

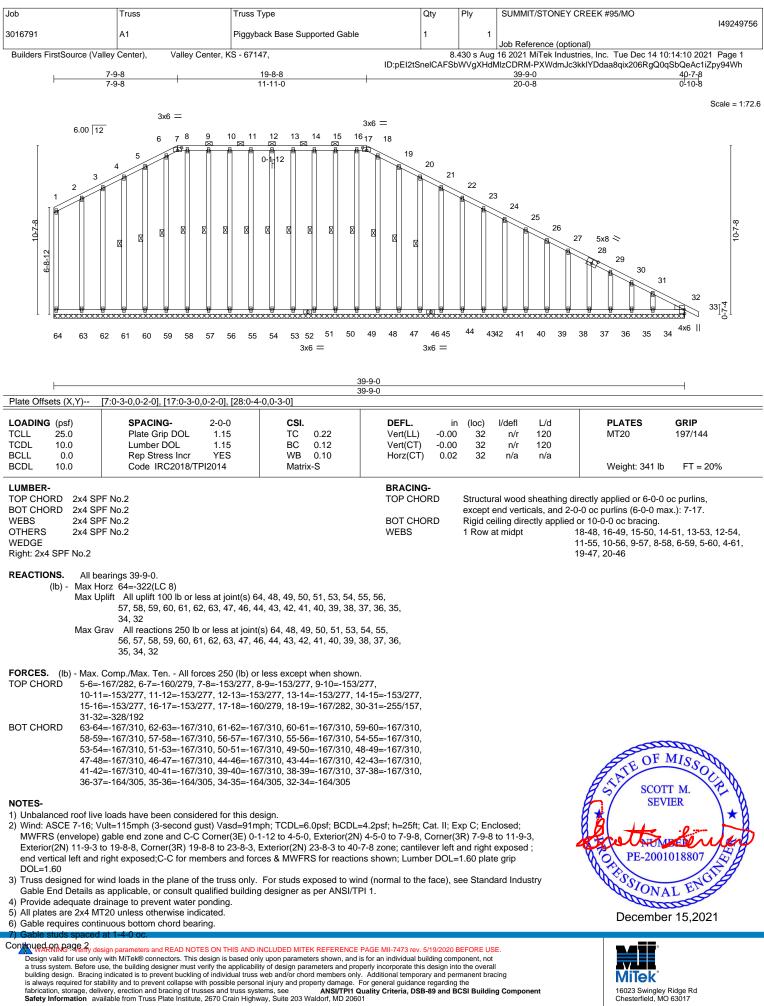
MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Re: 3016791 SUMMIT/STONEY CREEK #95/MO

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Builders FirstSource (Valley Center).

Pages or sheets covered by this seal: I49249756 thru I49249811

My license renewal date for the state of Missouri is December 31, 2021.


Missouri COA: Engineering 001193

December 15,2021

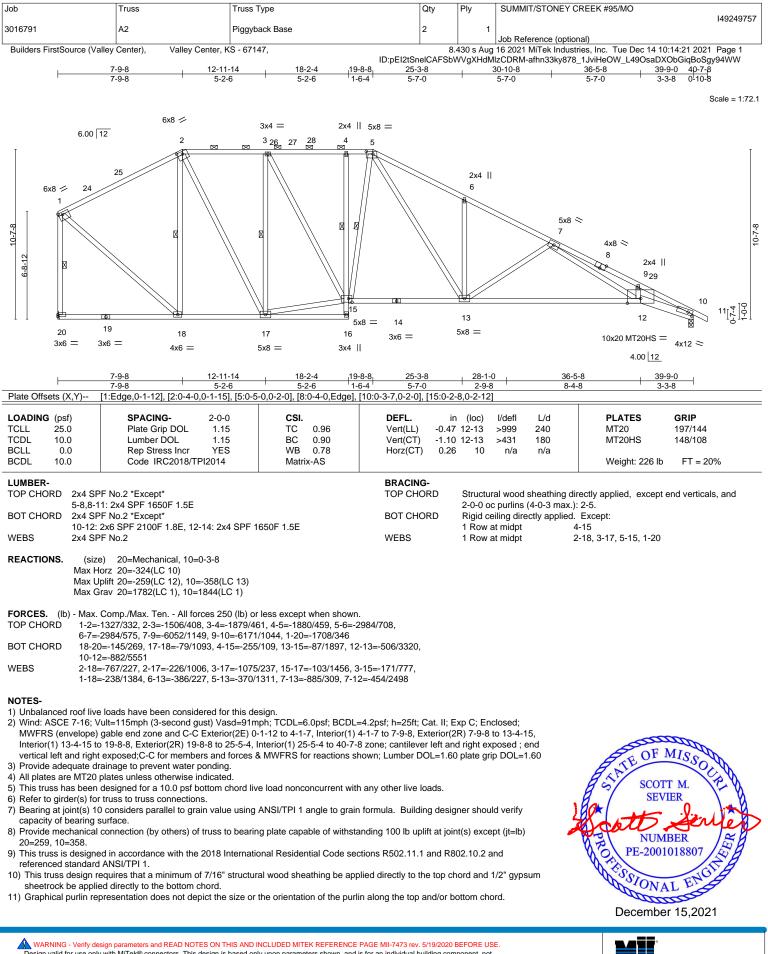
IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

,Engineer

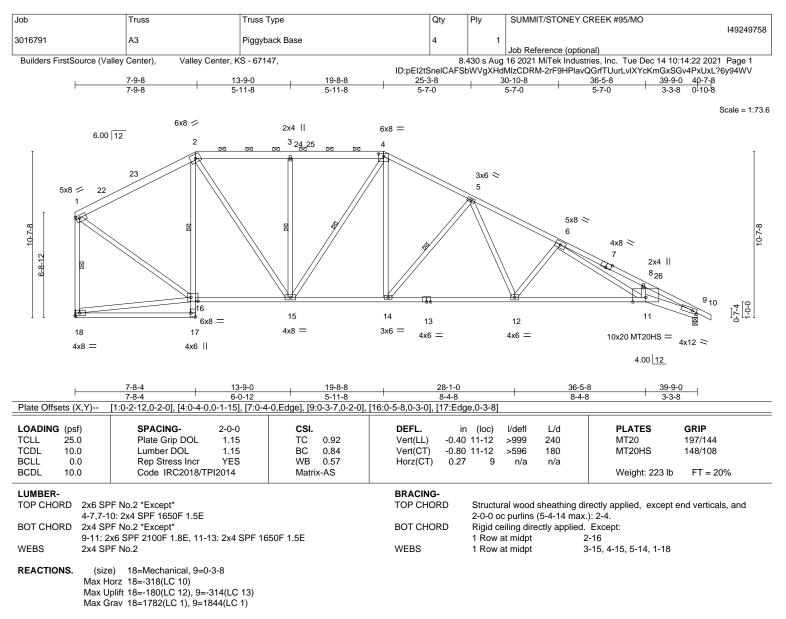
16023 Swingley Ridge Rd Chesterfield, MO 63017

[Job	Truss	Truss Type	Qty	Ply	SUMMIT/STONEY CREEK #95/MO		
	3016791	A1	Piggyback Base Supported Gable	1		149249756		
	3010791	AI	Piggyback Base Supported Gable	1		Job Reference (optional)		
·	Builders FirstSource (Valley Center), Valley Center, KS - 67147,			8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Dec 14 10:14:11 2021 Page 2				
				ID:pEI2tSnelCAFSbWVgXHdMIzCDRM-tk4?zfchV2tPrn8niXDAaEfcQqM2B2goPGmG6Fy94Wg				

NOTES-


8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 64, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 47, 46, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 32.


10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Mitek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

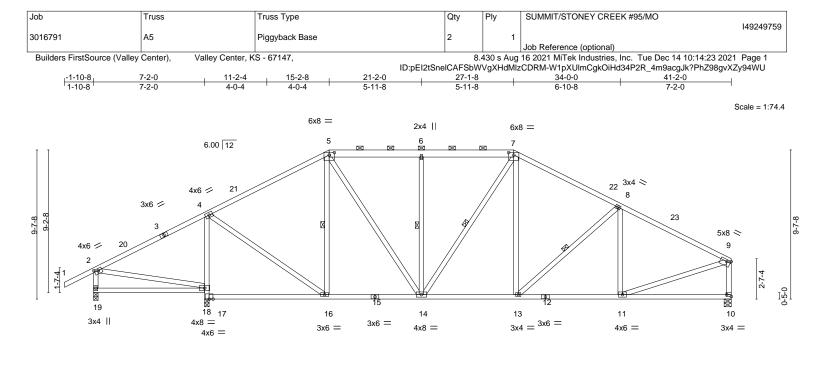
1-2=-1454/332, 2-3=-1748/424, 3-4=-1749/426, 4-5=-2243/464, 5-6=-3316/556, 6-8=-5937/1014, 8-9=-6046/908, 1-18=-1706/316

	0-0=-5957/1014, 0-9=-0040/900, 1-10=-1700/510
BOT CHORD	2-16=-725/231, 15-16=-94/1213, 14-15=-85/1915, 12-14=-220/2527, 11-12=-394/3352,
	9-11=-761/5432
WEBS	3-15=-454/193, 4-15=-349/150, 4-14=-180/848, 5-14=-936/314, 5-12=-160/892,
	6-12=-765/274, 6-11=-444/2334, 1-16=-234/1458, 2-15=-195/1044

NOTES-

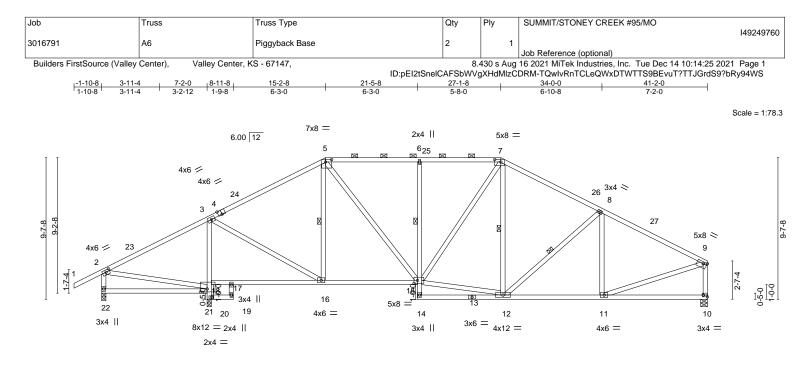
1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vast=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 4-1-7, Interior(1) 4-1-7 to 7-8-4, Exterior(2R) 7-8-4 to 13-3-11, Interior(1) 13-3-11 to 19-8-8, Exterior(2R) 19-8-8 to 25-3-8, Interior(1) 25-3-8 to 40-7-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Bearing at joint(s) 9 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 18=180, 9=314.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

December 15,2021


—	7-2-0	7-3 ₁ 12 0-1-12	<u>15-2-8</u> 7-10-12		-2-0 11-8		-1-8 1-8		34-0-0 6-10-8	41-2-0	
Plate Offsets (X,Y)		=					1-0		0-10-0	7-2-0	
LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Lumber Rep Str	rip DOL	2-0-0 1.15 1.15 YES 2014	CSI. TC 0.59 BC 0.64 WB 0.36 Matrix-AS	Vei	-t(LL) -0 -t(CT) -0	in (loc) 0.08 16-17 0.18 16-17 0.04 10	>999 >999	L/d 240 180 n/a	PLATES MT20 Weight: 215 lb	GRIP 197/144 FT = 20%
BRACING- TOP CHORD 2x4 SPF No.2 *Except* 5-7: 2x6 SPF No.2 BRACING- TOP CHORD TOP CHORD Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 5-7. BOT CHORD 2x4 SPF No.2 BOT CHORD Structural wood sheathing directly applied. WEBS 2x4 SPF No.2 BOT CHORD Negative constraints (-0.0 max.): 5-7. REACTIONS. (size) 19=0-3-8, 10=0-5-8, 17=0-3-8 Max Horz 19=0-3-8, 10=0-5-8, 17=0-3-8 Max Horz WEBS 1 Row at midpt 5-16, 6-14, 7-14, 8-13 Max Uplift 19==-66(LC 12), 10=-279(LC 13), 17=-361(LC 12) Max Grav 19=398(LC 25), 10=1494(LC 1), 17=1951(LC 1) 1											
TOP CHORD 4-5= 2-19 BOT CHORD 17-1 WEBS 4-16	2-19=-330/209, 9-10=-1424/303 BOT CHORD 17-18=-1876/391, 4-18=-1768/394, 14-16=-124/954, 13-14=-152/1321, 11-13=-256/1475										
21-2-0, Interior(1) 2	Vult=115mph (3) gable end zon 21-2-0 to 27-1-8 ical left and righ	B-second gue le and C-C E , Exterior(2R	st) Vasd=91m Exterior(2E) -1 2) 27-1-8 to 32 -C for membe		or(1) 2-2-14 to 1-6 to 41-0-4	zone; can	xterior(2R) tilever left a	15-2-8 to and right	ate	Contraction of the	A A A A A A A A A A A A A A A A A A A

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) Bearing at joint(s) 17 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 19 except (jt=lb) 10=279, 17=361.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

December 15,2021

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

		8-11-8									
1	7-2-0	7-3 ₁ 12	15-2-8	21-5-8	27-1-8	34-0-0	41-2-0				
	7-2-0	0-1-12	6-3-0	6-3-0	5-8-0	6-10-8	7-2-0				
	1-7-12										
Plate Offsets (X,Y)	- [2:0-3-0,0-1-1]	2]. [4:0-3-0.Eda	el. [5:0-5-0.0-2-0]. [7:	0-5-0.0-2-0]. [9:0-3-0	.0-1-8]. [10:Edge.0-1-8], [15:0-2-12,0-2-8], [21:0-	-5-8.0-2-8]				

LOADING (psf) TCLL 25.0	SPACING-2-0-0Plate Grip DOL1.15	CSI. TC 0.60	Vert(LL) -0.0		PLATES GRIP MT20 197/144
TCDL 10.0 BCLL 0.0	Lumber DOL 1.15 Rep Stress Incr YES	BC 0.69 WB 0.35	Vert(CT) -0.1 Horz(CT) 0.0	6 15-16 >999 180 4 10 n/a n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-AS	- (-)		Weight: 213 lb FT = 20%
UMBER-			BRACING-		
FOP CHORD 2x4 SP BOT CHORD 2x4 SP			TOP CHORD	Structural wood sheathing 2-0-0 oc purlins (4-5-3 ma	directly applied, except end verticals, and ux.): 5-7.
WEBS 2x4 SP	PF No.2		BOT CHORD	Rigid ceiling directly appli 1 Row at midpt	,
			WEBS	1 Row at midpt	5-16, 7-12, 8-12

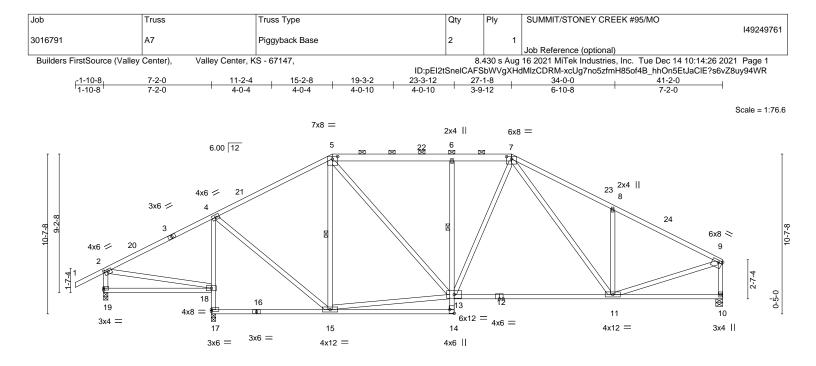
(size) 22=0-3-8, 10=0-5-8, 20=0-3-8 Max Horz 22=197(LC 11) Max Uplift 22=-84(LC 12), 10=-281(LC 13), 20=-337(LC 12) Max Grav 22=323(LC 25), 10=1476(LC 1), 20=2054(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

2-3=-69/338, 3-5=-1251/319, 5-6=-1432/394, 6-7=-1425/392, 7-8=-1569/382, TOP CHORD 8-9=-1724/344, 2-22=-256/213, 9-10=-1406/305 BOT CHORD 20-21=-1995/354, 18-21=-1866/362, 3-18=-1834/378, 15-16=-152/1007, 6-15=-450/191, 11-12=-259/1454 WEBS 3-16=-121/1353, 5-16=-527/122, 5-15=-173/775, 12-15=-151/1249, 7-15=-133/377, 8-11=-321/137, 9-11=-227/1435, 2-21=-315/126

NOTES-

1) Unbalanced roof live loads have been considered for this design.


2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-10-8 to 2-2-14, Interior(1) 2-2-14 to 15-2-8, Exterior(2R) 15-2-8 to 21-0-6. Interior(1) 21-0-6 to 27-1-8. Exterior(2R) 27-1-8 to 32-11-6. Interior(1) 32-11-6 to 41-0-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) Bearing at joint(s) 20 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 22 except (jt=lb) 10=281, 20=337.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

December 15,2021

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

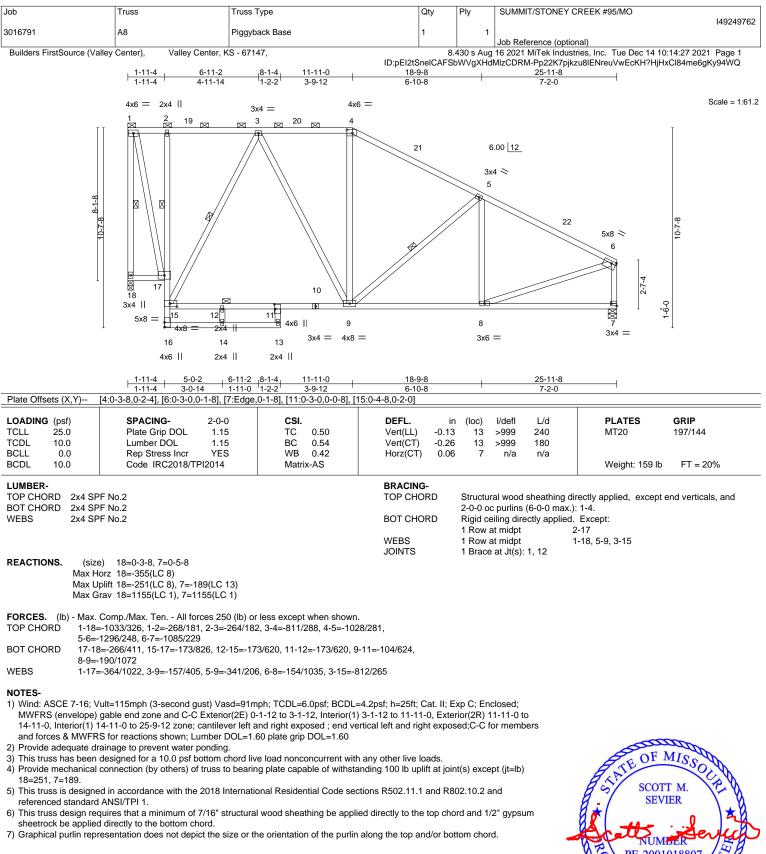
⊢ −−	<u>7-2-0</u> 7-3- 7-2-0 0-1-			23-3-12	27-1-8 3-9-12	<u>34-0-0</u> 6-10-8	41-2-0	
Plate Offsets (X,Y)	[2:0-3-0,0-1-8], [5:0-4-				5-5-12	0-10-0	1-2-0	
LOADING (psf)	SPACING-	2-0-0	CSI.	DEFL.	in (loc)	l/defl L/d	PLATES	GRIP
TCLL 25.0	Plate Grip DOL		TC 0.57	Vert(LL)	-0.30 11-13	>999 240	MT20	197/144
TCDL 10.0	Lumber DOL	1.15	BC 0.83	Vert(CT)	-0.63 11-13	>640 180		
BCLL 0.0	Rep Stress Inc	r YES	WB 0.43	Horz(CT)	0.03 10	n/a n/a		
BCDL 10.0	Code IRC2018	3/TPI2014	Matrix-AS				Weight: 222 lb	FT = 20%
LUMBER-				BRACING-				
	PF No.2 *Except*			TOP CHOP		ral wood sheathing c	lirectly applied, except	end verticals. and
	x6 SPF No.2					c purlins (5-6-13 max		
BOT CHORD 2x4 S	PF No.2			BOT CHOF	RD Rigid c	eiling directly applied	L Except:	
WEBS 2x4 S	PF No.2				1 Row	at midpt	6-13	
				WEBS	1 Row	at midpt	5-15	
REACTIONS. (siz	ze) 19=0-3-8, 17=0-3	-8, 10=0-5-8						
Max	Horz 19=197(I C 11)							

Max Horz 19=197(LC 11) Max Uplift 19=-91(LC 8), 17=-361(LC 12), 10=-287(LC 13) Max Grav 19=423(LC 25), 17=1900(LC 1), 10=1503(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

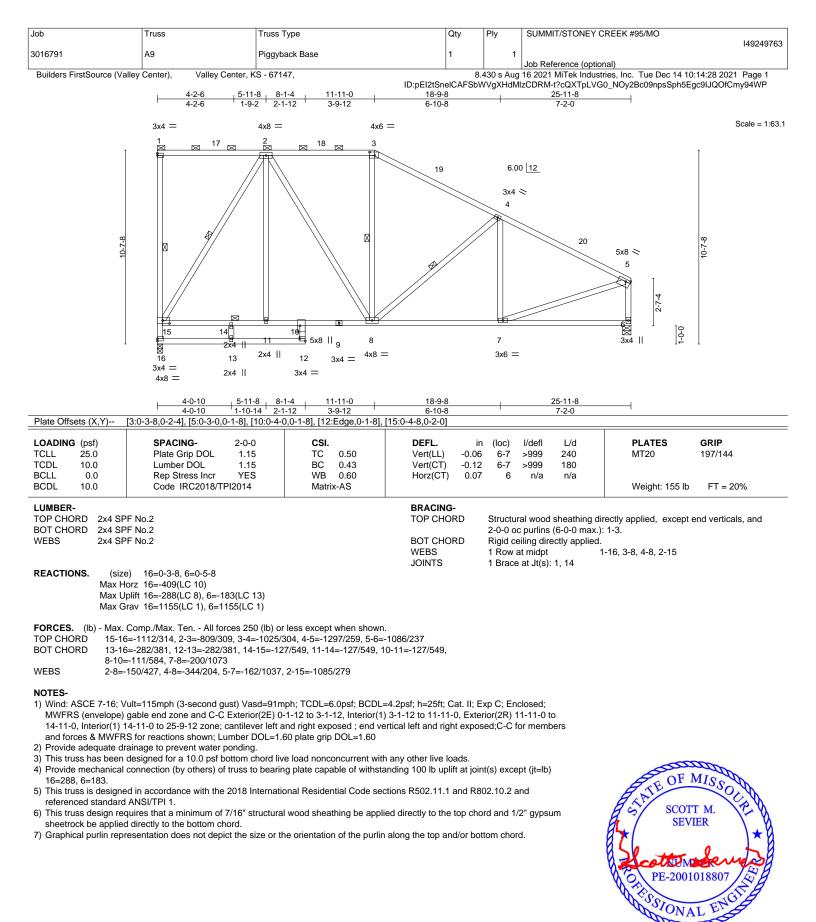
- TOP CHORD 4-5=-1109/334, 5-6=-1391/403, 6-7=-1395/400, 7-8=-1799/517, 8-9=-1783/346, 2-19=-354/246, 9-10=-1447/306
- BOT CHORD 17-18=-1832/388, 4-18=-1735/390, 6-13=-513/216, 11-13=-161/1312
- WEBS 5-15=-671/163, 8-11=-536/302, 9-11=-218/1490, 4-15=-121/1145, 7-11=-178/348, 7-13=-100/390, 13-15=-81/907, 5-13=-166/828

NOTES-


1) Unbalanced roof live loads have been considered for this design.

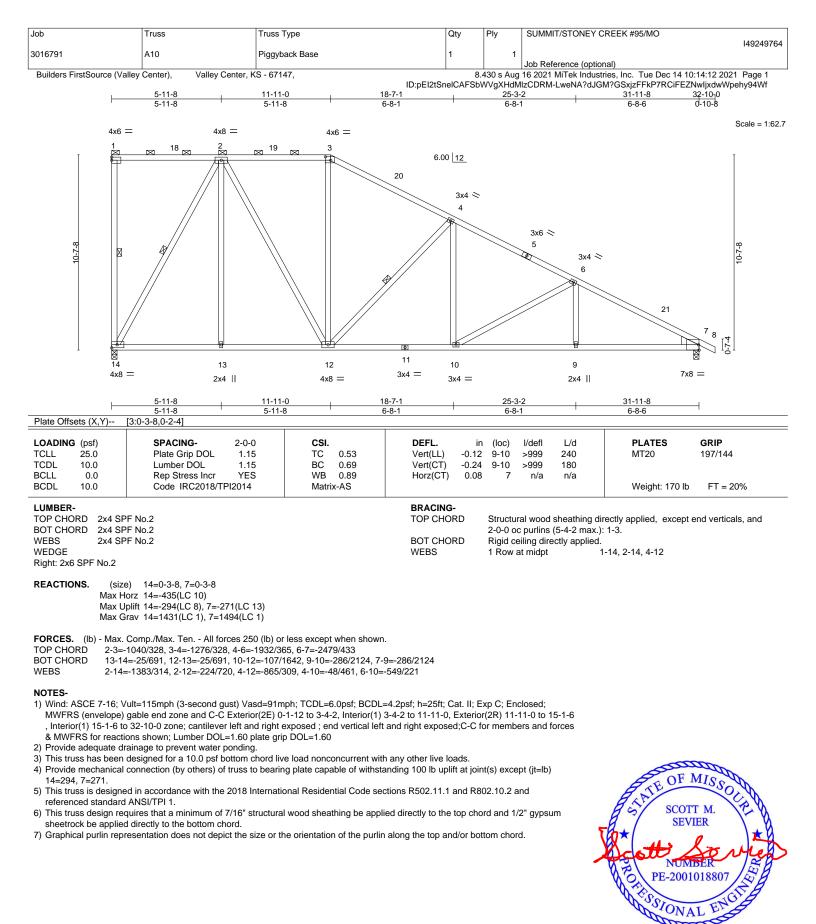
2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-10-8 to 2-2-14, Interior(1) 2-2-14 to 15-2-8, Exterior(2R) 15-2-8 to 21-0-6, Interior(1) 21-0-6 to 27-1-8, Exterior(2R) 27-1-8 to 32-11-6, Interior(1) 32-11-6 to 41-0-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 19 except (jt=lb) 17=361, 10=287.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



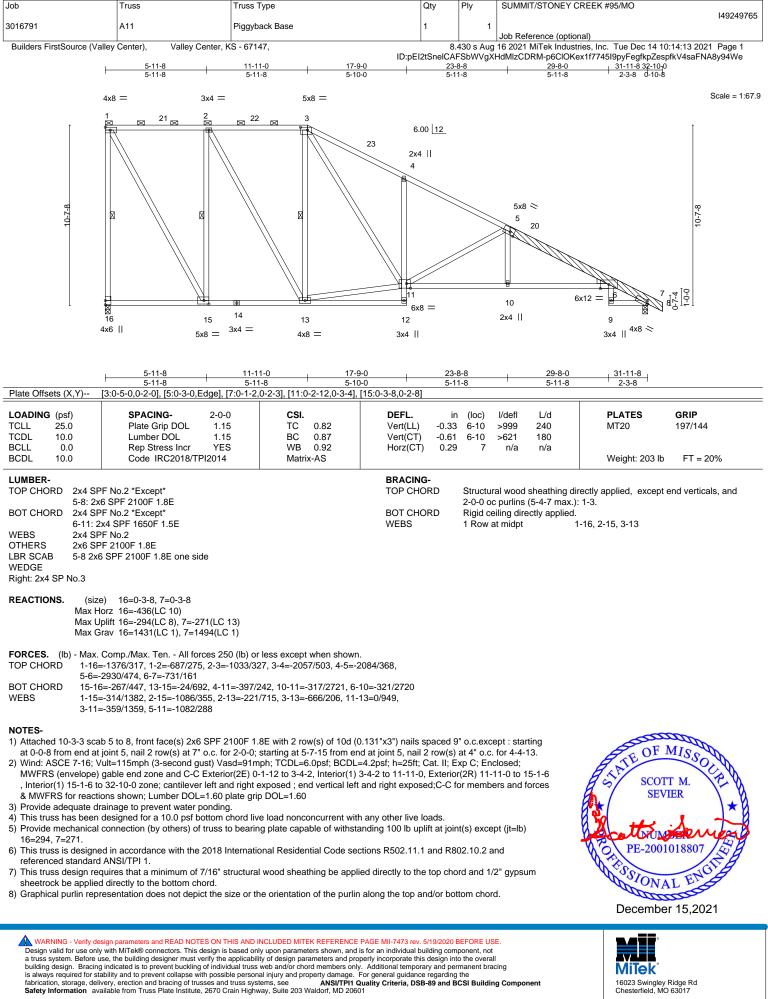
MITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

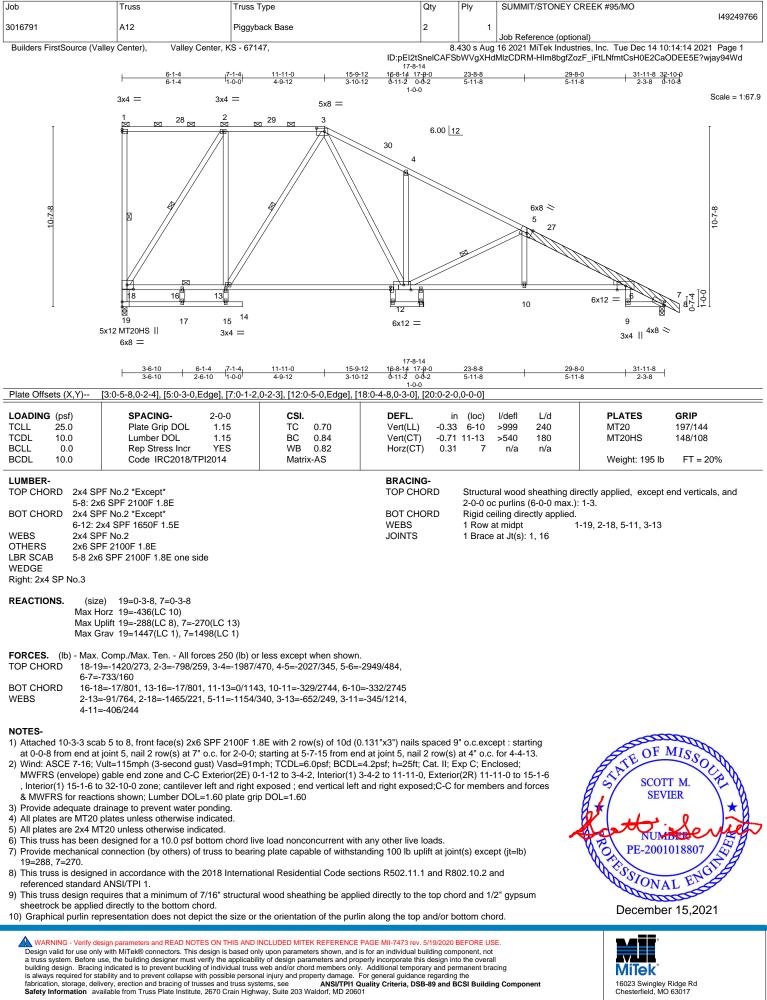
PE-200101880' O SSIONAL December 15,2021

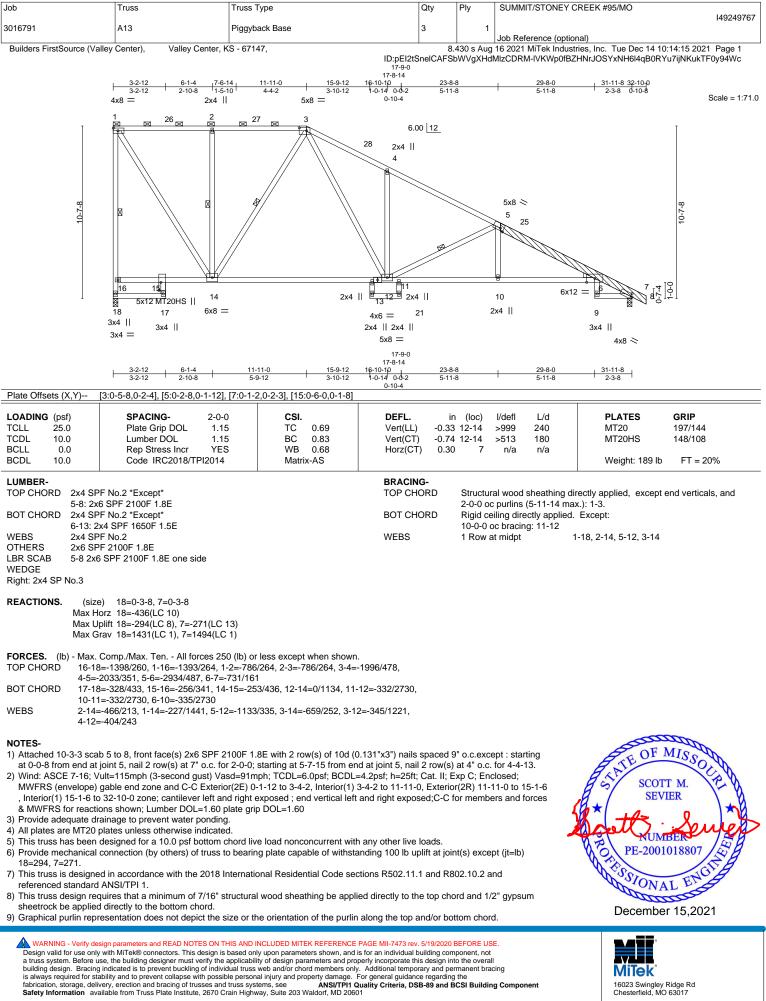


MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

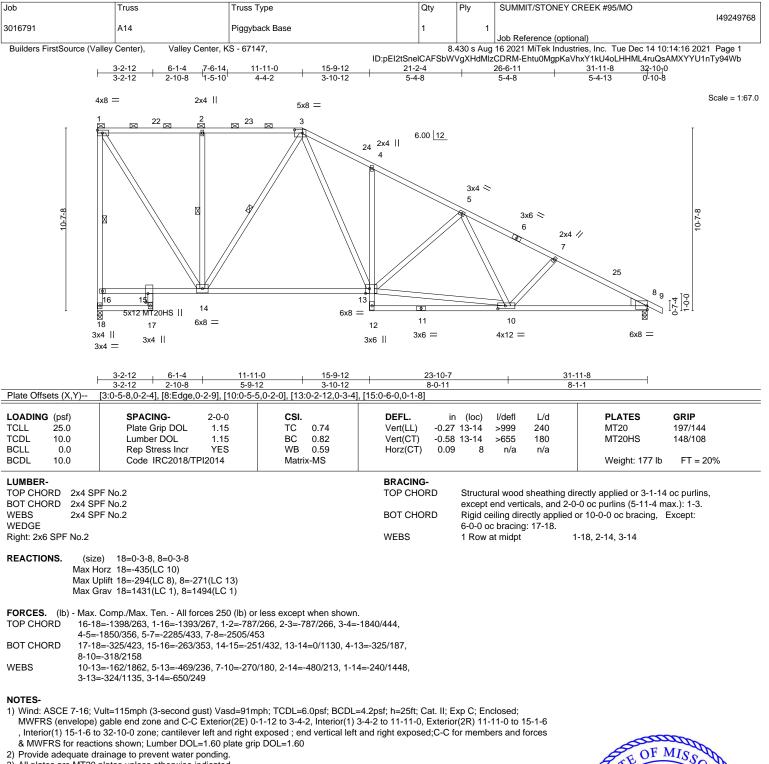
December 15,2021


E

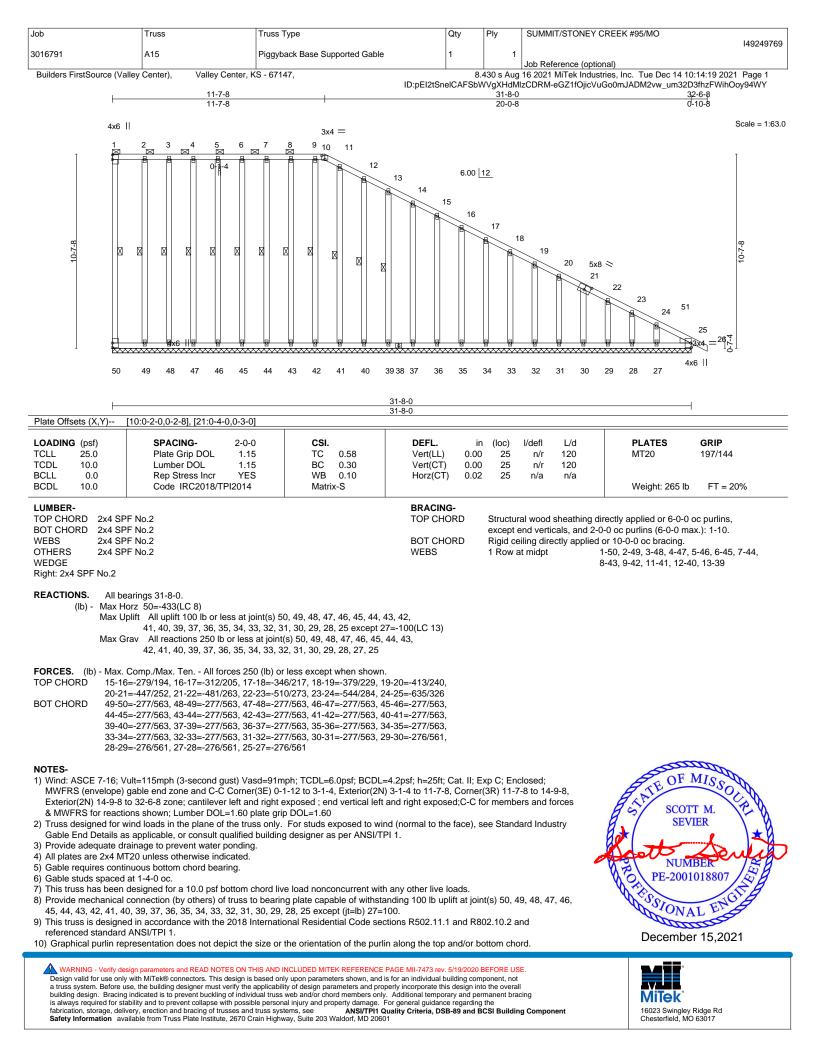


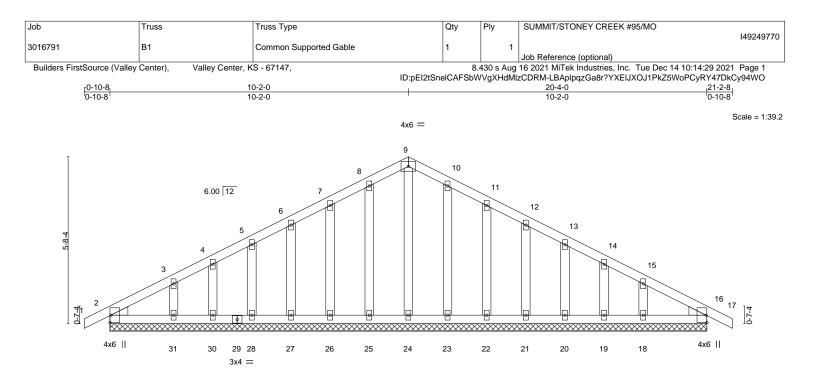


December 15,2021



16023 Swingley Ridge Rd Chesterfield, MO 63017


16023 Swingley Ridge Rd Chesterfield, MO 63017



- 3) All plates are MT20 plates unless otherwise indicated.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 18=294, 8=271.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

TF SCOTT M. SEVIER IMPE OFF PE-2001018807 SSIONAL December 15,2021

			20-4-0					
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. i	n (loc)	l/defl	L/d	PLATES	GRIP
TCLL 25.0	Plate Grip DOL 1.15	TC 0.05	Vert(LL) -0.0) 16	n/r	120	MT20	197/144
TCDL 10.0	Lumber DOL 1.15	BC 0.03	Vert(CT) -0.0) 16	n/r	120		
BCLL 0.0	Rep Stress Incr YES	WB 0.05	Horz(CT) 0.0) 16	n/a	n/a		
BCDL 10.0	Code IRC2018/TPI2014	Matrix-S					Weight: 97 lb	FT = 20%

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 2x4 SPF No.2 OTHERS

WEDGE

Left: 2x4 SPF No.2 , Right: 2x4 SPF No.2

REACTIONS. All bearings 20-4-0.

(lb) -Max Horz 2=-97(LC 17)

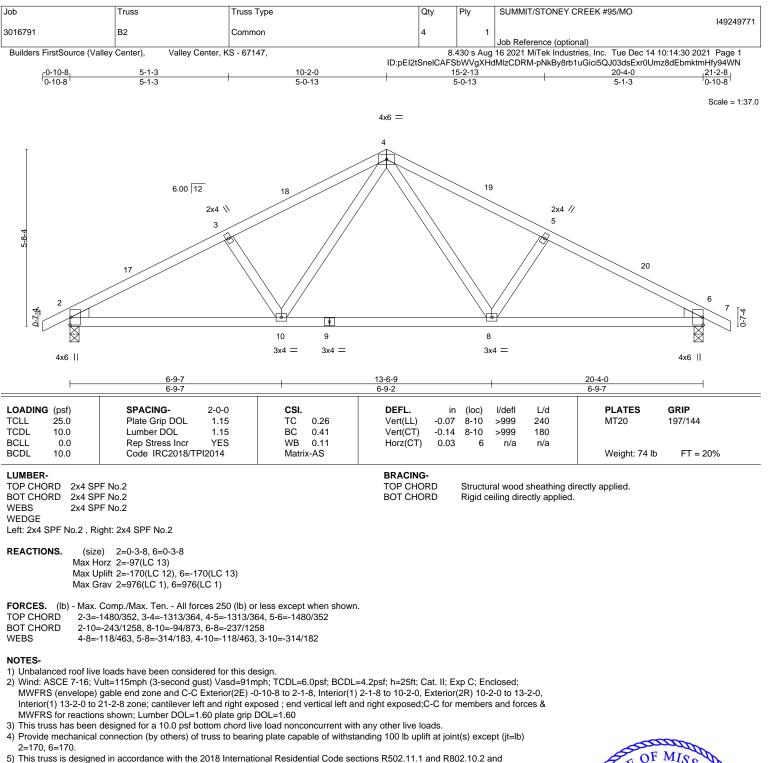
Max Uplift All uplift 100 lb or less at joint(s) 2, 25, 26, 27, 28, 30, 31, 23, 22, 21, 20, 19, 18, 16 Max Grav All reactions 250 lb or less at joint(s) 2, 24, 25, 26, 27, 28, 30, 31, 23, 22, 21, 20, 19, 18, 16

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

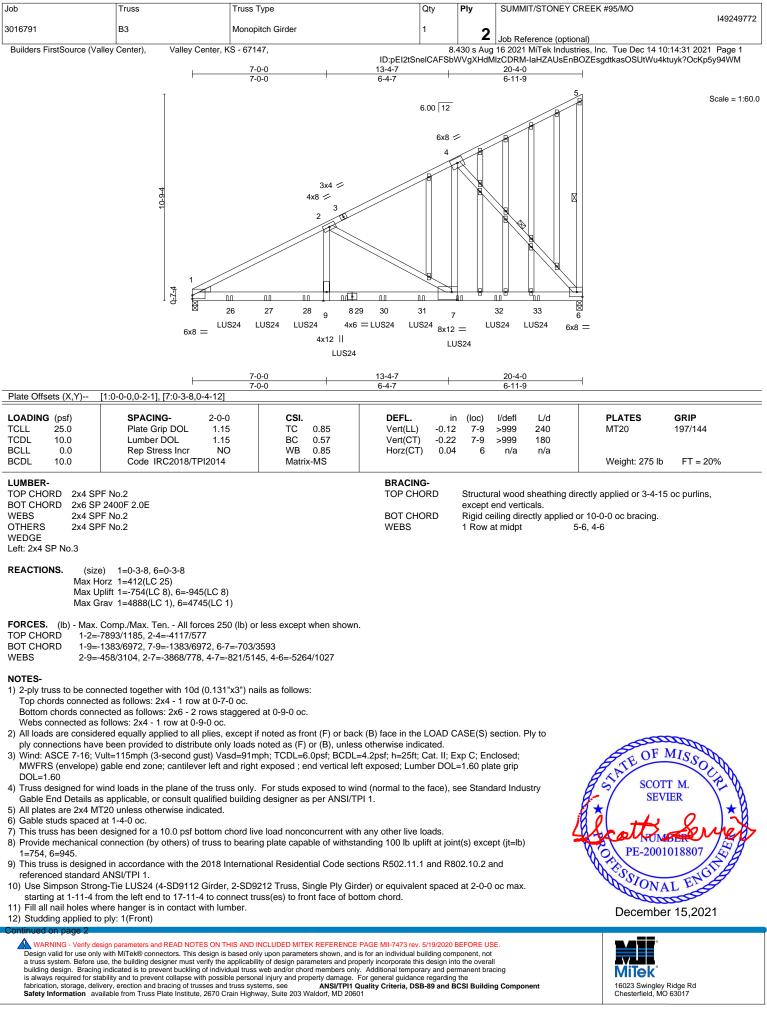
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 2-2-0, Exterior(2N) 2-2-0 to 10-2-0, Corner(3R) 10-2-0 to 13-2-0, Exterior(2N) 13-2-0 to 21-2-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 1-4-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 25, 26, 27, 28, 30, 31, 23, 22, 21, 20, 19, 18, 16.
- 9) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 16.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

December 15,2021


referenced standard ANSI/TPI 1.

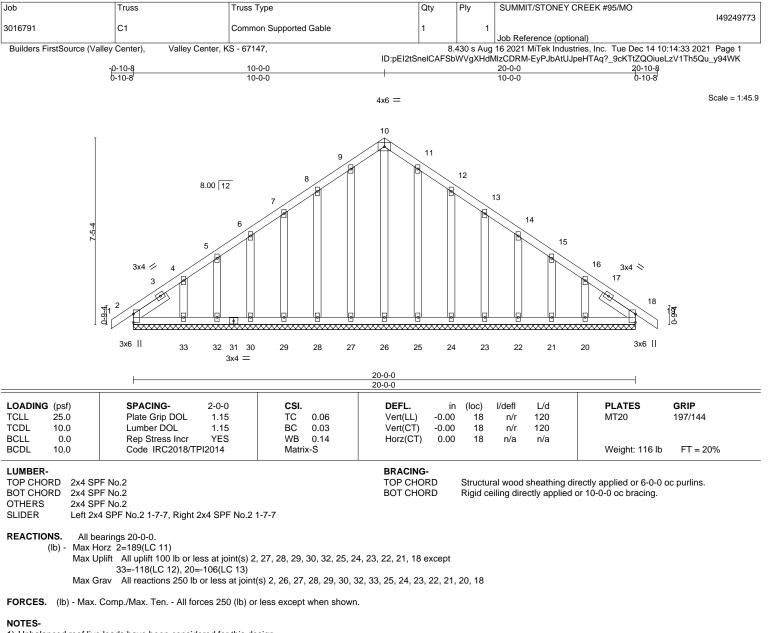
6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

December 15,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

[Job	Truss	Truss Type	Qty	Ply	SUMMIT/STONEY CREEK #95/MO	_	
						14924977	2	
	3016791	B3	Monopitch Girder	1	2			
						Job Reference (optional)		
	Builders FirstSource (Valley Center), Valley Center, KS - 67147,			8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Dec 14 10:14:32 2021 Page 2				
				nelCAFSb	//VgXHdN	IIzCDRM-mmrxNqtsYVWQs0FpQR55xf12FIQzcLCtE1MtLXy94WL		

LOAD CASE(S) Standard


1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-5=-70, 6-23=-20

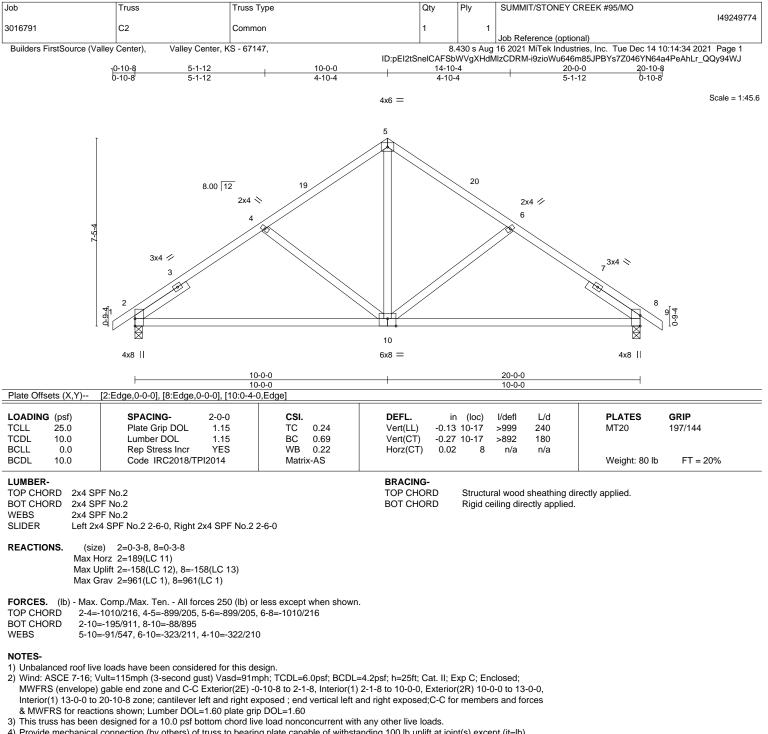
Concentrated Loads (lb)

Vert: 7=-869(F) 26=-867(F) 27=-867(F) 28=-869(F) 29=-869(F) 30=-869(F) 31=-869(F) 32=-869(F) 33=-869(F)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 2-0-0, Exterior(2N) 2-0-0 to 10-0-0, Corner(3R) 10-0-0 to 13-0-0, Exterior(2N) 13-0-0 to 20-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

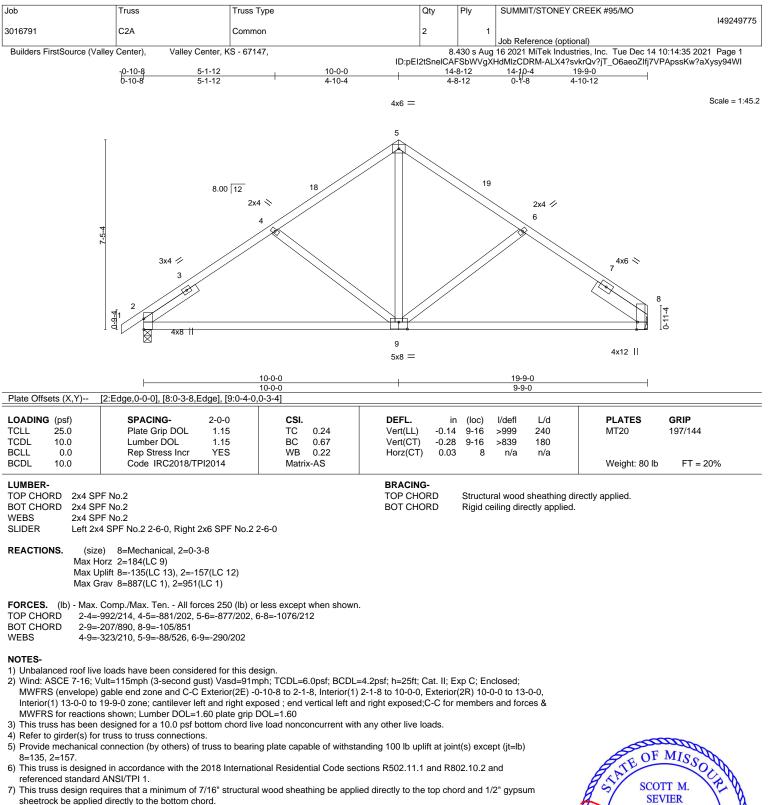
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.


- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 1-4-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 27, 28, 29, 30, 32, 25, 24, 23, 22, 21, 18 except (jt=lb) 33=118, 20=106.

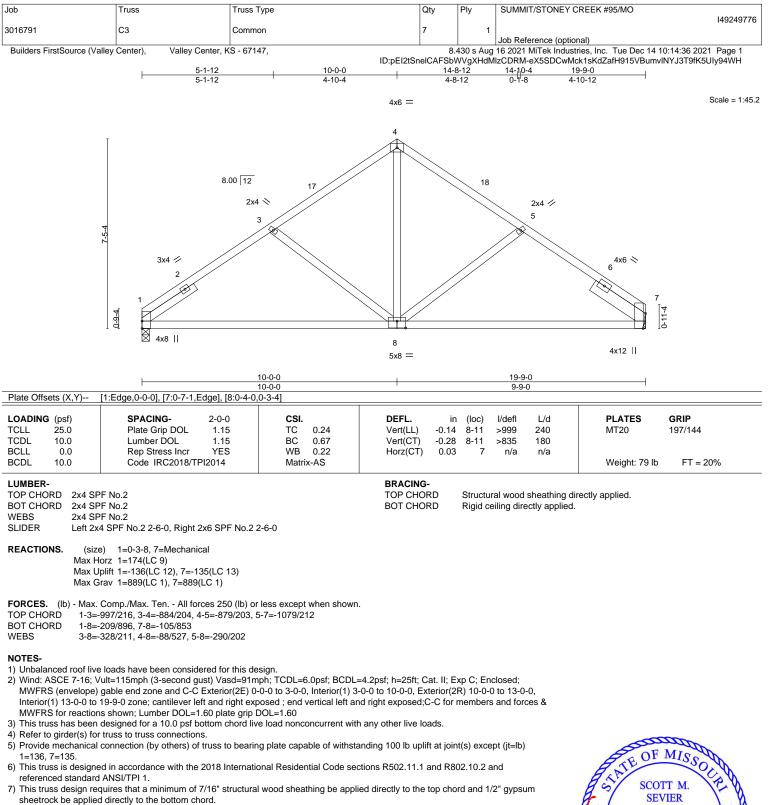
9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=158, 8=158.

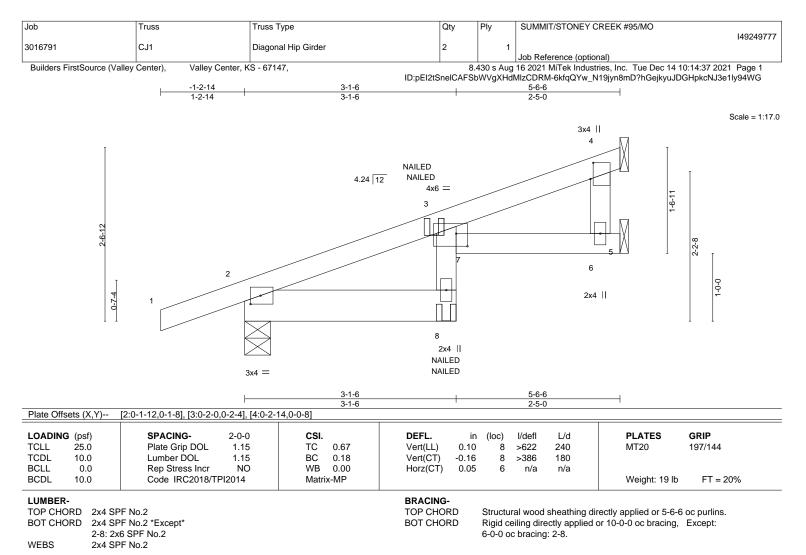

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

December 15,2021



December 15,2021


16023 Swingley Ridge Rd Chesterfield, MO 63017

December 15,2021

NiTek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

REACTIONS. (size) 2=0-4-9, 6=Mechanical, 4=Mechanical Max Horz 2=99(LC 4) Max Uplift 2=-106(LC 4), 4=-90(LC 8)

Max Grav 2=338(LC 1), 6=58(LC 3), 4=209(LC 1)

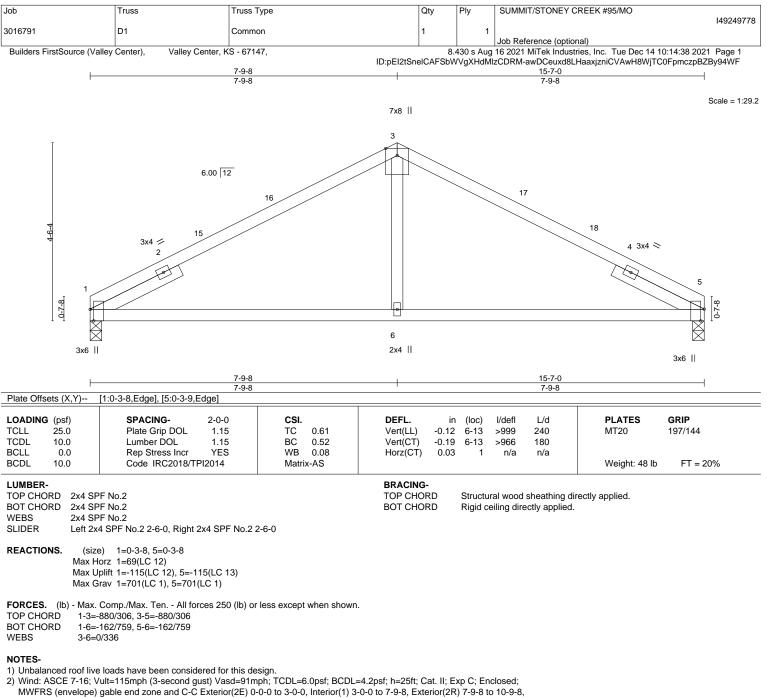
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=106.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 6) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.
- 7) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)

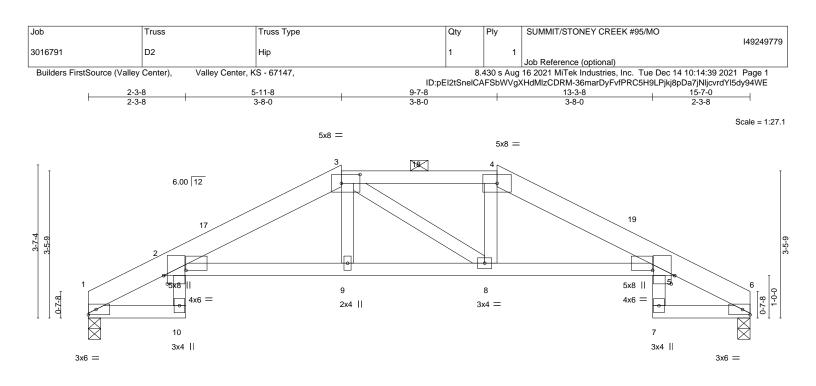

Vert: 1-4=-70, 8-9=-20, 5-7=-20 Concentrated Loads (lb)

Vert: 8=-12(F=-6, B=-6)

December 15,2021

Interior(1) 10-9-8 to 15-7-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=115, 5=115.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

16023 Swingley Ridge Rd Chesterfield, MO 63017

L	2-3-8	5-11-8		9-7-8	13-3-8	15-7-0
I	2-3-8	3-8-0	1	3-8-0	3-8-0	2-3-8
Plate Offsets (X,	() [2:0-6-4,0-1-8],	[2:0-2-6,0-1-0], [3:0-5-4,0)-2-8], [5:0-2-6,0-1-0	0], [5:0-6-4,0-1-8]		
LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACIN Plate Gi Lumber Rep Stru Code JE	ip DOL 1.15 DOL 1.15	CSI. TC 0.97 BC 0.91 WB 0.04 Matrix-AS	DEFL. in Vert(LL) -0.20 Vert(CT) -0.37 Horz(CT) 0.34	(loc) I/defl L/d 2-9 >935 240 2-9 >510 180 6 n/a n/a	PLATES GRIP MT20 197/144 Weight: 58 lb FT = 20%
LUMBER- TOP CHORD 2 3 BOT CHORD 2	x6 SPF No.2 *Excep -4: 2x4 SPF No.2 x4 SPF No.2 x4 SPF No.2 x4 SPF No.2			2	tructural wood sheathing directly -0-0 oc purlins (5-0-4 max.): 3-4. ligid ceiling directly applied.	

REACTIONS. (size) 1=0-3-8, 6=0-3-8 Max Horz 1=52(LC 12) Max Uplift 1=-117(LC 12), 6=-117(LC 13) Max Grav 1=705(LC 1), 6=705(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-12=-374/126, 2-3=-1365/370, 3-4=-1282/390, 4-5=-1366/366, 5-6=-374/121

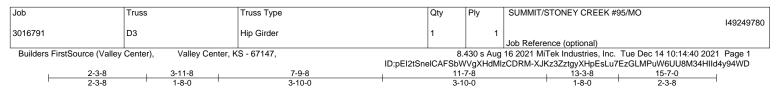
BOT CHORD 2-9=-275/1275, 8-9=-274/1282, 5-8=-264/1276

NOTES-

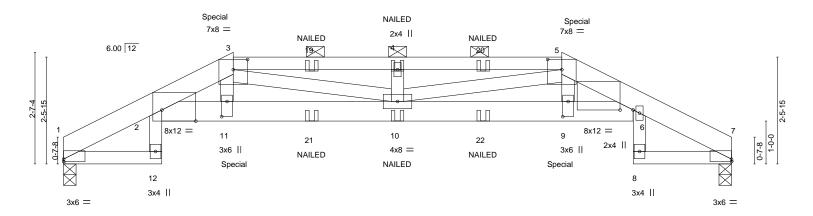
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 5-11-8, Exterior(2E) 5-11-8 to 9-7-8, Exterior(2R) 9-7-8 to 13-7-7, Interior(1) 13-7-7 to 15-7-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) The Fabrication Tolerance at joint 2 = 4%, joint 5 = 4%, joint 2 = 0%, joint 5 = 0%
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=117, 6=117.


7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

PE-2001018807 December 15,2021

Scale = 1:26.9

2-3-			7-9-8			<u>11-7</u> 3-10	-		13-3-8	15-7	
Plate Offsets (X,Y)	[1:0-0-0,0-0-11], [2:0-9-8	,Edge], [3:0-4		0-4-0,0-2-13], [6:0-3-10,0-0-0],		-], [9:0-4-4			-0
LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO	CSI. TC BC WB	0.87 0.72 0.14	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.23 -0.42 0.31	(loc) 10 10 7	l/defl >807 >443 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL 10.0 Code IRC2018/TPI2014 Matrix-MS LUMBER- TOP CHORD 2x6 SP 2400F 2.0E *Except* *Except*						RD	Structu	ral wood	sheathing dired	Weight: 68 lb	FT = 20%
3-5: 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 *Except*						2-0-0 oc purlins (2-8-14 max.): 3-5. CHORD Rigid ceiling directly applied or 9-8-14 oc bracing.					

	3-5: 2x4 SPF No.2
BOT CHORD	2x4 SPF No.2 *Except*
	2-6: 2x6 SPF 2100F 1.8E, 7-8: 2x4 SPF 1650F 1.5E
WEBS	2x4 SPF No.2

REACTIONS. (size) 1=0-3-8, 7=0-3-8 Max Horz 1=-35(LC 9) Max Uplift 1=-296(LC 8), 7=-296(LC 9) Max Grav 1=1016(LC 1), 7=1016(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-14=-540/189, 2-3=-3360/1037, 3-4=-3539/1092, 4-5=-3539/1092, 5-6=-3360/1003, 6-7=-544/182
- BOT CHORD 2-11=-951/3147, 10-11=-951/3135, 9-10=-919/3135, 6-9=-919/3147
- WEBS 3-11=-136/557, 3-10=-158/470, 4-10=-314/147, 5-10=-156/470, 5-9=-130/557

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate arip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=296.7=296.

- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 8) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 200 lb down and 157 lb up at 3-11-8, and 200 lb down and 157 lb up at 11-7-8 on top chord, and 51 lb down and 34 lb up at 3-11-8, and 51 lb down and 34 lb up at 11-6-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

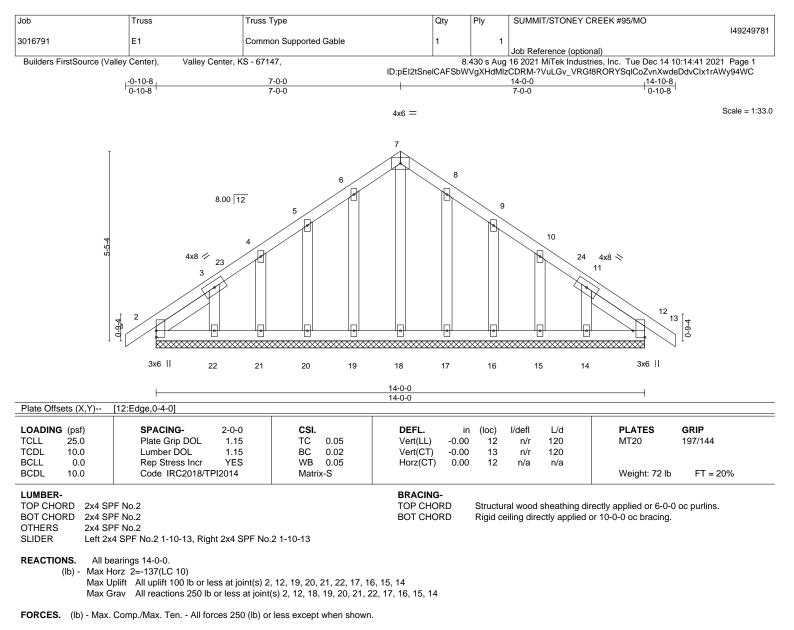
10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
 - Vert: 1-2=-70, 2-3=-70, 3-5=-70, 5-6=-70, 6-7=-70, 12-13=-20, 2-6=-20, 8-16=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
 Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
 a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
 building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
 is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
 fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see
 MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component
 Safety Information
 available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

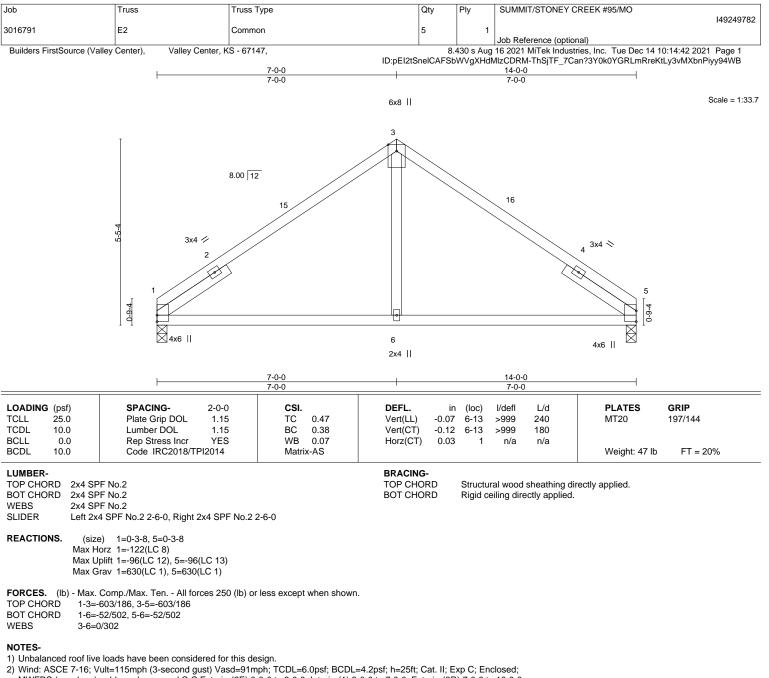
Rigid ceiling directly applied or 9-8-14 oc bracing.


Job	Truss	Truss Type	Qty	Ply	SUMMIT/STONEY CREEK #95/MO			
3016791	D3	Hip Girder	1	1	149249780			
5010751	55			· ·	Job Reference (optional)			
Builders FirstSource	Builders FirstSource (Valley Center), Valley Center, KS - 67147,			8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Dec 14 10:14:40 2021 Page 2				
			ID:pEI2tSneICAFSbV	VVgXHdMI	zCDRM-XJKz3ZztgyXHpEsLu7EzGLMPuW6UU8M34HIId4y94WD			

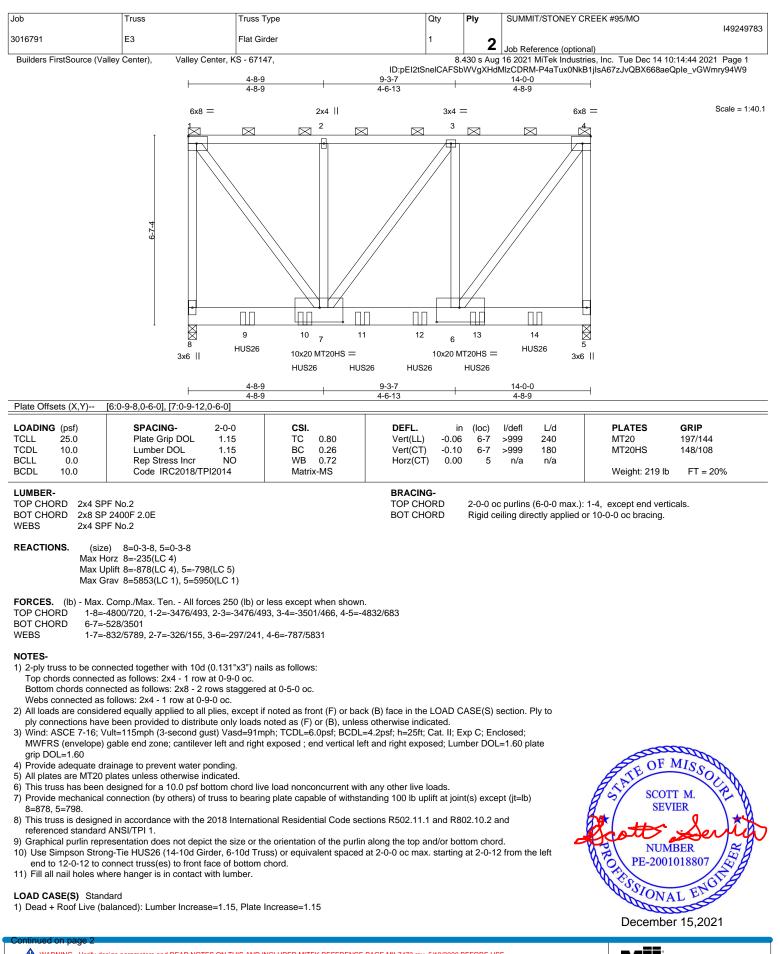
LOAD CASE(S) Standard

Concentrated Loads (lb)

Vert: 3=-141(F) 5=-141(F) 11=-51(F) 10=-51(F) 4=-31(F) 9=-51(F) 19=-31(F) 20=-31(F) 21=-51(F) 22=-51(F)


NOTES-

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 2-1-8, Exterior(2N) 2-1-8 to 7-0-0, Corner(3R) 7-0-0 to 10-0-0, Exterior(2N) 10-0-0 to 14-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 1-4-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 12, 19, 20, 21, 22, 17, 16, 15, 14.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


¹⁾ Unbalanced roof live loads have been considered for this design.

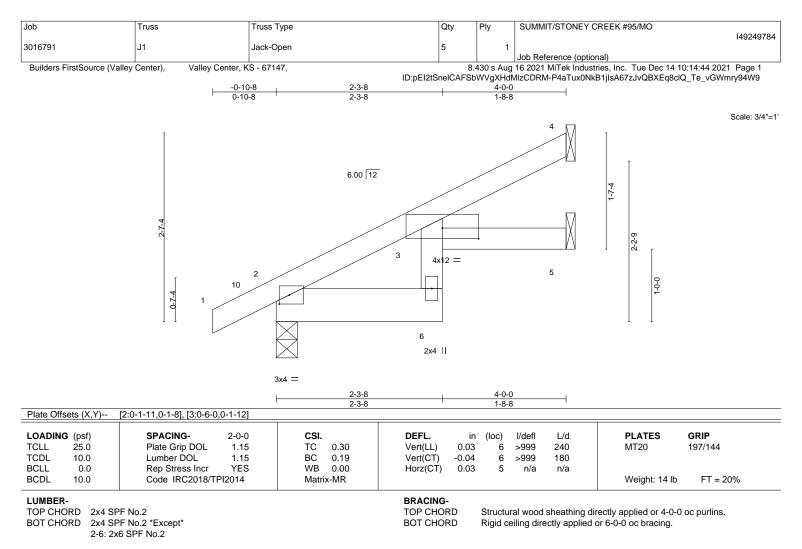
- MWFRS (envelope) gable and zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior(1) 3-0-0 to 7-0-0, Exterior(2R) 7-0-0 to 10-0-0, Interior(1) 10-0-0 to 14-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.
 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1. 6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum
- o) I his truss design requires that a minimum of //16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNIG - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

MiTek

Job	Truss	Truss Type	Qty	Ply	SUMMIT/STONEY CREEK #95/MO				
					149249783				
3016791	E3	Flat Girder	1	2					
				_	Job Reference (optional)				
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	8.430 s Aug 16 2021 MiTek Industries, Inc. Tue Dec 14 10:14:44 2021 Page						
ID:				ID:pEI2tSneICAFSbWVgXHdMIzCDRM-P4aTux0NkB1jIsA67zJvQBX668aeQpIe_vGWmry94W9					


LOAD CASE(S) Standard

Uniform Loads (plf) Vert: 1-4=-70, 5-8=-20

Concentrated Loads (lb)

Vert: 9=-1762(F) 10=-1762(F) 11=-1762(F) 12=-1762(F) 13=-1762(F) 14=-1762(F)

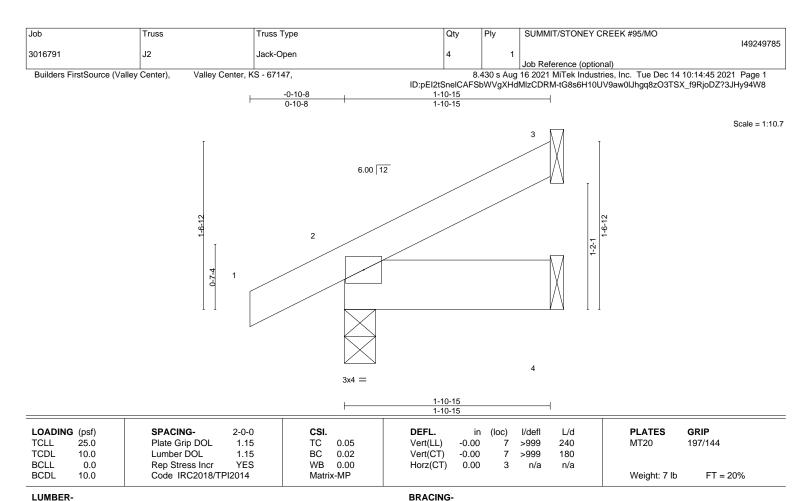
REACTIONS. (size) 4=Mechanical, 2=0-3-8, 5=Mechanical Max Horz 2=96(LC 12) Max Uplift 4=-47(LC 12), 2=-38(LC 12), 5=-15(LC 12)

Max Grav 4=101(LC 1), 2=246(LC 1), 5=71(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-0-5, Interior(1) 2-0-5 to 3-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


3) Refer to girder(s) for truss to truss connections.

- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2, 5.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.

December 15,2021

TOP CHORD

BOT CHORD

LUMBER-	
---------	--

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x6 SPF No 2

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=54(LC 12)

Max Uplift 3=-26(LC 12), 2=-30(LC 12), 4=-3(LC 12)

Max Grav 3=45(LC 1), 2=161(LC 1), 4=38(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

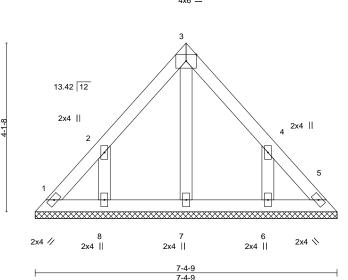
3) Refer to girder(s) for truss to truss connections.

- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2, 4.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

OF MISS SCOTT M. SEVIER NUMBER PE-2001018807 0 SSIONAL F December 15,2021

Structural wood sheathing directly applied or 1-10-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.



3-8-4

3-8-4

Scale = 1:28.2

Plate Offsets (X Y)-- [3:Edge 0-1-14]

LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.06 BC 0.03 WB 0.03 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 S	PF No.2		BRACING- TOP CHORD) :	Structu	ral wood	sheathing di	rectly applied or 6-0-0	oc purlins.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

OP CHORD 2x4 SPF No 2 BOT CHORD 2x4 SPF No 2 2x4 SPF No 2 OTHERS

REACTIONS. All bearings 7-4-9.

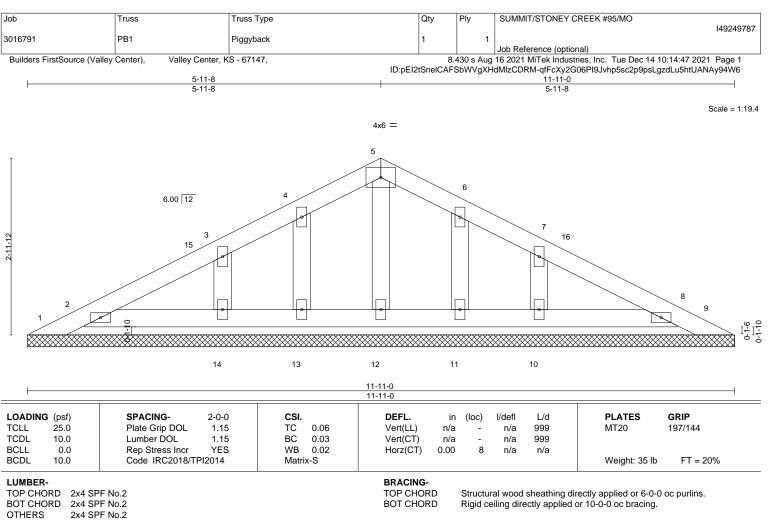
(lb) -Max Horz 1=-101(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-154(LC 12), 6=-154(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7, 8, 6

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-3-15 to 3-3-15, Interior(1) 3-3-15 to 3-8-4, Exterior(2R) 3-8-4 to 6-8-4, Interior(1) 6-8-4 to 7-0-10 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=154.6=154.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

REACTIONS. All bearings 11-11-0.

(lb) - Max Horz 1=49(LC 16)

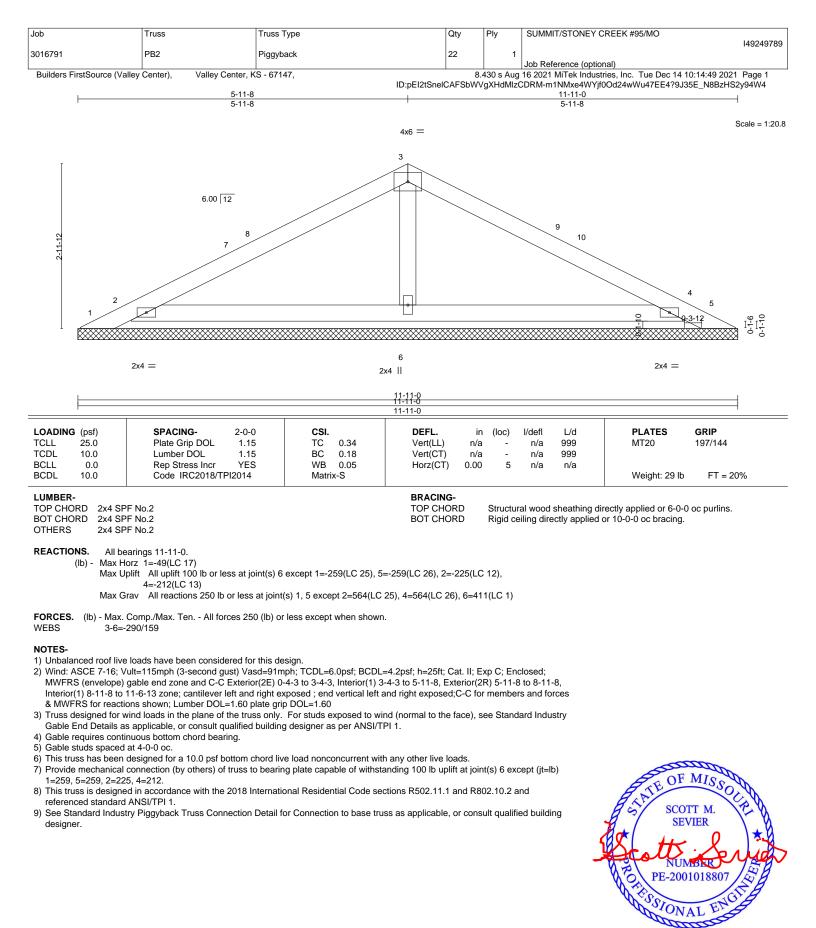
- Max Hol2 1=49(LC 16) Max Uplift All uplift 100 lb or less at joint(s) 1, 9, 2, 8, 13, 14, 11, 10
- Max Grav All reactions 250 lb or less at joint(s) 1, 9, 2, 8, 13, 14, 11, 10

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

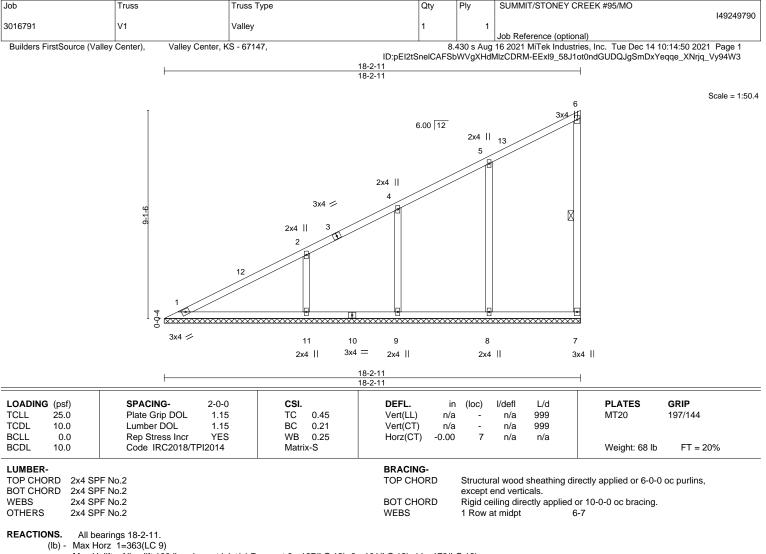

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-3 to 3-3-8, Interior(1) 3-3-8 to 5-11-8, Exterior(2R) 5-11-8 to 8-11-8, Interior(1) 8-11-8 to 11-6-13 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 1-4-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9, 2, 8, 13, 14, 11, 10.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

December 15,2021



- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-6-3 to 3-3-8, Interior(1) 3-3-8 to 5-11-8, Exterior(2R) 5-11-8 to 8-11-8, Interior(1) 8-11-8 to 11-6-13 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 1-4-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9, 2, 8, 13, 14, 11, 10.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.


December 15,2021

December 15,2021

Max Uplift All uplift 100 lb or less at joint(s) 7 except 8=-137(LC 12), 9=-101(LC 12), 11=-179(LC 12) Max Grav All reactions 250 lb or less at joint(s) 7, 1 except 8=403(LC 1), 9=296(LC 1), 11=525(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-459/276. 2-4=-333/210. 4-5=-256/190

WEBS 5-8=-313/207, 2-11=-394/217

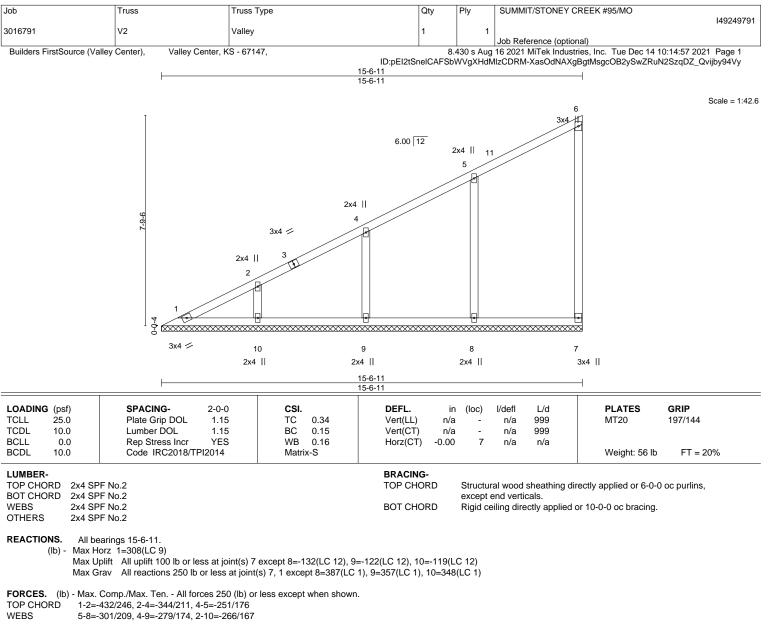
NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-7-9 to 3-7-9, Interior(1) 3-7-9 to 18-0-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7 except (jt=lb) 8=137, 9=101, 11=179.


5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

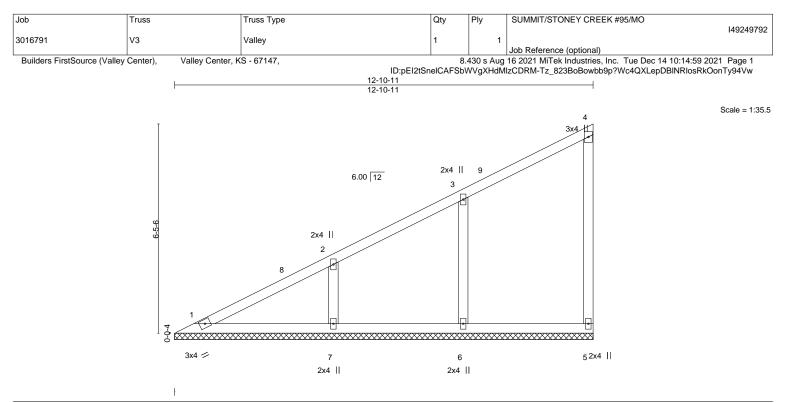
December 15,2021

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-7-9 to 3-6-11, Interior(1) 3-6-11 to 15-4-15 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7 except (jt=lb) 8=132, 9=122, 10=119.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

December 15,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.23 BC 0.12 WB 0.09 Matrix-S	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) -0.00	-	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 44 lb	GRIP 197/144 FT = 20%
BOT CHORD 2x4 WEBS 2x4	SPF No.2 SPF No.2 SPF No.2 SPF No.2		BRACING- TOP CHORD BOT CHORD	except	end verti	cals.	rectly applied or 6-0-0 or 10-0-0 oc bracing.) oc purlins,

REACTIONS. All bearings 12-10-11.

(lb) - Max Horz 1=252(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 5 except 6=-125(LC 12), 7=-143(LC 12) Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 6=368(LC 1), 7=419(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

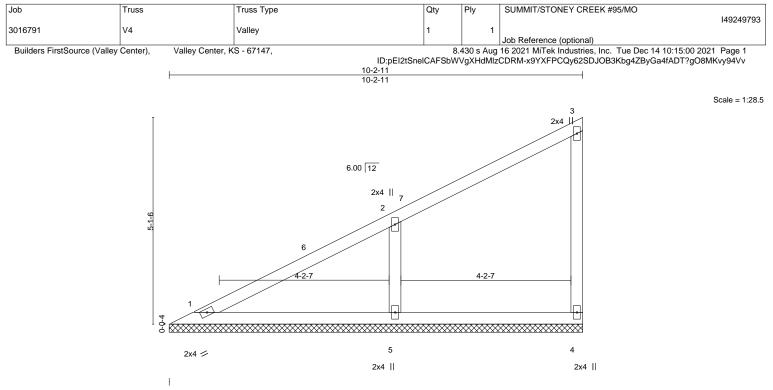
TOP CHORD 1-2=-359/215

WEBS 3-6=-290/215, 2-7=-317/221

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-7-9 to 3-7-9, Interior(1) 3-7-9 to 12-8-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.


3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (jt=lb) 6=125, 7=143.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TCDL	25.0 10.0	SPACING- Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI. TC BC	0.33 0.18	DEFL. Vert(LL) Vert(CT)	n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 197/144
BCLL BCDL	0.0 10.0	Rep Stress Incr Code IRC2018/TF	YES PI2014	WB Matri	0.06 x-S	Horz(CT)	-0.00	4	n/a	n/a	Weight: 32 lb	FT = 20%
LUMBER- TOP CHOR BOT CHOR		PF No.2 PF No.2				BRACING- TOP CHOF	RD		ral wood end verti	0	ectly applied or 6-0-0	oc purlins,
WEBS OTHERS		PF No.2 PF No.2				BOT CHOP	RD	Rigid ce	eiling dire	ectly applied o	or 10-0-0 oc bracing.	

REACTIONS. (size) 1=10-2-11, 4=10-2-11, 5=10-2-11 Max Horz 1=197(LC 11) May Horiz 4=00(0.00) 5 = 445(0.00)

Max Uplift 4=-38(LC 9), 5=-145(LC 12) Max Grav 1=178(LC 1), 4=152(LC 1), 5=521(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

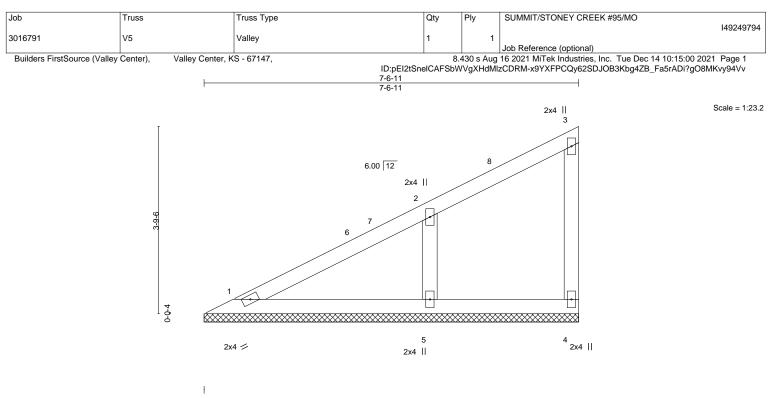
TOP CHORD 1-2=-280/182

WEBS 2-5=-396/280

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-7-9 to 3-7-9, Interior(1) 3-7-9 to 10-0-15 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.


3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 5=145.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TP	2-0-0 CSI. 1.15 TC 1.15 BC YES WB 12014 Matrix	0.21 Vert(LL) 0.10 Vert(CT) 0.05 Horz(CT)	in n/a n/a -0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 197/144 FT = 20%
BOT CHORD 2x4 SI WEBS 2x4 SI	PF No.2 PF No.2 PF No.2 PF No.2 PF No.2		BRACING- TOP CHORI BOT CHORI	(except of	end verti	cals.	ectly applied or 6-0-0 r 10-0-0 oc bracing.	oc purlins,

REACTIONS. (size) 1=7-6-11, 4=7-6-11, 5=7-6-11 Max Horz 1=141(LC 9) Max Uplift 4=-24(LC 9), 5=-125(LC 12)

Max Grav 1=142(LC 1), 4=80(LC 1), 5=389(LC 1)

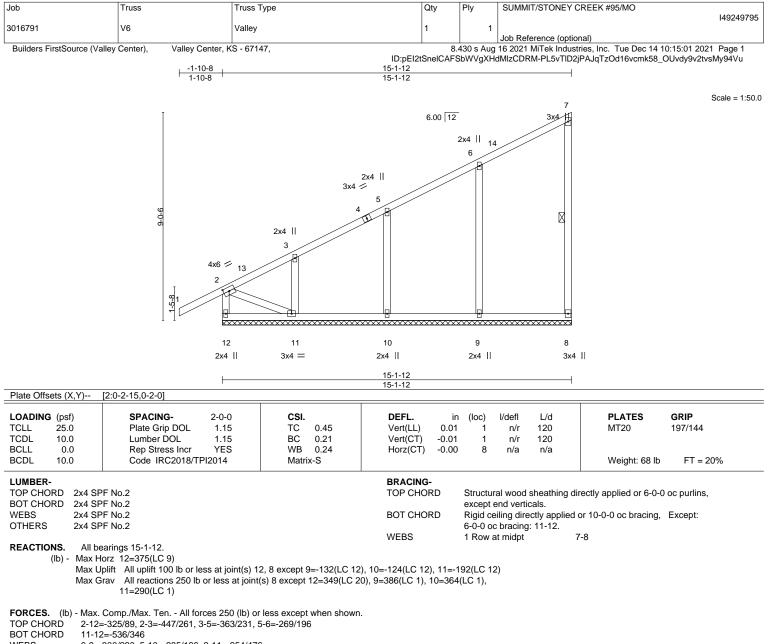
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 2-5=-302/267

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-7-9 to 3-7-9, Interior(1) 3-7-9 to 7-4-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 5=125.

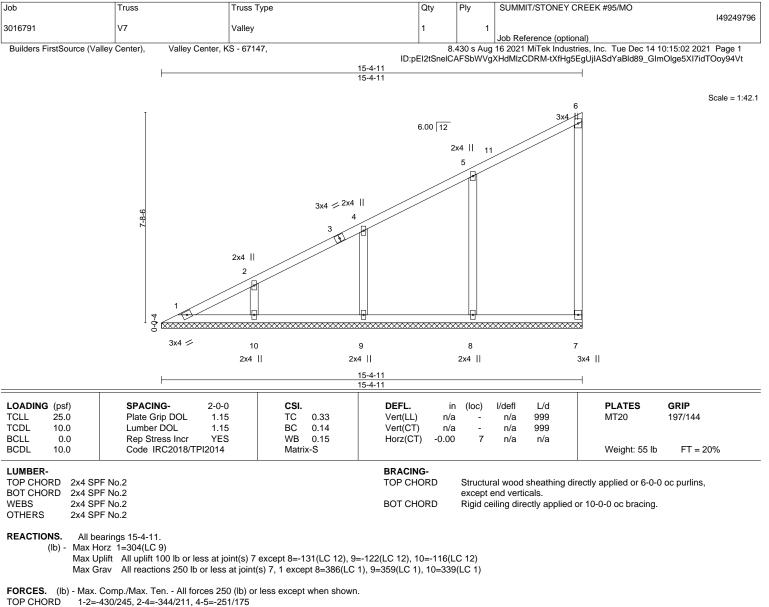
5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

December 15,2021

WEBS 6-9=-300/220, 5-10=-285/186, 2-11=-254/476

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -1-10-8 to 1-1-8, Interior(1) 1-1-8 to 15-0-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 8 except (jt=lb) 9=132, 10=124, 11=192.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

16023 Swingley Ridge Rd Chesterfield, MO 63017

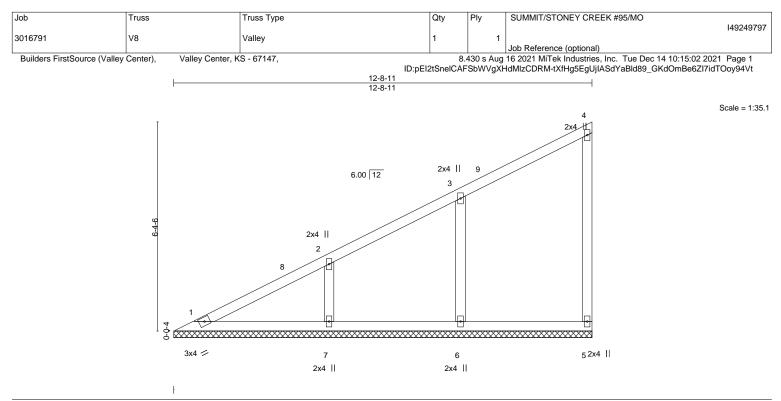
WFBS

5-8=-301/210, 4-9=-280/176, 2-10=-261/164

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-7-9 to 3-4-11, Interior(1) 3-4-11 to 15-2-15 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.


3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7 except (it=lb) 8=131, 9=122, 10=116.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.22 BC 0.11 WB 0.09 Matrix-S	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) -0.00		l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 43 lb	GRIP 197/144 FT = 20%
BOT CHORD 2x4 S WEBS 2x4 S	SPF No.2 SPF No.2 SPF No.2 SPF No.2 SPF No.2		BRACING- TOP CHORD BOT CHORD	except	end verti	cals.	irectly applied or 6-0-0 or 10-0-0 oc bracing.) oc purlins,

REACTIONS. All bearings 12-8-11.

(lb) -Max Horz 1=249(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 5 except 6=-126(LC 12), 7=-139(LC 12) Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 6=372(LC 1), 7=408(LC 1)

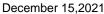
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-356/213

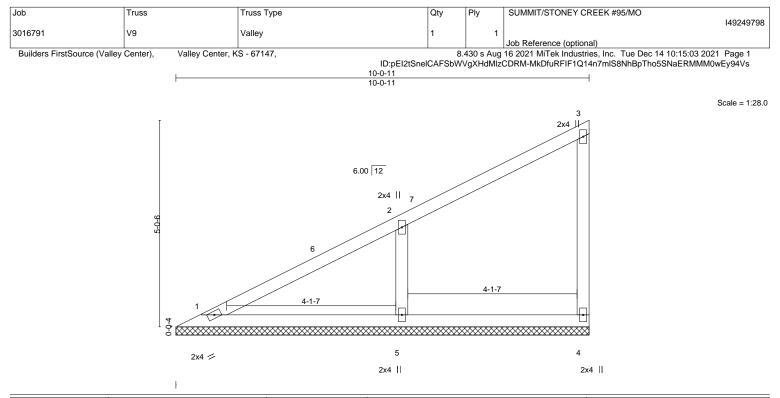
WEBS 3-6=-292/218, 2-7=-309/217

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-7-9 to 3-7-9, Interior(1) 3-7-9 to 12-6-15 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


2) Gable requires continuous bottom chord bearing.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5 except (it=lb) 6=126, 7=139.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.32 BC 0.17 WB 0.06 Matrix-S	Vert(LL) n	in (loc) l/defl /a - n/a /a - n/a 00 4 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 31 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF BOT CHORD 2x4 SPF WEBS 2x4 SPF OTHERS 2x4 SPF	= No.2 = No.2	II	BRACING- TOP CHORD BOT CHORD	except end ve	rticals.	rectly applied or 6-0-0 or 10-0-0 oc bracing.	oc purlins,

REACTIONS. (size) 1=10-0-11, 4=10-0-11, 5=10-0-11 Max Horz 1=193(LC 9)

Max Uplift 4=-38(LC 9), 5=-144(LC 12) Max Grav 1=175(LC 1), 4=149(LC 1), 5=511(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

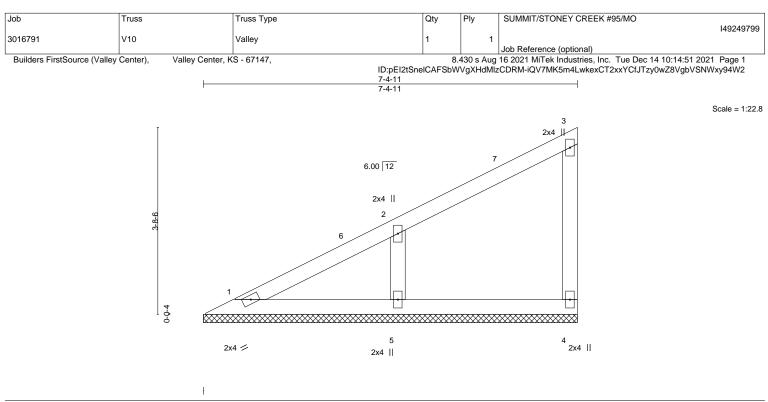
TOP CHORD 1-2=-277/179

WEBS 2-5=-389/277

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-7-9 to 3-7-9, Interior(1) 3-7-9 to 9-10-15 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 Onche requires continuous better short basis

2) Gable requires continuous bottom chord bearing.


3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 5=144.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOADING (psf) TCLL 25.0 TCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15	CSI. TC 0.18 BC 0.09	Vert(LL) n/a Vert(CT) n/a		MT20 197/144
BCLL 0.0 BCDL 10.0	Rep Stress Incr YES Code IRC2018/TPI2014	WB 0.05 Matrix-P	Horz(CT) -0.00	0 4 n/a n/a	Weight: 22 lb FT = 20%
	PF No.2 PF No.2		BRACING- TOP CHORD	Structural wood sheat except end verticals.	thing directly applied or 6-0-0 oc purlins,
	PF No.2 PF No.2		BOT CHORD	Rigid ceiling directly a	pplied or 10-0-0 oc bracing.

REACTIONS. (size) 1=7-4-11, 4=7-4-11, 5=7-4-11 Max Horz 1=138(LC 9) Max Uplift 4=-28(LC 9), 5=-122(LC 12)

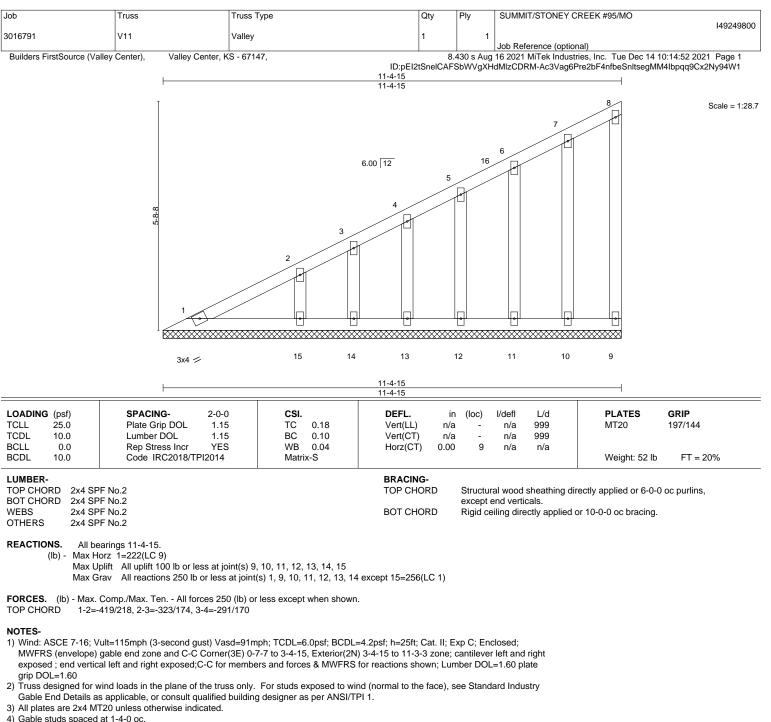
Max Grav 1=111(LC 20), 4=117(LC 1), 5=372(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-5=-289/259

NOTES-

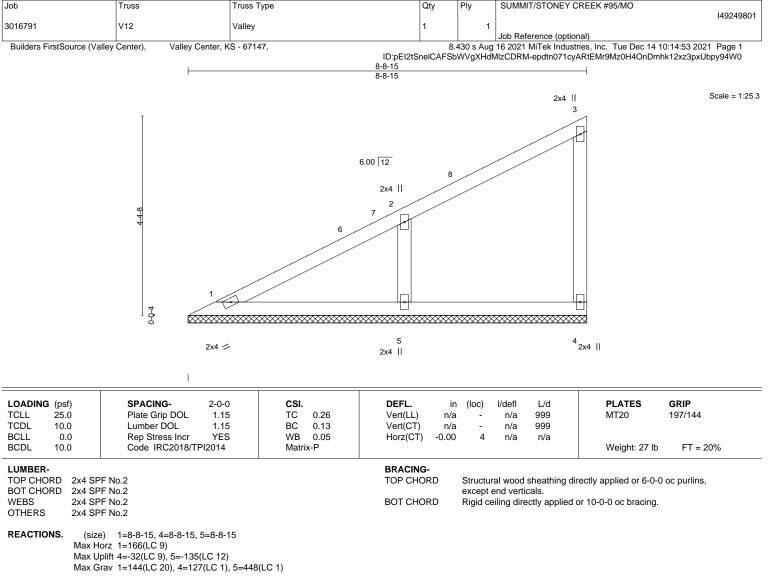
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-7-9 to 3-10-2, Interior(1) 3-10-2 to 7-2-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.


3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 5=122.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 10, 11, 12, 13, 14, 15.
- 7) Non Standard bearing condition. Review required.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

December 15,2021

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

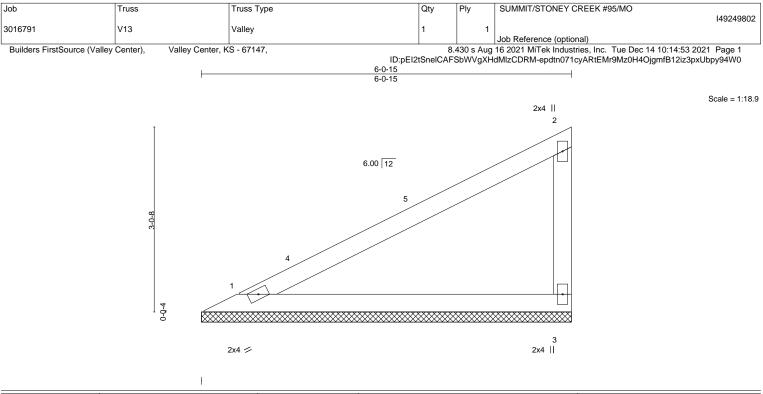
TOP CHORD 1-2=-261/169

WEBS 2-5=-349/273

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-7-9 to 3-7-9, Interior(1) 3-7-9 to 8-7-3 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.


3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 5=135.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

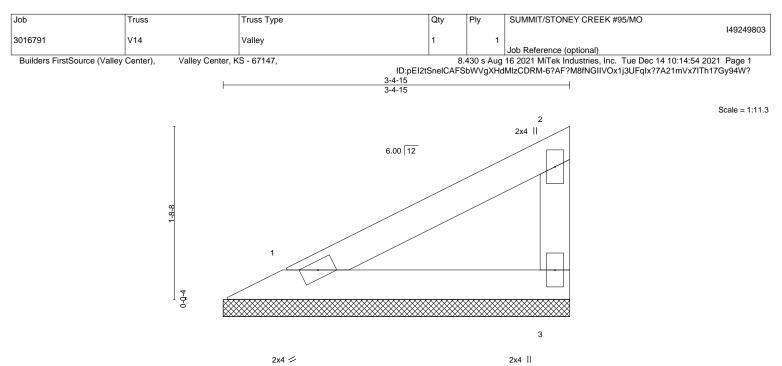
LOADING (psf) TCLL 25.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.55 BC 0.30	Vert(LL) n/a Vert(CT) n/a	a - n/a 999	PLATES MT20	GRIP 197/144
BCLL 0.0 BCDL 10.0	Rep Stress Incr YES Code IRC2018/TPI2014	WB 0.00 Matrix-P	Horz(CT) 0.00) 3 n/a n/a	Weight: 17 lb	FT = 20%
	PF No.2 PF No.2		BRACING- TOP CHORD	Structural wood sheathing d except end verticals.	irectly applied or 6-0-0	oc purlins,
	1 110.2		BOT CHORD	Rigid ceiling directly applied		

Max Horz 1=111(LC 9) Max Uplift 1=-40(LC 12), 3=-68(LC 12)

Max Grav 1=239(LC 1), 3=239(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-7-9 to 3-7-9, Interior(1) 3-7-9 to 5-11-3 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

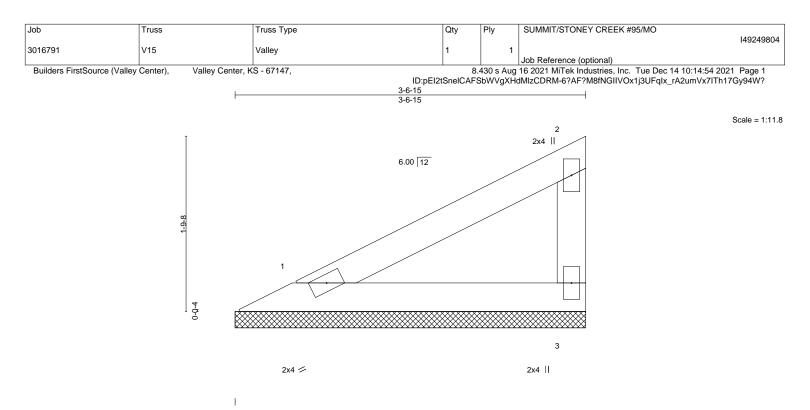
(psf) 25.0 10.0 0.0 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.12 BC 0.07 WB 0.00 Matrix-P	Vert(CT)	in (loc) n/a - n/a - .00 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 9 lb	GRIP 197/144 FT = 20%
RD 2x4 SP			BRACING- TOP CHORD			0	directly applied or 3-4-	15 oc purlins,
RD 2x4 SP 2x4 SP			BOT CHORD		t end vert ceiling dir		d or 10-0-0 oc bracing.	

REACTIONS. (size) 1=3-4-15, 3=3-4-15

Max Horz 1=55(LC 9) Max Uplift 1=-20(LC 12), 3=-34(LC 12)

Max Grav 1=119(LC 1), 3=119(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


NOTES-

LOADING (TCLL 2 TCDL 2 BCLL BCDL 2 LUMBER-TOP CHOR BOT CHOR WEBS

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Gable requires continuous bottom chord bearing.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

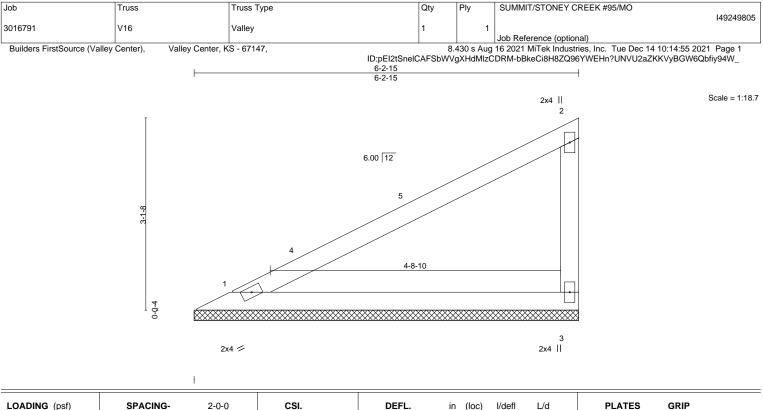
LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.14 BC 0.07 WB 0.00 Matrix-P	DEFL. ii Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	a - n/a 999	PLATES MT20 Weight: 9 lb	GRIP 197/144 FT = 20%
BOT CHORD 2x4 SI	PF No.2 PF No.2 PF No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di except end verticals. Rigid ceiling directly applied		• *

(size) 1=3-6-15, 3=3-6-15

REACTIONS.

Max Horz 1=59(LC 9) Max Uplift 1=-21(LC 12), 3=-36(LC 12)

Max Grav 1=126(LC 1), 3=126(LC 1)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Gable requires continuous bottom chord bearing.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TCLL 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	TC 0.59 BC 0.32 WB 0.00 Matrix-P	Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	a - n/a 999	MT20 197/144 Weight: 17 lb FT = 20%
BOT CHORD 2x4	SPF No.2 SPF No.2 SPF No.2 SPF No.2	II	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di except end verticals. Rigid ceiling directly applied	rectly applied or 6-0-0 oc purlins, or 10-0-0 oc bracing.

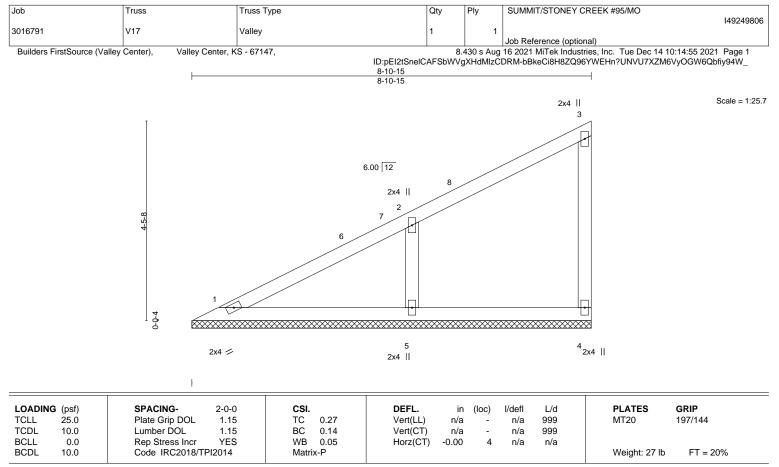
REACTIONS. (size) 1=6-2-15, 3=6-2-15

Max Horz 1=114(LC 9) Max Uplift 1=-38(LC 12), 3=-73(LC 12)

Max Grav 1=246(LC 1), 3=246(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-7-9 to 3-7-9, Interior(1) 3-7-9 to 6-1-3 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LUMBER-

 TOP CHORD
 2x4 SPF No.2

 BOT CHORD
 2x4 SPF No.2

 WEBS
 2x4 SPF No.2

 OTHERS
 2x4 SPF No.2

 BRACING

 TOP CHORD
 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=8-10-15, 4=8-10-15, 5=8-10-15 Max Horz 1=170(LC 9)

Max Uplift 4=-32(LC 9), 5=-136(LC 12)

Max Grav 1=150(LC 20), 4=125(LC 1), 5=458(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

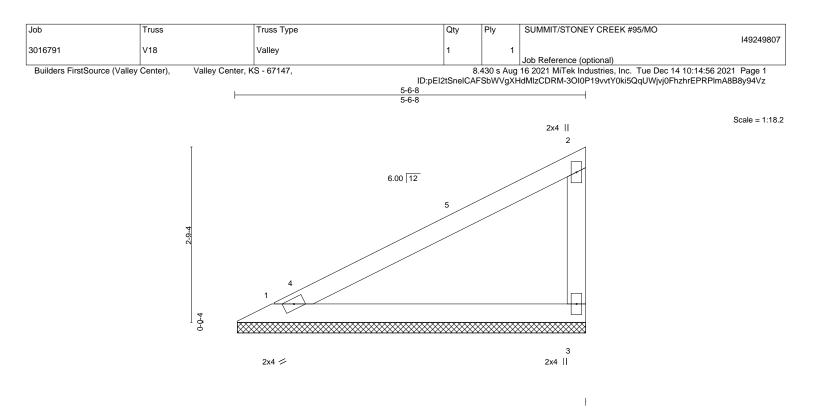
TOP CHORD 1-2=-262/171

WEBS 2-5=-356/275

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-7-9 to 3-7-9, Interior(1) 3-7-9 to 8-9-3 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 On the exposed is a second second

2) Gable requires continuous bottom chord bearing.


3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 5=136.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.44 BC 0.24 WB 0.00 Matrix-P	DEFL.iVert(LL)n/Vert(CT)n/Horz(CT)0.0	a - n/a 999	-	GRIP 197/144 FT = 20%
BOT CHORD 2x4 SF	2F No.2 2F No.2 2F No.2 2F No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di except end verticals. Rigid ceiling directly applied	, ,,	oc purlins,

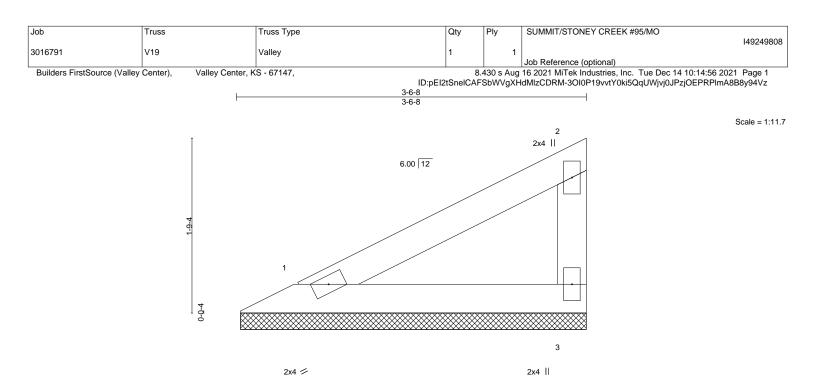
REACTIONS. (size) 1=5-6-0, 3=5-6-0

Max Horz 1=99(LC 9) Max Uplift 1=-36(LC 12), 3=-61(LC 12)

Max Grav 1=215(LC 1), 3=215(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-7-9 to 3-7-9, Interior(1) 3-7-9 to 5-4-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

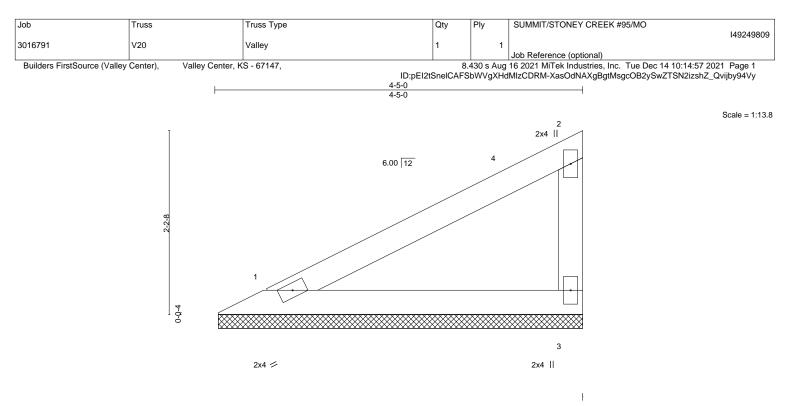
ł

LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.13 BC 0.07 WB 0.00 Matrix-P	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	n - n/a n - n/a	L/d 999 999 n/a		97/144 FT = 20%
BOT CHORD 2x4 SI	PF No.2 PF No.2 PF No.2		BRACING- TOP CHORD BOT CHORD	except end vert	icals.	rectly applied or 3-6-8 c or 10-0-0 oc bracing.	oc purlins,

REACTIONS. (size) 1=3-6-0, 3=3-6-0

Max Horz 1=58(LC 11) Max Uplift 1=-21(LC 12), 3=-36(LC 12)

Max Grav 1=125(LC 1), 3=125(LC 1)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Gable requires continuous bottom chord bearing.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TPI:	2-0-0 CS 1.15 TC 1.15 BC YES WE 2014 Ma	0.24 0.13	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 12 lb	GRIP 197/144 FT = 20%
BOT CHORD 2x4 S	PF No.2 PF No.2 PF No.2			BRACING- TOP CHOR BOT CHOR		except	end vertio	als.	ectly applied or 4-5-0 or 10-0-0 oc bracing.	oc purlins,

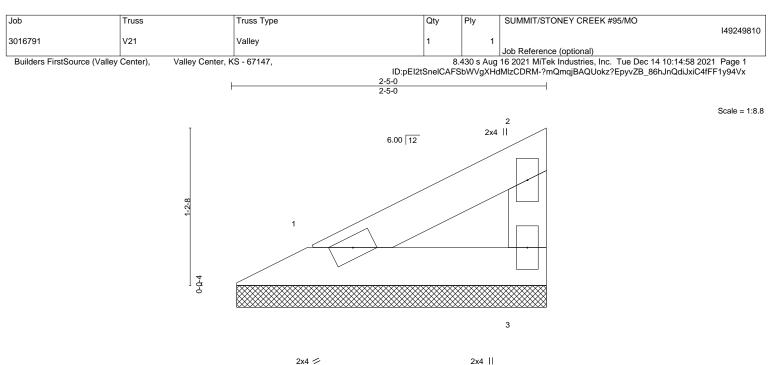
REACTIONS. (size) 1=4-4-8, 3=4-4-8

Max Horz 1=76(LC 9) Max Uplift 1=-28(LC 12), 3=-47(LC 12)

Max Grav 1=164(LC 1), 3=164(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-7-9 to 3-7-9, Interior(1) 3-7-9 to 4-3-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

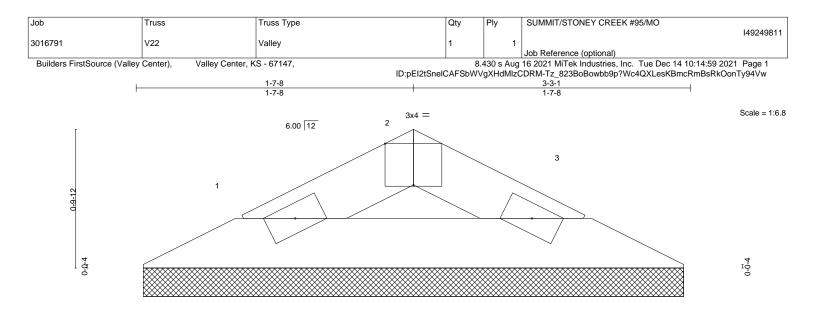
ł

LOADING	(psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL	1.15	TC	0.04	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2018/T	PI2014	Matri	ĸ-P						Weight: 6 lb	FT = 20%
LUMBER-		1				BRACING-					I	
TOP CHORD 2x4 SPF No.2			TOP CHOR	TOP CHORD Structural wood sheathing directly applied or 2-5-0 oc purlins,				0 oc purlins,				
BOT CHOR	RD 2x4 SF	PF No.2						except	end verti	cals.		
WEBS 2x4 SPF No.2			BOT CHOR	ORD Rigid ceiling directly applied or 10-0-0 oc bracing.								

TIONS

Max Horz 1=34(LC 9) Max Uplift 1=-12(LC 12), 3=-21(LC 12)

Max Grav 1=74(LC 1), 3=74(LC 1)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Gable requires continuous bottom chord bearing.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

2x4 ⋍

2x4 📚

Rigid ceiling directly applied or 10-0-0 oc bracing.

Plate Offsets (X,Y)			<u>31</u> 3 <u>1</u> 01018	
OADING (psf) CLL 25.0 CDL 10.0 SCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.03 BC 0.04 WB 0.00	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 3 n/a n/a	PLATES GRIP MT20 197/144
SCDL 10.0	Code IRC2018/TPI2014	Matrix-P		Weight: 6 lb FT = 20%

BOT CHORD

BOT CHORD 2x4 SPF No.2

REACTIONS. (size) 1=3-2-1, 3=3-2-1

Max Horz 1=9(LC 12) Max Uplift 1=-15(LC 12), 3=-15(LC 13)

Max Grav 1=90(LC 1), 3=90(LC 1)

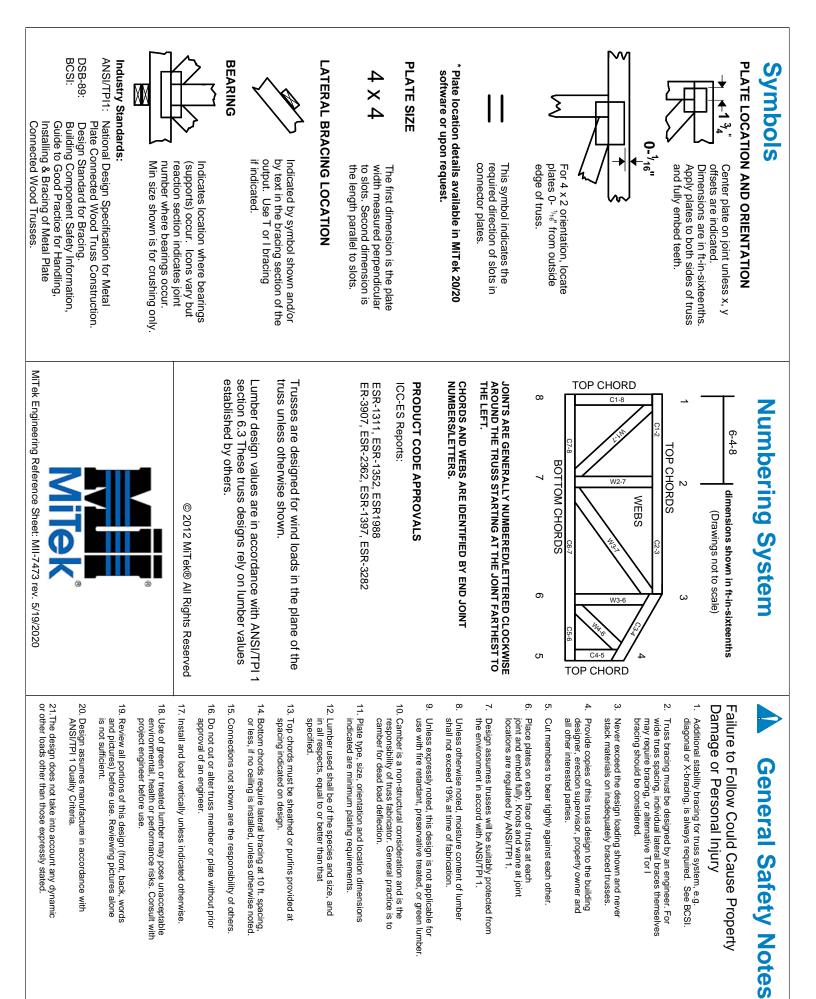
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.


- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

December 15,2021

