

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

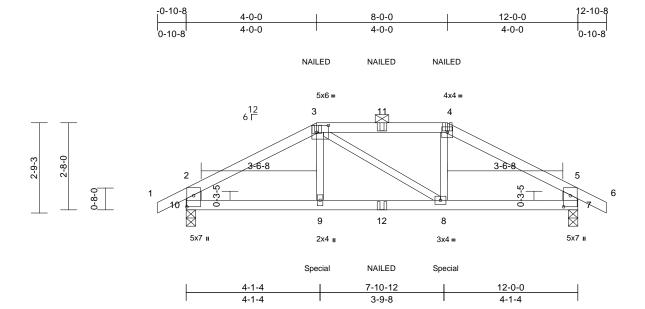
Re: B210104 57 W2

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Wheeler - Waverly.

Pages or sheets covered by this seal: I49493448 thru I49493481

My license renewal date for the state of Missouri is December 31, 2023.

Missouri COA: Engineering 001193


December 31,2021

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	A1	Hip Girder	1	1	Job Reference (optional)	149493448

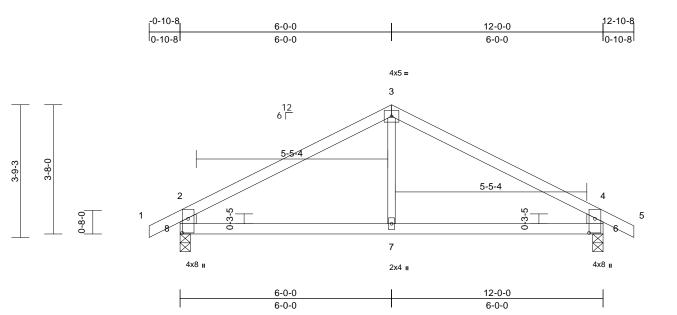
Run: 8.43 E Aug 16 2021 Print: 8.430 E Aug 16 2021 MiTek Industries, Inc. Fri Dec 31 14:12:32 ID:HEDVssSlsPxPD0rorlkO2YyUre3-Ym_ooTaXJP5kW8WMvjMeEXAk?S7q0ld7jMvPMXy3QRE

Page: 1

Scale	=	1:35.3

Plate Offsets (X, Y): [3:0-4-4,0-2-8], [7:0-4-1,0-2-8], [10:0-4-1,0-2-8]

	,, ,, ,, [0.0 1 1,0 2 0],			-,	1							r	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.71	Vert(LL)	-0.07	8-9	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.67	Vert(CT)	-0.13	8-9	>999	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.10	Horz(CT)	0.02	7	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S		Wind(LL)	0.06	8-9	>999	240	Weight: 39 lb	FT = 10%
LUMBER TOP CHORD	2x4 SPF No.2		6	bearing plat	chanical connection e capable of with	standing 2							
BOT CHORD	2x4 SPF No.2	** ** * * * * * * * * *	-		201 lb uplift at joi		th the 2010						
WEBS	2x3 SPF No.2 *Exce	ept^ 10-2,7-5:2x6 SF	DSS 7		designed in acco Residential Cod			and					
BRACING					and referenced sta			anu					
TOP CHORD	Structural wood she				urlin representation			sizo					
	4-3-4 oc purlins, exe 2-0-0 oc purlins (5-0		ina s		ation of the purlin			3120					
BOT CHORD	Rigid ceiling directly	,	•	bottom chor									
BOT CHORD	bracing.	applied of 10-0-0 0	ι ε) "NAILED" in	dicates 3-10d (0.	148"x3") c	r 3-12d						
REACTIONS	0	3-8, 10=899/0-3-8		(0.148"x3.2	5") toe-nails per N	NDS guidli	nes.						
	Max Horiz 10=50 (LC	,	1		r other connection								
	Max Uplift 7=-201 (L	,	3)		fficient to support								
FORCES	(lb) - Max. Comp./Ma	<i>,,</i>	'		57 lb up at 4-0-0								
FORCES	(lb) or less except w		200		1-4 on bottom ch			tion					
TOP CHORD	2-3=-1231/277, 3-11			of such con others.	nection device(s)	is the resp	onsibility of						
	4-11=-1024/269, 4-5				CASE(S) section	n loodo o	plied to the	faaa					
	2-10=-806/214, 5-7=				are noted as from			lace					
BOT CHORD	9-10=-219/1012, 9-1	2=-219/1023,		OAD CASE(S)			SR (D).						
	8-12=-219/1023, 7-8	8=-196/1013	1		of Live (balanced	1). Lumbor	Incrosco-1	15					
WEBS	3-9=0/271, 4-8=-5/2	79		Plate Incre		I). Lumber	increase=1.	15,					
NOTES				Uniform Lo									
1) Unbalance	ed roof live loads have	been considered fo	r		2=-70, 2-3=-70, 3·	-4=-70 4-	5=-70 5-6=-7	70				000	ADD
this design	۱.			7-10=-2		,	,	-,				P. OF	MIC
Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)		Concentra	ted Loads (lb)							TATE OF	NOSO W
	nph; TCDL=6.0psf; BC			Vert: 3=	-46 (F), 4=-46 (F)	, 9=-220 (F), 8=-220 (F	-),			6	N	NSY
	Enclosed; MWFRS (er				(F), 12=-25 (F)	,		-			B		
	left and right exposed			Sevier V									
	sed; Lumber DOL=1.6										2		• \★ ∅
	dequate drainage to pr		j .								AV	1 aler	
,	has been designed for	•	de								X	Catton	Servic


- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 5) on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	A2	Common	4	1	Job Reference (optional)	149493449

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Thu Dec 30 14:16:53 ID:HEDVssSlsPxPD0rorlkO2YyUre3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1:32.7
---------	--------

Plate Offsets (X, Y): [6:0-4-13,0-2-0], [8:0-4-13,0-2-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.42	Vert(LL)	-0.02	7-8	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.27	Vert(CT)	-0.05	7-8	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.01	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	7-8	>999	240	Weight: 35 lb	FT = 10%

- LUMBER
- TOP CHORD
- 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 2x6 SPF No.2 *Except* 7-3:2x3 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) 6=597/0-3-8, 8=597/0-3-8 Max Horiz 8=62 (LC 7) Max Uplift 6=-89 (LC 9), 8=-89 (LC 8) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/35, 2-3=-638/89, 3-4=-638/89,
- 4-5=0/35, 2-8=-544/131, 4-6=-544/131 BOT CHORD 7-8=-14/480, 6-7=-14/480 3-7=0/246

WEBS

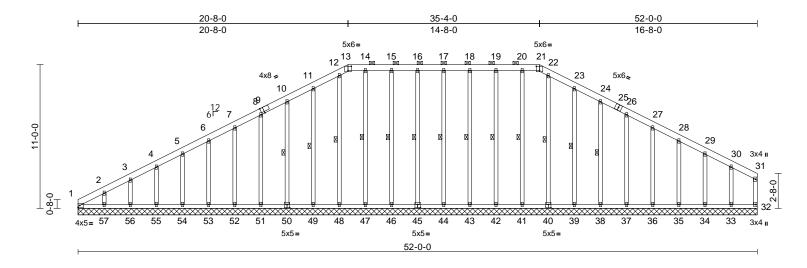
- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 89 lb uplift at joint 8 and 89 lb uplift at joint 6.

- 6) This truss is designed in accordance with the 2018
 - International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

December 31,2021



NOTES

Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	B1	Piggyback Base Supported Gable	1	1	Job Reference (optional)	149493450

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Thu Dec 30 14:16:54 ID:HEDVssSlsPxPD0rorlkO2YyUre3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:88.2

Plate Offsets (2	Plate Offsets (X, Y): [9:0-2-12,Edge], [13:0-3-0,0-4-0], [21:0-3-0,0-4-0], [40:0-2-8,0-3-0], [45:0-2-8,0-3-0], [50:0-2-8,0-3-0]													
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matri	0.03 0.13		in n/a n/a 0.00	(loc) - - 32	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 366 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	6-0-0 oc pi 2-0-0 oc pi Rigid ceilir bracing. 1 Row at n	lo.2 lo.2 lo.2 wood shea urlins, exa urlins (6-0 ng directly nidpt	athing directly applie sept end verticals, ar -0 max.): 13-21. applied or 10-0-0 oc 10-50, 11-49, 12-48 14-47, 15-46, 16-45 17-44, 18-43, 19-42 20-41, 22-40, 23-39 24-38 -0, 32=75/52-0-0.	nd ; ,		$ ft 1=-54 (LC 4), 32 \\ (LC 9), 34=-49 (9), 36=-54 (LC 9), 34=-49 (9), 36=-54 (LC 9), 3 \\ 41=-13 (LC 9), 2 \\ 43=-35 (LC 4), 4 \\ 45=-36 (LC 4), 4 \\ 45=-36 (LC 4), 4 \\ 47=-16 (LC 8), 5 \\ 52=-54 (LC 8), 5 \\ 54=-54 (LC 8), 5 \\ 56=-53 (LC 8), 5 \\ v 1=136 (LC 17), 3 \\ 33=185 (LC 22) \\ 35=180 (LC 22) \\ 39=180 (LC 1), . $	LC 9), 35=-56)), 37=-53 (LC)9=-60 (LC 9) 12=-39 (LC 4) 14=-33 (LC 5) 16=-40 (LC 4) 19=-59 (LC 8) 13=-54 (LC 8) 13=-54 (LC 8) 13=-54 (LC 8) 13=-50 (LC 1) 34=180 (LC 36=180 (LC 40=179 (LC 2)	5 (LC 5 9), , , , , , , , , , , , , ,	TOP CH BOT CH		4-5=-7 7-8=-7 11-12 13-14 15-16 17-18 19-20 21-22 23-24 26-27 28-29 31-32 1-57= 54-55 51-52 47-48	242/144, 2-3=-1£ 144/169, 5-6=-13 100/247, 8-10=-{ =-64/327, 12-13; =-49/306, 14-15; =-49/306, 16-17; =-49/306, 20-21; =-53/296, 22-23; =-55/264, 24-26; =-55/171, 27-28; =-56/91, 29-30= =-61/22 -33/34, 56-57=-3 =-33/34, 56-57=-3 =-33/34, 49-51= =-33/34, 46-47=	00/195, 6-7=-115, 15/273, 10-11=-7 53/297, 49/306, 49/306, 49/306, 49/306, 58/311, 55/216, 55/216, -55/225, -56/64, 30-31=-5 13/34, 55-56=-33 -33/34, 52-53=-3 -33/34, 48-49=-3 -33/34, 44-46=-3	/221, 5/299, 5/37, /34, 3/34, 3/34, 3/34,
		33=184/5 35=180/5 37=180/5 39=180/5 41=179/5 43=180/5 45=180/5 47=179/5 51=180/5 51=180/5 55=181/5 55=181/5 57=202/5	2-0-0, 34=180/52-0-(2-0-0, 36=180/52-0-(2-0-0, 38=180/52-0-(2-0-0, 40=179/52-0-(2-0-0, 44=180/52-0-(2-0-0, 44=180/52-0-(2-0-0, 50=180/52-0-(2-0-0, 50=180/52-0-(2-0-0, 52=180/52-0-(2-0-0, 54=180/52-0-(2-0-0, 56=175/52-0-(2-0-0)	o, o, o, o, o, o, o, FORCES o,	(Ib) - Ma Tensior	41=179 (LC 22) 43=180 (LC 21) 45=180 (LC 21) 47=180 (LC 21) 49=180 (LC 21) 51=180 (LC 21) 53=180 (LC 1), 55=181 (LC 1), 57=203 (LC 21) aximum Compression	, 44=180 (LC , 46=183 (LC , 48=185 (LC 50=180 (LC 1 , 52=180 (LC 54=180 (LC 2 56=175 (LC 2	1), 22), 18),), 21), (1), (1),			39-41 36-37 33-34	=-33/34, 42-43= =-33/34, 38-39= =-33/34, 35-36= =-33/34, 32-33= =-33/34, 32-33= =-33/34, 32-33= =-33/34, 32-33= =-33/34, 32-33= =-33/34, 32-33= =-33/34, 32-33=	33/34, 37-38=-3 33/34, 34-35=-3 33/34 MISSOLA T. M.	3/34,

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PE-2001018807

December 31,2021

E

HESSIONAL

 \mathbf{C}

Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	B1	Piggyback Base Supported Gable	1	1	Job Reference (optional)	149493450

WEBS 2-57=-157/113, 3-56=-136/77, 4-55=-141/78, 5-54=-140/78, 6-53=-140/78, 7-52=-140/78, 8-51=-140/78, 10-50=-140/81, 11-49=-140/83, 12-48=-145/17, 14-47=-140/40, 15-46=-143/64, 16-45=-140/60, 17-44=-140/57, 18-43=-140/59, 19-42=-143/63, 20-41=-139/37, 22-40=-139/0, 23-39=-140/84, 24-38=-140/82, 26-37=-140/77, 27-36=-140/78, 28-35=-140/78, 29-34=-140/76,

- NOTES
- Unbalanced roof live loads have been considered for this design.

30-33=-144/99

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb uplift at joint 32, 54 lb uplift at joint 1, 90 lb uplift at joint 57, 53 lb uplift at joint 56, 54 lb uplift at joint 55, 54 lb uplift at joint 54, 54 lb uplift at joint 53, 54 lb uplift at joint 51, 57 lb uplift at joint 50, 59 lb uplift at joint 51, 57 lb uplift at joint 50, 59 lb uplift at joint 49, 16 lb uplift at joint 47, 40 lb uplift at joint 46, 36 lb uplift at joint 45, 33 lb uplift at joint 44, 35 lb uplift at joint 43, 39 lb uplift at joint 42, 13 lb uplift at joint 41, 60 lb uplift at joint 39, 58 lb uplift at joint 38, 53 lb uplift at joint 37, 54 lb uplift at joint 36, 55 lb uplift at joint 35, 49 lb uplift at joint 34 and 85 lb uplift at joint 33.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

 Supported Gable
 1
 1
 Job Reference (optional)

 Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Thu Dec 30 14:16:54
 ID:HEDVssSlsPxPD0rorlkO2YyUre3-RfC7PsB70Hq3NSgPanL8w3uITXbGKWrCDoi7J4zJC7f


Page: 2

Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	B2	Piggyback Base	2	1	Job Reference (optional)	149493451

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Thu Dec 30 14:16:54 ID:HEDVssSIsPxPD0rorlkO2YyUre3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:90.2

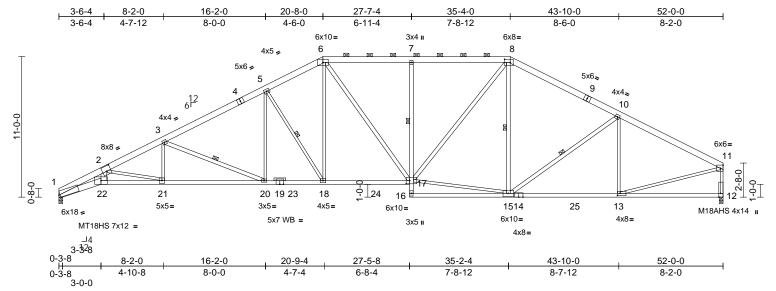
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.71	DEFL Vert(LL)		(loc) 19-21	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.98	Vert(CT)	-0.87		>712	240	MT18HS	197/144
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES	8/TPI2014	WB Matrix-S	0.98	Horz(CT) Wind(LL)	0.41	13 21-22	n/a >999	n/a 240	M18AHS Weight: 295 lb	142/136 FT = 10%
BCDL	10.0	Code	IKC201	0/1112014	Watrix-S		WIND(LL)	0.27	21-22	>999	240	weight. 295 ib	FI = 10%
LUMBER TOP CHORD BOT CHORD	2x6 SPF No.2 *Exce 1.4E 2x4 SPF 2100F 1.8E		0F		2-23=-294/2567, 6- 17-19=-193/3144, 8 8-17=-1125/257, 9- 9-16=-38/465, 3-22	8-19=-1 -17=-16 2=0/621,	08/719, 8/791, 2-22=-1868/	354,					
WEBS	DSS, 7-18:2x4 SPF 2400F 2.0E 2x3 SPF No.2 *Exce				3-21=-1462/353, 5- 6-21=-337/1401, 12 11-16=-199/226, 1	2-14=-1	71/2849,						
	17-19,8-17,17-9,16-9 SPF No.2	•	,	DTES Unbalanced	roof live loads have			r					
BRACING				this design.									
TOP CHORD	Structural wood she 2-2-0 oc purlins, ex 2-0-0 oc purlins (3-1 Rigid ceiling directly bracing. Except:	cept end verticals, ar 0-7 max.): 6-9.		Vasd=91mp II; Exp C; Er cantilever le	7-16; Vult=115mp h; TCDL=6.0psf; B closed; MWFRS (e t and right exposed d; Lumber DOL=1.1	CDL=6.0 envelope d ; end \	Opsf; h=25ft; (e) exterior zor vertical left an	ne; d					
1 Row at midpt			3)		quate drainage to p								
WEBS		8-17, 2-22, 3-21, 11-	-16 4)		MT20 plates unle								
		-3-8, 13=2329/0-3-8 C 7) C 8), 13=-208 (LC 9)	5) 6)	chord live load nonconcurrent with any other live loads.									
FORCES	(lb) - Maximum Com	pression/Maximum			by 2-00-00 wide will any other members,								
TOP CHORD	Tension 1-2=-8955/1036, 2-3 3-5=-4385/417, 5-6=	-4343/564,	7)	using ANSI/	int(s) 1 considers p FPI 1 angle to grain ould verify capacity	n formula	a. Building					TATE OF M	AISSO
	6-7=-3358/344, 7-8= 8-9=-3080/301, 9-11 11-12=-3221/269, 12	=-3158/284, 2-13=-2383/246	8)	bearing plate	hanical connection capable of withsta 08 lb uplift at joint 1	anding 2					A	S SCOTI	INT. VY V
BOT CHORD	1-23=-1081/7954, 22 21-22=-614/5170, 19 18-19=0/62, 7-19=-1	9-21=-238/3227, 44/76, 17-18=-40/79	9) ',	International	designed in accord Residential Code and referenced stan	sections	R502.11.1 a	nd				att	Le martin
	16-17=-125/2721, 14 13-14=-22/67	+-10=-100/2003,	10		Irlin representation ation of the purlin a d.			size		4	S	PE-2001	

LOAD CASE(S) Standard

December 31,2021

F

SSIONAL



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X, Y): [1:0-1-3,Edge], [2:0-4-0,0-4-12], [6:0-4-0,0-3-8], [9:0-5-4,0-3-0], [13:0-3-8,Edge], [14:0-2-8,0-2-0]

Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	B3	Piggyback Base	3	1	Job Reference (optional)	149493452

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Thu Dec 30 14:16:55 ID:HEDVssSlsPxPD0rorlkO2YyUre3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:90.2

	, , , , [, [2:0 1 0;0 1 12]; [0:		0],[:2:0 0 0,2		_ 0], [
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.70	Vert(LL)	-0.49		>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.98	Vert(CT)	-0.87		>711	240	MT18HS	197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	1.00	Horz(CT)	0.43	12	n/a	n/a	M18AHS	142/136
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S		Wind(LL)	0.28	20-21	>999	240	Weight: 284 lb	FT = 10%
LUMBER		-	1	VEBS	2-22=-297/2541,	5-18=-10	44/295						
TOP CHORD	2x6 SPF No.2 *Exce	ont* 1-4-2x6 SPF 165			6-18=-183/1168,								
	1.4E				15-17=-116/2520	, 8-17=-2	02/1181,						
BOT CHORD	2x4 SPF 2100F 1.8	E *Except* 1-22:2x6	SP		8-15=-197/195, 3	-21=0/64	3, 2-21=-185	1/359,					
	DSS, 7-16:2x4 SPF	No.2			3-20=-1488/345,								
WEBS	2x3 SPF No.2 *Exce	ept* 22-2:2x6 SPF No	o.2,		11-13=-172/2810	, 10-15=-	214/227,						
	17-6,17-8,15-8,20-3	,15-10:2x4 SPF No.2			10-13=-553/159								
OTHERS	2x3 SPF No.2			IOTES									
BRACING				<i>'</i>	d roof live loads ha	ave been	considered for	r					
TOP CHORD	Structural wood she			this design.									
	2-2-0 oc purlins, ex		nd 2		E 7-16; Vult=115m			0-4					
	2-0-0 oc purlins (3-8	,			oh; TCDL=6.0psf; nclosed; MWFRS								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc)		eft and right expos								
	bracing, Except: 8-3-10 oc bracing: 1	-22			ed; Lumber DOL=								
	2-2-0 oc bracing: 21		2		equate drainage to								
1 Row at midpt		22.			re MT20 plates un								
WEBS		5-18, 8-15, 3-20, 10	-15 5		as been designed								
REACTIONS		-3-8, 12=2329/0-3-8		chord live lo	bad nonconcurrent	t with any	other live loa	ds.					
	Max Horiz 1=202 (L0	,	6		has been designed			Opsf					
	Max Uplift 1=-249 (L	,)		om chord in all are								
	Max Grav 1=2459 (I	LC 2), 12=2473 (LC	, 2)		by 2-00-00 wide v								
FORCES	(lb) - Maximum Com				any other members								Th
	Tension				oint(s) 1 considers /TPI 1 angle to gra			1				A DE	and the
TOP CHORD	1-2=-8912/1039, 2-3	3=-5723/597,			ould verify capacit							THE OF A	AISSOL
	3-5=-4343/421, 5-6=	-3680/393,	ş		chanical connection			0			4	A. A.	NS
	6-7=-3361/314, 7-8=		, c		te capable of withs						H	SCOT	M. YEN
	8-10=-3101/283, 10	-11=-3178/270,			208 lb uplift at join						H	SEVI	
	11-12=-2353/246	4 00 004/0004	ç		s designed in acco		ith the 2018				RA		···· \ ↓ \ λ
BOT CHORD	1-22=-1084/7917, 2 20-21=-610/5157, 1			Internationa	al Residential Code	e sections	R502.11.1 a	ind			NO.	d	
	17-18=-232/3242, 1	,		R802.10.2	and referenced sta	andard AN	ISI/TPI 1.				W/	hatter.	Sandard
	7-17=-575/246, 15-1		1		urlin representatio			size				Show Now	
	13-15=-186/2765, 1			or the orien	tation of the purlin	along the	e top and/or				N.	OX PE-2001	018807

bottom chord.

LOAD CASE(S) Standard

Page: 1

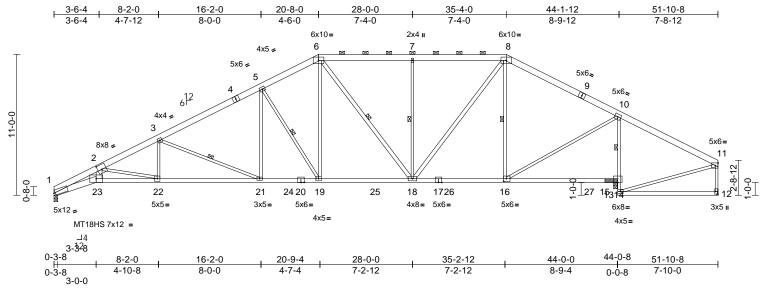

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Plate Offsets (X, Y): [1:0-1-3,Edge], [2:0-4-0,0-4-12], [8:0-5-4,0-3-0], [12:0-3-8,Edge], [13:0-2-8,0-2-0], [17:0-3-4,0-3-0]

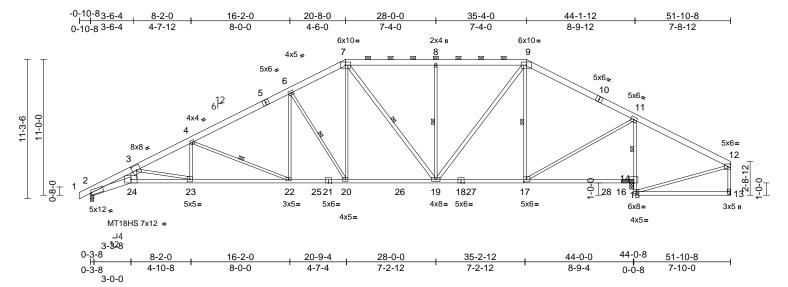
Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	B4	Piggyback Base	1	1	Job Reference (optional)	149493453

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Thu Dec 30 14:16:55 ID:HEDVssSIsPxPD0rorlkO2YyUre3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:90

													-
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.88	Vert(LL)		21-22	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.91	Vert(CT)	-0.71	21-22	>740	240	MT18HS	197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.97	Horz(CT)	0.31	14	n/a	n/a		
BCDL	10.0	Code	IRC2018	8/TPI2014	Matrix-S		Wind(LL)	0.24	22-23	>999	240	Weight: 261 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD	2x4 SPF No.2 *Ex	cept* 1-23:2x6 SPF 16 PF 2100F 1.8E, 10-13	50F	6-19=-183/1123, 6-18=-364/126, 7-18=-581/245, 8-18=-194/1267,					 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 				
WEBS		cept* 23-2:2x6 SPF No			10-16=-138/1929	, 11-13=-	215/22						
	18-6,18-8:2x4 SPF	No.2		DTES									
BRACING TOP CHORD		eathing directly applie except end verticals, a -8-1 max): 6-8	dor	to front face	.2 bearing block 1 with 2 rows of 10 al fasteners. Bear)d (0.131	'x3") nails sp	aced					
BOT CHORD		ly applied or 6-0-0 oc	2)	 Unbalanced roof live loads have been considered for this design. 									
1 Row at midp	0 1		3)		7-16; Vult=115m								
WEBS	1 Row at midpt	5-19, 6-18, 7-18, 8-′ 3-21	16,	Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone;									
REACTIONS	14=254 (req. 0-2 Max Horiz 1=204 (Max Uplift 1=-239 14=-191	_C 7) (LC 8), 12=-47 (LC 4), (LC 9) (LC 2), 12=205 (LC 16	;k), 4) 5) 6)	right expose Provide ader All plates are This truss ha chord live loa * This truss h on the botton	ft and right expose d; Lumber DOL=1 quate drainage to e MT20 plates unl as been designed ad nonconcurrent has been designe m chord in all area by 2 0.0 wide us	1.60 plate prevent ess othe for a 10. with any d for a liv as where	grip DOL=1. water ponding wise indicate 0 psf bottom other live loa e load of 20.0 a rectangle	60 g. ed. ads. Opsf				00000	All a
FORCES		mpression/Maximum			by 2-00-00 wide w ny other members							THE OF N	AISS
TOP CHORD	Tension 1-2=-7373/994, 2-: 3-5=-3395/396, 5- 6-7=-2240/279, 7-: 8-10=-1817/217, 1 11-12=-122/93 1-23=-1044/6548, 21-22=-855/4216, 18-19=-213/2408, 14-16=-165/36, 13 10-14=-2377/283,		Bearing at jc using ANSI/ designer sho) Provide mec bearing plate joint 1, 47 lb) This truss is International	I any other members, with BCDL = 10.0psf. irder(s) for truss to truss connections. t joint(s) 1 considers parallel to grain value SI/TPI 1 angle to grain formula. Building should verify capacity of bearing surface. the chanical connection (by others) of truss to ate capable of withstanding 239 lb uplift at lb uplift at joint 12 and 191 lb uplift at joint 14. is designed in accordance with the 2018 hal Residential Code sections R502.11.1 and 2 and referenced standard ANSI/TPI 1.						SCOT SEVI SEVI NUMI PE-20010 PE-20010	ER DISSO7		
												December	31 2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

December 31,2021

Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	B4A	Piggyback Base	2	1	Job Reference (optional)	149493454

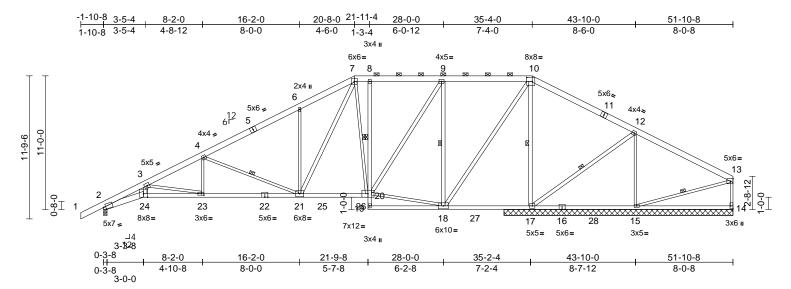
Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Thu Dec 30 14:16:56 ID:HEDVssSIsPxPD0rorlkO2YyUre3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:93.4

Plate Offsets (X X	١.	[2:0-1-4,0-2-2], [3:0-4-0,0-4-8], [13:Edge,0-2-8], [17:0-2-8,0-2-8]
FIBLE OIISELS (A, I	J.	[2.0-1-4,0-2-2], [3.0-4-0,0-4-0], [13.Euge,0-2-0], [17.0-2-0,0-2-0]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	· · ·	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.87	Vert(LL)	-0.40	22-23	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.91	Vert(CT)	-0.71	22-23	>742	240	MT18HS	197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.96	Horz(CT)	0.31	15	n/a	n/a	-	
BCDL	10.0	Code	IRC20	8/TPI2014	Matrix-S		Wind(LL)	0.17	23-24	>999	240	Weight: 263 lb	FT = 10%
LUMBER			V	/EBS	3-24=-34/2107,	7-20=-39/1	146,		12) Gra	aphical p	ourlin re	epresentation doe	s not depict the size
TOP CHORD	2x6 SPF No.2				8-19=-581/141,	7-19=-347	/63, 9-17=-71	18/94,	or t	he orien	tation of	of the purlin along	the top and/or
BOT CHORD	2x4 SPF 2100F 1.8	BE *Except* 2-24:2x6	SPF		9-19=-68/1266,			9,	bot	tom cho	rd.		
	1650F 1.4E, 11-14	:2x3 SPF No.2,			3-23=-1576/116				LOAD	CASE(S) Sta	ndard	
	14-13,18-21:2x4 S	PF No.2			6-20=-1047/125	, 11-17=0/	1929,						
NEBS	2x3 SPF No.2 *Ex	cept* 24-3:2x6 SPF N	o.2,		12-14=-219/6								
	19-7,19-9:2x4 SPF	No.2	N	OTES									
BRACING			1) 2x4 SPF 21	00F 1.8E bearing	block 12	long at jt. 15	5					
TOP CHORD		eathing directly appli			front face with 2			')					
		except end verticals, a	nd		d 3" o.c. 8 Total f	asteners.	Bearing is						
	2-0-0 oc purlins (4	,			be SPF No.2.								
BOT CHORD		ly applied or 10-0-0 o	c 2	·	d roof live loads h	ave been	considered fo	or					
	bracing, Except:			this design.		1 (0							
	2-2-0 oc bracing: 2		3		E 7-16; Vult=115r			0-1					
	6-0-0 oc bracing: 1	5-17.			oh; TCDL=6.0psf; nclosed; MWFRS								
1 Row at midp		0 40 7 40 0 47 4	00		posed ; end verti								
WEBS	1 Row at midpt	8-19, 7-19, 9-17, 4- 6-20	22,		L=1.60 plate grip			eu,					
REACTIONS	(lb/size) 2=2019/	0-3-8, 13=149/ Mech	anical ⁴) Provide ade	equate drainage t	o prevent	water pondin	g.					
		0/(0-3-8 + bearing blo			re MT20 plates ur			ed.					
	(req. 0-4		6		as been designe								
	Max Horiz 2=174 (ad nonconcurrer								
	Max Uplift 2=-33 (L	_C 8), 13=-33 (LC 4)	7		has been design			0psf					_
		(LC 2), 13=200 (LC 2	0),		om chord in all are							CON	ADA
	15=275) (LC 2)			by 2-00-00 wide							TATE OF M	AIS C
FORCES	(lb) - Maximum Co	mpression/Maximum	0		any other member			t.			1	950	W.OS
	Tension		8		der(s) for truss to						R	N SCOT	New Yar
TOP CHORD	1-2=0/15, 2-3=-73	49/161, 3-4=-4672/77	. 9		oint(s) 2 consider /TPI 1 angle to gr			9			A	SCOTT	
		-2745/90, 7-8=-2237			ould verify capac						18.	SEVI	EK X
	8-9=-2237/60, 9-1				chanical connect			to			Vn*		
	11-12=-43/322, 12	-13=-121/93	1		te capable of with						X	and it	
BOT CHORD	2-24=-232/6513, 2				uplift at joint 13.	stanuing c	o ib upint at	joint				NUM	Jenne
	22-23=-94/4207, 2		1		designed in acc	ordance w	ith the 2018				W7	PE-2001	
	19-20=-11/2406, 1	,	I		al Residential Cod			and			N.	PE-2001	A STOOL
	15-17=-168/17, 14			and referenced st						Y	h to	IN A	
	11-15=-2377/52, 1	3-14=-2/53										SION	TENS
												CSSIONA	1-9
												and a	
												December	* 31 2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



December 31,2021

Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	B5	Piggyback Base	1	1	Job Reference (optional)	149493455

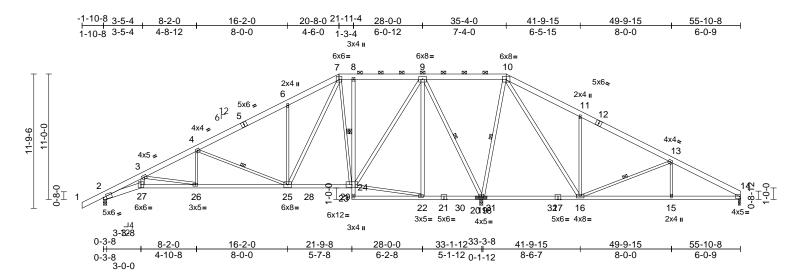
Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Thu Dec 30 14:16:56 ID:HEDVssSlsPxPD0rorlkO2YyUre3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:94.9

Plate Offects (X V)	[2:0-2-4,0-2-6], [10:0-5-8,0-4-0], [14:Edge,0-2-8], [23:0-2-8,0	-1-81
	[2.0-2-4,0-2-0], [10.0-3-0,0-4-0], [14.Euge,0-2-0], [23.0-2-0,0	-1-0]

		1			-								-
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.64	Vert(LL)	-0.24		>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.99	Vert(CT)	-0.45	21-23	>934	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.83	Horz(CT)	0.16	17	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S		Wind(LL)	0.15	23-24	>999	240	Weight: 297 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 *Exce 2x3 SPF No.2 *Exce	ept* 7,17-12:2x4 SPF No	0.2		3-24=-165/1186, 18-20=-190/181, 9-18=-1498/300, 10-17=-2806/344 3-23=-1025/257, 6-21=-488/276, 7	9-20=-19 10-18=-2 , 4-23=0/4 4-21=-11	1/1236, 56/2116, 449, 48/315,						
BRACING	5 10,17 10.274 011	21001 1.02			13-15=-656/125,								
TOP CHORD		xcept end verticals,	and I	NOTES	12-15=-88/662 roof live loads ha		considered fr	or.					
BOT CHORD	2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. Except:	,		this design.	7-16; Vult=115m								
1 Row at midp WEBS REACTIONS	ot 8-20 1 Row at midpt (Ib/size) 2=1335/0	7-20, 9-18, 10-17, 4 13-15, 12-17 -3-8, 14=-120/18-10 -10-8, 17=3482/18-1	-21, 8, <i>,</i>	Vasd=91mp II; Exp C; Er cantilever le right expose	h; TCDL=6.0psf; nclosed; MWFRS ft and right expos d; Lumber DOL= quate drainage to	BCDL=6.0 (envelope ed ; end v 1.60 plate	Dpsf; h=25ft; e) exterior zo vertical left ar grip DOL=1	ne; nd .60					
	Max Horiz 2=219 (LC Max Uplift 2=-200 (L 15=-262 (L Max Grav 2=1362 (L 15=346 (L	C 12) .C 8), 14=-332 (LC 2 (LC 21), 17=-357 (LC .C 23), 14=94 (LC 2 .C 22), 17=3710 (LC	1), 8) 2),	 This truss has chord live lo * This truss on the botto 3-06-00 tall 	as been designed ad nonconcurren has been designe m chord in all are by 2-00-00 wide v ny other member	for a 10.0 t with any ed for a liv as where will fit betw) psf bottom other live loa e load of 20. a rectangle veen the bott	ads. Opsf					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	6	Bearing at joint in the second se	pint(s) 2 considers	parallel t	o grain value					A STATE	ADD
TOP CHORD	1-2=0/47, 2-3=-4047 4-6=-1382/178, 6-7= 7-8=-535/204, 8-9=- 10-12=-161/1552, 1: 13-14=-50/427	=-1354/324, 533/205, 9-10=-94/2	-	designer sho) Provide med bearing plat joint 2, 357 l	ould verify capaci chanical connection e capable of with b uplift at joint 17	ty of bear on (by oth standing 2	ng surface. ers) of truss 200 lb uplift a	t				STATE OF M	ΓM. Y Y
BOT CHORD	2-24=-679/3550, 23 21-23=-366/2198, 2 19-20=0/105, 8-20= 17-18=-1340/321, 1 14-15=-21/42	0-21=-80/613, -338/108, 18-19=-4/2	25,	 This truss is Internationa R802.10.2 a Graphical point 		e sections andard AN on does no	R502.11.1 a ISI/TPI 1. ot depict the			-		PE-2001	018807


MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

December 31,2021

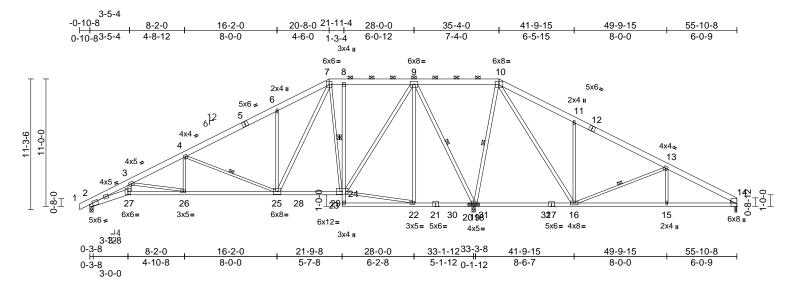
Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	B6	Piggyback Base	1	1	Job Reference (optional)	149493456

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Thu Dec 30 14:16:57 ID:HEDVssSlsPxPD0rorlkO2YyUre3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:101.1

Plate Offsets (X, Y): [2:0-3-4,0-2-6]


Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.56	Vert(LL)		25-26	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.87	Vert(CT)	-0.37		>999	240	-	
BCLL	0.0*	Rep Stress Incr	YES		WB	0.97	Horz(CT)	0.13	19	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.13	26-27	>999	240	Weight: 314 lb	FT = 10%
-			-									0	
LUMBER			W		3-27=-150/995, 7-2		,						s not depict the size
TOP CHORD					22-24=-730/206, 1		,					of the purlin along	the top and/or
BOT CHORD		ept* 2-27:2x6 SPF No	.2,		11-16=-534/305, 1			7		tom choi			
	21-17,20-18:2x4 SP			13-15=0/298, 4-26=0/427, 3-26=-901/247, LOAD CASE(S) Standard 4-25=-1101/312, 6-25=-494/277,									
WEBS	2x3 SPF No.2 *Exce	·	-		4-25=-1101/312, 6 7-25=-335/1226, 1		,						
		10,9-22,9-24:2x4 SPF	•		9-22=0/326, 9-24=								
	No.2, 9-19:2x4 SPF 2100F 1.8E				9-19=-2171/237	- 101/10	5 5,						
BRACING	o		. N/	DTES	211 11 201								
TOP CHORD	3-7-7 oc purlins, exc	athing directly applied	101		00F 2.0E bearing b	block 12	long at it 19						
			1)										
BOT CHORD	2-0-0 oc purlins (6-0-0 max.): 7-10. OT CHORD Rigid ceiling directly applied or 4-8-12 oc				attached to front face with 2 rows of 10d (0.131"x3") nails spaced 3" o.c. 8 Total fasteners. Bearing is								
BOTCHORD	bracing. Except:			assumed to be DF No.2.									
1 Row at midp	• •		2)										
WEBS		7-24, 10-19, 13-16, 4	-25	this design.									
		9-19	3)		7-16; Vult=115mp								
REACTIONS	(lb/size) 2=1117/0	-3-8, 14=250/0-2-0,			h; TCDL=6.0psf; B								
		(0-3-8 + bearing block	<),	II; Exp C; Enclosed; MWFRS (envelope) exterior zone;									
	(reg. 0-4-	7)	<i>, , , , , , , , , ,</i>	cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60									
	Max Horiz 2=211 (L0	C 12)	4)										
	Max Uplift 2=-191 (L	.C 8), 14=-215 (LC 21), <u>4)</u> 5)		quate drainage to p as been designed f			J.					
	19=-275 ((LC 8)	5)		ad nonconcurrent			de					
	Max Grav 2=1180 (I		^{2),} 6)		nas been designed								Th
	19=4069	(LC 2)	0)		n chord in all area			por				OF M	ALL ALL
FORCES	(lb) - Maximum Corr	pression/Maximum			oy 2-00-00 wide wi			m				TATE OF M	IIS'S
	Tension			chord and ar	ny other members,	, with BC	DL = 10.0psf				A		1.51
TOP CHORD		3/550, 3-4=-1951/297		Bearing at jo	int(s) 2 considers	parallel	to grain value				A	SCOT	M. CAN
		908/299, 7-8=-134/19	94,		TPI 1 angle to grain						a	SEVI	ER VV
	8-9=-134/195, 9-10=	,			ould verify capacity						84	-1	• \ ★ 1
	10-11=-90/1053, 11- 13-14=-687/650	-13=-165/1055,	8)		hanical connection	n (by oth	ers) of truss t	0			00		
BOT CHORD			bearing plate at joint(s) 14.								KON LIGA		
BOT ONORD	CHORD 2-27=-631/2925, 26-27=-574/2628, 25-26=-332/1745, 24-25=-71/274,			9) Provide mechanical connection (by others) of truss to									
	23-24=0/114, 8-24=-345/104, 22-23=-20/22,				bearing plate capable of withstanding 191 lb uplift at joint 2, 275 lb uplift at joint 19 and 215 lb uplift at joint							018807	
	19-22=-741/225, 16-19=-1358/301,											154	
15-16=-531/552, 14-15=-531/552				10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and						FNOA			
				International Residential Code sections R502.11.1 and					L				
					nd referenced star							an	

December 31,2021

MiTek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	B7	Piggyback Base	2	1	Job Reference (optional)	149493457

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Thu Dec 30 14:16:57 ID:HEDVssSIsPxPD0rorlkO2YyUre3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:99.5

Plate Offsets (X, Y): [2:0-3-0,0-2-6], [14:Edge,0-1-13]

			-			-						
oading	(psf		2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0		1.15	TC	0.57	Vert(LL)	-0.20		>999	360	MT20	197/144
CDL	10.0		1.15	BC	0.88	Vert(CT)	-0.38	25-26	>999	240		
CLL	0.0	* Rep Stress Incr	YES	WB	0.98	Horz(CT)	0.13	19	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2	014 Matrix-S	_	Wind(LL)	0.13	26-27	>999	240	Weight: 312 lb	FT = 10%
UMBER			WEBS	3-27=-167/1027,	7-24=-84	4/202. 9-22=0/	/328.	11) Gra	aphical p	urlin re	epresentation doe	s not depict the size
OP CHORD	2x6 SPF No.2			10-19=-1823/219		,	,				of the purlin along	
OT CHORD		xcept* 2-27:2x6 SPF No	2	13-15=0/298, 13-			38.		tom cho			
	21-17,20-18:2x4			3-26=-960/275, 6			,		CASE(S	Sta	ndard	
/EBS	2x3 SPF No.2 *E			4-25=-1114/318,				LOAD) 01a	nuaru	
VLD0		25-7,16-10,9-24:2x4 SP	F	10-16=-341/1274								
	No.2, 9-19:2x4 S			9-24=-195/1403,								
	,		NOTEO									
VEDGE	Right: 2x3 SPF N	0.2	NOTES									
BRACING				SPF 2400F 2.0E bearing								
TOP CHORD		heathing directly applie		ched to front face with 2								
	3-6-13 oc purlins			spaced 3" o.c. 8 Total fa	steners.	Bearing is						
		6-0-0 max.): 7-10.		imed to be DF No.2.								
BOT CHORD		ctly applied or 4-8-7 oc	,	alanced roof live loads ha	ve been	considered for						
	bracing. Except:			design.								
Row at midp	ot 8-24			d: ASCE 7-16; Vult=115m								
NEBS	1 Row at midpt	7-24, 10-19, 13-16,		d=91mph; TCDL=6.0psf;								
		9-19		xp C; Enclosed; MWFRS								
REACTIONS	(lb/size) 2=103	7/0-3-8, 14=239/0-2-0,		ilever left and right expos								
	· /	04/(0-3-8 + bearing bloc		exposed; Lumber DOL=								
	(reg. 0	, U	4) Prov	vide adequate drainage to	prevent	water ponding						
	Max Horiz 2=193	/	5) This	truss has been designed	for a 10.	0 psf bottom						
		(LC 8), 14=-226 (LC 2)	n cho	d live load nonconcurrent	with any	other live load	ls.					
			' ^{),} 6)*Th	is truss has been designe	d for a liv	e load of 20.0	psf					
		33 (LC 8)	on t	ne bottom chord in all are	as where	a rectangle	-				000	TO
		8 (LC 23), 14=505 (LC 2	^{(2),} 3-06	-00 tall by 2-00-00 wide v	vill fit bet	ween the botto	m				A OF M	ALC. D
		86 (LC 2)	cho	d and any other member	s, with BC	CDL = 10.0psf.				6	THE OF M	N Sci
ORCES		ompression/Maximum	7) Bea	ring at joint(s) 2 considers	parallel	to grain value				A	7.1	N.S.
	Tension			g ANSI/TPI 1 angle to gra						A	SCOT	M. YEN
OP CHORD		414/584, 3-4=-1958/300	, des	gner should verify capaci						B	SEVI	
	4-6=-929/150, 6-	7=-900/296, 7-8=-122/1		vide mechanical connection			,		-	2 -		
	8-9=-122/192, 9-	10=-93/1724,	,	ing plate at joint(s) 14.			,			M 7		1
	10-11=-93/1075,	11-13=-192/1077,		vide mechanical connection	n (hy oth	ore) of truce to	`			TAX.		AUX NIN
	13-14=-681/670			ing plate capable of with			,			A A	NUM	BER A
BOT CHORD	2-27=-668/3000,	26-27=-605/2691,		2, 226 lb uplift at joint 14			ł			47	DE 2001	
	25-26=-335/1752		19.	2, 220 10 upint at joint 14	anu 200	io upint at joini				N	PE-2001	1000/201
	23-24=0/114, 8-2	4=-346/104, 22-23=-21	00	truss is designed in acco	rdance v	ith the 2019				V		158
	,	16-19=-1374/309,	⁷ 10) 1118	national Residential Code			h				NºSig-	ENUE
	15-16=-549/547,			2.10.2 and referenced sta			iu				SSIONA	LEY
	,		Rðu	z. ru.z anu rererenced sta	nuaru Al	NGI/TETT.					an	CCC -
												04.0004

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

December 31,2021

Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	B8	Piggyback Base	1	1	Job Reference (optional)	149493458

11-3-6 11-0-0

_9-8-0

Scale = 1:97.5

Loading

TCDL

BCLL

BCDL

WEBS

WEDGE

BRACING

TOP CHORD

BOT CHORD

WEBS

WEBS

FORCES

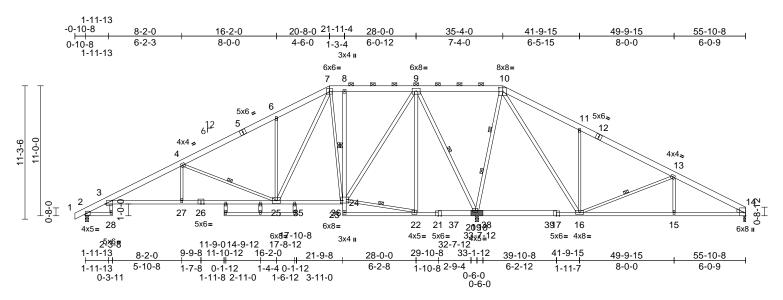
TOP CHORD

BOT CHORD

LUMBER

TOP CHORD

BOT CHORD


TCLL (roof)

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Thu Dec 30 14:16:58 Page: 1 ID:HEDVssSlsPxPD0rorlkO2YyUre3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f <u>20-8-0</u> 21-11-4 -0-10-8 8-2-0 16-2-0 28-0-0 35-4-0 41-9-15 49-9-15 55-10-8 0-10-8 8-2-0 8-0-0 4-6-0 1-3-4 6-0-12 7-4-0 6-5-15 8-0-0 6-0-9 3x4 II 6x6= 6x8= 6x8= 6 7 9 5x6. 2x4 II 5 2x4 II 5x6 ≠ 10 6¹² Λ 4x4 -3 4x4。 12 24 22 8-0-27 26 20 30 28 21 376 15 14 19831 4x5= 6x8 ı 7x12= 5x5= 2x4 II 3x5= 5x6= 5x6= 4x8= 2x4 I 4x5= 3x4 II 6x8= 17-10-8 17-9-24 " 33-7-12 32-7 16-3-4 29-10-8 33 41-9-15 28-0-0 39-10-8 49-9-15 8-2-0 16-2-0 21-9-8 55-10-8 0-1-4 3-11-0 6-2-8 6-0-9 8-2-0 8-0-0 1-10-8 2-9-4 6-2-12 1-11-7 8-0-0 1-6-0 0-6-0 0-6-0 0-1-4 Plate Offsets (X, Y): [2:Edge,0-0-15], [13:Edge,0-1-13], [25:0-3-8,0-3-0] Spacing 2-0-0 CSI DEFL in (loc) l/defl L/d PLATES GRIP (psf) 25.0 Plate Grip DOL 1.15 тс 0.48 Vert(LL) -0.16 15-18 >999 360 MT20 197/144 10.0 Lumber DOL 1.15 BC 0.79 Vert(CT) -0.27 2-28 >999 240 Rep Stress Incr WB 0.95 Horz(CT) 0.0 YES 0.06 18 n/a n/a 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.07 27-28 >999 240 Weight: 315 lb FT = 10% WEBS 24-26=-92/0, 21-23=-384/237, LOAD CASE(S) Standard 8-23=-171/1325, 8-21=0/270, 2x6 SPF No.2 8-18=-2011/224, 9-18=-1592/237, 2x4 SPF No.2 *Except* 20-16,19-17:2x4 SPF 10-15=-534/305, 12-15=-798/237, 2400F 2.0E 12-14=0/296, 9-15=-341/1263, 2x3 SPF No.2 *Except* 6-25=-331/1242, 6-23=-726/177 23-8,8-21,18-8,18-9,15-9,25-6:2x4 SPF No.2 3-28=-18/231, 3-25=-687/240, 25-27=0/314, Right: 2x3 SPF No.2 5-25=-464/257, 25-28=-344/1650 NOTES Structural wood sheathing directly applied or 2x4 SPF 2400F 2.0E bearing block 12" long at jt. 18 1) 4-8-1 oc purlins, except attached to front face with 2 rows of 10d (0.131"x3") 2-0-0 oc purlins (6-0-0 max.): 6-9. nails spaced 3" o.c. 8 Total fasteners. Bearing is Rigid ceiling directly applied or 5-9-9 oc assumed to be DF No.2. bracing. Except: Unbalanced roof live loads have been considered for 2) 1 Row at midpt 7-23 this design. 9-18, 12-15, 6-23, 3-25, 1 Row at midpt 3) Wind: ASCE 7-16; Vult=115mph (3-second gust) 5-27 Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 2 Rows at 1/3 pts 8-18 II; Exp C; Enclosed; MWFRS (envelope) exterior zone; REACTIONS (lb/size) 2=1178/0-3-8, 13=471/0-2-0, cantilever left and right exposed ; end vertical left and 18=3430/(0-3-8 + bearing block), right exposed; Lumber DOL=1.60 plate grip DOL=1.60 (req. 0-4-0) Provide adequate drainage to prevent water ponding. Max Horiz 2=193 (LC 8) This truss has been designed for a 10.0 psf bottom 5) Max Uplift 2=-197 (LC 8), 13=-177 (LC 9), chord live load nonconcurrent with any other live loads. 18=-197 (LC 8) * This truss has been designed for a live load of 20.0psf 6) 2=1274 (LC 23), 13=620 (LC 22), Max Grav on the bottom chord in all areas where a rectangle OF MISS 18=3717 (LC 2) 3-06-00 tall by 2-00-00 wide will fit between the bottom (Ib) - Maximum Compression/Maximum chord and any other members, with BCDL = 10.0psf. Tension Provide mechanical connection (by others) of truss to SCOTT M. 1-2=0/12, 2-3=-1979/281, 3-5=-1305/235, bearing plate at joint(s) 13. SEVIER 5-6=-1266/372, 6-7=-466/195, 7-8=-465/196, Provide mechanical connection (by others) of truss to 8) 8-9=0/1244, 9-10=-162/571, 10-12=-174/563, bearing plate capable of withstanding 197 lb uplift at 12-13=-913/308 joint 2, 197 lb uplift at joint 18 and 177 lb uplift at joint 2-28=-335/1682, 27-28=0/45, 26-27=0/0, NUMBER 13 24-25=-61/571, 23-24=-61/571, 22-23=0/116, 9) This truss is designed in accordance with the 2018 PE-2001018807 0 7-23=-323/101, 21-22=-19/22 International Residential Code sections R502.11.1 and 18-21=-397/256, 15-18=-917/208. R802.10.2 and referenced standard ANSI/TPI 1. 14-15=-197/748, 13-14=-197/748 SIONAL 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. December 31,2021

> MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	B9	Piggyback Base	1	1	Job Reference (optional)	149493459

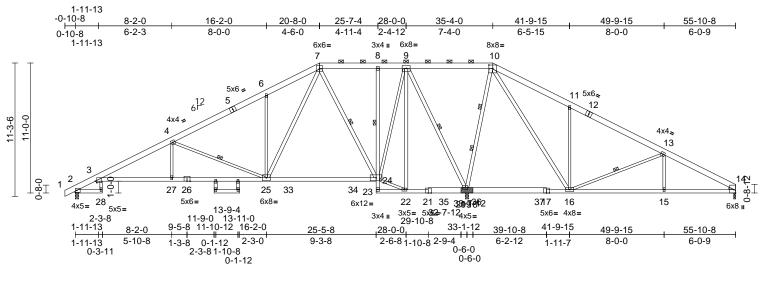
Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Thu Dec 30 14:16:59 ID:HEDVssSIsPxPD0rorlkO2YyUre3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:97.5

Plate Offsets (X, Y): [3:0-7-3,Edge], [10:0-4-0,0-3-8], [14:Edge,0-1-13], [24:0-2-0,0-2-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.73	Vert(LL)	-0.28	3-27	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.77	Vert(CT)	-0.49	3-27	>806	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.93	Horz(CT)	0.25	19	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S	-	Wind(LL)	0.21	3-27	>999	240	Weight: 329 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD	2x6 SPF No.2 *Except* 1-5:2x6 SPF 1650F 1.4E 2x4 SPF No.2 *Except* 21-17,20-18:2x6 SP DSS 2x3 SPF No.2 *Except* 29-30,31-32,25-7,24-9,9-22,19-10,16-10,33- 4:2x4 SPF No.2, 19-9:2x4 SPF 2100F 1.8E Right: 2x4 SPF No.2 Structural wood sheathing directly applied or 4-2-11 oc purlins, except 2-0-0 oc purlins (10-0-0 max.): 7-10. Rigid ceiling directly applied or 4-0-10 oc bracing. Except: tt 8-24 1 Row at midpt 4-25, 7-24, 22-24, 9-19, 13-16 2 Rows at 1/3 pts 10-19			front face v	2-28=-36/0, 3-27 25-27=-251/144' 23-24=0/112, 8-2 19-22=-1178/348 15-16=-922/399, 3-28=0/73, 4-25= 7-24=-998/243, 2 9-24=-226/1518, 9-19=-2350/295, 11-16=-534/305, 10 6-25=-444/259 S bearing block 12 vith 3 rows of 10d al fasteners. Beari	I, 24-25=-: 24=-358/10 3, 16-19=- 14-15=-92 1184/33; 22-24=-11: 9-22=0/3; 10-19=-2; 13-16=-8 -16=-341/ 2" long at (0.131"x3	259/238, 06, 22-23=-4 1778/430, 22/399 5, 7-25=-325, 47/324, 042/222, 75/227, 1288, 4-27=0 (t. 19 attache ") nails spac	/1189,)/332, d to ed 3"	Inte R80 11) Gra or t	rnationa)2.10.2 a phical p he orien tom cho	al Resid and ref purlin re tation o rd.	erenced standard presentation doe of the purlin along	ions R502.11.1 and d ANSI/TPI 1. s not depict the size
1 Row at midp WEBS		4-25 7-24 22-24 9	-19	No.2.		119 10 0000							
WEB0			2)		d roof live loads h	ave been (considered fo	or					
WEBS	2 Rows at 1/3 pts	10-19		this design									
13-16 WEBS 2 Rows at 1/3 pts 10-19 REACTIONS (lb/size) 2=893/0-3-8, 14=42/0-2-0, 19=4156/(0-3-8 + bearing block), (req. 0-4-12) Max Horiz 2=193 (LC 8) Max Uplift 2=-112 (LC 8), 14=-438 (LC 21), 19=-389 (LC 8) Max Grav 2=960 (LC 23), 14=420 (LC 22), 19=4452 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension				Vasd=91m II; Exp C; E cantilever I right expos Provide ad All plates a This truss I chord live I * This truss on the botto	E 7-16; Vult=115r ph; TCDL=6.0psf; inclosed; MWFRS eft and right expose ed; Lumber DOL= equate drainage to re 2x4 MT20 unle has been designed oad nonconcurren thas been designed that are the that are t	BCDL=6. (envelope sed; end v 1.60 plate p prevent v ss otherwi d for a 10. t with any ed for a liv eas where	Dpsf; h=25ft; e) exterior zo vertical left ar grip DOL=1 water pondin se indicated. D psf bottom other live loa e load of 20. a rectangle	ne; nd .60 g. ads. 0psf			Ko	STATE OF M STATE SCOTT	$M. \setminus \mathcal{O} $
TOP CHORD 1-2=0/12, 2-3=-507/193, 3-4=-1589/181, 4-6=-539/158, 6-7=-486/228, 7-8=0/472, 8-9=0/473, 9-10=-230/2202, 10-11=-221/1528, 11-13=-322/1529, 13-14=-511/1099				chord and a Provide me bearing pla Provide me bearing pla	any other member schanical connecti te at joint(s) 14. schanical connecti te capable of with olift at joint 19 and	s, with BC on (by oth on (by oth standing 1	DL = 10.0ps ers) of truss ers) of truss 12 lb uplift a	f. to to t joint		-	A State	PE-20010	L ENGLIS

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



December 31,2021

Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	B10	Piggyback Base	4	1	Job Reference (optional)	149493460

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Thu Dec 30 14:16:59 ID:HEDVssSlsPxPD0rorlkO2YyUre3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:97.5	
Plate Offsets (X, Y):	[3:0-1-8,0-1-8], [10:0-4-0,0-3-8], [14:Edge,0-1-13]

	(/, /). [0:0 / 0;0 / 0]	, [: 0:0 : 0,0 0 0], [:		0]	-								
Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.73 0.77	DEFL Vert(LL) Vert(CT)	in -0.34 -0.56	24-25	l/defl >999 >706	L/d 360 240	PLATES MT20	GRIP 197/144
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC20)18/TPI2014	WB Matrix-S	0.93	Horz(CT) Wind(LL)	0.25 0.21	19 28	n/a >999	n/a 240	Weight: 320 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD 1 Row at midp WEBS WEBS	2x6 SPF No.2 *Exci 1.4E 2x4 SPF No.2 *Exci 2100F 1.8E, 21-17, 2x3 SPF No.2 *Exci 29-30,31-32,24-7,19 SPF No.2, 19-9:2x4 Right: 2x3 SPF No.3 Structural wood she 4-3-12 oc purlins, e 2-0-0 o	ept* 1-5:2x6 SPF 165 ept* 26-24,17-14:2x4 20-18:2x6 SP DSS ept* 9-10,22-9,16-10,25-7 SPF 2100F 1.8E 2 eathing directly applie xcept -0-0 max.): 7-10. y applied or 5-3-11 or 4-25, 7-24, 9-19, 13 10-19 3-8, 14=26/0-2-0, (/0-3-8 + bearing blo -13) C 12) _C 8), 14=-462 (LC 2 (LC 8) C 23), 14=-462 (LC 2 (LC 2) npression/Maximum /194, 3-4=-1543/174, -446/228, 7-8=-93/10 =-243/2260,	50F SPF 2:2x4 ed or 2: 2: 4: 4: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5	 WEBS NOTES 1) 2x6 SP DSS front face wi o.c. 12 Tota No.2. 2) Unbalanced this design. 3) Wind: ASCE Vasd=91mp II; Exp C; Er cantilever le right expose 4) Provide ade 5) All plates and chord live lo 3-06-00 tall chord and a 8) Provide mee bearing plate 9) Provide mee bearing plate 	3-28=0/72, 4-25= 9-24=-75/1170, (10-19=-2063/228 13-16=-878/228, 9-22=-127/562, 2 10-16=-341/128; 6-25=-418/256, 7 5 bearing block 1: th 3 rows of 10d I fasteners. Beari roof live loads h to a room the load h to	9-19=-238 3, 11-16=- 13-15=0/ 22-24=-11 7, 4-27=0/ 7-25=-299 2" long at l (0.131"x3 ing is assu- ave been a to prevent so therwin d for a 10- it with any ed for a liv ass where will fit betw rs, with BC on (by oth standing 1	3, 7-24=-143 1/305, 533/304, 305, 56/417, 304, 11268 it. 19 attache ") nails spac med to be D considered for cond gust) Opps; h=25ft; 2) exterior zo vertical left ar grip DOL=1. water pondin. by se indicated. D psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps ers) of truss i 08 lb uplift ai	7/307, ad to ed 3" F or Cat. ne; nd .60 g. .60 g. .60 .60 .60 .60 .60 .60 .60 .6	11) Gra or t bot	aphical p	urlin retation (d.) Sta	presentation doe of the purlin along Indard	s not depict the size the top and/or
BOT CHORD	25-27=-245/1401, 2	24-25=-289/227, 128/72, 22-23=-221/0 6-19=-1832/442,		10) This truss is International	designed in acco I Residential Cod and referenced st	le sections	R502.11.1 a	and			AN NO	PE-20010	LENGT
													01 0001

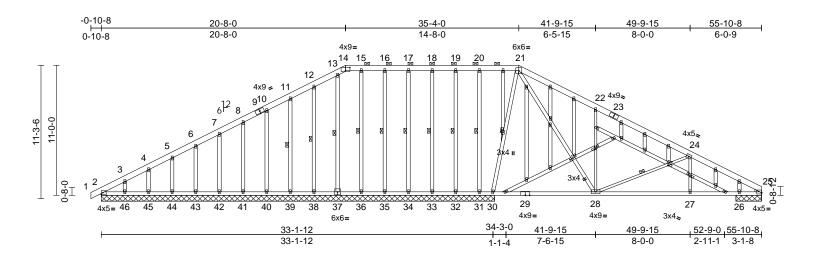
December 31,2021

Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	B11	Piggyback Base	1	1	Job Reference (optional)	149493461

Run: 8.43 E Aug 16 2021 Print: 8.430 E Aug 16 2021 MiTek Industries, Inc. Fri Dec 31 14:13:07 ID:HEDVssSIsPxPD0rorlkO2YyUre3-Vh9PMn06rTddqgGH0H?5i7fxizNnSpuR?zdJcRy3QQg Page: 1

-0-10-8 20-8-0 28-0-0 35-4-0 41-9-15 49-9-15 55-10-8 8-2-0 16-2-0 0-10-8 8-2-0 8-0-0 4-6-0 7-4-0 7-4-0 6-5-15 8-0-0 6-0-9 4x9= 6x8= 6x8= 6 8 7 Æ 4x5 🧔 4x9 5 2x4 II 4x9 ≠ 9 6¹² 4 10 11-0-0 4x5 ≠ 11-3-6 3 4x5👟 11 12 0-8-1 ¢⊥ 187167 23 22 24 2120 25 19 26 15 28 14 13 4x5: 4x5 2x4 II 3x6= 4x9= 4x9= 4x9= 4x9= 2x4 II 4x5= 4x5= 8-2-0 16-2-0 20-9-12 28-0-0 33-1-12 41-9-15 49-9-15 55-10-8 -8-2-0 8-0-0 4-7-12 7-2-4 5-1-12 8-8-3 8-0-0 6-0-9

Scale = 1:97.5


oading.	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0		1.15		TC	0.53	Vert(LL)		14-17	>999	360	MT20	197/144
CDL	10.0	Lumber DOL	1.15		BC	0.83	Vert(CT)	-0.30	14-17	>916	240		
CLL	0.0	 Rep Stress Incr 	YES		WB	0.97	Horz(CT)	0.06	17	n/a	n/a		
CDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.07	22-23	>999	240	Weight: 292 lb	FT = 10%
JMBER DP CHORD	2x6 SPF No.2				3-23=0/357, 3-2 5-20=-894/277, 6-19=-1312/192	6-20=-172/	1059,	629,					
T CHORD	2400F 2.0E	<pre>kcept* 21-15,18-16:2x4</pre>	SPF		7-17=-2004/222	, 8-17=-15 ⁻	2/253,						
EBS	2x3 SPF No.2 *Ex 20-6,19-6,7-19,17	<pre><cept* <="" r=""> </cept*></pre>	No.2		9-14=-537/305, 11-13=0/293, 8-								
RACING				OTES									
OP CHORD	Structural wood s 4-6-4 oc purlins, o 2-0-0 oc purlins (ed or 1)	attached to f nails spaced	0F 2.0E bearin ront face with 2 3" o.c. 8 Total f	2 rows of 10	d (0.131"x3'						
OT CHORD Rigid ceiling directly applied or 5-9-4 oc bracing.					be DF No.2. roof live loads ł	nave been o	onsidered fo	or					
EBS	1 Row at midpt	3-22, 5-20, 6-19, 8- 11-14	17, 3)	this design. Wind: ASCE	7-16; Vult=115	mph (3-sec	ond gust)						
EBS	2 Rows at 1/3 pts	7-17			h; TCDL=6.0psf								
EACTIONS		0/0-3-8, 12=532/0-2-0, 28/(0-3-8 + bearing bloc -3-15)	ck),	cantilever le	closed; MWFR: t and right expo d; Lumber DOL	sed; end v	ertical left ar	nd					
	Max Horiz 2=193	/	4)	Provide ade	quate drainage	to prevent v	vater pondin	g.					
	Max Uplift 2=-201	(LC 8), 12=-160 (LC 9 8 (LC 8)), 5)		as been designe ad nonconcurre			ads.					
	Max Grav 2=133	1 (LC 23), 12=654 (LC 29 (LC 2)	22), 6)	on the botto	nas been desigr n chord in all ar by 2-00-00 wide	eas where	a rectangle	•					~
DRCES	(lb) - Max. Comp. (lb) or less excep	/Max. Ten All forces t when shown.		chord and a	ny other member hanical connect	ers, with BC	DL = 10.0ps	f.				TATE OF M	AISS
OP CHORD	2-3=-2101/288, 3				at joint(s) 12.		,				A		N.S.
	,	-6=-764/220, 6-7=0/30 -236/416, 9-10=-51/41 11-12=-981/274	Ý 01	bearing plate	hanical connect capable of with b uplift at joint 1	nstanding 2	01 Îb uplift a	t			B	SCOT	M . $\langle \langle \rangle \rangle$
DT CHORD	2-23=-341/1789, 22-24=-110/1052 20-21=-110/1052 19-25=-61/653, 1	, 21-24=-110/1052, , 20-25=-61/653,	9)	 joint 2, 188 lb uplift at joint 17 and 160 lb uplift at joint 12. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 							Y	Cothom	Servi
18-26=-280/287, 17-18=-280/287, 16-17=-786/233, 16-27=-786/233, 15-27=-786/233, 15-28=-786/233, 14-28=-786/233, 13-14=-167/807,			10)) Graphical pu	Irlin representat ation of the purli	ion does no	t depict the	size			A.	PE-2001	12D
	14-28=-786/233, 12-13=-167/807	13-14=-167/807,	LO	DAD CASE(S)	Standard							CONA	and a start
												December	

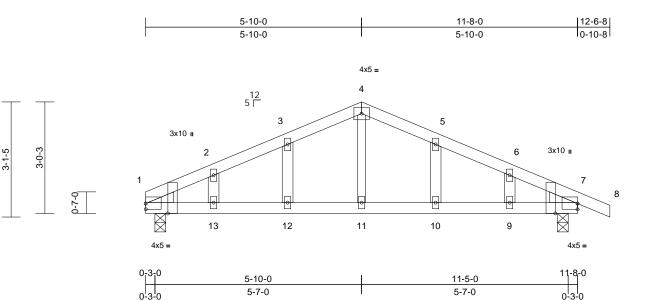
Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	B12	Piggyback Base Structural Gable	1	1	Job Reference (optional)	149493462

Run: 8.43 E Aug 16 2021 Print: 8.430 E Aug 16 2021 MiTek Industries, Inc. Fri Dec 31 14:14:10 ID:HEDVssSIsPxPD0rorlkO2YyUre3-9pTEaKmd?qZhuLaNC0dslQmmjMwRjJ9iUGO8KHy3QPh

Page: 1

Scale = 1:97.5

Plate Offsets ((X, Y): [14:0-4-8,0-3-4	l], [25:Edge,0-1-5], [48	:0-0-10,Edge], [48:0	-1-12,0-1-8], [49:0-1-10,0	0-0-4], [52:0-1-10,0-0-4	4], [53:0-2-0,0-0-4]		
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	BC C	0.58 Vert(CT) -0 0.93 Horz(CT) 0	in (loc) l/defl 09 28-30 >999 19 27-28 >999 02 30 n/a 06 27-28 >999	360 MT20 240 n/a	GRIP 197/144 Ib FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 *Exce 22-28,24-27,28-24:2 2x4 SPF No.2 Right: 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, exc 2-0-0 oc purlins (10- Rigid ceiling directly bracing, Except: 10-0-0 oc bracing: 2 1 Row at midpt	2x3 SPF No.2 2 2 2 2 2 cathing directly applied 2 2 control (2 2 2 control (2 2 2 2 2 2 2 1 2 2 1 2 3 0, 2 4 2 2 1 3 0, 2 4 2 2 1 3 0, 2 4 2 2 1 3 0, 2 4 2 2 1 3 0, 2 4 2 2 1 3 0, 2 2 2 1 3 1 2 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 3 1 3 3 3 1 3 3 1 3 3 1 3 3 3 1 3 3 3 1 3 3 1 3 3 3 1 3 3 1 3 3 1 3 3 1 3 3 3 1 3 3 1 3 3 1 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 3 3 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 1 3 1 3 3 1 3 1 3 3 3 1 3 1 3 3 1 3 1 3 3 1 3 1 3 3 1 3 1 3 3 1 3 1 3 3 1 3 1 3 3 1 3 1 3 3 1 3 1 3 1 3 1 3 3 1 3 3 1 1 3 3 1 3 1 3 1 3 1 1 3 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1	TOP CHORD	$\begin{array}{c} 2\text{-3}{=}281/367, 3\text{-4}{=}2^{+}\\ 5\text{-6}{=}-122/343, 6\text{-7}{=}77\\ 8\text{-9}{=}0/315, 9\text{-1}0\text{=}0/34^{+}\\ 11\text{-1}2\text{=}0/347, 12\text{-1}3\text{=}0\\ 14\text{-1}5\text{=}0/302, 15\text{-1}6\text{=}0\\ 17\text{-1}8\text{=}0/302, 15\text{-1}6\text{=}0\\ 20\text{-2}1\text{=}0/302, 15\text{-1}6\text{=}0\\ 20\text{-2}1\text{-2}32/234, 45\text{-4}6\\ 44\text{-4}5\text{=}-282/234, 45\text{-4}6\\ 44\text{-4}5\text{=}-282/234, 45\text{-4}6\\ 44\text{-4}5\text{=}-282/234, 37\text{-3}\\ 36\text{-3}7\text{=}-282/234, 37\text{-3}\\ 36\text{-3}7\text{=}-282/234, 37\text{-3}\\ 32\text{-3}3\text{=}-282/234, 31\text{-3}\\ 30\text{-3}1\text{=}-282/234, 27\text{-2}\\ \end{array}$	7/343, 7-8=-31/343, 3, 10-11=0/343, 7/302, 16-17=0/302, 7/302, 16-20=0/302, 7/22/425, 4=-725/232, =-282/234, 4=-282/234, 2=-282/234, 8=-282/234, 6=-282/234, 6=-282/234, 4=-282/234, 2=-282/24, 2=-282/	on the bott 3-06-00 tai chord and 9) Provide mo bearing pla joint(s) 30, 33, 32, 26 10) This truss Internation R802.10.2 11) Graphical	com chord in all areas Il by 2-00-00 wide will any other members. echanical connection ate capable of withsta 46, 45, 44, 43, 42, 4 ² except (jt=lb) 25=176 is designed in accord al Residential Code s and referenced stance purlin representation intation of the purlin al ord.	fit between the bottom (by others) of truss to nding 100 lb uplift at , 40, 39, 38, 36, 35, 3 , 2=123, 31=139. ance with the 2018 ections R502.11.1 and lard ANS/TPI 1. does not depict the siz
(lb) - Max Horiz 2=193 (LC 8) Max Uplift All uplift 100 (lb) or less at joint(s) 26, 30, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 46 except 2=-124 (LC 22), 25=-176 (LC 9), 31=-140 (LC 5) Max Grav All reactions 250 (lb) or less at joint (s) 2, 26, 31, 32, 33, 34, 35, 36, 38,		s) 1) Unbalanc c, this desig 2) Wind: AS 2) Wind: AS 2) Wind: AS 38 cantilever 38 cantilever	26-27=-207/1150, 25- 21-30=-1044/222, 22- 24-28=-663/236, 21-2 ed roof live loads have b n. CE 7-16; Vult=115mph (nph; TCDL=6.0psf; BCD Enclosed; MWFRS (env left and right exposed ; sed; Lumber DCL=1.60	28=-552/305, 8=-342/1157 een considered for 3-second gust) L=6.0psf; h=25ft; Cat. elope) exterior zone; end vertical left and			MISSOLA	
FORCES	except 25 (LC 22), 3	1, 42, 43, 44, 45, 46 5=749 (LC 1), 30=1248 37=276 (LC 1) lax. Ten All forces 25 then shown.	 3) Truss des only. For see Stanc or consult 4) Provide a 5) All plates 6) Gable stu 7) This truss 	igned for wind loads in the studs exposed to wind (in lard Industry Gable End qualified building design dequate drainage to prev are 2x4 MT20 unless oth ds spaced at 2-0-0 oc. has been designed for a load nonconcurrent with	he plane of the truss hormal to the face), Details as applicable, her as per ANSI/TPI 1. yent water ponding, herwise indicated.		PE-20	AL ENGINE


December 31,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	C1	Common Structural Gable	1	1	Job Reference (optional)	149493463

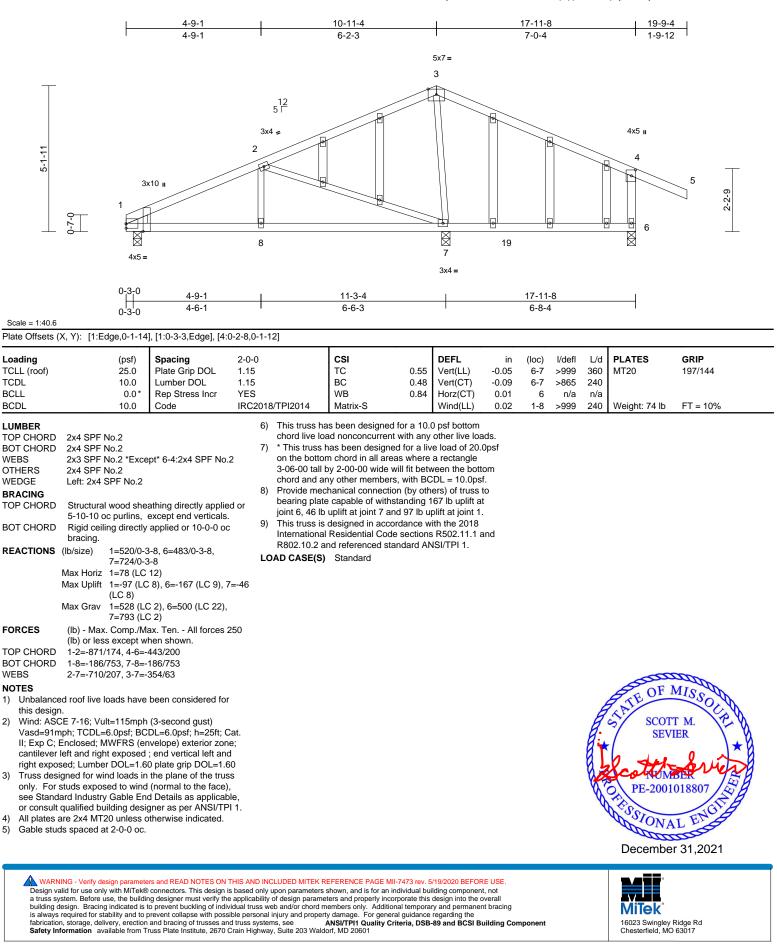
Run: 8.43 E Aug 16 2021 Print: 8.430 E Aug 16 2021 MiTek Industries, Inc. Fri Dec 31 14:14:03 ID:HEDVssSlsPxPD0rorlkO2YyUre3-sTYa6whEfghgYHY1I2?Dzx_ZJXbNaMZgtgBGaBy3QPo

Page: 1

Scale = 1:31.1

Plate Offsets (X, Y): [1:Edge,0-1-14], [1:0-3-3,Edge], [7:Edge,0-1-14], [7:0-3-3,Edge]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.29	Vert(LL)	-0.06	12-13	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.41	Vert(CT)	-0.08	12-13	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.09	Horz(CT)	0.01	7	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.04	12-13	>999	240	Weight: 38 lb	FT = 10%
LUMBER 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. TOP CHORD 2x4 SPF No.2 7) * This truss has been designed for a live load 20.0psf on the bottom chord in all areas where a rectangle OTHERS 2x3 SPF No.2 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle OTHERS 2x4 SPF No.2 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle OTHERS 2x4 SPF No.2 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 65 lb uplift at joint 1 and 89 lb uplift at joint 7. BRACING 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 65 lb uplift at joint 1 and 89 lb uplift at joint 7. BOT CHORD Rigid ceiling directly applied or 10-0-0 cc bracing. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Wax Horiz 1=-51 (LC 13) Max Uplift 1=-65 (LC 8), 7=-89 (LC 9) FORCES (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 1-2=-758/67, 2-3=-688/86, 5-4=-769/70													
	Max Uplift 1=-65 (LC	8), 7=-89 (LC 9)											
	(lb) or less except w	hen shown.											
TOP CHORD	,	,											
BOT CHORD	1-13=-43/614, 12-13 11-12=-43/614, 10-1 9-10=-43/614, 7-9=-	1=-43/614,											
WEBS	4-11=-18/252											San	TOP
 this design Wind: ASC Vasd=91m II; Exp C; I cantilever right exposion Truss desion only. For see Standor consult All plates a 	ed roof live loads have a. EF 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 gned for wind loads in studs exposed to wind ard Industry Gable En- qualified building desig are 2x4 MT20 unless c ds spaced at 2-0-0 oc.	e; I O s Ie,							ې م		STE OF I SEVEN	I M. ER Server 018807	


December 31,2021

Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	C2	GABLE	1	1	Job Reference (optional)	149493464

Run: 8.43 E Aug 16 2021 Print: 8.430 E Aug 16 2021 MiTek Industries, Inc. Fri Dec 31 14:13:59 ID:HEDVssSlsPxPD0rorlkO2YyUre3-zhl3GZekbRBF4fEG3CxHp5ppMwCPeMp4y3D3RQy3QPs

Page: 1

Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	С3	Common	1	1	Job Reference (optional)	149493465

Run: 8.43 E Aug 16 2021 Print: 8.430 E Aug 16 2021 MiTek Industries, Inc. Fri Dec 31 14:13:53

Page: 1

4

5

2-2-9

ID:HEDVssSlsPxPD0rorlkO2YyUre3-8Yxo0WZz?bQ5Lkn6ixqtZqZmLV9?EeMCa7mkDny3QPy 17-11-8 4-9-1 10-11-4 4-9-1 6-2-3 7-0-4 4x9 =3 12 5 Г 3x4 🚅 4x5 II 2 5-1-11 3x10 🛚 0-2-0 L P 0 X \bigotimes Ř 7 8 6 4x5 = 2x4 II 2x4 II 3x4 = 0-3-0 4-9-1 11-3-4 17-11-8 4-6-1 6-8-4 6-6-3

Scale = 1:40.6

Plate Offsets (X, Y): [1:Edge,0-1-14], [1:0-3-3, Edge]

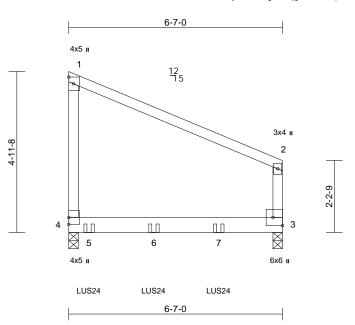
	(X, 1). [1.Euge,0 1 14	, [1.0 0 0,⊑uge]				-							
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.65	Vert(LL)	-0.05	5-6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.48	Vert(CT)	-0.09	5-6	>866	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.84	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/1	TPI2014	Matrix-S		Wind(LL)	0.02	1-7	>999	240	Weight: 56 lb	FT = 10%
LUMBER			5)	Provide mec	hanical connectio	on (by oth	ers) of truss	to					
TOP CHORD	2x4 SPF No.2				capable of withs								
BOT CHORD			j	joint 5, 62 lb	uplift at joint 6 an	id 90 lb up	olift at joint 1.						
WEBS	2x3 SPF No.2 *Exce	ept* 5-4:2x4 SPF No			designed in acco								
WEDGE	Left: 2x4 SPF No.2				Residential Code			and					
BRACING			I	R802.10.2 a	nd referenced sta	Indard AN	ISI/TPI 1.						
TOP CHORD	5-10-12 oc purlins, except end verticals.												
BOT CHORD													
REACTIONS	(lb/size) 1=521/0-3	3-8, 5=328/0-3-8,											
	6=740/0-3	3-8											
	Max Horiz 1=92 (LC	8)											
	Max Uplift 1=-90 (LC	C 8), 5=-100 (LC 9),	6=-62										
	(LC 8)												
	Max Grav 1=529 (L0 6=806 (L0		,										
FORCES	(lb) - Max. Comp./M		250										
	(lb) or less except w												
TOP CHORD BOT CHORD	, -												
WEBS	2-6=-708/207, 3-6=-												
NOTES	2 0= 100/201, 0 0=	512/15											and the second se
	ed roof live loads have	been considered fo	r									O TI	A Part
this design			•									FEUL	NISS D
	 CE 7-16; Vult=115mph	(3-second gust)									A	TATE OF	N.S.
	nph; TCDL=6.0psf; BC		Cat.								A	SCOT	TM. CA
	Enclosed; MWFRS (er										4,	/ SEV	
	left and right exposed										1	-1	\★X
	sed; Lumber DOL=1.6		60								NS	0	
	has been designed fo										84	Xatt.	South
chord live	load nonconcurrent wi	ith any other live loa	as.										

chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle

3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

December 31,2021

PE-2001018807


E

NOFFESSIONAL

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	C4	Roof Special Girder	1	1	Job Reference (optional)	149493466

Run: 8.43 E Aug 16 2021 Print: 8.430 E Aug 16 2021 MiTek Industries, Inc. Fri Dec 31 14:13:50 ID:HEDVssSlsPxPD0rorlkO2YyUre3-kzFgNUX4jg2WUH2X1pGAxCxGJI7a1Uhmu9Y4dSy3QQ? Page: 1

Scale :	= 1:35.5	

Plate Offsets (X, Y): [3:Edge,0-3-8]

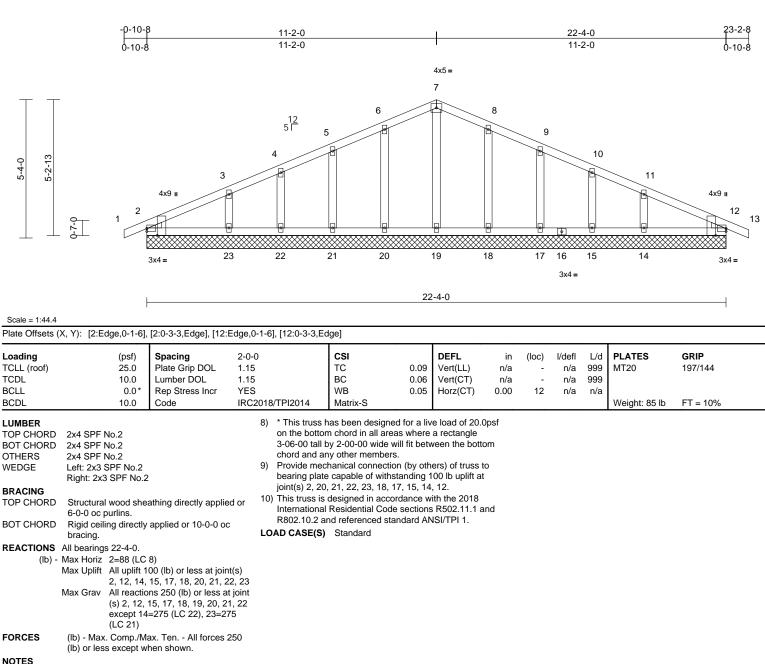
	(X, T). [0.Edg0,0 0 0]											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.63	Vert(LL)	-0.06	3-4	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.53	Vert(CT)	-0.11	3-4	>696	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI201	4 Matrix-R		Wind(LL)	0.05	3-4	>999	240	Weight: 27 lb	FT = 10%
LUMBER			8) In the L	OAD CASE(S) section	n, loads a	oplied to the	face					
TOP CHORD	2x4 SPF No.2		of the t	russ are noted as from	t (F) or ba	ck (B).						
BOT CHORD	2x6 SPF No.2		LOAD CAS	SE(S) Standard								
WEBS	2x4 SPF No.2		1) Dead	+ Roof Live (balanced	d): Lumber	Increase=1	.15,					
BRACING			Plate	Increase=1.15								
TOP CHORD	Structural wood she	athing directly appli		m Loads (lb/ft)								
	6-0-0 oc purlins, ex			t: 1-2=-70, 3-4=-20								
BOT CHORD	0 0 ,	applied or 10-0-0 o		entrated Loads (lb)								
	bracing.		Vei	t: 5=-186 (B), 6=-181	(B), 7=-18	1 (B)						
REACTIONS	· · ·	3-8, 4=617/0-3-8										
	Max Horiz 4=-187 (L											
	Max Uplift 3=-89 (LC											
	Max Grav 3=520 (L0	,, (,										
FORCES	(lb) - Max. Comp./M		250									
	(lb) or less except w	hen shown.										
NOTES												
	CE 7-16; Vult=115mph											
	mph; TCDL=6.0psf; BC											
	Enclosed; MWFRS (er											
	 left and right exposed osed; Lumber DOL=1.6 											
	s has been designed for		.60									
	load nonconcurrent wi		ade									
	ss has been designed f										STATE OF	and the
	ttom chord in all areas		opoi								F.OF	MISS D
	all by 2-00-00 wide will		om							4		N.S.
	any other members.									H	SCOT	TM YPY
	nechanical connection	(by others) of truss t	to							B	SEV	IFR VV
bearing pl	late capable of withstar	nding 171 Ib uplift at	t							RA		
	d 89 lb uplift at joint 3.									8	1	1 2 1
	is designed in accorda									95	1 de	
Internation	nal Residential Code s	ections R502.11.1 a	and							V	CONT	BER

R802.10.2 and referenced standard ANSI/TPI 1. 6) Use Simpson Strong-Tie LUS24 (4-10dx1 1/2 Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 0-7-8 from the left end to 4-7-8 to connect truss(es) to back face of bottom chord.Fill all nail holes where hanger is in contact with lumber.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PE-20010188

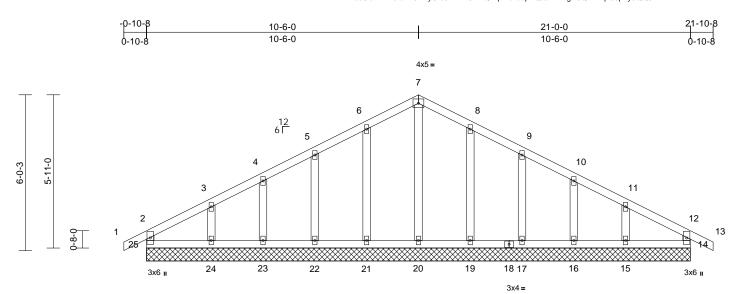
SIONAL


December 31,2021

E

ſ	Job	Truss	Truss Type	Qty	Ply	57 W2	
	B210104	C5	Common Supported Gable	1	1	Job Reference (optional)	149493467

Run: 8.43 E Aug 16 2021 Print: 8.430 E Aug 16 2021 MiTek Industries, Inc. Fri Dec 31 14:13:45 ID:HEDVssSIsPxPD0rorlkO2YyUre3-N?SnKmTyu8QEOVAaEGh?E8EX0HXiMEe1ktqJyEy3QQ4


- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	D1	Common Supported Gable	1	1	Job Reference (optional)	149493468

Run: 8.43 E Aug 16 2021 Print: 8.430 E Aug 16 2021 MiTek Industries, Inc. Fri Dec 31 14:13:41 ID:HEDVssSlsPxPD0rorlkO2YyUre3-VEDGVPQRqvwovusp?Qc34l4rNgA8QPLRqFs6pTy3QQ8

<u> </u>			
Scale	= '	1:44.5	

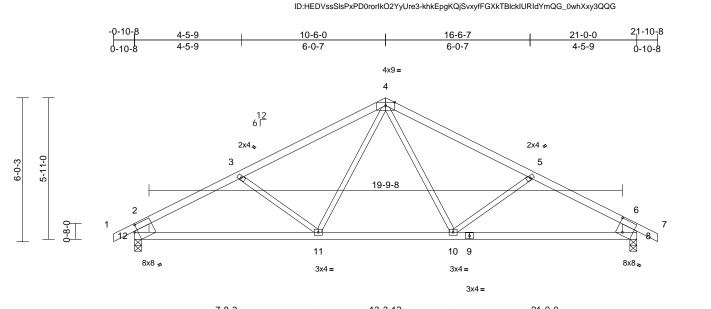
21-0-0

Scale = 1.44.5						. <u> </u>						
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.07	Horz(CT)	0.00	14	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI201	4 Matrix-R							Weight: 86 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins, ex	cept end verticals.	ed or c c tor c c c c c c c c c c c c c c c c c c c	russ has been design bottom chord in all ar 0 tall by 2-00-00 wide and any other member e mechanical connec 0 plate capable of witi 25, 14, 21, 22, 23, 2 iss is designed in acc tional Residential Co 0.2 and referenced s GE(S) Standard	eas where will fit betw ers. tion (by oth hstanding 1 4, 19, 17, 1 cordance w de sections	a rectangle ween the botto ners) of truss t 100 lb uplift at 6, 15. rith the 2018 s R502.11.1 a	om to t					
(lb) -	Max Horiz 25=90 (LC Max Uplift All uplift 1 14, 15, 16 25											
		ons 250 (lb) or less a , 16, 17, 19, 20, 21, 5										
FORCES	(lb) - Max. Comp./M (lb) or less except w		250									
NOTES												
 Unbalance this design 	ed roof live loads have n.	been considered fo	or									
Vasd=91n II; Exp C; cantilever right expo	 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 											

- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 5)
- Truss to be fully sheathed from one face or securely 6) braced against lateral movement (i.e. diagonal web). 7)
- Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Page: 1



Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	D2	Common	4	1	Job Reference (optional)	149493469

Run: 8.43 E Aug 16 2021 Print: 8.430 E Aug 16 2021 MiTek Industries, Inc. Fri Dec 31 14:13:33

Page: 1

Wheeler Lumber, Waverly, KS - 66871,

1	7-8-3	13-3-13	21-0-0
I	7-8-3	5-7-10	7-8-3
Scale = 1:48.2			

Plate Offsets (X, Y): [8:0-3-2,0-6-8], [12:0-1-10,0-3-4]

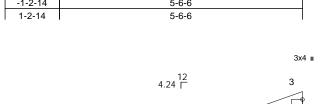
	(A, T). [0.0-3-2,0-0-0],	[12.0-1-10,0-3-4]		-								
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.83	Vert(LL)	-0.13	10-11	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.59	Vert(CT)	-0.21	10-11	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.13	Horz(CT)	0.04	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.08	10-11	>999	240	Weight: 72 lb	FT = 10%
LUMBER			6) This truss	is designed in acco	ordance wi	ith the 2018						
TOP CHORD	2x4 SPF No.2			nal Residential Code			nd					
BOT CHORD				and referenced sta	andard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2 *Exce	ept* 12-2,8-6:2x8 SF	DSS LOAD CASE	Standard								
BRACING												
TOP CHORD												
	2-8-10 oc purlins, e											
BOT CHORD	 Rigid ceiling directly bracing. 	applied of 10-0-0 0	C									
REACTIONS	•	-3-8, 12=1000/0-3-8	2									
REACTIONS	Max Horiz 12=93 (LC											
	Max Uplift 8=-141 (L		3)									
FORCES	(lb) - Max. Comp./Max											
	(lb) or less except w											
TOP CHORD	2-3=-1415/220, 3-4=	-1181/162,										
	4-5=-1181/162, 5-6=											
	2-12=-906/178, 6-8=											
BOT CHORD	,	,										
WEBS	9-10=-133/1170, 8-9 4-10=-42/315, 5-10=		215									
WEBS	3-11=-288/205	200/200, 4-1142										
NOTES	0 200/200											
	ed roof live loads have	been considered fo	r									an
this desig											TATE OF J	MIG
	CE 7-16; Vult=115mph										FE	JUSS C
	mph; TCDL=6.0psf; BC									G	N	N SY
	Enclosed; MWFRS (er									B		
	r left and right exposed osed; Lumber DOL=1.6									81	SEV	IER \ X
	s has been designed for		00							R.A		
	e load nonconcurrent wi		ds.							X		Sama)
	ss has been designed f								- 1		NUM	BER
	ottom chord in all areas									NY	PE-2001	018807
3-06-00 t	all by 2-00-00 wide will	fit between the botto	om							XX	~~~~~~	STATION AND AND AND AND AND AND AND AND AND AN

3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

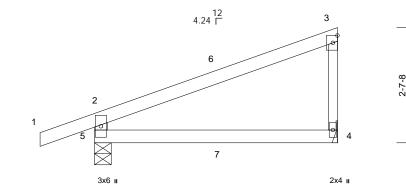
5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 141 lb uplift at joint 12 and 141 lb uplift at joint 8.

SSIONAL December 31,2021

E



Job	Truss	Truss Type	Qty Ply		57 W2	
B210104	J1	Diagonal Hip Girder	2	1	Job Reference (optional)	149493470


Run: 8.43 E Aug 16 2021 Print: 8.430 E Aug 16 2021 MiTek Industries, Inc. Fri Dec 31 14:13:29 ID:HEDVssSlsPxPD0rorlkO2YyUre3-rwUkzIHvfDPVT2xVIvOFbmaj9q1zc?Ug3OyTOAy3QQK

5-6-6

Scal	le =	1:26.2	

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.41	Vert(LL)	-0.03	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.25	Vert(CT)	-0.07	4-5	>967	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	4-5	>999	240	Weight: 16 lb	FT = 10%

LU

- TOP CHORD 2x4 SPF No.2
- BOT CHORD 2x4 SPF No.2

2x4 SPF No.2 *Except* 3-4:2x3 SPF No.2

WEBS

RR	ΔCI	NG	

TOP CHORD	Structural wood sheathing directly applied or
	5-6-6 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	le une altre au

- bracing. REACTIONS (lb/size) 4=224/ Mechanical, 5=346/0-4-9 Max Horiz 5=111 (LC 7) Max Uplift 4=-50 (LC 8), 5=-101 (LC 4)
- FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-306/140

NOTES

Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 4)
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 101 lb uplift at joint 5 and 50 lb uplift at joint 4.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

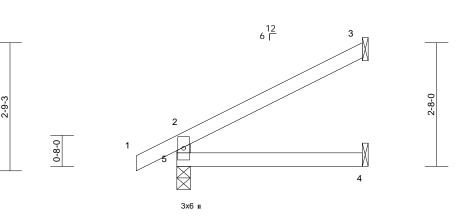
- provided sufficient to support concentrated load(s) 69 lb down and 36 lb up at 2-9-8, and 69 lb down and 36 lb up at 2-9-8 on top chord, and 3 lb down and 1 lb up at 2-9-8, and 3 lb down and 1 lb up at 2-9-8 on bottom chord. The design/selection of such connection device (s) is the responsibility of others.
- In the LOAD CASE(S) section, loads applied to the face 8) of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15 Uniform Loads (lb/ft)
 - Vert: 1-2=-70, 2-3=-70, 4-5=-20
 - Concentrated Loads (lb) Vert: 7=2 (F=1, B=1)



December 31,2021



Job	Truss	Truss Type	Qty	Ply	57 W2	140400474	
B210104	J2	Jack-Open	3	1	Job Reference (optional)	149493471	

Run: 8.43 E Aug 16 2021 Print: 8.430 E Aug 16 2021 MiTek Industries, Inc. Fri Dec 31 14:13:26 ID:HEDVssSIsPxPD0rorlkO2YyUre3-RLpbLHE1MI1wcbDwdmrYz8yF4d1CPekENQkpnry3QQN

4-0-0

Scale	_ '	1.21 0	

Scale = 1:24.8												
_oading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.20	Vert(LL)	-0.01	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.13	Vert(CT)	-0.02	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	4-5	>999	240	Weight: 11 lb	FT = 10%
UMBER												
	2x4 SPF No.2											
BOT CHORD												
VEBS	2x4 SPF No.2											
BRACING	24 011 10.2											
	Other strengt was a dish a	- the loss of the state of the										
OP CHORD			ed or									
	4-0-0 oc purlins, ex											
BOT CHORD	Rigid ceiling directly bracing.	applied of 10-0-0 0	C									
	•	achemical 4 45/										
REACTIONS		echanical, 4=45/ al, 5=252/0-3-8										
		,										
	Max Horiz 5=89 (LC	,										
	Max Uplift 3=-66 (LC											
	Max Grav 3=116 (LC (LC 1)	C 1), 4=71 (LC 3), 5	=252									
ORCES	(lb) - Max. Comp./Ma	ax. Ten All forces	250									

NOTES

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

(lb) or less except when shown.

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 30 lb uplift at joint 5 and 66 lb uplift at joint 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

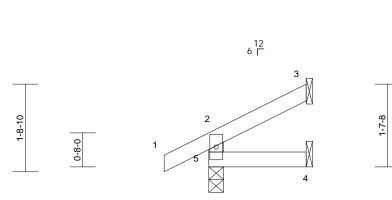
December 31,2021

Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	J3	Jack-Open	4	1	Job Reference (optional)	149493472

-0-10-8

0-10-8

Wheeler Lumber, Waverly, KS - 66871,


Run: 8.43 E Aug 16 2021 Print: 8.430 E Aug 16 2021 MiTek Industries, Inc. Fri Dec 31 14:13:22 ID:HEDVssSlsPxPD0rorlkO2YyUre3-ZaZ4VvBWJ4WV7zv9OxmcpIncA0hvTqleSombe4y3QQR

1-10-15

1-10-15

Page: 1

3x6 II

1-10-15

Scal	<u> </u>	1.22	6

L/d PLATES GRIP
360 MT20 197/144
240
n/a
240 Weight: 6 lb FT = 10%

-		\sim	 -

Structural	wood sheathing directly applied or
1-10-15 o	c purlins, except end verticals.
Rigid ceili	ing directly applied or 10-0-0 oc
bracing.	
(lb/size)	3=44/ Mechanical, 4=14/
	Mechanical, 5=171/0-3-8
Max Horiz	5=48 (LC 8)
	1-10-15 c Rigid ceili bracing. (lb/size)

110112	- J=+0 (LO 0)
Max Uplift	t 3=-30 (LC 8), 5=-26 (LC 8)
Max Grav	3=44 (LC 1), 4=31 (LC 3), 5=171
	(LC 1)

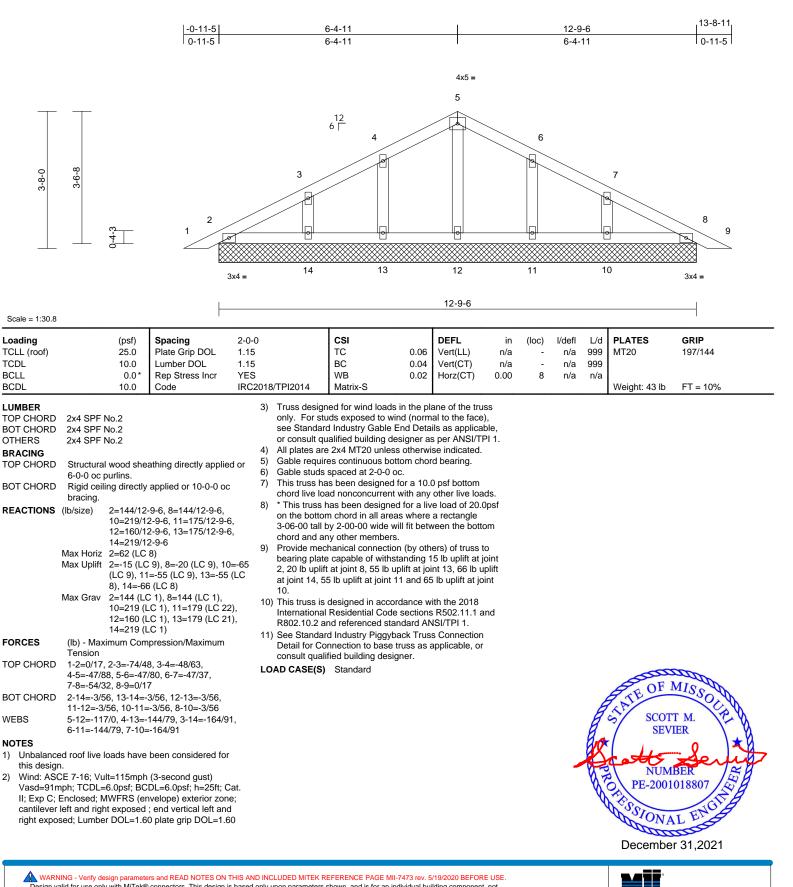
FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 26 lb uplift at joint 5 and 30 lb uplift at joint 3.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

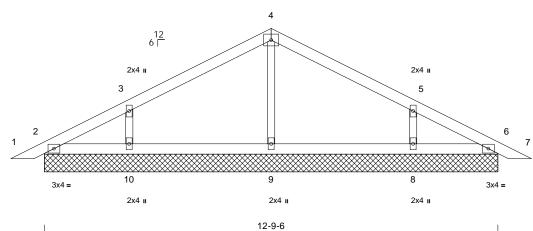
LOAD CASE(S) Standard

December 31,2021



Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	P1	Piggyback	2	1	Job Reference (optional)	149493473

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Thu Dec 30 14:17:02 ID:HEDVssSisPxPD0rorlkO2YyUre3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Mitek* 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	P2	Piggyback	19	1	Job Reference (optional)	149493474

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Thu Dec 30 14:17:02 Page: 1 ID:HEDVssSlsPxPD0rorlkO2YyUre3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 13-8-11 -0-11-5 6-4-11 12-9-6 0-11-5 0-11-5 6-4-11 6-4-11 4x5 = 4 12 6 ┌ 2x4 II 2x4 II 3 5

Scale = 1:32.5

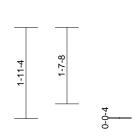
			·											
Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		тс	0.17	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.10	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.07	Horz(CT)	0.00	6	n/a	n/a		
BCDL		10.0	Code	IRC20)18/TPI2014	Matrix-S							Weight: 37 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No. 2x3 SPF No. Structural w 6-0-0 oc pur Rigid ceiling bracing. (Ib/size) 2= 8= 10 Max Horiz 2= Max Uplift 2= (L Max Grav 2=	.2 .2 ood sheat lins. directly =130/12- =332/12- D=332/12 =-62 (LC =-17 (LC .C 9), 10 =130 (LC .C 22), 9		d or ≎ 109 3=341	 chord live loa * This truss I on the bottor 3-06-00 tall b chord and ar 8) Provide mec bearing plate 2, 13 lb uplifi uplifit at joint 9) This truss is International 10) See Standar Detail for Co 	designed in accor Residential Code nd referenced star d Industry Piggyb nnection to base t fied building desig	with any d for a liv is where ill fit betv n (by oth tanding 1 uplift at jund dance w sections ndard Al ack Trus	other live load e load of 20. a rectangle veen the bott ers) of truss i 7 lb uplift at j pint 10 and 1 ith the 2018 § R502.11.1 a USI/TPI 1. s Connection	Opsf com to joint 09 lb and					
FORCES	(lb) - Maximi Tension	um Com	pression/Maximum											
TOP CHORD			4, 3-4=-106/87, 6/29, 6-7=0/17											
BOT CHORD	2-10=0/57, 9	9-10=0/5	7, 8-9=0/57, 6-8=0/5	57										
WEBS	4-9=-228/36	, 3-10=-2	273/152, 5-8=-273/1	51										and and
NOTES													OF I	A Part
1) Unbalance this design		ds have	been considered for									4	THE OF I	NIISSON STAN
Vasd=91n II; Exp C; cantilever right expo 3) Truss des only. For see Stand or consult 4) Gable req	nph; TCDL=6.C Enclosed; MW left and right e used; Lumber D igned for wind studs exposed dard Industry G qualified buildi	Dpsf; BCl FRS (en exposed DOL=1.60 loads in to wind able End ing desig us bottor	(3-second gust) DL=6.0psf; h=25ff; C welope) exterior zon; end vertical left and 0 plate grip DOL=1.6 the plane of the trus (normal to the face) d Details as applicab gner as per ANSI/TP n chord bearing.	e; d 60 ;s , ole,									SCOT SEV SEV OPE-2001 PE-2001	T M. HER 018807

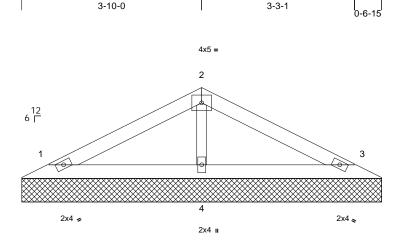
December 31,2021

Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	V1	Valley	1	1	Job Reference (optional)	149493475

3-10-0

Wheeler Lumber, Waverly, KS - 66871,


Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Thu Dec 30 14:17:02 ID:HEDVssSIsPxPD0rorlkO2YyUre3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


7-1-1

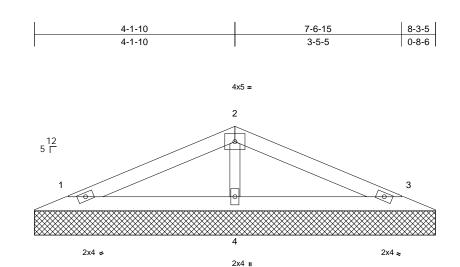
P

7-8-0

7-8-0

Scale	_ `	1.2/1 5

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.19 0.09 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 197/144 FT = 10%
	6-0-0 oc purlins. Rigid ceiling directly bracing.	12)	L(bearing plate 1, 40 lb uplift This truss is International	hanical connection e capable of withs t at joint 3 and 4 I designed in accor Residential Code nd referenced sta Standard	standing 3 b uplift at ordance wi e sections	5 lb uplift at jo joint 4. ith the 2018 5 R502.11.1 a	oint					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	(lb) - Maximum Con Tension 1-2=-73/41, 2-3=-73 1-4=-1/32, 3-4=-1/32 2-4=-198/52 d roof live loads have	3/29 2											


- Wind: ASCE 7-16; Vult=115mph (3-second gust)
 Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	V2	Valley	1	1	Job Reference (optional)	149493476

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Thu Dec 30 14:17:02 ID:HEDVssSlsPxPD0rorlkO2YyUre3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-3-5

Scale = 1:23.8			I									
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.21	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 19 lb	FT = 10%

International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

BRACING TOP CHORD Structural wood sheathing directly applied or LOAD CASE(S) Standard 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) 1=156/8-3-5, 3=156/8-3-5, 4=306/8-3-5

1-5-3

1-8-15

Max Horiz 1=25 (LC 8) 1=-36 (LC 8), 3=-40 (LC 9), 4=-8 Max Uplift (LC 8) FORCES (Ib) - Maximum Compression/Maximum

Tension TOP CHORD 1-2=-63/36, 2-3=-63/25

BOT CHORD 1-4=-1/27, 3-4=-1/27 2-4=-220/59

WEBS

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 7)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

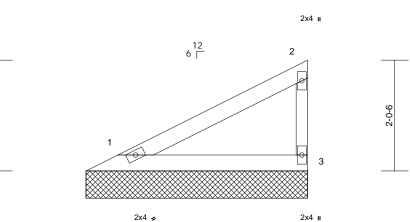
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

I

Page: 1

December 31,2021

Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	V3	Valley	1	1	Job Reference (optional)	149493477


4-<u>0-12</u>

Wheeler Lumber, Waverly, KS - 66871,

2-0-6

Run: 8.43 E Aug 16 2021 Print: 8.430 E Aug 16 2021 MiTek Industries, Inc. Fri Dec 31 14:13:16 ID:HEDVssSlsPxPD0rorlkO2YyUre3-kQCpFs7ljEmLP2S?1gfCZ1XYebd836Gl4sJHQQy3QQX

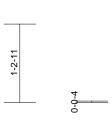
4-0-12

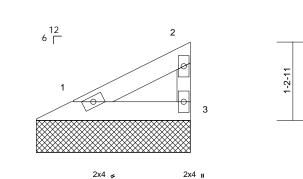
Scale = 1	:21.1
-----------	-------

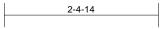
Scale = 1:21.1												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P	_						Weight: 10 lb	FT = 10%
LUMBER												
TOP CHORD	2x4 SPF No.2											
BOT CHORD												
WEBS	2x3 SPF No.2											
BRACING												
TOP CHORD												
	4-0-12 oc purlins, e											
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	C									
REACTIONS	(lb/size) 1=150/4-0	0-12, 3=150/4-0-12										
	Max Horiz 1=70 (LC	,										
	Max Uplift 1=-19 (LC	C 8), 3=-37 (LC 8)										
FORCES	(lb) - Max. Comp./M		250									
	(lb) or less except w	men shown.										
NOTES	CE 7-16; Vult=115mph	(2 accord quat)										
	mph; TCDL=6.0psf; BC		Cat									
	Enclosed; MWFRS (er											
	left and right exposed											
	osed; Lumber DOL=1.6											
	signed for wind loads in											
	studs exposed to wind											
	dard Industry Gable En											
	t qualified building desi		PI 1.								200	an
	quires continuous botto Ids spaced at 2-0-0 oc.										POF	MISSO
	s has been designed for										BIE	1050.0
	load nonconcurrent wi		lds							E	122	1 CAN
	ss has been designed f									B	S/ SCUI	
	ttom chord in all areas									1	/ SEV	IER \ X
	all by 2-00-00 wide will		om							Ald A		0 *1
	d any other members.									ሆላ		· Xnall
,	nechanical connection								-		NUM	BAR YANA
	late capable of withstar	nding 19 lb uplift at j	oint							117	PE-2001	
	lb uplift at joint 3.									N	PE-2001	018807
	s is designed in accorda		nd							Y		SO B
	2 and referenced stand										S'SIONA	LETA
	(S) Standard										Con	T
LUAD CASE	() Stanuaru										Decembra	- 04 0004

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

December 31,2021


Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	V4	Valley	1	1	Job Reference (optional)	149493478


Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Thu Dec 30 14:17:03 ID:HEDVssSIsPxPD0rorlkO2YyUre3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


2x4 II

Page: 1

Pag

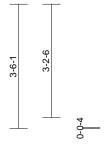
2-4-14

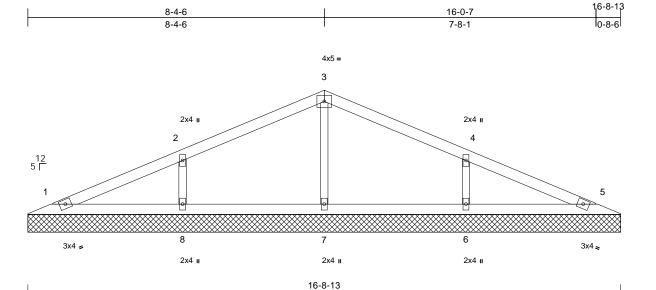
Scale =	: 1:18
---------	--------

ocale = 1.10												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.05 0.03 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 6 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x3 SPF No.2 Structural wood she 2-5-6 oc purlins, ex	cept end verticals.	Internationa R802.10.2 a LOAD CASE(S	designed in acco Residential Code and referenced sta Standard	e sections	R502.11.1 a	ind					
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (Ib/size) 1=77/2-4-14, 3=77/2-4-14 Max Horiz 1=36 (LC 5) Max Horiz 1=36 (LC 5) Max Uplift 1=-10 (LC 8), 3=-19 (LC 8) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-33/22, 2-3=-60/29												
 Vasd=91rr II; Exp C; E cantilever I right expos 2) Truss desi only. For s see Stand or consult 3) Gable requ 4) Gable stuc 5) This truss chord live 6) * This truss on the bott 3-06-00 tal chord and 	1-3=-12/9 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 igned for wind loads in studs exposed to wind ard Industry Gable En- qualified building desig- uires continuous bottor ds spaced at 4-0-0 oc. has been designed for load nonconcurrent wi s has been designed for tom chord in all areas any other members. echanical connection (DL=6.0psf; h=25ft; 0 velope) exterior zor ; end vertical left an 0 plate grip DOL=1. the plane of the tru (normal to the face d Details as applical gner as per ANSI/TF n chord bearing. r a 10.0 psf bottom th any other live loa or a live load of 20.0 where a rectangle fit between the bottom	ne; d 60 ss), ble, PI 1. ds. Jpsf						~		STATE OF STATE OF SEV SEV NUM PE-2001	T M. HER BER

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10 lb uplift at joint 1 and 19 lb uplift at joint 3.

> NITEK° 16023 Swingley Ridge Rd Chesterfield, MO 63017


December 31,2021


ESSIONAL E

Job)	Truss	Truss Type	Qty	Ply	57 W2	
B2 ⁻	10104	V5	Valley	1	1	Job Reference (optional)	149493479

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Thu Dec 30 14:17:03 ID:HEDVssSlsPxPD0rorlkO2YyUre3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

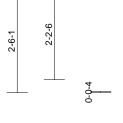
Scale = 1:32.5

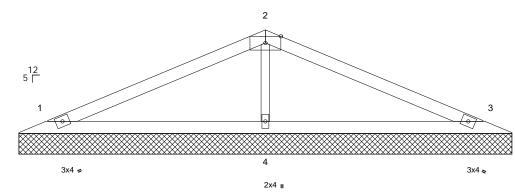
Loading	(ps		2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.	D Plate Grip DOL	1.15	TC	0.20	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.) Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999		
BCLL	0.		YES	WB	0.06	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.	Code	IRC2018/TPI20	14 Matrix-S							Weight: 42 lb	FT = 10%
LUMBER			6) This t	uss has been designe	d for a 10.	0 psf bottom						
TOP CHORD	2x4 SPF No.2		, chord	live load nonconcurrer	nt with any	other live load	ls.					
BOT CHORD	2x4 SPF No.2		7) * This	truss has been design	ed for a liv	e load of 20.0	psf					
OTHERS	2x3 SPF No.2		on the	bottom chord in all are	eas where	a rectangle						
BRACING				00 tall by 2-00-00 wide		veen the botto	m					
TOP CHORD	Structural wood	sheathing directly appli		and any other membe								
	6-0-0 oc purlins.		, hearing	le mechanical connecti								
BOT CHORD	Rigid ceiling dire bracing.	ctly applied or 10-0-0 c	1, 14	g plate capable of with b uplift at joint 5, 114 I								
REACTIONS	(lb/size) 1=13	/16-8-13, 5=135/16-8- ⁻		at joint 6. russ is designed in acc	ordance v	ith the 2018						
		/16-8-13, 7=300/16-8-		ational Residential Coc			nd					
		/16-8-13		10.2 and referenced st								
	Max Horiz 1=56			SE(S) Standard								
		(LC 9), 5=-14 (LC 9), 6	6=-114 Lond on									
	,	, 8=-114 (LC 8) 5 (LC 1), 5=135 (LC 1),	6-410									
		2), 7=300 (LC 1), 8=410										
	21)		0 (20									
FORCES		Compression/Maximum	ı									
	Tension											
TOP CHORD	,	-88/84, 3-4=-88/72,										
	4-5=-57/43											
BOT CHORD WEBS	,	/43, 6-7=0/43, 5-6=0/43 =-318/160, 4-6=-318/1										
NOTES	5-7=-220/57, 2-0		00								- COL	alle
	od roof live loade h	ave been considered fo	or								TATE OF	MISCO
this design			JI								4 SE	
		nph (3-second gust)								A	N/ anon	New
		BCDL=6.0psf; h=25ft;	Cat.							a	S/ SCUI	IM. YYY
		(envelope) exterior zo								Ø.	SEV	
cantilever	left and right expo	sed ; end vertical left ar	nd							80	1.12	
		1.60 plate grip DOL=1								WX.	TT	the state
		s in the plane of the tru								XX	NUM	ann
		vind (normal to the face								N7	PE-2001	018807
		End Details as applica lesigner as per ANSI/T								N	PE-2001	124
		ottom chord bearing.								X	1080	GIA
	ds spaced at 4-0-0										S'SIONA	LEFA
-,											an	and a
												r 31 2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

December 31,2021

Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	V6	Valley	1	1	Job Reference (optional)	149493480


 Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Thu Dec 30 14:17:03
 Page: 1


 ID:HEDVssSIsPxPD0rorlkO2YyUre3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f
 Page: 1

 5-11-10
 11-2-14
 11-11-3

 5-11-10
 5-3-4
 0-8-6

 4x9 =
 2

11-11-3

Scale = 1:27.9

00010 = 112110														
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.39 0.23 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	12) C 8), 3=-51 (LC 9), 4= C 21), 3=217 (LC 22)	9) ^{3,} L(=-33	on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 1, 51 lb uplift This truss is International	has been design in chord in all ar by 2-00-00 wide hanical connect e capable of with at joint 3 and 3 designed in acc Residential Co nd referenced s Standard	reas where will fit betw ers. ttion (by oth hstanding 4 33 lb uplift a cordance w ode sections	a rectangle veen the both 5 lb uplift at j it joint 4. ith the 2018 5 R502.11.1 a	om to oint						
this desigr	2-4=-362/96 ed roof live loads have	11/44 4 been considered for										- COM	JEE	

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

December 31,2021

Job	Truss	Truss Type	Qty	Ply	57 W2	
B210104	V7	Valley	1	1	Job Reference (optional)	149493481

3-6-13

3-6-13

Wheeler Lumber, Waverly, KS - 66871,

1-2-6

1-6-1

cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face),

This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

Gable studs spaced at 4-0-0 oc.

chord and any other members.

see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.4) Gable requires continuous bottom chord bearing.

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Thu Dec 30 14:17:03 ID:HEDVssSlsPxPD0rorlkO2YyUre3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-5-4

2-10-7

7-1-10

0-8-6

3

4x5 =

4 2x4 z 2x4 u

7-1-10

Scale = 1:22.8

3)

5)

6)

7)

Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.14	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.14	Vert(TL)	n/a	_	n/a	999	WI120	13//144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.07	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code		8/TPI2014	Matrix-P	0.00	TION2(TE)	0.00	0	n/a	n/a	Weight: 16 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly	• • • •	LC	bearing plate 1, 34 lb uplift This truss is International	hanical connecti e capable of with a t joint 3 and 7 designed in acc Residential Coo nd referenced st Standard	nstanding 3 Ib uplift at ordance wi de sections	0 lb uplift at j joint 4. ith the 2018 ; R502.11.1 a	oint					
BOTCHORD	bracing.		,										
	•	8)	=-7										
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD BOT CHORD WEBS	1-2=-53/30, 2-3=-53, 1-4=-1/22, 3-4=-1/22 2-4=-184/50												
NOTES													
 Unbalanced roof live loads have been considered for this design. 													
2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone;									and the				

NITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

