

RE: MN111 Lot 111 MN

Site Information:

Customer: Project Name: MN111 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise]

Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.4 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 58 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1 2	Seal# I48693611 I48693612	Truss Name A1 A2	Date 11/8/2021 11/8/2021	No. 21 22	Seal# I48693631 I48693632	Truss Name D5 D6	Date 11/8/2021 11/8/2021
3	I48693613	A3	11/8/2021	23	I48693633	E1	11/8/2021
4	148693614	A4	11/8/2021	24	I48693634	G1	11/8/2021
5	148693615	A5	11/8/2021	25	I48693635	G2	11/8/2021
6	148693616	B1	11/8/2021	26	I48693636	G3	11/8/2021
7	148693617	B2	11/8/2021	27	I48693637	G4	11/8/2021
8	l48693618	B3	11/8/2021	28	I48693638	G5	11/8/2021
9	l48693619	B4	11/8/2021	29	I48693639	J1	11/8/2021
10	148693620	B5	11/8/2021	30	148693640	J2	11/8/2021
11	I48693621	B6	11/8/2021	31	l48693641	J3	11/8/2021
12	148693622	C1	11/8/2021	32	I48693642	J4	11/8/2021
13	148693623	C2	11/8/2021	33	I48693643	J5	11/8/2021
14	148693624	C3	11/8/2021	34	148693644	J6	11/8/2021
15	148693625	C4	11/8/2021	35	I48693645	LAY1	11/8/2021
16	148693626	C5	11/8/2021	36	148693646	LAY2	11/8/2021
17	148693627	D1	11/8/2021	37	148693647	LAY3	11/8/2021
18	148693628	D2	11/8/2021	38	148693648	LAY4	11/8/2021
19	148693629	D3	11/8/2021	39	148693649	P1	11/8/2021
20	148693630	D4	11/8/2021	40	148693650	P2	11/8/2021

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Liu, Xuegang

My license renewal date for the state of Kansas is April 30, 2022. Kansas COA: E-943

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

RE: MN111 - Lot 111 MN

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Site Information:

	Project Name: MN111	
Lot/Block:		
Address:		
City, County:		

	ate
41 I48693651 V1 11	/8/2021
42 I48693652 V2 11	/8/2021
43 I48693653 V3 11	/8/2021
44 I48693654 V4 11	/8/2021
45 I48693655 V5 11	/8/2021
46 I48693656 V6 11	/8/2021
47 I48693657 V7 11	/8/2021
48 I48693658 V8 11	/8/2021
49 I48693659 V9 11	/8/2021
50 I48693660 V10 11	/8/2021
51 I48693661 V11 11	/8/2021
52 I48693662 V12 11	/8/2021
53 I48693663 V13 11	/8/2021
54 I48693664 V14 11	/8/2021
55 I48693665 V15 11	/8/2021
56 I48693666 V16 11	/8/2021
57 I48693667 V17 11	/8/2021
58 I48693668 V18 11	/8/2021

Subdivision:

State:

RE: MN111 Lot 111 MN

Site Information:

Customer: Project Name: MN111 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 58 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1	Seal# I48693611	Truss Name A1	Date 11/8/2021	No. 21	Seal# I48693631	Truss Name D5	Date 11/8/2021
2	148693612	A2	11/8/2021	22	148693632	D5 D6	11/8/2021
3	148693613	A3	11/8/2021	23	148693633	E1	11/8/2021
4	148693614	A4	11/8/2021	24	148693634	G1	11/8/2021
5	148693615	A5	11/8/2021	25	148693635	G2	11/8/2021
6	148693616	B1	11/8/2021	26	148693636	G3	11/8/2021
7	148693617	B2	11/8/2021	27	148693637	G4	11/8/2021
8	148693618	B3	11/8/2021	28	148693638	G5	11/8/2021
9	148693619	B4	11/8/2021	29	148693639	J1	11/8/2021
10	148693620	B5	11/8/2021	30	148693640	J2	11/8/2021
11	I48693621	B6	11/8/2021	31	I48693641	J3	11/8/2021
12	148693622	C1	11/8/2021	32	148693642	J4	11/8/2021
13	148693623	C2	11/8/2021	33	148693643	J5	11/8/2021
14	148693624	C3	11/8/2021	34	148693644	J6	11/8/2021
15	148693625	C4	11/8/2021	35	148693645	LAY1	11/8/2021
16	148693626	C5	11/8/2021	36	148693646	LAY2	11/8/2021
17	148693627	D1	11/8/2021	37	148693647	LAY3	11/8/2021
18	148693628	D2	11/8/2021	38	148693648	LAY4	11/8/2021
19	148693629	D3	11/8/2021	39	148693649	P1	11/8/2021
20	148693630	D4	11/8/2021	40	148693650	P2	11/8/2021

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Liu, Xuegang

My license renewal date for the state of Missouri is December 31, 2022. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Liu, Xuegang

November 08, 2021

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

RE: MN111 - Lot 111 MN

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Site Information:

	Project Name: MN111	
Lot/Block:		
Address:		
City, County:		

	ate
41 I48693651 V1 11	/8/2021
42 I48693652 V2 11	/8/2021
43 I48693653 V3 11	/8/2021
44 I48693654 V4 11	/8/2021
45 I48693655 V5 11	/8/2021
46 I48693656 V6 11	/8/2021
47 I48693657 V7 11	/8/2021
48 I48693658 V8 11	/8/2021
49 I48693659 V9 11	/8/2021
50 I48693660 V10 11	/8/2021
51 I48693661 V11 11	/8/2021
52 I48693662 V12 11	/8/2021
53 I48693663 V13 11	/8/2021
54 I48693664 V14 11	/8/2021
55 I48693665 V15 11	/8/2021
56 I48693666 V16 11	/8/2021
57 I48693667 V17 11	/8/2021
58 I48693668 V18 11	/8/2021

Subdivision:

State:

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	A1	Hip Girder	1	1	Job Reference (optional)	148693611

Max Horiz 2=43 (LC 8)

Tension

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

this design.

1)

2)

3)

4)

Max Uplift 2=-246 (LC 8), 8=-222 (LC 9)

(Ib) - Maximum Compression/Maximum

1-2=0/12, 2-3=-596/160, 3-4=-2845/731,

2-13=0/0, 3-12=-713/2827, 11-12=-714/2848,

10-11=-670/2845, 7-10=-670/2824, 8-9=0/0

3-13=-8/81, 7-9=-5/79, 4-12=-30/210,

4-5=-3523/917, 5-6=-3523/917,

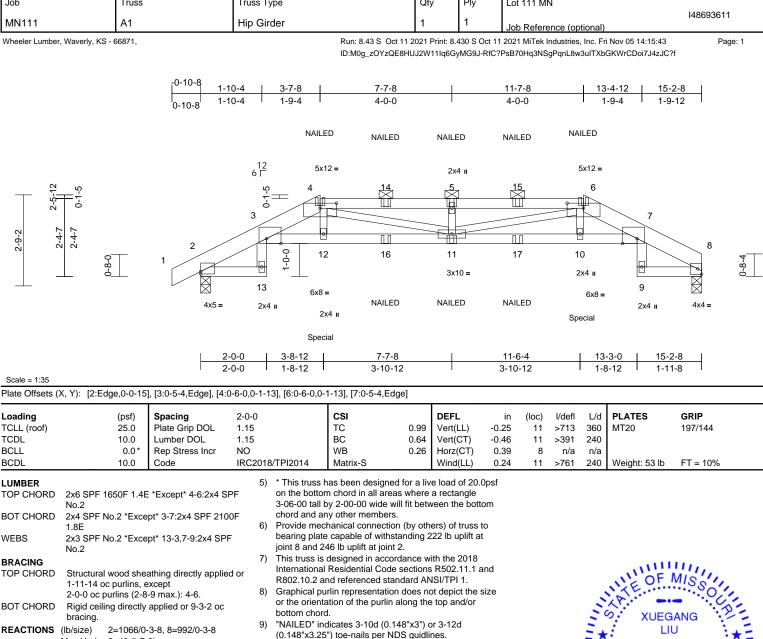
6-7=-2843/707, 7-8=-603/156

6-10=-30/210, 6-11=-229/765

4-11=-229/757, 5-11=-297/149

Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.

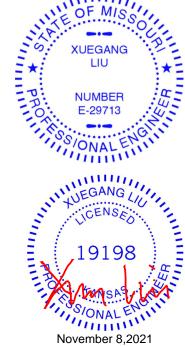
II; Exp C; Enclosed; MWFRS (envelope) exterior zone;


cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding.

chord live load nonconcurrent with any other live loads.

This truss has been designed for a 10.0 psf bottom

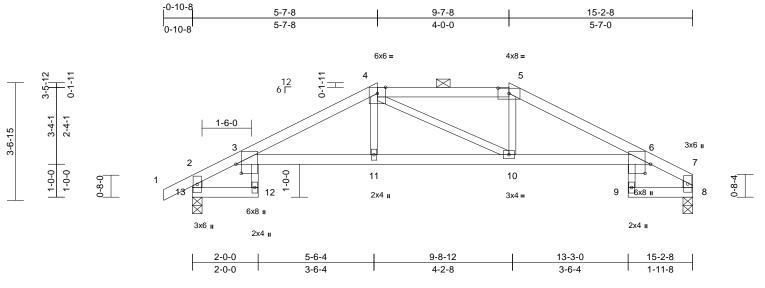
Unbalanced roof live loads have been considered for


Wind: ASCE 7-16; Vult=115mph (3-second gust)

- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 211 Ib down and 74 lb up at 3-7-8, and 211 lb down and 74 Ib up at 11-6-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft)
 - Vert: 1-4=-70, 4-6=-70, 6-8=-70, 2-13=-20, 3-7=-20, 8-9=-20
 - Concentrated Loads (lb) Vert: 4=-23 (B), 6=-23 (B), 12=-211 (B), 10=-211 (B),
 - 11=-35 (B), 5=-23 (B), 14=-23 (B), 15=-23 (B), 16=-35 (B), 17=-35 (B)



MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	A2	Hip	1	1	Job Reference (optional)	148693612

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:45 ID:MwZHi8kKRLZwKsrR2l4tMwyMGAN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

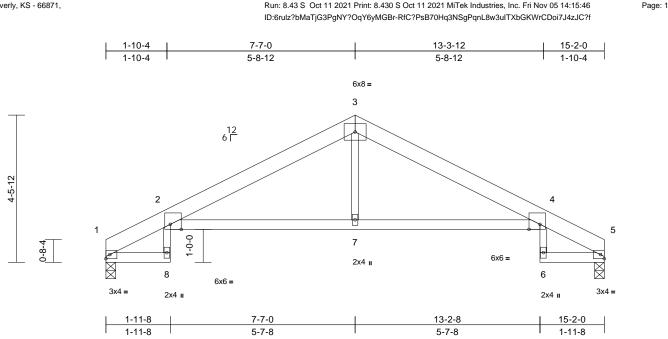
Page: 1

Scale = 1:35

Plate Offsets (X, Y): [3:0-3-5,0-2-0], [5:0-4-0,0-1-15], [6:0-3-5,0-2-0]

	(X, 1): [5:5 5 5;6 2 5];	[0.0 + 0,0 1 10], [0.	0 0 0,0 2	0]									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.76 0.94 0.08	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.21 -0.38 0.47 0.16	(loc) 12 12 8 12	l/defl >860 >470 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 47 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF 2100F 1.8E No.2 2x4 SPF No.2 *Exce No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 4-11-2 oc purlins, e 2-0-0 oc purlins (5-2 Rigid ceiling directly bracing.	E *Except* 4-5:2x4 S ept* 12-3,6-9:2x3 SP ept* 13-2,8-7:2x4 SP athing directly applie xcept end verticals, -11 max.): 4-5. applied or 6-0-0 oc 3-8, 13=757/0-3-8 C 5)	5) F 6) F 7) ed or and 8)	 * This truss I on the bottor 3-06-00 tall I chord and ar Provide mec bearing plate 13 and 59 Ib This truss is International R802.10.2 a Graphical put 	has been designe m chord in all are by 2-00-00 wide v y other member thanical connective capable of withs uplift at joint 8. designed in accc Residential Cod nd referenced sta urlin representatic ation of the purlin d.	eas where will fit betw s. on (by oth standing & ordance w e sections andard AN on does no	e load of 20. a rectangle veen the bott ers) of truss 4 lb uplift at j kth the 2018 R502.11.1 a ISI/TPI 1.	Opsf om to joint and				XIE OF S. XUEG	MISSO
FORCES	(lb) - Maximum Com Tension	,,									3	NUM E-29	• []].
TOP CHORD	1-2=0/32, 2-3=-297/ 4-5=-1191/104, 5-6= 2-13=-775/102, 7-8=	1333/72, 6-7=-296/ 700/73 0/66, 3-11=-71/1197,	,								111	NSSION	AL ENGINITI
	8-9=-25/0												1111.
,	4-11=0/227, 4-10=-1 ed roof live loads have	,										LIN XUEGA	NSEN
Vasd=91n II; Exp C; cantilever right expo 3) Provide ad 4) This truss	n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 dequate drainage to pr has been designed for load nonconcurrent wi	DL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left and 0 plate grip DOL=1.6 event water ponding r a 10.0 psf bottom	ne; d 60 J.								CHIIII .	PRO SION	198 AALENGIII

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



November 8,2021

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	A3	Roof Special	1	1	Job Reference (optional)	148693613

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:46

Wheeler Lumber, Waverly, KS - 66871,

Scale =	1:35.1
---------	--------

Plate Offsets (X, Y): [2:0-4-0,Edge], [4:0-4-0,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.86	Vert(LL)	-0.20	4-7	>890	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.57	Vert(CT)	-0.37	4-7	>479	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.42	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.16	2-7	>999	240	Weight: 52 lb	FT = 10%

LUMBER	
TOP CHORD	2x6 SPF No.2
BOT CHORD	2x4 SPF No.2
WEBS	2x3 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	2-2-0 oc purlins.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(lb/size) 1=669/0-3-8, 5=669/0-3-8
	Max Horiz 1=72 (LC 12)
	Max Uplift 1=-82 (LC 8), 5=-82 (LC 9)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-401/98, 2-3=-1090/105, 3-4=-1090/133,
	4-5=-401/69

BOT CHORD 1-8=0/0, 2-7=-52/983, 4-7=-52/983, 5-6=0/0 WEBS 2-8=0/58, 4-6=0/58, 3-7=0/263

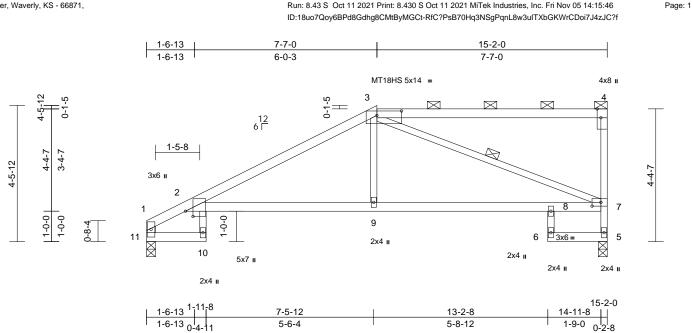

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 82 lb uplift at joint 1 and 82 lb uplift at joint 5.

This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	A4	Half Hip	1	1	Job Reference (optional)	148693614

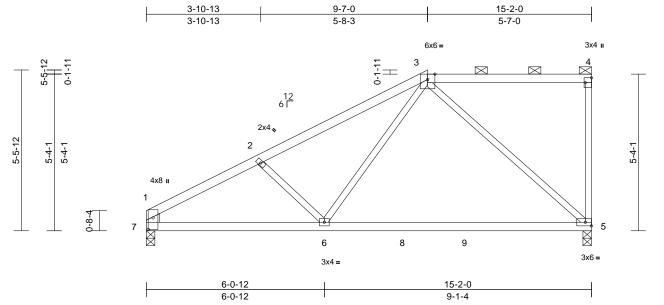
Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries. Inc. Fri Nov 05 14:15:46

Wheeler Lumber, Waverly, KS - 66871,

Scale = 1:37.9

Plate Offsets (X, Y): [2:0-2-1,0-3-0], [3:0-9-12,0-1-12], [4:0-3-8,Edge], [7:0-3-8,0-1-8]

		1	-										
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.83	Vert(LL)	-0.29	10	>618	360	MT18HS	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.92	Vert(CT)	-0.51	10	>350	240	MT20	197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.60	Horz(CT)	0.36	5	n/a	n/a		
BCDL	10.0	Code	IRC2018	/TPI2014	Matrix-S		Wind(LL)	0.27	10	>663	240	Weight: 52 lb	FT = 10%
LUMBER			7)	Provide med	hanical connectio	n (by oth	ers) of truss	to					
TOP CHORD	2x4 SPF 2100F 1.8E No.2	E *Except* 3-4:2x4 SI	,	bearing plate	capable of withs plift at joint 11.								
BOT CHORD WEBS		ept* 8-6:2x3 SPF No.: ept* 11-1:2x4 SPF No	,	International	designed in accor Residential Code nd referenced sta	sections	R502.11.1 a	and					
BRACING			dor 9)		rlin representation			eizo					
TOP CHORD		athing directly applie except end verticals, 0-0 max): 3-4	u 01 /		ation of the purlin			3120				ann	1100
BOT CHORD		,	LO	AD CASE(S)	Standard							NYE OF	MISSO
WEBS	U	3-7									5	7	
REACTIONS		3-8, 11=682/0-3-8									20	XUEG	ANG
	Max Horiz 11=167 (L	_C 7)									24	🤌 LIU	J :1=
	Max Uplift 5=-118 (L	.C 5), 11=-74 (LC 8)									2.0	÷	
FORCES	(lb) - Maximum Com Tension	pression/Maximum									EP	NUM	BER E
TOP CHORD	1-2=-322/41, 2-3=-1	086/98, 3-4=-71/43, 252/107, 1-11=-693/	77									E-29	713
BOT CHORD	10-11=-32/8, 2-9=-1	89/945, 8-9=-192/93									1	ES.	Glin
WEBS	7-8=-197/947, 6-8=0 2-10=-15/62, 3-9=0/											ON/	ALEIN
	2-10=-15/62, 3-9=0/	301, 3-7=-930/149											un.
NOTES	ed roof live loads have	haan appaidered for											
this design		been considered for										IN THE GA	NG
2) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)										NUEU	
	nph; TCDL=6.0psf; BC											N CE	NSEN.
	Enclosed; MWFRS (er												10 1 2
	left and right exposed										-	1	1 5
	sed; Lumber DOL=1.6 dequate drainage to pr										11111	10	198 E
	are MT20 plates unles										1	A11-5	
	has been designed for										-		N 4 2
	load nonconcurrent wi		s.									- 9XOMAC	19:19:
6) * This trus	ss has been designed f	or a live load of 20.0	osf									- AC	Dr. G
	ttom chord in all areas											S/ON	ALENIN
	all by 2-00-00 wide will	fit between the botto	n									1111	ininini.
chord and	any other members.												


November 8,2021

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	A5	Half Hip	1	1	Job Reference (optional)	148693615

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:46 ID:he23x5KVICV9yH8BuS?DnzyMGDU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

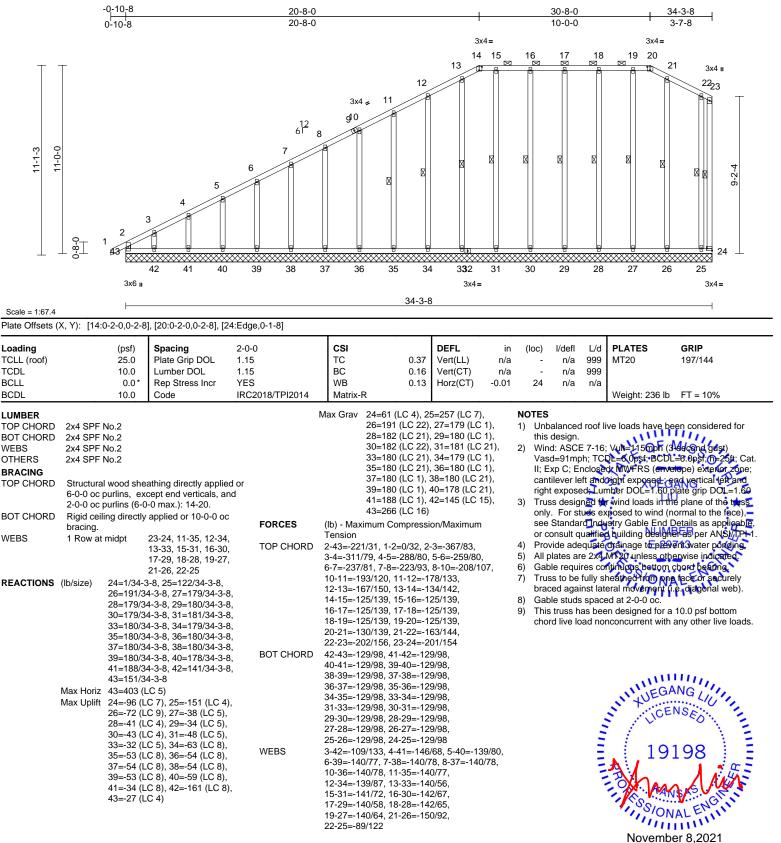
Scale	= 1:39.3	

Plate Offsets (X, Y): [1:0-4-11,0-2-0], [4:Edge,0-2-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.46	Vert(LL)	-0.24	5-6	>751	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.47	Vert(CT)	-0.43	5-6	>416	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.83	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.05	5-6	>999	240	Weight: 54 lb	FT = 10%
LUMBER			6)		chanical connecti								
TOP CHORD					e capable of with	nstanding 1	13 lb uplift a	at joint					
BOT CHORD	2x4 SPF 2100F 1.8E				uplift at joint 7.								
WEBS	2x3 SPF No.2 *Exce	pt* 7-1:2x6 SP DSS	5 7)		designed in acc								
BRACING					Residential Coc			and					
TOP CHORD					nd referenced st								
	4-11-13 oc purlins,		s, and 8)		urlin representati			size					
	2-0-0 oc purlins (6-0	,		bottom chor	ation of the purlir	n along the	e top and/or						111.
BOT CHORD		applied or 10-0-0 o										11 OF	MIG
	bracing.		LO	OAD CASE(S)	Standard							NE	Soli
REACTIONS	· /	3-8, 7=668/0-3-8										17	
	Max Horiz 7=207 (LC										-	XUEC	ANG : P-
	Max Uplift 5=-113 (L	,, , , ,									-		
	Max Grav 5=707 (LC	,, ()									= *	с — Ц	· · · · · ·
FORCES	(lb) - Maximum Com	pression/Maximum									-	÷	
	Tension										= 0	NUM	
TOP CHORD	1-2=-1063/161, 2-3= 4-5=-184/81, 1-7=-6		56,								-5	C E-29	• [] []
BOT CHORD	,										-1	C. E-28	113
WEBS	2-6=-257/196, 3-6=-		28								-	A	
NOTES	2-0237/190, 3-0	29/000, 0-0-000/12	20									1.SION	ENIN
	ed roof live loads have	been considered fo	r									I,ON	ALLIN
this desig		been considered to	1										10.5
0	CE 7-16; Vult=115mph	(3-second qust)											1111.
	mph; TCDL=6.0psf; BC		Cat.									111-6	ANO
	Enclosed; MWFRS (er											NUEU	LIII
cantilever	r left and right exposed	; end vertical left an	d									NIN KUEG	NSA .
right expo	osed; Lumber DOL=1.6	0 plate grip DOL=1.	60										50 ·
	dequate drainage to pr		g.								- 5	19	
	s has been designed for											10	100 =
	e load nonconcurrent wi										-	19	198 E
5) * This true	ss has been designed f	or a live load of 20.0	Opsf								-	U	· · · · ·

5) signed for a live lo on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0 psf.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



SIONALES I UNAL ENI November 8,2021

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	B1	Piggyback Base Supported Gable	1	1	Job Reference (optional)	I48693616

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:47 ID:vvDK1IM?egam1cgOSb?XKOyMG8G-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

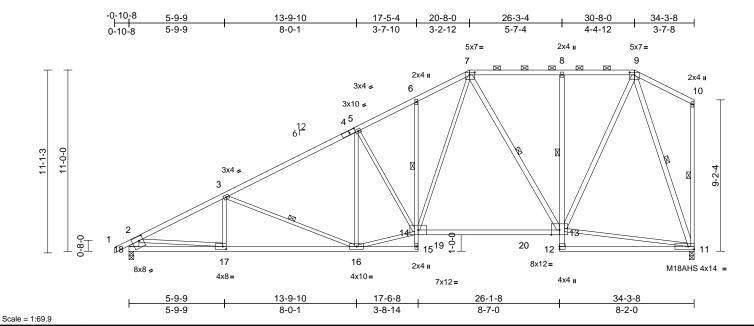
Nov 05 14:15:47 Page: 1 KWrCDoi7J4zJC?f

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	B1	Piggyback Base Supported Gable	1	1	Job Reference (optional)	148693616

- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 27 lb uplift at joint 43, 96 lb uplift at joint 24, 161 lb uplift at joint 42, 34 lb uplift at joint 41, 59 lb uplift at joint 40, 53 lb uplift at joint 39, 54 lb uplift at joint 38, 54 lb uplift at joint 37, 54 lb uplift at joint 36, 53 lb uplift at joint 35, 63 lb uplift at joint 34, 32 lb uplift at joint 33, 48 lb uplift at joint 31, 43 lb uplift at joint 30, 34 lb uplift at joint 29, 41 lb uplift at joint 28, 38 lb uplift at joint 27, 72 lb uplift at joint 26 and 151 Ib uplift at joint 25.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:47 ID:vvDK1IM?eqam1cgOSb?XKOyMG8G-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2



Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	B2	Piggyback Base	1	1	Job Reference (optional)	148693617

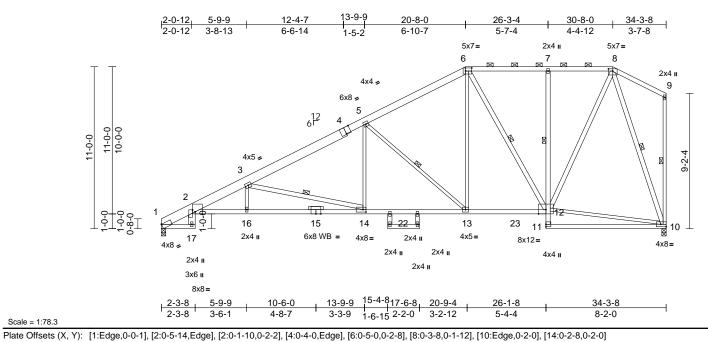
Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:48 ID:55VBcJJZ15XZ?IDZahw313yMG71-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [4:0-4-5,0-1-8], [7:0-3-12,0-1-12], [9:0-3-8,0-1-12], [17:0-2-8,0-2-0], [18:0-3-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.84	Vert(LL)	-0.32	13-14	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.87	Vert(CT)	-0.56	13-14	>731	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	YES	WB	0.90	Horz(CT)	0.09	11	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.10	16-17	>999	240	Weight: 189 lb	FT = 10%
BCDL	10.0	Code	INC2016/TF12014				0.10	10-17	>999	240	Weight. 189 lb	F I = I

14-13:2x4 SPF: WEBS 2x3 SPF No.2 * SPF No.2, 18-2: BRACING TOP CHORD Structural wood except end verti (5-4-8 max.): 7- BOT CHORD Rigid ceiling dir bracing. Excep 1 Row at midpt 6-14, 8-13 WEBS 1 Row at midpt REACTIONS (Ib/size) 11=1 Max Horiz Max Grav 11=1 Max Grav 11=1 FORCES (Ib) - Maximum Tension TOP CHORD 1-2=0/37, 2-3=- 5-6=-200/302, 7-8=-1053/161, 10-11=-115/63, BOT CHORD 17-18=-422/4700 15-16=-170/0, 1 13-14=-222/135 8-13=-399/168, WEBS 7-14=-266/1169 11-13=-55/481, 9-11=-1528/186 3-17=-41/173, 3	Except* 13-7,13-9,11-9:2x4 2x8 SP DSS sheathing directly applied, icals, and 2-0-0 oc purlins 9. ectly applied or 6-0-0 oc t: 7-13, 10-11, 9-11, 3-16 523/0-3-8, 18=1609/0-3-8 88 (LC 8) 150 (LC 8), 18=-208 (LC 8) 614 (LC 2), 18=1665 (LC 2) Compression/Maximum 2707/303, 3-5=-2184/251, 6-7=-1944/357, 8-9=-1045/161, 9-10=-49/63, 2-18=-1575/232 , 16-17=-586/2360, 4-15=0/21, 6-14=-116/81, 10, 12-13=0/173, 11-12=-21/42 , 7-13=-602/206, 9-13=-153/1369, ; 2-17=-165/1903, -16=-548/216, 5-16=-148/98,	 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 208 lb uplift at joint 18 and 150 lb uplift at joint 11. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 	NUMBER E-29713 NUMBER
14-16=-341/205 NOTES 1) Unbalanced roof live loads h this design.	6, 5-14=-328/159 have been considered for		November 8 2021



November 8,2021

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	B3	Piggyback Base	2	1	Job Reference (optional)	148693618

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:48 ID:P9bQ_JsVwYntCqaJ60GNRFyMEST-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:78.3
---------	--------

1 1010 0110010 (, , ,): [::⊇ageie e :];	[2:0 0 : :,2:3g0]; [2:		= =], [,=.	.go], [o:o o o,o i	_ 0], [0.0 0	0,0],[o.eugo,	° = °], [.		0 - 01		
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.73 0.61 0.89	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.29 -0.54 0.29	(loc) 14-16 14-16 10	l/defl >999 >763 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC201	18/TPI2014	Matrix-S		Wind(LL)	0.22	14-16	>999	240	Weight: 213 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD 1 Row at midp WEBS REACTIONS	2x4 SPF No.2 *Exce 4-1:2x8 SP DSS 2x4 SPF No.2 *Exce SPF 2100F 1.8E 2x3 SPF No.2 *Exce 14-3,12-6,12-8,10-8 2x3 SPF No.2 Structural wood she 3-2-2 oc purlins, ex 2-0-0 oc purlins, (5-5 Rigid ceiling directly bracing. Except: t 7-12 1 Row at midpt	2014 4-6:2x6 SPF No. 2014 2-15,11-10,15-12 2014 17-2:2x6 SPF No.2 2014 SPF No.2 2014 SPF No.2 2014 SPF No.2 2014 2015 2015 2015 2015 2015 2015 2015	2, 2, 2:2x4 b.2, 3, 4; 5; d or 6; nd 7; 10, 8;) 2) L 27, 3	 Wind: ASCE Vasd=91mpi II; Exp C; En cantilever lef exposed; Lui) Provide adee All plates are This truss ha chord live loa * This truss fa on the bottor * On the bottor 3-06-00 tall b chord and ar Provide mec bearing plate joint 1 and 13 This truss is International R802.10.2 ar Graphical put 	7-16; Vult=115r n; TCDL=6.0psf; closed; MWFRS t and right exposimber DOL=1.60 quate drainage to 2 2x4 MT20 unle is been designer ad nonconcurrer has been designer in chord in all are by 2-00-00 wide hanical connection capable of with 52 lb uplift at joir designed in accord Residential Coord nd referenced st ation of the purlin f.	BCDL=6.6 S (envelope sed; end v plate grip o prevent v ass otherwi d for a 10.6 nt with any ed for a 1iv eas where will fit betw rs, with BC ion (by oth istanding 1 nt 10. ordance w de sections andard AN on does no	cond gust) opsf; h=25ft; (i) posf; h=25ft; (i) posterior zor ertical left DOL=1.60 water ponding se indicated. 0 psf bottom other live loar e load of 20.0 a rectangle ween the bottoc DL = 10.0psf ers) of truss tr 82 lb uplift at ith the 2018 R502.11.1 a ISI/TPI 1.	Cat. ne; J. ds. opsf om o				NUME Solution NUME Solution NUME E-29	ANG BER 713
WEBS	13-14=-459/2244, 1 11-12=0/173, 7-12=	2-13=-215/1416, -387/165, 10-11=0/1 6/162, 3-14=-1619/4 13=-139/1014, 12=-87/363,	37								WITHIN	19) 19)	198 198
	ed roof live loads have n.	been considered for										SSION	ALENGIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



November 8,2021

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	B4	Piggyback Base	1	1	Job Reference (optional)	148693619

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:49 ID:ZXM0xNjboYzc_sTdIWVBsXyMENU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

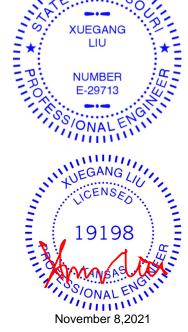
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.83	Vert(LL)	-0.38	13-14	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.72	Vert(CT)	-0.65	13-14	>628	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.99	Horz(CT)	0.28	10	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.23	14-16	>999	240	Weight: 216 lb	FT = 10%

LUMBER TOP CHORD	2x4 SPF No.2 *Except* 4-6:2x6 SPF No.2, 4-1:2x8 SP DSS
BOT CHORD	2x4 SPF No.2 *Except* 2-15,15-13:2x4 SPF 2100F 1.8E
WEBS	2x3 SPF No.2 *Except* 17-2:2x6 SPF No.2, 14-6,13-8,11-8,10-9:2x4 SPF No.2
OTHERS	2x3 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or 3-2-4 oc purlins, except end verticals, and 2-0-0 oc purlins (3-3-3 max.): 6-8.
BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing. Except:
1 Row at midpl	7-13
WEBS	1 Row at midpt 3-14, 6-13, 8-11, 9-10
	(lb/size) 1=1530/0-3-8, 10=1530/0-3-8
	Max Horiz 1=395 (LC 8)
	Max Uplift 1=-182 (LC 8), 10=-152 (LC 8)
	Max Grav 1=1607 (LC 2), 10=1617 (LC 2)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=-871/0, 2-3=-3905/578, 3-5=-2629/321, 5-6=-2631/498, 6-7=-1309/217,
	7-8=-1309/219, 8-9=-607/80, 9-10=-1591/158
BOT CHORD	1-17=0/0, 2-16=-913/3767, 14-16=-908/3761,
	13-14=-224/1372, 12-13=0/142,
	7-13=-491/212, 11-12=-58/13, 10-11=-1/3
WEBS	2-17=-1/68, 3-16=-53/132, 3-14=-1556/470,
	6-14=-395/1520, 6-13=-348/203,
	11-13=-41/538, 8-13=-218/1311,
	8-11=-1112/213, 9-11=-131/1362, 5-14=-571/319

Unbalanced roof live loads have been considered for

NOTES 1)

this design.


2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. 3) All plates are 2x4 MT20 unless otherwise indicated. 4) This truss has been designed for a 10.0 psf bottom 5)

- chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to 7) bearing plate capable of withstanding 182 lb uplift at joint 1 and 152 lb uplift at joint 10.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

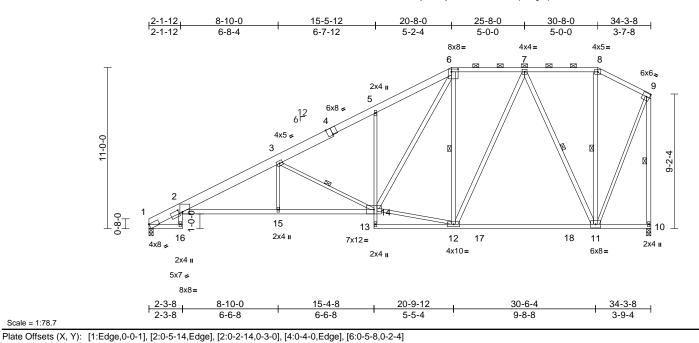
LOAD CASE(S) Standard

11111

XUEGANG

LIU

0


MI

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

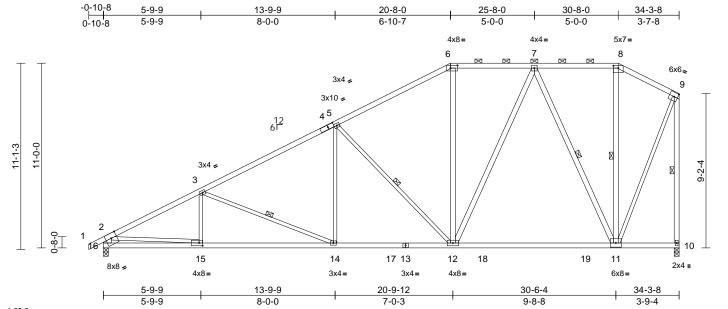
Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	B5	Piggyback Base	1	1	Job Reference (optional)	148693620

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:49 ID:Lm7JIFtFtFOMKD4rjuhw43yMEKi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:78.7

						-							
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.84	Vert(LL)	-0.34	11-12	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.60	Vert(CT)	-0.58	2-15	>704	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.85	Horz(CT)	0.34	10	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.27	2-15	>999	240	Weight: 214 lb	FT = 10%
LUMBER TOP CHORD	4-1:2x8 SP DSS		2,	Vasd=91mpl II; Exp C; En	7-16; Vult=115m h; TCDL=6.0psf; iclosed; MWFRS ft and right expos	BCDL=6.0 (envelope	Opsf; h=25ft; e) exterior zo						
BOT CHORD	2x4 SPF 2100F 1.8E No.2, 5-13:2x3 SPF		SPF		mber DOL=1.60								
WEBS	2x4 SPF No.2 *Exce 3-15,14-3,12-14,11-	ept*	3) 4)	Provide ade This truss ha	quate drainage to as been designed	prevent	water pondin) psf bottom	0					
BRACING			5)		ad nonconcurrent								III.
TOP CHORD		athing directly applie cept end verticals, ar)-3 max.): 6-8.		on the bottor 3-06-00 tall I	nas been designe m chord in all are by 2-00-00 wide v	as where vill fit betv	a rectangle veen the bott	om				ILE OF	MISSO
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc	6)	Provide med	ny other members hanical connection	on (by oth	ers) of truss	to			3	S XUEG	ANG
WEBS	1 Row at midpt	3-14, 6-12, 7-11, 8-1 9-10	1,		e capable of withs 52 lb uplift at join		82 lb uplift a	t			E+	LIU	
REACTIONS	(lb/size) 1=1530/0 Max Horiz 1=395 (L0 Max Uplift 1=-182 (L Max Grav 1=1595 (L	.C 8), 10=-152 (LC 8)	8)	International R802.10.2 a Graphical pu	designed in acco Residential Cod nd referenced sta Irlin representation ation of the purlin	e sections andard AN on does no	R502.11.1 a ISI/TPI 1. ot depict the s				I. Film	NUMI E-29	• [] []
FORCES	(lb) - Maximum Com Tension	pression/Maximum		bottom chore	d.	j						ISS ON	ENGLIN
TOP CHORD		54/451, 3-5=-2324/3 =-1276/228, 7-8=-530 1659/150	17,	JAD CASE(S)	Stanuaru							1,0/ON/	
BOT CHORD	,	7/3144, 14-15=-725/3 302/209, 12-13=-28/3 -11=-2/3	,									IN TUEGA	NG LIU
WEBS	2-16=0/69, 3-15=0/2 12-14=-166/1294, 6 6-12=-633/269, 7-12 7-11=-1081/208, 8-1 9-11=-114/1406	2=-146/744,									ATT THE	UEGA	198
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for										NAK SION	ALENCIAL


November 8,2021

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	B6	Piggyback Base	1	1	Job Reference (optional)	148693621

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:49 ID:MTWT2EXZ?soXtzoihXMfTzyMEY2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

30-8-0 34-3-8

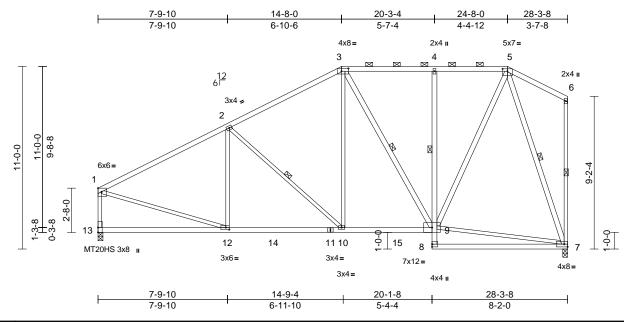
Scale = 1:68.6

Plate Offsets (X, Y): [4:0-4-4,0-1-8], [6:0-5-0,0-2-0], [8:0-3-8,0-1-12], [15:0-2-8,0-2-0]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.76 0.88 0.84	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.31 -0.51 0.07 0.10	11-12 10	l/defl >999 >805 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 178 lb	GRIP 197/144 FT = 10%
	2-2-0 oc purlins, exc 2-0-0 oc purlins (5-0 Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 10=1525// Max Horiz 16=389 (L Max Uplift 10=-151 (Max Grav 10=1659 ((lb) - Maximum Com Tension 1-2=0/35, 2-3=-2776 5-6=-1544/208, 6-7= 8-9=-640/78, 9-10=-	, pt* 10-9:2x4 SPF No.2, athing directly applied cept end verticals, an -0 max.): 6-8. applied or 6-0-0 oc 3-14, 5-12, 7-11, 8-1 9-10 0-3-8, 16=1605/0-3-8 .C 8) LC 8), 16=-206 (LC 8 (LC 2), 16=1684 (LC) pression/Maximum /304, 3-5=-2240/256, -1293/229, 7-8=-536/	d 1, 7) 2) 8) LC	Vasd=91mph II; Exp C; Enc cantilever left exposed; Lur Provide adec This truss ha chord live loa * This truss ha chord live loa * This truss ha on the bottom 3-06-00 tall b chord and an Provide mecl bearing plate joint 16 and 1 This truss is of International R802.10.2 ar Graphical pu		CDL=6.6 enveloped d; end v ate grip porevent v or a 10.0 with any f or a liv s where II fit betw with BCv (by oth anding 2 t 10. dance w sections dard AN does no	Dpsf; $h=25ft$; e) exterior zo vertical left DOL=1.60 water pondin; D psf bottom other live loze e load of 20. a rectangle veen the bott DL = 10.0ps ers) of truss i 06 lb uplift ai ith the 2018 is R502.11.1 a ISI/TPI 1. bt depict the si	ne; g. ads. Opsf om f. to t			AND * PHONE	XUEG XUEG LIU NUME E-29	BER 713
BOT CHORD	2-16=-1592/231 15-16=-442/548, 14- 12-14=-394/1918, 1 10-11=-2/3											UEGA	NG LIU
WEBS	3-15=-20/187, 3-14=										WITH IN		198
	d roof live loads have	heen considered for									1	Ynaa	

1)

Unbalanced roof live loads have been considered for this design.


SONAL ENVI SIONALE November 8,2021

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	C1	Piggyback Base	4	1	Job Reference (optional)	148693622

Scale = 1:69.4

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:50 ID:S46Op_F4yHRa9hhKUHToAdyMEZi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

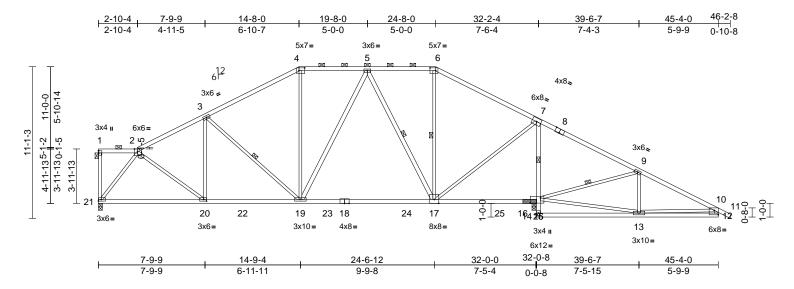
Page: 1

Plate Offsets (X, Y): [1:Edge,0-2-11], [3:0-5-0,0-2-0], [5:0-3-8,0-1-12], [12:0-2-8,0-1-8]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.82	Vert(LL)	-0.16	7-8	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15		BC	0.64	Vert(CT)	-0.33	7-8	>999	240	MT20HS	148/108	
BCLL	0.0*	Rep Stress Incr	YES		WB	0.71	Horz(CT)	0.04	7	n/a	n/a			
BCDL	10.0	Code	IRC2018/	/TPI2014	Matrix-S		Wind(LL)	0.04	10-12	>999	240	Weight: 157 lb	FT = 10%	6
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD 1 Row at midp WEBS REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood she except end verticals (6-0-0 max.): 3-5. Rigid ceiling directly bracing. Except: t 4-9 1 Row at midpt (lb/size) 7=1264/0 Max Horiz 13=256 (I Max Uplift 7=-114 (L Max Grav 7=1341 (I (lb) - Maximum Com	ept* 9-3,9-5,7-5:2x4 \$ athing directly applie , and 2-0-0 oc purlin applied or 10-0-0 oc 3-9, 6-7, 5-7, 2-10 -3-8, 13=1264/0-3-8 _C 8) C 5), 13=-127 (LC 8 _C 2), 13=1348 (LC 2)	4) 5) SPF 6) ^{(d} , 7) ^{(c} 8) 9)	All plates are This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and ar Provide mecl bearing plate joint 13 and ' This truss is International R802.10.2 ar Graphical pu	MT20 plates unli s been designed id nonconcurrent has been designen n chord in all area y 2-00-00 wide w y other members hanical connectio capable of withsi 114 lb uplift at join designed in accor Residential Code nd referenced staal fin representation tion of the purlin	for a 10.0 with any d for a liv as where ill fit betw , with BC n (by oth tanding 1 tt 7. rdance w sections ndard AN n does no	wise indicate 0 psf bottom other live loa e load of 20.0 a rectangle veen the bott DL = 10.0psi ers) of truss t 27 lb uplift at ith the 2018 s R502.11.1 a SI/TPI 1. ot depict the s	d. ds. Dpsf om f. io i				XUEG NUME 0. E-29		
TOP CHORD	Tension 1-2=-1542/159, 2-3= 3-4=-814/129, 4-5=- 6-7=-114/63, 1-13=-	810/129, 5-6=-49/63	,									KSSIONI	LENG	
BOT CHORD	12-13=-275/84, 10-1 9-10=-152/1014, 8-9 7-8=0/131	9=0/173, 4-9=-401/16										UEGA	NO	
WEBS	3-10=-69/554, 3-9=- 5-9=-130/1041, 5-7= 1-12=-38/1292, 2-10 2-12=-200/112	-1212/175,	0,									UEGA	NSED	in the second
NOTES												1		1 E -
1) Unbalance	ed roof live loads have	been considered for									- 2	19	198	1 E -
Vasd=91m II; Exp C; E cantilever plate grip I	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed	DL=6.0psf; h=25ft; C hvelope) exterior zon ; Lumber DOL=1.60	e;								(1) Y.	A SION	SAS	(24

vide adequate drainage to prevent water ponding.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



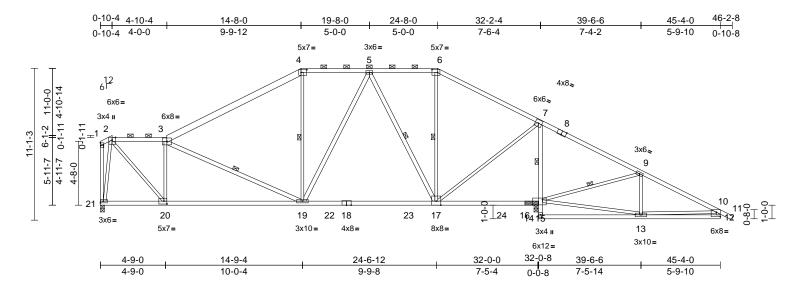
November 8,2021

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	C2	Piggyback Base	1	1	Job Reference (optional)	148693623

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:50 ID:8qSuMYeuxcFtJP5reUldsMyMEH7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:84.3


Scale = 1.64.5											
Plate Offsets (X, Y): [2:0-2-11,Edge], [4	4:0-5-0,0-2-8], [6:0-5-0,0	0-2-8], [8:0-4-0,Edg	e], [12:Edge,0-3-1	13], [15:0)-9-0,0-4-8], [2	20:0-2-8	,0-1-8]				
TCLL (roof) 25.0 Pi TCDL 10.0 Lu BCLL 0.0* R	Spacing 2-0- Plate Grip DOL 1.15 .umber DOL 1.15 Rep Stress Incr YES Code IRC	5	CSI TC BC WB Matrix-S	0.77 0.76 0.77	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.45 0.02	(loc) 17-19 17-19 15 19-20	l/defl >999 >848 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 207 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD 2x4 SPF No.2 *Except* 1.8E BOT CHORD 2x4 SPF No.2 *Except* 2400F 2.0E WEBS 2x3 SPF No.2 *Except* SPF No.2 BRACING TOP CHORD Structural wood sheathin 4-1-7 oc purlins, except 2-0-0 oc purlins (5-6-13 BOT CHORD Rigid ceiling directly app bracing, Except: 6-0-0 oc bracing: 15-17, 1 Row at midpt 7-15 WEBS 1 Row at midpt 3-1 REACTIONS (lb/size) 15=2952/(0-3)	* 6-8:2x4 SPF 2100F * 18-15,16-15:2x4 SPF * 19-5,17-5,12-10:2x4 hing directly applied or pt end verticals, and 3 max.): 1-2, 4-6. oplied or 10-0-0 oc 7,13-14. 19, 5-17, 6-17, 9-15 3-8 + bearing block), 0, 21=1177/0-3-8 24) 29), 21=-170 (LC 8) 20), 21=-1363 (LC 23) ession/Maximum 37, 2-3=-1507/182, 047/229, 4/146, 7-9=-272/1680, to 32, 10-12=-15/82)=-99/1302, arr 339/423, 2675/401, 63/126 -8/533, 410/167, 4-19=0/223, 49/181, 148/2174, arr 999/273,	 2x4 SPF 240 attached to fr nails spaced assumed to b Unbalanced of this design. Wind: ASCE Vasd=91mph II; Exp C; Enc cantilever left right exposed Provide adeq This truss ha chord live load * This truss ha on the botton 3-06-00 tall b chord and an Provide mect bearing plate joint 21 and 3 This truss is of International R802.10.2 ar Graphical put 	DF 2.0E bearing to ont face with 2 ro 3" o.c. 8 Total fas e SPF No.2. oof live loads hav 7-16; Vult=115mf ; TCDL=6.0psf; E closed; MWFRS (and right expose (; Lumber DOL=1 uate drainage to s been designed i d nonconcurrent as been designed i d nonconcurrent as been designed i d nonconcurrent as been designed in all area y 2-00-00 wide w y other members nanical connection capable of withst 74 lb uplift at join designed in accor Residential Code d referenced star lin representatior tion of the purlin a	we so f 10 teners. E ve been of cDL = 6.0 envelope d ; end v .60 plate prevent v for a 10.0 with any d for a liv. s where ill fit betw, with BC n (by other anding 1 t 15. dance wis sections nd ard AN o does nd	long at jt. 15 bd (0.131"x3") 3earing is considered fo cond gust) Dpsf; h=25ft; (0) exterior zor rertical left an grip DOL=1.1 water ponding 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf ers) of truss t 70 lb uplift at ith the 2018 is R502.11.1 a ISI/TPI 1. ot depict the s	r Cat. he; d 60 J. ds. Jpsf om o nd			1111 * PH-11	XUEG XUEG NUMI E-29 NUMI E-29	ANG BER

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	С3	Piggyback Base	1	1	Job Reference (optional)	148693624

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:51 ID:F7P5sxxaLgzVOzj4xYAtlDyMEBa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:84.3

	(,,, ,). [, [ere e e,e = e], [ere	. 0,20g0],[:=:=====;===	10], [1010 0 12	,• . •], [=•	.0 2 0,0 2 0]						
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.83		-0.26	17-19	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.92	• • •	-0.41		>935	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.74	• • •	0.02	15	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)		19-20	>999	240	Weight: 219 lb	FT = 10%
											-	- 5	
LUMBER				OTES									
TOP CHORD	6-8:2x4 SPF 2100F		, ,	attached to f	00F 2.0E bearin ront face with 2	2 rows of 10)d (0.131 ⁺ x3"						
BOT CHORD	2400F 2.0E	ept* 18-15,16-15:2x4	SPF	assumed to l	3" o.c. 8 Total t be SPF No.2.		Ū.						
WEBS	2x3 SPF No.2 *Exce 19-5,17-5,12-10,3-1		2)	this design.	roof live loads h			or					
BRACING			3)		7-16; Vult=115			0-1					LL .
TOP CHORD	2-2-0 oc purlins, ex 2-0-0 oc purlins (5-1			II; Exp C; En cantilever lef	n; TCDL=6.0psf closed; MWFR t and right expo d; Lumber DOL	S (envelope osed ; end v	e) exterior zo vertical left ar	ne; nd			2	TE OF	MISSO
BOT CHORD	Rigid ceiling directly bracing. Except:	applied or 2-2-0 oc	4)	Provide adeo	quate drainage	to prevent	water pondin				1	XUEG	ANG
1 Row at midp	ot 7-15		5)		is been designe						2.	i LIU	1 1.5
WEBS	1 Row at midpt	4-19, 5-17, 6-17, 9-1 3-19	5, 6)	* This truss h	ad nonconcurre has been desigr n chord in all ar	ned for a liv	e load of 20.				= 7		*-
REACTIONS		(0-3-8 + bearing bloc 14), 21=1177/0-3-8	k),	3-06-00 tall b	by 2-00-00 wide	will fit betw	veen the bott				3	NUME E-29	• 41.
	Max Horiz 21=-283 Max Uplift 15=-373 Max Grav 15=3107	(LC 9), 21=-176 (LC 8		Provide mec bearing plate	hanical connect capable of with 176 lb uplift at jo	tion (by oth hstanding 3	ers) of truss	to				ALSS OF	ENGINI
FORCES	(lb) - Maximum Con Tension	pression/Maximum	8)	This truss is	designed in acc Residential Co	cordance w		and				1111	
TOP CHORD	1-2=-93/67, 2-3=-11	85/123, 3-4=-1300/1	62,	R802.10.2 a	nd referenced s	tandard AN	ISI/TPI 1.						ша.
	,	=-504/150, 6-7=-601/)=-124/622, 10-11=0/ =-15/82	, 0,		rlin representat ation of the purli 1.			size				IN TUEGA	NG LIU
BOT CHORD	20-21=-70/349, 19-2 17-19=-28/845, 15- 14-15=-24/131, 7-1 13-14=-100/35, 12-	17=-1398/424, 5=-2658/403,	L	OAD CASE(S)	Standard							19	198
WEBS	2-20=-174/1526, 3-2 4-19=-124/173, 5-19 5-17=-853/174, 6-17 7-17=-150/2157, 13 9-15=-998/273, 9-17 2-21=-1271/197, 10 3-19=-257/121	9=-63/567, 7=-343/127, -15=-371/127, 3=-74/372,										MANNA AND	AL ENGIN
												NOVEND	51 0,202 1

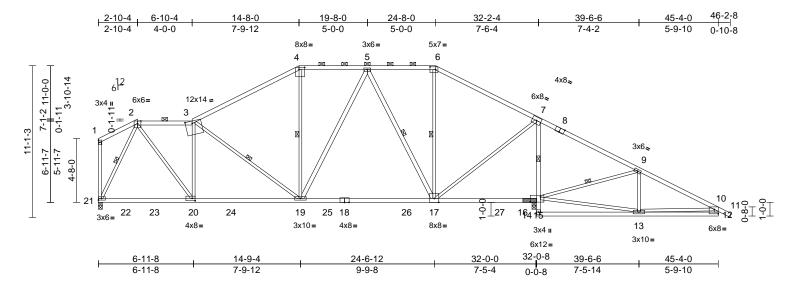

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

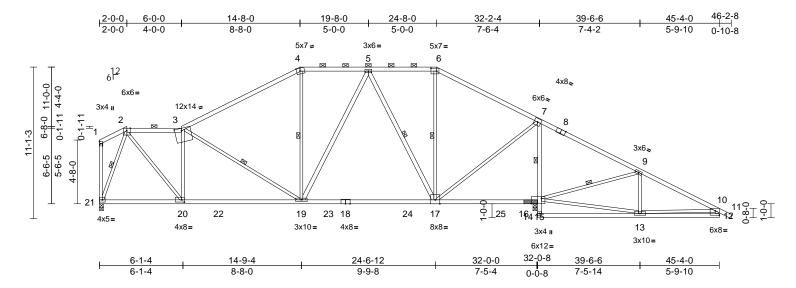
Plate Offsets (X, Y): [4:0-5-0,0-2-8], [6:0-5-0,0-2-8], [8:0-4-0,Edge], [12:Edge,0-3-13], [15:0-8-12,0-4-8], [20:0-2-8,0-2-8]

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	C4	Piggyback Base	1	1	Job Reference (optional)	148693625

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:51 ID:Jfldl2k0ltPw5WUZaZXd9SyMGge-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:84.3


Plate Offsets ((X, Y): [3:0-6-0,0-2-3],	, [4:0-5-0,0-2-0], [6:0-	5-0,0-2-	8], [8:0-4-0,Edge	e], [12:Edge,0-3-	13], [15:0-	-9-0,0-4-8], [2	0:0-2-8,	0-2-0]				
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.77	Vert(LL)	-0.29	17-19	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.80	Vert(CT)	-0.44		>869	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.75	Horz(CT)	0.02	15	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S		Wind(LL)	0.04	19-20	>999	240	Weight: 210 lb	FI = 10%
LUMBER			I	NOTES									
TOP CHORD	2x4 SPF No.2 *Exce 2100F 1.8E	ept* 3-4,6-8:2x4 SPF			00F 2.0E bearing ront face with 2								
BOT CHORD	2x4 SPF No.2 *Exce 2400F 2.0E	ept* 18-15,16-15:2x4	SPF		3" o.c. 8 Total fa be SPF No.2.	asteners.	Bearing is						
WEBS	2x3 SPF No.2 *Exce SPF No.2	ept* 19-5,17-5,12-10::	2x4 2	 Unbalanced this design. 	roof live loads ha	ave been	considered fo	or					
BRACING			3		7-16; Vult=115n								0.05
TOP CHORD		athing directly applie except end verticals, a 0-9 max.): 2-3, 4-6.		II; Exp C; En cantilever let	h; TCDL=6.0psf; closed; MWFRS t and right expos	(envelop sed ; end	e) exterior zo vertical left ar	ne; id				I'LE OF	MISSO
BOT CHORD	Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 15	applied or 10-0-0 oc	4	 Provide ade This truss has 	d; Lumber DOL= quate drainage to as been designeo	prevent for a 10.	water ponding 0 psf bottom	g.			in in	S XUEC	BANG P
1 Row at midp	•	,			ad nonconcurren						= *	e -	·
WEBS	1 Row at midpt	3-19, 4-19, 5-17, 6-1	7, 6		nas been designe n chord in all are			Opsf			En		i an E
	(1) (: .) (=	9-15, 2-21		3-06-00 tall I	oy 2-00-00 wide	will fit betv	ween the bott	om				NUN	• []].
REACTIONS		(0-3-8 + bearing bloc 14), 21=1177/0-3-8			ny other member						-1	O: E-29	713
	Max Horiz 21=-285 (7		hanical connecti						1	A	
	Max Uplift 15=-373 (· · ·	3)		e capable of with 175 lb uplift at jo		373 lb uplift at	[1.SSIC	ENGIN
	Max Grav 15=3120		001		designed in acco		ith the 2018					IN	ALLIN
FORCES	(lb) - Maximum Com Tension	pression/Maximum		International	Residential Cod	e sections	s R502.11.1 a	and					
TOP CHORD		326/173, 3-4=-1285/) Graphical pu	Irlin representatio	on does n	ot depict the s	size				UEG	ANG
		=-517/149, 6-7=-615/			ation of the purlir	along the	e top and/or					IN TUES	
	10-12=-15/82, 1-21=)=-124/622, 10-11=0/ 118/55		bottom chore							2	CE	NSE
BOT CHORD			1	OAD CASE(S)	Standard						-		
	17-19=-28/861, 15-1	,									-		1 5
	14-15=-24/131, 7-15	5=-2675/401,										: 19	198 E
	13-14=-98/37, 12-13										2		150 100
WEBS	2-20=-113/1269, 3-2	,									-		
	3-19=-360/133, 4-19 5-17=-848/177, 6-17	9=-46/212, 5-19=-63/ 7341/127	554,									AAA	note AX
	7-17=-148/2175, 13												N. C.
	9-15=-999/273, 9-13	,										10101	VALEN
	10-13=-594/225, 2-2											111	innin.
												Novemb	per 8,2021

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	C5	Piggyback Base	1	1	Job Reference (optional)	148693626

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:52 ID:qcwgagFtV3q_6gxVoJYMAIyME60-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:84.3

Scale = 1.64.5														
Plate Offsets (X, Y): [3:0-6-0,0-2-3]	, [4:0-3-0,Edge], [6:0-	-5-0,0-2-8	8], [8:0-4-0,Edge	e], [12:Edge,0-3-	13], [15:0-	-9-0,0-4-8], [2	0:0-2-8,	0-2-0]					
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.85	Vert(LL)	-0.28	17-19	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15		BC	0.85	Vert(CT)	-0.42	17-19	>927	240			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.74	Horz(CT)	0.02	15	n/a	n/a			
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S		Wind(LL)	0.04	19-20	>999	240	Weight: 209 lb	FT = 10%	
LUMBER			N	NOTES										
TOP CHORD	2x4 SPF No.2 *Exce 2100F 1.8E	ept* 3-4,6-8:2x4 SPF	1		00F 2.0E bearing ront face with 2									
BOT CHORD	2x4 SPF No.2 *Exce	ept* 18-15,16-15:2x4	SPF	nails spaced	3" o.c. 8 Total fa			,						
WEBS	2400F 2.0E	ept* 19-5,17-5:2x4 SF	- 7		roof live loads ha	ava haan	considered fo	vr						
WEBS	No.2, 12-10:2x4 SP		-r 2	this design.	Tool live loads ha	ave been	considered to	//						
	NU.2, 12-10.2X4 3F	F 2400F 2.0E	3	0	7-16; Vult=115n	nnh (3-sei	cond aust)							
BRACING	o , , , , , , ,				h; TCDL=6.0psf;			Cat					IIII,	
TOP CHORD		athing directly applie			closed; MWFRS							N'OF	MISSI	
	2-2-0 oc purlins, ex 2-0-0 oc purlins (4-9	cept end verticals, ar	iu	cantilever let	t and right expos	sed ; end	vertical left an	nd				N XE		
BOT CHORD		applied or 10-0-0 oc		right expose	d; Lumber DOL=	1.60 plate	e grip DOL=1.	.60			2	18		
BOT CHORD	bracing, Except:	applied of 10-0-0 00	· 4) Provide ade	quate drainage to	prevent	water ponding	g.			-	XUEC	ANG .P-	
	6-0-0 oc bracing: 15	5-17 13-14	5	This truss has a second se	as been designed	d for a 10.	0 psf bottom				-	: XULU		
1 Row at midp		, 11,10 11.		chord live loa	ad nonconcurren	t with any	other live loa	ıds.			= *	÷ -	· *=	
WEBS	1 Row at midpt	4-19, 5-17, 6-17, 9-1	15 6		has been designe			0psf			-	÷		
11LD0	i now at mapt	2-21, 3-19	,		m chord in all are						= 0	NUN		
REACTIONS	(lb/size) 15-2952/	(0-3-8 + bearing bloc	·k)		oy 2-00-00 wide						= 5		• [] []	
REAGINGING		14), 21=1177/0-3-8			ny other member						-1	C: E-29	113 .41-	
	Max Horiz 21=-285 (<i>, , , , , , , , , ,</i>	1		hanical connecti							A		
	Max Uplift 15=-373 (8)		e capable of with 175 lb uplift at jo		373 ib uplift at	[1.000	ENG N	
	Max Grav 15=3116		, , ,		designed in acco		ith the 2019					I,ON		
FORCES	(lb) - Maximum Com		-, c		Residential Cod			and					inne.	
	Tension				nd referenced st								110.	
TOP CHORD	1-2=-93/74, 2-3=-13	00/162, 3-4=-1294/1	76, g) Graphical pu	Irlin representatio	on does n	ot depict the s	size				PR 19	ANC	
		=-512/150, 6-7=-610/		or the orient	ation of the purlir	n along the	e top and/or					NUEU	LI	
		0=-124/622, 10-11=0/	/32,	bottom chore	d.							S CE	NSA	
	1-21=-99/52, 10-12=		L	OAD CASE(S)	Standard								SO	
BOT CHORD	20-21=-70/557, 19-2			.,							-		N 2	
	17-19=-28/855, 15-1	,										1 10	100 1 =	
	14-15=-24/131, 7-15	,									=	: 19	198 i E	
WEBS	13-14=-99/36, 12-13 2-20=-149/1394, 3-2										-	DI	· · · · · · · · · · · · · · · · · · ·	
WEBS	· · · · ·	=-68/565, 5-17=-848/	175								-	E V	145	
	6-17=-342/127, 7-17	,	175,									- ~ ~ ~ /	ANPAN	
	13-15=-373/126, 9-1											1.500	G	
	9-13=-74/373, 2-21=											10/01	VALEN	
	10-13=-598/227, 3-1											1111	unnin.	
	, -											Novemb	per 8,2021	

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	D1	Piggyback Base	1	1	Job Reference (optional)	148693627

Run: 8.43 E Aug 16 2021 Print: 8.430 E Aug 16 2021 MiTek Industries, Inc. Mon Nov 08 11:33:58 ID:BBt71FY?JxJoR6d3ZHzS0syME4L-oQpSfRH0T9t4oAkfUXBsQIZpNB?2BMD6hE21JnyLFpv Page: 1

-0-10-8 5-6-11 9-11-4 13-11-4 24-8-0 29-8-0 34-8-0 38-8-12 43-6-6 50-4-0 + + 0-10-8 10-8-12 5-0-0 5-0-0 4-0-12 5-6-11 4-4-9 4-0-0 4-9-10 6-9-10 4x5 =6x6= 6x6= 6 7 8 x 3х4 **п** 9 11-0-0 5-4-6 4x5 8x8= 8x12= 10 6¹² 5-7-10 0-1-11 11-3-6 ÷ 4 5 2x4 7x12👟 5-5-15 5-5-15 3 11 -2-0 12¹ 2 0-8-0 K ċ∣ 13 F 15 M18SHS 5x12 II 21 20 1922 18 17 23 24 16 6x8= 5x7= 3x4 II 6x8= 2x4 II M18SHS 5x12 = 5x12= 7x12= M18SHS 5x12 = 3x10= 9-10-0 14-0-8 24-9-12 34-6-4 38-10-0 43-6-6 50-4-0 9-10-0 4-2-8 10-9-4 9-8-8 4-3-12 4-8-6 6-9-10

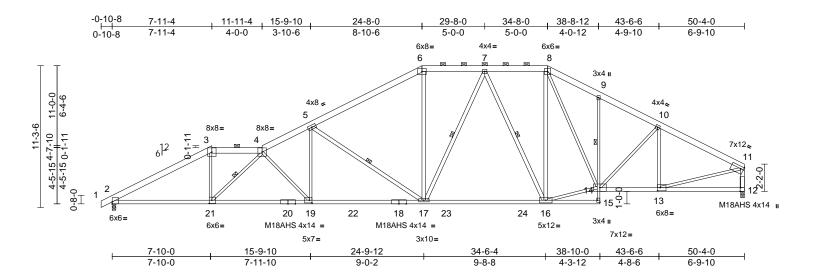

Scale = 1:91.7

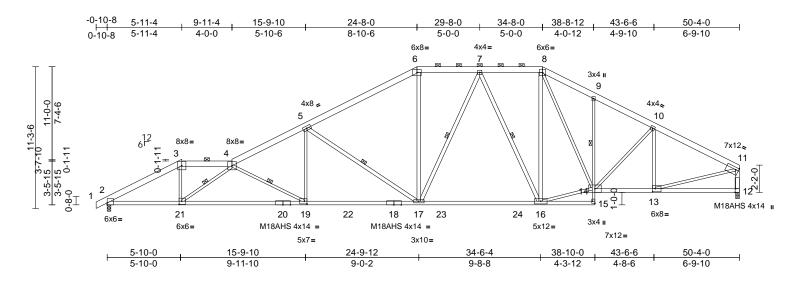
Plate Offsets (2	X, Y): [2:Edge,0-1-3],	[6:0-3-8,0-4-0], [11:E	dge,0-2-4],	[12:0-3-8,Ec	dge], [13:0-2-8,0-3	3-0], [15:E	Edge,0-2-8]							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/T	PI2014	CSI TC BC WB Matrix-S	0.80 0.97 1.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.91 0.21	(loc) 17-20 17-20 12 17-20	l/defl >999 >663 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18SHS Weight: 273 lb	GRIP 197/144 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD 1 Row at midpt WEBS WEBS REACTIONS	2x6 SPF No.2 *Exce 1.4E 2x4 SPF 2100F 1.8E No.2, 14-12:2x4 SPF 2x3 SPF No.2 *Exce 17-6,17-7,16-7,16-8, No.2 Left: 2x3 SPF No.2 Structural wood she 2-2-1 oc purlins, exx 2-0-0 oc purlins, exx 2-0-0 oc purlins, except: 9-8-7 oc bracing: 2-2 2-20 oc bracing: 17 t 9-14 1 Row at midpt 2 Rows at 1/3 pts (lb/size) 2=2324/0 12=2251// Max Horiz 2=222 (LC Max Uplift 2=-309 (L Max Grav 2=2441 (L	Pipt* 5-6:2x6 SPF 165 E *Except* 15-9:2x3 S No.2 ppt* 12-11,5-17:2x4 SPF athing directly applied cept end verticals, ar -14 max.): 4-5, 6-8. applied or 10-0-0 oc 21 -20. 5-21, 7-17, 7-16 5-17 -3-8, (req. 0-3-13), 0-3-8, (req. 0-3-12) C 8), 12=-195 (LC 9) C 2), 12=-195 (LC 9) C 2), 12=-195 (LC 9) C 2), 12=-3281 (LC 2) ax. Ten All forces 2 hen shown. -4177/495, 3387/359, 3287/359, 2478/287, =-3207/299, 1-12=-268/4728, 7-18=-582/4728, 3-24=-132/2741,	WEB DF SPF 1) U 1) U 10 10 10 10 10 10 10 10 10 10	S 4 ES Inbalanced his design. Vind: ASCE /asd=91mpl ; Exp C; En ght expose Provide adec Il plates are Provide adec Il plates are rovide adec Il plates are hord live loa this truss ha hord live loa thord and ar VARNING: I Co-6-00 tall b hord and ar Provide mec bearing plate bint 2 and 1: This truss is antiernational 802.10.2 ar Graphical put	4-21=-146/1592, 6-17=0/942, 7-17 8-16=-29/497, 14 8-14=-232/839, 1 11-13=-154/2700 5-17=-2024/436 roof live loads ha 7-16; Vult=115m n; TCDL=6.0psf; closed; MWFRS t and right expos d; Lumber DOL=: quate drainage to be MT20 plates uni- ns been designed ad nonconcurrent has been designed ad nonconcurrent has been designed ad nonconcurrent has been designed input bearing siz- hanical connectic e capable of withs 95 lb uplift at joini- designed in accoo Residential Code nd referenced sta- rlin representatio ation of the purlin d.	=-146/51 -16=-62/2 0-13=-54 0-13=-54 1, 5-20=0/3 ave been of the prevent 1, 60 plate 1, 70 plate 1,	91/168, 1, 7-16=-771, 479, 7/124, 327, considered for cond gust) 0psf; h=25ft; a) exterior zo vertical left ar grip DOL=1 water pondin wise indicate 0 psf bottom other live load e load of 20. a rectangle veen the bott DDL = 10.0ps int(s) 2, 12 ers) of truss 87502.11.1 at SI/TP1 1. bt depict the si	/151, or Cat. ne; nd .60 g. ed. ads. Opsf com f. to t	17-20	>999	240	NUME SS/ONA LIU SS/ONA LIU SS/ONA LIU E-29 SS/ONA LIU LIU LIU LIU LIU LIU LIU LIU LIU LIU	ANG BER 713 NG LIU	
												Novembe		

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	D2	Piggyback Base	1	1	Job Reference (optional)	148693628

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:53 ID:ZkkHpHdyXg0o70rVKezeDDyMDxC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:91.7

Ocale = 1.91.7													
Plate Offsets ((X, Y): [2:Edge,0-1-14], [11:Edge,0-2-4], [1	2:0-3-8,8	Edge], [13:0-2-8	,0-3-0], [15:Edg	e,0-2-8], [1	9:0-2-8,0-2-8], [21:0-2	2-8,0-3-0)]		-	
Loading	(psf)	Spacing	2-0-0		CSI	·	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.78	Vert(LL)	-0.47	16-17	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.82	Vert(CT)	-0.78	16-17	>766	240	M18AHS	142/136
BCLL	0.0*	Rep Stress Incr	YES		WB	0.97	Horz(CT)	0.21	12	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S		Wind(LL)	0.22	17-19	>999	240	Weight: 271 lb	FT = 10%
LUMBER			N	NOTES									
TOP CHORD	2x6 SPF No.2		1	I) Unbalanced	roof live loads h	nave been o	considered fo	or					
BOT CHORD	2x4 SPF 2100F 1.8 No.2, 14-12:2x4 SP	E *Except* 15-9:2x3		this design. 2) Wind: ASCE	7-16; Vult=115	mph (3-sec	cond aust)						
WEBS	2x3 SPF No.2 *Exce				h; TCDL=6.0psf			Cat.					
		,16-8,12-11:2x4 SPF			closed; MWFRS								
	No.2	, ,		cantilever le	ft and right expo	sed; end v	ertical left ar	nd					
BRACING					d; Lumber DOL:								E.C.
TOP CHORD	Structural wood she	athing directly applie	ed or ³		quate drainage f								
		cept end verticals, ar	nd ⁴		e MT20 plates u			ed.				NE OF	VISSI
	2-0-0 oc purlins (3-7	7-2 max.): 3-4, 6-8.	5		as been designe						1	A	0,1
BOT CHORD		applied or 9-8-7 oc	~		ad nonconcurrei nas been desigr						2	A	· P ·
	bracing. Except:		Ċ		nas been desigr m chord in all ar			upsr			-	S: XUEG	
1 Row at midp					by 2-00-00 wide			om			- 4	. LIU	J 14-
WEBS	1 Row at midpt	4-21, 5-17, 7-17, 7-1	16		ny other membe						2.0	1	
REACTIONS	· · · ·	-3-8, (req. 0-3-13),	7		Required bearin						= -		im E
		0-3-8, (req. 0-3-12)		greater than	input bearing si	ize.	() /					NUM	• []]
	Max Horiz 2=222 (L0	,	्रह		hanical connect						-	O: E-29	713
	Max Uplift 2=-309 (L Max Grav 2=2444 (I				e capable of with 95 lb uplift at joi		309 lb uplift at	t			1	A	-
FORCES	(lb) - Maximum Com	pression/Maximum	ç		designed in acc		ith the 2018					S/ONI	ENIN
	Tension				Residential Co			and				1111	i i i i i i i i i i i i i i i i i i i
TOP CHORD		7/496, 3-4=-3822/504	1,	R802.10.2 a	nd referenced s	tandard AN	ISI/TPI 1.						
	4-5=-4828/544, 5-6=	,	1		Irlin representati			size				1111	1111.
	6-7=-2905/398, 7-8= 8-9=-3173/388, 9-10				ation of the purli	in along the	e top and/or					IN UEGA	NG
	10-11=-3134/254, 1			bottom chore								1. 10-	
BOT CHORD			L	OAD CASE(S)	Standard						6	CE	NSEN
Bot offord	17-19=-509/4299, 1	,											
		5=0/30, 9-14=-263/15	52,								-		1 - E
	13-14=-176/2728, 1										- 2	19	198 E
WEBS	3-21=-16/1627, 4-21	1=-1868/150,										L 1 1	150
	4-19=-1226/215, 5-1										-	. 6.	Nu I
	5-17=-1707/397, 6-1	,										- XOOAA	La KAS
	7-17=-125/468, 7-16												SAL
	8-16=-31/513, 14-16 8-14=-234/837, 10-1	,										1, SION	AL ENIN
	10-13=-547/124, 11											1111	and the second s
		10 10 112100										Novemb	er 8,2021
												NUVEND	51 0,2021


Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	D3	Piggyback Base	1	1	Job Reference (optional)	148693629

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:54 ID:D7ZWbeb7iF5SjJyt0RPOT5yMDvy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

November 8,2021

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

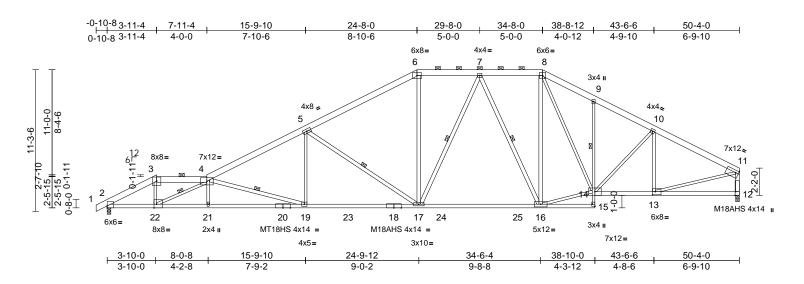

Scale = 1:91.7

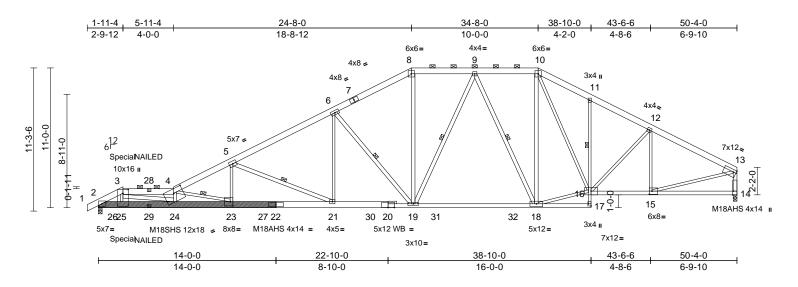
Plate Offsets (2	Plate Offsets (X, Y): [2:Edge,0-1-14], [11:Edge,0-2-4], [12:0-3-8,Edge], [13:0-2-8,0-3-0], [15:Edge,0-2-8], [19:0-2-8,0-2-8], [21:0-2-8,0-3-0]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Plate Grip DOL1.Lumber DOL1.Rep Stress IncrYE	0-0 15 15 ES C2018/TPI2014	CSI TC BC WB Matrix-S	0.56 0.90 0.94	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.84 0.22	(loc) 16-17 16-17 12 17-19	l/defl >999 >716 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18AHS Weight: 270 lb	GRIP 197/144 142/136 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	No.2, 14-12:2x4 SPF 2x3 SPF No.2 *Exce 17-5,17-6,17-7,16-7, No.2		NOTES	3-21=-70/1824, 4-2 4-19=-1748/325, 5 5-17=-1729/394, 6 7-17=-125/464, 7- 3-16=-31/514, 14- 3-14=-235/836, 10 10-13=-547/124, 1 roof live loads hav	5-19=-39, 5-17=-12, 16=-772, 16=-60/2 1-14=-55, 1-13=-1	/1203, /1039, /159, 2494, /239, 54/2705	۲.					900.
BOT CHORD	3-0-0 oc purlins, ex 2-0-0 oc purlins (3-6	cept end verticals, and -10 max.): 3-4, 6-8. applied or 10-0-0 oc	this design. 2) Wind: ASCE Vasd=91mpl II; Exp C; En	7-16; Vult=115mp n; TCDL=6.0psf; B closed; MWFRS (i t and right expose	oh (3-seo CDL=6. envelope	cond gust) 0psf; h=25ft; e) exterior zoi	Cat. ne;			in in	XVEG	
	t 9-14 1 Row at midpt (lb/size) 2=2324/0-	4-21, 4-19, 5-17, 7-17, 7-16 ·3-8, (req. 0-3-13), 0-3-8, (req. 0-3-12) 2 8) C 8), 12=-195 (LC 9)	right exposed 3) Provide adec 4) All plates are 5) This truss ha chord live loa 6) * This truss h on the bottor 3-06-00 tall b	d; Lumber DOL=1. quate drainage to p MT20 plates unle is been designed f ad nonconcurrent v has been designed n chord in all area by 2-00-00 wide wi y other members,	.60 plate prevent for a 10.1 with any d for a liv s where ill fit betw	e grip DOL=1. water ponding rwise indicate 0 psf bottom other live loa re load of 20.0 a rectangle veen the botto	60 g. ed. ods. Opsf			* Philip	NUME E-29	BER 713
FORCES TOP CHORD BOT CHORD	4-5=-4868/535, 5-6= 6-7=-2903/399, 7-8= 8-9=-3173/388, 9-10 10-11=-3134/254, 1 ⁻ 2-21=-572/3950, 19- 17-19=-506/4315, 16	/494, 3-4=-3890/483, 3354/376, 2487/285, 3215/299, 1-12=-2272/230 -21=-792/5852, -3-17=-135/2750, i=0/28, 9-14=-263/152,	 WARNING: I greater than Provide mec bearing plate joint 2 and 19 This truss is International R802.10.2 ar Graphical pu 	Required bearing sinput bearing size hanical connectior e capable of withst 95 lb uplift at joint designed in accorr Residential Code nd referenced star r/lin representation ation of the purlin a d.	size at jo , n (by oth anding 3 12. dance w sections ndard AN n does no	bint(s) 2, 12 ers) of truss t 309 lb uplift at ith the 2018 \$ R502.11.1 a NSI/TPI 1. ot depict the s	to t and			. THUNKS	PROVIDE NO	198
											Novembr	AL 5.11 11111 or 8 2021

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	D4	Piggyback Base	1	1	Job Reference (optional)	148693630

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:54 ID:qA2yNUnENgZP6X1uJkgc_zyMDuP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1


```
Scale = 1:91.7
```


Plate Offsets ()	X, Y): [2:Edge,0-1-14	4], [11:Edge,0-2-4], [12	2:0-3-8,E	dge], [13:0-2-8	,0-3-0], [15:Edg	e,0-2-8], [2	2:0-2-8,Edge]					
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.67 0.97 0.98	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	0.24	(loc) 16-17 19-21 12 19-21	l/defl >999 >637 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT18HS M18AHS Weight: 274 lb	GRIP 197/144 197/144 142/136 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD 1 Row at midpt WEBS REACTIONS	2x6 SPF No.2 2x4 SPF 2100F 1.8I No.2, 14-12:2x4 SP 2x3 SPF No.2 *Exce 17-6,17-7,16-7,16-8 SPF No.2 Structural wood she 2-7-9 oc purlins, ex 2-0-0 oc purlins, ex 2-0-0 oc purlins (3-6 Rigid ceiling directly bracing, Except: 8-0-13 oc bracing: 2 2-2-0 oc bracing: 2 2-2-0 oc bracing: 1 t 9-14 1 Row at midpt (lb/size) 2=2324/0 12=2251/ Max Horiz 2=222 (LI Max Uplift 2=-309 (L Max Grav 2=2444 (I (Ib) - Maximum Con Tension 1-2=0/12, 2-3=-452/ 4-5=-4899/535, 5-6 6-7=-2902/397, 7-8: 8-9=-3173/388, 9-10 10-11=-3134/254, 1 19-21=-943/7180, 1	E *Except* 15-9:2x3 S F No.2 ept* ,12-11,4-19,5-17:2x4 eathing directly applied (cept end verticals, an 5-14 max.): 3-4, 6-8. / applied or 10-0-0 oc 21-22 3-21. 4-22, 7-17, 7-16, 4-1 5-17 5-3.8, (req. 0-3-13), /0-3-8, (req. 0-3-13), /0-3-8, (req. 0-3-12) C 8) _C 8), 12=-195 (LC 9) LC 2), 12=2385 (LC 2 npression/Maximum 8/523, 3-4=-3804/481 =-3358/377, =-2487/286, 0=-3215/299, 1-12=-2272/230 -22=-947/7172,	W PF for 1) d 2) 9, 4) 5) 6)) 7) 8) 9) 9) 10	CTES Unbalanced this design. Wind: ASCE Vasd=91mp II; Exp C; Er cantilever le right expose Provide ade All plates an This truss h chord live lo * This truss is on the botto 3-06-00 tall chord and a WARNING: greater than Provide med bearing plat joint 2 and 1 This truss is Internationa R802.10.2 a 0) Graphical pu	3-22=-147/1948 4-21=0/218, 6-1 7-16=-773/158, 14-16=-61/2493 10-14=-55/239, 11-13=-154/270 5-19=-19/1145, roof live loads h 5-716; Vult=115 h; TCDL=6.0psf rolosed; MWFRS ft and right expo d; Lumber DOL- quate drainage t e MT20 plates u as been designe ad nonconcurren has been designe di polo wide ny other membe Required bearin input bearing si chanical connect e capable of witt 95 lb uplift at joi designed in acc I Residential Con und referenced s urlin representati ation of the purli	7=-15/1054 8-16=-32/5 9, 8-14=-23 9, 8-14=-23 10-13=-54 15, 4-19=-24 5-17=-174 have been of mph (3-sec ; BCDL=6.0 S (envelope sed; end v =1.60 plate to prevent v nless other bd for a liv eas where will fit betw ers, with BC ig size at jo ize. tion (by oth histanding 3 nt 12. cordance w de sections tandard AN ion does no	12/383, 4, 7-17=-122/ 115, 4/837, 7/124, 961/441, 4/410 considered fo considered fo considered fo cond gust) Oppsf; h=25ft; exterior zon vertical left an grip DOL=1. water ponding. wise indicate D psf bottom other live loa e load of 20.0 a rectangle D psf bottom other live loa e load of 20.1 a rectangle D psf bottom other live load e load of 20.1 a rectangle D psf bottom other load e loa	r Cat. ne; id 60 g. id. Dpsf om f. co t				NUME S XUEG LIU NUME E-29 NONA	ANG BER 713
	9-14=-263/152, 13- ⁻ 12-13=-27/120	14=-176/2728,	L	bottom chor DAD CASE(S)								- ANNON	AL ENGLIST

1111111 November 8,2021

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	D5	Piggyback Base Girder	1	1	Job Reference (optional)	I48693631

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:55 ID:NtAZ8rDFbxQfGf2aEWoHmryMDsZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:90.8

Plate Offsets (2	X, Y): [3:0-3-8,0-5-0]	, [13:Edge,0-2-4], [14	0-3-8,Ed	ge], [15:0-2-8,	,0-3-0], [17:Edge	e,0-2-8], [23	:0-2-8,0-4-0],	[24:0-8	12,0-4-0	0]			
Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15		CSI TC BC	0.85 1.00	DEFL Vert(LL) Vert(CT)	in -0.60 -1.01	(loc) 18-19 18-19	l/defl >999 >592	L/d 360 240	PLATES MT20 M18AHS	GRIP 197/144 142/136
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	NO	8/TPI2014	WB Matrix-S	0.93	Horz(CT) Wind(LL)	0.18	14 23-24	n/a >999	n/a 240	M18SHS Weight: 335 lb	197/144 FT = 10%
LUMBER TOP CHORD	2x6 SPF No.2 *Exc 1.4E	ept* 3-4:2x6 SPF 165		OT CHORD	2-25=-777/4590 23-24=-1242/88 19-21=-413/380	396, 21-23=	-793/5899,		, on	the botto	m cho	ord in all areas wh	a live load of 20.0p here a rectangle between the botton
BOT CHORD	2x6 SP 2400F 2.0E No.2, 16-14:2x4 SP	*Except* 17-11:2x3 \$ F No.2, 20-17:2x4 SF 2x6 SPF 1650F 1.4E	F	EBS	17-18=-14/73, 15-16=-182/272 3-25=-54/1003,	16-17=-4/23 27, 14-15=-2	, 11-16=-263 27/120	8/152,	cho 9) WA	ord and a	ny oth Requi	er members, with	BCDL = 10.0psf. at joint(s) 14 greate
WEBS	2x3 SPF No.2 *Exc 19-8,19-9,18-9,18-1 SPF No.2, 3-24:2x4	ept* 0,14-13,6-19,21-5:2x			8-19=-73/1139, 9-18=-773/168, 16-18=-66/2498	9-19=-111/ 10-18=-35/ 3, 10-16=-23	434, 522, 36/835,		10) Pro bea joir	ovide me aring plat nt 2 and 2	chanio te capa 200 lb	al connection (by able of withstandi uplift at joint 14.	others) of trues to ng 363 lb uplift at
OTHERS LBR SCAB BRACING	2x3 SPF No.2 2-22 SP 2400F 2.0	E one side			12-16=-57/240, 13-15=-161/27(5-23=-74/1517,)5, 6-19=-14	452/365,		Inte	ernationa	I Resi	ned in accordanc dential Code sect erenced standar	tions R502.11.1 and
TOP CHORD	2-0-5 oc purlins, ex	eathing directly applied cept end verticals, an 4-9 max.): 3-4, 8-10.	d No	DTES	5-21=-2279/413 3-24=-514/4766	6			12) Gra or t	aphical p the orien	urlin re tation		es hot depict the size
BOT CHORD	Rigid ceiling directly bracing, Except: 9-9-9 oc bracing: 2 6-0-0 oc bracing: 10		1)	2400F 2.0E spaced 9" c 2, nail 2 rov	4-0-0 scab 2 to 2 with 2 row(s) of o.c.except : starti v(s) at 7" o.c. for	10d (0.131 ing at 0-3-4 2-8-4; start	"x3") nails from end at j ing at 3-0-2 f	oint	(0. 14) Ha pro	148"x3.2 nger(s) c wided su	5") toe or othe fficient	-nails per NDS of r connection devi t to support conce	uidlines: ce(s) shall be entrated load(s) 110
1 Row at midp WEBS	t 11-16 1 Row at midpt	9-19, 9-18, 6-19, 4-2 5-21		Scab(s) 2 to a cluster of	2, nail 2 row(s) a o 22 to provide b 12 evenly space thin 12" of jt.2. T	earing enha	ancement at j 31"x3") nails		dov des	wn and 2 sign/sele	8 lb up	o at 1-11-4 on bo	n top chord, and 12 httom chord. The n device(s) is the
REACTIONS		0-3-8 + bearing block 13), 14=2251/0-3-8, (req.	equally betw sides. Bear	ween front and b ing is assumed t d roof live loads	ack if scabs to be SPF N	s are on both					min	1111
		C 8) _C 8), 14=-200 (LC 9) LC 2), 14=2385 (LC 2		this design. Wind: ASC	E 7-16; Vult=115	5mph (3-sec	ond gust)					IL ICE	NSEX.
FORCES	(lb) - Maximum Cor Tension	npression/Maximum	,	II; Exp C; E cantilever le	oh; TCDL=6.0ps nclosed; MWFR eft and right expo	S (envelope osed ; end v	e) exterior zon ertical left ar	ne; nd					
TOP CHORD	1-2=0/17, 2-3=-529 4-5=-6626/748, 5-6 6-8=-3307/402, 8-9 9-10=-2488/292, 10 11-12=-3214/307, 1 13-14=-2272/235	=-2890/398,)-11=-3173/397,	1, 5) 6) 7)	Provide ade All plates a This truss h	ed; Lumber DOL equate drainage re MT20 plates u has been designe bad nonconcurre	to prevent v unless other ed for a 10.0	water ponding wise indicate) psf bottom	g. ed.			111 Mar	PROPERTY AND	SALENGINI

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building design rm ust verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

November 8,2021

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	D5	Piggyback Base Girder	1	1	Job Reference (optional)	l48693631
Wheeler Lumber, Waverly, KS - 6	66871,	Run: 8.43 S Oct 11 2	021 Print: 8.4	430 S Oct 11	2021 MiTek Industries, Inc. Fri Nov 05 14:15:55	Page: 2

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:55 ID:NtAZ8rDFbxQfGf2aEWoHmryMDsZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

15) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

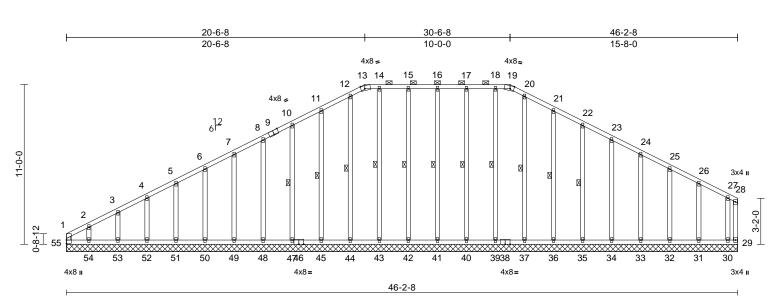
Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-3=-70, 3-4=-70, 4-8=-70, 8-10=-70,

10-13=-70, 2-17=-20, 14-16=-20

Concentrated Loads (lb)


Vert: 25=4 (B), 29=-4 (B)

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	D6	Piggyback Base Supported Gable	1	1	Job Reference (optional)	148693632

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:56 ID:NSLiy0rk9WUf_Q6FDGq9mDyMDzV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:79.3

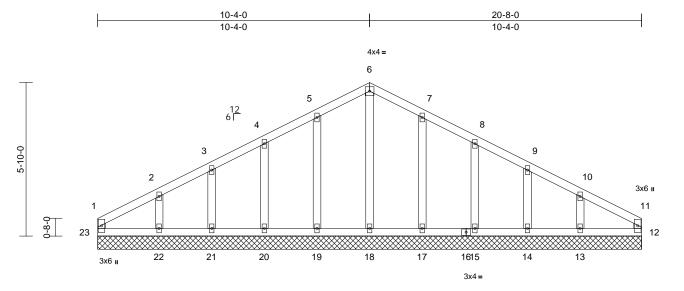
Plate Offsets (X, Y): [9:0-4-0,Edge], [13:0-3-3,Edge], [19:0-3-3,Edge]

	Y): [9:0-4	-0,Eagej,	[13:0-3-3,Edge], [19	:0-3-3,Edge]										
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Mat		0.10 0.08 0.13	· · ·	in n/a n/a 0.00	(loc) - - 29	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 294 lb	GRIP 197/144 FT = 10%
BOT CHORD WEBS OTHERS BRACING TOP CHORD	6-0-0 oc pı 2-0-0 oc pı	o.2 o.2 o.2 wood shea urlins, exo urlins (6-0	athing directly applie cept end verticals, ar -0 max.): 13-19.	nd	Max Up	31=-58 () 33=-54 () 35=-51 () 39=-6 (L) 41=-32 () 43=-9 (L) 47=-52 () 49=-54 ()	LC 9), 3 LC 9), 3 LC 9), 3 C 5), 40 LC 5), 40 C 5), 45 LC 8), 4 LC 8), 5	0=-117 (LC 9) 12=-53 (LC 9), 14=-54 (LC 9), 16=-73 (LC 9), 1=-47 (LC 4), 12=-48 (LC 4), 12=-68 (LC 8), 13=-54 (LC 8), 10=-54 (LC 8), 12=-58 (LC 8), 13=-58 (LC 8), 14=-54 (LC 8), 15=-54 (LC 8),		BOT CH	IORD	51-52 48-49 44-45 41-42 37-39 34-35 31-32 2-54	=-48/43, 50-51=- =-48/43, 47-48=- =-48/43, 43-44=- =-48/43, 43-44=- =-48/43, 36-37=- =-48/43, 33-34= =-48/43, 30-31=- =-48/43, 30-31=-	48/43, 52-53=-48/43, 48/43, 49-50=-48/43, 49/43, 45-47=-48/43, 48/43, 42-43=-48/43, 48/43, 39-36=-48/43, 48/43, 35-36=-48/43, 48/43, 29-30=-48/43, 48/43, 29-30=-48/43, 43/72, 4-52=-190/79, 40/78, 7-49=-140/78,
	Rigid ceilin bracing. 1 Row at m	nidpt	applied or 10-0-0 oc 10-47, 11-45, 12-44, 14-43, 15-42, 16-41, 17-40, 18-39, 20-37, 21-36, 22-35	,	Max Gi	53=-38 (55=-81 (29=97 (L 31=188 (33=180 (LC 8), 5 LC 4) .C 9), 3((LC 1), 3 (LC 1), 3	2=-58 (LC 8), 4=-153 (LC 8) 0=145 (LC 16) 32=178 (LC 1) 34=180 (LC 22), , , 2),			8-48= 11-45 14-43 16-41 18-39	-140/78, 10-47=- -139/92, 12-444 -141/33, 15-42 -140/56, 17-40= -140/30, 20-37=	140/76, Btal0/20, =1142/72, 142/71, 140/0,
REACTIONS (II		29=4/46-2 31=188/46 33=180/46 35=180/46 37=180/46 40=179/46 42=179/46 44=180/46	2-8, 30=128/46-2-8, 5-2-8, 32=178/46-2-8, 5-2-8, 36=179/46-2-8, 5-2-8, 36=179/46-2-8, 5-2-8, 43=180/46-2-8, 5-2-8, 43=180/46-2-8, 5-2-8, 48=179/46-2-8, 5-2-8, 48=180/46-2-8, 5-2-8, 5-2, 5-2-8, 5-2, 5-2-8, 5-2, 5-2-8, 5-2, 5-2-8, 5-2, 5-2-8	3, 3, 3, 3, 3, 3,		37=180 (40=182 (42=182 (44=180 (47=180 (49=180 (51=180 ((LC 22), (LC 21), (LC 22), (LC 21), (LC 21), (LC 1), { (LC 1), {	36=179 (LC 39=180 (LC 41=180 (LC 43=181 (LC 45=179 (LC 48=180 (LC 50=180 (LC 2 52=179 (LC 2 52=179 (LC 2 54=186 (LC 1)	22), 1), 21), 1), 1), 1), 1),		alanceo design.	23-34 25-32 27-30 d roof li		= 140/78, = 147/84, een considered for
Μ	ţ	51=180/46 53=183/46 55=47/46-		FORCES	Tensi 1-55= 3-4=- 6-7=- 10-11 12-13 14-15 16-17 18-19 20-21 22-23 24-25	Maximum Cor on -127/66, 1-2= (65/136, 4-5= (20/191, 7-8= =-78/268, 11- =-55/284, 13- =-49/283, 15- =-49/283, 17- =-49/283, 17- =-58/281, 21- =-58/281, 21-	244/13 149/15 105/21 12=-67/ 14=-49/ 16=-49/ 18=-49/ 20=-55/ 22=-56/ 24=-56/ 26=-57/	6, 2-3=-186/1 0, 5-6=-135/1 7, 8-10=-90/2 301, 283, 284	65, 43,			. THUNNY		Paer wat

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	D6	Piggyback Base Supported Gable	1	1	Job Reference (optional)	148693632

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water pointing.
- All plates are 2x4 MT20 unless otherwise indicated.
 Gable requires continuous bottom chord bearing.
- 7) Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web).Bable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 81 lb uplift at joint 55, 29 lb uplift at joint 29, 153 lb uplift at joint 54, 38 lb uplift at joint 53, 58 lb uplift at joint 52, 53 lb uplift at joint 51, 54 lb uplift at joint 50, 54 lb uplift at joint 49, 54 lb uplift at joint 48, 52 lb uplift at joint 47, 68 lb uplift at joint 45, 9 lb uplift at joint 43, 48 lb uplift at joint 42, 32 lb uplift at joint 41, 47 lb uplift at joint 40, 6 lb uplift at joint 39, 73 lb uplift at joint 36, 51 lb uplift at joint 35, 54 lb uplift at joint 34, 54 lb uplift at joint 33, 53 lb uplift at joint 32, 58 lb uplift at joint 31 and 117 lb uplift at joint 30.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard


Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:56 ID:NSLiy0rk9WUf_Q6FDGq9mDyMDzV-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	E1	Common Supported Gable	1	1	Job Reference (optional)	148693633

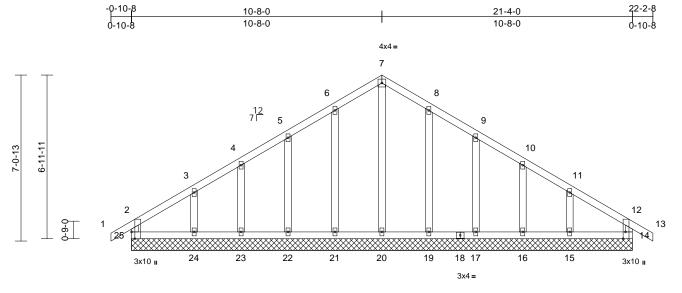
Scale = 1:43.8

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:57 ID:wO7KqXWHsxyTHalBOAaysYyMGXu-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

20-8-0

Scale = 1:43.8												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.05 0.03 0.06	· · /	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 82 lb	GRIP 197/144 FT = 10%
SCDL	10.0	Code	IRC2010/1912014	IVIALITX-R							weight. 62 ib	FT = 10%
	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (lb/size) 12=97/20 14=172/2 17=187/2 21=172/2 23=97/20 Max Horiz 23=82 (L Max Uplift 12=-10 (L 14=-45 (L 20=-57 (L 20=-57 (L 22=-90 (L 14=172 (I 19=190 (L 23=100 (L) (L 23=100 (L) (L 23=100 (L) (L 23=100 (L)	applied or 10-0-0 oc -8-0, 13=208/20-8-0, 0-8-0, 15=180/20-8-0 0-8-0, 18=144/20-8-0 0-8-0, 20=180/20-8-0 0-8-0, 22=208/20-8-0 -8-0 C 4) C 8), 13=-85 (LC 9), C 9), 15=-57 (LC 9), C 9), 15=-57 (LC 9), C 9), 15=-57 (LC 8), C 8), 21=-44 (LC 8), C 8), 21=-44 (LC 8), C 8), 23=-22 (LC 9) C 1), 13=211 (LC 22) .C 1), 15=180 (LC 1), C 21), 20=180 (LC 1) .C 1), 22=211 (LC 21) .C 16)	this desig dor 2) Wind: AS Vasd=91r II; Exp C; cantilever right expc , a) Truss des , or consult 4) All plates 5) Gable rec 6) Truss to b braced ag 7) Gable stu 8) This truss chord live 9) * This trus on the bo 8), 3-06-00 tr), chord anc 0), 10) Provide m bearing p	6-18=-119/0, 5- 3-21=-135/71, 2 8-15=-140/80, 9 ed roof live loads h n. CE 7-16; Vult=115 mph; TCDL=6.0psf Enclosed; MWFRS left and right expo sed; Lumber DOL= igned for wind load studs exposed to vident ard Industry Gable qualified building d are 2x4 MT20 unle uies continuous b the fully sheathed from ainst lateral mover ds spaced at 2-0-0 has been designer load nonconcurrer ss has been designer load nonconcurrer ss has been designer load nonconcurrer ss has been designer load nonconcurrer shas been designer load nonconcurrer sh	-22=-161/' -14=-135/i ave been mph (3-see; BCDL=6. S (envelop sed; end ' =1.60 plate 3s in the pl wind (norrr e End Deta designer a ses otherwi ottom choi cor a line eas where will fit bett rs. ion (by oth istanding 2	02, 7-17=-15 (2, 10-13=-16 considered fo cond gust) 0psf; h=25ft; (a) exterior zor vertical left an grip DOL=1.1 ane of the true al to the face) ils as applicat s per ANSI/TF se indicated. be or securely liagonal web). 0 psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss to 12 hought to the to the to the securely the load of 20.0 a rectangle veen the botto ers) of truss to 12 hought to the to the the securely the load of 20.0 a rectangle veen the botto	0/79, 1/99 r Cat. ne; d 60 ss 0, ole, 21 1. ds. 0psf om opint			A BUILT	NUM E-29 NUEG	BER HU HU HU HU HU HU HU HU HU HU
FORCES	(lb) - Maximum Com Tension	ipression/maximum		int 20, 44 lb uplift a							LICE	NOED .
TOP CHORD	22-23=-20/58, 21-22 19-20=-20/58, 18-19	8/127, 5-6=-61/152,	uplift at jo 11) This truss Internatio 58, R802.10.2 58, LOAD CASE	uplift at joint 17, 57 int 14 and 85 lb up is designed in acc nal Residential Coo 2 and referenced si (S) Standard	lift at joint ordance w de sections	13. ith the 2018 s R502.11.1 a				THUNK .	19	ISAS LAN

November 8,2021


Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	G1	Common Supported Gable	1	1	Job Reference (optional)	148693634

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:57 ID:jo51kuJFwPWvyqIXn7CaamyMGT_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

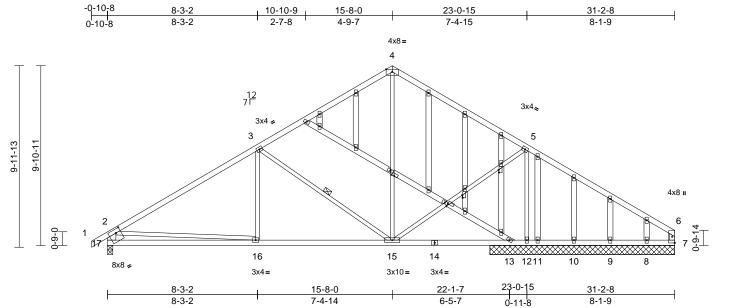
Page: 1

21-4-0

Scale = 1:49.1 Plate Offsets (X, Y): [14:0-3-8,Edge], [25:0-3-8,Edge]

	,, ı). [14.0 0 0,⊏dg	[c], [20.0 0 0,Euge]						
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.07 BC 0.09 WB 0.17 Matrix-R	5 Vert(CT) n/a	i - n/a i - n/a	L/d PLATES 999 MT20 999 n/a Weight: 95 lb	GRIP 197/144 FT = 10%
	6-0-0 oc purlins, e Rigid ceiling direct bracing. (lb/size) 14=195/ 16=172/ 19=187/ 21=187/ 25=196/ Max Horiz 25=196/ Max Uplift 14=-25 (16=-48 19=-59 (24=-109) Max Grav 14=195 16=172 19=192 21=193 23=172/ 25=201	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	NOTES 1) Unbalan this desi 2) Wind: AS Vasd=91 II; Exp C cantileve right exp 3) Truss de only. Fo see Star or consu 4) All plates 5) Gable re braced a 8), 7) Gable st 5), 8) This trus chord liv 9) * This trus	21-22=-73/97, 20-21=-73 17-19=-73/97, 16-17=-73 14-15=-73/97 7-20=-149/1, 8-19=-152/ 10-16=-135/75, 11-15=-1 6-21=-153/84, 5-22=-145 3-24=-183/121	/97, 19-20=-73/97, /97, 15-16=-73/97, /97, 15-16=-73/97, /90, 4-17=-146/90, 77/117, /90, 4-23=-135/74, /90, 4-25, /90,	Internationa R802.10.2 a LOAD CASE(S)	And referenced stand Standard Standard VUE NUE	ANSI/TPI 1.
FORCES	Tension 12-14=-172/39, 7-8 9-10=-67/111, 10-7 12-13=0/36, 1-2=0	=-99/133, 5-6=-87/165,	3-06-00 chord an (69, 10) Provide bearing j 14, 42 lb uplift at j joint 15,	tall by 2-00-00 wide will fit be nd any other members. mechanical connection (by o plate capable of withstanding o uplift at joint 25, 59 lb uplift joint 17, 48 lb uplift at joint 16 60 lb uplift at joint 21, 67 lb u at joint 23 and 109 lb uplift at	tween the bottom 25 lb uplift at joint at joint 19, 66 lb , 102 lb uplift at plift at joint 22, 46			ASAMANINAL ENGLIS

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

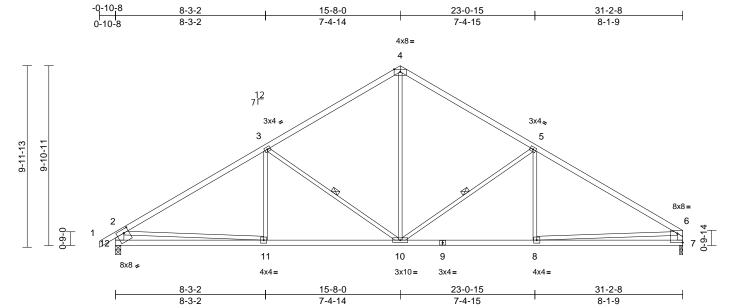
Job	Truss Truss Type		Qty Ply		Lot 111 MN	
MN111	G2	Common Structural Gable	1	1	Job Reference (optional)	148693635

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:57 ID:IzJSHOzZuCfcGkigIhfU5SyMGQs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:63.4

TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.82 Vert(LL) -0.10 16-17 >56 TCDL 10.0 Lumber DOL 1.15 BC 0.60 Vert(LL) -0.10 16-17 >56 BCL 0.0* Rep Stress Incr YES WB 0.79 Horz(CT) 0.03 7 BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.03 16 >5 LUMBER Code IRC2018/TPI2014 Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. I; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed ; end vertical left and right exposed; is envelope) is exterior zone; cantilever left and right exposed; Lumber DOL=1.60 point exposed; Lumber DOL=1.60 point exposed; Icmber DOL=1.60	defl L/d 999 360 999 240 n/a n/a 999 240	PLATES GRIP MT20 197/144 Weight: 167 lb FT = 10%
TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.82 Vert(LL) -0.10 16-17 >56 TCDL 10.0 Lumber DOL 1.15 BC 0.60 Vert(LL) -0.10 16-17 >56 BCLL 0.0* Rep Stress Incr YES BC 0.60 WB 0.79 Horz(CT) 0.03 7 BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.03 16 >5 LUMBER 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed ; end vertical left and right exposed; ind vertical left and right exposed; ind vertical left and right exposed; cantilever left and right exposed; Lumber DOL=1.60 DOL=1.60	999 360 999 240 n/a n/a	MT20 197/144
TOP CHORD 2x4 SPF No.2 Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. BOT CHORD 2x4 SPF No.2 II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 WEBS 2x3 SPF No.2 *Except* 17-2:2x6 SPF No.2, 7-6;18-19;19-20;20-13:2x4 SPF No.2 right exposed; Lumber DOL=1.60 plate grip DOL=1.60		
OTHERS 2x4 SPF No.2 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. BOT CHORD Structural wood sheathing directly applied or 4-0-3 oc purlins, except end verticals. 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. MEBS 1 Row at midpt 3-15 REACTIONS (lb/size) 7=282/10-2-0, 8=111/10-2-0, 9=28/10-2-0, 13=179/10-2-0, 13=179/10-2-0, 13=179/10-2-0, 17=1117/0-3-8 Max Horiz 17=268 (LC 5) Max Horiz 17=268 (LC 5) Max Grav 7=306 (LC 2), 8=154 (LC 16), 9=76 (LC 3), 10=100 (LC 14), 11=185 (LC 14), 12=1015 (LC 1), 13=321 (LC 14), 17=1187 (LC 15) 9 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 178 lb uplift at joint 17, 211 lb uplift at joint 12, 122 lb uplift at joint 7 and 38 lb uplift at joint 12, 122 lb uplift at joint 7 and 38 lb uplift at joint 18.	The A BRAN	XUEGANG LIU NUMBER E-29713
FORCES (lb) - Maximum Compression/Maximum Tension International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. TOP CHORD 1-2=0/39, 2-3=-1481/221, 3-4=-828/240, 1-2=0/240,		UEGANGL
4-5=-819/236, 5-6=-328/186, 2-17=-1058/223, 6-7=-347/180 BOT CHORD 16-17=-386/922, 15-16=-225/1336, 13-15=-63/178, 12-13=-63/178, 11-12=-63/178, 10-11=-63/178,		19198
9-10=-63/178, 8-9=-63/178, 7-8=-63/178 WEBS 4-15=-79/318, 5-15=-26/697, 5-12=-1156/152, 3-15=-818/261, 3-16=0/308, 2-16=0/555 NOTES 1) Unbalanced roof live loads have been considered for this design.	LINE.	S/ONAL EN


NOTES

> MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

November 8,2021

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	G3	Common	1	1	Job Reference (optional)	148693636

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:58 ID:XexTqRas5GLxdEDUfejzVJyMGbh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:63.4

Plate Offsets (X, Y):	[6:Edge,0-6-0], [12:0-3-4,0-2-8]
	[0:2:0]0 0 0]; [:2:0 0 :;0 2 0]

				_								
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.74	Vert(LL)	-0.11	. ,	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.59	Vert(CT)	-0.23	11-12	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.51	Horz(CT)	0.06	7	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.06	8-10	>999	240	Weight: 122 lb	FT = 10%
			A + T : /				<u> </u>					
			,	has been design			Upst					
TOP CHORD	2x4 SPF No.2 *Exce 1.8E	ept* 4-6:2x4 SPF 210	3-06-00 tall	m chord in all are by 2-00-00 wide	will fit betv	0	om					
BOT CHORD	2x4 SPF No.2			iny other membe								
WEBS	2x3 SPF No.2 *Exce 7-6:2x4 SPF No.2	ept* 12-2:2x6 SPF N	than input b	Required bearin earing size.								
BRACING				chanical connect								
TOP CHORD	Structural wood she 2-2-0 oc purlins, ex		joint 12 and	e capable of with 165 lb uplift at jo	pint 7.	•	t				WHE I	
BOT CHORD	Rigid ceiling directly bracing.	applied or 9-4-3 oc	Ínternationa	designed in acc Residential Coo	de sections	s R502.11.1 a	and				I'YE OF	SSO
WEBS	1 Row at midpt	5-10, 3-10		and referenced st	tandard AN	ISI/TPL1.				5	X	. 0
REACTIONS	(lb/size) 7=1386/0	-2-0, (req. 0-2-3),	LOAD CASE(S	Standard						-	S: XUEG	ANG
	12=1466/										EIU	J 14-
	Max Horiz 12=268 (I	,								2.0	1	10 =
	Max Uplift 7=-165 (L)							= +		
FORCES	(lb) - Maximum Com Tension	pression/Maximum								=	NUME E-29	• []].
TOP CHORD	1-2=0/39, 2-3=-2054 4-5=-1469/261, 5-6=		Ο,							1		GINI
	2-12=-1388/237, 6-7	7=-1307/208									1.S/ONI	ENIN
BOT CHORD	11-12=-389/902, 10										1111	i i i i i i i i i i i i i i i i i i i
	8-10=-111/1657, 7-8											
WEBS	4-10=-100/874, 5-10											11111
	3-10=-666/258, 3-11 6-8=-47/1159	1=0/278, 2-11=0/915	,								LICE	NGL
NOTES											NT	NSA
1) Unbalance	ed roof live loads have	been considered fo	r							8		020
this desigr										-		A 2
	CE 7-16; Vult=115mph										10	100 5
	nph; TCDL=6.0psf; BC										19.	198 E
	Enclosed; MWFRS (er									-	2	: <u> </u>
	left and right exposed sed; Lumber DOL=1.6										- one	1412
	has been designed fo		50								- 10 MA	SAYNAN
	load nonconcurrent w		ds.								SSIC	ENGIN
		,									INN	AL
												0.0004
											Novemb	er 8,2021

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	G4	Common	9	1	Job Reference (optional)	148693637

4x8=

15-8-0

7-4-14

Wheeler Lumber, Waverly, KS - 66871,

9-10-11

8-3-2

8-3-2

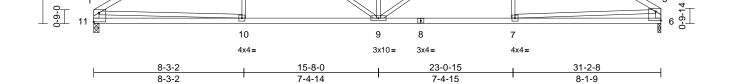
12 71

2

3x4 -

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:58 ID:nqp7V1gVqDCCzI5Ugy8EV_yMGM4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

23-0-15


7-4-15

Page: 1

3 3x4 👟 4 8x8= 5 Ŋ

31-2-8

8-1-9

Scale = 1:63.4

Plate Offsets (X, Y): [1:Edge,0-6-0], [5:Edge,0-6-0]

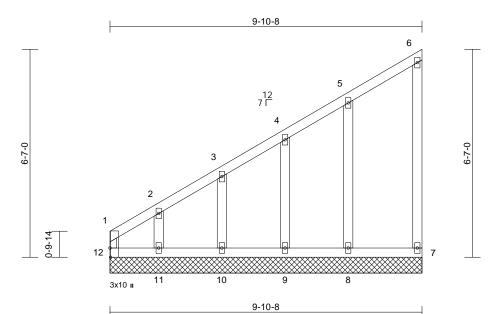
8x8=

1

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.51 0.60 0.52	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.11 -0.23 0.05 0.06	(loc) 10-11 10-11 6 9-10	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 121 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x3 SPF No.2 *Exce 1.8E, 6-5:2x4 SPF N Structural wood she 4-5-11 oc purlins, e Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 6=1391/0 11=1391// Max Horiz 11=257 (L	ept* 11-1:2x4 SPF 21 lo.2 athing directly applie xcept end verticals. applied or 10-0-0 oc 4-9, 2-9 -2-0, (req. 0-2-3), 0-3-8 LC 5)	6) _{ed or} 7) ; 8) L(on the bottor 3-06-00 tall b chord and ar WARNING: I than input be Provide mec bearing plate joint 11 and This truss is International	hanical connectio e capable of withs 165 lb uplift at joir designed in accol Residential Code nd referenced sta	as where ill fit betw size at jo n (by oth tanding 1 nt 6. rdance w sections	e load of 20. a rectangle veen the bott int(s) 6 great ers) of truss 66 lb uplift a ith the 2018 ; R502.11.1 a	om er to			*	XPE OF I	MISSOUR	
FORCES	3-4=-1478/262, 4-5=	e-1478/262, 2055/243,)								Philip	NUME E-297		
BOT CHORD	7-9=-111/1665, 6-7=	0=-253/1682, 124/501									-	SS/ONA	LENGIN	
WEBS	3-9=-103/891, 4-9=- 2-9=-694/267, 2-10= 5-7=-49/1167		39,										un.	
this design 2) Wind: AS(Vasd=91n II; Exp C; cantilever right expo 3) The Fabric	ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 cation Tolerance at joir has been designed for	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 nt 1 = 6%, joint 1 = 6	Cat. e; d 60								and the second	19: THE MARK	NSED 198	

This truss has been designed for a 10.0 psf bottom 4) chord live load nonconcurrent with any other live loads.

> MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017


NOVONAL ENGIN

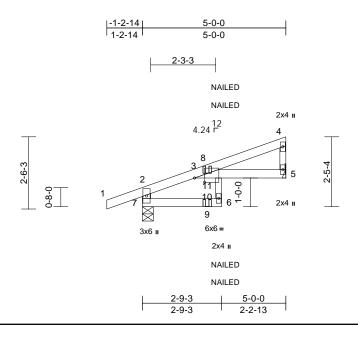
November 8,2021

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	G5	Monopitch Supported Gable	1	1	Job Reference (optional)	148693638

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:58 ID:g86VT07Ktu_pXb?ouwq81_yMGLU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

.

Scale =	1:36.5


Plate Offsets (X, Y): [12:0-3-8,Edge]

	3 (X, T). [12.0-0-0,∟ug	-1											-
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.17	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.07	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.07	Horiz(TL)	0.00	7	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-R	-						Weight: 45 lb	FT = 10%
Vasd=9' II; Exp C cantileve	 D 2x4 SPF No.2 2x3 SPF No.2 *Exc 2x4 SPF No.2 D Structural wood she 6-0-0 oc purlins, ex D Rigid ceiling directly bracing. S (lb/size) 7=83/9-1 9=172/9- 11=170/5 Max Horiz 12=245 (Max Uplift 7=-40 (Li (LC 8), 1 8), 12=-5 Max Grav 7=100 (Li 9=180 (Li 11=225 ((lb) - Maximum Cor Tension D 1-12=-137/71, 1-2= 3-4=-151/95, 4-5= 6-7=-73/33 D 11-12=-88/68, 10-1 8-9=-88/68, 7-8=-88 	y applied or 10-0-0 oc 0-8, 8=209/9-10-8, 10-8, 10=184/9-10-8, 9-10-8, 12=47/9-10-8, LC 7) C 5), 8=-68 (LC 8), 9= 0=-47 (LC 8), 11=-14; 2 (LC 6) C 15), 8=211 (LC 15) C 15), 10=184 (LC 1) LC 15), 12=191 (LC 5) npression/Maximum -225/147, 2-3=-174/1 139/92, 5-6=-109/74, 1=-88/68, 9-10=-88/6 8/68 0=-145/79, 4-9=-137/ n (3-second gust) CDL=6.0ps; h=25ft; C nvelope) exterior zon 1; end vertical left and	3) 4) 4) 5) 6) 7) 8) 9 (LC 9) 9 (LC 9) 9 (LC 9) 9 (LC 9) 10 13, LC 8, 90, 23 8, 90, 24 1	only. For stu see Standard or consult qu All plates are Gable requirt Truss to be f braced again Gable studs This truss ha chord live loa * This truss fa on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 12, 40 lb upli uplift at joint bit 8.	ed for wind loads ds exposed to w d Industry Gable alified building d e 2x4 MT20 unles es continuous bo ully sheathed froi ist lateral movem spaced at 2-0-00 is been designed n choroncurrent has been designed n choroncurrent hanical connectio e capable of withs ft at joint 7, 149 I 10, 63 Ib uplift at designed in acco Residential Code nd referenced sta Standard	ind (norm End Deta esigner as so otherwittom chor m one fac- ent (i.e. d oc. for a 10.1 with any d for a liv as where vill fit betv s. n (by oth standing S b uplift at joint 9 an vrdance w e sections	al to the face) ils as applicat s per ANSI/TF se indicated. d bearing. e or securely iagonal web). D psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss t i2 lb uplift at ju joint 11, 47 lb d 68 lb uplift a fith the 2018 ; R502.11.1 a), ole, PI 1. ds. upsf om obint o at				PRO CON	BER

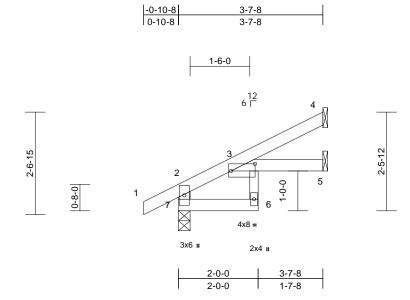
Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	J1	Diagonal Hip Girder	2	1	Job Reference (optional)	148693639

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:59 ID:?AD_yL8LJ6rSMAYxEJ_NHpyMGVo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:40.1

Plate Offsets (X, Y): [3:0-4-3,0-1-14]

	(7, 1). [0.0 1 0,0 1 1	·1											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.42		-0.05	6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.24	Vert(CT)	-0.11	6	>496	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.00	Horz(CT)	0.05	5	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-R		Wind(LL)	0.06	6	>897	240	Weight: 16 lb	FT = 10%
LUMBER TOP CHORD	2x4 SPF No.2		8)		CASE(S) section re noted as front			face					
BOT CHORD	2x4 SPF No.2 *Exce	ept* 6-3:2x3 SPF No	.2 LC	DAD CASE(S)	Standard								
WEBS													
BRACING													
TOP CHORD Structural wood sheathing directly applied or 5-0-0 oc purlins, except end verticals. Uniform Loads (lb/ft) Vert: 1-2=-70, 2-3=-70, 3-4=-70, 6-7=-20, 3-5=-20													
BOT CHORD Rigid ceiling directly applied or 6-0-0 oc Concentrated Loads (lb) bracing. Vert: 9=6 (F=3, B=3)											NU OF	MISTI	
REACTIONS	(lb/size) 5=205/ M Max Horiz 7=86 (LC Max Uplift 5=-42 (LC		4-9								11	XATE	SOUT
FORCES	(lb) - Maximum Con Tension	npression/Maximum									Ξ.	XUEG	
TOP CHORD 2-7=-313/107, 1-2=0/32, 2-3=-88/13, 3-4=-103/7, 4-5=-134/50													
BOT CHORD	6-7=-40/0, 3-6=0/72	2, 3-5=-16/64									= +		• []].
NOTES												C: E-29	713
Vasd=91r II; Exp C; cantilever right expo	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6	ne; d									ESS/ON	AL ENGINI	
	2) This truss has been designed for a 10.0 psf bottom												11111
chord live load nonconcurrent with any other live loads.												IN IEGA	NG
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 											-	VEGA UEGA	NSED
4) Refer to girder(s) for truss to truss connections.												1 10	
5) Provide mechanical connection (by others) of truss to											11111	: 19	198 : Ξ
	late capable of withsta lb uplift at joint 5.								-	S.	155		
, Internation	6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.											PAN	SAS A
	indicates 3-10d (0.148											I, ON	ALEIN
	.25") toe-nails per NDS												or 9 2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

November 8,2021

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	J2	Jack-Open	5	1	Job Reference (optional)	148693640

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:59 ID:WuZvTII3Zv8EaZmhhKFB_GyMGWt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:28.9

Plate Offsets (X, Y): [3:0-7-4,0-2-3]

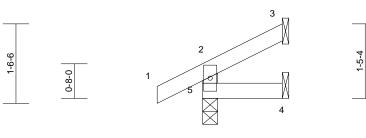
	(, , ,): [ele : , , e = o]										-	
Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.18 0.15	DEFL Vert(LL) Vert(CT)	in -0.01 -0.03	(loc) 6 6	l/defl >999 >999	L/d 360 240	PLATES MT20	GRIP 197/144
BCLL	0.0*	Rep Stress Incr	YES	WB	0.10	Horz(CT)	0.02	5	>333 n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.02	6	>999	240	Weight: 12 lb	FT = 10%
	2x4 SPF No.2 Structural wood she 3-7-8 oc purlins, ex Rigid ceiling directly bracing. (Ib/size) 4=93/ Me	/ applied or 6-0-0 oc echanical, 5=55/ cal, 7=243/0-3-8 : 8) C 8), 5=-3 (LC 8), 7=-	2 Internatio 2 R802.10. LOAD CASE	(S) Standard	de sections	R502.11.1 a	and			*	XIE OF XUEG	
FORCES	(lb) - Maximum Cor	npression/Maximum								EPT	NUM	• []]
TOP CHORD	Tension 2-7=-232/49 1-2=0	/32, 2-3=-72/0, 3-4=-3	33/35							-1	E-29	713
BOT CHORD	6-7=-18/0, 3-6=-2/4									1	1000	GIN
Vasd=91m	CE 7-16; Vult=115mpl nph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft; C									1,0N/	AL ENTIT
cantilever l right expos	Enclosed; MWFRS (e left and right exposed sed; Lumber DOL=1.6	; end vertical left and 60 plate grip DOL=1.6	Ĺ								UEGA	ANG LIU
chord live l	has been designed fo load nonconcurrent w	ith any other live load									LICE	NSED
on the bott 3-06-00 tal	s has been designed tom chord in all areas Il by 2-00-00 wide will any other members.	where a rectangle								11111	,19	198
 Refer to gi Provide me bearing plate 	rder(s) for truss to tru echanical connection ate capable of withsta lift at joint 4 and 3 lb	(by others) of truss to nding 25 lb uplift at jo								11.	SION	SAS MALIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

November 8,2021

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	J3	Jack-Open	4	1	Job Reference (optional)	148693641

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:15:59 ID:anzadtUT1W16ttPZ3z0i5QyMGWe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



November 8,2021

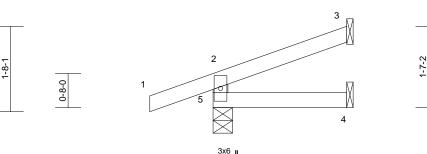
MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

3x6 II

1-6-7

Scolo	_	1:22.2
Scale	=	1:22.2

Scale = 1.22.2												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.07 0.02 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 0.00 0.00	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 5 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	1-6-7 oc purlins, ex Rigid ceiling directly bracing.	y applied or 10-0-0 or										
	Mechania Max Horiz 5=40 (LC Max Uplift 3=-23 (LC Max Grav 3=28 (LC (LC 1)	C 8), 5=-27 (LC 8) C 1), 4=24 (LC 3), 5=-	160								XUEG	
Vasd=91m II; Exp C; E cantilever I	Tension 2-5=-140/40, 1-2=0 4-5=0/0 CE 7-16; Vult=115mpl ph; TCDL=6.0psf; BC Enclosed; MWFRS (e left and right exposed	n (3-second gust) CDL=6.0psf; h=25ft; (nvelope) exterior zor I ; end vertical left an	ne; d							C PHONE	NUM E-29 SS/ON	• [] []
 This truss chord live I * This truss on the bott 3-06-00 tal chord and Refer to gi Provide m bearing pla 5 and 23 lb 	sed; Lumber DOL=1.6 has been designed fo load nonconcurrent w is has been designed tom chord in all areas Il by 2-00-00 wide will any other members. rder(s) for truss to tru- echanical connection ate capable of withsta o uplift at joint 3.	or a 10.0 psf bottom ith any other live load for a live load of 20.0 where a rectangle fit between the botto uss connections. (by others) of truss to nding 27 lb uplift at jo	ds. Ipsf om							and the second s	THE ICE	ANG LIU INSEO 198
Ínternation	is designed in accord al Residential Code s and referenced stand 5) Standard	sections R502.11.1 a	nd									VAL ENGIN


Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	J4	Diagonal Hip Girder	1	1	Job Reference (optional)	148693642

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:16:00 ID:_dA8pjj0JfYHGxxPEANPveyMGWK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-1-2-14 2-7-6 2-7-6 1-2-14

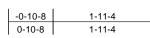
2-7-6

Scale - 1.22.5

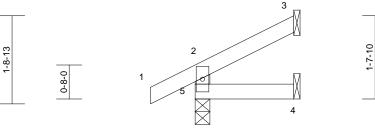
Scale = 1:22.	5												
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.10	DEFL Vert(LL)	in 0.00	(loc) 4-5	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 8 lb	FT = 10%
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 2-7-6 oc purlins, ex Rigid ceiling directly bracing. (lb/size) 3=24/ Me Mechanic Max Horiz 5=62 (LC Max Uplift 3=-45 (LC (LC 6) Max Grav 3=24 (LC 	cept end verticals. applied or 10-0-0 od chanical, 4=4/ cal, 5=92/0-4-9 12) 212), 4=-4 (LC 19), 5	ed or 8) c LO 1) 5=-99	provided suf down and 7 up at -1-2-1 such connec in the LOAD of the truss a DAD CASE(S) Dead + Ro Plate Increa Concentrat Vert: 1=- Trapezoida Vert: 1= (F=34, B	of Live (balanced)	concentra and 20 lb 'he desig he respo i, loads a (F) or ba): Lumber) -2=-24 (F =12, B=12	Ated load(s) 2 down and 7 n/selection of nsibility of oth pplied to the f ck (B). Increase=1.	lb iers. iace 15, 2=-3			"III.	S XUEC	The Physics of the Second S
FORCES	(LC 1) (Ib) - Maximum Com Tension 2 -5=-81/113, 1-2=-5			,	ζ, ,	,					I PP	NUM	• [] []
BOT CHORE	D 4-5=0/0											E-29	
Vasd=91 II; Exp C cantileve right exp 2) This trus chord liv 3) * This tru on the bo 3-06-00 chord an 4) Refer to	SCE 7-16; Vult=115mph Imph; TCDL=6.0psf; BC ; Enclosed; MWFRS (er er left and right exposed bosed; Lumber DOL=1.6 is has been designed fo e load nonconcurrent wi uss has been designed f ottom chord in all areas tall by 2-00-00 wide will d any other members. girder(s) for truss to tru mechanical connection	DL=6.0psf; h=25ft; C nvelope) exterior zor ; end vertical left and 0 plate grip DOL=1.6 r a 10.0 psf bottom ith any other live load or a live load of 20.0 where a rectangle fit between the botto ss connections.	ne; d 60 ds. 0psf om									UEG.	

Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 99 lb uplift at joint 5, 45 lb uplift at joint 3 and 4 lb uplift at joint 4.

This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


SIONALE UNALEN November 8,2021

Page: 1



Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	J5	Jack-Open	1	1	Job Reference (optional)	148693643

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:16:00 ID:tOPff4nWNu3ilZFAT0RL4UyMGWG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

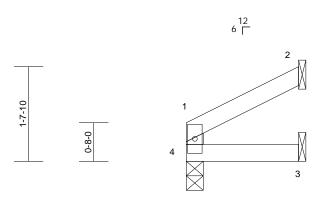
3x6 II

1-11-4

Scale = 1:22.6

Scale = 1.22.0												
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 6 lb	FT = 10%
LUMBER TOP CHORD	2x4 SPF No.2	•				I , , , , , , , , , , , , , , , , , , ,		· · · ·	· · · ·			
BOT CHORD												
WEBS	2x4 SPF No.2											
BRACING												
TOP CHORD		athing directly applie	ed or									
BOT CHORD	1-11-4 oc purlins, e Rigid ceiling directly bracing.	except end verticals. v applied or 10-0-0 or	c									
REACTIONS	0	chanical, 4=14/										UID.
	· /	cal, 5=172/0-3-8									Nº OF	MISS
	Max Horiz 5=48 (LC	8)								1	XE.	
	Max Uplift 3=-31 (LC									5	Y	-
	Max Grav 3=45 (LC	1), 4=32 (LC 3), 5=	172							-	XUEG	
	(LC 1)									F.+	.: LI	U 斗
FORCES	(lb) - Maximum Con Tension	npression/Maximum									1	
TOP CHORD	2-5=-151/44, 1-2=0/	22 2-338/15								= 0		
BOT CHORD	4-5=0/0	02, 2 0= 00/10								-1	NUM	• 41.
NOTES	10 0.0									-1	E-29	1/13
	CE 7-16; Vult=115mph	(3-second dust)								1	A	
	nph; TCDL=6.0psf; BC		Cat.								1.SION	FNUI
	Enclosed; MWFRS (er										I I I I	ALTIN
	left and right exposed											10.5
	sed; Lumber DOL=1.6		60									1111.
	has been designed fo		40								IL UEG	ANG
	load nonconcurrent w is has been designed											
	tom chord in all areas		ipsi							1	CE	NSE
	all by 2-00-00 wide will		om							-		
chord and	any other members.										1	1 - E - E
	irder(s) for truss to tru									11111	: 19	198 : E
	echanical connection									=		
	ate capable of withsta b uplift at joint 3.	nding 26 lb uplift at j	oint								Y. K.	<u>і</u> щії
	is designed in accord	anco with the 2019										SV. SV.
	nal Residential Code s		nd								1.65	G
	2 and referenced stand										NON ON	VALENI
LOAD CASE(S) Standard										1111	IIIII.
(Novemb	er 8,2021
												•

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	J6	Jack-Open	1	1	Job Reference (optional)	148693644


1-11-4

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:16:00 ID:pnXP4monvVJQ?sPZbRUp9vyMGWE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-7-10

Page: 1

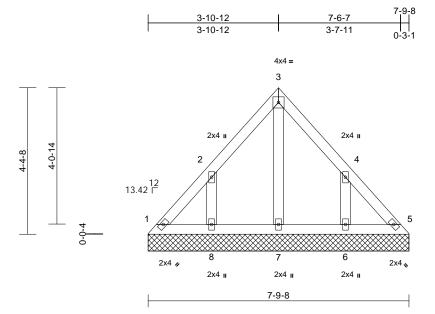
3x6 II

1-11-4

Scale = 1:19.9

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.04	Vert(LL)	0.00	3-4	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	0.00	3-4	>999	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R	0.00	Wind(LL)	0.00	3-4	>999	240	Weight: 5 lb	FT = 10%	
					-					-			
LUMBER													
TOP CHORD	2x4 SPF No.2												
BOT CHORD	2x4 SPF No.2												
WEBS	2x4 SPF No.2												
BRACING													
TOP CHORD	3 3 1												
	1-11-4 oc purlins, except end verticals.												
BOT CHORD	bracing.	y applied or 10-0-0 o	С										
REACTIONS		echanical, 3=22/									NUME.		
		cal, 4=80/0-3-8									NEOF	SS	
	Max Horiz 4=31 (LC												
	Max Uplift 2=-34 (LC									2	A		
	Max Grav 2=58 (LC (LC 1)	5 1), 3=34 (LC 3), 4=	80							=	XUEG		
FORCES	(lb) - Maximum Cor Tension	npression/Maximum								Ξ*		*	
TOP CHORD	1-4=-67/17, 1-2=-35	5/20								- 7	NUMI		
BOT CHORD	3-4=0/0									-7	E-29	• 41.	
NOTES											L-29		
	CE 7-16; Vult=115mpl	h (3-second aust)								1	· · · · ·	- day	
	nph; TCDL=6.0psf; BC		Cat.								1.S/ONI	ENIN	
	Enclosed; MWFRS (e											Think.	
	left and right exposed											10.	
	sed; Lumber DOL=1.6		60									IIII.	
	has been designed for load nonconcurrent w		da								IL UEGA	NG	
	is has been designed										I TUES		
	tom chord in all areas)psi								CE	NSEN.	
	all by 2-00-00 wide will		om									10 1 2	
	any other members.									-	1 - F	A 12	
4) Refer to gi	irder(s) for truss to tru	uss connections.								- 2	19	198 E	
	echanical connection									1		1.50	
	ate capable of withsta	inding 34 lb uplift at j	oint							-	. 61	. 41.2	
2.											- Winka	A STA	
	is designed in accord		n al								- NVVV	SAY	
	nal Residential Code s and referenced stan		na								1, SION	AL ENTIN	
		uaiu ANOI/TELL									1111	in the second se	
LOAD CASE(5) Standard											ar 0.0001	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



November 8,2021

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	LAY1	Lay-In Gable	1	1	Job Reference (optional)	148693645

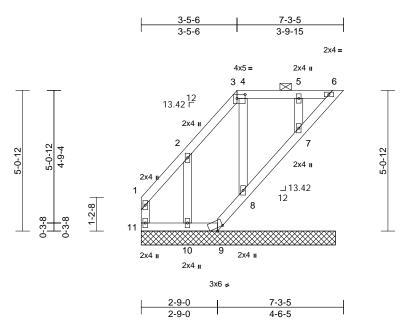
Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:16:00 ID:i5qm2mFcyA51YiJspQ9jhwyMGVe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:34.4
---------	--------

		1		_		· · · · · ·						
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P	-						Weight: 29 lb	FT = 10%
	6-0-0 oc purlins. Rigid ceiling directly bracing. (lb/size) 1=71/7-9 6=198/7- 8=198/7- Max Horiz 1=108 (L Max Uplift 1=-27 (Lz (LC 9), 8 Max Grav 1=99 (LC	C 5) C 4), 5=-10 (LC 5), 6= =-154 (LC 8)	chord live 7) * This truss on the bott 3-06-00 ta chord and 8) Provide m bearing pla 1, 10 lb up uplift at joil 9) This truss Internation R802.10.2 -154 LOAD CASE(5)	s designed in acco al Residential Code and referenced sta	t with any ed for a liv as where will fit betw s. on (by oth standing 2 o uplift at ju ordance w e sections	other live loa e load of 20.0 a rectangle veen the botto ers) of truss t ?7 lb uplift at j point 8 and 154 ith the 2018 s R502.11.1 a	0psf om o oint 4 Ib			11111111111111111111111111111111111111	XUEG NUM	*
FORCES	Tension	npression/Maximum								11	E-29	
TOP CHORD	1-2=-121/92, 2-3=- 4-5=-106/69	101/79, 3-4=-92/64,									SSI	ENGIN
BOT CHORD	1-8=-45/94, 7-8=-4 5-6=-45/94	, ,									1111	
WEBS	3-7=-82/0, 2-8=-18	9/178, 4-6=-189/178										110.
 this design Wind: ASC Vasd=91m II; Exp C; E cantilever I right exposion Truss desi only. For s see Standior consult Gable required 	ed roof live loads have 2E 7-16; Vult=115mpl ph; TCDL=6.0psf; BG Enclosed; MWFRS (e left and right exposed sed; Lumber DOL=1. gned for wind loads i studs exposed to win ard Industry Gable Er qualified building des uires continuous botto ts spaced at 2-0-0 oc	n (3-second gust) CDL=6.0psf; h=25f; C nvelope) exterior zon ; end vertical left and 60 plate grip DOL=1.6 n the plane of the trus d (normal to the face) nd Details as applicat igner as per ANSI/TP m chord bearing.	cat. e; d b o s s , le,							. THINK	PRO 19	198 SAGMA

November 8,2021



A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

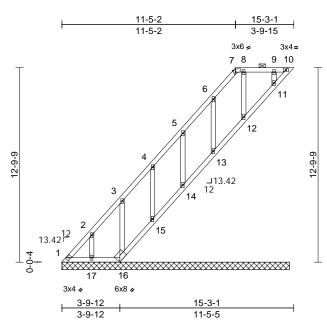
Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	LAY2	Lay-In Gable	1	1	Job Reference (optional)	148693646

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:16:00 ID:3bhWE5k4m90VkinMc6Msm8yMGV1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:41.4

Plate Offsets (X, Y): [3:0-3-8,0-1-12]


- 1000 0 100000	(,,, ,); [ele e ele : :=												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		8/TPI2014	CSI TC BC WB Matrix-S	0.05 0.03 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 30 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 6 (Ib/size) 6=47/6-11 8=166/6-1 10=161/6 Max Horiz 11=139 (I Max Grav 6=81 (LC 8=166 (LC 	cept end verticals, a -0 max.): 3-6. applied or 10-0-0 or 7. 1-13, 7=169/6-11-13 11-13, 9=1/6-11-13, -11-13, 11=68/6-11- C 8), 7=-37 (LC 5), 8 -66 (LC 6), 10=-160	4) 5) nd 7) c 8) c 9) , 13 1(B=-16 (LC 12	only. For stu see Standard or consult qu Provide aded All plates are Truss to be f braced again Gable studs This truss ha chord live loa * This truss f on the bottor 3-06-00 tall t chord and ar)) Provide mec bearing plate joint 6, 66 lb uplift at joint ()) Non Standar 2) This truss is International	Idd sexposed to wind black dis exposed to wind a lindustry Gable i lailified building da quate drainage to se 2x4 MT20 unles ully sheathed from spaced at 2-0-0 d s been designed an onconcurrent nas been designed an chord in all area by 2-00-00 wide w ny other members hanical connection a capable of withs uplift at joint 9, 11 8 and 37 lb uplift d bearing condition designed in accoo Residential Code and referenced sta	ind (norm End Deta esigner a: p prevent s otherwim m one fac- ient (i.e. c oc. l for a 10. t with any ed for a liv as where vill fit betw s. on (by oth standing 1 60 lb uplif at joint 7. on. Revier erdance w e sections	al to the face ils as applica is per ANSI/TI water pondiny se indicated. the or securely liagonal web) 0 psf bottom other live loa e load of 20.1 a rectangle veen the bott ers) of truss i 34 lb uplift al t at joint 10, ww required. ith the 2018 s R502.11.1 a), ble, PI 1. g. , dds. Dpsf com t 16 lb				XUEG VUEG LI NUM E-29	BER
TOP CHORD	(lb) - Maximum Com Tension 0 1-11=-57/9, 1-2=-50		13		rlin representatio ation of the purlin 1.			size				LILICE	
BOT CHORD	3-4=-62/120, 4-5=-6 10-11=-120/62, 9-10 7-8=-190/108, 6-7=-)=-120/62, 8-9=-188/	/108,	DAD CASE(S)	Standard							IL TOPOLO	NSED
this desig 2) Wind: AS Vasd=91 II; Exp C; cantilever	2-10=-163/161, 4-8= ced roof live loads have	131/39, 5-7=-138/5 been considered for (3-second gust) DL=6.0psf; h=25ft; (tvelope) exterior zor ; end vertical left and	r Cat. ne; d								THINK'S		198 ISAS

November 8,2021

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	LAY3	Lay-In Gable	1	1	Job Reference (optional)	148693647

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:16:01 ID:jSTvuqHxxlpzFmlClmBferyMGUJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

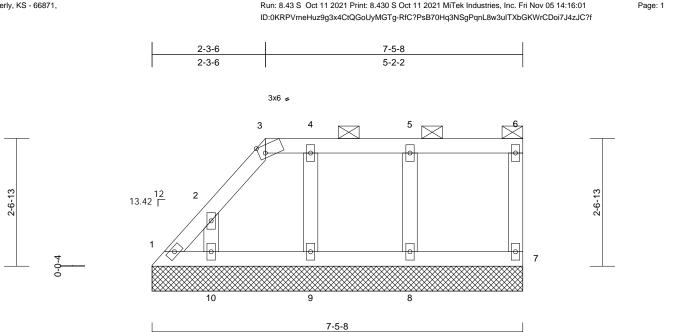

Scale = 1:75.8

Plate Offsets (X, Y): [7:0-1-9,Edge]													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15		BC	0.04	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.04	Horiz(TL)	-0.01	10	n/a	n/a			
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 70 lb	FT = 10%	
LUMBER			W	EBS	2-17=-167/156,	3-16=-174	166,							
TOP CHORD					4-15=-168/159,		,							
BOT CHORD	2x4 SPF No.2				6-13=-158/136,	8-12=-134	44, 9-11=-12	27/61						
OTHERS	2x4 SPF No.2		N	DTES										
BRACING			1)	Unbalanced	roof live loads h	nave been	considered fo	or						
TOP CHORD	Structural wood she	athing directly applie	d or	this design.										
	6-0-0 oc purlins, exc		2)		7-16; Vult=115									
	2-0-0 oc purlins (6-0	,			h; TCDL=6.0psf								111.	
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc			nclosed; MWFR							IN OF	MICIL	
	bracing, Except:				ft and right expo							NE		6 C
	6-0-0 oc bracing: 10		0)		d; Lumber DOL							A		1
REACTIONS		11-9, 10=31/14-11-9,	3)		ned for wind load						-	A VILLE		2-
		4-11-9, 12=175/14-1			d Industry Gable						-	S XUEC	No. March 199	
		4-11-9, 14=180/14-1			ualified building						- +	, LI	0	*-
		4-11-9, 16=169/14-1	1-9, 4)		quate drainage									1.00
	17=184/1 Max Horiz 1=510 (L0		5)		e 2x4 MT20 unle						= T			m =
	Max Uplift 1=-128 (L	,			spaced at 2-0-0		oo maloatoa.					NUM	•	41-
		.C 5), 12=-19 (LC 4),	·,		as been designe) psf bottom				-	O: E-29	713	4-
		(LC 8), 14=-144 (LC 8			ad nonconcurre			ads.				A		1
		(LC 8), 16=-26 (LC 8)	~ ~	* This truss	has been desigr	ned for a liv	e load of 20.	0psf				1. So		
	17=-137 (, .		m chord in all ar			-				I,ON	ALEN	
	Max Grav 1=418 (L0	C 8), 10=56 (LC 15),			by 2-00-00 wide		veen the bott	om				- 100	min	
		LC 22), 12=175 (LC 1			ny other membe									
		LC 15), 14=209 (LC 1			chanical connect								1111	
		LC 15), 16=169 (LC 1	I),		e capable of with							IN UEG	ANG	
	17=212 (l	_C 15)			b uplift at joint 1 int 17, 134 lb up							N +		1
FORCES	(lb) - Maximum Corr	pression/Maximum			llb uplift at joint						6	ICE	NSED	1
	Tension				blift at joint 11.	13, 19 ID U		2				- 1 ×		-
TOP CHORD		445/179, 3-4=-300/1	21, 10		rd bearing condi		w required				-	UCE	1	-
	4-5=-163/74, 5-6=-6	, ,			designed in acc							: 19	198	
DOTOLOGO	,	4/105, 9-10=-44/105			Residential Co			and			1	1		~ =
BOT CHORD	1-17=-98/39, 16-17=	,	84,		ind referenced s			-			-	DV.		<u>ш</u> =
	14-15=-166/80, 13-1 12-13=-166/81, 11-1		12) Graphical p	urlin representat	ion does no	ot depict the	size			8	- CAAA	Chas I's	XI
	10-11=-163/67	12=-100/00,			ation of the purl							1	NPH- OVO	~
	10 11-100/07			bottom chor	d	-						1, SION	VAL ENIN	
			L	DAD CASE(S)	Standard							1111	inini.	
				(-)									ar 0.0001	

November 8,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

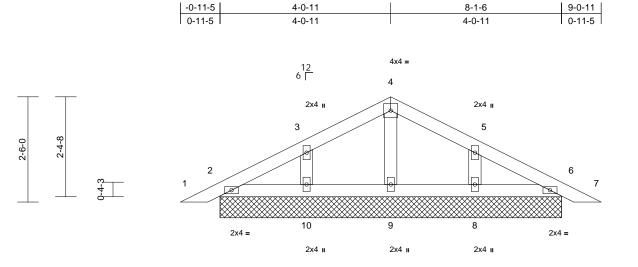
Job	Truss	Truss Type	Qty	Ply	Lot 111 MN			
MN111	LAY4	Lay-In Gable	1	1	Job Reference (optional)	148693648		

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:16:01

Scale = 1:23.2

Plate Offsets (X, Y): [3:0-1-9,Edge]

	(X, T). [5.0-1-5,Euge]	•												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.05 0.03 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 26 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=911 II; Exp C;	 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-C Rigid ceiling directly bracing. (lb/size) 1=21/7-5- 8=197/7-f 10=147/7 Max Horiz 1=90 (LC Max Horiz 1=90 (LC Max Grav 1=77 (LC (LC 24), 9= Max Grav 1=77 (LC (LC 22), 9 15) (lb) - Maximum Com Tension 1-2=-102/73, 2-3=-7 4-5=-31/24, 5-6=-31 1-10=-34/25, 9-10=- 7-8=-34/25 2-10=-136/105, 4-9= xed roof live loads have 	Pathing directly applie cept end verticals, an - 0 max.): 3-6. - applied or 10-0-0 oc 	3) 4) 5) 6) 6) 6) 7) 9) 48 LC 8) 103 11 LC 11 12 L0 L0 L0 L0 L0 L0 L0 L0 L0 L0	Truss design only. For stu see Standarr or consult qu Provide adee All plates are Gable requin Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar D) Provide mec bearing plate 1, 19 lb uplift at joint 9 anc 1) This truss is International R802.10.2 ai	hed for wind loads adds exposed to wi d Industry Gable I alified building de quate drainage to 2 2x4 MT20 unles es continuous bot spaced at 2-0-0 c as been designed ad nonconcurrent has been designed an chord in all area y 2-00-00 wide w hy other members hanical connectio e capable of with ta 8 lb uplift at joir designed in acco Residential Code and referenced sar rin representation ation of the purlin d.	ind (norm End Deta ssigner as prevent is s otherwit ttom chor oc. for a 10.0 with any d for a liv d for a liv as where vill fit betv s. on (by oth tanding 3 uplift at join t 8. rdance w a sections indard AN n does no	al to the face) ils as applicat s per ANSI/TF water ponding se indicated. d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the botto ers) of truss t 18 lb uplift at j nt 10, 54 lb up ith the 2018 s R502.11.1 a ISI/TPI 1.), ble, ble, pl 1. g. ds. dpsf bpsf om o point plift				NUMI NUMI NUMI E-29	MISSOU ANG J BER	
	osed; Lumber DOL=1.6											Novemb	AL ENG	\$


Job	Truss	Truss Type	Qty	Ply	Lot 111 MN			
MN111	P1	Piggyback	2	1	Job Reference (optional)	148693649		

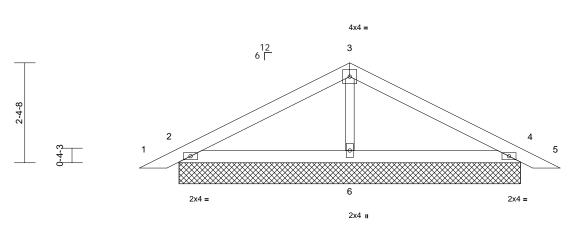
Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:16:01 ID:hC8n44pz_c6wnQi?LwXpNqyMGXV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-1-6

Page: 1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 26 lb	FT = 10%
 this design Wind: ASC Vasd=91n II; Exp C; cantilever right expo Truss des only. For see Stand or consult Gable req Gable stur This truss 	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (Ib/size) 2=127/8- 8=214/8- 10=214/82 Max Horiz 2=41 (LC Max Uplift 2=-17 (LC (LC 9), 10 (Ib) - Maximum Con Tension 1-2=0/17, 2-3=-51/4 4-5=-50/49, 5-6=-40 2-10=-2/37, 9-10=-2 4-9=-98/2, 3-10=-16	8) 2 8), 6=-25 (LC 9), 8=)=-67 (LC 8) ppression/Maximum 1, 3-4=-50/56, /30, 6-7=-0/17 /37, 8-9=-2/37, 6-8=- 7/95, 5-8=-167/95 been considered for (3-second gust) EDL=6.0psf; h=25ft; C twelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 the plane of the trus 1 (normal to the face), d Details as applicab gner as per ANSI/TP m chord bearing. r a 10.0 psf bottom	 on the bottor 3-06-00 tall I chord and at Provide mec bearing plate 2, 25 lb uplif uplift at joint Prins truss is International R802.10.2 a See Standar Detail for Co consult quali CADE CASE(S) 	designed in accor Residential Code nd referenced star d Industry Piggyb nnection to base t fied building desig	as where rill fit betw n (by oth tanding 1 plift at joi rdance w sections ndard AN ack Truss truss as a	a rectangle veen the bottw 7 lb uplift at j nt 10 and 67 ith the 2018 i R502.11.1 a ISI/TPI 1. s Connection	om to joint Ib and				A AM	AS A

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

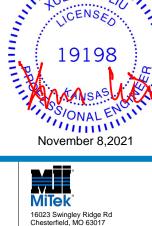

November 8,2021

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	P2	Piggyback	19	1	Job Reference (optional)	148693650

2-6-0

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:16:02 ID:WMV2L7ukZSs3VLA9iBdDc5yMGXP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-11-5 4-0-11 9-0-11 8-1-6 0-11-5 0-11-5 4-0-11 4-0-11

8-1-6



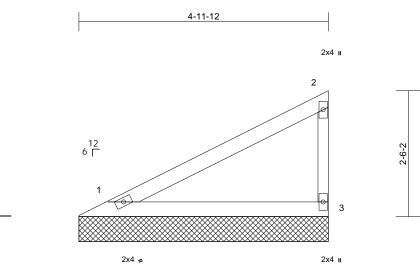
Scale		1.07 4
Scale	=	1:27.4

Scale = 1:27.4												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.29 0.14 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	6-0-0 oc purlins. Rigid ceiling directly bracing.	eathing directly applie	bearing pla 2, 67 lb upli 9) This truss is Internationa R802.10.2 10) See Standa Detail for C consult qua	chanical connect te capable of with ff at joint 4 and 1 s designed in acc al Residential Coc and referenced st ard Industry Piggy onnection to base lified building designed	Istanding 6 Ib uplift at ordance w de sections tandard AN vback Trus e truss as a	50 lb uplift at j joint 6. ith the 2018 s R502.11.1 a NSI/TPI 1. s Connection	oint Ind					11.
	(Ib/size) 2=237/8- 6=343/8- Max Horiz 2=-41 (LC Max Uplift 2=-60 (LC (LC 8)	C 13)	LOAD CASE(S) Standard						111	XATE OF	MISSOUTH
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Con Tension 1-2=0/17, 2-3=-93/5 2-6=0/45, 4-6=0/45 3-6=-241/62	npression/Maximum 5, 3-4=-93/39, 4-5=0,	/17							* Ph	NUM	BER U
this design 2) Wind: ASC Vasd=91m II; Exp C; E cantilever I right expos	d roof live loads have E 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er eft and right exposed sed; Lumber DOL=1.6 gned for wind loads in	a (3-second gust) DL=6.0psf; h=25ft; C nvelope) exterior zono ; end vertical left and 0 plate grip DOL=1.6	Cat. e; d							11.	NUEG	

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 7)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

CENS


19198

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN		
MN111	V1	Valley	1	1	Job Reference (optional)	148693651	

2-6-2

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:16:02 ID:0SgPSfqTqwJKU3bHBm37B1yMGa4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

4-11-12

Scal	<u> م</u>	1.23
Scar	e =	1:23

Scale = 1:23								1				
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.35	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.19	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		FT 400/
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 13 lb	FT = 10%
LUMBER				s designed in acc								
TOP CHORD	2x4 SPF No.2			al Residential Co			and					
BOT CHORD	2x4 SPF No.2		R802.10.2	and referenced s	tandard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2		LOAD CASE(S	 Standard 								
BRACING												
TOP CHORD	Structural wood she		ed or									
	5-0-4 oc purlins, ex											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	C									
	bracing.											11
REACTIONS		11-12, 3=193/4-11-1	2								IN OF	MICH
	Max Horiz 1=89 (LC										NE	SS
	Max Uplift 1=-25 (LC									-	A	
FORCES	(lb) - Maximum Con	npression/Maximum								-	XUEG	ANIC : D-
	Tension	0/70								2		A STATE AND A STATE AND A STATE
TOP CHORD BOT CHORD	1-2=-82/54, 2-3=-15 1-3=-31/23	0/73								= *	.: LII	· · · : * =
	1-3=-31/23										1	
NOTES		(0								= 0	NUM	
	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC		Cat							= 5		• []]
	Enclosed; MWFRS (ei									- (C. E-29	/13
	left and right exposed									1	A	
	sed; Lumber DOL=1.6										1.000	ENGN
	igned for wind loads in										, ON	ALLIN
	studs exposed to wind											Un.
	ard Industry Gable En											110
or consult	qualified building desi	igner as per ANSI/TI	PI 1.									
	uires continuous botto										IN XUEGA	ANGLI
4) Gable stud	ds spaced at 4-0-0 oc.										N +	NO
5) This truss	has been designed fo	r a 10.0 psf bottom									I CE	NSE

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf
- 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 7) bearing plate capable of withstanding 25 lb uplift at joint 1 and 47 lb uplift at joint 3.

min November 8,2021 MiTek

16023 Swingley Ridge Rd Chesterfield, MO 63017

NONAL

E

19198

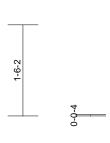
111111

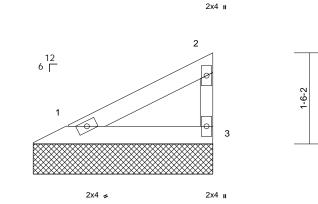
THILD THE STATE

U

5

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	V2	Valley	1	1	Job Reference (optional)	148693652


2-11-12


2-11-12

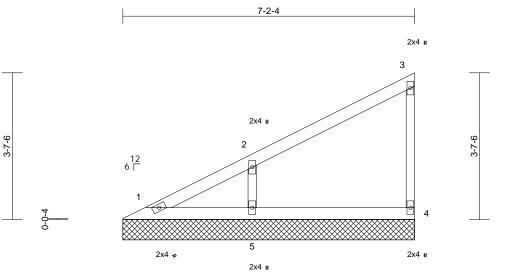
Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:16:02 ID:UfEnf?q5bDRB5DATkUaMjEyMGa3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Seele		1:19.1
Scale	=	1:19.1

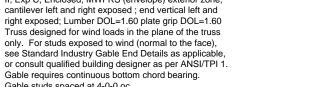
Scale = 1:19.1												
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.09	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 7 lb	FT = 10%
LUMBER			8) This truss is	designed in accor	rdance w	ith the 2018						
TOP CHORD	2x4 SPF No.2			I Residential Code			and					
BOT CHORD	2x4 SPF No.2		R802.10.2 a	and referenced sta	ndard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2		LOAD CASE(S	Standard								
BRACING												
TOP CHORD	Structural wood she	athing directly applie	ed or									
	3-0-4 oc purlins, ex											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	c									
	bracing.											11
REACTIONS	(11-12, 3=103/2-11-1	2								IN OF	Mich
	Max Horiz 1=48 (LC	,									NE	SS
	Max Uplift 1=-13 (LC										A	
FORCES	(lb) - Maximum Com	npression/Maximum										· D -
	Tension									2	> XUEG	
TOP CHORD	1-2=-44/29, 2-3=-80	/39								= *	.: U	U :★=
BOT CHORD	1-3=-16/12										1	
NOTES										= 1		or -
	CE 7-16; Vult=115mph		a /							= 5	NUM	
	nph; TCDL=6.0psf; BC Enclosed; MWFRS (er									-	C. E-29	713 .41-
	left and right exposed									1	A	
	sed; Lumber DOL=1.6										1.05	······································
	igned for wind loads in										I, ON	ALLIN
	studs exposed to wind											TITE.
see Stand	lard Industry Gable En	d Details as applical	ble,									1103
or consult	qualified building desi	gner as per ANSI/TF	기 1.									
	uires continuous botto										IL UEG	ANGLI
	ds spaced at 4-0-0 oc.										NTINE	NSA
	has been designed fo									6		· 0 ·
	load nonconcurrent w									-		A 4
	s has been designed f		Jpst								1 10	100 1 =
	tom chord in all areas all by 2-00-00 wide will		~								. :_ 19	198 : E
3-00-00 la	an by 2-00-00 wide will	in between the botto	JIII								M	


- 2
- 3 4)
- 5
- 6 on the bottom chord in all areas where a re 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 13 lb uplift at joint 1 and 25 lb uplift at joint 3.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

SIONALE 111111 November 8,2021

Job	Truss Type Qty Ply		Lot 111 MN			
MN111	V3	Valley	1	1	Job Reference (optional)	148693653


Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:16:02 ID:UfEnf?q5bDRB5DATkUaMjEyMGa3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-2-4

Scale = 1:28.4

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.05	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 20 lb	FT = 10%
LUMBER			7) Provide	mechanical connect	tion (by oth	ers) of truss to						
TOP CHORD				plate capable of with	nstanding 2	26 lb uplift at jo	int					
BOT CHORD				3 lb uplift at joint 5.								
WEBS	2x3 SPF No.2			s is designed in acc								
OTHERS	2x3 SPF No.2			onal Residential Coo .2 and referenced si			a					
BRACING					lanuaru Ar	NGI/TETT.						
TOP CHORD		eathing directly appli	led or LOAD CASI	(S) Standard								
BOT CHORD	6-0-0 oc purlins, ex	xcept end verticals. y applied or 10-0-0 c										
BOTCHORD	bracing.	y applied of 10-0-0 c										1111.
REACTIONS	0	2-4, 4=141/7-2-4,									Nº OF	MISSI
REACTIONS	5=377/7										NKE	
	Max Horiz 1=135 (L									1	18	
	Max Uplift 4=-26 (L	,								20	XUEG	ANG ??
	Max Grav 1=81 (LC	C 16), 4=141 (LC 1),	5=377							2.	÷ – LI	
	(LC 1)									- *	:	° :★⊒
FORCES	· · /	mpression/Maximum	l							3		- E
TODOUODD	Tension									=	NUM	BER
TOP CHORD BOT CHORD	,										C: E-29	713 :4
WEBS	2-5=-293/163	0/30								1	~~·· -·	
NOTES	2-3293/103										1. So	
	SCE 7-16; Vult=115mpl	h (2 second quist)									IN ON	ALEIN
	mph; TCDL=6.0psf; B(Cat									THE.
	; Enclosed; MWFRS (e											110
	r left and right exposed											
right expo	osed; Lumber DOL=1.6	60 plate grip DOL=1.	.60								IL UEG	ANGLI
	signed for wind loads in										I TOTE	
	r studs exposed to win											0.
	dard Industry Gable Er									1111		A 4
	It qualified building des quires continuous botto		FI I.								10	100 =
	uds spaced at 4-0-0 oc									- 2	19	198 E
	s has been designed for									-	31	<u> </u>
	e load nonconcurrent w		ads.								2	1415
	iss has been designed										- AS AM	VSA A PARV

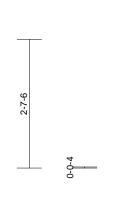
- 4) Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 6)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

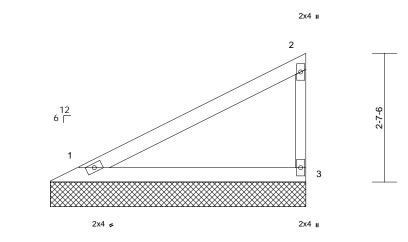
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

SIONALE

minin

November 8,2021


Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	V4	Valley	1	1	Job Reference (optional)	148693654


5-2-4

Wheeler Lumber, Waverly, KS - 66871,

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:16:03 ID:UfEnf?q5bDRB5DATkUaMjEyMGa3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale	<u>۱</u> – ۱	·23 4

Scale = 1:23.4												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.38	Vert(LL)	n/a	-	n/a	999	MT20	197/144
CDL	10.0	Lumber DOL	1.15	BC	0.21	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 13 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 5-2-12 oc purlins, e Bioid exiling directly	xcept end verticals.	Internationa R802.10.2 LOAD CASE(S	s designed in acc al Residential Co and referenced s b) Standard	de sections	s R502.11.1 a						
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	C									
REACTIONS	(lb/size) 1=202/5-2 Max Horiz 1=94 (LC Max Uplift 1=-26 (LC	,									INTE OF	MISSO

5-2-4

FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-86/56, 2-3=-157/77 BOT CHORD 1-3=-32/24

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

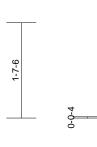
- Gable studs spaced at 4-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 7) bearing plate capable of withstanding 26 lb uplift at joint 1 and 50 lb uplift at joint 3.

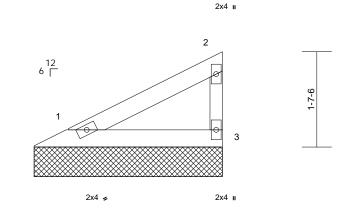
XUEGANG THILL IN LIU NUMBER E-29713 JNAL JUEGANG LICEN LIU CENSED 19198 ONAL F 4411111 November 8,2021

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	V5	Valley	1	1	Job Reference (optional)	148693655

3-2-4


3-2-4


Wheeler Lumber, Waverly, KS - 66871,

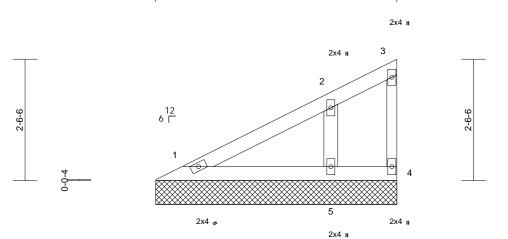
Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:16:03 ID:UfEnf?q5bDRB5DATkUaMjEyMGa3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:19.5

Scale = 1.19.5												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.11	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 8 lb	FT = 10%
LUMBER			8) This truss is	s designed in acc	ordance w	ith the 2018						
TOP CHORD	2x4 SPF No.2			al Residential Coc			and					
BOT CHORD	2x4 SPF No.2		R802.10.2	and referenced st	tandard AN	NSI/TPI 1.						
WEBS	2x3 SPF No.2		LOAD CASE(S) Standard								
BRACING												
TOP CHORD	Structural wood she		ed or									
BOT CHORD	3-2-12 oc purlins, e Rigid ceiling directly		C									
BOT ONORD	bracing.		0									
REACTIONS	0	2-4, 3=112/3-2-4										1947
	Max Horiz 1=52 (LC	,									NE OF	MISS
	Max Uplift 1=-14 (LC	C 8), 3=-28 (LC 8)								1	ALT.	0,4
FORCES	(lb) - Maximum Corr	pression/Maximum								5	<u> </u>	
	Tension									-		GANG
TOP CHORD	1-2=-48/31, 2-3=-87	/43								F.+	./ L	IU 斗
BOT CHORD	1-3=-18/14										÷	
NOTES		(a								= 0	- NU IN	
	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC		Cat							:5		MBER
	Enclosed; MWFRS (er									-1	O. E-2	9713
	left and right exposed									1	A	-
	sed; Lumber DOL=1.6										1,SION	ENI
2) Truss des	igned for wind loads in	the plane of the tru	SS								- I ON	ALLIN
	studs exposed to wind											1003
	lard Industry Gable En										111	MILLE.
	qualified building desi uires continuous botto		-11.								I'LUEG	ANG
	ds spaced at 4-0-0 oc.										1 TULO	
	has been designed fo									3	. CF	NSEN.
	load nonconcurrent wi		ds.							-		
	s has been designed f									-	1	1 - E
	tom chord in all areas										: 19	198 E
	all by 2-00-00 wide will	fit between the botto	m							1	S:1 -	100 100
	any other members.	(hu others) of trues t								-	2	「山」
Provide m	echanical connection	(DV OTREIS) OF TRUSS T	0								- 0/1-	

- 6 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 14 lb uplift at joint 1 and 28 lb uplift at joint 3.


MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

SIONALES INNAL SIN November 8,2021

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN				
MN111	V6	Valley	1	1	Job Reference (optional)	148693656			

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:16:03 ID:UfEnf?q5bDRB5DATkUaMjEyMGa3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

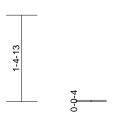
5-0-4

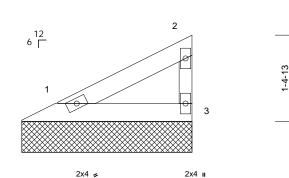
5-0-4

Scale = 1:24

CLL (cod) 25.0 Piate Grip DOL 1.15 TC 0.12 0.01 1.00 1.15 BC 0.06 Wert(LL) n/a 999 MT20 197/144 CDL 0.01 1.00 Code IRC2018/TP12014 BC 0.06 Wert(LL) n/a n/a n/a 999 CDL 1.00 Code IRC2018/TP12014 Matrix-P Wert(LL) n/a n	Scale = 1.24												
CLL (rod) 25.0 Plate Grip DOL 1.15 TC 0.12 Ver(TL) n/a -n/a 999 MT20 1971/44 CDL 10.0 Lumber DOL 1.15 BC 0.0 Ver(TL) n/a -n/a 999 MT20 1971/44 CDL 10.0 Rep Stress Incr YES WeIL Weil (n/c) NUMBER n/a n/a <th>Loading</th> <th>(psf)</th> <th>Spacing</th> <th>2-0-0</th> <th>CSI</th> <th></th> <th>DEFL</th> <th>in</th> <th>(loc)</th> <th>l/defl</th> <th>L/d</th> <th>PLATES</th> <th>GRIP</th>	Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 0.0° Rep Stress Incr YES Wile VerS 0.0 Horiz(TL) 0.00 4 n/a n/a Weight: 14 lb FT = 10% MBER VCCDL 2:4 SPF No.2 CO CHORD 1:5:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:	TCLL (roof)	u ,	1 · ·	1.15	тс	0.12	Vert(LL)	n/a	-	n/a	999	MT20	197/144
CLL 0.0° Rep Stress Incr YES Wile VerS 0.0 Horiz(TL) 0.00 4 n/a n/a Weight: 14 lb FT = 10% MBER VCCDL 2:4 SPF No.2 CO CHORD 1:5:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:	TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(TL)	n/a	-	n/a	999		
CDL 10.0 Code IRC2018/TPI2014 Matrix-P Weight: 14 lb FT = 10% UMBER DO CHORD 2x4 SPF No.2 7 Provide mechanical connection (by others) of trusts to bearing plate capable of withstanding 17 lb uplift at joint 4 and 84 lb uplift at joint 5. 7 Provide mechanical connection (by others) of trusts to bearing plate capable of withstanding 17 lb uplift at joint 4 and 84 lb uplift at joint 5. PG CHORD FTERS 2x4 SPF No.2 7 Provide mechanical connection (by others) of trusts to bearing plate capable of withstanding 17 lb uplift at joint 5. OP CHORD FTERS 2x4 SPF No.2 8 This trusts is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/TP11. DAD CASE(S) Standard EACTIONS (lb)-Maximum Tension DP CHORD PC CHORD 12-ex8657, 2-5-se5925, 3-4=-12/15 OT CHORD 12-ex8657, 2-5-se5925, 3-4=-12/15 OT CHORD 12-ex8657, 2-5-se5925, 3-4=-12/15 OT CHORD 12-ex8657, 2-5-se5925, 3-4=-12/15 OT CHORD 11-2e-8219/12Z OTES IVMind: ASEC FT-16; Vulk=115mph (3-second gust) Yasad-91mph; TCDL=6.0pst; BcDL=6.0pst; BcDL	BCLL				WB				4		n/a		
DP CHORD 2x4 SPF No.2 DF CHORD 2x4 SPF No.2 DF CHORD 2x4 SPF No.2 DF CHORD 3x4 SPF No.2 DF CHORD 5x2 4x SPF No.2 BT Instruss is designed or withstanding 17 ib uplift at joint 4 and 84 buplift at joint 4 and 84 buplift at joint 4 and 84 buplift at joint 5. 2x3 SPF No.2 BT Instruss is designed or accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP11. LOAD CASE(S) Standard S-0.12 oc purifies, except end verticals. CT CHORD 7. Racing. EACTIONS (Ib/size) 1=112/5-0.4, 4=-4/5-0.4, 5=282/5-0.4 Max Horz 1=90 (LC 7) Max Uplift 4=171 (LC 1), 4=12 (LC 8), 5=282 (LC 1) ORCES (b) - Maximum Compression/Maximum Tension DF CHORD 1-2-e68/7, 2-3-59/25, 3-4=-12/15 OT CHORD 0-5-31/23, 45=-31/23 (EBS 2-5=-219/122 OTES UNdr ASCE 7-16; Vult=115mph (3-second gust) Vasd-91mph; TCDL=6.dpd; BCDL=6.0pd; h=28t; Cat. I; Exp C; Enclosed: MWFR ScDL=6.0pd; h=28t; Cat. I; Exp C; Enclosed: MWFR ScDL=16.0pd; h=28t; Cat. I; Exp C; Enclosed: MWFR ScDL=6.0pd; h=28t; Cat. I	BCDL											Weight: 14 lb	FT = 10%
DP CHORD 2x4 SPF No.2 DF CHORD 2x4 SPF No.2 DF CHORD 2x4 SPF No.2 DF CHORD 3x4 SPF No.2 DF CHORD 5x2 4x SPF No.2 BT Instruss is designed or withstanding 17 ib uplift at joint 4 and 84 buplift at joint 4 and 84 buplift at joint 4 and 84 buplift at joint 5. 2x3 SPF No.2 BT Instruss is designed or accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP11. LOAD CASE(S) Standard S-0.12 oc purifies, except end verticals. CT CHORD 7. Racing. EACTIONS (Ib/size) 1=112/5-0.4, 4=-4/5-0.4, 5=282/5-0.4 Max Horz 1=90 (LC 7) Max Uplift 4=171 (LC 1), 4=12 (LC 8), 5=282 (LC 1) ORCES (b) - Maximum Compression/Maximum Tension DF CHORD 1-2-e68/7, 2-3-59/25, 3-4=-12/15 OT CHORD 0-5-31/23, 45=-31/23 (EBS 2-5=-219/122 OTES UNdr ASCE 7-16; Vult=115mph (3-second gust) Vasd-91mph; TCDL=6.dpd; BCDL=6.0pd; h=28t; Cat. I; Exp C; Enclosed: MWFR ScDL=6.0pd; h=28t; Cat. I; Exp C; Enclosed: MWFR ScDL=16.0pd; h=28t; Cat. I; Exp C; Enclosed: MWFR ScDL=6.0pd; h=28t; Cat. I			•	7) Descride es e	•	in a day and							-
 d and 84 b upfil at joint 5. a and 84 b upfil at joint 5. b and a and 84 b upfil at joint 5. b and a and 84 b upfil at joint 5. b and a and 84 b upfil at joint 5. b and a and 84 b upfil at joint 5. b and a and 84 b upfil at joint 5. b and a and 84 b upfil at joint 5. b and a and 84 b upfil at joint 5. c and a and 84 b upfil at joint 5. c and a and 84 b upfil at joint 5. c and a and 84 b upfil at joint 5. c and a and 84 b upfil at joint 5. c and a and 84 b upfil at joint 5. c and a and 84 b upfil at joint 5. c and a and 84 b upfil at joint 5. c and a and 84 b upfil at joint 5. c and a and 84 b upfil at joint 5. c and a and 84 b upfil at joint 5. c and a and 84 b upfil at joint 5. c and a a													
 Items 2x3 SPF No.2 B) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard LOAD CASE(S) Stan						istanding i	7 ib upilit at	joint					
THERS 2x4 SPF No.2 International Residential Code sections R502.11.1 and R802.10.2 RACING Structural wood sheathing directly applied or S-0-12 oc purins, example and referenced standard ANSI/TPI 1. DOP CHOR Structural wood sheathing directly applied or S-0-12 oc purins, example and referenced standard ANSI/TPI 1. CORD Nickize 111/25-0-4, 4=-4/5-0-4, 5=282/5-0-4 Max Upilt 4=-17 (LC 7), 5=-84 (LC 8), 5=282 (C 1) Max Upilt 4=-17 (LC 7), 5=-84 (LC 8), 5=282 (C 1) Max Upilt 4=-17 (LC 7), 5=-84 (LC 8), 5=282 (C 1) (LC 1) ORCES (Lb) - Maximum Compression/Maximum Tersion OP CHORD 1-2-e887, 2-3=-59/25, 3-4=-12/15 OT CHORD 1-5-31/23, 4-5=-31/23 Vitte: SCE 7-16; Vull=115mph (3-second gust) Yasd=94 impk (Solute) dollag tip DOL=1.80 1-1.80 plate grip DOL=1.80 1-1.80 plate grip DOL=1.80 1-1.80 plate grip DOL=1.80 plate grip DOL=1.80 1-1.80 plate grip and not het proposed: end wrelice labals as applicable, or consult qualified buil						ordonoo w	ith the 2019						
RACING DP CHOR DP CHOR DP CHOR DP CHOR DP CHOR DF CHOR EACTIONS (Ib/size) 1=112/5-0-4, 4=-4/5-0-4, 5=282/5-0-4 Max Horiz 1=90 (LC 7) Max Upilit 4=-17 (LC 7), 5=-84 (LC 8) Max Grav 1=112 (LC 7), 5=-84 (LC 8) Max Grav 1=120 (LC 7) DRCES (Ib) - Maximum Compression/Maximum Tension DP CHORD 1-5=-31/23, 4-5=-31/23 TES 2-5=-219/122 OTES Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=94 mph; TCDL=6.0pst; BCDL=6.0pst; h=-25t; Cat. II; Exp C; Enclosed; MW/FRS (envelope) exterior zone; cantilever let and right exposed; end vertical left and right exposed; Lumber DDL=1.60 plat grip DDL=1.60 Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard forwind loads and plat grip DDL=1.60 This truss has been designed for a 10.0 gs bottom chord link lead nonconcurrent with any other live loads. This truss has been designed for a 10.0 gs bottom chord link up other members.								and					
 LOAD CASE(S) Standard DO C HORD Structural wood sheathing directly applied or 5-0-12 co purlins, except end verticals. CTORD Rigid ceiling directly applied to 10-0-0 co bracing. EACTIONS (Ib/size) 1=112/5-0-4, 4=-4/5-0-4, 5=-282/2/5-0-4 Max Horiz 1=90 (LC 7), 5=-84 (LC 8), 5=-282 (LC 1) Max Grav 1=12 (LC 1), 4=12 (LC 8), 5=-282 (LC 1) Max Grav 1=12 (LC 1), 4=12 (LC 8), 5=-282 (LC 1) ORCES (Ib) - Maximum Compression/Maximum Tension OP CHORD 1-2=-88/57, 2-3=-59/25, 3-4=-12/15 OT CHORD 1-2=-88/57, 2-3=-59/25, 3-4=-12/15 OT CHORD 1-5=-31/23 EES 2.5=-219/122 OTES Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasi-91 mph; TCDL=6.0psf; BCDL=6.0psf; h=-25f; Cat. 11; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; 1 end vertical left and right		2X4 3PF NU.2						anu					
5-0-12 oc purlins, except and verticals. OT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. EACTIONS (Ib/size) 1=112/5-0-4, 4=-4/5-0-4, 5=282/5-0-4 Max Horiz 1=90 (LC 7) Max Uplit 4=-17 (LC 7), 5=-84 (LC 8) Max Grav 1=112 (LC 1), 4=12 (LC 8), 5=282 (LC 1) ORCES (Ib) - Maximum Compression/Maximum Tension OP CHORD 1=5=-31/23, 45=-31/23 (EBS 2=5=-2191/22 OTES Wind: ASCE 7-16; Vull=115mph (3-second gust) Vasd=91rmph; TCDL=6.0pst; BCDL=6.0pst; h=25ft; Cat. II; Exp C; Enclosed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSITPI 1. Gable reguires continuous bottom chord hearing. Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 p5 bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf n the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will it between the bottom chord all w other members.			a a thing a line at he ampli			tarraara / ti							
OT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. EACTIONS (Ib/size) 1=112/5-0-4, 4=-4/5-0-4, 5=282/5-0-4 Max Horiz 1=90 (LC 7) Max Uplit 4=-17 (LC 7), 5=-84 (LC 8) Max Grav 1=112 (LC 1), 4=12 (LC 8), 5=282 (LC 1) ORCES (Ib) - Maximum Compression/Maximum Tension OP CHORD 1-2=-80/57, 2-3=-59/25, 3-4=-12/15 OT CHORD 1-2=-80/57, 2-3=-59/25, 3-4=-12/15 OT CHORD 1-3=-41/23, 4-55=-31/23 (EBS 2-5=-219/122 OTES Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. (I; Exp C; Enclosed; MWTRS (envelope) exterior zone; cantilever left and right exposed : end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANS/TPT 1. Gable requires continuous bottom chord bearing. Gable studes spaced to 2-00 oc. 191998 * This truss has been designed for a 10.0 psf bottom chord in le and ny other live loads.	I OP CHORD			• • •) Stanuaru								
bracing. EACTIONS (Ib/size) 1=112/5-0-4, 4=-4/5-0-4, 5=282/5-0-4 Max Horiz 1=90 (LC 7) Max Ku Dift 4=-17 (LC 7), 5=-84 (LC 8) Max Grav 1=112 (LC 1), 4=12 (LC 8), 5=-282 (LC 1) (L0 1) ORCES (Ib) - Maximum Compression/Maximum Tension Tension OP CHORD 1-2=-68/67, 2-359/25, 3-4=-12/15 OT CHORD 1-5=-31/23, 4-5=-31/23 EBS 2-5=-219/122 OTES Wind: ASCE 7-16; Vull=115mph (3-second gust) Vasd=91mph; TCDL=6.0ps; BCDL=6.0ps; h=25ft; Cat. II; Exp (2; Enclosed; MWFR8 (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; under POL=1.60 plate sing pi DCL=1.60 Truss designed for wind loads in the plane of the truss only. For stude sexposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. Gable estuds spaced to 2-0-0 cc. This truss has been designed for a 10.0 psf bottom chord hearing. Gable studs spaced to 12-0-0 ox. * This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-06-00 tail by 2-00-00 wide will it between the bottom chord in all areas where a rectangle 3-06-00 tail by 2-00-00 wide will it between the bottom chord and all areas where a rectangle 3-06-00 tail by 2-00-00 wide will it between the bottom chord and all areas where a rectangle 3-06-00 tail by 2-00-00 wide will it between t													
EACTIONS (Ib/size) 1=112/5-0-4, 4=4/5-0-4, 5=282/5-0-4 Max Horiz 1=90 (LC 7) Max Uplit 4=-17 (LC 7), 5=-84 (LC 8) Max Grav 1=112 (LC 1), 4=12 (LC 8), 5=282 (LC 1) ORCES (Ib) - Maximum Compression/Maximum Tension OP CHORD 1-2=-68/57, 2-3=-59/25, 3-4=-12/15 OT CHORD 1-2=-60,95f; BCDL=6.0psf; h=-25f; Cat. IV; Exp C: Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; = dot wrical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studies exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANS/ITPI 1. O Gable requires continuous bottom chord bearing. Gable studs spaced at 2-0-0 c. 1919 98 Gable studs spaced at 2-0-0 c.			ly applied of 10-0-0 d	C									1117
5=282/5-0-4 Max Horiz 1=90 (LC 7) Max Upift 4=-17 (LC 7), 5=-84 (LC 8) Max Grav 1=112 (LC 1), 4=12 (LC 8), 5=282 (LC 1) ORCES (lb) - Maximum Compression/Maximum Tension DP CHORD 1-2s-68/75, 2-3=-59/25, 3-4=-12/15 OT CHORD 1-2s-68/75, 2-3=-59/25, 3-4=-12/15 OT CHORD 1-5a-31/23, 4-5=31/23 (EBS 2-5=-219/122 OTES 000,041 (E1 - 60,051; h=-251; Cat. (light exposed; Lumber DOL=1.60,051; h=-251; Cat. (light exposed; Lumber DOL=1.60,051; h=-251; Cat. (light exposed; Lumber DOL=1.60,051; h=-251; Cat. (light exposed; Lumber DOL=1.60 patine of the truss or consult ughted building designer as per ANS/ITPI 1. Gable requires continuous bottom chord bearing. 1919 98 Gable studs spaced at 2-0-0 c. 1919 98 This truss has been designed for a 10.0 pst bottom chord live load nonconcurrent with any other live loads. 191 98 * This truss has been designed for a 10.0 pst bottom chord null areas where a rectangle 3-06-00 wild wild if the buttom chord and ny other members.	REACTIONS	5	-0-4, 4=-4/5-0-4.									NOF	MISSI
Max Grav 1=112 (LC 1), 4=12 (LC 8), 5=84 (LC 8) Max Grav 1=112 (LC 1), 4=12 (LC 8), 5=282 (LC 1) ORCES (b) - Maximum Compression/Maximum Tension OP CHORD 1-2=-68/57, 2-3=-59/25, 3-4=-12/15 OT CHORD 1-5=-31/23, 4-5=-31/23 /EBS 2-5=-219/122 OTES Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BcDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWRF8 (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. Sable studes spaced at 2-00 oc. This truss has been designed for a 10.0 psf bottom chord ine load nonconcurrent with any other live loads. This truss has been designed for a 10.0 psf bottom chord and any other members.												NKE	
Max Grav 1=112 (LC 1), 4=12 (LC 8), 5=282 (LC 1) NUMBER E-29713 Sonal EBS 2-5=-219/122 OTES NUMKERS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed ; clouder duritical left and right exposed ; unber DOL=1.60 pit second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II: Exp C; Enclosed: MW/RS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed ; unber DOL=1.60 pit second gust) See Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANS/TP1 1. Gable requires continuous bottom chord bearing. Gable studies spaced to 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a 10.0 psf bottom chord and any other members.		Max Horiz 1=90 (L	C 7)								~	18	
Max Grav 1=112 (LC 1), 4=12 (LC 8), 5=282 (LC 1) NUMBER E-29713 Sonal EBS 2-5=-219/122 OTES NUMKERS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed ; clouder duritical left and right exposed ; unber DOL=1.60 pit second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II: Exp C; Enclosed: MW/RS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed ; unber DOL=1.60 pit second gust) See Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANS/TP1 1. Gable requires continuous bottom chord bearing. Gable studies spaced to 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a 10.0 psf bottom chord and any other members.		(,								20	XUEG	ANG ??
(LC 1) Low Maximum Compression/Maximum Tension OPC CHORD 1-2=-68/57, 2-3=-59/25, 3-4=-12/15 OT CHORD 1-5=-31/23, 4-5=-31/23 (EBS 2-5=-219/122 OTES) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; lumber DOL=1.60 plate grip DOL=1.60) Truss designed for wind loads in the plane of the truss only. For stude sexposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. Gable requires continuous bottom with any other live loads. * This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.				=282							-		
Tension OP CHORD 1:2=-68/57, 2:3=-59/25, 3:4=-12/15 OT CHORD 1:5=-31/23, 4:5=-31/23 (EBS 2:5=-219/122 OTES Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; cumber DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 2:0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3:06-00 tall by 2:00-00 wide will fit between the bottom chord and any other members.			,, (,,								= *	: LI	·
OP CHORD 1-2=-68/57, 2-3=-59/25, 3-4=-12/15 OT CHORD 1-5=-31/23, 4-5=-31/23 (EBS 2-5=-219/122 OTES 0NAL E Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; convertical left and right exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord bearing. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tail by 2-00-00 wide will fit between the bottom chord and any other members.	FORCES		mpression/Maximum									1	
OT CHORD 1-5=-31/23, 4-5=-31/23 (EBS 2-5=-219/122 OTES Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=-25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 all bb 2-00-00 wide will fit between the bottom chord and any other members.											= 7	NUM	BER :
OT CHORD 1.5=-31/23, 4.5=-31/23 /EBS 2-5=-219/122 OTES Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0pst; BCDL=6.0pst; DcL=6.0pst; Dc												F-29	713 :00
OTES Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a 10.0 psf bottom chord and any other members.	BOT CHORD	,	31/23								-	A	
 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 	WEBS	2-5=-219/122									1	10.	G
 Wind: ASCE 7-16; Vuli=115mpn (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 	NOTES											1,SONI	I EPIN
II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.												1111	in the second se
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 													
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 													1111.
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 												11 EGA	ANG
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 												1 TULO	
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 												. CE	NSF
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 											2		10
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 												1 A A A A A A A A A A A A A A A A A A A	
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 											-	10	100
 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 												19	130
chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.											-		<u>с</u> .
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 				ads.							1	Xh	
3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.	6) * This trus	s has been designed	for a live load of 20.									-17S 17VV	ISAS. ACA
chord and any other members.												1,05,0	ENGI
			Il fit between the bott	om								UN ON	ALL
November 8.2021	chord and	I any other members.											
												Novemb	er 8,2021

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	V7	Valley	1	1	Job Reference (optional)	148693657


2-9-2


Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:16:03 ID:UfEnf?q5bDRB5DATkUaMjEyMGa3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 🛚

Page: 1

2-9-2

Scale = 1:18.7

Scale = 1.16.7												
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 7 lb	FT = 10%
LUMBER			8) This truss is	s designed in acco	ordance w	ith the 2018						
TOP CHORD	2x4 SPF No.2		Internationa	al Residential Cod	le sections	s R502.11.1 a	and					
BOT CHORD	2x4 SPF No.2		R802.10.2	and referenced st	andard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2		LOAD CASE(S) Standard								
BRACING												
TOP CHORD	Structural wood she	athing directly applie	ed or									
	2-9-10 oc purlins, e											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	с									
	bracing.											115
REACTIONS	· · ·	2, 3=93/2-9-2									IN OF	MICH
	Max Horiz 1=43 (LC	,									NE	NISS /
	Max Uplift 1=-12 (LC									1	A	
FORCES	(lb) - Maximum Com	pression/Maximum								2		: 7:
	Tension	(a -								2		GANG
TOP CHORD		/35								= *	.i U	U :+=
BOT CHORD	1-3=-15/11										÷	
NOTES										= 1	1	
	CE 7-16; Vult=115mph		a <i>i</i>							-5	NUN	
	nph; TCDL=6.0psf; BC Enclosed; MWFRS (er									- (O. E-29	713 .41
	left and right exposed									1	A	
	sed; Lumber DOL=1.6										1.000	
	signed for wind loads in										IN ON	ALEIN
	studs exposed to wind											une.
	lard Industry Gable En											
or consult	qualified building desig	gner as per ANSI/TF	PI 1.								, un	
3) Gable req	uires continuous botto	m chord bearing.									IN VEG	ANGL
	ds spaced at 4-0-0 oc.										TUEG	NO
	has been designed for										, ille	NOED .
	load nonconcurrent wi									2		1 1 2
	ss has been designed f		Opsf							-		
on the bot	ttom chord in all areas	where a rectangle									: 19	198 : =

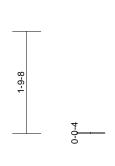
- 2

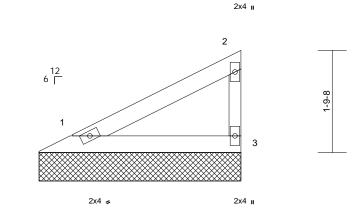
- 5
- 6 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 1 and 23 lb uplift at joint 3.

SIONALE IN ONAL EN November 8,2021

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN				
MN111	V8	Valley	1	1	Job Reference (optional)	148693658			

3-6-7


3-6-7


Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:16:03 ID:UfEnf?q5bDRB5DATkUaMjEyMGa3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:20.2
---------	--------

Scale = 1:20.2												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.14	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 9 lb	FT = 10%
LUMBER			8) This truss is	designed in acco	ordance w	ith the 2018						
TOP CHORD	2x4 SPF No.2		Internationa	I Residential Code	e sections	8 R502.11.1 a	nd					
BOT CHORD	2x4 SPF No.2		R802.10.2 a	and referenced sta	andard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2		LOAD CASE(S	Standard								
BRACING												
TOP CHORD	Structural wood she		ed or									
	3-6-15 oc purlins, e											
BOT CHORD	0 0 7	applied or 10-0-0 oc)									
	bracing.											111.
REACTIONS		6-7, 3=128/3-6-7									11 OF	MIG
	Max Horiz 1=59 (LC	,									NE	Sol
	Max Uplift 1=-16 (LC									- 5	17	
FORCES	(lb) - Maximum Corr Tension	pression/Maximum								50	XUEC	DANG .P
TOP CHORD	1-2=-54/36, 2-3=-10	0/48								-		
BOT CHORD		0/40								= *	e -	·
NOTES	10 20,10									2	:	
	CE 7-16; Vult=115mph	(3-second qust)								- 7	NUN	IBER : C -
	nph; TCDL=6.0psf; BC		Cat							-7		9713
	Enclosed; MWFRS (er										A	
cantilever	left and right exposed	; end vertical left and	d É							1	£	G
	sed; Lumber DOL=1.6										I.S/ON	AL ENIN
	signed for wind loads in										1111	ation a
	studs exposed to wind											10.
	dard Industry Gable En											
	uires continuous botto		11.								IN UEG	ANG
	ds spaced at 4-0-0 oc.	in chora bearing.									1 ture	
	has been designed for	r a 10.0 psf bottom								2	. CE	NSE
	load nonconcurrent wi		ds.							-		
	ss has been designed f									-	1.1	1
	ttom chord in all areas									- 2	19	198 E
	all by 2-00-00 wide will	fit between the botto	m							1	A 1	1.50
	any other members.									-	3	N 4 2
Provide m	nechanical connection	(by others) of truss to	0								- OXA	A FRAS

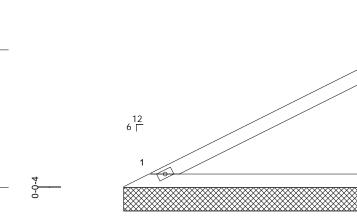
- This truss has been designed for a 10.0 psf bottom 5)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 7) bearing plate capable of withstanding 16 lb uplift at joint 1 and 31 lb uplift at joint 3.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

ONAL E

4411111 November 8,2021

J	ob	Truss	Truss Type	Qty	Ply Lot 111 MN		
Ν	/IN111	V9	Valley	1	1	Job Reference (optional)	148693659


5-10-7

5-10-7

Wheeler Lumber, Waverly, KS - 66871,

2-11-8

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries. Inc. Fri Nov 05 14:16:04 ID:UfEnf?q5bDRB5DATkUaMjEyMGa3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2x4 ≠

2x4 II

2x4 II

3

2-11-8

2

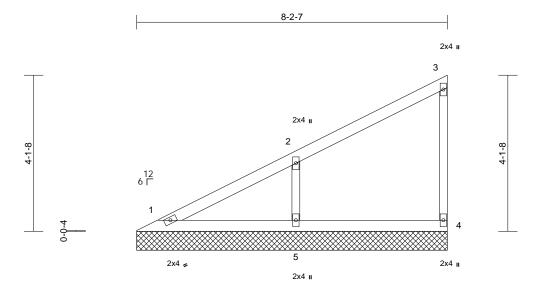
Scale -	= 1:24.7

Scale = 1.24.7												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.52	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.28	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 15 lb	FT = 10%
UMBER			8) This truss i	s designed in ac	cordance w	ith the 2018						
TOP CHORD	2x4 SPF No.2			al Residential Co			and					
BOT CHORD	2x4 SPF No.2		R802.10.2	and referenced	standard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2		LOAD CASE(S	Standard								
BRACING			(-	,								
TOP CHORD	Structural wood she	athing directly appli	ed or									
	5-10-15 oc purlins,											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	с									
	bracing.											
REACTIONS	(lb/size) 1=233/5-7	10-7, 3=233/5-10-7										1. Contraction
	Max Horiz 1=108 (LC	C 5)									NE OF	MISS
	Max Uplift 1=-30 (LC	C 8), 3=-57 (LC 8)								1	Xr.	0/1
FORCES	(lb) - Maximum Corr	pression/Maximum								-	74	
	Tension									20	XUEG	ANG
TOP CHORD	1-2=-99/65, 2-3=-18	1/88								= .	i LI	U
BOT CHORD	1-3=-37/28									- 🛪		· · · · ·
NOTES												
	CE 7-16; Vult=115mph	(3-second aust)								= 7	NUM	BER 🥰
	nph; TCDL=6.0psf; BC		Cat.							-7	E-29	• 41.
	Enclosed; MWFRS (er									-	A	
										_		

cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face),

- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 7) bearing plate capable of withstanding 30 lb uplift at joint 1 and 57 lb uplift at joint 3.

6 VAL IVEGANG UEGANG LIU JG SIONALES IN ONAL EN


November 8,2021

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	V10	Valley	1	1	Job Reference (optional)	148693660

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:16:04 ID:0SgPSfqTqwJKU3bHBm37B1yMGa4-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:30.4

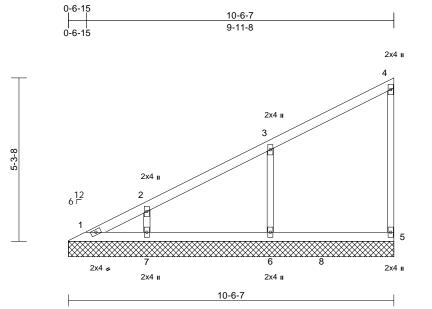
	· · · · ·												
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.23	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.12	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.06	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-P							Weight: 23 lb	FT = 10%
LUMBER			7)	Provide me	chanical conne	ction (by oth	ers) of truss	to					
TOP CHORD	2x4 SPF No.2		- ,		te capable of wi								
BOT CHORD	2x4 SPF No.2			4 and 127 I	b uplift at joint 5			•					
WEBS	2x3 SPF No.2		8)	This truss is	s designed in ad	cordance w	ith the 2018						
OTHERS	2x3 SPF No.2			Internationa	al Residential C	ode sections	R502.11.1 a	and					
BRACING				R802.10.2	and referenced	standard AN	ISI/TPI 1.						
TOP CHORD	Structural wood she	eathing directly applie	ed or LC	DAD CASE(S) Standard								
	6-0-0 oc purlins, ex												
BOT CHORD	Rigid ceiling directl	y applied or 10-0-0 o	с										
	bracing.												Mar.
REACTIONS	(lb/size) 1=119/8-	2-7, 4=135/8-2-7,										Nº OF	MISS
	5=423/8-	2-7										NXE	
	Max Horiz 1=157 (L	.C 5)									~	Xr	-
	Max Uplift 4=-26 (L	C 5), 5=-127 (LC 8)									20	S: XUEG	ANG
	Max Grav 1=125 (L	C 16), 4=135 (LC 1),	,								-	. II	
	5=423 (L	.C 1)									= *		° :★⊒
FORCES	(lb) - Maximum Cor	npression/Maximum									2	:	
	Tension										- 7	NUM	BEB : C-
TOP CHORD	1-2=-127/74, 2-3=-	115/44, 3-4=-105/44									-5		• 41
	1	2/44									- 1	C: E-29	110 .41

8-2-7

BOT CHORD 1-5=-53/41, 4-5=-53/41 WEBS 2-5=-329/183

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.



Job	Truss	Truss Type	Qty Ply Lot 111 MN			
MN111	V11	Valley	1	1	Job Reference (optional)	148693661

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:16:04 ID:0SgPSfqTqwJKU3bHBm37B1yMGa4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

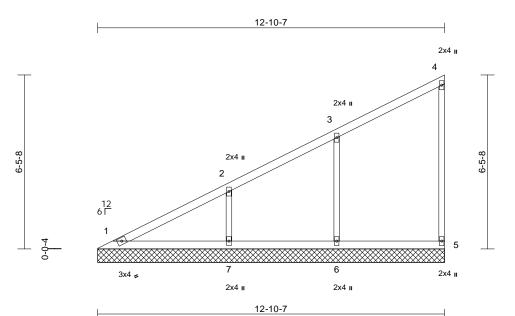
Scale = 1:37.3

Scale = 1.57.	5											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI20	CSI TC BC WB Matrix-S	0.22 0.13 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 31 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORE BOT CHORE WEBS OTHERS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (lb/size) 1=46/10-6 6=405/10 Max Horiz 1=205 (LC Max Uplift 5=-32 (LC (LC 8) Max Grav 1=93 (LC 	cept end verticals. applied or 10-0-0 oc 6-7, 5=140/10-6-7, 6-7, 7=296/10-6-7 C 5), 6=-121 (LC 8), 7	on th 3:06 chorr 7) Prov bear 5, 12 8) This Inter R802 LOAD C. 7=-89	s truss has been designe e bottom chord in all are 00 tall by 2-00-00 wide v d and any other member ide mechanical connectii ng plate capable of with 1 lb uplift at joint 6 and 8 truss is designed in acco national Residential Cod 2.10.2 and referenced sta ASE(S) Standard	eas where will fit betw rs, with BC on (by oth standing 3 39 lb uplift ordance w le sections	a rectangle veen the botto DL = 10.0psf. ers) of truss to 2 lb uplift at joint 7. ith the 2018 is R502.11.1 a	om o pint				XUEG	
FORCES	(lb) - Maximum Com Tension									EPH	NUM E-29	• [] []
TOP CHORE	4-5=-108/44	, ,								1		GINI
WEBS	3-6=-315/167, 2-7=-										I,ON	IL ENTIT
 Vasd=91 II; Exp C cantilever right exp 2) Truss de only. Fo see Star or consu 3) Gable re 	SCE 7-16; Vult=115mph Imph; TCDL=6.0psf; BC ; Enclosed; MWFRS (er er left and right exposed losed; Lumber DOL=1.6 esigned for wind loads in r studs exposed to wind indard Industry Gable En lt qualified building desi quires continuous botto uds spaced at 4-0-0 oc.	DL=6.0psf; h=25ft; C nvelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 the plane of the trus 1 (normal to the face) d Details as applicat gner as per ANSI/TF	ne; d 60 ss , ble,							and the second s	Lice BR	NG LIU NSE0 198

studs spaced at 4-0-0 or 4

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


SIONAL

IN IN IN IN November 8,2021

E

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	V12	Valley	1	1	Job Reference (optional)	148693662

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:16:04 ID:0SgPSfqTqwJKU3bHBm37B1yMGa4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

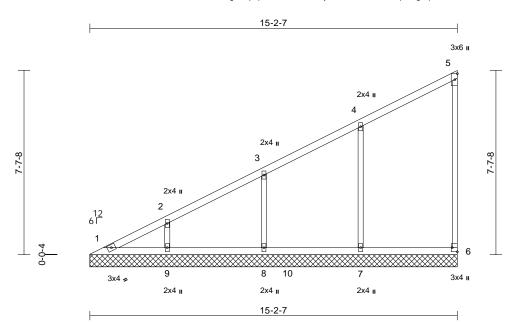
Scale = 1:42.8

Scale = 1:42.8												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.33	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.15	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.13	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 40 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.		on the bot 3-06-00 ta chord and 7) Provide m bearing pl 5, 113 lb u 8) This truss c Internation R802.10.2	s has been designe tom chord in all are Il by 2-00-00 wide v any other member echanical connecti ate capable of withs plift at joint 6 and 1 is designed in accc hal Residential Cod and referenced sta	eas where will fit betw s, with BC on (by oth standing 3 126 lb uplit ordance w e sections	a rectangle veen the botto DL = 10.0psf ers) of truss t 7 lb uplift at j t at joint 7. ith the 2018 R502.11.1 a	om 5. o oint				mu	900.
	6=376/12 Max Horiz 1=254 (Lu Max Uplift 5=-37 (LC 7=-126 (L Max Grav 1=203 (Lu	C 5), 6=-113 (LC 8), C 8)	7	S) Stanuaru						·····	S XUEG	
FORCES	(lb) - Maximum Con Tension	pression/Maximum								3	NUM	• 41.
TOP CHORD	1-2=-210/84, 2-3=-1 4-5=-112/47	63/71, 3-4=-138/65,									O. E-29	-
BOT CHORD WEBS	1-7=-86/66, 6-7=-86 3-6=-296/152, 2-7=-	,									SS/ON	ALENUI
NOTES											100	TDD.
Vasd=91m II; Exp C; E cantilever I right expos 2) Truss desi only. For s see Standa or consult	CE 7-16; Vult=115mpf ph; TCDL=6.0psf; BC Enclosed; MWFRS (el left and right exposed sed; Lumber DOL=1.6 gned for wind loads in studs exposed to wind ard Industry Gable En qualified building desi uirres continuous botto	DL=6.0psf; h=25ft; (hvelope) exterior zor ; end vertical left an 0 plate grip DOL=1. the plane of the trus 1 (normal to the face) d Details as applicat gner as per ANSI/TF	ne; d 60 ss), ole,							WILLIN.	TILL 19	ANG LIU NSEO 198

3) Gable requires continuous bottom chord bearing.

Gable studs spaced at 4-0-0 oc. 4)

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

SIONALE 1111111 November 8,2021

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	V13	Valley	1	1	Job Reference (optional)	148693663

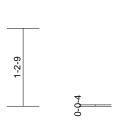
Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:16:04 ID:0SgPSfqTqwJKU3bHBm37B1yMGa4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

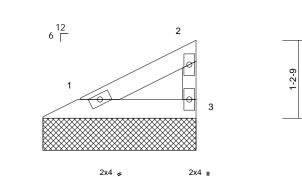
Scale = 1:47.7

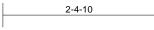
Plate Offsets (X, Y): [6:Edge,0-2-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.47 0.16 0.21	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 49 lb	GRIP 197/144 FT = 10%
	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (lb/size) 1=79/15-2 7=393/15 9=333/15 Max Horiz 1=302 (LC Max Uplift 6=-42 (LC 8=-108 (L Max Grav 1=146 (LC	cept end verticals. applied or 10-0-0 oc 2-7, 6=142/15-2-7, -2-7, 8=359/15-2-7, -2-7 2-5) 5 5), 7=-118 (LC 8), C 8), 9=-101 (LC 8)	chord live I 6) * This truss on the bott 3-06-00 tal chord and 7) Provide me bearing pla 6, 118 lb u uplift at joir 8) This truss i Internation R802.10.2 LOAD CASE(S	s designed in acco al Residential Cod and referenced sta	t with any ed for a liv eas where will fit betw s, with BC on (by oth standing ² Ib uplift at ordance w e sections	other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf ers) of truss t .2 Ib uplift at j joint 8 and 10 ith the 2018 : R502.11.1 a	Opsf om o oint O1 Ib				XUEG NUMI O. E-29	BER
FORCES	(lb) - Maximum Com Tension 1-2=-262/70, 2-3=-2										SSION	AL ENGLIN
BOT CHORD	4-5=-149/77, 5-6=-1 1-9=-103/79, 8-9=-1 6-7=-103/79											
 Vasd=91n II; Exp C; cantilever right expo: 2) Truss desi only. For see Stand or consult 3) Gable req 	4-7=-306/150, 3-8=- CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 igned for wind loads in studs exposed to wind ard Industry Gable En qualified building desig- uires continuous bottoo ds spaced at 4-0-0 oc.	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 the plane of the trus (normal to the face) d Details as applicab gner as per ANSI/TP	Cat. d 50 ss , ole,							THURSE STREET	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	198 AAS AAS AAL ENO IAL ENO IA

NITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017


Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	V14	Valley	2	1	Job Reference (optional)	148693664


Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:16:05 ID:0SgPSfqTqwJKU3bHBm37B1yMGa4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


2x4 ı

Page: 1

2 - 4 - 10

Scale = 1:17.9												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.05	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 6 lb	FT = 10%

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

LUMBEI	R
--------	---

LUMBER		
TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2
WEBS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	2-5-2 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	1=76/2-4-10, 3=76/2-4-10
	Max Horiz	1=35 (LC 7)
	Max Uplift	1=-10 (LC 8), 3=-19 (LC 8)
FORCES	(lb) - Max	imum Compression/Maximum

Tension

TOP CHORD 1-2=-32/21, 2-3=-59/29 BOT CHORD 1-3=-12/9

NOTES

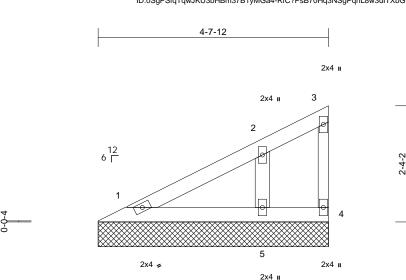
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing. 3)

- Gable studs spaced at 4-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 7) bearing plate capable of withstanding 10 lb uplift at joint 1 and 19 lb uplift at joint 3.

MI \cap XUEGANG LIU NUMBER E-29713 JNA JUEGANC LICE, NEGANG 10 CENSED 19198 ONAL F

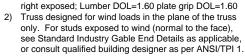
111111 November 8,2021



Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	V15	Valley	1	1	Job Reference (optional)	148693665

2-4-2

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:16:05 ID:0SgPSfqTqwJKU3bHBm37B1yMGa4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

4-7-12

Scale	_	1:23.2
Scale	=	1.23.2

Loading	(psf)	Spacing	2-0-0		CSI	0.40	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL BCDL	0.0* 10.0	Rep Stress Incr	YES	8/TPI2014	WB Matrix-P	0.03	Horiz(TL)	0.00	4	n/a	n/a	Woight: 12 lb	FT = 10%
BCDL	10.0	Code	IRC201	8/1912014	Iviatrix-P							Weight: 13 lb	FT = 10%
LUMBER			7)	Provide med	hanical connec	tion (by oth	ers) of truss t	to					
TOP CHORD	2x4 SPF No.2			bearing plate	e capable of wit	hstanding 1	3 lb uplift at j	oint					
BOT CHORD	2x4 SPF No.2			4 and 75 lb (uplift at joint 5.								
WEBS	2x3 SPF No.2		8)	This truss is	designed in acc	cordance w	ith the 2018						
OTHERS	2x4 SPF No.2				Residential Co			ind					
BRACING				R802.10.2 a	nd referenced s	standard AN	ISI/TPI 1.						
TOP CHORD	Structural wood she	athing directly appli	ed or Lo	OAD CASE(S)	Standard								
	4-8-4 oc purlins, ex	cept end verticals.											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	C										
	bracing.											, united	111
REACTIONS		7-12, 4=5/4-7-12,										NE OF	MISSI
	5=250/4-											A	
	Max Horiz 1=83 (LC										2	A	
	Max Uplift 4=-13 (LC										-	XUEG	ang 🔆
	Max Grav 1=100 (L	C 1), 4=11 (LC 4), 5	=250								24	.: LI	U ;
	(LC 1)											1	
FORCES	(lb) - Maximum Con	npression/Maximum									-		
	Tension	100 0 4 40/44									=	NUM	BER 🥻
TOP CHORD	1-2=-63/51, 2-3=-54	,										C: E-29	713 .
BOT CHORD WEBS	1-5=-28/21, 4-5=-28 2-5=-194/108	5/21									-	A	
	2-5=-194/100											1. 80	
NOTES		(2)										I, ON	ALEN
	CE 7-16; Vult=115mph		0-4									- 1111	1111
	nph; TCDL=6.0psf; BC												
	Enclosed; MWFRS (er left and right exposed											11111	11111
Carthever	icit and right exposed											1 CG	ANC

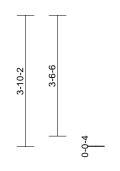
3) Gable requires continuous bottom chord bearing.

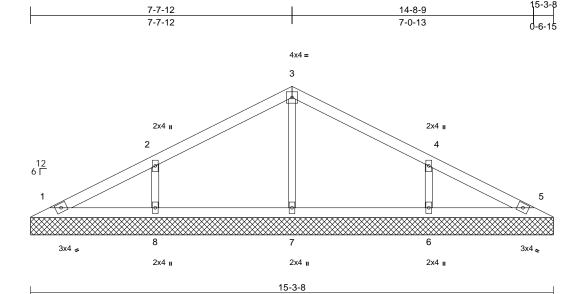
4) Gable studs spaced at 2-0-0 oc.

- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

EGANG


CENSED


MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	V16	Valley	1	1	Job Reference (optional)	I48693666

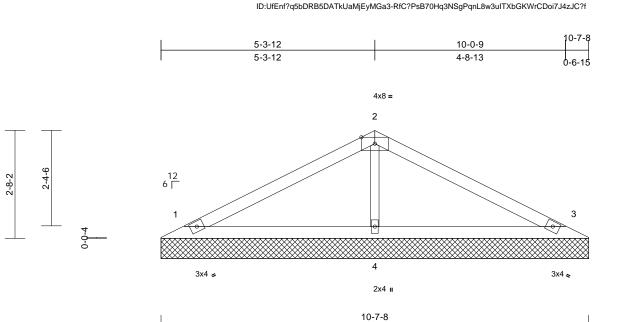
Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:16:05 ID:UfEnf?q5bDRB5DATkUaMjEyMGa3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:33.7

Scale = 1:33.7														
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		тс	0.18	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.09	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.07	Horiz(TL)	0.00	5	n/a	n/a		
BCDL		10.0	Code	IRC20	18/TPI2014	Matrix-S							Weight: 40 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF N 2x3 SPF N Structural 6-0-0 oc p Rigid ceili bracing. (Ib/size) Max Horiz Max Uplift Max Grav	No.2 No.2 wood she purlins. ng directly 1=114/15 6=370/15 8=370/15 1=62 (LC 1=-12 (LC (LC 9), 8 1=114 (LL		ed or 8 c 9 -119	 * This truss I on the botton 3-06-00 tall I chord and an Provide mec bearing plate 1, 3 lb uplift uplift at joint This truss is International 	ad nonconcurre has been design m chord in all ar oy 2-00-00 wide ny other membe chanical connec e capable of with at joint 5, 119 lb 6. designed in acc Residential Co nd referenced s	nt with any reas where will fit betw ers. tion (by oth hstanding 1 o uplift at joi cordance w de sections	other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 2 lb uplift at j nt 8 and 119 ith the 2018 i R502.11.1 a)psf om o oint Ib			······································	XUEG NUM	*
FORCES	Tension		npression/Maximum 06/91, 3-4=-106/75,										E-29	• []].
	4-5=-68/3	8	, ,										1,SS/ON	ENGIN
BOT CHORD WEBS	,		6-7=0/54, 5-6=0/54 96/162, 4-6=-296/16										1111	i i i i i i i i i i i i i i i i i i i
NOTES														
 Unbalanc this desig Wind: AS Vasd=91r II; Exp C; cantilever right expc Truss des only. For see Stanc or consult Gable req 	n. CE 7-16; Vul mph; TCDL= Enclosed; M left and righ sosed; Lumber signed for wir studs expos dard Industry t qualified bu	It=115mph 6.0psf; BC IWFRS (e it exposed r DOL=1.6 nd loads ir doads ir Gable En ilding desi uous botto	been considered for (3-second gust) DL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an to plate grip DOL=1.0 the plane of the trust (normal to the face) d Details as applicat gner as per ANSI/TF m chord bearing.	Cat. ne; d 60 ss), ble,								annua.	SION SION	IAL EN TIT

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

November 8,2021



Job	Truss	Truss Type	Qty	Ply	Lot 111 MN	
MN111	V17	Valley	1	1	Job Reference (optional)	148693667

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:16:05

Page: 1

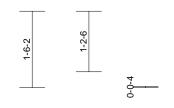
Wheeler Lumber, Waverly, KS - 66871,

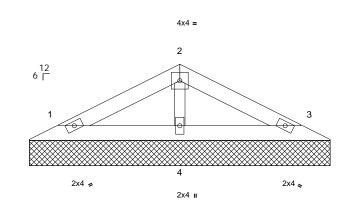
Scale =	1:28.6
---------	--------

Scale = 1:28.6	0											
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	BC C WB C).31).19).07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 26 lb	FT = 10%
LUMBER TOP CHORE BOT CHORE OTHERS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. 	C 13) C 8), 3=-48 (LC 9), 4=- C 21), 3=200 (LC 22),	on the bottor 3-06-00 tall b chord and ar 8) Provide mec bearing plate 1, 48 lb upliff 9) This truss is International R802.10.2 ar LOAD CASE(S)	has been designed for in chord in all areas will by 2-00-00 wide will fit by other members. hanical connection (b) e capable of withstand at at joint 3 and 25 lb uf designed in accordan Residential Code sec and referenced standar Standard	here t betw y othe ling 4 plift a ice withous	a rectangle veen the botto ers) of truss to 1 lb uplift at jo t joint 4. ith the 2018 5 R502.11.1 ar	m) int				XAE OF XUEG	
FORCES	(lb) - Maximum Com Tension									P	NUM	• [] []
TOP CHORD 1-2=-122/61, 2-3=-122/44 BOT CHORD 1-4=-3/51, 3-4=-3/51										-1	C. E-29	713
WEBS 2-4=-308/81										1	- A.	-
NOTES											S/ON	AL ENIN
this desig												ALT.
Vasd=91 II; Exp C; cantileve right exp	SCE 7-16; Vult=115mph mph; TCDL=6.0psf; BC ; Enclosed; MWFRS (er r left and right exposed osed; Lumber DOL=1.6	»; D								UEG.	ANG LIU	
only. For see Stan or consul	signed for wind loads in r studs exposed to wind dard Industry Gable En It qualified building desig	l (normal to the face), d Details as applicabl gner as per ANSI/TPI	e,							11111	19	198
	quires continuous botto uds spaced at 4-0-0 oc.	m chord bearing.								-	X	THE

- II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6)

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017


ONALE 111111 November 8,2021


Job	Truss	Truss Type	Qty	Ply	Lot 111 MN		
MN111	V18	Valley	1	1	Job Reference (optional)	148693668	

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Fri Nov 05 14:16:06 ID:UfEnf?q5bDRB5DATkUaMjEyMGa3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-11-8 2-11-12 5-4-9 2-11-12 2-4-13 0-6-15

5-11-8

Scale - 1.22.8

Scale = 1:22.8													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20 ⁷	18/TPI2014	CSI TC BC WB Matrix-P	0.10 0.05 0.03	Vert(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	11-8, 3=112/5-11-8, 11-8 C 13)	C	bearing plate 1, 30 lb uplif This truss is International	chanical connect e capable of with t at joint 3 and 3 designed in acc Residential Coo nd referenced si Standard	nstanding 2 Ib uplift at cordance w de sections	26 lb uplift at j joint 4. ith the 2018 s R502.11.1 a	joint				ZP. JUEG	MISSOLANG
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	(lb) - Maximum Corr Tension 1-2=-54/30, 2-3=-54 1-4=-1/24, 3-4=-1/24 2-4=-146/38 ed roof live loads have n.	4/21	r								* Philip	NUMI E-29	BER H

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 7)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

