

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

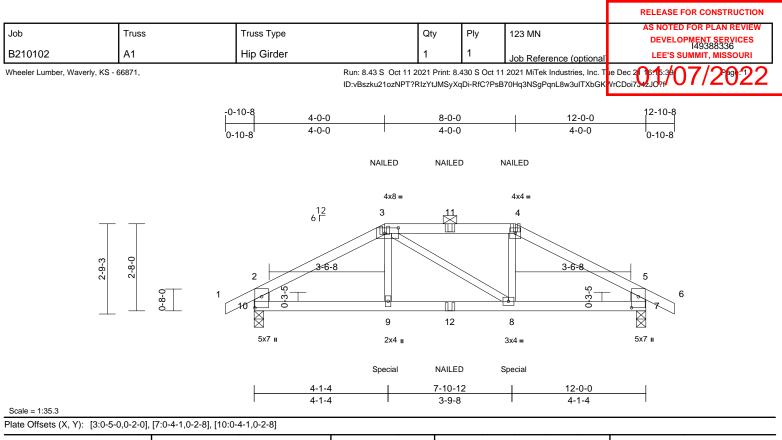
Re: B210102 123 MN

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Wheeler - Waverly.

Pages or sheets covered by this seal: I49388336 thru I49388377

My license renewal date for the state of Missouri is December 31, 2021.

Missouri COA: Engineering 001193



Sevier, Scott

December 22,2021

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

,Engineer

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO RC2018/TPI2014	CSI TC BC WB Matrix-S	0.71 0.67 0.10	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.07 -0.13 0.02 0.06	(loc) 8-9 8-9 7 8-9	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 39 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x3 SPF No.2 *Exce Structural wood she 4-3-4 oc purlins, ex 2-0-0 oc purlins (5-C Rigid ceiling directly	ept* 10-2,7-5:2x6 SP DS athing directly applied c cept end verticals, and -4 max.): 3-4. • applied or 10-0-0 oc	bearing plate joint 10 and SS 7) This truss is International R802.10.2 a 8) Graphical pu or the orient bottom chore		tanding 2 nt 7. rdance w sections ndard AN n does no along the	01 Ib uplift at the 2018 R502.11.1 at ISI/TPI 1. of depict the s top and/or	and					
REACTIONS	bracing. (Ib/size) 7=899/0-3 Max Horiz 10=50 (L0 Max Uplift 7=-201 (L		(0.148"x3.25 10) Hanger(s) or provided suf	dicates 3-10d (0.1 5") toe-nails per N r other connection ficient to support	DS guidli device(s concentra	nes.) shall be ated load(s) 2						
FORCES	(lb) - Maximum Com Tension 1-2=0/35, 2-3=-123		lb up at 7-1 of such conr others. 11) In the LOAD	57 lb up at 4-0-0 1-4 on bottom cho nection device(s) i	ord. The o s the resp , loads ap	design/select consibility of oplied to the t	ion					
this design 2) Wind: ASO Vasd=91n II; Exp C; cantilever	9-10=-219/1012, 8-5 7-8=-196/1013 3-9=0/271, 3-8=-50/ ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed	52, 4-8=-5/279 been considered for (3-second gust) DL=6.0psf; h=25ft; Cat. twelope) exterior zone;	LOAD CASE(S) 1) Dead + Ro Plate Incre- Uniform Lo Vert: 1-2 7-10=-20 Concentrat Vert: 3=-	of Live (balanced) ase=1.15 ads (lb/ft) :=-70, 2-3=-70, 3	: Lumber 4=-70, 4-{	Increase=1. 5=-70, 5-6=-7	70,				STATE OF STATE SCO SET	MISSOLA TT M. VIER

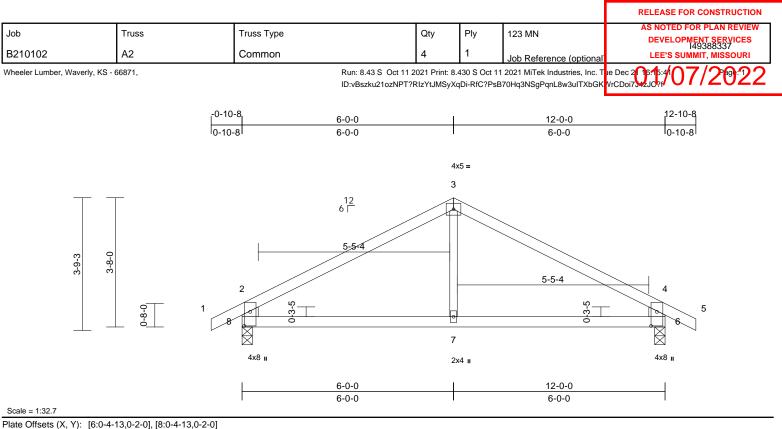
3) Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom 4) chord live load nonconcurrent with any other live loads.

right exposed; Lumber DOL=1.60 plate grip DOL=1.60

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NUMBER


PE-2001018807

December 22,2021

E

HESSIONAL

C

Plate Offsets (X, Y): [6:0-4-13,0-2-0], [8:0-4-13,0-2-0]													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.42	Vert(LL)	-0.02	7-8	>999		MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.27	Vert(CT)	-0.05	7-8	>999	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.01	6	n/a	n/a			
				-	-	- (-)							

BCLL	0.0*	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.01	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	7-8	>999	240	Weight: 35 lb	FT = 10%

LUMBER

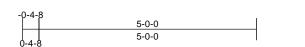
- TOP CHORD 2x4 SPF No.2
- BOT CHORD 2x4 SPF No.2 2x6 SPF No.2 *Except* 7-3:2x3 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) 6=597/0-3-8, 8=597/0-3-8 Max Horiz 8=62 (LC 7) Max Uplift 6=-89 (LC 9), 8=-89 (LC 8) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/35, 2-3=-638/89, 3-4=-638/89, 4-5=0/35, 2-8=-544/131, 4-6=-544/131 BOT CHORD 7-8=-14/480, 6-7=-14/480 WEBS 3-7=0/246

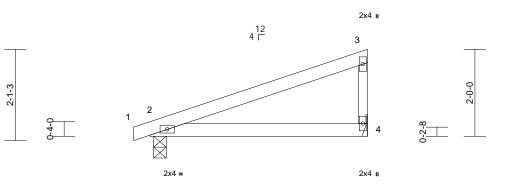
NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 89 lb uplift at joint 8 and 89 lb uplift at joint 6.

6) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard



						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	123 MN	AS NOTED FOR PLAN REVIEW
B210102	B1	Monopitch	7	1	Job Reference (optional	DEVELOPMENT SERVICES 149388338 LEE'S SUMMIT, MISSOURI
						Dec 0 4 407 0000

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. The Dec 2 0615:4/07/269:22 ID:VBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGK VrCDoi7042J0?f

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.42	Vert(LL)	-0.03	2-4	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.23	Vert(CT)	-0.06	2-4	>933	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 13 lb	FT = 10%

TOP CHORD	2x4 SPF No.2
BOT CHORD	2x4 SPF No.2
WEBS	2x3 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	5-0-0 oc purlins, except end verticals.

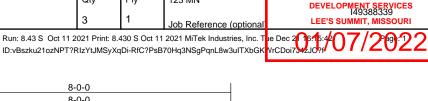
BOT CHORD	Rigid ceili	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	2=252/0-3-8, 4=212/ Mechanical
	Max Horiz	2=76 (LC 5)
	Max Uplift	2=-58 (LC 4), 4=-45 (LC 8)

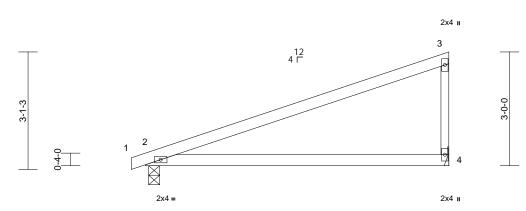
FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/6, 2-3=-66/43, 3-4=-164/74 BOT CHORD 2-4=-24/18

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 45 lb uplift at joint 4 and 58 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard





						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	123 MN	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
B210102	B2	Monopitch	3	1	Job Reference (optional	DEVELOPMENT SERVICES 149388339 LEE'S SUMMIT, MISSOURI
	04/07/0000					

8-0-0 8-0-0

Wheeler Lumber, Waverly, KS - 66871,

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.77	Vert(LL)	-0.17	2-4	>553	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.42	Vert(CT)	-0.34	2-4	>276	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 21 lb	FT = 10%

- TOP CHORD 2x4 SPF 2100F 1.8E BOT CHORD 2x4 SPF 2100F 1.8E
- 2x3 SPF No.2 WEBS

BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) 2=386/0-3-8, 4=348/ Mechanical

Max Horiz 2=121 (LC 5) Max Uplift 2=-79 (LC 4), 4=-74 (LC 8)

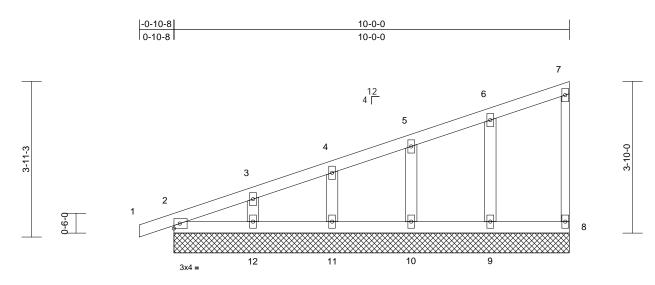
FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/6, 2-3=-105/70, 3-4=-270/121

BOT CHORD 2-4=-38/29

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 74 lb uplift at joint 4 and 79 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



December 22,2021

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	123 MN	AS NOTED FOR PLAN REVIEW
300	11035	Truss Type	Qty	l' iy		DEVELOPMENT SERVICES 149388340
B210102	C1	GABLE	1	1 Job Reference (option		LEELS SUMMIT MISSOURI

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. The Dec 20615-407/269:22 ID:VBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGK VrCDoi7942JO?f

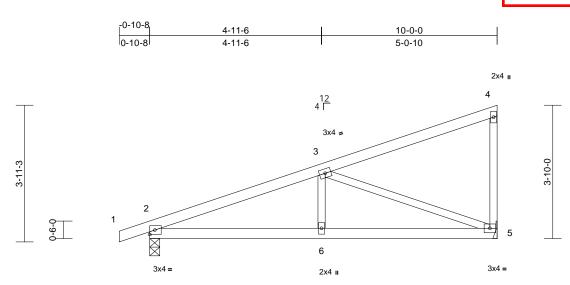
10-0-0

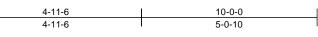
Scale =	1:29.1
---------	--------

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI20 ⁻	CSI TC BC WB 14 Matrix-S	0.09 0.03 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 35 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	9=194/10 11=180/1 Max Horiz 2=158 (LC Max Uplift 2=-22 (LC	cept end verticals. applied or 10-0-0 oc -0-0, 8=69/10-0-0, -0-0, 10=177/10-0-0, 0-0-0, 12=182/10-0-(C 7) 2 4), 8=-16 (LC 5), 9=)=-42 (LC 8), 11=-44	chord 7) * This on the 3-06-C chord d or 8) Provic bearin 8, 22 I at join 9. 9) This tr Interna R802. c-46	uss has been design live load nonconcurr truss has been desig bottom chord in all a 00 tall by 2-00-00 wid and any other memb le mechanical conne g plate capable of wi b uplift at joint 2, 52 l t 11, 42 lb uplift at joint tuss is designed in ac ational Residential C 10.2 and referenced SE(S) Standard	ent with any gned for a liv areas where e will fit betwers. ction (by oth thstanding ' b uplift at jo nt 10 and 46 ccordance woode sections	other live load e load of 20. a rectangle veen the bott ers) of truss 6 lb uplift at nt 12, 44 lb u 6 lb uplift at jc ith the 2018 s R502.11.1 a	Opsf om to joint ıplift bint					
FORCES	(lb) - Maximum Com Tension											
TOP CHORD	1-2=0/6, 2-3=-129/2 4-5=-86/21, 5-6=-76 7-8=-53/22											
BOT CHORD	2-12=-50/37, 11-12= 9-10=-50/37, 8-9=-5		7,									~
WEBS	3-12=-140/77, 4-11= 6-9=-151/62	=-141/67, 5-10=-138/	68,								OF D	MISC
Vasd=91rr II; Exp C; I cantilever right expos 2) Truss desi only. For	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 igned for wind loads in studs exposed to wind ard Industry Gable En	DL=6.0psf; h=25ft; C nvelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 the plane of the trus I (normal to the face)	e; i :0 s								SCOT SEV SEV NUM OF J	Berry

see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. All plates are 2x4 MT20 unless otherwise indicated. 3)

Gable requires continuous bottom chord bearing. 4)


5)́ Gable studs spaced at 2-0-0 oc.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	123 MN	AS NOTED FOR PLAN REVIEW
300	11055	Thuss Type	Quy	гіу	123 1010	DEVELOPMENT SERVICES 149388341
B210102	C2	Monopitch	10	1	Job Reference (optional	
Wheeler Lumber, Waverly, KS -	66871,				2021 MiTek Industries, Inc. T	
		ID:vBszku21ozNPT?	RIZYtJMSyX	qDi-RtC?PsE	70Hq3NSgPqnL8w3uITXbGK	VrCDoi734zJU?t

Scale = 1:33.2												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.30	Vert(LL)	-0.02	2-6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.26	Vert(CT)	-0.04	5-6	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.50	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.02	2-6	>999	240	Weight: 33 lb	FT = 10%
		•		•								
LUMBER												
TOP CHORD	2x4 SPF No.2											
BOT CHORD	2x4 SPF No.2											

I OF CHORD	2X4 3FF NU.
BOT CHORD	2x4 SPF No.

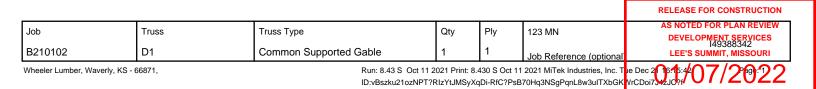
WEBS	2x3 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins, except end verticals.

BOT CHORD	Rigid ceili	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	2=514/0-3-8, 5=435/ Mechanical
	Max Horiz	2=158 (LC 5)
	Max Uplift	2=-115 (LC 4), 5=-94 (LC 8)

FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=0/6, 2-3=-782/113, 3-4=-109/21,
	4-5=-141/57
	0 0 404/000 5 0 404/000

2-6=-134/682, 5-6=-134/682 BOT CHORD WEBS 3-6=0/228, 3-5=-714/178

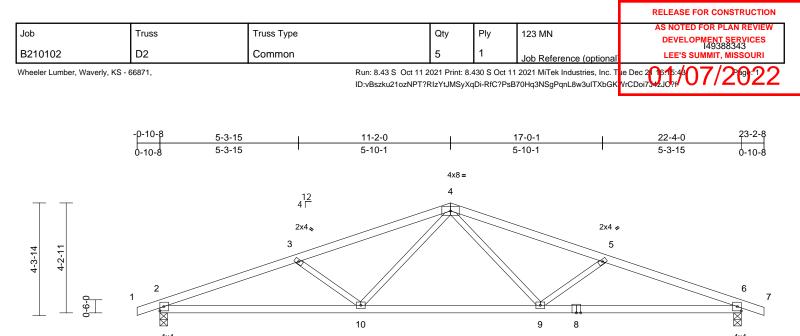
NOTES


- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 94 lb uplift at joint 5 and 115 lb uplift at joint 2.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

December 22,2021

-0-10-8 23-2-8 11-2-0 22-4-0 0-10-8 11-2-0 11-2-0 0-10-8 4x4 = 7 12 4 Г 6 8 5 6 9 4 10 4-3-14 4-2-11 3 P 11 6 2 12 13 0-9-0 ١L 6 \otimes 23 22 21 20 19 18 17 16 15 14 3x4 = 3x4 = 3x4 = 22-4-0


Scale = 1:44.3

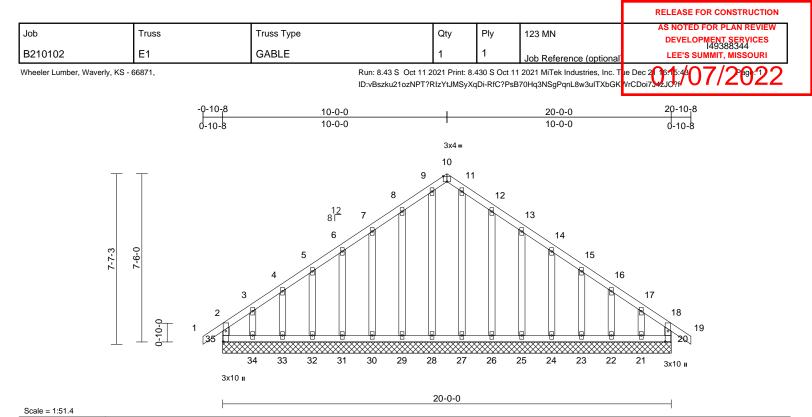
Scale = 1.44.5														
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.09	Vert(LL)	n/a	(.00)	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.06	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.03	Horz(CT)	0.00	12	n/a	n/a		
BCDL		10.0	Code	IRC2	018/TPI2014	Matrix-S		- (-)					Weight: 77 lb	FT = 10%
LUMBER				-	WEBS	7-19=-123/0. 6-2	20- 150/70	5 21- 1//	60				•	
TOP CHORD	2x4 SPF	No 2				4-22=-117/57, 3		,	/					
BOT CHORD						9-17=-144/69, 1								
OTHERS	2x4 SPF				NOTES	0	0.0	0.,						
BRACING	241 011	110.2				l roof live loads h	ava baan i	considered fo	.r					
TOP CHORD	Structura	l wood she	athing directly applie	nd or	this design.		lave been		Л					
	6-0-0 oc		atiling directly applie		0	E 7-16; Vult=115	mph (3-sec	cond aust)						
BOT CHORD			applied or 10-0-0 oc			h; TCDL=6.0psf			Cat.					
	bracing.			-		nclosed; MWFRS								
REACTIONS	•	2=191/22	-4-0, 12=191/22-4-0			ft and right expo								
	(10/0120)		2-4-0, 15=145/22-4-0		right expose	ed; Lumber DOL	=1.60 plate	grip DOL=1	.60					
			2-4-0, 18=186/22-4-			ned for wind load								
		19=163/2	2-4-0, 20=186/22-4-0	0,		uds exposed to v								
			2-4-0, 22=145/22-4-0	0,		rd Industry Gable								
		23=275/2				ualified building								
		2=71 (LC				e 2x4 MT20 unle								
	Max Uplift	(C 4), 12=-54 (LC 5),			res continuous b spaced at 2-0-0		u bearing.						
		(.C 9), 15=-36 (LC 5),			as been designe) nef hottom						
			.C 9), 18=-46 (LC 9),			ad nonconcurrer			she					
			.C 8), 21=-44 (LC 8), .C 4), 23=-70 (LC 8)			has been design								
	Max Gray		C 1), 12=191 (LC 1),			m chord in all ar			opoi					
	Wax Glav		LC 22), 15=145 (LC 1),	22)		by 2-00-00 wide			om					
			LC 1), 18=189 (LC 2)			ny other membe								
			LC 1), 20=189 (LC 2		9) Provide med	chanical connect	ion (by oth	ers) of truss	to					m
			LC 1), 22=145 (LC 2			e capable of with							OF	MIG
		23=275 (L	LC 21)			ft at joint 20, 44 I							FE	MISSO
FORCES	(lb) - Max	imum Com	pression/Maximum			t 22, 70 lb uplift a						6	122	
	Tension					lift at joint 17, 36			b			R	SCOT	TM. Y
TOP CHORD	1-2=0/6,	2-3=-81/59	, 3-4=-47/60, 4-5=-28	8/75,		t 14 and 54 lb up te or shim requir			~			8	SEV.	IER \ Y
			/110, 7-8=-31/106,			truss chord at jo			g			2		1 * 8
			8/47, 10-11=-35/28,			designed in acc						KS	1 al	8
DOT OUDDE		6/38, 12-13				I Residential Co			and			X	catton.	Service
BOT CHORD		,	3/57, 21-22=-3/57,			and referenced st					-	117	PE-2001	ALANA AND
			=-3/57, 18-19=-3/57,		LOAD CASE(S)							N.	O PE-2001	018807
	12-14=-3		=-3/57, 14-15=-3/57,									Y	N. Pal	1SH
	12-14=-0												V SION	FN
													SSIONA	L
													alle	20
													December	- 00 0004

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

December 22,2021

Scale = 1:44.3

Scale = 1.44.5			1									
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.47	Vert(LL)	-0.12	9-10	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.69	Vert(CT)	-0.25	6-9	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.19	Horz(CT)	0.07	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.08	9-10	>999	240	Weight: 68 lb	FT = 10%
LUMBER			This truss is	designed in acco	ordance wi	ith the 2018						
TOP CHORD	2x4 SPF No.2			Residential Cod			and					
BOT CHORD	2x4 SPF No.2			ind referenced sta								
WEBS	2x3 SPF No.2		LOAD CASE(S)	Standard								
BRACING			()									
TOP CHORD	Structural wood she	athing directly applie	ed or									
	3-7-2 oc purlins.											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	;									
	bracing.											
	· /	-3-8, 6=1063/0-3-8										
	Max Horiz 2=71 (LC	,										
	Max Uplift 2=-189 (L	.C 4), 6=-189 (LC 5)										
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD	1-2=0/6, 2-3=-2232/											
	4-5=-1909/260, 5-6=	,										
BOT CHORD	2-10=-333/2049, 9-1 6-9=-280/2049	0=-127/1406,										
WEBS	6-9=-280/2049 4-9=-59/541, 5-9=-4	10/221 1 10 - 50/51	1									
WEBS	3-10=-418/221	10/221, 4-10=-30/34	-1,									
NOTES												
1) Unbalanced roof live loads have been considered for												
this design												
and addigi												


Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II: Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 189 lb uplift at joint 2 and 189 lb uplift at joint 6.

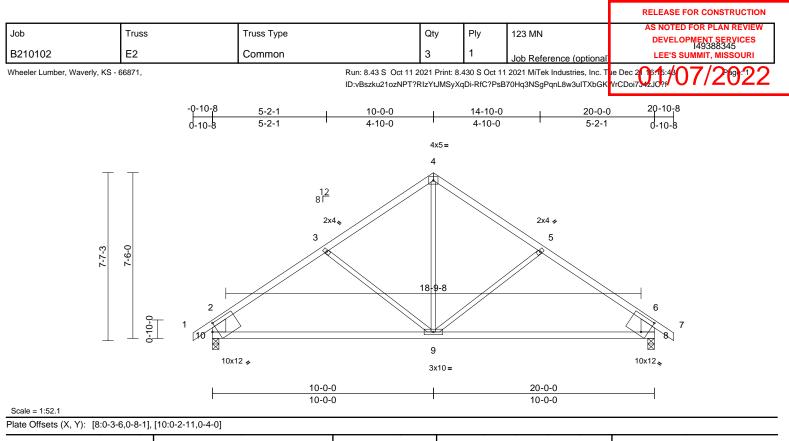


Plate Offsets (X, Y): [10:0-2-0,Edge], [20:0-5-10,0-1-8], [35:0-5-10,0-1-8]

	(X, T). [10.0 2 0,Edge	j, [20:0 0 10;0 1 0], [00	5.0 0 10,0 1 0]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.0 BC 0.0 WB 0.0 Matrix-R 0.0	6 Vert(CT)	in n/a n/a 0.00	(loc) - - 20	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 115 lb	GRIP 197/144 FT = 10%				
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	P CHORD 2x4 SPF No.2 T CHORD 2x4 SPF No.2 BS 2x4 SPF No.2 HERS 2x4 SPF No.2 ACING 2 P CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.			$\begin{array}{c} 2\text{-}35\text{=}-162/77, 1\text{-}2\text{=}0/40\\ 3\text{-}4\text{=}-110/109, 4\text{-}5\text{=}-102\\ 6\text{-}7\text{=}-76/125, 7\text{-}8\text{-}64/15\\ 9\text{-}10\text{=}-39/137, 10\text{-}11\text{=}-3\\ 11\text{-}12\text{=}-34/165, 12\text{-}13\text{=}-1\\ 13\text{-}14\text{=}-40/103, 14\text{-}15\text{=}-1\\ 6\text{-}17\text{=}-71/69, 17\text{-}18\text{=}-1\\ 18\text{-}20\text{=}-136/43\\ 34\text{-}35\text{=}-93/121, 33\text{-}34\text{=}-3\\ 23\text{-}33\text{=}-93/121, 33\text{-}34\text{=}-3\\ 30\text{-}31\text{=}-93/121, 27\text{-}28\text{=}-2\\ 4\text{-}25\text{=}-93/121, 27\text{-}28\text{=}-2\\ 4\text{-}25\text{=}-93/121, 27\text{-}28\text{=}-2\\ 4\text{-}25\text{=}-93/121, 27\text{-}28\text{=}-2\\ 22\text{-}23\text{-}93/121, 23\text{-}24\text{=}-2\\ 22\text{-}23\text{-}93/121, 21\text{-}22\text{=}-2\\ 0\text{-}21\text{=}-93/121\\ 3\text{-}34\text{=}-104/103, 4\text{-}33\text{=}-9\\ 6\text{-}31\text{=}-98/63, 14\text{-}24\text{=}-9\\ 16\text{-}22\text{=}-99/57, 17\text{-}21\text{=}-9\end{array}$	100, 5-6=-89/100, 0, 8-9=-54/184, 5/133, 31/128, 19/79, 15-16=-59/6 29/94, 18-19=0/40, 93/121,	50, , 1	 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live load (20.0) 9) * This truss has been designed for a live load of 20.0 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the botto chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 96 lb uplift at joint 33, 51 lb uplift at joint 32, 45 lb uplift at joint 33, 51 lb uplift at joint 32, 45 lb uplift at joint 26, 47 lb uplift at joint 22, 45 lb uplift at joint 26, 47 lb uplift at joint 22, 45 lb uplift at joint 24, 50 lb uplift at joint 23, 31 lb uplift at joint 22 and 1 lb uplift at joint 21. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 ar R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 								
FORCES	30=-47 (L 32=-51 (L 34=-133 (22=127 (L 24=124 (L 26=128 (L 28=146 (L 30=125 (L 32=126 (L	C 9), 29=-64 (LC 8), C 8), 31=-45 (LC 8), C 8), 33=-28 (LC 8), LC 8), 35=-96 (LC 4) LC 15), 21=137 (LC 16 LC 16), 25=125 (LC 16 LC 16), 27=135 (LC 17 LC 18), 29=125 (LC 17 LC 18), 29=125 (LC 15 LC 15), 31=124 (LC 15 LC 15), 35=201 (LC 16 hpression/Maximum	this design 2) Wind: ASC Vasd=91n II; Exp C;), cantilever ight expo), 3) Truss des or consult), see Stand), or consult), 4) All plates a 5) Gable req 6) Truss to b braced ag	n. CE 7-16; Vult=115mph (3- nph; TCDL=6.0psf; BCDL= Enclosed; MWFRS (envel left and right exposed; en sed; Lumber DOL=1.60 pl igned for wind loads in the studs exposed to wind (no lard Industry Gable End Du qualified building designe are 2x4 MT20 unless othe uires continuous bottom cl e fully sheathed from one	d roof live loads have been considered for E 7-16; Vult=115mph (3-second gust) ph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. Enclosed; MWFRS (envelope) exterior zone; left and right exposed ; end vertical left and sed; Lumber DOL=1.60 plate grip DOL=1.60 gred for wind loads in the plane of the truss studs exposed to wind (normal to the face), ard Industry Gable End Details as applicable, qualified building designer as per ANSI/TPI 1. are 2x4 MT20 unless otherwise indicated. uires continuous bottom chord bearing. e fully sheathed from one face or securely ainst lateral movement (i.e. diagonal web).					State OF MISSOUR SCOTT M. SEVIER NUMBED PE-2001018807					

December 22,2021

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.77 0.73 0.24	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.17 -0.34 0.02 0.05	(loc) 9-10 9-10 8 9-10	l/defl >999 >677 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 72 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING												
TOP CHORD	Structural wood shea 4-2-0 oc purlins, exe	0 7 11	ed or									
BOT CHORD	Rigid ceiling directly bracing.	•	2									
REACTIONS	Max Horiz 10=-217 (LC 6) Max Uplift 8=-125 (LC 9), 10=-125 (LC 8)											

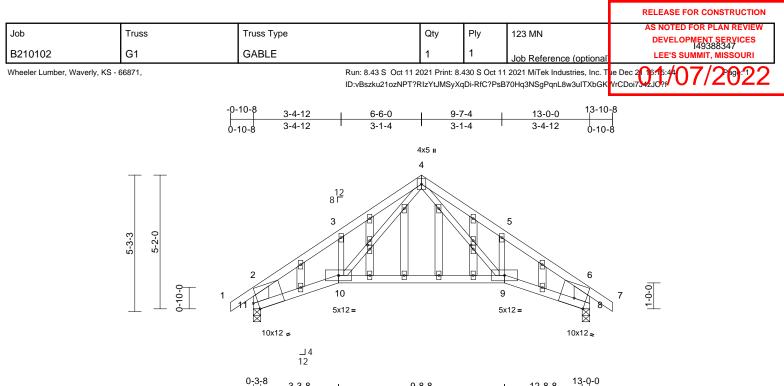
Tension TOP CHORD 1-2=0/46, 2-3=-1079/161, 3-4=-828/155, 4-5=-828/154, 5-6=-1079/161, 6-7=0/46, 2-10=-853/175, 6-8=-853/175 BOT CHORD 9-10=-143/819, 8-9=-40/783 WEBS 4-9=-46/479, 5-9=-255/212, 3-9=-254/211 NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 125 lb uplift at joint 10 and 125 lb uplift at joint 8.

OF MISSO SCOTT M. SEVIER MUMP PE-2001018807 O SSIONAL E December 22,2021

> MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

	1	1		-	1	
Job	Truss	Truss Type	Qty	Ply	123 MN	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 149388346
B210102	E3	ROOF SPECIAL GIRDER	1	3	Job Reference (optional	
Wheeler Lumber, Waverly, KS	8 - 66871,				11 2021 MiTek Industries, Inc. T sB70Hq3NSgPqnL8w3uITXbGK	
	F	<u>2-7-6 4-9-8 8-11-4 10-0-0</u> 2-7-6 2-2-2 4-1-12 1-0-12		<u> 4-10-4</u> 4-10-4	20-0-0	-1
		1-0-12	8 11	4-10-4	0-1-12	
		2x4 II				
	Ŧ	5 4				
	2-6-0 -10-0 1-1 	4x5 = 2 4x5 = 16 + 17 + 10			2x4 II 6	7
		14 13 15 12 9 18 8= 4x8= 6x8= 7x12=)	19 2	0 8 21 22 8x8= 6	ix8 =
		HUS28 3x10 II 3x10 II	н	JS26 HUS	S26 HUS26 HUS26	
		HUS28 HUS28 HUS28 HUS 2-7-6 4-11-4 8-9-8		10-4	20-0-0	
Scale = 1:58.3	F	2-7-6 4-11-4 6-9-6 2-7-6 2-3-14 3-10-4)-12	5-1-12	


Plate Offsets (X, Y): [1:Edge,0-2-0], [7:Edge,0-2-0], [8:0-3-7,0-5-4], [10:0-3-12,0-3-0], [11:0-5-12,0-4-4], [13:0-3-8,0-2-0]

		1											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.70	Vert(LL)	-0.12	8-9	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.39	Vert(CT)	-0.21	8-9	>999	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.66	Horz(CT)	0.09	7	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S		Wind(LL)	0.06	8-9	>999	240	Weight: 412 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x8 SP 2400F 2.0E 2x4 SPF No.2 Structural wood she	eathing directly applie		 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 3) Unbalanced roof live loads have been considered for this design. 2) Unbalanced roof live loads have been considered for this design. 3) Unbalanced roof live loads have been considered for this design. 3) Unbalanced roof live loads have been considered for this design. 4) Unbalanced roof live loads have been considered for this design. 4) Unbalanced roof live loads have been considered for this design. 4) Unbalanced roof live loads have been considered for this design. 4) Unbalanced roof live loads have been considered for this design. 5) Upple EMENTAPY BEAPING PLANE AND AND AND AND AND AND AND AND AND AND									B), 16=-1363 (B), ∋=-1358 (B), ≥=-1353 (B)
BOT CHORD	bracing. (lb/size) 1=6997/0		; 4 5	 this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 									MINIMUM REQUIRED APS, BEARING TY OF THE TRUSS
FORCES		npression/Maximum	6	6) * This truss has been designed for a live load of 20.0psf									
TOP CHORD	Tension 1-2=-9602/472, 2-3: 3-4=-8496/371, 4-5: 5-6=-9385/496, 6-7: 1-13=-432/7260, 12 10-11=-546/11491, 2-0-2027270	=-8247/460, =-9764/337 -13=-12/239,		 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 7) WARNING: Required bearing size at joint(s) 1, 7 greater than input bearing size. 8) Provide mechanical connection (by others) of truss to 									
WEBS	7-8=-206/7720 11-12=-24/1267, 3- 9-10=-11/1718, 4-11 2-13=-3052/144, 11 2-11=-114/4353, 3- 8-10=-143/5388, 5- 5-8=-289/3753, 6-8	0=-77/305, -13=-481/8029, 10=-5247/385, 10=-378/6373,	9 1	 bearing plate capable of withstanding 377 lb uplift at joint 1 and 247 lb uplift at joint 7. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) Use Simpson Strong-Tie HUS28 (22-10d Girder, 4-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 								MISSOLAN MISSOLAN	
(0.131"x3" Top chord oc. Bottom ch staggered	s to be connected toge ') nails as follows: Is connected as follow ords connected as follow ords connected as follows: 2x4 iected as follows: 2x4	s: 2x4 - 1 row at 0-6-0 lows: 2x8 - 3 rows	0 1 L	 oc max. starting at 2-0-0 from the left end to 10-0-0 to connect truss(es) to back face of bottom chord. 11) Use Simpson Strong-Tie HUS26 (14-10d Girder, 4-10d Truss) or equivalent spaced at 2-0-0 oc max. starting at 12-0-0 from the left end to 18-0-0 to connect truss(es) to back face of bottom chord. 12) Fill all nail holes where hanger is in contact with lumber. LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft) 								1 ENCIT	

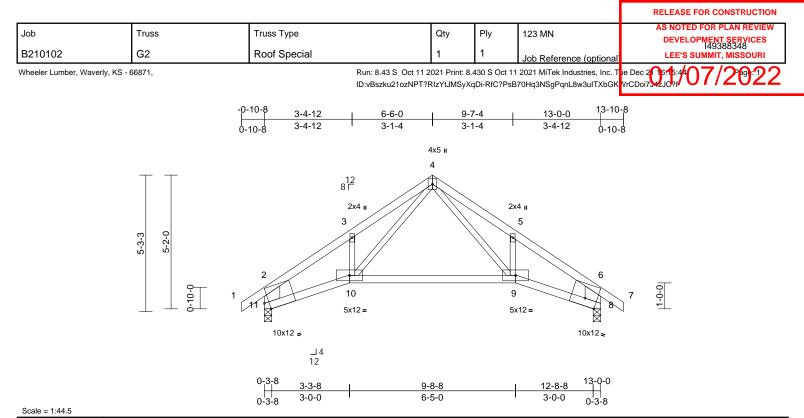
- LOAD CASE(S) Standard
- Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 1) Uniform Loads (lb/ft)

December 22,2021

		3-3-0	9-0-0	12-0-0		
0-	3-8	3-0-0	6-5-0	3-0-0	0-3	-8

Scale = 1:44.5

Plate Offsets (X, Y): [8:0-5-7,Edge], [11:0-2-3,Edge], [14:0-1-14,0-1-0], [23:0-1-14,0-1-0]


		[-	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.72	Vert(LL)	-0.10	9-10	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.50	Vert(CT)	-0.23	9-10	>641	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.13	Horz(CT)	0.09	8	n/a	n/a	Mainh to Allh	FT 400/
BCDL	10.0	Code	IRC20	8/TPI2014	Matrix-S		Wind(LL)	0.05	9-10	>999	240	Weight: 64 lb	FT = 10%
	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce 2x4 SPF No.2 Structural wood she: 4-5-15 oc purlins, e: Rigid ceiling directly bracing. (lb/size) 8=640/0-3 Max Horiz 11=-155 (Max Uplift 8=-89 (LC	athing directly appli xcept end verticals. applied or 10-0-0 o 8-8, 11=640/0-3-8 LC 6)	ed or 9 ^C 1	chord live lo * This truss on the botto 3-06-00 tall chord and a Bearing at jo using ANSI/ designer sho D) Provide meo bearing plate 11 and 89 lb 1) This truss is	as been designed ad nonconcurren has been designe m chord in all are by 2-00-00 wide ny other member nint(s) 11, 8 consi TPI 1 angle to gra build verify capaci ichanical connection e capable of with uplift at joint 8. designed in acco	t with any ed for a liv eas where will fit betw s. iders para ain formula ity of beari on (by oth standing 8 ordance w	other live loa e load of 20.0 a rectangle veen the botti llel to grain vi a. Building ng surface. ers) of truss i 9 lb uplift at j ith the 2018	0psf om alue to joint					
FORCES	(lb) - Maximum Com Tension			International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.									
TOP CHORD	1-2=0/46, 2-3=-934/ ⁻ 4-5=-816/188, 5-6=- 2-11=-773/127, 6-8=	934/67, 6-7=0/46,	L	OAD CASE(S)	Standard								
BOT CHORD	10-11=-91/750, 9-10												
WEBS	4-9=-133/395, 5-9=- 3-10=-67/157	74/167, 4-10=-155/4	437,										
NOTES													
	inholenced roof live loads have been considered for										ADD		
Vasd=91m II; Exp C; E cantilever I right expos	n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 gned for wind loads in	DL=6.0psf; h=25ft; velope) exterior zoi ; end vertical left an 0 plate grip DOL=1.	ne; Id 60									STATE OF J	

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web).
- 6) Gable studs spaced at 1-4-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Mitek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

Plate Offsets (X, Y): [8:0-5-7,Edge], [11:0-2-3,Edge]

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.72	Vert(LL)	-0.10	9-10	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.50	Vert(CT)	-0.23	9-10	>641	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.13	Horz(CT)	0.09	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.05	9-10	>999	240	Weight: 50 lb	FT = 10%
	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce Structural wood she 4-5-15 oc purlins, e Rigid ceiling directly bracing. (lb/size) 8=640/0-3 Max Horiz 11=-155 (Max Uplift 8=-89 (LC	athing directly applie xcept end verticals. applied or 10-0-0 oc 8-8, 11=640/0-3-8 LC 6)	bearing plat 11 and 89 lt DSS 7) This truss is Internationa R802.10.2 a LOAD CASE(S)	chanical connection e capable of withst o uplift at joint 8. designed in accord I Residential Code and referenced star Standard	anding 8 dance w sections	39 lb uplift at ith the 2018 s R502.11.1 a	joint					
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD	1-2=0/46, 2-3=-934/109, 3-4=-816/224,											

WEBS

BOT CHORD

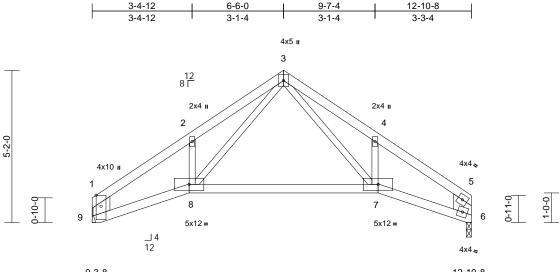
 Unbalanced roof live loads have been considered for this design.

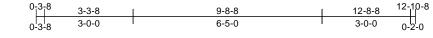
3-10=-67/157

4-5=-816/188, 5-6=-934/67, 6-7=0/46, 2-11=-773/127, 6-8=-773/99

10-11=-91/750, 9-10=0/443, 8-9=0/687

4-9=-133/395, 5-9=-74/167, 4-10=-155/437,


- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 11, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.



						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	123 MN	
B210102	G3	Roof Special	4	1	Job Reference (optional	DEVELOPMENT SERVICES 149388349 LEE'S SUMMIT, MISSOURI

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. The Dec 20615:4607/26:22 ID:VBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGK VrCDoi79420?#

Scale = 1:39.1

		-											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.52	Vert(LL)	-0.11	7-8	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.64	Vert(CT)	-0.27	7-8	>554	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.14	Horz(CT)	0.11	6	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.05	7-8	>999	240	Weight: 48 lb	FT = 10%	
LUMBER 8) Provide mechanical connection (by others) of truss to													

- TOP CHORD 2x4 SPF No.2
- BOT CHORD 2x4 SPF No.2

WEBS	2x3 SPF N	o.2 *Except*	9-1,6-5:2x8 SP DSS
BRACING			
TOP CHORD			ing directly applied or ot end verticals.
BOT CHORD	Rigid ceilin bracing.	g directly ap	plied or 10-0-0 oc
DEACTIONS	(lb/size) 6	5-552/0.2.0	9-552/Mechanical

- 552/ Mechanical ACTIONS (lb/size) 6=552/0-2-0, 9= Max Horiz 9=108 (LC 5) Max Uplift 6=-2 (LC 9), 9=-2 (LC 8)
- FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-932/17, 2-3=-836/106, 3-4=-804/89, 4-5=-904/0, 1-9=-665/22, 5-6=-652/9 BOT CHORD 8-9=-24/716, 7-8=0/430, 6-7=0/668
- WEBS 3-7=-64/375, 4-7=-90/115, 3-8=-75/436, 2-8=-102/113

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections. Bearing at joint(s) 6 considers parallel to grain value 6)
- using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.

bearing plate capable of withstanding 2 lb uplift at joint 9 and 2 lb uplift at joint 6.

This truss is designed in accordance with the 2018 9) International Residential Code sections R502.11.1 and

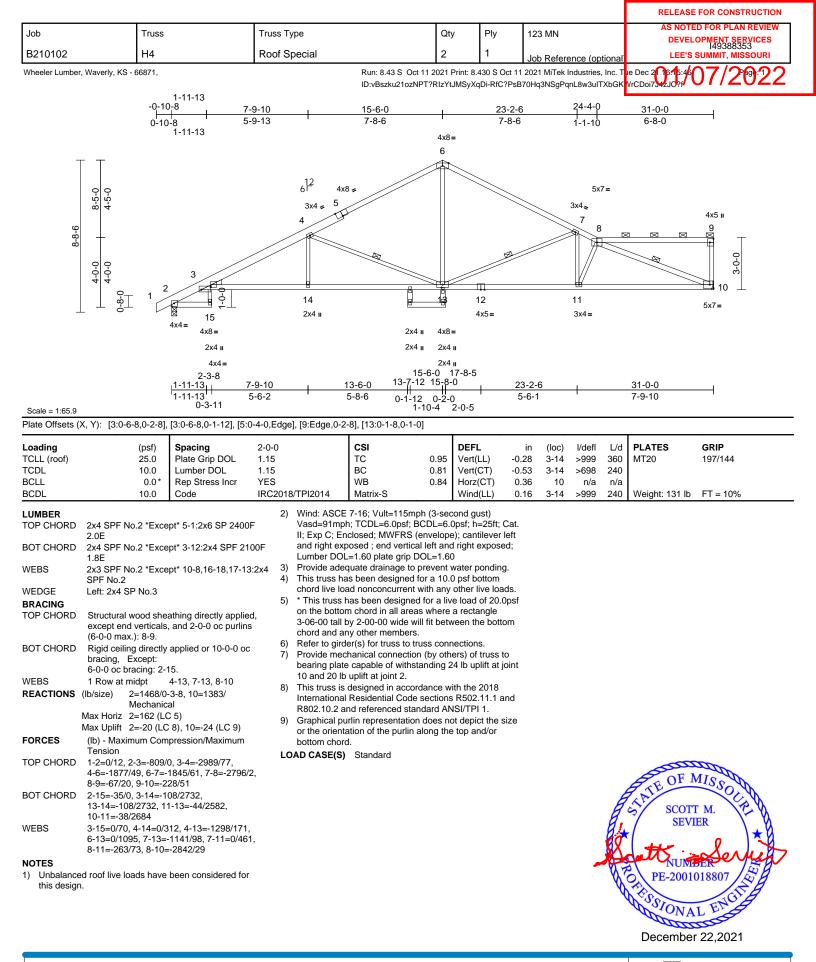
R802.10.2 and referenced standard ANSI/TPI 1.

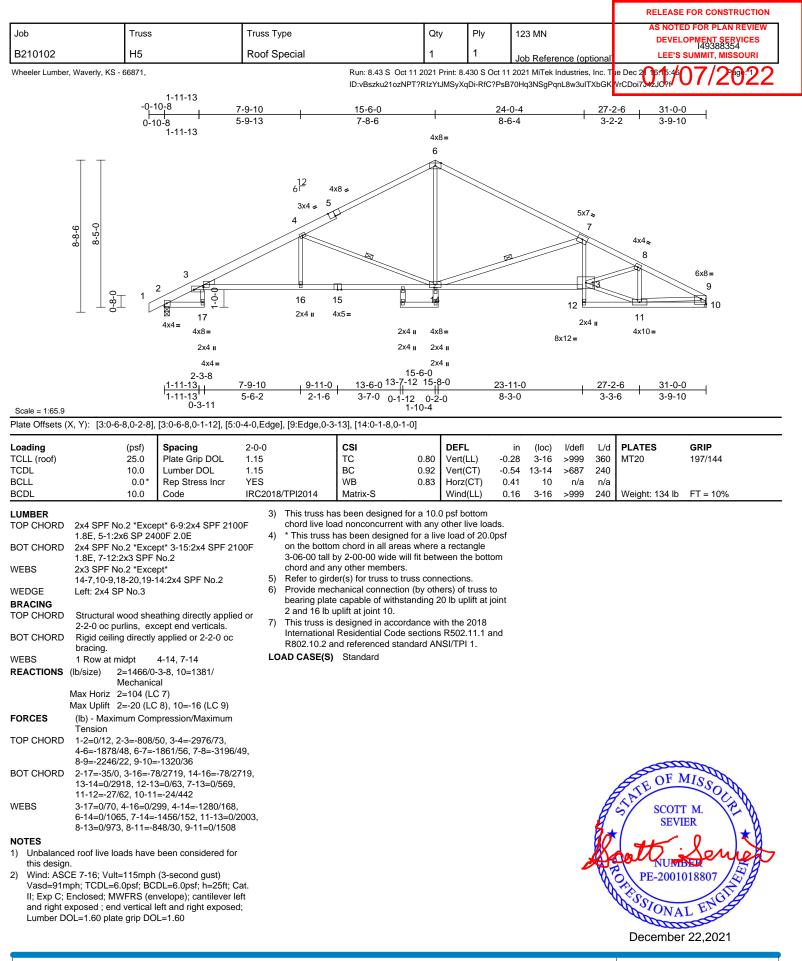
LOAD CASE(S) Standard

December 22,2021

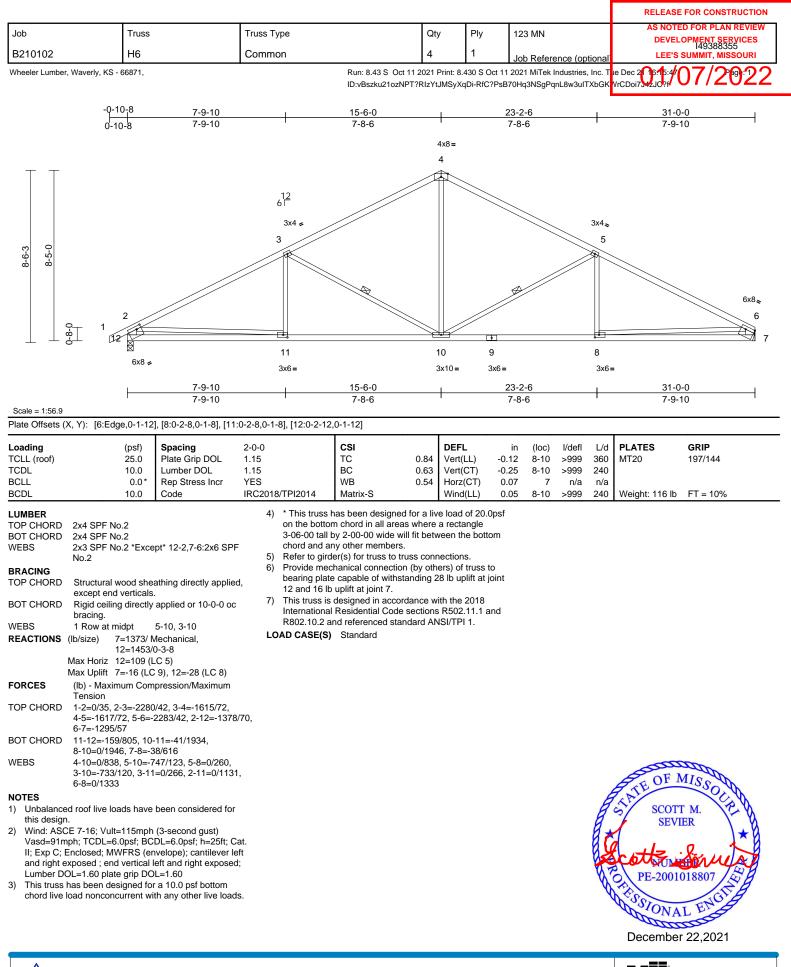
													RELEA	SE FOR CONSTRUCTIO)N
Job		Truss		Truss Type			Qty		Ply	123 M	N				N
B210102		H1		Common Su	pported	Gable	2		1		. ,			ELOPMENT SERVICES 149388350 'S SUMMIT, MISSOURI	
Wheeler Lumber	r. Waverly, KS				ppontou	Run: 8.43 S Oct 11		rint: 8.4	30 S Oct 1		eference (o Tek Industri			10-10-00	ີ
	, march, re					ID:vBszku21ozNPT								01/202	2
		10-8 0-8		<u>15-6-0</u> 15-6-0								<u>31-0-0</u> 15-6-0			
	0-1	0-8		10-0-0								13-0-0			
							4) 1(x4=							
8-6-3	ල 1 සු හි		5 4 8 8 8 8 3 4 8 8 8 8 8 8 4 8 8 8 8 8 8	6 ¹² 6 7 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	7	9 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		327 3x4=			13 B 24	14 8 23	15 B 22	16 17 3x6 18 18 21 20	
		i					31-0	0-0							
Scale = 1:57.2														1	
	2x4 SPF N Structural v 6-0-0 oc pu Rigid ceilin bracing. (Ib/size)	o.2 o.2 *Exce o.2 wood she urlins, ex g directly 19=49/31 21=183/3 22=180/3 22=179/3 32=181/3 30=179/3 32=181/3 34=190/3 36=151/3 36=151/3 26=-94 (L 22=-56 (L	LC 8) C 9), 21=-48 (LC 9), C 9), 23=-54 (LC 9),	d or BOT CH	014 ORD 2- 3- 6- 9- 12 15 18 0RD 35 26 26 26 26 26 20 20 20 20 20 20 20 10 7- 4- 13 31 31 31 5 25 26 26 26 26 26 26 26 26 26 26 26 26 26	BC WB Matrix-R 36=-134/43, 1-2=0/ 4=-119/75, 4-5=-88 7=-56/144, 7-8=-45 10=-41/219, 10-11= 2-13=-39/122, 13-14 5-16=-52/45, 16-17= 3-19=-62/0 5-36=-25/103, 34-38 3-34=-25/103, 32-32 3-24=-25/103, 23-22 5-28=-25/103, 23-22 5-28=-161/0, 9-29=- 31=-140/78, 6-32=- 34=-140/75, 12-25 5-22=-139/78, 16-21	(32, 2-3) (32, 2-3) (32, 2-3) (32, 2-3) (34, 2-3) (35, 2	6=-66/ 3-9=-38 11, 11- 97, 14- 7, 17-1 103, 103, 103, 103, 103, 103, 103, 5, 8-30 3, 5-33 20, /81, /78,	LL) CT) CT) 0 /69, /118, 8/196, 12=-38/16, 15=-38/7 8=-121/3	n/a n/a .01 8) 9) 57, 1, 1, 10)	chord live * This trus on the bo 3-06-00 tr chord and Provide m bearing p 36, 52 lb uplift at jo 24, 54 lb uplift at jo This truss Internatio	a 999 a 999 a n/a has bee load no ss has be tom chc all by 2-C l any oth nechanic late cap uplift at j int 31, 5 uplift at j int 26, 5 uplift at j int 21 ar is desig nal Resi 2 and rei	nconcurrent wi een designed f ord in all areas on 00-00 wide will her members. cal connection (able of withstar oint 29, 56 lb u 4 lb uplift at join oint 23, 56 lb u hd 94 lb uplift at join oint 23, 56 lb u hd 94 lb uplift at joned in accorda dential Code su ferenced stand	a 10.0 psf bottom th any other live loads. or a live load of 20.0ps where a rectangle fit between the bottom by others) of truss to ding 43 lb uplift at join plift at joint 30, 54 lb tt 32, 56 lb uplift at join uplift at joint 35, 51 lb tt 25, 54 lb uplift at join plift at joint 22, 48 lb	f t nt
$\begin{array}{cccc} 24=-54 \ (LC \ 9), \ 25=-57 \ (LC \ 9), \ \\ 26=-51 \ (LC \ 9), \ 29=-52 \ (LC \ 8), \ 1) \\ 30=-56 \ (LC \ 8), \ 31=-54 \ (LC \ 8), \ \\ 32=-54 \ (LC \ 8), \ 33=-56 \ (LC \ 8), \ \\ 32=-54 \ (LC \ 8), \ 33=-56 \ (LC \ 8), \ \\ 36=-43 \ (LC \ 8), \ 35=-106 \ (LC \ 8), \ \\ 36=-43 \ (LC \ 4) \\ \\ \mbox{Max Grav} 19=84 \ (LC \ 18), \ 20=167 \ (LC \ 22), \ \\ 21=183 \ (LC \ 1), \ 22=179 \ (LC \ 22), \ \\ 23=180 \ (LC \ 22), \ 24=180 \ (LC \ 1), \ 3) \\ 25=179 \ (LC \ 1), \ 26=190 \ (LC \ 22), \ \\ 28=201 \ (LC \ 1), \ 26=190 \ (LC \ 21), \ \\ 30=179 \ (LC \ 1), \ 31=180 \ (LC \ 21), \ \\ 32=181 \ (LC \ 1), \ 33=178 \ (LC \ 21), \ 4 \end{array}$			1) Unba this (2) Wind Vasc (1; E:), cant), cant), a) Trus), only 1, see), or cc), 4) All p), 5) Gab 6) Trus brac	 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. All plates are 2x4 MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing. Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 							SCO SE SE SE NUI PE-200 NUI PE-200	MISSOLUTI MISSOLUTI VIER MBER 1018807 AL ENGINA AL ENGINA MER 22,2021	D		

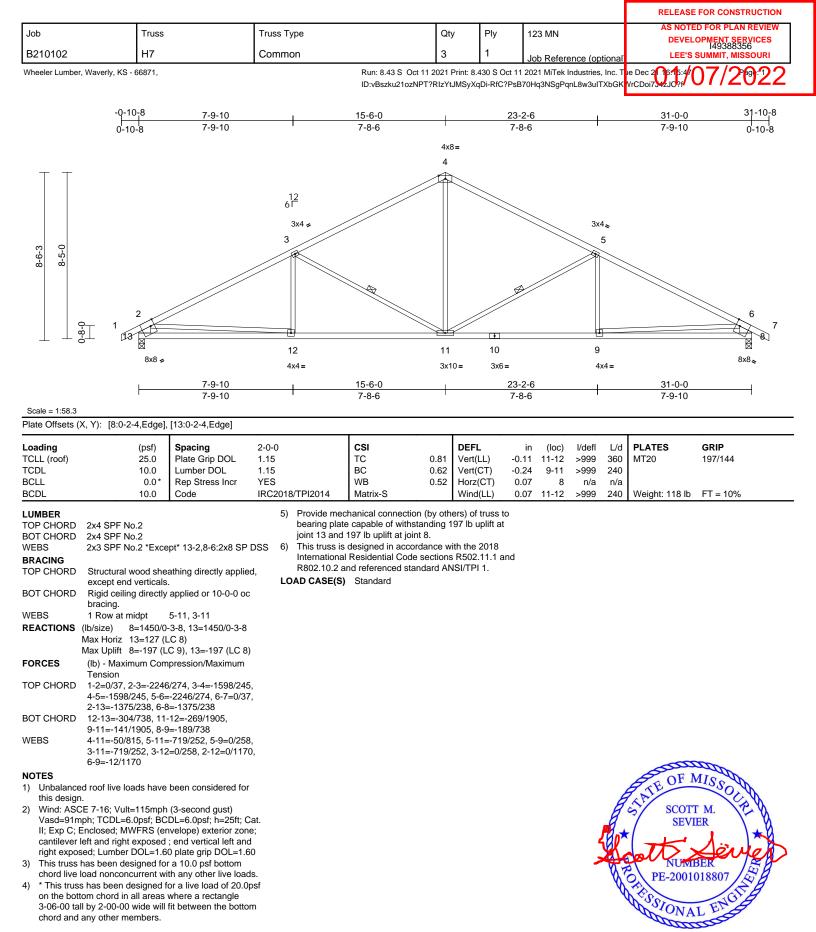
nent 16023 Swingley Ridge Rd Chesterfield, MO 63017


														RELEASE	FOR CONSTRUC	TION
Job		Truss		Truss T	Гуре		Qty	,	Ply	12	23 MN				D FOR PLAN REV	
B210102		H2		Roof S	Special		1		1	Jc	b Refere	nce (opt	ional		DPMENT SERVICE 149388351 SUMMIT, MISSOU	
Wheeler Lumbe	er, Waverly, KS -	66871,				Run: 8.43 S Oct 11				11 202	21 MiTek Ir	ndustries,	Inc. T		7/202	22
						ID:vBszku21ozNPT	?RIzYt.	JMSyXqI	Di-RfC?P	'sB70H	lq3NSgPqr	nL8w3ulT	XbGK	VrCDoi7542JO?f	<u>, , , , , , , , , , , , , , , , , , , </u>	
		-0-10-8 0-10-8	7-9-10 7-9-10			15-6-0 7-8-6			10-4 4-4	-	<u>23-2-7</u> 4-4-3			<u>31-0-0</u> 7-9-9		
		0-10-6	1010			100	6	<6=			110			100		
-	—						4									
					10				4	^{1x8} ≈ 5						
					1 <u>2</u> 6				- F	c R	_					
					3x4 =					$\ $	\sim	4x4	. 6			
8-6-3	8-5-0				, and the second				/			\gg	,			
ά	œ		/	/			12	4		AT						
								Ģ							6x8 👟	
	0	2						3-0-0							7	
		15					•	13 _	_ 10	•		4			8	
		8)	x8=		14 5x12=		2x	4 u	:	2x4 I		9	2=			
					5712=			6x	12=			UX I	2=			
									5x12=							
		H	<u>7-9-10</u> 7-9-10			<u>15-6-0</u> 7-8-6			. <u>9-0</u> 3-0		<u>23-2-7</u> 4-5-7			<u>31-0-0</u> 7-9-9		
Scale = 1:60.8 Plate Offsets (4,0-2-0],	[15:0-3-4,0-6-8]													
Loading		(psf)	Spacing	2-0-0		CSI		DEFL		in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		25.0	Plate Grip DOL	1.15		тс	0.57	Vert(L	L)	-0.21	11-12	>999	360	MT20	197/144	
TCDL BCLL		10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES		WB	0.77 0.80	Vert(C Horz(CT)	0.22	13-14 8	>933 n/a	240 n/a			
BCDL		10.0	Code		8/TPI2014	Matrix-S		Wind(,	0.13	11-12	>999	240	Weight: 131 lb	FT = 10%	
LUMBER TOP CHORD	2x4 SPF 21	00F 1.8E	E	4)		as been designed for ad nonconcurrent wit				S.						
BOT CHORD	2x4 SPF No No.2	0.2 *Exce	ept* 13-4,5-10:2x3 SI	PF 5)		has been designed fo m chord in all areas v				sf						
WEBS	2x3 SPF No No.2	0.2 *Exce	ept* 15-2,8-7:2x6 SP	F		by 2-00-00 wide will f ny other members.	it betw	een the	e bottom	n						
				6) d or 7)) Refer to gird	er(s) for truss to trus										
TOP CHORD	3-10-5 oc p	urlins, e	athing directly applie xcept end verticals.	0.01	bearing plate	e capable of withstan 170 lb uplift at joint 8	ding 1									
BOT CHORD	Rigid ceiling bracing.	g directly	applied or 10-0-0 oc	: 8)) This truss is	designed in accorda	nce wi									
REACTIONS		=1373/ N 5=1453/	Mechanical, 0-3-8			Residential Code se nd referenced standa				ב						
	Max Horiz 1	5=138 (L			OAD CASE(S)	Standard										
FORCES	(lb) - Maxim		pression/Maximum)												
TOP CHORD	Tension 1-2=0/35, 2	-3=-2285	5/274, 3-4=-2473/271	,												
	4-5=-2321/3 6-7=-2258/2		3446/307, 5=-1381/236,													
BOT CHORD	7-8=-1293/2		-14=0/25, 12-13=0/1	28												
	4-12=-111/1	1663, 11-	-12=-136/2998, 103/1249, 9-10=-3/17											CONT	100	
WERS	8-9=-148/68	37		,										TE OF M	AISSO	
WEBS	3-12=-85/30	05, 5-12=											A	ST SCOTI	10x VA	N
			1=-45/1114, =0/1130, 7-9=-60/12	232									B.	SEVI		8
NOTES 1) Unbalance	ed roof live loa	ids have	been considered for										150		0	8
this design	n.		(3-second gust)									2		Call	Jene	y .
Vasd=91n	mph; TCDL=6.	0psf; BC	DL=6.0psf; h=25ft; C										Ø.	PE-20010		1
cantilever	left and right e	exposed	velope) exterior zon ; end vertical left and	1									X	C'SSIONA	LENG	
	sed; Lumber [cation Toleran		0 plate grip DOL=1.6 nt 2 = 6%	U										and		
														December	22,2021	

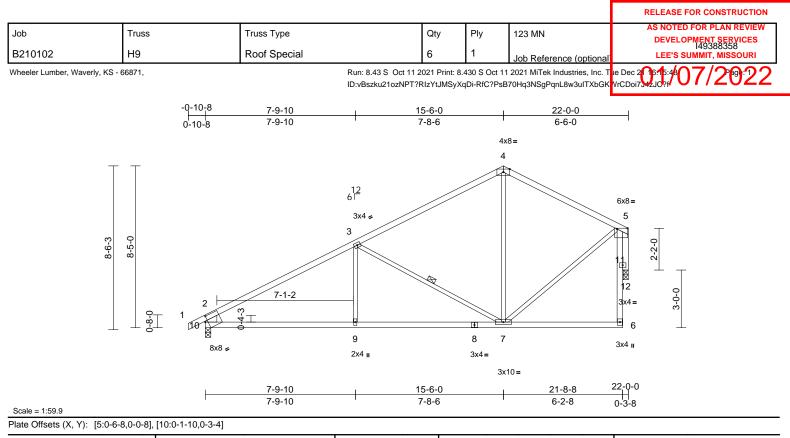

									RELEASI	E FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	123 MN		AS NOT	ED FOR PLAN REVIEW
B210102	НЗ		Roof Special		2	1	Joh Refer	ence (optiona		-OPMENT SERVICES 149388352 SUMMIT, MISSOURI
Wheeler Lumber, Wave	erly, KS - 66871,			Run: 8.43 S Oct 11			11 2021 MiTek	Industries, Inc.	Tue Dec 2116:15:46	07/2022
	1.	-11-13		ID:vBszku21ozNPT?	RIzYtJMSy	/XqDi-RfC?Ps	B70Hq3NSgPo	qnL8w3ulTXbG	KVrCDoi7342JC?f	0172022
	-0-10-8	7-9		3-7-4 15-6-4 -9-11 1-10-1		<u>23-2</u> 7-8-			<u>31-0-0</u> 7-9-9	
	0-10-8 1-	-11-13	12 0		5x7=	10			1 3 3	
8-8-6		4x8= 2x4 II 4x4= 2-3-8	6^{12} 4x8 3x4 = 5 4 14 2x4 II	2x4 II 6 1 1 12 8x12= 4x8 II 3-6-0		23-2-7		2x4 II 8 11 5x12=	31-0-0	6x8* 9 10 50 10 50 0
		-11-13'' 5-		i-8-7		<u>23-2-7</u> 9-8-7			7-9-9	———————————————————————————————————————
$\frac{\text{Scale} = 1:64}{\text{Plate Offsets (X, Y):}}$	[3:0-6-8,0-2-8],	0-3-11 [3:0-6-8,0-1-12], [5:0)-4-0,Edge], [9:0-3-4,0-2	-0]						
Loading	(psf)	Spacing	2-0-0	CSI	DE	FL	in (loc)	l/defl L/		GRIP
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15			. ,	0.26 3-14 0.50 3-14	>999 36 >740 24		197/144
BCLL	0.0*	Rep Stress Incr	YES	WB (0.49 Ho	rz(CT)	0.33 10	n/a n/	a	ET - 10%
BCLL 0.0° Rep Stress incr YES WB 0.49 0.72(CT) 0.33 10 n/a n/a BCDL 10.0° Cde RC2018TTPI2014 Matrix-S Wind(L) 0.15 3.14 >999 240 Weight: 141 lb FT = 10% LUMBER TOP CHORD 2x4 SPF No.2 "Except" 7.9:2x4 SPF 2100F (Matrix-S (Rec2018TTPI2014 Matrix-S (Matrix-S (Mat										

December 22,2021





16023 Swingley Ridge Rd Chesterfield, MO 63017



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 December 22,2021

													RELEASE	FOR CON	STRUCTION	
Job		Truss		Truss T	уре		Qty	Ply		123 MN					AN REVIEW	1
B210102		H8		соми	ION GIRDER		1	2		Job Refere	nce (ontic	naľ		DPMENT S 149388 SUMMIT, N		
Wheeler Lumbe	er, Waverly, KS	66871,				Run: 8.43 E Aug 1		it: 8.430 E		5 2021 MiTek I	ndustries,	Inc. \		7/2	P@22	1
						ID:vBszku21ozNP1	?RIzYtJMS	SyXqDi-Th	kht5Tol	vD_zO?kbzG	oiMnC05hjl	D30'	vS7UTdyONdN			
		-0-10-8 0-10-8	7-9-10 7-9-10			15-6-0 7-8-6				-2-6 8-6			<u>31-0-0</u> 7-9-10		—	
		0-10-0					5x7:	-	·							
							4									
Т	Т					/	\square	\leq								
					1 <u>2</u> 6Г				\searrow							
					3x4 ≠						8x8	*				
ο Υ					3							5				
8-6-3	8-5-0					<						\langle	\sim			
									5							
		_												\searrow		
	0-8-0	$1 \frac{2}{4}$	/												6	
1	⊥ 5⊥				11		10		4. 9		8 7	12	13 14	15	X	
		4x5	=		2x4 I		4x9:	= (6x6=	:	3x10 <i>µ</i>				6x8 👟	
											3x1	0 🛛				
		\vdash	7-9-10 7-9-10			15-6-0 7-8-6			<u>21-10-</u> 6-4-8		23-2-6 1-3-14		<u>31-0-0</u> 7-9-10		—	
Scale = 1:59.8		dae 0 0 12							0.0		1-3-14					_
	(X, Y): [2:E0], [6:0-1-1,0-1-14]										1	-		-
Loading TCLL (roof)		(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC		EFL ert(LL)	-0.1	in (loc) 16 6-7		L/d 360	PLATES MT20	GRIP 197/144		
TCDL BCLL		10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 NO		BC WB		ert(CT) orz(CT)	-0.2 0.0			240 n/a				
BCDL		10.0	Code		3/TPI2014	Matrix-S		/ind(LL)	0.0			240	Weight: 310 lb	FT = 109	%	_
LUMBER				,		considered equally						,	4-6=-70, 2-6=-20			
TOP CHORD	2x4 SPF 1 2.0E	No.2 *Exce	pt* 4-6:2x4 SPF 240	0F	CASE(S) sec	d as front (F) or ba tion. Ply to ply conr	nections h	ave beer	۱	Ň		345	(B), 12=-532 (B),	13=-532 (В),	
BOT CHORD WEBS	2x6 SP 24 2x4 SPF I				unless otherw	istribute only loads vise indicated.					14=-532 (B), 1	15=-533 (B)			
WEDGE BRACING	Right: 2x4	SPF No.2	!	3)	Unbalanced r this design.	oof live loads have	been con	sidered f	or							
TOP CHORD			athing directly applied			7-16; Vult=115mph ; TCDL=6.0psf; BC			Cat							
BOT CHORD	bracing.	0 ,	applied or 10-0-0 oc		II; Exp C; End	closed; MWFRS (er osed ; end vertical l	velope); c	antileve	r left							
WEBS REACTIONS	1 Row at (lb/size)	•	5-10 -3-8, 6=5598/0-3-8, (i	rea	Lumber DOL:	=1.60 plate grip DO	L=1.60		,							
	Max Horiz	0-4-6)		5)		s been designed for d nonconcurrent wi										
	Max Uplift	2=-148 (L	C 8), 6=-337 (LC 9)	6)		as been designed f n chord in all areas			.0psf							
FORCES			ax. Ten All forces 2 hen shown.	:50		y 2-00-00 wide will y other members.	fit betwee	n the bot	tom							
TOP CHORD			4362/333, 9395/666	7)		equired bearing siz	ze at joint(s) 6 grea	ater							
BOT CHORD	2-11=-262	2/4286, 10-	-11=-262/4286,)=-611/8881,	8)	Provide mech	nanical connection (
	7-8=-513/	8232, 7-12	2=-512/8180,			capable of withstar 8 lb uplift at joint 2.		id upilit a	al							
			3-14=-512/8180, -15=-512/8180	9)		designed in accorda Residential Code se							OF A	and and		
WEBS			0=-5808/596, -606/106, 3-11=0/30	5, 10		d referenced stand other connection de						1	TEOT	AISSO	P	
NOTES	5-8=-314/			10	provided suffi	cient to support cor	ncentrated	l load(s)				Ø	S SCOTI		BZ	
NOTES 1) 2-ply truss			ther with 10d		lb up at 23-1	385 lb up at 21-10- 1-4, 532 lb down ar	nd 14 lb up	o at 25-1	11-4,			30	SEVI	ER	1+8	
	") nails as fo is connected		s: 2x4 - 2 rows			own and 14 lb up at Ib up at 29-11-4 or						Đ	att.	:An	his	
staggered	at 0-9-0 oc.		ows: 2x6 - 2 rows		design/select responsibility	ion of such connect of others.	tion device	e(s) is the	e		-	83	NUME		EA	
staggered	at 0-3-0 oc.		1 row at 0-9-0 oc.		DAD CASE(S)	Standard	umbor la		1 <i>F</i>			Ø	O PE-20010		ZB	
AACD COUL	100100 85 101	.5113. 284 -	- 10w at 0-3*0 00.	1)	Plate Increa			nease=1	. 10,				SSIONA	LENG	Ą	
					Uniform Loa	ids (lb/ft)							and			
													December	22,202	21	

-													
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.88	Vert(LL)	-0.09	7-9	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.57	Vert(CT)	-0.20	7-9	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.53	Horz(CT)	0.09	12	n/a	n/a		
BCDL	10.0	Code	IRC201	18/TPI2014	Matrix-S		Wind(LL)	0.04	7-9	>999	240	Weight: 86 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce 10-2:2x8 SP DSS 2x4 SPF No.2	pt* 6-5:2x4 SPF No.:		 using ANSI/T designer sho Provide mecl bearing plate joint 10 and 1 	int(s) 12 consider PI 1 angle to gra uld verify capacit hanical connectio capable of withs 122 lb uplift at joir designed in acco	in formula y of bear n (by oth tanding 1 nt 12.	a. Building ing surface. ers) of truss t 56 lb uplift at	to					
BRACING TOP CHORD	Structural wood she	athing directly applie	' hor		Residential Code			and					
TOP CHORD	2-2-0 oc purlins, ex		101	R802.10.2 ar	nd referenced sta	ndard AN	ISI/TPI 1.						
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	L	OAD CASE(S)	Standard								
WEBS	1 Row at midpt	3-7											
I	(lb/size) 10=1055/ Max Horiz 10=223 (L Max Uplift 10=-156 (3)										
FORCES	(lb) - Maximum Com Tension	pression/Maximum											
TOP CHORD	1-2=0/37, 2-3=-1463 4-5=-723/160, 6-11= 2-10=-965/200												
BOT CHORD WEBS	9-10=-269/1194, 7-9 3-9=0/302, 3-7=-733 5-7=-94/635, 5-12=-	/262, 4-7=0/242,	/83									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	II.
this design 2) Wind: ASC Vasd=91m II; Exp C; E	d roof live loads have E 7-16; Vult=115mph ph; TCDL=6.0psf; BC inclosed; MWFRS (er eft and right exposed	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zone	e;									STATE OF M SCOTT SEVI	MISSOUR ER

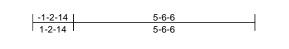
right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf

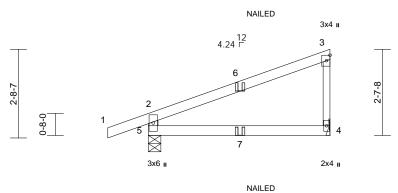
(4) This truss has been designed to a live load of 20.0ps on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

December 22,2021

PE-200101880


E

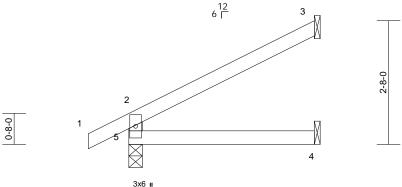

SSIONAL

						RELEASE FOR CONSTRUCTION			
Job	Truss	Truss Type	Qty	Ply	123 MN	AS NOTED FOR PLAN REVIEW			
B210102	J1	Diagonal Hip Girder	2	1	Job Reference (optional	DEVELOPMENT SERVICES 149388359 LEE'S SUMMIT, MISSOURI			
Wheeler Lumber, Waver	Wheeler Lumber, Waverly, KS - 66871, Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc.								

ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKVrCDoi7542JO?f/ UI/ZUZZ

NAILED

NAILED


Scale = 1:35.1

Scale = 1.55.1												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.41	Vert(LL)	-0.03	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.25	Vert(CT)	-0.07	4-5	>967	240	-	
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	4-5	>999	240	Weight: 16 lb	FT = 10%
		•					,	-	-			
				AD CASE(S) sections are noted as from			face					
TOP CHORD BOT CHORD					it (F) 01 ba	ск (В).						
WEBS	2x4 SPF No.2 *Exce	ont* 3-1.2v3 SPE No		S) Standard Roof Live (balance)	d): Lumbor	Inorono 1	15					
BRACING	2A4 011 NO.2 LACE	pt 5-4.2x5 511 NO	,	rease=1.15	u). Lumber	Increase=1	.15,					
TOP CHORD	Structural wood she	athing directly applie		Loads (lb/ft)								
	5-6-6 oc purlins, ex			1-2=-70, 2-3=-70, 4	1-5=-20							
BOT CHORD				rated Loads (lb)								
	bracing.			7=2 (F=1, B=1)								
REACTIONS	(lb/size) 4=224/ M	echanical, 5=346/0-	4-9									
	Max Horiz 5=111 (LC	C 5)										
	Max Uplift 4=-50 (LC	C 8), 5=-101 (LC 4)										
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHORD)/32, 2-3=-139/14,										
BOT CHORD	3-4=-160/73											
	4-5=-26/45											
NOTES		(0										
	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC		Cat									
	Enclosed; MWFRS (er											
	left and right exposed											
	sed; Lumber DOL=1.6											
2) This truss	has been designed for	r a 10.0 psf bottom									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(m)
	load nonconcurrent wi										TATE OF	A Min
	ss has been designed f		Opsf								A E OF	MISS
	ttom chord in all areas									A		N.S.
	all by 2-00-00 wide will	fit between the botto	m							A	SCOT	M. NEW
	d any other members. girder(s) for truss to trus	as connections								a		TER YY
	nechanical connection (0							TO A		
	late capable of withstar									WX.	1 +K	· Xan Lak
	d 50 lb uplift at joint 4.								-	VI-		BER SH
6) This truss	is designed in accorda	ance with the 2018								27	S NUM	
	nal Residential Code se		ind							N.	PE-2001	101880/
	R802.10.2 and referenced standard ANSI/TPI 1.											
	indicates 3-10d (0.148									0	SION	TENS
(0.148"x3	.25") toe-nails per NDS	s guidlines.									ESSION	IL F
											- un	
											Decembe	er 22,2021

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	123 MN	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 149388360
B210102	J2	Jack-Open	3	1	Job Reference (optional	
Wheeler Lumber, Waverly, KS	ue Dec 2016:15:4807/249:22 VrCDoi7342JO?f					

4-0-0

2-8-0	

Scale =	1.21 0

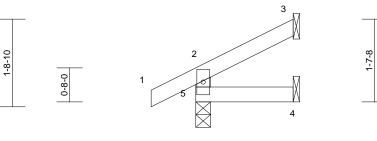
2-9-3

Scale = 1:24.8												
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.20 0.13 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	4-5	>999	240	Weight: 11 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 Structural wood she 4-0-0 oc purlins, ex	eathing directly applie cept end verticals. / applied or 10-0-0 or										
REACTIONS	· /	lechanical, 4=45/										
	Mechanic Max Horiz 5=89 (LC	cal, 5=252/0-3-8										
	Max Uplift 3=-66 (LC	,										
	Max Grav 3=116 (L	C 1), 4=71 (LC 3), 5=	=252									
	(LC 1)											
FORCES	(lb) - Maximum Con Tension	npression/Maximum										
TOP CHORD	2-5=-221/67, 1-2=0/	/32. 2-3=-75/40										
BOT CHORD	4-5=0/0	,										
NOTES												
Vasd=91n II; Exp C; cantilever right expo	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6	CDL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an 60 plate grip DOL=1.6	ne; d								TATE OF I	
	has been designed fo load nonconcurrent w		ds							1	TEOTI	MISSO.
	s has been designed									B	ST SCOT	M S
	tom chord in all areas									B	SEVI	
	all by 2-00-00 wide will	fit between the botto	om							8 +		
	any other members.	iss connections								NR	- 44 -	1 24
, 0	echanical connection		0								Catto	Service
bearing pl	ate capable of withsta									87	PE-2001	
	b uplift at joint 3.									N	PE-2001	10001
	is designed in accorda		nd							Y	Se.	GNA
	and referenced stand		nu								ESSIONA	LETA
LOAD CASE											WINA	DIE

LOAD CASE(S) Standard

December 22,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	123 MN	AS NOTED FOR PLAN REVIEW
			<i><i>u</i>,<i>y</i></i>	,	120 1011	DEVELOPMENT SERVICES 149388361
B210102	J3	Jack-Open	4	1	Job Reference (optional	
						04/07/0000

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. The Dec 20615:4607/26:22 ID:VBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGK VrCDoi79420?#07/26:22

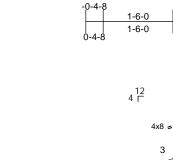
3x6 II

1-10-15

Scale = 1:22.6	
----------------	--

Scale = 1:22.6												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.07 0.02 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 0.00 0.00	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 6 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 Structural wood she 1-10-15 oc purlins, Rigid ceiling directly bracing. (Ib/size) 3=44/ Me	except end verticals v applied or 10-0-0 o echanical, 4=14/ cal, 5=171/0-3-8 8) C 8), 5=-26 (LC 8)	s. C									
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 2-5=-150/44, 1-2=0/ 4-5=0/0											
NOTES												
Vasd=91n II; Exp C; cantilever right expo	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6	CDL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an 60 plate grip DOL=1.	ne; Id								Contraction of F	and the second
	has been designed fo		ds.								TEOF	MISSO
3) * This trus on the bot 3-06-00 ta	right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.											
5) Provide m bearing pla	irder(s) for truss to tru nechanical connection ate capable of withstar b uplift at joint 3.	(by others) of truss t									PE-2001	louies
6) This truss Internatior R802.10.2	is designed in accordanal Residential Code s and referenced stand	ections R502.11.1 a	nd							Ø	PE-2001	IL ENGILE
LOAD CASE(S) Standard											

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

December 22,2021

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	123 MN	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
B210102	J4	Jack-Closed Supported Gable	2	1	Job Reference (optional	DEVELOPMENT SERVICES 149388362 LEE'S SUMMIT, MISSOURI
Minesley Lumber Minusk	- KC CC074	Burn 0.42.C. Ort	44 0004 Drint	0 420 0 0 ++	44 2024 MiTel: Industrian Inc. T	

0-11-3

0-4-0

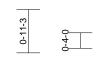
0-10-0

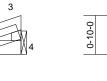
2x4 =

1	1-6-0	I
		1

Scale = 1:24.8 Plate Offsets (X, Y): [3:0-10-2,0-1-12]

Plate Olisets (/	λ, f). [3.0-10-2,0-1-1	2]										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.03 0.02 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 4 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=91m II; Exp C; E cantilever I right expos 2) Truss desig only. For s see Standa or consult (3) Gable requid 4) Gable stud 5) This truss I chord live I 6) * This truss on the bott 3-06-00 the stud contained and at 7) Provide me	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 1-6-0 oc purlins, ex Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 10-0-0 or 0, 4=59/1-6-0 5) ; 4), 4=-12 (LC 8) pression/Maximum , 3-4=-45/21 (3-second gust) DL=6.0psf; h=25ft; C welope) exterior zor ; end vertical left am 0 plate grip DOL=1.6 the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TF m chord bearing. r a 10.0 psf bottom th any other live loar or a live load of 20.0 where a rectangle fit between the botto (by others) of truss to	8) This trus Internati R802.10 LOAD CASE ad or c Cat. he; d 60 ss b, ble, PI 1. cds. opsf om	Matrix-P as is designed in acco onal Residential Code 2 and referenced sta E(S) Standard	e sections	s R502.11.1 a	ind				STATE OF	MISSOLA T M. TER UISSOLA TER
4 and 28 lb	o uplift at joint 2.										all	er 22,2021




						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	123 MN	AS NOTED FOR PLAN REVIEW
B210102	J5	Jack-Closed	2	1	Job Reference (optional	DEVELOPMENT SERVICES 149388363 LEE'S SUMMIT, MISSOURI
Wheeler Lumber Weverly KS						

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. The Dec 206:15:407/29:22 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3ulTXbGK VrCDoi7942/0?#

2x4 =

1-6-0	I
	1

<u>1-6-0</u> 1-6-0

12 4 Г

4x8 =

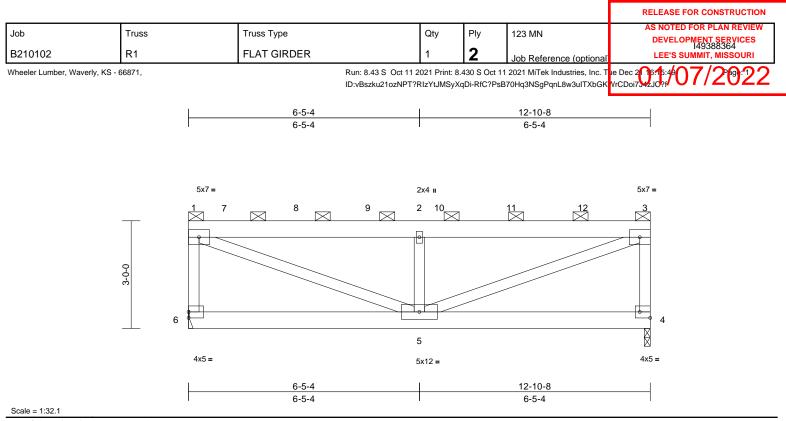
Scale = 1:24.8 Plate Offsets (X_Y): [3:0-10-2 0-1-12]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.02	Vert(LL)	0.00	2-4	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	2-4	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 4 lb	FT = 10%

TOP CHORD	2x4 SPF No.2
BOT CHORD	2x4 SPF No.2
WEBS	2x3 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	1-6-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(lb/size) 2=94/0-3-8, 4=57/ Mechanical
	Max Horiz 2=24 (LC 5)
	Max Uplift 2=-30 (LC 4), 4=-12 (LC 8)
FORCES	(lb) - Maximum Compression/Maximum
	Tension

 TOP CHORD
 1-2=0/6, 2-3=-23/12, 3-4=-44/20

 BOT CHORD
 2-4=-7/5


NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 4 and 30 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.46	Vert(LL)	-0.06	5	>999	360	MT20	197/144
CDL	10.0	Lumber DOL	1.15		BC	0.16	Vert(CT)	-0.11	5	>999	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.60	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S		Wind(LL)	0.04	5	>999	240	Weight: 150 lb	FT = 10%
UMBER) Provide ade				g.					
	2x6 SP DSS		5		as been designe								
OT CHORD	2x6 SPF No.2				ad nonconcurre								
/EBS	2x4 SPF No.2		Ċ		nas been desig m chord in all a			upsr					
					by 2-00-00 wide		0	om					
OP CHORD	end verticals.	0-0 max.): 1-3, excep	τ		ny other member								
OT CHORD		applied or 10-0-0 oc	7) WARNING:			int(s) 4 great	ter					
	bracing.			than input be	•								
REACTIONS	(lb/size) 4=2997/0	-2-0, (req. 0-2-6), 6=3			er(s) for truss to								
	Mechanic		ç		hanical connect capable of wit								
	Max Horiz 6=-77 (LC	C 4)			30 lb uplift at jo		a s in upilit a	L					
	Max Uplift 4=-330 (L	_C 5), 6=-373 (LC 4)	1	0) This truss is			ith the 2018						
ORCES	(lb) - Maximum Con	npression/Maximum			Residential Co			and					
	Tension	1705/500		R802.10.2 a	nd referenced s	standard AN	ISI/TPI 1.						
OP CHORD	1-6=-3237/394, 1-2= 2-3=-4765/523, 3-4=		1	1) Graphical pu				size					
OT CHORD	5-6=-76/227, 4-5=-3			or the orient	ation of the pur	in along the	e top and/or						
/EBS	1-5=-555/4913, 2-5=		1	2) Hanger(s) of		on device(s) shall bo						
	3-5=-557/4925	,			ficient to suppo			376					
IOTES					105 lb up at 1								
) 2-ply truss	to be connected toge	ther with 10d		up at 3-0-0,	871 lb down ar	nd 105 lb up	at 5-0-0, 87	71 lb					
) nails as follows:)5 lb up at 7-0-							000	TO
	s connected as follow)		0, and 871 lb d							TE OF M	d sall
	rows staggered at 0- ords connected as foll				 The design/s the responsibility 			ion				4 SE	-30 M
	at 0-9-0 oc.	10WS. 2X0 - 2 10WS		OAD CASE(S)	•	y or others.					A	SCOT	N N
	ected as follows: 2x4	- 1 row at 0-9-0 oc.		• • • •	of Live (balance	d). Lumber	Increase-1	15			R	SEVI	
	re considered equally			Plate Incre			increase=1.	10,			R	SEVI	
except if n	oted as front (F) or ba	ick (B) face in the LO	٩D	Uniform Lo	ads (lb/ft)						ar	44	Q \~
	section. Ply to ply con			Vert: 1-3	=-70, 4-6=-20						X	goll .	Jerne
	o distribute only loads	noted as (F) or (B),		Vert: 1-3=-70, 4-5=-20 Concentrated Loads (lb) Vert: 7=-876, 8=-871, 9=-871, 10=-871, 11=-871, 12=-871								171	
	erwise indicated. CE 7-16; Vult=115mph	(2 second quist)			876, 8=-871, 9	=-871, 10=-	871, 11=-87	1,			N.	O PE-2001	018807
	ph; TCDL=6.0psf; BC		at.	12=-871							Ŷ	N BO	158
	Enclosed; MWFRS (er			SUPPLEMENTARY BEARING PLATES, SPECIAL ANCHORAGE,									
and right e	exposed ; end vertical	left and right exposed	l;		ANS TO ALLOW TH (SUCH AS C			UIRED				A LONA	L
Lumber D	OL=1.60 plate grip DC	DL=1.60		BLOCKS, ETC.) ARE THE RESP	ONSIBILITY	OF THE TRU	SS					
				MANUFACTUR	ER OR THE BUI	DING DESI	GNER.					December	22,2021

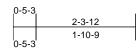
16023 Swingley Ridge Rd Chesterfield, MO 63017

									RELEASE	FOR CONSTRUCTION	
Job	Truss		Truss Type		Qty	Ply	123 MN				٦
B210102	V1		Valley		1	1		<i></i>	DEVEL	OPMENT SERVICES 149388365 SUMMIT, MISSOURI	
	Vaverly, KS - 66871,		vancy	Run: 8.43 S Oct 11 2	· ·		-	nce (optional ndustries, Inc. T	L		 >
				ID:vBszku21ozNPT?F							•
			1	5-3-	10		1				
			ŀ	J-J-	-12						
							2x4 u				
							2				
							P				
					/	//					
		12			//			5			
		3-6-12		17				3-6-12			
			8	3 ¹²							
				1							
		4					3				
		0-0-4-0					***				
			b	~	*******	~~~~~	2				
				2x4 🍃			2x4 u				
			F	5-3-	-12						
Scale = 1:27							I		i		_
Loading	(psf)	Spacing	2-0-0	CSI	DEF		in (loc)	l/defl L/d	PLATES	GRIP	
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15		.44 Vert .23 Vert	. ,	n/a - n/a -	n/a 999 n/a 999	MT20	197/144	
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC2018/TPI201		.00 Hori	z(TL) 0.	00 3	n/a n/a	Weight: 15 lb	FT = 10%	
		0000		uss is designed in accordance	e with the	2018			Worght. To iz	11-10/0	—
TOP CHORD 2	2x4 SPF No.2		Interna	ational Residential Code sec 10.2 and referenced standard	tions R502	2.11.1 and					
	2x4 SPF No.2 2x3 SPF No.2			SE(S) Standard		11.					
BRACING TOP CHORD	Structural wood she	eathing directly applied	1 or								
:	5-4-2 oc purlins, ex										
I	bracing.										
REACTIONS (III M	o/size) 1=214/5-3 ax Horiz 1=126 (L0	3-12, 3=214/5-3-12 C 5)									
М	ax Uplift 1=-18 (LC										
FORCES	(lb) - Maximum Corr	npression/Maximum									
	Tension 1-2=-118/96, 2-3=-1	182/91									
BOT CHORD	-3=-45/34										
	7-16; Vult=115mph										
II; Exp C; En	closed; MWFRS (er	CDL=6.0psf; h=25ft; Ca nvelope) exterior zone	;								
cantilever lef	t and right exposed	i ; end vertical left and 60 plate grip DOL=1.60	,								
2) Truss design	ed for wind loads in	n the plane of the truss	6						000	-AD	
		d (normal to the face), nd Details as applicable							F. OF M	AISS	
or consult qu		igner as per ANSI/TPI						E	AN	N.S.	
4) Gable studs	spaced at 4-0-0 oc.							B	SCOT		
	as been designed fo ad nonconcurrent wi	or a 10.0 psf bottom vith any other live loads	S.					g a			
6) * This truss h		for a live load of 20.0p						SP .	att	South)
		fit between the botton	n						NUM	Nor yay	1

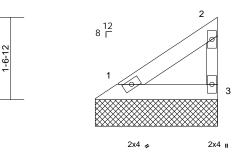
3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Provide mechanical connection (by others) of truss to 7) bearing plate capable of withstanding 18 lb uplift at joint 1 and 62 lb uplift at joint 3.

PE-GI December 22,2021

PE-2001018807



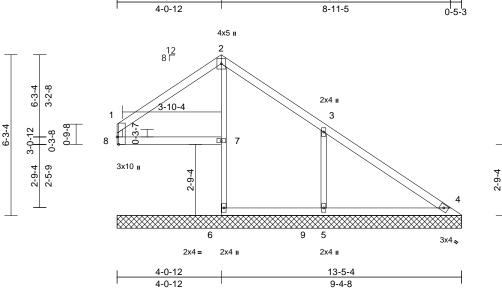
									RELEASE	FOR CONSTRUCTION	·
Job	Truss		Truss Type		Qty	Ply	123 MN			D FOR PLAN REVIEW	٦
B210102	V2		Valley		1	1	Lab Deferr	(ontional)		OPMENT SERVICES 149388366 SUMMIT, MISSOURI	
	Waverly, KS - 66871,			Run: 8.43 S Oct 11 2		.430 S Oct 11		ence (optional) ndustries, Inc. T)
	•			ID:vBszku21ozNPT?F							
					o 40		1				
			I	0-0	9-12		\neg				
							2x4 II				
							244 1				
		— <u> </u>				2	1		-		
					/	//	ŕI				
		<u>5</u>		12 8				12			
		2-6-12		8	//	I		2-6-12			
				. //	/	I					
		4		1			• 3				
					*****		×				
							\bigotimes				
				2x4 🍫			2x4 II				
				3-9	9-12		_				
Scale = 1:23.1											
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC 0.).19 Vert(in (loc) n/a -	l/defl L/d n/a 999	PLATES MT20	GRIP 197/144	
TCDL	10.0	Lumber DOL	1.15	BC 0.	0.10 Vert((TL) r	n/a -	n/a 999	WITZ0	191/144	
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB 0. Matrix-P).00 Horiz	(TL) 0.4	.00 3	n/a n/a	Weight: 11 lb	FT = 10%	
LUMBER	· · · · · · · · ·	4		s designed in accordance	.ce with the	÷ 2018			<u> </u>		_
TOP CHORD	2x4 SPF No.2 2x4 SPF No.2		Internationa	al Residential Code sect and referenced standard	tions R502	2.11.1 and					
WEBS	2x3 SPF No.2		LOAD CASE(S)								
BRACING TOP CHORD		eathing directly applied	t or								
BOT CHORD		except end verticals. y applied or 10-0-0 oc									
	bracing.										
REACTIONS ((lb/size) 1=147/3-9 Max Horiz 1=86 (LC	·9-12, 3=147/3-9-12 5)									
Ν	Max Uplift 1=-12 (LC Max Grav 1=147 (LC	C 8), 3=-42 (LC 8)									
FORCES	(lb) - Maximum Com										
TOP CHORD	Tension 1-2=-81/66, 2-3=-12	25/62									
BOT CHORD NOTES	1-3=-31/23										
1) Wind: ASCE	E 7-16; Vult=115mph										
II; Exp C; Ei	nclosed; MWFRS (er	CDL=6.0psf; h=25ft; Ca envelope) exterior zone	e;								
		d ; end vertical left and 60 plate grip DOL=1.60									
2) Truss desig	ned for wind loads in	n the plane of the truss d (normal to the face),	S						South	alle	
see Standar	ard Industry Gable En	nd Details as applicable	le,						THIE OF M	AISSO	
3) Gable requi	ires continuous botto	om chord bearing.	1.					A	SCOTT	N N	
5) This truss h	s spaced at 4-0-0 oc.	or a 10.0 psf bottom						A3	SEVI		
		vith any other live loads for a live load of 20.0p						87	7		
on the botto	om chord in all areas							N.	Scatter	former y	
chord and a	any other members.							Ø.	PE-20010)18807	
bearing plat	te capable of withstar	(by others) of truss to anding 12 lb uplift at join						Y	1885	ENGL	
1 and 42 lb	uplift at joint 3.								SIONA		
									December	22,2021	



						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	123 MN	AS NOTED FOR PLAN REVIEW
B210102	V3	Valley	1	1	Job Reference (optional	DEVELOPMENT SERVICES 149388367 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS - (66871,	Run: 8.43 S Oct 11 2	2021 Print: 8.	430 S Oct 11	2021 MiTek Industries, Inc. T	

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. The Dec 20615:507/2022 ID:vBszku21ozNPT?RIzYtJMSyXqDi-RfC?PsB70Hq3NSgPqnL8w3uITXbGK VrCDoi7942J0?f

2-3-12


Scale = 1:21.8

Scale = 1:21.8												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.05	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI201	4 Matrix-P							Weight: 6 lb	FT = 10%
LUMBER				ss is designed in acc								
TOP CHORD	2x4 SPF No.2		Interna	ional Residential Cod	de sections	s R502.11.1 a	and					
BOT CHORD	2x4 SPF No.2		R802.1	0.2 and referenced st	andard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2		LOAD CAS	E(S) Standard								
BRACING												
TOP CHORD	Structural wood she		ed or									
	2-4-2 oc purlins, ex											
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	C									
REACTIONS		12, 3=79/2-3-12										
	Max Horiz 1=47 (LC											
	Max Uplift 1=-7 (LC											
	Max Grav 1=79 (LC											
FORCES	(lb) - Maximum Corr Tension	pression/Maximum										
TOP CHORD	1-2=-43/35, 2-3=-67	/22										
BOT CHORD	1-3=-17/13	/00										
NOTES	10-11/10											
	CE 7-16; Vult=115mph	(3-second quist)										
	nph; TCDL=6.0psf; BC		Cat.									
	Enclosed; MWFRS (er											
	left and right exposed											
	sed; Lumber DOL=1.6											
	igned for wind loads in										000	ADD
	studs exposed to wind										8 OF	MISS
	lard Industry Gable En qualified building desi		,								ATEOF	-050.0
	uires continuous botto	0 1								A	AN AGO	New York
	ds spaced at 4-0-0 oc.									A	SCOT	
5) This truss	has been designed fo	r a 10.0 psf bottom								ų.	/ SEV	
chord live	load nonconcurrent wi	ith any other live loa	ids.							17	1	1. 1
	s has been designed f		Opsf							X	L. HY	Xanala
	tom chord in all areas								-		NUM	BLR
	all by 2-00-00 wide will any other members.	tit between the botto	om							Na	PE-200	018807
	echanical connection	(by others) of trues t	to							N	The second	120
	ate capable of withstar									X	0.50	NO'A
	uplift at joint 3.										CSSIONA	LEL
	. ,										ALL ALL	and a
												00.0004

December 22,2021

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	123 MN	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 149388368
B210102	V4	Valley	1	1	Job Reference (optional	
Wheeler Lumber, Waverly	, KS - 66871,				11 2021 MiTek Industries, Inc. T sB70Hq3NSgPqnL8w3uITXbGK	
		4-0-12		13-0-1	13-5-4	

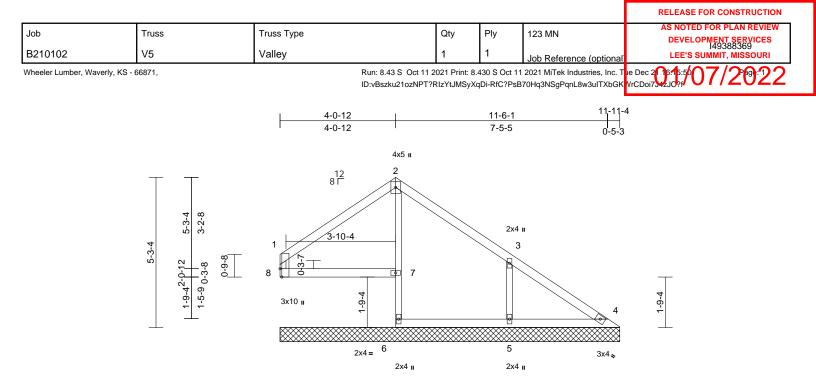

Scale = 1	:45
-----------	-----

Plate Offsets (X, Y): [8:0-3-8,Edge]

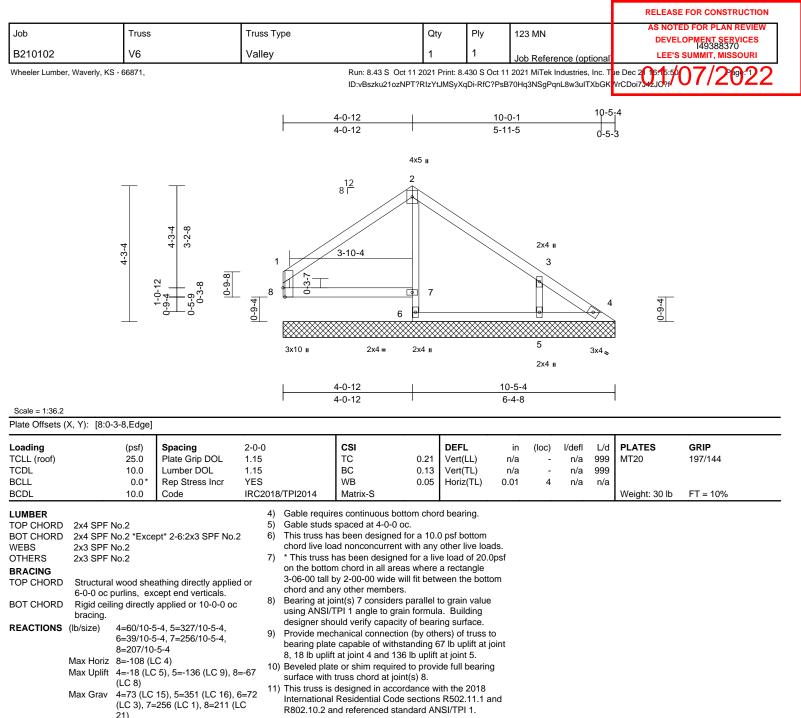
Plate Offsets ((X, Y): [8:0-3-8,Edge]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.32 0.19 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.02	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 41 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 *Exce 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, exi Rigid ceiling directly bracing. (Ib/size) 4=179/13- 6=25/13-5 8=176/13. Max Horiz 8=-171 (L Max Uplift 4=-64 (LC (LC 5), 8= Max Grav 4=210 (LC	 applied or 6-0-0 oc -5-4, 5=487/13-5-4, 5-4, 7=292/13-5-4, -5-4 C 9) S 9, 5=-191 (LC 9), 7= -145 (LC 9) C 16), 5=616 (LC 16), 14), 7=376 (LC 18), 	7) H or 8) 9) =-23 10	Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Bearing at jo using ANSI/T designer sho Provide mec bearing plate joint 8, 64 lb lb uplift at joi) Beveled platt surface with) This truss is International	es continuous bott spaced at 4-0-0 or so been designed to has been designed to has been designed n chord in all area by 2-00-00 wide winy of ther members, int(s) 7 considers FPI 1 angle to grai buld verify capacity hanical connection e capable of withst uplift at joint 4, 23 nt 5. e or shim required truss chord at join designed in accor Residential Code nd referenced star	c. for a 10. with any d for a liv s where ill fit betw , with BC parallel n formul of bear n (by oth anding 1 l b uplift t to provi t(s) 8. dance w sections	D psf bottom other live load e load of 20.0 D psf bottom a rectangle veen the botto DL = 10.0psf o grain value a. Building ng surface. ers) of truss to 45 lb uplift at at joint 7 and de full bearing ith the 2018 : R502.11.1 a	psf om 191					
FORCES	(lb) - Maximum Com Tension			DAD CASE(S)	Standard								
TOP CHORD	3-4=-84/120	164/245, 2-3=-142/24											ALL
BOT CHORD	7-8=-11/36, 6-7=0/0, 4-5=-5/7	, 2-7=-292/42, 5-6=-5,	/7,									TATE OF I	MISS
this design 2) Wind: ASG Vasd=91n II; Exp C; cantilever right expo 3) Truss des only. For see Stand	3-5=-390/243 ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 igned for wind loads in studs exposed to wind lard Industry Gable End qualified building design	(3-second gust) DL=6.0psf; h=25ft; Ca velope) exterior zone ; end vertical left and 0 plate grip DOL=1.60 the plane of the truss (normal to the face), d Details as applicabl	e;) 6,								*	SCOT SEVI PE-2001 PE-2001	L ENGINE

December 22,2021

11-11-4

7-10-8

4-0-12


4-0-12

Scale = 1:40.5

Plate Offsets (X, Y): [8:0-3-8,Edge]

	(A, T). [0.0-3-0,Euge]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.21 0.13 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.02	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 35 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 *Exce 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (lb/size) 4=120/11 6=33/11-1 8=181/11. Max Horiz 8=-131 (L Max Uplift 4=-34 (LC (LC 5), 8= Max Grav 4=120 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc -11-4, 5=391/11-11-4 -11-4, 7=299/11-11-4, -11-4 C 4) C 9), 5=-156 (LC 9), 7 e-106 (LC 9)	7) d or 5 8) 4, 9) 7=-5 10 6=65 11	Gable studs This truss ha chord live loo * This truss h on the bottor 3-06-00 tall h chord and ar Bearing at jo using ANSI/ designer sho Provide mec bearing plate joint 8, 34 lb lb uplift at joi) Beveled plat surface with) This truss is International	e or shim required truss chord at joir designed in acco Residential Code	bc. for a 10. with any d for a liva as where will fit betw. parallel in formul y of bear n (by oth tanding lb uplift a d to provint(s) 8. rdance we sections	D psf bottom other live loa: e load of 20.0 a rectangle veen the botto to grain value a. Building ing surface. ers) of truss to 06 lb uplift at t joint 7 and 1 de full bearing ith the 2018 s R502.11.1 a	ppsf om 56 J					
FORCES	(lb) - Maximum Com Tension			DAD CASE(S)	nd referenced sta Standard								
TOP CHORD	1-8=-151/123, 1-2=- 3-4=-50/79	145/189, 2-3=-118/1	80,										m
BOT CHORD	7-8=-17/42, 6-7=0/0 5-6=-10/18, 4-5=-10 3-5=-317/201											THE OF	MISSO
NOTES 1) Unbalance this design 2) Wind: AS Vasd=911 II; Exp C; cantilever right expo 3) Truss des only. For see Stance	ed roof live loads have	(3-second gust) DL=6.0psf; h=25ft; C tvelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 the plane of the trus (normal to the face) d Details as applicab	Cat. e; d 50 ss ,									SCOT SEV NUM PE-2001	IER BER 018807

LOAD CASE(S) Standard

FORCES

TOP CHORD

BOT CHORD

this design.

WEBS

NOTES

1)

2)

3)

(Ib) - Maximum Compression/Maximum

1-8=-173/93, 1-2=-145/114, 2-3=-133/106,

7-8=-41/91, 6-7=0/0, 2-7=-214/0, 5-6=-35/70,

Tension

3-4=-87/53

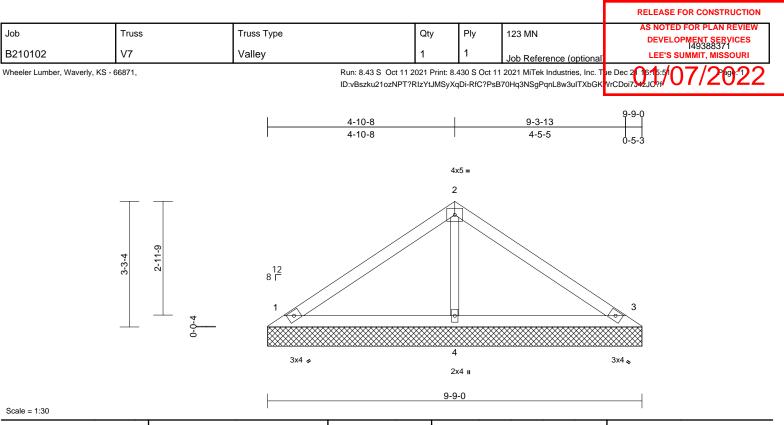
4-5=-35/70

3-5=-277/178

Unbalanced roof live loads have been considered for

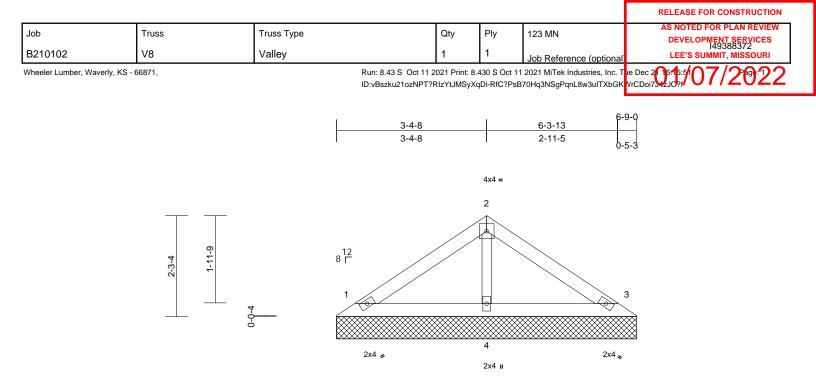
Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and

right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss


only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Wind: ASCE 7-16; Vult=115mph (3-second gust)

December 22,2021


Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.27 0.17 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x3 SPF No.2 Structural wood she 6-0-0 oc purlins.	eathing directly appli	L	bearing plate 1, 48 lb uplife This truss is International	hanical conne e capable of wi t at joint 3 and designed in ac Residential C nd referenced Standard	ithstanding 3 15 lb uplift a ccordance wi ode sections	9 lb uplift at t joint 4. ith the 2018 R502.11.1 a	joint					
REACTIONS	bracing. (lb/size) 1=205/9- 4=387/9- Max Horiz 1=-77 (LC Max Uplift 1=-39 (LC (LC 8)	C 4)											
FORCES	(lb) - Maximum Con Tension	npression/Maximum											
TOP CHORD BOT CHORD WEBS	1-2=-153/73, 2-3=-1												
NOTES													
 Unbalance this design Wind: ASO Vasd=91r II; Exp C; 	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (e left and right exposed	n (3-second gust) CDL=6.0psf; h=25ft; nvelope) exterior zon	Cat. ne;									CE OF J	MISS

- right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle
 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

December 22,2021

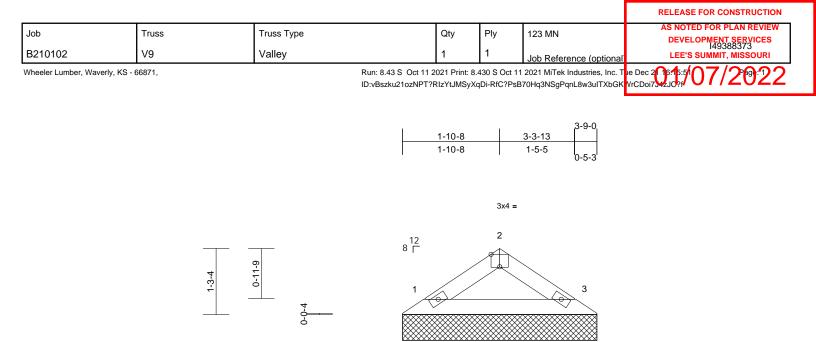
	6-9-0
ļ	

Scale = 1:25.9			1									
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.15	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 17 lb	FT = 10%

LUMBER		
TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2
OTHERS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	6-0-0 oc p	ourlins.
BOT CHORD	Rigid ceili	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	1=148/6-9-0, 3=148/6-9-0,
		4=230/6-9-0
	Max Horiz	1=51 (LC 5)
	Max Uplift	1=-33 (LC 8), 3=-39 (LC 9)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-92/4	7, 2-3=-88/35
BOT CHORD	1-4=-10/4	3, 3-4=-10/43
WEBS	2-4=-157/	/40
NOTES		

- NOTES
- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 33 lb uplift at joint 1 and 39 lb uplift at joint 3.


9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

16023 Swingley Ridge Rd Chesterfield, MO 63017

2x4 🍫

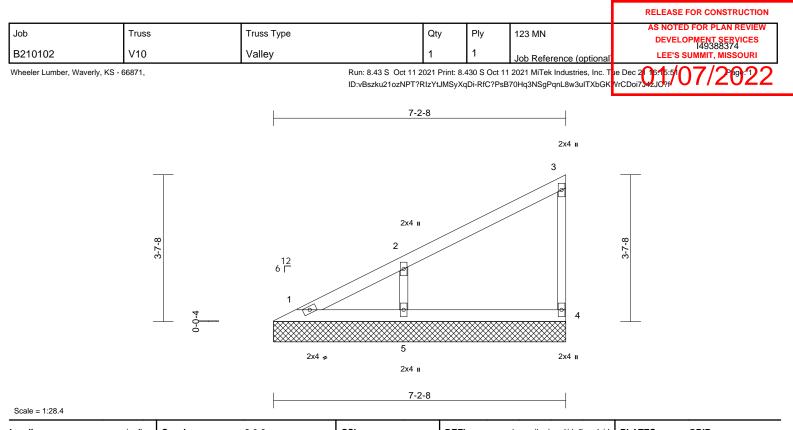
2x4 💊

Plate Offsets (X, Y)	[2.0-2-0,Euge]	1			
Scale = 1:22.2	[2:0 2 0 Edge]				
			_	3	-9-0

		-										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.03	Vert(LL)	n/a		n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P		- ()					Weight: 8 lb	FT = 10%
			a) T : /									
				is designed in acco al Residential Code			nd					
TOP CHORD BOT CHORD				and referenced sta			inu					
	2X4 SPF N0.2					1 01/1111.						
BRACING	o		LOAD CASE(Standard								
TOP CHORD	TOP CHORD Structural wood sheathing directly applied or											
	3-9-12 oc purlins.	analiad as 10.0.0 a										
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	C									
REACTIONS	0	9-0, 3=128/3-9-0										
REACTIONS	Max Horiz 1=-25 (LC											
	Max Uplift 1=-15 (LC	,										
FORCES	(lb) - Maximum Corr	, ,										
FURGES	(ID) - Maximum Con Tension	ipression/waximum										
TOP CHORD		12/34										
BOT CHORD	,	12/01										
NOTES	10-10/10											
	ed roof live loads have	been considered fo	r									
	 Unbalanced roof live loads have been considered for this design. 											
	CE 7-16; Vult=115mph	(3-second qust)										
	mph; TCDL=6.0psf; BC		Cat.									
	Enclosed; MWFRS (er											
cantilever left and right exposed ; end vertical left and												
right exposed; Lumber DOL=1.60 plate grip DOL=1.60												
right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult gualified building designer as per ANSI/TPI 1.												
only. For studs exposed to wind (normal to the face),												
see Standard Industry Gable End Details as applicable,												
	t qualified building desi		PI 1.							B	SCOT	TM. Y
	uires continuous botto									R	SEV	IER \ Y
	ids spaced at 4-0-0 oc.								1	720		0 +
	s has been designed fo		da						•	S	tott	xonler
	load nonconcurrent wi								-	5-		DED
	ss has been designed f ttom chord in all areas		upst							23	NUM	
	all by 2-00-00 wide will	0	om							N.	O PE-2001	018807

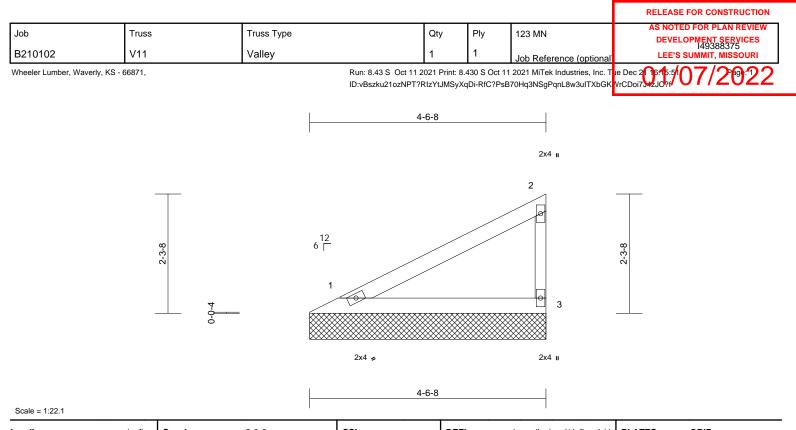
on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 15 lb uplift at joint 1 and 15 lb uplift at joint 3.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

December 22,2021

SIONAL

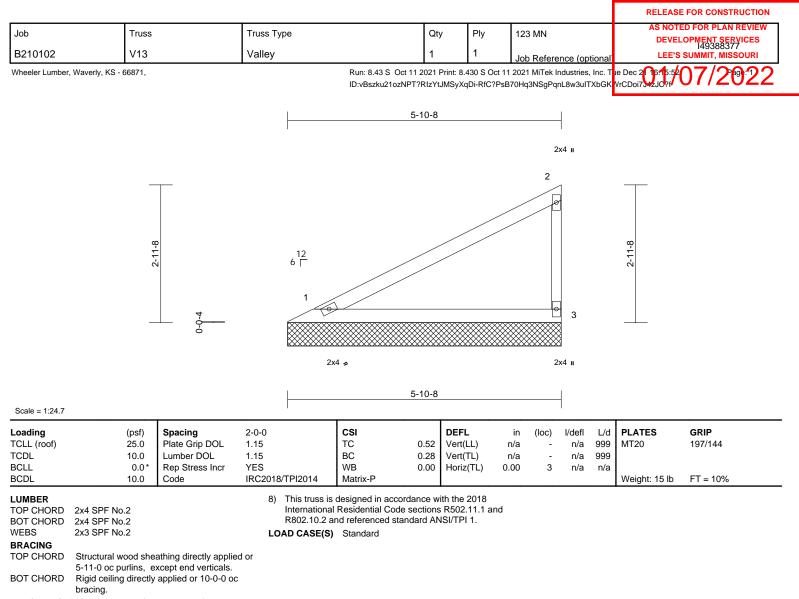

E

3cale = 1.20.4												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	n/a	(100)	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999		101/111
BCLL	0.0*	Rep Stress Incr	YES	WB	0.05	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TF			110112(112)	0.00	4	n/a	n/a	Weight: 20 lb	FT = 10%
BODL	10.0	Code			-						Weight. 20 lb	FT = 1076
LUMBER				ovide mechanical co								
TOP CHORD	2x4 SPF No.2			aring plate capable		26 lb uplift at joi	int					
BOT CHORD	2x4 SPF No.2			and 113 lb uplift at jo								
WEBS	2x3 SPF No.2			nis truss is designed								
OTHERS	2x3 SPF No.2			ternational Resident			d					
BRACING			R	302.10.2 and referer	nced standard AN	NSI/TPI 1.						
TOP CHORD		athing directly applie	dor LOAD	CASE(S) Standar	ď							
	6-0-0 oc purlins, ex											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	:									
	bracing.											
REACTIONS		-8, 4=141/7-2-8,										
	5=378/7-2											
	Max Horiz 1=136 (L											
	Max Uplift 4=-26 (LC											
	Max Grav 1=82 (LC (LC 1)	16), 4=141 (LC 1), 5	=378									
FORCES	(Ib) - Maximum Con	nression/Maximum										
TOROLO	Tension	ipression/maximum										
TOP CHORD		07/44. 3-4=-110/45										
BOT CHORD	,	,										
WEBS	2-5=-294/164											
NOTES												
	CE 7-16; Vult=115mph	(3-second dust)										
	mph; TCDL=6.0psf; BC		at									~
	Enclosed; MWFRS (er										CON	Jan
	left and right exposed										B & OF I	MISSO
right expo	sed; Lumber DOL=1.6	0 plate grip DOL=1.6	60							6	THE OF I	N.O.
2) Truss des	signed for wind loads ir	the plane of the trus	s							B	SCOT	M N
only. For	studs exposed to wind	(normal to the face)	,							R	SEVI	
	dard Industry Gable En									10	SEVI	
	t qualified building desi		11.							10	1 1.1	X
	uires continuous botto									M .	hTD a	Long
,	ds spaced at 4-0-0 oc.									A C	NUM	BER
	has been designed fo									NS	O PE-2001	018807
	load nonconcurrent w									N	The second secon	12 b
	ss has been designed t		ры							Y	A Ser	G A
on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom											C'SSIONA	LEFA
	any other members.	in botween the botto									Cas	TITE
												00.0004

December 22,2021

Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.27 0.15 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 12 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 BRACING TOP CHORD Structural wood shea 4-7-0 oc purlins, exc BOT CHORD Rigid ceiling directly	cept end verticals.	International R802.10.2 a LOAD CASE(S) d or	designed in accord Residential Code nd referenced stan Standard	sections	R502.11.1 a	nd					
bracing. REACTIONS (lb/size) 1=173/4-6 Max Horiz 1=80 (LC + Max Uplift 1=-22 (LC											
Max Uplift 1=-22 (LC FORCES (lb) - Maximum Comp Tension TOP CHORD 1-2=-73/48, 2-3=-135 BOT CHORD 1-3=-27/21 NOTES 1) Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BCI II; Exp C; Enclosed; MWFRS (encline) cantilever left and right exposed; right exposed; Lumber DOL=1.60 2) Truss designed for wind loads in only. For studs exposed to wind see Standard Industry Gable Encline or consult qualified building desig 3) Gable requires continuous bottom 4) Gable studs spaced at 4-0-0 oc. 5) This truss has been designed for chord live load nonconcurrent wit 6) * This truss has been designed for on the bottom chord in all areas w 3-06-00 tall by 2-00-00 wide will f chord and any other members. 7) Provide mechanical connection (lbearing plate capable of withstant 1 and 42 lb uplift at joint 3.	(3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left and D plate grip DDL=1.6 the plane of the trus (normal to the face) d Details as applicab gner as per ANSI/TP n chord bearing. a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto by others) of truss to	e; d b0 s; le, l 1. ds. psf m								State OF M State OF M SEVI SEVI PE-2001	

December 22,2021



							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	123 MN	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 149388376
B210102	V12	Valley		1	1	Job Reference (optional	
Wheeler Lumber, Waverly, KS -	· 66871,		Run: 8.43 S Oct 11 20 ID:vBszku21ozNPT?RI	21 Print: 8. IzYtJMSyX	.430 S Oct 1 qDi-RfC?PsE	1 2021 MiTek Industries, Inc. T 370Hq3NSgPqnL8w3uITXbGK	ie Dec 2016:15:5/07/210:22
		F	3.	-2-8			
						2x4 II	
		6	12			2 -	
	1-7-8		1				1-7-8
		-				3 	
			2x4 ≠			2x4 II	
		<u> </u>	3-	-2-8			
Scale = 1:19.5						 	· · · · · · · · · · · · · · · · · · ·

TCDL 10.0 Lumber DOL 1.15 BC 0.00 Vert(TL) n/a - n/a 999 BCLL 0.00 Code IRC2018/TPI2014 WB 0.00 Matrix-P Weight: 8 lb FT = 10* LUMBER 0.0 2x4 SPF No.2 (a) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS//TPI 1. WEB 2x3 SPF No.2 LOAD CASE(S) Standard BRACING Brown, except end verticals. International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS//TPI 1. Vertical wood sheathing directly applied or 3-3-0 oc putine verticals. So of putines. So of puti	Lumber DOL Rep Stress Incr 1.15 (Code BC 0.06 WB Vert(TL) n/a - n/a 999 (Weight: 8 lb FT = 10% Rep Stress Incr YES WB 0.00 Yert(TL) 0.00 3 n/a n/a Code INterturational Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/ITP11. LOAD CASE(S) Standard satisfy a pression/Maximum Standard Add referenced standard ANS/ITP11. LOAD CASE(S) Standard satisfy a pression/Maximum Sa	Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
BCLL 0.0* Rep Stress Incr YES WB 0.00 Horiz(TL) 0.00 3 n/a n/a BCDL 10.0 Code IRC2018/TPI2014 Matrix-P 0.00 3 n/a n/a LUMBER Code IRC2018/TPI2014 Matrix-P 0.00 3 n/a n/a LUMER 2x4 SPF No.2 Streatural Analysis Streatural Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/TP1 1. LOAD CASE(S) Standard BRACING Top CHORD Structural wood sheathing directly applied or 3-3-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. LOAD CASE(S) Standard BRACINS (b/bisize) 1=113/3-2-8, dat13/3-2-8, d	Rep Order YEB (RC2018/TTPI2014 Matrix-P WB Matrix-P Horiz(TL) 0.00 3 n/a Weight: 8 lb FT = 10% A structure in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/TTPI 1. LOAD CASE(S) Standard Bathing directly applied or recept end verticals. y applied or 10-04 oc 2-8, 3=113/3-2-8 Sign Colspan="4">Of Matrix-P Meta (Matrix) DOM Colspan="4">Meta (Matrix) A second gust) CDL=1.60 on the truss of document of the truss of document of the truss of document of the colspan="4">A septicable, igner as per ANS/TP1 1. OF MISSign Colspan="4">Mission Colspan="4" A set (C 8) Mission Colspan="4">Mission Colspan="4">Mission Colspan="4">Mission Colspan="4">Mission Colspan= 440 A set (C 8) Mission Colspan= 440 A set (C 8) Mission Colspan= 440	()		1 1				· · ·		-			MT20	197/144
BCDL 10.0 Code IRC2018/TPI2014 Matrix-P Weight: 8 lb FT = 10" LUMBER TOP CHORD 2x4 SPF No.2 8) This truss is designed in accordance with the 2018 Intermational Residential Code sections FR02.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Image: Code Sections FR02.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. DOP CHORD Structural wood sheathing directly applied or 3-3-0 co purifys, except end verticals. Image: Code Sections FR02.11.1 and R802.10.2 and referenced standard Image: Code Sections FR02.11.1 and R802.10.2 and referenced standard REACTIONS (Ib/size) 1=113/3-2-8, Ja=113/3-2-8 Max Horiz Image: Code Sections FR02.11.1 and R802.10.2 and referenced standard FORCES (Ib) Maximum Compression/Maximum Tension S=28 (LC 8) TOP CHORD 1-2a-48/32, 2-3a-88/43 BOT CHORD Ja=-18/14 Notes 10 Vinict ASCE 7-16; Vull=115mph (3-second gust) Vaad-9-Timph: TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp C; Enclosed; IMVFRS (envelope) exterior zone; cantilever left and right exposed; cut over licial left and right exposed; Lumber DOL=1.60 Jame of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Cable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable totak spaced at -0-0 cc. 50 This truss has been designed for a 10.0 p8 bottom chord live laded nonconcurrent with any other live loads. 61	Code IRC2018/TPI2014 Matrix-P Weight: 8 lb FT = 10% a 0. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard asthing directly applied or keept end verticals. y applied or 10-0-0 cc 2.48, 3=113/3-2-8 .59 Standard 2.6, 3=-28 (LC 8) mpression/Maximum Matrix-P Verticals. Verticals. Verticals. Verticals. 8/43 h (3-second gust) .50L=6.0pst; h=25t; Cat. melope) exterior zone; i; end vertical left and 30 plate grip DOL=1.60 in the plane of the truss d normal to the face), and Detaits as applicable, igner as per ANSI/TPI 1. om chord bearing. Verticals. Verticals. Verticals. Verticals. r a 10.0 psf bottom itm any other live loads. for a live load of 20.0psf. where a rectangle lift between the bottom Verticals. Verticals. Verticals. Verticals. Verticals. Verticals. (by others) of truss to inding 15 lb upilit at joint Verticals. Verticals. Verticals. Verticals. Verticals. Verticals.							- ()						
LUMBER TOP CHORD 2x4 SPF No.2 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. WEBS 2x3 SPF No.2 LOAD CASE(S) BRACING TOP CHORD Structural wood sheathing directly applied or 3-3-0 oc purlins, except end verticals. Standard BOT CHORD Rigid ceiling directly applied or 3-3-0 oc purlins, except end verticals. Standard BOT CHORD Rigid ceiling directly applied or 3-3-0 oc purlins, except end verticals. Standard BOT CHORD (bisize) 1=113/3-2-8, 3=113/3-2-8 Max Uplit 1=-15 (IC 8), 3=-28 (IC 8) Max Uplit 1=-15 (IC 8), 3=-28 (IC 8) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2e-48/02, 2-3e-88/43 BOT CHORD 1-3e-18/14 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Yasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; i.ed writical left and right exposed; Lumber DOL=1.60 pits egrip DOL=1.60 5/17 K OF MISSO OC FURD 0; JT russ designed for vin lot be face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. ScotT M. SEVIER 3) Gable requires continuous bottom chord neads. 5/17 K OF MISSO OC FURD 0; ScotT M. SEVIER 6) "This truss has been designed for a 10.0 ps bottom chord live load nonconcurrent with any other live loads. ScotT M. SEVIER	8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Load CASE(S) Standard Basthing directly applied or except end verticals. y applied or 10-0-0 oc 2:8, 3=113/3-2:8 5) C 8), 3=-28 (LC 8) mpression/Maximum 8/43 h (3-second gust) DDL=6.0ps; h=25t; Cat. myelope) setterior zone; 1; end vertical left and 30 plate grip DDL=1.60 in the plane of the truss d (normal to the face), and Details as applicable, igner as per ANSI/TPI 1. m chord bearing. <t< td=""><td></td><td></td><td></td><td></td><td></td><td>0.00</td><td>Horiz(TL)</td><td>0.00</td><td>3</td><td>n/a</td><td>n/a</td><td></td><td></td></t<>						0.00	Horiz(TL)	0.00	3	n/a	n/a		
TOP CHORD 2x4 SPF No.2 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. WEBS 2x3 SPF No.2 LOAD CASE(S) Standard BRACING Structural wood sheathing directly applied or 3-3-0 oc purlins, except end verticals. BOT CHORD Structural wood sheathing directly applied or 3-3-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0 oc bracing. REACTIONS (Ib/size) 1=113/3-2-8, 3=113/3-2-8 Max Horiz 1=53 (LC 5) Maximum Compression/Maximum Tension TOP CHORD 1:2=-48/32, 2:3=-88/43 BOT CHORD 1:3=-18/14 NOTES 1) Wind: ASCE 7-16; Vull=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; nE-25f; Cat. 11; Exp C; Enclosed; MWRPS (pervelop) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DDL=1.60 pletaig pa 2pletaigne paper 4.00 0; Cable requires continuous bottom chord bearing. 4) Gable studs spaced at 4-0-0 cc. 5) This truss has been designed for a 10.0 pf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a 10.0 pf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a 10.0 pf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a 10.0 pf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load 20.0psf on the bottom chord in all areas where a rectangle	Load CASE(S) Standard Reto: 10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard eathing directly applied or kcept end verticals. y applied or 10-0-0 oc 2-8, 3-113/3-2-8 50 C 8), 328 (LC 8) npression/Maximum 8/43 h (3-second gust) DDL-6.0.0pt. h=25ft: Cat. mvelope) exterior zone; 1; end vertical left and So plate gip DDL-1.60 n the plane of the truss d (romat lo the face), nd Detaits as applicable, igner as per ANSI/TPI 1. m chord bearing. To r 1.0.0 psf bottom ith any other live loads. for a live load of 20.0psf ; where a rectangle If thetween the bottom (by others) of truss to inding 15 lb uplift at joint	BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 8 lb	FT = 10%
TOP CHORD Structural wood sheathing directly applied or 3-3-0 oc purins, except end verticals. OSOT CHORD Rigid celling directly applied or 10-0-0 oc bracing. REACTIONS (Ib/size) 1=113/3-2-8, 3=113/3-2-8 Max Hoirz Max Hoirz 1=53 (LC 5) Max Uplift 1=-15 (LC 8), 3=-28 (LC 8) FORCES (Ib) - Maximum Compression/Maximum Tension Tension TOP CHORD 1-2=-48/32, 2-3=-88/43 3 30 T CHORD 1-2=-48/32, 2-388/43 SOT CHORD 1-3=-18/14 Yotes Yotes 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vaad=31mph; TCDL=-6, Opsf; BCDL=-6,	<pre>kxept end verticals. y applied or 10-0-0 oc 2-8, 3=113/3-2-8 25) C B), 3=-28 (LC 8) mpression/Maximum 8/43</pre> h (3-second gust) DDL=6.0psf; h=25f; Cat. invelope) exterior zone; 1; end vertical left and 30 plate grip DOL=1.60 n the plane of the truss d (normal to the face), and Details as applicable, igner as per ANSI/TPI 1. or a 10.0 psf bottom //th any other live loads. for a live load of 20.0psf : where a rectangle I if the teween the bottom (by others) of truss to inding 15 lb uplift at joint	TOP CHORD BOT CHORD	2x4 SPF No.2		Ínternation R802.10.2	al Residential Co and referenced s	de sections	R502.11.1 a	and					
3-3-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) 1=113/3-2-8, 3=113/3-2-8 Max Horiz 1=53 (LC 5) Max Uplift 1=-15 (LC 8), 3=-28 (LC 8) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-48/32, 2-3=-88/43 BOT CHORD 1-3=-18/14 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; i-end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Gable requires continuous bottom chord bearing. 4) Gable requires continuous bottom chord bearing. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas Where a rectangle	<pre>kxcept end verticals. y applied or 10-0-0 oc 2-8, 3=113/3-2-8 25) C B), 3=-28 (LC 8) mpression/Maximum 8/43</pre> h (3-second gust) CDL=6.0psf; h=25f; Cat. invelope) exterior zone; 4; end vertical left and 50 plate grip DOL=1.60 n the plane of the truss d (normal to the face), d of Details as applicable, igner as per ANSI/TPI 1. om chord bearing. - or a 10.0 psf bottom //th any other live loads. for a live load of 20.0psf where a rectangle I fit between the bottom (by others) of truss to inding 15 lb uplift at joint													
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (Ib/size) 1=113/3-2-8, 3=113/3-2-8 Max Horiz 1=53 (LC 5) Max Uplift 1=-53 (LC 5) Max Dift 1=-53 (LC 5) Notes 1 Visit ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL==6.0psf; h=25t; Cat. 11; Exp C; Enclosed; Lumber DOL=1.60 1] Exp C; Enclosed; Lumber DOL=1.60 1=-160 (LE 6) 2) Truss designed for mid loads in the plane of the truss <td>y applied or 10-0-0 oc 2-8, 3=113/3-2-8 2-5) C 8), 3=-28 (LC 8) mpression/Maximum 8/43 h (3-second gust) CDL=6.0pst; h=25ft; Cat. mvelope) exterior zone; 1; end vertical left and So plate grip DDL=1.60 n the plane of the truss d (normal to the face), td Details as applicable, igner as per ANS/TPI 1. or a 10.0 psf bottom ith any other live loads. for a live load of 20.0psf where a rectangle (by others) of truss to inding 15 lb uplift at joint</td> <td>TOP CHORD</td> <td></td> <td></td> <td>ed or</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	y applied or 10-0-0 oc 2-8, 3=113/3-2-8 2-5) C 8), 3=-28 (LC 8) mpression/Maximum 8/43 h (3-second gust) CDL=6.0pst; h=25ft; Cat. mvelope) exterior zone; 1; end vertical left and So plate grip DDL=1.60 n the plane of the truss d (normal to the face), td Details as applicable, igner as per ANS/TPI 1. or a 10.0 psf bottom ith any other live loads. for a live load of 20.0psf where a rectangle (by others) of truss to inding 15 lb uplift at joint	TOP CHORD			ed or									
REACTIONS (lb/size) 1=113/3-2-8, 3=113/3-2-8 Max Horiz 1=53 (LC 5) Max Uplift 1=-15 (LC 8), 3=-28 (LC 8) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-48/32, 2-3=-88/43 BOT CHORD 1-3=-18/14 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; bcDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Gable studs spaced at 4-0-0 c. 5) This truss has been designed for a 10.0 psf bottom chord live load onconcrurent with any other live loads. 6) *This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle	2.5) C 8), 3=-28 (LC 8) mpression/Maximum 8/43 h (3-second gust) DDL=6.0psf; h=25f; Cat. mixelope) exterior zone; d; end vertical left and S0 plate grip DOL=1.60 n the plate of the truss d (normal to the face), d (normal to the face), d (normal to the face), d (normal to the face), nor chord bearing.	BOT CHORD			C									
Max Horiz 1=53 (LC 5) Max Uplift 1=-15 (LC 8), 3=-28 (LC 8) FORCES ((b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-48/32, 2-3=-88/43 BOT CHORD 1-3=-18/14 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed : end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Gable studs spaced at 4-0-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle	2.5) C 8), 3=-28 (LC 8) mpression/Maximum 8/43 h (3-second gust) DDL=6.0psf; h=25f; Cat. mixelope) exterior zone; d; end vertical left and S0 plate grip DOL=1.60 n the plate of the truss d (normal to the face), d (normal to the face), d (normal to the face), d (normal to the face), nor chord bearing.		0											
Max Uplift 1=-15 (LC 6), 3=-28 (LC 8) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-48/32, 2-3=-88/43 BOT CHORD 1-3=-18/14 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Gable studs spaced at 4-0-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle	c b), 3=28 (LC 8) mpression/Maximum 8/43 h (3-second gust) CDL=6.0psf; h=25ft; Cat. invelope) exterior zone; i; end vertical left and 80 plate grip DOL=1.60 in the plane of the truss d (normal to the face), ad (normal to the face), ad (normal to the face), ad Oretails as applicable, igner as per ANSI/TPI 1. or a 10.0 psf bottom ith any other live loads. for a live load of 20.0psf ; where a rectangle if the teveen the bottom (by others) of truss to innding 15 lb uplift at joint	REACTIONS	· · ·	,										
FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-48/32, 2-3=-88/43 BOT CHORD 1-3=-18/14 NOTES 1) 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Gable studs spaced at 4-0-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle	npression/Maximum B/43 h (3-second gust) CDL=6.0psf; h=25ft; Cat. invelope) exterior zone; 1; end vertical left and 50 plate grip DOL=1.60 n the plane of the truss d (normal to the face), nd Details as applicable, igner as per ANSI/TP1 1. om chord bearing. To ror a 10.0 psf bottom vith any other live loads. for a live load of 20.0psf where a rectangle I fit between the bottom (by others) of truss to anding 15 lb uplift at joint		(,										
Tension TOP CHORD 1-2=-48/32, 2-3=-88/43 BOT CHORD 1-3=-18/14 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable studs spaced at 4-0-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle	s/43 h (3-second gust) DDL=6.0psf, h=25ft; Cat. invelope) exterior zone; i; end vertical left and 50 plate grip DOL=1.60 in the plane of the truss d (normal to the face), d Details as applicable, igner as per ANSI/TPI 1. on chord bearing. · or a 10.0 psf bottom ith any other live loads. for a live load of 20.0psf where a rectangle If the tween the bottom (by others) of truss to inding 15 lb uplift at joint	FORCES		,, (,										
BOT CHORD 1-3=-18/14 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Gable studs spaced at 4-0-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load onconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle	h (3-second gust) CDL=6.0psf; h=25f; Cat. invelope) exterior zone; 1; end vertical left and 50 plate grip DOL=1.60 in the plane of the truss d (normal to the face), nd Details as applicable, igner as per ANSI/TPI 1. or an 10.0 psf bottom ith any other live loads. for a live load of 20.0psf where a rectangle I fit between the bottom (by others) of truss to anding 15 lb uplift at joint	••_•	()	iprocolor, maxima										
NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; umber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Gable studs spaced at 4-0-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle	CDL=6.0psf; h=25ft; Cat. invelope) exterior zone; d; end vertical left and So plate grip DOL=1.60 in the plane of the truss d (normal to the face), nd Details as applicable, igner as per ANSI/TPI 1. or a 10.0 psf bottom <i>i</i> th any other live loads. for a live load of 20.0psf is where a rectangle I fit between the bottom (by others) of truss to anding 15 lb uplift at joint		,	/43										
 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DCL=1.60 plate grip DCL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Gable studs spaced at 4-0-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 	CDL=6.0psf; h=25ft; Cat. invelope) exterior zone; d; end vertical left and So plate grip DOL=1.60 in the plane of the truss d (normal to the face), nd Details as applicable, igner as per ANSI/TPI 1. or a 10.0 psf bottom <i>i</i> th any other live loads. for a live load of 20.0psf is where a rectangle I fit between the bottom (by others) of truss to anding 15 lb uplift at joint		1-3=-18/14											
 Provide mechanical connection (by others) of truss to PE-2001018807 	Sonal Endit	 Wind: ASC Vasd=91n II; Exp C; cantilever right expo; Truss desi only. For see Stand or consult Gable req Gable req Gable stud This truss chord live * This truss on the bot 3-06-00 ta chord and Provide m 	hph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 igned for wind loads in studs exposed to wind ard Industry Gable En qualified building desi uires continuous botto ds spaced at 4-0-0 oc. has been designed fo load nonconcurrent wi s has been designed f tom chord in all areas Il by 2-00-00 wide will any other members.	EDL=6.0psf; h=25ft; (hvelope) exterior zor ; end vertical left an 0 plate grip DOL=1. the plane of the trus 1 (normal to the face) d Details as applicat gner as per ANSI/TF m chord bearing. r a 10.0 psf bottom ith any other live load or a live load of 20.0 where a rectangle fit between the bottod (by others) of truss to	ne; d 60 ss ole, ole, ole, ole, ole, ole, ole, ole,								SCOT SEV SEV PE-200	IO18807

December 22,2021

REACTIONS	Max Horiz	1=233/5-10-8, 3=233/5-10-8 1=108 (LC 5)
	Max Uplift	1=-30 (LC 8), 3=-57 (LC 8)

FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=-99/65, 2-3=-181/88
BOT CHORD	1-3=-37/28

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

- 4) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 30 lb uplift at joint 1 and 57 lb uplift at joint 3.

December 22,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

