

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Re: B210100 103 RR

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Wheeler - Waverly.

Pages or sheets covered by this seal: I49386574 thru I49386638

My license renewal date for the state of Missouri is December 31, 2021.

Missouri COA: Engineering 001193

Sevier, Scott

December 22,2021

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

,Engineer

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	A3	Hip Girder	1	1	Job Reference (optional)	149386574

Run: 8.43 E Aug 16 2021 Print: 8.430 E Aug 16 2021 MiTek Industries, Inc. Wed Dec 22 14:54:00 ID:Q0Q4ZaspPQGcAy_pe?JcMnyKfK8-ZxhUnn9_HD95Y1v1vLK0T4Ngx5V8zoWQ?ELtGBy6NgM

Page: 1

Scale = 1:32

	ling (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15 1.15		CSI TC BC	0.47	DEFL Vert(LL)	in -0.13	(loc) 8-9 8-9	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144	
BCU	-	0.0*	Ren Stress Incr	NO		WB	0.29	Horz(CT)	0.20	6-0	>330 n/a	n/a			
BCDI	- L	10.0	Code	IRC201	8/TPI2014	Matrix-S	0.20	Wind(LL)	0.06	8-9	>999	240	Weight: 45 lb	FT = 10%	
LUM TOP BOT WEB WED BRAG	BER CHORD CHORD S GE CING CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Left: 2x3 SPF No.2 Right: 2x3 SPF No.2 Structural wood shea 5-1-5 oc purlins, exci 2-0-0 oc purlins (5-3 Rigid ceiling directly	athing directly applied ept -14 max.): 3-5. applied or 7-4-12 oc	5) 6) d or 7) 8)	* This truss h on the botton 3-06-00 tall b chord and an Provide mech bearing plate joint 2 and 25 This truss is of International R802.10.2 ar Graphical pu	as been designed n chord in all areas y 2-00-00 wide wil y other members. nanical connection capable of withsta 58 lb uplift at joint 6 designed in accord Residential Codes nd referenced stan- rlin representation tion of the purlin a	for a liv s where l fit betw (by oth anding 2). lance w sections dard AN does no long the	e load of 20. a rectangle veen the bott ers) of truss i 58 lb uplift a ith the 2018 R502.11.1 a ISI/TPI 1. to be pad/or	Opsf om to t and size						
REA	CTIONS	bracing. (Ib/size) 2=745/0-3 Max Horiz 2=-28 (LC Max Uplift 2=-258 (LC	8-8, 6=745/0-3-8 13) C 4), 6=-258 (LC 5)	9)	bottom chord Hanger(s) or provided suff	other connection c icient to support cc 189 lb up at 3-0-0	device(s) shall be ated load(s) 1	17 Ib up						
FOR TOP	CES CHORD	(lb) - Max. Comp./Ma (lb) or less except wh 2-3=-1310/427, 3-10 4-10=-1098/395, 4-1 5-11=-1096/395, 5-6	ax. Ten All forces 2 hen shown. =-1096/395, 1=-1098/395, =-1310/427	50	at 5-0-0, 69 down and 54 up at 11-0-0 lb down at 5-	Ib down and 54 lb Ib up at 9-0-0, an on top chord, and -0-0, 16 lb down at 126 lb down at 10	up at 7 d 117 lb 26 lb do 7-0-0, -11-4 or	0-0, and 69 down and 1 own at 3-0-0 and 16 lb do	lb 89 lb , 16 wn rd						
BOT WEB	CHORD S	2-9=-350/1121, 9-12 12-13=-622/1623, 13 8-14=-622/1623, 6-8 3-9=0/416, 5-8=0/410	=-622/1623, 3-14=-622/1623, =-353/1121 6, 4-9=-588/287,	10	The design/s responsibility) In the LOAD of the truss a	election of such co of others. CASE(S) section, re noted as front (I	loads ap F) or ba	n device(s) is oplied to the ck (B).	s the face					The second se	
		4-8=-588/287		LO	DAD CASE(S)	Standard							O TE	and the second	
NOT	ES			1)	Dead + Roc	of Live (balanced):	Lumber	Increase=1.	15,				FEOFT	UISS Q	
1) L th 2) V 11 c ri 3) F	Inbalance his design Vind: ASC /asd=91n l; Exp C; antilever ight expo Provide ac	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en left and right exposed; ised; Lumber DOL=1.60 dequate drainage to pre-	been considered for (3-second gust) DL=6.0psf; h=25ft; C vvelope) exterior zone ; end vertical left and 0 plate grip DOL=1.6 event water ponding.	at. e; 0	Plate Increa Uniform Loa Vert: 1-3: Concentrate Vert: 3=- (F), 10=- 14=-8 (F)	use=1.15 ads (lb/ft) =-70, 3-5=-70, 5-7= ed Loads (lb) 15 (F), 5=-15 (F), 9 15 (F), 11=-15 (F),	=-70, 2-6)=-8 (F), 12=-8 (6=-20 8=-8 (F), 4= F), 13=-8 (F)	-15			Le le	STATISEVI SEVI DE-2001	T M. ER	7

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

December 22,2021

SIONAL

E

O

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	A4	Hip	1	1	Job Reference (optional)	149386575

5-0-0

Wheeler Lumber, Waverly, KS - 66871,

-0-10-8

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:11 ID:32cBWsogateJ4B5ssSjRfjyKfKD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

14-0-0

14-10-8

2cBWsogateJ4B5ssSjRfjyKfKD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-0-0

Scale = 1:31.7

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.40 0.34 0.06	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.03 -0.06 0.02 0.02	(loc) 2-8 2-8 5 2-8	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 44 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Left: 2x4 SP No.3 Right: 2x4 SP No.3		 This truss Internatio R802.10. Graphical or the orie bottom ch 	is designed in acco nal Residential Code and referenced sta purlin representatio ntation of the purlin ord. S) Standard	ordance wi e sections andard AN on does no along the	th the 2018 R502.11.1 a ISI/TPI 1. of depict the s top and/or	and size					
TOP CHORD	Structural wood shea 5-1-14 oc purlins, ex 2-0-0 oc purlins (6-0-	athing directly applie cept -0 max.): 3-4.	ed or	,								
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc										
REACTIONS	(lb/size) 2=688/0-3 Max Horiz 2=-42 (LC Max Uplift 2=-90 (LC	8-8, 5=688/0-3-8 13) 4), 5=-90 (LC 5)										
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=0/6, 2-3=-1042/ 4-5=-1042/112 5-6=	113, 3-4=-871/125, 0/6										
BOT CHORD WEBS	2-8=-59/876, 7-8=-62 3-8=0/191, 3-7=-109	2/871, 5-7=-56/876 /110, 4-7=0/192										
NOTES												
1) Unbalance	ed roof live loads have	been considered for	r									
2) Wind: ASC Vasd=91m II; Exp C; E cantilever	 EE 7-16; Vult=115mph pph; TCDL=6.0psf; BCI Enclosed; MWFRS (en left and right exposed sed: Lumber DOI =1 60	(3-second gust) DL=6.0psf; h=25ft; C welope) exterior zon ; end vertical left and 0 plate grip DOI =1 6	Cat. ie; d 50							H.	TATE OF M	MISSOLUP
 Provide ad 	lequate drainage to pre	event water ponding								B	/ SEVI	ER \ Y
4) This truss	has been designed for	a 10.0 psf bottom								Rot		0 12
, chord live	load nonconcurrent wit	th any other live load	ds.								t	South
5) * This trust	s has been designed fo	or a live load of 20.0	psf							83	NUME	BER
3-06-00 ta	Il by 2-00-00 wide will i	fit between the botto	m							N.	O入 PE-2001(018807
chord and	any other members.									V	Pal	154
6) Provide me	echanical connection (by others) of truss to	h								100	NUM

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 90 lb uplift at joint 2 and 90 lb uplift at joint 5.

December 22,2021

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	A5	Common	4	1	Job Reference (optional)	149386576

7-0-0

7-0-0

Sca	e –	1.31	9	

3-7-3

Plate Offsets (X, Y): [2:Edge,0-1-6], [4:Edge,0-1-6]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.74 0.47 0.11	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.06 -0.13 0.02 0.05	(loc) 4-6 4-6 4 2-6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 40 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Left: 2x4 SP No.3 Right: 2x4 SP No.3		6) This truss i Internation R802.10.2 LOAD CASE(S	s designed in according according according a contract according a contr	ordance wi le sections andard AN	ith the 2018 R502.11.1 a ISI/TPI 1.	and					
BRACING												
TOP CHORD	Structural wood she 3-8-6 oc purlins.	athing directly appli	ed or									
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	0C									
REACTIONS	(lb/size) 2=688/0-3 Max Horiz 2=-58 (LC Max Uplift 2=-102 (L	3-8, 4=688/0-3-8 C 13) .C 8), 4=-102 (LC 9))									
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=0/6, 2-3=-933/1 4-5=0/6	04, 3-4=-933/104,										
BOT CHORD WEBS	2-6=-41/758, 4-6=-4 3-6=0/333	1/758										
NOTES												
1) Unbalance this design	ed roof live loads have	been considered for	or									an
 Wind: AS Vasd=91i II; Exp C; cantilever right expo This trues 	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er r left and right exposed osed; Lumber DOL=1.6 been been designed for	(3-second gust) DL=6.0psf; h=25ft; ivelope) exterior zo ; end vertical left ar 0 plate grip DOL=1.	Cat. ne; nd 60								STATE OF I	MISSOLA I M. EER
chord live	load nonconcurrent wi	th any other live loa	ads.							80		0

- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 102 lb uplift at joint 2 and 102 lb uplift at joint 4.

PE-2001018807 0 PESSIONAL E December 22,2021

14-0-0

7-0-0

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	B1	GABLE	1	1	Job Reference (optional)	149386577

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:11 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:51.4

Plate Offsets (X, Y): [10:0-2-0,Edge], [20:0-5-10,0-1-8], [35:0-5-10,0-1-8]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc	c) l/defl	L/d	PLATES	GRIP	
TCLL (roof)		25.0	Plate Grip DOL	1.15		тс	0.08	Vert(LL)	n/a	`	, - n/a	999	MT20	197/144	
TCDL		10.0	Lumber DOL	1.15		вс	0.08	Vert(CT)	n/a		- n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.09	Horz(CT)	0.00	2	0 n/a	n/a			
BCDL		10.0	Code	IRC2018	3/TPI2014	Matrix-R		- (-)					Weight: 115 lb	FT = 10%	
LUMBER				TC	OP CHORD	2-35=-175/60, 1-2=	=0/40, 2-	3=-194/131,		9) *	This truss	has b	een designed for	a live load of 20	0.0psf
TOP CHORD	2x4 SPF	No.2				3-4=-122/99, 4-5=-	106/86,	5-6=-95/76,		0	n the botto	om cho	ord in all areas w	here a rectangle)
BOT CHORD	2x4 SPF	No.2				6-7=-87/84, 7-8=-7	8/111, 8	-9=-59/149,		3	-06-00 tall	by 2-0	00-00 wide will fit	between the bo	ottom
WEBS	2x4 SPF	No.2				9-10=-67/111, 10-1	1=-60/1	04, 11-12=-3	5/130,	С	hord and a	any oth	ner members, wit	h BCDL = 10.0p	osf.
OTHERS	2x4 SPF	No.2				12-13=-54/95, 13-1	4=-63/6	9, 14-15=-72	/47,	10) F	rovide me	chanic	cal connection (b	y others) of trus	s to
BRACING						15-16=-82/55, 16-1	7=-107	68,		b	earing pla	te cap	able of withstand	ing 75 lb uplift a	it joint
TOP CHORD	Structura	l wood shea	athing directly applied	d or		17-18=-175/95, 18	-19=0/40), 18-20=-155	5/35	3	5, 43 lb up	olift at	joint 20, 155 lb u	plift at joint 34, 2	24 lb
	6-0-0 oc	purlins, exc	cept end verticals.	BC	DT CHORD	34-35=-93/154, 33	-34=-93/	154,		u	plift at join	t 33, 5	2 lb uplift at joint	32, 45 lb uplift a	at joint
BOT CHORD	Rigid ceil	ing directly	applied or 10-0-0 oc			32-33=-93/154, 31	-32=-93/	154,		3	1, 51 lb up	olift at j	joint 30, 73 lb upl	ift at joint 29, 77	'lb
	bracing.	0 ,				30-31=-93/154, 29	-30=-93/	(154,		u	plift at join	t 26, 5	1 Ib uplift at joint	25, 44 lb uplift a	at joint
REACTIONS	(lb/size)	20=175/20	0-0-0 21=67/20-0-0			28-29=-93/154, 27	-28=-93/	154,		2	4, 51 ID UP	niπ at	joint 23, 26 ib upi	ift at joint 22 and	d 145
	(, 0.120)	22=131/20	0-0-0. 23=118/20-0-0).		26-27=-93/154, 25	-26=-93/	154,			o upliπ at jo	Dint 21			`
		24=120/20	0-0-0, 25=123/20-0-0).		24-25=-93/154, 23	-24=-93/	154,		11)1	nis truss i		dential Code and	ce with the 2018	ond
		26=76/20-	0-0, 27=149/20-0-0,	,		22-23=-93/154, 21	-22=-93/	154,					foreneed stonder		anu
		28=149/20	0-0-0, 29=76/20-0-0,	14/		20-21=-93/154	101/5				002.10.2			u ANSI/TETT.	
		30=123/20	0-0-0, 31=120/20-0-0), ۷۷	EBS	3-34=-97/114, 4-33	00/60	3, 5 - 32 = -98/6	64,	LOAI	D CASE(S) Sta	indard		
		32=118/20	0-0-0, 33=131/20-0-0),		0.29 125/4 11 25	=-90/00, 7 11E/0	0-29=-09/00) E						
		34=67/20-	0-0, 35=175/20-0-0			3-20=-123/4, 11-27	2/08/6	1 15-2307)5, /6/						
	Max Horiz	35=213 (L	.C 7)			16-22-101/5/ 17	-2180/0	/100 /100	, 104,						
	Max Uplift	20=-43 (L	C 5), 21=-145 (LC 9)	,		10 22- 10 1/04, 17	21= 00/	105							
		22=-26 (L	C 9), 23=-51 (LC 9),												
		24=-44 (L	C 9), 25=-51 (LC 9),	1)	Unbalanced	a roof live loads hav	e been o	considered to	r						
		26=-77 (L	C 9), 29=-73 (LC 8),		this design.									~	
		30=-51 (L	C 8), 31=-45 (LC 8),	2)	Wind: ASCI	= 7-16; Vult=115mp	n (3-sec	cond gust)	-				CON	m	
		32=-52 (L	C 8), 33=-24 (LC 8),			n; TCDL=6.0psi; B		Jpsi; n=25ii; (Jal.				A OF	MISC	
		34=-155 (LC 8), 35=-75 (LC 4)		II, EXP C, E	ft and right exposed	d · ond v	e) exterior 201	ie, d			1	950	N'OS	N
	Max Grav	20=202 (L	.C 18), 21=149 (LC 1	6),	right expect	and fight expose	a, ena v 60 plata	arin DOI -1	u 80			A	AV SCOT		S N
		22=143 (L	.C 16), 23=145 (LC 1	6),	Truce docio	nod for wind loads i	in the nl	grip DOL=1.				4	S/ SCOI		N .
		24=143 (L	.C 16), 25=152 (LC 1	6), 3)	only For st	ude exposed to win	d (norm	alle of the face	55			B.	SEV	IER \	. X
		26=88 (LC	C 16), 27=207 (LC 17	(),	see Standa	rd Industry Gable F	nd Deta	ils as applicat	ne ne			1956	21		× 1
		28=218 (L	.C 18), 29=81 (LC 21),	or consult of	ualified building des	signer ag	s per ANSI/TE	910, 911			W	1 the	· · X · · · ·	
		30=151 (L	.C 15), 31=143 (LC 1	5), 5) 4)	All plates a	e 2x4 MT20 unless	otherwi	se indicated			-		NIIM	Ren	<u>(1)</u>
		32=140 (L	C 15), 33=140 (LC 1	(5), (7)	Gable requi	res continuous bott	om chor	d bearing.				N	DE 2001	1010007 14	4 H
	<i></i>	34=104 (L	.0 15), 35=224 (LC 1	6)	Truss to be	fully sheathed from	one fac	e or securely				N	ON PE-2001	01880/	A
FORCES	(Ib) - Max	umum Com	pression/Maximum	0)	braced agai	inst lateral moveme	nt (i.e. d	iagonal web).					N. Po	151	7
	I ension			7)	Gable stude	spaced at 1-4-0 or).						V SION	FNA	
				8)	This truss h	as been designed f	ora 10 () psf bottom					A NA	IL LA	
				0)	chord live k	ad popoopourront i	with only	other live lee	do				un	The second	

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

December 22,2021

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	B2	Common	1	1	Job Reference (optional)	149386578

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:12

Wheeler Lumber, Waverly, KS - 66871,

Plate Offsets (X, Y): [8:0-3-6,0-8-1], [10:0-2-11,0-4-0]

Scale = 1:52.1

	, , E , J,	E											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.77	Vert(LL)	-0.17	8-9	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.73	Vert(CT)	-0.34	8-9	>677	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.24	Horz(CT)	0.02	8	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.05	9-10	>999	240	Weight: 72 lb	FT = 10%	
L UMBER TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2		6) This truss is International R802.10.2 a	designed in ac Residential Cond	ccordance wi ode sections standard AN	th the 2018 R502.11.1 a SI/TPI 1.	ind						

WEBS 2x3 SPF No.2 *Except* 10-2,8-6:2x8 SP DSS LOAD CASE(S) Standard BRACING TOP CHORD Structural wood sheathing directly applied or 4-2-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) 8=955/0-3-8, 10=955/0-3-8 Max Horiz 10=217 (LC 7) Max Uplift 8=-125 (LC 9), 10=-125 (LC 8) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/46, 2-3=-1079/161, 3-4=-828/155, 4-5=-828/154, 5-6=-1079/161, 6-7=0/46, 2-10=-853/175, 6-8=-853/175 BOT CHORD 9-10=-143/819, 8-9=-40/783 WEBS 4-9=-46/479, 5-9=-255/212, 3-9=-254/211 NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 125 lb uplift at joint 10 and 125 lb uplift at joint 8.

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	B3	Common	2	1	Job Reference (optional)	149386579

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:12 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

20-10-8 5-2-0 10-0-0 14-10-0 20-0-0 5-2-0 4-9-15 4-10-0 5-2-0 0-10-8 4x5 = 3 1<u>2</u> 2x4 🖌 2x4 2 4 7-7-3 -9-0 18-9-8 10x12 🖌 5 0-10-0 6 \bigotimes 8 10x12、 3x10= 10-0-0 20-0-0 10-0-0 10-0-0

Scale	=	1.52 1	
ocale	_	1.02.1	

Plate Offsets (X, Y): [1:Edge,0-4-0], [7:0-3-6,0-8-1]

2VA ODE No 2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.76	Vert(LL)	-0.17	7-8	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.72	Vert(CT)	-0.36	7-8	>651	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.26	Horz(CT)	0.03	7	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.06	7-8	>999	240	Weight: 71 lb	FT = 10%

LUMBER

I OF CHORD	2X4 3FF NU.2
BOT CHORD	2x4 SPF No.2
WEBS	2x3 SPF No.2 *Except* 9-1,7-5:2x8 SP DSS
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 4-2-4 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
REACTIONS	(lb/size) 7=958/0-3-8, 9=870/ Mechanical
	Max Horiz 9=-210 (LC 4)
	Max Uplift 7=-125 (LC 9), 9=-97 (LC 8)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-1087/162, 2-3=-830/154, 3-4=-829/154,
	4-5=-1080/160, 5-6=0/46, 1-9=-761/145,
	5-7=-853/174
BOT CHORD	8-9=-146/833, 7-8=-40/784
WEBS	3-8=-46/479, 4-8=-256/212, 2-8=-272/215
NOTES	

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 5)
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 97 lb uplift at joint 9 and 125 lb uplift at joint 7.

7) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	B4	ROOF SPECIAL GIRDER	1	2	Job Reference (optional)	149386580

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:13 ID:2ncXplsxOfbjlB6l7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3 Page: 1

Scale = 1:57.6

Plate Offsets (X, Y): [3:0-4-0,0-1-9], [10:Edge,0-6-2]

		-				-							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.91 0.97 0.86	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.39 -0.69 0.08 0.30	(loc) 14-15 14-15 10 14-15	l/defl >912 >514 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT18HS M18AHS Weight: 273 lb	GRIP 197/144 197/144 142/136 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x6 SPF 1650F 1.4 SPF 2100F 1.8E 2x4 SPF No.2 *Exce Structural wood she except end verticals (3.4-7 may): 3.5	E *Except* 13-10:2x4 ept* 17-2:2x8 SP DS eathing directly applie s, and 2-0-0 oc purlin	2) 4 S 3) ed, 4)	 All loads are except if note CASE(S) see provided to c unless other Unbalanced this design. Wind: ASCE Vasd=91mpl 	considered equa ed as front (F) or ction. Ply to ply co distribute only loa wise indicated. roof live loads ha 7-16; Vult=115m h; TCDL=6.0psf;	Illy applie back (B) onnection ds noted ive been we been hoph (3-sec BCDL=6.	d to all plies, face in the LC is have been as (F) or (B), considered fo cond gust) 0psf; h=25ft; f	DAD r Cat.	LOAD (1) De Pla Ur	CASE(S) ead + Ro ate Incre- hiform Lo Vert: 1-2 8-9=-70 oncentra Vert: 16 (F), 21=) Star oof Live case=1 oads (II 2=-70, , 10-17 ted Los =-192 -33 (F)	ndard e (balanced): Lur .15 b/ft) 2-3=-70, 3-5=-7(7=-20 ads (lb) (F), 18=-108 (F) , 22=-33 (F), 23	mber Increase=1.15, 0, 5-6=-70, 6-8=-70, , 19=-108 (F), 20=-108 =-33 (F), 24=-1003 (F)
BOT CHORD WEBS REACTIONS FORCES TOP CHORD	(3+4) max.), 3-50. Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 10=1821, Max Horiz 17=213 (Max Uplift 10=-233 (lb) - Maximum Con Tension 1-2=0/46, 2-3=-290; 4-5=-7688/1373, 5-6 6-7=-2294/403, 7-8; 2-17=-1814/351, 8-7	v applied or 10-0-0 or 5-12 (0-3-8, 17=2612/0-3-1 LC 7) (LC 9), 17=-513 (LC npression/Maximum 9/542, 3-4=-7688/137 5=-2338/345, =-2418/317, 8-9=0/40 (0=-1774/250	5) 8 6) 8) 7) 8) 8) 74, 0, 9)	II; Exp C; En cantilever lef right expose Provide adeo All plates are This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate	closed; MWFRS t and right expos d; Lumber DOL= quate drainage to e MT20 plates un as been designed ad nonconcurrent nas been designed n chord in all are by 2-00-00 wide v ny other members hanical connectio	(enveloped; end) ed; end) 1.60 plate prevent for a 10. with any ed for a liv as where vill fit betw s. on (by oth	e) exterior zon vertical left an e grip DOL=1. water ponding wise indicate 0 psf bottom other live loa re load of 20.0 a rectangle veen the botto ers) of truss t 513 lb uplift at	ne; d 60 g. d. ds. Dpsf om	(F), 21=-33 (F), 22=-33 (F), 23=-33 (F),				
BOT CHORD	16-17=-508/2345, 1 14-15=-1483/8813, 11-12=-199/1951 1	5-16=-522/2391, 12-14=-1482/8862, 0-11=-26/195	1(joint 17 and 2) This truss is	233 lb uplift at joi designed in acco	nt 10. Int ance w	ith the 2018	nd				(SING)	alle
WEBS	3-16=-592/175, 3-11 4-15=-722/331, 5-11 5-14=-11/640, 5-12: 6-12=-235/1934, 7- 7-11=-179/87, 8-11:	5=-950/5657, 5=-1205/236, =-7264/1328, 12=-235/222, =-175/1776	1 [.] 12	 R802.10.2 at Raphical pu or the orienta bottom choro Use Simpsor equivalent at 	nd referenced sta rlin representation ation of the purlin d. n Strong-Tie TJC t 2-3-0 from the le	andard AN andoes no along the 37 (4 nail	NSI/TPI 1. bt depict the s top and/or , 30-90) or connect truss	size				STATE OF SCOT	MISSOUTH TM. HER
WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	bracing. 1 Row at midpt (lb/size) 10=1821/ Max Horiz 17=213 (Max Uplift 10=-233 (lb) - Maximum Con Tension 1-2=0/46, 2-3=-290! 4-5=-7688/1373, 5-6 6-7=-2294/403, 7-8: 2-17=-1814/351, 8- 16-17=-508/2345, 1 14-15=-1483/8813, 11-12=-199/1951, 1 3-16=-592/175, 3-11 4-15=-722/331, 5-12 5-14=-11/640, 5-12: 6-12=-235/1934, 7- 7-11=-179/87, 8-11: 5 to be connected toget	5-12 (0-3-8, 17=2612/0-3-1 LC 7) (LC 9), 17=-513 (LC apression/Maximum 9/542, 3-4=-7688/137 6=-2338/345, =-2418/317, 8-9=0/4(10=-1774/250 5-16=-522/2391, 12-14=-1482/8862, 0-11=-26/195 5=-950/5657, 5=-1205/236, =-7264/1328, 12=-235/222, =-175/1776 ether with 10d	8 5) 6) 7) 8) 8) 74, 9) 0, 9) 1(1 ² 12	right exposed Provide aded All plates are This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate joint 17 and 3 D) This truss is International R802.10.2 au I) Graphical pu or the orienta bottom chord 2) Use Simpson equivalent at to front face	d; Lumber DOL= quate drainage to b MT20 plates un as been designed ad nonconcurrent nas been designed n chord in all are by 2-00-00 wide w y other members hanical connection e capable of withs 233 lb uplift at joi designed in accor Residential Code nd referenced sta rifin representation ation of the purlin 1. n Strong-Tie TJC t 2-3-0 from the le of bottom chord,	1.60 plate prevent for a 10.1 with any d for a 11.1 as where vill fit betw s. on (by oth standing 5 nt 10. widance w e sections andard AN in does ni along the 37 (4 nail off end to skewed 2	grip DOL=1. water ponding wise indicate 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 513 lb uplift at ith the 2018 s R502.11.1 a SU/TPI 1. ot depict the se top and/or , 30-90) or connect truss 26.6 deg.to the	60 g. d. ds. Opsf om o nd size		2		0.4	STATE OF SEV

 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x8 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-7-0 oc, 2x4 - 1 row at 0-9-0 oc.

Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

left, sloping 0.0 deg. down.

13) Use Simpson Strong-Tie HUS26 (14-10d Girder, 4-10d

14) Fill all nail holes where hanger is in contact with lumber.

Truss) or equivalent at 9-11-4 from the left end to

connect truss(es) to front face of bottom chord.

15) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	B5	Roof Special	1	1	Job Reference (optional)	149386581

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:13 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-0-10-8 30-10-8 3-3-0 8-3-0 13-3-0 20-0-0 24-10-0 30-0-0 0-10-8 0-10-8 5-0-0 6-9-0 4-10-0 3-3-0 5-0-0 5-2-1 4x8= 6 7-6-0 4-6-0 4x4 👟 7 12 81 7-7-3 4x8= 4x4 =6x8 🗸 2-10-7 3-9-0 0-1-9 0-1-9 3 4 5 2-10-7 2 8 0-10-0 À 9 15 10 Ø × 14 13 12 11 8x8= 8x8= 5x7 WB = 4x8= 4x4 = 4x8= 3-1-12 13-4-4 20-0-0 30-0-0 3-1-12 10-2-8 6-7-12 10-0-0

Scale = 1:57.2

Plate Offsets (X, Y): [3:0-4-0,0-1-9], [5:0-4-0,0-2-3], [10:Edge,0-2-0], [15:Edge,0-6-2]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	1.00 0.56 0.71	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.26 -0.60 0.09 0.19	(loc) 13-14 13-14 10 13	l/defl >999 >596 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 116 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x4 SPF 2100F 1.8E 2x3 SPF No.2 *Exce SPF No.2 2x3 SPF No.2 Structural wood shee except end verticals, (2-7-10 max.): 3-5. Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 10=1408// Max Horiz 15=-213 (Max Uplift 10=-141 (thing directly applied athing directly applied and 2-0-0 oc purlins applied or 10-0-0 oc 4-14, 5-11, 7-10 0-3-8, 15=1408/0-3-8 LC 6) LC 9), 15=-229 (LC 8	4) 5) (4, 6) (4, 7) 8) (5) (5) (6) (7) (7) (8) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate joint 15 and This truss is International R802.10.2 ar Graphical pu or the orienta bottom chorc DAD CASE(S)	s been designed for d nonconcurrent v as been designed n chord in all areas y 2-00-00 wide wil y other members. nanical connection capable of withsta 41 lb uplift at joint designed in accord Residential Code s d referenced stan rlin representation tion of the purlin a Standard	or a 10.0 vith any for a liv s where I fit betw (by oth anding 2 10. dance w sections dard AN does no long the	b) psf bottom other live loa e load of 20.1 a rectangle veen the bott 29 lb uplift at th the 2018 R502.11.1 at SI/TPI 1. th depict the s top and/or	nds. Opsf om to t and size					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=0/40, 2-3=-1822 4-5=-3800/530, 5-6= 6-7=-1606/268, 7-8= 2-15=-1424/210, 8-1	2/239, 3-4=-1447/231 1650/216, 634/117, 8-9=0/40, 0=-553/146	,										
BOT CHORD	14-15=-207/239, 13- 11-13=-536/3789 10	14=-539/3045,)-11=-127/1399										COLOR	1000
WEBS	3-14=-16/716, 4-14= 4-13=-29/844, 5-13= 5-11=-2713/493, 6-1 7-11=-246/210, 2-14 7-10=-1222/186	1792/333, 228/112, 1=-115/1267, =-79/1391,								4		STATE OF M SCOTT	MISSOLA M. ER
NOTES 1) Unbalance this design	ed roof live loads have	been considered for									Y I	atter	Serles

Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

December 22,2021 MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

PE-200101880

E

NORTESSIONAL

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	B6	Roof Special	1	1	Job Reference (optional)	149386582

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:14 ID:2ncXplsxOfbjlB6l7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-9-10-8 30-10-8 24-10-0 4-3-0 9-3-0 14-3-0 20-0-0 30-0-0 0-10-8 0-10-8 5-0-0 5-9-0 4-10-0 4-3-0 5-0-0 5-2-1 4x8= 6 7-6-0 3-10-0 12 81 4x10 4x8= 3x4 = 7 7-7-3 3 5 3-8-0 0-1-9 4 ⊠ ၐ 5 3-6-7 3-6-7 2 8 0-10-0 À 9 15 10 Т Ø X 14 13 12 11 8x8= 8x8= 4x8= 3x4= 4x8= 4x8= 4-1-12 14-4-4 20-0-0 30-0-0 4-1-12 10-2-8 5-7-12 10-0-0

Scale = 1:57.2

Plate Offsets (X, Y): [3:0-4-0,0-1-9], [10:Edge,0-2-0], [15:Edge,0-6-2]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.63 0.95 0.88	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.30 -0.67 0.09 0.15	(loc) 13-14 13-14 10 13-14	l/defl >999 >533 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 115 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 *Exce 2100F 1.8E 2x3 SPF No.2 *Exce No.2 Structural wood she 3-3-10 oc purlins, e 2-0-0 oc purlins (3-0	ept* 12-10:2x4 SPF ept* 15-2,10-8:2x4 SF athing directly applie xcept end verticals, a -4 max.): 3-5.	4) 5) PF 6) ed or and 7)	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate joint 15 and * This truss is	s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide wil y other members. nanical connection capable of withsta (41 lb uplift at joint designed in accorc Beoidertial Coche	or a 10.0 vith any for a liv where I fit betv (by oth anding 2 10. lance w) psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 29 lb uplift at th the 2018	ds.)psf om o					
BOT CHORD WEBS REACTIONS	 Row at midpt 4-14, 5-11, 7-10 Isow at midpt 4-14, 5-11, 7-10 Isow at midpt 10=-141 (LC 9), 15=-229 (LC 8) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 												
FORCES	(lb) - Maximum Com	pression/Maximum	- /										
TOP CHORD	1-2=0/40, 2-3=-1861 4-5=-3061/433, 5-6= 6-7=-1603/268, 7-8= 2-15=-1400/227, 8-1	/259, 3-4=-1463/256 1623/226, 632/114, 8-9=0/40, 0=-550/143	б,										
BOT CHORD	14-15=-220/320, 13-	-14=-449/2598, 0-11=-128/1400										Canal	ADD.
WEBS	3-14=-16/704, 4-14= 4-13=-20/546, 5-13= 5-11=-2074/391, 6-1 7-11=-248/212, 2-14 7-10=-1224/194	142/100 142/104, 1=-141/1303, =-37/1308,										STATE OF M SCOTT SEVI	MISSOUR M. ER
NOTES 1) Unbalance	ed roof live loads have	been considered for									ES.	att	Services
this design 2) Wind: ASC	n. CE 7-16; Vult=115mph	(3-second gust)								1	N.	NUME PE-2001	SER 018807

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

16023 Swingley Ridge Rd Chesterfield, MO 63017

December 22,2021

ESSIONAL

E

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	B7	Roof Special	1	1	Job Reference (optional)	149386583

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:14 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:57.2

Plate Offsets (X, Y): [3:0-4-0,0-1-9], [5:0-2-6,Edge], [10:Edge,0-2-0], [15:Edge,0-6-2]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.40 0.90 0.64	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.29 -0.63 0.07 0.11	(loc) 13-14 13-14 10 13-14	l/defl >999 >568 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 117 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 *Exce 2100F 1.8E 2x3 SPF No.2 *Exce No.2 Structural wood she 3-11-12 oc purlins,	ept* 12-10:2x4 SPF ept* 15-2,10-8:2x4 SP except end verticals, -3 max.): 3-5. applied or 9-3-0 oc 4-14, 5-11, 7-10 0-3-8, 15=1408/0-3-8 LC 6) LC 9), 15=-229 (LC 8 pression/Maximum 1/269, 3-4=-1454/273 1600/236, 629/113, 8-9=0/40, 0=-547/142 -14=-380/2279, 0=-11=-130/1401 1041/190, 4-13=-16/3 1683/329, 1=-250/214, 1229/049	4) 5) PF 6) d or 7) 8) 3 3) LC 5, 33)	This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Provide mecl bearing plate joint 15 and ⁷ This truss is International R802.10.2 ar Graphical pu or the orienta bottom chorc DAD CASE(S)	s been designed fo d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members. nanical connection capable of withsta 41 lb uplift at joint designed in accord Residential Code s nd referenced stand rlin representation tion of the purlin al Standard	or a 10.0 vith any for a liv where I fit betw (by oth nding 2 10. ance we sections dard AN does no long the	D psf bottom other live loads e load of 20.0p a rectangle veen the bottom ers) of truss to 29 lb uplift at ith the 2018 R502.11.1 and ISI/TPI 1. ot depict the siz top and/or	s. Isf d			H.	STATE OF M	M.
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp C; I cantilever right expos 3) Provide ac	ed roof live loads have CE 7-16; Vult=115mph 	been considered for (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zono; end vertical left and 0 plate grip DDL=1.6 event water ponding.	at. e; I 0							د		SEVI NUME PE-20010	ER 18807

3) Provide adequate drainage to prevent water ponding.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

December 22,2021

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	B8	Roof Special	1	1	Job Reference (optional)	149386584

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:14 ID:2ncXplsxOfbjlB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:57.1

Plate Offsets (X, Y): [3:0-4-0,0-1-9], [14:Edge,0-6-2]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.51 0.86 0.92	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.28 -0.60 0.07 0.09	(loc) 11-13 11-13 9 11-13	l/defl >999 >584 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 118 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood shea 3-8-6 oc purlins, exc 2-0-0 oc purlins (3-8	pt* 14-2,9-8:2x4 SPI athing directly applie cept end verticals, ar -7 max.): 3-5.	4) 5) F d or 6) nd 7)	This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Refer to girde Provide mech bearing plate	s been designed for ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide will by other members. er(s) for truss to tru- hanical connection o capable of withsta	or a 10.0 vith any for a live s where Il fit betw uss conn (by othe anding 2) psf bottom other live load e load of 20.0 a rectangle veen the botto ections. ers) of truss to 28 lb uplift at	ds.)psf om o					
BOT CHORD WEBS REACTIONS	Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 9=1321/ M 14=1395/C Max Horiz 14=210 (L Max Ublift 9=-121 (L	applied or 9-10-8 oc 5-10, 7-9 Aechanical,)-3-8 .C 7) .C 8). 14=-228 (LC 8)	; 8) 9)	joint 14 and 7 This truss is International R802.10.2 ar Graphical pu or the orienta bottom chore	121 Ib uplift at joint designed in accord Residential Code and referenced stan rlin representation rtion of the purlin a l.	9. dance wi sections dard AN does no long the	th the 2018 R502.11.1 a ISI/TPI 1. ot depict the s top and/or	nd size					
FORCES	(b) - Maximum Compression/Maximum Tension												
TOP CHORD	1-2=0/40, 2-3=-1840 4-5=-2112/322, 5-6= 6-7=-1556/264, 7-8= 2-14=-1353/250 8-9	/272, 3-4=-1414/285 1532/243, 370/51, =-309/73	5,										
BOT CHORD	13-14=-326/563, 11- 10-11=-262/2110, 9-	13=-332/1998, 10=-133/1318										Contra I	APP2
WEBS	3-13=0/608, 4-13=-7 5-11=-9/136, 2-13=-§ 5-10=-1431/291, 7-9 7-10=-209/207	87/169, 4-11=-12/22 95/995, 6-10=-187/1 =-1416/229,	20, 327,								Å	STATE OF M	MISSOLP
NOTES											И.,	SEVI	ER
 Unbalance this design Wind: AS(Vasd=91n II; Exp C; cantilever right expo Provide act 	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en left and right exposed : sed; Lumber DOL=1.6(dequate drainage to pre	been considered for (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 event water ponding	Cat. e; d 50									NUME PE-20010 PSSIONA	L ENGLASS

December 22,2021

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	B9	Half Hip	1	1	Job Reference (optional)	149386585

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:15

Page: 1

Wheeler Lumber, Waverly, KS - 66871,

	(,, 1). [2.0-4-4,0-2-0],	[J.Luge,0-2-0]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.65 0.35 0.19	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 51 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SPF No.2 *Exce 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. (Ib/size) 1=322/14 5=558/14 Max Horiz 1=176 (LC Max Uplitt 1=-56 (LC	ept* 2-3:2x4 SPF No. athing directly applie cept end verticals, ar -0 max.): 2-3. applied or 10-0-0 oc -0-0, 4=314/14-0-0, -0-0 2 5) 2 8), 4=-81 (LC 5), 5=	2 2 ad or 5 2 61	 7) Provide mectors bearing plate bearing plate 1, 81 lb uplift 8) This truss is International R802.10.2 are constrained by a constrained purchased on the orientation bottom chore coad CASE(S) 	hanical connection capable of withst at joint 4 and 61 I designed in accorr Residential Code nd referenced star rlin representation tion of the purlin a l. Standard	h (by oth anding 5 b uplift a dance w sections ndard AN o does no along the	ers) of truss tr i6 lb uplift at jo it joint 5. ith the 2018 is R502.11.1 a ISI/TPI 1. ot depict the s is top and/or	o oint nd iize					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=-229/92, 2-3=-6 1-5=-81/105, 4-5=-7	npression/Maximum 3/53, 3-4=-217/95 7/96 02/57											
WEBS	2-5=-394/157, 2-4=-	92/57											
 Unbalance this design Wind: ASG Vasd=91n II; Exp C; cantilever right expo Provide ad Gable req This truss chord live * This truss on the bot 3-06-00 ta chord and 	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 dequate drainage to pr uires continuous botton has been designed foi load nonconcurrent wi ss has been designed foi tom chord in all areas all by 2-00-00 wide will any other members.	been considered for (3-second gust) DL=6.0psf; h=25ft; C vvelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 event water ponding m chord bearing. r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto	Cat. e; d 500 ds. psf							-		STATE OF M SCOTT SEVI NUM PE-20010	AISSOLA ER BER D18807

December 22,2021

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	C1	GABLE	1	1	Job Reference (optional)	149386586

Page: 1

11-4-0

Scale = 1:37 Plate Offsets (X, Y): [7:0-2-0,Edge], [14:0-5-10,0-1-8], [23:0-5-10,0-1-8]

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-R	0.07 0.04 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 53 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	$\begin{array}{llllllllllllllllllllllllllllllllllll$				OTES Unbalanced this design. Unbalanced this design. Wind: ASCE Vasd=91mph II; Exp C; En cantilever lef right exposed Truss design only. For stu see Standard or consult qu All plates are Gable require Gable require Truss to be fn braced again Gable studs This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and ar O Provide mecl bearing plate	roof live loads har 7-16; Vult=115m ; TCDL=6.0psf; E closed; MWFRS (and right expose t; Lumber DOL=1 ed for wind loads ds exposed to wi 1 Industry Gable E alified building de 2x4 MT20 unles: se continuous bot ully sheathed from st lateral movemus spaced at 1-4-0 to s been designed d nonconcurrent as been designed h onconcurrent as been designed h onconcurrent b other members hanical connection capable of with 3	ve been ph (3-sec 3CDL=6. (enveloped ed; end v .60 plate in the pl nd (norm End Deta signer a: s otherwit tom choo n one fac ent (i.e. c c. for a 10. with any d for a liv with any d for a liv s with etw n (by oth tanding f	considered for cond gust) Dpsf; h=25ft; e) exterior zorvertical left an grip DOL=1. ane of the tru al to the face ils as applica is per ANSI/TI se indicated. d bearing. the or securely liagonal web) D psf bottom other live loa e load of 20.0 a rectangle ween the botti ers) of truss t 4 lb uplift at j is in 2, 20.0	r Cat. ne; d 60 ss), ble, Pl 1. ds. Dpsf om				Sec. OF	MISS
FORCES TOP CHORD BOT CHORD WEBS	DRCES (lb) - Maximum Compression/Maximum Tension DP CHORD 2-23=-128/48, 1-2=0/40, 2-3=-89/80, 3-4=-59/66, 4-5=-48/67, 5-6=-38/98, 6-7=-29/80, 7-8=-25/76, 8-9=-22/88, 9-10=-32/58, 10-11=-37/50, 11-12=-66/54, 12-13=0/40, 12-14=-128/30 DT CHORD 22-23=-64/72, 21-22=-64/72, 20-21=-64/72, 19-20=-64/72, 18-19=-64/72, 17-18=-64/72, 16-17=-64/72, 15-16=-64/72, 14-15=-64/72 EBS 3-22=-74/72, 4-21=-102/61, 5-20=-97/77, 6-19=-99/5, 8-18=-98/0, 9-17=-99/78, 10-16=-102/61, 11-15=-68/69					1, 62 lb uplift at j t at joint 16 and 8 designed in accor Residential Code Id referenced sta Standard	joint 20, i joint 20, i 34 lb upli rdance w reactions sections ndard AN	Joint 22, 39 3 lb uplift at t at joint 15. ith the 2018 \$ R502.11.1 a USI/TPI 1.	joint Ind		-		SCOT SEV SEV PE-2001 Decembe	Г М. ER 018807 L ENGL C

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	C2	Common Girder	1	2	Job Reference (optional)	149386587

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:15 ID:2ncXplsxOfbjlB6l7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:39.5

Plate Offsets (X, Y): [6:Edge,0-7-4]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-R	0.55 0.45 0.48	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.06 -0.10 0.01 0.03	(loc) 7-8 7-8 6 7-8	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 104 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) 2-ply truss (0.131"x3") Top chords oc, 2x8 - 2 Bottom cho staggered Web conne 2) All loads an except if no CASE(S) s provided to unless othe 3) Unbalance this design	2x4 SPF No.2 2x6 SP 2400F 2.0E 2x8 SP 2400F 2.0E No.2 Structural wood she 5-8-9 oc purlins, exi Rigid ceiling directly bracing. (lb/size) 6=4083/0 Max Horiz 8=-138 (L Max Uplift 6=-148 (L Max Grav 6=4385 (L (lb) - Maximum Com Tension 1-2=0/46, 2-3=-4025 4-5=0/46, 2-3=-4025 4-5=0/46, 2-8=-2477 7-8=-48/3279, 6-7=- 3-7=-41/4131 to be connected toget) nails as follows: s connected as follows: s connected as follows: rows staggered at 0-5 ords connected as follows rows staggered at 0-5 ords connected as follows: extend as follows: 2x4 - re considered equally bed as front (F) or bas extis indicated. d roof live loads have	*Except* 7-3:2x4 SPI athing directly applie cept end verticals. applied or 10-0-0 oc -3-8, 8=3913/0-3-8 C 6) C 9), 8=-145 (LC 8) .C 16), 8=4197 (LC 1 pression/Maximum 5/158, 3-4=-4025/158 /174, 4-6=-2477/174 48/3279 ther with 10d s: 2x4 - 1 row at 0-9-0 co. cows: 2x6 - 2 rows -1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO. nections have been noted as (F) or (B), been considered for	4) F 5) d or 6) 7) 5) 8) 9) 10 LC 1) 0 AD	Wind: ASCE Vasd=91mpf II; Exp C; En cantilever lef right exposed This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Provide mec bearing plate joint 8 and 14 This truss is International R802.10.2 at Use Simpsor Truss, Single oc max. start connect truss) Fill all nail ho AD CASE(S) Dead + Roo Plate Increa Uniform Loa Vert: 1-2: Concentratt Vert: 7=- 11=-1373	7-16; Vult=115mp ;; TCDL=6.0psf; Bi closed; MWFRS (et and right exposed d; Lumber DOL=1. s been designed fi d nonconcurrent v has been designed in a chord in all areas by 2-00-00 wide will y other members. hanical connection capable of withsta 8 lb uplift at joint 6 designed in accord Residential Code of referenced stan of Strong-Tie HUS2 ePly Girder) or equing at 1-10-0 from s(es) to back face of les where hanger Standard of Live (balanced): isse=1.15 ads (lb/ft) =-70, 2-3=-70, 3-4: ed Loads (lb) 1373 (B), 9=-1373 8 (B), 12=-1373 (B)	h (3-sec CDL=6.(cDL=6.(enveloped d) ; end \v 60 plate or a 10.0 vith any for a liv s where Il fit betw h (by oth anding 1 5. dance w sections dard AN 26 (14-10 divalent t the left of bottor is in cor Lumber =-70, 4-4 (B), 10=	ond gust))psf; h=25ft;) exterior zo ertical left ar grip DOL=1.) psf bottom other live loze e load of 20. a rectangle veen the bott ers) of truss 45 lb uplift a th the 2018 R502.11.1 a ISI/TPI 1.)d Girder, 6- spaced at 2- end to 9-10-(n chord. tact with lurr Increase=1. 5=-70, 6-8=-2 -1373 (B),	Cat. ne; id 60 ids. 0psf om to t and 10d 0-0 0 to 15, 20				NUME PE-20010	AISSOLUT M. ER BER 118807	,

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

December 22,2021

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	D1	HIP GIRDER	1	2	Job Reference (optional)	149386588

0-1-4

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:16 Page: 1 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 1-8-12 0-10-8 30-5-8 8-7-4 15-10-2 23-2-11 29-7-0 6-4-5 0-10-8 4-7-8 2-2-15 7-2-14 7-4-10 6-4-5 0-10-8 1-8-12 NAILED NAILED NAILED NAILED NAILED NAILED NAILED NAILED NAILED 5x7= 2x4 II 3x4= 5x7= 23 ⊠2 4 17 18 19 20 6 21 22 24 7 0-1-4 \bowtie \square 7<mark>12</mark> ПГ Ш Ш

Scale = 1:56.2

|--|

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP					
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.59	Vert(LL)	-0.15	5	>999	360	MT20	197/144					
TCDL	10.0	Lumber DOL	1.15		BC	0.86	Vert(CT)	-0.27	12-13	>999	240							
BCLL	0.0*	Rep Stress Incr	NO		WB	0.48	Horz(CT)	0.18	8	n/a	n/a							
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.13	5	>999	240	Weight: 299 lb	FT = 10%					
LUMBER			2)	All loads are	considered equally	/ applie	d to all plies,		LOAD CASE(S) Standard									
TOP CHORD	2x6 SP DSS *Except	t* 4-7:2x4 SPF 2100	F	except if note	ed as front (F) or ba	ack (B)	face in the LC	DAD	1) D	ead + Ro	of Liv	e (balanced): Lur	mber Increase=1.15,					
	1.8E, 7-9:2x4 SPF N	0.2		CASE(S) sec	tion. Ply to ply cor	nection	s have been		P	late Incre	ase=1	.15						
BOT CHORD	2x6 SPF No.2 *Exce	pt* 5-13:2x4 SPF No	o.2	provided to d	listribute only loads	s noted	as (F) or (B),		U	niform Lo	ads (l	b/ft)						
WEBS	2x4 SPF No.2			unless other	less otherwise indicated. Vert: 1-4=-70, 4-7=-70, 7-9=-70, 2-16=-20								0, 2-16=-20, 3-14=-20,					
WEDGE	Right: 2x4 SPF No.2		3)	Unbalanced	nbalanced roof live loads have been considered for 8-13=-20													
BRACING	0			this design.					С	oncentra	ted Lo	ads (lb)						
TOP CHORD	Structural wood she	athing directly applie	ed or ⁴⁾	Wind: ASCE	7-16; Vult=115mp	h (3-seo	cond gust)			Vert: 14	=-45 (F), 5=-93 (F), 15	=-395 (F), 10=-357					
	5-11-9 oc purlins, ex	cept		Vasd=91mph	n; TCDL=6.0psf; B0	CDL=6.	0psf; h=25ft;	Cat.		(F), 17=	-73 (F), 18=-93 (F), 19	=-93 (F), 20=-93 (F),					
	2-0-0 oc purlins (6-0	-0 max.): 4-7.		II; Exp C; En	closed; MWFRS (e	envelope	e) exterior zoi	ne;		21=-93	(F), 22	=-93 (F), 23=-93	s (F), 24=-93 (F),					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	;	cantilever lef	t and right exposed	d; end v	ertical left an	nd		25=-45	(F), 26	=-45 (F), 27=-45	6 (F), 28=-45 (F),					
	bracing. Except:			right exposed	d; Lumber DOL=1.0	60 plate	grip DOL=1.	60		29=-45	(F), 30	=-45 (F), 31=-45	5 (F)					
	6-0-0 oc bracing: 2-1	16.	5)	Provide adec	uate drainage to p	revent	water ponding	g.										
REACTIONS	(lb/size) 2=2363/0-	-3-8 8=2366/0-3-8	6)	This truss ha	This truss has been designed for a 10.0 psf bottom													
	Max Horiz 2-112 (I C	() (), ()=2000/0 () () () ()		chord live loa	ad nonconcurrent w	with any	other live loa	ids.										
	Max I Inlift 2=-477 (1)	$(1 \ C \ 8) \ 8 = -446 \ (1 \ C \ 9)$	7)	* This truss h	is truss has been designed for a live load of 20.0psf													
FORCES	(lb) Movimum Com			on the botton	n chord in all areas	s where	a rectangle											
FURCES	(ID) - Waximum Com	pression/waximum		3-06-00 tall b	y 2-00-00 wide wil	I fit betw	veen the bott	om										
		1/22/ 2/- 1000/100	s0 0)	chord and an	ly other members.	(hu ath												
TOP CHORD	1-2=0/17, 2-3=-1493	- 4059/1005	59, 8)	Provide med	nanical connection	(by oth	ers) or truss t	0										
	6-7=-4701/906 7-8=	-3918/730 8-9=0/11	1	ioint 2 and 4	16 lb unlift at joint 8	anung -	an in upint at											
	2-16142/20 3-15-	-990/4315		This trues is	designed in accord). Ionco w	ith the 2019											
BOT ONORD	14-15=-1002/4368	13-14=0/208	9)	International	Residential Code	sections	R502 11 1 a	nd										
	5-14=-535/269 12-1	3=-118/808		R802 10 2 ar	nd referenced stan	dard AN	ISI/TPI 1	inu				Son	Jan					
	10-12=-547/3168.8-	10=-549/3192	10) Graphical pu	rlin representation	doos n	of denict the s	aizo				A OF	MISC					
WEBS	3-16=-30/216. 4-15=	-254/1086.		or the orients	ation of the nurlin a	long the	ton and/or	5126			1	750	-30,40					
	4-14=-281/1071, 12-	14=-798/3927.		bottom chord		iong in					A	NY SCOT	New Mar					
	6-14=-214/337, 6-12	=-1105/496,	11) Lise Simpsor	Strong-Tie T IC37	7 (6 nail	30-90) or				0	S SCOI	I M. VY					
	7-12=-418/1831, 7-1	0=-57/669		equivalent at	6-4-5 from the left	end to	connect truss	s(es)			1	SEV						
NOTES				to front face of holtrom chord skewed 48 deg to the														
1) 2-ply truss to be connected together with 10d				left, sloping 0.0 deg. down.														
(0.131"x3") nails as follows:				12) Use Simpson Strong-Tie TJC37 (6 nail 90-150) or							BER A							
Top chord	s connected as follows		equivalent at 23-2-11 from the left end to connect truss															
staggered	at 0-9-0 oc, 2x4 - 1 ro	w at 0-9-0 oc.		(es) to front f	ace of bottom chor	rd, skew	ed 48.8 deg.	to			N	PE-2001	01000/201					

(0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

the right, sloping 0.0 deg. down.

13) Fill all nail holes where hanger is in contact with lumber.

14) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

December 22,2021

SSIONAL

F

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	D2	Нір	1	1	Job Reference (optional)	149386589

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:16 Page: 1 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 0-10-8 30-5-8 29-7-0 8-7-11 14-9-8 20-11-5 25-4-7 8-7-11 6-1-13 6-1-13 4-5-2 4-2-9 0-10-8 3x4= 8x8= 6x8 II 0-1-13 H 0-1-13 5 6 12 7 4x4 7 5-7-11 5-7-11 6-1-0 8 ¢ 0-0-0-6-0 9 14 10 Ø 17 13 12 11 3x4 **I** 3x10 u 8x8= 6x8= 3x4 = 3x6= 8x12= 6x6= 2x4 II 2-2-4²⁻³⁻⁸ 8-5-8 14-9-8 21-0-9 24-5-8 29-7-0 2-2-4 0-1-4 6-2-0 6-4-0 6-3-1 3-4-15 5-1-8 Scale = 1:56.3 Plate Offsets (X, Y): [2:0-3-8,Edge], [3:0-1-4,Edge], [6:0-4-15,Edge], [10:Edge,0-3-4] т

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.64	Vert(LL)	-0.27	15-16	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.65	Vert(CT)	-0.53	15-16	>664	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.87	Horz(CT)	0.30	10	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S		Wind(LL)	0.21	15-16	>999	240	Weight: 135 lb	FT = 10%
LUMBER			4)	This truss ha	s been desianed	for a 10.0) psf bottom						
TOP CHORD	2x6 SP DSS *Excep 6-9:2x4 SPF No.2	ut* 4-6:2x6 SPF No.2	, 5)	 chord live loa * This truss h on the bottom 	as been designed as been designe	with any d for a liv	other live load e load of 20.0	ls. psf					
BOICHORD	1.8E. 4-14:2x3 SPF	No.2	IUUF	3-06-00 tall b	y 2-00-00 wide w	vill fit betw	een the botto	m					
WEBS WEDGE BRACING	2x3 SPF No.2 *Exce Left: 2x4 SPF No.2	ept* 10-8:2x4 SPF No	o.2 6)	chord and an Provide mech bearing plate	y other members nanical connection capable of withs	s. on (by othe standing 1	ers) of truss to 31 lb uplift at)					
TOP CHORD	Structural wood she 3-10-5 oc purlins, e 2-0-0 oc purlins (5-0	athing directly applie xcept end verticals,)-1 max.): 4-6.	ed or and 7)	joint 2 and 13 This truss is a International	31 lb uplift at joint designed in acco Residential Code	: 10. rdance wi e sections	ith the 2018 R502.11.1 ar	nd					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	8)	Graphical pu	rlin representatio	n does no	ot depict the si	ze					
REACTIONS	VS (Ib/size) 2=1390/0-3-8, 10=1390/0-3-8 Interview Interview												
FORCES (Ib) - Maximum Compression/Maximum Tension													
TOP CHORD	P CHORD 1-2=0/12, 2-3=-876/97, 3-4=-2344/196, 4-5=-1981/207, 5-6=-1875/177, 6-7=-1808/142, 7-8=-552/61, 8-9=0/36, 8-10468/09												
BOT CHORD	2-17=0/0, 3-16=-227 14-15=0/114, 4-15=- 12-13=-51/1508, 10-	7/2017, 15-16=-228/2 -28/563, 13-14=-12/2 -12=-95/1579	2021, 22,									E OF M	AISSO
WEBS	16-17=-4/85, 13-15= 5-15=-83/244, 5-13= 6-13=-184/582, 6-12 7-10=-1441/135	=-191/1891, =-579/232, 2=0/295, 7-12=-156/ ⁻	174,									STATISCOTT SEVI	ER ER
NOTES											50		0
1) Unbalanc this desig	ed roof live loads have n.	been considered for	r									oth	even
2) Wind: AS Vasd=91r II; Exp C;	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er	(3-second gust) DL=6.0psf; h=25ft; (nvelope) exterior zon	Cat. le;								A.	PE-20010	018807 E
right expo	ieit and right exposed ised: Lumber DOI =1.6	; end vertical left and 0 plate grip DOI =1 f	u 30									ONA	LEI

cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

December 22,2021

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	D3	Нір	1	1	Job Reference (optional)	149386590

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:17 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:56.5

Plate Offsets ((X, Y): [5:0-3-15,Edge]], [9:Edge,0-6-0], [10	0:0-2-8,0-1	-8], [14:0-2-8,0	0-1-8], [15:Edge,0)-6-0]								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.69 0.73 0.48	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.16 -0.29 0.06 0.05	(loc) 11-13 11-13 9 13-14	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 120 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 *Exce 1.8E 2x4 SPF No.2 2x3 SPF No.2 *Exce SPF No.2 Structural wood shea 3-9-13 oc purlins, ey 2-0-0 oc purlins (4-11 Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 9=1390/0- Max Horiz 15=198 (L Max Horiz 15=198) (L	pt* 4-5:2x4 SPF 21(pt* 11-4,15-2,9-7:2x athing directly applie xcept end verticals, 0-14 max.): 4-5. applied or 10-0-0 or 4-11 -3-8, 15=1390/0-3-8 C 7)	4) 200F 5) (4 6) ed or and 7) c 8)	This truss hi chord live lo * This truss on the botto 3-06-00 tall chord and a Provide mec bearing plat joint 15 and This truss is Internationa R802.10.2 a Graphical pu or the orient bottom chor	as been designed ad nonconcurrent has been designe m chord in all are: by 2-00-00 wide v ny other members chanical connectic e capable of withs 153 lb uplift at joi designed in acco I Residential Code and referenced sta urlin representatio ation of the purlin d. Standard	I for a 10.0 t with any d for a liv as where will fit betw s, with BC on (by oth standing 1 nt 9. ordance w e sections andard AN on does no along the) psf bottom other live load e load of 20.0 a rectangle veen the botto DL = 10.0psf. ers) of truss to 53 lb uplift at ith the 2018 .R502.11.1 at ISI/TPI 1. ot depict the s top and/or	ds. Ipsf om o nd ize						
FORCES	Max Grav 9=1435 (L (Ib) - Maximum Com	.C 2), 15=1443 (LC pression/Maximum	2)											
TOP CHORD	Tension 1-2=0/36, 2-3=-2064 4-5=-1446/200, 5-6= 6-7=-2052/199, 7-8= 7-9=-1346/177	/199, 3-4=-1775/17: -1759/172, 0/36, 2-15=-1353/1	2, 77,										-	
BOT CHORD	14-15=-174/476, 13- 11-13=-83/1459, 10- 9-10=-43/343 3-1462/100_3-13-	14=-201/1799, 11=-99/1713, -409/190_4-133/5	505								Å	TATE OF M	AISSOLUS	
WEBG	4-11=-161/162, 5-11 6-10=-63/99, 2-14=-6	=0/467, 6-11=-412/ 64/1387, 7-10=-56/1	190, 1378								Å.	S SCOTT	ER	λ
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91n II; Exp C; cantilever right expo	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en left and right exposed; sed; Lumber DOL=1.6(been considered fo (3-second gust) DL=6.0psf; h=25ft; (velope) exterior zor ; end vertical left an 0 plate grip DOL=1.	r Cat. he; d 60									PE-20010	L ENGL	

3) Provide adequate drainage to prevent water ponding.

MiTek

December 22,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	D4	Нір	1	1	Job Reference (optional)	149386591

6-12=-541/218, 6-10=0/216, 2-14=0/1120, 7-10=0/1118

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding. 3)

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	D5	Roof Special	1	1	Job Reference (optional)	149386592

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:17 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:70.4

Plate Offsets (X, Y): [2:0-3-8,Edge], [3:0-1-0,Edge], [8:Edge,0-6-0]

Loa	ding	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCL	L (roof)	25.0	Plate Grip DOL	1.15		тс	0.55	Vert(LL)	-0.18	10-11	>999	360	MT20	197/144	
TCC)L	10.0	Lumber DOL	1.15		BC	0.61	Vert(CT)	-0.41	10-11	>857	240			
BCL	.L	0.0*	Rep Stress Incr	YES		WB	0.66	Horz(CT)	0.22	9	n/a	n/a			
BCD	DL	10.0	Code	IRC2018	3/TPI2014	Matrix-S		Wind(LL)	0.14	13-14	>999	240	Weight: 149 lb	FT = 10%	
													0		
LUN	IBER			3)	The Fabricat	ion Tolerance at j	oint $8 = 2$	2%, joint 8 =	2%						
TOF	CHORD	2x6 SP DSS *Excep 1.8E	t* 6-8:2x4 SPF 2100)F 4)	This truss ha chord live loa	is been designed ad nonconcurrent	for a 10.0 with any) psf bottom other live loa	ads.						
вот	CHORD	2x4 SPF No.2 *Exce 1.8E, 5-11:2x3 SPF	pt* 3-12:2x4 SPF 2′ No.2	100F 5)	* This truss h on the bottor	nas been designed n chord in all area	d for a liv is where	e load of 20. a rectangle	0psf						
WE	BS	2x3 SPF No.2 *Exce 9-8:2x4 SPF 2100F	pt* 10-6:2x4 SPF N 1.8E	0.2,	3-06-00 tall b chord and ar	by 2-00-00 wide w by other members	ill fit betw	veen the bott	tom						
WE		Left: 2x4 SPF No.2		6)	Provide mec bearing plate	hanical connection capable of withst	n (by oth tanding 1	ers) of truss 81 lb uplift a	to It						
		Structural wood she	athing directly applie	ed or	joint 2 and 1	57 lb uplift at joint	9.	-							
101	ONORD	4-1-5 oc purlins, exc	cept end verticals.	7)	This truss is	designed in accor	dance w	ith the 2018							
вот	CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	С	International R802.10.2 ar	Residential Code nd referenced star	sections	s R502.11.1 a ISI/TPI 1.	and						
WE	BS	1 Row at midpt	4-12	LC	DAD CASE(S)	Standard									
REA	CTIONS	(lb/size) 2=1391/0-	-3-8, 9=1317/0-3-8												
		Max Horiz 2=246 (LC	C 5)												
		Max Uplift 2=-181 (L	C 8), 9=-157 (LC 9)												
FOR	CES	(lb) - Maximum Com	pression/Maximum												
		Tension													
TOF	CHORD	1-2=0/12, 2-3=-875/	167, 3-4=-2579/330	,											
		4-5=-1796/251, 5-6=	-1667/349,												
		6-7=-1922/425, 7-8=	-1948/221,												
		8-9=-1241/200											000	TIC	
BOT	CHORD	2-15=0/0, 3-14=-358	8/2262, 13-14=-358/2	2262,									OFA	ALC D	
		12-13=-358/2263, 11	1-12=0/155,										FELIN	USS W	
		5-12=-214/162, 10-1	1=0/123, 9-10=-162	2/590								A	A. C.	N.S.	
WE	BS	14-15=-5/85, 4-12=-	980/278,									A	SCOTT	M. PV	1
		10-12=-59/1047, 6-1	2=-234/928,									H.	SEVI	ER \	6
		6-10=-29///5/, /-10)=-572/348,									84		\ +	2
		8-10=-24/980, 4-13=	=0/311									2 8			Ø
NOT	res											82	Ka ser.	Jan 1	8
1)	Unbalance	ed roof live loads have	been considered for	r								W.	COURT	-	8
this design.												N	>> PE-20010	018807	7
2)	Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)	•								N	m l	12A	
Vasd=91mph; ICDL=6.0pst; BCDL=6.0pst; h=25ft; Cat.												X	Ser	GIA	
	II; Exp C; Enclosed; MWFRS (envelope) exterior zone;												ONA	LEFS	
	/ ··· · / DTU/ OV / OF	www.woo.nont.ovpocod	· HUN VATION ATT ON	(1											

II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

December 22,2021

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	E1	Roof Special Girder	1	1	Job Reference (optional)	149386593

Plate Offsets (X, Y): [3:0-3-5,0-1-12], [5:0-4-0,Edge], [13:Edge,0-6-0]

Loading	(psf) 25.0	Spacing Plate Grip DOI	2-0-0 1 15		CSI	0.86	DEFL	in -0.18	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (1001)	25.0	Lumber DOL	1.15		BC	0.80	Vert(CT)	-0.18	16-17	>999	240	WI120	197/144	
BCLL	0.0*	Rep Stress Incr	NO		WB	0.73	Horz(CT)	0.22	13	n/a	n/a			
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S		Wind(LL)	0.12	18-19	>999	240	Weight: 163 lb	FT = 10%	
LUMBER			2)	Wind: ASCE	7-16; Vult=115mp	h (3-seo	cond gust)							
TOP CHORD	2x4 SPF No.2 *Exce 1-5:2x8 SP DSS	pt* 5-7:2x6 SPF No.	.2,	Vasd=91mph II; Exp C; En	n; TCDL=6.0psf; B0 closed; MWFRS (e	DL=6.	Opsf; h=25ft; e) exterior zo	Cat. ne;						
BOT CHORD	2x4 SPF No.2 *Exce	pt* 6-17:2x3 SPF No DF 1 8F	o.2,	cantilever lef	t and right exposed d: Lumber DOL=1.0	l; end v 60 plate	vertical left ar grip DOL=1.	nd .60						
WEBS	2x3 SPF No.2 *Exce	ept* 16-7,13-11:2x4 \$	SPF 3)	Provide adeo	quate drainage to p	revent	water pondin	g.						
	INU.2			chord live loa	ad nonconcurrent w	ith any	other live loa	ads.						
TOP CHORD	Structural wood she	athing directly applie	.d 5)	* This truss h	nas been designed	for a liv	e load of 20.	0psf						
	except end verticals, (4-8-5 max.): 9-10.	, and 2-0-0 oc purlin	S	on the bottor 3-06-00 tall b	n chord in all areas by 2-00-00 wide wil	where I fit betv	a rectangle veen the bott	om						
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc	6)	chord and ar Provide mec	y other members. hanical connection	(by oth	ers) of truss	to						
WEBS	1 Row at midpt	4-18, 9-16		bearing plate	capable of withsta	Inding 1	81 lb uplift a	t						
REACTIONS	(lb/size) 2=1493/0-	-3-8, 13=1477/0-3-8	7)	Joint 2 and 24	40 lb uplift at joint 1	3. Ionoo w	ith the 2019							
	Max Horiz 2=252 (LC	C 7)	()	International	Residential Code s	sections	R502.11.1 a	and						
	Max Uplift 2=-181 (Le	C 8), 13=-240 (LC 9)	R802.10.2 a	nd referenced stan	dard AN	ISI/TPI 1.							
FORCES	(lb) - Maximum Com Tension	pression/Maximum	8)	Graphical pu or the orienta	rlin representation ation of the purlin a	does no Iona the	ot depict the s	size						
TOP CHORD	1-2=0/17, 2-3=-887/2	193, 3-4=-2751/339,		bottom chord	l.									
	4-6=-2005/267, 6-7=	-1865/363,	9)	Hanger(s) or	other connection of	levice(s) shall be							
	7-8=-2303/469, 8-9=	=-2295/285, _111753/274		provided suff	icient to support co	oncentra	ated load(s) 1	32					14 may	
	11-12=0/36 11-13=-	-1426/247		Ib down and	69 lb up at 29-9-9	on top	chord, and 10					COLOR	ADD.	
BOT CHORD	2-20=-30/0, 3-19=-30	67/2481,		design/selec	tion of such conner	tion de	vice(s) is the	e				OF N	lise	
	18-19=-365/2482, 17	7-18=0/158,		responsibility	of others.						4	7 AL	- Sold	
	6-18=-217/160, 16-1	7=0/117,	10) In the LOAD	CASE(S) section,	loads a	oplied to the	face			H	SCOTT	M	λ
	15-16=-387/3026, 14	4-15=-382/3028,		of the truss a	re noted as front (I	⁻) or ba	ck (B).				H	SEVI	ER	Y
WEBS	13-14=-20/103 3-20=0/55 /-10=0/2	28 /-181010/281	LC	DAD CASE(S)	Standard						U.*	-1	· · · · ·	- N
WLDO	16-18=-65/1218. 7-1	8=-230/965.	' 1)	Dead + Roo	of Live (balanced):	Lumber	Increase=1.	15,			K		9 1	4
	7-16=-332/1019, 8-1	6=-518/308,		Plate Increa	ase=1.15							Cottoin	Serre	
	9-16=-1152/285, 9-1	5=0/147,		Vort: 1-7	aus (10/11) 70 7-970 9-1()70 1	0-1170				87	DE 2001	10007	Ø
	9-14=-1917/243, 10-	-14=-141/815,		11-12=-7	0. 2-20=-20. 3-18=	-20. 13	-17=-20				N	PE-20010		7
	11-14=-180/1359			Concentrate	ed Loads (lb)	,					Y	1 Se	JO'B	5
NOTES	al an af line la a da l	have excludent 14		Vert: 14=	3 (F)							ONA	LETY	
 Unbalance this design 	ed roof live loads have	been considered for	ſ									an	and a	

Unt of live loads have been cons this design.

December 22,2021

Page: 1

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	E2	Roof Special	1	1	Job Reference (ontional)	149386594

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Dec 21 15:19:18 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	E3	Roof Special	1	1	Job Reference (ontional)	149386595

TCDL

BCLL

BCDL

WEBS

1)

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Dec 21 15:19:19 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	E4	Roof Special	1	1	Job Reference (optional)	149386596

International Residential Code sections R502.11.1 and

Graphical purlin representation does not depict the size

R802.10.2 and referenced standard ANSI/TPI 1.

or the orientation of the purlin along the top and/or

REACTIONS Max Horiz 2=252 (LC 7) Max Uplift 2=-178 (LC 8), 13=-203 (LC 9) FORCES (lb) - Maximum Compression/Maximum Tension 1-2=0/17, 2-3=-886/191, 3-4=-2752/332, TOP CHORD 4-6=-2005/260, 6-7=-1860/354, 7-8=-2198/424, 8-9=-1821/282 9-10=-2087/393, 10-11=-2107/271, 11-12=0/36, 11-13=-1421/228 2-19=-30/0, 3-18=-361/2482, BOT CHORD 17-18=-359/2482, 16-17=0/159, 6-17=-211/155, 15-16=0/121 14-15=-62/1591, 13-14=-91/401 WEBS 3-19=0/55, 4-18=0/228, 4-17=-1019/281, 15-17=-62/1222, 7-17=-226/956,

> 9-15=-59/669, 9-14=-160/313, 10-14=-304/196, 11-14=-63/1346

Unbalanced roof live loads have been considered for

NOTES

this design.

1)

7-15=-285/914, 8-15=-1334/339,

OF MISS SCOTT M. SEVIER NUMBER PE-2001018807 SIONAL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

8)

bottom chord.

LOAD CASE(S) Standard

December 22,2021

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	E5	Roof Special	1	1	Job Reference (optional)	149386597

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:20 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [6:0-5-8,0-2-0], [10:0-3-4,0-2-8], [16:0-3-0,0-2-4]

Load TCLI TCD BCL BCD	ding L (roof) L L DL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.77 0.69 0.52	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.13 -0.25 0.06 0.07	(loc) 12-14 15-16 10 12	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 134 lb	GRIP 197/144 FT = 10%
LUM TOP BOT WEE BRA TOP	CHORD CHORD CHORD CHORD CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 2-11-10 oc purlins, 2-0-0 oc purlins (4-6	pt* 16-2,10-8:2x6 Sl athing directly applie except end verticals -13 max.): 5-6.	4) 5) PF ed or 6) , and	This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Provide mech bearing plate joint 16 and 2	s been designed fo d nonconcurrent w as been designed h chord in all areas y 2-00-00 wide will y other members, nanical connection capable of withsta 204 lb uplift at joint	or a 10.0 vith any for a liv where fit betw with BC (by oth inding 1 10.) psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf ers) of truss t 86 lb uplift at	ds.)psf om o					
BOT WEE REA	CHORD 3S ACTIONS	Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 10=1478/ Max Horiz 16=260 (I Max Uplift 10=-204 (Max Grav. 10=1569	applied or 9-4-4 oc 3-14, 5-14 0-3-8, 16=1478/0-3-4 -C 7) IC 9), 16=-186 (LC (LC 16), 16=1585 (L	7) 8 ⁸⁾ C 15) LC	This truss is of International R802.10.2 ar Graphical pu or the orienta bottom chord DAD CASE(S)	designed in accord Residential Code s Id referenced stand lin representation tion of the purlin al Standard	ance wi sections dard AN does no long the	th the 2018 R502.11.1 a ISI/TPI 1. It depict the s top and/or	nd iize					
FOR	CES	(lb) - Maximum Com	pression/Maximum)										
TOP	CHORD	1-2=0/39, 2-3=-2172 4-5=-1532/261, 5-6= 6-7=-1873/263, 7-8= 2-16=-1450/233, 8-1	2/234, 3-4=-1582/269 1553/278, 2204/275, 8-9=0/39	9, 9,										
вот	CHORD	15-16=-387/1038, 14 12-14=-53/1673, 11- 10-11=-46/313	4-15=-213/1925, -12=-164/1819,										SE OF M	AIS S
WEE	3S	3-15=0/268, 3-14=-7 5-14=-742/224, 5-12 7-12=-407/175, 7-11 8-11=-118/1523	706/238, 4-14=-158/ 2=-307/94, 6-12=-35/ 1=-86/99, 2-15=0/102	1183, /654, 28,									STAT SCOTT	M. ER
ΝΟΤ	ES											8/*		0
1) (2) \ 2) \ 1 3)	Unbalance this desigr Wind: ASC Vasd=91m II; Exp C; I cantilever right expose Provide ac	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 jequate drainage to pr	been considered for (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 event water ponding	Cat. le; d 50								A A A A A A A A A A A A A A A A A A A	NUMP PE-20010	L ENGL

3) Provide adequate drainage to prevent water ponding.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

December 22,2021

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	E6	Roof Special	1	1	Job Reference (optional)	149386598

Scale Plate

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:20 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	-0-10-8	8-3-2	14-9-8	16-4-7 18-4-7	25-0-8	31-7-0	32-5-8
	0-10-8	8-3-2	6-6-6	1-6-15 2-0-0	6-8-1	6-6-8	0-10-8
				4x8=			
~ ~				4 5x7= 4x8=			
9-5-11 8-5-8 8-5-8 0-11-			7 ¹² 3x4 ± 3			3x4s	8 9
<u> </u>			15	14 13 12		11	8 . ~
	8x8 🛩		4x4=	4x8 = 4x8 =		3x6=	8x8
				3x4=			
	1	8-3-2	14-9-8	18-3-3	25-0-8	31-7-0	
e = 1:64.5		8-3-2	6-6-6	3-5-11	6-9-5	6-6-8	
Offsets (X, Y):	[6:0-5-8,0-2-0], [10:0-3-	4,0-2-8], [11:0-2-8,0-1	I-8], [16:0-3-0,0-2-4]				

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.78 0.58 0.82	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.11 -0.24 0.06 0.07	(loc) 15-16 15-16 10 11-12	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 140 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Excep No.2 Structural wood shea 2-11-8 oc purlins, ex 2-0-0 oc purlins (4-10 Rigid ceiling directly a bracing.	ot* 16-2,10-8:2x6 SF thing directly applied cept end verticals, a D-6 max.): 5-6. applied or 9-4-3 oc	4) 5) PF d or 6) and 7)	This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Provide mect bearing plate joint 16 and 2 This truss is of International	s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide wil y other members. nanical connection capable of withsta 204 lb uplift at joint designed in accord Residential Code s	or a 10.0 vith any for a liv s where I fit betw (by oth anding 1 10. lance w sections) psf bottom other live loa e load of 20.(a rectangle veen the botto ers) of truss t 86 lb uplift at th the 2018 R502.11.1 a	ds.)psf om o						•
WEBS REACTIONS	1 Row at midpt 3 (Ib/size) 10=1478/0 Max Horiz 16=-260 (L Max Uplift 10=-204 (L	3-14, 5-14, 5-12 -3-8, 16=1478/0-3-8 .C 6) .C 9), 16=-186 (LC 8	³⁾	R802.10.2 ar Graphical put or the orienta bottom chord	nd referenced stand rlin representation tion of the purlin a	dard AN does no long the	SI/TPI 1. of depict the s top and/or	ize						
FORCES	(lb) - Maximum Comp	pression/Maximum	LC	AD CASE(S)	Standard									
TOP CHORD	1-2=0/39, 2-3=-2068/ 4-5=-1360/264, 5-6=- 6-7=-1649/259, 7-8=- 2-16=-1400/233, 8-10	233, 3-4=-1532/270 1318/279, 2105/273, 8-9=0/39)=-1414/237),),											
BOT CHORD	15-16=-389/936, 14-1 12-14=-33/1321, 11-1 10-11=-134/482	15=-213/1660, 12=-134/1723,										COLOR I	all a	
WEBS	3-15=0/275, 3-14=-61 5-14=-627/204, 5-12= 6-12=-32/381, 7-12=- 2-15=0/891, 8-11=-13	14/235, 4-14=-181/1 =-162/145, 526/212, 7-11=0/20 3/1246	021, 13,								A.	SATE OF N	M. R.	
NOTES											8-	SEVI		
 Unbalance this design Wind: ASC 	ed roof live loads have b n. CE 7-16; Vult=115mph (been considered for (3-second gust)										Ratter	Berter	
Vasd=91n	nph; TCDL=6.0psf; BCD	DL=6.0psf; h=25ft; C	at.								Nr.	PE-20010	018807	

II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

December 22,2021

ESSIONAL E

MiTek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	E7	Нір	1	1	Job Reference (optional)	149386599

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:20 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:63.6 Plate Offsets (X

Plate Offsets (X, Y): [8:0-3-4,0-2-4], [13:0-3-4,0-2-4]												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.74	Vert(LL)	-0.14	9-11	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.74	Vert(CT)	-0.24	9-11	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.61	Horz(CT)	0.06	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.06	11-12	>999	240	Weight: 124 lb	FT = 10%

5)

	N/I C	D
-0	IVIE	n

LUMBER	
TOP CHORD	2x4 SPF No.2
BOT CHORD	2x4 SPF No.2
WEBS	2x3 SPF No.2 *Except* 13-2,8-6:2x6 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 9-5-14 oc bracing.
WEBS	1 Row at midpt 5-11, 3-11
REACTIONS	(lb/size) 8=1478/0-3-8, 13=1478/0-3-8
	Max Horiz 13=-276 (LC 6)
	Max Uplift 8=-192 (LC 9), 13=-192 (LC 8)
	Max Grav 8=1608 (LC 16), 13=1608 (LC 15)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=0/39, 2-3=-2226/247, 3-4=-1574/262,
	4-5=-1574/262, 5-6=-2226/247, 6-7=0/39,
	2-13=-1477/238, 6-8=-1477/237
BOT CHORD	12-13=-377/1006, 11-12=-238/1988,
	9-11=-86/1795, 8-9=-237/816
WEBS	4-11=-94/1046, 5-11=-798/261, 5-9=0/312,
	3-11=-799/262, 3-12=0/312, 2-12=0/1111, 6-9=0/1128
NOTES	

- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding. 3) 4)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 192 lb uplift at joint 13 and 192 lb uplift at joint 8.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle

This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and 7) R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

Page: 1

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	E8	Common	1	1	Job Reference (optional)	149386600

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:20 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:63.7

Plate Offsets (X, Y): [8:0-3-4,0-2-4], [13:0-3-4,0-2-4]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.74 0.74 0.61	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.14 -0.24 0.06 0.06	(loc) 9-11 9-11 8 11-12	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 125 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE BOT CHORE WEBS REACTIONS	 2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood sheat 2-2-0 oc purlins, exce Rigid ceiling directly bracing. 1 Row at midpt (Ib/size) 8=1478/0- Max Horiz 13=-276 (Max Uplift 8=-192 (Li 	pt* 13-2,8-6:2x6 SP athing directly applie cept end verticals. applied or 9-5-14 or 5-11, 3-11 -3-8, 13=1478/0-3-8 LC 6) C 9), 13=-192 (LC 8	4) F 5) ed or 6) 5 LC	* This truss h on the botton 3-06-00 tall b chord and an Provide mecl bearing plate joint 13 and 2 This truss is International R802.10.2 ar	has been designed in chord in all area by 2-00-00 wide w any other members hanical connection is capable of withst 192 lb uplift at join designed in accor Residential Code and referenced star Standard	d for a liv is where ill fit betw , with BC n (by oth tanding 1 it 8. dance wi sections ndard AN	e load of 20.0 a rectangle veen the bott DL = 10.0psi Provide truss t 92 lb uplift at th the 2018 R502.11.1 a SI/TPI 1.	Opsf om f. io i					
FORCES	(Ib) - Maximum Com Tension	pression/Maximum	15)										
TOP CHORE	 1-2=0/39, 2-3=-2226 4-5=-1574/262, 5-6= 2-13=-1477/238, 6-8 	6/247, 3-4=-1574/262 2226/247, 6-7=0/39 1477/237	2, 9,										
BOT CHORE	D 12-13=-377/1006, 11 9-11=-86/1795, 8-9=	1-12=-238/1988, -237/816											
WEBS	4-11=-94/1046, 5-11 3-11=-799/262, 3-12 6-9=0/1128	=-798/261, 5-9=0/3 ² =0/312, 2-12=0/111	12, 1,									STE OF M	AISSO
NOTES 1) Unbaland this desig 2) Wind: AS Vasd=91 U: Exp. C	ced roof live loads have gn. SCE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed: MWEPS (co	been considered for (3-second gust) DL=6.0psf; h=25ft; C	Cat.									Stati Scotti SEVI	ER STANDAR

Enclosed; MWFRS (envelo cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

NUMBER

PE-200101880

December 22,2021

E

OFFESSIONAL

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	E9	Roof Special	5	1	Job Reference (optional)	149386601

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:21 ID:2ncXplsxOfbjIB6l7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [15:0-3-4,0-2-4]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.74 0.86 0.87	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.17 -0.31 0.10 0.07	(loc) 10-11 10-11 9 10-11	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 133 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 *Exce 2x3 SPF No.2 *Exce Structural wood she 2-2-0 oc purlins, ex 2-0-0 oc purlins (6-C Rigid ceiling directly bracing, Except: 6-0-0 cc bracing: 12 1 Bow at midot	ept* 12-5:2x3 SPF N ept* 15-2:2x6 SPF N athing directly applie cept end verticals, a -0 max.): 7-8. applied or 10-0-0 or -13. 3-13.	4) o.2 5) o.2 ed or 6) nd 6) 7) c 8)	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 9 and 24 lb u This truss is International	s been designed for a nonconcurrent v has been designed in chord in all areas by 2-00-00 wide will yo other members, er(s) for truss to tru- hanical connection capable of withsta plift at joint 15. designed in accorc Residential Code	or a 10.0 vith any for a liv where I fit betw with BC iss conr (by oth anding 1 lance wisections) psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf ections. ers) of truss t 4 lb uplift at ji ith the 2018 R502.11.1 a	ids. Dpsf om f. oint oint					
REACTIONS	(lb/size) 9=1393/ 15=1473/ Max Horiz 15=222 (l Max Uplift 9=-14 (LC Max Gray 9=1450 (l	Mechanical, 0-3-8 LC 5) 0 9), 15=-24 (LC 8) 0 14) 15=1591 (LC 8)	9) 2 13) L	R802.10.2 ar Graphical pu or the orienta bottom chorc DAD CASE(S)	nd referenced stan rlin representation ttion of the purlin a l. Standard	dard AN does no long the	ISI/TPI 1. ot depict the s top and/or	size					
FORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHORD	1 ension 1-2=0/39, 2-3=-2208 4-5=-1984/135, 5-6= 7-8=-84/0 8-9=-122	8/39, 3-4=-1542/91, 2008/52, 6-7=-270 /19_2-15=-1461/69	8/20,										
BOT CHORD	14-15=-221/935, 13 12-13=-14/26, 11-12 10-11=0/2301, 9-10	-14=-54/1923, 2=0/31, 5-11=-340/1 =-52/2859	28,									E OF M	AISS
WEBS	3-14=0/322, 3-13=-7 11-13=0/1313, 4-11 6-10=0/410, 7-10=-5 2-14=0/1098	793/128, 4-13=-18/3 =-99/1241, 6-11=-81 594/61, 7-9=-3066/6	48, 14/75, 4,								ł.	STAT SCOTT	T M. ER
NOTES											8 *	1	1*8
 Unbalanc this desig Wind: AS Vasd=91r II; Exp C; and right Lumber D Provide a 	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er exposed ; end vertical /0L=1.60 plate grip DC dequate drainage to pr	been considered fo (3-second gust) DL=6.0psf; h=25ft; (nvelope); cantilever l left and right expose U=1.60 event water ponding	r Cat. left ed; g.									PE-20010	L ENGINE
												December	22,2021

E. Ing Ing G Component Component Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	G1	Нір	1	1	Job Reference (optional)	149386602

TCDL

BCLL

BCDL

WEBS

WEBS

WEBS

1)

2)

3)

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Dec 21 15:19:21 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	G2	Нір	1	1	Job Reference (optional)	149386603

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:22 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:59.8 ~ "

Plate Offsets	(X, Y): [5:0-4-0,0-1-11],	, [9:Edge,0-6-0], [10:	:0-2-8,0-1	-8], [14:0-2-8,0)-1-8], [15:Edge	,0-6-0]								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.61 0.62 0.90	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.11 -0.22 0.06 0.06	(loc) 13-14 13-14 9 13-14	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 129 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE BOT CHORE WEBS REACTIONS FORCES TOP CHORE BOT CHORE	 2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Excep No.2 2x3 SPF No.2 *Excep No.2 Structural wood sheat 3-3-12 oc purlins, ex 2-0-0 oc purlins (4-8-0) Rigid ceiling directly a bracing. 1 Row at midpt 4 (lb/size) 9=1480/0-5 (lb/size) 9=1480/0-5 (lb/size) 9=1480/0-5 (lb/size) 9=1480/0-5 (lb) - Maximum Comp Tension 1 -2=0/36, 2-3=-2219/ 4-5=-1418/234, 5-6=-6-7=-2213/228, 7-8=(7-9)=-1438/209 14-15=-250/734, 13-11-113=-37/1450, 10-19-10=-134/575 	ot* 15-2,9-7:2x4 SPF thing directly applied cept end verticals, a 2 max.): 4-5. applied or 10-0-0 oc 4-11 5-8, 15=1480/0-3-8 C 7) C 9), 15=-175 (LC 8) C 16), 15=-175 (LC 8) C 16), 15=-175 (LC 9) 0; 15=-175 (LC 9) 14=-222 (1964, 11=-96/1831,	4) 5) d or 6) ind 7) 8) 15) L (, 9,	This truss ha chord live lo. * This truss I on the bottor 3-06-00 tall 1 chord and a Provide mec bearing plate joint 15 and This truss is International R802.10.2 a Graphical pu or the orient bottom chore DAD CASE(S)	as been designe ad nonconcurren has been design m chord in all ar by 2-00-00 wide hanical connect e capable of with 175 lb uplift at jor designed in ac Residential Coo nd referenced s urlin representat ation of the purli d. Standard	ed for a 10.0 nt with any ned for a liv- eas where will fit betw ris, with BC tion (by oth- nstanding 1 bint 9. cordance wi de sections tandard AN ion does no in along the) psf bottom other live loa e load of 20. a rectangle reen the bott DL = 10.0ps 75 lb uplift a th the 2018 R502.11.1 a ISI/TPI 1. ot depict the top and/or	ads. Opsf to to t and size				STE OF M	MISSO	
WEBS NOTES 1) Unbaland this desig 2) Wind: AS Vasd=91 II; Exp C cantileve right exp 3) Provide a	3-14=0/205, 3-13=-60 4-11=-176/178, 5-11= 6-10=0/204, 2-14=0/1 ced roof live loads have b gn. SCE 7-16; Vult=115mph (mph; TCDL=6.0psf; BCE ; Enclosed; MWFRS (env r left and right exposed ; osed; Lumber DOL=1.60 adequate drainage to pre	03/219, 4-13=-50/56 30/533, 6-11=-603 1306, 7-10=0/1301 been considered for (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zone end vertical left and plate grip DOL=1.6 vent water ponding.	8, /219, /at. ə; I 0							~		SCOT: SEVI SEVI PE-2001 PE-2001	ER STANDARD	

3) Provide adequate drainage to prevent water ponding.

Can December 22,2021

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	G3	Нір	1	1	Job Reference (optional)	149386604

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:22 ID:2ncXplsxOfbjlB6l7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:59.5

Plate Offsets ((X, Y): [4:0-4-0,0-1-11]], [6:0-4-0,0-1-11], [10:Edge,0-	·6-0], [11:0-2-8	,0-1-8], [15:0-2-	8,0-1-8], [1	6:Edge,0-6-0)]					
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.62 0.58 0.51	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.31 -0.53 0.05 0.05	(loc) 12-14 12-14 10 14-15	l/defl >999 >713 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 127 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x4 SPF 2100F 1.8E 2x3 SPF No.2 *Exce No.2 2x3 SPF No.2 Structural wood shea 3-1-15 oc purlins, et 2-0-0 oc purlins (4-5 Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 10=1480/t Max Horiz 16=198 (L Max Ublift 10=-155 (I	thing directly appli xcept end verticals, 9 max.): 4-6. applied or 10-0-0 o 5-14, 5-12 0-5-8, 16=1480/0-3 .C 7) LC 9). 16=-155 (LC	3) 4) 5PF 5) ed or 6) and 7) c 7) .8 8)	Provide ader This truss ha chord live loa * This truss lo on the bottoo 3-06-00 tall li chord and ar Provide mec bearing plate joint 16 and This truss is International R802.10.2 a Graphical pu or the orienta bottom chore	quate drainage i as been designe ad nonconcurrei has been desigr m chord in all ar by 2-00-00 wide hy other membe chanical connect e capable of with 155 lb uplift at jo designed in acc I Residential Con nd referenced s urlin representat ation of the purlid.	to prevent v ed for a 10.0 nt with any ned for a liv eas where will fit betw will fit betw rs, with BC tion (by oth- nstanding 1 bint 10. cordance wi de sections tandard AN ion does no in along the	water pondim) psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps ers) of truss i 55 lb uplift al ith the 2018 is R502.11.1 at IS/TPI 1. ot depict the set to p and/or	g. ads. Opsf om f. to t and size					
FORCES	Max Grav 10=1537 ((lb) - Maximum Com	(LC 2), 16=1537 (L0 pression/Maximum	C 2) LO	OAD CASE(S)	Standard								
TOP CHORD	Tension 1-2=0/36, 2-3=-2210 4-5=-1615/198, 5-6= 6-7=-1962/171, 7-8= 2-16=-1433/181 8-1	0/206, 3-4=-1962/17 1615/198, 2210/206, 8-9=0/3 0=-1433/180	1, 6,										
BOT CHORD	15-16=-170/520, 14- 12-14=-117/1736, 11 10-11=-42/387	15=-208/1898, 1-12=-105/1851,										TE OF M	AISSO
WEBS	3-15=-93/65, 3-14=-3 5-14=-372/192, 5-12 7-12=-371/199, 7-11 8-11=-64/1474	371/199, 4-14=0/64 =-372/192, 6-12=0/ =-93/64, 2-15=-71/	8, ′648, 1474,							ţ		SCOT SEVI	F M. ER
NOTES 1) Unbalance this design 2) Wind: ASG Vasd=91n II; Exp C; cantilever right expo	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en left and right exposed	been considered fo (3-second gust) DL=6.0psf; h=25ft; ivelope) exterior zo ; end vertical left ar 0 plate orig DQI =1	or Cat. ne; id 60							e	A A A	PE-2001	JER D18807

cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

December 22,2021

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	G4	Нір	1	1	Job Reference (optional)	149386605

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:22 ID:2ncXplsxOfbjlB6l7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1	:59.4
-----------	-------

Plate Offsets ((X, Y): [2:Edge,0-3-4],	[10:Edge,0-3-4]											
Loading	(psf)	Spacing	2-0-0		CSI	0.96	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
	25.0	Plate Grip DOL	1.15			0.80	Vert(LL)	-0.13	10-11	>999	300	IVI 1 20	197/144
BCU	10.0	Rep Stress Incr	VES		WB	0.05		-0.27	10-11	>999 n/a	240 n/a		
BCDI	10.0	Code	IRC2018	R/TPI2014	Matrix-S	0.35	Wind(LL)	0.03	13-14	~999	240	Weight: 121 lb	FT – 10%
JODE	10.0	Code	11(02010	0/11/2014	Wath-0		WING(LL)	0.00	10-14	2333	240		11 = 1070
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood she: 3-11-2 oc purlins, e: 2-0-0 oc purlins (2-2 Rigid ceiling directly bracing. (lb/size) 10=1480// Max Horiz 15=163 (L Max Uplift 10=-132 (pt* 15-2,10-8:2x4 SF athing directly applie xcept end verticals, a -0 max.): 4-6. applied or 10-0-0 oc 0-5-8, 15=1480/0-3-8 C 7) LC 9), 15=-132 (LC 8	5) PF 6) d or 7) : 8) 3 B) LC	* This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate joint 15 and This truss is International R802.10.2 ar Graphical pu or the orienta bottom chorc DAD CASE(S)	has been designed in chord in all areas by 2-00-00 wide will by other members. hanical connection capable of withsta 132 Ib uplift at joint designed in accorc Residential Codes and referenced stan rlin representation ation of the purlin a standard	for a liv where I fit betw (by oth inding 1 10. lance w sections dard AN does no long the	e load of 20.0 a rectangle veen the botto ers) of truss t 32 lb uplift at ith the 2018 R502.11.1 a ISI/TPI 1. t depict the s top and/or	Opsf om to t and size					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=0/36, 2-3=-578/6 4-5=-2136/226, 5-6= 6-7=-1969/176, 7-8= 2-15=-486/100, 8-10	63, 3-4=-1969/176, -2136/226, -578/63, 8-9=0/36, =-486/100											
BOT CHORD	14-15=-237/1702, 13 11-13=-77/1644, 10-	3-14=-191/1644, 11=-96/1702											
WEBS	3-14=-153/177, 4-14 5-13=-610/245, 6-13 7-11=-153/177, 3-15 7-10=-1567/141	=0/313, 4-13=-209/7 =-209/711, 6-11=0/3 =-1567/140,	711, 313,								E	TE OF M	AISSO
NOTES											B	SCOTT	N. C.
 Unbalance this design Wind: ASC Vasd=91n II; Exp C; cantilever right exposition 	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6!	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6	Cat. e; d									NUME PE-20010	BER D18807

Provide adequate drainage to prevent water ponding.
 This truss has been designed for a 10.0 psf bottom

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. December 22,2021

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	G5	Hip Girder	1	1	Job Reference (optional)	149386606

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:23 ID:2ncXplsxOfbjlB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:59.2

Plate Offsets (X, Y): [2:Edge,0-4-8], [3:0-4-0,0-2-4], [6:0-4-0,0-2-4], [7:Edge,0-4-8], [10:0-2-8,0-2-0]														
Loading TCLL (roof) TCDL BCLL BCDL	(p 29 10 10	osf) 5.0 0.0 0.0* 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.94 0.81 0.71	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.25 -0.46 0.12 0.20	(loc) 10-12 10-12 7 10-12	l/defl >999 >819 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 130 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE	2x4 SPF 2100 2400F 2.0E 2x6 SPF 1650 2x3 SPF No.2 Left: 2x6 SPF I Right: 2x6 SPF	F 1.8E F 1.4E No.2 ⁼ No.2	*Except* 3-6:2x4 \$	3) SPF 4) 5)	Provide aded This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar WARNING: 1	quate drainage to p quate drainage to p ad nonconcurrent w has been designed n chord in all areas by 2-00-00 wide will by other members. Required bearing si	revent or a 10.0 vith any for a liv where fit betv	water ponding 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto	g. Ids. Opsf om		Vert: 11 (B), 15= 19=-93 23=-45 27=-45	=-45 (E -93 (B) (B), 20 (B), 24 (B), 28	3), 13=-429 (B), 1), 16=-93 (B), 17 =-93 (B), 21=-93 =-45 (B), 25=-45 =-45 (B), 29=-45	9=-429 (B), 14=-93 =-93 (B), 18=-93 (B), 5 (B), 22=-93 (B), 5 (B), 26=-45 (B), 5 (B), 30=-45 (B)
BRACING TOP CHORD	Structural woo 3-2-2 oc purlin 2-0-0 oc purlin	od shea is, exce is (2-8-	thing directly appli ept 6 max.): 3-6.	ed or 7)	 b) WARNING: Required bearing size at joint(s) 2 greater than input bearing size. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 484 lb uplift at 									
BOT CHORD	Rigid ceiling di bracing, Exce 8-11-7 oc brac	irectly a ept: cing: 10	applied or 10-0-0 o 0-12.	ic 8)	Joint 2 and 4 This truss is International	87 lb uplift at joint 7 designed in accord Residential Code s	ance w sections							
REACTIONS	(Ib/size) 2=2 7=2 Max Horiz 2=1 Max Uplift 2=-4 (Ib) - Maximum	524/0-3 537/0-8 09 (LC 484 (LC n Comp	3-8, (req. 0-3-15), 5-8 7) C 8), 7=-487 (LC 9) pression/Maximum	9)	Graphical pu or the orienta bottom choro)) "NAILED" ind (0 148"x3 25	rlin representation ation of the purlin al dicates 3-10d (0.14)	does no long the 8"x3") c	ot depict the s top and/or or 3-12d	size					
TOP CHORD	Tension 1-2=0/11, 2-3= 4-5=-5052/967 6-7=-4170/811	-4194/ 7, 5-6=- I, 7-8=(4194/815, 3-4=-5055/968, 5-6=-5052/966, 7-8=0/11 											
BOT CHORD	2-13=-725/342 10-12=-947/50 7-9=-612/3389	22, 12-1)50, 9-1)	13=-722/3405, 10=-610/3372,	1:	selection of s responsibility 2) In the LOAD	such connection de of others. CASE(S) section, I	vice(s)	oplied to the f	face			b	THE OF I	MISSOL
	3-13=-128/700 4-12=-815/342 6-10=-418/207	2, 5-12= 2, 5-12= 76, 6-9=	=-412/2042, =-46/50, 5-10=-845 =-127/694	5/363, L 1)	of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15,									
 Unbalance this design Wind: ASC 	ed roof live loads n. CE 7-16; Vult=11	5 have b	oeen considered fo	or	Frate introdese=1.15 Uniform Loads (lb/ft) Vert: 1-3=-70, 3-6=-70, 6-8=-70, 2-7=-20 NUMBER Concentrated Loads (lb) PE-2001018807									

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

December 22,2021

SSIONAL

F

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	J4	Diagonal Hip Girder	2	1	Job Reference (optional)	149386607

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:23 ID:LmNHaNe4yhgoAaLbn?W9JhykfLi-RfC?PsB70Hq3NSgPqnL&w3uITXbGKWrCDoi7J4zJC?f

4-1-7

0				00
SCa	le.	=	н	:23

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC20	18/TPI2014	CSI TC BC WB Matrix-P	0.16 0.11 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 2-4 2-4 3	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 11 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 Structural wood she 4-1-7 oc purlins. Rigid ceiling directly bracing. (lb/size) 2=125/0-4	athing directly applie applied or 10-0-0 o 4-9. 3=43/ Mechanic	7 ed or 8 c L al. 1	 Hanger(s) or provided suft down and 11 up at -1-2-1 such connec In the LOAD of the truss a OAD CASE(S) Dead + Roo 	other connection icient to support (lb up at -1-2-14, 4 on top chord. T tion device(s) is ti CASE(S) section re noted as front Standard of Live (balanced)	device(s concentra and 30 I he desig ne respoi , loads a (F) or ba : Lumber	ated load(s) 3 b down and 7 n/selection of nsibility of oth pplied to the ck (B).	30 lb 11 lb f ners. face 15,					
NEXO NONO	4=17/ Me Max Horiz 2=78 (LC Max Uplift 2=-111 (L Max Grav 2=125 (LC (LC 3)	c 6), 3=-84 (LC 6) C 6), 3=-84 (LC 6) C 1), 3=43 (LC 1), 4:	=56	Plate Increa Concentrate Vert: 1=- Trapezoida Vert: 1=0	ase=1.15 ed Loads (lb) 46 (F=-23, B=-23) I Loads (lb/ft) 0 (F=35, B=35)-to- 24) to 2 47 (F) -2=-25 (F	=23, B=23), ;	2=-2					
FORCES	(lb) - Maximum Com	pression/Maximum		(г=34, в B=10)-to	=34)-10-3=-47 (F= -4=-14 (F=3, B=3)	= н, в= н)	1), 2=0 (F=10),					
TOP CHORD BOT CHORD	1-2=-1/4, 2-3=-41/9 2-4=0/0												
NOTES													
 Wind: ASt Vasd=91r II; Exp C; cantilever right expo 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6	(3-second gust) DL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an 0 plate grip DOL=1.	Cat. ne; d 60										
2) This truss	has been designed for	r a 10.0 psf bottom	do									OF	MIG
3) * This trus on the bot 3-06-00 ta chord and	to a nonconcurrent will so has been designed f ttom chord in all areas all by 2-00-00 wide will any other members.	or a live load of 20.0 where a rectangle fit between the botto	os.)psf om									STATE SCOT	T M. IER

- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 84 lb uplift at joint 3 and 111 lb uplift at joint 2.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

PE-2001018807 PE-2001018807 December 22,2021

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	J5	Jack-Open	5	1	Job Reference (optional)	149386608

-0-10-8

0-10-8

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:24 ID:6VH0Yg764UFvW_YKmTF43dyKfMN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-0-0

3-0-0

3-0-0

Page: 1

Scale = 1:23.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	0.00	2-4	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	-0.01	2-4	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 8 lb	FT = 10%

TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2
BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	3-0-0 oc p	purlins.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(lb/size)	2=210/0-3-8, 3=85/ Mechanical, 4=28/ Mechanical
	Max Horiz	2=64 (LC 8)
	Max Uplift	2=-35 (LC 8), 3=-52 (LC 8)
	Max Grav	2=210 (LC 1), 3=85 (LC 1), 4=56 (LC 3)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/6, 2	2-3=-59/31
BOT CHORD	2-4=0/0	
NOTES		

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 52 lb uplift at joint 3 and 35 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

December 22,2021

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	J6A	Jack-Closed Supported Gable	2	1	Job Reference (optional)	149386609

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:24 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:26.4

Plate Offsets (X, Y): [3:0-5-0,0-2-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.03	Vert(LL)	n/a	-	n/a	999	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.00	Vert(CT)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 3 lb	FT = 10%	
			8) This truss is	designed in accord	ance w	ith the 2018							
	2v/ SPE No 2		International	Residential Code s	ections	R502 11 1 a	nd						
	2x4 SFF N0.2		R802 10 2 a	nd referenced stand	AA hard	ISI/TPI 1							
WEBS	2x4 SFF No.2 2x3 SPF No.2			Stondard									
	2/3 011 10.2		LOAD CASE(S)	Stanuaru									
		athing discath, annli											
TOP CHORD	1-0-0 oc purlins. ex	eathing directly applie (cept end verticals.	ed or										
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	с										
	bracing.		•										
REACTIONS	(lb/size) 2=106/1-	0-0, 4=-6/1-0-0											
	Max Horiz 2=25 (LC	; 5)											
	Max Uplift 2=-26 (LC	C 8), 4=-9 (LC 16)											
	Max Grav 2=106 (L	C 1), 4=12 (LC 4)											
FORCES	(lb) - Maximum Con	npression/Maximum											
	Tension												
TOP CHORD	1-2=0/6, 2-3=-37/10), 3-4=-9/14											
BOT CHORD	2-4=-8/6												
NOTES													
1) Wind: AS	CE 7-16; Vult=115mpl	n (3-second gust)											
Vasd=91r	nph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft; (Cat.										
II; Exp C;	Enclosed; MWFRS (e	nvelope) exterior zor	ne;										
cantilever	left and right exposed	l; end vertical left an	d										
right expo	sed; Lumber DOL=1.6	60 plate grip DOL=1.0	60									TOP	
Truss des	signed for wind loads in	n the plane of the true	SS								8 OF I	MICON	
only. For	studs exposed to wind	d (normal to the face)),								BIE	0.0	
see Stand	dard Industry Gable Er	nd Details as applical	ble,							B	AN IN	N NY	
or consult	qualified building des	igner as per ANSI/TF	기 1.							R	SCOT	TM. Y	
Gable req	uires continuous botto	om chord bearing.								. 0	7 SEV	IER \\Y	
Gable stu	ds spaced at 2-0-0 oc.								1	9 +			
This truss	has been designed fo	or a 10.0 psf bottom								NY	1 the	La . Mat	
chord live	load nonconcurrent w	ith any other live loa	ds.						_		call.	Leven	
6) * This trus	ss has been designed	for a live load of 20.0)psf						-	W.	at NUM	BER	
on the bot	ttom chord in all areas	where a rectangle								N'	ON PE-2001	018807	
3-06-00 ta	all by 2-00-00 wide will	tit between the botto	om							(V	12	18A	
chord and	any other members.									1	A Ser	JO'A	
 Provide m 	nechanical connection	(by others) of truss t	0								WONA	LEFA	
bearing pl	late capable of withsta	naing 9 ib uplift at joi	INT 4								am	TOS	
anu zo id	upint at joint 2.												

December 22,2021

MITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	J7A	Jack-Closed	2	1	Job Reference (optional)	149386610

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:24 ID:Hr0UloyIgMOrZQ4rpild7XzssyG-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

2x4 = 1-0-0

1-0-3

Scale = 1:26.4 Plate Offsets (X, Y): [3:0-5-0.0-2-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.01	Vert(LL)	0.00	2	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.01	Vert(CT)	0.00	2	>999	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 3 lb	FT = 10%	

LUMBER

TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2
WEBS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structural 1-0-0 oc p	l wood sheathing directly applied or ourlins, except end verticals.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(lb/size)	2=74/0-3-8, 4=32/ Mechanical
	Max Horiz	2=25 (LC 5)
	Max Uplift	2=-15 (LC 8), 4=-9 (LC 8)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	1-2=0/5, 2	2-3=-26/10, 3-4=-24/14
BOT CHORD	2-4=-8/6	· ·

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 9 lb uplift at joint 4 and 15 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

December 22,2021

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	J8	Diagonal Hip Girder	1	1	Job Reference (optional)	149386611

Page: 1

NAILED

NAILED

Scale = 1:37.5

-													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.17	Vert(LL)	-0.02	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.18	Vert(CT)	-0.03	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 20 lb	FT = 10%
			8)	In the I OAD	CASE(S) section	loads ar	oplied to the	face					
TOP CHORE	2x6 SPF No.2		0)	of the truss a	re noted as front (F) or ba	ck (B).						
BOT CHORE	2x4 SPF No.2		LC	DAD CASE(S)	Standard		()						
WEBS	2x3 SPF No.2 *Exc	ept* 5-2:2x6 SPF No	.2 1)	Dead + Roo	of Live (balanced):	Lumber	Increase=1.	.15,					
BRACING				Plate Increa	ise=1.15								
TOP CHORE	OP CHORD Structural wood sheathing directly applied or Uniform Loads (lb/ft)												
	6-0-0 oc purlins, except end verticals. Vert: 1-2=-70, 2-3=-70, 4-5=-20												
BOT CHORE	OT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. Concentrated Loads (lb) Vert: 7=-43 (F), 8=5 (B), 9=-15 (F)												
REACTIONS	(lb/size) 4=214/ M	/lechanical, 5=401/0-	6-5										
	Max Horiz 5=93 (LO	C 5)											
	Max Uplift 4=-61 (L	C 5), 5=-153 (LC 4)											
FORCES	ORCES (Ib) - Maximum Compression/Maximum Tension												
TOP CHORE	1-2=0/44, 2-3=-99/ 2-5=-354/179	24, 3-4=-160/86,											
BOT CHORE	4-5=-18/35												
NOTES													
1) Wind: AS	SCE 7-16: Vult=115mp	h (3-second aust)											
Vasd=91	mph; TCDL=6.0psf; B	CDL=6.0psf; h=25ft; (Cat.										
II; Exp C	; Enclosed; MWFRS (e	envelope) exterior zor	ne;										
cantileve	r left and right expose	d; end vertical left an	d										
right exp	osed; Lumber DOL=1.	60 plate grip DOL=1.	60										
2) This trus	s has been designed f	or a 10.0 pst bottom	de									000	TOP
3) * This tru	e luau nonconcurrent v	for a live load of 20 (us. Inef									OFM	Alson
on the bo	ottom chord in all areas	where a rectangle	pai								1	TE	-0.0 M
3-06-00 t	all by 2-00-00 wide wi	I fit between the botto	om								A	AV COM	New Y
chord an	d any other members.										4	s scor	$M. \qquad \forall \qquad $
4) Refer to	girder(s) for truss to tru	uss connections.									4.	/ SEVI	
5) Provide r	nechanical connection	(by others) of truss t	0								10	1 14 7	0
bearing p	blate capable of withsta	anding 61 lb uplift at j	oint								W.	\mathcal{H}	Xanana
4 and 15	3 ID UPIIIT At joint 5.									*	R.	NUM	
Internatio	s is designed in accord	ance with the 2018	nd								N	> PE-2001	018807
R802 10	2 and referenced stan	dard ANSI/TPI 1	nu								N	The second	18A
7) "NAILED	" indicates 3-12d (0 14	8"x3.25") toe-nails of	ər								X	1380	NO'A
NDS qui	dlines.											ONA	LEIA

7) es 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

December 22,2021

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	J9	Jack-Open	1	1	Job Reference (optional)	149386612

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:24 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Pag

-0-10-8

0-10-8

<u>1-2-3</u> 1-2-3

Scale = 1:27.5

Plate Offsets (X, Y): [5:0-5-10,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC (0.07	Vert(LL)	0.00	5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC 0	0.02	Vert(CT)	0.00	4-5	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB (0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 5 lb	FT = 10%
		•	0) This taxas is			uh uh - 0040	-					
			b) This truss is Internetional	Designed in accordar	ICE WI	Ith the 2018	nd					
TOP CHORD	2x4 SPF No.2		Pene 10 2 or	d referenced stands		R302.11.1 al	nu					
	2X4 SPF N0.2			Stondard		101/1111.						
	2X4 OFF NU.2		LUAD CASE(S)	Stanuaru								
	Structural wood ob	othing directly opplie	dor									
		cent end verticals										
	Rigid ceiling directly	v applied or 10-0-0 or	_									
BOT ONORD	bracing.											
REACTIONS	(lb/size) 3=9/ Mec	hanical 4=1/Mecha	nical									
	5=153/0-	3-8	inoui,									
	Max Horiz 5=43 (LC	: 8)										
	Max Uplift 3=-22 (LO	C 8), 4=-5 (LC 8), 5≕	-14									
	(LC 8)											
	Max Grav 3=17 (LC	: 15), 4=17 (LC 3), 5=	=153									
	(LC 1)											
FORCES	(lb) - Maximum Cor	npression/Maximum										
		40.00.05/7										
	2-5=-134/31, 1-2=0	/40, 2-3=-35/7										
	4-5=0/0											
NOTES		(0 1 1)										
1) Wind: ASC	CE 7-16; Vult=115mpi	1 (3-second gust)	Cot									~
II: Exp C:	Enclosed: MW/ERS (e	nvelope) exterior zor	Jal.								A STA	and
cantilever	left and right exposed	end vertical left an	d								E. OF M	AISS OF
right expo	sed; Lumber DOL=1.6	50 plate grip DOL=1.6	50							4	- N	NS
2) This truss	has been designed for	or a 10.0 psf bottom								H	SCOTT	M YEN
chord live	load nonconcurrent w	ith any other live load	ds.							Ø	SEVI	FR \ X
This trus	s has been designed	for a live load of 20.0)psf							KA	-	
on the bot	ttom chord in all areas	where a rectangle									4	
3-06-00 ta	all by 2-00-00 wide will	fit between the botto	m									Germen7
chord and	any other members.	····							-	5	3 NUMI	SER E
4) Keter to g	prover(s) for truss to tru	(by others) of truce to	0							N	OX PE-20010	018807
bearing pl	late canable of withsta	nding 14 lb unlift at it	u nint							V	The last	158
5, 5 lb upli	ift at joint 4 and 22 lb	uplift at joint 3.									A Stor	ENO
-, up.											WNA	L

December 22,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	J10	Jack-Open	1	1	Job Reference (optional)	149386613

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:25 ID:2ncXplsxOfbjlB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale - 1.23.3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.33	Vert(LL)	-0.02	2-4	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.20	Vert(CT)	-0.05	2-4	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 12 lb	FT = 10%

4-7-5

LUMBER

LOWIDEN							
TOP CHORD	2x4 SPF I	No.2					
BOT CHORD	2x4 SPF I	No.2					
BRACING							
TOP CHORD	Structura	wood sheathing directly applied or					
	4-7-5 oc p	ourlins.					
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc							
	bracing.						
REACTIONS	(lb/size)	2=278/0-3-8, 3=146/ Mechanical,					
		4=44/ Mechanical					
	Max Horiz	2=75 (LC 4)					
	Max Uplift	2=-72 (LC 4), 3=-74 (LC 8)					
	Max Grav	2=278 (LC 1), 3=146 (LC 1), 4=88					
FORCES	(lb) May	(LO C)					
FURGES	(ID) - Max	imum Compression/Maximum					
	Tension						
TOP CHORD	1-2=0/6, 2	2-3=-67/42					
BOT CHORD	2-4=0/0						
NOTES							
1) Wind: AS	CE 7-16; Vu	It=115mph (3-second gust)					
Vacd_01n	oph TCDI -	6 Opef: BCDI _6 Opef: b_25ft: Cat					

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 74 lb uplift at joint 3 and 72 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

December 22,2021

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	J11	Jack-Open	3	1	Job Reference (optional)	149386614

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:25 ID:2ncXplsxOfbjlB6l7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

..

0 1 -	1 00 0

Scale = 1:23.9												
_oading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.50	Vert(LL)	-0.05	2-4	>999	360	MT20	197/144
FCDL	10.0	Lumber DOL	1.15	BC	0.30	Vert(CT)	-0.09	2-4	>675	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 14 lb	FT = 10%

5-6-0

L	ι	JN	N	в	Е	R

TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2
BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	5-6-0 oc p	ourlins.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(lb/size)	2=316/0-3-8, 3=178/ Mechanical,
		4=53/ Mechanical
	Max Horiz	2=87 (LC 4)
	Max Uplift	2=-76 (LC 4), 3=-90 (LC 8)
	Max Grav	2=316 (LC 1), 3=178 (LC 1), 4=106 (LC 3)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	1-2=0/6, 2	2-3=-68/50
BOT CHORD	2-4=0/0	
NOTES		
1) Wind: ASC	CE 7-16; Vu	It=115mph (3-second gust)

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 90 lb uplift at joint 3 and 76 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

December 22,2021

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	J12	Jack-Closed Girder	1	1	Job Reference (optional)	149386615

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:25 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

HUS26

HUS26

5-6-0

Scale =	1:25.6
---------	--------

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL * Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.60 0.76 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.10 -0.18 0.00 0.07	(loc) 1-3 1-3 3 1-3	l/defl >626 >340 n/a >917	L/d 360 240 n/a 240	PLATES MT20 Weight: 21 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x6 SP DSS 2x4 SPF No.2 Structural wood s 5-6-0 oc purlins, Rigid ceiling dire- bracing. (lb/size) 1=114	sheathing directly appl except end verticals. ctly applied or 6-3-8 or 6/0-3-8, 3=1023/ Mecl	8) 9) 1) ied or c nanical	Fill all nail ho In the LOAD of the truss a DAD CASE(S) Dead + Roc Plate Increa Uniform Loa Vert: 1-2= Concentrate Vert: 4=-6	les where hanger i CASE(S) section, re noted as front (I Standard of Live (balanced): ase=1.15 ads (lb/ft) =-70, 1-3=-20 ad Loads (lb) 350 (F), 5=-850 (F)	is in cor loads a F) or ba Lumber	ntact with lumh pplied to the fr ck (B). Increase=1.1	ber. ace 5,					
FORCES	Max Horiz 1=85 (Max Uplift 1=-154 (lb) - Maximum C Tension 1-2=-75/50, 2-3=	LC 5) \$ (LC 4), 3=-153 (LC 8 compression/Maximum -182/82	i) 1										
 NOTES Wind: ASC Vasd=91rr II; Exp C; I cantilever right expos This truss chord live * This trus on the bot 3 * This trus on the bot 3-06-00 ta chord and Refer to gi Provide m bearing pla joint 1 and This truss Internation R802.10.2 Use Simps Truss, Sim o cmax. st connect tru 	CE 7-16; Vult=115n hph; TCDL=6.0psf; Enclosed; MWFRS left and right expos sed; Lumber DOL= has been designed load nonconcurren s has been designed tom chord in all are II by 2-00-00 wide v any other member irder(s) for truss to echanical connecti ate capable of witha 153 lb uplift at join is designed in acco hal Residential Cod and referenced sta son Strong-Tie HUS gle Ply Girder) or e arting at 1-6-12 fro uss(es) to front face	aph (3-second gust) BCDL=6.0psf; h=25ft; (envelope) exterior zc ed; end vertical left a 1.60 plate grip DOL=1 for a 10.0 psf bottom t with any other live load df or a live load of 20. as where a rectangle will fit between the bot s. truss connections. on (by others) of truss standing 154 lb uplift a t 3. ordance with the 2018 e sections R502.11.1 andard ANSI/TPI 1. S26 (14-10d Girder, 6- quivalent spaced at 2- m the left end to 3-6-1 e of bottom chord.	Cat. one; nd .60 ads. .0psf tom to to and 10d .0-0 2 to							d		NUME PE-20010	AISSOLUTION M. ER JER JER JER JER JER JER JER JER JER

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

December 22,2021

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	J13	Diagonal Hip Girder	1	1	Job Reference (optional)	149386616

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:25 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

NAILED

NAILED 3-4-1 8-1-6 3-4-1 4-9-5

Scale	=	1:44.5		

Plate Offsets (X, Y): [5:Edge,0-2-8]

Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.59 0.66	DEFL Vert(LL) Vert(CT)	in -0.13 -0.23	(loc) 5-6 5-6	l/defl >725 >408	L/d 360 240	PLATES MT20 MT18HS	GRIP 197/144 197/144	
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	NO IRC2018	3/TPI2014	WB Matrix-R	0.00	Horz(CT) Wind(LL)	0.08 0.16	5 5-6	n/a >580	n/a 240	Weight: 29 lb	FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 *Exce 2x4 SPF No.2 *Exce 6-0-0 cp purlins, exc Rigid ceiling directly bracing. (lb/size) 5=381/ Mo Max Horiz 8=167 (LC Max Uplift 5=-154 (L Max Grav 5=382 (LC (lb) - Maximum Com Tension 2-8=-434/134, 1-2=0 3-4=-151/38, 4-5=-11 7-8=-165/333, 6-7=- 5-6=-50/67	pt* 6-5:2x6 SPF No. pt* 4-5:2x3 SPF No. athing directly applie cept end verticals. applied or 10-0-0 oc echanical, 8=483/0-4 C 5) C 5), 8=-115 (LC 8) C 5), 8=-115 (LC 8) C 5), 8=483 (LC 1) pression/Maximum /41, 2-3=-487/109, 90/92 1/51, 3-6=-43/72,	7) 2 8) ed or 9) 5 LC 1) 4-7	This truss is International R802.10.2 a "NAILED" ini (0.148"x3.255 In the LOAD of the truss a PAD CASE(S) Dead + Roo Plate Increa Uniform Lo Vert: 1-2 Concentrat Vert: 7=((B), 14=-	designed in accorr Residential Code nd referenced stan dicates 3-10d (0.14 ") toe-nails per ND CASE(S) section, ire noted as front (Standard of Live (balanced): ase=1.15 ads (lb/ft) =-70, 2-4=-70, 7-8: ed Loads (lb) (F), 10=-7 (B), 11 12 (F)	dance wissections ndard AN 48"x3") c OS guidlin loads ap (F) or bar Lumber =-20, 5-6 =-7 (F),	ith the 2018 R502.11.1 a ISI/TPI 1. or 2-12d nes. opplied to the f ck (B). Increase=1. 6=-20 12=2 (B), 13:	nd ace 15, =-28						
NOTES 1) Wind: AS ¹ Vasd=91r II; Exp C; cantilever	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er	(3-second gust) DL=6.0psf; h=25ft; (velope) exterior zon	Cat. ie;									Contraction of the	ADD.	

- right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- All plates are MT20 plates unless otherwise indicated. 2)
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 115 lb uplift at joint 8 and 154 lb uplift at joint 5.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Page: 1

December 22,2021

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	J14	Diagonal Hip Girder	2	1	Job Reference (optional)	149386617

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:25 ID:2ncXplsxOfbjlB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scal	e =	1:47	.4
------	-----	------	----

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.19	Vert(LL)	0.00	6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.13	Vert(CT)	-0.01	5-6	>999	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.20	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-P		Wind(LL)	0.01	2-6	>999	240	Weight: 41 lb	FT = 10%
LUMBER			7	"NAILED" inc	dicates 2-12d (0.1	48"x3.25	") toe-nails p	er					
TOP CHORD	2x6 SPF No.2			NDS guidline	s.								
BOT CHORD	2x6 SPF No.2		8)	In the LOAD	CASE(S) section	, loads ap	oplied to the	face					
WEBS	2x3 SPF No.2			of the truss a	re noted as front	(F) or ba	ck (B).						
BRACING			L	OAD CASE(S)	Standard								
TOP CHORD	Structural wood shea 6-0-0 oc purlins, exc	athing directly applie cept end verticals.	ed or 1)	Dead + Roo Plate Increa	of Live (balanced) ase=1.15	: Lumber	Increase=1.	15,					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	;	Uniform Loa Vert: 1-4:	ads (lb/ft) =-70, 2-5=-20								
REACTIONS	(lb/size) 2=483/0-4 Max Horiz 2=172 (LC Max Uplift 2=-117 (LC Max Grav 2=483 (LC	7, 5=459/ Mechani C 5) C 8), 5=-190 (LC 5) C 1), 5=477 (LC 15)	cal	Concentrate Vert: 9=- (B), 13=-	ed Loads (lb) 9 (F), 10=-84 (B), 14 (F), 14=-26 (B	11=6 (F=)	=2, B=4), 12=	=-4					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=0/16, 2-3=-591/ 4-5=-177/136	112, 3-4=-148/75,											
BOT CHORD	2-6=-166/409. 5-6=-	166/409											
WEBS	3-6=0/207, 3-5=-463	/191											
NOTES													
 Wind: ASC Vasd=91n II; Exp C; cantilever right expo This truss chord live * This truss 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en left and right exposed sed; Lumber DOL=1.60 has been designed for load nonconcurrent wi s has been designed for	(3-second gust) DL=6.0psf; h=25ft; (velope) exterior zor ; end vertical left and o plate grip DOL=1.6 a 10.0 psf bottom th any other live load or a live load of 20.0	Cat. e; d 50 ds. psf								E.	STATE OF M	MISSOLLE

- on the bottom chord in all areas where a rectangle
 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
 4) Refer to girder(s) for truss to truss connections.
 5) Provide gradhead approximation concentring (by others) of true to the second sec
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 190 lb uplift at joint 5 and 117 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	J14A	Diagonal Hip Girder	1	1	Job Reference (optional)	149386618

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Dec 21 15:19:26 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10%

NAILED NAILED NAILED NAILED 4-3-13 8-1-6 4-3-13 3-9-9

Scale = 1:42.6				4-3-13	· ·	3-8	9-9					
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.29	Vert(LL)	-0.01	5-6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.16	Vert(CT)	-0.02	5-6	>999	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.18	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.01	5-6	>999	240	Weight: 35 lb	FT = 10 ⁴

LUMBER

- TOP CHORD 2x4 SPF No.2
- 2x6 SPF No.2 BOT CHORD
- 2x3 SPF No.2 *Except* 7-2:2x4 SPF No.2 WEBS BRACING
- TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

4-5-9

- REACTIONS (lb/size) 5=387/ Mechanical, 7=483/0-4-7 Max Horiz 7=182 (LC 7)
- Max Uplift 5=-138 (LC 5), 7=-109 (LC 8) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-7=-409/123, 1-2=0/41, 2-3=-508/101, 3-4=-140/57, 4-5=-117/70
- BOT CHORD 6-7=-164/365, 5-6=-164/365 WEBS 3-6=0/166, 3-5=-408/173

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 109 lb uplift at joint 7 and 138 lb uplift at joint 5.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) "NAILED" indicates 2-12d (0.148"x3.25") toe-nails per NDS guidlines.

8) In the LOAD CASE(S) section, loads applied to the face

- of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard
- Dead + Roof Live (balanced): Lumber Increase=1.15, 1)
 - Plate Increase=1.15
 - Uniform Loads (lb/ft)
 - Vert: 1-2=-70, 2-4=-70, 5-7=-20
 - Concentrated Loads (lb)
 - Vert: 10=-9 (F), 11=-21 (B), 12=2 (F), 13=0 (B), 14=-14 (F), 15=-17 (B)

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	J15A	Jack-Open	1	1	Job Reference (optional)	149386619

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:26 ID:2ncXplsxOfbjlB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:29.6

Plate Offsets (X, Y): [8:0-5-10,0-1-8]

	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.30 0.22 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.08 -0.04	(loc) 6 5-6 5	l/defl >999 >767 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144	
	10.0	Code	IRC201	8/TPI2014	Matrix-R		Wind(LL)	0.07	5-6	>881	240	Weight: 18 lb	FI = 10%	
2x4 SPF N 2x4 SPF N 2x4 SPF N	o.2 o.2 *Exce o.2	pt* 7-3:2x3 SPF No.2	6) 2 L(This truss is International R802.10.2 a DAD CASE(S)	designed in accord Residential Code nd referenced stan Standard	dance wi sections idard AN	th the 2018 R502.11.1 a ISI/TPI 1.	ind						
Structural	wood she	athing directly applied	d or											
5-5-4 oc pi	urlins, exc	cept end verticals.												
Rigid ceilin bracing.	g directly	applied or 10-0-0 oc												
(lb/size)	4=143/ Me Mechanica	echanical, 5=65/ al, 8=404/0-3-8												
Max Horiz	8=181 (LC	8)												
Max Uplift	4=-90 (LC (LC 8)	8), 5=-8 (LC 8), 8=-3	36											
Max Grav	4=154 (LC (LC 1)	5 15), 5=85 (LC 3), 8	=404											
(lb) - Maxir Tension	num Com	pression/Maximum												
2-8=-367/6 3-4=-69/75	7, 1-2=0/7	78, 2-3=-180/0,												
7-8=-64/84	, 6-7=-7/3	9, 3-6=0/81, 5-6=0/0	1											
CE 7-16; Vult	=115mph	(3-second gust)										000	TOP	
nph; TCDL=6	.0psf; BCI	DL=6.0psf; h=25ft; C	at.									SOFA	Alean	
Enclosed; M	WFRS (en	velope) exterior zone	Э;								1	TE	NO.	
	2x4 SPF N 2x4 SPF N 2x4 SPF N Structural N 5-5-4 oc p Rigid ceilin bracing. (Ib/size) Max Horiz 4 Max Uplift Max Grav (Ib) - Maxin Tension 2-8=-367/6 3-4=-69/75 7-8=-64/84 CE 7-16; Vult hph; TCDL=6 Enclosed; MV	(psf) 25.0 10.0 0.0* 10.0 2x4 SPF No.2 2x4 SPF No.2 *Exce 2x4 SPF No.2 *Exce 2x4 SPF No.2 Structural wood shea 5-5-4 oc purlins, exc Rigid ceiling directly bracing. (lb/size) 4=143/Me Mechanica Max Horiz 8=181 (LC Max Uplift 4=-90 (LC (LC 8) Max Grav 4=154 (LC (LC 1) (lb) - Maximum Com Tension 2-8=-367/67, 1-2=0/7 3-4=-69/75 7-8=-64/84, 6-7=-7/3 CE 7-16; Vult=115mph hph; TCDL=6.0psf; BCI Enclosed; mWFRS (end	(psf) Spacing 25.0 Plate Grip DOL 10.0 Lumber DOL 0.0* Rep Stress Incr 10.0 Code 2x4 SPF No.2 *Except* 7-3:2x3 SPF No.2 2x4 SPF No.2 *Except* 7-3:2x3 SPF No.2 2x4 SPF No.2 *Except* 7-3:2x3 SPF No.2 Structural wood sheathing directly applied 5-5-4 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. (lb/size) (lb/size) 4=143/ Mechanical, 5=65/ Mechanical, 8=404/0-3-8 Max Horiz 8=181 (LC 8) Max Uplift 4=-90 (LC 8), 5=-8 (LC 8), 8=-3 (LC 8) Max Grav 4=154 (LC 15), 5=85 (LC 3), 8: (LC 1) (lb) - Maximum Compression/Maximum Tension 2-8=-367/67, 1-2=0/78, 2-3=-180/0, 3-4=-69/75 7-8=-64/84, 6-7=-7/39, 3-6=0/81, 5-6=0/0 CE 7-16; Vult=115mph (3-second gust) CE 7-16; Vult=115mph (3-second gust) 15f cod right curved and curvic lot for direction to reading and curvic lot for direction to reading and curvic lot for direction to reading and curvicing lot for direction	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(psf) Spacing 2-0-0 CSI 25.0 Plate Grip DOL 1.15 TC 10.0 Lumber DOL 1.15 BC wB Matrix-R WB 2x4 SPF No.2 Code IRC2018/TPI2014 Matrix-R 2x4 SPF No.2 *Except* 7-3:2x3 SPF No.2 6) This truss is designed in accord International Residential Code R802.10.2 and referenced star 2x4 SPF No.2 Structural wood sheathing directly applied or 5-5-4 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. (lb/size) 4=143/ Mechanical, 5=65/ Mechanical, 8=404/0-3-8 Max Horiz 8=181 (LC 8) Max Horiz 8=181 (LC 8) Max Uplift 4=-90 (LC 8), 5=-8 (LC 3), 8=-36 (LC 3), 8=-36 (LC 1), 5=85 (LC 3), 8=-404 (LC 1) (lb) - Maximum Compression/Maximum Tension 2-8=-367/67, 1-2=0/78, 2-3=-180/0, 3-4=-69/75 7-8=-64/84, 6-7=-7/39, 3-6=0/81, 5-6=0/0 CE 7-16; Vult=115mph (3-second gust) ph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. Enclosed; MWFRS (envelope) exterior zone; Definition of device and device	$\begin{array}{ c c c c c } \hline (psf)\\ 25.0\\ 10.0\\ 0.0^*\\ 10.0\\ 0.0^*\\ 10.0\\ \hline \\ 10.0\\ \hline $	(psf) Spacing 2-0-0 CSI DEFL 25.0 Plate Grip DOL 1.15 TC 0.30 Vert(LL) 0.0* 0.0* Rep Stress Incr YES WB 0.00 Horz(CT) 10.0 0.0* Rep Stress Incr YES WB 0.00 Horz(CT) 2x4 SPF No.2 Code IRC2018/TPI2014 Matrix-R Wind(LL) 2x4 SPF No.2 Except* 7-3:2x3 SPF No.2 For an referenced standard ANSI/TPI 1. Exd SPF No.2 Exd SPF No.2 COAD CASE(S) Standard Structural wood sheathing directly applied or 5-5-4 oc purlins, except end verticals. R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Migid ceiling directly applied or 10-0-0 oc bracing. Mechanical, 5=65/ Mechanical, 5=65/ Mechanical, 5=65/ Max Horiz 8=181 (LC 8) Max Grav 4=143/ Mechanical, 5=65 (LC 3), 8=-36 (LC 4) 2-8=-367/67, 1-2=0/78, 2-3=-180/0, 3-4=-69/75 7-8=-64/84, 6-7=-7/39, 3-6=0/81, 5-6=0/0 2E 7-16; Vult=115mph (3-second gust) ph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. Encolosed; MWFRS (envelope) exterior	$ \begin{array}{ c c c c c } \hline (psf) \\ 25.0 \\ 10.0 \\ 0.0^* \\ 10.0 \\ 0.00^* \\ 10.00^* \\ $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(psf) Spacing 2-0-0 CSI DEFL in (loc) l/deft 10.0 10.0* Plate Grip DOL 1.15 TC 0.30 Vert(LL) -0.04 6 >999 10.0 0.0* Rep Stress Incr YES WB 0.00 Horz(CT) -0.04 5 >n/a 10.0 Code IRC2018/TPI2014 Matrix-R Wind(LL) 0.07 5-6 >881 2x4 SPF No.2 "Except" 7-3:2x3 SPF No.2 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 2x4 SPF No.2 "Except" 7-3:2x3 SPF No.2 LOAD CASE(S) Standard Structural wood sheathing directly applied or 5-5-4 oc purlins, except end verticals. R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Standard Standard Max Horiz 8-181 (LC 8) Max Horiz 8-181 (LC 8) Max Grav 4=154 (LC 15), 5=85 (LC 3), 8=404 (LC 8) (LC 8) Maximum Compression/Maximum 7-8=-64/84, 6-7=-7/39, 3-6=0/0 </td <td>(psf) Spacing 2-0-0 CSi DEFL in (loc) l/deft L/d 0.0 10.0 Lumber DOL 1.15 BC 0.22 Vert(CT) -0.04 6 >999 360 0.0* Rep Stress Incr YES WB 0.00 Horz(CT) -0.04 5 n/a 0.0* Rep Stress Incr YES WB 0.00 Horz(CT) -0.04 5 n/a 2x4 SPF No.2 Code IRC2018/TPI2014 Matrix-R Wind(LL) 0.07 5-6 >881 240 2x4 SPF No.2 ************************************</td> <td>(pst) Spacing 2-0-0 CSI DEFL in (loc) I/deft L/d PLATES 0.0 10.0 Unimber DOL 1.15 TC 0.30 Vert(CT) -0.04 6 >999 360 MT20 0.0° Ro Stress Incr YES Matrix-R WB 0.00 Vert(CT) -0.04 5 -// An n/a 2x4 SPF No.2 Code IRC2018/TPI2014 Matrix-R Wind(LL) 0.07 5-6 >881 240 Weight: 18 lb 2x4 SPF No.2 Fxxcept* 7-3:2x3 SPF No.2 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS//TPI 1. LOAD CASE(S) Standard Structural wood sheathing directly applied or 5-5-4 oc purins, except end verticals. R802.10.2 and referenced standard ANS//TPI 1. LOAD CASE(S) Standard Mat Upilt 4=143/ Mechanical, 5=65/ Mechanical, 8=404/0-3-8 Max Upilt Get and referenced standard ANS//TPI 1. 24=-367/67, 1-2=0/78, 2-3= 180/0, 3-4=63767 7-38 Ae64/0 Get and referenced standard ANS/</td> <td>(psf) Spacing 2-0-0 CSI TC 0.0 User(LL) -0.04 6 >999 360 10.0 Lumber DOL 1.15 BC 0.22 Vert(LT) -0.04 6 >999 360 0.0 Rep Stress Incr YES BC 0.22 Vert(CT) -0.04 6 >999 360 10.0 Rep Stress Incr YES WB 0.02 Vert(CT) -0.04 6 >767 240 10.0 Code IRC2018/TPI2014 Matrix-R 0.00 Horz(CT) -0.04 5 n/a Weight: 18 lb FT = 10% 2x4 SPF No.2 * 10.1 This truss is designed in accordance with the 2018 international Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Structural wood sheathing directly applied or 10-0-0 oc bracing. 5-4 oc putins, except end verticals. Rido cells, 5=-8 (LC 8), 8=-36 (LC 8) Max Horiz & E181 (LC 8) Max Horiz & E181 (LC 5) 5=-85 (LC 3), 8=-36 (LC 8) Vert(LC 1) Ve</td>	(psf) Spacing 2-0-0 CSi DEFL in (loc) l/deft L/d 0.0 10.0 Lumber DOL 1.15 BC 0.22 Vert(CT) -0.04 6 >999 360 0.0* Rep Stress Incr YES WB 0.00 Horz(CT) -0.04 5 n/a 0.0* Rep Stress Incr YES WB 0.00 Horz(CT) -0.04 5 n/a 2x4 SPF No.2 Code IRC2018/TPI2014 Matrix-R Wind(LL) 0.07 5-6 >881 240 2x4 SPF No.2 ************************************	(pst) Spacing 2-0-0 CSI DEFL in (loc) I/deft L/d PLATES 0.0 10.0 Unimber DOL 1.15 TC 0.30 Vert(CT) -0.04 6 >999 360 MT20 0.0° Ro Stress Incr YES Matrix-R WB 0.00 Vert(CT) -0.04 5 -// An n/a 2x4 SPF No.2 Code IRC2018/TPI2014 Matrix-R Wind(LL) 0.07 5-6 >881 240 Weight: 18 lb 2x4 SPF No.2 Fxxcept* 7-3:2x3 SPF No.2 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS//TPI 1. LOAD CASE(S) Standard Structural wood sheathing directly applied or 5-5-4 oc purins, except end verticals. R802.10.2 and referenced standard ANS//TPI 1. LOAD CASE(S) Standard Mat Upilt 4=143/ Mechanical, 5=65/ Mechanical, 8=404/0-3-8 Max Upilt Get and referenced standard ANS//TPI 1. 24=-367/67, 1-2=0/78, 2-3= 180/0, 3-4=63767 7-38 Ae64/0 Get and referenced standard ANS/	(psf) Spacing 2-0-0 CSI TC 0.0 User(LL) -0.04 6 >999 360 10.0 Lumber DOL 1.15 BC 0.22 Vert(LT) -0.04 6 >999 360 0.0 Rep Stress Incr YES BC 0.22 Vert(CT) -0.04 6 >999 360 10.0 Rep Stress Incr YES WB 0.02 Vert(CT) -0.04 6 >767 240 10.0 Code IRC2018/TPI2014 Matrix-R 0.00 Horz(CT) -0.04 5 n/a Weight: 18 lb FT = 10% 2x4 SPF No.2 * 10.1 This truss is designed in accordance with the 2018 international Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Structural wood sheathing directly applied or 10-0-0 oc bracing. 5-4 oc putins, except end verticals. Rido cells, 5=-8 (LC 8), 8=-36 (LC 8) Max Horiz & E181 (LC 8) Max Horiz & E181 (LC 5) 5=-85 (LC 3), 8=-36 (LC 8) Vert(LC 1) Ve

- ii; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 8, 90 lb uplift at joint 4 and 8 lb uplift at joint 5.

Page: 1

Job	Truss	Truss Type	Qty	Ply	103 RR	14000000
B210100	J16	Jack-Open	17	1	Job Reference (optional)	149386620

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:26 ID:2ncXplsxOfbjlB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-5-8

 $1 \xrightarrow{1-0-10-8} 5-5-4$ 8^{12} 8^{12} $1 \xrightarrow{2} 6^{10}$ 4

3x10 "

5-5-4

Scale = 1:30.4

Plate Offsets (X, Y): [5:0-5-10,0-1-8]

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.43 0.26 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.03 -0.08 0.04 0.04	(loc) 4-5 4-5 3 4-5	l/defl >999 >791 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 16 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF 1 2x4 SPF 1 2x4 SPF 1 Structural 5-5-4 oc p Bigid ceili	No.2 No.2 No.2 wood shea purlins, exa	athing directly applic cept end verticals.	LOAD CASE(S)	Standard								
REACTIONS	bracing. (Ib/size) Max Horiz Max Uplift Max Grav	3=163/ Me Mechanica 5=110 (LC 3=-69 (LC 3=168 (LC 5=314 (LC	echanical, 4=65/ al, 5=314/0-3-8 2 8) 8) 2 13), 4=100 (LC 3), 2 1)										
FORCES TOP CHORD BOT CHORD	(lb) - Max Tension 2-5=-275/ 4-5=0/0	imum Com 28, 1-2=0/4	pression/Maximum 40, 2-3=-116/77										
 NOTES Wind: ASC Vasd=91m II; Exp C; I and right e Lumber D0 This truss chord live I * This truss on the bott 3-06-00 tai chord and Refer to gi Provide mm bearing pla 3. This truss Internation R802.10.2 	CE 7-16; Vu aph; TCDL= Enclosed; M exposed; er DL=1.60 pla has been di load noncor s has been tom chord in Il by 2-00-00 any other m rder(s) for echanical co ate capable is designed hal Resident and referer	It=115mph 6.0psf; BCI IWFRS (en d vertical I te grip DO esigned for neurrent wit designed for neurrent wit designed for newbers. truss to trus ponnection (of withstar in accorda ial Code se need standa	(3-second gust) DL=6.0psf; h=25ft; (velope); cantilever l eft and right expose L=1.60 a 10.0 psf bottom th any other live loa or a live load of 20.0 where a rectangle fit between the botto ss connections. by others) of truss t ding 69 lb uplift at ju- nce with the 2018 ections R502.11.1 a ard ANSI/TPI 1.	Cat. eft d; ds. lpsf om o pint								NUM PE-20010 December	MISSOLUTION M. ER DISSOLUTION DISSOLUTION L ENGLISION 22,2021

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	J17A	Jack-Open	1	1	Job Reference (optional)	149386621

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:26 ID:2ncXplsxOfbjlB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:27.6

Plate Offsets (X, Y): [8:0-5-10,0-1-8]

Loading	((psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	2	25.0	Plate Grip DOL	1.15		TC	0.29	Vert(LL)	-0.01	6	>999	360	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.08	Vert(CT)	-0.02	7	>999	240		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.00	Horz(CT)	-0.01	5	n/a	n/a		
BCDL		10.0	Code	IRC2018	3/TPI2014	Matrix-R		Wind(LL)	0.01	6	>999	240	Weight: 14 lb	FT = 10%
LUMBER				6)	This truss is	designed in accor	dance wi	th the 2018						
TOP CHORD	2x4 SPF No.2	2		- /	International	Residential Code	sections	R502.11.1 a	and					
BOT CHORD	2x4 SPF No.2	2 *Exce	ot* 7-3:2x3 SPF No.	2	R802.10.2 ar	nd referenced star	ndard AN	ISI/TPI 1.						
WEBS	2x4 SPF No.2	2.		LO	AD CASE(S)	Standard								
BRACING														
TOP CHORD	Structural wo 3-11-2 oc pur	od shea rlins, ex	athing directly applie cept end verticals.	d or										
BOT CHORD	Rigid ceiling o bracing.	directly	applied or 10-0-0 oc	:										
REACTIONS	(lb/size) 4=9 Me	90/ Mec	hanical, 5=39/ al 8=347/0-3-8											
	Max Horiz 8=	140 (I C	: 8)											
	Max Uplift 4=-	-54 (LC	8), 5=-13 (LC 8), 8=	-41										
	(LC	C 8)	-,, (,, -											
	Max Grav 4=9 (LC	97 (LC ⁻ C 1)	15), 5=55 (LC 3), 8=	347										
FORCES	(lb) - Maximu Tension	m Com	pression/Maximum											
TOP CHORD	2-8=-311/67, 3-4=-40/48	1-2=0/7	78, 2-3=-111/0,											
BOT CHORD	7-8=-32/34, 6	6-7=-1/3	7, 3-6=-1/49, 5-6=0/	0										
NOTES														
1) Wind: AS	CE 7-16; Vult=1	15mph	(3-second gust)										and	TOP
Vasd=91r	mph; TCDL=6.0p	psf; BCI	DL=6.0psf; h=25ft; C	Cat.									OFA	Also
II; Exp C;	Enclosed; MWF	-RS (en	velope) exterior zon	e;								1	TE	-0.0 M
cantilever	left and right ex	(posea ;	end vertical left and									A	N acom	New Y
2) This trues	has been desig	uped for	a 10.0 nsf bottom	0								A	S/ SCOT	IM. YAY
chord live	load nonconcur	rrent wit	h any other live load	ls.								hi	/ SEVI	

 This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

 Frovide mechanical connection (by others) of truss to bearing plate capable of withstanding 41 lb uplift at joint 8, 54 lb uplift at joint 4 and 13 lb uplift at joint 5.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

December 22,2021

PE-200101880

E

RSSIONAL

C

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	J18	Jack-Open	2	1	Job Reference (optional)	149386622

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:27 ID:2ncXplsxOfbjlB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2-2-2

Scale = 1:24.5		
Plate Offsets (X, Y): [5:0-5-10,0-1-8]		

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 7 lb	FT = 10%
			This truss is	designed in acc	ordance wi	ith the 2018						
TOP CHORD	2x4 SPF No 2		International	Residential Co	de sections	R502.11.1 a	nd					
BOT CHORD	2x4 SPF No.2		R802.10.2 a	nd referenced st	tandard AN	ISI/TPI 1.						
WEBS	2x4 SPF No.2		LOAD CASE(S)	Standard								
BRACING			()									
TOP CHORD	Structural wood she 2-2-2 oc purlins, ex	athing directly applie cept end verticals.	ed or									
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	c									
REACTIONS	(lb/size) 3=53/ Mechanic	chanical, 4=18/ al, 5=179/0-3-8										
	Max Horiz 5=69 (LC	8)										
	Max Uplift 3=-45 (LC (LC 8)	8), 4=-2 (LC 8), 5=	-10									
	Max Grav 3=60 (LC (LC 1)	15), 4=36 (LC 3), 5=	=179									
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD BOT CHORD	2-5=-157/35, 1-2=0/- 4-5=0/0	40, 2-3=-54/27										
NOTES												
 Wind: ASC Vasd=91n II; Exp C; cantilever right expo: This truss chord live * This trus on the bot 3.06-00 ta chord and Refer to gi Provide m bearing pli 5, 45 lb up 	CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 has been designed for load nonconcurrent wi s has been designed for tom chord in all areas II by 2-00-00 wide will any other members. irder(s) for truss to tru echanical connection (ate capable of withstar bift at joint 3 and 2 lb u	(3-second gust) DL=6.0psf; h=25ft; (ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1. r a 10.0 psf bottom th any other live loa or a live load of 20.0 where a rectangle fit between the botto ss connections. (by others) of truss t iding 10 lb uplift at ju plift at joint 4.	Cat. ne; d 60 ds. Dpsf om o							* Ph	STE OF M SEVI SEVI PE-2001	MISSOLP T.M. ER 018807

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

December 22,2021

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	J19	Jack-Open	1	1	Job Reference (optional)	149386623

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:27 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.6 P 10

late Offsets (X, Y):	[8:0-3-8,Edge]	

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.14	Vert(LL)	-0.01	6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.19	Vert(CT)	-0.02	7	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.02	7	>999	240	Weight: 13 lb	FT = 10%
LUMBER			6) This truss is	designed in accorda	ince w	th the 2018						
TOP CHORD	2x4 SPF No.2		International	Residential Code se	ections	R502.11.1 a	nd					
BOT CHORD	2x4 SPF No.2 *Exc	ept* 7-3:2x3 SPF No.	2 R802.10.2 a	nd referenced stand	ard AN	ISI/TPI 1.						
WEBS	2x4 SPF No.2		LOAD CASE(S)	Standard								
	Structural wood ch	oothing directly applie	dor									
	3-11-11 oc purlins.	except end verticals.										
BOT CHORD	Rigid ceiling directl	y applied or 10-0-0 oc										
	bracing.											
REACTIONS	(lb/size) 4=101/ N	Aechanical, 5=59/										
	Max Horiz 8-103 (I	Cal, 8=251/0-3-8										
	Max 1 Inlift 4=-52 (1)	C 8) 5=-15 (I C 8) 8=	19									
	(LC 8)	0 0); 0 10 (20 0); 0										
	Max Grav 4=106 (L	C 15), 5=64 (LC 15),										
	8=251 (L	.C 1)										
FORCES	(lb) - Maximum Cor Tension	mpression/Maximum										
TOP CHORD	2-8=-232/46, 1-2=0 3-4=-36/48	/36, 2-3=-136/0,										
BOT CHORD	7-8=-43/72, 6-7=-3/	/43, 3-6=-2/51, 5-6=0/	0									
NOTES												
1) Wind: ASC	CE 7-16; Vult=115mp	h (3-second gust)									000	TO
Vasd=91m	nph; TCDL=6.0psf; B(CDL=6.0psf; h=25ft; C	Cat.								OF N	AISC
II; EXP C; I	ENCIOSED; IVIVERS (6	nvelope) exterior zon	e; 1							1	TIE	- SOLA
right expos	sed; Lumber DOL=1.0	60 plate grip DOL=1.6	60							B	SCOTT	M XPN
2) This truss	has been designed for	or a 10.0 psf bottom								a	SEVI	ER YY
chord live	load nonconcurrent w	vith any other live load	ls.							R.		
3) * This trus	s has been designed	for a live load of 20.0	psf							N	tte.	No. 1 al
3-06-00 ta	ll by 2-00-00 wide wil	I fit between the botto	m								NIM	
chord and	any other members.									37	PE-20010	118807 188
Refer to gi	irder(s) for truss to tr	uss connections.								N.	AL 10-2001	A A
5) Provide m	echanical connection	(by others) of truss to)							X	1980	JON H
bearing pla	ate capable of withsta	anding 19 ib uplift at jo	DINT								ONA	LEF
0, 02 i0 up	and 15 k	o upint at joint 5.									Vaca	STEE -

December 22,2021

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	J20	Jack-Open	4	1	Job Reference (optional)	149386624

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:27 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-0-10-8	1-8-5
0-10-8	1-8-5

1-8-5

Loading	(nof)	Spacing	200	CSI	DEEL	in	(100)	l/dofl	I /d	CDID
Plate Offsets (X, Y): [5:	0-3-8,Edge]									
Scale = 1:23.2					l					

TCLL (roof)	(psi) 25.0	Plate Grin DOI	1 15	TC	0.07	Vert(LL)	0.00	(100)	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	4-5	>999	240	11120	107/111	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	. 3	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 6 lb	FT = 10%	
LUMBER			LOAD CASE(S)	Standard									
TOP CHORD	2x4 SPF No.2		()										
BOT CHORD	2x4 SPF No.2												
WEBS	2x4 SPF No.2												
BRACING													
TOP CHORD	Structural wood she 1-8-5 oc purlins, ex	eathing directly applie cept end verticals.	ed or										
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	c										
REACTIONS	(lb/size) 3=35/ Me Mechanic	chanical, 4=10/											
	Max Horiz 5=50 (I C	8)											
	Max Uplift 3=-30 (LC	C 8), 5=-19 (LC 8)											
	Max Grav 3=40 (LC	15), 4=27 (LC 3), 5	=164										
	(LC 1)												
FORCES	(lb) - Maximum Com Tension	npression/Maximum											
TOP CHORD	2-5=-144/37, 1-2=0/	36, 2-3=-39/16											
BOT CHORD	4-5=0/0												
NOTES													
1) Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)											
Vasd=91n	nph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft; (Cat.									1 mg	
II; Exp C;	Enclosed; MWFRS (er	nvelope) exterior zor	ne;								COOL	m	
right expo	rent and right exposed	; end vertical left an	60								F. OF	MISC	
2) This truss	has been designed for	r a 10.0 psf bottom	00							E	7 210	N'SO	
chord live	load nonconcurrent wi	ith any other live loa	ds.							B	SCOT	TM XPN	
3) * This trus	s has been designed f	for a live load of 20.0	Opsf							B	SEV	TER V V	
on the bot	tom chord in all areas	where a rectangle								19 +			
3-06-00 ta	II by 2-00-00 wide will	fit between the botto	om							* Ø^	the	. 0 24	
chord and	any other members.									M۵	all-	2 On Mel	>
4) Keter to g 5) Provide ~	nuer(s) for truss to tru	iss connections.							-	NI	NUM	DER AU	·
bearing n	ate canable of withstar	nding 19 lb unlift at i	oint							N.	OX PE-2001	1018807	
5 and 30 l	b uplift at joint 3.	nang to ib upint at j	onn							Y	Pa	154	
6) This truss	is designed in accorda	ance with the 2018									SION	TENS	
Internation	nal Residential Code s	ections R502.11.1 a	ind								UN P	L	

This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

December 22,2021

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	J21	Jack-Open	1	1	Job Reference (optional)	149386625

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:28 ID:2ncXplsxOfbjlB6l7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:26.9	
Plate Offsets (X Y):	[5:0-5-10 0-1-8]

Iale Olisets (A, Y): [5:0-5-10,0-1-6]													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.20	Vert(LL)	-0.01	4-5	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(CT)	-0.02	4-5	>999	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.02	3	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	4-5	>999	240	Weight: 12 lb	FT = 10%	
			LOAD CASE(S)	Standard									

3-11-2

TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2
WEBS	2x4 SPF I	No.2
BRACING		
TOP CHORD	Structural 3-11-2 oc	l wood sheathing directly applied or purlins, except end verticals.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(lb/size)	3=114/ Mechanical, 4=44/
		Mechanical, 5=249/0-3-8
	Max Horiz	5=116 (LC 8)
	Max Uplift	3=-82 (LC 8), 5=-7 (LC 8)
	Max Grav	3=122 (LC 15), 4=70 (LC 3), 5=249
		(LC 1)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	2-5218/	49 1-2-0/40 2-396/56

 TOP CHORD
 2-5=-218/49, 1-2=0/40, 2-3=-96/56

 BOT CHORD
 4-5=0/0

- NOTES
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 This trues has been designed for a 10 or at bettern
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb uplift at joint 5 and 82 lb uplift at joint 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Page: 1

December 22,2021

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	J22	Jack-Open	3	1	Job Reference (optional)	149386626

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:28 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-11-11

Scale = 1:25.9	
Plate Offsets (X, Y):	[5:0-3-8.Edae]

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-									-		
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	-0.01	4-5	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.13	Vert(CT)	-0.02	4-5	>999	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	3	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	4-5	>999	240	Weight: 11 lb	FT = 10%	
LUMBER			LOAD CASE(S) Standard									

LUMBER			LOAD
TOP CHORD	2x4 SPF I	No.2	
BOT CHORD	2x4 SPF I	No.2	
WEBS	2x4 SPF I	No.2	
BRACING			
TOP CHORD	Structural 3-11-11 c	wood sheathing directly applied or purlins, except end verticals.	
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc	
REACTIONS	(lb/size)	3=115/ Mechanical, 4=44/	
		Mechanical, 5=251/0-3-8	
	Max Horiz	5=103 (LC 8)	
	Max Uplift	3=-73 (LC 8), 5=-19 (LC 8)	
	Max Grav	3=122 (LC 15), 4=71 (LC 3), 5=251	
		(LC 1)	
FORCES	(lb) - Max Tension	imum Compression/Maximum	
TOP CHORD	2-5=-220/	58 1-2=0/36 2-3=-86/50	
BOT CHORD	4-5=0/0		

3-2-0

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 This terms here described over the term.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 5 and 73 lb uplift at joint 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	J23	Jack-Open	2	1	Job Reference (optional)	149386627

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:28 ID:2ncXplsxOfbjlB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:28.7

Plate Offsets (X, Y): [2:Edge,0-0-3]

Loading TCLL (roof) TCDL BCLL BCDI		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.16 0.22 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.05 0.00	(loc) 2-4 2-4 3	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144 FT = 10%
5055		1010	0000		mannet						1	troigiti to ib	
LUMBER				LOAD CASE(S) Standard								
TOP CHORD	2x6 SPF N	lo.2											
BOT CHORD	2x4 SPF No.2												
WEDGE	Left: 2x4 S	Left: 2x4 SPF No.2											
BRACING													
TOP CHORD	Structural	wood shea	athing directly applie	ed or									
	4-9-10 oc	purlins.	0 7 11										
BOT CHORD	Rigid ceilir	ng directly	applied or 10-0-0 oc	0									
	bracing.												
REACTIONS	(lb/size)	2=286/0-3	-8, 3=153/ Mechani	cal,									
		4=46/ Med	chanical										
	Max Horiz	2=152 (LC	3)										
	Max Uplift	2=-8 (LC 8	3), 3=-120 (LC 8)										
	May Grav	2-286 (1 ((1) 3-165 (I C 15)	4-92									

	max opini	- 0 (-0 0), 0	
	Max Grav	2=286 (LC 1), 3	B=165 (LC 15), 4
		(LC 3)	
FORCES	(lb) - Max Tension	imum Compress	ion/Maximum
TOP CHORD	1-2=0/12,	2-3=-133/85	
BOT CHORD	2-4=0/0		

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 120 lb uplift at joint 3 and 8 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	J24	Jack-Open	2	1	Job Reference (optional)	149386628

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:28 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017 Page: 1

		3-0)-10		
Scale = 1:25.7		I			
Plate Offsets (X, Y): [5:0-5-10,0-1-8]					
· · · · · · · · · · · · · · · · · · ·	i				

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0 BC 0 WB 0 Matrix-R).10).07).00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 -0.01 -0.01 0.01	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 10 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS (2x4 SPF N 2x4 SPF N 2x4 SPF N Structural 3-0-10 oc Rigid ceilir bracing. (Ib/size) Max Horiz Max Uplift	lo.2 lo.2 lo.2 purlins, ex ng directly 3=84/ Mec Mechanica 5=93 (LC i 3=-64 (LC	athing directly applie ccept end verticals. applied or 10-0-0 oc shanical, 4=31/ al, 5=212/0-5-8 8) 8), 5=-8 (LC 8)	LOAD CASE(S) ed or	Standard								
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASCI Vasd=91mp II; Exp C; E cantilever le right expose 2) This truss h chord live le 3) * This truss on the botto 3-06-00 tail chord and a 4) Refer to gir 5) Provide me bearing plat and 64 lb u (6) This truss is Internationa R802.10.2 a	Max Uplift Max Grav (Ib) - Maxin Tension 2-5=-186/4 4-5=0/0 E 7-16; Vulf bh; TCDL=6 nclosed; M eft and right ed; Lumber has been de bad noncon has been do bom chord in by 2-00-00 any other m der(s) for tr chanical co te capable e plift at joint s designed al Residenti and referen	3=-64 (LC 3=92 (LC (LC 1) mum Com 12, 1-2=0/4 14, 1-2=0/4 14, 1-2=0/4 14, 1-2=0/4 14, 1-2=0/4 14, 1-2=0/4 14, 1-2=0/4 14, 1-2=0/4 14, 1-2=0/4 15, 1-2=0/4 14, 1-2=0/4 15, 1-2=0/1 15, 1-2	8), 5=-8 (LC 8) 15), 4=53 (LC 3), 5= pression/Maximum 40, 2-3=-75/42 (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle it between the botto as connections. by others) of truss to ding 8 lb uplift at joi nce with the 2018 actions R502.11.1 at ard ANSI/TPI 1.	=212 Cat. le; d 30 ds. lpsf om nt 5 nd						*		THE OF M SCOTT SEVI NUM PE-20010 FE-20010 December	MISSOUR ER BER 18807 ER 22,2021

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	J25	Jack-Open	2	1	Job Reference (optional)	149386629

-0-10-8

0-10-8

1-3-10

1-3-10

1-3-10

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:29 ID:2ncXplsxOfbjIB6l7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

December 22,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

Scale = 1:26.1	

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.07 BC 0.02 WB 0.00 Matrix-R	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 0.00 0.00	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 180 n/a 240	PLATES MT20 Weight: 5 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood shea 1-3-10 oc purlins, ex Rigid ceiling directly bracing.	athing directly applie xcept end verticals. applied or 10-0-0 oc	6) This truss is International R802.10.2 ar LOAD CASE(S)	designed in accordance w Residential Code section nd referenced standard Al Standard	ith the 2018 ₅ R502.11.1 and NSI/TPI 1.	d					
REACTIONS	(Ib/size) 3=16/ Mer Mechanic Max Horiz 5=46 (LC Max Uplift 3=-25 (LC (LC 8) Max Grav 3=24 (LC (LC 1)	chanical, 4=3/ al, 5=155/0-3-8 8) 8), 4=-4 (LC 8), 5=- 15), 4=19 (LC 3), 5=	13 :155								
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m II; Exp C; I cantilever I right expos 2) This truss chord live I 3) * This truss on the bott 3-06-00 tai chord and 4) Refer to gi 5) Provide mo bearing pla 5, 4 lb upli	(lb) - Maximum Com Tension 2-5=-135/31, 1-2=0/4 4-5=0/0 CE 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (en left and right exposed sed; Lumber DOL=1.60 has been designed for has been designed for tom chord in all areas s Il by 2-00-00 wide will any other members. rder(s) for truss to trus echanical connection (ate capable of withstar ft at joint 4 and 25 lb u	pression/Maximum 40, 2-3=-36/9 (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and D plate grip DOL=1.6 • a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto ss connections. by others) of truss to ding 13 lb uplift at jo plift at joint 3.	Cat. e; d 500 ds. psf m D							State OF M SCOTT SEVI PE-20010 PE-20010	MISSOLP M. ER Janitz D18807

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	J26	Jack-Open Girder	1	1	Job Reference (optional)	149386630

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:29 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-1-3-15 2-0-8 1-3-15 2-0-8

2-0-8

Scale = 1:23.3

Plate Offsets (X, Y): [5:0-5-8,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.01	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 7 lb	FT = 10%
LUMBER			6) This truss is	designed in accord	dance w	th the 2018						
TOP CHORD	2x4 SPF No.2		International	Residential Code	sections	R502.11.1 a	nd					
BOT CHORD	2x4 SPF No.2		R802.10.2 a	nd referenced star	ndard AN	ISI/TPI 1.						
WEBS	2x4 SPF No.2		Hanger(s) or	other connection	device(s) shall be						
BRACING			provided suf	ficient to support c	oncentra	ited load(s) 9	lb					
TOP CHORD	Structural wood she 2-0-8 oc purlins, ex	eathing directly applied cept end verticals.	d or down and 4 at -1-3-15 o	lb up at -1-3-15, a n top chord. The c	nd 9 lb c design/se	lown and 4 lb election of suc	up ch					
BOT CHORD	ACTIONS (Ib/size) 3-24/ Mechanical 4-1/ 3-24/ Mechanical 4-1/ In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).											
REACTIONS	(lb/size) 3=24/ Me Mechanie	echanical, 4=-1/ cal, 5=56/0-4-7	of the truss a	Standard	(F) or ba	ск (В).						
	Max Horiz 5=66 (LC	; 7)	1) Dead + Ro	of Live (balanced):	Lumber	Increase=1.1	15,					
	Max Uplift 3=-23 (L 5=-131 (l	C 12), 4=-5 (LC 20), LC 12)	Concentrat	ed Loads (lb)								
	Max Grav 3=24 (LC (LC 1)	1), 4=18 (LC 3), 5=5	6 Vert: 1=- Trapezoida	13 (F=-7, B=-7) I Loads (lb/ft)								
FORCES	(lb) - Maximum Cor Tension	npression/Maximum	Vert: 1=0 (F=35, B) (F=35, B=35)-to- =35)-to-2=-17 (F=	6=-9 (F= 27, B=27	30, B=30), 6= ′), 2=-17 (F=2	=0 27,					
TOP CHORD	2-5=-61/127, 1-2=-3	3/11, 2-3=-21/6	B=27)-to to-4=-10	-3=-49 (F=10, B=1 (F=5, B=5)	10), 5=15	6 (F=18, B=18	3)-					
NOTES	4-3-0/0											
NUIES		(2 accord quat)										
Vasd=91n II; Exp C; cantilever right expo	nph; TCDL=6.0psf; BC Enclosed; MWFRS (e left and right exposed sed; Lumber DOL=1.6	CDL=6.0psf; h=25ft; C nvelope) exterior zone I; end vertical left and 00 plate grip DOL=1.6	at. e; l 0							B	ANTE OF M	MISSOL
 This truss chord live 	has been designed for load nonconcurrent w	or a 10.0 psf bottom rith any other live load	s.							A	SCOT SEVI	IER
 This trus on the bot 3-06-00 ta chord and 	ss has been designed tom chord in all areas all by 2-00-00 wide wil any other members	for a live load of 20.0p where a rectangle fit between the botton	n							Ŕ	ott	Servie
 4) Refer to g 5) Provide m bearing pl joint 5, 23 	irder(s) for truss to tru echanical connection ate capable of withsta lb uplift at joint 3 and	uss connections. (by others) of truss to nding 131 lb uplift at 5 lb uplift at joint 4.								A.	PE-2001	IL ENGLIG
											Decembe	r 22,2021

MiTek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	J27	Jack-Open	1	1	Job Reference (optional)	149386631

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:29 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1-5-4

Scale = 1:23.4	

Plate Offsets	(X, 1	r):	5:0-5-1	0,0-1-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.07 0.02 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 5 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood si 1-5-4 oc purlins, or Rigid ceiling direc bracing. (Ib/size) 3=23/ M Mechar Max Horiz 5=50 (L Max Uplift 3=-29 ((LC 8) Max Grav 3=30(L)	neathing directly appli except end verticals. Ily applied or 10-0-0 c lechanical, 4=6/ nical, 5=158/0-3-8 C 8) _C 8), 4=-4 (LC 8), 5= C 15), 4=-2 (I C 3), 5	6) This truss Internation R802.10.2 LOAD CASE(ed or pc =-12	is designed in acco al Residential Code and referenced sta 5) Standard	rdance w sections ndard AN	ith the 2018 : R502.11.1 a ISI/TPI 1.	nd						
FORCES TOP CHORD BOT CHORD	(LC 1) (lb) - Maximum Co Tension 2-5=-138/31, 1-2= 4-5=0/0	ompression/Maximum 0/40, 2-3=-39/13											
NOTES 1) Wind: AS(Vasd=91n II; Exp C; cantilever right expo 2) This truss chord live 3) * This trus on the bot 3-06-00 ta chord and 4) Refer to g 5) Provide m bearing pl 5, 4 lb upl	CE 7-16; Vult=115m mph; TCDL=6.0psf; E Enclosed; MWFRS i left and right exposs used; Lumber DOL=1 has been designed load nonconcurrent ss has been designe ttom chord in all aree all by 2-00-00 wide w d any other members girder(s) for truss to the echanical connectio late capable of withs lift at joint 4 and 29 lt	ch (3-second gust) CDL=6.0psf; h=25ft; envelope) exterior zo id; end vertical left ar .60 plate grip DOL=1. for a 10.0 psf bottom with any other live load d for a live load of 20. is where a rectangle ill fit between the bott russ connections. n (by others) of truss anding 12 lb uplift at puplift at joint 3.	Cat. ne; nd 60 nds. 0psf om to						2		STATE OF I SCOT SEVI NUM PE-2001	MISSOLD TM. ER DI8807	Þ

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	LAY1	Lay-In Gable	1	1	Job Reference (optional)	149386632

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:29 ID:iHE0mj7YmgaGMap5ahjJOwyKfL5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:33.9
---------	--------

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.05 0.02 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 29 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (Ib/size) 1=71/7-9- 6=198/7-5 8=198/7-5 Max Horiz 1=104 (LC (LC 9), 8= Max Grav 1=96 (LC (LC 16), 7 15)	athing directly applie applied or 10-0-0 oc 11, 5=71/7-9-11, 9-11, 7=110/7-9-11, 9-11 5) 4), 5=-8 (LC 5), 6=- -147 (LC 8) 16), 5=87 (LC 18), 6 2=122 (LC 18), 8=226	6) 7) 5 9) 147 LC 5 (LC	This truss has chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Provide mech bearing plate 1, 8 lb uplift at uplift at joint of This truss is of International R802.10.2 ar DAD CASE(S)	s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members. nanical connection capable of withsta t joint 5, 147 lb upl 5. designed in accord Residential Code s nd referenced stand Standard	or a 10.0 vith any for a liv where I fit betw (by oth unding 2 lift at joi lance wisections dard AN) psf bottom other live load e load of 20.0 a rectangle reen the botto ers) of truss to 5 lb uplift at jo nt 8 and 147 th the 2018 R502.11.1 a SI/TPI 1.	ds. Dpsf om oint Ib					
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-115/87, 2-3=-9 4-5=-99/64	8/77, 3-4=-90/62,											
	5-6=-42/89 5-6=-42/89	/09, 0-7=-42/09,										1200	The second second
NOTES 1) Unbalanc this desig	3-7=-82/0, 2-8=-186 ed roof live loads have n.	been considered for									A	STATE OF M	MISSOLIA M.
 Wind: AS Vasd=91r II; Exp C; cantilever right expc Truss des only. For see Stand or consult 	CL /-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 igned for wind loads in studs exposed to wind lard Industry Gable En qualified building desi	(3-second gust) DL=6.0psf; h=25ft; C vvelope) exterior zono; end vertical left and 0 plate grip DOL=1.6 the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP	Cat. e; d 50 ss , le, l 1.								A CONTRACTOR	SEVI PE-20010	ER D18807

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 2-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	LAY2	Lay-In Gable	1	1	Job Reference (optional)	149386633

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:30 ID:2ncXplsxOfbjlB6l7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:68.4

Plate Offsets (X, Y): [4:0-2	2-13,Edge]	, [10:0-0-13,0-1-8]											
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2	018/TPI2014	CSI TC BC WB Matrix-S	0.13 0.05 0.25	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a -0.02	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 102 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood sheathing directly applied o 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 4-8, 9-11, 9-11 Except: t 9-11 Rigid ceiling directly applied or 6-0-0 oc bracing, Except: 10-0-0 oc bracing: 11.12				BOT CHORD WEBS NOTES 1) Unbalanced this design. 2) Wind: ASCE	11-12=-79/45, 15-17=-79/45, 15-10=-79/45, 12) Graphical purilin representation does not depict the orientation of the purlin along the top and/or bottom chord. 11-12=-84/54, 10-11=-297/177 LOAD CASE(S) Standard 2-17=-258/377, 3-16=-294/439, 5-15=-176/212, 6-14=-145/72, 7-13=-145/62 LOAD CASE(S) Standard id roof live loads have been considered for L. E7-16; Vult=115mph (3-second gust) uph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.								is not depict the size g the top and/or
2-0-0 oc purlins (6-0-0 max.): 4-8, 9-11, 9-10 Except: 1 Row at midpt 9-11 BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing, Except: 10-0-0 oc bracing: 11-12. WEBS 1 Row at midpt 5-15, 6-14, 7-13 REACTIONS (Ib/size) 1=47/14-0-9, 10=109/14-0-9, 11=202/14-0-9, 10=109/14-0-9, 13=190/14-0-9, 14=180/14-0-9, 15=178/14-0-9, 16=181/14-0-9, 17=172/14-0-9					Vasd=91mp II; Exp C; Er cantilever lef right expose 3) Truss design only. For stu see Standar or consult qu 4) Provide adee 5) All plates are 6) Gable stude	h; TCDL=6.0psf; B(iclosed; MWFRS (e ft and right exposed d; Lumber DOL=1.6 need for wind loads in uds exposed to wind d Industry Gable Er ualified building des quate drainage to p e 2x4 MT20 unless spaced at 2-0-0 oc	CDL=6. envelope d; end v 60 plate n the pl d (norm nd Deta signer as orevent otherwi	Opsf; h=25ft; a) exterior zorvertical left ar grip DOL=1. ane of the true al to the face ils as applica s per ANSI/TI water ponding se indicated.	Cat. ne; id 60 ss), ble, PI 1. g.					
	Max Horiz Max Uplift Max Grav	11=535 (LC 1=-423 (LC 11=-78 (LC 13=-36 (LC 15=-189 (LC 15=-189 (LC 17=-372 (I 1=859 (LC 11=283 (LC 11=283 (L 13=191 (L 15=216 (L 17=306 (L	58) C 6), 10=-278 (LC 8 C 6), 12=-26 (LC 6), C 4), 14=-47 (LC 4), LC 8), 16=-411 (LC LC 8) S 8), 10=201 (LC 15 C 17), 12=20 (LC 8 C 22), 14=186 (LC C 15), 16=333 (LC C 15)	i), 8),), 22), 15),	 This truss has chord live loss of the bottom of the bottom 3-06-00 tall l chord and at 9) Provide mechanism plata joint 1, 78 lb lb uplift at joi joint 16, 189 	I plates are 2x4 MT20 unless otherwise indicated. able studs spaced at 2-0-0 oc. his truss has been designed for a 10.0 psf bottom ord live load nonconcurrent with any other live loads. This truss has been designed for a live load of 20.0psf is the bottom chord in all areas where a rectangle 06-00 tall by 2-00-00 wide will fit between the bottom ford and any other members. ovide mechanical connection (by others) of truss to earing plate capable of withstanding 423 lb uplift at int 1, 78 lb uplift at joint 11, 278 lb uplift at joint 10, 26 uplift at joint 12, 372 lb uplift at joint 17, 411 lb uplift at int 16, 189 lb uplift at joint 15, 47 lb uplift at joint 14							STATE OF I	MISSOUR T M. HER
FORCES	$ \begin{array}{llllllllllllllllllllllllllllllllllll$					lift at joint 13. d bearing condition designed in accord Residential Code s nd referenced stand	n. Revie lance w sections dard AN	ew required. ith the 2018 s R502.11.1 a ISI/TPI 1.	ind			and the second s	PE-2001	DI8807 E

December 22,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	LAY3	GABLE	1	1	Job Reference (optional)	149386634

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:30 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:52.7

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.12	Horiz(TL)	0.01	9	n/a	n/a		
BCDL		10.0	Code	IRC2018	/TPI2014	Matrix-S							Weight: 82 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS	2x4 SPF I 2x4 SPF I 2x4 SPF I	No.2 No.2 No.2		1) 2)	Unbalanced r this design. Wind: ASCE Vasd=91mph	oof live loads have 7-16; Vult=115mph ; TCDL=6.0psf; BC	e been o n (3-seo CDL=6.0	considered for cond gust) Dpsf; h=25ft; C	r Cat.					
BRACING TOP CHORD BOT CHORD	Structural 6-0-0 oc p Rigid ceili bracing.	l wood shea ourlins. ing directly	athing directly applied applied or 10-0-0 oc	or 3)	II; Exp C; End cantilever left right exposed Truss design only. For stu- see Standard	closed; MWFRS (er and right exposed l; Lumber DOL=1.6 ed for wind loads ir ds exposed to winc I Industry Gable En	nvelope ; end v 60 plate n the pla d (norm nd Deta	e) exterior zon rertical left and grip DOL=1.6 ane of the trus al to the face) ils as applicat	ne; d 60 ss , ole,					
WEBS REACTIONS	1 Row at (Ib/size) Max Horiz Max Uplift Max Grav	midpt 1=94/16-7 10=203/16 12=188/16 14=188/16 16=203/16 1=-222 (LC 1=-81 (LC 10=-139 (I 12=-125 (I 15=-122 (I 10=229 (L 14=215 (L 16=229 (L	5-13 -12,9=94/16-7-12, 5-7-12,11=173/16-7- 5-7-12,13=121/16-7- 5-7-12,15=173/16-7- 5-7-12 C4) (6),9=-44 (LC 7), .C 9),11=-123 (LC 9), C 9),14=-126 (LC 8), .C 8),16=-139 (LC 8), 8),9=166 (LC 9), C 16),11=195 (LC 10), C 16),13=201 (LC 9), C 15),15=194 (LC 10), C 15),15=194 (LC 10),15=194 (LC 10),	$\begin{array}{cccc} & 4) \\ & 12, & 5) \\ & 12, & 6) \\ & 12, & 7) \\ & 8) \\ & & , \\ & & , \\ & & & 9) \\ & & 5), \\ & & & 5), \end{array}$	see Standard or consult qua All plates are Gable require Gable studs s This truss has chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Provide mech bearing plate 1, 44 lb uplift uplift at joint 1 joint 12, 123 l	alified building desi 2x4 MT20 unless c as continuous botto spaced at 0-0-0 oc. s been designed fo d nonconcurrent w as been designed f n chord in all areas y 2-00-00 wide will y other members. nanical connection capable of withsta at joint 9, 126 lb up 15, 139 lb uplift at jo	in Detain igner as otherwi im chor ir a 10.0 ith any for a liv where fit betw (by oth nding 8 bilft at jo oint 16, and 139	is as applicat s per ANSI/TP se indicated. d bearing.) psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss to 1 lb uplift at jo int 14, 122 lb 125 lb uplift at joi	ds. upsf pm pint at nt				50000	
FORCES	(lb) - Max Tension	imum Com	pression/Maximum	10)	This truss is o International	designed in accorda Residential Code s	ance w ections	ith the 2018 R502.11.1 a	nd			-	TE OF M	AISSO
TOP CHORD	1-2=-285/ 4-5=-109/ 7-8=-133/	/187, 2-3=-1 /170, 5-6=-8 /82, 8-9=-25	162/134, 3-4=-135/10 38/148, 6-7=-96/70, 50/135	ь, LO	R802.10.2 an	id referenced stand Standard	dard AN	ISI/TPI 1.				A	SCOTT SEVI	ER
BOT CHORD	1-16=-95/ 14-15=-95 12-13=-95 10-11=-95	205, 15-16 5/205, 13-1 5/205, 11-1 5/205, 9-10	=-95/205, 4=-95/205, 2=-95/205, =-95/205		scott server									
WEBS	5-13=-177 3-15=-157 6-12=-172 8-10=-177	7/21, 4-14= 7/147, 2-16 2/148, 7-11 7/158	-174/150, =-177/158, =-158/148,									A.	PE-2001	LENGIL
NOTES													an	and a start

NOTES

December 22,2021

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	LAY4	GABLE	1	1	Job Reference (optional)	149386635

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:30 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:59.7

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.04	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.16	Horiz(TL)	0.01	11	n/a	n/a		
BCDL		10.0	Code	IRC2	018/TPI2014	Matrix-S							Weight: 98 lb	FT = 10%
LUMBER					WEBS	6-16=-206/26	. 5-17=-174/1	48.						
TOP CHORD	2x4 SPF	No.2				4-18=-160/15	0, 3-19=-168	/152,						
BOT CHORD	2x4 SPF	No.2				2-20=-137/12	3, 7-15=-171	/145,						
OTHERS	2x4 SPF	No.2				8-14=-161/15	1, 9-13=-168	/152,						
BRACING						10-12=-138/1	23							
TOP CHORD	Structura	I wood she	athing directly applie	d or	NOTES									
	6-0-0 oc	purlins.			1) Unbalanced	I roof live load	s have been	considered for	or					
BOT CHORD	Rigid ceil	ling directly	applied or 10-0-0 or	;	this design.									
	bracing.				2) Wind: ASCE	= 7-16; Vult=1	15mph (3-sec	cond gust)	0-1					
WEBS	1 Row at	midpt	6-16		Vaso=91mp	n; ICDL=6.0p	DST; BCDL=6.	Upsi; $n=25\pi$;	Cat.					
REACTIONS	(lb/size)	1=45/18-7	7-12, 11=45/18-7-12		n, Exp C, Ei	ft and right ex	nosed : end y	ertical left a	ne, nd					
		12=154/1	8-7-12, 13=185/18-7	-12,	right expose	ad Lumber DC) –1 60 plate	arin DOI = 1	60					
		14=178/10	8-7-12, 15=186/18-7	-12,	 Truss desig 	ned for wind lo	pads in the plate	ane of the tru	ISS					
		18-178/1	0-7-12, 17=100/10-7 8-7-12, 10=185/18-7	-12,	only. For st	uds exposed t	o wind (norm	al to the face	e),					
		20=154/1	8-7-12, 19=105/10-7 8-7-12	-12,	see Standar	rd Industry Ga	ble End Deta	ils as applica	ble,					
	Max Horiz	1=-250 (I	C 4)		or consult q	ualified buildin	ig designer a	s per ANSI/T	PI 1.					
	Max Uplift	1=-139 (L	C 6). 11=-97 (LC 7).		All plates ar	e 2x4 MT20 u	nless otherwi	se indicated.						
		12=-106 (LC 9), 13=-126 (LC	9),	Gable requi	res continuous	s bottom chor	d bearing.						
		14=-127 (LC 9), 15=-121 (LC	9),	 Gable studs 	spaced at 0-0	0-0 oc.							
		17=-124 (LC 8), 18=-126 (LC	8),	7) This truss h	as been desig	ned for a 10.) pst bottom						
		19=-127 (LC 8), 20=-106 (LC	8)	chord live lo	ad nonconcur	rent with any	other live loa	ads. On of					
	Max Grav	1=258 (LC	C 8), 11=230 (LC 9),		an the bette	nas been des	igned for a liv	e load of 20.	opsi					
		12=173 (L	LC 16), 13=209 (LC	16), 16)	3-06-00 tall	by 2-00-00 wi	de will fit het	veen the hott	om					
		14=201 (L	_C 16), 15=211 (LC 1	16), =)	chord and a	nv other mem	bers.	veen me bou	om				CON	m
		10=230 (L 18=200 (L	C 15) 10-200 (LC 1	5), 15)	9) Provide med	chanical conne	ection (by oth	ers) of truss	to				B. OF	MISS
		20=173 (I	C 15), 19–209 (LC	13),	bearing plat	e capable of w	vithstanding 1	39 Ib uplift a	t			4	9.51	W.OS
FORCES	(lb) Mox	/imum Com	proceion/Maximum		joint 1, 97 lb	o uplift at joint	11, 124 lb up	lift at joint 17	, 126			B	SCOT	TM XP.V
FORCES	Tension		ipression/maximum		lb uplift at jo	int 18, 127 lb	uplift at joint	19, 106 lb up	lift at			8	SEV	
TOP CHORD	1-2=-361	/219 2-3=-	263/185 3-4=-165/1	37	joint 20, 121	l lb uplift at joi	nt 15, 127 lb	uplift at joint	14,			0		
	4-5=-139	/128. 5-6=-	113/191. 6-7=-88/16	9.	126 lb uplift	at joint 13 and	d 106 lb uplift	at joint 12.				NV2		0
	7-8=-95/8	39, 8-9=-12	2/79, 9-10=-224/127	,	10) This truss is	designed in a	accordance w	Ith the 2018	اممد			K	cott	Jonn
	10-11=-3	22/161			Internationa	Residential C		S R502.11.1 a	and		•	5	NUM	BER
BOT CHORD	1-20=-10	8/232, 19-2	20=-108/232,		ROU2.10.2 2		a stanuard Ar	NGI/TETT.				N	O PE-2001	018807
	18-19=-1	08/232, 17-	18=-108/232,		LUAD CASE(S)	Standard						N	The second	18A
	16-17=-1	08/232, 15-	-16=-108/232,									X	Nº50-	NOT
	14-15=-1	08/232, 13-	-14=-108/232,										VN ONIA	IELA

12-13=-108/232, 11-12=-108/232

December 22,2021

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	V1	Valley	1	1	Job Reference (optional)	149386636

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Dec 21 15:19:31 ID:2ncXplsxOfbjlB6l7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

9-4-12

Scale	a = 1	:29.5

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.25	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.15	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.06	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 24 lb	FT = 10%
LUMBER			8)	Provide med	hanical conne	ction (by oth	ers) of truss t	0					
TOP CHORD	2x4 SPF No.2		-,	bearing plate	e capable of wi	thstanding 3	7 lb uplift at j	oint					
BOT CHORD	2x4 SPF No.2			1, 46 lb uplif	t at joint 3 and	14 lb uplift a	t joint 4.						
OTHERS	2x3 SPF No.2		9)	This truss is	designed in ac	cordance wi	th the 2018						
BRACING				International	Residential Co	ode sections	R502.11.1 a	nd					
TOP CHORD	Structural wood she	athing directly applie	ed or	R802.10.2 a	nd referenced	standard AN	ISI/TPI 1.						
	6-0-0 oc purlins.	3 ,	LC	AD CASE(S)	Standard								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or)										
	bracing.												
REACTIONS	(lb/size) 1=197/9-4 4=371/9-4	I-12, 3=197/9-4-12, I-12											
	Max Horiz 1=-74 (LC	: 4)											
	Max Uplift 1=-37 (LC (LC 8)	8), 3=-46 (LC 9), 4	=-14										
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=-147/70, 2-3=-14	46/53											
BOT CHORD	1-4=-14/68, 3-4=-14/	/68											
WEBS	2-4=-242/62												
NOTES													
1) Unbalance	ed roof live loads have	been considered for											
, this desigr	۱.												
2) Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)											
Vasd=91n	nph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft; 0	Cat.										The

- only. For studs exposed to wind holds in the plate of the duss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	V2	Valley	1	1	Job Reference (optional)	149386637

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Dec 21 15:19:31 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-7-13 6-10-7

7-3-10

Scale = 1:26.6												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.09	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 19 lb	FT = 10%
LUMBER	JMBER 8) Provide mechanical connection (by others) of truss to											
TOP CHORD	2x4 SPF No.2		bearing plate capable of withstanding 36 lb uplift at joint									
BOT CHORD	2x4 SPF No.2	i and 43 id upint at joint 3.										

OTHERS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	6-0-0 oc p	ourlins.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	1=162/7-3-10, 3=162/7-3-10,
		4=252/7-3-10
	Max Horiz	1=-56 (LC 4)
	Max Uplift	1=-36 (I C 8) 3=-43 (I C 9)

FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-100/51, 2-3=-97/38
BOT CHORD	1-4=-11/47, 3-4=-11/47
WEBS	2-4=-172/43

NOTES

1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing. 4)

5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

This truss is designed in accordance with the 2018 9) International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

T

December 22,2021

Job	Truss	Truss Type	Qty	Ply	103 RR	
B210100	V3	Valley	1	1	Job Reference (optional)	149386638

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Dec 21 15:19:31 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Ì

						3-9-10						
Scale = 1:22.3												
Plate Offsets (X, Y)	: [2:0-2-0,Edge]											
Loading	(psf)	Spacing	2-0-0	CSI	0.02	DEFL	in n/a	(loc)	l/defl	L/d	PLATES	

LOAD CASE(S) Standard

_UMBER 9) This truss is designed in accordance with the 2018													
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 8 lb	FT = 10%	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a			
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(TL)	n/a	-	n/a	999			
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.03	Vert(LL)	n/a	-	n/a	999	MT20	197/144	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2
BRACING		
TOP CHORD	Structural 3-10-6 oc	wood sheathing directly applied or purlins.
BOT CHORD	Rigid ceili bracing.	ng directly applied or 10-0-0 oc
REACTIONS	(lb/size)	1=131/3-9-10, 3=131/3-9-10
	Max Horiz	1=-25 (LC 6)
	Max Uplift	1=-15 (LC 8), 3=-15 (LC 9)
FORCES	(lb) - Max	imum Compression/Maximum

1-2=-114/35, 2-3=-114/35 TOP CHORD

Tension

BOT CHORD 1-3=-15/76

NOTES

Unbalanced roof live loads have been considered for 1) this design.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle

3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Provide mechanical connection (by others) of truss to 8)

bearing plate capable of withstanding 15 lb uplift at joint 1 and 15 lb uplift at joint 3.

OF MISS P SCOTT M. SEVIER PE-200101880 SIONAL

Page: 1

December 22,2021

