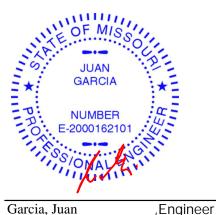


MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

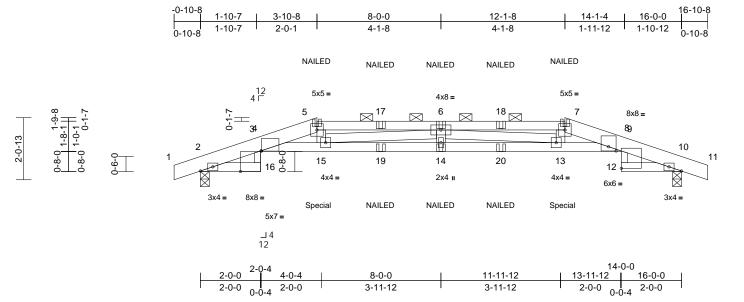

Re: B220011 Lot 119 MN

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Wheeler - Waverly.

Pages or sheets covered by this seal: I49718410 thru I49718456

My license renewal date for the state of Missouri is December 31, 2022.

Missouri COA: Engineering 001193



January 17,2022

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	A1	Hip Girder	1	2	Job Reference (optional)	149718410

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:37 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:38.3

Plate Offsets (X, Y): [4:0-0-1,0-0-2], [8:0-3-0,0-1-11], [9:Edge,0-1-1], [16:1-4-0,Edge]

Plate Olisets	(X, Y): [4:0-0-1,0-0-2],	[8:0-3-0,0-1-11], [9:1		1], [16:1-4-0,E0	igej	-							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.89 0.91 0.11	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.28 -0.50 0.23 0.24	(loc) 14 14 10 14	l/defl >679 >376 n/a >780	L/d 360 240 n/a 240	PLATES MT20 Weight: 113 lb	GRIP 197/144 FT = 10%
_						-						0	
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE	 2x4 SPF No.2 *Exce No.2 2x4 SPF No.2 	pt* 16-3,9-12:2x3 SF athing directly applie	2 vF 4)	 this design. Wind: ASCE Vasd=91mpl II; Exp C; En cantilever lef right expose Provide aded This truss has 	roof live loads ha 7-16; Vult=115n h; TCDL=6.0psf; closed; MWFRS t and right expos d; Lumber DOL= quate drainage to as been designed	nph (3-see BCDL=6. (envelop sed ; end 1.60 plate prevent I for a 10.	cond gust) Dpsf; h=25ft; e) exterior zo rertical left ar grip DOL=1. water ponding D psf bottom	Cat. ne; nd 60 g.			F), 13=	-195 (F), 17=-65	195 (F), 6=-65 (F), (F), 18=-65 (F),
BOT CHORD		,	7)	* This truss h	ad nonconcurren nas been designe	ed for a liv	e load of 20.0						
REACTIONS	0		8)	3-06-00 tall t chord and ar	m chord in all are by 2-00-00 wide w by other member	will fit betv s.	veen the bott						
FORCES	(lb) - Maximum Com Tension		8)	 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 280 lb uplift at joint 2 and 280 lb uplift at joint 10. 									
TOP CHORD	0 1-2=0/12, 2-3=-740/ 4-5=-4647/1029, 5-6 6-7=-4727/1032, 7-8	6=-4727/1054,	-,	 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) Graphical purlin representation does not depict the size 									
BOT CHORD	 2-16=-67/322, 3-16= 14-15=-1262/5892, 8-13=-951/4606, 9-1 	8/101, 4-15=-994/4 13-14=-1262/5892, 2=-7/101, 10-12=-63	506, ¹¹ /322 1 [,]	or the orienta bottom chore	ation of the purlin	along the	top and/or	5120					Ш <i>ь.</i>
WEBS	5-15=-92/620, 6-15= 6-13=-1269/298, 7-1	=-1269/300, 6-14=0/1 3=-93/620	,		") toe-nails per N other connection							NE OF /	AISS
(0.131"x3 Top chor	s to be connected toge 3") nails as follows: ds connected as follows d at 0-9-0 oc, 2x4 - 1 ro	s: 2x6 - 2 rows		provided suf lb down and lb up at 12-0	ficient to support 54 lb up at 3-10 0-0 on bottom ch lection device(s)	concentra -8, and 19 ord. The	áted load(s) 1 95 lb down ar design/select	nd 54			*****	JUA GAR	A
Bottom c 0-9-0 oc, Web con 2) All loads except if CASE(S) provided	hords connected as foll 2x3 - 1 row at 0-9-0 oc nected as follows: 2x4 - are considered equally noted as front (F) or ba section. Ply to ply conr to distribute only loads herwise indicated.	ows: 2x4 - 1 row at 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO nections have been	1)	OAD CASE(S) Dead + Roo Plate Increa Uniform Lo Vert: 1-5 10-12=-2	of Live (balanced ase=1.15 ads (lb/ft) =-70, 5-7=-70, 7-	,		,			Philip	E-20001	62101 . 4

January 17,2022

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	A2	Нір	1	1	Job Reference (optional)	149718411

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:39 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

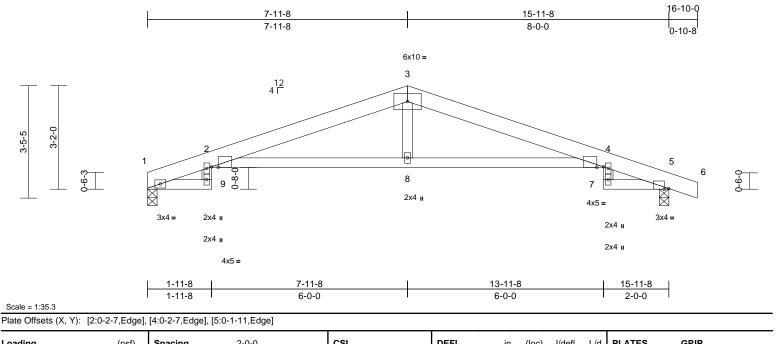
0-9-0

16-10-0 5-10-0 10-1-0 15-11-8 5-10-0 4-3-0 5-10-8 0-10-8 6x6 = 8x8 = 12 4 Г 0-1-9 3 4 2-5-8 \bowtie \bowtie 2-3-15 2-3-15 2-8-13 L¢ 6 0 0 0-6-3 0-8-0 7 10 9 11 8 \mathbb{A} 2x4 II 3x4 = 4x5 = 3x4 = 2x4 🛛 3x5 = 2x4 u 2x4 II 2x4 II 4x5 = 5-8-12 10-2-4 13-11-8 15-11-8 1-11-8 1-11-8 3-9-4 4-5-8 3-9-4 2-0-0

Scale = 1:36.1

Plate Offsets (X, Y): [1:0-2-7,Edge], [2:0-2-7,Edge], [5:0-2-7,Edge]

	(X, T): [1:0 2 7,20g0];	[2:0 2 1,2dg0], [0:0	21,20g0]										
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.87	Vert(LL)	-0.20	9-10	>954	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.75	Vert(CT)	-0.36	9-10	>522	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.10	Horz(CT)	0.25	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/T	FPI2014	Matrix-S		Wind(LL)	0.15	2-10	>999	240	Weight: 53 lb	FT = 10%
			0) [Dava dalar ya a d									
LUMBER TOP CHORD			΄.		hanical connection capable of withs								
BOT CHORD	2x6 SPF No.2 *Exce 2x4 SPF No.2 *Exce		-		uplift at joint 6.	stantaning i	TO ID upint a	t joint					
BOT OTOTOL	No.2	pt 11 2,0 0.2x0 01			designed in acco	ordance w	ith the 2018						
WEBS	2x3 SPF No.2				Residential Cod			and					
BRACING			F	R802.10.2 aı	nd referenced sta	andard AN	ISI/TPI 1.						
TOP CHORD	Structural wood she	athing directly applie			rlin representatio			size					
	2-2-0 oc purlins, exc		C		tion of the purlin	along the	e top and/or						
	2-0-0 oc purlins (4-1	,		pottom chore									
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	; LOA	D CASE(S)	Standard								
	bracing.												
REACTIONS	· /	3-8, 6=779/0-3-8											
	Max Horiz 1=-42 (LC												
	Max Uplift 1=-116 (L												
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-303/75, 2-3=-1	987/304 3-41913	301										
	4-5=-1986/280, 5-6=		501,										
BOT CHORD	,												
	9-10=-264/1914, 5-9	9=-208/1920, 5-8=0/6	65,										
	6-8=0/13												
WEBS	3-10=0/177, 3-9=-18	35/186, 4-9=0/177											
NOTES													1117
,	ed roof live loads have	been considered for										Nº OF	MISSI
this desigr		(a. 1)									3	N.XE	
	CE 7-16; Vult=115mph		N -4								~	X4	-
	nph; TCDL=6.0psf; BC Enclosed; MWFRS (er										20	JUA	N 2
	left and right exposed										2.	: CAR	CIA : 5
	sed; Lumber DOL=1.6										- *		
3) Provide ad	dequate drainage to pr	event water ponding									-		
	has been designed for										=	NUM	BER :
	load nonconcurrent wi											C. E-20001	62101
	s has been designed f		psf								-1		
	tom chord in all areas all by 2-00-00 wide will		m									1, 50,	
	any other members.	in between the bollo	111									1,ONA	ALEIN
												<i></i>	
												الم من الم	47 0000


January 17,2022

Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	A3	Roof Special	1	1	Job Reference (optional)	149718412

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:39 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.93	Vert(LL)	-0.23	4-8	>813	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.77	Vert(CT)	-0.44	4-8	>431	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.12	Horz(CT)	0.29	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.17	2-8	>999	240	Weight: 60 lb	FT = 10%

LUMBER

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SP No.3 *Except* 2-4:2x4 SP No.2 2x4 SP No.3 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) 1=703/0-3-8, 5=779/0-3-8 Max Horiz 1=-55 (LC 9) Max Uplift 1=-103 (LC 4), 5=-148 (LC 5) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-310/77, 2-3=-1634/179, 3-4=-1634/196, 4-5=-306/63, 5-6=0/12 BOT CHORD 1-9=-1/18, 2-9=0/63, 2-8=-128/1550, 4-8=-128/1550, 4-7=0/65, 5-7=0/18 3-8=0/302

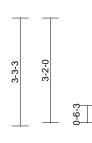
WEBS NOTES

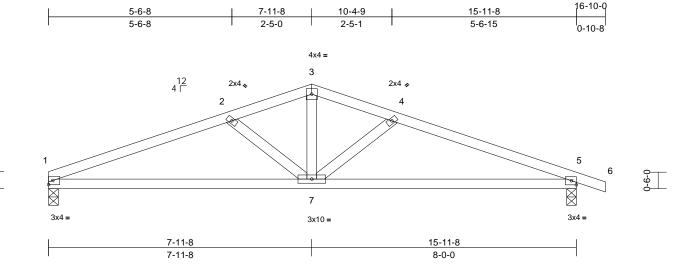
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 This terms here designed for a full or act here there.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 103 lb uplift at joint 1 and 148 lb uplift at joint 5.

6) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard





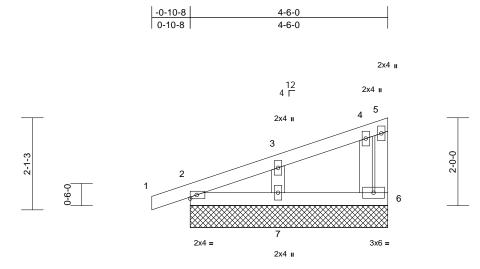
Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	A4	Common	1	1	Job Reference (optional)	149718413

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:40 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:34.8

Scale = 1.54.0												
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.91	Vert(LL)	-0.09	1-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.71	Vert(CT)	-0.21	1-7	>911	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.25	Horz(CT)	0.03	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.04	1-7	>999	240	Weight: 63 lb	FT = 10%
LUMBER		•										
TOP CHORD	2x4 SP No.3											
BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3											
BRACING	244 01 110.0											
TOP CHORD	Structural wood she	athing directly applie	ad or									
	2-2-0 oc purlins.	atting directly applie										
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	C									
	bracing.											
REACTIONS	(lb/size) 1=703/0-3	3-8, 5=779/0-3-8										
	Max Horiz 1=-54 (LC											
	Max Uplift 1=-102 (L	.C 4), 5=-148 (LC 5)										
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=-1402/219, 2-3=	-1105/133,										
	3-4=-1104/134, 4-5=											
BOT CHORD	1-7=-191/1269, 5-7=											
WEBS	3-7=-65/612, 2-7=-3	56/181, 4-7=-349/17	76									
NOTES												
,	ed roof live loads have	been considered for	r									
this design		(0										
	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC		Cat									
	Enclosed; MWFRS (er											
	left and right exposed											1911
	sed; Lumber DOL=1.6										NE OF	MISS
3) This truss	has been designed for	r a 10.0 psf bottom								1	11-	0,4
	load nonconcurrent wi									2		· D ·
	s has been designed f)psf							-	JU	AN
	tom chord in all areas											
	any other members.	fit between the botto	om								: / /	¶_, :^⊑
	echanical connection ((by others) of truss to	n							= 1	• A.	
	ate capable of withstar									= 1	NUM	• 41-
	148 lb uplift at joint 5.									-	C: E-2000	162101
6) This truss	is designed in accorda	ance with the 2018								1	~~·	
	nal Residential Code se		nd								1.05	ENGIN
	and referenced stand	ard ANSI/TPI 1.									IT ON	ALLIN
LOAD CASE(S) Standard											17 2022
											lopuor	



Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	B1	Monopitch Supported Gable	1	1	Job Reference (optional)	149718414

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:40 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

гaų

4-6-0

Scal	-	1:26.	2

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	BC 0	0.05 N	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 15 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2x4 SPF No.2		 7) Provide met bearing plat 6, 50 lb uplif 8) This truss is International 	chanical connection (by e capable of withstand it at joint 2 and 45 lb up designed in accordand I Residential Code sec and referenced standar	ing 20 blift at j ce with tions F	lb uplift at jo joint 7. n the 2018 R502.11.1 ar	bint				Wolgnt. To ib	11210/0
TOP CHORD BOT CHORD	4-6-0 oc purlins, ex	cept end verticals.		Standard								
REACTIONS	•	7)	45									
FORCES	(lb) - Maximum Com	npression/Maximum										
TOP CHORD	Tension 1-2=0/6, 2-3=-69/11 5-6=-22/26	, 3-4=-54/13, 4-5=-3	2/25,									
BOT CHORD WEBS	2-7=-22/15, 6-7=-22 3-7=-143/76, 4-6=-1											
Vasd=91r II; Exp C; cantilever right expc 2) Truss des only. For see Stand or consult	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 signed for wind loads in studs exposed to wind dard Industry Gable En t qualified building desi urires continuous botto	EDL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an 0 plate grip DOL=1.6 a the plane of the trus d (normal to the face) d Details as applicat gner as per ANSI/TF	re; d S0 ss ole,								S JU/	MISSOURIE

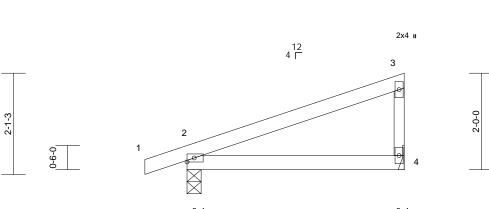
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf
 and the better should be all should be a particular to a state of the better should be all should be a particular to a state of the better should be all should be a
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	B2	Monopitch	7	1	Job Reference (optional)	149718415

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:40 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


4-6-0

4-6-0

4-6-0

Page: 1

2x4 =

-0-10-8

0-10-8

Scale	=	1:23.9

Scale = 1:23.9												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.30	Vert(LL)	-0.02	2-4	>999		MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.18	Vert(CT)	-0.04	2-4	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 13 lb	FT = 10%

	÷ .	
TOP		

TOP CHORD	2X4 SPF	N0.2
BOT CHORD	2x4 SPF	No.2
WEBS	2x3 SPF	No.2
BRACING		
TOP CHORD	Structura	I wood sheathing directly applied or
	4-6-0 oc	purlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	2=271/0-3-8, 4=183/ Mechanical

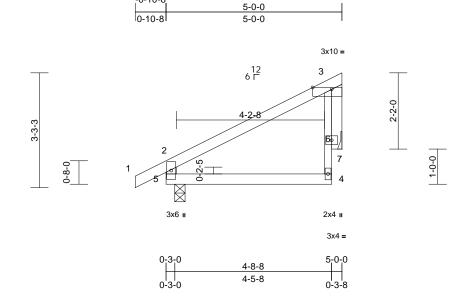
Max Horiz 2=76 (LC 7) Max Uplift 2=-78 (LC 4), 4=-40 (LC 8) FORCES (lb) - Maximum Compression/Maximum

	TENSION
TOP CHORD	1-2=0/6, 2-3=-76/40, 3-4=-140/65
BOT CHORD	2-4=-24/18
NOTES	

NOTES

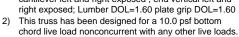
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 4 and 78 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	В3	Monopitch	7	1	Job Reference (optional)	149718416

-0-10-8

Wheeler Lumber, Waverly, KS - 66871,


Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:40 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [3:0-6-8,Edge]

	, .). [e.e e e,==ge]											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	-0.01	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.13	Vert(CT)	-0.02	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	7	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	4-5	>999	240	Weight: 17 lb	FT = 10%
LUMBER			This truss is	designed in acco	ordance wi	ith the 2018						
TOP CHORD	2x4 SPF No.2			I Residential Cod			and					
BOT CHORD	2x4 SPF No.2		R802.10.2 a	and referenced sta	andard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2 *Exce	pt* 5-2:2x4 SPF No	.2 LOAD CASE(S)	Standard								
OTHERS	2x4 SPF No.2											
BRACING												
TOP CHORD	Structural wood she		ed or									
	5-0-0 oc purlins, ex											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	c									
	bracing.											
	· /	3-8, 7=179/ Mechan	ical									
	Max Horiz 5=89 (LC	/										
	Max Uplift 5=-38 (LC											
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension	0 4 0 0/00										
TOP CHORD	1-2=0/32, 2-3=-158/ 3-6=-128/107, 2-5=-	, ,										
BOT CHORD	4-5=-26/81	201/70										
WEBS	3-7=-52/0											
NOTES	0 1 = 02/0											
	E 7-16; Vult=115mph	(2 second quet)										
	ph; TCDL=6.0psf; BC		Cat									
	Enclosed; MWFRS (er											111.
	left and right exposed										VU'OF	MISSI
	• !	·										

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 38 lb uplift at joint 5 and 61 lb uplift at joint 7.

ILJAN

NUMBER

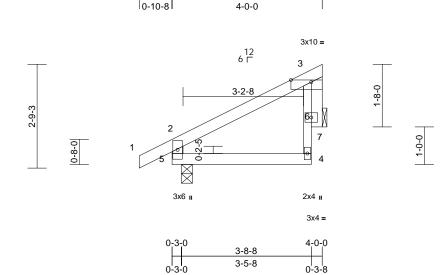
E-200016210

S/ONAL EN January 17,2022

ARC

WINX PROTI

Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	B4	Monopitch	1	1	Job Reference (optional)	149718417


4-0-0

-0-10-8

Wheeler Lumber, Waverly, KS - 66871,

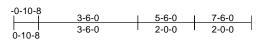
Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:40 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

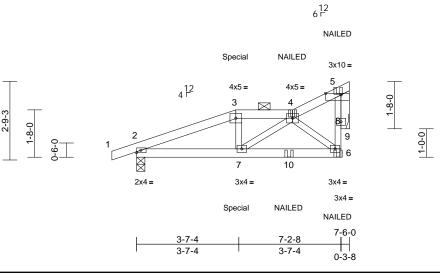
Scale = 1:30.7

Plate Offsets (X, Y): [3:0-6-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	-0.01	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	7	n/a	n/a		FT 400/
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 14 lb	FT = 10%
LUMBER			This truss is	s designed in acc	cordance wi	ith the 2018						
TOP CHORD	2x4 SPF No.2		Internationa	al Residential Co	de sections	R502.11.1	and					
BOT CHORD	2x4 SPF No.2		R802.10.2	and referenced s	standard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2 *Exce	ept* 5-2:2x4 SPF No	.2 LOAD CASE(S) Standard								
OTHERS	2x4 SPF No.2											
BRACING	.											
TOP CHORD	Structural wood she		ed or									
BOT CHORD	4-0-0 oc purlins, ex Rigid ceiling directly	•	^									
BOTCHORD	bracing.	applied of 10-0-0 of										
REACTIONS	0	3-8, 7=132/ Mechani	ical									
	Max Horiz 5=76 (LC	,										
	Max Uplift 5=-35 (LC	,										
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD	1-2=0/32, 2-3=-122/	2, 4-6=0/70, 3-6=-87	7/73,									
	2-5=-223/67											
BOT CHORD	4-5=-24/60											
WEBS	3-7=-34/0											
NOTES												
	E 7-16; Vult=115mph		_									

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 35 lb uplift at joint 5 and 46 lb uplift at joint 7.


JUAN ARCA PD NUMBER E-2000162101 January 17,2022


111

Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	B5	Roof Special Girder	1	1	Job Reference (optional)	149718418

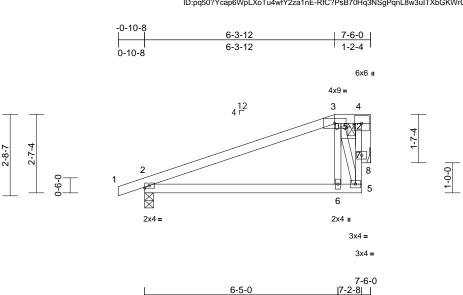
Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:41 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:40.6

Plate Offsets (X, Y): [5:0-6-8,Edge]

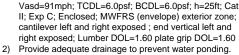
·													-
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.26	Vert(LL)	-0.01	6-7	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.17	Vert(CT)	-0.02	6-7	>999	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.07	Horz(CT)	0.01	9	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-P		Wind(LL)	0.01	7	>999	240	Weight: 26 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly	cept end verticals, a -0 max.): 3-4.	nd 10	International R802.10.2 a Graphical pu or the orient bottom chorr "NAILED" in (0.148"x3.25 0) Hanger(s) o	designed in acc I Residential Coo Ind referenced st urlin representati ation of the purlin d. dicates 3-10d (0 s") toe-nails per I r other connectic ficient to suppor	de sections tandard AN ion does no n along the .148"x3") o NDS guidli on device(s	R502.11.1 a ISI/TPI 1. of depict the top and/or or 3-12d nes.) shall be	size					
REACTIONS	bracing.	3-8, 9=339/ Mechani 8)	cal	down and 5 design/selec responsibilit	·	n bottom c nection de	hord. The vice(s) is the)					
FORCES	(lb) - Maximum Com	pression/Maximum	1		CASE(S) section			lace					
TOP CHORD BOT CHORD WEBS	Tension TOP CHORD 1-2=0/6, 2-3=-519/71, 3-4=-435/80, 4-5=-76/14, 6-8=-47/282, 5-8=-47/282 BOT CHORD 2-7=-111/435, 6-7=-88/326				of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/tt) Vert: 1-2=-70, 2-3=-72, 3-4=-70, 4-5=-72, 2-6=-20								
Vasd=91m II; Exp C; I cantilever right expos	CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 dequate drainage to pr	DL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an 0 plate grip DOL=1.0	ne; d 60		ied Loads (lb) ·30 (B), 6=-12 (B	3), 7=5 (B),	10=-5 (B)				1111	ATE OF	MISSOUT

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 5)
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 104 lb uplift at joint 2 and 96 lb uplift at joint 9.



Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	B6	Half Hip	1	1	Job Reference (optional)	l49718419

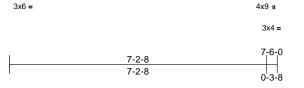

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:41 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:38.3

Loading TCLL (roof) TCDL	(psf) 25.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15		CSI TC BC	0.75 0.32	DEFL Vert(LL)	in -0.05 -0.10	(loc) 2-6 2-6	l/defl >999 >878	L/d 360 240	PLATES MT20	GRIP 197/144
BCLL	10.0 0.0*	Rep Stress Incr	1.15 YES		WB	0.32	Vert(CT) Horz(CT)	-0.10	2-0 8	>878 n/a	240 n/a		
BCDL	10.0	Code		3/TPI2014	Matrix-P	0.13	Wind(LL)	0.01	° 2-6	>999		Weight: 25 lb	FT = 10%
		0000			mannet						2.0	110.g.m. 2010	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x4 SPF No.2		7) 8)	International R802.10.2 a Graphical pu	designed in accord Residential Code nd referenced star urlin representation ation of the purlin a d.	sections idard AN does no	s R502.11.1 a NSI/TPI 1. ot depict the s						
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0	cept end verticals, a		OAD CASE(S)	Standard								
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	C										
REACTIONS	(lb/size) 2=409/0-3 Max Horiz 2=81 (LC Max Uplift 2=-91 (LC	,	ical										
FORCES	(lb) - Maximum Com Tension	npression/Maximum											
TOP CHORD	1-2=0/6, 2-3=-237/0 5-7=-54/282, 4-7=-5	, ,											
BOT CHORD WEBS	2-6=-4/162, 5-6=0/1 3-6=0/400, 3-5=-440												
NOTES													
1) Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)											
Vasd=91m	nph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft;	Cat.										

- 3) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 91 lb uplift at joint 2 and 65 lb uplift at joint 8.

JUAN AROA NUMBER E-2000162101 January 17,2022


M

Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	B7	Monopitch	2	1	Job Reference (optional)	149718420

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:41 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

-0-10-8 7-6-0 0-10-8 7-6-0 M18SHS 5x12 = 3 12 4 Г 2-0-0 5. 2 6 1-0-0 4

Scale = 1:32.3

Plate Offsets (X, Y): [2:Edge,0-0-10], [3:0-8-8,Edge], [4:0-3-8,Edge]

3-1-3

0-9-(

	A, T). [2.Euge,0-0-10], [5.0-0-0,∟uge], [4.	lo-o-o,∟ugej									
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.57	Vert(LL)	-0.06	2-4	>999	360	M18SHS	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.36	Vert(CT)	-0.14	2-4	>610	240	MT20	197/144
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.04	2-4	>999	240	Weight: 22 lb	FT = 10%
LUMBER			7) This truss is	designed in acco	rdance w	ith the 2018						
TOP CHORD	2x4 SPF No.2			I Residential Code			and					
BOT CHORD	2x4 SPF No.2		R802.10.2 a	and referenced sta	andard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2		LOAD CASE(S)	Standard								
OTHERS	2x4 SPF No.2											
BRACING												
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex		ed or									
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	c									
REACTIONS	•	3-8, 6=298/ Mechani	cal									
	Max Horiz 2=91 (LC											
	Max Uplift 2=-87 (LC	,										
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD	1-2=0/6, 2-3=-304/2	2, 4-5=0/150,										
	3-5=-338/220											
BOT CHORD	2-4=-41/213											
WEBS	3-6=-114/112											
NOTES												
	CE 7-16; Vult=115mph											
	nph; TCDL=6.0psf; BC											
	Enclosed; MWFRS (er											
	left and right exposed sed; Lumber DOL=1.6										NE OF	MISS
	are MT20 plates unles									1	1	0,1
	has been designed for									2	A	
	load nonconcurrent wi		ds.							2	JU	AN
	s has been designed f)psf							-+	. G/ <mark>.</mark> R	
	tom chord in all areas	0									:	И. :^=
	II by 2-00-00 wide will	fit between the botto	om							= 11	·	
	any other members.									- 1	S. NUM	BER

5) Refer to girder(s) for truss to truss connections.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 87 lb uplift at joint 6) 2 and 69 lb uplift at joint 6.

> MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

E-200016210

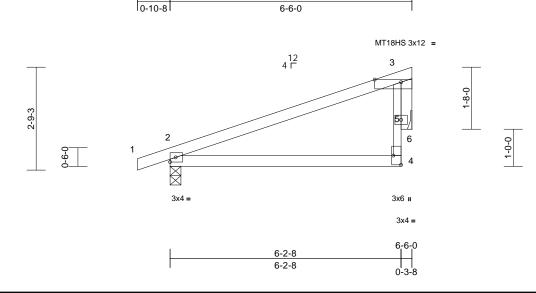
SONAL EN

January 17,2022

S

0

Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	B8	Monopitch	8	1	Job Reference (optional)	149718421


6-6-0

-0-10-8.

Wheeler Lumber, Waverly, KS - 66871,

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:41 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31

Plate Offsets (X, Y): [3:0-8-8,Edge], [4:Edge,0-2-8]

	(∧, 1). [3.0-6-6,⊏uge]	, [4.Euge,0-2-0]										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.39	Vert(LL)	-0.03	2-4	>999	360	MT18HS	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.25	Vert(CT)	-0.08	2-4	>990	240	MT20	197/144
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.02	2-4	>999	240	Weight: 19 lb	FT = 10%
LUMBER			This truss is	designed in acco	ordance wi	ith the 2018						
TOP CHORD	2x4 SPF No.2			I Residential Cod			and					
BOT CHORD	2x4 SPF No.2		R802.10.2	and referenced st	andard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2		LOAD CASE(S	Standard								
OTHERS	2x4 SPF No.2											
BRACING												
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex		ed or									
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	0C									
REACTIONS	•	3-8, 6=248/ Mechan	ical									
	Max Horiz 2=78 (LC	,										
	Max Uplift 2=-85 (LC											
FORCES	(lb) - Maximum Com	npression/Maximum										
	Tension											
TOP CHORD	1-2=0/6, 2-3=-258/2	0, 4-5=0/128,										
	3-5=-273/175											
BOT CHORD												
WEBS	3-6=-81/79											
NOTES												
	CE 7-16; Vult=115mph		• •									
	nph; TCDL=6.0psf; BC											115
	Enclosed; MWFRS (er left and right exposed											
	sed; Lumber DOL=1.6										NE OF	MISS
	are MT20 plates unles									1	A	
	has been designed fo									2	A	
	load nonconcurrent w		ads.							2	JU/	AN SEE
	ss has been designed f									-+	. GAR	A :+-
on the bot	ttom chord in all areas	where a rectangle								2.0	: [/	rh : : : :
	all by 2-00-00 wide will	fit between the bott	om							5-	: <u>A</u> '	im=
	any other members.									- 7	NUM	BER :
5) Refer to a	irder(s) for truss to trus	ss connections									· E 2000-	160101 .

5) Refer to girder(s) for truss to truss connections.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 85 lb uplift at joint 6) 2 and 61 lb uplift at joint 6.

January 4 0 in . January 17,2022

Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	В9	Roof Special Girder	1	1	Job Reference (optional)	149718422

3-6-0

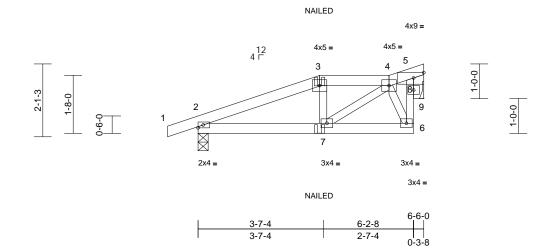
3-6-0

-0-10-8

0-10-8

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:41 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


6-6-0

1-0-0

5-6-0

2-0-0

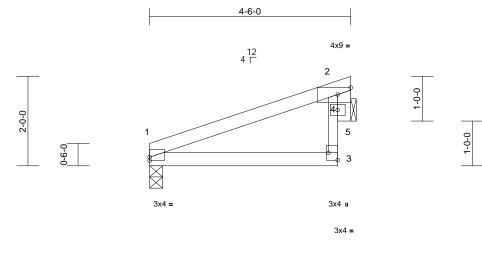
Page: 1

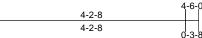
Scale = 1:33.2

Plate Offsets (X, Y): [5:Edge,0-1-14]

	(x, i): [0:Eugo,o i i i					-	-						
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.22	Vert(LL)	-0.01	2-7	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.14	Vert(CT)	-0.01	2-7	>999	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.07	Horz(CT)	0.00	9	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-P		Wind(LL)	0.00	7	>999	240	Weight: 21 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x3 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	cept end verticals, a -0 max.): 3-4. applied or 10-0-0 o 3-8, 9=248/ Mechan	ed or sind	 Internationa R802.10.2 a Graphical p or the orien bottom choi "NAILED" ir NDS guidlir In the LOAI of the truss LOAD CASE(S 	ndicates 2-12d (0. nes. D CASE(S) sectio are noted as fron) Standard pof Live (balanced	le sections andard AN on does no n along the .148"x3.25 n, loads a t (F) or ba	STO2.11.1 ; ISI/TPI 1. Dt depict the top and/or ") toe-nails p pplied to the ck (B).	size ber face					
FORCES TOP CHORD BOT CHORD WEBS	Max Uplift 2=-96 (LC (lb) - Maximum Com Tension 1-2=0/6, 2-3=-389/5 4-5=-57/14, 6-8=-57 2-7=-62/314, 6-7=-3 3-7=-51/63, 4-7=-35 5-9=-268/64	pression/Maximum 3, 3-4=-310/65, /282, 5-8=-57/282 2/151			2=-70, 2-3=-72, 3 ted Loads (lb)	-4=-70, 4-	5=-71, 2-6=-:	20					
Vasd=91n II; Exp C; cantilever right expo 2) Provide ad 3) This truss chord live 4) * This trus	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed used; Lumber DOL=1.6 dequate drainage to pr has been designed fo load nonconcurrent wi ss has been designed f ttom chord in all areas	DL=6.0psf; h=25ft; velope) exterior zor ; end vertical left an 0 plate grip DOL=1. event water ponding r a 10.0 psf bottom th any other live loa or a live load of 20.0	ne; id 60 g. ids.								····· * Pr	JU,	MISSOUR AN

- 4 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Refer to girder(s) for truss to truss connections.
- 5)
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 96 lb uplift at joint 2 and 58 lb uplift at joint 9.


8 O S SS/ONAL EN January 17,2022 MiTek

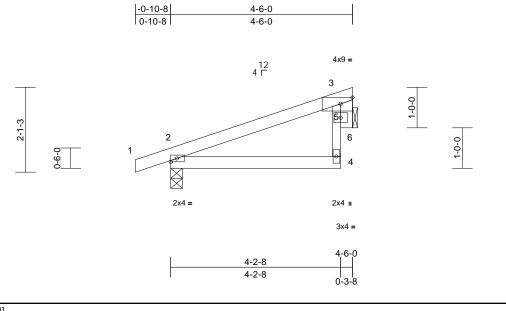

16023 Swingley Ridge Rd Chesterfield, MO 63017

E-200016210

Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	B10	Monopitch	1	1	Job Reference (optional)	149718423

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:42 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:25.8


Plate Offsets (X, Y): [1:Edge,0-0-14], [2:Edge,0-1-14], [3:Edge,0-2-8]

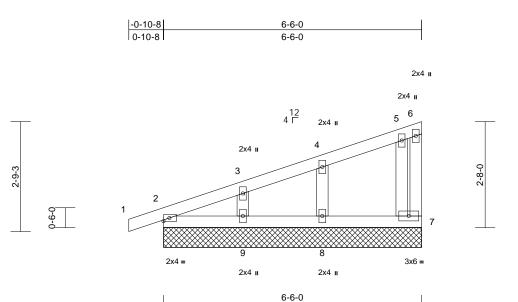
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.22 0.13 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.02 0.00 0.00	(loc) 1-3 1-3 5 1-3	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 12 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS (2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood shea 4-6-0 oc purlins, exa Rigid ceiling directly bracing. (b/size) 1=195/0-3	athing directly applie cept end verticals. applied or 10-0-0 oc i-8, 5=167/ Mechani	LOAD CASE(S) d or									
FORCES	Max Horiz 1=58 (LC Max Uplift 1=-24 (LC (Ib) - Maximum Com Tension 1-2=-185/17, 3-4=0/8 1-3=-24/128 2-5=-24/17	4), 5=-39 (LC 8) pression/Maximum										
 Vasd=91mp II; Exp C; E cantilever le right expose 2) This truss h chord live le 3) * This truss on the botto 3-06-00 tall chord and a 4) Refer to gin 5) Provide me bearing plat 1 and 39 lb 6) This truss is International 	E 7-16; Vult=115mph bh; TCDL=6.0psf; BC nclosed; MWFRS (en eft and right exposed ed; Lumber DOL=1.60 has been designed for bas been designed for by 2-00-00 wide will any other members. der(s) for truss to trus chanical connection (te capable of withstar uplift at joint 5. s designed in accorda al Residential Code se and referenced stand	DL=6.0psf; h=25ft; C vvelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto ss connections. by others) of truss tr iding 24 lb uplift at jo ance with the 2018 actions R502.11.1 at	e; 1 90 Is. psf m 0								E-2000	AL ENGINI

Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	B11	Monopitch	1	1	Job Reference (optional)	149718424

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:42 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

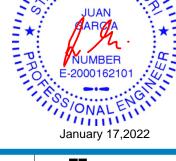
Scale = 1:28.5

Plate Offsets (X, Y): [3:Edge,0-1-14]


Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.21 0.11 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 0.00	(loc) 2-4 2-4 6	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	2-4	>999	240	Weight: 13 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x4 SPF No.2 Structural wood she 4-6-0 oc purlins, ex Rigid ceiling directly bracing.	athing directly applic cept end verticals. applied or 10-0-0 or i-8, 6=159/ Mechani	LOAD CASE(S) ed or c									
	Max Horiz 2=60 (LC Max Uplift 2=-72 (LC (lb) - Maximum Com	4), 6=-36 (LC 8)										
TOP CHORD BOT CHORD WEBS	Tension 1-2=0/6, 2-3=-176/14 2-4=-22/117 3-6=-23/14		59/89									
 Vasd=91m II; Exp C; E cantilever I right expos 2) This truss I chord live I 3) * This truss on the bott 3-06-00 tal chord and 4) Refer to gii 5) Provide me bearing pla 2 and 36 lb 6) This truss i Internation 	CE 7-16; Vult=115mph pp; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 has been designed fo load nonconcurrent wi s has been designed fi tom chord in all areas Il by 2-00-00 wide will any other members. rder(s) for truss to tru echanical connection (ate capable of withstar o uplift at joint 6. is designed in accorda all Residential Code sa and referenced stand	DL=6.0psf; h=25ft; (velope) exterior zor ; end vertical left an 0 plate grip DOL=1. a 10.0 psf bottom th any other live loa or a live load of 20.0 where a rectangle fit between the botto ss connections. by others) of truss t iding 72 lb uplift at ju ance with the 2018 ections R502.11.1 a	ne; d 60 ds.)psf om o oint							111 * Phili	JUJ CAR NUM SS/ON	162101

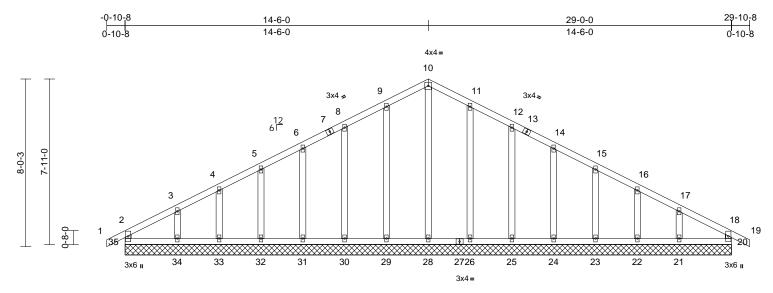
Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	B12	Monopitch Supported Gable	1	1	Job Reference (optional)	149718425

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:42 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

Sca	e –	1:29	

		· · · · · · · · · · · · · · · · · · ·											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.05	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.02	Horz(CT)	0.00	7	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-P							Weight: 23 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly	cept end verticals.		bearing plate 7, 39 lb uplift uplift at joint Beveled plate surface with This truss is International R802.10.2 ar	e or shim require truss chord at joi designed in acco Residential Code nd referenced sta	standing 2 uplift at joi d to provie nt(s) 2. ordance wi e sections	3 lb uplift at j nt 9 and 43 lt de full bearing ith the 2018 R502.11.1 a	oint o g					
	bracing.		L	DAD CASE(S)	Standard								
	8=196/6-6 Max Horiz 2=105 (LC Max Uplift 2=-39 (LC	, 7=-23 (LC 5), 8=	-43										
	(),	-49 (LC 8)											
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=0/6, 2-3=-82/16 5-6=-37/31, 6-7=-22		9/18,										
BOT CHORD WEBS	2-9=-32/19, 8-9=-32 3-9=-134/75, 4-8=-1	/19, 7-8=-32/19											
NOTES													
 Wind: ASC Vasd=91m II; Exp C; E cantilever I right expos Truss designed 	 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), 												


- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 2-0-0 oc.
- 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

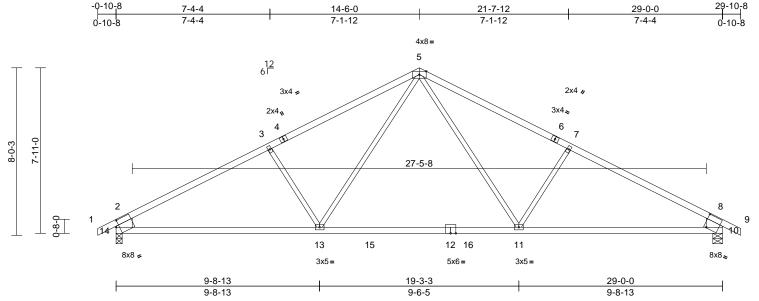
Job	Truss	Truss Type	Qty Ply Lot 119 MN		Lot 119 MN	
B220011	C1	Common Supported Gable	1	1	Job Reference (optional)	149718426

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:42 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

29-0-0

								-						
Scale = 1:55.1														,
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		тс	0.07	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.05	``'	n/a	-	n/a	999	-	
BCLL		0.0*	Rep Stress Incr	YES		WB	0.16	Horz(CT)	0.00	20	n/a	n/a		FT 400/
BCDL		10.0	Code	IRC20	018/TPI2014	Matrix-R							Weight: 134 lb	FI = 10%
BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS (I	6-0-0 oc purli Rigid ceiling o bracing. Ib/size) 20: 24: 24: 24: 26: 29: 31: 33: 35: Max Horiz 35: Max Uplift 20: 24: 26: 30: 32: 44: 46: 29: 24: 24: 26: 24: 24: 26: 24: 24: 26: 29: 24: 24: 26: 29: 24: 24: 24: 24: 24: 24: 24: 24	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	LC 13) C 5), 21=-90 (LC 9), C 9), 23=-57 (LC 9), C 9), 25=-57 (LC 9), C 9), 25=-57 (LC 8), C 8), 31=-53 (LC 8), C 8), 33=-40 (LC 8), LC 8), 35=-33 (LC 9), C 1), 21=199 (LC 22, C 1), 23=181 (LC 22, C 22), 25=179 (LC 1, C 21), 30=179 (LC 22, C 21), 32=181 (LC 22, C 21), 32=181 (LC 22, C 1), 34=199 (LC 21, C 1), 34=199 (LC 21, C 1), 34=199 (LC 21, C 21), 34=190 (LC 21, C	d or),),),),),),),), 8),), 81),),	BOT CHORD WEBS 1) Unbalanced this design. 2) Wind: ASCI Vasd=91mp II; Exp C; E cantilever lé right expose 3) Truss desig only. For si see Standa or consult q 4) All plates an 5) Gable requi	2-35=-163/44, 1 3-4=-86/85, 4-5 6-8=-46/162, 8- 10-11=-46/204, 12-14=-43/126, 15-16=-43/74, 1 18-19=0/32, 18 34-35=-23/106, 32-33=-23/106, 25-26=-23/106, 25-26=-23/106, 25-26=-23/106, 21-22=-23/106, 21	=-68/111, 5 9=-43/189, 11-12=-43/ 14-15=-43, 14-15=-43, 16-17=-60/4 -20=-163/2- 33-34=-23, 29-30=-23, 29-30=-23, 20-21=-2	-6=-57/137, 9-10=-46/212 (160, 1/100, 19, 17-18=-96 4 (106, (106, (106, (106, (106, (106, 1/1	/39, /80, /68, r Cat. he; d 60 ss), ble, PI 1.	on 1 3-0 chc 10) Pro bea 35, upli 32, upli 24, upli 11) Thi Inte R80	the botto 6-00 tall ord and a vide me aring pla 11 lb up ift at join 40 lb up ift at join 57 lb up ift at join s truss is ernationa	om cho by 2-0 any oth chanic te capa olift at ju t 30, 5 olift at ju t 26, 5 olift at ju t 21. s desig al Resid and ref	ord in all areas wh J0-00 wide will fit I ler members. Ial connection (by Jable of withstandii oint 20, 53 lb uplif 3 lb uplift at joint 2 oint 23, 100 lb uplif oint 23, 43 lb uplift aned in accordance dential Code sect ferenced standard ndard	between the botto others) of truss to ng 33 lb uplift at jo t at joint 29, 56 lb 31, 58 lb uplift at jo lift at joint 34, 51 l 25, 53 lb uplift at jo t at joint 22 and 9 e with the 2018 ions R502.11.1 ar I ANSI/TPI 1.
	Tension				 Gable stude This truss h 	inst lateral move spaced at 2-0-0 as been designe bad nonconcurre) oc. ed for a 10.0	0 psf bottom					0. E-20001	LENGINI
													January	17 2022

January 17,2022


Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	C2	Common	6	1	Job Reference (optional)	149718427

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:43 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:55.1

Plate Offsets (X, Y): [10:0-1-8,0-7-10], [14:0-1-13,0-3-8]

	(,,,,), [,										
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.84	Vert(LL)		11-13	>717	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.93	Vert(CT)	-0.73	11-13	>463	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.26	Horz(CT)	0.07	10	n/a	n/a		
BCDL	10.0	Code	IRC2018	/TPI2014	Matrix-S		Wind(LL)	0.14	11-13	>999	240	Weight: 97 lb	FT = 10%
LUMBER			5)	Provide med	hanical connection	on (by oth	ers) of truss t	0					
TOP CHORD	2x4 SPF 2100F 1.8E	=	0)		e capable of withs								
BOT CHORD		-			186 lb uplift at joi								
WEBS	2x3 SPF No.2 *Exce	ept* 14-2.10-8:2x10	SP 6)		designed in acco		ith the 2018						
	DSS	,	- ,	International	Residential Code	e sections	R502.11.1 a	ind					
BRACING	R802.10.2 and referenced standard ANSI/TPI 1.												
TOP CHORD	Structural wood she	athing directly appli	ed or LO	AD CASE(S)	Standard								
	3-4-13 oc purlins, e												
BOT CHORD	Rigid ceiling directly	applied or 2-2-0 oc											
	bracing.												
REACTIONS	(lb/size) 10=1359/	0-5-8, 14=1359/0-3	-8										
	Max Horiz 14=120 (I	_C 7)											
	Max Uplift 10=-186 ((LC 9), 14=-186 (LC	8)										
	Max Grav 10=1413	(LC 2), 14=1413 (LC	C 2)										
FORCES	(lb) - Maximum Corr	pression/Maximum											
	Tension												
TOP CHORD	1-2=0/39, 2-3=-2108												
	5-7=-1907/287, 7-8=	,	9,										
	2-14=-1252/237, 8-1												
BOT CHORD	13-14=-261/1774, 1	1-13=-53/1258,											
	10-11=-144/1769	000/007											
WEBS	5-11=-128/731, 7-11 5-13=-127/731, 3-13												• 197 T
	5-15=-127/751, 5-13	5=-399/207											Sug.
NOTES		h	-									NE OF	MISS
this design	ed roof live loads have	been considered to)[1	17.	0,1
0	n. CE 7-16; Vult=115mph	(3-second quet)									5	Y	. 0-
	nph; TCDL=6.0psf; BC								20	S JU	AN		
	Enclosed; MWFRS (er										2.	: GAR	C/A :1=
	left and right exposed										- *		K
	sed: Lumber DOI –1.6	,									Ξ.	3 h / ·	

right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

NUMBER

0

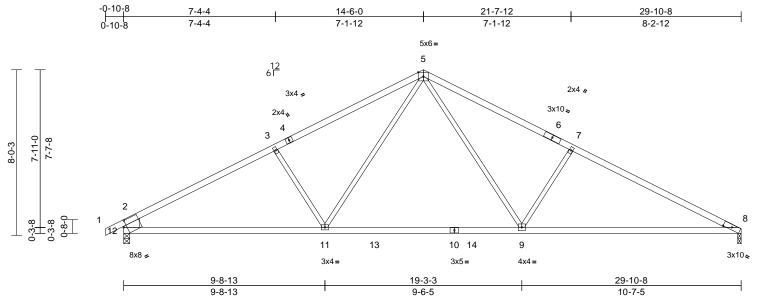
S

2000162101

SONAL ENI

January 17,2022

G


Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	C3	Common	6	1	Job Reference (optional)	149718428

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:43 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

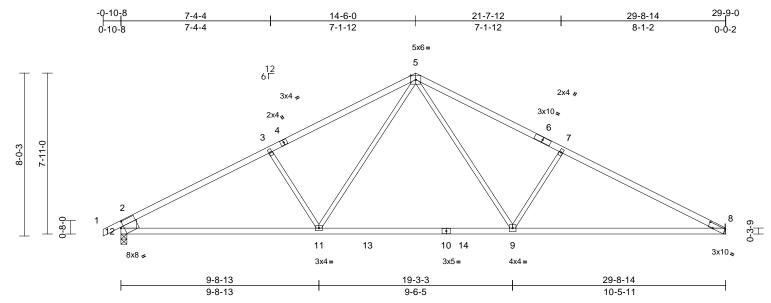
January 17,2022

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Scale = 1:55.7

Plate Offsets (X, Y): [8:0-5-0,0-1-7], [12:0-1-13,0-3-8]

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.88	Vert(LL)	-0.36	9-11	>970	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.99	Vert(CT)	-0.56	8-9	>631	240	-	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.35	Horz(CT)	0.07	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI20	14 Matrix-S		Wind(LL)	0.11	9-11	>999	240	Weight: 96 lb	FT = 10%
			4) * This	truss has been designe	d for a liv	in load of 20 (Doof					
LUMBER TOP CHORD	2v4 SDE 2100E 1 9	E *Except* 5-6:2x4 SF	, ·	bottom chord in all area			psi					
TOP CHORD	No.2	= Except 5-0.2x4 Sr		00 tall by 2-00-00 wide w			om					
BOT CHORD		E *Except* 10-12:2x4		and any other members								
	SPF No.2		5) WAR	NING: Required bearing	size at jo	oint(s) 8 great	er					
WEBS	2x3 SPF No.2 *Exce	pt* 12-2:2x10 SP DS		nput bearing size.								
BRACING				le mechanical connection								
TOP CHORD		athing directly applied		ng plate capable of withs		70 lb uplift at						
	2-2-0 oc purlins, ex			and 189 lb uplift at joint at joint at joint acco		ith the 2019						
BOT CHORD	0 0 ,	applied or 2-2-0 oc		ational Residential Code			nd					
	bracing.			.10.2 and referenced sta			ina					
REACTIONS		-2-0, (req. 0-2-3),		SE(S) Standard								
	12=1413/		20/12 0/									
	Max Horiz 12=126 (I Max Uplift 8=-170 (L											
	Max Grav 8=1392 (I											
FORCES	(lb) - Maximum Corr)									
TOROLO	Tension	pression/maximum										
TOP CHORD		3/278, 3-5=-2012/293										
	5-7=-2231/327, 7-8=		,									
	2-12=-1301/240											
BOT CHORD	11-12=-276/1861, 9	-11=-65/1367,										
	8-9=-191/2148											1117.
WEBS		-131/706, 3-11=-401	/268,								N'OF	MISSI
	5-9=-166/1010										144	
NOTES										~	18	-
,	ed roof live loads have	been considered for								20	JU/	AN :2-
this design	n. CE 7-16; Vult=115mph	(2 cocond quet)								2 .	: GAR	CA : . =
	nph; TCDL=6.0psf; BC		at							- *	. 7	U :*-
	Enclosed; MWFRS (er									Ξ.		
	left and right exposed									= 7	NUM	BER :
	sed; Lumber DOL=1.6		0								E-2000	162101 :4:5
	has been designed fo									-	A	
chord live	load nonconcurrent w	th any other live load	s.							1	1.50	Gin
											IN ON	ALEIN
											- 1111	IIII
												17 2022


Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	C4	Common	1	1	Job Reference (optional)	149718429

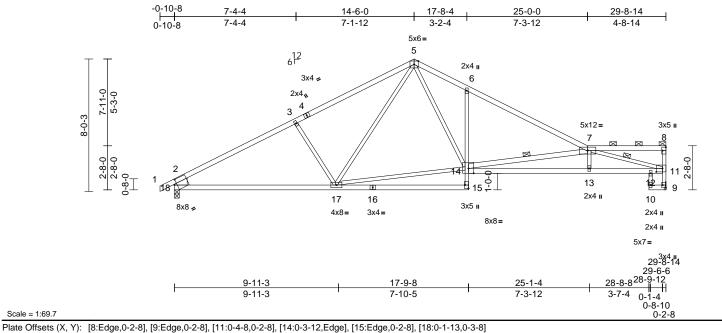
Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:43 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3 Page: 1

January 17,2022

16023 Swingley Ridge Rd Chesterfield, MO 63017

Scale = 1:56.7

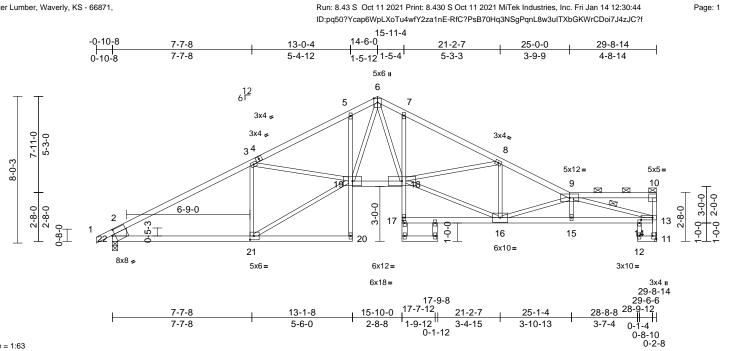

Plate Offsets (X, Y): [8:0-2-12,0-2-11], [12:0-1-13,0-3-8]

		1, L,1										
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.88	Vert(LL)	-0.37	9-11	>954	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.98	Vert(CT)	-0.58	8-9	>603	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.34	Horz(CT)	0.08	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI20	14 Matrix-S		Wind(LL)	0.11	9-11	>999	240	Weight: 96 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	No.2 2x4 SPF 2100F 1.8E SPF No.2 2x3 SPF No.2 *Exce Structural wood she 2-2-0 oc purlins, ex Rigid ceiling directly bracing.	E *Except* 10-12:2x ² apt* 12-2:2x10 SP D athing directly applie cept end verticals. applied or 2-2-0 oc Mechanical, 0-3-8 _C 12) C 9), 12=-189 (LC 8	PF on the 3-06-1 5) Refer SS 6) Proviu bearin d or joint 1 7) This t Interm R802 LOAD CA	truss has been designe e bottom chord in all are 00 tall by 2-00-00 wide v and any other member to girder(s) for truss to t de mechanical connection g plate capable of withs 2 and 169 lb uplift at joi russ is designed in accor ational Residential Cod .10.2 and referenced sta .SE(S) Standard	eas where will fit betw s, with BC truss conr on (by oth standing 1 int 8. ordance w e sections	a rectangle veen the bott DL = 10.0ps nections. ers) of truss 89 lb uplift a ith the 2018 5 R502.11.1 a	tom .f. to .t					
FORCES	(lb) - Maximum Com Tension		,									
TOP CHORD			2,									
BOT CHORD		-11=-65/1356,										10.
WEBS	7-9=-564/307, 5-11= 3-11=-402/268, 5-9=										NE OF	MISS
NOTES											ATV-	0/1
 Unbalanc this desig Wind: AS Vasd=91r II; Exp C; cantilever right expo This truss 	ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed used; Lumber DOL=1.6 has been designed fo load nonconcurrent wi	(3-second gust) DL=6.0psf; h=25ft; C vvelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 r a 10.0 psf bottom	Cat. ie; d 60								9 JU GAF NUM E-2000	162101

Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	C5	Roof Special	3	1	Job Reference (optional)	149718430

Scale = 1:69.7

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:43 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



	X, Y): [8:Edge,0-2-8],	, [ə.⊏uye,0-2-8], [113	0-4-0,0-2-	oj, [14.0-3-12,E	ugej, [15:Edge,0-	2-0], [18	.0-1-13,0-3-8	1					
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.88 0.86 0.99	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.29 -0.58 0.20 0.20	9	l/defl >999 >604 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 118 lb	GRIP 197/144 FT = 10%
												0	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD		ept* 15-6:2x3 SPF No F 1.8E ept* 14-7:2x4 SPF No athing directly applie cept end verticals, ar	PF 2, 2, 3) 2, 3) 2, 3) 3	Vasd=91mpl II; Exp C; En cantilever lef right expose Provide adec This truss ha chord live loa * This truss h on the bottor	7-16; Vult=115mp n; TCDL=6.0psf; B closed; MWFRS (t and right expose d; Lumber DOL=1 quate drainage to as been designed the ad nonconcurrent the nas been designed n chord in all area by 2-00-00 wide with	BCDL=6.0 envelope ed ; end v .60 plate prevent v for a 10.0 with any d for a liv is where	Opsf; h=25ft; i e) exterior zon vertical left an grip DOL=1. water ponding 0 psf bottom other live loa re load of 20.0 a rectangle	ne; nd 60 g. nds. 0psf					
	(Ib/size) 9=1314/ M 18=1406/	r applied or 10-0-0 oc 7-14, 7-11 Mechanical, 0-3-8	6) 7)	chord and ar Refer to gird Provide mec bearing plate joint 9 and 13	by other members. er(s) for truss to tr hanical connection capable of withst 89 lb uplift at joint designed in accor	russ conr n (by oth anding 1 18.	nections. ers) of truss t 73 lb uplift at	to					
	Max Horiz 18=177 (L		,		Residential Code			and					
FORCES	Max Uplift 9=-173 (L (Ib) - Maximum Com Tension) 9)	Graphical pu	nd referenced star Irlin representation ation of the purlin a	n does no	ot depict the s	size					
TOP CHORD	1-2=0/39, 2-3=-2108 5-6=-2185/390, 6-7= 9-11=-1288/178, 8-1 2-18=-1294/239	-2246/262, 7-8=-148		bottom chord DAD CASE(S)		along in							990.
BOT CHORD	17-18=-282/1754, 19 14-15=0/133, 6-14=- 13-14=-483/3760, 12 11-12=-475/3766, 9-	-456/256, 2-13=-475/3766,									111	XP. JUA	N P
WEBS	10-12=-10/9, 3-17=- 14-17=-72/1304, 5-1 7-14=-1872/306, 7-1 7-11=-3772/442		452,									GARO	h. *
NOTES 1) Unbalance this design	ed roof live loads have	been considered for									in in	E-20001	• 41-

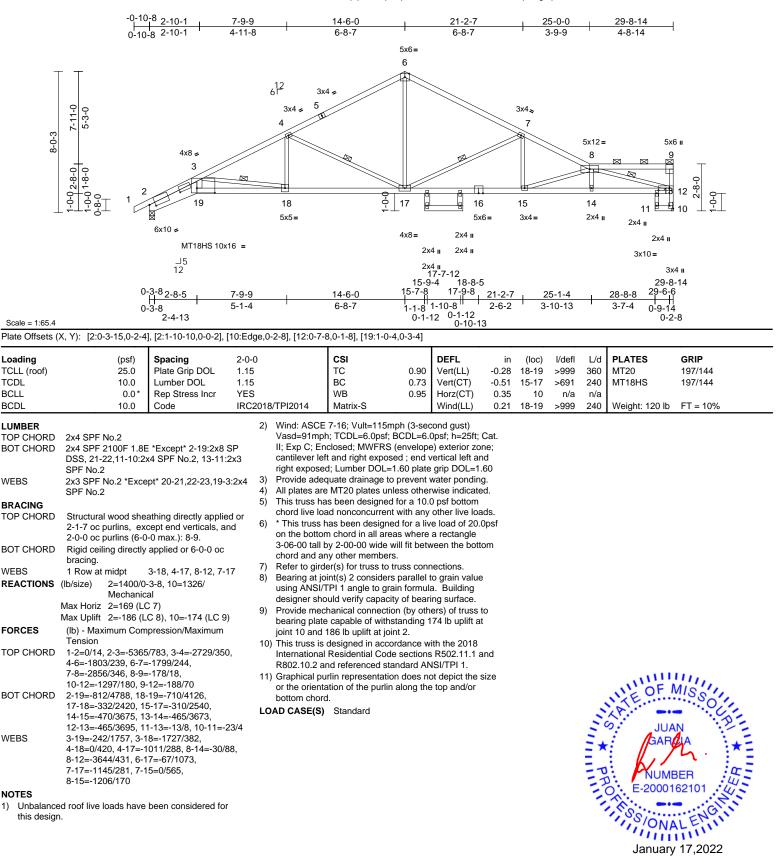
January 17,2022

Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	C5A	Roof Special	1	1	Job Reference (optional)	149718431

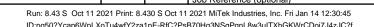
riale Offsets ((X, Y): [11:Edge,0-2-8	sj, [13:0-7-8,0-1-8], [* T	17:0-1-8,0	- 1-0], [21:0-2-8	i,∪-∠-8j, [22:0-1-1 ∎	13,0-3-8]						1	
oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.85	· · /	-0.30	18-19	>999	360	MT20	197/144
CDL CLL	10.0	Lumber DOL	1.15		BC WB	0.84	Vert(CT)	-0.55	18-19	>633	240		
	0.0*	Rep Stress Incr	YES			0.95	Horz(CT)	0.31	11	n/a	n/a		FT 400/
DL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.20	7	>999	240	Weight: 130 lb	FT = 10%
MBER			1)		roof live loads h	ave been o	considered for	r					
P CHORD	2x4 SPF No.2 *Exce	ept* 4-1:2x4 SPF 210		this design.		1 (0							
TOUODD	1.8E	** ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~	2)		7-16; Vult=115r			Cot					
T CHORD	2x4 SPF No.2 *Exce No.2, 17-13:2x4 SP		PF		h; TCDL=6.0psf; nclosed; MWFRS								
EBS	,	F 2100F 1.8E ept* 24-25,17-23:2x4	SDE		ft and right expo								
-03	No.2, 22-2:2x10 SP		JFF		d; Lumber DOL=								
	110.2, 22 2.2.10 01	200	3		quate drainage t								
P CHORD	Structural wood cho	athing directly applie	4		e 2x4 MT20 unle								
		except end verticals,		This truss h	as been designe	d for a 10.0) psf bottom						
	2-0-0 oc purlins (6-0		unu		ad nonconcurrer								
T CHORD		applied or 10-0-0 or	6]		has been design)psf					
	bracing.				m chord in all are		•						
BS	1 Row at midpt	9-13			by 2-00-00 wide		veen the botto	om					
ACTIONS	(lb/size) 11=1314/	Mechanical,	7		ny other member ler(s) for truss to		actions						
	22=1406/	/0-3-8	8		chanical connecti			0					
	Max Horiz 22=177 (-,		e capable of with								
	Max Uplift 11=-173	(LC 9), 22=-189 (LC	8)		189 lb uplift at jo								
RCES	(lb) - Maximum Con	npression/Maximum	9		designed in acc		ith the 2018						
	Tension			Internationa	Residential Cod	de sections	R502.11.1 a	nd					
P CHORD		8/246, 3-5=-2831/32	,		ind referenced st								
	5-6=-2785/388, 6-7=		10		urlin representati			ize					
	7-8=-2850/308, 8-9= 9-10=-172/18, 11-13	,			ation of the purli	n along the	e top and/or						1111
	10-13=-185/68, 2-22			bottom chor								Nº OF /	MISSI
OT CHORD		0-21=0/19, 19-20=0/	93 L	OAD CASE(S)	Standard						di se	NXE	
	5-19=-283/135, 18-	,	55,								~	Xr	
	,	260/167, 16-17=0/37	,									S. JUA	N 2
	15-16=-473/3648, 1	4-15=-468/3647,									2.	GAR	
	13-14=-468/3647, 1										- 7		G. :*
EBS	12-14=-12/8, 3-21=-	,									2	i d./	5
	19-21=-285/1958, 3										=		BER 🤄
	6-19=-257/1228, 6-1	,										E-20001	62101
	9-15=-24/96, 9-13=- 8-18=-168/146, 8-16										-	A	
	9-16=-1240/193, 16											100	GIN
TEC	5 10-12-0/133, 10	10-011/2010										IN ONIA	ENIN
TES												1111	iiiii
													47.0000

January 17,2022

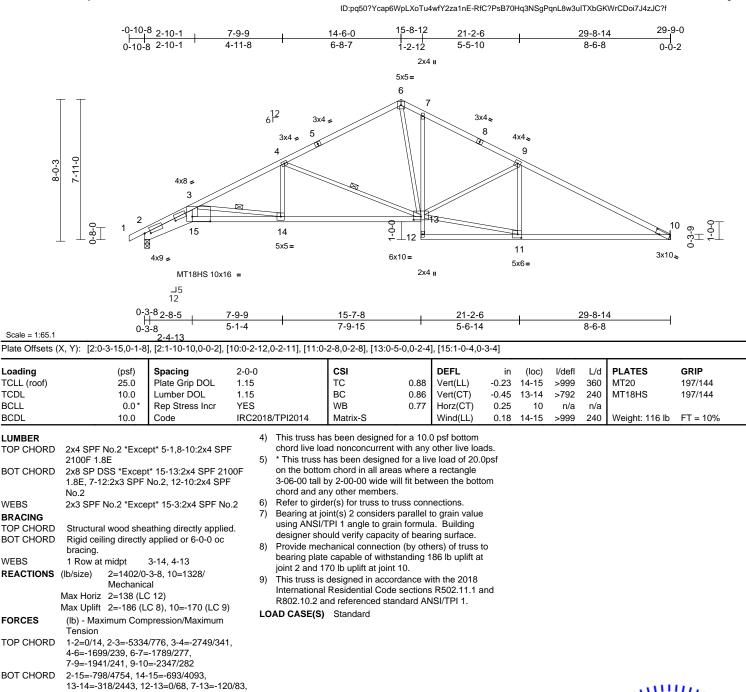
MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017


Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	C6	Roof Special	1	1	Job Reference (optional)	149718432

1)


Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Fri Jan 14 12:30:44 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1


MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

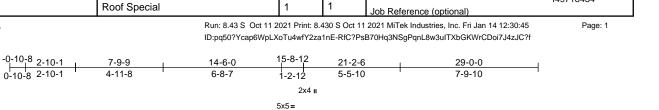
Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	C7	Roof Special	1	1	Job Reference (optional)	149718433

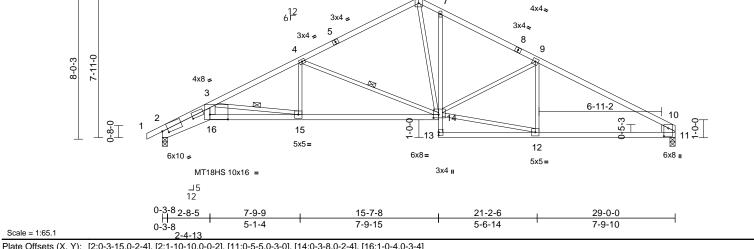
Page: 1

WEBS 3-15=-249/1749, 3-14=-1669/379, 4-14=0/473, 4-13=-1112/284 6-13=-160/1175, 11-13=-130/2018, 9-13=-523/230, 9-11=-179/114

NOTES

1) Unbalanced roof live loads have been considered for this design.


11-12=-26/35, 10-11=-152/2020


- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) All plates are MT20 plates unless otherwise indicated.

Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	C8	Roof Special	1	1	Job Reference (optional)	149718434

6

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.87 0.85 0.75	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.54 0.24	(loc) 12-13 14-15 11 15-16	l/defl >999 >628 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT18HS Weight: 117 lb	GRIP 197/144 197/144 FT = 10%
		No.2 pt* 16-3:2x4 SPF N athing directly applie applied or 9-4-12 or 3-15, 4-14 -3-8, 11=1280/0-3-8 C 12) C 8), 11=-158 (LC 9 pression/Maximum 5/776, 3-4=-2623/33: 1695/275,	o.2, 6, ed, 7, 8, 1) L	 chord live loa * This truss I on the bottoo 3-06-00 tall I chord and at Bearing at jc using ANSI/ designer sho Provide mec bearing plate joint 2 and 1 This truss is International 	as been designer ad nonconcurrer has been design in chord in all are by 2-00-00 wide hy other membe int(s) 2 consider FPI 1 angle to gr buld verify capac hanical connect e capable of with 58 lb uplift at joir designed in acc Residential Coo nd referenced st Standard	at with any ed for a liv eas where will fit betw rs. rs parallel t ain formula ity of beari on (by oth standing 1 at 11. ordance wi de sections	other live loz e load of 20. a rectangle veen the bott o grain value a. Building ng surface. ers) of truss i 84 lb uplift a th the 2018 R502.11.1 a	Opsf om e to t					
BOT CHORD WEBS	2-16=-802/4590, 15- 14-15=-311/2325, 13 7-14=-241/106, 12-1 11-12=-136/1669 3-16=-247/1673, 3-1 4-15=0/475, 4-14=-1 6-14=-167/1136, 12- 9-14=-278/185, 9-12	3-14=0/108, 13=-26/72, 15=-1654/391, 1094/279, -14=-112/1623,									1111	ATE OF I	MISSOU
NOTES 1) Unbalance this design	d roof live loads have		r										BER *

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

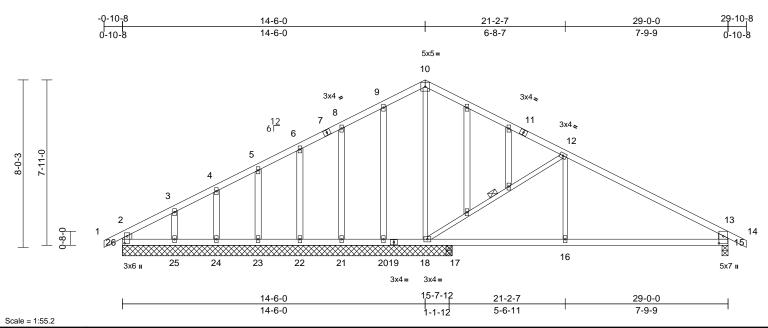
3) All plates are MT20 plates unless otherwise indicated.

MiTek

S

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017


200016210

S/ONALE

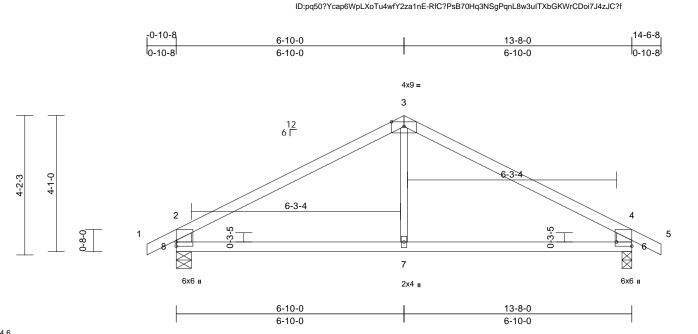
ONAL

January 17,2022

Job	Truss	Truss Type	Qty	Ply	Lot 119 MN		
B220011	C9	Common Structural Gable	1	1	Job Reference (optional)	149718435	
Wheeler Lumber, Waverly, KS	66871,	Run: 8.43 S Jun 2 2	021 Print: 8.4	130 S Jun 2	2021 MiTek Industries, Inc. Mon Jan 17 15:54:01	Page: 1	
ID:pq50?Ycap6WpLXoTu4wfY2za1nE-ppR?Geuujij48qj1dGBz86g10SLaGlbyvla8XozuafK							

Plate Offsets (X, Y): [15:0-4-1,0-2-8], [26:0-4-0,0-1-8]

	7, 1). [13.0-4-1,0-2-0	, [20.0- 4 -0,0-1-0]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.62 0.41 0.50	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	0.01	(loc) 15-16 15-16 15 15	l/defl >999 >898 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 125 lb	GRIP 197/144 FT = 10%
(lb) -	No.2 2x4 SPF No.2 Structural wood she 5-10-15 oc purlins, Rigid ceiling directly bracing, Except: 10-0-0 oc bracing: 1 1 Row at midpt All bearings 15-9-8. e Max Horiz 26=119 (I Max Uplift All uplift 1 18, 20, 2' except 15 Max Grav All reactic (s) 17, 20	17-18,16-17,15-16. 12-18 except 15=0-3-8, 17= LC 8) 100 (lb) or less at join 1, 22, 23, 24, 25, 26 5=-179 (LC 9)	4) 5) d or 6) 7) 8) 0-3-8 9) t(s) 10 t joint 26	only. For stt see Standarr or consult qu All plates are Truss to be f braced again Gable studs This truss ha chord live loa * This truss f on the bottor 3-06-00 tall f chord and ar Provide mec bearing plate joint(s) 26, 1 15=179.) This truss is International	ned for wind loa uds exposed to v d Industry Gable tailfied building d e 2x4 MT20 unle ully sheathed front st lateral mover spaced at 2-0-0 as been designed in chord in all and by 2-00-00 wide by other membe hanical connect e capable of with 8, 20, 21, 22, 23 designed in acco Residential Coo nd referenced st Standard	vind (norm End Deta designer a: ss otherwio mone fac nent (i.e. co oc. d for a 10. t with any ed for a liv eas where will fit betv rs. ion (by oth standing 1 ; 24, 25 ex ordance w de sections	al to the face ils as applica is per ANSI/T se indicated. e or securely iagonal web 0 psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss 00 lb uplift a ccept (jt=lb) ith the 2018 s R502.11.1 a	e), hble, PI 1. /). ads. Opsf com to t					
this design 2) Wind: ASC Vasd=91m II; Exp C; I	(lb) or less except w 12-13=-752/243, 13 17-18=-113/570, 16 15-16=-113/570 10-18=-352/0, 12-18 ed roof live loads have	-15=-618/226 -17=-113/570, 8=-724/239, 12-16=0 t been considered for n (3-second gust) DL=6.0psf; h=25ft; C nvelope) exterior zon	/293 Cat. e;									JUA GARI NUME E-20001	•41-
	sed; Lumber DOL=1.6											Innuary Content	17 2022


January 17,2022

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

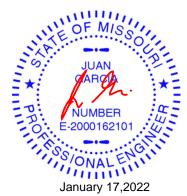
Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	D1	Common	2	1	Job Reference (optional)	l49718436

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:46

Wheeler Lumber, Waverly, KS - 66871,

Scale = 1:34.6 Plate Offsets (X, Y): [6:Edge,0-5-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.53	Vert(LL)	-0.04	6-7	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.36	Vert(CT)	-0.08	6-7	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.09	Horz(CT)	0.01	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.02	7-8	>999	240	Weight: 39 lb	FT = 10%


- LUMBER

TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2
WEBS	2x6 SPF I	No.2 *Except* 7-3:2x3 SPF No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	5-10-2 oc	purlins, except end verticals.
BOT CHORD	Rigid ceili	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	6=690/0-3-8, 8=690/0-5-8
	Max Horiz	8=-68 (LC 6)
	Max Uplift	6=-88 (LC 9), 8=-88 (LC 8)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHORD	1-2=0/36,	2-3=-769/94, 3-4=-769/94,
	4-5=0/36,	2-8=-634/135, 4-6=-634/135
BOT CHORD	7-8=-11/5	83, 6-7=-11/583
WEBS	3-7=0/288	3

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 88 lb uplift at joint 8 and 88 lb uplift at joint 6.

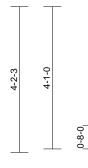
- 6) This truss is designed in accordance with the 2018
 - International Residential Code sections R502.11.1 and
- R802.10.2 and referenced standard ANSI/TPI 1.
- LOAD CASE(S) Standard

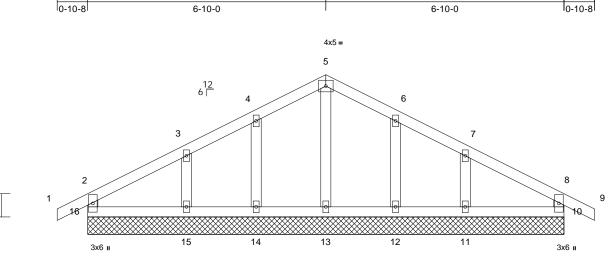
Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	D2	Common Supported Gable	1	1	Job Reference (optional)	149718437

6-10-0

Wheeler Lumber, Waverly, KS - 66871,


-0-10-8

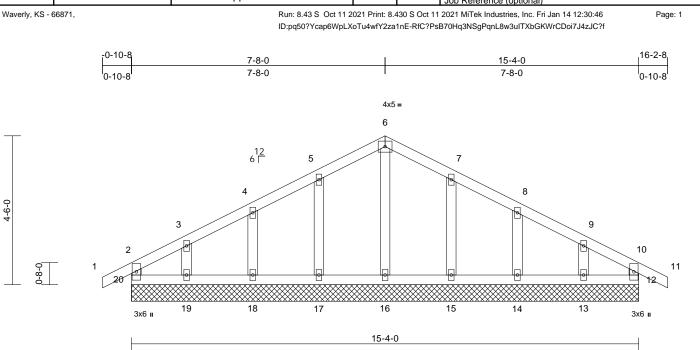

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:46 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

14-6-8

<u>13-8-0</u> 6-10-0

13-8-0

Scale = 1:33.1


Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.08 BC 0.04 WB 0.03 Matrix-R	Vert(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 49 lb	GRIP 197/144 FT = 10%
	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (lb/size) 10=210/1 12=179/1 14=179/1 16=210/1 Max Horiz 16=-66 (L Max Uplift 10=-33 (L 12=-48 (L Max Grav 10=210 (I 12=182 (I	<pre>x applied or 10-0-0 oc 3-8-0, 11=226/13-8-0 3-8-0, 13=154/13-8-0 3-8-0, 15=226/13-8-0 3-8-0 .C 6) .C 9), 11=-74 (LC 9), .C 9), 14=-47 (LC 9), .C 8), 16=-28 (LC 9) .LC 1), 11=227 (LC 22 LC 22), 13=154 (LC 1)</pre>	 Vasd=91mpi II; Exp C; Er cantilever lef right expose 3) Truss desigr only. For stu see Standar or consult qu 4) All plates are 5) Gable requir 6) Truss to be f braced agair 7) Gable studs 8) This truss ha chord live lo 9) * This truss fue on the botton 3-06-00 tall fue), chord and ar 10) Provide mec bearing plate 	7-16; Vult=115mph (3-se h; TCDL=6.0psf; BCDL=6 inclosed; MWFRS (envelop ft and right exposed ; end d; Lumber DOL=1.60 plat hed for wind loads in the p uds exposed to wind (norn d Industry Gable End Det ualified building designer is e 2x4 MT20 unless otherw res continuous bottom cha fully sheathed from one fa st lateral movement (i.e. spaced at 2-0-0 oc. as been designed for a 10 ad nonconcurrent with an has been designed for a 10 ad nonconcurrent with an has been designed for a 10 ad nonconcurrent with an concol in all areas where by 2-00-00 wide will fit be ny other members. thanical connection (by oth e capable of withstanding ift at joint 10, 47 lb uplift a	.0psf; h=25ft; C e) exterior zon vertical left and e grip DOL=1.6 lane of the trus nal to the face) ails as applicat as per ANSI/TP vise indicated. rd bearing. ce or securely diagonal web). .0 psf bottom y other live load ve load of 20.0 a rectangle ween the botto hers) of truss to 28 lb uplift at jo	ie; d 50 ss ple, ple, ple, ds. psf om pont					
FORCES TOP CHORD	(lb) - Maximum Com Tension 2-16=-186/46, 1-2=0	0/33, 2-3=-80/59,	uplift at joint joint 11.	15, 48 lb uplift at joint 12 designed in accordance	and 74 lb uplift					ann	990.
	3-4=-61/87, 4-5=-60 6-7=-61/76, 7-8=-71 8-10=-186/53	/47, 8-9=0/33,	International	Residential Code section nd referenced standard A	s R502.11.1 aı	nd				ALEOF	MISSOL
BOT CHORD	15-16=-9/46, 14-15= 12-13=-9/46, 11-12=	=-9/46, 10-11=-9/46							E	JUL S	N ····································
WEBS	5-13=-112/0, 4-14=- 6-12=-147/71, 7-11=	-147/71, 3-15=-173/10 =-173/99	01,						Ξ*	i can	k^. ★Ξ
NOTES									= 7		BER C

1) Unbalanced roof live loads have been considered for this design.

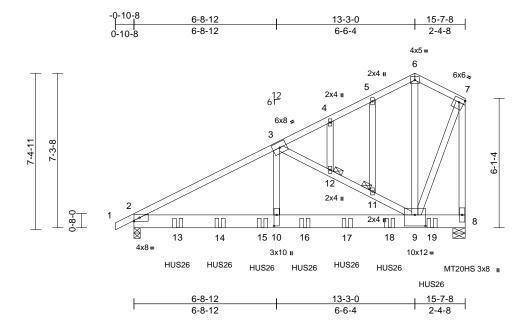
Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	E1	Common Supported Gable	1	1	Job Reference (optional)	149718438

Scale = 1:34.8

4-7-3

						. <u> </u>						
Loading	(pst		2-0-0	CSI	0.67	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.		1.15	TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.		1.15	BC	0.02	Vert(CT)	n/a	-	n/a	999		
BCLL	0.		YES	WB	0.04	Horz(CT)	0.00	12	n/a	n/a		
BCDL	10.) Code	IRC2018/TPI2	014 Matrix-R							Weight: 58 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood 6-0-0 oc purlins, Rigid ceiling dire bracing. (Ib/size) 12=14 14=18 16=17 18=18 20=14	sheathing directly applie except end verticals. ctly applied or 6-0-0 oc 5/15-4-0, 13=144/15-4- 5/15-4-0, 15=187/15-4- 3/15-4-0, 17=187/15-4- 5/15-4-0, 19=144/15-4- 5/15-4-0	this (2) Winc Vasc II; E canti ad or 3) Trus only. see : or cc 0, 4) All p 0, 5) Gabi 0, 6) Trus 0, brac	alanced roof live loads h lesign. : ASCE 7-16; Vult=115r =91mph; TCDL=6.0psf; p C; Enclosed; MWFRS lever left and right expo- exposed; Lumber DOL= s designed for wind load For studs exposed to v Standard Industry Gable nsult qualified building of ates are 2x4 MT20 unle e requires continuous b s to be fully sheathed fro ad against lateral mover e studs spaced at 2-0-0	mph (3-sec ; BCDL=6. S (envelop sed ; end v =1.60 plate ds in the pl wind (norm End Deta designer a cost otherwi ottom chor ottom chor om one fac ment (i.e. c	cond gust) Opsf; h=25ft; e) exterior zo vertical left ar grip DOL=1 ane of the tru al to the face ils as applica s per ANSI/T se indicated. d bearing.	Cat. one; nd .60 uss e), able, PI 1. y				<u> </u>	
	14=-5 17=-5 19=-6 Max Grav 12=14 14=18 16=17 18=18	(LC 7) 3 (LC 9), 13=-62 (LC 9) 3 (LC 9), 15=-58 (LC 9) 3 (LC 9), 15=-58 (LC 9) 3 (LC 8), 18=-51 (LC 8) 3 (LC 8), 20=-30 (LC 4) 8 (LC 22), 13=144 (LC 5 (LC 1), 15=190 (LC 2) 3 (LC 1), 17=190 (LC 2) 5 (LC 1), 19=144 (LC 1) 8 (LC 21)	chor 9) * Thi on tr 1), 3-06 2), chor 2), 10) Prov 1), bear), 20, 1	truss has been designed 1 live load nonconcurrer s truss has been design e bottom chord in all are 00 tall by 2-00-00 wide 1 and any other member ide mechanical connecti ng plate capable of with 8 lb uplift at joint 12, 58	nt with any ned for a liv eas where will fit betw rs. ion (by oth nstanding 3 Ib uplift at	other live load re load of 20. a rectangle veen the bott ers) of truss 30 lb uplift at joint 17, 51 l	.0psf tom to joint lb					
FORCES	(lb) - Maximum (Tension	Compression/Maximum	15, 5	at joint 18, 68 lb uplift a 3 lb uplift at joint 14 and truss is designed in acc	d 62 lb upli	ft at joint 13.	joint				ILE OF	MISS
TOP CHORD	3-4=-38/64, 4-5= 6-7=-31/103, 7-8	2=0/32, 2-3=-59/48, -29/86, 5-6=-31/111, =-27/70, 8-9=-25/52, 11=0/32, 10-12=-131/2	Ínter R802	national Residential Coc 2.10.2 and referenced st ASE(S) Standard	de sections	s R502.11.1 a	and			in the	S JU/ GAR	N A
BOT CHORD	16-17=-19/58, 15-16=-19/58, 14-15=-19/58, 13-14=-19/58, 12-13=-19/58											
WEBS	,	7=-150/82, 4-18=-144/7 15=-150/81, 8-14=-144	,								E-20001	62101
NOTES											1,0N/	

January 17,2022



Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	E2	Common Girder	1	2	Job Reference (optional)	149718439

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:46 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

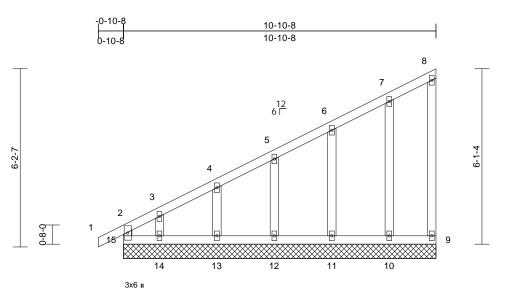
4zJC?f

Scale = 1:54.3

Plate Offsets (X, Y): [7:Edge,0-2-4], [9:0-6-0,0-6-4], [10:0-6-4,0-1-8]

				-		-							
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.90	Vert(LL)	-0.10	2-10	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.57	Vert(CT)	-0.18	2-10	>999	240	MT20HS	148/108
BCLL	0.0*	Rep Stress Incr	NO		WB	0.60	Horz(CT)	0.03	8	n/a	n/a		
BCDL	10.0	Code	IRC201	3/TPI2014	Matrix-S		Wind(LL)	0.07	2-10	>999	240	Weight: 217 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x4 SPF No.2 2x4 SPF No.2 Structural wood she except end verticals Rigid ceiling directly bracing. 1 Brace at Jt(s): 11, 12	-3-8, (req. 0-4-1),	4)	except if note CASE(S) sec provided to c unless other Unbalanced this design. Wind: ASCE Vasd=91mph II; Exp C; En cantilever lef right exposed Truss design only. For stu	considered equa ad as front (F) or tition. Ply to ply co listribute only loa vise indicated. roof live loads ha 7-16; Vult=115m r; TCDL=6.0psf; closed; MWFRS t and right expos d; Lumber DOL= ed for wind loads ds exposed to w	back (B) onnection ds noted we been BCDL=6. (envelope d; end 1.60 plate s in the pl ind (norm	face in the LC s have been as (F) or (B), considered for cond gust) Opsf; h=25ft; s) exterior zo rertical left ar grip DOL=1. ane of the tru al to the face	or Cat. ne; nd 60 ss),	PI Ui Co	ate Incre hiform Le Vert: 1- oncentra Vert: 13	ease=1 oads (I 6=-70, ited Lo 5=-1308	.15 b/ft) 6-7=-70, 2-8=-20 ads (Ib) 3 (F), 14=-1306 (I	
	Max Horiz 2=257 (L0				l Industry Gable alified building de								
	Max Uplift 2=-745 (L		6)		MT20 plates un								
FORCES	(lb) - Maximum Corr	pression/Maximum	7)		spaced at 2-0-0		moo maloate						
	Tension		8)		s been designed		0 psf bottom						
TOP CHORD	1-2=0/16, 2-3=-7644 4-5=-1951/298, 5-6= 6-7=-2025/364, 7-8=	-2062/350,	,	 chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 									
BOT CHORD	2-10=-1001/6624, 9- 8-9=-75/72	-10=-1001/6624,			y 2-00-00 wide v y other members		veen the bott	om					
WEBS	6-9=-290/1858, 3-12 11-12=-5500/911, 9	-11=-5685/956,		than input be								NE OF /	MISS
	3-10=-610/4883, 7-9 5-11=-376/89, 4-12=		11		hanical connection capable of withs						3	76	- Cp-
NOTES					38 lb uplift at join						2	JUA	N
(0.131"x3 Top chord oc. Bottom ch staggered) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-6-0			 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 13) Use Simpson Strong-Tie HUS26 (14-10d Girder, 4-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 2-0-12 from the left end to 14-0-12 to connect truss(es) to front face of bottom chord. 14) Fill all nail holes where hanger is in contact with lumber. 								• 41	

14) Fill all nail holes where hanger is in contact with lu LOAD CASE(S) Standard


January 17,2022

NITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	E3	Monopitch Supported Gable	1	1	Job Reference (optional)	149718440

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:47 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

10-10-8

Scale = 1:40.1

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-R	0.14 0.06 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 50 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	11=184/1(13=190/1(13=190/1(15=139/1(Max Uplift 9=-31 (LC 11=-54 (LI 13=-47 (LI 13=-47 (LI 13=-55 (LC 11=184 (LI	cept end verticals. applied or 10-0-0 or 0-8, 10=169/10-10- 0-10-8, 12=177/10-1 0-10-8, 14=114/10-1 0-10-8 .C 5), 10=-51 (LC 8), C 8), 12=-56 (LC 8), C 8), 14=-116 (LC 8 C 4) 15), 10=169 (LC 1), C 1), 12=177 (LC 1), C 1), 14=114 (LC 1)	3) 4) 20 or 5) 20 6) 20 6) 8, 8) 0-8, 8) 0-8, 9)), 10), 10	only. For stu see Standar, or consult qu All plates are Gable requir Truss to be f braced agair Gable studs This truss ha chord live loi * This truss ha chord live loi * This truss ha on the botton 3-06-00 tall li chord and an Provide mec bearing plate 15, 31 lb upl uplift at joint 11 and 51 lb) This truss is International R802.10.2 a	hed for wind load uds exposed to v d Industry Gable Jalified building (e 2x4 MT20 unle es continuous b fully sheathed fr inst lateral movel spaced at 2-0-0 as been design m chord in all ar by 2-00-00 wide hanical connect e capable of with ift at joint 9, 116 13, 56 lb uplift at uplift at joint 10 designed in acc Residential Coo nd referenced s	wind (norm a End Deta designer as ass otherwi oottom chor oom one fac ment (i.e. d o oc. d for a 10.0 nt with any hed for a 10.0 nt with any hed for a liv eas where will fit betw rs. ion (by oth histanding 1 i lo uplift at at joint 12, § b. coordance w de sections	al to the fac ils as applic: s per ANSI/T se indicated d bearing. e or securel iagonal web 0 psf bottom other live lo e load of 20 a rectangle reen the bot ers) of truss 5 lb uplift at joint 14, 47 54 lb uplift ar ith the 2018 R502.11.1	e), able, iPI 1. y). ads. .0psf tom to joint lb t joint					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	LC	DAD CASE(S)	Standard								ш.
TOP CHORD	2-15=-163/19, 1-2=0 3-4=-175/49, 4-5=-14 6-7=-120/59, 7-8=-88	49/47, 5-6=-132/48,										ATE OF	MISSO
BOT CHORD	14-15=-82/62, 13-14 11-12=-82/62, 10-11	=-82/62, 12-13=-82/									1	S. JU/	AN P
WEBS	3-14=-89/102, 4-13= 6-11=-144/84, 7-10=	-148/77, 5-12=-137/									Ξ×	AR	A. *
Vasd=91n II; Exp C; cantilever	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en left and right exposed sed; Lumber DOL=1.60	(3-second gust) DL=6.0psf; h=25ft; (velope) exterior zor ; end vertical left and	ne; d								Philip	E-2000	162101

Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

SS/ONAL EN

January 17,2022

1111

"I'FER

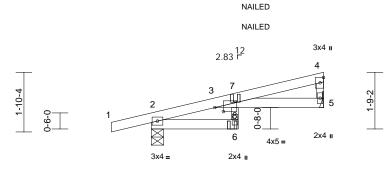
Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	J1	Diagonal Hip Girder	2	1	Job Reference (optional)	l49718441

2-7-3

2-7-3

-<u>1-2-14</u> 1-2-14

Wheeler Lumber, Waverly, KS - 66871,


Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:47 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-4-4

2-9-2

Page: 1

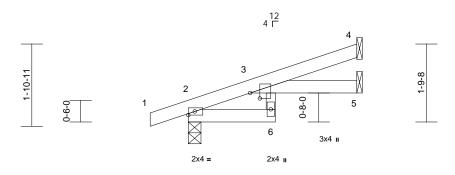
NAILED

Scale = 1:35.8

Plate Offsets (X, Y): [3:0-3-3,0-1-8]

	, , , , [0.0 0 0,0 1 0]												
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.49	Vert(LL)	-0.06	6	>945	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.28	Vert(CT)	-0.13	6	>476	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.02	Horz(CT)	0.04	5	n/a	n/a		
BCDL	10.0	Code	IRC2018	8/TPI2014	Matrix-S		Wind(LL)	0.06	6	>999	240	Weight: 15 lb	FT = 10%
LUMBER			7)	"NAILED" in	dicates 3-10d (0.	148"x3") o	or 2-12d						
TOP CHORD	2x4 SPF No.2		.,		5") toe-nails per N								
BOT CHORD	2x4 SPF No.2		8)		CASE(S) sectio			face					
WEBS	2x3 SPF No.2		,	of the truss	are noted as fron	nt (F) or ba	ck (B).						
BRACING			LC	DAD CASE(S)	Standard								
TOP CHORD	Structural wood she 5-4-4 oc purlins, ex		ed or 1)	Dead + Ro Plate Incre	of Live (balanced ase=1.15	d): Lumber	Increase=1	.15,					
BOT CHORD	Rigid ceiling directly bracing.			Uniform Lo	ads (lb/ft) =-70, 2-6=-20, 3	-5=-20							
	0	/	ical		, , .	0 20							
FORCES	(lb) - Maximum Corr Tension	,, , ,											
TOP CHORD	1-2=0/6, 2-3=-71/16 4-5=-144/50	, 3-4=-132/17,											
BOT CHORD	2-6=-52/0, 3-5=-13/2	115											
WEBS	3-6=0/75												
NOTES													
1) Wind: ASC Vasd=91m	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft; (
	Enclosed; MWFRS (er left and right exposed												1117.
right expos	sed; Lumber DOL=1.6	0 plate grip DOL=1.	60									OF	MISH
	has been designed fo load nonconcurrent wi		de								2	I'YE.	
	s has been designed f										5	A	
	tom chord in all areas										-	JU	AN SEE
	ll by 2-00-00 wide will		om								-+	. GAR	94 :+=
chord and	any other members.											: /	M. : : :

- Refer to girder(s) for truss to truss connections. 4)
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 40 lb uplift at joint 5 and 102 lb uplift at joint 2.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


UMBER 200016210 0 S/ONAL EN January 17,2022

Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	J2	Jack-Open	5	1	Job Reference (optional)	149718442

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:47 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

-0-10-8	1-10-5	3-10-8
0-10-8	1-10-5	2-0-3

	2-0-0		
1-10-5		3-10-8	
1-10-5		1-10-8	
	0-1-11		

Scale = 1:26.5

Plate Offsets (X, Y): [3:0-1-8,0-2-11]

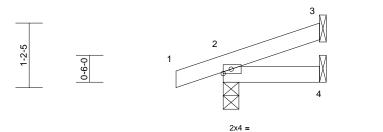
		-										
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.25	Vert(LL)	-0.03	6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	-0.05	6	>820	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.01	Horz(CT)	0.02	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P		Wind(LL)	0.03	6	>999	240	Weight: 11 lb	FT = 10%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS (I	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 3-10-8 oc purlins. Rigid ceiling directly bracing. Ib/size) 2=252/0-3 5=24/ Mer Max Horiz 2=65 (LC Max Uplift 2=-65 (LC Max Grav 2=252(LC)	applied or 6-0-0 oc -8, 4=135/ Mechanichanical 4) 4), 4=-52 (LC 8)	Internationa R802.10.2 (LOAD CASE(S ed or	s designed in accc Il Residential Cod and referenced sta) Standard	e sections	s R502.11.1 a	and					
FORCES TOP CHORD BOT CHORD	(LC 3) (lb) - Maximum Com Tension 1-2=0/6, 2-3=-65/0, 3 2-6=-26/0, 3-5=0/0	pression/Maximum										
WEBS	3-6=0/44											
Vasd=91mp II; Exp C; Er cantilever le right expose 2) This truss hi- chord live lo 3) * This truss on the botto 3-06-00 tall chord and a 4) Refer to gird 5) Provide mee bearing plat	E 7-16; Vult=115mph bh; TCDL=6.0psf; BC nclosed; MWFRS (er eff and right exposed ed; Lumber DOL=1.6 as been designed for bad nonconcurrent wi has been designed for m chord in all areas by 2-00-00 wide will my other members. der(s) for truss to tru- chanical connection (te capable of withstar uplift at joint 2.	DL=6.0psf; h=25ft; (ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1. :a 10.0 psf bottom th any other live loa or a live load of 20.0 where a rectangle fit between the botto ss connections. by others) of truss t	ne; d 60 ds. Dpsf om							111 * Phili	SS/ON	162101 4

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

January 17,2022

Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	J3	Jack-Open	4	1	Job Reference (optional)	149718443

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:47 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


1-1-2

Page: 1

1-9-7

Scale = 1:21.4

	()				-							
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.05	Vert(LL)	0.00	2-4	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	0.00	2-4	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 5 lb	FT = 10%

LOWIDER		
TOP CHORD	2x4 SPF	No.2
BOT CHORD	2x4 SPF	No.2
BRACING		
TOP CHORD	Structura 1-9-7 oc	I wood sheathing directly applied or purlins.
BOT CHORD	Rigid ceil bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(lb/size)	2=158/0-3-8, 3=45/ Mechanical, 4=17/ Mechanical
	Max Horiz	2=37 (LC 4)
	Max Uplift	2=-56 (LC 4), 3=-27 (LC 8)
	Max Grav	2=158 (LC 1), 3=45 (LC 1), 4=35 (LC 3)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	1-2=0/6, 2	2-3=-33/13
BOT CHORD	2-4=0/0	
NOTES		
1) Wind AS(CE 7-16 [.] Vu	It=115mph (3-second gust)

or

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 56 lb uplift at joint 2 and 27 lb uplift at joint 3.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

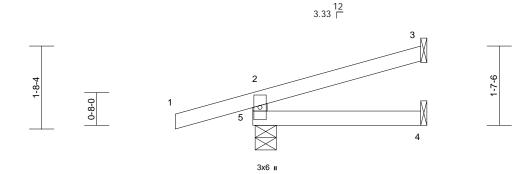
LOAD CASE(S) Standard

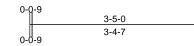
Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	J6	Jack-Open Girder	2	1	Job Reference (optional)	149718444

-1-6-15

1-6-15

Wheeler Lumber, Waverly, KS - 66871,


Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:47 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


3-5-0

3-5-0

Page: 1

1 46

Scale = 1:23.5

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	8/TPI2014	CSI TC BC WB Matrix-R	0.22 0.06 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 -0.01 0.00 0.00	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	MT20	GRIP 197/144 FT = 10%
		cept end verticals. applied or 10-0-0 oc chanical, 4=9/ al, 5=151/0-5-3 12) 5 12), 4=-1 (LC 19), C 6) 1), 4=43 (LC 3), 5=1	; LC 1)	provided suff down and 11 up at -1-6-1: such connect in the LOAD of the truss a PAD CASE(S) Dead + Roo Plate Increa Concentrate Vert: 1=- Trapezoida Vert: 1=((F=34, B	of Live (balanced	concentra , and 32 I The desig the respo , loads a (F) or ba): Lumber ;) -2=-30 (F =5, B=5),	Ated load(s) 3 b down and 2 n/selection of nsibility of oth pplied to the 1 ck (B). Increase=1.	11 lb hers. face 15,					
TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m	Tension 2-5=-132/124, 1-2=- 4-5=0/0 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC	6/23, 2-3=-24/7 (3-second gust) DL=6.0psf; h=25ft; C											

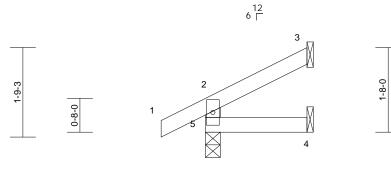
- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.
 II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 104 lb uplift at joint 5, 47 lb uplift at joint 3 and 1 lb uplift at joint 4.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	J7	Jack-Open	1	1	Job Reference (optional)	149718445

-0-10-8

0-10-8

Wheeler Lumber, Waverly, KS - 66871,


Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:48 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-0-0

2-0-0

Page: 1

3x6 II

2-0-0

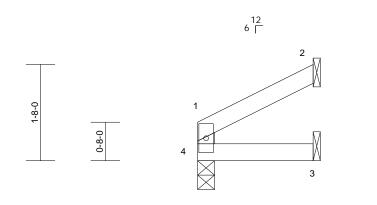
Scale = 1:22.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.07	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 6 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 Structural wood she 2-0-0 oc purlins, ex Rigid ceiling directly bracing. (lb/size) 3=48/ Me	cept end verticals. applied or 10-0-0 or chanical, 4=15/ cal, 5=174/0-3-8 8) C 8), 5=-26 (LC 8)	2									
FORCES	(LC 1) (lb) - Maximum Com	,,	174									
TOP CHORD	Tension 2-5=-153/45, 1-2=0/	32 2-330/16										
BOT CHORD		32, 2-3=-39/10										
NOTES	4 5=0/0											
1) Wind: AS Vasd=91r II; Exp C; cantilever right expo	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6	DL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an 0 plate grip DOL=1.	ie; d								NU OF	MISTA
	has been designed fo load nonconcurrent wi		do								NE	Sol
3) * This trus on the bot 3-06-00 ta chord and	ss has been designed f ttom chord in all areas all by 2-00-00 wide will d any other members.	for a live load of 20.0 where a rectangle fit between the botto	psf								D JU/ CAR	
	girder(s) for truss to tru		_									· h·=
bearing pl 5 and 32 l	nechanical connection late capable of withstar lb uplift at joint 3.	nding 26 lb uplift at j									E-2000	• 41.
	s is designed in accorda		nd							1	A	Glin

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	J8	Jack-Open	2	1	Job Reference (optional)	149718446


2-0-0

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:48 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-8-0

Page: 1

3x6 II

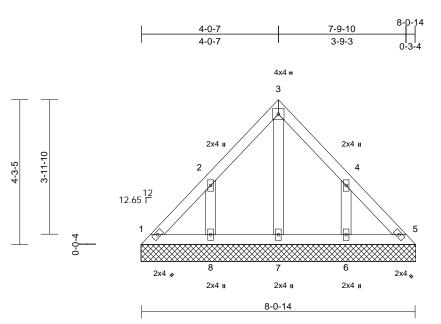
2-0-0

Scale = 1:20

00010 = 1.20												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.05	Vert(LL)	0.00	3-4	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	0.00	3-4	>999	240	-	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	3-4	>999	240	Weight: 5 lb	FT = 10%
		!		_							0	
LUMBER												
TOP CHORD												
BOT CHORD												
WEBS	2x4 SPF No.2											
BRACING												
TOP CHORD	O Structural wood she	athing directly appli	ed or									
	2-0-0 oc purlins, ex	cept end verticals.										
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	C									
	bracing.											
REACTIONS	(lb/size) 2=60/ Me	chanical, 3=23/										
	Mechanic	al, 4=83/0-3-8										
	Max Horiz 4=32 (LC	5)										
	Max Uplift 2=-35 (LC	C 8)										
	Max Grav 2=60 (LC	1), 3=35 (LC 3), 4=	83									
	(LC 1)											
FORCES	(lb) - Maximum Corr	npression/Maximum										
	Tension											
TOP CHORD		5/21										
BOT CHORD	0 3-4=0/0											
NOTES												
1) Wind: AS	SCE 7-16; Vult=115mph	(3-second gust)										
Vasd=91	mph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft;	Cat.									
	; Enclosed; MWFRS (er											
	r left and right exposed											111.
	osed; Lumber DOL=1.6		.60								11 OF	MIG
2) This trus	s has been designed fo	r a 10.0 psf bottom									NE	
	e load nonconcurrent w										18	
	iss has been designed f		Upst								2 · · · ·	
	ottom chord in all areas									2	JU	AN
	all by 2-00-00 wide will d any other members.	In between the both	om							-+	AF	
	girder(s) for truss to tru	ice connections									: //	Ma : 1
	mechanical connection		to							= 1		
	plate capable of withsta										NUM	IBER :
2.	sate supuble of willista	nang oo io upint at j									C: E-2000	162101
	s is designed in accorda	ance with the 2018								1	~·· -	
	onal Residential Code s		and								1. 80	Git
	.2 and referenced stand										I,ON	ALEN
	(S) Standard										1111	in the second se

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	LAY1	Lay-In Gable	1	1	Job Reference (optional)	149718447

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:48 ID:0HpdwgFY1pb7cCG_RW7KWzdzBS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

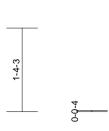
Page: 1

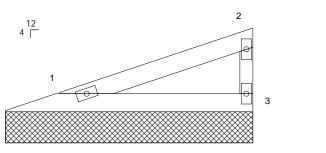
Scale =	1:34
---------	------

							i						
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.02	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.03	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-P							Weight: 29 lb	FT = 10%
LUMBER			6) This truss ha	s been designed f	for a 10.	0 psf bottom						
TOP CHORD	2x4 SPF No.2				ad nonconcurrent			ids.					
BOT CHORD	2x4 SPF No.2		7) * This truss h	nas been designed	d for a liv	e load of 20.	0psf					
OTHERS	2x4 SPF No.2				n chord in all area								
BRACING					y 2-00-00 wide wi		veen the bott	om					
TOP CHORD		eathing directly appli	ed or 8		iy other members. hanical connectior		ore) of truce t	to					
	6-0-0 oc purlins.		-		capable of withst								
BOT CHORD	Rigid ceiling direct bracing.	ly applied or 10-0-0 o	C		at joint 5, 146 lb up								
REACTIONS		1-6, 5=76/8-1-6,	9		o. designed in accor	dance w	ith the 2018						
		-1-6, 7=109/8-1-6,	0		Residential Code			and					
	8=204/8			R802.10.2 a	nd referenced star	ndard AN	ISI/TPI 1.						
	Max Horiz 1=-104	(LC 4) .C 4), 5=-5 (LC 5), 6=	146 L	OAD CASE(S)	Standard								
		3=-146 (LC 8)	-140										
		C 16), 5=88 (LC 18),	6=230										
		7=123 (LC 18), 8=23											
	15)												
FORCES	(lb) - Maximum Co Tension	mpression/Maximum											
TOP CHORD	1-2=-111/86, 2-3=	97/79. 3-4=-89/63.											
	4-5=-95/64												
BOT CHORD	1-8=-42/90, 7-8=-4	2/90, 6-7=-42/90,											
	5-6=-42/90												111.
WEBS	3-7=-83/0, 2-8=-18	9/171, 4-6=-189/170										IN OF	MICH
NOTES												NE	0.00
,		e been considered fo	or								- 5	17	
this design	n. CE 7-16; Vult=115mp	(3-second quet)									-	0.	IN P
		CDL=6.0psf; h=25ft;	Cat.								-		
		envelope) exterior zo									= *		··· :*=
cantilever	left and right expose	d ; end vertical left ar	nd								Ξ.	: H/	Ч· ; :
		.60 plate grip DOL=1.									=7		BER :
		in the plane of the tru									-7	E-2000	• 41-
		nd (normal to the face and Details as applica									-	A	
		signer as per ANSI/TI									1	199	GN
	uires continuous bot											INON!	ALENI
	ds spaced at 2-0-0 o											- 4411	inn.
,	•											lanuar	47.0000

January 17,2022

Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	V1	Valley	1	1	Job Reference (optional)	149718448


3-11-12


Wheeler Lumber, Waverly, KS - 66871,

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:48 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 II

2x4 II

2x4 =

1-4-3

					3-11-1	12			í.			
Scale = 1:18.5								 				
Loading	(psf)	Spacing	2-0-0	CSI)	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		Plate Grip DOL	1.15	TC	0.16	Vert(LL)	n/a	-	n/a	999 [/]	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.09	Vert(TL)	n/a	-	n/a	999	1	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a	1	
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P		1				'	Weight: 9 lb	FT = 10%

LUMBER

BRACING	
WEBS	2x3 SPF No.2
BOT CHORD	2x4 SPF No.2
TOP CHORD	2x4 SPF No.2

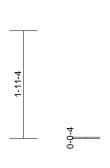
TOP CHORD		Structural wood sheathing directly applied of 4-0-8 oc purlins, except end verticals.								
BOT CHORD	Rigid ceili bracing.	ng directly applied or 10-0-0 oc								
REACTIONS	Max Horiz	1=135/3-11-12, 3=135/3-11-12 1=45 (LC 5)								

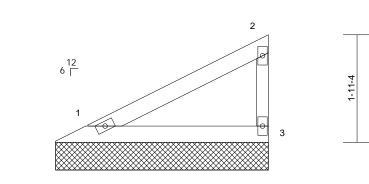
	Max Uplift 1=-22 (LC 4), 3=-29 (LC 8)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=-40/27, 2-3=-105/47
BOT CHORD	1-3=-14/11

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and
- right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Gable requires continuous bottom chord bearing. 2)
- 3) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 1 and 29 lb uplift at joint 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	V2	Valley	1	1	Job Reference (optional)	149718449


Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:48 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 r

Page: 1

3-10-0

2x4 🚽

2x4 II

			L		0							
Scale = 1:20.8												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.18	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P		1				,	Weight: 10 lb	FT = 10%

LOWIDER		
TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2
WEBS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	3-10-8 oc	purlins, except end verticals.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	1=141/3-10-0, 3=141/3-10-0
	Max Horiz	1=66 (LC 5)
	Max Uplift	1=-18 (LC 8), 3=-35 (LC 8)

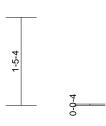
FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-60/39, 2-3=-110/54 1-3=-22/17 BOT CHORD

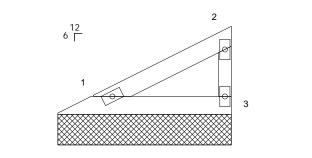
NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Gable requires continuous bottom chord bearing. 2)
- 3) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 1 and 35 lb uplift at joint 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	V3	Valley	1	1	Job Reference (optional)	149718450


Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:48 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


2x4 🛛

2x4 II

-5-4

Page: 1

2-10-0

Scolo	_	1.1	00	

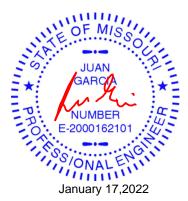
Scale = 1:18.8				1							i	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 7 lb	FT = 10%

2x4 ≠

2-10-0

BCDL
LUMBER

TOP CHORD	2x4 SPF No	o.2
BOT CHORD	2x4 SPF No	o.2
WEBS	2x3 SPF No	o.2
BRACING		
TOP CHORD	Structural v	vood sheathing directly applied or
	2-10-8 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceilin	g directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size) 1	I=96/2-10-0, 3=96/2-10-0
	Max Horiz 1	I=45 (LC 5)

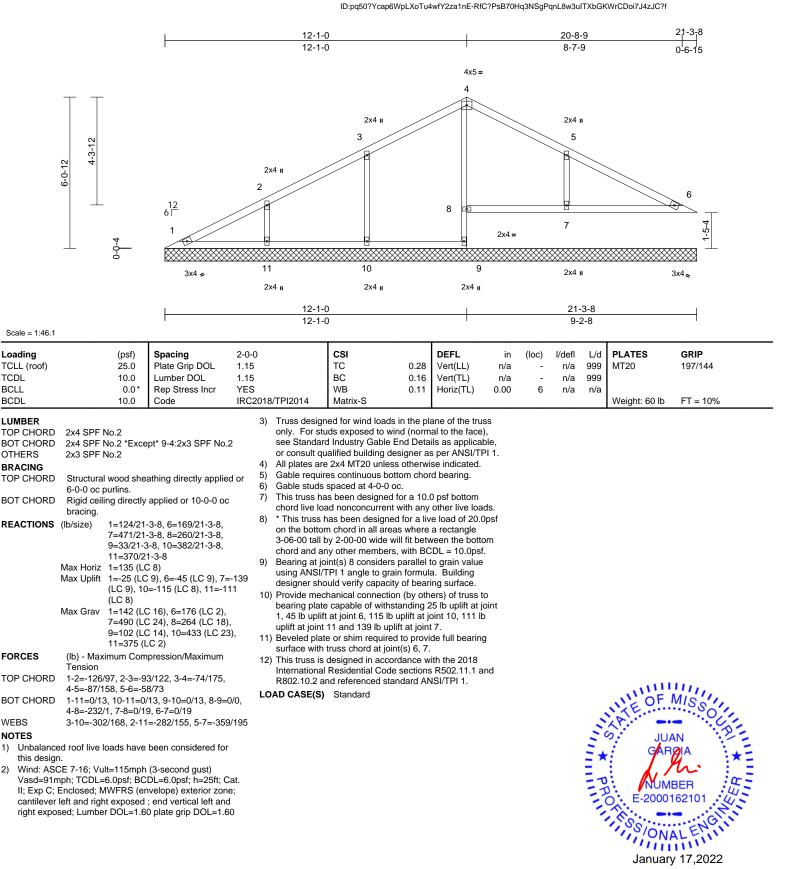

Max Uplift 1=-12 (LC 8), 3=-24 (LC 8) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-41/27, 2-3=-75/36

BOT CHORD 1-3=-15/12

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust)
- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Gable requires continuous bottom chord bearing. 2)
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 1 and 24 lb uplift at joint 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

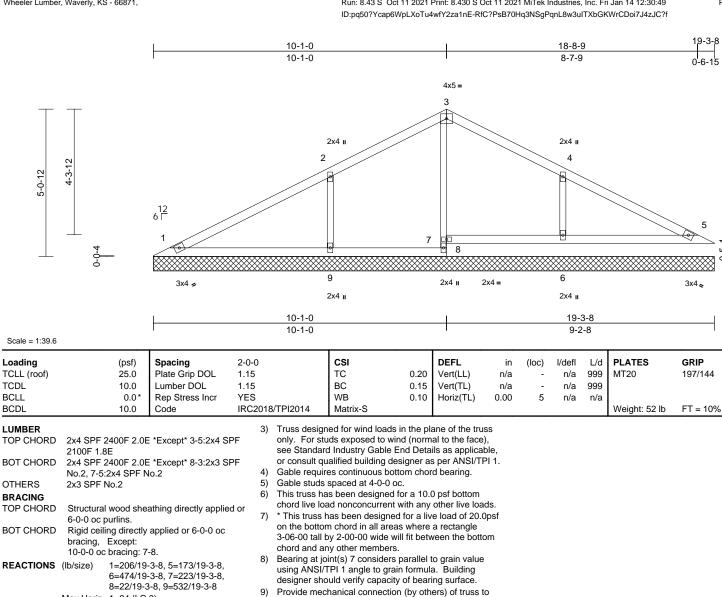
LOAD CASE(S) Standard



Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	V4	Valley	1	1	Job Reference (optional)	149718451

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Fri. Jan 14 12:30:49

Page: 1


MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	V5	Valley	1	1	Job Reference (optional)	l49718452

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Fri Jan 14 12:30:49

Page: 1

0-2-7

bearing plate capable of withstanding 27 lb uplift at joint

1, 32 Ib uplift at joint 5, 161 Ib uplift at joint 9 and 139 Ib

International Residential Code sections R502.11.1 and

10) Beveled plate or shim required to provide full bearing

11) This truss is designed in accordance with the 2018

R802.10.2 and referenced standard ANSI/TPI 1.

surface with truss chord at joint(s) 5, 6.

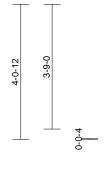
- 8=22/19-3-8, 9=532/19-3-8 Max Horiz 1=94 (LC 8) Max Uplift 1=-27 (LC 9), 5=-32 (LC 9), 6=-139
- (LC 9), 9=-161 (LC 8) Max Grav 1=206 (LC 1), 5=173 (LC 1), 6=477 (LC 22), 7=223 (LC 1), 8=51 (LC 3), 9=536 (LC 21)
- FORCES (lb) - Maximum Compression/Maximum Tension 1-2=-102/120, 2-3=-95/146, 3-4=-97/128, TOP CHORD 4-5=-67/69
- BOT CHORD 1-9=-5/35, 8-9=-5/35, 7-8=0/0, 3-7=-194/0, 6-7=-3/37, 5-6=-3/37
- WEBS 2-9=-405/219, 4-6=-362/197
- NOTES
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

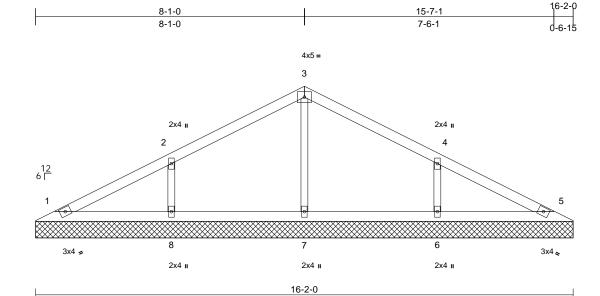
MI 0 TAS * PROXIM II I AN UMBER 200016210 8 S E ONAL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a duss system planteets and property incorporate dust using in the version of the system planteets and property incorporate dust using indicated is to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

uplift at joint 6.

LOAD CASE(S) Standard


4000 W January 17,2022


111111

Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	V6	Valley	1	1	Job Reference (optional)	l49718453

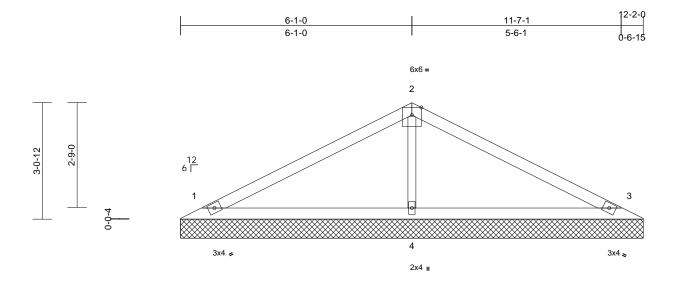
Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:49 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:34.7

oodio = no ni												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.12	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.08	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 43 lb	FT = 10%
LUMBER			6) This tru	ss has been designe	ed for a 10.	0 psf bottom						
TOP CHORD	2x4 SPF 2100F 1.8	E		e load nonconcurre								
BOT CHORD	2x4 SPF 2400F 2.0	E		uss has been desigr)psf					
OTHERS	2x3 SPF No.2			ottom chord in all ar								
BRACING				tall by 2-00-00 wide		veen the botto	om					
TOP CHORD	Structural wood she 6-0-0 oc purlins.	athing directly appli	8) Provide	nd any other member mechanical connect	tion (by oth							
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o		plate capable of with plift at joint 5, 125 lb								
DEADTIONS	bracing.	0.0.5.40040.0.0	uplift at				-					
REACTIONS	· · · ·	-2-0, 5=138/16-2-0, -2-0, 7=284/16-2-0,	9) This tru	, ss is designed in acc								
	8=394/16		Internat	onal Residential Co			nd					
	Max Horiz 1=-66 (L0).2 and referenced s	tandard Al	ISI/TPI 1.						
	Max Uplift 1=-12 (LC		-125 LOAD CAS	E(S) Standard								
		=-125 (LC 8)										
	Max Grav 1=138 (L											
		7=284 (LC 1), 8=401	1 (LC									
	21)											
FORCES	(lb) - Maximum Con Tension	npression/Maximum										
TOP CHORD	1-2=-99/46, 2-3=-11 4-5=-80/37	6/94, 3-4=-116/79,										
BOT CHORD	4-5=-60/37 1-8=0/64, 7-8=0/64	6-7-0/64 5-6-0/64	L									
WEBS	3-7=-208/25, 2-8=-3	,										
NOTES	2 200,20,20											1111
	ed roof live loads have	been considered fo	or								NE OF	MISS
this design										1	XE.	
0	CE 7-16; Vult=115mph	(3-second gust)								5	7	
Vasd=91m	nph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft;	Cat.								S JU	AN
	Enclosed; MWFRS (e									24	GAF	
	left and right exposed									- *	: /	
	sed; Lumber DOL=1.6									-		· · · · ·
	igned for wind loads ir studs exposed to wind									= 7		BER :
	ard Industry Gable Er										0 E-2000	162101
	qualified building desi									-1		
	uires continuous botto										1. So	
5) Gable stuc	ds spaced at 4-0-0 oc.	0									IN ON	ALEIN
											- 111	intro.
												v 17 2022

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017


January 17,2022

ſ	Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
	B220011	V7	Valley	1	1	Job Reference (optional)	149718454

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:49 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

12-2-0

Scale	=	1:30.3

00010 - 110010						-								
Loading TCLL (roof) TCDL BCLL		(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.42 0.14 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
BCDL		10.0	Code	IRC20	18/TPI2014	Matrix-S							Weight: 30 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x3 SPF Structura 6-0-0 oc	2400F 2.0F No.2 Il wood she purlins.	athing directly applie		on the bottor 3-06-00 tall t chord and ar Provide mec bearing plate 1, 54 lb uplift	has been desi n chord in all by 2-00-00 wic y other memb hanical conne capable of w capable of w at joint 3 and designed in a	areas where le will fit betw bers. ection (by oth ithstanding 4 29 lb uplift a	a rectangle veen the bott ers) of truss I7 lb uplift at it joint 4.	om to					
201 0.10112	bracing.	ing aroony				Residential C nd referenced			and					
REACTIONS	Max Horiz Max Uplift	4=520/12 1=-49 (LC 1=-47 (LC (LC 8)	C 13) C 8), 3=-54 (LC 9), 4 C 21), 3=234 (LC 22	=-29	OAD CASE(S)									
FORCES TOP CHORD BOT CHORD WEBS	Tension 1-2=-149	/67, 2-3=-1 5, 3-4=-3/6												
NOTES	2-4=-347	/92												
 Unbalance this design Wind: ASC 	ո. CE 7-16; Vu	ult=115mph	been considered fo (3-second gust) DL=6.0psf; h=25ft; (NE OF	MISS

- 0psf; BCDL=6.0psf; h=25ft; Cat. 1mph; TCD II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 3)
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.

Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	V8	Valley	1	1	Job Reference (optional)	149718455

4-1-0

4-1-0

Wheeler Lumber, Waverly, KS - 66871,

1-9-0

2-0-12

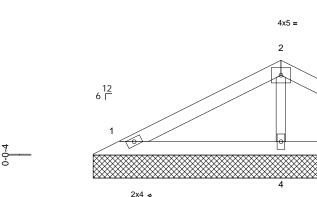
Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Jan 14 12:30:49 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 "

8-2-0

7-7-1

3-6-1


8-2-0

0-6-15

3

2x4 👟

Scale = 1:25.1

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.22 0.10 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	athing directly applie r applied or 10-0-0 oc 2-0, 3=164/8-2-0, 2-0	bearing pl 1, 43 lb up 9) This truss Internation R802.10.2 LOAD CASE(echanical connect ate capable of wit blift at joint 3 and 4 is designed in act nal Residential Co 2 and referenced s S) Standard	hstanding 3 4 lb uplift at cordance w de sections	38 lb́ uplift at j ∷joint 4. vith the 2018 s R502.11.1 a	joint					
	Max Horiz 1=31 (LC Max Uplift 1=-38 (LC (LC 8)	/	=-4									
FORCES	(lb) - Maximum Com Tension	npression/Maximum										
TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	1-2=-79/44, 2-3=-79 1-4=-1/35, 3-4=-1/39 2-4=-213/56 ed roof live loads have	5	r									
•												

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Job	Truss	Truss Type	Qty	Ply	Lot 119 MN	
B220011	V9	Valley	1	1	Job Reference (optional)	149718456

12 6 Г

Wheeler Lumber, Waverly, KS - 66871,

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Fri Jan 14 12:30:49 ID:pq50?Ycap6WpLXoTu4wfY2za1nE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x4 =

in

n/a

n/a

(loc)

3

2

3-7-1

1-6-1

4-2-0

0-6-15

3

PLATES

Weight: 9 lb

MT20

GRIP

197/144

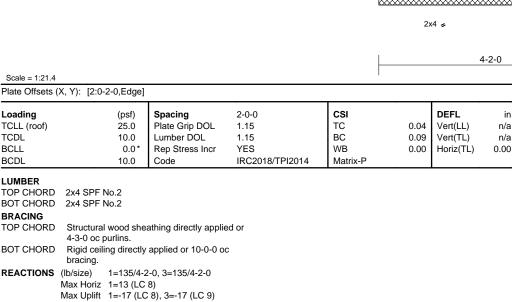
FT = 10%

2x4 ~

l/defl

n/a 999

n/a 999


n/a n/a

L/d

2-1-0

2-1-0

0-6-0

I-0-12

FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-135/40, 2-3=-135/40

BOT CHORD 1-3=-24/104

NOTES

Scale = 1:21.4

Loading

TCDL

BCLL

BCDL

LUMBER

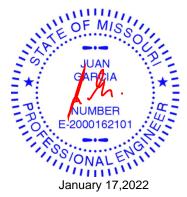
BRACING TOP CHORD

BOT CHORD

BOT CHORD

REACTIONS

TCLL (roof)


Unbalanced roof live loads have been considered for 1) this design.

Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

Gable requires continuous bottom chord bearing. 3)

- This truss has been designed for a 10.0 psf bottom 4) chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 17 lb uplift at joint 1 and 17 lb uplift at joint 3.
- This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

