of withstand										
	bracing.		11 and 31 lb	uplift at joint 17. designed in accordar	-	th tha 21	010							
	1 Row at midpt b/size) 11=15	9-13, 3-15 98/ Mechanical,	Ínternational	Residential Code se	ctions	R502.1	1.1 and							
	17=16	78/0-3-8	R802.10.2 a LOAD CASE(S)	nd referenced standa	rd AN	SI/TPI 1	۱.							
	/lax Horiz 17=12 /lax Uplift 11=-1	3 (LC 5) 9 (LC 9), 17=-31 (LC 8)		Standard										
N	lax Grav 11=16	79 (LC 2), 17=1744 (LC	2)											
	(lb) - Maximum C Tension	Compression/Maximum												
TOP CHORD	1-2=0/35, 2-3=-2	884/46, 3-5=-2375/55,												
	5-6=-2353/149, 6 7-9=-2377/55, 9-	,												
	2-17=-1639/57, 1 16-17107/674	10-11=-1572/45 15-16=-80/2566,												
	13-15=0/1618, 1	2-13=0/2530, 11-12=-15	/514								OFN	A DIA		
	6-13=-117/1074, 9-13=-586/111, 9									Å	TATE OF N	IISSO	0	
	6-15=-117/1073,	5-15=-500/166,	07							Ac	SCOTT	м.	N	
	3-15=-572/109, 3 10-12=0/2024	3-16=-42/164, 2-16=0/19	21,							9	SEVI		N,	
NOTES									ł	12			*1	
 Unbalanced this design. 	roof live loads ha	ave been considered for							6	2	atting	Ser	al	
	7 16· \/ult_115n	nph (3-second aust)								10 7	DE COLLO	The second second	U U	

Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60


All south February 9,2022

PE-2001018807



													RELEASE	FOR CONSTRUCTION	I
Job		Truss		Truss Ty	/pe		Qty	/	Ply	Lot 105	RR			D FOR PLAN REVIEW	
B220010		G5		Roof S	pecial		3		1	Job Refe	erence (op	tional		DPMENT SERVICES 150129484 SUMMIT, MISSOURI	
Wheeler Lumber,	, Waverly, KS -	66871,								1 2021 MiTe	k Industries	Inc. T	ie Feb 06 11:32:28	19/2022	7
						ID:2ncXplsxOfbj	IB6I7Q?gP	MzrYWU	-RfC?PsB	70Hq3NSgF	qnL8w3ulT.	XbGKV	rCDoi7J42JO?		-
		2-0-12			-7-4 9-11	18-0-0		<u>2-2-6</u> 4-2-6		30-: 8-0			36-0-0 5-9-10	I	
		2012	0010				6x8 II	0		0.0	•				
	9-8-0 	2	4x5 = 3 	612	6x8 = 4 15 8x12=		6	H 14 3/6-	2x4 II 7 13	8		12	9	10 11 6x8	
		2	2x4 II			3x6 II		3x6=	5x12=			4	x9=		
		3	8x6 II												
		2-3-8	8x8=	13	-6-0	20-0-	0	22-2-	-6 .	30-	2-6		36-0-0		
Scale = 1:71.7		2-3-8			8-7	6-6-0		2-2-0		8-0		1	5-9-10		
Plate Offsets ()	K, Y): [1:Edg	je,0-0-1],	[2:0-5-14,Edge], [2:0-	-1-10,0-2-	2], [4:0-4-0,Ed	ge], [11:0-3-0,0-2	2-0], [12:0	-2-8,0-2	2-0]					-	_
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.91 0.80 0.99	DEFL Vert(LI Vert(C Horz(C Wind(L	т) -0 Ст) 0	in (loc 0.28 16-1 0.58 16-1 0.31 1 0.15 16-1	7 >999 7 >743 1 n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 172 lb	GRIP 197/144 FT = 10%	
LUMBER				3)		s been designed							-		
TOP CHORD	2x4 SPF No 1-4:2x8 SP		pt* 4-6:2x6 SPF No.2	, 4)		d nonconcurrent as been designe									
BOT CHORD	2x4 SPF No 1.8E, 5-15:2		pt* 2-16:2x4 SPF 210 No.2	00F		n chord in all area y 2-00-00 wide w			•						
WEBS	2x3 SPF No No.2	0.2 *Exce	pt* 18-2,11-10:2x6 SI	PF 5)		y other members er(s) for truss to t		ections.							
BRACING TOP CHORD	Structural w	und she	athing directly applied	6)		nanical connectio capable of withs									
BOT CHORD	except end	verticals.				plift at joint 11. designed in acco	rdance wi	ith the 2	018						
WEBS	bracing. 1 Row at m		3-16, 9-13			Residential Code nd referenced sta									
REACTIONS	(lb/size) 1	•	3-8, 11=1603/	LO	AD CASE(S)	Standard									
	Max Horiz 1	=116 (LC	5)												
FORCES	-		8), 11=-19 (LC 9) pression/Maximum												
TOP CHORD	Tension 1-2=-860/60 5-6=-2598/ 7-9=-2270/5), 2-3=-39 151, 6-7= 53, 9-10=	967/81, 3-5=-2652/57 -2231/146,	,											
BOT CHORD		-17=-130 3, 5-16=-	/3819, 16-17=-126/38 458/158, 13-15=0/93 2=-13/447									6	TE OF M	AISSOL	
WEBS	13-16=0/15 6-13=-124/8	25, 6-16= 334, 7-13										b	SCOTI SEVI		
NOTES 1) Unbalance	d roof live loa	ads have	been considered for								,		NUME	Emp	ر
this design 2) Wind: ASC Vasd=91m II; Exp C; E and right e	E 7-16; Vult= ph; TCDL=6. Enclosed; MV xposed ; end	=115mph 0psf; BCl √FRS (en vertical l	(3-second gust) DL=6.0psf; h=25ft; Ca ivelope); cantilever lef eft and right exposed;	ft								A V	PE-20010	LENGT	
Lumber DC	DL=1.60 plate	e grip DO	L=1.60											y 9,2022	

This truss is designed in accordance with the 2018 9) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

Mechanical

Max Uplift 1=-19 (LC 8), 11=-19 (LC 9)

Max Grav 1=1686 (LC 2), 11=1688 (LC 2)

Max Horiz 1=116 (LC 5)

NOTES

Unbalanced roof live loads have been considered for 1) this design.

OF MISS SCOTT M. SEVIER PE-2001018807 0 THE SSIONAL E February 9,2022

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

									RELEASE	FOR CONSTRUCTION	
Job		Truss	Truss Type		Qty	Ply	Lot 105 RR	1		D FOR PLAN REVIEW]
B220010		G7	Roof Special		2	1	Job Refere	nce (optional		DPMENT SERVICES 150129486 SUMMIT, MISSOURI	
Wheeler Lumber	r, Waverly, KS - 66	6871,		Run: 8.43 S Oct 11			1 2021 MiTek Ir	ndustries, Inc. T	ue Feb 06 11:32:28)9/2922	-
				ID:2ncXplsxOfbjlB6l7	Q?gPMzrYV	/U-RfC?PsB	70Hq3NSgPqn	L8w3ulTXbGK\	/rCDoi7J4zJO?	0,2022	
		2-0-12 5-9-9 2-0-12 3-8-13	<u>13-9-9</u> 8-0-1	18-0-0	<u>22-2-7</u> 4-2-7		<u>30-8-4</u> 8-5-13		<u>+ 33-2-6 + 36-0-</u> 2-6-2 2-9-1		
				6x8	3 u						
	0-8-6 0-8-0 1	4x5 3 2 2 4x5 3 4x5 3 3 4x5 3x6 = 1 4x8 = 1 4			25	7 3x1 16 6x8=	30-7-C 8-4-9	14 MT18HS 10x	xB_{2} 9 4xB_{3} 10 12 = 13 5x12= 33-2-6 36-0- 2-7-6 2-9-1		
Scale = 1:73.3		200 001	7.67	0-3-9 0-1-12 0-9-7 0-11-4	001		040		270 231	0	
Plate Offsets (2	X, Y): [1:Edge,	,0-0-1], [2:0-6-14,Edge], [4	:0-4-0,Edge], [12:Edge,0-								_
Loading TCLL (roof) TCDL BCLL BCDL		Spacing25.0Plate Grip DOL10.0Lumber DOL0.0*Rep Stress Incr10.0Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	BC	0.76 DEF 0.76 Vert(0.73 Vert(0.84 Horz Winc	LL) -0 CT) -0 (CT) 0	in (loc) 0.35 16-18 0.63 15-16 0.40 12 0.15 18-19	l/defl L/d >999 360 >676 240 n/a n/a >999 240	MT20 MT18HS	GRIP 197/144 197/144 FT = 10%	
	1-4:2x8 SP D 2x4 SPF No.2 1.4E, 9-14:2x 2100F 1.8E 2x3 SPF No.2 18-3,16-9,12- Structural wo 2-10-2 oc pur Rigid ceiling bracing. 1 Row at mid (lb/size) 1= Max Horiz 1= Max Horiz 1= Max Uplift 1= Max Grav 1= (lb) - Maximut Tension 1-2=-932/61, 5-6=-2783/14 7-9=-2770/34 10-11=-2625/ 1-20=0/0, 2-1 16-18=0/1845 9-15=0/912, 1 2-18=-462/15 6-16=-108/12 9-16=-1946/1	1607/0-3-8, 12=1607/ ichanical 115 (LC 5) -19 (LC 8), 12=-19 (LC 9) 1685 (LC 2), 12=1685 (LC m Compression/Maximum 2-3=-4358/97, 3-5=-2824/ 0, 6-7=-2725/129, , 9-10=-4642/68, '25, 11-12=-1592/33 9=-142/4224, 18-19=-140 9, 15-16=-30/4263, 14-15= 13-14=-25/101, 12-13=-18 19=0/246, 3-18=-1836/17 8, 6-18=-112/1324, 43, 7-16=-490/168, 55, 13-15=0/2436, 127, 10-13=-1327/22,	 22, Vasd=91mp 1.8E II; Exp C; Er 650F and right exp be and right exp cumber DOI 3) All plates are chord live lo ed or a) All plates are chord live lo ed or chord solution a) All plates are chord live lo ed or a) This truss h a) Refer to gird a) Provide mechoric bearing plate 1 and 19 lb i 9) This truss is 2) LOAD CASE(S) 48, 	7-16; Vult=115mph (h; TCDL=6.0psf; BCD hclosed; MWFRS (env bosed; end vertical le _=1.60 plate grip DOL e MT20 plates unless e 2x4 MT20 unless ott as been designed for a ad nonconcurrent with has been designed for a m chord in all areas w by 2-00-00 wide will fit ny other members, wit er(s) for truss to truss hanical connection (b e capable of withstanc uplift at joint 12. designed in accordan Residential Code sec nd referenced standar Standard	L=6.0psf; h elope); can ft and right =1.60 otherwise in a totherwise in a 10.0 psf b a any other r a live load here a recta: between th th BCDL = connection y others) of ling 19 lb up ace with the	=25ft; Cat. tilever left exposed; ndicated. ottom live loads. of 20.0psf angle be bottom 10.0psf. is. truss to oblift at joint 2018 .11.1 and			SCOTT SEVI SEVI NUME PE-20010	Service	
		s have been considered fo	pr						SSIONA	L ENO	

16023 Swingley Ridge Rd Chesterfield, MO 63017

February 9,2022

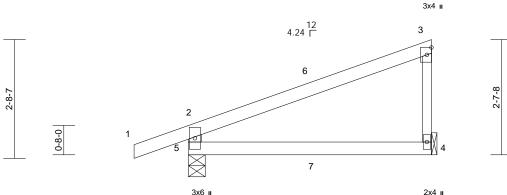
													RELEASE	FOR CONST	RUCTION
Job		Truss		Truss T	уре		Qty	,	Ply	Lot 105 R	R			ED FOR PLAN	
B220010		G8		Roof S	pecial		1		1	Job Rofor	ence (optior			OPMENT SEI 15012948 SUMMIT, MIS	
Wheeler Lumber	r, Waverly, KS	- 66871,				Run: 8.43 S	Oct 11 2021 F	Print: 8.4	30 S Oct 1					00/2	972
						ID:2ncXplsx0	OfbjIB6I7Q?gF		U-RfC?PsB	70Hq3NSgPq	nL8w3ulTXbG	KV/rCDoi7、	<u>بحارجہ</u>	0312	022
		-0-10-8	7-9-10		15-6		18-1 18-0-0	22	2-2-7		30-2-7		36-0		
		0-10-8	7-9-10	·	7-9	-2	2-5-4 0-1)_4 3 2x4 n	-4-3		8-0-0		5-9	-9	
							6x6								
6-9-3	0-8-0	1 2 20 8×8	2	3x4 3 19 5x12		5	6 ×4 II 0 0 0 0 0 0 18 15	7 7 16 2x4 II	4x5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9	8	3x4s 10 13 4x9		11 6x8,	12
							6x12=								
		⊢	7-9-10		15-8		18-9-0		2-2-7		30-2-7		36-0		
Scale = 1:70.9		1	7-9-10	I	7-1()-6	3-1-0	3	-5-7		8-0-0	I	5-9	-9 '	
Plate Offsets ((X, Y): [12:0	-3-0,0-2-0], [13:0-2-8,0-2-0], [18	3:Edge,0-2	2-8], [20:0-3-4	,0-2-12]									
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.71 0.75 0.87	DEFL Vert(L Vert(C Horz(Wind(L) -0 CT) -0 CT) 0	in (loc) .23 16-17 .46 18-19 .24 12 .15 5-17	>999 34 >933 24 n/a r	/d PLAT 50 MT20 40 /a 40 Weig		GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	No.2 2x4 SPF N No.2 2x3 SPF N DSS Structural 2-8-12 oc Rigid ceilir bracing. 1 Row at r (lb/size) Max Horiz Max Uplift (lb) - Maxii Tension 1-2=0/35, 5-6=-3137 7-8=-2752 10-11=-27 11-12=-15 19-20=-36 5-17=-424 15-16=0/11 3-14=-28/7	lo.2 *Exce lo.2 *Exce wood sheapurlins, ei ing directly nidpt 12=1598/ 20=1678// 20=1678// 20=1678// 20=160 (L 12=-199 (mum Com 2-3=-2728 /502, 6-7= 36/221 7/839, 18- 10 70/344, 2- 36/221 7/839, 18- 15/2412, 12 /241, 17-1 8, 6-17=-3 752, 8-14= 7/2541, 10	C 12) LC 9), 20=-224 (LC 8 pression/Maximum //327, 3-5=-3201/384 2576/351, =-2251/290, 20=-1604/264, .19=0/30, 17-18=0/13 7=-101/2235, 4/161, 14-15=-2/9, 2-13=-75/467 9=-376/2471, 161/1423, 6-16=-172/ -1339/149, 0-14=-594/221,	F 3) 4) d or 5) 6) 7)) LC	Vasd=91mp II; Exp C; Er cantilever le right expose This truss ha chord live lo * This truss lo on the bottoo 3-06-00 tall chord and an Refer to gird Provide mee bearing platt joint 20 and This truss is International	7-16; Vult=115 h; TCDL=6.0ps lclosed; MWFR t and right exp d; Lumber DOL as been design an chord in all a by 2-00-00 wide hy other membrer (s) for truss t chanical connect e capable of wit 199 lb uplift at j designed in ac Residential Co nd referenced s Standard	f; BCDL=6.(S (envelope osed ; end v =1.60 plate ed for a 10.(ent with any ned for a liv reas where e will fit betw ers. o truss conr tion (by oth thstanding 2 joint 12. cordance wi	Desf; h= ertical grip D(psf bc other li e load (a recta reen the ections ers) of f 24 lb u th the 2 R502.	=25ft; Cat. ior zone; left and OL=1.60 thom ve loads. of 20.0psf ngle e bottom s. truss to plift at 2018 11.1 and			S. S		ER Sken	
NOTES 1) Unbalance this design			been considered for									Stres H	PE-2001 SIONA Februa	LENGI	

									RELEASE	FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Lot 105 F	R			D FOR PLAN REVIEW
B220010	G9	Common Support	ed Gable	1	1	Job Refe	rence (opt	ionali		OPMENT SERVICES 150129488 SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -	66871,		Run: 8.43 S Oct 11	2021 Print: 8	.430 S Oct 11	1 2021 MiTel	Industries,	Inc. T	ie Feb 06 11.3.30	19/2922
			ID:2ncXplsxOfbjIB6I	7Q?gPMzrYV	VU-RfC?PsB	70Hq3NSgP	qnL8w3ulTX	(bGKV	/rCDoi7J4zJO?	00/2022
-0-10-8	3	18-0-0					36	-0-0		1
0-10-8	i	18-0-0		1				-0-0		1
				6x6= 12						
	5 3 4 4 6 ш 40 39 38	6 ¹² 89 700	6 = 10	X	13 8 8 13 13 13 6x6=	14 ^{3x6} * 1516	17			20 21 $3x6$ 22 23 5 24
⊢ Scale = 1:65.1				0000						
Loading TCLL (roof) TCDL BCLL BCDL	(psf)Spacing25.0Plate Grip DOL10.0Lumber DOL0.0*Rep Stress Incr10.0Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	BC	0.07 Verti 0.06 Verti 0.13 Horz	(LL) (CT)	in (loc) n/a - n/a - .01 23	n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 183 lb	GRIP 197/144 FT = 10%
OTHERS 2x4 SPF No BRACING TOP CHORD Structural BOT CHORD Rigid ceiling WEBS 1 Row at mi REACTIONS (lb/size) 2 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9	.2 *Except* 22-23:2x3 SPF No .2 ood sheathing directly applied flins, except end verticals. g directly applied or 10-0 oc	or FORCES TOP CHORD BOT CHORD WEBS	27=180 (LC 29=180 (LC 31=189 (LC 33=190 (LC 35=180 (LC 35=180 (LC 35=180 (LC 35=180 (LC 37=180 (LC 37=180 (LC 39=185 (LC 41=175 (LC (b) - Maximum Comp Tension 2-41=-150/45, 1-2=0/ 3-4=-132/86, 4-5=-10 6-7=-67/157, 7-9=-56 10-11=-43/235, 11-12 12-13=-46/249, 13-14 14-16=-43/159, 16-17 17-18=-43/102, 18-15 20-21=-84/36, 21-22= 40-41=-27/120, 37-35 36-37=-27/120, 37-35 36-37=-27/120, 37-35 36-37=-27/120, 37-35 36-37=-27/120, 37-35 36-37=-27/120, 37-35 36-37=-27/120, 37-35 36-37=-27/120, 26-27 25-26=-27/120, 32-35 6-37=-140/78, 15-38= 3-40=-125/110, 13-31 14-30=-139/82, 16-25 21-24=-150/103 d roof live loads have b	C 1), 26=18 C 1), 28=18 C 1), 30=17 C 22), 32=2 C 21), 34=1 C 1), 36=18 C 1), 36=18 C 1), 36=18 C 1), 36=17 C 1), 40=16 C 17) orression/Ma 32, 2-3=-19 2/105, 5-6= /182, 9-10= 2/105, 5-6= /182, 9-10= 2-43/206, ?=-43/128, 9=-43/206, ?=-43/128, 9=-43/206, ?=-43/128, 9=-27/120, 5=-140/77, 7- 139/80, 4-3 1=-149/72, 5=-138/72,	1 (LC 22), 0 (LC 22), 9 (LC 22), 9 (LC 22), 14 (LC 18), 79 (LC 21), 9 (LC 21), 9 (LC 21), 3 (LC 21), ximum 0/79, -78/131, -45/208, 0-20=-60/50 2-23=-75/2 36=-140/78 9=-144/71,	(4) (4) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7	asd=91mpl Exp C; En antilever let ght expose uss design ly. For stru- es Standar- consult qu I plates are able requir- uss to be f acced again able studs nis truss ha- nord live loa This truss I the bottoo 06-00 tall t	h; TCI iclosee ft and d; Lur hed fo uds ex- alified es con- ully si as bee ad nor- nas be ad nor- nas be op 2-0 hy oth	d; MWFRS (enver right exposed; e mber DOL=1.60; e mber DOL=1.60; e mber DoL=1.60; e mber DoL=1.60; e mber DoL=1.60; e mber de building designer MT20 unless other MT20 unless	 =6.0psf; h=25ft; Cat. lope) exterior zone; nd vertical left and vertical le

NOTES

February 9,2022

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 105 RR	
B220010	G9	Common Supported Gable	1	1	Job Reference (optional	DEVELOPMENT SERVICES 150129488 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS	- 66871,				2021 MiTek Industries, Inc. T 70Hq3NSgPqnL8w3uITXbGKV	


10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 41 lb uplift at joint 41, 50 lb uplift at joint 33, 57 lb uplift at joint 34, 53 lb uplift at joint 35, 54 lb uplift at joint 36, 53 lb uplift at joint 37, 57 lb uplift at joint 38, 40 lb uplift at joint 39, 112 lb uplift at joint 40, 48 lb uplift at joint 31, 58 lb uplift at joint 30, 53 lb uplift at joint 29, 54 lb uplift at joint 28, 53 lb uplift at joint 27, 57 lb uplift at joint 26, 43 lb uplift at joint 25 and 100 lb uplift at joint 24.

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 105 RR	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 150129489
B220010	J1	Diagonal Hip Girder	2	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Wave	rly, KS - 66871,	Run: 8.43 S Oct ID:kE1z9oV6600	11 2021 Print: 8 06o1yetSOjY_yL	.430 S Oct 1 CWI-RfC?Ps	1 2021 MiTek Industries, Inc. T B70Hq3NSgPqnL8w3uITXbGk	ie Feb 00133/09/2022 WrCDoi754259/
		-1-2-14	5-6-6			
		1-2-14	5-6-6			

2-7-8	
-------	--

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.41	Vert(LL)	-0.03	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.25	Vert(CT)	-0.07	4-5	>967	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	4-5	>999	240	Weight: 16 lb	FT = 10%

5-6-6

LU TOP CHORD

- 2x4 SPF No.2
- BOT CHORD 2x4 SPF No.2

2x4 SPF No.2 *Except* 3-4:2x3 SPF No.2 WEBS

BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	5-6-6 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.

- REACTIONS (lb/size) 4=224/ Mechanical, 5=346/0-4-9 Max Horiz 5=111 (LC 5)
- Max Uplift 4=-50 (LC 8), 5=-101 (LC 4) FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 2-5=-306/140, 1-2=0/32, 2-3=-139/14, 3-4=-160/73 BOT CHORD 4-5=-26/45

NOTES

Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 4)
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 101 lb uplift at joint 5 and 50 lb uplift at joint 4.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

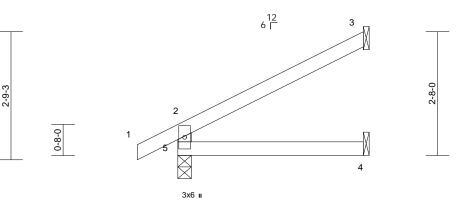
provided sufficient to support concentrated load(s) 69 lb down and 36 lb up at 2-9-8, and 69 lb down and 36 lb up at 2-9-8 on top chord, and 3 lb down and 1 lb up at 2-9-8, and 3 lb down and 1 lb up at 2-9-8 on bottom chord. The design/selection of such connection device (s) is the responsibility of others.

8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).


LOAD CASE(S) Standard

Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-2=-70, 2-3=-70, 4-5=-20

Concentrated Loads (lb) Vert: 7=2 (F=1, B=1)



							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Lot 105 RR	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 150129490
B220010	J2	Jack-Open	1	5	1	Job Reference (optional	
Wheeler Lumber, Waverly, K	S - 66871,					2021 MiTek Industries, Inc. T B70Hq3NSgPqnL8w3uITXbG	

4-0-0

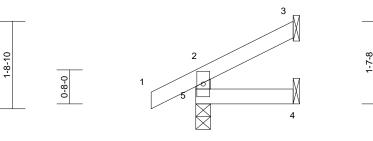
Scal	e - 1	1.24	8

Scale = 1:24.8											-	
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.20 0.13 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R	0.00	Wind(LL)	0.01	3 4-5	>999	240	Weight: 11 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2		ed or									
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	2									
REACTIONS		2 8), 5=-30 (LC 8)	-252									
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 2-5=-221/67, 1-2=0/											
Vasd=91n II; Exp C; cantilever	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6	DL=6.0psf; h=25ft; 0 nvelope) exterior zon ; end vertical left and	ne; d									acon
chord live 3) * This trus on the bot 3-06-00 ta	has been designed for load nonconcurrent wi ss has been designed f ttom chord in all areas all by 2-00-00 wide will	ith any other live load or a live load of 20.0 where a rectangle	psf								STATE OF SCOT	
 Refer to g Provide m bearing pl 	I any other members. irder(s) for truss to tru nechanical connection (late capable of withstar Ib uplift at joint 3.	(by others) of truss to								R.	PE-2001	018807
	is designed in accorda		a d							Y	1 Per	NOV B

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

February 9,2022


						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 105 RR	AS NOTED FOR PLAN REVIEW
D oooolo						DEVELOPMENT SERVICES I50129491
B220010	J3	Jack-Open	4	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Wheeler Lumber, Waverly, KS - 66871,

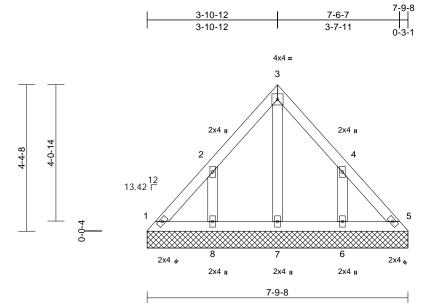
Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. The Feb 061133/09/2021 ID:zhYxU2P5?YOFroL6PmErDlyLCWQ-RfC?PsB70Hq3NSgPqnL8w3ulTXbeKWrCD071326?

3x6 II

1-10-15

Scale = 1:22.6

00010 - 1.22.0												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	4-5	>999	240		10//111
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00		>333 n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R	0.00	Wind(LL)	0.00	4-5	>999	240	Weight: 6 lb	FT = 10%
BCDL	10.0	Code	IKC2010/1F12014	Wath A-N		WINU(LL)	0.00	4-5	>999	240	Weight. 0 lb	FT = 1076
LUMBER												
TOP CHORD	2x4 SPF No.2											
BOT CHORD	2x4 SPF No.2											
WEBS	2x4 SPF No.2											
BRACING												
TOP CHORD	Structural wood she	athing directly appli	ed or									
	1-10-15 oc purlins,	except end verticals	3.									
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 c	C									
	bracing.											
REACTIONS	(lb/size) 3=44/ Me	chanical, 4=14/										
	Mechanic	al, 5=171/0-3-8										
	Max Horiz 5=48 (LC	8)										
	Max Uplift 3=-30 (LC	C 8), 5=-26 (LC 8)										
	Max Grav 3=44 (LC	1), 4=31 (LC 3), 5=	171									
	(LC 1)											
FORCES	(lb) - Maximum Com	npression/Maximum										
	Tension											
TOP CHORD	2-5=-150/44, 1-2=0/	32, 2-3=-37/14										
BOT CHORD	4-5=0/0											
NOTES												
	CE 7-16; Vult=115mph											
	nph; TCDL=6.0psf; BC											
	Enclosed; MWFRS (er											
	left and right exposed											100
	sed; Lumber DOL=1.6		60								TATE OF	MIG
	has been designed fo		de								BIE	Jose M
	load nonconcurrent w									6	AN'	N.S.Y
	ss has been designed f ttom chord in all areas		upst							R	SCOT	TM. YEY
	all by 2-00-00 wide will		om							a	SEV	TER \ Y
	any other members.	in between the bott	om							12 A		1 * 0
	irder(s) for truss to tru	iss connections								W) +++.	0 1-14
	nechanical connection		to								coll_	server.
	late capable of withsta								-	2	NUM	NER ISA
	lb uplift at joint 3.									N.	$O \setminus PE-200$	1018807
	is designed in accorda	ance with the 2018								V	PE-200	188
	nal Residential Code s		and								13°50	ENU'S
	2 and referenced stand										NONA	AL EL
											Un	mos


LOAD CASE(S) Standard

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

February 9,2022

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 105 RR	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 150129492
B220010	LAY1	Lay-In Gable	1	1	Job Reference (optional	
Wheeler Lumber, Wav	rerly, KS - 66871,				11 2021 MiTek Industries, Inc. T 370Hq3NSgPqnL8w3ulTXbGKW	

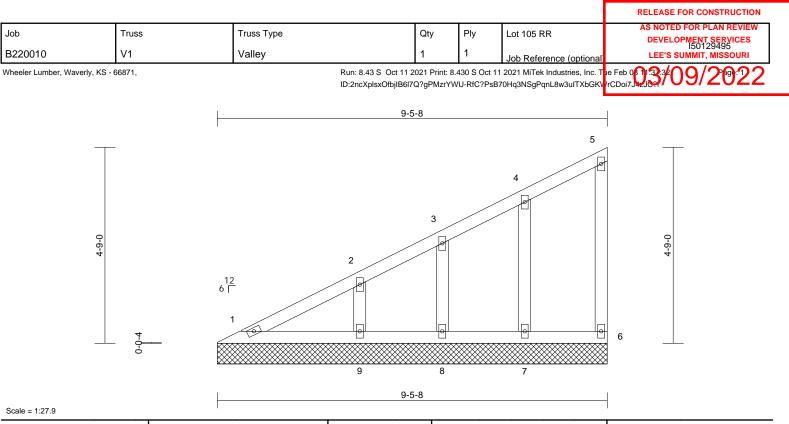
Scale = 1:34.4

Ocale = 1.54.4												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI20	4 Matrix-P							Weight: 29 lb	FT = 10%
	6-0-0 oc purlins. Rigid ceiling direct bracing. (lb/size) 1=74/7-1 6=197/7 8=197/7 Max Horiz 1=-108 Max Uplift 1=-25 (L (LC 9), 8 Max Grav 1=100 (I 8=228 (I 8=228 (I	LC 4) C 4), 5=-8 (LC 5), 6= 3=-153 (LC 8) LC 16), 5=92 (LC 18), LC 16), 7=119 (LC 18 LC 15)	chord 7) * This on the 3-06-C chord 8) Provid bearin 1, 8 lb uplift a 9) This tr Interna R802. -153	uss has been designe live load nonconcurrer truss has been design bottom chord in all are 0 tall by 2-00-00 wide and any other membe e mechanical connect g plate capable of with uplift at joint 5, 153 lb t joint 6. uss is designed in acc titional Residential Coc 10.2 and referenced st SE(S) Standard	nt with any ned for a live eas where will fit betw rs. ion (by oth histanding 2 uplift at join cordance with de sections	other live loa e load of 20.1 a rectangle veen the botti ers) of truss t 5 lb uplift at j nt 8 and 153 ith the 2018 i R502.11.1 a	Opsf om to joint Ib					
FORCES	Tension	mpression/Maximum										
TOP CHORD	1-2=-120/91, 2-3=- 4-5=-105/68	, ,										
BOT CHORD	1-8=-45/94, 7-8=-4 5-6=-45/94	5/94, 6-7=-45/94,										-
WEBS	2-8=-188/177, 3-7=	-81/1, 4-6=-188/177									Same	April
NOTES											F. OF	MISS
1) Unbalance this design		e been considered fo	r							A	THEOF	MISSOL
 Wind: ASC Vasd=91m II; Exp C; I cantilever i right expose Truss desi only. For s see Standa or consult Gable requ 	CE 7-16; Vult=115mp ph; TCDL=6.0psf; B Enclosed; MWFRS (i left and right expose sed; Lumber DOL=1. gned for wind loads studs exposed to wir ard Industry Gable E	CDL=6.0psf; h=25ft; (envelope) exterior zor d; end vertical left an 60 plate grip DOL=1. in the plane of the tru d (normal to the face nd Details as applical signer as per ANSI/TF om chord bearing.	ne; d 60 ss), ble,								SCOT SEV SEV PE-2001 PE-2001	IER 018807

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 0-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

February 9,2022


												CONSTRUCTION
Job	Truss	5	Trus	ss Type		Qty	Ply	Lot 105 RF	R			R PLAN REVIEW NT SERVICES 0129493
B220010	R1		Cor	mmon Girder		1	2	Job Refere	ence (option	aľ		0129493 I <mark>IT, MISSOURI</mark>
Vheeler Lumber, Wa	verly, KS - 66871,				Run: 8.43 S Oct 1			11 2021 MiTek I	Industries, Inc	. Tue Feb 08		12922
					ID:2ncXplsxOfbjIB	6l7Q?gPMzr	YWU-RfC?Ps	B70Hq3NSgPqr	nL8w3ulTXbG	KV/rCDoi7J4		
	-0-10-8 	5-9-10		13-9-10	18-0-0		22-2-6	25-10-		30-2-6		·0-0
	0-10-8	5-9-10	·	8-0-0	4-2-6		4-2-6	3-8-2		4-3-14	5-9	-10
						5x7 II 6						
ТТ							_	3x6 ≈				
					2x4 n 5		\sim	2x4 II 7				
				3x6 -			$\langle \rangle$	8	6x8 👟			
				6F 4					9			
9-9-3 9-8-0			3x4 🖕			/			T		3x6 👟	
6 6			3						// `	\searrow	10	
										\geq		
							//					
0	1 2						\	$\mathbb{W}//\mathbb{V}$				11
			8					1.1				
	5x5=		17		16 18	15	19	14	13	20	12 21	22 5x12 🗙
			2x4 II		4x8=	4x8=		8x8=	8x8= HGUS26-2	LUS26	3x10 II S26 LUS26	LUS26
	—	5-9-10		13-9-10		22-2-6		25-10-		30-2-6		0-0
Scale = 1:64.7		5-9-10	•	8-0-0	,	8-4-12		3-8-2		4-3-14	5-9	-10
Plate Offsets (X, Y): [2:Edge,0-1-9	9], [11:Edge,0-1-	14], [13:0-3-	8,0-4-12]								
oading	(psf)	Spacing	2-0-		CSI		FL	in (loc)		d PLATE		
CLL (roof)	25.0 10.0	Plate Grip D Lumber DOI			TC BC		. ,	0.20 13-14 0.36 13-14	>999 36 >999 24		197/	/144
BCLL	0.0*	Rep Stress	ncr NO		WB	0.77 Ho	orz(CT)	0.09 11	n/a n	/a		100/
BCDL	10.0	Code	IRC	2018/TPI2014	Matrix-S			0.13 13	>999 24			= 10%
UMBER OP CHORD 2x	4 SPF No.2 *Exc	cept* 1-4,8-11:2	x4 SPF		considered equally ed as front (F) or ba			D Co	Vert: 1-6=-7 oncentrated), 2-11=-20	
	00F 1.8E 6 SP 2400F 2.0E	=			tion. Ply to ply con istribute only loads				Vert: 13=-3 21=-544 (F	(),	=-544 (F), 20=- F)	-544 (F),
VEBS 2x	4 SPF No.2			unless other	vise indicated.				21=-044 (1	1, 22–-344 (,	
VEDGE Ri B RACING	ght: 2x6 SP No.2	2		this design.	roof live loads have							
TOP CHORD SI	ructural wood sh	eathing directly	applied or		7-16; Vult=115mph ; TCDL=6.0psf; BC			t.				
BOT CHORD R	2-0 oc purlins. gid ceiling direct	ly applied or 10-	0-0 oc	II; Exp C; En	closed; MWFRS (e osed ; end vertical	nvelope); c	antilever lef	t				
	acing. size) 2=3074/	0-3-8, 11=6321	/0-3-8 (rea	Lumber DOL	=1.60 plate grip DC	DL=1.60						
κ.	0-5-3)		, o o o, (roq.		s been designed fo d nonconcurrent w							
	к Horiz 2=108 (I к Uplift 2=-193 ((LC 9)		as been designed n chord in all areas			sf				
	k Grav 2=3237			3-06-00 tall b	y 2-00-00 wide will	fit betweer	the bottom	I				
Ťe	o) - Maximum Co ension	•		7) WARNING: F	y other members, v Required bearing si			r				
	2=0/11, 2-3=-608 6=-5546/492, 6-7	,	74/398,	than input be 8) Provide mech	aring size. nanical connection	(by others)	of truss to					
	9=-7457/625, 9- [,])-11=-12159/108			bearing plate	capable of withsta 00 lb uplift at joint 1	nding 193 I						
BOT CHORD 2-	17=-369/5327, 1	6-17=-369/5327		9) This truss is	designed in accord	ance with tl					and	~
	l-16=-245/4550, 2-13=-886/10549				Residential Code s nd referenced stand			l		Pr	OF MIS	A so
	14=-546/5196, 7)-13=-1493/230,		7	10) Use Simpsor	Strong-Tie HGUS	26-2 (20-16	6d Girder,			E ATE		N 25
6-	16=-154/995, 5-	16=-473/166,		,	or equivalent at 25 uss(es) to front face				E	15/	SCOTT M. SEVIER	1:2 8
	16=-425/231, 3- [.] 13=-555/5317	17=0/258, 9-14=	-5016/576,		Strong-Tie LUS26 Ply Girder) or equ			1	9	*	SE TIER	1+1
IOTES				oc max. start	ing at 27-11-4 from	the left en	d to 33-11-4		18	lant	H &	hand
 2-ply truss to b (0.131"x3") na 		ether with 10d			uss(es) to front face les where hanger is			r.		PI A	NOMBER E-20010188	NT AN
	nnected as follow	ws: 2x4 - 2 rows		LOAD CASE(S)	Standard					N m		128
Bottom chords	connected as fo	ollows: 2x6 - 3 ro	ows	 Dead + Roc Plate Increa 	of Live (balanced): I Ise=1.15	Lumber Inc	rease=1.15			P'ss	ONAL E	NO
staggered at 0 Web connecte	-4-0 oc. d as follows: 2x4	4 - 1 row at 0-9-0) oc.	Uniform Loa	ads (lb/ft)						and	Ş
											ebruary 9,	2022

										/	RELEASF	E FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Lot	t 105 RR	२	-		ED FOR PLAN REVIEW
B220010	R2		Flat Girder		1	2	Jot	b Referer	once (or	otional	1 5510 /	OPMENT SERVICES 150129494 SUMMIT, MISSOURI
Wheeler Lumber,	, Waverly, KS - 66871,		_	Run: 8.43 S Oct 11 2		t: 8.430 S Oct	oct 11 2021	1 MiTek In	Industries,	s, Inc. T	Lie Feb 06 11:32:34	<u>19/2922</u>
				ID:2ncXplsxOfbjIB6I7	'Q?gPMzrY	YWU-RfC?P	'sB70Hq3	3NSgPqnl	L8w3ulT	XbGKV	rCDoi7J4zJO9	
			3-8-8	9-3-6					13-0-			
		;	3-8-8	5-7-1	1		Ī		3-8-8	3		
		3x4 u	4x5 =				4x5 =	=			3x4 u	
			8 2	9	\bowtie	10]	3	11	\square	12	$\overset{2}{\bowtie}$	
				\sim			\nearrow	\searrow	< _			
	3-0-0				/	//			\searrow	<		
	ά				//	/				\geq	$\langle $	
				<u>`</u>	í⁄					—È		
		7									▶ 5	
			· •	6								
		MT18HS 5x1	i4 =	3x4	×4 =						MT18HS 5x14 =	
			6-6-0					8-0-0				
Scale = 1:32.1		I	6-6-0	ļ			0-1	-6-0			I	
Loading	(psf)	Spacing	2-0-0	CSI	DE	EFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC 0	0.71 Ver	ert(LL) ert(CT)	-0.04 -0.07	6	>999 >999	360 240	MT18HS	197/144 197/144
BCLL	0.0*	Rep Stress Incr	NO	WB 0	0.50 Hoi	orz(CT)	0.03	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		/ind(LL)	0.03	6	>999	240	Weight: 137 lb	FT = 10%
LUMBER TOP CHORD	2x6 SPF No.2		6) This truss ha	e MT20 plates unless of as been designed for a	a 10.0 psf	sf bottom						
BOT CHORD WEBS	2x6 SPF No.2 2x4 SPF No.2		7) * This truss h	bad nonconcurrent with has been designed for	or a live loa	bad of 20.0p						
BRACING TOP CHORD		2 7 may): 1-4 exce	on the bottor	om chord in all areas will by 2-00-00 wide will fit	vhere a rec	ectangle	•					
	end verticals.	8-7 max.): 1-4, excep	chord and ar	any other members. der(s) for truss to truss								
BOT CHORD	Rigid ceiling directly bracing.	y applied or 10-0-0 oc	9) Provide mec	chanical connection (by	by others)) of truss to						
REACTIONS (Mechanical, 7=3598/(C 6)	joint 7 and 4	te capable of withstand 425 lb uplift at joint 5.	Ū.	·						
I	Max Uplift 5=-425 (L	LC 5), 7=-416 (LC 4)	International	s designed in accordan al Residential Code sec	ctions R50	502.11.1 an	nd					
FORCES	Max Grav 5=4392 (L (lb) - Maximum Com		¹⁴⁾ R802.10.2 a	and referenced standar urlin representation do	ard ANSI/T	/TPI 1.						
TOP CHORD	Tension	91/26, 2-3=-4844/430	or the orienta	tation of the purlin alon			26					
BOT CHORD	3-4=-102/27, 4-5=-9 6-7=-520/4807, 5-6=	913/105	12) Hanger(s) or	or other connection dev			-					
WEBS	2-6=0/201, 2-7=-580		b down and	fficient to support conc d 67 lb up at 0-1-12, 12	235 lb dov	own and 12	21					
NOTES	3-5=-5830/601		lb up at 2-0- 1235 lb dowr)-0, 1235 lb down and 1 vn and 121 lb up at 6-0	121 lb up -0-0, 1235	p at 4-0-0, 5 lb down ai	, and					
1) 2-ply truss	to be connected toget) nails as follows:	ther with 10d	121 lb up at	8-0-0, and 1235 lb do 1239 lb down and 122	own and 1	121 lb up a	at					
Top chords	s connected as follows		-0 top chord. T	The design/selection of the responsibility of oth	of such cor		1				- mar	M
Bottom cho	rows staggered at 0-9 ords connected as follo		LOAD CASE(S)) Standard							E OF M	MISSO
staggered a Web conne	at 0-9-0 oc. ected as follows: 2x4 -	- 1 row at 0-9-0 oc.		oof Live (balanced): Lu	mber Incr	rease=1.1t	5,			A	STAT SCOTT	No.
2) All loads ar	re considered equally oted as front (F) or bac	applied to all plies,	Uniform Lo							R	S SCOTT	
CASE(S) se	section. Ply to ply connot distribute only loads	nections have been	Concentrate	ted Loads (lb)	- 10F	· 10 - 10(- .		1	ing		
unless othe	erwise indicated.			-97, 2=-1051, 8=-1051 51, 12=-1056	, 9=-1ບວ ເ	1, 10=-105	51 ,		F	×	NUME	Servery
Vasd=91m	CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC	CDL=6.0psf; h=25ft; C								Ø.	PE-20010	
and right ex	Enclosed; MWFRS (en exposed ; end vertical I	left and right exposed								Y	1288 A	NOT
Lumber DC	DL=1.60 plate grip DO lequate drainage to pro	OL=1.60									SIONA	LE
7) 1.5	iquato aranno ,	Gyon mater F										ry 9,2022
			I THIS AND INCLUDED MITEK RI							· · · · ·		

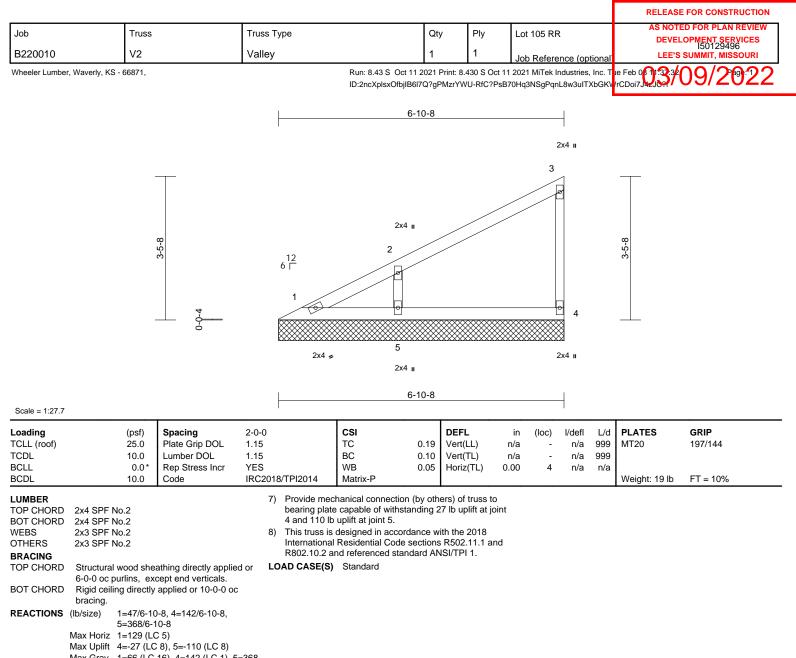
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTEK REFERENCE PAGE MIL-7473 ev. 5/19/2020 BEFORE USE. Design valid for use only with MITEk® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

Scale = 1:27.9											
Loading (psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 25.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL 10.0	Lumber DOL	1.15	BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL 0.0*	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	6	n/a	n/a		
BCDL 10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 34 lb	FT = 10%
6-0-0 oc purlins, exe BOT CHORD Rigid ceiling directly bracing. REACTIONS (Ib/size) 1=106/9-5 9=267/9-5 Max Horiz 1=182 (LC Max Uplift 6=-25 (LC	applied or 10-0-0 oc -8, 6=67/9-5-8, -8, 8=149/9-5-8, -8 2 5)	d or solution of the beam of t	designed in acco Residential Code nd referenced sta	with any d for a liv as where vill fit betv s. on (by oth tanding 2 uplift at joi rdance w e sections	other live load e load of 20.0 a rectangle veen the botto rs) of truss tr 5 lb uplift at jo nt 8 and 58 lb ith the 2018 i R502.11.1 a	ipsf om o pint					
	149 (LC 1), 9=267 (L										
FORCES (lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD 1-2=-151/58, 2-3=-1 4-5=-80/46, 5-6=-52											
BOT CHORD 1-9=-62/47, 8-9=-62/ 6-7=-62/47	/47, 7-8=-62/47,										
WEBS 2-9=-200/108, 3-8=-	119/70, 4-7=-152/71									San	m
NOTES										B OF I	MISSO
 Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BC II; Exp C; Enclosed; MWFRS (er cantilever left and right exposed right exposed; Lumber DOL=1.6 Truss designed for wind loads in only. For studs exposed to wind see Standard Industry Gable En- 	DL=6.0psf; h=25ft; Ca velope) exterior zone ; end vertical left and 0 plate grip DOL=1.6(the plane of the truss (normal to the face),	2; D S							*	STE OF SCOT SEV	тм.

- or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated. 3)

Gable requires continuous bottom chord bearing. 4)


5) Gable studs spaced at 2-0-0 oc.

MiTek°

SIONAL ET

February 9,2022

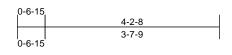
 Max Grav
 1=66 (LC 16), 4=142 (LC 1), 5=368 (LC 1)

 FORCES
 (lb) - Maximum Compression/Maximum Tension

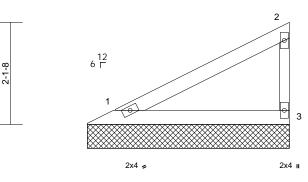
 TOP CHORD
 1-2=-110/58, 2-3=-105/43, 3-4=-111/46

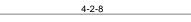
 BOT CHORD
 1-5=-44/33, 4-5=-44/33

 WEBS
 2-5=-286/159


NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 6) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.



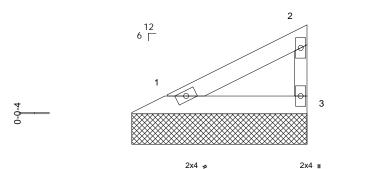


						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 105 RR	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
B220010	V3	Valley	1	1	Job Reference (optional	DEVELOPMENT SERVICES 150129497 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -	66871,				2021 MiTek Industries, Inc. T 70Hq3NSgPqnL8w3uITXbGKV	

Scale = 1:24	
--------------	--

00010 - 1.24												
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.23 0.12 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 11 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2		Ínternationa	s designed in acco al Residential Cod and referenced sta) Standard	le sections	R502.11.1 a	and					
BRACING TOP CHORD BOT CHORD	Structural wood she 4-3-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals.										
	•	,										
FORCES	(lb) - Maximum Com Tension											
TOP CHORD BOT CHORD	1-2=-67/44, 2-3=-12 1-3=-25/19	3/60										
NOTES	1 0- 20/10											
 Wind: ASC Vasd=91m II; Exp C; I cantilever right expose Truss desi 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 igned for wind loads in	DL=6.0psf; h=25ft; h velope) exterior zon ; end vertical left an 0 plate grip DOL=1. the plane of the tru	ne; d 60 ss									
see Stand	studs exposed to wind ard Industry Gable En qualified building desi	d Details as applica	ble,								E OF	MISSO
 Gable stud This truss 	uires continuous botto ds spaced at 2-0-0 oc. has been designed fo	r a 10.0 psf bottom	de								STATE OF SCOT	T M.
 6) * This trust on the bott 	load nonconcurrent wi s has been designed f tom chord in all areas	or a live load of 20.0 where a rectangle	Opsf							ß	++-	· e

3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 20 lb uplift at joint 1 and 39 lb uplift at joint 3.

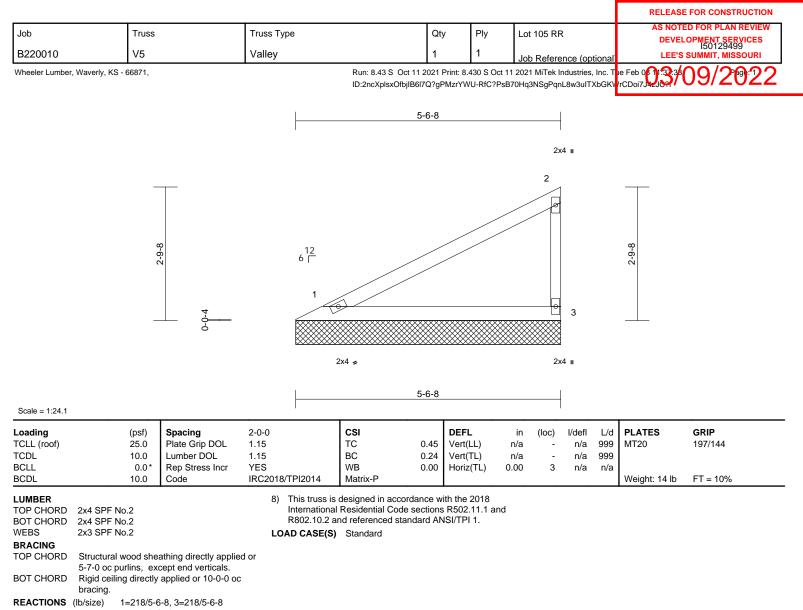
TAMAR 1 OF FESSIONAL EN PE-2001018807 101

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 105 RR	AS NOTED FOR PLAN REVIEW
B220010	V4	Valley	1	1	Job Reference (optional	DEVELOPMENT SERVICES 150129498 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS	; - 66871,	Run: 8.43 S Oct 11 2 ID:2ncXplsxOfbjIB6l7	2021 Print: 8. Q?gPMzrYW	430 S Oct 1 /U-RfC?PsB	1 2021 MiTek Industries, Inc. T 70Hq3NSgPqnL8w3uITXbGKV	re Feb 0013309/2022
		:	2-10-8		_	

2-10-8

1-5-8

2x4 🛛


Scale = 1:18.9				
Loading	(psf)	Spacing	2-0-0	

1-5-8

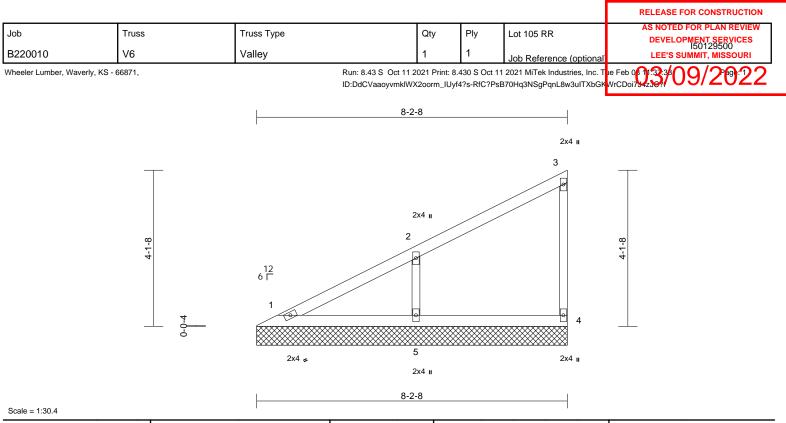
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	BC 0.	.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 7 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS (FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m II; Exp C; E cantilever la right expos: 2) Truss desig only. For s see Standa or consult c 3) Gable requ 4) Gable studi 5) This truss f chord live la 6) * This truss on the botto 3-06-00 tall chord and a	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood shee 2-11-0 oc purlins, ee Rigid ceiling directly bracing.	athing directly applie xcept end verticals. applied or 10-0-0 or b-8, 3=98/2-10-8 5) : 8), 3=-24 (LC 8) pression/Maximum /37 (3-second gust) DL=6.0psf; h=25ft; C welope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TF n chord bearing. : a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto	8) This truss is International R802.10.2 at LOAD CASE(S) ed or c Cat. le; d 50 ss , ole, 11.	designed in accordanc Residential Code sect nd referenced standarc	tions	R502.11.1 and			2		Weight: 7 lb	MISSOLUTION T.M. ER
bearing pla	te capable of withstar uplift at joint 3.									Q	PRSSIONA	L ENGLASS

February 9,2022

Max Horiz 1=101 (LC 5) Max Uplift 1=-28 (LC 8), 3=-53 (LC 8) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-92/61, 2-3=-170/83

BOT CHORD 1-2=-92/61 BOT CHORD 1-3=-35/26

NOTES


- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 1 and 53 lb uplift at joint 3.

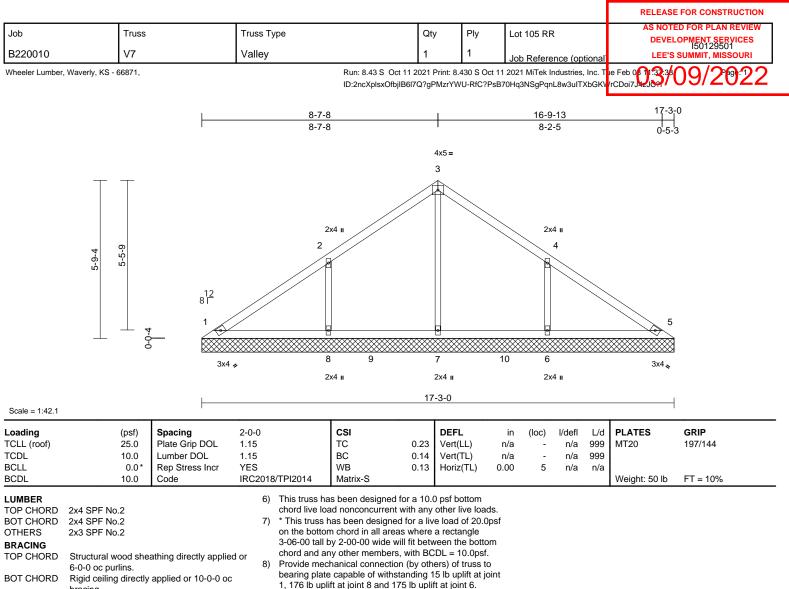
PE-2001018807 February 9,2022

	Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P		DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	-	GRIP 197/144 FT = 10%
--	--	---------------------------------------	--	---	-----------------------------------	--	---	--------------------------	----------------------	-----------------------------	--------------------------	---	------------------------------------

TOP CHORD	2x4 SPF I	N0.2
BOT CHORD	2x4 SPF I	No.2
WEBS	2x3 SPF I	No.2
OTHERS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	6-0-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	1=119/8-2-8, 4=135/8-2-8,
		5=423/8-2-8
	Max Horiz	1=157 (LC 5)
	Max Uplift	4=-26 (LC 5), 5=-127 (LC 8)
	Max Grav	1=125 (LC 16), 4=135 (LC 1),
		5=423 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-127/	/74, 2-3=-115/44, 3-4=-105/44
BOT CHORD	1-5=-53/4	1, 4-5=-53/41
WEBS	2-5=-329/	/183

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.


chord and any other members.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

- 4 and 127 lb uplift at joint 5.8) This truss is designed in accordance with the 2018
- International Residential Code sections R502.11.1 and
- R802.10.2 and referenced standard ANSI/TPI 1.
- LOAD CASE(S) Standard

This truss is designed in accordance with the 2018

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

International Residential Code sections R502.11.1 and

- bracing. REACTIONS (lb/size) 1=174/17-3-0, 5=174/17-3-0, 6=437/17-3-0, 7=249/17-3-0, 8=437/17-3-0 Max Horiz 1=142 (LC 5)
 - Max Uplift 1=-15 (LC 9), 6=-175 (LC 9), 8=-176 (LC 8) Max Grav 1=198 (LC 16), 5=177 (LC 15), 6=535 (LC 16), 7=350 (LC 15), 8=535 (LC 15)
- FORCES (Ib) - Maximum Compression/Maximum Tension 1-2=-150/108, 2-3=-149/129, 3-4=-140/107,
- TOP CHORD 4-5=-114/72 BOT CHORD 1-8=-42/97, 7-8=-42/97, 6-7=-42/97, 5-6=-42/97

WEBS 3-7=-181/0, 2-8=-355/222, 4-6=-355/222

- NOTES
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,
- or consult qualified building designer as per ANSI/TPI 1. 4)
- Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 4-0-0 oc.

9)

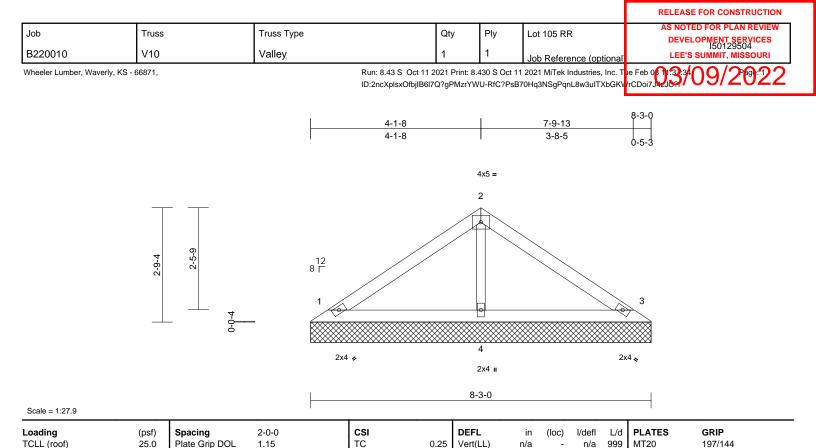
									RELEASE FOR CONSTRUCTION		
Job	Т	russ		Truss Type		Qty	Ply	Lot 105 RR	AS NOTED FOR PLAN REVIEW		
B220010	v	/8		Valley		1	1	Job Reference (option	DEVELOPMENT SERVICES 150129502 LEE'S SUMMIT, MISSOURI		
Wheeler Lumber	r, Waverly, KS - 668	i71,			Run: 8.43 S Oct 11 2	021 Print: 8	3.430 S Oct 11	2021 MiTek Industries, Inc.			
					ID:2ncXplsxOfbjIB61/0	ג?gPMzrγ≀	WU-RfC?PsB	70Hq3NSgPqnL8w3ulTXbGl	KVrCDoi7J#zJO?r		
			F		-1-8			13-9-13	14-3-0		
			I	7	-1-8	I		6-8-5	0-5-3		
						4x5 :	=				
						3					
					/	A	\backslash				
								<			
	, ,	6		2x4	4 m			2x4 II			
	4-9-4	4-5-9		2				4			
			12 8 Г	2	<u>, , , , , , , , , , , , , , , , , , , </u>				<		
			1						5		
		-0-0-4-0-0-0	- 6								
		6	×	8		7		6			
				3x4 ∽ 2x4	ŧ и	2x4		2x4 II	3x4		
						14-3-0)				
Scale = 1:37.7							,				
Loading TCLL (roof)		5.0 Space	c ing e Grip DOL	2-0-0 1.15	CSI TC 0.	17 DEF		in (loc) l/defl L/ n/a - n/a 99			
TCDL	10	0.0 Lumb	ber DOL	1.15	BC 0.	10 Vert	t(TL)	n/a - n/a 99	9		
BCLL BCDL		0.0* Rep 0.0 Code	Stress Incr e	YES IRC2018/TPI2014	WB 0. Matrix-S	10 Hori	iz(TL) 0	.00 5 n/a n/	a Weight: 40 lb FT = 10%		
					is been designed for a ad nonconcurrent with						
TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2			7) * This truss ł	has been designed for	a live load	d of 20.0psf				
OTHERS BRACING	2x3 SPF No.2			3-06-00 tall t	n chord in all areas wh by 2-00-00 wide will fit						
TOP CHORD	Structural wood 6-0-0 oc purlins		directly applied	 8) Provide mec 	ny other members. hanical connection (by						
BOT CHORD	Rigid ceiling dir bracing.		d or 10-0-0 oc	1, 146 lb upl	e capable of withstandi ift at joint 8 and 146 lb	uplift at jo	pint 6.				
REACTIONS	(lb/size) 1=10		=109/14-3-0, -280/14-3-0	International	designed in accordanc Residential Code sect	ions R50	2.11.1 and				
6=352/14-3-0, 7=280/14-3-0 8=352/14-3-0			-200/14 0 0,	 R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 							
Max Horiz 1=-116 (LC 4) Max Uplift 1=-13 (LC 4), 6=-146 (LC 9) 8=-146 (LC 8)			=-146 (LC 9),								
	Max Grav 1=12 6=37	20 (LC 16), 5 70 (LC 16), 7	5=109 (LC 1), 7=280 (LC 1),								
8=370 (LC 15) FORCES (lb) - Maximum Compression/Maximum											
Tension TOP CHORD 1-2=-126/86, 2-3=-145/107, 3-4=-140/84,											
BOT CHORD	4-5=-97/47 1-8=-30/77, 7-8										
WEBS	5-6=-30/77 3-7=-198/13, 2-								James		
NOTES									STE OF MISSOL		
this design								4	SCOTT M.		
	2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.										

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing.
 Gable studs spaced at 4-0-0 oc.

PE-200101880, FFSSIONAL ENGIN February 9,2022

NUMBER

00010 - 1.00.4													
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.38	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.23	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.09	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 30 lb	FT = 10%
LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 OTHERS 2x3 SPF No.2 BRACING TOP CHORD Structural wood sheathing directly applied or				bearing plat 1, 57 lb upli This truss is Internationa	chanical connec e capable of wit t at joint 3 and ' designed in a c I Residential Cc und referenced s Standard	hstanding 4 18 lb uplift a cordance w de sections	45 lb uplift at j at joint 4. ith the 2018 s R502.11.1 a	oint					
FORCES	(lb) - Maximum Cor Tension	mpression/Maximum											
TOP CHORD 1-2=-179/85, 2-3=-178/65 BOT CHORD 1-4=-18/83, 3-4=-18/83 WEBS 2-4=-295/75													


NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 7) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the designed for stability and to prevent collapse with possible personal injury and property damage.
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

0.12

0.04

Vert(TL)

Horiz(TL)

n/a

0.00

SCOTT M. SEVIER PE-200101880' C SSIONAL E February 9,2022

OF MISS

TF.

999

Weight: 21 lb

FT = 10%

n/a

n/a n/a

3

BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) 1=186/8-3-0, 3=186/8-3-0, 4=289/8-3-0 Max Horiz 1=-64 (LC 4) Max Uplift 1=-41 (LC 8), 3=-49 (LC 9) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-115/59, 2-3=-111/44 BOT CHORD 1-4=-13/54, 3-4=-13/54

10.0

10.0

2x4 SPF No.2

2x4 SPF No.2

2x3 SPF No.2

0.0*

Lumber DOL

Code

Rep Stress Incr

1 15

YES

IRC2018/TPI2014

WEBS

TCDI

BCLL

BCDL

LUMBER

OTHERS

TOP CHORD

BOT CHORD

NOTES

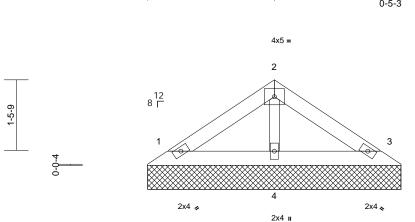
Unbalanced roof live loads have been considered for 1) this design.

2-4=-197/50

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4) 5)
- Gable studs spaced at 4-0-0 oc. 6)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7)
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

bearing plate capable of withstanding 41 lb uplift at joint 1 and 49 lb uplift at joint 3. This truss is designed in accordance with the 2018 9)

BC


WB

Matrix-P

8) Provide mechanical connection (by others) of truss to

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 105 RR	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 150129505
B220010	V11	Valley	1	1	Job Reference (optional	LEE'S SUMMIT MISSOURI
Wheeler Lumber, Wave	rly, KS - 66871,		Run: 8.43 S Oct 11 2021 Print: ID:2ncXplsxOfbjIB6I7Q?gPMzr\	8.430 S Oct YWU-RfC?P	t 11 2021 MiTek Industries, Inc. T sB70Hq3NSgPqnL8w3uITXbGKV	ие Feb 00133/09/2022
			1	1	5-3-0	

5-3-0

2-7-8

2-7-8

4-9-13

2-2-5

Scale = 1:23.9													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.04	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.02	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018	/TPI2014	Matrix-P							Weight: 13 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she	athing directly applie	8) 9)	bearing plat 1 and 29 lb This truss is Internationa	chanical connec e capable of with uplift at joint 3. designed in acc I Residential Co and referenced s	hstanding 2 cordance w de sections	4 lb uplift at j ith the 2018 ; R502.11.1 a	joint					

BIUU									
TOP CHORD	RD Structural wood sheathing directly applied								
	5-3-12 oc	purlins.							
BOT CHORD	Rigid ceili	ing directly applied or 10-0-0 oc							
	bracing.								
REACTIONS	(lb/size)	1=110/5-3-0, 3=110/5-3-0,							
		4=171/5-3-0							
	Max Horiz	1=-38 (LC 4)							

1-9-4

	Max Uplift 1=-24 (LC 8), 3=-29 (LC 9)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-68/35, 2-3=-66/26
BOT CHORD	1-4=-8/32, 3-4=-8/32
WEBS	2-4=-117/29

NOTES

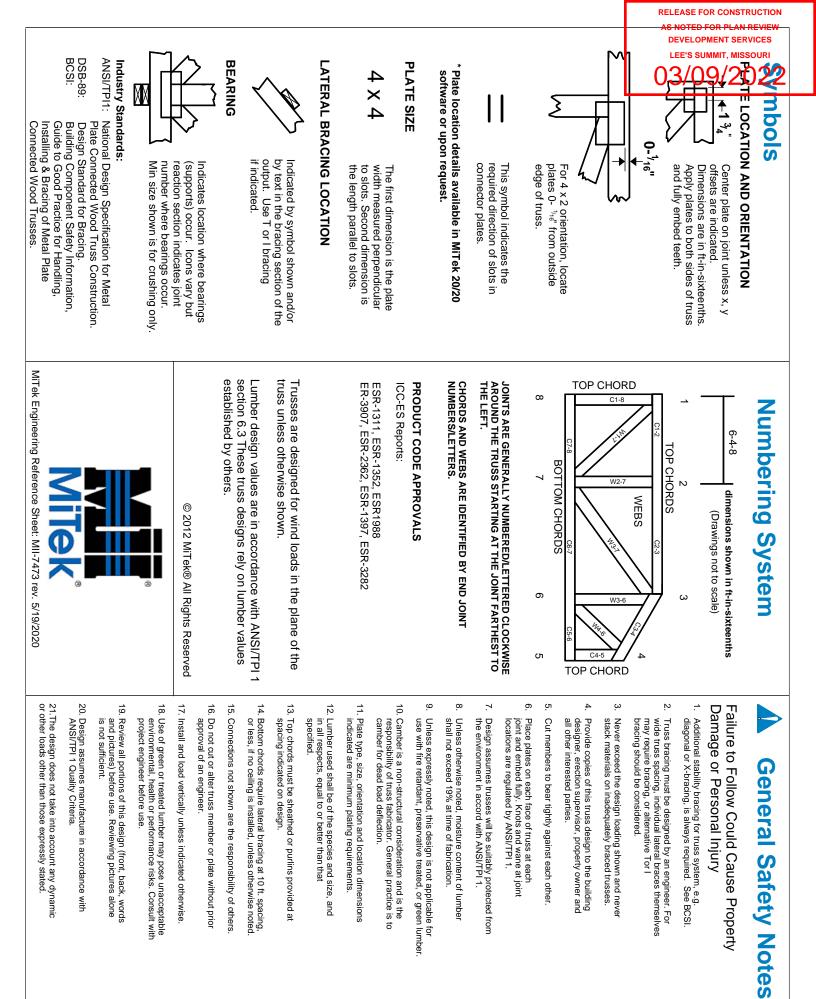
1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing. 4)

5) Gable studs spaced at 2-0-0 oc.


6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

LOAD CASE(S) Standard

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

