



MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Re: B220017 Lot 121 MN

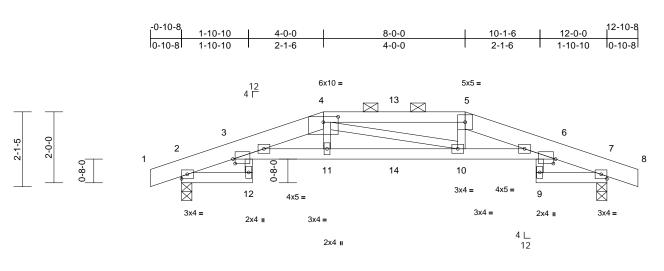
The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Wheeler - Waverly.

Pages or sheets covered by this seal: I49887760 thru I49887814

My license renewal date for the state of Missouri is December 31, 2023.

Missouri COA: Engineering 001193




January 27,2022

**IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these design barameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

| Job     | Truss | Truss Type | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------|-----|-----|--------------------------|-----------|
| B220017 | A1    | Hip Girder | 1   | 1   | Job Reference (optional) | 149887760 |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:06:57 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1



|   | 2-0-0                   |       |         | 10-       | 1-6        |   |
|---|-------------------------|-------|---------|-----------|------------|---|
|   | 1-10-10 <sup>2</sup> ]] | 4-1-4 | 7-10-12 | 10-0-0    | 12-0-0     |   |
| Γ | 1-10-10   <br>0-1-6     | 2-1-4 | 3-9-8   | 2-1-4 0-1 | -6 1-10-10 | 1 |

Scale = 1:32.5

#### Plate Offsets (X, Y): [3:0-0-12,0-1-8], [4:0-5-0,0-1-13], [6:0-0-12,0-1-8]

|                                                                                            | (X, Y): [3:0-0-12,0-1-8                                                                                                                                                                                | j, [4:0-5-0,0-1-13], [6                                                                                                                       | 5:0-0-12,0           | -1-8]                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                               | -                                                                                                                                         |                                                                                                                                                               |                                         |       |        |     |                         |               |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------|--------|-----|-------------------------|---------------|
| Loading                                                                                    | (psf)                                                                                                                                                                                                  | Spacing                                                                                                                                       | 2-0-0                |                                                                                                                                                                                                                                                                                            | csi                                                                                                                                                                                                                                                                                           |                                                                                                                                           | DEFL                                                                                                                                                          | in                                      | (loc) | l/defl | L/d | PLATES                  | GRIP          |
| TCLL (roof)                                                                                | 25.0                                                                                                                                                                                                   | Plate Grip DOL                                                                                                                                | 1.15                 |                                                                                                                                                                                                                                                                                            | TC                                                                                                                                                                                                                                                                                            | 0.88                                                                                                                                      | Vert(LL)                                                                                                                                                      | -0.14                                   | 10-11 | >999   | 360 | MT20                    | 197/144       |
| TCDL                                                                                       | 10.0                                                                                                                                                                                                   | Lumber DOL                                                                                                                                    | 1.15                 |                                                                                                                                                                                                                                                                                            | BC                                                                                                                                                                                                                                                                                            | 0.90                                                                                                                                      | Vert(CT)                                                                                                                                                      | -0.25                                   | 10-11 | >562   | 240 |                         |               |
| BCLL                                                                                       | 0.0*                                                                                                                                                                                                   | Rep Stress Incr                                                                                                                               | NO                   |                                                                                                                                                                                                                                                                                            | WB                                                                                                                                                                                                                                                                                            | 0.10                                                                                                                                      | Horz(CT)                                                                                                                                                      | 0.19                                    | 7     | n/a    | n/a |                         |               |
| BCDL                                                                                       | 10.0                                                                                                                                                                                                   | Code                                                                                                                                          | IRC20                | 18/TPI2014                                                                                                                                                                                                                                                                                 | Matrix-S                                                                                                                                                                                                                                                                                      | -                                                                                                                                         | Wind(LL)                                                                                                                                                      | 0.11                                    | 10-11 | >999   | 240 | Weight: 43 lb           | FT = 10%      |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 2x4 SPF No.2<br>2x3 SPF No.2<br>Structural wood she<br>3-0-5 oc purlins, exc<br>2-0-0 oc purlins (3-2<br>Rigid ceiling directly<br>bracing.                                                            | ,<br>ept<br>-7 max.): 4-5.<br>applied or 6-0-0 oc<br>8-8, 7=921/0-3-8<br>8)                                                                   | 7<br>ed or 8<br>g    | <ul> <li>bearing plate</li> <li>joint 2 and 1</li> <li>) This truss is</li> <li>International</li> <li>R802.10.2 a</li> <li>) Graphical pu</li> <li>or the orient</li> <li>bottom chore</li> <li>) Hanger(s) o</li> <li>provided suf</li> <li>down and 44</li> <li>up at 6-0-0,</li> </ul> | chanical connection<br>e capable of withs<br>99 lb uplift at join<br>designed in acco<br>Residential Code<br>nd referenced sta<br>urlin representatio<br>ation of the purlin<br>d.<br>r other connectior<br>ficient to support<br>8 lb up at 4-0-0, a<br>and 83 lb down a<br>d 232 lb down at | standing 1<br>t 7.<br>ordance w<br>e sections<br>andard AN<br>on does no<br>along the<br>along the<br>concentra<br>and 83 lb<br>and 48 lb | 99 lb uplift a<br>ith the 2018<br>is R502.11.1 a<br>SI/TPI 1.<br>ot depict the<br>top and/or<br>) shall be<br>atted load(s) 8<br>down and 47<br>up at 8-0-0 c | t<br>and<br>size<br>33 lb<br>7 lb<br>on |       |        |     |                         |               |
| FORCES                                                                                     | (lb) - Maximum Com<br>Tension                                                                                                                                                                          | pression/Maximum                                                                                                                              |                      | 36 lb down a                                                                                                                                                                                                                                                                               | at 6-0-0, and 232 ottom chord. The                                                                                                                                                                                                                                                            | lb down a                                                                                                                                 | and 51 lb up                                                                                                                                                  | at                                      |       |        |     |                         |               |
| TOP CHORD                                                                                  | 1-2=0/1, 2-3=-415/10<br>4-5=-2633/482, 5-6=<br>7-8=0/1                                                                                                                                                 | , ,                                                                                                                                           | 5/99, 1              | connection of 0) In the LOAD                                                                                                                                                                                                                                                               | device(s) is the re<br>CASE(S) section<br>are noted as front                                                                                                                                                                                                                                  | sponsibili<br>1, loads a                                                                                                                  | ty of others.<br>oplied to the                                                                                                                                |                                         |       |        |     |                         |               |
| BOT CHORD                                                                                  | 2-12=-35/0, 3-11=-4<br>10-11=-434/2535, 6-                                                                                                                                                             | ,                                                                                                                                             | 25/0                 | OAD CASE(S)                                                                                                                                                                                                                                                                                | Standard                                                                                                                                                                                                                                                                                      | . ,                                                                                                                                       |                                                                                                                                                               |                                         |       |        |     |                         |               |
| WEBS                                                                                       | 3-12=0/61, 6-9=0/61<br>4-10=-51/181, 5-10=                                                                                                                                                             | , 4-11=0/300,                                                                                                                                 | 1                    | ) Dead + Ro<br>Plate Incre<br>Uniform Lo                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                               | ): Lumbei                                                                                                                                 | Increase=1.                                                                                                                                                   | .15,                                    |       |        |     |                         |               |
| NOTES                                                                                      |                                                                                                                                                                                                        |                                                                                                                                               |                      |                                                                                                                                                                                                                                                                                            | =-70, 4-5=-70, 5-                                                                                                                                                                                                                                                                             | 8=-70 2-                                                                                                                                  | 12=-20 3-6=                                                                                                                                                   | -20                                     |       |        |     |                         | an            |
|                                                                                            | ed roof live loads have                                                                                                                                                                                | been considered for                                                                                                                           | r                    | 7-9=-20                                                                                                                                                                                                                                                                                    | , ,                                                                                                                                                                                                                                                                                           | 0- 70, 2                                                                                                                                  | 12-20,00-                                                                                                                                                     | 20,                                     |       |        |     | OF.                     | MISC          |
| Vasd=91n<br>II; Exp C;<br>cantilever<br>right expos<br>3) Provide ac<br>4) This truss      | n.<br>CE 7-16; Vult=115mph<br>nph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>left and right exposed<br>sed; Lumber DOL=1.6<br>dequate drainage to pr<br>has been designed for<br>load nonconcurrent wi | DL=6.0psf; h=25ft; (<br>nvelope) exterior zor<br>; end vertical left an<br>0 plate grip DOL=1.0<br>event water ponding<br>r a 10.0 psf bottom | ne;<br>d<br>60<br>J. | Vert: 4=-                                                                                                                                                                                                                                                                                  | ed Loads (lb)<br>41 (F), 5=-41 (F),<br>F), 14=-36 (F)                                                                                                                                                                                                                                         | , 11=-232                                                                                                                                 | (F), 10=-232                                                                                                                                                  | 2 (F),                                  |       |        |     | STATE OF<br>SCOT<br>SEV | IER<br>Berlen |
| <li>5) * This true</li>                                                                    | a haa haan daalanad f                                                                                                                                                                                  | or a live load of 20 C                                                                                                                        | hof                  |                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                               |                                                                                                                                           |                                                                                                                                                               |                                         |       |        | 11  | ~~                      | 144           |

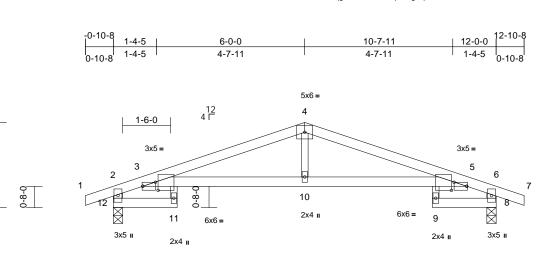
chord live load nonconcurrent with any other live loads. \* This truss has been designed for a live load of 20.0psf 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



SIONAL

E


January 27,2022

| Job     | Truss | Truss Type   | Qty | Ply | Lot 121 MN               |           |
|---------|-------|--------------|-----|-----|--------------------------|-----------|
| B220017 | A2    | Roof Special | 2   | 1   | Job Reference (optional) | 149887761 |

2-8-0

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:06:59 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1





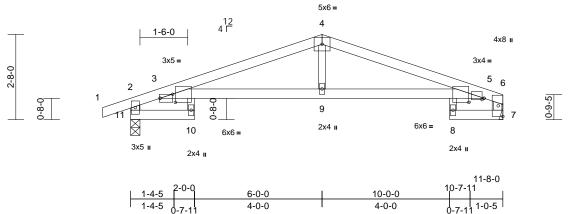
Scale = 1:36.1

| Plate Offsets (X X). | [3:0-5-12,0-1-9], [3:0-4-12,0-1-8], [5:0-5-12,0-1-9], [5:0-4-12,0-1-8]                                       |  |
|----------------------|--------------------------------------------------------------------------------------------------------------|--|
|                      | $[5.0^{-5}, 12, 0^{-1}, 0], [5.0^{-4}, 12, 0^{-1}, 0], [5.0^{-5}, 12, 0^{-1}, 0], [5.0^{-4}, 12, 0^{-1}, 0]$ |  |

| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                            | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                            | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                  | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2014 | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-R                                     | 0.64<br>0.74<br>0.10 | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Wind(LL) | in<br>-0.16<br>-0.29<br>0.24<br>0.13 | (loc)<br>9<br>9<br>8<br>11 | l/defl<br>>899<br>>484<br>n/a<br>>999 | L/d<br>360<br>240<br>n/a<br>240 | PLATES<br>MT20<br>Weight: 35 lb | <b>GRIP</b><br>197/144<br>FT = 10% |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------|----------------------|------------------------------------------------------|--------------------------------------|----------------------------|---------------------------------------|---------------------------------|---------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS                                                                                                                                                                                                                                                  | 2x4 SPF No.2<br>2x4 SPF No.2<br>2x3 SPF No.2 *Exce<br>No.2                                                                                                                                                                                                                                                                                                       | pt* 12-2,8-6:2x4 SP                                                                                                                                                                                                                                                 | Internationa<br>R802.10.2                       | s designed in acco<br>al Residential Cod<br>and referenced sta<br>) Standard | de sections          | R502.11.1                                            | and                                  |                            |                                       |                                 |                                 |                                    |
| BRACING<br>TOP CHORD                                                                                                                                                                                                                                                                      | Structural wood she<br>3-11-4 oc purlins, e                                                                                                                                                                                                                                                                                                                      | xcept end verticals.                                                                                                                                                                                                                                                | ed or                                           |                                                                              |                      |                                                      |                                      |                            |                                       |                                 |                                 |                                    |
| BOT CHORD                                                                                                                                                                                                                                                                                 | Rigid ceiling directly<br>bracing.                                                                                                                                                                                                                                                                                                                               | applied or 6-0-0 oc                                                                                                                                                                                                                                                 |                                                 |                                                                              |                      |                                                      |                                      |                            |                                       |                                 |                                 |                                    |
|                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                     | )                                               |                                                                              |                      |                                                      |                                      |                            |                                       |                                 |                                 |                                    |
| FORCES                                                                                                                                                                                                                                                                                    | (lb) - Maximum Com                                                                                                                                                                                                                                                                                                                                               | pression/Maximum                                                                                                                                                                                                                                                    |                                                 |                                                                              |                      |                                                      |                                      |                            |                                       |                                 |                                 |                                    |
| TOP CHORD                                                                                                                                                                                                                                                                                 | Tension<br>1-2=0/23, 2-3=-133/<br>4-5=-1156/118, 5-6=<br>2-12=-609/121, 6-8=                                                                                                                                                                                                                                                                                     | -133/54, 6-7=0/23,                                                                                                                                                                                                                                                  |                                                 |                                                                              |                      |                                                      |                                      |                            |                                       |                                 |                                 |                                    |
| BOT CHORD                                                                                                                                                                                                                                                                                 | 11-12=-64/0, 3-10=-<br>8-9=-64/0                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                     | 073,                                            |                                                                              |                      |                                                      |                                      |                            |                                       |                                 |                                 |                                    |
| WEBS                                                                                                                                                                                                                                                                                      | 3-11=0/76, 5-9=0/76                                                                                                                                                                                                                                                                                                                                              | , 4-10=0/305                                                                                                                                                                                                                                                        |                                                 |                                                                              |                      |                                                      |                                      |                            |                                       |                                 |                                 |                                    |
| <ul> <li>this design</li> <li>Wind: ASC</li> <li>Vasd=91m</li> <li>II; Exp C; I</li> <li>cantilever</li> <li>right exposision</li> <li>This truss</li> <li>chord live</li> <li>* This truss</li> <li>on the bott</li> <li>3-06-00 ta</li> <li>chord and</li> <li>Provide model</li> </ul> | ed roof live loads have<br>h.<br>CE 7-16; Vult=115mph<br>hph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>left and right exposed<br>sed; Lumber DOL=1.6<br>has been designed for<br>load nonconcurrent wi<br>s has been designed f<br>tom chord in all areas<br>Il by 2-00-00 wide will<br>any other members.<br>echanical connection (<br>ate capable of withstar | (3-second gust)<br>DL=6.0psf; h=25ft; C<br>ivelope) exterior zon;<br>end vertical left and<br>0 plate grip DOL=1.6<br>a 10.0 psf bottom<br>th any other live load<br>or a live load of 20.0<br>where a rectangle<br>fit between the botto<br>by others) of truss to | Cat.<br>le;<br>d<br>30<br>ds.<br>psf<br>m       |                                                                              |                      |                                                      |                                      |                            | -                                     |                                 | NUM<br>PE-2001                  | T M.<br>HER<br>1018807             |

January 27,2022




| Job     | Truss | Truss Type   | Qty | Ply | Lot 121 MN               |           |
|---------|-------|--------------|-----|-----|--------------------------|-----------|
| B220017 | A3    | Roof Special | 1   | 1   | Job Reference (optional) | 149887762 |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:06:59 ID:VW78Vr4IUH8xIb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



Page: 1



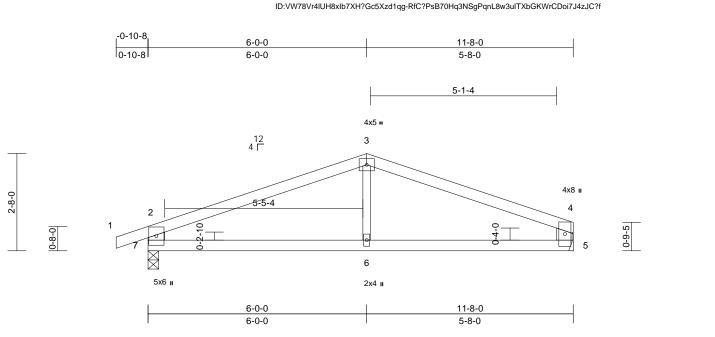


#### Scale = 1:36.1

#### Plate Offsets (X, Y): [3:0-5-12,0-1-9], [3:0-4-12,0-1-8], [5:0-5-12,0-1-9], [5:0-0-12,0-0-8]

| Loading     | (psf)                                       | Spacing              | 2-0-0   |             | csi                  |            | DEFL          | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
|-------------|---------------------------------------------|----------------------|---------|-------------|----------------------|------------|---------------|-------|-------|--------|-----|---------------|----------|
| TCLL (roof) | 25.0                                        | Plate Grip DOL       | 1.15    |             | TC                   | 0.63       | Vert(LL)      | -0.15 | 10    | >913   | 360 | MT20          | 197/144  |
| TCDL        | 10.0                                        | Lumber DOL           | 1.15    |             | BC                   | 0.65       | Vert(CT)      | -0.28 | 10    | >493   | 240 |               |          |
| BCLL        | 0.0*                                        | Rep Stress Incr      | YES     |             | WB                   | 0.09       | Horz(CT)      | 0.21  | 7     | n/a    | n/a |               |          |
| BCDL        | 10.0                                        | Code                 | IRC201  | 8/TPI2014   | Matrix-R             |            | Wind(LL)      | 0.13  | 10    | >999   | 240 | Weight: 33 lb | FT = 10% |
| LUMBER      |                                             |                      | 6       | Provide med | hanical connectio    | on (by oth | ers) of truss | h     |       |        |     |               |          |
| TOP CHORD   | 2x4 SPF No.2                                |                      | 0,      |             | capable of withs     |            |               |       |       |        |     |               |          |
| BOT CHORD   |                                             |                      |         |             | 61 lb uplift at join |            | •             |       |       |        |     |               |          |
| WEBS        | 2x3 SPF No.2 *Exce                          | ept* 11-2,7-6:2x4 SP | F 7)    |             | designed in acco     |            |               |       |       |        |     |               |          |
|             | No.2                                        | -                    |         |             | Residential Code     |            |               | and   |       |        |     |               |          |
| BRACING     |                                             |                      |         |             | nd referenced sta    | andard AN  | ISI/TPI 1.    |       |       |        |     |               |          |
| TOP CHORD   | Structural wood she                         |                      | ed or L | DAD CASE(S) | Standard             |            |               |       |       |        |     |               |          |
|             | 4-0-12 oc purlins, e                        |                      |         |             |                      |            |               |       |       |        |     |               |          |
| BOT CHORD   | Rigid ceiling directly                      | applied or 6-0-0 oc  |         |             |                      |            |               |       |       |        |     |               |          |
|             | bracing.                                    |                      |         |             |                      |            |               |       |       |        |     |               |          |
| REACTIONS   | . ,                                         | echanical, 11=606/0  | -3-8    |             |                      |            |               |       |       |        |     |               |          |
|             | Max Horiz 11=33 (LC<br>Max Uplift 7=-61 (LC | ,                    |         |             |                      |            |               |       |       |        |     |               |          |
| 500050      | 1 (                                         | ,, ( ,               |         |             |                      |            |               |       |       |        |     |               |          |
| FORCES      | (lb) - Maximum Com<br>Tension               | ipression/maximum    |         |             |                      |            |               |       |       |        |     |               |          |
| TOP CHORD   |                                             | 47 3-4=-1097/118     |         |             |                      |            |               |       |       |        |     |               |          |
|             | 4-5=-1102/119, 5-6=                         | , ,                  | /121.   |             |                      |            |               |       |       |        |     |               |          |
|             | 6-7=-519/70                                 | ,,.                  | ,       |             |                      |            |               |       |       |        |     |               |          |
| BOT CHORD   | 10-11=-63/0, 3-9=-6                         | 6/1016, 5-9=-66/101  | 16,     |             |                      |            |               |       |       |        |     |               |          |
|             | 7-8=-48/0                                   |                      |         |             |                      |            |               |       |       |        |     |               |          |
| WEBS        | 3-10=0/76, 5-8=0/57                         | ′, 4-9=0/292         |         |             |                      |            |               |       |       |        |     |               |          |
| NOTES       |                                             |                      |         |             |                      |            |               |       |       |        |     |               |          |
| ,           | ed roof live loads have                     | been considered for  | r       |             |                      |            |               |       |       |        |     | San           | alle     |
| this design |                                             | (0                   |         |             |                      |            |               |       |       |        |     | STATE OF M    | MIS.C.   |
|             | CE 7-16; Vult=115mph                        |                      | 2       |             |                      |            |               |       |       |        | 1   | 750           | -00 M    |
|             | nph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er |                      |         |             |                      |            |               |       |       |        | B   | ST SCOT       | M NA     |
|             | left and right exposed                      |                      |         |             |                      |            |               |       |       |        | R   | S SEVI        |          |
|             |                                             |                      |         |             |                      |            |               |       |       |        | 1   | J SEVI        |          |

cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom


chord live load nonconcurrent with any other live loads. \* This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections. 5)

# **MIRIB** PE-2001018807 C SSIONAL January 27,2022



| Job     | Truss | Truss Type | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------|-----|-----|--------------------------|-----------|
| B220017 | A4    | Common     | 1   | 1   | Job Reference (optional) | 149887763 |



Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:06:59

| Loading     | (psf) | Spacing         | 2-0-0           | CSI      |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
|-------------|-------|-----------------|-----------------|----------|------|----------|-------|-------|--------|-----|---------------|----------|
| TCLL (roof) | 25.0  | Plate Grip DOL  | 1.15            | TC       | 0.46 | Vert(LL) | -0.04 | 6-7   | >999   | 360 | MT20          | 197/144  |
| TCDL        | 10.0  | Lumber DOL      | 1.15            | BC       | 0.38 | Vert(CT) | -0.09 | 6-7   | >999   | 240 |               |          |
| BCLL        | 0.0*  | Rep Stress Incr | YES             | WB       | 0.07 | Horz(CT) | 0.01  | 5     | n/a    | n/a |               |          |
| BCDL        | 10.0  | Code            | IRC2018/TPI2014 | Matrix-R |      | Wind(LL) | 0.03  | 6-7   | >999   | 240 | Weight: 31 lb | FT = 10% |

| LUMBER    |     |
|-----------|-----|
| TOP CHORD | 2×4 |

Scale = 1:31.6

| Р | CHORD | 2x4 SPF N | 02 |
|---|-------|-----------|----|

2V4 CDE No 2

LOAD CASE(S) Standard

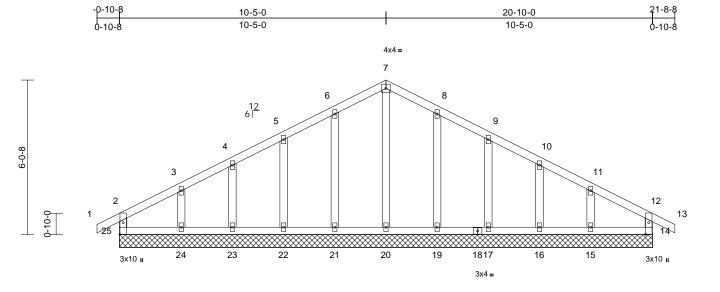
| BOT CHORD | 2x4 SPF I  | N0.2                               |
|-----------|------------|------------------------------------|
| WEBS      | 2x6 SPF I  | No.2 *Except* 6-3:2x3 SPF No.2     |
| BRACING   |            |                                    |
| TOP CHORD | Structura  | wood sheathing directly applied or |
|           | 6-0-0 oc p | ourlins, except end verticals.     |
| BOT CHORD | Rigid ceil | ing directly applied or 10-0-0 oc  |
|           | bracing.   |                                    |
| REACTIONS | (lb/size)  | 5=501/ Mechanical, 7=585/0-3-8     |
|           | Max Horiz  | 7=32 (LC 8)                        |
|           | Max Uplift | 5=-72 (LC 5), 7=-123 (LC 4)        |
| FORCES    | (lb) - Max | imum Compression/Maximum           |
|           | Tension    | ·                                  |
|           |            |                                    |

| TOP CHORD | 1-2=0/24, 2-3=-726/98, 3-4=-720/98, 2-7=-518/159, 4-5=-422/103 |
|-----------|----------------------------------------------------------------|
| BOT CHORD | 6-7=-46/619, 5-6=-46/619                                       |
| WEBS      | 3-6=0/212                                                      |

#### NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3)
- chord live load nonconcurrent with any other live loads. \* This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 123 lb uplift at joint 7 and 72 lb uplift at joint 5.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

OF MISSO E SCOTT M. SEVIER PE-2001018807 C SSIONAL E January 27,2022


Page: 1



| Job     | Truss | Truss Type             | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------------------|-----|-----|--------------------------|-----------|
| B220017 | B1    | Common Supported Gable | 1   | 1   | Job Reference (optional) | 149887764 |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:00 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

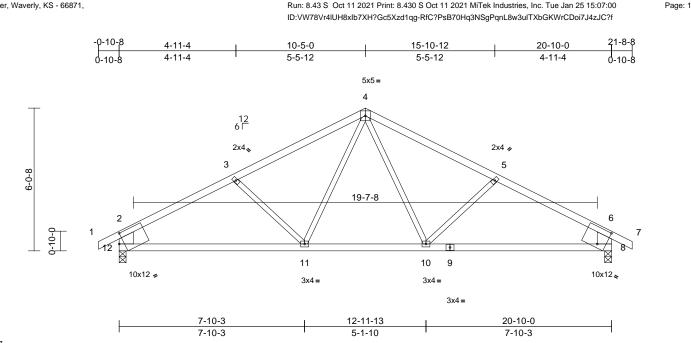


20-10-0

#### Scale = 1:45 Plate Offsets (X, Y): [14:0-5-9,0-1-8], [25:0-5-9,0-1-8]

| <b>Loading</b><br>TCLL (roof)<br>TCDL<br>BCLL                                                        | (psf)<br>25.0<br>10.0<br>0.0*                                                                                                                                                                                                                                                                                                | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-0-0<br>1.15<br>1.15<br>YES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CSI<br>TC<br>BC<br>WB                                                                                                                                                                                                     | 0.07<br>0.03<br>0.08                                                                                                                                                                                                                                                                                                                     | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                                | in<br>n/a<br>n/a<br>0.00                                                                                         | (loc)<br>-<br>-<br>14 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20  | <b>GRIP</b><br>197/144 |
|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------|--------------------------|-----------------|------------------------|
| BCDL                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                         | Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IRC2018/TP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                           | 0.00                                                                                                                                                                                                                                                                                                                                     | 11012(01)                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                                                                             | 14                    | 1ı/a                        | n/a                      | Weight: 87 lb   | FT = 10%               |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 2x4 SPF No.2<br>2x4 SPF No.2<br>2x4 SPF No.2<br>2x4 SPF No.2<br>Structural wood sh<br>6-0-0 oc purlins, e<br>Rigid ceiling direct<br>bracing.<br>(Ib/size) 14=179/<br>19=188/<br>23=177/<br>25=179/<br>Max Uplift 14=-26<br>16=-45<br>(19=-54)<br>22=-57 (1<br>Max Grav 14=179)<br>16=177<br>19=190<br>21=190<br>21=190      | LC 7)<br>LC 8), 15=-84 (LC 9),<br>LC 9), 17=-57 (LC 9),<br>LC 9), 21=-54 (LC 8),<br>LC 8), 23=-43 (LC 8),<br>LC 8), 25=-38 (LC 9)<br>(LC 1), 15=193 (LC 2),<br>(LC 1), 17=179 (LC 1),<br>(LC 22), 20=175 (LC<br>(LC 21), 22=179 (LC 2),<br>(LC 1), 24=193 (LC 2),<br>(LC 1), 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24=10, 24= | <ul> <li>NOTE:</li> <li>1) Ur</li> <li>1) Ur</li> <li>1) Ur</li> <li>1) Ur</li> <li>1) Ur</li> <li>1) Ur</li> <li>10-0, thi</li> <li>0-0, 2) Wi</li> <li>0-0, 2) Wi</li> <li>0-0, 12;</li> <li>0-0, rig</li> <li>3) Tr</li> <li>0-0, rig</li> <li0-0, li="" rig<=""> <li0-0, li="" rig<=""> <li>0-0, rig</li>     &lt;</li0-0,></li0-0,></ul> | 21-22=-28/64<br>17-19=-28/64<br>14-15=-28/64<br>7-20=-135/0,<br>4-23=-139/71<br>9-17=-139/81<br>11-15=-147/1                                                                                                              | , 20-21=-28/6<br>, 16-17=-28/6<br>6-21=-151/75<br>, 3-24=-147/1<br>, 10-16=-139<br>00<br>s have been<br>sf; BCDL=6.<br>RS (envelop<br>posed ; end v<br>DL=1.60 plate<br>ads in the pl<br>o wind (norm<br>ble End Deta<br>g designer a:<br>neless otherwin<br>s bottom chor<br>from one fac<br>vement (i.e. c<br>0-0 oc.<br>ned for a 10. | 4, 19-20=-28<br>4, 15-16=-28<br>9, 5-22=-139/<br>04, 8-19=-15<br>(71,<br>considered fc<br>cond gust)<br>0psf; h=25ft;<br>a) exterior zo<br>vertical left ar<br>grip DOL=1.<br>ane of the tru<br>al to the face<br>ils as applica<br>is per ANSI/T<br>se indicated.<br>d bearing.<br>te or securely<br>liagonal web)<br>0 psf bottom<br>other live loa<br>e load of 20.0 | %64,<br>%64,<br>81,<br>11/78,<br>11/78,<br>or<br>Cat.<br>ne;<br>nd<br>60<br>ss<br>ss<br>),<br>ble,<br>PI 1.<br>, | Ínte                  | ernationa<br>02.10.2        | al Resi                  | erenced standar | MISSOLUTI              |
| FORCES                                                                                               | (ib) - Maximum Compression/Maximum         3-06           Tension         3-06           2-25=-159/47, 1-2=0/32, 2-3=-81/63,         10)           3-4=-53/87, 4-5=-43/113, 5-6=-38/140,         6-7=-41/164, 7-8=-41/156, 8-9=-38/124,           9-10=-38/98, 10-11=-40/72, 11-12=-69/50,         12-13=0/32, 12-14=-159/37 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6-00 tall by 2-00-00 wi<br>ord and any other mem<br>wide mechanical conne<br>rring plate capable of v<br>26 lb uplift at joint 14,<br>ff at joint 22, 43 lb upli<br>54 lb uplift at joint 19,<br>ff at joint 16 and 84 lb | de will fit betw<br>bers.<br>ection (by oth<br>vithstanding 3<br>54 lb uplift at<br>ft at joint 23, 9<br>57 lb uplift at                                                                                                                                                                                                                 | veen the both<br>ers) of truss f<br>88 lb uplift at j<br>joint 21, 57 ll<br>91 lb uplift at<br>joint 17, 45 ll                                                                                                                                                                                                                                                          | to<br>joint<br>o<br>joint                                                                                        |                       |                             | A NEW                    | PE-2001         | 1 ENGLAS               |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601




January 27,2022

| Job     | Truss | Truss Type | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------|-----|-----|--------------------------|-----------|
| B220017 | B2    | Common     | 5   | 1   | Job Reference (optional) | 149887765 |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:00

Wheeler Lumber, Waverly, KS - 66871,



#### Scale = 1:48.7 Plate Offsets (X, Y): [8:0-4-1,0-8-2], [12:0-2-7,0-4-14]

| Plate Olisets ( | (X, Y): [8:0-4-1,0-8-2],                    | [12:0-2-7,0-4-14]    |                |                         | -           |                 |       |       |        |      | -             |          |
|-----------------|---------------------------------------------|----------------------|----------------|-------------------------|-------------|-----------------|-------|-------|--------|------|---------------|----------|
| Loading         | (psf)                                       | Spacing              | 2-0-0          | CSI                     |             | DEFL            | in    | (loc) | l/defl | L/d  | PLATES        | GRIP     |
| TCLL (roof)     | 25.0                                        | Plate Grip DOL       | 1.15           | TC                      | 0.99        | Vert(LL)        | -0.16 | 10-11 | >999   | 360  | MT20          | 197/144  |
| TCDL            | 10.0                                        | Lumber DOL           | 1.15           | BC                      | 0.62        | Vert(CT)        | -0.25 | 10-11 | >955   | 240  |               |          |
| BCLL            | 0.0*                                        | Rep Stress Incr      | YES            | WB                      | 0.11        | Horz(CT)        | 0.03  | 8     | n/a    | n/a  |               |          |
| BCDL            | 10.0                                        | Code                 | IRC2018/TPI201 | 4 Matrix-S              |             | Wind(LL)        | 0.10  | 10-11 | >999   | 240  | Weight: 72 lb | FT = 10% |
| LUMBER          |                                             |                      | 5) Provide     | e mechanical connecti   | ion (by oth | ers) of truss t | 0     |       |        |      |               |          |
| TOP CHORD       | 2x4 SPF No.2                                |                      | bearing        | plate capable of with   | standing 1  | 39 lb uplift at |       |       |        |      |               |          |
| BOT CHORD       | 2x4 SPF No.2                                |                      | joint 12       | and 139 lb uplift at jo | int 8.      |                 |       |       |        |      |               |          |
| VEBS            | 2x3 SPF No.2 *Exce                          | pt* 12-2,8-6:2x8 SP  |                | uss is designed in acco |             |                 |       |       |        |      |               |          |
|                 | 2400F 2.0E                                  |                      |                | tional Residential Cod  |             |                 | ind   |       |        |      |               |          |
| RACING          |                                             |                      | R802.1         | 0.2 and referenced st   | andard AN   | ISI/TPI 1.      |       |       |        |      |               |          |
| OP CHORD        | Structural wood she<br>except end verticals |                      | ed, LOAD CAS   | SE(S) Standard          |             |                 |       |       |        |      |               |          |
| BOT CHORD       | Rigid ceiling directly<br>bracing.          | applied or 10-0-0 oc | 0              |                         |             |                 |       |       |        |      |               |          |
| REACTIONS       | 0                                           | 3-8, 12=993/0-3-8    |                |                         |             |                 |       |       |        |      |               |          |
|                 | Max Horiz 12=98 (L0                         |                      |                |                         |             |                 |       |       |        |      |               |          |
|                 | Max Uplift 8=-139 (L                        |                      | )              |                         |             |                 |       |       |        |      |               |          |
| FORCES          | (lb) - Maximum Com                          | <i>,,</i>            | ,              |                         |             |                 |       |       |        |      |               |          |
| ONOLO           | Tension                                     | procoroni, maximum   |                |                         |             |                 |       |       |        |      |               |          |
| TOP CHORD       | 1-2=0/37, 2-3=-1311                         | /198. 3-4=-1087/165  | 5.             |                         |             |                 |       |       |        |      |               |          |
|                 | 4-5=-1087/165, 5-6=                         | ,                    | ,              |                         |             |                 |       |       |        |      |               |          |
|                 | 2-12=-891/179, 6-8=                         | -891/179             | ,              |                         |             |                 |       |       |        |      |               |          |
| BOT CHORD       | 11-12=-183/1061, 10                         | 0-11=-26/812,        |                |                         |             |                 |       |       |        |      |               |          |
|                 | 8-10=-107/1061                              |                      |                |                         |             |                 |       |       |        |      |               |          |
| WEBS            | 4-10=-54/296, 5-10=                         | -243/189, 4-11=-54/  | /296,          |                         |             |                 |       |       |        |      |               |          |
|                 | 3-11=-243/188                               |                      |                |                         |             |                 |       |       |        |      |               |          |
| NOTES           |                                             |                      |                |                         |             |                 |       |       |        |      | 000           | an       |
|                 | ed roof live loads have                     | been considered for  | r              |                         |             |                 |       |       |        |      | OF            | MISC     |
| this desigr     |                                             |                      |                |                         |             |                 |       |       |        |      | 4 SE          |          |
|                 | CE 7-16; Vult=115mph                        |                      | 2.4            |                         |             |                 |       |       |        | A    | STATE OF      | New      |
|                 | nph; TCDL=6.0psf; BC                        |                      |                |                         |             |                 |       |       |        | H    | SCOT          | TM. YSY  |
|                 | Enclosed; MWFRS (er                         |                      | ,              |                         |             |                 |       |       |        | 1    | SEV           | IER \ X  |
|                 | left and right exposed                      |                      |                |                         |             |                 |       |       |        | 12 1 |               |          |

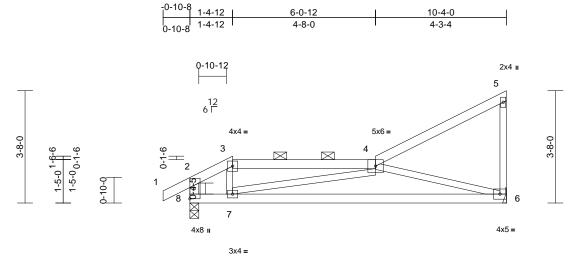
- right exposed; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom 3)
- chord live load nonconcurrent with any other live loads. 4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

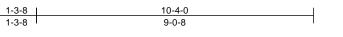
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



NUMBE

PE-200101880


C


| Job     | Truss | Truss Type          | Qty Ply |   | Lot 121 MN               |           |  |  |
|---------|-------|---------------------|---------|---|--------------------------|-----------|--|--|
| B220017 | B3    | Roof Special Girder | 1       | 1 | Job Reference (optional) | 149887766 |  |  |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:00 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

# Page: 1

гаç

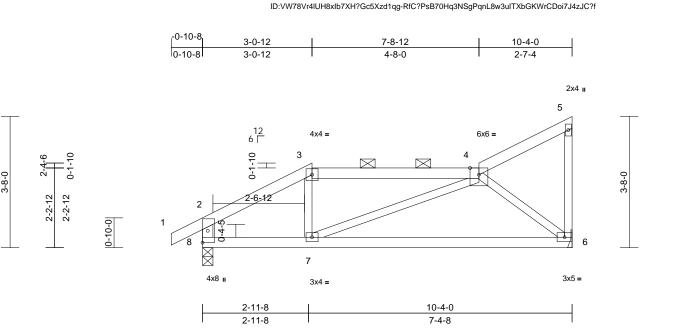




| Scale | = ' | 1:37 | .6 |  |
|-------|-----|------|----|--|
|       |     |      |    |  |

|             |                        | 1                      |         |                | · · · · · ·           |          |                |         |       |        |     |               |          |
|-------------|------------------------|------------------------|---------|----------------|-----------------------|----------|----------------|---------|-------|--------|-----|---------------|----------|
| Loading     | (psf)                  | Spacing                | 2-0-0   |                | CSI                   |          | DEFL           | in      | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL (roof) | 25.0                   | Plate Grip DOL         | 1.15    |                | TC                    | 0.41     | Vert(LL)       | -0.18   | 6-7   | >662   | 360 | MT20          | 197/144  |
| TCDL        | 10.0                   | Lumber DOL             | 1.15    |                | BC                    | 0.70     | Vert(CT)       | -0.38   | 6-7   | >321   | 240 |               |          |
| BCLL        | 0.0*                   | Rep Stress Incr        | NO      |                | WB                    | 0.47     | Horz(CT)       | 0.01    | 6     | n/a    | n/a |               |          |
| BCDL        | 10.0                   | Code                   | IRC2018 | 3/TPI2014      | Matrix-S              |          | Wind(LL)       | 0.03    | 6-7   | >999   | 240 | Weight: 37 lb | FT = 10% |
| LUMBER      |                        |                        | 8)      | Graphical pu   | Irlin representation  | does n   | ot denict the  | aziza   |       |        |     |               |          |
| TOP CHORD   | 2x4 SPF No.2           |                        | 0)      |                | ation of the purlin a |          |                | 3126    |       |        |     |               |          |
| BOT CHORD   |                        |                        |         | bottom chore   |                       | g        |                |         |       |        |     |               |          |
| WEBS        | 2x3 SPF No.2 *Exce     | pt* 8-2:2x4 SPF No.    | 29)     | Hanger(s) or   | other connection c    | levice(s | ) shall be     |         |       |        |     |               |          |
| BRACING     |                        |                        | ,       | provided suf   | ficient to support co | oncentra | ated load(s) 1 | 04      |       |        |     |               |          |
| TOP CHORD   | Structural wood she    | athing directly applie | d or    |                | 90 lb up at 1-4-12    |          |                |         |       |        |     |               |          |
|             | 6-0-0 oc purlins, ex   |                        |         |                | 2 lb up at 1-4-12 or  |          |                |         |       |        |     |               |          |
|             | 2-0-0 oc purlins (6-0  | -0 max.): 3-4.         |         |                | tion of such connec   | ction de | vice(s) is the |         |       |        |     |               |          |
| BOT CHORD   | Rigid ceiling directly | applied or 10-0-0 or   | ;       | responsibility |                       |          |                | <i></i> |       |        |     |               |          |
|             | bracing.               |                        | 10      |                | CASE(S) section,      |          |                | face    |       |        |     |               |          |
| REACTIONS   | (lb/size) 6=449/ M     | echanical, 8=523/0-3   | 3-8     |                | are noted as front (F | -) or ba | СК (D).        |         |       |        |     |               |          |
|             | Max Horiz 8=145 (LC    | C 5)                   | 1)      | AD CASE(S)     | of Live (balanced):   | Lumbo    | Inorono 1      | 15      |       |        |     |               |          |
|             | Max Uplift 6=-99 (LC   | C 8), 8=-131 (LC 8)    | 1)      | Plate Increa   | ```                   | Lumber   | increase=1.    | 15,     |       |        |     |               |          |
| FORCES      | (lb) - Maximum Com     | pression/Maximum       |         | Uniform Lo     |                       |          |                |         |       |        |     |               |          |
|             | Tension                |                        |         |                | =-70, 2-3=-70, 3-4=   | -70 4-   | 5=-70 6-8=-2   | 20      |       |        |     |               |          |
| TOP CHORD   | ,                      |                        |         |                | ed Loads (lb)         | - 10, 1  | 0= 10, 0 0= 1  | _0      |       |        |     |               |          |
|             | 4-5=-131/43, 5-6=-1    | ,                      |         | Vert: 7=6      | ( )                   |          |                |         |       |        |     |               |          |
| BOT CHORD   | 7-8=-79/514, 6-7=-2    |                        |         |                |                       |          |                |         |       |        |     |               |          |
| WEBS        | 3-7=0/361, 4-7=-453    | 3/255, 4-6=-930/310    |         |                |                       |          |                |         |       |        |     |               |          |
| NOTES       |                        |                        |         |                |                       |          |                |         |       |        |     |               |          |
| ,           | CE 7-16; Vult=115mph   |                        |         |                |                       |          |                |         |       |        |     |               |          |
|             | nph; TCDL=6.0psf; BC   |                        |         |                |                       |          |                |         |       |        |     |               |          |
| II; Exp C;  | Enclosed; MWFRS (er    | e;                     |         |                |                       |          |                |         |       |        |     |               |          |

cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60


Provide adequate drainage to prevent water ponding.
 This truss has been designed for a 10.0 psf bottom

- chord live load nonconcurrent with any other live loads.
  \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 99 lb uplift at joint 6 and 131 lb uplift at joint 8.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

SCOTT M. SEVIER NUMBER PE-2001018807 January 27,2022



| Job     | Truss | Truss Type   | Qty | Ply | Lot 121 MN               |           |
|---------|-------|--------------|-----|-----|--------------------------|-----------|
| B220017 | B4    | Roof Special | 1   | 1   | Job Reference (optional) | 149887767 |



Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:00

| Loading     | (psf) | Spacing         | 2-0-0           | CSI      |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
|-------------|-------|-----------------|-----------------|----------|------|----------|-------|-------|--------|-----|---------------|----------|
| TCLL (roof) | 25.0  | Plate Grip DOL  | 1.15            | TC       | 0.38 | Vert(LL) | -0.10 | 6-7   | >999   | 360 | MT20          | 197/144  |
| TCDL        | 10.0  | Lumber DOL      | 1.15            | BC       | 0.42 | Vert(CT) | -0.20 | 6-7   | >595   | 240 |               |          |
| BCLL        | 0.0*  | Rep Stress Incr | YES             | WB       | 0.15 | Horz(CT) | 0.01  | 6     | n/a    | n/a |               |          |
| BCDL        | 10.0  | Code            | IRC2018/TPI2014 | Matrix-S |      | Wind(LL) | 0.02  | 6-7   | >999   | 240 | Weight: 37 lb | FT = 10% |

LUMBER

Scale = 1:32.2

TOP CHORD 2x4 SPF No.2

BOT CHORD 2x4 SPF No.2

| 201 0110112 |                                                                                                                               |
|-------------|-------------------------------------------------------------------------------------------------------------------------------|
| WEBS        | 2x3 SPF No.2 *Except* 8-2:2x4 SPF No.2                                                                                        |
| BRACING     |                                                                                                                               |
| TOP CHORD   | Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 3-4. |
| BOT CHORD   | Rigid ceiling directly applied or 10-0-0 oc<br>bracing.                                                                       |

| REACTIONS | (lb/size)  | 6=450/ Mechanical, 8=529/0-3-8 |
|-----------|------------|--------------------------------|
|           | Max Horiz  | 8=145 (LC 5)                   |
|           | Max Uplift | 6=-94 (LC 8), 8=-98 (LC 8)     |
| FORCES    | (lb) - Max | imum Compression/Maximum       |

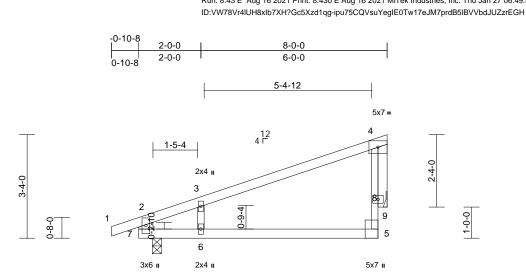
|           | Tension                             |
|-----------|-------------------------------------|
| TOP CHORD | 1-2=0/32, 2-3=-620/76, 3-4=-492/95, |
|           | 4-5=-99/35, 5-6=-59/33, 2-8=-475/93 |
| BOT CHORD | 7-8=-79/494, 6-7=-96/415            |
| WEBS      | 3-7=0/173, 4-7=-9/168, 4-6=-516/170 |

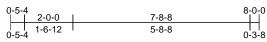
NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.
   This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
  4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 94 lb uplift at joint 6 and 98 lb uplift at joint 8.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 LOAD CASE(S) Standard

> PE-2001018807 January 27,2022


Page: 1




| Job     | Truss | Truss Type | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------|-----|-----|--------------------------|-----------|
| B220017 | C1    | Monopitch  | 5   | 1   | Job Reference (optional) | 149887768 |

Run: 8.43 E Aug 16 2021 Print: 8.430 E Aug 16 2021 MiTek Industries, Inc. Thu Jan 27 06:49:50

3x4 =





| Scale = 1:37.1 |                    |                    |                 |          |      |          |       |       |        |     |               |          |  |
|----------------|--------------------|--------------------|-----------------|----------|------|----------|-------|-------|--------|-----|---------------|----------|--|
| Loading        | (psf)              | Spacing            | 2-0-0           | CSI      |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |  |
| TCLL (roof)    | 25.0               | Plate Grip DOL     | 1.15            | TC       | 0.54 | Vert(LL) | -0.11 | 5-6   | >821   | 360 | MT20          | 197/144  |  |
| TCDL           | 10.0               | Lumber DOL         | 1.15            | BC       | 0.53 | Vert(CT) | -0.22 | 5-6   | >415   | 240 |               |          |  |
| BCLL           | 0.0*               | Rep Stress Incr    | YES             | WB       | 0.03 | Horz(CT) | 0.01  | 9     | n/a    | n/a |               |          |  |
| BCDL           | 10.0               | Code               | IRC2018/TPI2014 | Matrix-S |      | Wind(LL) | 0.12  | 5-6   | >790   | 240 | Weight: 25 lb | FT = 10% |  |
| LUMBER         |                    |                    |                 |          |      |          |       |       |        |     |               |          |  |
| FOP CHORD      | 2x4 SPF No.2       |                    |                 |          |      |          |       |       |        |     |               |          |  |
| BOT CHORD      | 2x4 SPF No.2       |                    |                 |          |      |          |       |       |        |     |               |          |  |
| WEBS           | 2x3 SPF No.2 *Exce | pt* 7-2:2x6 SPF No | 0.2             |          |      |          |       |       |        |     |               |          |  |
| OTHERS         | 2v4 SPE No 2       |                    |                 |          |      |          |       |       |        |     |               |          |  |

|           | 200 01 1 1  |                                    |
|-----------|-------------|------------------------------------|
| OTHERS    | 2x4 SPF I   | No.2                               |
| BRACING   |             |                                    |
| TOP CHORD | Structural  | wood sheathing directly applied or |
|           | 6-0-0 oc p  | ourlins, except end verticals.     |
| BOT CHORD | Rigid ceili | ng directly applied or 10-0-0 oc   |
|           | bracing.    |                                    |
| REACTIONS | (lb/size)   | 7=429/0-3-8, 9=312/ Mechanical     |
|           | Max Horiz   | 7=100 (LC 5)                       |
|           | Max Uplift  | 7=-94 (LC 4), 9=-79 (LC 8)         |
| FORCES    | (lb) - Max  | . Comp./Max. Ten All forces 250    |
|           | (lb) or les | s except when shown.               |

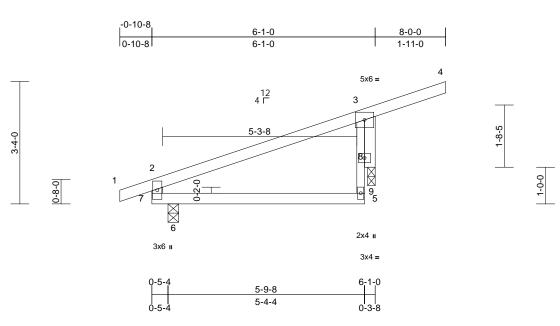
- TOP CHORD 2-7=-259/37
- WEBS 4-9=-327/84

#### NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 94 lb uplift at joint 7 and 79 lb uplift at joint 9.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard




Page: 1



| Job     | Truss | Truss Type | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------|-----|-----|--------------------------|-----------|
| B220017 | C2    | Monopitch  | 3   | 1   | Job Reference (optional) | 149887769 |

#### Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:01 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1



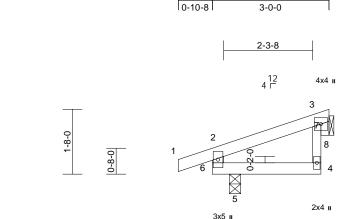
#### Scale = 1:31.4

| Loading                                                                                                                                                                                                                                                                                                                     | (psf)                                                                                                                                                                                                                                                                                        | Spacing                                                               | 2-0-0                                                                                                                                           | CSI                                                                              |                           | DEFL                                                            | in                     | (loc)    | l/defl      | L/d        | PLATES        | GRIP            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------|------------------------|----------|-------------|------------|---------------|-----------------|
| TCLL (roof)                                                                                                                                                                                                                                                                                                                 | 25.0                                                                                                                                                                                                                                                                                         | Plate Grip DOL                                                        | 1.15                                                                                                                                            | тс                                                                               | 0.36                      | Vert(LL)                                                        | -0.02                  | 5-6      | >999        | 360        | MT20          | 197/144         |
| TCDL                                                                                                                                                                                                                                                                                                                        | 10.0                                                                                                                                                                                                                                                                                         | Lumber DOL                                                            | 1.15                                                                                                                                            | BC                                                                               | 0.18                      | Vert(CT)                                                        | -0.04                  | 5-6      | >999        | 240        |               |                 |
| BCLL                                                                                                                                                                                                                                                                                                                        | 0.0*                                                                                                                                                                                                                                                                                         | Rep Stress Incr                                                       | YES                                                                                                                                             | WB                                                                               | 0.00                      | Horz(CT)                                                        | -0.01                  | 9        | n/a         | n/a        |               |                 |
| BCDL                                                                                                                                                                                                                                                                                                                        | 10.0                                                                                                                                                                                                                                                                                         | Code                                                                  | IRC2018/TPI2014                                                                                                                                 | Matrix-R                                                                         |                           | Wind(LL)                                                        | 0.00                   | 5-6      | >999        | 240        | Weight: 21 lb | FT = 10%        |
| TCDL<br>BCLL<br>BCDL<br>LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>BOT CHORD<br>BOT CHORD<br>BOT CHORD<br>BOT CHORD<br>WEBS<br>NOTES<br>1) Wind: ASC<br>Vasd=91n<br>II; Exp C; 1<br>cantilever<br>right expos<br>2) This truss<br>chord live<br>3) * This trus | 10.0<br>0.0*<br>10.0<br>2x4 SPF No.2<br>2x3 SPF No.2 *Exce<br>2x3 SPF No.2 *Exce<br>2x4 SPF No.2<br>Structural wood she<br>6-0-0 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>(lb/size) 6=341/0-7<br>Max Horiz 6=114 (Lo<br>Max Uplift 6=-73 (LO<br>(lb) - Maximum Com<br>Tension | Lumber DOL<br>Rep Stress Incr<br>Code                                 | 1.15<br>YES<br>IRC2018/TPI2014<br>7) This truss is<br>International<br>R802.10.2 a<br>2 LOAD CASE(S)<br>d or<br>99,<br>99,<br>iat.<br>e;<br>100 | WB<br>Matrix-R<br>designed in accord<br>Residential Code s<br>nd referenced stan | 0.00<br>lance wissections | Vert(CT)<br>Horz(CT)<br>Wind(LL)<br>ith the 2018<br>R502.11.1 a | -0.04<br>-0.01<br>0.00 | 5-6<br>9 | >999<br>n/a | n/a<br>240 | STATE OF I    | MISSOUR<br>T.M. |
| 3-06-00 ta<br>chord and<br>4) Bearing at<br>using ANS                                                                                                                                                                                                                                                                       | Il by 2-00-00 wide will<br>any other members.<br>t joint(s) 9 considers pa<br>SI/TPI 1 angle to grain                                                                                                                                                                                        | fit between the botton<br>arallel to grain value<br>formula. Building | m                                                                                                                                               |                                                                                  |                           |                                                                 |                        |          |             | Ŕ          | SEVI          | ter *           |
|                                                                                                                                                                                                                                                                                                                             | should verify capacity of                                                                                                                                                                                                                                                                    |                                                                       |                                                                                                                                                 |                                                                                  |                           |                                                                 |                        |          | 0           | K.         | PE-2001       | 018807          |
|                                                                                                                                                                                                                                                                                                                             | echanical connection ate at joint(s) 9.                                                                                                                                                                                                                                                      | (by others) of truss to                                               |                                                                                                                                                 |                                                                                  |                           |                                                                 |                        |          |             | Ø          | AL LAND       |                 |
| 6) Provide m                                                                                                                                                                                                                                                                                                                | echanical connection                                                                                                                                                                                                                                                                         |                                                                       |                                                                                                                                                 |                                                                                  |                           |                                                                 |                        |          |             |            | ESSIONA       | LENG            |
| bearing pla                                                                                                                                                                                                                                                                                                                 | ate capable of withsta                                                                                                                                                                                                                                                                       | nding 73 lb uplift at jo                                              | int                                                                                                                                             |                                                                                  |                           |                                                                 |                        |          |             |            | UNA           | L               |

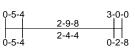
al connection (by others) of tr 6) bearing plate capable of withstanding 73 lb uplift at joint 6 and 129 lb uplift at joint 9.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601




January 27,2022

| Job     | Truss | Truss Type | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------|-----|-----|--------------------------|-----------|
| B220017 | C3    | Monopitch  | 5   | 1   | Job Reference (optional) | 149887770 |


Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries. Inc. Tue Jan 25 15:07:01 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

1-0-0

Page: 1



-0-10-8



3-0-0

| Loading     | (psf) | Spacing         | 2-0-0           | CSI      |      | DEFL     | in   | (loc) | l/defl | L/d | PLATES       | GRIP     |
|-------------|-------|-----------------|-----------------|----------|------|----------|------|-------|--------|-----|--------------|----------|
| TCLL (roof) | 25.0  | Plate Grip DOL  | 1.15            | тс       | 0.12 | Vert(LL) | 0.00 | 4-5   | >999   | 360 | MT20         | 197/144  |
| TCDL        | 10.0  | Lumber DOL      | 1.15            | BC       | 0.11 | Vert(CT) | 0.00 | 4-5   | >999   | 240 |              |          |
| BCLL        | 0.0*  | Rep Stress Incr | YES             | WB       | 0.00 | Horz(CT) | 0.00 | 8     | n/a    | n/a |              |          |
| BCDL        | 10.0  | Code            | IRC2018/TPI2014 | Matrix-R |      | Wind(LL) | 0.00 | 4-5   | >999   | 240 | Weight: 9 lb | FT = 10% |

| LOWIDER   |                                               |
|-----------|-----------------------------------------------|
| TOP CHORD | 2x4 SPF No.2                                  |
| BOT CHORD | 2x4 SPF No.2                                  |
| WEBS      | 2x3 SPF No.2 *Except* 6-2:2x4 SPF No.2        |
| OTHERS    | 2x3 SPF No.2                                  |
| BRACING   |                                               |
| TOP CHORD | Structural wood sheathing directly applied or |
|           | 3-0-0 oc purlins, except end verticals.       |
| BOT CHORD | Rigid ceiling directly applied or 10-0-0 oc   |
|           | bracing.                                      |
| REACTIONS | (lb/size) 5=248/0-3-8, 8=52/ Mechanical       |
|           | Max Horiz 5=54 (LC 5)                         |
|           | Max Uplift 5=-87 (LC 4), 8=-16 (LC 8)         |
| FORCES    | (lb) - Maximum Compression/Maximum            |
|           | Tension                                       |
| TOP CHORD | 1-2=0/23, 2-3=-44/7, 4-7=-9/32, 3-7=-9/32,    |
|           | 2-6=-188/86                                   |
| BOT CHORD | 5-6=-4/40, 4-5=-16/12                         |
| WEBS      | 3-8=-63/22                                    |
|           |                                               |

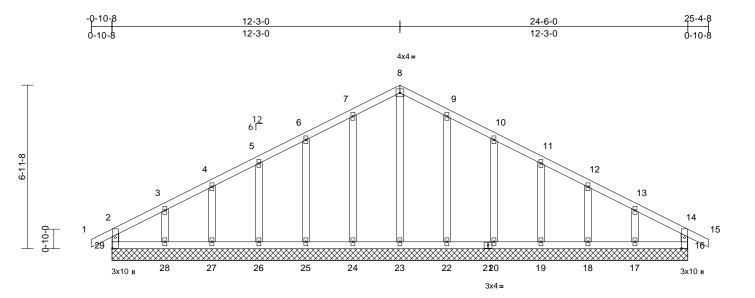
#### NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 87 lb uplift at joint 5 and 16 lb uplift at joint 8.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

# OF MISSO TE SCOTT M. SEVIER NUMBER ROFF PE-2001018807 SSIONAL E January 27,2022




| Job     | Truss | Truss Type             | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------------------|-----|-----|--------------------------|-----------|
| B220017 | D1    | Common Supported Gable | 1   | 1   | Job Reference (optional) | 149887771 |

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries. Inc. Tue Jan 25 15:07:01 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

January 27,2022

**MiTek**° 16023 Swingley Ridge Rd Chesterfield, MO 63017



#### Scale = 1:49 Plate Offsets (X, Y): [16:0-5-9,0-1-8], [29:0-5-9,0-1-8]

| Loading<br>TCLL (roof)<br>TCDL                                                                                                       | (psf)<br>25.0<br>10.0                                                                                                                                                                                                                                 | Spacing<br>Plate Grip DOL<br>Lumber DOL                                                                                                                                                                                                                                                                    | 2-0-0<br>1.15<br>1.15                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CSI<br>TC<br>BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.07<br>0.04                                                                                                                                                                                                                                                                                                                                                          | DEFL<br>Vert(LL)<br>Vert(CT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | in<br>n/a<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (loc)<br>-<br>-                                               | l/defl<br>n/a<br>n/a                                                                                          | L/d<br>999<br>999                                                                                                             | PLATES<br>MT20                                                                                                                                                                                                      | <b>GRIP</b><br>197/144 |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| BCLL<br>BCDL                                                                                                                         | 0.0*<br>10.0                                                                                                                                                                                                                                          | Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                    | YES<br>IRC20                             | 018/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WB<br>Matrix-R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.11                                                                                                                                                                                                                                                                                                                                                                  | Horz(CT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16                                                            | n/a                                                                                                           | n/a                                                                                                                           | Weight: 109 lb                                                                                                                                                                                                      | FT = 10%               |
| BOT CHORD 2x4<br>WEBS 2x4<br>OTHERS 2x4<br>BRACING TOP CHORD Stru<br>BOT CHORD Rig<br>bra<br>REACTIONS (lb/sid)<br>Max<br>Max<br>Max | 0 oc purlins, ex<br>d ceiling directly<br>cing.<br>ze) 16=172/2<br>20=178/2<br>23=164/2<br>23=164/2<br>29=172/2<br>Horiz 29=107 (<br>24=-54 (L<br>26=-57 (L<br>28=-98 (L<br>Grav 16=172 (<br>18=180 (<br>20=178 (<br>25=178 (<br>27=180 (<br>29=172 ( | LC 7)<br>.C 8), 17=-89 (LC 9),<br>.C 9), 19=-56 (LC 9),<br>.C 9), 22=-53 (LC 9),<br>.C 8), 25=-55 (LC 8),<br>.C 8), 27=-42 (LC 8),<br>.C 8), 29=-39 (LC 9)<br>LC 1), 17=181 (LC 22<br>LC 1), 19=180 (LC 22<br>LC 1), 22=190 (LC 22<br>LC 1), 26=180 (LC 21<br>LC 1), 26=181 (LC 21<br>LC 1), 28=181 (LC 21 | d or , , , , , , , , , , , , , , , , , , | <ul> <li>BOT CHORD</li> <li>WEBS</li> <li>NOTES</li> <li>1) Unbalanced<br/>this design.</li> <li>2) Wind: ASCI<br/>Vasd=91mp<br/>II; Exp C; E<br/>cantilever le<br/>right expose</li> <li>3) Truss desig<br/>only. For st<br/>see Standa<br/>or consult q</li> <li>4) All plates ar</li> <li>5) Gable requi</li> <li>6) Truss to be<br/>braced agai</li> <li>7) Gable studs</li> <li>8) This truss h<br/>chord live lc</li> <li>* This truss<br/>on the botto</li> </ul> | 2-29=-152/46, 1-2=<br>3-4=-59/86, 4-5=-5<br>6-7=-35/165, 7-8=-<br>9-10=-35/144, 10-<br>12-13=-43/65, 13-<br>14-16=-152/33<br>28-29=-31/80, 24-2<br>22-23=-31/80, 24-2<br>22-23=-31/80, 24-2<br>22-23=-31/80, 20-2<br>18-19=-31/80, 17-<br>8-23=-140/79, 4-22<br>9-22=-150/77, 10-2<br>11-19=-140/79, 12<br>13-17=-138/100<br>d roof live loads hav<br>E 7-16; Vult=115mp<br>ch; TCDL=6.0psf; B<br>nclosed; MWFRS (ight expose<br>ed; Lumber DOL=1.<br>ned for wind loads<br>tuds exposed to wir<br>rd Industry Gable E<br>ualified building de:<br>re 2x4 MT20 unless<br>res continuous bott<br>fully sheathed from<br>inst lateral moveme<br>is spaced at 2-0-0 o<br>as been designed f<br>bad nonconcurrent to<br>has been designed<br>pad nonconcurrent to<br>has been designed form<br>thas | 0/113, §<br>39/188,<br>39/188,<br>11=-35/'<br>14=-76/5<br>28=-31/8<br>25=-31/8<br>22=-31/8<br>8=-31/8<br>8=-31/8<br>8=-31/8<br>72-140/7<br>20=-138<br>-18=-14<br>e been<br>th (3-sec<br>CDL=6.<br>envelopp<br>d; end v<br>60 plate<br>in the pl<br>d (norm<br>nd Deta<br>signer a<br>otherwi<br>om choir<br>one fac<br>nt (i.e. c)<br>or a 10.<br>with any<br>s where | 5-6=-38/138,<br>8-9=-39/180,<br>17, 11-12=-33<br>50, 14-15=0/32<br>30, 26-27=-31/<br>30, 26-27=-31/<br>30, 23-24=-31/<br>30, 16-17=-31/<br>30, 16-17=-31/<br>30, 16-17=-31/<br>30, 16-17=-31/<br>30, 16-17=-31/<br>30, 16-17=-31/<br>1, 3-28=-138/<br>7/9,<br>00/72,<br>considered for<br>cond gust)<br>00psf; h=25ft; C<br>ane of the trus<br>grip DOL=1.6<br>ane of the trus<br>grip DOL=1.6<br>ane of the trus<br>grip DOL=1.6<br>ane of the trus<br>grip DOL=1.6<br>ane of the trus<br>grip COL=1.6<br>ane of the trus<br>gr | 2, /80,<br>/80, /80,<br>/80,<br>/80,<br>/9,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/105,<br>/10, | bea<br>29,<br>upli<br>27,<br>upli<br>18 :<br>11) This<br>Inte | rring pla<br>23 lb up<br>ft at joir<br>98 lb up<br>ft at joir<br>and 89 l<br>s truss i<br>prnation<br>02.10.2 | te capa<br>lift at ji<br>t 25, 5<br>b uplift at j<br>t 20, 5<br>b uplift<br>s desig<br>and ref<br>al Resi<br>and ref<br>) Sta | able of withstandii<br>oint 16, 54 lb uplif<br>7 lb uplift at joint 1<br>6 lb uplift at joint 1<br>6 lb uplift at joint 1<br>7 at joint 17.<br>Ined in accordanc<br>dential Code sect<br>rerenced standard<br>ndard | AISSOLUTION            |

| Job     | Truss | Truss Type | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------|-----|-----|--------------------------|-----------|
| B220017 | D2    | Common     | 7   | 1   | Job Reference (optional) | 149887772 |

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:02 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

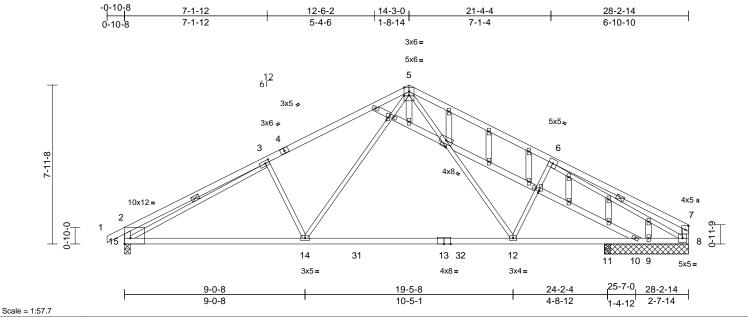
-0-10-8 0-10-8 25-4-8 0-10-8 5-9-12 12-3-0 18-8-4 24-6-0 5-9-12 6-5-4 6-5-4 5-9-12 5x6= 4 12 6Γ 2x4 📢 2x4 🏿 3 5 6-11-8 23-3-8 -10-0 T. Ř 11 13 14 10 9 10x12 🞜 10x12 👟 3x4= 3x4= 3x4 =

|              | 7-4-7 | 17-1-9 | 24-6-0 | 1 |
|--------------|-------|--------|--------|---|
|              | 7-4-7 | 9-9-2  | 7-4-7  |   |
| Scale = 1:53 |       |        |        |   |

#### Plate Offsets (X, Y): [8:0-4-1,0-8-2], [12:0-2-7,0-4-14]

|                                                                                                                                                                                     | , , , , , , , , , , , ,                                                                                                 | 1                   |        |           | 1                |      |          | -     |       |        |     |               |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------|--------|-----------|------------------|------|----------|-------|-------|--------|-----|---------------|----------|
| Loading                                                                                                                                                                             | (psf)                                                                                                                   | Spacing             | 2-0-0  |           | CSI              |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL (roof)                                                                                                                                                                         | 25.0                                                                                                                    | Plate Grip DOL      | 1.15   |           | TC               | 0.79 | Vert(LL) | -0.44 | 9-11  | >650   | 360 | MT20          | 197/144  |
| TCDL                                                                                                                                                                                | 10.0                                                                                                                    | Lumber DOL          | 1.15   |           | BC               | 0.59 | Vert(CT) | -0.74 | 9-11  | >387   | 240 |               |          |
| BCLL                                                                                                                                                                                | 0.0*                                                                                                                    | Rep Stress Incr     | YES    |           | WB               | 0.21 | Horz(CT) | 0.04  | 8     | n/a    | n/a |               |          |
| BCDL                                                                                                                                                                                | 10.0                                                                                                                    | Code                | IRC201 | 8/TPI2014 | Matrix-S         |      | Wind(LL) | 0.13  | 9-11  | >999   | 240 | Weight: 84 lb | FT = 10% |
| LUMBER 5) Provide mechanical connection (by others) of truss to                                                                                                                     |                                                                                                                         |                     |        |           |                  |      |          |       |       |        |     |               |          |
| LUMBER       5)       Provide mechanical connection (by others) of truss to         TOP CHORD       2x4 SPF 2100F 1.8E       bearing plate capable of withstanding 160 lb uplift at |                                                                                                                         |                     |        |           |                  |      |          |       |       |        |     |               |          |
| OF CHORD 2x4 SPF 2100F 1.8E joint 12 and 160 lb uplift at joint 8.                                                                                                                  |                                                                                                                         |                     |        |           |                  |      |          |       |       |        |     |               |          |
| NEBS                                                                                                                                                                                |                                                                                                                         |                     |        |           |                  |      |          |       |       |        |     |               |          |
| BRACING                                                                                                                                                                             | 2/0 011 110.2 2/00                                                                                                      | pt 12 2,0 0.2x0 01  | 200 -, |           | Residential Code |      |          | and   |       |        |     |               |          |
| TOP CHORD                                                                                                                                                                           |                                                                                                                         |                     |        |           |                  |      |          |       |       |        |     |               |          |
| I OF CHORD                                                                                                                                                                          | OP CHORD Structural wood sheathing directly applied or<br>3-5-6 oc purlins, except end verticals. LOAD CASE(S) Standard |                     |        |           |                  |      |          |       |       |        |     |               |          |
| BOT CHORD                                                                                                                                                                           |                                                                                                                         |                     |        |           |                  |      |          |       |       |        |     |               |          |
|                                                                                                                                                                                     | bracing.                                                                                                                |                     | 0      |           |                  |      |          |       |       |        |     |               |          |
| REACTIONS                                                                                                                                                                           | 0                                                                                                                       | -5-8, 12=1158/0-3-8 | 3      |           |                  |      |          |       |       |        |     |               |          |
|                                                                                                                                                                                     | Max Horiz 12=-110 (                                                                                                     | ,                   |        |           |                  |      |          |       |       |        |     |               |          |
|                                                                                                                                                                                     | Max Uplift 8=-160 (L                                                                                                    | ,                   | 3)     |           |                  |      |          |       |       |        |     |               |          |
|                                                                                                                                                                                     | Max Grav 8=1204 (L                                                                                                      | <i>,,</i>           | ,      |           |                  |      |          |       |       |        |     |               |          |
| FORCES                                                                                                                                                                              | (lb) - Maximum Com                                                                                                      |                     | ,      |           |                  |      |          |       |       |        |     |               |          |
| IONOLO                                                                                                                                                                              | Tension                                                                                                                 | pression/maximum    |        |           |                  |      |          |       |       |        |     |               |          |
| TOP CHORD                                                                                                                                                                           | 1-2=0/37, 2-3=-1725                                                                                                     | 5/214, 3-4=-1571/25 | 3.     |           |                  |      |          |       |       |        |     |               |          |
|                                                                                                                                                                                     | 4-5=-1571/253, 5-6=                                                                                                     |                     |        |           |                  |      |          |       |       |        |     |               |          |
|                                                                                                                                                                                     | 2-12=-1071/190, 6-8                                                                                                     | ,                   | ,      |           |                  |      |          |       |       |        |     |               |          |
| BOT CHORD                                                                                                                                                                           | 11-12=-207/1440, 9-                                                                                                     | -11=-45/1018,       |        |           |                  |      |          |       |       |        |     |               |          |
|                                                                                                                                                                                     | 8-9=-114/1428                                                                                                           |                     |        |           |                  |      |          |       |       |        |     |               |          |
| WEBS                                                                                                                                                                                | 4-9=-110/613, 5-9=-                                                                                                     | 292/224, 4-11=-110  | /613,  |           |                  |      |          |       |       |        |     |               |          |
|                                                                                                                                                                                     | 3-11=-292/224                                                                                                           |                     |        |           |                  |      |          |       |       |        |     |               |          |
| NOTES                                                                                                                                                                               |                                                                                                                         |                     |        |           |                  |      |          |       |       |        |     | 000           | ADD      |
| 1) Unbalance                                                                                                                                                                        | d roof live loads have                                                                                                  | been considered fo  | r      |           |                  |      |          |       |       |        |     | FOF           | MIG      |

- this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom 3)
- chord live load nonconcurrent with any other live loads. 4) \* This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


MISSO Ut SCOTT M. SEVIER TIME OFFESSIONAL PE-200101880' E January 27,2022



| Job     | Truss | Truss Type | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------|-----|-----|--------------------------|-----------|
| B220017 | E1    | GABLE      | 1   | 1   | Job Reference (optional) | 149887773 |

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries. Inc. Tue Jan 25 15:07:02 ID:VW78Vr4IUH8xIb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



#### Plate Offsets (X, Y): [2:Edge,0-3-8], [3:0-2-8,0-1-8], [5:0-3-0,0-0-7], [17:0-1-9,0-1-0], [18:0-0-7,0-0-8], [19:0-1-1,0-0-13]

| Loading     | (psf) | Spacing         | 2-0-0           | CSI      |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES         | GRIP     |
|-------------|-------|-----------------|-----------------|----------|------|----------|-------|-------|--------|-----|----------------|----------|
| TCLL (roof) | 25.0  | Plate Grip DOL  | 1.15            | TC       | 0.73 | Vert(LL) | -0.36 | 12-14 | >802   | 360 | MT20           | 197/144  |
| TCDL        | 10.0  | Lumber DOL      | 1.15            | BC       | 0.54 | Vert(CT) | -0.59 | 12-14 | >487   | 240 |                |          |
| BCLL        | 0.0*  | Rep Stress Incr | YES             | WB       | 0.93 | Horz(CT) | 0.05  | 8     | n/a    | n/a |                |          |
| BCDL        | 10.0  | Code            | IRC2018/TPI2014 | Matrix-S |      | Wind(LL) | 0.07  | 12-14 | >999   | 240 | Weight: 133 lb | FT = 10% |

| L | U | M | в | E | F | R |  |
|---|---|---|---|---|---|---|--|
|   |   |   |   |   |   |   |  |

NOTES

| LUMBER    |                         |                                                                     |   |
|-----------|-------------------------|---------------------------------------------------------------------|---|
| TOP CHORD | 2x4 SPF I               | No.2                                                                |   |
| BOT CHORD | 2x4 SPF 2<br>2100F 1.8  | 2400F 2.0E *Except* 13-8:2x4 SPF<br>BE                              | 2 |
| WEBS      |                         | No.2 *Except* 15-2:2x4 SPF 2100F<br>17-18,16-17,18-19,19-10:2x4 SPF |   |
|           | No.2                    |                                                                     |   |
| OTHERS    | 2x4 SPF I               | No.2                                                                | 3 |
| BRACING   |                         |                                                                     |   |
| TOP CHORD | Structura               | wood sheathing directly applied or                                  |   |
|           | 2-2-0 oc p              | ourlins, except end verticals.                                      |   |
| BOT CHORD | Rigid ceili<br>bracing. | ng directly applied or 10-0-0 oc                                    | Ę |
| WEBS      | 1 Row at                | midpt 3-15, 6-8                                                     |   |
| REACTIONS | (lb/size)               | 8=1215/4-2-6, 9=-21/4-2-6,                                          | 6 |
|           | (                       | 10=-70/4-2-6, 11=145/0-3-8,                                         |   |
|           |                         | 15=1318/0-3-8                                                       |   |
|           | Max Horiz               | 15=127 (LC 7)                                                       | 0 |
|           | Max Uplift              | 8=-192 (LC 9), 9=-26 (LC 15),                                       |   |
|           |                         | 10=-70 (LC 1), 11=-4 (LC 9),                                        |   |
|           |                         | 15=-184 (LC 8)                                                      | ç |
|           | Max Grav                | 8=1259 (LC 2), 9=21 (LC 3), 10=52                                   |   |
|           |                         | (LC 14), 11=145 (LC 1), 15=1377                                     |   |
|           |                         | (LC 2)                                                              |   |
| FORCES    | · · ·                   | imum Compression/Maximum                                            |   |
|           | Tension                 |                                                                     |   |
| TOP CHORD |                         | 2-3=-759/232, 3-5=-1944/310,                                        |   |
|           |                         | 6/319, 6-7=-451/168,                                                | I |
|           |                         | 4/210, 7-8=-368/146                                                 |   |
| BOT CHORD |                         | 69/1773, 12-14=-73/1196,<br>78/1689, 10-11=-178/1689,               |   |
|           |                         | 3/1689, 10-11=-178/1689,<br>3/1689, 8-9=-178/1689                   |   |
| WEBS      |                         | 1/270. 5-14=-140/836.                                               |   |
| VVED3     | 3-14=-41                | 1/2/0, 5-14=-140/030,                                               |   |

5-12=-157/719, 6-12=-390/268,

3-15=-1372/67, 6-8=-1615/109

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). Gable studs spaced at 2-0-0 oc. 6)
- This truss has been designed for a 10.0 psf bottom 7)
- chord live load nonconcurrent with any other live loads. 8) \* This truss has been designed for a live load of 20.0psf

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9)

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 184 lb uplift at joint 15, 192 lb uplift at joint 8, 70 lb uplift at joint 10, 26 Ib uplift at joint 9 and 4 lb uplift at joint 11.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

| Job     | Truss | Truss Type | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------|-----|-----|--------------------------|-----------|
| B220017 | E2    | Common     | 1   | 1   | Job Reference (optional) | 149887774 |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:02

Page: 1

|                    | aveny, NO - 0007 1,                   |                               |                 |                                             |                 |                          |               |          |                    | KWrCDoi7J4zJC?f | i age. i     |
|--------------------|---------------------------------------|-------------------------------|-----------------|---------------------------------------------|-----------------|--------------------------|---------------|----------|--------------------|-----------------|--------------|
|                    | -0-10-8                               | 7-1-12                        |                 | 14-3-0                                      |                 |                          | 1-4-4         |          | 1                  | 28-2-14         |              |
|                    | 0-10-8                                | 7-1-12                        | I               | 7-1-4                                       |                 | 7                        | '-1-4         |          | I                  | 6-10-10         | I            |
|                    |                                       |                               |                 |                                             | 5x6=            |                          |               |          |                    |                 |              |
|                    |                                       |                               | 10              |                                             | 5               |                          |               |          |                    |                 |              |
| T                  |                                       |                               | 1 <u>2</u><br>6 |                                             | <u>_</u>        |                          |               |          |                    |                 |              |
|                    |                                       |                               | 3x5 ≠           | /                                           |                 | $\sim$                   |               |          |                    |                 |              |
|                    |                                       |                               |                 |                                             |                 | $\wedge \longrightarrow$ |               |          |                    |                 |              |
|                    |                                       |                               | 3x6 🛥           |                                             |                 |                          | $\sim$        |          | 5x5 👟              |                 |              |
|                    |                                       |                               | 3 4             | ~ //                                        |                 |                          |               | $\sim$   | 6                  |                 |              |
| <del>6</del>       |                                       |                               | a tar           |                                             |                 |                          |               |          |                    |                 |              |
| 7-11-8             |                                       | /                             |                 |                                             |                 |                          |               |          | Hand -             |                 |              |
|                    |                                       |                               |                 |                                             |                 | /                        |               |          |                    |                 |              |
|                    |                                       | × ×                           |                 |                                             |                 |                          |               |          |                    | ) A C           | 4x5 <b>u</b> |
|                    | 2                                     |                               |                 |                                             |                 |                          |               |          |                    |                 | 7            |
| 0-10-0             | 1                                     |                               |                 |                                             |                 |                          |               |          |                    |                 | -11-9<br>9-1 |
| ⊥ 5⊥               | 12                                    |                               | <u>14</u>       |                                             |                 |                          |               | 4        |                    |                 |              |
|                    | ⊠<br>10x12=                           |                               | 11              | 13                                          |                 | 10 14                    | g             | 9        |                    |                 | 5x6=         |
|                    | 10/12 -                               | •                             | 3x5             | =                                           |                 | 4x8=                     | 3             | x5=      |                    |                 |              |
|                    | 1                                     | 9-0-8                         | 1               |                                             | 19-5-8          |                          | 1             | I.       |                    | 28-2-14         | 1            |
|                    |                                       | 9-0-8                         | l               |                                             | 10-5-1          |                          | 1             |          |                    | 8-9-6           |              |
| ale = 1:54.3       | 0. 50.0.0.0.0.0.0                     |                               |                 |                                             |                 |                          |               |          |                    |                 |              |
| te Offsets (X, Y   | (): [3:0-2-8,0-1-8]                   | [, [12:Edge,0-3-8]            |                 |                                             |                 |                          |               |          |                    | _               |              |
| ading              | (psf)                                 | Spacing                       | 2-0-0           | CSI                                         |                 | DEFL                     | in            | (loc) I/ | defl L/c           | PLATES          | GRIP         |
| LL (roof)          | 25.0                                  | Plate Grip DOL                | 1.15            | TC                                          | 0.74            | Vert(LL)                 |               |          | 902 360            |                 | 197/144      |
| DL                 | 10.0<br>0.0*                          | Lumber DOL<br>Rep Stress Incr | 1.15<br>YES     | BC<br>WB                                    | 0.59<br>0.94    | Vert(CT)<br>Horz(CT)     | -0.58<br>0.06 |          | 577 240<br>n/a n/a |                 |              |
| DL                 | 10.0                                  | Code                          | IRC2018/TPI2014 | Matrix-S                                    | 0.04            | Wind(LL)                 |               |          | 999 240            |                 | FT = 10%     |
|                    |                                       | •                             | 4) * This true  | s has been desig                            | nod for a liv   | ro load of 20 (          | Doct          |          | -                  |                 |              |
| MBER<br>P CHORD 2> | 4 SPF No.2                            |                               |                 | ss has been desig<br>ttom chord in all a    |                 |                          | ры            |          |                    |                 |              |
| T CHORD 2x         | 4 SPF 2100F 1.8                       |                               | 3-06-00 ta      | all by 2-00-00 wide                         | e will fit betv | veen the botto           |               |          |                    |                 |              |
| BS 2x              | <3 SPF No.2 *Exc<br>8E, 8-7:2x4 SPF I | ept* 12-2:2x4 SPF 2′          |                 | I any other membe<br>jirder(s) for truss to |                 |                          |               |          |                    |                 |              |
|                    | 0E, 0-7.2X4 OFF 1                     | NU.2                          |                 | nechanical connec                           |                 |                          | 0             |          |                    |                 |              |
|                    | tructural wood she                    | eathing directly applie       |                 | late capable of wit                         |                 | 80 lb uplift at          |               |          |                    |                 |              |
|                    |                                       | cept end verticals.           | 7) This trues   | nd 154 lb uplift at j<br>is designed in ac  |                 | ith the 2018             |               |          |                    |                 |              |
|                    | racing.                               | y applied or 10-0-0 o         | Internatio      | nal Residential Co                          | de sections     | s R502.11.1 a            | ind           |          |                    |                 |              |
| BS 1               | Row at midpt                          | 3-12, 6-8                     |                 | 2 and referenced s                          | standard Al     | NSI/TPI 1.               |               |          |                    |                 |              |
| ACTIONS (lb/       |                                       | Mechanical,                   | LUAD CASE       | (S) Standard                                |                 |                          |               |          |                    |                 |              |
| Ma                 | 12=1330<br>x Horiz 12=127 (           |                               |                 |                                             |                 |                          |               |          |                    |                 |              |
|                    |                                       | LC 9), 12=-180 (LC 8          | 3)              |                                             |                 |                          |               |          |                    |                 |              |
|                    |                                       | LC 2), 12=1391 (LC            | 2)              |                                             |                 |                          |               |          |                    |                 |              |
|                    | b) - Maximum Cor<br>ension            | npression/Maximum             |                 |                                             |                 |                          |               |          |                    |                 |              |
|                    |                                       | /229, 3-5=-1967/304           | ,               |                                             |                 |                          |               |          |                    |                 |              |
| 5-                 | 6=-1943/301, 6-7                      | =-476/131,                    |                 |                                             |                 |                          |               |          |                    |                 |              |
|                    | -12=-606/208, 7-8                     |                               |                 |                                             |                 |                          |               |          |                    |                 |              |
|                    | 1-12=-263/1793, 9<br>·9=-161/1757     | -11=-00/1220,                 |                 |                                             |                 |                          |               |          |                    |                 |              |
| BS 3-              | -11=-410/270, 5-1                     |                               |                 |                                             |                 |                          |               |          |                    | OF              | A DIN        |
| 5-                 | -9=-141/785, 6-9=                     | -387/266, 3-12=-138           | 8/65,           |                                             |                 |                          |               |          |                    | ETEUTI          | A Ser        |

NOTES

1) Unbalanced roof live loads have been considered for this design.

6-8=-1642/128

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 2) II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.





| Job     | Truss | Truss Type | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------|-----|-----|--------------------------|-----------|
| B220017 | E3    | Common     | 6   | 1   | Job Reference (optional) | 149887775 |

1)

2)

3)

4)

5)

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Jan 25 15:07:03 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

7-1-12 14-3-0 21-4-4 28-2-14 7-1-12 7-1-4 7-1-4 6-10-10 5x6= 4 \_12 6Г 3x4 🚽 3 3x6 🞜 5x5 👟 2 5 7-11-8 4x5 🛛 8x8 = 6 1 )-10-0 11 10 12 9 13 8 5x6= 3x5= 4x8= 3x5= 9-0-8 19-5-8 28-2-14 9-0-8 10-5-1 8-9-6 Scale = 1:54.3 Plate Offsets (X, Y): [1:Edge,0-2-8], [2:0-2-8,0-1-8] Loading (psf) Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (loc) TCLL (roof) 25.0 Plate Grip DOL 1.15 тс 0.71 Vert(LL) -0.37 8-10 >901 360 MT20 197/144 TCDL 10.0 Lumber DOL 1.15 BC 0.59 Vert(CT) -0.58 8-10 >575 240 BCLL 0.0\* Rep Stress Incr YES WB 0.94 Horz(CT) 0.06 7 n/a n/a Weight: 103 lb BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.05 8-10 >999 240 FT = 10% LUMBER 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 15 lb uplift at joint TOP CHORD 2x4 SPF No.2 11 and 14 lb uplift at joint 7. BOT CHORD 2x4 SPF 2100F 1.8E This truss is designed in accordance with the 2018 2x3 SPF No.2 \*Except\* 11-1,7-6:2x4 SPF 7) WEBS International Residential Code sections R502.11.1 and No 2 R802.10.2 and referenced standard ANSI/TPI 1. BRACING LOAD CASE(S) Standard Structural wood sheathing directly applied or TOP CHORD 2-2-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 2-11, 5-7 REACTIONS (lb/size) 7=1258/ Mechanical, 11=1258/ Mechanical Max Horiz 11=101 (LC 7) Max Uplift 7=-14 (LC 9), 11=-15 (LC 8) Max Grav 7=1332 (LC 2), 11=1331 (LC 2) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-623/72, 2-4=-1977/92, 4-5=-1945/91, 5-6=-485/66, 1-11=-448/70, 6-7=-379/66 BOT CHORD 10-11=-51/1840, 8-10=0/1237, 7-8=0/1759 WEBS 2-10=-422/172, 4-10=-37/832, 4-8=-36/786, 5-8=-387/169, 2-11=-1541/0, 5-7=-1645/0 NOTES OF MISS Unbalanced roof live loads have been considered for this design Wind: ASCE 7-16; Vult=115mph (3-second gust) SCOTT M. Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. SEVIER II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 NUMBER This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. PE-200101880' 0 \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle SSIONAL 3-06-00 tall by 2-00-00 wide will fit between the bottom F chord and any other members, with BCDL = 10.0psf. Refer to girder(s) for truss to truss connections January 27,2022



| Job     | Truss | Truss Type   | Qty | Ply | Lot 121 MN               |           |
|---------|-------|--------------|-----|-----|--------------------------|-----------|
| B220017 | E4    | Roof Special | 1   | 1   | Job Reference (optional) | 149887776 |

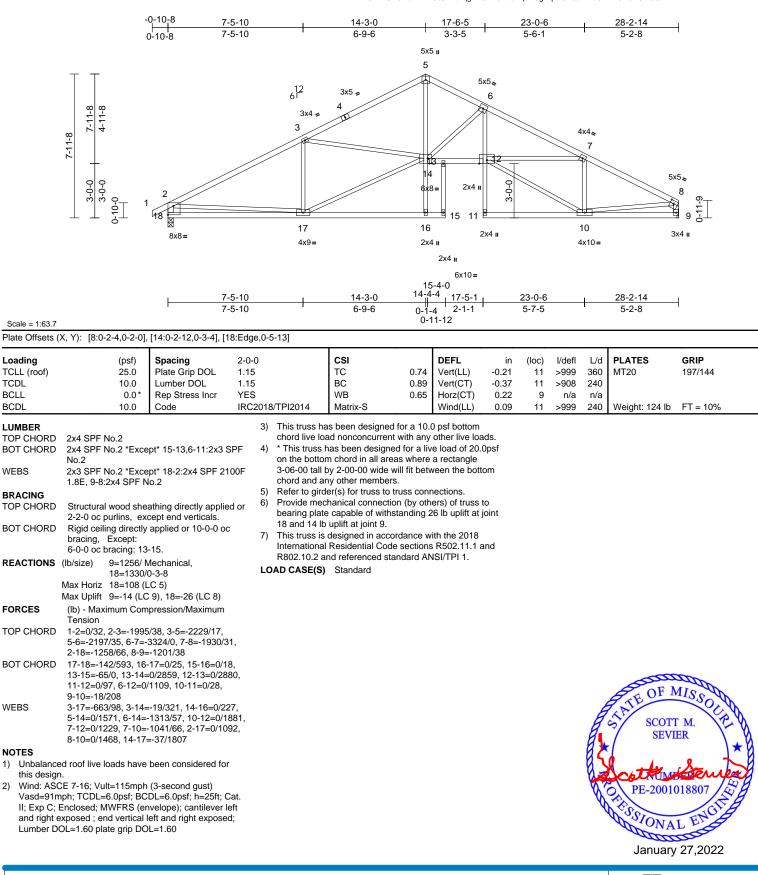
TCDL

BCLL

BCDL

WEBS

WEBS


NOTES

1)

2)

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Jan 25 15:07:03 ID:VW78Vr4IUH8xIb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

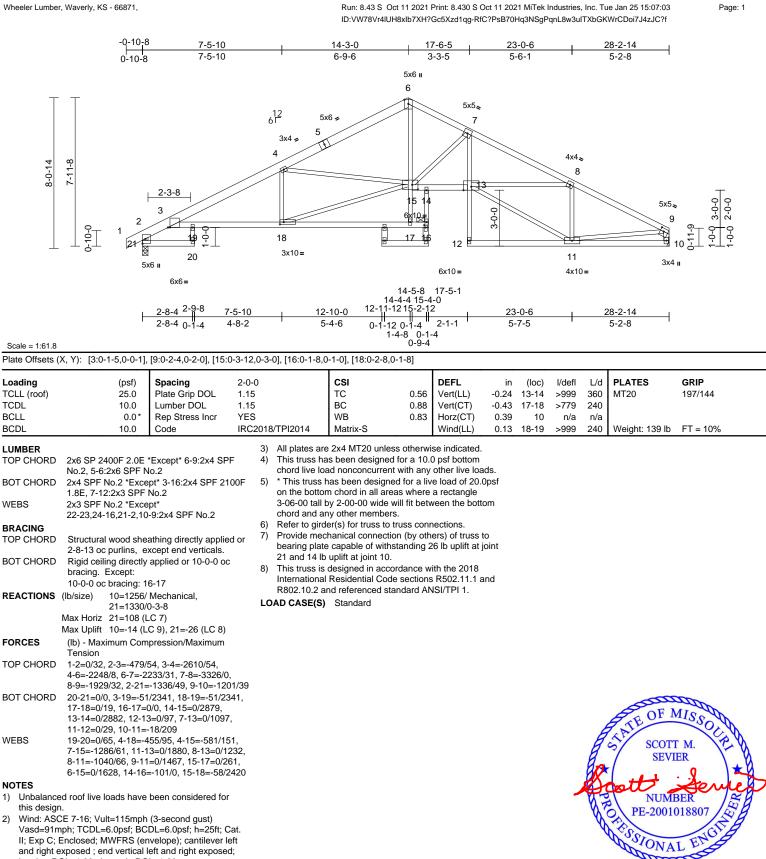
Page: 1





| Job     | Truss | Truss Type   | Qty | Ply | Lot 121 MN               |           |
|---------|-------|--------------|-----|-----|--------------------------|-----------|
| B220017 | E5    | Roof Special | 1   | 1   | Job Reference (optional) | 149887777 |

1)


2)

Lumber DOL=1.60 plate grip DOL=1.60

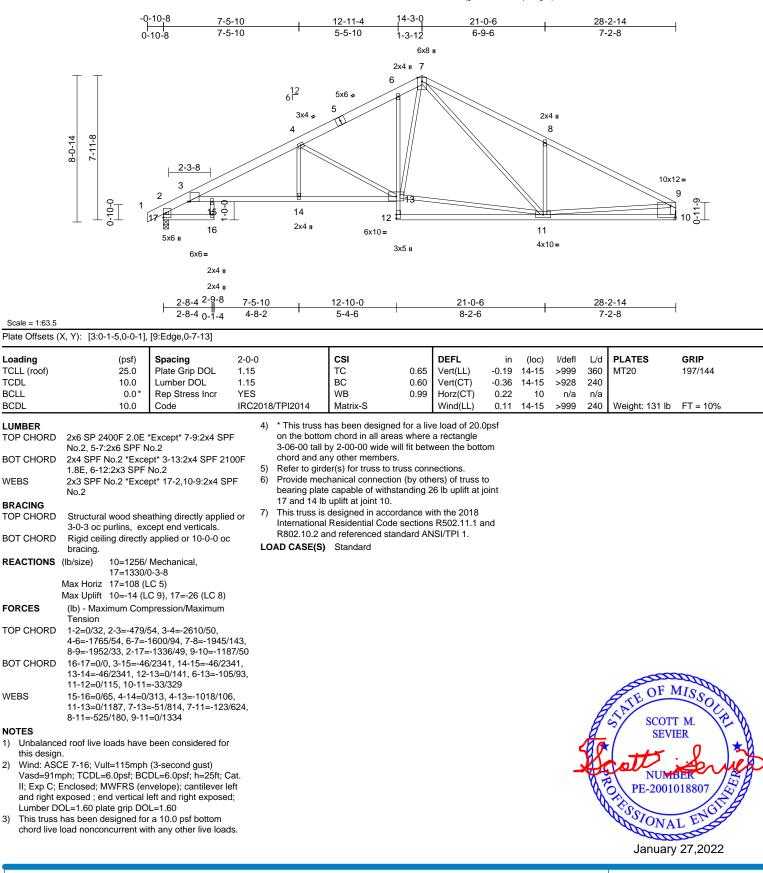
# ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

January 27,2022

**MiTek** 16023 Swingley Ridge Rd Chesterfield, MO 63017



| Job     | Truss | Truss Type   | Qty | Ply | Lot 121 MN               |           |
|---------|-------|--------------|-----|-----|--------------------------|-----------|
| B220017 | E6    | Roof Special | 1   | 1   | Job Reference (optional) | 149887778 |

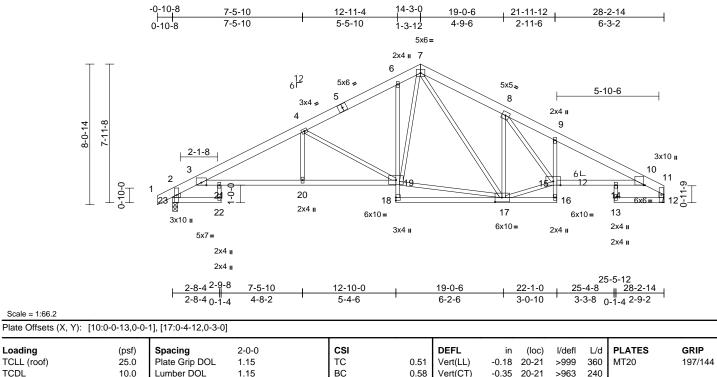

1)

2)

3)

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Jan 25 15:07:04 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1






| Job     | Truss | Truss Type   | Qty | Ply | Lot 121 MN               |           |
|---------|-------|--------------|-----|-----|--------------------------|-----------|
| B220017 | E7    | Roof Special | 2   | 1   | Job Reference (optional) | 149887779 |

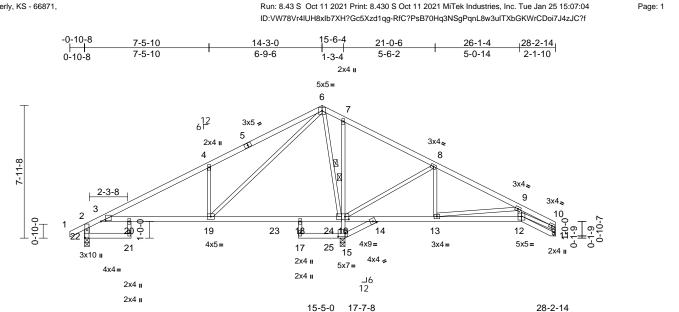
Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:04 ID:VW78Vr4IUH8xIb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



| Loaung      |                        | (psi)                                                                                                                                                                | Spacing                | 2-0-0         |                                                                                                                                        | 53                                |            | DEFL           |      | (100) | i/uen | L/U | FLATES         | GRIF       |          |
|-------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------|----------------|------|-------|-------|-----|----------------|------------|----------|
| TCLL (roof) |                        | 25.0                                                                                                                                                                 | Plate Grip DOL         | 1.15          |                                                                                                                                        | TC                                | 0.51       | Vert(LL)       |      | 20-21 | >999  | 360 | MT20           | 197/144    |          |
| TCDL        |                        | 10.0                                                                                                                                                                 | Lumber DOL             | 1.15          |                                                                                                                                        | BC                                | 0.58       | Vert(CT)       |      | 20-21 | >963  | 240 |                |            |          |
| BCLL        |                        | 0.0*                                                                                                                                                                 | Rep Stress Incr        | YES           |                                                                                                                                        | WB                                | 0.95       | Horz(CT)       | 0.36 | 12    | n/a   | n/a |                |            |          |
| BCDL        |                        | 10.0                                                                                                                                                                 | Code                   | IRC2          | )18/TPI2014                                                                                                                            | Matrix-S                          |            | Wind(LL)       | 0.11 | 20-21 | >999  | 240 | Weight: 154 lb | FT = 10%   |          |
| LUMBER      |                        |                                                                                                                                                                      |                        |               |                                                                                                                                        | 7-16; Vult=115m                   |            |                |      |       |       |     |                |            |          |
| TOP CHORD   | 2x6 SP 24<br>No.2      | 400F 2.0E                                                                                                                                                            | *Except* 5-7:2x6 SP    | PF            | II; Exp C; En                                                                                                                          | h; TCDL=6.0psf;<br>iclosed; MWFRS | (envelop   | e); cantilever | left |       |       |     |                |            |          |
| BOT CHORD   |                        | 2x4 SPF No.2 *Except* 3-19,15-10:2x4 SPFand right exposed; end vertical left and right exposed;2100F 1.8E, 6-18,16-9:2x3 SPF No.2Lumber DOL=1.60 plate grip DOL=1.60 |                        |               |                                                                                                                                        |                                   |            |                |      |       |       |     |                |            |          |
| WEBS        | 2x3 SPF N<br>12-11:2x4 |                                                                                                                                                                      | ept* 23-2:2x6 SPF No   |               | <ul><li>3) All plates are 2x4 MT20 unless otherwise indicated.</li><li>4) This truss has been designed for a 10.0 psf bottom</li></ul> |                                   |            |                |      |       |       |     |                |            |          |
| BRACING     |                        |                                                                                                                                                                      |                        |               | chord live loa                                                                                                                         | ad nonconcurrent                  | t with any | other live loa | ads. |       |       |     |                |            |          |
| TOP CHORD   | Structural             | wood she                                                                                                                                                             | athing directly applie | ed or         |                                                                                                                                        | nas been designe                  |            |                | 0psf |       |       |     |                |            |          |
|             |                        |                                                                                                                                                                      | xcept end verticals.   | -             |                                                                                                                                        | m chord in all are                |            | 0              |      |       |       |     |                |            |          |
| BOT CHORD   |                        |                                                                                                                                                                      | applied or 10-0-0 or   | С             |                                                                                                                                        | by 2-00-00 wide way other members |            | ween the bott  | om   |       |       |     |                |            |          |
|             | bracing,               |                                                                                                                                                                      |                        |               |                                                                                                                                        | er(s) for truss to                |            | nections       |      |       |       |     |                |            |          |
|             | 6-0-0 oc b             | •                                                                                                                                                                    |                        |               |                                                                                                                                        | hanical connection                |            |                | to   |       |       |     |                |            |          |
|             | 10-0-0 oc              | •                                                                                                                                                                    |                        |               |                                                                                                                                        | e capable of with                 |            |                |      |       |       |     |                |            |          |
| REACTIONS   | (lb/size)              |                                                                                                                                                                      | Mechanical,            |               |                                                                                                                                        | uplift at joint 12.               |            | •              | ,    |       |       |     |                |            |          |
|             | Maryllada              | 23=1333/                                                                                                                                                             |                        |               | B) This truss is                                                                                                                       | designed in acco                  | ordance w  | ith the 2018   |      |       |       |     |                |            |          |
|             | Max Horiz              |                                                                                                                                                                      | ,                      |               |                                                                                                                                        | Residential Code                  |            |                | and  |       |       |     |                |            |          |
|             |                        |                                                                                                                                                                      | .C 9), 23=-27 (LC 8)   |               | R802.10.2 a                                                                                                                            | nd referenced sta                 | andard Al  | NSI/TPI 1.     |      |       |       |     |                |            |          |
| FORCES      | (ID) - Maxi<br>Tension |                                                                                                                                                                      | pression/Maximum       |               | LOAD CASE(S)                                                                                                                           | Standard                          |            |                |      |       |       |     |                |            |          |
| TOP CHORD   | 1-2=0/35,              | 2-3=-474/                                                                                                                                                            | 58, 3-4=-2578/49,      |               |                                                                                                                                        |                                   |            |                |      |       |       |     |                |            |          |
|             |                        |                                                                                                                                                                      | 1569/92, 7-8=-1728/    | /119,         |                                                                                                                                        |                                   |            |                |      |       |       |     |                |            |          |
|             | 8-9=-2647              |                                                                                                                                                                      |                        |               |                                                                                                                                        |                                   |            |                |      |       |       |     | 000            | TOL        |          |
|             | 10-11=-44              |                                                                                                                                                                      | 3=-1346/50,            |               |                                                                                                                                        |                                   |            |                |      |       |       |     | OF M           | Alson      |          |
| BOT CHORD   |                        |                                                                                                                                                                      | 4/2305, 20-21=-44/23   | 305           |                                                                                                                                        |                                   |            |                |      |       |       |     | THE OF M       | -0.0 M     |          |
| BOTCHORD    |                        |                                                                                                                                                                      | -19=0/113, 6-19=-46    |               |                                                                                                                                        |                                   |            |                |      |       |       | A   | NY accom       | New Y      | 6        |
|             |                        |                                                                                                                                                                      | -13/43, 15-16=0/17,    | <i>"</i> 110, |                                                                                                                                        |                                   |            |                |      |       |       | U   | SCOTT          |            | <u>۸</u> |
|             |                        | ,                                                                                                                                                                    | 15=0/2337,             |               |                                                                                                                                        |                                   |            |                |      |       |       | 8   | SEVI           | ER         | ۵        |
|             | 10-14=0/2              |                                                                                                                                                                      |                        |               |                                                                                                                                        |                                   |            |                |      |       |       | W/  |                | . 0 1 🗶    | 2        |
| WEBS        |                        |                                                                                                                                                                      | 0/61, 4-20=0/308,      |               |                                                                                                                                        |                                   |            |                |      |       |       |     | att -          | Some.      |          |
|             | 4-19=-984              |                                                                                                                                                                      |                        |               |                                                                                                                                        |                                   |            |                |      |       | -     | 11- | NUMI           | BER A      | a        |
|             |                        |                                                                                                                                                                      | 7=-910/119,            | 4000          |                                                                                                                                        |                                   |            |                |      |       |       | 127 | PE-20010       | 1175       | 1        |
|             | /-17=-108              | 3/484, 15-1                                                                                                                                                          | 17=0/1534, 17-19=0/    | 1229          |                                                                                                                                        |                                   |            |                |      |       |       | N   | PE-2001        | 128        | 6        |
| NOTES       |                        |                                                                                                                                                                      |                        |               |                                                                                                                                        |                                   |            |                |      |       |       | Y   | 1050           | G'A        |          |
| ,           |                        | oads have                                                                                                                                                            | been considered for    | r             |                                                                                                                                        |                                   |            |                |      |       |       |     | CSSIONA        | LETA       |          |
| this desigr | 1.                     |                                                                                                                                                                      |                        |               |                                                                                                                                        |                                   |            |                |      |       |       |     | 1000           | The second |          |
|             |                        |                                                                                                                                                                      |                        |               |                                                                                                                                        |                                   |            |                |      |       |       |     |                | 07 0000    |          |

Scale = 1:66.2


Loading

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



January 27,2022

| Job     | Truss | Truss Type   | Qty | Ply | Lot 121 MN               |           |
|---------|-------|--------------|-----|-----|--------------------------|-----------|
| B220017 | E8    | Roof Special | 1   | 1   | Job Reference (optional) | 149887780 |



15-7-8

0-2-8

2-0-0

21-0-6

3-4-14

|                       | 2-8-4 <sub>0-1-4</sub> 4-8-2 5-4-6                                     | 0-1-4 ( |
|-----------------------|------------------------------------------------------------------------|---------|
| Scale = 1:69.1        |                                                                        | 2-5-12  |
| Plate Offsets (X, Y): | [3:0-3-6,0-0-8], [15:0-5-0,0-2-8], [16:0-2-12,0-2-0], [22:0-5-9,0-1-8] |         |

<u>2-8-4</u>2-9-8

7-5-10

4-8-2

| Loading     | (psf) | Spacing         | 2-0-0           | CSI      |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES         | GRIP     |
|-------------|-------|-----------------|-----------------|----------|------|----------|-------|-------|--------|-----|----------------|----------|
| TCLL (roof) | 25.0  | Plate Grip DOL  | 1.15            | TC       | 0.64 | Vert(LL) | -0.17 | 19-20 | >999   | 360 | MT20           | 197/144  |
| TCDL        | 10.0  | Lumber DOL      | 1.15            | BC       | 0.66 | Vert(CT) | -0.29 | 19-20 | >648   | 240 |                |          |
| BCLL        | 0.0*  | Rep Stress Incr | YES             | WB       | 0.86 | Horz(CT) | 0.16  | 15    | n/a    | n/a |                |          |
| BCDL        | 10.0  | Code            | IRC2018/TPI2014 | Matrix-S |      | Wind(LL) | 0.16  | 19-20 | >999   | 240 | Weight: 114 lb | FT = 10% |

12-11-4

12-10-0

5-4-6

| LUMBER    |                                                          |                   | 1)   |
|-----------|----------------------------------------------------------|-------------------|------|
| TOP CHORD |                                                          |                   | 0    |
| BOT CHORD |                                                          | -21,17-15:2x4 SPF | 2)   |
|           | 2100F 1.8E                                               |                   |      |
| WEBS      | 2x3 SPF No.2 *Except* 22-                                | -2:2x4 SPF No.2   |      |
| BRACING   |                                                          |                   |      |
| TOP CHORD | Structural wood sheathing<br>6-0-0 oc purlins, except er |                   | 3)   |
| BOT CHORD | Rigid ceiling directly applie                            | d or 6-0-0 oc     | 4)   |
|           | bracing, Except:                                         |                   | 4)   |
|           | 10-0-0 oc bracing: 21-22,1                               | 5-17.             |      |
| WEBS      | 1 Row at midpt 7-15, 0                                   | 6-16              | 2    |
| REACTIONS | (lb/size) 11=105/ Mechar                                 | nical,            | 5)   |
|           | 15=2086/0-3-8,                                           | 22=400/0-3-8      | 6)   |
|           | Max Horiz 22=126 (LC 5)                                  |                   | 0, 1 |
|           | Max Uplift 11=-122 (LC 21)<br>22=-48 (LC 8)              | , 15=-295 (LC 8), | j    |
|           | Max Grav 11=272 (LC 22),<br>22=470 (LC 23)               | 15=2304 (LC 2),   | 7)   |
| FORCES    | (lb) - Maximum Compressi                                 | on/Maximum        |      |
|           | Tension                                                  |                   | LOA  |
| TOP CHORD | 1-2=0/32, 2-3=-210/112, 3-                               | -4=-381/136,      | LOA  |
|           | 4-6=-450/174, 6-7=-133/10                                | 076,              |      |
|           | 7-8=-181/1139, 8-9=-226/6                                | 58,               |      |
|           | 9-10=-698/420, 10-11=-26                                 | 0/132,            |      |
|           | 2-22=-472/91                                             |                   |      |
| BOT CHORD | 21-22=0/0, 3-20=-88/292,                                 |                   |      |
|           | 18-19=-673/214, 16-18=-6                                 | , , ,             |      |
|           | 14-15=-352/18, 14-16=-38                                 |                   |      |
|           | 13-14=-566/255, 12-13=-3                                 | 62/583,           |      |
|           | 11-12=-24/42                                             |                   |      |
| WEBS      | 20-21=-12/80, 17-18=0/34,                                |                   |      |
|           | 6-19=-337/1198, 15-16=-2                                 |                   |      |
|           | 7-16=-332/156, 8-13=0/229                                |                   |      |
|           | 9-12=0/207, 10-12=-340/58                                | ,                 |      |
|           | 6-16=-1422/334, 8-16=-60                                 | 0/204             |      |

Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

\* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Refer to girder(s) for truss to truss connections.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 122 lb uplift at joint 11, 48 lb uplift at joint 22 and 295 lb uplift at joint 15.

This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

AD CASE(S) Standard



27-11-6

1-8-14

0-3-8

26-2-8

5-2-2

NOTES



| Job     | Truss | Truss Type   | Qty | Ply | Lot 121 MN               |           |
|---------|-------|--------------|-----|-----|--------------------------|-----------|
| B220017 | E9    | Roof Special | 1   | 1   | Job Reference (optional) | 149887781 |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:05 ID:VW78Vr4IUH8xIb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

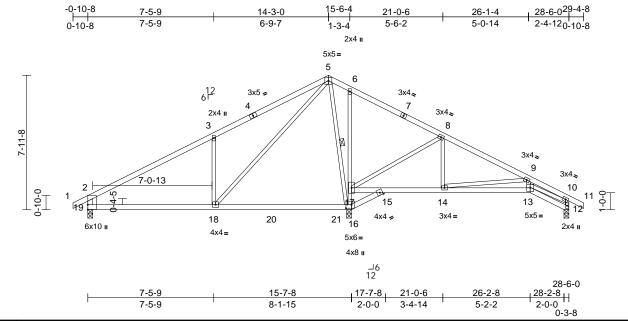
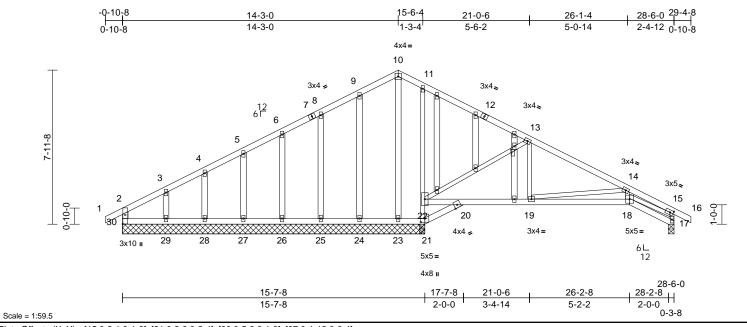



Plate Offsets (X, Y): [16:0-4-0,0-2-8]

Scale = 1:68.2

| (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                              | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.58<br>0.56<br>0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Wind(LL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.32<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16-18<br>12                                            | l/defl<br>>927<br>>580<br>n/a<br>>999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L/d<br>360<br>240<br>n/a<br>240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PLATES<br>MT20<br>Weight: 112 lb                                  | <b>GRIP</b><br>197/144<br>FT = 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.8E<br>Structural wood she:<br>5-4-12 oc purlins, e:<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(Ib/size) 12=462/0-<br>19=619/0-<br>Max Horiz 19=122 (L<br>Max Uplift 12=-141 (I<br>19=-161 (I<br>Max Grav 12=488 (L<br>19=669 (L | athing directly applie<br>ccept end verticals.<br>applied or 6-0-0 oc<br>5-16<br>3-8, 16=1602/0-3-8,<br>3-8<br>C 7)<br>LC 9), 16=-70 (LC 9<br>LC 8)<br>C 22), 16=1764 (LC<br>C 22),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100F<br>3)<br>ed or 4)<br>, 5)<br>, 6)<br>; 2),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vasd=91mph<br>II; Exp C; En<br>cantilever lef<br>right exposed<br>This truss ha<br>chord live loa<br>* This truss f<br>on the bottor<br>3-06-00 tall b<br>chord and ar<br>Bearing at jo<br>using ANSI/7<br>designer sho<br>Provide mec<br>bearing plate<br>joint 12, 161<br>16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n; TCDL=6.0psf;<br>closed; MWFRS<br>t and right exposs<br>d; Lumber DOL=<br>s been designed<br>ad nonconcurrent<br>has been designed<br>n chord in all are<br>y 2-00-00 wide<br>yo other members<br>int(s) 12 conside<br>TPI 1 angle to gra<br>uld verify capaci<br>hanical connection<br>capable of withs<br>Ib uplift at joint 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BCDL=6.(<br>(envelope<br>ed; end v<br>1.60 plate<br>f or a 10.0<br>t with any<br>ed for a liv<br>as where<br>will fit betv<br>s, with BC<br>rs parallel<br>ain formula<br>ty of bear<br>on (by oth<br>standing 1<br>9 and 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dpsf; $h=25ft$ ;<br>e) exterior zc<br>rertical left ar<br>grip DOL=1<br>0 psf bottom<br>other live loa<br>e load of 20.<br>a rectangle<br>veen the bott<br>DL = 10.0ps<br>to grain valt<br>a. Building<br>ng surface.<br>ers) of truss<br>41 lb uplift at joi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nne;<br>.60<br>ads.<br>Opsf<br>rom<br>rf.<br>ue<br>to<br>t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Tension R802.10.2 and referenced standard ANSI/TPI 1.                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5-6=0/454, 6-8=0/49<br>9-10=-1179/350, 10-                                                                                                                                                                                                         | 5, 8-9=-344/181,<br>11=0/31,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AD CASE(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2000                                                              | and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 15-16=-468/119, 15-                                                                                                                                                                                                                                | 17=-165/552,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SCOT                                                              | M. YEY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5-16=-917/70, 8-17=<br>9-14=-741/232, 9-13<br>10-13=-273/987, 16-<br>6-17=-320/157                                                                                                                                                                 | -598/177, 8-14=0/22<br>=-10/326,<br>17=-578/227,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cotto                                                             | 18807 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                    | 25.0<br>10.0<br>0.0*<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2<br>10.2 | 25.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0 | 25.0<br>Plate Grip DOL 1.15<br>Lumber DOL 1.15<br>Rep Stress Incr YES<br>Code IRC2018<br>2)<br>2 2x4 SPF No.2<br>2x4 SPF No.2<br>2x3 SPF No.2 *Except* 19-2:2x4 SPF 2100F<br>1.8E<br>3)<br>3)<br>5 Structural wood sheathing directly applied or<br>5-4-12 oc purlins, except end verticals.<br>4)<br>3)<br>5 Structural wood sheathing directly applied or<br>5-4-12 oc purlins, except end verticals.<br>1 Row at midpt 5-16<br>5)<br>1 Row at midpt 5-16<br>5)<br>1 Row at midpt 5-16<br>5)<br>(lb/size) 12=462/0-3-8, 16=1602/0-3-8,<br>19=619/0-3-8<br>Max Horiz 19=122 (LC 7)<br>Max Uplift 12=-141 (LC 9), 16=-70 (LC 9),<br>19=-669 (LC 21)<br>7)<br>(lb) - Maximum Compression/Maximum<br>Tension<br>1 -2=0/32, 2-3=-733/204, 3-5=-739/377,<br>5-6=0/454, 6-8=0/495, 8-9=-344/181,<br>9-10=-1179/350, 10-11=0/31,<br>10-12=-477/150, 2-19=-603/202<br>18-19=-197/554, 16-18=-226/124,<br>15-16==468/119, 15-17=-165/552,<br>14-15=-49/250, 13-14=-279/981,<br>12-13=-13/73<br>3-18=-533/307, 5-18=-275/1022,<br>5-16=-917/70, 8-17=-598/177, 8-14=0/228,<br>9-14=-741/232, 9-13=-10/326,<br>10-13=-273/987, 16-17=-578/227,<br>6-17=-320/157<br>ced roof live loads have been considered for | 25.0<br>10.0Plate Grip DOL<br>Lumber DOL<br>1.15<br>Rep Stress Incr<br>VES<br>Code1.15<br>RE2018/TPI20142 $0.0^*$<br>1.00CodeIRC2018/TPI20142 $2x4$ SPF No.2<br>2x4 SPF No.2<br>2x3 SPF No.2 *Except* 19-2:2x4 SPF 2100F<br>1.8E2)Wind: ASCE<br>Vasd=91mpt<br>II; Exp C; En<br>cantilever lef<br>right exposed<br>3-66-00 tall b<br>chord and ar<br>5-4-12 oc purlins, except end verticals.<br>02)Wind: ASCE<br>Vasd=91mpt<br>II; Exp C; En<br>cantilever lef<br>right exposed<br>3-66-00 tall b<br>chord and ar<br>5-66-00 tall b<br>chord and ar<br>5)2)Wind: ASCE<br>Vasd=91mpt<br>II; Exp C; En<br>cantilever lef<br>right exposed<br>3-66-00 tall b<br>chord and ar<br>5)2)Wind: ASCE<br>Vasd=91mpt<br>II; Exp C; En<br>cantilever lef<br>right exposed<br>3-06-00 tall b<br>chord and ar<br>5)2)1Row at midpt<br>12=462/0-3-8,<br>19=619/0-3-85)Bearing at jo<br>using ANSI/T<br>designer sho<br>6)3-06-00 tall b<br>chord and ar<br>5)5)Bearing 19=122 (LC 7)<br>Max Uplift 12=-141 (LC 9), 16=-70 (LC 9),<br>19=-669 (LC 21)6)Provide med<br>bearing plate<br>joint 12, 161<br>16.101-2=0/32, 2-3=-733/204, 3-5=-739/377,<br>5-6=0/454, 6-8=0/495, 8-9=-344/181,<br>9-10=-1179/350, 10-11=0/31,<br>10-12=-477/150, 2-19=-603/2027)This truss is international<br>R802.10.2 ar<br>LOAD CASE(S)101-2=-0/32, 2-3=-733/204, 3-5=-739/377,<br>5-6=-917/70, 8-17=-598/177, 8-14=0/228,<br>9-14=-741/232, 9-13=-10/326,<br>10-13=-273/987, 16-17=-578/227,<br>6-17=-320/1571011101-2=-73/987, 16-17=-578/227,<br>6-17=-320/1572)1110101-17=-578/227,<br>6-17=-320/157 <tr <="" td=""><td><math display="block">\begin{array}{c c c c c c c c c c c c c c c c c c c </math></td><td>25.0         Plate Grip DOL         1.15         TC         0.58           10.0         Lumber DOL         1.15         BC         0.56           0.0.*         Rep Stress Incr         YES         WB         0.71           10.0         Code         IRC2018/TPI2014         Matrix-S           2         Wind: ASCE 7-16; Vult=115mph (3-sec<br/>Vasd=91mph; TCL=6.0psf; BCDL=6.0         (Vasd=91mph; TCL=6.0psf; BCDL=6.0           2.x4 SPF No.2         2xx SPF No.2 *Except* 19-2:2x4 SPF 2100F         (Vasd=91mph; TCL=6.0psf; BCDL=6.0           1.8E         2)         Wind: ASCE 7-16; Vult=115mph (3-sec<br/>Vasd=91mph; TCL=6.0psf; BCDL=6.0           2.x4 SPF No.2         2x4 SPF No.2         2x4 SPF No.2           2.x3 SPF No.2 *Except* 19-2:2x4 SPF 2100F         1.8E         20           1.8E         Structural wood sheathing directly applied or<br/>5-4-12 oc purlins, except end verticals.         71           9         Rigid ceiling directly applied or 6-0-0 oc<br/>bracing.         1.15         11           19=619(LC 8)         12=462/0-3.8, 16=1602/0-3-8, 16=1602/0-3-8, 19=616(LC 2), 19=669(LC 21)         13         14           19=161 (LC 8)         19=-669(LC 21)         14         14         14           1.2=0/32, 2-3=-733/204, 3-5=-739/377, 5-6=0/454, 6-8=0/495, 8-9=-344/181, 9-10-179/350, 10-11=0/31, 10-12=-47/150, 2-19=-603/202         18</td><td><math display="block">\begin{array}{c c c c c c c c c c c c c c c c c c c </math></td><td><math display="block">\begin{array}{c c c c c c c c c c c c c c c c c c c </math></td><td>25.0<br/>10.0         Plate Grip DOL<br/>Lumber DOL<br/>1.15         1.15<br/>Emp Stress Incr<br/>YES         TC<br/>BC         0.58<br/>0.71         Vert(LL)         -0.20<br/>0.20         16-16<br/>16-18           2x4 SPF No.2         2x4 SPF No.2         2x3 SPF No.2         2x4 SPF No.2<!--</td--><td>25.0<br/>10.0         Plate Grip DOL<br/>Lumber DOL<br/>1.15         TC         0.58<br/>BC         Vert(LL)         -0.20         16.16         &gt;927           0.0         Rep Stress incr         YES         WB         0.71         Horz(CT)         0.02         16.18         &gt;929           0.0         Rep Stress incr         Code         IRC2018/TPI2014         Matrix-S         Wind(LL)         0.05         13.14         &gt;999           0.2x4 SPF No.2         2x4 SPF No.2         2x4 SPF No.2         2x4 SPF No.2         2x4 SPF No.2         20         Vind: ASCE 7-16; Vulle-115mph (3-second gust)           1.8E         2.9         Vind: ASCE 7-16; Vulle-115mph (3-second gust)         Vasd-91 mpi, TDL=6, 0pt; BCDL=6, 0pt; h=25f; Cat.         1; Exp C; Enclosed; MWFRS (envelope) exterior zone;<br/>canlilever left and right exposed; end vertical left and<br/>right exposed; (LD) pst bottom         16 mononcurrent with any other live loads.         4           1.8E         2.0         Vind: ASCE 7-16; Vulle-115mph (3-second gust)         4         4         16 mononcurrent with any other live loads.         4           1.8E         2.0         Code dust with second gust)         4         4         16 mononcurrent with any other live loads.         4         * This truss has been designed for a 10.0 pst bottom<br/>chord and any other members, with BCDL = 10.0 pst.         5         5         5         5</td><td>25.0<br/>10.0<br/>10.0<br/>10.0<br/>10.0<br/>10.0<br/>10.0<br/>10.0<br/>1</td><td>25.0<br/>10.0         Piate Grip DOL<br/>(mode)         1.15<br/>1.15         TC         0.68<br/>WB         Vert(CT)<br/>Vert(CT)         -0.20<br/>-0.32         16-18<br/>16-18         &gt;227         360<br/>16-18         Marzo           10.0         Code         IRC2018/TPI2014         WB         0.71         Horz(CT)         0.02         12-16-18         &gt;290         240         Weight: 112 lb           2x4 SPF No.2         2x4</td></td></tr> | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25.0         Plate Grip DOL         1.15         TC         0.58           10.0         Lumber DOL         1.15         BC         0.56           0.0.*         Rep Stress Incr         YES         WB         0.71           10.0         Code         IRC2018/TPI2014         Matrix-S           2         Wind: ASCE 7-16; Vult=115mph (3-sec<br>Vasd=91mph; TCL=6.0psf; BCDL=6.0         (Vasd=91mph; TCL=6.0psf; BCDL=6.0           2.x4 SPF No.2         2xx SPF No.2 *Except* 19-2:2x4 SPF 2100F         (Vasd=91mph; TCL=6.0psf; BCDL=6.0           1.8E         2)         Wind: ASCE 7-16; Vult=115mph (3-sec<br>Vasd=91mph; TCL=6.0psf; BCDL=6.0           2.x4 SPF No.2         2x4 SPF No.2         2x4 SPF No.2           2.x3 SPF No.2 *Except* 19-2:2x4 SPF 2100F         1.8E         20           1.8E         Structural wood sheathing directly applied or<br>5-4-12 oc purlins, except end verticals.         71           9         Rigid ceiling directly applied or 6-0-0 oc<br>bracing.         1.15         11           19=619(LC 8)         12=462/0-3.8, 16=1602/0-3-8, 16=1602/0-3-8, 19=616(LC 2), 19=669(LC 21)         13         14           19=161 (LC 8)         19=-669(LC 21)         14         14         14           1.2=0/32, 2-3=-733/204, 3-5=-739/377, 5-6=0/454, 6-8=0/495, 8-9=-344/181, 9-10-179/350, 10-11=0/31, 10-12=-47/150, 2-19=-603/202         18 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | 25.0<br>10.0         Plate Grip DOL<br>Lumber DOL<br>1.15         1.15<br>Emp Stress Incr<br>YES         TC<br>BC         0.58<br>0.71         Vert(LL)         -0.20<br>0.20         16-16<br>16-18           2x4 SPF No.2         2x4 SPF No.2         2x3 SPF No.2         2x4 SPF No.2 </td <td>25.0<br/>10.0         Plate Grip DOL<br/>Lumber DOL<br/>1.15         TC         0.58<br/>BC         Vert(LL)         -0.20         16.16         &gt;927           0.0         Rep Stress incr         YES         WB         0.71         Horz(CT)         0.02         16.18         &gt;929           0.0         Rep Stress incr         Code         IRC2018/TPI2014         Matrix-S         Wind(LL)         0.05         13.14         &gt;999           0.2x4 SPF No.2         2x4 SPF No.2         2x4 SPF No.2         2x4 SPF No.2         2x4 SPF No.2         20         Vind: ASCE 7-16; Vulle-115mph (3-second gust)           1.8E         2.9         Vind: ASCE 7-16; Vulle-115mph (3-second gust)         Vasd-91 mpi, TDL=6, 0pt; BCDL=6, 0pt; h=25f; Cat.         1; Exp C; Enclosed; MWFRS (envelope) exterior zone;<br/>canlilever left and right exposed; end vertical left and<br/>right exposed; (LD) pst bottom         16 mononcurrent with any other live loads.         4           1.8E         2.0         Vind: ASCE 7-16; Vulle-115mph (3-second gust)         4         4         16 mononcurrent with any other live loads.         4           1.8E         2.0         Code dust with second gust)         4         4         16 mononcurrent with any other live loads.         4         * This truss has been designed for a 10.0 pst bottom<br/>chord and any other members, with BCDL = 10.0 pst.         5         5         5         5</td> <td>25.0<br/>10.0<br/>10.0<br/>10.0<br/>10.0<br/>10.0<br/>10.0<br/>10.0<br/>1</td> <td>25.0<br/>10.0         Piate Grip DOL<br/>(mode)         1.15<br/>1.15         TC         0.68<br/>WB         Vert(CT)<br/>Vert(CT)         -0.20<br/>-0.32         16-18<br/>16-18         &gt;227         360<br/>16-18         Marzo           10.0         Code         IRC2018/TPI2014         WB         0.71         Horz(CT)         0.02         12-16-18         &gt;290         240         Weight: 112 lb           2x4 SPF No.2         2x4</td> | 25.0<br>10.0         Plate Grip DOL<br>Lumber DOL<br>1.15         TC         0.58<br>BC         Vert(LL)         -0.20         16.16         >927           0.0         Rep Stress incr         YES         WB         0.71         Horz(CT)         0.02         16.18         >929           0.0         Rep Stress incr         Code         IRC2018/TPI2014         Matrix-S         Wind(LL)         0.05         13.14         >999           0.2x4 SPF No.2         2x4 SPF No.2         2x4 SPF No.2         2x4 SPF No.2         2x4 SPF No.2         20         Vind: ASCE 7-16; Vulle-115mph (3-second gust)           1.8E         2.9         Vind: ASCE 7-16; Vulle-115mph (3-second gust)         Vasd-91 mpi, TDL=6, 0pt; BCDL=6, 0pt; h=25f; Cat.         1; Exp C; Enclosed; MWFRS (envelope) exterior zone;<br>canlilever left and right exposed; end vertical left and<br>right exposed; (LD) pst bottom         16 mononcurrent with any other live loads.         4           1.8E         2.0         Vind: ASCE 7-16; Vulle-115mph (3-second gust)         4         4         16 mononcurrent with any other live loads.         4           1.8E         2.0         Code dust with second gust)         4         4         16 mononcurrent with any other live loads.         4         * This truss has been designed for a 10.0 pst bottom<br>chord and any other members, with BCDL = 10.0 pst.         5         5         5         5 | 25.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>1 | 25.0<br>10.0         Piate Grip DOL<br>(mode)         1.15<br>1.15         TC         0.68<br>WB         Vert(CT)<br>Vert(CT)         -0.20<br>-0.32         16-18<br>16-18         >227         360<br>16-18         Marzo           10.0         Code         IRC2018/TPI2014         WB         0.71         Horz(CT)         0.02         12-16-18         >290         240         Weight: 112 lb           2x4 SPF No.2         2x4 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                             | 25.0         Plate Grip DOL         1.15         TC         0.58           10.0         Lumber DOL         1.15         BC         0.56           0.0.*         Rep Stress Incr         YES         WB         0.71           10.0         Code         IRC2018/TPI2014         Matrix-S           2         Wind: ASCE 7-16; Vult=115mph (3-sec<br>Vasd=91mph; TCL=6.0psf; BCDL=6.0         (Vasd=91mph; TCL=6.0psf; BCDL=6.0           2.x4 SPF No.2         2xx SPF No.2 *Except* 19-2:2x4 SPF 2100F         (Vasd=91mph; TCL=6.0psf; BCDL=6.0           1.8E         2)         Wind: ASCE 7-16; Vult=115mph (3-sec<br>Vasd=91mph; TCL=6.0psf; BCDL=6.0           2.x4 SPF No.2         2x4 SPF No.2         2x4 SPF No.2           2.x3 SPF No.2 *Except* 19-2:2x4 SPF 2100F         1.8E         20           1.8E         Structural wood sheathing directly applied or<br>5-4-12 oc purlins, except end verticals.         71           9         Rigid ceiling directly applied or 6-0-0 oc<br>bracing.         1.15         11           19=619(LC 8)         12=462/0-3.8, 16=1602/0-3-8, 16=1602/0-3-8, 19=616(LC 2), 19=669(LC 21)         13         14           19=161 (LC 8)         19=-669(LC 21)         14         14         14           1.2=0/32, 2-3=-733/204, 3-5=-739/377, 5-6=0/454, 6-8=0/495, 8-9=-344/181, 9-10-179/350, 10-11=0/31, 10-12=-47/150, 2-19=-603/202         18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.0<br>10.0         Plate Grip DOL<br>Lumber DOL<br>1.15         1.15<br>Emp Stress Incr<br>YES         TC<br>BC         0.58<br>0.71         Vert(LL)         -0.20<br>0.20         16-16<br>16-18           2x4 SPF No.2         2x4 SPF No.2         2x3 SPF No.2         2x4 SPF No.2 </td <td>25.0<br/>10.0         Plate Grip DOL<br/>Lumber DOL<br/>1.15         TC         0.58<br/>BC         Vert(LL)         -0.20         16.16         &gt;927           0.0         Rep Stress incr         YES         WB         0.71         Horz(CT)         0.02         16.18         &gt;929           0.0         Rep Stress incr         Code         IRC2018/TPI2014         Matrix-S         Wind(LL)         0.05         13.14         &gt;999           0.2x4 SPF No.2         2x4 SPF No.2         2x4 SPF No.2         2x4 SPF No.2         2x4 SPF No.2         20         Vind: ASCE 7-16; Vulle-115mph (3-second gust)           1.8E         2.9         Vind: ASCE 7-16; Vulle-115mph (3-second gust)         Vasd-91 mpi, TDL=6, 0pt; BCDL=6, 0pt; h=25f; Cat.         1; Exp C; Enclosed; MWFRS (envelope) exterior zone;<br/>canlilever left and right exposed; end vertical left and<br/>right exposed; (LD) pst bottom         16 mononcurrent with any other live loads.         4           1.8E         2.0         Vind: ASCE 7-16; Vulle-115mph (3-second gust)         4         4         16 mononcurrent with any other live loads.         4           1.8E         2.0         Code dust with second gust)         4         4         16 mononcurrent with any other live loads.         4         * This truss has been designed for a 10.0 pst bottom<br/>chord and any other members, with BCDL = 10.0 pst.         5         5         5         5</td> <td>25.0<br/>10.0<br/>10.0<br/>10.0<br/>10.0<br/>10.0<br/>10.0<br/>10.0<br/>1</td> <td>25.0<br/>10.0         Piate Grip DOL<br/>(mode)         1.15<br/>1.15         TC         0.68<br/>WB         Vert(CT)<br/>Vert(CT)         -0.20<br/>-0.32         16-18<br/>16-18         &gt;227         360<br/>16-18         Marzo           10.0         Code         IRC2018/TPI2014         WB         0.71         Horz(CT)         0.02         12-16-18         &gt;290         240         Weight: 112 lb           2x4 SPF No.2         2x4</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25.0<br>10.0         Plate Grip DOL<br>Lumber DOL<br>1.15         TC         0.58<br>BC         Vert(LL)         -0.20         16.16         >927           0.0         Rep Stress incr         YES         WB         0.71         Horz(CT)         0.02         16.18         >929           0.0         Rep Stress incr         Code         IRC2018/TPI2014         Matrix-S         Wind(LL)         0.05         13.14         >999           0.2x4 SPF No.2         2x4 SPF No.2         2x4 SPF No.2         2x4 SPF No.2         2x4 SPF No.2         20         Vind: ASCE 7-16; Vulle-115mph (3-second gust)           1.8E         2.9         Vind: ASCE 7-16; Vulle-115mph (3-second gust)         Vasd-91 mpi, TDL=6, 0pt; BCDL=6, 0pt; h=25f; Cat.         1; Exp C; Enclosed; MWFRS (envelope) exterior zone;<br>canlilever left and right exposed; end vertical left and<br>right exposed; (LD) pst bottom         16 mononcurrent with any other live loads.         4           1.8E         2.0         Vind: ASCE 7-16; Vulle-115mph (3-second gust)         4         4         16 mononcurrent with any other live loads.         4           1.8E         2.0         Code dust with second gust)         4         4         16 mononcurrent with any other live loads.         4         * This truss has been designed for a 10.0 pst bottom<br>chord and any other members, with BCDL = 10.0 pst.         5         5         5         5 | 25.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>10.0<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.0<br>10.0         Piate Grip DOL<br>(mode)         1.15<br>1.15         TC         0.68<br>WB         Vert(CT)<br>Vert(CT)         -0.20<br>-0.32         16-18<br>16-18         >227         360<br>16-18         Marzo           10.0         Code         IRC2018/TPI2014         WB         0.71         Horz(CT)         0.02         12-16-18         >290         240         Weight: 112 lb           2x4 SPF No.2         2x4 |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



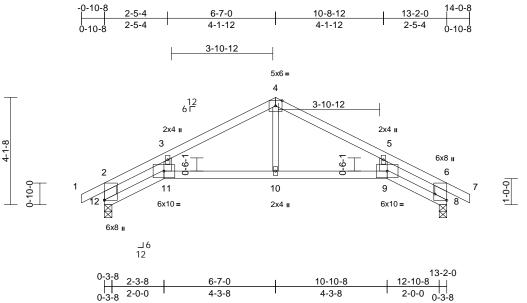
January 27,2022

| Job     | Truss | Truss Type | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------|-----|-----|--------------------------|-----------|
| B220017 | E10   | GABLE      | 1   | 1   | Job Reference (optional) | 149887782 |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:05 ID:VW78Vr4IUH8xIb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



#### Plate Offsets (X, Y): [15:0-2-1,0-1-8], [21:0-2-8,0-2-4], [30:0-5-9,0-1-8], [37:0-1-12,0-0-4]


| Loading                                                                                                                     | (psf)                                                                                                                                                                                                                                                                                                                                                                               | Spacing                                                                                        | 2-0-0                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                       | csi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                  | DEFL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in                                                                                                        | (loc)                                                | l/defl                                                                                             | L/d                                                                                                          | PLATES                                                                                                                                          | GRIP        |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| TCLL (roof)                                                                                                                 | 25.0                                                                                                                                                                                                                                                                                                                                                                                | Plate Grip DOL                                                                                 | 1.15                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                       | TC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.39                                                                                                                                                                                                                                                                                                                                                             | Vert(LL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.05                                                                                                     | 18-19                                                | >999                                                                                               | 360                                                                                                          | MT20                                                                                                                                            | 197/144     |
| TCDL                                                                                                                        | 10.0                                                                                                                                                                                                                                                                                                                                                                                | Lumber DOL                                                                                     | 1.15                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                       | BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.39                                                                                                                                                                                                                                                                                                                                                             | Vert(CT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0.11                                                                                                     | 18-19                                                | >999                                                                                               | 240                                                                                                          |                                                                                                                                                 |             |
| BCLL                                                                                                                        | 0.0*                                                                                                                                                                                                                                                                                                                                                                                | Rep Stress Incr                                                                                | YES                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                       | WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.75                                                                                                                                                                                                                                                                                                                                                             | Horz(CT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.03                                                                                                      | 17                                                   | n/a                                                                                                | n/a                                                                                                          |                                                                                                                                                 |             |
| BCDL                                                                                                                        | 10.0                                                                                                                                                                                                                                                                                                                                                                                | Code                                                                                           | IRC201                                                                                                                                                        | 18/TPI2014                                                                                                                                                                                                                                                                                                                                                            | Matrix-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                  | Wind(LL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                      | 18-19                                                | >999                                                                                               | 240                                                                                                          | Weight: 142 lb                                                                                                                                  | FT = 10%    |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS<br>FORCES<br>TOP CHORD | 2x4 SPF No.2<br>2x3 SPF No.2 *Exce<br>2x4 SPF No.2<br>Structural wood she<br>5-2-15 oc purlins, e<br>Rigid ceiling directly<br>bracing, Except:<br>10-0-0 oc bracing: 1<br>(Ib/size) 17=510/0<br>23=280/1<br>25=177/1<br>27=187/1<br>29=288/1<br>Max Horiz 30=122 (I<br>Max Uplift 17=-131 (<br>26=-52 (L<br>28=-40 (L<br>30=-138 (<br>Max Grav 17=510 (I<br>25=177 (I<br>27=187 (I | athing directly applie<br>xcept end verticals.<br>applied or 6-0-0 oc<br>9-20,18-19,17-18.<br> | b.2<br>d or V<br>3, <b>N</b><br>3, <b>1</b><br>3, 1<br>2), 2<br>3), 3<br>2), 3<br>2), 3<br>2), 4<br>3, 4<br>3, 4<br>3, 4<br>3, 4<br>3, 4<br>3, 4<br>3, 4<br>3 | VEBS<br>IOTES<br>) Unbalanced<br>this design.<br>) Wind: ASCE<br>Vasd=91mp<br>II; Exp C; Er<br>cantilever le<br>right expose<br>) Truss design<br>only. For st<br>see Standar<br>or consult q<br>) All plates ar<br>) Truss to be<br>braced agai<br>) Gable studs<br>) This truss h<br>chord live lo<br>3-06-00 tall<br>chord and a<br>) Bearing at jo<br>using ANSI/ | 29-30=-230/120, 2<br>27-28=-230/120, 2<br>25-26=-230/120, 2<br>23-24=-230/120, 2<br>20-21=-311/139, 2<br>19-20=-28/304, 11<br>17-18=-11/71<br>21-22=-635/236, 1<br>3-22=-623/170, 1<br>4-19=-742/229, 1<br>5-18=-246/1042, 9<br>-24=-159/74, 8-2<br>5-27=-143/80, 4-2<br>1 roof live loads hat<br>5-716; Vult=115m<br>th; TCDL=6.0psf; B<br>th; TCDL=6.0psf; B th; TCDL=6.0ps | 26-27=-2:<br>24-25=-2:<br>21-23=-2:<br>20-22=-1!<br>8-19=-25(<br>11-22=-3:<br>13-19=0/2<br>14-18=-6/<br>10-23=-2:<br>25=-137/8<br>8==132/7<br>ve been of<br>ph (3-sec<br>3CDL=6.(<br>(envelope<br>ed; end v<br>1.60 plate<br>in the plate<br>so therwi<br>n one fac<br>ext (i.e. do<br>c.<br>for a 10.(<br>with any<br>d for a liv<br>s s parallel<br>in formula | 30/120,<br>30/121,<br>30/121,<br>58/588,<br>J/1039,<br>45/173,<br>266,<br>244/0,<br>11, 6-26=-140<br>(0, 3-29=-195)<br>considered for<br>considered | 9/109<br>or<br>Cat.<br>ne;<br>nd<br>.60<br>uss<br>.9),<br>uble,<br>PI 1.<br>/<br>).<br>ads.<br>0psf<br>om | bea<br>join<br>48<br>at ju<br>and<br>11) Thi<br>Inte | t 17, 13<br>t 17, 13<br>b uplift a<br>pint 26, s<br>104 lb<br>s truss is<br>ernationa<br>02.10.2 a | te capa<br>3 lb upi<br>58 lb up<br>58 lb up<br>58 lb up<br>plift a<br>d Resic<br>and ref<br>and ref<br>) Sta | able of withstandii<br>lift at joint 30, 215<br>24, 58 lb uplift at<br>plift at joint 27, 40<br>Jential Code sect<br>erenced standard<br>indard | ANSI/TPI 1. |

January 27,2022



| Job     | Truss | Truss Type   |   | Ply | Lot 121 MN               |           |  |  |  |
|---------|-------|--------------|---|-----|--------------------------|-----------|--|--|--|
| B220017 | G1    | Roof Special | 1 | 1   | Job Reference (optional) | 149887783 |  |  |  |

#### Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:06 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f





#### Scale = 1:44.3

## Plate Offsets (X, Y): [6:Edge,0-5-8]

| -            |                                             |                           |           |               |                    |            |                  |       |       |        |       |               |          |
|--------------|---------------------------------------------|---------------------------|-----------|---------------|--------------------|------------|------------------|-------|-------|--------|-------|---------------|----------|
| Loading      | (psf)                                       | Spacing                   | 2-0-0     |               | CSI                |            | DEFL             | in    | (loc) | l/defl | L/d   | PLATES        | GRIP     |
| TCLL (roof)  | 25.0                                        | Plate Grip DOL            | 1.15      |               | тс                 | 0.71       | Vert(LL)         | -0.15 | 9-10  | >999   | 360   | MT20          | 197/144  |
| TCDL         | 10.0                                        | Lumber DOL                | 1.15      |               | BC                 | 0.59       | Vert(CT)         | -0.27 | 9-10  | >571   | 240   |               |          |
| BCLL         | 0.0*                                        | Rep Stress Incr           | YES       |               | WB                 | 0.09       | Horz(CT)         | 0.27  | 8     | n/a    | n/a   |               |          |
| BCDL         | 10.0                                        | Code                      | IRC2018/  | TPI2014       | Matrix-R           |            | Wind(LL)         | 0.14  | 10-11 | >999   | 240   | Weight: 40 lb | FT = 10% |
| LUMBER       |                                             |                           | 6)        | Provide mech  | nanical connectio  | on (by oth | ers) of truss t  | to    |       |        |       |               |          |
| TOP CHORD    | 2x4 SPF No.2                                |                           |           | bearing plate | capable of withs   | standing 9 | 5 lb uplift at j | joint |       |        |       |               |          |
| BOT CHORD    | 2x4 SPF No.2                                |                           |           |               | uplift at joint 8. |            |                  |       |       |        |       |               |          |
| WEBS         | 2x6 SPF No.2 *Exce                          | pt* 10-4:2x3 SPF N        |           |               | designed in acco   |            |                  |       |       |        |       |               |          |
|              | 9-5,11-3:2x4 SPF N                          | o.2                       |           |               | Residential Code   |            |                  | and   |       |        |       |               |          |
| BRACING      |                                             |                           |           |               | d referenced sta   | andard AN  | ISI/TPI 1.       |       |       |        |       |               |          |
| TOP CHORD    | Structural wood she                         | athing directly appli     | ed or LOA | AD CASE(S)    | Standard           |            |                  |       |       |        |       |               |          |
|              | 4-4-14 oc purlins, e                        |                           |           |               |                    |            |                  |       |       |        |       |               |          |
| BOT CHORD    | Rigid ceiling directly                      | applied or 10-0-0 o       | С         |               |                    |            |                  |       |       |        |       |               |          |
|              | bracing.                                    |                           |           |               |                    |            |                  |       |       |        |       |               |          |
| REACTIONS    | ( )                                         | 8-8, 12=649/0-3-8         |           |               |                    |            |                  |       |       |        |       |               |          |
|              | Max Horiz 12=-73 (L                         | ,                         |           |               |                    |            |                  |       |       |        |       |               |          |
|              | Max Uplift 8=-95 (LC                        | 9), 12=-95 (LC 8)         |           |               |                    |            |                  |       |       |        |       |               |          |
| FORCES       | (lb) - Maximum Com                          | pression/Maximum          |           |               |                    |            |                  |       |       |        |       |               |          |
|              | Tension                                     |                           |           |               |                    |            |                  |       |       |        |       |               |          |
| TOP CHORD    | 2-12=-833/86, 1-2=0                         | , , ,                     |           |               |                    |            |                  |       |       |        |       |               |          |
|              | 3-4=-855/99, 4-5=-8                         |                           | 70,       |               |                    |            |                  |       |       |        |       |               |          |
|              | 6-7=0/35, 6-8=-833/                         |                           |           |               |                    |            |                  |       |       |        |       |               |          |
| BOT CHORD    | 11-12=-7/815, 10-11                         | =-29/761, 9-10=-29        | /761,     |               |                    |            |                  |       |       |        |       |               |          |
|              | 8-9=-23/815                                 |                           |           |               |                    |            |                  |       |       |        |       |               |          |
| WEBS         | 4-10=0/295, 5-9=0/2                         | 30, 3-11=0/230            |           |               |                    |            |                  |       |       |        |       |               |          |
| NOTES        |                                             |                           |           |               |                    |            |                  |       |       |        |       |               | 4 may    |
| ,            | ed roof live loads have                     | been considered fo        | or        |               |                    |            |                  |       |       |        |       | and           | TOP      |
| this design  |                                             | ( <b>0</b> ) ( <b>0</b> ) |           |               |                    |            |                  |       |       |        |       | OF OF         | MISC     |
|              | CE 7-16; Vult=115mph                        |                           | Cat       |               |                    |            |                  |       |       |        | 1     | STATE OF      | W.O.     |
|              | nph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er |                           |           |               |                    |            |                  |       |       |        | B     | SI SCOT       | N SX     |
|              | left and right exposed                      |                           |           |               |                    |            |                  |       |       |        | R     | S/ SCOI       |          |
|              | sed; Lumber DOL=1.6                         |                           |           |               |                    |            |                  |       |       |        | b.    | SEV           |          |
|              | has been designed for                       |                           |           |               |                    |            |                  |       |       | 1      | -// * |               | · 4      |
| 7 1113 11033 | nuo been designed to                        | a 10.0 p31 000000         |           |               |                    |            |                  |       |       | •      |       |               |          |

3) chord live load nonconcurrent with any other live loads.

4) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

5) Bearing at joint(s) 12, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

January 27,2022

F

NUMBER

PE-200101880

#SSIONAL

0

Page: 1



| Job     | Truss | Truss Type             | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------------------|-----|-----|--------------------------|-----------|
| B220017 | G2    | Common Supported Gable | 1   | 1   | Job Reference (optional) | 149887784 |

Loading

TCDL

BCLL

BCDL

WEBS

OTHERS

BRACING

FORCES

WEBS

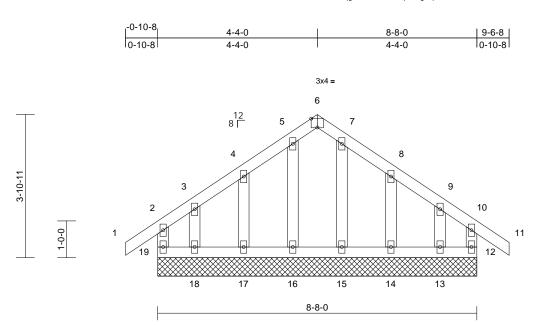
NOTES

1)

LUMBER

TCLL (roof)

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Jan 25 15:07:06


Page: 1

#### ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f -0-10-8 6-7-0 13-2-0 14-0-8 0-10-8 6-7-0 0-10-8 6-7-0 4x4 = 5 12 6 Г 4 6 3 7 φ ø 2 8 0-10-0 16 1Ò 15 14 13 12 11 3x10 " 3x10 " 13-2-0 Scale = 1:33.2 Plate Offsets (X, Y): [10:0-5-9,0-1-8], [16:0-5-9,0-1-8] PLATES Spacing 2-0-0 CSI DEFL l/defl L/d GRIP (psf) in (loc) 25.0 Plate Grip DOL 1.15 тс 0.07 Vert(LL) n/a 999 MT20 197/144 n/a 10.0 Lumber DOL 1.15 BC 0.04 Vert(CT) n/a n/a 999 0.0\* Rep Stress Incr YES WB 0.03 Horz(CT) 10 0.00 n/a n/a 10.0 Code IRC2018/TPI2014 Matrix-R Weight: 49 lb FT = 10% 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. TOP CHORD 2x4 SPF No.2 II; Exp C; Enclosed; MWFRS (envelope) exterior zone; BOT CHORD 2x4 SPF No.2 cantilever left and right exposed ; end vertical left and 2x4 SPF No.2 right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2x4 SPF No.2 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), TOP CHORD Structural wood sheathing directly applied or see Standard Industry Gable End Details as applicable. 6-0-0 oc purlins, except end verticals. or consult qualified building designer as per ANSI/TPI 1. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc All plates are 2x4 MT20 unless otherwise indicated. 4) bracing. 5) Gable requires continuous bottom chord bearing. REACTIONS (lb/size) 10=188/13-2-0, 11=202/13-2-0, 6) Truss to be fully sheathed from one face or securely 12=181/13-2-0, 13=159/13-2-0, braced against lateral movement (i.e. diagonal web). 14=181/13-2-0, 15=202/13-2-0, Gable studs spaced at 2-0-0 oc. 7) 16=188/13-2-0 8) This truss has been designed for a 10.0 psf bottom Max Horiz 16=-71 (LC 6) chord live load nonconcurrent with any other live loads. Max Uplift 10=-34 (LC 9), 11=-75 (LC 9), \* This truss has been designed for a live load of 20.0psf 9) 12=-51 (LC 9), 14=-51 (LC 8), on the bottom chord in all areas where a rectangle 15=-77 (LC 8), 16=-34 (LC 9) 3-06-00 tall by 2-00-00 wide will fit between the bottom 10=188 (LC 1), 11=202 (LC 22), Max Grav chord and any other members. 12=184 (LC 22), 13=159 (LC 1), 10) Provide mechanical connection (by others) of truss to 14=184 (LC 21), 15=202 (LC 21), bearing plate capable of withstanding 34 lb uplift at joint 16=188 (LC 1) 16, 34 lb uplift at joint 10, 51 lb uplift at joint 14, 77 lb (Ib) - Maximum Compression/Maximum uplift at joint 15, 51 lb uplift at joint 12 and 75 lb uplift at Tension joint 11. OF MISS TOP CHORD 2-16=-166/48, 1-2=0/32, 2-3=-62/59, TF 11) This truss is designed in accordance with the 2018 3-4=-44/85, 4-5=-46/110, 5-6=-46/103, International Residential Code sections R502.11.1 and 6-7=-44/79, 7-8=-54/51, 8-9=0/32, R802.10.2 and referenced standard ANSI/TPI 1. SCOTT M. 8-10=-166/52 LOAD CASE(S) Standard SEVIER BOT CHORD 15-16=-20/42, 14-15=-20/42, 13-14=-20/42, 12-13=-20/42, 11-12=-20/42, 10-11=-20/42 5-13=-118/0. 4-14=-147/76. 3-15=-153/98. 6-12=-147/76, 7-11=-153/97 PE-2001018807 O Unbalanced roof live loads have been considered for this design. SSIONAL January 27,2022 MiTek



| Job     | Truss | Truss Type | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------|-----|-----|--------------------------|-----------|
| B220017 | H1    | GABLE      | 1   | 1   | Job Reference (optional) | 149887785 |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:06 ID:VW78Vr4IUH8xIb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

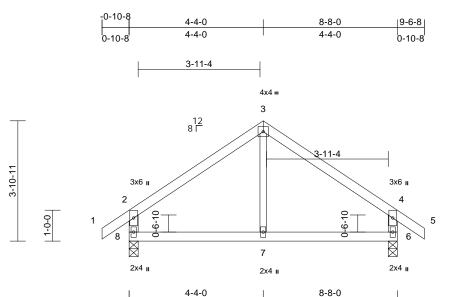


Scale = 1:31.3

Plate Offsets (X, Y): [6:0-2-0,Edge]

|                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                       |                                                            |       |               |            | -                                             |                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------|---------------|------------|-----------------------------------------------|------------------------------------------|
| Loading<br>TCLL (roof)                                                                                                                                                 | (psf)<br>25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Spacing<br>Plate Grip DOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2-0-0<br>1.15                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CSI<br>TC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.07                                                                                                                                                                                                                                                                                                                      | DEFL<br>Vert(LL)                                                                                                                                                                                                                                                                                                                                                                      | in<br>n/a                                                  | (loc) | l/defl<br>n/a | L/d<br>999 | PLATES<br>MT20                                | <b>GRIP</b><br>197/144                   |
| TCDL                                                                                                                                                                   | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lumber DOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.15                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.03                                                                                                                                                                                                                                                                                                                      | Vert(CT)                                                                                                                                                                                                                                                                                                                                                                              | n/a                                                        | -     | n/a           | 999        |                                               |                                          |
| BCLL                                                                                                                                                                   | 0.0*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rep Stress Incr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | YES                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.02                                                                                                                                                                                                                                                                                                                      | Horz(CT)                                                                                                                                                                                                                                                                                                                                                                              | 0.00                                                       | 12    | n/a           | n/a        |                                               |                                          |
| BCDL                                                                                                                                                                   | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IRC2018                                                                                           | 3/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Matrix-R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                       |                                                            |       |               |            | Weight: 40 lb                                 | FT = 10%                                 |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>WEBS<br>NOTES | 2x4 SPF No.2<br>2x4 SPF No.2<br>2x4 SPF No.2<br>2x4 SPF No.2<br>2x4 SPF No.2<br>2x4 SPF No.2<br>Structural wood she<br>6-0-0 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>(lb/size) 12=132/8<br>16=126/8<br>18=65/8-5<br>Max Horiz 19=120 (I<br>Max Uplift 12=-47 (L<br>14=57 (L<br>18=-74 (L<br>18=-74 (L<br>18=121 (I<br>18=121 (I<br>18=12) (I<br>18=121 (I<br>18=12) | athing directly applied<br>cept end verticals.<br>applied or 6-0-0 oc<br>-8-0, 13=65/8-8-0,<br>-8-0, 15=126/8-8-0,<br>-8-0, 17=125/8-8-0,<br>-2-0, 17=125/8-8-0,<br>-2-0, 17=125/8-8-0,<br>-2-0, 17=-57 (LC 9),<br>-2-0, 17=-57 (LC 9),<br>-2-20, 13=112 (LC 1),<br>-2-22), 13=112 (LC 1),<br>-2-22), 15=126 (LC 1),<br>-2-22), 15=126 (LC 1),<br>-2-22), 15=126 (LC 1),<br>-2-12, 17=129 (LC 21),<br>-2-12, 17=129 (LC 21),<br>-2-12, 17=129 (LC 21),<br>-2-12, 17=129 (LC 21),<br>-2-12, 15=126 (LC 1),<br>-2-12, 15=126 (LC 1),-2-12, 15=126 (LC 1),<br>-2-12, 15=126 (LC 1),-2-12, | 2)<br>d or<br>4)<br>5)<br>6)<br>7)<br>8)<br>9)<br>6),<br>10<br>6)<br>6)<br>11<br>51,<br><b>LC</b> | Wind: ASCE<br>Vasd=91mpl<br>II; Exp C; En<br>cantilever lef<br>right expose<br>Truss desigr<br>only. For stu<br>see Standari<br>or consult qu<br>All plates are<br>Gable requir<br>Truss to be f<br>braced agair<br>Gable studs<br>This truss ha<br>chord live loa<br>* This truss ha<br>on the bottor<br>3-06-00 tall b<br>chord and ar<br>) Provide mec<br>bearing plate<br>19, 47 lb upl<br>uplift at joint<br>joint 13.<br>) This truss is<br>International | 7-16; Vult=115m<br>n; TCDL=6.0psf; E<br>(closed; MWFRS i<br>t and right expose<br>d; Lumber DOL=1<br>led for wind loads<br>dids exposed to wi<br>d Industry Gable B<br>lalified building de<br>2 x4 MT20 unless;<br>es continuous bot<br>ully sheathed from<br>ist lateral movem<br>spaced at 1-4-0 o<br>is been designed<br>an onconcurrent<br>nas been designed<br>n chord in all area<br>by 2-00-00 wide w<br>y other members<br>hanical connectio<br>e capable of withs<br>fit at joint 12, 74 lb<br>17, 57 lb uplift at<br>designed in accoor<br>Residential Code<br>nd referenced sta | BCDL=6.1<br>(envelope<br>ed; end v<br>1.60 plate<br>in the plate<br>in the plate<br>in the plate<br>in the plate<br>so therwittom chor<br>m one fac<br>ent (i.e. d<br>oc.<br>for a 10.1<br>with any<br>d for a liv<br>as where<br>vill fit betv<br>s.<br>m (by oth<br>tranding 6<br>b uplift at<br>joint 14 a<br>rdance w | Dpsf; h=25ft;<br>a) exterior zo<br>vertical left ar<br>grip DOL=1.<br>ane of the tru<br>al to the face<br>ils as applica<br>is per ANSI/T<br>se indicated.<br>d bearing.<br>e or securely<br>iagonal web)<br>D psf bottom<br>other live loa<br>e load of 20.<br>a rectangle<br>veen the bott<br>ers) of truss i<br>joint 18, 57 II<br>nd 70 Ib uplif<br>ith the 2018<br>s R502.11.1 a | ne;<br>nd<br>.60<br>iss<br>.bble,<br>.bble,<br>.PI 1.<br>/ |       |               |            | STATE OF J<br>STATE OF J<br>SEV<br>OF JE-2001 | MISSOUR<br>T M.<br>IER<br>MISSOUR<br>IER |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601




January 27,2022

| Job     | Truss | Truss Type |   | Ply | Lot 121 MN               |           |  |  |  |
|---------|-------|------------|---|-----|--------------------------|-----------|--|--|--|
| B220017 | H2    | Common     | 4 | 1   | Job Reference (optional) | 149887786 |  |  |  |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:07 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

4-4-0





| Loading     | (psf) | Spacing         | 2-0-0           | CSI      |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
|-------------|-------|-----------------|-----------------|----------|------|----------|-------|-------|--------|-----|---------------|----------|
| TCLL (roof) | 25.0  | Plate Grip DOL  | 1.15            | TC       | 0.27 | Vert(LL) | -0.01 | 7     | >999   | 360 | MT20          | 197/144  |
| TCDL        | 10.0  | Lumber DOL      | 1.15            | BC       | 0.15 | Vert(CT) | -0.02 | 7     | >999   | 240 |               |          |
| BCLL        | 0.0*  | Rep Stress Incr | YES             | WB       | 0.05 | Horz(CT) | 0.00  | 6     | n/a    | n/a |               |          |
| BCDL        | 10.0  | Code            | IRC2018/TPI2014 | Matrix-R |      | Wind(LL) | -0.01 | 7-8   | >999   | 240 | Weight: 29 lb | FT = 10% |

4-4-0

#### LUMBER

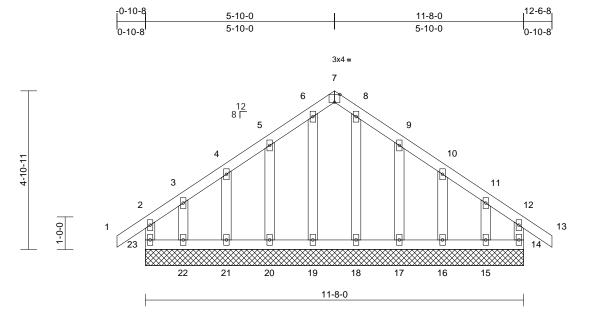
| TOP CHORD | 2x4 SPF No.2                                  |
|-----------|-----------------------------------------------|
| BOT CHORD | 2x4 SPF No.2                                  |
| WEBS      | 2x4 SPF No.2 *Except* 7-3:2x3 SPF No.2        |
| BRACING   |                                               |
| TOP CHORD | Structural wood sheathing directly applied or |
|           | 6-0-0 oc purlins, except end verticals.       |
| BOT CHORD | Rigid ceiling directly applied or 10-0-0 oc   |
|           | bracing.                                      |
| REACTIONS | (lb/size) 6=448/0-3-8, 8=448/0-3-8            |
|           | Max Horiz 8=-120 (LC 6)                       |
|           | Max Uplift 6=-64 (LC 9), 8=-64 (LC 8)         |
| FORCES    | (lb) - Maximum Compression/Maximum            |
|           | Tension                                       |
| TOP CHORD | 1-2=0/40, 2-3=-363/73, 3-4=-363/73,           |
|           | 4-5=0/40, 2-8=-394/98, 4-6=-394/98            |
| BOT CHORD | 7-8=0/236, 6-7=0/236                          |
| WEBS      | 3-7=0/160                                     |

#### NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
  4) \* This truss has been designed for a live load of 20.0psf
- \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 64 lb uplift at joint 8 and 64 lb uplift at joint 6.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

# SCOTT M. SEVIER PE-2001018807 January 27,2022


Page: 1



| Job     | Truss | Truss Type |   | Ply | Lot 121 MN               |           |  |  |  |
|---------|-------|------------|---|-----|--------------------------|-----------|--|--|--|
| B220017 | НЗ    | GABLE      | 1 | 1   | Job Reference (optional) | 149887787 |  |  |  |

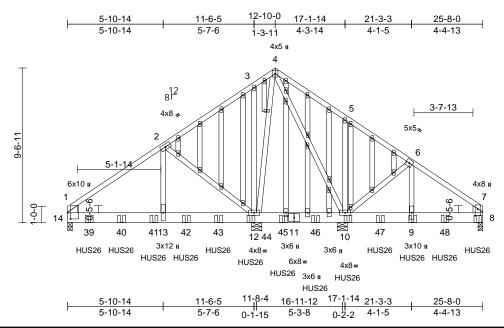
Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:07 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1



Scale = 1:35.5

Plate Offsets (X, Y): [7:0-2-0,Edge]


| Loading     |            | (psf)        | Spacing                | 2-0-0            |                                  | CSI                                 |             | DEFL             | in    | (loc) | l/defl | L/d   | PLATES        | GRIP       |
|-------------|------------|--------------|------------------------|------------------|----------------------------------|-------------------------------------|-------------|------------------|-------|-------|--------|-------|---------------|------------|
| TCLL (roof) |            | 25.0         | Plate Grip DOL         | 1.15             |                                  | TC                                  | 0.07        | Vert(LL)         | n/a   | -     | n/a    | 999   | MT20          | 197/144    |
| TCDL        |            | 10.0         | Lumber DOL             | 1.15             |                                  | BC                                  | 0.04        | Vert(CT)         | n/a   | -     | n/a    | 999   |               |            |
| BCLL        |            | 0.0*         | Rep Stress Incr        | YES              |                                  | WB                                  | 0.03        | Horz(CT)         | 0.00  | 14    | n/a    | n/a   |               |            |
| BCDL        |            | 10.0         | Code                   | IRC20            | 18/TPI2014                       | Matrix-R                            |             |                  |       |       |        |       | Weight: 57 lb | FT = 10%   |
| LUMBER      |            |              |                        |                  | NOTES                            |                                     |             |                  |       |       |        |       |               |            |
| TOP CHORD   | 2x4 SPF    | No 2         |                        |                  |                                  | roof live loads ha                  | ave been    | considered fo    | r     |       |        |       |               |            |
| BOT CHORD   | 2x4 SPF    |              |                        |                  | this design.                     |                                     |             |                  |       |       |        |       |               |            |
| WEBS        | 2x4 SPF    |              |                        | :                | 0                                | 7-16; Vult=115n                     | nph (3-se   | cond aust)       |       |       |        |       |               |            |
| OTHERS      | 2x4 SPF    |              |                        | -                |                                  | n; TCDL=6.0psf;                     |             |                  | Cat.  |       |        |       |               |            |
| BRACING     | 2.0.0.1    |              |                        |                  |                                  | closed; MWFRS                       |             |                  |       |       |        |       |               |            |
| TOP CHORD   | Structura  | wood she     | athing directly applie | dor              | cantilever lef                   | t and right expos                   | sed; end    | vertical left an | d     |       |        |       |               |            |
|             |            |              | cept end verticals.    | 4 01             | right expose                     | d; Lumber DOL=                      | 1.60 plate  | grip DOL=1.      | 60    |       |        |       |               |            |
| BOT CHORD   |            |              | applied or 6-0-0 oc    | :                | <ol> <li>Truss design</li> </ol> | ed for wind load                    | s in the pl | ane of the tru   | ss    |       |        |       |               |            |
| DOT ONORD   | bracing.   | ing directly |                        |                  | only. For stu                    | ids exposed to w                    | /ind (norm  | al to the face   | ),    |       |        |       |               |            |
| REACTIONS   | 0          | 1/-137/1     | 1-8-0, 15=76/11-8-0,   |                  |                                  | d Industry Gable                    |             |                  |       |       |        |       |               |            |
| REACTIONS   | (10/5120)  |              | 1-8-0, 17=117/11-8-0,  |                  |                                  | alified building d                  |             |                  | 기 1.  |       |        |       |               |            |
|             |            |              | 1-8-0, 19=126/11-8-0   | ) '              |                                  | e 2x4 MT20 unle                     |             |                  |       |       |        |       |               |            |
|             |            |              | 1-8-0, 21=127/11-8-0   | j t              |                                  | es continuous bo                    |             |                  |       |       |        |       |               |            |
|             |            |              | -8-0, 23=137/11-8-0    | ·' (             |                                  | ully sheathed fro                   |             |                  |       |       |        |       |               |            |
|             | Max Horiz  | 23=-146 (    | ,                      |                  |                                  | nst lateral moven                   |             | liagonal web)    | •     |       |        |       |               |            |
|             |            | ,            | C 5), 15=-89 (LC 9),   |                  |                                  | spaced at 1-4-0                     |             |                  |       |       |        |       |               |            |
|             |            |              | C 9), 17=-65 (LC 9),   | 8                |                                  | is been designed                    |             |                  |       |       |        |       |               |            |
|             |            |              | C 8), 21=-37 (LC 8),   |                  |                                  | ad nonconcurren                     | ,           |                  |       |       |        |       |               |            |
|             |            |              | C 8), 23=-72 (LC 4)    | ę                |                                  | has been designe                    |             |                  | )psf  |       |        |       |               |            |
|             | Max Grav   | 14=147 (L    | _C 15), 15=128 (LC 1   | 6),              |                                  | n chord in all are                  |             |                  |       |       |        |       |               |            |
|             |            | 16=127 (L    | _C 22), 17=127 (LC 1   | 6),              |                                  | y 2-00-00 wide                      |             | veen the botto   | om    |       |        |       |               |            |
|             |            | 18=126 (L    | _C 1), 19=128 (LC 18   | 3                |                                  | ny other member<br>hanical connecti |             |                  |       |       |        |       |               | -          |
|             |            | 20=125 (L    | _C 15), 21=127 (LC 2   | 21),             |                                  | capable of with                     |             |                  |       |       |        |       | CON           | ADA        |
|             |            | 22=139 (L    | _C 15), 23=163 (LC 1   | 6)               |                                  | ft at joint 14, 94                  |             |                  |       |       |        |       | A OF I        | MISC       |
| FORCES      | (lb) - Max | kimum Com    | pression/Maximum       |                  |                                  | 21, 65 lb uplift at                 |             |                  |       |       |        | 1     | TATE OF M     | N.OS       |
|             | Tension    |              |                        |                  |                                  | ft at joint 16 and                  |             |                  | joint |       |        | R     | SCOT          | New M      |
| TOP CHORD   |            |              | )/40, 2-3=-85/82,      |                  |                                  | designed in acco                    |             |                  |       |       |        | 4     |               |            |
|             | 3-4=-57/6  | 64, 4-5=-47  | /83, 5-6=-36/115,      |                  |                                  | Residential Cod                     |             |                  | nd    |       |        | 1     | SEVI          | EK / X     |
|             |            | ,            | /87, 8-9=-23/109,      |                  |                                  | nd referenced sta                   |             |                  |       |       |        | (II C |               | 0 1 * 1    |
|             |            |              | -40/57, 11-12=-65/6    | <sup>2</sup> , I | OAD CASE(S)                      |                                     |             |                  |       |       |        | 10/   |               |            |
|             |            | 40, 12-14=-  |                        |                  |                                  | Standard                            |             |                  |       |       |        |       | NUM           |            |
| BOT CHORD   |            |              | 2=-71/75, 20-21=-71/   |                  |                                  |                                     |             |                  |       |       |        | 27    | PE-2001       |            |
|             |            | ,            | )=-71/75, 17-18=-71/   | ,                |                                  |                                     |             |                  |       |       |        | N     | PE-2001       | 01880/ 201 |
|             |            | ,            | 6=-71/75, 14-15=-71/   |                  |                                  |                                     |             |                  |       |       |        | Y     | PE-2001       | 1 SA       |
| WEBS        |            | ,            | 100/59, 5-20=-98/79    |                  |                                  |                                     |             |                  |       |       |        | 0     | W Slow        | TENA       |
|             |            |              | 99/0, 9-17=-99/80,     |                  |                                  |                                     |             |                  |       |       |        |       | ESSIONA       | L          |
|             | 10-16=-1   | 00/59, 11-1  | 5=-83/75               |                  |                                  |                                     |             |                  |       |       |        |       |               |            |
|             |            |              |                        |                  |                                  |                                     |             |                  |       |       |        |       | January       | / 27,2022  |
|             |            |              |                        |                  |                                  |                                     |             |                  |       |       |        |       |               | ,          |



| Job     | Truss | Truss Type | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------|-----|-----|--------------------------|-----------|
| B220017 | H4    | GABLE      | 1   | 2   | Job Reference (optional) | 149887788 |

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:07 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

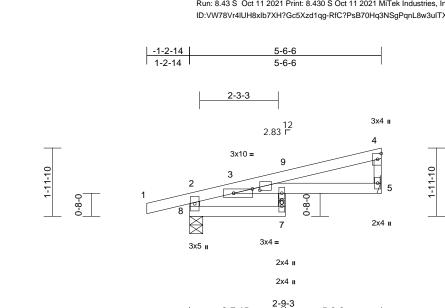


## Plate Offsets (X, Y): [1:0-4-9,0-2-2], [7:0-4-14,0-2-0]

Scale = 1:71.2

|                                                                                                      | , , , , ,, ,,                                                                                                                                                                                       |                                                                                                   |                                                                                                 |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                             |                                                                                                                                    |                                                                                                                                                                                                |                                     |                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                                                |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Loading                                                                                              | (psf)                                                                                                                                                                                               | Spacing                                                                                           | 2-0-0                                                                                           |                                                                                                                                                                                                              | csi                                                                                                                                                                                                                                                                         |                                                                                                                                    | DEFL                                                                                                                                                                                           | in                                  | (loc)                    | l/defl                                                                                         | L/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PLATES                                                                                               | GRIP                                                                                           |
| TCLL (roof)                                                                                          | 25.0                                                                                                                                                                                                |                                                                                                   | 1.15                                                                                            |                                                                                                                                                                                                              | TC                                                                                                                                                                                                                                                                          | 0.31                                                                                                                               | Vert(LL)                                                                                                                                                                                       |                                     | 13-14                    | >999                                                                                           | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MT20                                                                                                 | 197/144                                                                                        |
| TCDL                                                                                                 | 10.0                                                                                                                                                                                                | 1 1                                                                                               | 1.15                                                                                            |                                                                                                                                                                                                              | BC                                                                                                                                                                                                                                                                          | 0.32                                                                                                                               | Vert(CT)                                                                                                                                                                                       |                                     | 13-14                    | >999                                                                                           | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                    |                                                                                                |
| BCLL                                                                                                 | 0.0*                                                                                                                                                                                                |                                                                                                   | NO                                                                                              |                                                                                                                                                                                                              | WB                                                                                                                                                                                                                                                                          | 0.71                                                                                                                               | Horz(CT)                                                                                                                                                                                       | 0.01                                | 8                        | n/a                                                                                            | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                      |                                                                                                |
| BCDL                                                                                                 | 10.0                                                                                                                                                                                                |                                                                                                   |                                                                                                 | 3/TPI2014                                                                                                                                                                                                    | Matrix-S                                                                                                                                                                                                                                                                    |                                                                                                                                    | Wind(LL)                                                                                                                                                                                       |                                     | 13-14                    | >999                                                                                           | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Weight: 465 lt                                                                                       | o FT = 10%                                                                                     |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 2x4 SPF No.2<br>2x8 SP DSS<br>2x4 SPF No.2 *Exce<br>2400F 2.0E<br>2x4 SPF No.2<br>Structural wood she<br>6-0-0 oc purlins, ex<br>Rigid ceiling directly<br>bracing, Except:<br>6-0-0 oc bracing: 10 | ept* 14-1,8-7:2x8 SP<br>athing directly applied of<br>cept end verticals.<br>applied or 10-0-0 oc | 2)<br>3)                                                                                        | All loads are<br>except if noto<br>CASE(5) sec<br>provided to c<br>unless other<br>Unbalanced<br>this design.<br>Wind: ASCE<br>Vasd=91mpl<br>II; Exp C; En<br>cantilever lef<br>right expose<br>Truss design | considered equa<br>ed as front (F) or l<br>titon. Ply to ply co<br>listribute only loar<br>wise indicated.<br>roof live loads ha<br>7-16; Vult=115m<br>; TCDL=6.0psf; f<br>closed; MWFRS<br>t and right expose<br>d; Lumber DOL=1<br>ed for wind loads<br>d(s exposed to wi | back (B)<br>ponnection<br>ds noted<br>we been of<br>ph (3-sec<br>BCDL=6.1<br>(envelope<br>ed ; end v<br>1.60 plate<br>s in the pla | d to all plies,<br>face in the LC<br>s have been<br>as (F) or (B),<br>considered fo<br>cond gust)<br>Opsf; h=25ft; (<br>a) exterior zor<br>vertical left an<br>grip DOL=1.t<br>ane of the tru: | DAD<br>Cat.<br>ne;<br>d<br>60<br>ss | 1) De<br>Pli<br>Ur<br>Co | ead + Ro<br>ate Incre<br>hiform Lo<br>Vert: 1-4<br>oncentra<br>Vert: 12<br>9=-1232<br>(B), 42= | oof Live<br>ease=1<br>bads (II<br>4=-70,<br>ited Los<br>2=-1238<br>2 (B), 3<br>-1238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e (balanced): Lu<br>.15<br>p/ft)<br>4-7=-70, 8-14=<br>ads (lb)<br>3 (B), 10=-1236<br>9=-1236 (B), 40 | umber Increase=1.15,<br>-20<br>(B), 8=-259 (B),<br>)=-1238 (B), 41=-1238<br>(B), 45=-1238 (B), |
|                                                                                                      | 12=7197/<br>Max Horiz 14=-246 (<br>Max Uplift 8=-129 (L<br>12=-286 (<br>Max Grav 8=1749 (L<br>12=8049<br>(lb) - Maximum Corr                                                                        | 2), <sup>7</sup> )                                                                                | see Standard<br>or consult qu<br>All plates are<br>Truss to be f<br>braced again<br>Gable studs | d Industry Gable I<br>alified building de<br>2x4 MT20 unles<br>ully sheathed from<br>spaced at 1-4-0 c<br>s been designed                                                                                    | End Deta<br>esigner as<br>s otherwi<br>m one fac<br>ent (i.e. d<br>oc.                                                                                                                                                                                                      | ils as applicat<br>s per ANSI/TF<br>se indicated.<br>se or securely<br>liagonal web).                                              | ole,<br>Pl 1.                                                                                                                                                                                  |                                     |                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                                                |
|                                                                                                      | Tension                                                                                                                                                                                             |                                                                                                   | 0)                                                                                              |                                                                                                                                                                                                              | ad nonconcurrent                                                                                                                                                                                                                                                            |                                                                                                                                    |                                                                                                                                                                                                | ds.                                 |                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                                                |
| TOP CHORD                                                                                            |                                                                                                                                                                                                     | =-46/1178, 3-4=0/1070,<br>3/1067, 6-7=-1139/39,<br>3=-728/60                                      | 10                                                                                              | ) * This truss h<br>on the bottor                                                                                                                                                                            | nas been designe<br>n chord in all area<br>by 2-00-00 wide w                                                                                                                                                                                                                | d for a liv<br>as where                                                                                                            | e load of 20.0<br>a rectangle                                                                                                                                                                  | psf                                 |                          |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CT OF                                                                                                | ADD A                                                                                          |
| BOT CHORD                                                                                            | 13-14=-207/2190, 12<br>10-12=-815/201, 9-1                                                                                                                                                          | 2-13=-207/2190,<br>I0=-12/883, 8-9=-12/88                                                         | 3 11                                                                                            |                                                                                                                                                                                                              | y other members                                                                                                                                                                                                                                                             |                                                                                                                                    |                                                                                                                                                                                                |                                     |                          |                                                                                                | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TATE OF                                                                                              | MISSO STIM                                                                                     |
| WEBS                                                                                                 | 2-13=-58/3941, 2-12<br>4-12=-1029/0, 4-10=                                                                                                                                                          |                                                                                                   | 3,<br>09                                                                                        | bearing plate<br>joint 14, 286<br>and 129 lb u                                                                                                                                                               | e capable of withs<br>Ib uplift at joint 12<br>plift at joint 8.                                                                                                                                                                                                            | tanding 2<br>2, 286 lb                                                                                                             | 23 Ib uplift at uplift at uplift at joint 1                                                                                                                                                    |                                     |                          |                                                                                                | H.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2/ 500                                                                                               | IT M.                                                                                          |
| (0.131"x3"<br>Top chords<br>oc, 2x8 - 2<br>Bottom cho<br>staggered                                   | to be connected toge<br>) nails as follows:<br>s connected as follows<br>rows staggered at 0-9<br>ords connected as foll<br>at 0-7-0 oc.<br>ected as follows: 2x4 -                                 | s: 2x4 - 1 row at 0-9-0<br>9-0 oc.<br>ows: 2x8 - 2 rows                                           | 13                                                                                              | International<br>R802.10.2 at<br>Use Simpson<br>Truss) or equ<br>1-4-0 from th<br>back face of                                                                                                               | designed in acco<br>Residential Code<br>nd referenced sta<br>n Strong-Tie HUS<br>uivalent spaced a<br>e left end to 25-4<br>bottom chord.<br>else where hange<br>Standard                                                                                                   | e sections<br>indard AN<br>26 (14-1)<br>t 2-0-6 oc<br>-6 to con                                                                    | s R502.11.1 a<br>ISI/TPI 1.<br>Od Girder, 4-1<br>c max. starting<br>nect truss(es)                                                                                                             | 0d<br>g at<br>to                    |                          |                                                                                                | and the second s | FESSION,                                                                                             | AL ENGLASSI                                                                                    |

January 27,2022


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

**MiTek**° 16023 Swingley Ridge Rd Chesterfield, MO 63017

| Job     | Truss | Truss Type          | Qty | Ply | Lot 121 MN               |           |
|---------|-------|---------------------|-----|-----|--------------------------|-----------|
| B220017 | J1    | Diagonal Hip Girder | 2   | 1   | Job Reference (optional) | 149887789 |

#### Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:08 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1



2-7-15 5-6-6 2-7-15 2-9-3 0-1-4

Scale = 1:33.3

## Plate Offsets (X, Y): [3:0-9-1,0-1-1], [3:0-6-8, Edge]

| Loading                                                                       | (psf)                                                            | Spacing                                                               | 2-0-0       |                                                                                           | csi                                                                                                                                                                                 |                                                                                                           | DEFL                                                                           | in                          | (loc) | l/defl | L/d | PLATES        | GRIP     |
|-------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------|-------|--------|-----|---------------|----------|
| TCLL (roof)                                                                   | 25.0                                                             | Plate Grip DOL                                                        | 1.15        |                                                                                           | TC                                                                                                                                                                                  | 0.34                                                                                                      | Vert(LL)                                                                       | -0.03                       | 3-6   | >999   | 360 | MT20          | 197/144  |
| TCDL                                                                          | 10.0                                                             | Lumber DOL                                                            | 1.15        |                                                                                           | BC                                                                                                                                                                                  | 0.27                                                                                                      | Vert(CT)                                                                       | -0.07                       | 3-6   | >913   | 240 |               |          |
| BCLL                                                                          | 0.0*                                                             | Rep Stress Incr                                                       | NO          |                                                                                           | WB                                                                                                                                                                                  | 0.02                                                                                                      | Horz(CT)                                                                       | 0.03                        | 5     | n/a    | n/a |               |          |
| BCDL                                                                          | 10.0                                                             | Code                                                                  | IRC201      | 8/TPI2014                                                                                 | Matrix-R                                                                                                                                                                            | -                                                                                                         | Wind(LL)                                                                       | 0.03                        | 3-6   | >999   | 240 | Weight: 17 lb | FT = 10% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD | 5-6-6 oc purlins, ex<br>Rigid ceiling directly<br>bracing.       | athing directly applie<br>cept end verticals.<br>applied or 10-0-0 oc | d or<br>8)  | provided suf<br>down and 30<br>up at 2-9-8<br>2-7-15, and<br>chord. The<br>(s) is the res | other connect<br>ficient to support<br>b lb up at 2-9-4<br>on top chord, a<br>2 lb down and<br>design/selectic<br>ponsibility of o<br>CASE(S) sect<br>are noted as from<br>Standard | ort concentra<br>8, and 66 lb<br>and 2 lb dow<br>1 lb up at 2<br>on of such co<br>thers.<br>tion, loads a | ted load(s) 6<br>down and 30<br>n and 1 lb up<br>-7-15 on bott<br>nnection dev | ) lb<br>o at<br>tom<br>vice |       |        |     |               |          |
|                                                                               | (lb/size) 5=224/ M<br>Max Horiz 8=64 (LC<br>Max Uplift 5=-46 (LC | ,                                                                     | 1-9 –<br>1) | Dead + Ro<br>Plate Increa                                                                 | of Live (balanc<br>ase=1.15                                                                                                                                                         | ed): Lumber                                                                                               | Increase=1.                                                                    | .15,                        |       |        |     |               |          |
| FORCES                                                                        | (lb) - Maximum Corr<br>Tension                                   | pression/Maximum                                                      |             |                                                                                           | ads (ID/ft)<br>=-70, 2-4=-70,<br>ed Loads (Ib)                                                                                                                                      | 7-8=-20, 5-                                                                                               | 6=-20                                                                          |                             |       |        |     |               |          |
| TOP CHORD                                                                     | 2-8=-331/125, 1-2=0                                              |                                                                       |             |                                                                                           | 2 (F=1, B=1)                                                                                                                                                                        |                                                                                                           |                                                                                |                             |       |        |     |               |          |

#### 3-4=-140/19, 4-5=-142/58 BOT CHORD 7-8=0/0, 3-6=-16/108, 5-6=-16/108 WEBS 6-7=0/54

#### NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- 3) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 105 lb uplift at joint 8 and 46 lb uplift at joint 5.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

OF MISSO SCOTT M. SEVIER OFF PE-200101880 SSIONAL E January 27,2022



| Job     | Truss | Truss Type | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------|-----|-----|--------------------------|-----------|
| B220017 | J2    | Jack-Open  | 3   | 1   | Job Reference (optional) | 149887790 |

1-4-5

1-4-5

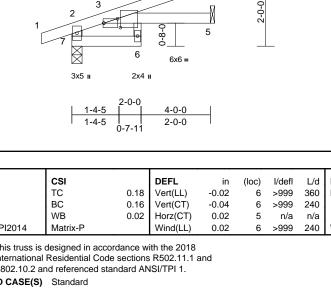
1-6-0

3x5 =

3

12 4 Г

-0-10-8


0-10-8

2-0-0

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:08 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1



4-0-0

2-7-11

Scale = 1:33.3

Plate Offsets (X, Y): [3:0-5-12,0-1-9], [3:0-4-12,0-1-8]

|             | (X, 1). [3.0-3-12,0-1-3                       | j, [3.0-4-12,0-1-0]   |                 |                              |       |               |         |        |          |               |          |
|-------------|-----------------------------------------------|-----------------------|-----------------|------------------------------|-------|---------------|---------|--------|----------|---------------|----------|
| Loading     | (psf)                                         | Spacing               | 2-0-0           | CSI                          |       | DEFL          | in (loc | l/defl | L/d      | PLATES        | GRIP     |
| TCLL (roof) | 25.0                                          | Plate Grip DOL        | 1.15            | TC 0                         | .18   | Vert(LL) -0.0 | )2 6    | >999   | 360      | MT20          | 197/144  |
| TCDL        | 10.0                                          | Lumber DOL            | 1.15            |                              | .16   | Vert(CT) -0.0 |         | >999   | 240      |               |          |
| BCLL        | 0.0*                                          | Rep Stress Incr       | YES             | WB 0                         | .02   | Horz(CT) 0.0  |         |        | n/a      |               |          |
| BCDL        | 10.0                                          | Code                  | IRC2018/TPI2014 | Matrix-P                     |       | Wind(LL) 0.0  | )2 6    | >999   | 240      | Weight: 12 lb | FT = 10% |
| LUMBER      |                                               |                       | 6) This truss   | is designed in accordance    | ce wi | ith the 2018  |         |        |          |               |          |
| TOP CHORD   | 2x4 SPF No.2                                  |                       |                 | al Residential Code sect     |       |               |         |        |          |               |          |
| BOT CHORD   | 2x4 SPF No.2                                  |                       | R802.10.2       | and referenced standard      | d AN  | ISI/TPI 1.    |         |        |          |               |          |
| WEBS        | 2x4 SPF No.2 *Exce                            | ept* 6-3:2x3 SPF No.  | .2 LOAD CASE(   | <ol> <li>Standard</li> </ol> |       |               |         |        |          |               |          |
| BRACING     |                                               |                       |                 |                              |       |               |         |        |          |               |          |
| TOP CHORD   |                                               |                       | ed or           |                              |       |               |         |        |          |               |          |
|             | 4-0-0 oc purlins, ex                          |                       |                 |                              |       |               |         |        |          |               |          |
| BOT CHORD   | 0 0 7                                         | applied or 6-0-0 oc   |                 |                              |       |               |         |        |          |               |          |
|             | bracing.                                      |                       |                 |                              |       |               |         |        |          |               |          |
| REACTIONS   |                                               | echanical, 5=56/      |                 |                              |       |               |         |        |          |               |          |
|             | Max Horiz 7=63 (LC                            | al, 7=265/0-3-8       |                 |                              |       |               |         |        |          |               |          |
|             | Max Uplift 4=-45 (LC                          | ,                     |                 |                              |       |               |         |        |          |               |          |
|             | Max Grav 4=111 (LC                            | ,, , ,                | -265            |                              |       |               |         |        |          |               |          |
|             | (LC 1)                                        | 0 1), 0=71 (20 0), 75 | -200            |                              |       |               |         |        |          |               |          |
| FORCES      | (lb) - Maximum Com                            | pression/Maximum      |                 |                              |       |               |         |        |          |               |          |
|             | Tension                                       | iprocolori, maximum   |                 |                              |       |               |         |        |          |               |          |
| TOP CHORD   | 2-7=-248/72, 1-2=0/2                          | 23, 2-3=-39/22,       |                 |                              |       |               |         |        |          |               |          |
|             | 3-4=-32/29                                    |                       |                 |                              |       |               |         |        |          |               |          |
| BOT CHORD   | ,                                             |                       |                 |                              |       |               |         |        |          |               |          |
| WEBS        | 3-6=0/67                                      |                       |                 |                              |       |               |         |        |          |               |          |
| NOTES       |                                               |                       |                 |                              |       |               |         |        |          |               |          |
|             | CE 7-16; Vult=115mph                          |                       |                 |                              |       |               |         |        |          | San           | ann      |
|             | nph; TCDL=6.0psf; BC                          |                       |                 |                              |       |               |         |        |          | OF J          | MISCO    |
|             | Enclosed; MWFRS (er                           |                       |                 |                              |       |               |         |        |          | 4 SE          | -20 M    |
|             | left and right exposed<br>sed; Lumber DOL=1.6 |                       |                 |                              |       |               |         |        | B        | STATE OF SCOT | T M X    |
|             | has been designed for                         |                       |                 |                              |       |               |         |        | R        | S SEV         |          |
| ,           | load nonconcurrent wi                         |                       | ds.             |                              |       |               |         |        | A.       | _/ SEV        |          |
|             | s has been designed f                         |                       |                 |                              |       |               |         |        | YO       |               | 0 120    |
| on the bot  | tom chord in all areas                        | where a rectangle     |                 |                              |       |               |         |        | XX       | 175           | · Xenter |
| 3-06-00 ta  | all by 2-00-00 wide will                      | fit between the botto | om              |                              |       |               |         |        | <b>N</b> | <b>MAN</b>    |          |

3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Refer to girder(s) for truss to truss connections. 4)

5)

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 58 lb uplift at joint 7 and 45 lb uplift at joint 4.



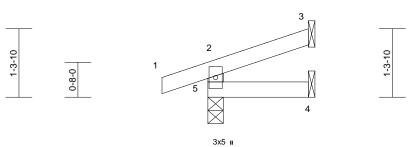
PE-200101880'

E

January 27,2022

SIONAL

O.


| Job     | Truss | Truss Type | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------|-----|-----|--------------------------|-----------|
| B220017 | J3    | Jack-Open  | 4   | 1   | Job Reference (optional) | 149887791 |

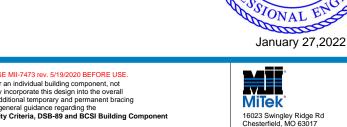
Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:08 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1





1-10-15




-

| Scale | > = 1.3 | 21.9 |
|-------|---------|------|

| 00010 - 1.21.0 | ,                                                    |                       |                 |          |      |          |      |       |        |           | -             |          |
|----------------|------------------------------------------------------|-----------------------|-----------------|----------|------|----------|------|-------|--------|-----------|---------------|----------|
| Loading        | (psf)                                                | Spacing               | 2-0-0           | CSI      |      | DEFL     | in   | (loc) | l/defl | L/d       | PLATES        | GRIP     |
| TCLL (roof)    | 25.0                                                 | Plate Grip DOL        | 1.15            | TC       | 0.07 | Vert(LL) | 0.00 | 4-5   | >999   | 360       | MT20          | 197/144  |
| TCDL           | 10.0                                                 | Lumber DOL            | 1.15            | BC       | 0.02 | Vert(CT) | 0.00 | 4-5   | >999   | 240       |               |          |
| BCLL           | 0.0*                                                 | Rep Stress Incr       | YES             | WB       | 0.00 | Horz(CT) | 0.00 | 3     | n/a    | n/a       |               |          |
| BCDL           | 10.0                                                 | Code                  | IRC2018/TPI2014 | Matrix-R |      | Wind(LL) | 0.00 | 4-5   | >999   | 240       | Weight: 6 lb  | FT = 10% |
| LUMBER         |                                                      |                       |                 |          |      |          |      |       |        |           |               |          |
| TOP CHORD      | 2x4 SPF No.2                                         |                       |                 |          |      |          |      |       |        |           |               |          |
| BOT CHORD      | 2x4 SPF No.2                                         |                       |                 |          |      |          |      |       |        |           |               |          |
| WEBS           | 2x4 SPF No.2                                         |                       |                 |          |      |          |      |       |        |           |               |          |
| BRACING        |                                                      |                       |                 |          |      |          |      |       |        |           |               |          |
| TOP CHORD      | Structural wood she                                  | athing directly appli | ed or           |          |      |          |      |       |        |           |               |          |
|                | 1-10-15 oc purlins,                                  |                       |                 |          |      |          |      |       |        |           |               |          |
| BOT CHORD      |                                                      | applied or 10-0-0 o   | 0C              |          |      |          |      |       |        |           |               |          |
| REACTIONS      | bracing.                                             | chanical, 4=14/       |                 |          |      |          |      |       |        |           |               |          |
| REAGNONO       |                                                      | al, 5=171/0-3-8       |                 |          |      |          |      |       |        |           |               |          |
|                | Max Horiz 5=35 (LC                                   | ,                     |                 |          |      |          |      |       |        |           |               |          |
|                | Max Uplift 3=-24 (LC                                 | (LC 4), 5=-59 (LC 4)  |                 |          |      |          |      |       |        |           |               |          |
|                | Max Grav 3=44 (LC                                    | 1), 4=31 (LC 3), 5=   | :171            |          |      |          |      |       |        |           |               |          |
|                | (LC 1)                                               |                       |                 |          |      |          |      |       |        |           |               |          |
| FORCES         | (lb) - Maximum Com                                   | pression/Maximum      |                 |          |      |          |      |       |        |           |               |          |
|                | Tension                                              |                       |                 |          |      |          |      |       |        |           |               |          |
| TOP CHORD      | ,                                                    | 23, 2-3=-25/10        |                 |          |      |          |      |       |        |           |               |          |
| BOT CHORD      | 0 4-5=0/0                                            |                       |                 |          |      |          |      |       |        |           |               |          |
| NOTES          |                                                      |                       |                 |          |      |          |      |       |        |           |               |          |
|                | CE 7-16; Vult=115mph                                 |                       | <b>.</b> .      |          |      |          |      |       |        |           |               |          |
|                | mph; TCDL=6.0psf; BC                                 |                       |                 |          |      |          |      |       |        |           |               |          |
|                | ; Enclosed; MWFRS (er<br>r left and right exposed    |                       |                 |          |      |          |      |       |        |           |               |          |
|                | osed; Lumber DOL=1.6                                 |                       |                 |          |      |          |      |       |        |           | 200           | all      |
|                | s has been designed for                              |                       |                 |          |      |          |      |       |        |           | F OF          | MISSO    |
|                | e load nonconcurrent wi                              |                       | ids.            |          |      |          |      |       |        | 1         | THIE OF       | N.O.     |
| 3) * This true | ss has been designed f                               | or a live load of 20. | 0psf            |          |      |          |      |       |        | 8         | SI SCOT       | ттм.     |
|                | ottom chord in all areas                             |                       |                 |          |      |          |      |       |        | R         | ~/            |          |
|                | all by 2-00-00 wide will                             | fit between the bott  | om              |          |      |          |      |       |        | R         |               |          |
|                | d any other members.                                 |                       |                 |          |      |          |      |       |        | NY.       |               | 0        |
|                | girder(s) for truss to tru                           |                       | to .            |          |      |          |      |       |        | K         | goll          | : Server |
|                | nechanical connection (<br>plate capable of withstar |                       |                 |          |      |          |      |       |        | 33        | NUM           | IBER /   |
|                | Ib uplift at joint 3.                                | iung 55 ib upint at j | John            |          |      |          |      |       |        | N         | NUM<br>PE-200 | 1018807  |
|                | s is designed in accorda                             | ance with the 2018    |                 |          |      |          |      |       |        | V         | The           | 18B      |
| -,             |                                                      |                       |                 |          |      |          |      |       |        | · · · · · | N VON         | 1.63 1   |

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

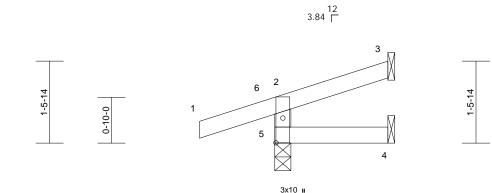
LOAD CASE(S) Standard



| Job     | Truss | Truss Type       | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------------|-----|-----|--------------------------|-----------|
| B220017 | J4    | Jack-Open Girder | 1   | 1   | Job Reference (optional) | 149887792 |

-1-4-6 1-4-6

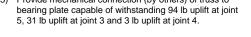
Wheeler Lumber, Waverly, KS - 66871,


#### Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:09 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-0-10

2-0-10

2-0-10


Page: 1



Scale = 1:20.9

## Plate Offsets (X, Y): [5:0-5-6,0-1-8]

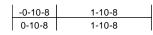
| 1 1010 0 110010 (                                                                                                                                                                                                                                                                                                      | ,, ,, ,, [0.0 0 0,0 1 0                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                     |                                                                                                                                                                                                                         |                                                |                                 |                                       |                                 |                                |                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------|---------------------------------------|---------------------------------|--------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                                         | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                        | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                   | 2-0-0<br>1.15<br>1.15<br>NO<br>IRC2018/TPI2                                                                                                                                                                                 | CSI<br>TC<br>BC<br>WB<br>014 Matrix-R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.12<br>0.04<br>0.00                                                                                                                                                                                | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Wind(LL)                                                                                                                                                                    | in<br>0.00<br>0.00<br>0.00<br>0.00             | (loc)<br>4-5<br>4-5<br>3<br>4-5 | l/defl<br>>999<br>>999<br>n/a<br>>999 | L/d<br>360<br>240<br>n/a<br>240 | PLATES<br>MT20<br>Weight: 7 lb | <b>GRIP</b><br>197/144<br>FT = 10% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>BOT CHORD<br>BOT CHORD<br>NOTES<br>1) Wind: ASC<br>Vasd=91m<br>II; Exp C; I<br>cantilever<br>right expos<br>2) This truss<br>chord live<br>3) * This trus<br>on the bot | 2x4 SPF No.2<br>2x4 SPF No.2<br>2x4 SPF No.2<br>Structural wood sh<br>2-4-1 oc purlins, e<br>Rigid ceiling directl<br>bracing.<br>(Ib/size) 3=8/ Me<br>5=103/0<br>Max Horiz 5=50 (LC<br>Max Uplift 3=-31 (L<br>(LC 6)<br>Max Grav 3=8 (LC 1) | eathing directly appli<br>xcept end verticals.<br>y applied or 10-0-0 o<br>chanical, 4=-1/ Mech<br>3-8<br>C 7)<br>C 12), 4=-3 (LC 16),<br>1), 4=22 (LC 3), 5=1<br>mpression/Maximum<br>4/17, 2-3=-17/1<br>h (3-second gust)<br>CDL=6.0psf; h=25ft;<br>envelope) exterior zor<br>d; end vertical left ar<br>60 plate grip DOL=1.<br>or a 10.0 psf bottom<br>vith any other live loa<br>for a live load of 20.0<br>s where a rectangle | 6) This<br>Inter<br>R80<br>7) Han<br>prov<br>dow<br>ed or dow<br>at -<br>c con<br>8) In th<br>LOAD C<br>1) De<br>5=-94 Pla<br>5=-94 Pla<br>5=-94 Co<br>03 Tra<br>03 Tra<br>1<br>5<br>Cat.<br>ne;<br>id<br>60<br>ds.<br>Opsf | 014     Matrix-R       truss is designed in ac       national Residential Cc       2.10.2 and referenced s       ger(s) or other connecti       ided sufficient to suppon       n and 7 lb up at -1-10,       n on top chord. The       ection device(s) is the       e LOAD CASE(S) secti       e truss are noted as from <b>ASE(S)</b> Standard       ad + Roof Live (balanced (b)       vert: 1=-30 (F=-15, B=-       upezoidal Loads (lb)       vert: 1=0 (F=35, B=35)-       F=35, B=35)-to-2=-7 (f)       F=35, B=35)-to-3=-45 (F=13, 1       o-4=-13 (F=4, B=4) | ode sections<br>standard AN<br>ion device(s<br>ort concentra<br>, and 19 lb d<br>e design/sel<br>responsibili<br>ion, loads a<br>ont (F) or ba<br>ed): Lumber<br>15)<br>-to-6=-30 (F<br>F=31, B=31) | Wind(LL)<br>ith the 2018<br>R502.11.1 a<br>ISI/TPI 1.<br>) shall be<br>ited load(s) 1<br>lown and 7 lb<br>ection of sucl<br>ty of others.<br>plied to the f<br>ck (B).<br>Increase=1.<br>=20, B=20), 6<br>, 2=-7 (F=31, | 0.00<br>nd<br>9 lb<br>9 up<br>n<br>face<br>15, | 4-5                             | >999                                  |                                 | STATE OF                       | MISSOU                             |
| chord and<br>4) Refer to gi<br>5) Provide m<br>bearing pla                                                                                                                                                                                                                                                             | any other members.<br>irder(s) for truss to tr<br>echanical connection<br>ate capable of withsta<br>blift at joint 3 and 3 lb                                                                                                                | uss connections.<br>(by others) of truss t<br>anding 94 lb uplift at j                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                     |                                                                                                                                                                                                                         |                                                |                                 |                                       |                                 | PE-200                         | ENGINE                             |

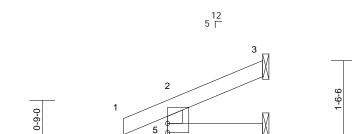


MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

January 27,2022

| Job     | Truss | Truss Type | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------|-----|-----|--------------------------|-----------|
| B220017 | J5    | Jack-Open  | 1   | 1   | Job Reference (optional) | 149887793 |


1-6-6


Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:09 ID:VW78Vr4IUH8xIb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4

Page: 1







5x6 II

1-10-8

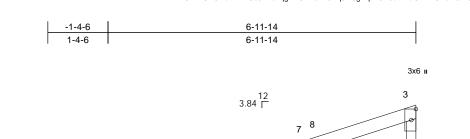
| Could = HEEH |                                                         |                          |                 |          |      |          |      |       |        |     |              |          |
|--------------|---------------------------------------------------------|--------------------------|-----------------|----------|------|----------|------|-------|--------|-----|--------------|----------|
| Loading      | (psf)                                                   | Spacing                  | 2-0-0           | CSI      |      | DEFL     | in   | (loc) | l/defl | L/d | PLATES       | GRIP     |
| TCLL (roof)  | 25.0                                                    | Plate Grip DOL           | 1.15            | TC       | 0.07 | Vert(LL) | 0.00 | 4-5   | >999   | 360 | MT20         | 197/144  |
| TCDL         | 10.0                                                    | Lumber DOL               | 1.15            | BC       | 0.02 | Vert(CT) | 0.00 | 4-5   | >999   | 240 | -            |          |
| BCLL         | 0.0*                                                    | Rep Stress Incr          | YES             | WB       | 0.00 | Horz(CT) | 0.00 | 3     | n/a    | n/a |              | FT 4004  |
| BCDL         | 10.0                                                    | Code                     | IRC2018/TPI2014 | Matrix-R |      | Wind(LL) | 0.00 | 4-5   | >999   | 240 | Weight: 6 lb | FT = 10% |
| LUMBER       |                                                         |                          |                 |          |      |          |      |       |        |     |              |          |
| TOP CHORD    |                                                         |                          |                 |          |      |          |      |       |        |     |              |          |
| BOT CHORD    |                                                         |                          |                 |          |      |          |      |       |        |     |              |          |
| WEBS         | 2x4 SPF No.2                                            |                          |                 |          |      |          |      |       |        |     |              |          |
| BRACING      |                                                         |                          |                 |          |      |          |      |       |        |     |              |          |
| TOP CHORD    |                                                         |                          |                 |          |      |          |      |       |        |     |              |          |
|              | 1-10-8 oc purlins, e                                    |                          |                 |          |      |          |      |       |        |     |              |          |
| BOT CHORD    | <ul> <li>Rigid ceiling directly<br/>bracing.</li> </ul> | applied or 10-0-0 0      | C               |          |      |          |      |       |        |     |              |          |
| REACTIONS    | •                                                       | chanical, 4=13/          |                 |          |      |          |      |       |        |     |              |          |
|              |                                                         | al, 5=170/0-3-8          |                 |          |      |          |      |       |        |     |              |          |
|              | Max Horiz 5=39 (LC                                      |                          |                 |          |      |          |      |       |        |     |              |          |
|              | Max Uplift 3=-27 (LC                                    |                          |                 |          |      |          |      |       |        |     |              |          |
|              | Max Grav 3=43 (LC                                       | 1), 4=31 (LC 3), 5=      | 170             |          |      |          |      |       |        |     |              |          |
| FORCES       | (LC 1)<br>(lb) - Maximum Corr                           | nroacion/Movimum         |                 |          |      |          |      |       |        |     |              |          |
| FURGES       | Tension                                                 | ipression/waximum        |                 |          |      |          |      |       |        |     |              |          |
| TOP CHORD    |                                                         | 27. 2-3=-31/12           |                 |          |      |          |      |       |        |     |              |          |
| BOT CHORD    | ,                                                       |                          |                 |          |      |          |      |       |        |     |              |          |
| NOTES        |                                                         |                          |                 |          |      |          |      |       |        |     |              |          |
| 1) Wind: AS  | CE 7-16; Vult=115mph                                    | (3-second gust)          |                 |          |      |          |      |       |        |     |              |          |
|              | mph; TCDL=6.0psf; BC                                    |                          |                 |          |      |          |      |       |        |     |              |          |
|              | Enclosed; MWFRS (er                                     |                          |                 |          |      |          |      |       |        |     |              |          |
|              | r left and right exposed                                |                          |                 |          |      |          |      |       |        |     | 000          | ADD      |
|              | osed; Lumber DOL=1.6<br>s has been designed fo          |                          | 60              |          |      |          |      |       |        |     | OF           | MICON    |
|              | e load nonconcurrent wi                                 |                          | ds              |          |      |          |      |       |        |     | TATE OF      | -0.0     |
|              | ss has been designed f                                  |                          |                 |          |      |          |      |       |        | A   | N            | New York |
| on the bo    | ttom chord in all areas                                 | where a rectangle        |                 |          |      |          |      |       |        | R.  | -            |          |
|              | all by 2-00-00 wide will                                | fit between the bott     | om              |          |      |          |      |       |        | 8   | SEV          |          |
|              | d any other members.                                    |                          |                 |          |      |          |      |       |        | 83  | 1            | 1 * 8    |
|              | girder(s) for truss to tru                              |                          |                 |          |      |          |      |       |        | 83  | X an He      | · San M  |
|              | nechanical connection<br>late capable of withstar       |                          |                 |          |      |          |      |       |        |     | Carton       | Bernow   |
|              | Ib uplift at joint 3.                                   | ioning oo io upiint at j | Unit.           |          |      |          |      |       |        | N'  | ON PE-200    | 1018807  |
|              | is designed in second                                   | anao with the 2019       |                 |          |      |          |      |       |        | N V | 10           | 12A      |

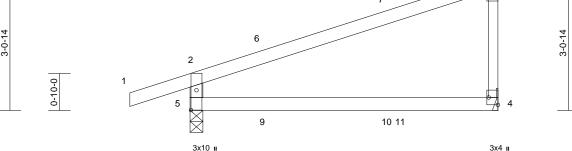
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

January 27,2022

SSIONAL E





| Job     | Truss | Truss Type          | Qty | Ply | Lot 121 MN               |           |  |  |  |
|---------|-------|---------------------|-----|-----|--------------------------|-----------|--|--|--|
| B220017 | J6    | Diagonal Hip Girder | 1   | 1   | Job Reference (optional) | 149887794 |  |  |  |

 I
 J DD Keterence (optional)

 Run: 8.43 S
 Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:09

 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f





Scale = 1:26.2

Plate Offsets (X, Y): [4:Edge,0-2-8], [5:0-5-6,0-1-8]

|             | 3 (A, F). [+.Edg.,0.2 0], [0.0 0,0.7 0] |                 |                                         |                   |      |          |       |       |        |     |               |          |
|-------------|-----------------------------------------|-----------------|-----------------------------------------|-------------------|------|----------|-------|-------|--------|-----|---------------|----------|
| Loading     | (psf)                                   | Spacing         | 2-0-0                                   | CSI               |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL (roof) | 25.0                                    | Plate Grip DOL  | 1.15                                    | TC                | 0.71 | Vert(LL) | -0.08 | 4-5   | >974   | 360 | MT20          | 197/144  |
| TCDL        | 10.0                                    | Lumber DOL      | 1.15                                    | BC                | 0.43 | Vert(CT) | -0.18 | 4-5   | >457   | 240 |               |          |
| BCLL        | 0.0*                                    | Rep Stress Incr | NO                                      | WB                | 0.00 | Horz(CT) | 0.00  | 4     | n/a    | n/a |               |          |
| BCDL        | 10.0                                    | Code            | IRC2018/TPI2014                         | Matrix-R          |      | Wind(LL) | 0.04  | 4-5   | >999   | 240 | Weight: 20 lb | FT = 10% |
|             | 2x4 SPF No 2                            |                 | , , , , , , , , , , , , , , , , , , , , | or other connecti | · ·  | /        | 72 lb |       |        |     |               |          |

6-11-14

CHORD BOT CHORD 2x4 SPF No.2 2x4 SPF No.2 \*Except\* 3-4:2x3 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) 4=300/ Mechanical, 5=420/0-3-8 Max Horiz 5=128 (LC 7) Max Uplift 4=-78 (LC 8), 5=-129 (LC 4) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 2-5=-371/176, 1-2=0/32, 2-3=-187/22, 3-4=-209/107 BOT CHORD 4-5=-43/71

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 129 lb uplift at joint 5 and 78 lb uplift at joint 4.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

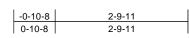
Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 72 lb down and 22 lb up at 1-11-2, 63 lb down and 16 lb up at 2-1-12, and 77 lb down and 55 lb up at 4-9-0, and 97 lb down and 69 lb up at 5-0-10 on top chord, and 3 lb down and 3 lb up at 1-11-2, 4 lb down and 7 lb up at 2-1-12, and 13 lb down at 4-9-0, and 20 lb down at 5-0-10 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

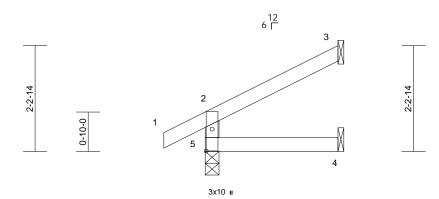
 In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

## LOAD CASE(S) Standard

 Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-2=-70, 2-3=-70, 4-5=-20

- Concentrated Loads (lb)
- Vert: 8=-3 (B), 9=8 (F=5, B=3), 10=-2 (F), 11=-10 (B)





Page: 1

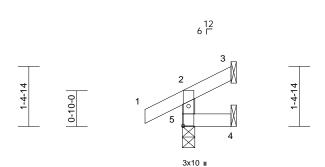


| Job     | Truss | Truss Type | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------|-----|-----|--------------------------|-----------|
| B220017 | J7    | Jack-Open  | 1   | 1   | Job Reference (optional) | 149887795 |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:09 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1






|                                       | 2- | 9-11 |   |  |
|---------------------------------------|----|------|---|--|
| Scale = 1:24.4                        |    |      | I |  |
| Plate Offsets (X, Y): [5:0-5-9,0-1-8] |    |      |   |  |

| Loading         (psf)           TCLL (roof)         25.0           TCDL         10.0           BCLL         0.0*           BCDL         10.0 | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                         | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2014 | CSI<br>TC<br>BC<br>WB<br>Matrix-R | 0.08<br>0.05<br>0.00 | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Wind(LL) | in<br>0.00<br>0.00<br>0.00<br>0.00 | (loc)<br>4-5<br>4-5<br>3<br>4-5 | l/defl<br>>999<br>>999<br>n/a<br>>999 | L/d<br>360<br>240<br>n/a<br>240 | PLATES<br>MT20<br>Weight: 8 lb               | <b>GRIP</b><br>197/144<br>FT = 10% |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------|----------------------|------------------------------------------------------|------------------------------------|---------------------------------|---------------------------------------|---------------------------------|----------------------------------------------|------------------------------------|
| BOT CHORD 2-9-11 oc purlins, e<br>Rigid ceiling directly<br>bracing.<br>REACTIONS (Ib/size) 3=76/ Me                                         | C 8), 5=-23 (LC 8)                                                                                                                                                                                                                                                                                                                                                         | c                                               | Standard                          |                      |                                                      |                                    |                                 |                                       |                                 |                                              |                                    |
| . ,                                                                                                                                          | n (3-second gust)<br>DL=6.0psf; h=25ft; (<br>nvelope) exterior zor<br>; end vertical left an<br>00 plate grip DOL=1.0<br>or a 10.0 psf bottom<br>ith any other live load<br>for a live load of 20.0<br>where a rectangle<br>fit between the botto<br>uss connections.<br>(by others) of truss to<br>nding 23 lb uplift at jo<br>ance with the 2018<br>sections R502.11.1 a | ne;<br>d<br>60<br>ds.<br>Dpsf<br>om<br>o        |                                   |                      |                                                      |                                    |                                 |                                       |                                 | STATE OF<br>SCOT<br>SEV<br>PE-2001<br>Januar | LER<br>Services<br>018807          |



| Job     | Truss | Truss Type | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------|-----|-----|--------------------------|-----------|
| B220017 | J8    | Jack-Open  | 1   | 1   | Job Reference (optional) | 149887796 |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:09 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



 -0-10-8
 1-1-11

 0-10-8
 1-1-11

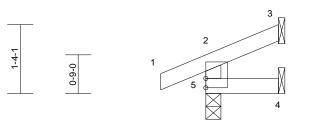
1-1-11

Scale = 1:27

Plate Offsets (X, Y): [5:0-5-9,0-1-8]

|                                                                                                                                                                                                                                                                               | [0:0 0 0;0 : 0]                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                     |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                             |      |       |        |     |               |                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------|------|-------|--------|-----|---------------|--------------------|
| Loading                                                                                                                                                                                                                                                                       | (psf)                                                                                                                                                                                                                               | Spacing                                                                                                                                                                                                                                                                                             | 2-0-0                                                                      | CSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | DEFL                        | in   | (loc) | l/defl | L/d | PLATES        | GRIP               |
| TCLL (roof)                                                                                                                                                                                                                                                                   | 25.0                                                                                                                                                                                                                                | Plate Grip DOL                                                                                                                                                                                                                                                                                      | 1.15                                                                       | TC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07        | Vert(LL)                    | 0.00 | 5     | >999   | 360 | MT20          | 197/144            |
| TCDL                                                                                                                                                                                                                                                                          | 10.0                                                                                                                                                                                                                                | Lumber DOL                                                                                                                                                                                                                                                                                          | 1.15                                                                       | BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02        | Vert(CT)                    | 0.00 | 5     | >999   | 240 |               |                    |
| BCLL                                                                                                                                                                                                                                                                          | 0.0*                                                                                                                                                                                                                                | Rep Stress Incr                                                                                                                                                                                                                                                                                     | YES                                                                        | WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00        | Horz(CT)                    | 0.00 | 3     | n/a    | n/a |               |                    |
| BCDL                                                                                                                                                                                                                                                                          | 10.0                                                                                                                                                                                                                                | Code                                                                                                                                                                                                                                                                                                | IRC2018/TPI2014                                                            | Matrix-R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | Wind(LL)                    | 0.00 | 5     | >999   | 240 | Weight: 4 lb  | FT = 10%           |
| LUMBER<br>TOP CHORD 2x4 S<br>BOT CHORD 2x4 S<br>WEBS 2x4 S<br>BRACING<br>TOP CHORD Struc<br>1-1-1<br>BOT CHORD Rigid<br>bracii<br>REACTIONS (Ib/size<br>Max He<br>Max U                                                                                                       | PF No.2<br>PF No.2<br>PF No.2<br>PF No.2<br>tural wood she<br>1 oc purlins, e<br>ceiling directly<br>ng.<br>) 3=6/ Mec<br>5=153/0-3<br>oriz 5=35 (LC<br>olift 3=-16 (LC<br>(LC 8)<br>rav 3=8 (LC                                    | eathing directly applie<br>except end verticals.<br>r applied or 10-0-0 or<br>hanical, 4=1/ Mecha<br>3-8                                                                                                                                                                                            | 6) This trus<br>Internati<br>R802.10<br>LOAD CASE<br>ed or<br>c<br>unical, | s is designed in acconding the solution of the | de sections | ith the 2018<br>R502.11.1 a |      | 5     | >999   | 240 | vveight: 4 ib | FT = 10%           |
| Tensi                                                                                                                                                                                                                                                                         | on                                                                                                                                                                                                                                  | npression/Maximum                                                                                                                                                                                                                                                                                   |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                             |      |       |        |     |               |                    |
| TOP CHORD 2-5=-<br>BOT CHORD 4-5=0                                                                                                                                                                                                                                            | 134/36, 1-2=0/<br>)/0                                                                                                                                                                                                               | /32, 2-3=-28/2                                                                                                                                                                                                                                                                                      |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                             |      |       |        |     |               |                    |
| <ul> <li>II; Exp C; Enclose cantilever left and right exposed; Lui</li> <li>This truss has bee chord live load no</li> <li>* This truss has be on the bottom chord 3-06-00 tall by 2-(chord and any oth</li> <li>Refer to girder(s)</li> <li>&gt; Provide mechanic</li> </ul> | DL=6.0psf; BC<br>d; MWFRS (er<br>right exposed<br>mber DOL=1.6<br>en designed fo<br>nconcurrent w<br>een designed fo<br>rd in all areas<br>00-00 wide will<br>her members.<br>for truss to tru-<br>al connection<br>able of withsta | DL=6.0psf; h=25ft; (<br>nvelope) exterior zor<br>; end vertical left an<br>i0 plate grip DOL=1.1<br>r a 10.0 psf bottom<br>ith any other live loa<br>for a live load of 20.0<br>where a rectangle<br>fit between the botto<br>iss connections.<br>(by others) of truss t<br>nding 23 lb uplift at j | ne;<br>d<br>60<br>ds.<br>Dpsf<br>om                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                             |      |       |        | Ï   | SEV           | IN MULTEN CONTRACT |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 January 27,2022




| Job     | Truss | Truss Type | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------|-----|-----|--------------------------|-----------|
| B220017 | J9    | Jack-Open  | 1   | 1   | Job Reference (optional) | 149887797 |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:10 ID:VW78Vr4IUH8xIb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1







5x6 II

1-4-14

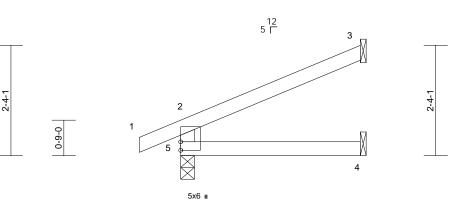
| Sca | le | _ | 1:22.3 |  |
|-----|----|---|--------|--|

Loading (psf) Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP in (loc) TCLL (roof) 25.0 Plate Grip DOL 1.15 тс 0.07 Vert(LL) 0.00 4-5 >999 360 MT20 197/144 TCDI 10.0 BC Lumber DOL 1 15 0.02 Vert(CT) 0.00 >999 240 4-5 BCLL 0.0\* **Rep Stress Incr** YES WB 0.00 Horz(CT) 0.00 3 n/a n/a BCDL 10.0 Code IRC2018/TPI2014 Matrix-R Wind(LL) 0.00 4-5 >999 240 Weight: 5 lb FT = 10% LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 2x4 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 1-4-14 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc BOT CHORD bracing. REACTIONS (lb/size) 3=22/ Mechanical, 4=5/ Mechanical, 5=157/0-3-8 Max Horiz 5=34 (LC 5) Max Uplift 3=-18 (LC 8), 5=-36 (LC 4) Max Grav 3=22 (LC 1), 4=21 (LC 3), 5=157 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 2-5=-137/46, 1-2=0/27, 2-3=-25/5 BOT CHORD 4-5=0/0 NOTES Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 OF MISS This truss has been designed for a 10.0 psf bottom 2) P chord live load nonconcurrent with any other live loads. 3) \* This truss has been designed for a live load of 20.0psf SCOTT M. on the bottom chord in all areas where a rectangle SEVIER 3-06-00 tall by 2-00-00 wide will fit between the bottom

- chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 5 and 18 lb uplift at joint 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

# SCOTT M. SEVIER NUMBER PE-2001018807




| Job     | Truss | Truss Type | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------|-----|-----|--------------------------|-----------|
| B220017 | J10   | Jack-Open  | 1   | 1   | Job Reference (optional) | 149887798 |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:10 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f





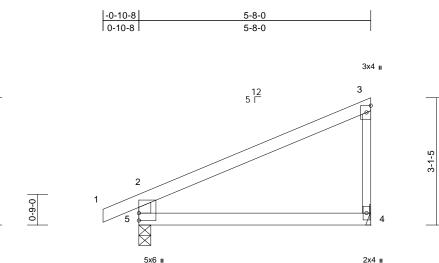


3-9-11

| Scale | _ ' | 1.24 4 |
|-------|-----|--------|
|       |     |        |

|                                                       |                                                                                                                      | 1                                                                                                |                 | ·        |      |          |       |       |        |     | 1                  |          |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------|----------|------|----------|-------|-------|--------|-----|--------------------|----------|
| Loading                                               | (psf)                                                                                                                | Spacing                                                                                          | 2-0-0           | csi      |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES             | GRIP     |
| TCLL (roof)                                           | 25.0                                                                                                                 | Plate Grip DOL                                                                                   | 1.15            | тс       | 0.18 | Vert(LL) | -0.01 | 4-5   | >999   | 360 | MT20               | 197/144  |
| TCDL                                                  | 10.0                                                                                                                 | Lumber DOL                                                                                       | 1.15            | BC       | 0.11 | Vert(CT) | -0.02 | 4-5   | >999   | 240 |                    |          |
| BCLL                                                  | 0.0*                                                                                                                 | Rep Stress Incr                                                                                  | YES             | WB       | 0.00 | Horz(CT) | 0.01  | 3     | n/a    | n/a |                    |          |
| BCDL                                                  | 10.0                                                                                                                 | Code                                                                                             | IRC2018/TPI2014 | Matrix-R |      | Wind(LL) | 0.01  | 4-5   | >999   | 240 | Weight: 11 lb      | FT = 10% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS              | 2x4 SPF No.2<br>2x4 SPF No.2<br>2x4 SPF No.2                                                                         |                                                                                                  |                 |          |      |          |       |       |        |     |                    |          |
|                                                       | 2X4 SPF N0.2                                                                                                         |                                                                                                  |                 |          |      |          |       |       |        |     |                    |          |
| BRACING<br>TOP CHORD                                  | Structural wood she                                                                                                  | athing directly applic                                                                           | d or            |          |      |          |       |       |        |     |                    |          |
| TOP CHORD                                             | 3-9-11 oc purlins, e                                                                                                 |                                                                                                  |                 |          |      |          |       |       |        |     |                    |          |
| BOT CHORD                                             | Rigid ceiling directly<br>bracing.                                                                                   |                                                                                                  | ;               |          |      |          |       |       |        |     |                    |          |
| REACTIONS                                             | (lb/size) 3=110/ M                                                                                                   | echanical, 4=42/<br>al, 5=244/0-3-8                                                              |                 |          |      |          |       |       |        |     |                    |          |
|                                                       | Max Horiz 5=69 (LC                                                                                                   | ,                                                                                                |                 |          |      |          |       |       |        |     |                    |          |
|                                                       | Max Uplift 3=-58 (LC                                                                                                 |                                                                                                  |                 |          |      |          |       |       |        |     |                    |          |
|                                                       | Max Grav 3=110 (L0                                                                                                   |                                                                                                  | =244            |          |      |          |       |       |        |     |                    |          |
|                                                       | (LC 1)                                                                                                               |                                                                                                  |                 |          |      |          |       |       |        |     |                    |          |
| FORCES                                                | (lb) - Maximum Com<br>Tension                                                                                        | pression/Maximum                                                                                 |                 |          |      |          |       |       |        |     |                    |          |
| TOP CHORD                                             | 2-5=-213/69, 1-2=0/2                                                                                                 | 27, 2-3=-60/33                                                                                   |                 |          |      |          |       |       |        |     |                    |          |
| BOT CHORD                                             | 4-5=0/0                                                                                                              |                                                                                                  |                 |          |      |          |       |       |        |     |                    |          |
| NOTES                                                 |                                                                                                                      |                                                                                                  |                 |          |      |          |       |       |        |     |                    |          |
| Vasd=91m<br>II; Exp C; I<br>cantilever<br>right expos | CE 7-16; Vult=115mph<br>hph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>left and right exposed<br>sed; Lumber DOL=1.6 | DL=6.0psf; h=25ft; 0<br>hvelope) exterior zon<br>; end vertical left and<br>0 plate grip DOL=1.6 | le;<br>d        |          |      |          |       |       |        |     | TATE OF I          |          |
|                                                       | has been designed for                                                                                                |                                                                                                  |                 |          |      |          |       |       |        |     | ALE OF I           | VIIS'S   |
|                                                       | load nonconcurrent wi                                                                                                |                                                                                                  |                 |          |      |          |       |       |        | 6   | A.T.               | N.S.     |
|                                                       | s has been designed f<br>tom chord in all areas                                                                      |                                                                                                  | psi             |          |      |          |       |       |        | B   | SCOT               | IM. YZY  |
|                                                       |                                                                                                                      |                                                                                                  | m               |          |      |          |       |       |        | B   | SEV                | ER \ Y   |
|                                                       | 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.                                |                                                                                                  |                 |          |      |          |       |       |        |     |                    |          |
|                                                       | irder(s) for truss to tru                                                                                            |                                                                                                  |                 |          |      |          |       |       |        |     | cott               | Semen    |
|                                                       |                                                                                                                      |                                                                                                  |                 |          |      |          |       |       | BER A  |     |                    |          |
|                                                       | ate capable of withstar<br>b uplift at joint 3.                                                                      | nding 35 lb uplift at jo                                                                         | Dint            |          |      |          |       |       |        | 12  | PE-2001            | 018807   |
|                                                       | is designed in accorda                                                                                               | ance with the 2019                                                                               |                 |          |      |          |       |       |        | N   | The                | 120      |
|                                                       | al Residential Code s                                                                                                |                                                                                                  | nd              |          |      |          |       |       |        | X   | <sup>ESSIONA</sup> | NOT      |
|                                                       | and referenced stand                                                                                                 |                                                                                                  | -               |          |      |          |       |       |        |     | ONA                | LEIS     |
|                                                       |                                                                                                                      |                                                                                                  |                 |          |      |          |       |       |        |     | All and            |          |

LOAD CASE(S) Standard


# January 27,2022



| Job     | Truss | Truss Type  | Qty | Ply | Lot 121 MN               |           |
|---------|-------|-------------|-----|-----|--------------------------|-----------|
| B220017 | J11   | Jack-Closed | 3   | 1   | Job Reference (optional) | 149887799 |

## Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:10 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



oxo

| 2.44 |
|------|
|      |
|      |
|      |

| 5-8-0 |  |
|-------|--|
|       |  |
|       |  |

| Scale = 1:28.2 |       |                 |                 |          |      |          |       |       |        |     |               |          |
|----------------|-------|-----------------|-----------------|----------|------|----------|-------|-------|--------|-----|---------------|----------|
| Loading        | (psf) | Spacing         | 2-0-0           | CSI      |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL (roof)    | 25.0  | Plate Grip DOL  | 1.15            | TC       | 0.40 | Vert(LL) | -0.04 | 4-5   | >999   | 360 | MT20          | 197/144  |
| TCDL           | 10.0  | Lumber DOL      | 1.15            | BC       | 0.24 | Vert(CT) | -0.07 | 4-5   | >868   | 240 |               |          |
| BCLL           | 0.0*  | Rep Stress Incr | YES             | WB       | 0.00 | Horz(CT) | 0.00  | 4     | n/a    | n/a |               |          |
| BCDL           | 10.0  | Code            | IRC2018/TPI2014 | Matrix-R |      | Wind(LL) | 0.02  | 4-5   | >999   | 240 | Weight: 17 lb | FT = 10% |

### LUMBER

| TOP CHORD | 2x4 SPF No.2                                  |
|-----------|-----------------------------------------------|
| BOT CHORD | 2x4 SPF No.2                                  |
| WEBS      | 2x4 SPF No.2 *Except* 3-4:2x3 SPF No.2        |
| BRACING   |                                               |
| TOP CHORD | Structural wood sheathing directly applied or |
|           | 5-8-0 oc purlins, except end verticals.       |
| BOT CHORD | Rigid ceiling directly applied or 10-0-0 oc   |
|           | bracing.                                      |
| REACTIONS | (lb/size) 4=237/ Mechanical, 5=322/0-3-8      |
|           | Max Horiz 5=127 (LC 5)                        |
|           | Max Uplift 4=-58 (LC 8), 5=-57 (LC 8)         |
| FORCES    | (lb) - Maximum Compression/Maximum            |
|           | Tension                                       |
| TOP CHORD | 2-5=-282/100, 1-2=0/27, 2-3=-133/31,          |
|           | 3-4=-169/79                                   |

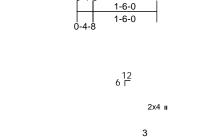
3-1-5

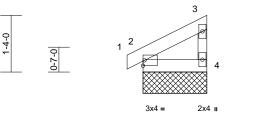
#### 3-4=-169/79 BOT CHORD 4-5=-33/37

BOT CHORD

- NOTES
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 57 lb uplift at joint 5 and 58 lb uplift at joint 4.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard




| Job     | Truss | Truss Type                  | Qty | Ply | Lot 121 MN               |           |  |
|---------|-------|-----------------------------|-----|-----|--------------------------|-----------|--|
| B220017 | J12   | Jack-Closed Supported Gable | 2   | 1   | Job Reference (optional) | 149887800 |  |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:10 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Pag





1-6-0

Scale = 1:27.1

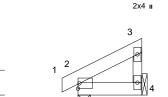
| Loading     | (psf)                                         | Spacing               | 2-0-0                           | CSI              |            | DEFL         | in   | (loc) | l/defl | L/d | PLATES       | GRIP     |
|-------------|-----------------------------------------------|-----------------------|---------------------------------|------------------|------------|--------------|------|-------|--------|-----|--------------|----------|
| TCLL (roof) | 25.0                                          | Plate Grip DOL        | 1.15                            | TC               | 0.03       | Vert(LL)     | n/a  | -     | n/a    | 999 | MT20         | 197/144  |
| TCDL        | 10.0                                          | Lumber DOL            | 1.15                            | BC               | 0.02       | Vert(CT)     | n/a  | -     | n/a    | 999 |              |          |
| BCLL        | 0.0*                                          | Rep Stress Incr       | YES                             | WB               | 0.00       | Horz(CT)     | 0.00 | 4     | n/a    | n/a |              |          |
| BCDL        | 10.0                                          | Code                  | IRC2018/TPI2014                 | Matrix-P         |            |              |      |       |        |     | Weight: 5 lb | FT = 10% |
| LUMBER      |                                               |                       | <ol><li>This truss is</li></ol> | designed in acc  | ordance w  | ith the 2018 |      |       |        |     |              |          |
| TOP CHORD   | 2x4 SPF No.2                                  |                       |                                 | Residential Co   |            |              | and  |       |        |     |              |          |
| BOT CHORD   | 2x4 SPF No.2                                  |                       | R802.10.2 a                     | and referenced s | tandard AN | ISI/TPI 1.   |      |       |        |     |              |          |
| WEBS        | 2x3 SPF No.2                                  |                       | LOAD CASE(S                     | Standard         |            |              |      |       |        |     |              |          |
| BRACING     |                                               |                       |                                 |                  |            |              |      |       |        |     |              |          |
| TOP CHORD   | Structural wood she                           | athing directly appli | ed or                           |                  |            |              |      |       |        |     |              |          |
|             | 1-6-0 oc purlins, ex                          | cept end verticals.   |                                 |                  |            |              |      |       |        |     |              |          |
| BOT CHORD   | Rigid ceiling directly                        | applied or 10-0-0 o   | C                               |                  |            |              |      |       |        |     |              |          |
|             | bracing.                                      |                       |                                 |                  |            |              |      |       |        |     |              |          |
|             | (                                             | 0, 4=59/1-6-0         |                                 |                  |            |              |      |       |        |     |              |          |
|             | Max Horiz 2=39 (LC                            | ,                     |                                 |                  |            |              |      |       |        |     |              |          |
|             | Max Uplift 2=-14 (LC                          | C 8), 4=-18 (LC 8)    |                                 |                  |            |              |      |       |        |     |              |          |
| FORCES      | (lb) - Maximum Corr                           | pression/Maximum      |                                 |                  |            |              |      |       |        |     |              |          |
|             | Tension                                       |                       |                                 |                  |            |              |      |       |        |     |              |          |
| TOP CHORD   | 1-2=-6/0, 2-3=-43/2                           | 1, 3-4=-45/26         |                                 |                  |            |              |      |       |        |     |              |          |
| BOT CHORD   | 2-4=-14/10                                    |                       |                                 |                  |            |              |      |       |        |     |              |          |
| NOTES       |                                               |                       |                                 |                  |            |              |      |       |        |     |              |          |
| ,           | E 7-16; Vult=115mph                           | · · · · ·             | <b>•</b> ·                      |                  |            |              |      |       |        |     |              |          |
|             | ph; TCDL=6.0psf; BC                           |                       |                                 |                  |            |              |      |       |        |     |              |          |
|             | Enclosed; MWFRS (er<br>left and right exposed | 1 /                   | ,                               |                  |            |              |      |       |        |     |              |          |
|             | sed; Lumber DOL=1.6                           |                       |                                 |                  |            |              |      |       |        |     |              |          |
|             | gned for wind loads in                        |                       |                                 |                  |            |              |      |       |        |     |              |          |
| ,           | studs exposed to wind                         |                       |                                 |                  |            |              |      |       |        |     |              |          |

- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
  3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- 6) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 4 and 14 lb uplift at joint 2.





| Job     | Truss | Truss Type  | Qty | Ply | Lot 121 MN               |           |
|---------|-------|-------------|-----|-----|--------------------------|-----------|
| B220017 | J13   | Jack-Closed | 2   | 1   | Job Reference (optional) | 149887801 |


Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:10 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1









1-4-0

0-2-0



3x4 2x4 🛚

1-6-0

| Scale = 1:27.1      |              |                 |                 |          | 1    | 1        |      |       |        |     |              |          |
|---------------------|--------------|-----------------|-----------------|----------|------|----------|------|-------|--------|-----|--------------|----------|
| Loading             | (psf)        | Spacing         | 2-0-0           | CSI      |      | DEFL     | in   | (loc) | l/defl | L/d | PLATES       | GRIP     |
| TCLL (roof)         | 25.0         | Plate Grip DOL  | 1.15            | TC       | 0.02 | Vert(LL) | 0.00 | 2-4   | >999   | 360 | MT20         | 197/144  |
| TCDL                | 10.0         | Lumber DOL      | 1.15            | BC       | 0.03 | Vert(CT) | 0.00 | 2-4   | >999   | 240 |              |          |
| BCLL                | 0.0*         | Rep Stress Incr | YES             | WB       | 0.00 | Horz(CT) | 0.00 | 4     | n/a    | n/a |              |          |
| BCDL                | 10.0         | Code            | IRC2018/TPI2014 | Matrix-P |      |          |      |       |        |     | Weight: 5 lb | FT = 10% |
| LUMBER<br>TOP CHORD | 2x4 SPF No.2 |                 |                 |          |      |          | ·    |       | -      |     |              |          |

| TOP CHORD | 2x4 SPF No.2                                  |
|-----------|-----------------------------------------------|
| BOT CHORD | 2x4 SPF No.2                                  |
| WEBS      | 2x3 SPF No.2                                  |
| BRACING   |                                               |
| TOP CHORD | Structural wood sheathing directly applied or |
|           | 1-6-0 oc purlins, except end verticals.       |
| BOT CHORD | Rigid ceiling directly applied or 10-0-0 oc   |

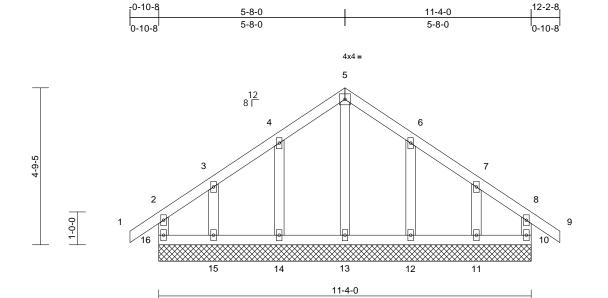
| BOT CHORD |            | ing directly applied or 10-0-0 oc        |
|-----------|------------|------------------------------------------|
| REACTIONS | (lb/size)  | 2=94/0-3-8, 4=57/ Mechanical 2=39 (LC 5) |
|           | Max Uplift | 2=-15 (LC 8), 4=-17 (LC 8)               |

FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-6/0, 2-3=-43/21, 3-4=-44/25 BOT CHORD 2-4=-14/10

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 17 lb uplift at joint 4 and 15 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard






| Job     | Truss | Truss Type             | Qty Ply |   | Lot 121 MN               |           |  |
|---------|-------|------------------------|---------|---|--------------------------|-----------|--|
| B220017 | K1    | Common Supported Gable | 1       | 1 | Job Reference (optional) | 149887802 |  |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:11 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

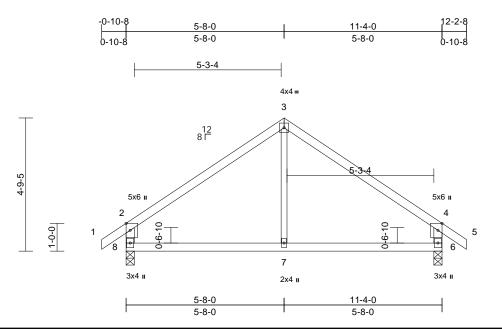
Page: 1



| Scal | <u> </u> | 1:35.1 |  |
|------|----------|--------|--|
|      |          |        |  |

| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                  | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                        | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201                       | 8/TPI2014                                                                                                                                                                                                                                                                                                                                                     | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-R                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.07<br>0.04<br>0.05                                                                                                                                                                                                                                                                                                | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                 | in<br>n/a<br>n/a<br>0.00                                              | (loc)<br>-<br>-<br>10 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 47 lb | <b>GRIP</b><br>197/144<br>FT = 10% |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|
|                                                | 2x4 SPF No.2<br>2x4 SPF No.2<br>2x4 SPF No.2<br>2x4 SPF No.2<br>Structural wood she<br>6-0-0 oc purlins, exi<br>Rigid ceiling directly<br>bracing.<br>(lb/size) 10=141/1<br>12=195/1<br>16=141/1<br>Max Horiz 16=-144 (<br>Max Uplift 10=-39 (L<br>12=-70 (L<br>15=-91 (L<br>Max Grav 10=145 (L<br>12=198 (L<br>14=198 (L<br>16=152 (L | cept end verticals.<br>applied or 6-0-0 oc<br>1-4-0, 11=145/11-4-(<br>1-4-0, 13=173/11-4-(<br>1-4-0)<br>LC 6)<br>C 5), 11=-88 (LC 9),<br>C 9), 14=-70 (LC 8),<br>C 8), 16=-53 (LC 4).<br>C 22), 11=183 (LC 1)<br>.C 16), 13=179 (LC 1)<br>.C 21), 15=189 (LC 1). | 3)<br>d or<br>4)<br>5)<br>, 6)<br>, 7)<br>8)<br>9)<br>6), 10 | Vasd=91mpl<br>II; Exp C; En<br>cantilever lef<br>right exposed<br>Truss design<br>only. For stu<br>see Standard<br>or consult qu<br>All plates are<br>Gable requir<br>Truss to be f<br>braced agair<br>Gable studs<br>This truss ha<br>chord live loa<br>* This truss f<br>on the bottor<br>3-06-00 tall t<br>chord and ar<br>p) Provide mec<br>bearing plate | 7-16; Vult=115r<br>n; TCDL=6.0psf;<br>closed; MWFRS<br>di and right exposi<br>d; Lumber DOL=<br>red for wind load<br>dds exposed to v<br>d Industry Gable<br>alified building of<br>e 2x4 MT20 unle<br>es continuous bo<br>ully sheathed fro<br>rist lateral mover<br>spaced at 2-0-0<br>is been designer<br>ad nonconcurrer<br>has been designer<br>ad nonconcurrer<br>has been designer<br>ad nonconcurrer<br>has been designer<br>ad nonconcurrer<br>being of the table of with<br>f tat joint 10, 70 | BCDL=6.6<br>§ (envelope<br>sed ; end v<br>=1.60 plate<br>is in the plate<br>is in the plate<br>is in the plate<br>is in the plate<br>designer as<br>so otherwi-<br>othor chor<br>por one fac<br>nent (i.e. d<br>oc.<br>d for a 10.0<br>t with any<br>eas where<br>will fit betw<br>rs.<br>ion (by oth<br>standing 5 | Opsf; h=25ft;<br>a) exterior zo<br>vertical left ar<br>grip DOL=1.<br>ane of the tru<br>al to the face<br>ils as applica<br>s per ANSI/TI<br>se indicated.<br>d bearing.<br>the or securely<br>liagonal web)<br>D psf bottom<br>other live loa<br>e load of 20.1<br>a rectangle<br>veen the bott<br>ers) of truss i<br>33 lb uplift at j | ne;<br>d<br>60<br>ss<br>),<br>ble,<br>PI 1.<br>ds.<br>Opsf<br>om<br>o |                       |                             |                          |                                 |                                    |
| FORCES                                         | (lb) - Maximum Com<br>Tension<br>2-16=-131/47, 1-2=0<br>3-4=-55/90, 4-5=-47,<br>6-7=-44/85, 7-8=-62,                                                                                                                                                                                                                                   | )/40, 2-3=-80/80,<br>/127, 5-6=-39/122,                                                                                                                                                                                                                          | 11                                                           | joint 11.<br>) This truss is<br>International                                                                                                                                                                                                                                                                                                                 | 15, 70 lb uplift a<br>designed in accor<br>Residential Coo<br>nd referenced st                                                                                                                                                                                                                                                                                                                                                                                                                           | ordance w<br>le sections                                                                                                                                                                                                                                                                                            | ith the 2018<br>R502.11.1 a                                                                                                                                                                                                                                                                                                              |                                                                       |                       |                             |                          | STATE OF J                      | MISSO                              |
| BOT CHORD                                      | 8-10=-131/42<br>15-16=-69/70, 14-15<br>12-13=-69/70, 11-12                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  | 70,                                                          | DAD CASE(S)                                                                                                                                                                                                                                                                                                                                                   | Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                          |                                                                       |                       |                             | A                        | SCOT<br>SEV                     | T M.                               |
| WEBS                                           | 5-13=-140/0, 4-14=-<br>6-12=-160/97, 7-11=                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  | Β,                                                           |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                          |                                                                       |                       | 2                           | B                        | otto                            | Sert                               |

### NOTES


1) Unbalanced roof live loads have been considered for this design.





| Job     | Truss | Truss Type | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------|-----|-----|--------------------------|-----------|
| B220017 | К2    | Common     | 1   | 1   | Job Reference (optional) | 149887803 |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:11 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



| Scale = | 1:41.3 |
|---------|--------|
|---------|--------|

# Plate Offsets (X, Y): [2:0-3-0,Edge], [4:0-3-0,Edge]

|             |       |                 |                 |          |      |          |       |       | -      |     |               | -        |
|-------------|-------|-----------------|-----------------|----------|------|----------|-------|-------|--------|-----|---------------|----------|
| Loading     | (psf) | Spacing         | 2-0-0           | CSI      |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL (roof) | 25.0  | Plate Grip DOL  | 1.15            | TC       | 0.40 | Vert(LL) | -0.02 | 7-8   | >999   | 360 | MT20          | 197/144  |
| TCDL        | 10.0  | Lumber DOL      | 1.15            | BC       | 0.21 | Vert(CT) | -0.05 | 7-8   | >999   | 240 |               |          |
| BCLL        | 0.0*  | Rep Stress Incr | YES             | WB       | 0.07 | Horz(CT) | 0.01  | 6     | n/a    | n/a |               |          |
| BCDL        | 10.0  | Code            | IRC2018/TPI2014 | Matrix-R |      | Wind(LL) | -0.02 | 7-8   | >999   | 240 | Weight: 36 lb | FT = 10% |

- LUMBER

| TOP CHORD | 2x4 SPF No.2                                  |
|-----------|-----------------------------------------------|
| BOT CHORD | 2x4 SPF No.2                                  |
| WEBS      | 2x4 SPF No.2 *Except* 7-3:2x3 SPF No.2        |
| BRACING   |                                               |
| TOP CHORD | Structural wood sheathing directly applied or |
|           | 6-0-0 oc purlins, except end verticals.       |
| BOT CHORD | Rigid ceiling directly applied or 10-0-0 oc   |
|           | bracing.                                      |
| REACTIONS | (lb/size) 6=568/0-3-8, 8=568/0-3-8            |
|           | Max Horiz 8=144 (LC 7)                        |
|           | Max Uplift 6=-78 (LC 9), 8=-78 (LC 8)         |
| FORCES    | (lb) - Maximum Compression/Maximum            |
|           | Tension                                       |
| TOP CHORD | 1-2=0/40, 2-3=-513/95, 3-4=-513/95,           |
|           | 4-5=0/40, 2-8=-508/122, 4-6=-508/122          |
| BOT CHORD | 7-8=0/336, 6-7=0/336                          |
| WEBS      | 3-7=0/226                                     |

### NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 78 lb uplift at joint 8 and 78 lb uplift at joint 6.

- 6) This truss is designed in accordance with the 2018
  - International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



Page: 1



| Job     | Truss | Truss Type    | Qty | Ply | Lot 121 MN               |           |
|---------|-------|---------------|-----|-----|--------------------------|-----------|
| B220017 | КЗ    | Common Girder | 1   | 2   | Job Reference (optional) | 149887804 |

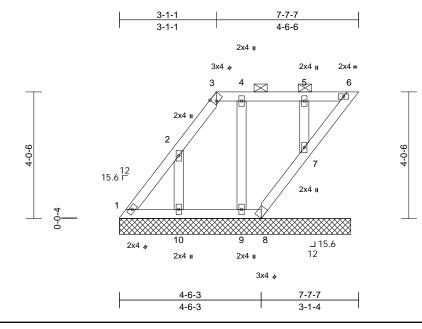
# Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:11



ID:VW78Vr4IUH8xIb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 0-10-8 12-2-8 5-8-0 11-4-0 5-8-0 5-8-0 0-10-8 4x5 II 3 12 8 Г 4-9-5 4-11-0 4-11-0 2 Δ 0-7-2 7-2 1-0-0 5 8 È ₿ 9 14 🕅 10 11 12 13 7 10x12 u 3x10 u 10x12 u HUS26 HUS26 HUS26 HUS26 HUS26 HUS26 5-8-0 11-4-0 5-8-0 5-8-0

Scale = 1:40.2

Plate Offsets (X, Y): [6:0-5-8,Edge]


|                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                               |         |        |         |                                                     |                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------|--------|---------|-----------------------------------------------------|---------------------------------------|
| Loading                                                                                                                                                                                                                                                                                                                    | (psf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2-0-0                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DEFL                                                                                                                                                                                                                                                                                                                | in                                                                                                                            | (loc)   | l/defl | L/d     | PLATES                                              | GRIP                                  |
| TCLL (roof)                                                                                                                                                                                                                                                                                                                | 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Plate Grip DOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.15                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Vert(LL)                                                                                                                                                                                                                                                                                                            | -0.06                                                                                                                         | 7-8     | >999   | 360     | MT20                                                | 197/144                               |
| TCDL                                                                                                                                                                                                                                                                                                                       | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lumber DOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.15                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Vert(CT)                                                                                                                                                                                                                                                                                                            | -0.10                                                                                                                         | 7-8     | >999   | 240     |                                                     |                                       |
| BCLL                                                                                                                                                                                                                                                                                                                       | 0.0*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rep Stress Incr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NO                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Horz(CT)                                                                                                                                                                                                                                                                                                            | 0.01                                                                                                                          | 6       | n/a    | n/a     |                                                     |                                       |
| BCDL                                                                                                                                                                                                                                                                                                                       | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IRC2018/T                                                                                      | PI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Matrix-R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Wind(LL)                                                                                                                                                                                                                                                                                                            | 0.03                                                                                                                          | 7-8     | >999   | 240     | Weight: 106 lb                                      | FT = 10%                              |
| BCDL<br>LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>NOTES<br>1) 2-ply trus<br>(0.131"x3<br>Top chord<br>oc, 2x8 -<br>Bottom cl<br>staggered<br>Web com<br>2) All loads :<br>except if i<br>CASE(S)<br>provided<br>unless ott | 10.0<br>2x4 SPF No.2<br>2x6 SP 2400F 2.0E<br>2x8 SP DSS *Excep<br>Structural wood she<br>6-0-0 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>(lb/size) 6=4282/0<br>8=4282/0<br>Max Horiz 8=-144 (L<br>Max Uplift 6=-159 (L<br>Max Grav 6=4706 (I<br>(lb) - Maximum Com<br>Tension<br>1-2=0/46, 2-3=-3525<br>4-5=0/46, 2-8=-2211<br>7-8=-45/2856, 6-7=-<br>3-7=-41/3600<br>s to be connected toge<br>") nails as follows:<br>2 rows staggered at 0-5<br>nords connected as follows<br>2 rows staggered at 0-5<br>nords connected as follows:<br>2 rows staggered at 0-5<br>nords connected as follows:<br>2 rows staggered at 0-6<br>nords connected as follows:<br>2 rows staggered at 0-6<br>0 rows (b) p) com<br>to distribute only loads<br>herwise indicated. | Code<br>t* 7-3:2x4 SPF No.2<br>athing directly applied<br>cept end verticals.<br>applied or 10-0-0 oc<br>-3-8, (req. 0-3-11),<br>-3-8, (req. 0-3-11),<br>C 6)<br>C 9), 8=-159 (LC 8)<br>LC 16), 8=-4706 (LC 1)<br>opression/Maximum<br>5/158, 3-4=-3524/158<br>1/174, 4-6=-2211/174<br>45/2856<br>ther with 10d<br>s: 2x4 - 1 row at 0-9-0<br>g-0 oc.<br>ows: 2x6 - 2 rows<br>-1 row at 0-9-0 oc.<br>applied to all plies,<br>ck (B) face in the LO)<br>nections have been<br>noted as (F) or (B), | IRC2018/T<br>4) V<br>4) V<br>5) T<br>5) 8) F<br>5) 8) F<br>10) L<br>11) F<br>1) LOAI<br>1)     | Wind: ASCE<br>//asd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph<br>//sd=91mph | Matrix-R<br>7-16; Vult=115m<br>; TCDL=6.0psf; E<br>closed; MWFRS (<br>t and right expose<br>; Lumber DOL=1<br>s been designed<br>d nonconcurrent<br>has been designed<br>n chord in all aree<br>y 2-00-00 wide w<br>y 0 other members<br>Required bearing<br>aring size.<br>hanical connectio<br>capable of withsi<br>9 lb uplift at joint<br>designed in accor<br>Residential Code<br>dn referenced stat<br>on Strong-Tie HUS<br>hvalent spaced at<br>e left end to 10-8<br>bottom chord.<br>les where hanger<br>Standard<br>of Live (balanced)<br>as=1.15 | ph (3-sec<br>Garage Constraints of the sections<br>of the sections<br>o | Wind(LL)<br>wind(LL)<br>wond gust)<br>Opsf; h=25ft;<br>e) exterior zo<br>vertical left ar<br>grip DOL=1.<br>0 psf bottom<br>other live load<br>e load of 20.<br>a rectangle<br>veen the bott<br>int(s) 8, 6 grd<br>ers) of truss i<br>59 lb uplift ar<br>ith the 2018<br>R502,11.1 ar<br>ISI/TPI 1.<br>OG Girder, 4 | 0.03<br>Cat.<br>ne;<br>nd<br>.60<br>ads.<br>0psf<br>om<br>eater<br>to<br>t<br>t<br>and<br>10d<br>g at<br>) to<br>aber.<br>15, |         |        | 240     | STATE OF M<br>STATE OF M<br>SEVI<br>SEVI<br>PE-2001 | MISSOLIN<br>MISSOLIN<br>ER<br>DI 8807 |
| SUPPLEMENTARY BEARING PLATES, SPECIAL ANCHORAGE, OR<br>OTHER MEANS TO ALLOW FOR THE MINIMUM REQUIRED SUPPORT<br>WIDTH (SUCH AS COLUMN CAPS, BEARING BLOCKS, ETC.)<br>ARE THE RESPONSIBILITY OF THE TRUSS MANUFACTURER<br>OR THE RESPONSIBILITY OF THE TRUSS MANUFACTURER                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                               |         |        | January | L EN022<br>27,2022                                  |                                       |
| Design v<br>a truss s<br>building<br>is always<br>fabricatio                                                                                                                                                                                                                                                               | OK THE BUILDING<br>NING - Verify design paramete<br>valid for use only with MiTek@<br>ystem. Before use, the buildi<br>design. Bracing indicated is<br>s required for stability and to<br>on, storage, delivery, erection<br>nformation available from T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ers and READ NOTES ON T<br>o connectors. This design is<br>ng designer must verify the<br>to prevent buckling of indiv<br>prevent collapse with possi<br>and bracing of trusses and                                                                                                                                                                                                                                                                                                                | based only upo<br>applicability of<br>idual truss web<br>ble personal inju<br>d truss systems, | on parameters s<br>design paramet<br>and/or chord me<br>ury and property<br>, see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | shown, and is for an in<br>ers and properly incor<br>embers only. Addition<br>( damage. For genera<br>ANSI/TPI1 Quality Cri                                                                                                                                                                                                                                                                                                                                                                                                                                 | dividual bui<br>porate this<br>al tempora<br>al guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | lding component<br>design into the c<br>ry and permaner<br>regarding the                                                                                                                                                                                                                                            | t, not<br>overall<br>nt bracing                                                                                               | nponent |        |         | Nitek°<br>16023 Swingley F<br>Chesterfield, MO      |                                       |

| Jo | ob     | Truss | Truss Type   | Qty | Ply | Lot 121 MN               |           |
|----|--------|-------|--------------|-----|-----|--------------------------|-----------|
| В  | 220017 | LAY1  | Lay-In Gable | 1   | 1   | Job Reference (optional) | 149887805 |

## Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:11 ID:VW78Vr4IUH8xIb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f







Scale = 1:36.7

Plate Offsets (X, Y): [3:0-1-4,Edge]

|                                                                                              |                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                  |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                           |                                                                                                  |       |        |     | 1              |           |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------|--------|-----|----------------|-----------|
| Loading                                                                                      | (psf)                                                                                                                                                                                                                                                                                                                             | Spacing                                                                                                                                                                                                                                            | 2-0-0                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CSI                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                   | DEFL                                                                                                                                                                                                                                                                                                      | in                                                                                               | (loc) | l/defl | L/d | PLATES         | GRIP      |
| TCLL (roof)                                                                                  | 25.0                                                                                                                                                                                                                                                                                                                              | Plate Grip DOL                                                                                                                                                                                                                                     | 1.15                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TC                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.04                                                                                                                                                                                                                                                                              | Vert(LL)                                                                                                                                                                                                                                                                                                  | n/a                                                                                              | -     | n/a    | 999 | MT20           | 197/144   |
| TCDL                                                                                         | 10.0                                                                                                                                                                                                                                                                                                                              | Lumber DOL                                                                                                                                                                                                                                         | 1.15                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BC                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.02                                                                                                                                                                                                                                                                              | Vert(TL)                                                                                                                                                                                                                                                                                                  | n/a                                                                                              | -     | n/a    | 999 |                |           |
| BCLL                                                                                         | 0.0*                                                                                                                                                                                                                                                                                                                              | Rep Stress Incr                                                                                                                                                                                                                                    | YES                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WB                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.03                                                                                                                                                                                                                                                                              | Horiz(TL)                                                                                                                                                                                                                                                                                                 | 0.00                                                                                             | 6     | n/a    | n/a |                |           |
| BCDL                                                                                         | 10.0                                                                                                                                                                                                                                                                                                                              | Code                                                                                                                                                                                                                                               | IRC201                                                                             | 8/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                            | Matrix-P                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                           |                                                                                                  |       |        |     | Weight: 29 lb  | FT = 10%  |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 2x4 SPF No.2<br>2x4 SPF No.2<br>2x4 SPF No.2<br>2x4 SPF No.2<br>Structural wood she<br>6-0-0 oc purlins, exc<br>2-0-0 oc purlins (6-C<br>Rigid ceiling directly<br>bracing.<br>(lb/size) 1=85/7-4.<br>7=173/7-4<br>9=154/7-4.<br>Max Horiz 1=153 (LC<br>(LC 5), 8-<br>5), 10=-1.<br>Max Grav 1=115 (LC<br>(LC 22), 8<br>1), 10=20 | athing directly applie<br>pept<br>-0 max.): 3-6.<br>applied or 10-0-0 or<br>-7, 6=75/7-4-7,<br>4-7, 10=168/7-4-7,<br>28)<br>6), 6=-41 (LC 8), 7=-<br>-29 (LC 15), 9=-27 (<br>49 (LC 8)<br>17), 6=75 (LC 1), 7<br>3=49 (LC 8), 9=154 (<br>6 (LC 15) | 4)<br>6d or 5)<br>6)<br>7)<br>5 8)<br>9)<br>38<br>LC<br>10<br>LC<br>11<br>LC<br>11 | <ul> <li>Truss design<br/>only. For sti<br/>see Standar<br/>or consult qu</li> <li>Provide adee</li> <li>All plates are<br/>Gable studs</li> <li>This truss hat<br/>chord live lo.</li> <li>* This truss lo</li> <li>on the bottor</li> <li>3-06-00 tall li</li> <li>chord and ai</li> <li>Provide med<br/>bearing plate</li> <li>t, 41 lb uplif<br/>at joint 10, 2</li> <li>N/A</li> <li>This truss is<br/>International<br/>R802.10.2 a</li> </ul> | hed for wind loac<br>uds exposed to v<br>d Industry Gable<br>Jalified building of<br>quate drainage t<br>e 2x4 MT20 unle<br>spaced at 2-0-0<br>as been designe<br>ad nonconcurrer<br>has been designe<br>m chord in all are<br>by 2-00-00 wide<br>ny other membe<br>hanical connect<br>e capable of with<br>t at joint 6, 29 lb<br>7 lb uplift at joint<br>designed in acco<br>Residential Coo<br>nd referenced st | vind (norm<br>End Deta<br>designer a:<br>o prevent v<br>soc.<br>d for a 10.<br>nt with any<br>ed for a 10.<br>nt with any<br>ed for a liv<br>asa where<br>will fit betw<br>rs.<br>ion (by oth<br>standing 5<br>uplift at joi<br>9 and 38<br>ordance w<br>de sections<br>andard AN | al to the face<br>ils as applical<br>is per ANSI/TK<br>water ponding<br>se indicated.<br>) psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle<br>ween the botto<br>ers) of truss t<br>i lb uplift at joi<br>nt 8, 149 lb u<br>lb uplift at joir<br>ith the 2018<br>R F502.11.1 a<br>ISI/TPI 1. | ),<br>ble,<br>ble,<br>pl 1.<br>g.<br>ds.<br>g.<br>opsf<br>om<br>o<br>int<br>plift<br>it 7.<br>nd |       |        |     | rrogn. 2018    |           |
| FORCES                                                                                       | (lb) - Maximum Com<br>Tension<br>1-2=-145/66, 2-3=-8                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                    | 12                                                                                 | or the orient                                                                                                                                                                                                                                                                                                                                                                                                                                        | Irlin representati<br>ation of the purli                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                           | ize                                                                                              |       |        |     |                |           |
|                                                                                              | 4-5=-27/32, 5-6=-27                                                                                                                                                                                                                                                                                                               | /32                                                                                                                                                                                                                                                | L                                                                                  | bottom chore<br>OAD CASE(S)                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                           |                                                                                                  |       |        |     | OF             | MIG       |
| BOT CHORD                                                                                    | 1-10=-32/27, 9-10=-<br>7-8=-58/59, 6-7=-61                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                    |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                           |                                                                                                  |       |        | 4   | ATE OF         | AN OSCILL |
| WEBS                                                                                         | 2-10=-165/173, 4-9=                                                                                                                                                                                                                                                                                                               | -121/47, 5-7=-139/5                                                                                                                                                                                                                                | 8                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                           |                                                                                                  |       |        | H   | SCOT           | TM        |
| NOTES                                                                                        |                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                    |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                           |                                                                                                  |       |        | H   | SEV            |           |
| this desig<br>2) Wind: AS<br>Vasd=91r<br>II; Exp C;<br>cantilever                            | ed roof live loads have<br>n.<br>CE 7-16; Vult=115mph<br>mph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>r left and right exposed<br>ssed; Lumber DOL=1.6                                                                                                                                                                          | (3-second gust)<br>DL=6.0psf; h=25ft; (<br>nvelope) exterior zon<br>; end vertical left and                                                                                                                                                        | Cat.<br>ie;<br>d                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                           |                                                                                                  |       | 1      |     | NOM<br>PE-2001 | DIS807    |

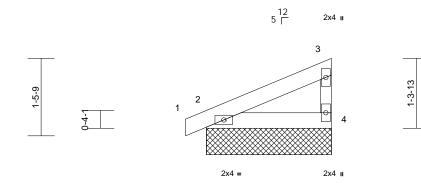
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



January 27,2022

| Job     | Truss | Truss Type | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------|-----|-----|--------------------------|-----------|
| B220017 | V1    | Valley     | 1   | 1   | Job Reference (optional) | 149887806 |

2-4-4 2-4-4


2-4-4

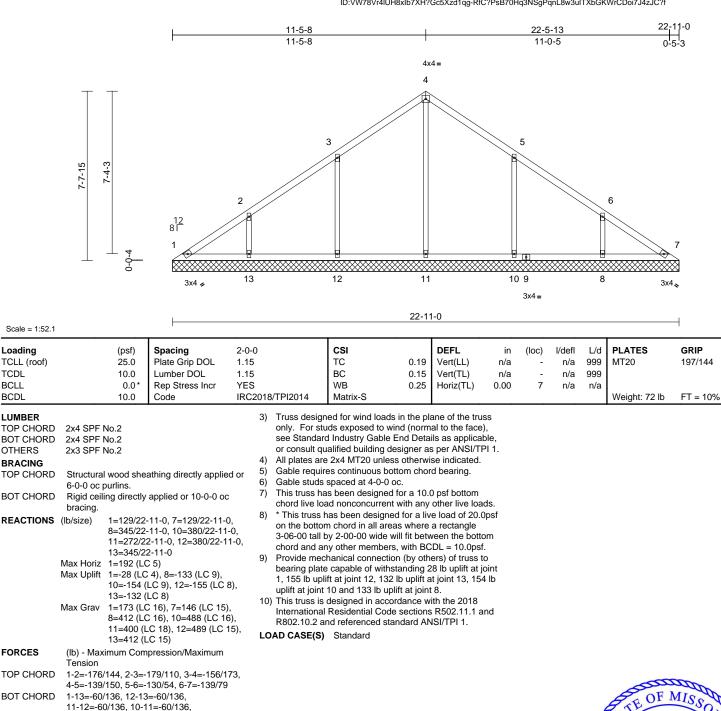
-0-4-12

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:11 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

16023 Swingley Ridge Rd Chesterfield, MO 63017




| Scolo | _ | 1:21.7 |  |
|-------|---|--------|--|
| Scale | = | 1:21.7 |  |

| Loading<br>TCLL (roo<br>TCDL<br>BCLL<br>BCLL<br>BCDL       | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                             | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2014 | CSI<br>TC<br>BC<br>WB<br>Matrix-P                                                 | 0.08<br>0.05<br>0.00 | <b>DEFL</b><br>Vert(LL)<br>Vert(CT)<br>Horz(CT) | in<br>n/a<br>n/a<br>0.00 | (loc)<br>-<br>-<br>4 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 7 lb | <b>GRIP</b><br>197/144<br>FT = 10% |
|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------|----------------------|-------------------------------------------------|--------------------------|----------------------|-----------------------------|--------------------------|--------------------------------|------------------------------------|
| LUMBER<br>TOP CHO<br>BOT CHO<br>WEBS<br>BRACINO<br>TOP CHO | 0RD 2x4 SPF No.2<br>2x3 SPF No.2                                                                                                                                                                                                                                                                                                                                                                  | athing directly applie                                             | Internation<br>R802.10.<br>LOAD CASE            | is designed in acco<br>nal Residential Cod<br>2 and referenced sta<br>S) Standard | le sections          | R502.11.1                                       | and                      |                      |                             |                          |                                |                                    |
| BOT CHO                                                    | 1-10-8 oc purlins, e<br>RD Rigid ceiling directly<br>bracing.                                                                                                                                                                                                                                                                                                                                     |                                                                    | 0                                               |                                                                                   |                      |                                                 |                          |                      |                             |                          |                                |                                    |
| REACTIC                                                    | NS (Ib/size) 2=131/2-4<br>Max Horiz 2=45 (LC<br>Max Uplift 2=-25 (LC                                                                                                                                                                                                                                                                                                                              |                                                                    |                                                 |                                                                                   |                      |                                                 |                          |                      |                             |                          |                                |                                    |
| FORCES                                                     | (lb) - Maximum Com                                                                                                                                                                                                                                                                                                                                                                                | pression/Maximum                                                   |                                                 |                                                                                   |                      |                                                 |                          |                      |                             |                          |                                |                                    |
| TOP CHO<br>BOT CHO                                         | ,                                                                                                                                                                                                                                                                                                                                                                                                 | , 3-4=-76/36                                                       |                                                 |                                                                                   |                      |                                                 |                          |                      |                             |                          |                                |                                    |
| NOTES                                                      |                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |                                                 |                                                                                   |                      |                                                 |                          |                      |                             |                          |                                |                                    |
| Vasd<br>II; Ex<br>cantil<br>right (<br>2) Truss            | Wind: ASCE 7-16; Vult=115mph (3-second gust)<br>Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.<br>II; Exp C; Enclosed; MWFRS (envelope) exterior zone;<br>cantilever left and right exposed ; end vertical left and<br>right exposed; Lumber DOL=1.60 plate grip DOL=1.60<br>Truss designed for wind loads in the plane of the truss<br>only. For studs exposed to wind (normal to the face), |                                                                    |                                                 |                                                                                   |                      |                                                 |                          |                      |                             |                          |                                |                                    |
|                                                            | tandard Industry Gable En                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |                                                 |                                                                                   |                      |                                                 |                          |                      |                             |                          | OF                             | MIG                                |
|                                                            | nsult qualified building design<br>requires continuous botto                                                                                                                                                                                                                                                                                                                                      |                                                                    | 11.                                             |                                                                                   |                      |                                                 |                          |                      |                             | 1                        | TEOF                           | W OSCI                             |
|                                                            | studs spaced at 4-0-0 oc.                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |                                                 |                                                                                   |                      |                                                 |                          |                      |                             | B                        | S SCOT                         |                                    |
|                                                            | russ has been designed fo                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |                                                 |                                                                                   |                      |                                                 |                          |                      |                             | B                        | SEV SEV                        |                                    |
| 6) * This<br>on the<br>3-06-                               | live load nonconcurrent wi<br>truss has been designed f<br>bottom chord in all areas<br>00 tall by 2-00-00 wide will<br>and any other members.                                                                                                                                                                                                                                                    | or a live load of 20.0 where a rectangle                           | psf                                             |                                                                                   |                      |                                                 |                          |                      |                             | S                        | oit                            | Fortes                             |
| 7) Provi<br>beari                                          | de mechanical connection in<br>ng plate capable of withstar                                                                                                                                                                                                                                                                                                                                       |                                                                    |                                                 |                                                                                   |                      |                                                 |                          |                      |                             | N.                       | PE-2001                        | 188                                |
|                                                            | 25 lb uplift at joint 2.<br>ed plate or shim required to                                                                                                                                                                                                                                                                                                                                          | o provide full bearing                                             | ]                                               |                                                                                   |                      |                                                 |                          |                      |                             |                          | SSIONA                         | LEN                                |
| surfa                                                      | e with truss chord at joint(                                                                                                                                                                                                                                                                                                                                                                      | s) 2.                                                              |                                                 |                                                                                   |                      |                                                 |                          |                      |                             |                          | all a                          | y 27,2022                          |

| Job     | Truss | Truss Type | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------|-----|-----|--------------------------|-----------|
| B220017 | V2    | Valley     | 1   | 1   | Job Reference (optional) | 149887807 |

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Jan 25 15:07:12 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1



- 8-10=-60/136, 7-8=-60/136 WEBS
- 4-11=-193/0, 3-12=-319/204, 2-13=-275/174, 5-10=-319/204, 6-8=-276/174
- NOTES

FORCES

Loading

TCDI

BCLL

BCDL

LUMBER

OTHERS

BRACING

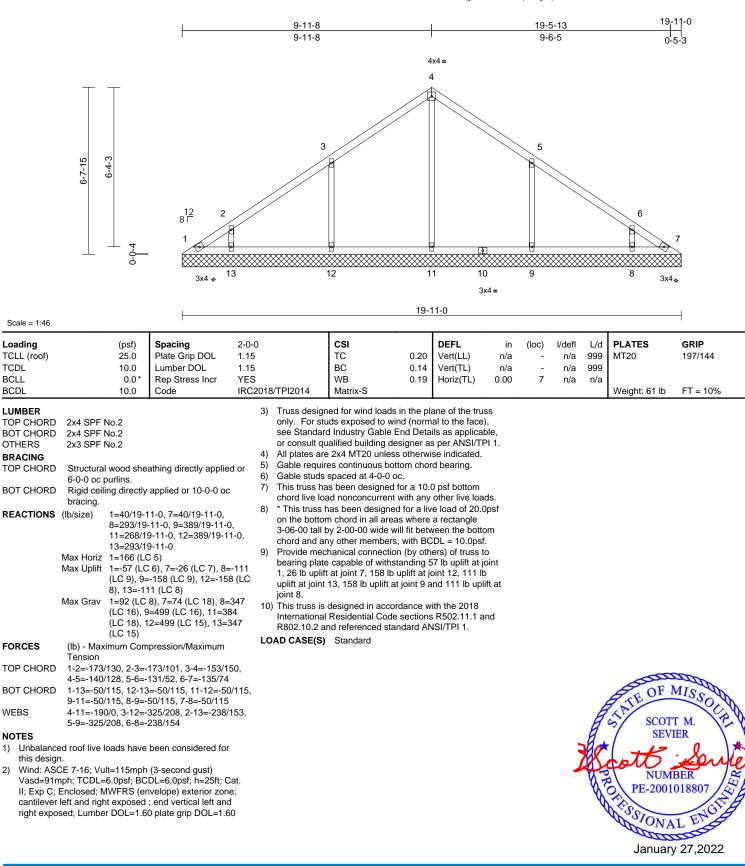
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

SCOTT M. SEVIER NUMBER PE-2001018807 0 SSIONAL January 27,2022



| Job     | Truss | Truss Type | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------|-----|-----|--------------------------|-----------|
| B220017 | V3    | Valley     | 1   | 1   | Job Reference (optional) | 149887808 |

TCDI

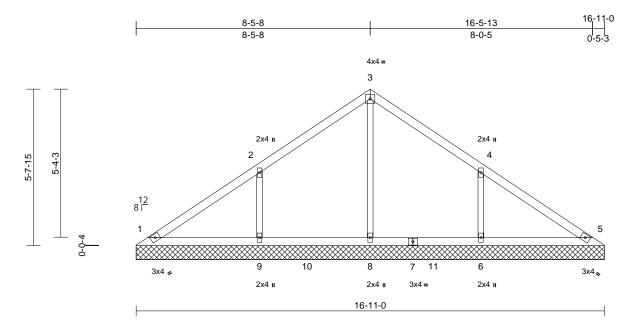

BCLL

BCDL

2)

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Jan 25 15:07:12 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1






| Job     | Truss | Truss Type | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------|-----|-----|--------------------------|-----------|
| B220017 | V4    | Valley     | 1   | 1   | Job Reference (optional) | 149887809 |

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries. Inc. Tue Jan 25 15:07:12 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



| Scale = 1:41.6 |
|----------------|
|----------------|

|                                                                                              |                                                                                                                                                                                                | _                                                                                                                                                                                                         |                                            |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                             |                                                                                                                                      |                                                                                                                                                                               |                         |       |        |     |                |          |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|--------|-----|----------------|----------|
| Loading                                                                                      | (psf)                                                                                                                                                                                          | Spacing                                                                                                                                                                                                   | 2-0-0                                      |                                                                                                                                                                                                                                                           | CSI                                                                                                                                                                                                                                                                         |                                                                                                                                      | DEFL                                                                                                                                                                          | in                      | (loc) | l/defl | L/d | PLATES         | GRIP     |
| TCLL (roof)                                                                                  | 25.0                                                                                                                                                                                           | Plate Grip DOL                                                                                                                                                                                            | 1.15                                       |                                                                                                                                                                                                                                                           | TC                                                                                                                                                                                                                                                                          | 0.22                                                                                                                                 | Vert(LL)                                                                                                                                                                      | n/a                     | -     | n/a    | 999 | MT20           | 197/144  |
| TCDL                                                                                         | 10.0                                                                                                                                                                                           | Lumber DOL                                                                                                                                                                                                | 1.15                                       |                                                                                                                                                                                                                                                           | BC                                                                                                                                                                                                                                                                          | 0.13                                                                                                                                 | Vert(TL)                                                                                                                                                                      | n/a                     | -     | n/a    | 999 |                |          |
| BCLL                                                                                         | 0.0*                                                                                                                                                                                           | Rep Stress Incr                                                                                                                                                                                           | YES                                        |                                                                                                                                                                                                                                                           | WB                                                                                                                                                                                                                                                                          | 0.13                                                                                                                                 | Horiz(TL)                                                                                                                                                                     | 0.00                    | 5     | n/a    | n/a |                |          |
| BCDL                                                                                         | 10.0                                                                                                                                                                                           | Code                                                                                                                                                                                                      | IRC201                                     | 8/TPI2014                                                                                                                                                                                                                                                 | Matrix-S                                                                                                                                                                                                                                                                    |                                                                                                                                      |                                                                                                                                                                               |                         |       |        |     | Weight: 49 lb  | FT = 10% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 6-0-0 oc purlins.<br>Rigid ceiling directl<br>bracing.<br>(Ib/size) 1=168/11<br>6=426/11<br>9=426/11<br>9=426/11<br>Max Horiz 1=-139 (<br>Max Uplift 1=-15 (L<br>9=-172 (<br>Max Grav 1=191 (L | eathing directly applie<br>y applied or 10-0-0 oc<br>6-11-0, 5=168/16-11-(<br>6-11-0, 8=254/16-11-(<br>6-11-0<br>LC 4)<br>C 9), 6=-171 (LC 9),<br>LC 8)<br>.C 16), 5=171 (LC 15)<br>.C 16), 8=353 (LC 15) | 6)<br>7)<br>d or 8)<br>;<br>), 9)<br>,, L( | <ul> <li>This truss ha<br/>chord live loa</li> <li>* This truss h<br/>on the bottor</li> <li>3-06-00 tall b</li> <li>chord and ar</li> <li>Provide mec</li> <li>bearing plate</li> <li>1, 172 lb upli</li> <li>This truss is<br/>International</li> </ul> | s been designed<br>ad nonconcurrent<br>has been designed<br>in chord in all area<br>by 2-00-00 wide w<br>by other members<br>hanical connection<br>of capable of withst<br>ft at joint 9 and 17<br>designed in accor<br>Residential Code<br>and referenced star<br>Standard | with any<br>d for a liv<br>as where<br>rill fit betw<br>, with BC<br>n (by oth<br>tanding 1<br>71 lb uplit<br>rdance w<br>s sections | other live loa<br>e load of 20.0<br>a rectangle<br>veen the botto<br>CDL = 10.0psf<br>ers) of truss t<br>5 lb uplift at ji<br>ft at joint 6.<br>ith the 2018<br>s R502.11.1 a | Dpsf<br>om<br>o<br>oint |       |        |     |                |          |
| FORCES                                                                                       | (lb) - Maximum Cor<br>Tension                                                                                                                                                                  | mpression/Maximum                                                                                                                                                                                         |                                            |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                             |                                                                                                                                      |                                                                                                                                                                               |                         |       |        |     |                |          |
| TOP CHORD                                                                                    | 1-2=-147/104, 2-3=<br>4-5=-112/68                                                                                                                                                              | -148/126, 3-4=-140/1                                                                                                                                                                                      | 05,                                        |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                             |                                                                                                                                      |                                                                                                                                                                               |                         |       |        |     |                |          |
| BOT CHORD                                                                                    | 1-9=-41/94, 8-9=-4<br>5-6=-41/94                                                                                                                                                               | 1/94, 6-8=-41/94,                                                                                                                                                                                         |                                            |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                             |                                                                                                                                      |                                                                                                                                                                               |                         |       |        |     |                |          |
| WEBS                                                                                         | 3-8=-184/0, 2-9=-3                                                                                                                                                                             | 47/218, 4-6=-347/217                                                                                                                                                                                      |                                            |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                             |                                                                                                                                      |                                                                                                                                                                               |                         |       |        |     | COOL           | ADD      |
| NOTES                                                                                        |                                                                                                                                                                                                |                                                                                                                                                                                                           |                                            |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                             |                                                                                                                                      |                                                                                                                                                                               |                         |       |        |     | B & OF I       | MIS SIN  |
| this desigr<br>2) Wind: ASC                                                                  | n.<br>CE 7-16; Vult=115mp                                                                                                                                                                      | e been considered for<br>h (3-second gust)<br>CDL=6.0psf; h=25ft; C                                                                                                                                       |                                            |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                             |                                                                                                                                      |                                                                                                                                                                               |                         |       |        |     | STATE OF A     |          |
| II; Exp C;<br>cantilever<br>right expo<br>3) Truss des                                       | Enclosed; MWFRS (e<br>left and right exposed<br>sed; Lumber DOL=1.<br>ligned for wind loads i                                                                                                  | d; end vertical left and<br>60 plate grip DOL=1.6<br>n the plane of the trus<br>d (normal to the face)                                                                                                    | e;<br>1<br>60<br>s                         |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                             |                                                                                                                                      |                                                                                                                                                                               |                         |       | -      | K   | NUM<br>PE-2001 |          |

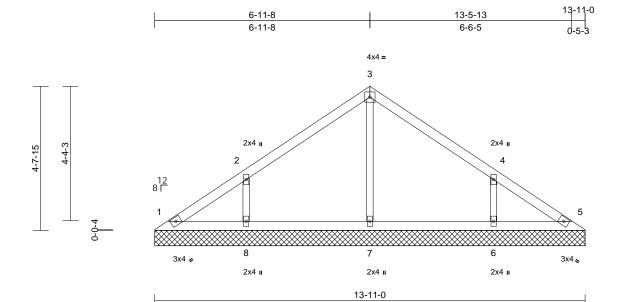
only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.

January 27,2022

TESSIONAL




E

| Job     | Truss | Truss Type | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------|-----|-----|--------------------------|-----------|
| B220017 | V5    | Valley     | 1   | 1   | Job Reference (optional) | 149887810 |

# Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:12 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1



| Scale | = | 1:37.3 |
|-------|---|--------|

| Loading<br>TCLL (roof)<br>TCDL<br>BCLL                  | (psf)<br>25.0<br>10.0<br>0.0*                                                                                                                                               | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr                      | 2-0-0<br>1.15<br>1.15<br>YES |                                                                                                                                                                                                                                    | CSI<br>TC<br>BC<br>WB                                                                                                                                                                                                                                                                 | 0.17<br>0.10<br>0.09                                                                                             | <b>DEFL</b><br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                                | in<br>n/a<br>n/a<br>0.00 | (loc)<br>-<br>-<br>5 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20 | <b>GRIP</b><br>197/144 |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------|-----------------------------|--------------------------|----------------|------------------------|
|                                                         | 6-0-0 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>(lb/size) 1=100/13<br>6=345/13<br>Max Horiz 1=-113 (L<br>Max Uplift 1=-16 (LC<br>8=-144 (L<br>Max Grav 1=113 (LG | LC 4)<br>C 4), 6=-143 (LC 9),<br>LC 8)<br>C 16), 5=100 (LC 1),<br>C 16), 7=282 (LC 1), | 7)<br>d or 8)<br>:<br>9)     | This truss ha<br>chord live loa<br>* This truss h<br>on the botton<br>3-06-00 tall b<br>chord and an<br>Provide meci<br>bearing plate<br>bearing plate<br>bearing plate<br>bearing state bearing<br>this truss is<br>International | Matrix-S<br>s been designed f<br>ad nonconcurrent<br>has been designed<br>n chord in all area<br>by 2-00-00 wide wi<br>y other members.<br>hanical connection<br>capable of withst<br>ft at joint 8 and 14<br>designed in accor<br>Residential Code<br>nd referenced star<br>Standard | with any<br>I for a liv<br>s where<br>ill fit betw<br>n (by oth<br>anding 1<br>3 lb uplit<br>dance w<br>sections | other live load<br>e load of 20.0<br>a rectangle<br>veen the botto<br>ers) of truss to<br>6 lb uplift at jo<br>ft at joint 6.<br>ith the 2018<br>s R502.11.1 ar | psf<br>m<br>D<br>Dint    |                      |                             |                          | Weight: 39 lb  | FT = 10%               |
| FORCES                                                  | (lb) - Maximum Com<br>Tension                                                                                                                                               | npression/Maximum                                                                      |                              |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                       |                                                                                                                  |                                                                                                                                                                 |                          |                      |                             |                          |                |                        |
| TOP CHORD                                               | 1-2=-122/85, 2-3=-1<br>4-5=-95/46                                                                                                                                           | 45/104, 3-4=-140/81                                                                    | ,                            |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                       |                                                                                                                  |                                                                                                                                                                 |                          |                      |                             |                          |                |                        |
| BOT CHORD                                               | 1-8=-29/76, 7-8=-29<br>5-6=-29/76                                                                                                                                           | /76, 6-7=-29/76,                                                                       |                              |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                       |                                                                                                                  |                                                                                                                                                                 |                          |                      |                             |                          |                |                        |
| WEBS                                                    |                                                                                                                                                                             | 90/185, 4-6=-290/18                                                                    | 5                            |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                       |                                                                                                                  |                                                                                                                                                                 |                          |                      |                             |                          | OF             | A DE                   |
| this design<br>2) Wind: ASC<br>Vasd=91m<br>II; Exp C; I | ed roof live loads have<br>CE 7-16; Vult=115mph<br>iph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (ei<br>loft and right exposed                                                    | n (3-second gust)<br>DL=6.0psf; h=25ft; C<br>nvelope) exterior zon                     | Cat.<br>e;                   |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                       |                                                                                                                  |                                                                                                                                                                 |                          |                      |                             | -                        | STATE OF M     | T M.<br>ER             |

cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

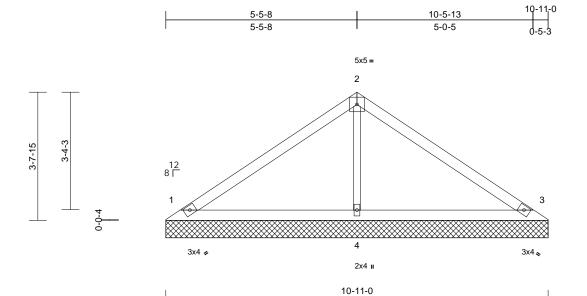
5) Gable studs spaced at 4-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



NUMBER

PE-2001018807


E

O

| Job     | Truss | Truss Type | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------|-----|-----|--------------------------|-----------|
| B220017 | V6    | Valley     | 1   | 1   | Job Reference (optional) | 149887811 |

# Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:13 ID:VW78Vr4IUH8xIb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1



| Scale | i — 1 | 1:32.9 |  |
|-------|-------|--------|--|

| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                  | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                           | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201 | 8/TPI2014                                                                        | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                  | 0.35<br>0.21<br>0.09                                                                                    | <b>DEFL</b><br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                 | in<br>n/a<br>n/a<br>0.00 | (loc)<br>-<br>-<br>3 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 29 lb | <b>GRIP</b><br>197/144<br>FT = 10% |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD | 2x4 SPF No.2<br>2x4 SPF No.2<br>2x3 SPF No.2<br>Structural wood shea<br>6-0-0 oc purlins.<br>Rigid ceiling directly<br>bracing. | athing directly applie                                             | 8)<br>9)<br>ed or                      | Provide mec<br>bearing plate<br>1, 55 lb uplif<br>This truss is<br>International | hanical conne<br>capable of v<br>at joint 3 and<br>designed in a<br>Residential (<br>nd referenced | ection (by oth<br>vithstanding 4<br>d 17 lb uplift a<br>accordance wi<br>Code sections<br>d standard AN | 4 lb uplift at j<br>it joint 4.<br>ith the 2018<br>s R502.11.1 a | joint                    |                      |                             |                          |                                 |                                    |
|                                                                                 | (lb/size) 1=232/10-<br>4=438/10-<br>Max Horiz 1=-87 (LC<br>Max Uplift 1=-44 (LC<br>(LC 8)                                       | \$ 4)                                                              |                                        |                                                                                  |                                                                                                    |                                                                                                         |                                                                  |                          |                      |                             |                          |                                 |                                    |
| FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>NOTES                               | (lb) - Maximum Com<br>Tension<br>1-2=-173/82, 2-3=-1<br>1-4=-17/80, 3-4=-17/<br>2-4=-285/73                                     | 73/63                                                              |                                        |                                                                                  |                                                                                                    |                                                                                                         |                                                                  |                          |                      |                             |                          |                                 |                                    |

### NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. \* This truss has been designed for a live load of 20.0psf 7)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.





| Job     | Truss | Truss Type | Qty | Ply | Lot 121 MN               |           |
|---------|-------|------------|-----|-----|--------------------------|-----------|
| B220017 | V7    | Valley     | 1   | 1   | Job Reference (optional) | 149887812 |

# ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 7-11-0 7-5-13 3-1-14 4-9-2 3-1-14 1-7-4 2-8-11 3x4 = 4x4 = 2 3 1 12 8 □ 1-9-13 4 0 0-0-4 5 2x4 🍫 2x4 💊 2x4 🛚 7-11-0

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:13

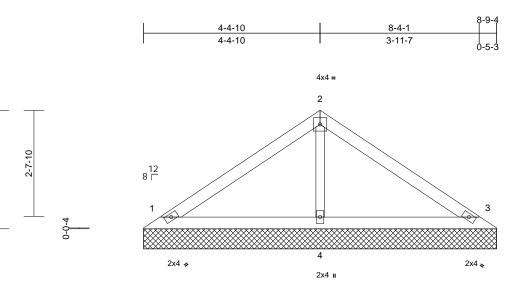
Page: 1

Scale = 1:25.4

Plate Offsets (X, Y): [2:0-2-0,0-2-3]

2-1-8

|                                                                                                                                                                                                                                                                                                                                   | , Y): [2:0-2-0,0-2-3]                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                    |                                                                                                                      |                                                                                                                                                                                                 |                                          |                                                                                                                               |                                                                                                                                                                           |                           |                      |                             |                          |                                             |                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|-----------------------------|--------------------------|---------------------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                                                    | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                       | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                          | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/T                                                                            | PI2014                                                                                                                                                                                          | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-P | 0.13<br>0.13<br>0.02                                                                                                          | <b>DEFL</b><br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                                          | in<br>n/a<br>n/a<br>0.00  | (loc)<br>-<br>-<br>4 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 20 lb             | <b>GRIP</b><br>197/144<br>FT = 10% |
| BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS (I                                                                                                                                                                                                                                                          | 2x4 SPF No.2<br>2x4 SPF No.2<br>2x3 SPF No.2<br>2x3 SPF No.2<br>Structural wood shee<br>6-0-0 oc purlins, exc<br>2-0-0 oc purlins (6-0<br>Rigid ceiling directly<br>bracing.<br>b/size) 1=277/7-1<br>5=96/7-11<br>Max Horiz 1=-48 (LC<br>Max Uplift 1=-66 (LC<br>Max Uplift 1=-67 (LC<br>C 3)                                                                                                                               | ept<br>-0 max.): 2-3.<br>applied or 10-0-0 oc<br>1-0, 4=258/7-11-0,<br>-0<br>: 4)<br>: 8), 4=-62 (LC 8)                                                                                                                                                                                            | d or 9) P<br>10) T<br>11) G<br>13<br>10) T<br>11) G<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | thord live loa<br>This truss h<br>on the bottom<br>-06-00 tall b<br>chord and an<br>Provide mecl<br>earing plate<br>and 62 lb u<br>his truss is<br>nternational<br>8802.10.2 ar<br>Graphical pu |                                          | with any<br>d for a liv<br>s where<br>ill fit betw<br>n (by oth<br>anding 6<br>rdance wi<br>sections<br>ndard AN<br>n does no | other live loa<br>e load of 20.0<br>a rectangle<br>veen the botto<br>ers) of truss t<br>6 lb uplift at jut<br>th the 2018<br>R502.11.1 a<br>(SI/TPI 1.<br>ot depict the s | Dpsf<br>om<br>oint<br>und |                      |                             |                          |                                             |                                    |
| <ul> <li>TOP CHORD<br/>BOT CHORD<br/>WEBS</li> <li>NOTES</li> <li>1) Unbalanced<br/>this design.</li> <li>2) Wind: ASCE<br/>Vasd=91mp<br/>II; Exp C; Er<br/>cantilever le<br/>right expose</li> <li>3) Truss design<br/>only. For st<br/>see Standar<br/>or consult q</li> <li>4) Provide ade</li> <li>5) Gable requir</li> </ul> | (lb) - Maximum Com<br>Tension<br>1-2=-308/91, 2-3=-2:<br>1-5=-81/220, 4-5=-7:<br>3-5=-68/60<br>I roof live loads have<br>E 7-16; Vult=115mph<br>wh; TCDL=6.0psf; BC<br>nclosed; MWFRS (en<br>fit and right exposed<br>ad; Lumber DOL=1.6i<br>ned for wind loads in<br>uds exposed to wind<br>d Industry Gable Enn-<br>ualified building desig-<br>quate drainage to pro-<br>res continuous bottor<br>is spaced at 4-0-0 oc. | 20/107, 3-4=-307/10<br>9/220<br>been considered for<br>(3-second gust)<br>DL=6.0psf; h=25ft; C<br>ivelope) exterior zon<br>; end vertical left and<br>0 plate grip DOL=1.6<br>the plane of the trus<br>(normal to the face)<br>d Details as applicab<br>gner as per ANSI/TP<br>event water ponding | Cat.<br>e;<br>b<br>NO<br>NS<br>,<br>le,<br>I 1.                                                                      |                                                                                                                                                                                                 |                                          |                                                                                                                               |                                                                                                                                                                           |                           |                      |                             |                          | STATE OF J<br>SCOT<br>SEV<br>NUM<br>PE-2001 | T M.<br>HER<br>BER<br>018807       |




January 27,2022

| Job     | Truss | Truss Type |   | Ply | Lot 121 MN               |           |
|---------|-------|------------|---|-----|--------------------------|-----------|
| B220017 | V8    | Valley     | 1 | 1   | Job Reference (optional) | 149887813 |

# Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Jan 25 15:07:13 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f





| Scale = 1:28.6                                                     |                                                                                                                                                                                                                                                                |                 |         | 1         |                                          |                                                   |           |      |       |        |     |               |          |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|-----------|------------------------------------------|---------------------------------------------------|-----------|------|-------|--------|-----|---------------|----------|
| Loading                                                            | (psf)                                                                                                                                                                                                                                                          | Spacing         | 2-0-0   |           | CSI                                      |                                                   | DEFL      | in   | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL (roof)                                                        | 25.0                                                                                                                                                                                                                                                           | Plate Grip DOL  | 1.15    |           | тс                                       | 0.29                                              | Vert(LL)  | n/a  | -     | n/a    | 999 | MT20          | 197/144  |
| TCDL                                                               | 10.0                                                                                                                                                                                                                                                           | Lumber DOL      | 1.15    |           | BC                                       | 0.13                                              | Vert(TL)  | n/a  | -     | n/a    | 999 |               |          |
| BCLL                                                               | 0.0*                                                                                                                                                                                                                                                           | Rep Stress Incr | YES     |           | WB                                       | 0.05                                              | Horiz(TL) | 0.00 | 3     | n/a    | n/a |               |          |
| BCDL                                                               | 10.0                                                                                                                                                                                                                                                           | Code            | IRC2018 | 3/TPI2014 | Matrix-P                                 |                                                   |           |      |       |        |     | Weight: 23 lb | FT = 10% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD | 8)       Provide mechanical connection (by bearing plate capable of withstandin 1 and 53 lb uplift at joint 3.         2x4 SPF No.2       9)         2x3 SPF No.2       9)         This truss is designed in accordance International Residential Code section |                 |         |           | hstanding 4<br>cordance w<br>de sections | 4 lb uplift at j<br>ith the 2018<br>5 R502.11.1 a | joint     |      |       |        |     |               |          |

8-9-4

| TOP CHORD                               | OP CHORD Structural wood sheathing directly applied |                                  |  |  |  |  |  |
|-----------------------------------------|-----------------------------------------------------|----------------------------------|--|--|--|--|--|
|                                         | 6-0-0 oc p                                          | ourlins.                         |  |  |  |  |  |
| BOT CHORD                               | Rigid ceili                                         | ng directly applied or 10-0-0 oc |  |  |  |  |  |
|                                         | bracing.                                            |                                  |  |  |  |  |  |
| REACTIONS                               | (lb/size)                                           | 1=199/8-9-4, 3=199/8-9-4,        |  |  |  |  |  |
|                                         |                                                     | 4=310/8-9-4                      |  |  |  |  |  |
|                                         | Max Horiz                                           | 1=-69 (LC 4)                     |  |  |  |  |  |
|                                         | Max Uplift                                          | 1=-44 (LC 8), 3=-53 (LC 9)       |  |  |  |  |  |
| FORCES (Ib) - Maximum Compression/Maxim |                                                     |                                  |  |  |  |  |  |
|                                         | Tonoion                                             |                                  |  |  |  |  |  |

2-11-5

Tension TOP CHORD 1-2=-123/63, 2-3=-119/47 BOT CHORD 1-4=-14/58, 3-4=-14/58

- WEBS 2-4=-211/53 NOTES
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

LOAD CASE(S) Standard





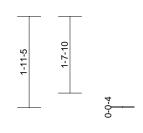
| Job     | Truss | Truss Type | Qty | Ply | Lot 121 MN               |           |  |  |
|---------|-------|------------|-----|-----|--------------------------|-----------|--|--|
| B220017 | V9    | Valley     | 1   | 1   | Job Reference (optional) | 149887814 |  |  |

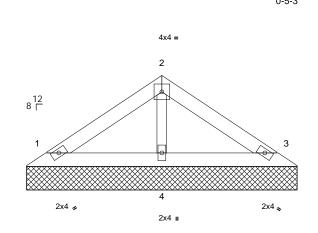
2-10-10

2-10-10

Wheeler Lumber, Waverly, KS - 66871,

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Jan 25 15:07:13 ID:VW78Vr4IUH8xlb7XH?Gc5Xzd1qg-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f


5-4-1


2-5-7



L







5-9-4

BO

| Scale = 1:24.6                                                    |       |                 |                 |          |      |           |      |          |        |     |               |          |
|-------------------------------------------------------------------|-------|-----------------|-----------------|----------|------|-----------|------|----------|--------|-----|---------------|----------|
| Loading                                                           | (psf) | Spacing         | 2-0-0           | CSI      |      | DEFL      | in   | (loc)    | l/defl | L/d | PLATES        | GRIP     |
| TCLL (roof)                                                       | 25.0  | Plate Grip DOL  | 1.15            | тс       | 0.10 | Vert(LL)  | n/a  | -        | n/a    | 999 | MT20          | 197/144  |
| TCDL                                                              | 10.0  | Lumber DOL      | 1.15            | BC       | 0.05 | Vert(TL)  | n/a  | -        | n/a    | 999 |               |          |
| BCLL                                                              | 0.0*  | Rep Stress Incr | YES             | WB       | 0.02 | Horiz(TL) | 0.00 | 3        | n/a    | n/a |               |          |
| BCDL                                                              | 10.0  | Code            | IRC2018/TPI2014 | Matrix-P |      |           |      |          |        |     | Weight: 14 lb | FT = 10% |
| LUMBER 8) Provide mecha<br>TOP CHORD 2x4 SPF No.2 bearing plate c |       |                 |                 |          |      |           |      | <u>.</u> |        |     |               |          |

| BOT CHORD | 2x4 SPF I                          | No.2                               |  |  |  |  |
|-----------|------------------------------------|------------------------------------|--|--|--|--|
| OTHERS    | 2x3 SPF I                          | No.2                               |  |  |  |  |
| BRACING   |                                    |                                    |  |  |  |  |
| TOP CHORD | Structura                          | wood sheathing directly applied or |  |  |  |  |
|           | 5-10-0 oc                          | purlins.                           |  |  |  |  |
| BOT CHORD | Rigid ceil                         | ing directly applied or 10-0-0 oc  |  |  |  |  |
|           | bracing.                           |                                    |  |  |  |  |
| REACTIONS | (lb/size)                          | 1=123/5-9-4, 3=123/5-9-4,          |  |  |  |  |
|           |                                    | 4=192/5-9-4                        |  |  |  |  |
|           | Max Horiz                          | 1=-42 (LC 4)                       |  |  |  |  |
|           | Max Uplift                         | 1=-27 (LC 8), 3=-33 (LC 9)         |  |  |  |  |
| FORCES    | (lb) - Maximum Compression/Maximum |                                    |  |  |  |  |

FORCES

- Tension TOP CHORD 1-2=-76/39, 2-3=-74/29
- BOT CHORD 1-4=-9/36, 3-4=-9/36 WEBS 2-4=-131/33

### NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

istanding 27 lb uplift at joint 1 and 33 lb uplift at joint 3.

This truss is designed in accordance with the 2018 9) International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

