November 30, 2021

MiTek USA, Inc. 16023 Swinglev Ridge Rd Chesterfield, MO 63017 314-434-1200

RE: W258 Lot 58 W2

Site Information:

Customer: Project Name: W258 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise]

Roof Load: 45.0 psf

Wind Speed: 115 mph Floor Load: N/A psf

Design Program: MiTek 20/20 8.4

This package includes 60 individual, dated Truss Design Drawings and 0 Additional Drawings.

N1-	0	Turren Marrie	Data	NI-	0	Turre Mene	Data
No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	149010941	A1	11/30/2021	21	I49010961	E1	11/30/2021
2	I49010942	A2	11/30/2021	22	I49010962	E2	11/30/2021
3	I49010943	A3	11/30/2021	23	I49010963	G1	11/30/2021
4	149010944	B1	11/30/2021	24	I49010964	G2	11/30/2021
5	I49010945	B2	11/30/2021	25	I49010965	H1	11/30/2021
6	149010946	B3	11/30/2021	26	I49010966	H2	11/30/2021
7	149010947	B4	11/30/2021	27	I49010967	H3	11/30/2021
8	149010948	B5	11/30/2021	28	I49010968	J1	11/30/2021
9	149010949	C1	11/30/2021	29	I49010969	J2	11/30/2021
10	149010950	C2	11/30/2021	30	I49010970	J3	11/30/2021
11	I49010951	C3	11/30/2021	31	I49010971	J4	11/30/2021
12	149010952	C4	11/30/2021	32	l49010972	J5	11/30/2021
13	149010953	C5	11/30/2021	33	l49010973	LAY1	11/30/2021
14	149010954	D1	11/30/2021	34	l49010974	LAY2	11/30/2021
15	149010955	D2	11/30/2021	35	I49010975	P1	11/30/2021
16	149010956	D2A	11/30/2021	36	I49010976	P2	11/30/2021
17	149010957	D3	11/30/2021	37	I49010977	R1	11/30/2021
18	I49010958	D4	11/30/2021	38	l49010978	V1	11/30/2021
19	149010959	D5	11/30/2021	39	I49010979	V2	11/30/2021
20	149010960	D6	11/30/2021	40	l49010980	V3	11/30/2021

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Kansas is April 30, 2022. Kansas COA: E-943

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEVELOPMENT SERVICES LEE'S SUMMIT, MISSOURI 12/14/2021 11:52:58

RE: W258 - Lot 58 W2

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Site Information:

Project Customer:	Project Name:	W258
Lot/Block:		
Address:		
City, County:		

No.	Seal#	Truss Name	Date
41	l49010981	V4	11/30/2021
42	l49010982	V5	11/30/2021
43	l49010983	V6	11/30/2021
44	l49010984	V7	11/30/2021
45	l49010985	V8	11/30/2021
46	l49010986	V9	11/30/2021
47	l49010987	V10	11/30/2021
48	l49010988	V11	11/30/2021
49	l49010989	V12	11/30/2021
50	l49010990	V13	11/30/2021
51	l49010991	V14	11/30/2021
52	l49010992	V15	11/30/2021
53	l49010993	V16	11/30/2021
54	l49010994	V17	11/30/2021
55	l49010995	V18	11/30/2021
56	l49010996	V19	11/30/2021
57	l49010997	V20	11/30/2021
58	l49010998	V21	11/30/2021
59	l49010999	V22	11/30/2021
60	l49011000	V23	11/30/2021

Subdivision:

State:

RE: W258 Lot 58 W2

Site Information:

Customer: Project Name: W258 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

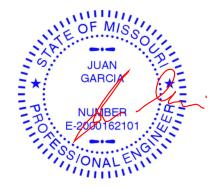
Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise]

Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.4 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 60 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	I49010941	A1	11/30/2021	21	I49010961	E1	11/30/2021
2	I49010942	A2	11/30/2021	22	l49010962	E2	11/30/2021
3	I49010943	A3	11/30/2021	23	I49010963	G1	11/30/2021
4	I49010944	B1	11/30/2021	24	I49010964	G2	11/30/2021
5	I49010945	B2	11/30/2021	25	I49010965	H1	11/30/2021
6	149010946	B3	11/30/2021	26	149010966	H2	11/30/2021
7	149010947	B4	11/30/2021	27	149010967	H3	11/30/2021
8	149010948	B5	11/30/2021	28	149010968	J1	11/30/2021
9	149010949	C1	11/30/2021	29	149010969	J2	11/30/2021
10	149010950	C2	11/30/2021	30	149010970	J3	11/30/2021
11	149010951	C3	11/30/2021	31	149010971	J4	11/30/2021
12	I49010952	C4	11/30/2021	32	I49010972	J5	11/30/2021
13	I49010953	C5	11/30/2021	33	I49010973	LAY1	11/30/2021
14	I49010954	D1	11/30/2021	34	I49010974	LAY2	11/30/2021
15	149010955	D2	11/30/2021	35	149010975	P1	11/30/2021
16	149010956	D2A	11/30/2021	36	149010976	P2	11/30/2021
17	I49010957	D3	11/30/2021	37	149010977	R1	11/30/2021
18	I49010958	D4	11/30/2021	38	149010978	V1	11/30/2021
19	I49010959	D5	11/30/2021	39	149010979	V2	11/30/2021
20	149010960	D6	11/30/2021	40	149010980	V3	11/30/2021


The truss drawing(s) referenced above have been prepared by

MiTek USA, Inc under my direct supervision based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Missouri is December 31, 2022. Missouri COA: 001193

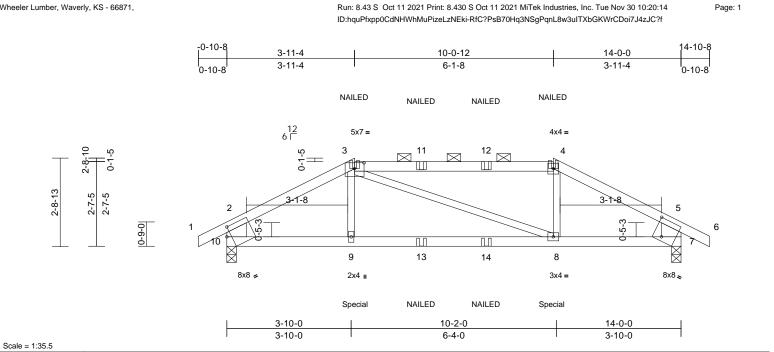
IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Garcia, Juan

RE: W258 - Lot 58 W2

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Site Information:


Project Customer:	Project Name:	W258
Lot/Block:		
Address:		
City, County:		

No.	Seal#	Truss Name	Date
41	l49010981	V4	11/30/2021
42	l49010982	V5	11/30/2021
43	l49010983	V6	11/30/2021
44	l49010984	V7	11/30/2021
45	l49010985	V8	11/30/2021
46	l49010986	V9	11/30/2021
47	l49010987	V10	11/30/2021
48	l49010988	V11	11/30/2021
49	l49010989	V12	11/30/2021
50	l49010990	V13	11/30/2021
51	l49010991	V14	11/30/2021
52	l49010992	V15	11/30/2021
53	l49010993	V16	11/30/2021
54	l49010994	V17	11/30/2021
55	l49010995	V18	11/30/2021
56	l49010996	V19	11/30/2021
57	l49010997	V20	11/30/2021
58	l49010998	V21	11/30/2021
59	l49010999	V22	11/30/2021
60	l49011000	V23	11/30/2021

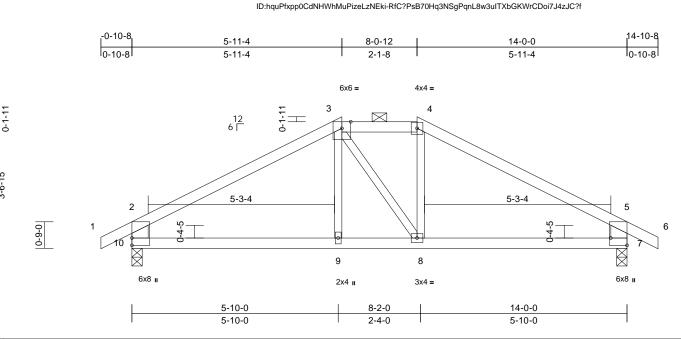
Subdivision:

State:

Plate Offsets (X, Y): [3:0-3-8,0-2-3], [7:0-3-2,0-6-8], [10:0-1-10,0-3-4]

Loading	(psf)	Spacing	2-0-0		CSI	0.00	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC BC	0.98	Vert(LL)	-0.14	8-9	>999	360	MT20	197/144
TCDL BCLL	10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 NO		WB	0.94 0.10	Vert(CT) Horz(CT)	-0.30 0.03	8-9 7	>535 n/a	240 n/a		
						0.10	. ,					Woight: 47 lb	ET 100/
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.12	8-9	>999	240	Weight: 47 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=91r II; Exp C; cantilever right expc 3) Provide a 4) This truss chord live 5) * This trus chord live 5) * This trus	2x4 SPF No.2 *Exc 1.8E 2x4 SPF No.2 2x3 SPF No.2 *Exc Structural wood shi 1-11-14 oc purlins, 2-0-0 oc purlins (5- Rigid ceiling directly bracing, (lb/size) 7=1012/0 Max Horiz 10=53 (L Max Uplift 7=-225 ((lb) - Maximum Cor Tension 1-2=0/37, 2-3=-141 4-5=-1420/311, 5-6 5-7=-899/218 9-10=-262/1180, 8- 7-8=-236/1181 3-9=0/328, 3-8=-49 red roof live loads have	ept* 3-4:2x4 SPF 210 ept* 10-2,7-5:2x8 SP eathing directly applie except end verticals 6-4 max.): 3-4. y applied or 10-0-0 oc 0-3-8, 10=1012/0-3-8 C 7) _C 9), 10=-225 (LC 8 npression/Maximum 8/311, 3-4=-1170/292 e0/37, 2-10=-899/218 9=-264/1168, /53, 4-8=0/329 e been considered for n (3-second gust) CDL=6.0psf; h=25ft; C nvelope) exterior zon 1 (3-second gust) CDL=6.0psf; h=25ft; C nvelope) exterior zon 1 (3-second gust) CDL=6.0psf; h=25ft; C nvelope) exterior zon 30 plate grip DOL=1. (revent water ponding or a 10.0 psf bottom where a rectangle	6) 00F 7) DSS ed or 8) and 9) 10 2, 11 3, L0 1) 7 Cat. le; d 30 l. ds. psf	Provide mec bearing plate joint 10 and 3 This truss is International R802.10.2 au Graphical pu or the orient bottom chorc "NAILED" ind (0.148"x3.25) Hanger(s) or provided suff lb down and lb up at 10-0 of such conn others.) In the LOAD of the truss a DAD CASE(S) Dead + Roo Plate Increa Uniform Lo: Vert: 1-2 7-10=-20 Concentrati	hanical connectii capable of with: 225 lb uplift at joi designed in acco Residential Cod nd referenced str rlin representation tion of the purlin dicates 3-10d (0. ") toe-nails per N other connection icient to support 57 lb up at 3-11 -0 on bottom ch ection device(s) CASE(S) section re noted as from Standard of Live (balanced ase=1.15 ads (lb/ft) =-70, 2-3=-70, 3-	standing 2 int 7. ordance wi le sections andard AN on does no n along the 148"x3") o VDS guidlin n device(s concentra -4, and 21 ord. The o is the resp n, loads ap t (F) or bai d): Lumber -4=-70, 4-5	ers) of truss 25 lb uplift a ith the 2018 R502.11.1 SI/TPI 1. of depict the top and/or or 3-12d nes.) shall be ted load(s) i 5 lb down a design/selec bonsibility of opplied to the ck (B). Increase=1 5=-70, 5-6=- F), 8=-215 (I	to tt and size 215 nd 57 tion face .15, 70,				GAR JUA GAR NUMI CE-20001	MISSOUR AN CIA BER 162101 ALENG MALENG

- This truss has been designed for a 10.0 psf bottom 4)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.


Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	A2	Hip	1	1	Job Reference (optional)	149010942

3-8-10

3-6-15 3-6-15

3-8-13

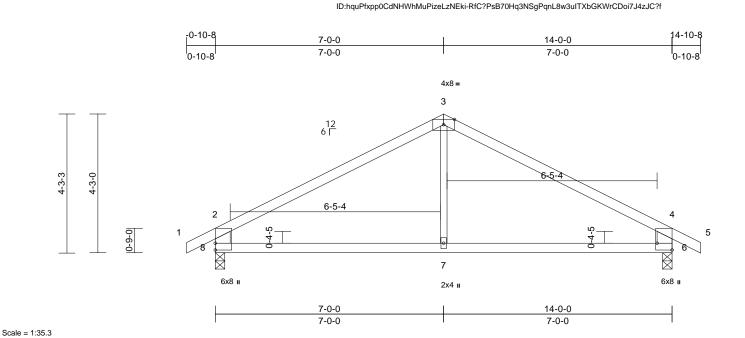
Scale = 1:32.6

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:17

Page: 1

Plate Offsets (X, Y): [7:Edge,0-5-8]

	(X, T): [7:Euge,0-5-0]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TP	CSI TC BC WB 2014 Matrix-S	0.54 0.28 0.05	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.03 -0.07 0.01 0.01	(loc) 9-10 9-10 7 8-9	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 45 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 5-10-10 oc purlins, 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	ept* 10-2,7-5:2x6 SP athing directly applie except end verticals, I-0 max.): 3-4. applied or 10-0-0 oc 3-8, 10=687/0-3-8 C 7) S 9), 10=-93 (LC 8)	6) Pro be: 10 F 7) Th Inti R8 ed or 8) Gra , and or bot	wide mechanical conn aring plate capable of v and 93 lb uplift at joint s truss is designed in a carnational Residential of 02.10.2 and reference aphical purlin represen he orientation of the p tom chord. CASE(S) Standard	withstanding 9 7. accordance w Code sections d standard AN itation does no	ers) of truss t 13 lb uplift at j 14 the 2018 15 R502.11.1 a 1SI/TPI 1. 15 depict the s	oint ind	0.0	2333	*	JUA GAR	MISSOUR
TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance	4-5=-786/77, 5-6=0/ 5-7=-620/137	35, 2-10=-619/137, 27/607, 7-8=0/609 1/122, 4-8=-17/154	r							in in it	NUM E-20001	62101
 this design Wind: AS0 Vasd=91rn II; Exp C; cantilever right expo Provide and This truss chord live * This truss on the bot 3-06-00 ta 		(3-second gust) DL=6.0psf; h=25ft; C twelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 event water ponding r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle	Cat. he; d 60 j. ds. lpsf							annun.	Den Sion Novembe	ALENGINI


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	A3	Common	2	1	Job Reference (optional)	149010943

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Nov 30 10:20:17

Wheeler Lumber, Waverly, KS - 66871,

Plate Offsets (X, Y): [6:Edge,0-5-8]

		1	-								-	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.57	Vert(LL)	-0.05	6-7	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.36	Vert(CT)	-0.09	6-7	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.09	Horz(CT)	0.01	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.02	7-8	>999	240	Weight: 41 lb	FT = 10%

- LUMBER
- TOP CHORD
- 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 2x6 SPF No.2 *Except* 7-3:2x3 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 5-11-1 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) 6=687/0-3-8, 8=687/0-3-8 Max Horiz 8=-72 (LC 6) Max Uplift 6=-100 (LC 9), 8=-100 (LC 8) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/35, 2-3=-755/105, 3-4=-755/105, 4-5=0/35, 2-8=-626/149, 4-6=-626/149 BOT CHORD 7-8=-19/569, 6-7=-19/569 WEBS 3-7=0/290

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint 8 and 100 lb uplift at joint 6.

- 6) This truss is designed in accordance with the 2018
 - International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- LOAD CASE(S) Standard

MIS 0 JUAN GARCIA NUMBER F -2000162101 C 3 E ONAL 1111 16952 December 30,202 JUAN GARCIA G November 30,2021

VIII * PRUM

Page: 1

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

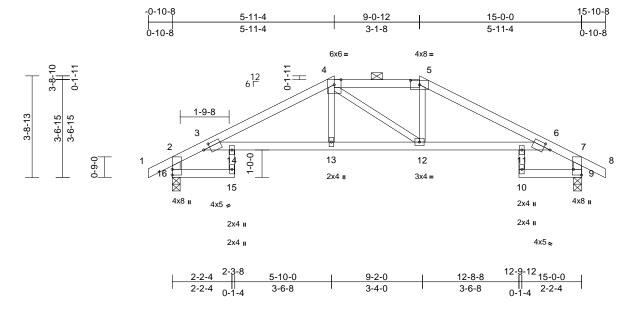
Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	B1	Hip Girder	1	1	Job Reference (optional)	149010944

Page: 1

Wheeler Lumber, Waverly, KS - 66871, Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:18 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 0-10-8 15-10-8 1-9-13 7-6-0 11-0-12 15-0-0 3-11-4 13-2-3 1-9-13 2-1-7 2-1-7 3-6-12 3-6-12 1-9-13 0-10-8 0-10-8 NAILED NAILED NAILED NAILED NAILED _12 6Γ 5x12 = 5x12 = 2x4 II 15 6 0-1-5 4 5 Ŵ ΠÌ Min * Phin 3 Ķ UAN • 0 ПП ПГ 2 8 1-0-0 11 13 17 12 18 9 -6-0 P e 3x10 = 2x4 II \mathbb{Z} a NUMBER PAC 14 10 6x8 II 11 E-2000162101 NAILED NAILED Special 4x4 = 4x4 = 2x4 II 2x4 II 2x4 II 6x8 II NAILED Special ONAL 111 12-8-8 1-9-0 0-5-11 1-9-13 <u>1-9-13</u> 1-9-13 4-0-8 7-6-0 10-11-8 1-9-0 3-5-8 3-5-8

Scale = 1:39.2

Plate Offsets (X, Y): [2:Edge,0-1-3],	, [3:0-1-10,0-2-0], [4	:0-6-0,0-1-1	3], [6:0-6-0,0-	1-13], [7:0-1-10,0-	2-0], [8:	Edge,0-1-3]						
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO		CSI TC BC WB	0.79 0.99 0.21	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.19 -0.34 0.33	(loc) 12 12 8	l/defl >945 >525 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S		Wind(LL)	0.17	12	>999	240	Weight: 58 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	No.2 2x4 SPF No.2 2x3 SPF No.2 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 3-11-15 oc purlins, e 2-0-0 oc purlins (3-1 Rigid ceiling directly bracing. (lb/size) 2=1110/0 Max Horiz 2=-42 (LC Max Uplift 2=-274 (L (lb) - Maximum Com Tension 1-2=0/6, 2-3=-641/1: 4-5=-3073/867, 5-6= 6-7=-2666/711, 7-8= 2-14=-41/0, 3-13=-6 12-13=-684/2557, 1 7-11=-637/2529, 8-1 3-14=0/70, 7-10=0/7 6-11=-77/350, 4-12= 5-12=-284/138, 6-12	athing directly applie except -0 max.): 4-6. applied or 6-0-0 oc -3-8, 8=1110/0-3-8 213) .C 8), 8=-274 (LC 9) hpression/Maximum 93, 3-4=-2666/731, -3073/867, -641/188, 8-9=0/6 78/2529, 1-12=-642/2557, 10=-41/0 70, 4-13=-78/350, -208/607, 2=-207/607	3) 4) 5) 6) 7) 8) 9) 10 r 11	Vasd=91mpi II; Exp C; Er cantilever lef Provide ader This truss ha chord live los * This truss ha chord live los * This truss is on the botton 3-06-00 tall I chord and an Provide mec bearing plate joint 2 and 2 This truss is International R802.10.2 a Graphical pu or the orient bottom chore "NAILED" in (0.148"x3.25) Hanger(s) ou provided suf Ib down and Ib down and Ib down and Ib down and Ib down chores.) In the LOAD	dicates 3-10d (0.1- ") toe-nails per NE r other connection ficient to support c 92 lb up at 3-11 0-0 on bottom chor nection device(s) is CASE(S) section, are noted as front (CDL=6. envelope d; end v. .60 plate prevent i for a 10. with any d for a 10. with any d for a 10. with any d for a 10. with any d for a 10. with any for a 10. with any d for a 10. with any d for a 1	Opsf; h=25ft; a) exterior zo vertical left ar grip DOL=1 water pondin D psf bottom other live loz re load of 20. a rectangle veen the bott ers) of truss 274 lb uplift a ith the 2018 s R502.11.1 a VS74 lb uplift a ith the 2018 s R502.11.1 a VS74 lb uplift a ith the 2018 s R502.11.1 a ve top and/or or 3-12d nes. b) shall be ated load(s) 2 28 lb down ar design/select ponsibility of pplied to the	Cat. ine; ind .60 g. ads. Opsf iom to t t and size 228 id 92 tion	Pl: Ur Cc	ate Incre hiform Li Vert: 1- 8-10=-2 oncentra Vert: 4= 12=-37 17=-37	ease=1 oads (I 4=-70, 20 ated Lo =-31 (B (B), 5= (B), 18	I.15 b/ft) 4-6=-70, 6-9=-7 ads (lb)), 6=-31 (B), 13: -31 (B), 15=-31 3=-37 (B)	mber Increase=1.15, 10, 2-14=-20, 3-7=-20, 2-228 (B), 11=-228 (B), (B), 16=-31 (B), GARCA NSEO 952
												Novomb	r 20 2021


November 30,2021

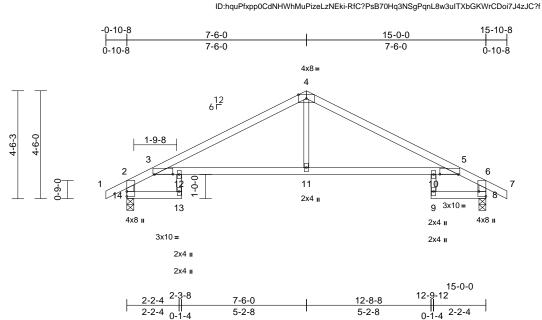
Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	B2	Hip	1	1	Job Reference (optional)	149010945

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:19 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:42.2

Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.57 0.90 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	-0.29 0.36	(loc) 13-14 13-14 9	l/defl >999 >601 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S	-	Wind(LL)	0.12	13-14	>999	240	Weight: 49 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce No.2	pt* 16-2,9-7:2x4 SP athing directly applie	PF 6) ed or 7)	on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 16 and 94 lb This truss is	as been designe n chord in all are y 2-00-00 wide v y other member- hanical connection capable of withs uplift at joint 9. designed in accor Residential Cod	as where will fit betv s. on (by oth standing S ordance w	a rectangle veen the bott ers) of truss 14 lb uplift at ith the 2018	to joint					1117.
BOT CHORD	2-0-0 oc purlins (5-6	-4 max.): 4-5. applied or 10-0-0 of	c 8)	Graphical pu or the orienta bottom chore		on does no	ot depict the	size			1111	XA. JU	MISSO AN
REACTIONS	(lb/size) 9=733/0-3 Max Horiz 16=-63 (L Max Uplift 9=-94 (LC		-94 (LC 8)								ICIA *		
FORCES	(lb) - Maximum Com	pression/Maximum									=	NUM	• 41
TOP CHORD BOT CHORD	4-5=-1061/106, 5-6= 7-8=0/32, 2-16=-763	1216/74, 6-7=-301, 3/120, 7-9=-763/113 9/1068, 13-14=-39/10	068,								111	E-2000	AT ENGINI
WEBS	9-10=0/0 14-15=-2/71, 10-11=	,										ann	IIIII.
WEB3	4-12=-141/143, 5-12											NAU	GARC
 this design Wind: AS(Vasd=91n II; Exp C; cantilever right expo Provide a(4) This truss 	ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 dequate drainage to pr has been designed fo load nonconcurrent w	(3-second gust) DL=6.0psf; h=25ft; (ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1.0 event water ponding r a 10.0 psf bottom	Cat. ne; d 60 g.								THINK.	PBO Novembe	VSA3 CANIN



Job		Truss	Truss Type	Qty	Ply	Lot 58 W2	
W2	258	B3	Roof Special	1	1	Job Reference (optional)	149010946

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:20

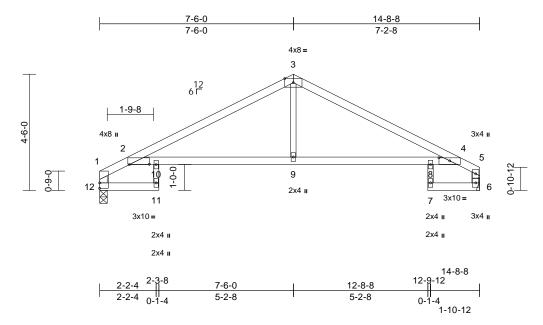
Page: 1

Wheeler Lumber, Waverly, KS - 66871,

Scale = 1:48.1

Plate Offsets (X, Y): [3:0-9-4,0-0-3], [5:0-9-4,0-0-3], [8:Edge,0-3-8]

Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) I/det I/det GRIP TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.56 Vert(LL) -0.20 10-11 >902 360 MT20 197/144 TCDL 0.0* Rep Stress Incr YES BC 0.69 Vert(CT) -0.36 10-11 >484 240 MT20 197/144 BCDL 10.0 Code IRC2018/TPI2014 Matrix-R Wind(LL) 0.18 11-12 >993 240 Weight: 46 lb FT = 10% LUMBER TOP CHORD 2x4 SPF 2100F 1.8E Species Sincr Species capable of withstanding 105 lb uplift at joint 8.
TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.56 Vert(LL) -0.20 10-11 >902 360 MT20 197/144 TCDL 10.0 Lumber DOL 1.15 BC 0.69 Vert(LL) -0.20 10-11 >902 360 MT20 197/144 BCLL 0.0* Rep Stress Incr YES WB 0.13 Horz(CT) 0.40 8 n/a n/a BCDL 10.0 Code IRC2018/TPI2014 Matrix-R Wind(LL) 0.18 11-12 >993 240 Weight: 46 lb FT = 10% LUMBER TOP CHORD 2x4 SPF 2100F 1.8E Source mechanical connection (by others) of truss to bearing plate capable of withstanding 105 lb uplift at joint 8. Source with the source of t
TCDL 10.0 Lumber DOL 1.15 BC 0.69 Vert(CT) -0.36 10-11 >484 240 BCLL 0.0* Rep Stress Incr YES WB 0.13 Horz(CT) 0.40 8 n/a n/a BCDL 10.0 Code IRC2018/TPI2014 Matrix-R Wind(LL) 0.18 11-12 >993 240 Weight: 46 lb FT = 10% LUMBER TOP CHORD 2x4 SPF 2100F 1.8E 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 105 lb uplift at joint 8. 51 lb uplift at joint 14 and 105 lb uplift at joint 8. 51 lb uplift at joint 8. 51 lb uplift at joint 8.
BCLL 0.0* Rep Stress Incr YES WB 0.13 Horz(CT) 0.40 8 n/a n/a BCDL 10.0 Code IRC2018/TPI2014 Matrix-R Wind(LL) 0.18 11-12 >993 240 Weight: 46 lb FT = 10% LUMBER TOP CHORD 2x4 SPF 2100F 1.8E 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 105 lb uplift at joint 8. 5 For vide mechanical connection (by others) of truss to bearing plate capable of withstanding 105 lb uplift at joint 8. 5 For vide mechanical connection (by others) of truss to bearing plate capable of withstanding 105 lb uplift at joint 8. 5 5 For vide mechanical connection (by others) of truss to bearing plate capable of withstanding 105 lb uplift at joint 8. 5 5
BCDL 10.0 Code IRC2018/TPI2014 Matrix-R Wind(LL) 0.18 11-12 >993 240 Weight: 46 lb FT = 10% LUMBER TOP CHORD 2x4 SPF 2100F 1.8E 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 105 lb uplift at joint 14 and 105 lb uplift at joint 18. 5 FT = 10%
TOP CHORD2x4 SPF 2100F 1.8Ebearing plate capable of withstanding 105 lb uplift at joint 14 and 105 lb uplift at joint 8.BOT CHORD2x4 SPF No.2 *Except* 3-5:2x4 SPF 2100Fjoint 14 and 105 lb uplift at joint 8.
TOP CHORD2x4 SPF 2100F 1.8Ebearing plate capable of withstanding 105 lb uplift at joint 14 and 105 lb uplift at joint 8.BOT CHORD2x4 SPF No.2 *Except* 3-5:2x4 SPF 2100Fjoint 14 and 105 lb uplift at joint 8.
BOT CHORD 2x4 SPF No.2 *Except* 3-5:2x4 SPF 2100F joint 14 and 105 lb uplift at joint 8.
1.8E 6) This truss is designed in accordance with the 2018 WEBS 2x3 SPE No 2 *Except* 14-2 8-6:2x4 SPE International Residential Code sections R502.11.1 and
BRACING LOAD CASE(S) Standard
TOP CHORD Structural wood sheathing directly applied or
5-11-7 oc purlins, except end verticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. Except:
10-0-0 oc bracing: 10-11
REACTIONS (lb/size) 8=733/0-3-8, 14=733/0-3-8
Max Horiz 14=-73 (LC 6)
Max Holiz 14=-13 (LC 8) Max Uplift 8=-105 (LC 9), 14=-105 (LC 8)
FORCES (Ib) - Maximum Compression/Maximum
Tension NUMBER
TOP CHORD 1-2=0/32, 2-3=-302/92, 3-4=-1083/105, E-2000162101
4-51083/130, 5-6302/60, 6-7=0/32.
2-14=-765/137, 6-8=-765/128
BOT CHORD 13-14=0/0, 3-12=-35/921, 11-12=-35/921,
10-11=-35/921, 5-10=-35/921, 8-9=0/0
WEBS 12-13=-7/73, 9-10=0/73, 4-11=0/412
 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; envelope) exterior zone; cantilever left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
1) Unbalanced roof live loads have been considered for GARO
this design.
2) Wind: ASCE 7-16; Vult=115mph (3-second gust)
Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.
II; Exp C; Enclosed; MWFRS (envelope) exterior zone;
cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads.
4) * This truss has been designed for a live load of 20.0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members.
author.
November 30,2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
'	W258	B4	Roof Special	2	1	Job Reference (optional)	149010947

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:20 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

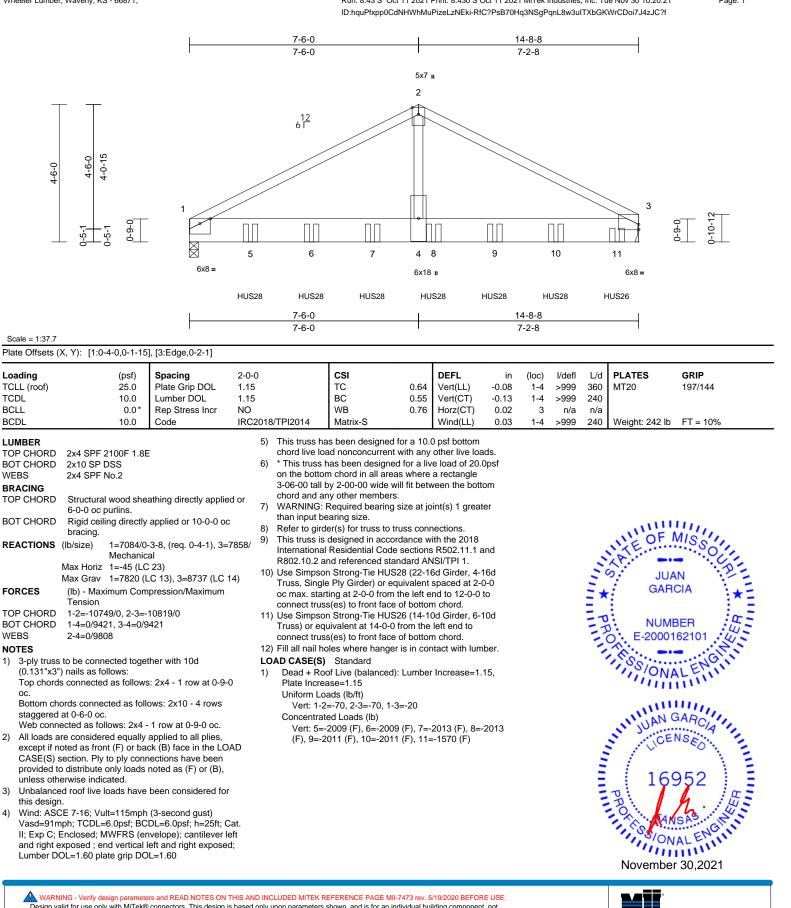
Page: 1

Scale = 1:44.6

Plate Offsets	(X, Y)	[2:0-9-4,0-0-3],	[4:0-5-0,0-1-7]
---------------	--------	------------------	-----------------

	,, i): [2:0 0 i,0 0 0];												
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.59	Vert(LL)	-0.20	9-10	>879	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.64	Vert(CT)	-0.36	9-10	>478	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.13	Horz(CT)	0.37	6	n/a	n/a		
BCDL	10.0	Code	IRC2018	/TPI2014	Matrix-R		Wind(LL)	0.18	9-10	>953	240	Weight: 43 lb	FT = 10%
												-	
LUMBER		_	6)		hanical connection								
TOP CHORD	2x4 SPF 2100F 1.8E				capable of withs	standing a	so ib uplift at	joint					
BOT CHORD	2x4 SPF No.2 *Exce 1.8E	ept* 2-4:2x4 SPF 210			uplift at joint 6. designed in acco	rdance w	ith the 2018						
WEBS	2x3 SPF No.2 *Exce	00+* 12 1 6 5·2v/ CD	,		Residential Code			and					
WEBS	No.2	pt 12-1,0-5.2X4 SF	Г		nd referenced sta								
BRACING			LO	AD CASE(S)	Standard								
TOP CHORD	Structural wood she	athing directly applie		(-)									
	5-11-9 oc purlins, e											, unit	
BOT CHORD	Rigid ceiling directly											NE OF	VISSI
	bracing. Except:										1	17.	0,4
	10-0-0 oc bracing: 8	-9									5	Y	
REACTIONS	(lb/size) 6=649/ M	echanical, 12=649/0	-3-8									JUA JUA	AN
	Max Horiz 12=71 (LC	C 5)									24	: GAR	
	Max Uplift 6=-78 (LC	9), 12=-80 (LC 8)									- 7		×
FORCES	(lb) - Maximum Com	pression/Maximum									-	•	im=
	Tension											NUME	• 41.
TOP CHORD	1-2=-296/69, 2-3=-1										-1	E-20001	62101
	4-5=-291/39, 1-12=-	,									1	· ··· -··	
BOT CHORD	11-12=0/0, 2-10=-48 8-9=-48/894, 4-8=-4											1, 50,	
WEBS	8-9=-48/894, 4-8=-4 10-11=-8/73, 7-8=-3											ONA	AL EIN
	10-11=-0/73, 7-0=-3	/03, 3-9=0/390											un.
NOTES	ed roof live loads have	haan appaidered for											un.
this design		been considered for											
	CE 7-16; Vult=115mph	(3-second gust)										IN UAN C	ARCIN
	nph; TCDL=6.0psf; BC		Cat.									N CE	NSA
	Enclosed; MWFRS (er												0
cantilever	left and right exposed	; end vertical left and	d								-	1.1	1.2
	sed; Lumber DOL=1.6		60									1 100	
	has been designed for											10	952 🛔 🗧
	load nonconcurrent wi										-	DI	μ
	s has been designed f		psf								-	D.	h / # =
	tom chord in all areas		-									- AN MAN	ISAS
	Il by 2-00-00 wide will any other members.	in between the bollo	////									1.5.	
	irder(s) for truss to trus	ss connections										ON N	ALEN
e, itelei te gi													nne.
												N a vanaka	- 00 0004

November 30,2021



Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	B5	Common Girder	1	3	Job Reference (optional)	149010948

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Nov 30 10:20:21

Page: 1

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	C1	Piggyback Base Supported Gable	1	1	Job Reference (optional)	149010949

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:22 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

							-		
		11-9-6	16-3-10		-11-10		45-5-1		
		11-9-6	4-6-4	8	-8-0		20-6-0	0	
				4x8 ≠	4x	8.			
				112 13	14 15 16				
	4 3x4 II 3 1 2 0 5 5 5 5 7 5 6 5 5 6 5 5 5 5 5 5 5 5 5 5		9 8 9			18 19 4	4x8 _{\$} 021 22 23 4 24 23 4 23 23 23 23 23 23 23 23 23 23 23 23 23	24 25 25 33 32	26 27 4x8 II 28 29 31 30
	0-8-10 ^{9x8=}	3:	х4 н						
	0-7-10	11.0.0		<u></u>				40	
	0-2-8	<u>11-8-2</u> 10-11-8		<u>27-5-1</u> 15-9-		+		5-5-10 8-0-0	
Scale - 1-90 0	0-5-2			10-9-	~		1		
Scale = 1:80.9 Plate Offsets (<u>0-1-0</u> (X Y)· [11·0-4-0 0-0-	1], [17:0-4-0,0-0-1], [21:0)-4-0 Edael [55	0-2-10 0-4-01					
	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	i, [ii.0 + 0,0-0-1], [21.0	, oʻr	.0 2 10,0-4-0]		I			
Loading	(psf)		2-0-0	CSI		DEFL in	()	L/d PLAT	
TCLL (roof) TCDL	25.0 10.0	1 1	1.15 1.15	TC BC	0.40 0.24	Vert(LL) 0.00 Vert(CT) 0.00		240 MT20 240) 197/144
BCLL	0.0*		YES	WB	0.24	Horz(CT) 0.00	29-30 >999 29 n/a	240 n/a	
BCDL	10.0		RC2018/TPI201	4 Matrix-	-R			Weigl	ht: 285 lb FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x3 SPF No.2 2x4 SPF No.2 Structural wood sh 6-0-0 oc purlins, e 2-0-0 oc purlins (6- Rigid ceiling directl bracing, Except: 6-0-0 oc bracing: 5 1 Row at midpt (lb/size) 29=106/-	y applied or 10-0-0 oc),		29=-33 (LC 8), 3 31=-28 (LC 9), 3 33=-52 (LC 9), 3 35=-54 (LC 9), 3 37=-61 (LC 9), 3 41=-42 (LC 5), 4 43=-40 (LC 5), 4 46=-112 (LC 9), 48=-92 (LC 9), 48=-92 (LC 8), 5 50=-54 (LC 8), 5 50=-54 (LC 8), 5 56=-348 (LC 5), 29=142 (LC 18) 31=156 (LC 1), 33=179 (LC 1), 35=180 (LC 1), 37=180 (LC 1), 40=193 (LC 1),	22=-60 (LC 9), 14=-54 (LC 9), 16=-53 (LC 9), 19=-33 (LC 9), 12=-34 (LC 4), 15=-34 (LC 8), 47=-44 (LC 7), 19=-55 (LC 8), 13=-57 (LC 8), 13=-73 (LC 8), 57=-488 (LC 4) 30=254 (LC 22), 32=186 (LC 22), 34=180 (LC 22), 36=180 (LC 22),		2-3=-67/95, 5 5-6=-40/168, 8-9=-25/227, 11-12=-29/27 13-14=-29/27 15-16=-29/27 17-18=-40/25 19-20=-40/26 22-23=-58/24 20-27=-115/5 28-29=-107/4	306, 1-55=-76/57, 1-2=-91/80, 3-4=-41/115, 4-5=-40/143, 6-7=-42/195, 7-8=-30/213, 9-10=-38/253, 10-11=-41/289, 75, 12-13=-29/275, 75, 14-15=-29/275, 75, 16-17=-29/275, 35, 18-19=-40/280, 52, 120-22=-47/227, 123-24-47/27, 123-24-
	35=180/ 37=180/ 40=175/ 42=180/ 44=174/ 46=134/ 48=55/4! 50=185/ 52=177/	45-5-10, 34=180/45-5-10 45-5-10, 36=180/45-5-10 45-5-10, 39=180/45-5-10 45-5-10, 43=181/45-5-10 45-5-10, 43=181/45-5-10 45-5-10, 45=186/45-5-10, 45-5-10, 47=7/45-5-10, 5-5-10, 51=180/45-5-10 45-5-10, 53=193/45-5-10 0-8-10, 57=18/0-8-10 (LC 4)),),),),), FORCES	(lb) - Ma: Tension	42=180 (LC 1),	43=186 (LC 22), 45=186 (LC 21), 47=96 (LC 9), 49=178 (LC 15), 51=180 (LC 1), 53=193 (LC 21), 57=378 (LC 7)		O E	2000162101 VONALENG JUAN GARCIA ICENSED 16952

S/ONAL ENGLIS November 30,2021

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property incorporate this design into the overall fabrication, storage, delivery, erection and bracing of truss systems, see Safety Information available from Truss Plate Institute. 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	C1	Piggyback Base Supported Gable	1	1	Job Reference (optional)	149010949

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Nov 30 10:20:22

ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Wheeler Lumber, Waverly, KS - 66871,

56-57=-7/5. 54-55=-86/168. 53-54=-82/163. BOT CHORD 52-53=-82/163, 51-52=-82/163, 50-51=-82/163, 49-50=-82/163, 48-49=-82/163, 47-48=0/0, 8-48=-53/28. 46-47=-81/161, 45-46=-81/161, 44-45=-81/161, 43-44=-81/161, 42-43=-81/161, 41-42=-81/161, 40-41=-81/161, 39-40=-81/161, 37-39=-81/161, 36-37=-81/161, 35-36=-81/161, 34-35=-81/161, 33-34=-81/161, 32-33=-81/161, 31-32=-81/161, 30-31=-81/161, 29-30=-81/161 WEBS 2-54=-100/92, 3-53=-148/92, 4-52=-138/74, 5-51=-140/78, 6-50=-145/81, 7-49=-114/61, 9-46=-105/68, 10-45=-145/58, 12-44=-143/0, 13-43=-146/64, 14-42=-140/58, 15-41=-146/66, 16-40=-153/0, 18-39=-140/57, 19-37=-140/85, 20-36=-140/77, 22-35=-140/78, 23-34=-140/78, 24-33=-139/77, 25-32=-144/82, 26-31=-123/60, 27-30=-194/132, 54-56=-316/224 NOTES

Unbalanced roof live loads have been considered for 1) this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- 4) N/A
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- Truss to be fully sheathed from one face or securely 7) braced against lateral movement (i.e. diagonal web). Gable studs spaced at 2-0-0 oc. 8)
- This truss has been designed for a 10.0 psf bottom 9) chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Bearing at joint(s) 48 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 488 lb uplift at joint 57, 33 lb uplift at joint 29, 348 lb uplift at joint 56, 92 Ib uplift at joint 48, 44 lb uplift at joint 47, 73 lb uplift at joint 53, 48 lb uplift at joint 52, 56 lb uplift at joint 51, 54 Ib uplift at joint 50, 55 lb uplift at joint 49, 112 lb uplift at joint 46, 34 lb uplift at joint 45, 40 lb uplift at joint 43, 34 Ib uplift at joint 42, 42 lb uplift at joint 41, 33 lb uplift at joint 39, 61 lb uplift at joint 37, 53 lb uplift at joint 36, 54 Ib uplift at joint 35, 54 lb uplift at joint 34, 52 lb uplift at joint 33, 60 lb uplift at joint 32, 28 lb uplift at joint 31 and 130 lb uplift at joint 30.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

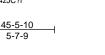
Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	C2	Piggyback Base	2	1	Job Reference (optional)	149010950

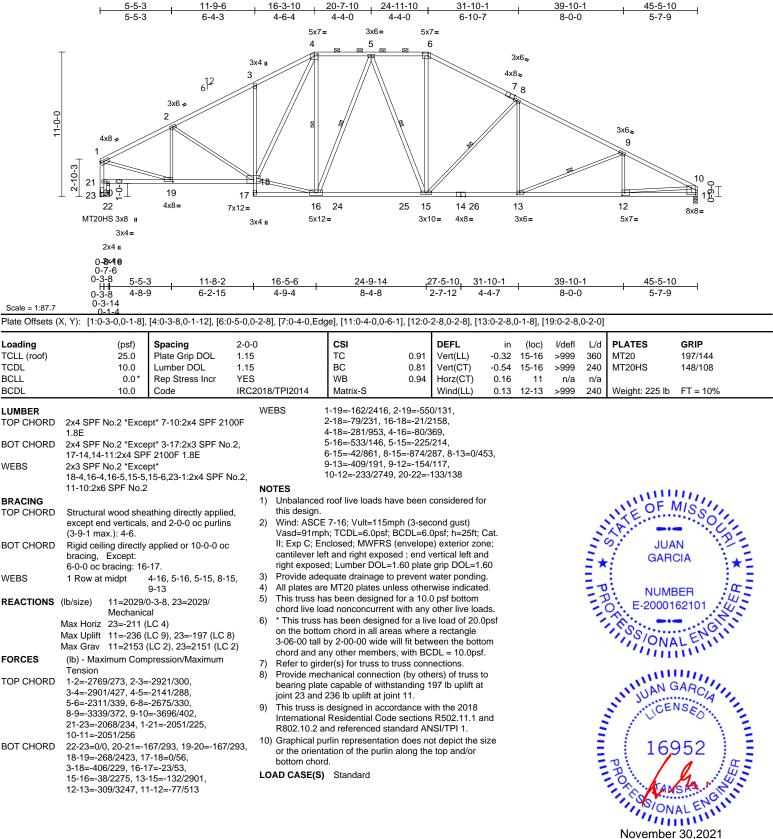
24-11-10

20-7-10

Wheeler Lumber, Waverly, KS - 66871,

11-9-6

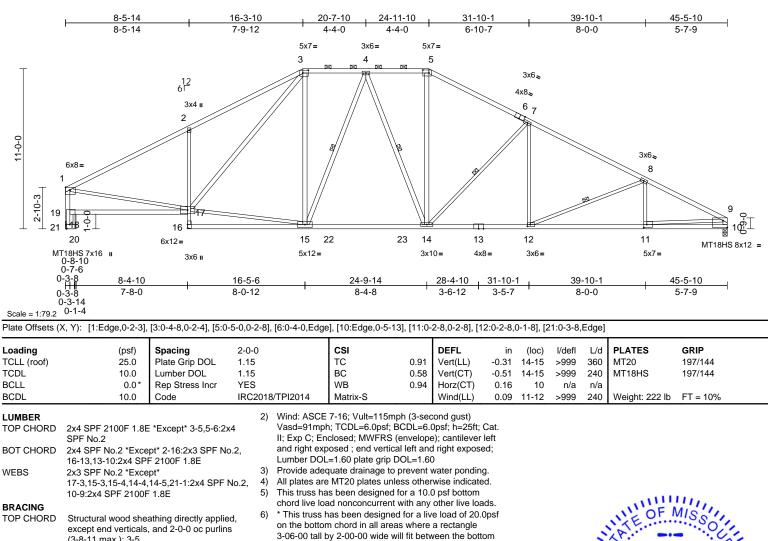

16-3-10


Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Nov 30 10:20:23 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

39-10-1

31-10-1

Page: 1



November 30.2021

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	C3	Piggyback Base	2	1	Job Reference (optional)	149010951

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Nov 30 10:20:24 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

BRACING	
TOP CHORD	Structural wood sheathing directly applied,
	except end verticals, and 2-0-0 oc purlins
	(3-8-11 max.): 3-5.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
WEBS	1 Row at midpt 4-15, 4-14, 7-14, 8-12
REACTIONS	(lb/size) 10=2033/0-3-8, 21=2033/
	Mechanical
	Max Horiz 21=-176 (LC 4)
	Max Uplift 10=-15 (LC 9)
	Max Grav 10=2158 (LC 2), 21=2155 (LC 2)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-3019/20, 2-3=-3025/162, 3-4=-2158/69,
	4-5=-2320/91, 5-7=-2686/73, 7-8=-3362/52,
	8-9=-3753/36, 19-21=-2012/35,
	1-19=-1972/47, 9-10=-2053/39
BOT CHORD	20-21=0/0, 18-19=-123/454, 17-18=-123/454,
	16-17=0/138, 2-17=-638/221, 15-16=-4/119,
	14-15=0/2283, 12-14=0/2921, 11-12=0/3298,
	10-11=-17/567
WEBS	1-17=0/2364, 15-17=0/2060, 3-17=-167/787,
	3-15=-16/575, 4-15=-526/96, 4-14=-222/213,
	5-14=0/861, 7-14=-912/132, 7-12=0/472,
	8-12=-439/100, 8-11=-130/111, 9-11=0/2743,

18-20=-195/85

Unbalanced roof live loads have been considered for

NOTES

this design.

1)

chord and any other members, with BCDL = 10.0psf. Refer to girder(s) for truss to truss connections. 8) Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 15 lb uplift at joint 10 9)

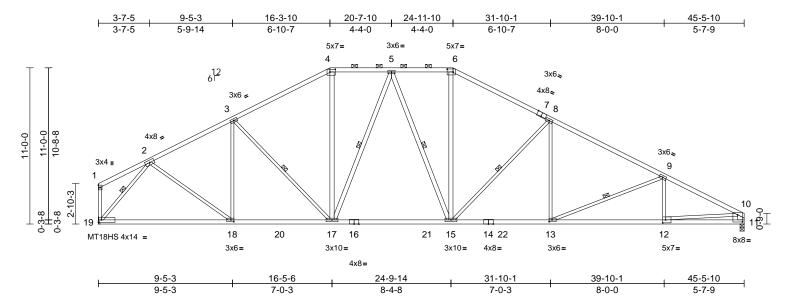
This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

LOAD CASE(S) Standard

JUAN

GARCIA


NUMBER

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	C4	Piggyback Base	2	1	Job Reference (optional)	149010952

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Nov 30 10:20:24 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

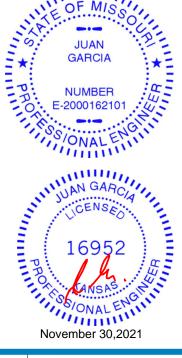
Page: 1

Scale =	1:81.1
---------	--------

3)

4)

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.91	Vert(LL)	-0.30	15-17	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.55	Vert(CT)	-0.51	15-17	>999	240	MT18HS	197/144
BCLL	0.0*	Rep Stress Incr	YES	WB	0.95	Horz(CT)	0.13	11	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.09	12-13	>999	240	Weight: 211 lb	FT = 10%

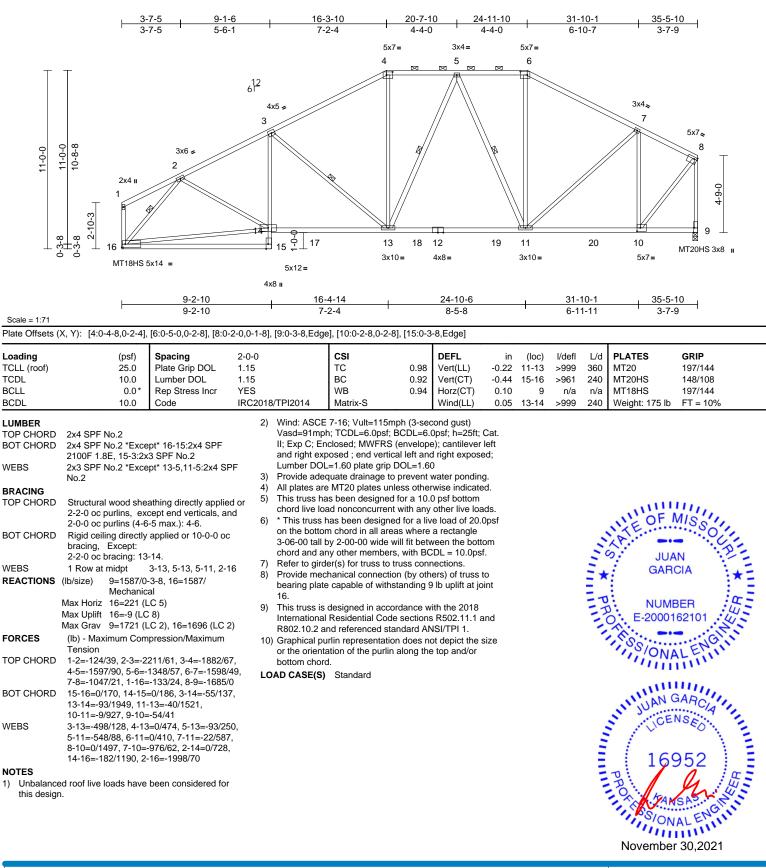

LUMBER	
TOP CHORD	2x4 SPF No.2 *Except* 7-10:2x4 SPF 2100F 1.8E
BOT CHORD	2x4 SPF 2100F 1.8E
WEBS	2x3 SPF No.2 *Except*
	17-4,17-5,15-5,15-6:2x4 SPF No.2,
	11-10:2x6 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied,
	except end verticals, and 2-0-0 oc purlins (3-8-7 max.): 4-6.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
BOTCHORD	bracing.
WEBS	1 Row at midpt 3-17, 5-17, 5-15, 8-15,
	9-13, 2-19
REACTIONS	(lb/size) 11=2031/0-3-8, 19=2031/
	Mechanical
	Max Horiz 19=-176 (LC 6)
	Max Uplift 11=-14 (LC 9)
	Max Grav 11=2168 (LC 2), 19=2184 (LC 2)
FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=-120/40, 2-3=-2657/22, 3-4=-2529/49,
	4-5=-2185/71, 5-6=-2339/90, 6-8=-2707/72,
	8-9=-3370/51, 9-10=-3723/35, 1-19=-126/23,
DOT OUODD	10-11=-2065/38
BOT CHORD	18-19=-38/1639, 17-18=0/2320,
	15-17=0/2307, 13-15=0/2929, 12-13=0/3272, 11-12=-17/516
WEBS	3-18=-285/69, 3-17=-279/111, 4-17=0/775,
WEDO	5-17=-528/92. 5-15=-221/201. 6-15=0/870.
	8-15=-896/133, 8-13=0/454, 9-13=-409/99,
	9-12=-154/95, 10-12=0/2770, 2-18=0/894,
	2-19=-2478/30
NOTES	

1) Unbalanced roof live loads have been considered for

this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated.

- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Refer to girder(s) for truss to truss connections. 7)
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 14 lb uplift at joint 11.
- This truss is designed in accordance with the 2018 9) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard


111

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	C5	Piggyback Base	1	1	Job Reference (optional)	149010953

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Nov 30 10:20:25 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	D1	Piggyback Base	2	1	Job Reference (optional)	149010954

11-0-3 -0-

Scale = 1:76.1

Loading

TCDL

BCLL

BCDL

TCLL (roof)

0-6-0

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Nov 30 10:20:25 Page: 1 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 3-4-12 24-10-0 7-8-5 13-10-1 20-6-0 29-2-0 36-0-7 39-8-0 0-10-8 3-4-12 4-3-9 6-1-12 6-7-15 4-4-0 4-4-0 6-10-7 3-7-9 5x7= 3x4= 5x7= 7 8 9 12 61 3x6 🥃 3x4 6 3x6 🞜 10 5x7= 5 11 4x4 🖌 4 2x4 ı 4-9-0 3 12 --Ř 18 21 17 20 16 22 15 23 14 24 13 7x12= 4x4 =3x10 =3x6 =3x10 =5x7= 7x12 MT20HS 3x8 II 14 12 0-3-8 3-3-8 10-3-13 20-7-4 29-0-12 36-0-7 39-8-0 0-3-8 3-0-0 7-0-6 10-3-7 8-5-8 6-11-11 3-7-9 Plate Offsets (X, Y): [7:0-5-0,0-2-8], [9:0-4-8,0-2-4], [12:0-3-8,Edge], [13:0-2-8,0-2-8], [19:0-5-12,0-2-4] Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) (loc) 25.0 Plate Grip DOL 1.15 TC 0.93 Vert(LL) -0.43 16-17 >999 360 MT20 197/144 10.0 Lumber DOL 1.15 BC 0.79 Vert(CT) -0.76 16-17 >621 240 MT20HS 148/108 Rep Stress Incr WB Horz(CT) 0.0 YES 1.00 0.23 12 n/a n/a 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.19 17-18 >999 240 Weight: 181 lb FT = 10%

LUMBER TOP CHORD 2x4 SPF No.2 2x4 SPF No.2 *Except* 18-15:2x4 SPF BOT CHORD 2100F 1.8E WEBS 2x3 SPF No.2 *Except* 16-8,14-8,18-2:2x4 SPF No.2, 19-2:2x8 SP DSS BRACING TOP CHORD Structural wood sheathing directly applied or 1-7-6 oc purlins, except end verticals, and 2-0-0 oc purlins (4-0-10 max.): 7-9 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 6-16, 8-14, 11-12, 10-13 REACTIONS (lb/size) 12=1765/0-3-8, 19=1850/0-3-8 Max Horiz 19=288 (LC 5) Max Uplift 12=-138 (LC 9), 19=-249 (LC 8) Max Grav 12=1919 (LC 2), 19=1956 (LC 2) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/37. 2-3=-5192/764. 3-4=-5100/845. 4-6=-3593/468, 6-7=-2314/305, 7-8=-1992/319, 8-9=-1560/221, 9-10=-1834/223, 10-11=-1173/127, 2-19=-2017/347, 11-12=-1885/144 BOT CHORD 18-19=-311/628, 17-18=-569/3521, 16-17=-348/2682, 14-16=-182/1825, 13-14=-110/1039, 12-13=-63/49 WEBS 3-18=-63/108, 4-18=-354/1310, 4-17=-627/265, 6-17=-104/956, 6-16=-958/329, 7-16=-10/686, 8-16=-106/479, 8-14=-740/148, 9-14=-26/511, 10-14=-81/715, 2-18=-567/4057, 11-13=-127/1679, 10-13=-1102/175

NOTES

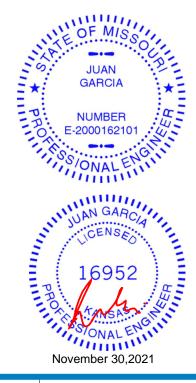
1) Unbalanced roof live loads have been considered for

this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. 3) All plates are MT20 plates unless otherwise indicated. 4)

This truss has been designed for a 10.0 psf bottom 5)

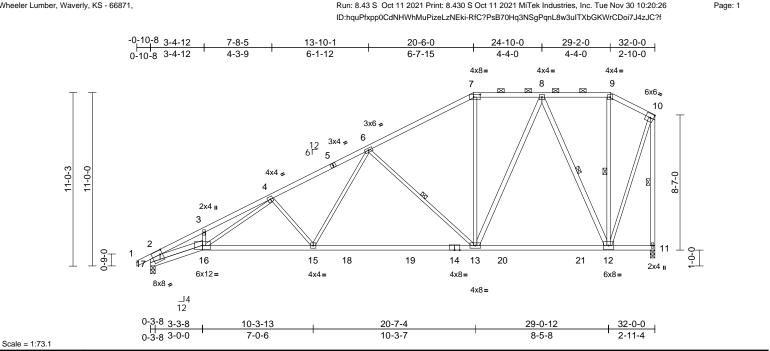
chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom


chord and any other members, with BCDL = 10.0psf. 7) Bearing at joint(s) 19 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 249 lb uplift at joint 19 and 138 lb uplift at joint 12.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


LOAD CASE(S) Standard

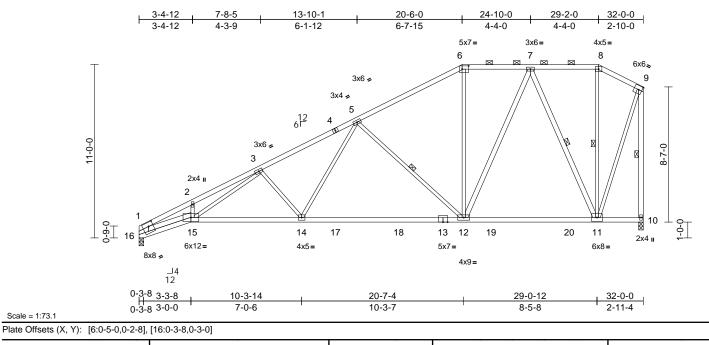
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a duss system planteets and property incorporate dust using in the version of the system planteets and property incorporate dust using indicated is to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	D2	Piggyback Base	1	1	Job Reference (optional)	149010955

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:26

Plate Offsets (X, Y): [7:0-5-0,0-2-0], [17:0-1-12,0-3-4]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	-		CSI TC BC WB Matrix-S 7-16; Vult=115mp			-	l/defl >999 >630 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 159 lb	GRIP 197/144 FT = 10%
TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF 2100F 1.8E SPF No.2 2x3 SPF No.2 *Exce 13-8,12-8,16-2,11-10	pt*	3)	II; Exp C; En cantilever lef exposed; Lui Provide adeo	n; TCDL=6.0psf; B closed; MWFRS (t and right expose mber DOL=1.60 pl quate drainage to p	envelope d ; end v late grip prevent	e) exterior zon vertical left DOL=1.60 water ponding	ne;				
BRACING TOP CHORD		athing directly applied cept end verticals, an -5 max.): 7-9.		chord live loa * This truss h on the bottor 3-06-00 tall b	is been designed f ad nonconcurrent v nas been designed n chord in all area by 2-00-00 wide wi	with any I for a liv s where ill fit betw	other live loa e load of 20.0 a rectangle veen the botto)psf om			ILLE OF A	MISSO
BOT CHORD	Rigid ceiling directly bracing.	,	6)) Bearing at jo	ny other members, int(s) 17 considers	s paralle	I to grain valu			E	JUA	N
WEBS REACTIONS	1 Row at midpt	LC 8), 17=-193 (LC 8	7)	designer sho Provide mec bearing plate joint 17 and	FPI 1 angle to grain build verify capacity hanical connection capable of withst 164 lb uplift at join designed in accorr	of bear (by oth anding 1 t 11.	ing surface. ers) of truss t 93 lb uplift at			* Ph	GARO NUME	BER U
FORCES	(lb) - Maximum Com Tension		, O)	International	Residential Code	sections	s R502.11.1 a	ind		-1		
TOP CHORD	1-2=0/37, 2-3=-4082 4-6=-2671/376, 6-7= 7-8=-1200/220, 8-9= 2-17=-1618/346, 10-	-1433/195, -426/73, 9-10=-508/7	70,) Graphical pu	rlin representation ation of the purlin a 1.	does no	ot depict the s	size			I SONA	LENIN
BOT CHORD	16-17=-470/456, 15- 13-15=-436/1878, 12 11-12=-1/3		Γ.		Standard						IN JUAN C	ARCIA
WEBS	3-16=-94/108, 4-16= 4-15=-588/283, 6-15 6-13=-936/339, 7-13 8-12=-1118/205, 9-1 2-16=-586/3175, 10-	i=-120/914, i=0/314, 8-13=-163/8 2=-88/84,	33,							WIIIII.	JUAN G	952
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for								11.	AR SION	ALENGINII


November 30,2021

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	D2A	Piggyback Base	1	1	Job Reference (optional)	149010956

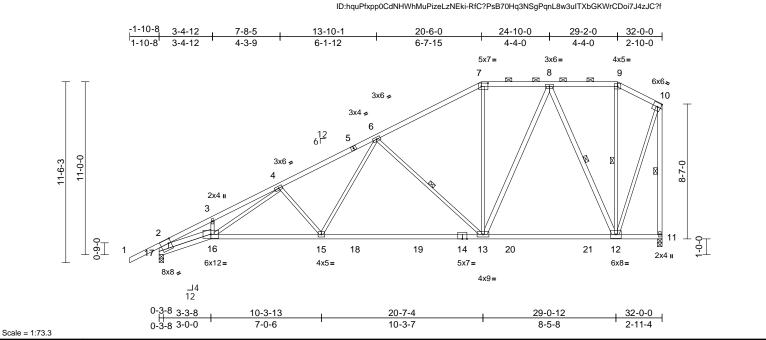
Scale = 1:73.1

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:27 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.57	Vert(LL)	-0.34	12-14	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.64	Vert(CT)	-0.60	12-14	>628	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.81	Horz(CT)	0.15	10	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S		Wind(LL)	0.16	14-15	>999	240	Weight: 158 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF 2100F 1.8E SPF No.2 2x3 SPF No.2 *Exce 10-9,12-7,11-7,15-1 Structural wood she 2-4-9 oc purlins, ex 2-0-0 oc purlins (5-3 Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 10=1420/ Max Uplift 10=-165 (Max Uplift 10=-165 (Max Grav 10=1544 (lb) - Maximum Com Tension 1-2=-4115/779, 2-3= 3-5=-2677/377, 5-6= 6-7=-1201/220, 7-8= 1-16=-1524/313, 9-1 15-16=-454/384, 14 12-14=-437/1882, 1 10-11=-1/3 2-15=-133/118, 3-14 5-14=-121/918, 6-12 8-11==88/84, 7-11= -3-15=-462/1184, 5-1 9-11=-129/1335, 1-1	E *Except* 16-15:2x4 pt* 16-1:2x8 SP DSS :2x4 SPF No.2 athing directly applied cept end verticals, an -4 max.): 6-8. applied or 8-9-0 oc 9-10, 8-11, 7-11, 5-1 0-3-8, 16=1420/0-3-8 _C 8) LC 8), 16=-165 (LC 8 (LC 2), 16=1509 (LC pression/Maximum =-4066/865, =-1435/196, =-427/73, 8-9=-508/70 (0=-1550/163 -15=-678/2678, 1-12=-123/871, I=-593/284, =0/315, 7-12=-164/8 1119/205, I=-613/3288	2) , 3) 4) f or 2 6) 2 6) 7) 2) 8) 9) LC	Wind: ASCE Vasd=91mpl II; Exp C; En cantilever lef exposed; Luu Provide aded This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar Bearing at jo using ANSI/1 designer sho Provide mec bearing plate joint 16 and This truss is International R802.10.2 au Graphical pu	7-16; Vult=115mp 7; TCDL=6.0psf; E closed; MWFRS (t and right expose mber DOL=1.60 p quate drainage to s been designed tas been designed tas been designed that been designed t	CDL=6.0 enveloped d; end v late grip prevent i for a 10.0 with any d for a 10.1 with any d for a liv is where ill fit betw y of bear of bear of log and to 10.0 with BC s parallel in formula y of bear in (by oth tanding 1 it 10. dance w sections ndard AN o does nd	cond gust) opps; h=25ft; () exterior zor vertical left DOL=1.60 water ponding 0 psf bottom other live loa e load of 20.0 a rectangle veen the bottoc DL = 10.0psf l to grain valu a. Building ing surface. ers) of truss t 65 lb uplift at 65 lb uplift at s R502.11.1 a s R502.11.1 a	Cat. ne; g. ds.)psf e o o nd			NUL * Philip	JUA GAR NUME E-20001	MISSOUR NCIA BER 62101 ALEN SARCIA NSEO

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017


November 30,2021

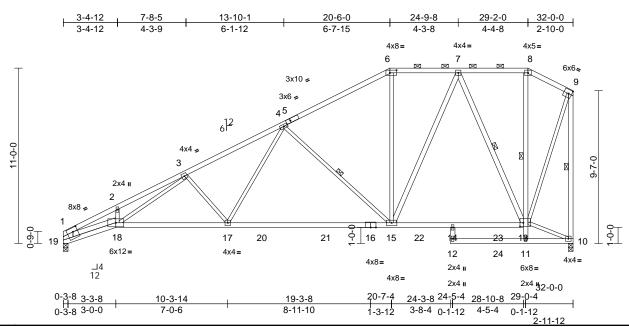
Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	D3	Piggyback Base	2	1	Job Reference (optional)	149010957

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:27

Page: 1

Wheeler Lumber, Waverly, KS - 66871,

Plate Offsets (X, Y): [7:0-5-0,0-2-8], [17:0-1-12,0-3-4]


			-										
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		ТС	0.63	Vert(LL)	-0.34	13-15	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.63	Vert(CT)	-0.60	13-15	>632	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.80	Horz(CT)	0.15	11	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.16	15-16	>999	240	Weight: 160 lb	FI = 10%
FORCES TOP CHORD BOT CHORD WEBS	11-10,13-8,12-8,16-2 Structural wood she 2-4-11 oc purlins, e 2-0-0 oc purlins (5-3 Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 11=1415// Max Horiz 17=411 (L Max Uplift 11=-163 (Max Grav 11=1540 J (lb) - Maximum Com Tension 1-2e0/68, 2-3=-3996 4-6=-2655/369, 6-7= 7-8=-1196/218, 8-9= 2-17=-1630/349, 10- 16-17=-403/318, 15- 13-15=-432/1870, 12 3-16=-92/107, 4-15= 6-15=-115/902, 7-13 9-12=-89/84, 8-12=- 4-16=-420/1068, 6-1 10-12=-127/1331, 2- d roof live loads have	ept* 17-2:2x8 SP DSS 2:2x4 SPF No.2 athing directly applied xcept end verticals, a i-6 max.): 7-9. applied or 9-3-6 oc 10-11, 9-12, 8-12, 6- 0-3-8, 17=1577/0-3-8 C 8) LC 8), 17=-217 (LC 8 (LC 2), 17=1638 (LC pression/Maximum 3/732, 3-4=-3925/813 1430/194, 426/72, 9-10=-507/7 -11=-1546/161 -16=-666/2646, 2-13=-122/868, 572/277, 3=0/314, 8-13=-162/8 1114/203, 13=-929/336, -16=-616/3242	2) d or 5) 13 6) 13 7) 2) 8) , 9) 70, 9)	 Wind: ASCE Vasd=91mpl Exp C; En cantilever lef exposed; Lui Provide aded This truss ha chord live loa * This truss for on the bottor 3-06-00 tall b chord and ar Bearing at jo using ANSI/1 designer shot Provide mecc bearing plate joint 17 and This truss is International R802.10.2 au Graphical put 	7-16; Vult=115mp 7; TCDL=6.0psf; B closed; MWFRS (t and right expose mber DOL=1.60 p quate drainage to is been designed to ad nonconcurrent to has been designed n chord in all area by 2-00-00 wide winy other members, int(s) 17 considers FPI 1 angle to grai uuld verify capacity hanical connection de capable of withst 163 lb uplift at join designed in accor Residential Code nd referenced star rlin representation ation of the purlin a d.	CDL=6.0 enveloped d ; end v late grip prevent v for a 10.0 with any d for a liv s where d for a liv s where d for a liv s where d fill fit betw with BC s parallel n formula of bear n (by oth anding 2 t 11. dance w sections ndard AN	cond gust) opps(; h=25ft; s) exterior zo vertical left DOL=1.60 water pondin. O psf bottom other live loa e load of 20.1 a rectangle veen the bott DDL = 10.0ps I to grain valu a. Building ing surface. ers) of truss i 117 lb uplift ai s R502.11.1 a I sb/LTPI 1. ot depict the si	Cat. ne; g. ds. Dpsf om f. ie to				JUAN C	MISSOUR BER 62101 ALEN 52 ALEN 62101

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	D4	Piggyback Base	5	1	Job Reference (optional)	149010958

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:28 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

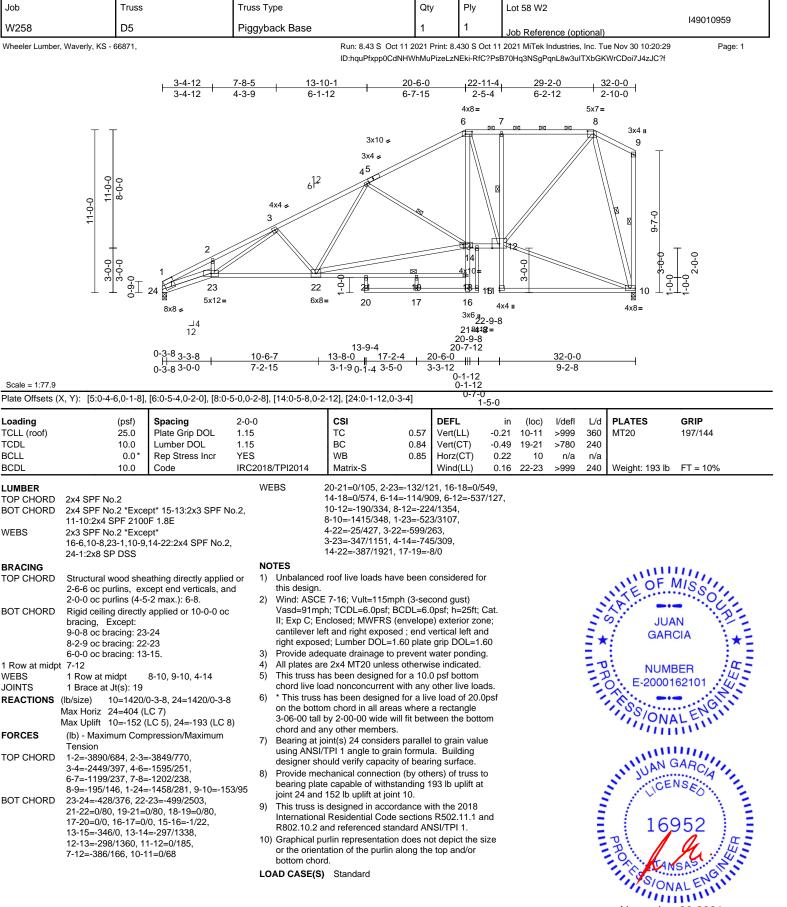
Plate Offsets (X, Y): [1:0-3-8,0-3-0], [5:0-3-5,0-1-8], [6:0-5-0,0-2-0], [13:0-2-8,0-2-12]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.59 0.68 0.82	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.31 -0.57 0.19 0.16	(loc) 15-17 15-17 10 17-18	l/defl >999 >663 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 171 lb	GRIP 197/144 FT = 10%
BOT CHORD 2x4 3 2100 WEBS 2x3 3 14-1: No.2 BRACING 14-1: No.2 TOP CHORD Struc 2-4- 2-0-0 BOT CHORD Rigid brac BOT CHORD Rigid brac WEBS 1 Ro REACTIONS (Ib/siz Max H Max C FORCES (Ib) - Tens TOP CHORD 1-2= 3-4= 6-7= 1-19 BOT CHORD 12- 13-1 BOT CHORD 145- 15-1 WEBS 12-1 3-17 WEBS 12-1 3-17 9-13 9-13	F 1.8E SPF No.2 *Exce 2,15-7,13-7,11- ,19-1:2x8 SP I ctural wood she oc purlins, ex 0 oc purlins (5-2 1 ceiling directly ng. w at midpt e) 10=1420/ oriz 19=373 (1 plift 10=-1655 Maximum Con ion 4174/779, 2-3: 2720/377, 4-6: -1247/220, 7-8: =-1544/313, 9- -2=-453/387, 1, 4-1 2=-453/387, 1, 11 4=0/89, 2-18=- -593/284, 4-11 =-136/1394, 1- 3=-57/0	ė,18-1,10-9:2x4 SPF SS athing directly applied cept end verticals, an -0 max.): 6-8. applied or 8-9-0 oc 4-15, 7-13, 8-11, 9-1 0-3-8, 19=1420/0-3-8 _C 8) LC 8), 19=-165 (LC 8 (LC 2), 19=1528 (LC pression/Maximum =-4124/865, =-1485/196, =-474/78, 8-9=-557/75 10=-1618/171 -18=-678/2718, 4-15=-125/911, -12=0/0, 10-11=0/55 133/118, 3-18=-462/1 '=-121/911, ==0345, 7-15=-162/8 -13=0/280, 8-13=-86/ 8=-613/3338,	3) 4) 1 or 5) d 6) 0 7) 3) 2) 8) 5, L(199, 55,	Vasd=91mpf II; Exp C; Enr cantilever left exposed; Lur Provide adec This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Bearing at joi using ANSI/T designer sho Provide mecl bearing plate joint 10 and 1 This truss is 0 International R802.10.2 ar Graphical pu		CDL=6.(enveloped d; end v ate grip prevent v or a 10.(with any l for a liv s where ll fit betw with BC parallel n formula of bearin (by oth anding 1 t 19. dance w sections dard AN does no	Dpsf; $h=25ft; 0$ a) exterior zor vertical left DOL=1.60 water ponding D psf bottom other live loa e load of 20.0. a rectangle veen the bottt DL = 10.0psf to grain valu a. Building ng surface. ers) of truss t 65 lb uplift at ith the 2018 s R502.11.1 a SI/TPI 1.	ne; g. ds. Dpsf com f. ie to				JUA GARO NUME E-20001 SS/ONA 169 November	ALENOIL

Scale = 1:72.3

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	D5	Piggyback Base	1	1	Job Reference (optional)	149010959

TCDL


BCLL

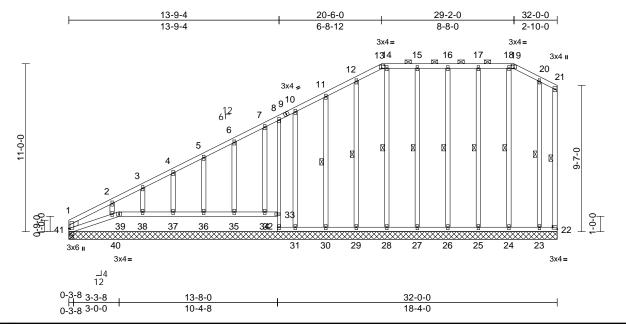
BCDL

WEBS

WEBS

JOINTS

November 30.2021



Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	D6	Piggyback Base Supported Gable	1	1	Job Reference (optional)	149010960

Scale = 1:75.5

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:30 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [13:0-2-0,0-2-8], [19:0-2-0,0-2-8], [22:Edge,0-1-8], [41:0-0-10,0-0-14]

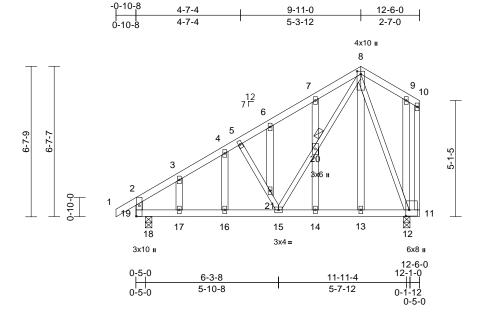
	(psf)	Spacing			CSI			DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
													MT20	197/144
		1 1					0.12	HOIZ(CT)	-0.03	22	n/a	n/a	Woight: 216 lb	ET - 10%
	10.0	Code	INCZ	2010/1712014	Watrix-								Weight. 210 lb	FT = 1076
					Max Grav									
										1) Un	balance	d roof l	ive loads have be	en considered for
										the	s design.		LI LI LE	Migli
		ot* 21-22:2x4 SPF No	0.2											
2x4 SPF	No.2													
-										п, са	EXP C, E	aft and	right exposed :	nd vertical deft an
										ria	ht expos	ed Lur	mber $DOI = 1.60$ r	blate grin $DOI = 1$
			nd							3) Tri	iss desir	ned fo	wind loads in th	e plane of the true
		,												
		applied of 10-0-0 00	,	FORCES	(lb) - Max	imum Comn	oressio	on/Maximum						
		9-40			Tension	- P						nuslifio	t building application	
	0			TOP CHORD	1-41=-17	8/19, 1-2=-3	58/90	, 2-3=-296/73	3,	4) N//	4	1	C: E-20001	62101 :4
i now at	mapi				3-4=-277	/77, 4-5=-24	8/76,	5-6=-232/82,						
									11,	5) Pro	ovide ade	equate	drainage to prev	ent water ponding
(lb/size)	22=30/32					,		,		6) All	plates a	re 2x4	MT20 unless pth	enwise indicated.
(, ,				,		,		7) Tru	uss to be	tully s	heathed from one	e tage of securely
						,		,						.e. ulagonal web).
	28=179/3	2-0-0, 29=179/32-0-0	Э,			,		,						10.0 pof bottom
	30=186/3	2-0-0, 31=146/32-0-0	Э,											
			_	BOT CHORD		,								
				Bot onone		,		,						
		,	,			,		,						
),		34-35=-1	36/102, 33-3	34=-13	36/102, 32-33	=0/0,					1111.
Max Horiz													ALL AND	GAD
	,	,											NUAN	CIA
wax upilit													S CE	NSA
												1	Lio	10
							24=-13	34/101,				-		- A - 1
				WEDO			107/	E4 4 27 44	2/04				1.00	252
				VVEDO								-	10:	202
									00,				P: /	: 4
													· 6 · .	na i di
						,		,					- A MAN	SAS.
	40=-260 ((LC 8), 41=-35 (LC 4))		17-25=-1	46/64, 18-24	4=-145	5/69,					1,55	ENGI
					20-23=-1	13/141							UN N	ALE
	2x4 SPF 2x4 SPF 2x8 SP D 2x4 SPF Structura 6-0-0 oc Rigid ceil bracing, 6-0-0 oc 1 Row at (lb/size)	(b/size) 22=30/32 24 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 *Exce 2x4 SPF No.2 *Exce 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-(Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 35 1 Row at midpt (lb/size) 22=30/32 24=187/3 26=180/3 30=186/3 32=6/32 34=142/3 36=178/3 36=178/3 38=166/3 40=258/3 Max Horiz 41=404 (Max Uplift 22=-40 (L 24=-56 (L 30=-54 (L 32=-55 (L 34=-60) (L 38=-33 (L 38=-33 (L)	(psf) 25.0 10.0 10.0 0.0* 25.0 10.0 0.0.* 25.0 10.0 0.0.* 25.0 10.0 25.0 10.0 25.0 10.0 25.0 10.0 24.0 22.4 SPF No.2 *Except* 8-32:2x3 SPF No 2x4 SPF No.2 *Except* 21-22:2x4 SPF No 2x4 SPF No.2 Structural wood sheathing directly applie 6-0-0 oc purlins, except end verticals, at 2-0-0 oc bracing: 39-40. 1 Row at midpt 21-22, 11-30, 12-29 14-28, 15-27, 16-26 17-25, 18-24, 20-23 (lb/size) 22=30/32-0-0, 23=146/32-0-0, 24=187/32-0-0, 25=179/32-0-0 26=180/32-0-0, 33=56/32-0-0, 34=142/32-0-0, 33=184/32-0-0, 36=178/32-0-0, 33=184/32-0-0, 36=178/32-0-0, 37=184/32-0-0, 36=178/32-0-0, 37=184/32-0-0, 36=178/32-0-0, 37=184/32-0-0, 36=178/32-0-0, 37=184/32-0-0, 36=178/32-0-0, 37=184/32-0-0, 36=178/32-0-0, 37=184/32-0-0, 36=178/32-0-0, 37=184/32-0-0, 36=178/32-0-0, 37=184/32-0-0, 36=178/32-0-0, 37=184/32-0-0, 36=178/32-0-0, 31=146/32-0-0, 36=178/32-0-0, 31=146/32-0-0, 36=33 (LC 8), 31=-89 (LC 8), 36=-50 (LC 8), 37=-60 (LC 8), 38=-33 (LC 8), 39=-24 (LC 18), 38=-33 (LC 8), 39=-24 (LC 18), 38=-33 (LC	(psf) Spacing 2-0-0 25.0 Plate Grip DOL 1.15 10.0 Plate Grip DOL 1.15 0.0* Rep Stress Incr YES 10.0 Code IRC2 2x4 SPF No.2 Except* 8-32:2x3 SPF No.2 2x4 SPF No.2 *Except* 8-32:2x3 SPF No.2 2x8 SP DSS *Except* 21-22:2x4 SPF No.2 2x4 SPF No.2 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins, 6c-0-0 max.): 13-19. Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 39-40. 1 Row at midpt 21-22, 11-30, 12-29, 14-28, 15-27, 16-26, 17-25, 18-24, 20-23 (lb/size) 22=30/32-0-0, 23=146/32-0-0, 24=187/32-0-0, 25=179/32-0-0, 26=179/32-0-0, 26=179/32-0-0, 26=179/32-0-0, 30=186/32-0-0, 33=56/32-0-0, 33=56/32-0-0, 33=56/32-0-0, 33=56/32-0-0, 33=56/32-0-0, 33=56/32-0-0, 33=166/32-0-0, 33=56/32-0-0, 33=166/32-0-0, 33=166/32-0-0, 33=166/32-0-0, 33=167/32-0-0, 38=166/32-0-0, 33=21/32-0-0, 38=16/32-0-0, 33=21/32-0-0, 38=21/32-0-0,	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		(ps) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(ps/) Spacing 2-0-0 CSI DEFL in (loc) (lo	(pst) Spacing 2-0-0 (pst) Spacing 2-0-0 (pst) Plate Grip DOL 1.15 10.0 Reg Stress Incr YES (pst) Reg Stress Incr YES 2x4 SPF No.2 22x4 SPF No.2 24-187 (LC 16), 28-153 (LC 21), 28-158 (LC 16), 33-152 (LC 16), 34-164

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	D6	Piggyback Base Supported Gable	1	1	Job Reference (optional)	I49010960

- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 41, 33 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 35 lb uplift at joint 41, 40 lb uplift at joint 22, 24 lb uplift at joint 39, 93 lb uplift at joint 33, 55 lb uplift at joint 32, 260 lb uplift at joint 40, 33 lb uplift at joint 38, 60 lb uplift at joint 37, 50 lb uplift at joint 36, 64 lb uplift at joint 35, 60 lb uplift at joint 34, 89 lb uplift at joint 31, 54 lb uplift at joint 30, 46 lb uplift at joint 26, 44 lb uplift at joint 27, 34 lb uplift at 66, 41 lb uplift at joint 26, 56 lb uplift at joint 25, 56 lb uplift at joint 24 and 31 lb uplift at joint 23.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard


Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:30 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	E1	GABLE	1	1	Job Reference (optional)	149010961

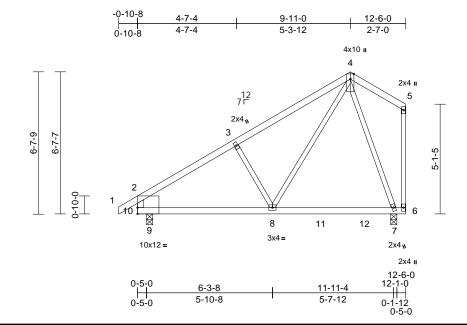
Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:31 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:50.8

Plate Offsets (X, Y): [8:0-1-8,0-2-0], [11:0-3-4,0-1-12], [19:0-5-10,0-1-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.35	Vert(LL)	-0.03	14-15	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.56	Vert(CT)	-0.05	15-16	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.48	Horz(CT)	0.01	12	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.02	14-15	>999	240	Weight: 76 lb	FT = 10%
UMBER TOP CHORD OT CHORD VEBS DTHERS BRACING TOP CHORD OT CHORD OINTS REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce 2x4 SPF No.2 Structural wood shee 6-0-0 oc purlins, exc Rigid ceiling directly bracing. 1 Brace at Jt(s): 20	pt* 19-2:2x4 SPF Ne athing directly applie cept end verticals. applied or 10-0-0 or -3-8, 18=629/0-3-8 .C 5) C 8), 18=-92 (LC 8)	3) 5.2 4) 5) ed or 6) 7) 8)	Truss design only. For stu see Standard or consult qu All plates are Truss to be f braced again Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec	ed for wind load ds exposed to v d Industry Gable alified building of 2x4 MT20 unle ully sheathed fr st lateral movel spaced at 2-0-0 s been designe ad nonconcurren as been design n chord in all ar ny 2-00-00 wild yo other membe hanical connect	wind (norm a End Deta designer as ass otherwi om one fac ment (i.e. d i oc. d for a 10.0 nt with any led for a live eas where will fit betw rs. ion (by oth	ane of the tru, alt to the face is as applica- s per ANSI/T se indicated. e or securely iagonal web 0 psf bottom other live loa e load of 20. a rectangle ween the bott ers) of truss	uss e), uble, PI 1. /). ads. Opsf com to			*	JU/ GAR	MISSOU
TOP CHORD	Tension	33, 3-4=-502/80, 10/97, 6-7=-432/134 100/84, 9-10=-105/8	, 80,	12 and 92 lb) This truss is International R802.10.2 a	capable of with uplift at joint 18 designed in acc Residential Coo nd referenced s	ordance w de sections	ith the 2018 R502.11.1 a				Philip	NUM E-20001	• 41.
BOT CHORD	18-19=0/384, 17-18= 16-17=-123/442, 15- 14-15=-61/183, 13-1 12-13=-60/187, 11-1	16=-123/442, 4=-61/183,		OAD CASE(S)	Standard							S ON	AL ENTIT
WEBS	5-21=-91/91, 15-21= 15-20=-150/400, 8-2 8-12=-476/68, 8-13= 14-20=-71/60, 6-21= 3-17=-106/67, 9-12=	:-213/138, :0=-163/436, :0/117, 7-20=-110/7! :-145/53, 4-16=-37/4										THE LOCE	GARCIA NSED
NOTES											-		
this design Wind: ASO Vasd=91n II; Exp C; cantilever	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed ised; Lumber DOL=1.60	(3-second gust) DL=6.0psf; h=25ft; (velope) exterior zor ; end vertical left and	Cat. ie; d								THUN,	16 PBO S/ON Novembe	952 NSA ⁵ NG


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
_	W258	E2	Common	2	1	Job Reference (optional)	149010962

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Nov 30 10:20:31 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:53.7

Plate Offsets (X, Y): [10:Edge,0-3-8]

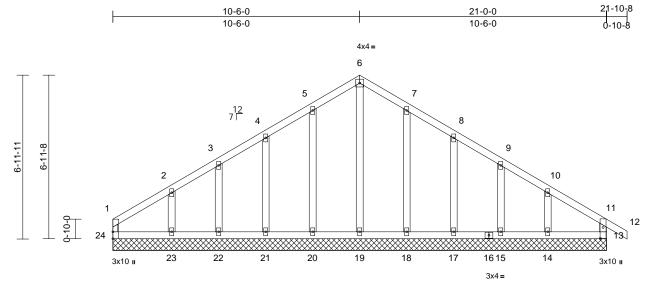
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.48		-0.08	7-8	>999		MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.57	Vert(CT)	-0.12	7-8	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.55	Horz(CT)	0.01	7	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.03	7-8	>999	240	Weight: 50 lb	FT = 10%

- LUMBER
- TOP CHORD
- 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 2x3 SPF No.2 *Except* 10-2:2x4 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) 7=545/0-3-8, 9=629/0-3-8 Max Horiz 9=241 (LC 7) Max Uplift 7=-94 (LC 8), 9=-91 (LC 8) Max Grav 7=641 (LC 15), 9=669 (LC 15) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/36, 2-3=-626/94, 3-4=-505/130,
- 4-5=-113/90, 2-10=-524/120, 5-6=-116/66 BOT CHORD 9-10=-9/484, 8-9=-130/568, 7-8=-68/187, 6-7=-66/55

WEBS 3-8=-282/198, 4-8=-100/489, 4-7=-513/93 NOTES

- Unbalanced roof live loads have been considered for 1) this design
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 94 lb uplift at joint 7 and 91 lb uplift at joint 9.

- 6) This truss is designed in accordance with the 2018
 - International Residential Code sections R502.11.1 and
 - R802.10.2 and referenced standard ANSI/TPI 1.
- LOAD CASE(S) Standard



ſ	Job	Truss	Truss Type C		Ply	Lot 58 W2				
	W258	G1	Common Supported Gable	1	1	Job Reference (optional)	149010963			

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:32 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

21-0-0

Scale = 1:49

Plate Offsets (X, Y): [13:0-5-10,0-1-8]

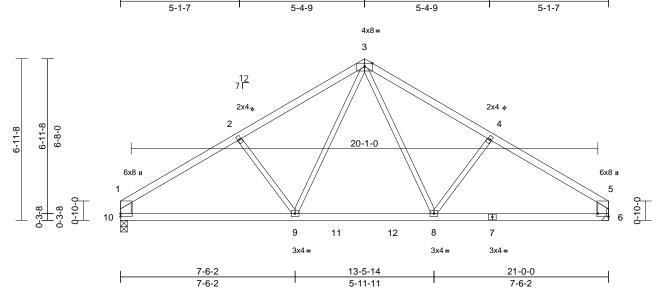
				_			-								
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	197/144	
TCDL		10.0	Lumber DOL	1.15		BC	0.06	Vert(CT)	n/a	-	n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.11	Horz(CT)	0.00	13	n/a	n/a			
BCDL		10.0	Code	IRC2	018/TPI2014	Matrix-R	-			-			Weight: 93 lb	FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF N	No.2	pt* 13-11:2x4 SPF N		BOT CHORD	23-24=-88/108, 2 21-22=-88/108, 2 19-20=-88/108, 1 17-18=-88/108, 1	20-21=-88 8-19=-88	(108, (108,		Ínte	ernationa 02.10.2 a	al Resid	dential Code sec erenced standar	ce with the 2018 tions R502.11.1 a d ANSI/TPI 1.	
OTHERS	2x3 SFF1 2x4 SPF N		pt 13-11.2x4 3FF P	NU.2		14-15=-88/108, 1				LUAD	SASE(S) Sla	nuaru		
	274 966 1	NU.2			WEBS	6-19=-142/0, 5-20			0						
	0.0		a da ka an alƙasa a da sa ana ƙw			3-22=-131/75, 2-2									
TOP CHORD	6-0-0 oc p	ourlins, exc	athing directly applie cept end verticals.			8-17=-145/89, 9-								<u>ш.</u>	
BOT CHORD	Rigid ceili bracing.	ng directly	applied or 10-0-0 oc		NOTES 1) Unbalance	d roof live loads ha	ave been (considered for					NE OF	MISS	
FORCES	bracing. ACTIONS (lb/size) 13=193/21-0-0, 14=194/21-0-0, 15=176/21-0-0, 17=180/21-0-0, 18=187/21-0-0, 19=147/21-0-0, 20=187/21-0-0, 21=182/21-0-0, 22=167/21-0-0, 23=223/21-0-0, 24=103/21-0-0 Max Horiz 24=-191 (LC 4) Max Uplift 13=-38 (LC 8), 14=-104 (LC 9), 15=-48 (LC 9), 17=-66 (LC 9), 15=-67 (LC 8), 22=-47 (LC 8), 21=-67 (LC 8), 22=-47 (LC 8), 23=-108 (LC 1), 14=230 (LC 16), 15=176 (LC 1), 17=186 (LC 16), 18=192 (LC 16), 19=182 (LC 18), 20=192 (LC 15), 21=188 (LC 15), 22=167 (LC 1), 23=258 (LC 15), 24=135 (LC 16)),),), 6),, 18), 15),	 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP11. All plates are 2x4 MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing. Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 							The Philippine	JU, GAR NUM E-2000 S/ON UCE 16	BER	
FORCES	(Ib) - Maxi Tension	imum Com	pression/Maximum			l by 2-00-00 wide v			m			-	1 / C	- N.	-
TOP CHORD	P CHORD 1-24=-104/43, 1-2=-120/97, 2-3=-101/97, 3-4=-89/127, 4-5=-77/160, 5-6=-67/188, 6-7=-60/186, 7-8=-70/158, 8-9=-82/125, 9-10=-92/94, 10-11=-119/89, 11-12=0/36, 11-13=-170/49			,	chord and 10) Provide me bearing pla 24, 38 lb u uplift at join joint 23, 60	any other members echanical connection tate capable of with plift at joint 13, 60 l nt 21, 47 lb uplift at 0 lb uplift at joint 18 loint 15 and 104 lb	s. on (by oth standing 4 lb uplift at i joint 22, ⁻ i, 66 lb upl	ers) of truss to 0 lb uplift at jo joint 20, 67 lb 108 lb uplift at ift at joint 17,	o pint			THINK.	ORESE/ON	952 NSAS	WIIIIIII

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	G2	Common	10	1	Job Reference (optional)	149010964

10-6-0

5-1-7

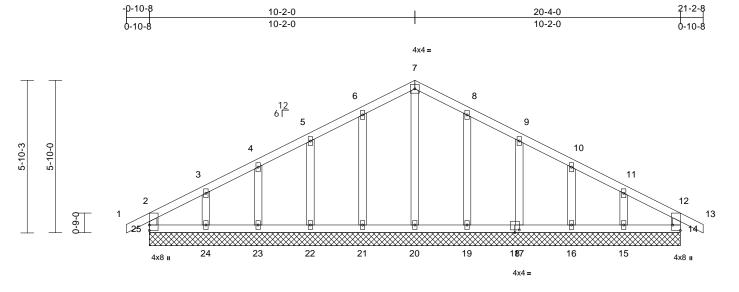

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:32 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

15-10-9

Scale = 1:49.6 Plate Offsets (X, Y): [5:Edge,0-5-8]

TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.67 Vert(LL) -0.22 8-9 >999 360 MT20 197/144 TCDL 10.0 Vert(LL) -0.04 8-9 >717 240 Vert(CT) -0.34 8-9 >717 240 Vert(CT) -0.34 8-9 >9 909 240 Weight: 72 lb FT = 10% BCDL 10.0 Vert(CT) 0.34 8-9 >9 909 240 Weight: 72 lb FT = 10% LUMBER Code IRC2018/TPI2014 Matrix-S WB 0.15 More (CT) 0.02 8-9 >999 240 Weight: 72 lb FT = 10% LUMBER Code IRC2018/TPI2014 Matrix-S FT = 10% Nond(LL) 0.12 8-9 >999 240 Weight: 72 lb FT = 10% LUMBER Code Trusting plate capable of withstanding 109 lb uplit at igin 10 and 100 lb uplit at igin 10		(X, T): [5:Euge,0-5-6]												
TCDL 10.0 Lumber DOL 1.15 BC 0.79 Ver(CT) 0.34 8-9 >717 240 BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Horz(CT) 0.34 8-9 >799 240 Meight: 72 lb FT = 10% LUMBER TOP CHORD 2x4 SPF No.2 IRC2018/TPI2014 Matrix-S Provide mechanical connection (by others) of trues to bearing plate capable of withstanding 10 9b uplift at joint 10 and 109 b uplift at joint 6. Provide mechanical concession with the 2018 BRACING TOP CHORD Structural wood sheathing directly applied or the racing. FT = 10% International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/TP1 1. International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/TP1 1. DAD CASE(S) Standard Max Horiz 10-181 (LC 5) Max Grav, 6=010 (LC 16), 10=1010 (LC 15) FORCES (b) - Maximum Compression/Maximum Tearison, 778 2.24-178/182, 45=-1337/179, 3.2-8-89/460, 4-6-274/207, 3-9-89/469, 2-9-274/207 Standard NUMBER Standard NUMBER Standard VIDES Vinct ASCE 7-16, Vult-115mph (3-second gust) Value 4.25.00 Standard NUMBER Standard NUMBER Standard NUMBER Standard NUMBER Standard Vinct ASCE 7-16, Vult-115mph (3-second gust) Vasc4-91 trues to truse to trues on thise lo	Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
BCLL 0.0* Rep Stress Incr YES WB 0.16 HorzCTT 0.03 6 n/a n/a BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.12 8-9 y99 240 Weight: 72 lb FT = 10% LUMBER TOP CHORD 2x4 SFP No.2 Except 10-1,6-5:2x6 SP DSS 6 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 109 lb uplift at joint 0.4 10.0 10 10.0 10 10.0 10 10.0	TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.67	Vert(LL)	-0.22	8-9	>999	360	MT20	197/144
BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.12 8-9 9-99 240 Weight: 72 lb FT = 10% LUMBER TOP CHORD Zx4 SFP No.2 **** **** **** ***	TCDL		Lumber DOL				0.79	Vert(CT)	-0.34	8-9	>717	240		
 LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 S24 SPF No.2 'Except' 10-1,6-5:2x6 SP DSS 2x3 SPF No.2 'Except' 10-1,6-5:2x6 SP DSS 2x3 SPF No.2 'Except' 10-1,6-5:2x6 SP DSS 2x3 SPF No.2 'Except' 10-1,6-5:2x6 SP DSS TOP CHORD Structural wood sheathing directly applied or 10-0-0 or bracing. REACTIONS (Ibisize) 6=924/ Mechanical, 10=9240-3-8 Max Horiz 10=181 (LC 5) Max Grave 6=1010 (LC 16), 10=1010 (LC 15) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 9:10=181/1173, 2-9=-233(31, 6-8=-97/1037 y=4=-1174/192, 4-5=-1337/179, 1-0=851/146, 6-8=-2541/146 BOT CHORD 9:10=181/1173, 8-9=-238(31, 6-8=-97/1037 y=4=-97/4207 NOTES 1) Unbalanced roof live loads have been considered for this design. TCDL=C Oper 8:CDL=A Opt, IT-25ET; Cat. II: Exp C: Enclosed; MWFRS (envelope) exterior zone; cantilever it and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3-0-60 call by 2-0-00 wide life of potom chord and any other members, with BCDL = 10.0pst. 5) Refer to girder(s) for truss to truss connections. 	BCLL	0.0*	Rep Stress Incr	YES		WB	0.15	Horz(CT)	0.03	6	n/a	n/a		
 TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 "Except '10-1,6-5:2x6 SP DSS WEBS 2x3 SPF No.2 "Except '10-1,6-5:2x6 SP DSS BRACING TDP CHORD Structural wood sheathing directly applied or 10-0:0 oc bracing. REACTIONS (Ubize) 6=:024/ Mechanical, 10=924/0-3-8 Max Horiz 10=181 (LC 5) Max Grav 6=:1010 (LC 16), 10=1010 (LC 15) FORCES (b) - Maximum Compression/Maximum ToP CHORD 11:2=:1337/179, 2:3=:1173/192, 3::10:10:10:10:10:10:10:10:10:10:10:10:10	BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S		Wind(LL)	0.12	8-9	>999	240	Weight: 72 lb	FT = 10%
 BÖT CHORD 24 SPF No.2 BYACING 24 SPF No.2 "Except 10-1,6-5:2x6 SP DS3 JUAN CHORD Structural wood sheathing directly applied or 4-0-3 to pullins, except end verticals. BOT CHORD Rigid celling directly applied or 10-0-0 co harding. REACTONS (Ib/size) 6-924/ Mechanical, 10-9240-3-8 Max Horiz 10-181 (LC 5) Max Horiz 10-181 (LC 6) Max Horiz 10-181	LUMBER			6)										
 WEBS 2x3 SPF No.2 *Except 10-1,6-5:2x6 SP DSS PRACING This truss is designed in accordance with the 2018 International Residential Code sections R502:11.1 and R802:10.2 and referenced standard ANSI/TPI 1. LOD C CHORD 4-0-3 to putinis, except end verticals. This truss is designed in accordance with the 2018 International Residential Code sections R502:11.1 and R802:10.2 and referenced standard ANSI/TPI 1. LOD C CASE(S) Standard CHORD (Ibsize) 6-9:24/ Mechanical, 10-9:24/0-3-8 Max Horiz 10-181 (IC 5) Max Circ 9 (IC 9), 10a-109 (IC 6); 10a-109 (IC 7); 10a-109 (IC 7	TOP CHORD							09 lb uplift a	it					
BRACING TOP CHORD Structural wood sheathing directly applied or 4-0-3 oc purifies, except end verticals. International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSUTPI 1. DAD CARES Rigid ceiling directly applied or 10-0-0 oc bracing. International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSUTPI 1. DAD CARES Geo24/ Mechanical, 10=924/0-3-8 Max Horiz (10-6), 10=1010 (LC 6), 10=-109 (LC 8) Max Grav 6=1010 (LC 16), 10=1010 (LC 16) FORCES I(b) - Maximum Tension JUAN TOP CHORD 9.10=-181/1173, 8-9=-37831, 6-8=-97/1037 3-8=-89/469, 4-8=-274/207, 3-9=-89/469, 2-9=-274/207 NUMBER E-2000162101 Vinct ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=-25t; Cat. II; Exp C: Enclosed; MWRFR (envelope) exterior zone; catifiver posed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psl bottom chord five load nonconcurrent with any other live loads. Here and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections. Second														
 BACHON TOP CHORN Structural wood sheathing directly applied or 4-0-3 oc purlins, except end verticals, REACTIONS (Brister), 6=924/ Mechanical, 10=924/0-3-8 Max Horiz 10=181 (LC 5) Max Uplit 6=-109 (LC 9), 10=-109 (LC 8) Max Grav 6=1010 (LC 16), 10=1010 (LC 15) FORCES (Ib)- Maximum Compression/Maximum ToP CHORD 1-2e-1337/r32, 2-3=-1173/192, 3-4=-1174/192, 4-5=-1337/r39, 1-10=-851/146, 5-6=-851/146 BOT CHORD 9-10=-181/1173, 8-9=-23/831, 6-8=-97/1037 WEES 3-8=-88/469, 4-8=-274/207 NOTES 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this fuels; 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=251; Cat. 1; Exp C: Enclosed; MWFRS (envelope) exterior zone; canitiever left and right exposed ; end vertical left and right exposed; Lumber DCD=1.60 pate ford may other live loads. 4) "This truss has been designed for a 10.0 psf bottom chord inve load ononcourcent with any other live loads. 4) "This truss has been designed for a 1.00 psf bottom chord and any other members, with BCDL = 10.0 psf. 5) Refer to girder(s) for truss to truss connections. 		2x3 SPF No.2 *Exce	ept* 10-1,6-5:2x6 SP	DSS ()					and					
LOAD CHORD Stitutian Wold Streating Une Unitable									anu					
 bräcing. REACTIONS (Ib/size) 6=924/ Mechanical, 10=924/0-3-8 Max Horiz 10=181 (LC 5) Max Uplit 6=-109 (LC 9), 10=-109 (LC 8) Max Grav 6=1010 (LC 16), 10=1010 (LC 15) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-1337/179, 2-3=-1173/192, 3-4=-1174/192, 4-5=-1337/179, 1-10=-851/146, 5-6=-851/146 BOT CHORD 9-10=-181/1173, 8-9=-23/831, 6-8=-97/1037 WEBS 3-8=-89/469, 4-8=-274/207, 3-9=-89/469, 2-9=-274/207 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vaad=91mph; TCDL=6.0psf; hcDL=6.0psf; hc=25t; Cat. It; Exp 0; Enclosed; MWRRS (envelope) exterior zone; cantilever left and right exposed; umber DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a ivie load 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss to truss connections. 	TOP CHORD	4-0-3 oc purlins, ex	cept end verticals.	LO			anuaru Ar	1 3 1/1F11.						
Max Horiz 10-181 (LC 5) Max Uplit 6-109 (LC 9), 10-109 (LC 8) Max Grav 6=1010 (LC 16), 10=1010 (LC 15) FORCES (b)- Maximum Compression/Maximum Tension TOP CHORD 1:21337/179, 2:31173/192, 3:41174/192, 4:51337/179, 1:10851/146, 5:6851/146 BOT CHORD 9:10181/1173, 8:9-23/831, 6:8-:97/1037 WEBS 3:-8-:89/469, 4:8-:274/207 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=3*Pmb; TCDL=6.0psf; bcDL=6.0psf; bc=25f; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 piste grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load on zoncurrent with any other live loads. 4) * This truss has been designed for a 10.0 psf bottom chord live load any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections.	BOT CHORD		applied or 10-0-0 o	C									WE	MIST
 TOP CHORD 12-1337/179, 2-3=-1173/192, 3-4=-1174/192, 4-5=-1337/179, 1-10=-851/146, 5-6=-851/146 BOT CHORD 9-10=-181/1173, 8-9=-23/831, 6-8=-97/1037 WEBS 3-8=-89/469, 4-8=-274/207, 3-9=-89/469, 2-9=-274/207 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; beCDL=6.0psf; tc3t. II; Exp C; Enclosed; IWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 path grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord and on other are catagle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections. 	REACTIONS	Max Horiz 10=181 (I Max Uplift 6=-109 (L	LC 5) .C 9), 10=-109 (LC 8	6)								111		
 3-4=:1174/192, 4-5=:1337/179, 1-10=:851/146, 5-6=:851/146, 5-6=:851/146 BOT CHORD 9-10=:181/1173, 8-9=:23/831, 6-8=:97/1037 3-8=:89/469, 4-8=:274/207, 3-9=:89/469, 2-9=:274/207 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=9 tmph; TCDL=6.0psf; BCDL=6.0psf; h=:25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=:1.60 3) This truss has been designed for a 10.0 psf bottom chord ine load nonconcurrent with any other live loads. 4) *This truss has been designed of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 1.0.0psf. 5) Refer to girder(s) for truss to truss connections. 	FORCES		pression/Maximum									Ξ×	GAR	CIA *
 BOT CHORD 9-10=-181/1173, 8-9=-23/831, 6-8=-97/1037 WEBS 3-8=-89/469, 4-8=-274/207, 3-9=-89/469, 2-9=-274/207 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; canditever left and right exposed; advertical left and right exposed; canditever left and right exposed; Lumber DOL=1.60 3) This truss has been designed for a live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord and any other a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections. 	TOP CHORD	3-4=-1174/192, 4-5=	-1337/179,									17		• [] []
 WEBS 3-8=-89/469, 4-8=-274/207, 3-9=-89/469, 2-9=-274/207 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load on concurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections. 	BOT CHORD	,		037									L-2000	
 2-9=-274/207 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections. 	WEBS	,	,										£	G
 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Refer to girder(s) for truss to truss connections. 													S/ON	AL ENIN
 this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BcDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections. 	NOTES												1111	i i i i i i i i i i i i i i i i i i i
 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections. 			been considered fo	r										100
 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections. 	0		(3-second qust)											CAD'II.
 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections. 				Cat.									NAU	GARCIA
 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections. 													N CE	NSA
 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections. 	cantilever	left and right exposed	; end vertical left an	d										- O ·
 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections. 				60								-	1 / L	- A E
 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections. 												-	10	050
 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 5) Refer to girder(s) for truss to truss connections. 												-	10	952
5) Refer to girder(s) for truss to truss connections.	on the bot	ttom chord in all areas	where a rectangle	•									PHO	ha Ju
November 30,2021													IL SSION	ALENGIN
November 30,2021													1111	mm
													Novembe	r 30,2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss Truss Type		Qty	Ply	Lot 58 W2	
W258	H1	Common Supported Gable	1	1	Job Reference (optional)	l49010965

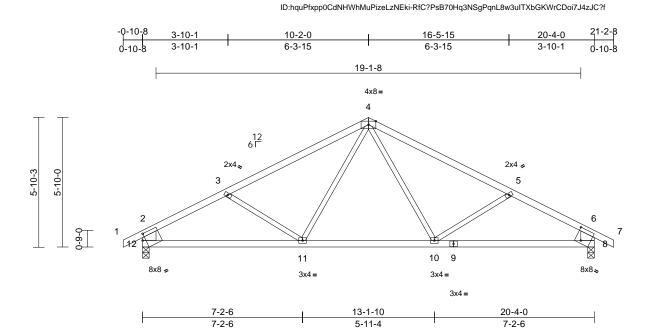
Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:33 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

33 Page: 1

20-4-0

Scale = 1:44.1 Plate Offsets (X, Y): [14:Edge,0-3-8], [18:0-2-0,0-1-4]

Flate Olisets (A, 1). [14.Euge,0-3	-0], [10.0-2-0,0-1-4]										-		
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/	FPI2014	CSI TC BC WB Matrix-R	0.07 0.03 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 84 lb	GRIP 197/144 FT = 10%	
	6-0-0 oc purlins, e Rigid ceiling direct bracing. (lb/size) 14=168 16=181 19=188 23=181 25=168 Max Horiz 25=168 Max Uplift 14=-18 16=-48 19=-55 24=-85 Max Grav 14=168 16=182 19=191 21=191 21=191 23=182 25=168	LC 7) (LC 8), 15=-78 (LC 9), (LC 9), 17=-56 (LC 9), (LC 9), 21=-55 (LC 8), (LC 8), 23=-46 (LC 8), (LC 8), 25=-32 (LC 9) (LC 22), 15=176 (LC 1 (LC 22), 20=178 (LC 1 (LC 21), 24=176 (LC 1 (LC 21)	24-25=-24/69, 23-2 21-22=-24/69, 20-2 17-19=-24/69, 16- 14-15=-24/69, 16- 14-15=-24/69, 7-20=-135/0, 6-21 4-23=-142/73, 3-24 9-17=-138/80, 10- 1 roof live loads hav 5 7-16; Vult=115mp h; TCDL=6.0psf; B hclosed; MWFRS (if thand right expose ad; Lumber DOL=1. ned for wind loads uds exposed to wir d Industry Gable E ualified building det e 2x4 MT20 unless rescontinuous bott fully sheathed from nst lateral moveme is paced at 2-0-0 of as been designed find nonconcurrent has been designed m chord in all area: by 20.00 wido wit	21=-24/6 17=-24/6 =-151/75 4=-134/5 16=-142 re been for bh (3-sec CDL=6.) enveloped d; end v 60 plate in the pl d (norm ind Deta signer a: otherwi om chor o che fac otherwi o one fac otherwi o and t (i.e. of c. or a 10.) with any t for a liv s where	 9, 19-20=-24 9, 15-16=-24 9, 15-16=-24 9, 15-16=-24 17, 8-19=-151 (74, 11-15=-1 (74, 11-15=-1) (74, 11	/69, /69, 30, /79, 34/93 r Cat. ne; d 60 ss), ble, PI 1.	Ínte R80	ernationa D2.10.2 & CASE(S	al Resi and ref) Sta	JU/ GAR NUMI SS/ON/	tions R502. d ANSI/TPI	.11.1 and		
FORCES TOP CHORD	Tension 2-25=-149/41, 1-2 3-4=-51/77, 4-5=-4 6-7=-38/154, 7-8=	2/103, 5-6=-33/130, -38/146, 8-9=-33/111, 1=-35/58, 11-12=-64/44	10) 1 4,	chord and a Provide mea bearing plat 25, 18 lb up uplift at joint 24, 55 lb up	by 2-00-00 wide wi ny other members. chanical connectior e capable of withst ifft at joint 14, 55 lb :22, 46 lb uplift at jo lift at joint 19, 56 lb :16 and 78 lb uplift	n (by oth anding 3 uplift at oint 23, 3 uplift at	ers) of truss t 2 lb uplift at j joint 21, 57 lk 35 lb uplift at j joint 17, 48 lk	o oint o joint			THINK.	POR TAN	952 SAS	I TANER


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	H2	Common	4	1	Job Reference (optional)	149010966

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:34

Wheeler Lumber, Waverly, KS - 66871,

Plate Offsets (X, Y): [Plate Offsets (X, Y): [8:0-3-2,0-6-8], [12:0-1-10,0-3-4]											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.71	Vert(LL)	-0.12	10-11	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.52	Vert(CT)	-0.19	10-11	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.11	Horz(CT)	0.03	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.07	10-11	>999	240	Weight: 71 lb	FT = 10%

LUMBER

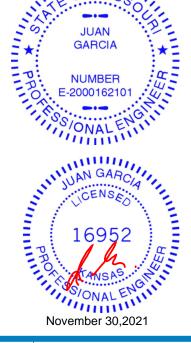
WEBS

Scale = 1:51.9

TOP CHORD

2x4 SPF 2100F 1.8E BOT CHORD 2x4 SPF No.2

6) This truss is designed in accordance with the 2018


International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

BRACING	
TOP CHORD	Structural wood sheathing directly applied or 4-11-2 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
BOT CHORD	bracing.
REACTIONS	(lb/size) 8=970/0-3-8, 12=970/0-3-8
	Max Horiz 12=94 (LC 7)
	Max Uplift 8=-137 (LC 9), 12=-137 (LC 8)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/37, 2-3=-1329/218, 3-4=-1126/150,
	4-5=-1126/150, 5-6=-1329/218, 6-7=0/37,
	2-12=-883/171, 6-8=-883/171

2x3 SPF No.2 *Except* 12-2,8-6:2x8 SP DSS

- BOT CHORD 11-12=-217/1085, 10-11=-33/808, 8-10=-140/1085
- WEBS 4-10=-29/290, 5-10=-248/203, 4-11=-29/290, 3-11=-248/203
- NOTES
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 137 lb uplift at joint 12 and 137 lb uplift at joint 8.

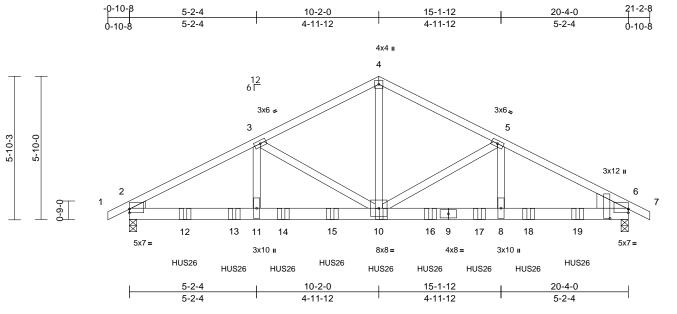
MI

0

Page: 1

Job	Truss	Truss Type Qty Ply Lot 58 W2		Lot 58 W2		
W258	НЗ	Common Girder	1	3	Job Reference (optional)	149010967

4-11-12

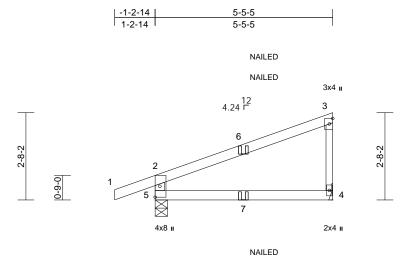

5-2-4

Wheeler Lumber, Waverly, KS - 66871,

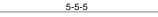
Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:34 Page: 1 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 21-2-8 0-10-8 5-2-4 10-2-0 15-1-12 20-4-0

4-11-12

5-2-4


Scale = 1:47 Plate Offsets (X, Y): [2:Edge,0-1-13], [6:Edge,0-1-13], [6:0-4-9,0-9-0]

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job	Truss	Truss Type	Qty Ply Lot 58 W2		Lot 58 W2	
W258	J1	Diagonal Hip Girder	2	1	Job Reference (optional)	149010968

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:35 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

NAILED

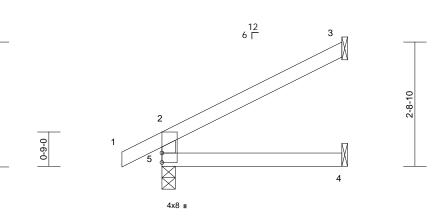
Scale = 1:35.3

Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO		CSI TC BC WB	0.39 0.24 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.06 0.00	(loc) 4-5 4-5 4	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144
										FT = 10%			
 cantilever right exposision of the struss chord live 3) * This truss on the bott 3-06-00 tal chord and 4) Refer to gi 5) Provide muse bearing plagiont 5 and 6) This truss Internation R802.10.2 7) "NAILED" 	Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 has been designed for load nonconcurrent wi s has been designed fi tom chord in all areas II by 2-00-00 wide will any other members. irder(s) for truss to trus echanical connection (ate capable of withstar 150 lb uplift at joint 4. is designed in accorda and Residential Code so and referenced stand indicates 3-10d (0.148 25") toe-nails per NDS	; end vertical left and 0 plate grip DOL=1.6 a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto is connections. by others) of truss to adding 100 lb uplift at ance with the 2018 acctions R502.11.1 ar ard ANSI/TPI 1. ("x3") or 2-12d	t 0 ls. posf m								annun.	BOCK STON Novembe	ALENGIN NSEO 952 ALENGIN ALENGIN

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	J2	Jack-Open 4 1 Job Reference		Job Reference (optional)	149010969	

2-8-13

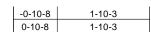

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:35 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

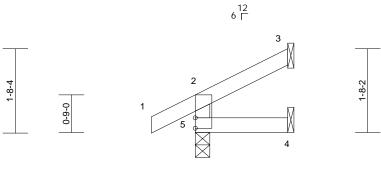
November 30,2021

MiTek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

3-11-4

<u> </u>			
Scale) = 1	1:25.2	


Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	-0.01	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.12		-0.02	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00		-0.01	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	4-5	>999	240	Weight: 11 lb	FT = 10%
											, , , , , , , , , , , , , , , , , , ,	
LUMBER												
	DP CHORD 2x4 SPF No.2											
	DT CHORD 2x4 SPF No.2											
	VEBS 2x4 SPF No.2											
BRACING												
TOP CHOR		eathing directly appli	ed or									
BOT CHOR		except end verticals. ly applied or 10-0-0 o	•									
BUICHUR	bracing.	ly applied of 10-0-0 o	C									
REACTION		Mechanical, 4=44/									ANDE I	
		ical, 5=249/0-3-8									NEOF	SS
	Max Horiz 5=87 (L	,									A	
	Max Uplift 3=-66 (I		0.40							2	A	
	Max Grav 3=114 ((LC 1)	LC 1), 4=70 (LC 3), 5	=249							2	JUA GAR	
FORCES	. ,	mpression/Maximum								=*	GAR	
1 ONOLO	Tension									2.1	1	1 2
TOP CHOR	D 2-5=-218/65, 1-2=	0/32, 2-3=-74/39								- 7		BER : C-
BOT CHOR										- 7	E-20001	• 41.
NOTES											L-20001	02101
	SCE 7-16; Vult=115mp	h (3-second aust)								1	· ···· -··	- Call
	1mph; TCDL=6.0psf; B		Cat.								1.SIONI	ENI
	C; Enclosed; MWFRS (- CINF	
	er left and right expose											DD 5
	posed; Lumber DOL=1		60									111.
	ss has been designed i										IN UAN C	APAL
	/e load nonconcurrent										NUAN	CIA
	uss has been designed oottom chord in all area		Upst								CE	NSA
	tall by 2-00-00 wide w		om							1		0
	nd any other members.		om							2	6 A.	A 2
	girder(s) for truss to t										160	952
	mechanical connection		0							-		552 : =
bearing	bearing plate capable of withstanding 28 lb uplift at joint											
	6 lb uplift at joint 3.										0	Mr. WS
	ss is designed in accor										A AN	SAS
	ional Residential Code		ind								Solo	ENUI
	0.2 and referenced star	ndard ANSI/TPI 1.									III ON	AL
LOAD CAS	LOAD CASE(S) Standard											


Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	J3	Jack-Open	8	1	Job Reference (optional)	149010970

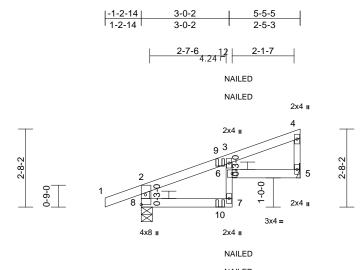
Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:35 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

4x8 II

1-10-3


Scale = 1:23

Scale = 1:23												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.07 0.02 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 0.00 0.00	(loc) 4-5 4-5 3 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 6 lb	GRIP 197/144 FT = 10%
BODE	10.0	Code	11(02010/11/12014	Width A-IX		Wind(LL)	0.00	4-3	2333	240	Weight. 0 lb	11 = 1078
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 1-10-3 oc purlins, e Rigid ceiling directly	xcept end verticals.										
	bracing.											nn.
NEACTIONS	REACTIONS (lb/size) 3=42/ Mechanical, 4=13/ Mechanical, 5=169/0-3-8 Max Horiz 5=45 (LC 8) Max Uplift 3=-30 (LC 8), 5=-24 (LC 8) Max Grav 3=42 (LC 1), 4=30 (LC 3), 5=169 (LC 1) GARCIA											
FORCES	(lb) - Maximum Com	pression/Maximum								- *		*=
Vasd=91n II; Exp C; cantilever	Tension 2-5=-148/42, 1-2=0/ 4-5=0/0 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed	(3-second gust) DL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left and	ie; d							Philip	E-2000	162101
 This truss chord live * This trus on the bot 3-06-00 ta chord and Refer to gi Provide m bearing pl 5 and 30 li This truss Internation 	sed; Lumber DOL=1.6 has been designed foi load nonconcurrent wi s has been designed f tom chord in all areas ill by 2-00-00 wide will any other members. irder(s) for truss to tru echanical connection (ate capable of withstar b uplift at joint 3. is designed in accorda al Residential Code si e and referenced stand S) Standard	r a 10.0 psf bottom ith any other live load or a live load of 20.0 where a rectangle fit between the botto iss connections. (by others) of truss to nding 24 lb uplift at jo ance with the 2018 ections R502.11.1 at	ds. Ipsf om D							annua.	PROCESSION CON	VSAS OFTIN
											Novembe	er 30,2021

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	J4	Diagonal Hip Girder	2	1	Job Reference (optional)	149010971

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Nov 30 10:20:36 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:39.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.27	Vert(LL)	-0.04	6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.45	Vert(CT)	-0.06	7	>961	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.03	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.04	6	>999	240	Weight: 17 lb	FT = 10%
LUMBER	MBER 8) In the LOAD CASE(S) section, loads applied to the face											

TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2 *Except* 7-3:2x3 SPF No.2
WEBS	2x4 SPF I	No.2 *Except* 4-5:2x3 SPF No.2
BRACING		
TOP CHORD		l wood sheathing directly applied or ourlins, except end verticals.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS		5=219/ Mechanical, 8=342/0-4-9 8=96 (LC 22) 5=-52 (LC 8), 8=-98 (LC 4)

FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-8=-317/120, 1-2=0/32, 2-3=-220/24, 3-4=-79/14, 4-5=-130/45

BOT CHORD 7-8=-42/136, 6-7=0/60, 3-6=-13/62, 5-6=-21/64 NOTES

Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 98 lb uplift at joint 8 and 52 lb uplift at joint 5.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.

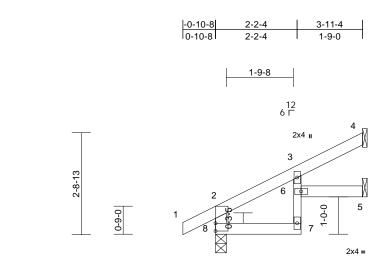
of the truss are noted as front (F) or back (B).

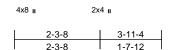
- LOAD CASE(S) Standard
- Dead + Roof Live (balanced): Lumber Increase=1.15, 1)
 - Plate Increase=1.15
 - Uniform Loads (lb/ft)
 - Vert: 1-2=-70, 2-4=-70, 7-8=-20, 5-6=-20
 - Concentrated Loads (lb) Vert: 10=3 (F=1, B=1)

111 MIS

0

November 30,2021




Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	J5	Jack-Open	5	1	Job Reference (optional)	149010972

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:36 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-8-10

Page: 1

Scale = 1:30.9

2)

3)

4)

5)

right exposed; Lumber DOL=1.60 plate grip DOL=1.60

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Refer to girder(s) for truss to truss connections.

Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 28 lb uplift at joint 8, 47 lb uplift at joint 4 and 12 lb uplift at joint 5.

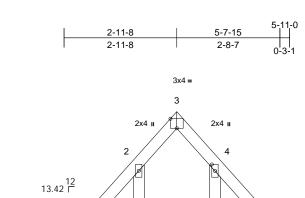
chord and any other members.

00010 = 1.00.0												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	-0.01	6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.20	Vert(CT)	-0.02	7	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.02	7	>999	240	Weight: 12 lb	FT = 10%
LUMBER			This truss is	s designed in acc	ordance w	ith the 2018						
TOP CHORD	2x4 SPF No.2			al Residential Coo			and					
BOT CHORD	2x4 SPF No.2 *Exce	ept* 7-3:2x3 SPF No	.2 R802.10.2	and referenced st	tandard AN	ISI/TPI 1.						
WEBS	2x4 SPF No.2		LOAD CASE(S) Standard								
BRACING												
TOP CHORD	Structural wood she		ed or									
BOT CHORD	3-11-4 oc purlins, e Rigid ceiling directly		•									
BOTCHORD	bracing.											
REACTIONS	0	echanical, 5=57/										Mar.
		al, 8=249/0-3-8									NEOF	MISS
	Max Horiz 8=87 (LC	8)								1	NY	0/1
	Max Uplift 4=-47 (LC	C 8), 5=-12 (LC 8), 8	=-28							5	X	
	(LC 8)		0.40							-	JU/	
	Max Grav 4=101 (LC (LC 1)	5 1), 5=59 (LC 3), 8=	=249							E*	GAR	
FORCES	(lb) - Maximum Com Tension	pression/Maximum								=	NU INA	
TOP CHORD	2-8=-231/53, 1-2=0/	32, 2-3=-130/0,								= 7	E-2000	• 41.
BOT CHORD	3-4=-29/40	2 2 6 1/51 5 6 0/	0							1	A	121
	7-8=-40/66, 6-7=0/4	3, 3-6=-1/51, 5-6=0/	0								1.00	GN
NOTES	CE 7 16: \/ult 115mph	(2 accord quat)									IN ON	ALEIN
	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC		Cat								1111	IIII
	Enclosed; MWFRS (er											
	left and right exposed										, un	GAD
												- 1

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	LAY1	Lay-In Gable	1	1	Job Reference (optional)	l49010973

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Nov 30 10:20:36 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


6

2x4 u

5

2x4 💊

Page: 1

2x4 u

5-11-0

Scale = 1:30.2	

Plate Offsets (X	, Y): [3:Edge,0-3-0],	[4:0-2-1,0-1-0]										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.04	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 20 lb	FT = 10%

BRACING			8
TOP CHORD		wood sheathing directly applied or	
	5-11-7 oc	purlins.	
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc	ĝ
	bracing.		
REACTIONS	(lb/size)	1=78/5-11-0, 5=78/5-11-0,	
		6=161/5-11-0, 7=161/5-11-0	L

3-3-15

о Ю

0-0-7

	Max Horiz	1=-80 (LC 4)
	Max Uplift	6=-106 (LC 9), 7=-107 (LC 8)
	Max Grav	1=94 (LC 17), 5=93 (LC 18), 6=183
		(LC 16), 7=184 (LC 15)
FORCES	(lb) - Max Tension	imum Compression/Maximum

TOP CHORD 1-2=-113/60, 2-3=-63/15, 3-4=-63/14, 4-5=-112/58 BOT CHORD 1-7=-40/104, 6-7=-40/104, 5-6=-40/104 2-7=-144/131, 4-6=-142/130 WEBS

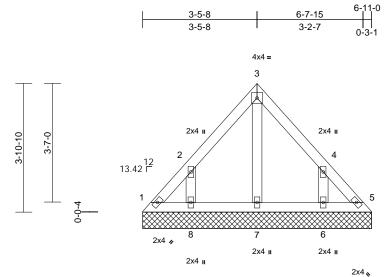
NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)
- Gable studs spaced at 2-0-0 oc. 5)
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.

chord and any other members. Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 107 lb uplift at joint 7 and 106 lb uplift at joint 6.

2x4 🅢

This truss is designed in accordance with the 2018 9) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard



Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	LAY2	Lay-In Gable	1	1	Job Reference (optional)	l49010974

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:37 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-11-0

Scale = 1:34.8

Loading		(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15	TC	0.05	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15	BC	0.03	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	5	n/a	n/a		
BCDL		10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 25 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No 2x4 SPF No Structural w 6-0-0 oc pur Rigid ceiling bracing. (Ib/size) 1: 6: 8: Max Horiz 1: Max Uplift 1: (L Max Grav 1:	2 2 2 2 2 2 2 2 2 2 2 2 2 2		chord live 7) * This true on the bo 3-06-00 ti chord and 8) Provide n bearing p 1, 21 lb u uplift at jc 9) This truss Internatio R802.10 -143 LOAD CASE	has been designed load nonconcurren ss has been designed tom chord in all are all by 2-00-00 wide 1 d any other member rechanical connecti late capable of with plift at joint 5, 143 lb int 6. is designed in acco nal Residential Cod 2 and referenced st (S) Standard	t with any ed for a liv eas where will fit betw s. on (by oth standing 3 o uplift at j ordance w e sections	other live load re load of 20.0 a rectangle veen the botto ers) of truss to 36 lb uplift at jo pint 8 and 143 ith the 2018 \$ R502.11.1 ar	psf m o bint ∫ Ib				S. JU/ GAR	
FORCES	19 (Ib) - Maxim Tension	5) ium Com	pression/Maximum								P.D.I.	NUM E-2000	• [] []
TOP CHORD	1-2=-116/84 4-5=-103/64		9/69, 3-4=-92/56,									1.58	ENGIN
BOT CHORD	1-8=-39/80, 5-6=-39/80	7-8=-39/	/80, 6-7=-39/80,									I IIII	ALLIN
WEBS	3-7=-75/0, 2	2-8=-174	/164, 4-6=-174/164										
NOTES												, un	
1) Unbalance this design	n.		been considered for									IN JUAN	GARCIA
Vasd=91n II; Exp C; cantilever right expos 3) Truss desi only. For	nph; TCDL=6.0 Enclosed; MW left and right e sed; Lumber D igned for wind studs exposed	0psf; BC /FRS (en exposed DOL=1.60 loads in d to wind	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon; ; end vertical left anc 0 plate grip DOL=1.6 the plane of the trus (normal to the face), d Details as applicab	e; d 50 ss								PROT TEA	952 H
			gner as per ANSI/TP									1.500	NGIN
4) Gable req	uires continuo	us bottor	m chord bearing.									ON	ALE
5) Gable stud	ds spaced at 2	-U-U OC.										Neversha	* 20.2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	P1	Piggyback	2	1	Job Reference (optional)	149010975

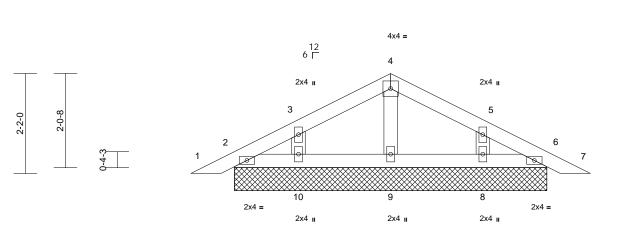
-0-11-5

0-11-5

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:37 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-9-6


6-9-6

3-4-11

7-8-11

0-11-5

3-4-11

3-4-11

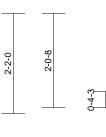
Sca		_	1	.25
Sca	e	=	1	:25

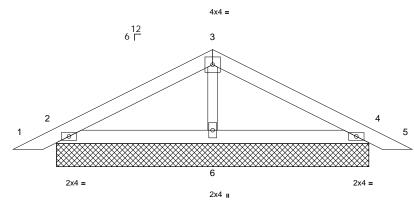
Loading	(psf)	Spacing	2-0-0	CSI	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC 0.0	4 Vert(LL)	n/a	-	n/a	999	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC 0.0	2 Vert(CT)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES	WB 0.0	2 Horz(CT)	0.00	6	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P						Weight: 22 lb	FT = 10%	
BCDL LUMBER TOP CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp C; E	10.0 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (lb/size) 2=99/6-9 8=176/6- 10=176/6 Max Horiz 2=-35 (Li (LC 9), 1 (lb) - Maximum Cor Tension 1-2=0/17, 2-3=-41/2 4-5=-49/39, 5-6=-3" 2-10=-1/31, 9-10=- 4-9=-105/10, 3-10= ed roof live loads have be the construction of the loads have the construction of the loads have t	Code Code	IRC2018/TPI2014 7) * This truss I on the botto 3-06-00 tall I chord and at 8) Provide mee bearing platt 2, 19 lb uplif uplift at joint 9) This truss is International R802.10.2 a 10) See Standar Detail for Cc consult qual LOAD CASE(S) 1/31	Matrix-P has been designed for a m chord in all areas whe by 2-00-00 wide will fit biny other members. thanical connection (by c e capable of withstanding t at joint 6, 57 lb uplift at 8. designed in accordance Residential Code section nd referenced standard d Industry Piggyback Tr nonection to base truss a fied building designer.	live load of 20.0 re a rectangle tween the botto thers) of truss t joint 10 and 57 with the 2018 ns R502.11.1 a ANSI/TPI 1. uss Connection	Dpsf om oint Ib nd	6	n/a	₩ 07	Weight: 22 lb	MISSOURAN AN ICIA BER	
 right expos 3) Truss designed only. For signed see Standard or consult of 4) Gable requised 5) Gable studie 6) This truss list 	sed; Lumber DOL=1.6 gned for wind loads in studs exposed to wind ard Industry Gable Er qualified building des uires continuous botto is spaced at 2-0-0 oc has been designed fo		0 s le, l 1.						CHILLINN.	16 PB Novembe	VSAS HU	ANTING .

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	P2	Piggyback	19	1	Job Reference (optional)	149010976

-0-11-5


0-11-5


Wheeler Lumber, Waverly, KS - 66871,

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:37 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-4-11 6-9-6 7-8-11 3-4-11 3-4-11 0-11-5 4x4 = 12 6 Г 3

6-9-6

Scale = $1:25$

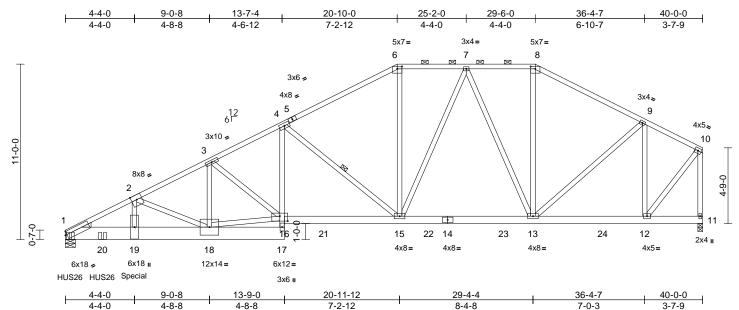
Scale = 1.25											-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.20 0.10 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 20 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	6-0-0 oc purlins.	eathing directly applie	bearing plat 2 and 59 lb 9) This truss is Internationa 4 or R802.10.2 a 10) See Standa Detail for Co	chanical connectior chanical connectior e capable of withst uplift at joint 4. designed in accor I Residential Code and referenced star rd Industry Piggyba onnection to base t lified building desig	dance w sections ndard AN ack Trus russ as a	3 lb uplift at j ith the 2018 R502.11.1 a ISI/TPI 1. s Connection	oint nd					
	(Ib/size) 2=206/6-5 6=284/6-5 Max Horiz 2=35 (LC Max Uplift 2=-53 (LC (Ib) - Maximum Com	12) C 8), 4=-59 (LC 9)	LOAD CASE(S)	Standard						111	XA.E.OF	MISSOUT
TOP CHORD BOT CHORD WEBS NOTES	Tension 1-2=0/17, 2-3=-78/4 2-6=0/38, 4-6=0/38 3-6=-199/51	7, 3-4=-78/33, 4-5=0	/17							1 Ph	GAR NUMI	BER U
 this design 2) Wind: ASC Vasd=91m II; Exp C; E cantilever la right expos 3) Truss design 	d roof live loads have E 7-16; Vult=115mph ph; TCDL=6.0psf; BC nclosed; MWFRS (en eft and right exposed ed; Lumber DOL=1.6 gned for wind loads in	a (3-second gust) IDL=6.0psf; h=25ft; C nvelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 a the plane of the trus	Cat. e; d								ISS/ONA	AL ENGINIT

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Gable requires continuous bottom chord bearing. 4)

5) Gable studs spaced at 2-0-0 oc.

6)

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 7)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.



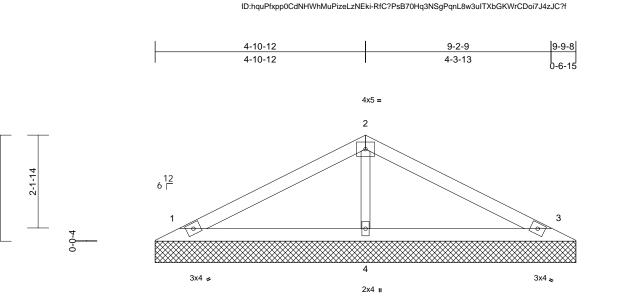
Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	R1	Piggyback Base Girder	1	2	Job Reference (optional)	149010977

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:38 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:72.3

Plate Offsets (X, Y): [1:Edge,0-2-9], [6:0-3-8,0-1-12], [8:0-3-8,0-1-12], [16:0-6-0,0-3-12]


		1	-										
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.81	Vert(LL)	-0.21	16	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.61	Vert(CT)	-0.36	16	>999	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.81	Horz(CT)	0.09	11	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.05	16	>999	240	Weight: 557 lb	FT = 10%
BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	0.0* 10.0 2x4 SPF No.2 *Exce 1.8E 2x6 SP 2400F 2.0E 2400F 2.0E 2x4 SPF No.2 *Exce 2100F 1.8E Left: 2x4 SP No.3 Structural wood she 3-0-5 oc purlins, exx 2-0-0 oc purlins, exx 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 1=10050/ Max Horiz 1=272 (LC Max Grav 1=10786 (lb) - Maximum Com 1-2=-17839/0, 2-3=- 4-6=-4214/0, 6-7=-3 8-9=-2896/0, 9-10=- 1-19=0/15686, 18-11 15-16=0/6753, 13-13 11-12=-63/52 16-17=-25/55, 4-16= 4-15=-3977/0, 6-15= 9-13=0/13229, 9-12=- 3-16=-3049/0, 3-18=	Rep Stress Incr Code ept* 1-5:2x4 SPF 2100 *Except* 1-17:2x10 S ept* 18-16:2x4 SPF athing directly applied cept end verticals, an I-0 max.): 6-8. applied or 10-0-0 oc 4-15 0-7-8, 11=2608/0-3-8 C 26) (LC 15), 11=2785 (LC ppression/Maximum 10049/0, 3-4=-7378/0	NO IRC201 1) F P 2) f or d 3) 4) 52, 50, 524, 52, 52, 9, 9) 52, 9, 9)	2-ply truss to (0.131"x3") n Top chords c oc. Bottom chore staggered at oc. Web connect All loads are except if note CASE(S) see provided to d unless other Unbalanced this design. Wind: ASCE Vasd=91mpf II; Exp C; En cantilever lef right exposed Provide aded This truss ha chord live loa * This truss ha chord live loa * This truss is International R802.10.2 ar Graphical pu or the orienta	WB Matrix-S be connected toge ails as follows: connected as follows to connected as follows ds connected as follows ds connected as follows ds connected as follows ds connected as follows: 2x4 considered equally ad as front (F) or ba tion. Ply to ply con- istribute only loads wise indicated. roof live loads have 7-16; Vult=115mpl t; TCDL=6.0psf; BC closed; MWFRS (et and right exposed d; Lumber DOL=1.6 upate drainage to p s been designed for d nonconcurrent w has been designed n chord in all areas to condition of the purlin all resentation of the purlin all	0.81 ether wi rs: 2x4 lows: 2 pws sta - 1 row r applie ack (B) nection ack (B) nection ack (B) nection ack (B) nection ack (B) nection ack (B) nection ack (B) nection ack (B) nection ack (B) nection an (3-sec CDL=6. Nelople act (B) nection a follow the ack collection and the provide the action of a 10. vith any for a liv where the between the between with BC ance w sections dard AL	Horz(CT) Wind(LL) th 10d - 1 row at 0-3- x10 - 3 rows ggered at 0-9 at 0-9-0 oc. d to all plies, face in the LCC s have been as (F) or (B), considered fo cond gust) 0psf; h=25ft; (a) exterior zor vertical left an grip DOL=1.1 water ponding 0 psf bottom other live loav a rectangle veen the botto CDL = 10.0psf ith the 2018 s R502.11.1 a s R502.11.1 bt depict the s	0.09 0.05 -0 -0 0AD r Cat. he; d 60 g. ds.)psf om nd	11 16 12) Hai pro lb c of s oth LOAD (1) De Pl Ui	n/a >999 nger(s) c vided su lown at such con ers. CASE(S ead + Ro ate Incre- niform Lo Vert: 1 11-16=- pocentra	n/a 240 r othe fficient 4-4-0 (nection 4-4-0 (-635 (-635 (r connection devia to support conce on bottom shold n device (s) is the ndard file ndard (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	ce(s) shall be entrated load(s) 8753 The design/selection responsibility of Oper Increase=1.15, CIA 0, 1-17=-20, BER
NOTES			10		N Strong-Tie HUS2							PA	E E
				0-3-12 from t	uivalent spaced at 2 he left end to 2-4-0 bottom chord.							OR SKIAK	SA9 ON
			11		les where hanger i	s in cor	ntact with lum	ber.					ALEUN
												November	r 30 2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	V1	Valley	1	1	Job Reference (optional)	149010978

2-5-10

9-9-8

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:39

Scale = 1:26.8	.8	:26	1	=	le	Sca
----------------	----	-----	---	---	----	-----

Scale = 1:26.8												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.25	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.16	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	0.00	3	n/a	n/a		FT 400/
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 24 lb	FT = 10%
LUMBER			7) * This truss	has been designed	d for a liv	e load of 20.0	Opsf					
TOP CHORD	2x4 SPF No.2			om chord in all area								
BOT CHORD	2x4 SPF No.2			by 2-00-00 wide wi		veen the botto	om					
OTHERS	2x3 SPF No.2			any other members.								
BRACING				chanical connection								
TOP CHORD		eathing directly applie		te capable of withst ift at joint 3 and 23 I			oint					
DOT OUODD	6-0-0 oc purlins.		0) This town i	s designed in accor								
BOT CHORD	bracing.	/ applied or 10-0-0 oc		al Residential Code			nd					
REACTIONS	e e	9-8, 3=182/9-9-8,	R802.10.2	and referenced star	ndard AN	ISI/TPI 1.						1117
REACTIONS	4=411/9-		LOAD CASE(S) Standard							OF	MISSI
	Max Horiz 1=38 (LC	; 12)									N.XE	0.1
	Max Uplift 1=-37 (LC	C 8), 3=-44 (LC 9), 4=	=-23							5	Xr	-
	(LC 8)										S. JU/	AN
	Max Grav 1=183 (L 4=411 (L),							E*	GAR	
FORCES	(lb) - Maximum Con Tension	npression/Maximum								=-	NUM	
TOP CHORD	1-2=-111/56, 2-3=-1	111/40								-5	E-2000	• 41.
BOT CHORD	1-4=-2/46, 3-4=-2/4	6								-1	C. E-2000	102101
WEBS	2-4=-281/73									1	A	- diala
NOTES											1,SION	I ENIN
 Unbalance this design 	ed roof live loads have n.	e been considered for	r								1111	
2) Wind: ASC	CE 7-16; Vult=115mph											
Vasd=91m	nph; TCDL=6.0psf; BC	CDL=6.0psf; h=25ft; 0	Cat.									

II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing. 4)

5) Gable studs spaced at 4-0-0 oc.

This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	V2	Valley	1	1	Job Reference (optional)	149010979

2-10-12

2-10-12

Wheeler Lumber, Waverly, KS - 66871,

1-1-14

1-5-10

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:39 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x4 =

2x4 II

5-9-8

5-2-9

2-3-13

5-9-8

0-6-15

3

2x4 👟

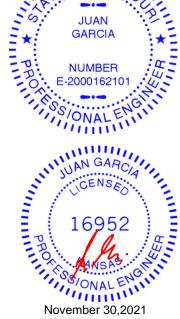
2 12 6 Г 4

2x4 ਫ਼

(psf)	Spacing	2-0-0	CSI	0.09	DEFL	in n/a	(loc)	l/defl	L/d	PLATES	GRIP 197/144
			BC		. ,					101120	137/144
0.0*	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	3	n/a	n/a		
10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 13 lb	FT = 10%
5-10-8 oc purlins. Rigid ceiling directly bracing.	applied or 10-0-0 o	ed or bearing pla 1, 28 lb upl 9) This truss is Internationa R802.10.2 LOAD CASE(S	te capable of wit ft at joint 3 and 3 s designed in ac al Residential Co and referenced s	hstanding 2 3 lb uplift at cordance w ode sections	25 lb uplift at j joint 4. ith the 2018 s R502.11.1 a	joint					
										UNDE .	MICH
	25.0 10.0 0.0* 10.0 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 5-10-8 oc purlins. Rigid ceiling directly bracing. (lb/size) 1=108/5-9	25.0 Plate Grip DOL 10.0 Lumber DOL 0.0* Rep Stress Incr 10.0 Code 2x4 SPF No.2 2x3 SPF No.2 Structural wood sheathing directly applied or 10-00 or bracing. Rigid ceiling directly applied or 10-00 or bracing.	25.0 Plate Grip DOL 1.15 10.0 Lumber DOL 1.15 0.0* Rep Stress Incr YES 10.0 Code IRC2018/TPI2014 2x4 SPF No.2 8) Provide me bearing plat 2x3 SPF No.2 9) This truss is International R802.10.2 at 5-10-8 oc purlins. Structural wood sheathing directly applied or 5-10-8 oc purlins. EVALUATION CONCOUNT Rigid ceiling directly applied or 10-0-0 oc bracing. 1=108/5-9-8, 3=108/5-9-8,	25.0 Plate Grip DOL 1.15 TC 10.0 Lumber DOL 1.15 BC 0.0* Rep Stress Incr YES WB 10.0 Code IRC2018/TPI2014 Matrix-P 2x4 SPF No.2 2x3 SPF No.2 8) Provide mechanical connect bearing plate capable of with 1, 28 lb uplift at joint 3 and 3 2x3 SPF No.2 9) This truss is designed in act International Residential Constrational Residentin Constrational Residential Constrational Residential Constration	25.0 Plate Grip DOL 1.15 TC 0.09 10.0 Lumber DOL 1.15 BC 0.05 0.0* Rep Stress Incr YES WB 0.03 10.0 Code IRC2018/TPI2014 Matrix-P 2x4 SPF No.2 2x4 SPF No.2 8) Provide mechanical connection (by oth bearing plate capable of withstanding 2 2x4 SPF No.2 1, 28 lb uplift at joint 3 and 3 lb uplift at goint 2 and referenced standard AN Boactions. Structural wood sheathing directly applied or 5-10-8 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. (lb/size) 1=108/5-9-8, 3=108/5-9-8,	25.0 Plate Grip DOL 1.15 TC 0.09 Vert(LL) 10.0 Lumber DOL 1.15 BC 0.05 Vert(TL) 0.0* Rep Stress Incr YES WB 0.03 Horiz(TL) 10.0 Code IRC2018/TPI2014 Matrix-P Horiz(TL) 2x4 SPF No.2 2x4 SPF No.2 9 Provide mechanical connection (by others) of truss bearing plate capable of withstanding 25 lb uplift at joint 3 and 3 lb uplift at joint 4. 9) 2x3 SPF No.2 5-10-8 oc purlins. 80 Provide mechanical Code sections R502.11.1 at R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Standard Rigid ceiling directly applied or 10-0-0 oc bracing. 1=108/5-9-8, 3=108/5-9-8, For the section of the section	25.0 Plate Grip DOL 1.15 TC 0.09 Vert(LL) n/a 10.0 Lumber DOL 1.15 BC 0.05 Vert(TL) n/a 0.0* Rep Stress Incr YES WB 0.03 Horiz(TL) 0.00 10.0 Code IRC2018/TPI2014 Matrix-P Horiz(TL) 0.00 2x4 SPF No.2 2x4 SPF No.2 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 1, 28 lb uplift at joint 3 and 3 lb uplift at joint 4. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard Load CASE(S) Standard (lb/size) 1=108/5-9-8, 3=108/5-9-8, Verture and the section of the sectio	25.0 Plate Grip DOL 1.15 TC 0.09 Vert(LL) n/a - 10.0 Lumber DOL 1.15 BC 0.05 Vert(TL) n/a - 0.0* Rep Stress Incr YES WB 0.03 Horiz(TL) 0.00 3 10.0 Code IRC2018/TPI2014 Matrix-P Nert(LL) n/a - 2x4 SPF No.2 Structural wood sheathing directly applied or 5-10-8 oc purlins. Frust sto accordance with the 2018 Nertenational Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard (Ib/size) 1=108/5-9-8, 3=108/5-9-8, = Vertenational Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.	25.0 Plate Grip DOL 1.15 TC 0.09 Vert(LL) n/a - n/a 10.0 Lumber DOL 1.15 BC 0.05 Vert(TL) n/a - n/a 0.0* Rep Stress Incr YES WB 0.03 Horiz(TL) 0.00 3 n/a 10.0 Code IRC2018/TPI2014 Matrix-P Horiz(TL) 0.00 3 n/a 2x4 SPF No.2 2x3 SPF No.2 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 4. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard LOAD CASE(S) Standard Standard Standard NSI/TPI 1.	25.0 Plate Grip DOL 1.15 TC 0.09 Vert(LL) n/a - n/a 999 10.0 Lumber DOL 1.15 BC 0.05 Vert(TL) n/a - n/a 999 10.0 Rep Stress Incr YES WB 0.03 Horiz(TL) 0.00 3 n/a n/a 999 10.0 Code IRC2018/TPI2014 Matrix-P Notice mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 1, 28 lb uplift at joint 3 and 3 lb uplift at joint 4. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard LoAD CASE(S) Standard Standard Standard Nois/TPI 1. Load CASE(S) Standard	25.0 Plate Grip DOL 1.15 TC 0.09 Vert(LL) n/a - n/a 999 MT20 10.0 Lumber DOL 1.15 BC 0.05 Vert(TL) n/a - n/a 999 Horiz(TL) 0.00 3 n/a n/a Weight: 13 lb 0.0* Rep Stress Incr YES WB 0.03 Horiz(TL) 0.00 3 n/a n/a Weight: 13 lb 2x4 SPF No.2 2x4 SPF No.2 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 1, 28 lb uplift at joint 3 and 3 lb uplift at joint 4. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard LoAD CASE(S) Standard Standard Standard Nois/FP 4. Standard Standard

FORCES (Ib) - Maximum Compression/Maximum

Tension TOP CHORD 1-2=-52/29, 2-3=-52/21


BOT CHORD 1-4=-1/23, 3-4=-1/23

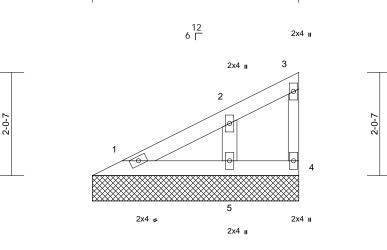
WEBS 2-4=-141/37

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 7)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	V3	Valley	1	1	Job Reference (optional)	149010980


4-0-14

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:40 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-0-14

- ·		
Scale	=	1:22.7

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.06 0.03 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 11 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x4 SPF No.2 Structural wood she	athing directly applie	7) 8)	Provide mec bearing plate and 59 lb up This truss is International	chanical connect capable of wit lift at joint 5. designed in act Residential Co nd referenced s	hstanding s cordance w de sections) Ib uplift at joi ith the 2018 \$ R502.11.1 a	int 4					
BOT CHORD	4-0-14 oc purlins, e Rigid ceiling directly bracing.		;									ann	990.
REACTIONS	•	5)									111	S. JUA	MISSOL
FORCES		/19, 3-4=-22/13									Ex In	GAR	
BOT CHORD	1-5=-24/18, 4-5=-24	/10										NUM	BER

WEBS

NOTES

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

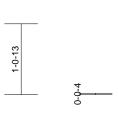
2-5=-153/85

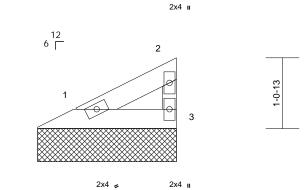
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- s-up-up tail by 2-up-up wide will fit between the botton chord and any other members.

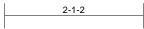
November 30,2021

E-2000162101

PO




Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	V4	Valley	1	1	Job Reference (optional)	149010981


Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:40 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-1-2

Scale =	1:17.4
---------	--------

Scale = 1:17.4												
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.03	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 5 lb	FT = 10%
LUMBER			8) This truss is	s designed in acc	ordance wi	ith the 2018						
TOP CHORD	2x4 SPF No.2			al Residential Coc			and					
	2x4 SPF No.2		R802.10.2	and referenced st	andard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2		LOAD CASE(S) Standard								
BRACING												
	Structural wood she		ed or									
	2-1-10 oc purlins, e		_									
	Rigid ceiling directly bracing.	applied or 10-0-0 o	С									
REACTIONS (•	2, 3=63/2-1-2										IIII.
(Aax Horiz 1=29 (LC	,									N'OF	MISSI
	Aax Uplift 1=-8 (LC	,								3	144	
	(lb) - Maximum Corr									~	Xr	
	Tension									20	JU S	AN
TOP CHORD	1-2=-27/18, 2-3=-49	/24								2.	GAF	RCIA :
BOT CHORD	1-3=-10/8									- *		
NOTES										-	÷	· ~
	E 7-16; Vult=115mph									= 7	NUN	IBER :
	oh; TCDL=6.0psf; BC										C . E-2000	162101
	nclosed; MWFRS (er									1	A	
	eft and right exposed ed; Lumber DOL=1.6										1. So	
	ned for wind loads in										I,ON	ALEIN
	uds exposed to wind										- 111	nne.
	rd Industry Gable En											
	ualified building desi		기 1.									CA2111
	res continuous botto	m chord bearing.									11 UAN	GARCIN
	spaced at 4-0-0 oc.										Nº CI	NSA
	as been designed fo		do							2		0
	ad nonconcurrent wi has been designed f										UCF	1 E
	m chord in all areas		,hoi							-	10	050
	by 2-00-00 wide will		om							-	10	952
	iny other members.									=	P:	

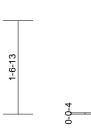
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 8 lb uplift at joint 1 and 15 lb uplift at joint 3.

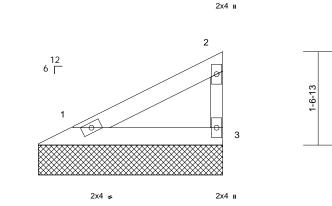
> MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

VONAL ENO

November 30,2021

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	V5	Valley	1	1	Job Reference (optional)	149010982


3-1-2


3-1-2

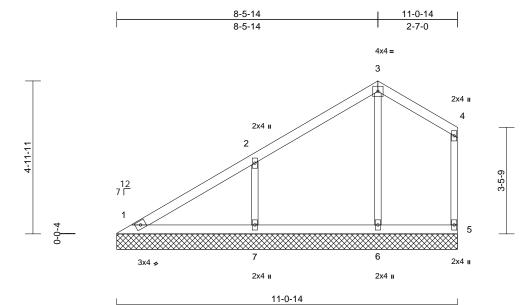
Wheeler Lumber, Waverly, KS - 66871,

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:41 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:19.3

Loading												
	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.10		n/a	-	n/a	999	МТ20	197/144
()		· ·		BC			n/a	-			-	
				-		· · ·		3				
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P				-			Weight: 8 lb	FT = 10%
TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASCE Vasd=91mp II; Exp C; Er cantilever le right expose 2) Truss design only. For st see Standar or consult 3) Gable requit 4) Gable studs 5) This truss his chord live lo 6) * This truss his chord live lo 6) * This truss his chord live lo 6) * This truss his chord live lo	10.0 0.0* 10.0 2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 3-1-10 oc purlins, e Rigid ceiling directly bracing.	Lumber DOL Rep Stress Incr Code athing directly applie xcept end verticals. applied or 10-0-0 of 1-2, 3=108/3-1-2 5) 28), 3=-27 (LC 8) pression/Maximum /41 (3-second gust) DL=6.0psf; h=25ft; 0 velope) exterior zor ; end vertical left an 0 plate grip DOL=1.0 the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TF m chord bearing. r a 10.0 psf bottom th any other live load or a live load of 20.0	1.15 YES IRC2018/TPI2014 8) This truss i Internation: R802.10.2 LOAD CASE(S ad or c Cat. le; d 50 ss b, ple, e; 1.15 So ss b, psf	BC WB Matrix-P s designed in acc al Residential Co and referenced s	0.05 0.00 ordance w de sections	Vert(TL) Horiz(TL) ith the 2018 R502.11.1 a	n/a 0.00	3	n/a n/a	999 n/a	Weight: 8 lb	FT = 10%


- 6 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 7) bearing plate capable of withstanding 14 lb uplift at joint 1 and 27 lb uplift at joint 3.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	V6	Valley	1	1	Job Reference (optional)	149010983

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:41 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

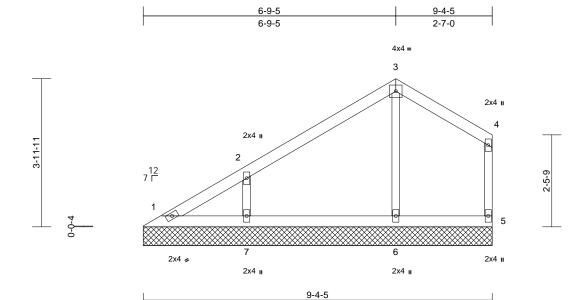
Page: 1

Loading	(t	osf) Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	2	5.0 Plate Grip DOL	1.15	TC	0.24	Vert(LL)	n/a	-	n/a	999	MT20	197/144	
TCDL	1	0.0 Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999			
BCLL		0.0* Rep Stress Inc	r YES	WB	0.12	Horiz(TL)	0.00	5	n/a	n/a			
BCDL	1	0.0 Code	IRC2018/TPI2014	Matrix-S							Weight: 34 lb	FT = 10%	
LUMBER		· ·		s has been desig			0psf						
TOP CHORD	2x4 SPF No.2			tom chord in all a									
BOT CHORD	2x4 SPF No.2			ll by 2-00-00 wide		ween the bott	om						
WEBS	2x3 SPF No.2			any other memb									
OTHERS	2x3 SPF No.2			echanical connec									
BRACING				ate capable of wit									
TOP CHORD		d sheathing directly ap	plied of unlift at io	lift at joint 5, 7 lb nt 7.	uplift at joir	nt 6 and 150 I	D						
BOT CHORD		 except end verticals irectly applied or 10-0- 	9) This truss	is designed in ac									
Derenend	bracing.		Internation	al Residential Co and referenced			and				1111	1111	
REACTIONS		39/11-0-14, 5=95/11-0 80/11-0-14, 7=428/11-			Standard 7 ti						NYE OF	MISSO	1
	Max Horiz 1=1	,	• • • •							~	18		11
	Max Uplift 1=-	5 (LC 4), 5=-34 (LC 4),	6=-7 (LC								9: JU	AN 3	2-
	5), 5	7=-150 (LC 8)								-	•		
		56 (LC 16), 5=119 (LC 80 (LC 15), 7=441 (LC								Ξ*	GAI		*
FORCES	(lb) - Maximun Tension	n Compression/Maxim	um							==		IBER	
TOP CHORD		2-3=-137/89, 3-4=-85/	68,							1	E-2000	162101	42
BOT CHORD		7 46/26 6 6 46/26									·····	G.	S
WEBS	3-6=-217/54, 2	7=-45/35, 5-6=-45/35									IN ON	ALENI	
	3-0=-217/34, 2	-7=-340/190									- 111	iiiiii ii	
NOTES	ما ممما البرم الممطم	have been sensidered	4.6.4										
,		have been considered	1 101									11111	
this desigr 2) Wind: ASC		5mph (3-second gust)									NIN	GARO	L
		sf; BCDL=6.0psf; h=25	ft: Cat								N. 70.	A	11
		RS (envelope) exterior									CE	NSE	1
		osed ; end vertical left								-			-
		L=1.60 plate grip DOL:										. A	=
		ads in the plane of the								-	16	952	
only. For	studs exposed to	wind (normal to the fa	ace),							=		1552	~ -
see Stand	ard Industry Gat	le End Details as appl	icable,							-	7		55
		g designer as per ANS									0.	mis	4-
		bottom chord bearing.									- A A	NSAS	5
	ds spaced at 4-0										1. SIN	IN EN	S
		ned for a 10.0 psf botto									11,0	VAL	
chord live	load nonconcurr	ent with any other live	loads.									1110 C	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

November 30,2021

vember of


Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	V7	Valley	1	1	Job Reference (optional)	l49010984

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:41 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

November 30,2021

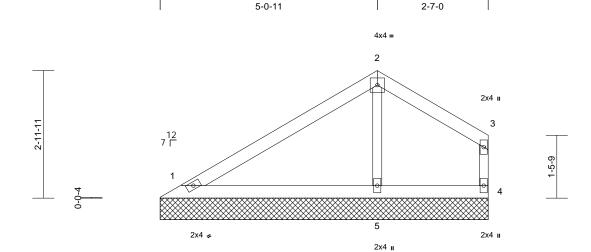
MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Scale = 1:30.9

Scale = 1:30.9													
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.19	DEFL Vert(LL)	in n/o	(loc)	l/defl	L/d 999	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.18 0.08	Vert(LL)	n/a n/a	-	n/a n/a	999 999	101120	197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.08	Horiz(TL)	0.00	5	n/a	999 n/a		
BCDL	10.0	Code	IRC2018/	TPI2014	Matrix-S	0.00	110112(112)	0.00	0	n/a	Π/α	Weight: 28 lb	FT = 10%
	10.0	0000		11 12011	Maank O			-				Wolght: 2016	11 - 1070
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (Ib/size) 1=54/9-4- 6=296/9-4 Max Horiz 1=126 (LC Max Uplift 1=-24 (LC (LC 8) Max Grav 1=83 (LC	cept end verticals. applied or 10-0-0 oc 5, 5=92/9-4-5, 1-5, 7=345/9-4-5 C 5) ; 4), 5=-32 (LC 9), 7=	8) d or 9) ; LOA	on the botton 3-06-00 tall b chord and an Provide mecl bearing plate 1, 32 lb uplift This truss is International	as been designe n chord in all are y 2-00-00 wide w y other members hanical connectio capable of withs at joint 5 and 12 designed in acco Residential Code nd referenced sta Standard	as where will fit betw s. on (by oth standing 2 23 lb uplift ordance w e sections	a rectangle veen the botto ers) of truss to 4 lb uplift at jo at joint 7. ith the 2018 5 R502.11.1 a	om o pint			*	S JUA GAR	
FORCES	(lb) - Maximum Com Tension										EPT	NUM	BER
TOP CHORD	1-2=-119/112, 2-3=- 4-5=-98/42	124/86, 3-4=-73/56,										E-20001	162101
BOT CHORD WEBS	1-7=-30/23, 6-7=-30 3-6=-223/46, 2-7=-2	,										SS/ON	ALENUIN
NOTES													Un.
	ed roof live loads have	been considered for										2.11	1103 ·
Vasd=91n II; Exp C; cantilever right expo 3) Truss des only. For see Stand or consult 4) Gable req 5) Gable stu 6) This truss	n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 igned for wind loads in studs exposed to wind lard Industry Gable En qualified building desi uires continuous botto ds spaced at 4-0-0 oc. has been designed fo load nonconcurrent wi	DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 the plane of the true (normal to the face) d Details as applicat gner as per ANSI/TF m chord bearing. r a 10.0 psf bottom	e; 50 55 , , , , , , , , , , , , , , , , ,								outility.	160 Novembe	952 JSAS

- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- Gable studs spaced at 4-0-0 oc. 5)
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	V8	Valley	1	1	Job Reference (optional)	149010985


5-0-11

Wheeler Lumber, Waverly, KS - 66871,

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:42 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-7-11

Page: 1

7-7-11

- ·		
Scale	=	1:26.8

										-	
Loading (psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 25.0	Plate Grip DOL	1.15	тс	0.40	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL 10.0	Lumber DOL	1.15	BC	0.14	Vert(TL)	n/a	-	n/a	999		
BCLL 0.0*	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	0.00	4	n/a	n/a		
BCDL 10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 21 lb	FT = 10%
REACTIONS (Ib/size) Max Horiz 1=96 (LC 8) Max Grav 1=196 (LC 8)	applied or 10-0-0 oc 7-11, 4=96/7-7-11, 7-11 5) 8), 4=-43 (LC 9), 5=-1 C 1), 4=106 (LC 16), C 1)	on the botton 3-06-00 tall b chord and an 8) Provide mecl bearing plate 1, 43 lb uplift 9) This truss is (International R802.10.2 ar LOAD CASE(S)	as been designed as chord in all areas y 2-00-00 wide wil y other members. nanical connection capable of withsta at joint 4 and 11 ll designed in accord Residential Code s d referenced stan Standard	where I fit betw (by oth anding 3 o uplift a dance wi sections	a rectangle veen the botto ers) of truss to 8 lb uplift at jo t joint 5. ith the 2018 5 R502.11.1 ar	m D Dint			111111111 A * 111.	JUA GAR	AIA
FORCES (lb) - Maximum Com Tension	pression/Maximum								= 3	NUME	• 41.
TOP CHORD 1-2=-99/89, 2-3=-53/									-	E-20001	02101
BOT CHORD 1-5=-17/13, 4-5=-17/	/13									A	GN
WEBS 2-5=-246/68										INONA	LENIN
NOTES1) Unbalanced roof live loads have this design.	been considered for									2000	inu.
 Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BC II; Exp C; Enclosed; MWFRS (er cantilever left and right exposed arght exposed; Lumber DOL=1.6i Truss designed for wind loads in only. For studs exposed to wind see Standard Industry Gable End or consult qualified building desig Gable requires continuous bottor Gable studs spaced at 4-0-0 oc. This truss has been designed for chord live load nonconcurrent with 	DL=6.0psf; h=25ft; Cat velope) exterior zone; ; end vertical left and 0 plate grip DOL=1.60 the plane of the truss (normal to the face), d Details as applicable, gner as per ANSI/TPI 1 m chord bearing. r a 10.0 psf bottom								. THUNK	POR MAN SON	SAS CHUIN

Problem 30,202 **MiTek**° 16023 Swingley Ridge Rd Chesterfield, MO 63017

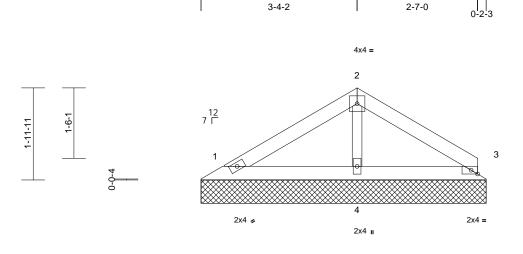
November 30,2021

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	V9	Valley	1	1	Job Reference (optional)	149010986

3-4-2

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:43 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


6-1-5

5-11-2

6-1-5

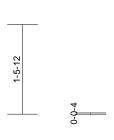
Scale = 1:24.7

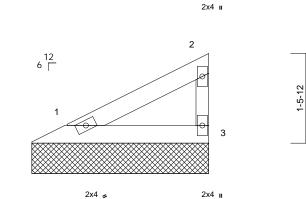
Plate Offsets (X, Y): [3:0-1-11,Edge]

Plate Olisets ((X, Y): [3:0-1-11,Edge										-	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.14	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TP	2014 Matrix-P							Weight: 15 lb	FT = 10%
LUMBER			8) Pro	vide mechanical co	nnection (by oth	ers) of truss	to					
TOP CHORD	2x4 SPF No.2			aring plate capable of								
BOT CHORD				nd 36 lb uplift at join			•					
OTHERS	2x3 SPF No.2		9) Thi	s truss is designed i	n accordance w	ith the 2018						
BRACING			Ínte	ernational Residentia	al Code sections	s R502.11.1 a	and					
TOP CHORD	Structural wood she	athing directly applie	ed or R8	02.10.2 and reference	ced standard AN	NSI/TPI 1.						
	5-11-9 oc purlins.		LOAD	CASE(S) Standard	Ł							
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	с									10
	bracing.										1105	Micle
REACTIONS	(lb/size) 1=139/6-1	1-5, 3=136/6-1-5,									NEOF	SS
	4=230/6-1	1-5								-		
	Max Horiz 1=43 (LC									2	A	
	Max Uplift 1=-31 (LC	C 8), 3=-36 (LC 9)								2	S JU	
FORCES	(lb) - Maximum Com	pression/Maximum								- +	GAF	
	Tension											
TOP CHORD										= 1		or .
BOT CHORD	,	6								-5	NUM	• 41.
NEBS	2-4=-160/41									-	C: E-2000	162101
NOTES										1	A	
	ed roof live loads have	been considered fo	r								1.08	ENGIN
this desigr		(a									IN ON	ALLIN
	CE 7-16; Vult=115mph		Cat									III.
	nph; TCDL=6.0psf; BC Enclosed; MWFRS (er											1111
	left and right exposed											CA. 11.
	sed; Lumber DOL=1.6										NAU	GARCIN
	igned for wind loads in										NOF	NSA
	studs exposed to wind											0
see Stand	ard Industry Gable En	d Details as applical	ble,							-		N 2
	qualified building desig		기 1.							11111	1 10	050 1 5
	uires continuous botto	m chord bearing.									: 16	952 :
F) Cohlo atus	de enced et 1 0 0 ec									1.1	· · · · · · · · · · · · · · · · · · ·	

- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 7)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	V10	Valley	1	1	Job Reference (optional)	149010987


2-10-15

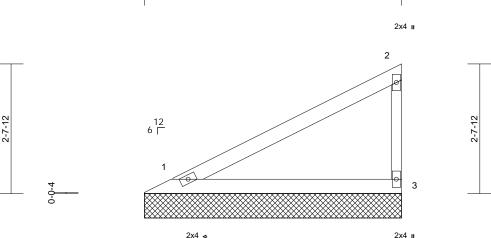

2-10-15

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:43 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scal		


Scale = 1.19			1									
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 7 lb	FT = 10%
LUMBER				s designed in acc								
TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2			al Residential Coo and referenced st			ind					
WEBS	2x3 SPF No.2		LOAD CASE(S		tanuaru Ar	NOI/1111.						
BRACING	2/0 011 110.2		LOAD CASE(S	Januaru								
TOP CHORD	Structural wood she	athing directly appli	ed or									
	2-11-7 oc purlins, e											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	с									
	bracing.											
REACTIONS		10-15, 3=100/2-10-1	5									Mich
	Max Horiz 1=46 (LC	,									NE	SS
	Max Uplift 1=-13 (LC	,. ,								- 5	18	
FORCES	(lb) - Maximum Com Tension	pression/Maximum								-	JUL S	ANI P
TOP CHORD	1-2=-42/28, 2-3=-78	/38								-		RCIA
BOT CHORD	1-3=-16/12	/00								= *	GAP	10IA *=
NOTES										Ξ.	1	
	CE 7-16; Vult=115mph	(3-second aust)								= 7	NUM	IBER :
	nph; TCDL=6.0psf; BC		Cat.								E-2000	162101
	Enclosed; MWFRS (er									-	A	
	left and right exposed									1	· · · · · · · · · · · · · · · · · · ·	GN
	sed; Lumber DOL=1.6										I,ON	ALEN
	igned for wind loads in studs exposed to wind										- 111	iiiiii
	lard Industry Gable En											
	qualified building desig											
3) Gable req	uires continuous botto	m chord bearing.									MAIN	GARC
	ds spaced at 4-0-0 oc.										PRO 16	NO
	has been designed for											ED .
	load nonconcurrent wi									-		1 2
	s has been designed f tom chord in all areas		Jpst							-	1 10	050
	all by 2-00-00 wide will		nm							-	16	952 📔
	any other members.									-	PI	
	echanical connection ((by others) of truss t	0							-	20.	1
	ate capable of withstar	nding 13 lb uplift at j	oint								- A A	NSA9
1 and 25 l	b uplift at joint 3.										1,00	ENGIN
												VAL
											Novembe	er 30,2021

> MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	V11	Valley	1	1	Job Reference (optional)	149010988

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:43 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

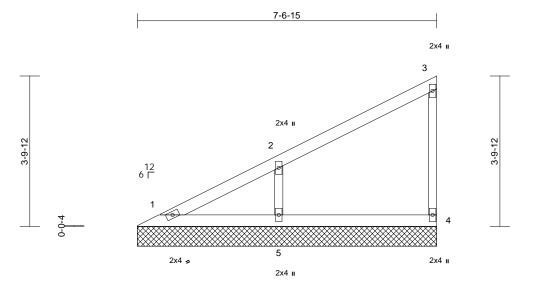
Page: 1

5-2-15

5-2-15

Scale =	1:23.5
---------	--------

Ocale = 1.25.0												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.40	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.21	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 14 lb	FT = 10%
LUMBER			8) This truss	s designed in ac	cordance w	ith the 2018	-					
TOP CHORD	2x4 SPF No.2			al Residential Co			and					
BOT CHORD				and referenced s								
WEBS	2x3 SPF No.2		LOAD CASE(S									
BRACING			20/12 0/102(1									
TOP CHORD	Structural wood she	athing directly appli	ied or									
	5-3-7 oc purlins, ex											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 c	C									
	bracing.											
REACTIONS		2-15, 3=205/5-2-15										Miller.
	Max Horiz 1=95 (LC	,									NE OF	MISS
	Max Uplift 1=-26 (LC	C 8), 3=-50 (LC 8)								1		0/1
FORCES	(lb) - Maximum Corr	pression/Maximum	1							-		
	Tension	0/70								-	S. JU	
TOP CHORD BOT CHORD	,	9/78								= *	GAR	
	1-3=-32/25									-		
NOTES		(0,								= 7	NUM	
	SCE 7-16; Vult=115mph mph; TCDL=6.0psf; BC		Cat							= 5		• 41.
	; Enclosed; MWFRS (er									-	E-2000	162101
	r left and right exposed									1	A	
	osed; Lumber DOL=1.6										1.05/00	ENGIN
	signed for wind loads in										UN	ALLIN
only. Fo	r studs exposed to wind	(normal to the face	e),									1111
	dard Industry Gable En											1111
	It qualified building desi		PI 1.									GAD !!!
	quires continuous botto	m chord bearing.									NAU	GARCIN
	uds spaced at 4-0-0 oc.										The Te	NSA
	s has been designed fo									1		0
	e load nonconcurrent wi									-	1.1	1 2 2
	iss has been designed f ottom chord in all areas		opsi							-	1 10	
	all by 2-00-00 wide will		om								10	952
	d any other members.	in between the bott	.om							-	P	A. 1923
	mechanical connection	(by others) of truss	to							-	- Poi	1 1 1 1 2
	plate capable of withstar										-	JSA9 SS
	lb uplift at joint 3.	0 1 .	,								1.50	G
	-										ON	IALE
											111	IIIII.
											Novembe	r 30.2021


- on the bottom chord in all areas who 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 7) bearing plate capable of withstanding 26 lb uplift at joint 1 and 50 lb uplift at joint 3.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	V12	Valley	1	1	Job Reference (optional)	149010989

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:44 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

7-6-15

Scale = 1:29.2

Loading		(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	0.00	4	n/a	n/a		
BCDL		10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 21 lb	FT = 10%
LUMBER				7) Provido	mechanical connecti	on (by oth	ore) of truce t	0		-			
TOP CHORD	2x4 SPF N	lo 2			plate capable of with								
BOT CHORD	2x4 SPF N				8 lb uplift at joint 5.	otariaing 2	to ib upint ut j	onn					
WEBS	2x3 SPF N				s is designed in acc	ordance w	ith the 2018						
OTHERS	2x3 SPF N	lo.2			onal Residential Cod			nd					
BRACING					.2 and referenced st	andard AN	ISI/TPI 1.						
TOP CHORD			athing directly applie	ed or LOAD CASE	E(S) Standard								
			cept end verticals.										
BOT CHORD		ng directly	applied or 10-0-0 or	С									111.
	bracing.											IN OF	MIGH
REACTIONS		1=88/7-6- 5=392/7-6	15, 4=139/7-6-15,									NE	SS
	Max Horiz											18	
			5), 5=-118 (LC 8)								50	JUL S	AN .P-
			16), 4=139 (LC 1), 5	5=392							-	GAR	
		(LC 1)	-,, (- ,, -								= *	GAH	
FORCES	· · /	mum Com	pression/Maximum										
	Tension										=7	NUM	BER
TOP CHORD			10/44, 3-4=-109/44									E-2000	162101 :4
BOT CHORD WEBS	1-5=-49/37 2-5=-305/1		/3/								1	A	
	2-5=-305/1	170										1. So	
NOTES		-115mph	(3-second gust)									IN ON	ALEIN
,	,		DL=6.0psf; h=25ft; (Cat								- 11 m	THE .
			velope) exterior zor										110.
cantilever	left and right	t exposed	; end vertical left an	d									
			0 plate grip DOL=1.6									NAU	GARCIA
			the plane of the true									N CE	NSA
			(normal to the face)								- 2		0
			d Details as applicat gner as per ANSI/TF								-	1 A	- A E
			m chord bearing.								-	16	952
	ds spaced at		J								-	10	952
			r a 10.0 psf bottom								-	P	
			th any other live load									0.	Mi His
			or a live load of 20.0)psf								- AL	VSA
			where a rectangle fit between the botto	m								INS/ON	IAL ENIN
	any other m		in between the bollt									1111	in in it.
	, outor in											Novombo	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	V13	Valley	1	1	Job Reference (optional)	149010990

Scale = 1:49.8

Loading

TCDL

BCLL

BCDL

WEBS

WEBS

OTHERS

BRACING

TOP CHORD

BOT CHORD

REACTIONS (lb/size)

LUMBER

TOP CHORD

BOT CHORD

2x4 SPF No.2

2x4 SPF No.2 2x3 SPF No.2

2x3 SPF No.2

1 Row at midpt

Max Horiz 1=323 (LC 5)

bracing.

Max Grav

Structural wood sheathing directly applied or

5-6

1=127/16-2-10, 6=141/16-2-10,

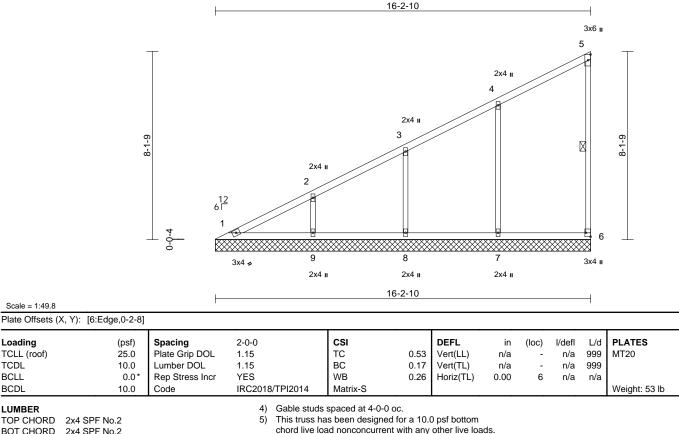
7=397/16-2-10, 8=346/16-2-10,

1=194 (LC 16), 6=181 (LC 15),

7=478 (LC 2), 8=383 (LC 2), 9=394

6-0-0 oc purlins, except end verticals.

9=387/16-2-10


Max Uplift 6=-44 (LC 5), 7=-119 (LC 8), 8=-104 (LC 8), 9=-117 (LC 8)

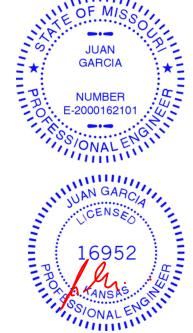
Rigid ceiling directly applied or 10-0-0 oc

TCLL (roof)

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Nov 30 10:20:44 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

chord live load nonconcurrent with any other live loads.


* This truss has been designed for a live load of 20.0psf 6)

on the bottom chord in all areas where a rectangle

3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 44 lb uplift at joint 6, 119 lb uplift at joint 7, 104 lb uplift at joint 8 and 117 lb uplift at joint 9.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

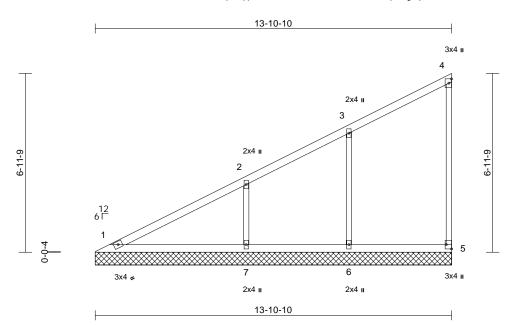
GRIP

197/144

FT = 10%

November 30,2021

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017


	()
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-276/84, 2-3=-220/78, 3-4=-188/83,
	4-5=-153/82, 5-6=-109/47
BOT CHORD	1-9=-110/84, 8-9=-110/84, 7-8=-110/84,
	6-7=-110/84
WEBS	4-7=-308/148, 3-8=-270/157, 2-9=-294/160
NOTES	
1) Wind: ASC	E 7-16; Vult=115mph (3-second gust)
Vasd=91m	ph: TCDL=6.0psf: BCDL=6.0psf: h=25ft: Cat.

(LC 2)

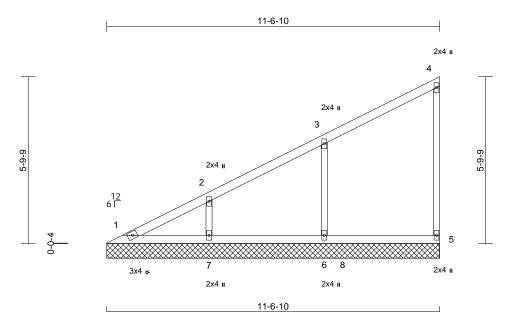
- II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 2)
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	V14	Valley	1	1	Job Reference (optional)	149010991

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:44 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:44.9

Plate Offsets (X, Y): [5:Edge,0-2-8]


,	' '								(loc)				GRIP
					-		- ()		-			MT20	197/144
					-		· · /		-				
						0.15	Horiz(TL)	0.00	5	n/a	n/a		
	0.0	Code	IRC2018/TF	912014	Matrix-S							Weight: 44 lb	FT = 10%
2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wo 6-0-0 oc purli Rigid ceiling of bracing.	od shea ns, exc lirectly :	ept end verticals. applied or 10-0-0 oc	or 3- ch 7) Pr be 5, 8) Tr 8) Tr 10 10 10 10 10 10 10 10 10 10 10 10 10	the bottor 06-00 tall b ord and ar ovide mec aring plate 105 lb upli is truss is ternational 302.10.2 a	n chord in all are by 2-00-00 wide the hanical connection e capable of with ft at joint 6 and 1 designed in accor Residential Cod nd referenced sta	as where will fit betw s, with BC on (by oth standing 4 48 lb uplit ordance w e sections	a rectangle veen the bott DL = 10.0ps ers) of truss to lb uplift at ft at joint 7. ith the 2018 \$ R502.11.1 at	om f. to joint				IN OF	MISSO
6=3 Max Horiz 1=2 Max Uplift 5=- 7=- Max Grav 1=2	349/13- 275 (LC 40 (LC 148 (LC 243 (LC	10-10, 7=493/13-10 5), 6=-105 (LC 8), C 8) 16), 5=191 (LC 15)	-10, -10	(-)								GAR	CIA *
	· ·												• 41.
1-2=-224/101 4-5=-115/48	, 2-3=-1	173/67, 3-4=-141/70	Ι,									SS/ON	ENGLI
,		,											inin
													III.
nph; TCDL=6.0p Enclosed; MWF left and right ex sed; Lumber DC gined for wind lo studs exposed f ard Industry Ga qualified buildir uires continuous ds spaced at 4- has been desig	osf; BCI RS (en posed ; DL=1.60 bads in o wind ble Enc g desig s botton D-0 oc. ned for	DL=6.0psf; h=25ft; C velope) exterior zon end vertical left and o plate grip DOL=1.6 the plane of the trus (normal to the face) d Details as applicat iner as per ANSI/TP n chord bearing. a 10.0 psf bottom	ie; d 50 ss , , ole, 11.								. THUNK	16 PROCESSION Novembe	952 HALEN
	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wor 6-0-0 oc purlin Rigid ceiling of bracing. (lb/size) 1=' 6=3 Max Horiz 1=' Max Uplift 5=- 7=- Max Grav 1=' 6=3 (lb) - Maximut Tension 1-2=-224/101 4-5=-115/48 1-7=-93/71, 6 3-6=-277/140 EF 7-16; Vult=1' ph; TCDL=6.0p Enclosed; MWF left and right ex sed; Lumber DC gned for wind lo studs exposed t ard Industry Ga qualified buildin iires continuous Is spaced at 4-6 has been desig	6-0-0 oc purlins, exc Rigid ceiling directly bracing. (Ib/size) 1=196/13- 6=349/13- Max Horiz 1=275 (LC Max Uplift 5=-40 (LC 7=-148 (LC 6=396 (LC (Ib) - Maximum Comp Tension 1-2=-224/101, 2-3=-1 4-5=-115/48 1-7=-93/71, 6-7=-93/ 3-6=-277/140, 2-7=-3 2E 7-16; Vult=115mph Iph; TCDL=6.0psf; BCI Enclosed; MWFRS (en left and right exposed ; sed; Lumber DOL=1.60 gned for wind loads in studs exposed to wind ard Industry Gable Enc qualified building desig uires continuous bottom is spaced at 4-0-0 oc. has been designed for	$\begin{array}{c} 25.0\\ 10.0\\ 10.0\\ 0.0^{*}\\ 10.0\\ 0.0^{*}\\ 10.0\\$	25.0 Plate Grip DOL 1.15 10.0 Lumber DOL 1.15 Rep Stress Incr YES 10.0 Code IRC2018/TF 2x4 SPF No.2 3^{-1} 2x3 SPF No.2 3^{-1} Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing. (Ib/size) 1=196/13-10-10, 5=150/13-10-10, 6=349/13-10-10, 5=150/13-10-10, 6=349/13-10-10, 7=493/13-10-10 Max Horiz 1=275 (LC 5) Max Uplift 5=-40 (LC 5), 6=-105 (LC 8), 7=-148 (LC 8) Max Grav 1=243 (LC 16), 5=191 (LC 15), 6=396 (LC 2), 7=501 (LC 2) (Ib) - Maximum Compression/Maximum Tension 1-2=-224/101, 2-3=-173/67, 3-4=-141/70, 4-5=-115/48 1-7=-93/71, 6-7=-93/71, 5-6=-93/71 3-6=-277/140, 2-7=-370/205 CE 7-16; Vult=115mph (3-second gust) ph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. Enclosed; MWFRS (envelope) exterior zone; left and right exposed ; end vertical left and sed; Lumber DOL=1.60 gned for wind loads in the plane of the truss studs exposed to wind (normal to the face), ard Industry Gable End Details as applicable, qualified building designer as per ANSI/TPI 1. Lires continuous bottom chord bearing. Is spaced at 4-0-0 oc.	25.0Plate Grip DOL1.1510.0Lumber DOL1.150.0*Rep Stress IncrYES10.0CodeIRC2018/TPI20142x4 SPF No.2CodeIRC2018/TPI20142x3 SPF No.23.06-00 tall chord and archord and ar2x3 SPF No.27)Provide mec bearing plateStructural wood sheathing directly applied or $6-0-0$ cc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 cc bracing.6)* This truss is International R802.10.2 at Data Horiz1=196/13-10-10, 5=150/13-10-10, $6=349/13-10-10, 7=493/13-10-10$ 8)Max Horiz 1=275 (LC 5)1=275 (LC 6), 6=396 (LC 2), 7=501 (LC 2)CAD CASE(S)Max Grav 1=243 (LC 16), 5=191 (LC 15), $6=396$ (LC 2), 7=501 (LC 2)LOAD CASE(S)(lb) - Maximum Compression/Maximum Tension 1-2=-224/101, 2-3=-173/67, 3-4=-141/70, $4-5=-115/48$ L-7=-93/71, 5-6=-93/71 $3-6=-277/140, 2-7=-370/205$ 2E 7-16; Vult=115mph (3-second gust) ph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. Enclosed; MWFRS (envelope) exterior zone; left and right exposed ; end vertical left and sed; Lumber DOL=1.60 plate grip DOL=1.60 gned for wind loads in the plane of the truss studs exposed to wind (normal to the face), ard Industry Gable End Details as applicable, qualified building designer as per ANSI/TPI 1. uires continuous bottom chord bearing. Is spaced at 4-0-0 oc. has been designed for a 10.0 psf bottom	25.0Plate Grip DOL1.15TC10.0Lumber DOL1.15BC 0.0^* Rep Stress IncrYESWB10.0CodeIRC2018/TPI2014Matrix-S2x4 SPF No.2Structural wood sheathing directly applied or 0.0^* This truss has been designed on the bottom chord in all are 3-06-00 tall by 2-00-00 wide v chord and any other member2x3 SPF No.2This truss has been designed on the bottom chord in all are 3-06-00 tall by 2-00-00 wide v chord and any other member2x3 SPF No.2This truss is designed in acc international Residential Cod R802-10.2 and referenced sta 12-224/101, 2-3=-173/67, 3-4=-141/70, 4-5=-115/481-2=-224/101, 2-3=-173/67, 3-4=-141/70, 4-5=-115/48This truss is designed in acc internation1-2=-224/101, 2-3=-173/67, 3-4=-141/70, 4-5=-115/48This truss inter and isotic and referenced sta isotic and reference isotic and sec; Lumber DOL=1.60 pate grip DOL=1.60 gred for wind loads in the plane of the truss studs exposed to wind (normal to the face), ard Industry Gable End Details as applicable, qualified building designer as per ANSI/TPI 1. irres continuous bottom chord bearing. is spaced at 4-0-0 oc. has been designed for a 10.0 psf bottom <td>25.0Plate Grip DOL1.15TC0.3910.0Lumber DOL1.15BC0.210.0*Rep Stress IncrYESWB0.1510.0CodeIRC2018/TPI2014Matrix-S2x4 SPF No.2$Code$IRC2018/TPI2014Matrix-S2x4 SPF No.2$Code$IRC2018/TPI2014Matrix-S2x3 SPF No.2$Code$$Code$$Code$$Code$2x3 SPF No.2$Code$$Code$$Code$$Code$Structural wood sheathing directly applied or 6-0-0 oc purins, except end verticals. Rigid ceiling directly applied or 10-0-0 cc bracing.$Code$$Code$(Ib/size)1=196/13-10-10, 6=349/13-10-10, 6=349/13-10-10, 6=349/13-10-10, 7=493/13-10-10$Code$$Code$Max Horiz1=275 (LC 5)$Code$$Code$$Code$Max Grav1=243 (LC 16), 5=191 (LC 15), 6=396 (LC 2), 7=501 (LC 2)$Code$$Code$(Ib) - Maximum Compression/Maximum Tension$1-2=-224/101, 2-3=-173/67, 3-4=-141/70, 4-5=-115/48$$1-7=-93/71, 6-7=-93/71, 3-6=-93/71$$1-7=-93/71, 4-7=-370/205$$2E 7-16; Vult=115mph (3-second gust)ph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat.Enclosed; MWFRS (envelope) exterior zone;felt and right exposed; end vertical left andsetd; Lumber DCL=1.60grad for wind loads in the plane of the trussstuds exposed to wind (normal to the face),ard Industry Gable End Details as applicable,qualified building designer as per ANSI/TPI 1.Jires continuous bottom chord bearing.Is spaced at 4-0-0 oc.has been designed for a 10.0 psf bottom$</td> <td>25.0 Plate Grip DOL 1.15 TC 0.39 Vert(LL) 0.0* Rep Stress Incr YES WB 0.15 Vert(TL) 10.0 Code IRC2018/TPI2014 Matrix-S Horiz(TL) Horiz(TL) 2x4 SPF No.2 </td> <td>25.0 Plate Grip DOL 1.15 TC 0.39 Vert(LL) n/a 0.0* Rep Stress Incr YES WB 0.15 Vert(TL) 0.0 2x4 SPF No.2 Code IRC2018/TPI2014 Matrix-S Horiz(TL) 0.0 2x4 SPF No.2 SPF No.2 Softward Softward Softward Netword Netwo</td> <td>25.0 Plate Grip DOL 1.15 TC 0.39 Vert(LL) n/a - 0.0° Res Stress Incr YES BC 0.21 Horiz(TL) n/a - 2x4 SPF No.2 Code IRC2018/TPI2014 Matrix-S Horiz(TL) n/a - 2x4 SPF No.2 Structural wood sheathing directly applied or 10-0 oc bracing. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle -<</td> <td>25.0 Plate Grip DOL 1.15 TC 0.39 Vert(LL) n/a n/a 0.0 Reg Stress Incr Vert(L) n/a n/a n/a 10.0 Code IRC2018/TPI2014 Matrix-S Vert(L) n/a n/a 2x4 SPF No.2 Code IRC2018/TPI2014 Matrix-S Vert(L) n/a n/a 2x4 SPF No.2 Structural wood sheathing directly applied or 60-0 oc purlins, except end verticals. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3:06-00 tall by 2:00-00 wide will fit between the bottom chord and any other members, with BCOL = 10.0psf. Structural wood sheathing directly applied or 10:0-0 oc bracing. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 bu pulifit at joint 7. 8(bid ceiling directly applied or 10:0-0 oc bracing. 1:150 bu pulit at joint 7. 105 bu pulit at joint 6. 1:2:2:2:2:4:101, 2:3=173/67, 5:4=101(C 15), 6=360 (LC 2), 7=501 (LC 2), 6:3:01(LC 2) 1:150 du 2:10:2 and referenced standard ANSI/TP1 1. 1:2:2:2:2:4:101, 2:3=173/67, 3:4=141/70, 4:5=:115/48 1:7=:397/1, 5:6=:393/11 3:6=:277/140, 2:7=:370/205 2:2:7 - 16: Vult=115mph (3:second gust) pri, TCDL=6.05, th=2:5t; Cat. cncosed; MWFRS (envelope) exterior zone; eft and right exposed ;</td> <td>25.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1</td> <td>25.0 Plare Gr p. DOL 1.15 TC 0.38 Vert(TL) n/a - n/a 999 10.0 Lumber DOL 1.15 BC 0.21 WB 0.15 Horiz(TL) n/a - n/a 999 2x4 SPF No.2 Code IRC2018/TPI2014 WB 0.15 Horiz(TL) n/a - n/a 999 2x4 SPF No.2 SPF No.2 - This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle </td>	25.0Plate Grip DOL1.15TC0.3910.0Lumber DOL1.15BC0.210.0*Rep Stress IncrYESWB0.1510.0CodeIRC2018/TPI2014Matrix-S2x4 SPF No.2 $Code$ IRC2018/TPI2014Matrix-S2x4 SPF No.2 $Code$ IRC2018/TPI2014Matrix-S2x3 SPF No.2 $Code$ $Code$ $Code$ $Code$ 2x3 SPF No.2 $Code$ $Code$ $Code$ $Code$ Structural wood sheathing directly applied or 6-0-0 oc purins, except end verticals. Rigid ceiling directly applied or 10-0-0 cc bracing. $Code$ $Code$ (Ib/size)1=196/13-10-10, 6=349/13-10-10, 6=349/13-10-10, 6=349/13-10-10, 7=493/13-10-10 $Code$ $Code$ Max Horiz1=275 (LC 5) $Code$ $Code$ $Code$ Max Grav1=243 (LC 16), 5=191 (LC 15), 6=396 (LC 2), 7=501 (LC 2) $Code$ $Code$ (Ib) - Maximum Compression/Maximum Tension $1-2=-224/101, 2-3=-173/67, 3-4=-141/70, 4-5=-115/48$ $1-7=-93/71, 6-7=-93/71, 3-6=-93/71$ $1-7=-93/71, 4-7=-370/205$ $2E 7-16; Vult=115mph (3-second gust)ph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat.Enclosed; MWFRS (envelope) exterior zone;felt and right exposed; end vertical left andsetd; Lumber DCL=1.60grad for wind loads in the plane of the trussstuds exposed to wind (normal to the face),ard Industry Gable End Details as applicable,qualified building designer as per ANSI/TPI 1.Jires continuous bottom chord bearing.Is spaced at 4-0-0 oc.has been designed for a 10.0 psf bottom$	25.0 Plate Grip DOL 1.15 TC 0.39 Vert(LL) 0.0* Rep Stress Incr YES WB 0.15 Vert(TL) 10.0 Code IRC2018/TPI2014 Matrix-S Horiz(TL) Horiz(TL) 2x4 SPF No.2	25.0 Plate Grip DOL 1.15 TC 0.39 Vert(LL) n/a 0.0* Rep Stress Incr YES WB 0.15 Vert(TL) 0.0 2x4 SPF No.2 Code IRC2018/TPI2014 Matrix-S Horiz(TL) 0.0 2x4 SPF No.2 SPF No.2 Softward Softward Softward Netword Netwo	25.0 Plate Grip DOL 1.15 TC 0.39 Vert(LL) n/a - 0.0° Res Stress Incr YES BC 0.21 Horiz(TL) n/a - 2x4 SPF No.2 Code IRC2018/TPI2014 Matrix-S Horiz(TL) n/a - 2x4 SPF No.2 Structural wood sheathing directly applied or 10-0 oc bracing. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle -<	25.0 Plate Grip DOL 1.15 TC 0.39 Vert(LL) n/a n/a 0.0 Reg Stress Incr Vert(L) n/a n/a n/a 10.0 Code IRC2018/TPI2014 Matrix-S Vert(L) n/a n/a 2x4 SPF No.2 Code IRC2018/TPI2014 Matrix-S Vert(L) n/a n/a 2x4 SPF No.2 Structural wood sheathing directly applied or 60-0 oc purlins, except end verticals. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3:06-00 tall by 2:00-00 wide will fit between the bottom chord and any other members, with BCOL = 10.0psf. Structural wood sheathing directly applied or 10:0-0 oc bracing. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 bu pulifit at joint 7. 8(bid ceiling directly applied or 10:0-0 oc bracing. 1:150 bu pulit at joint 7. 105 bu pulit at joint 6. 1:2:2:2:2:4:101, 2:3=173/67, 5:4=101(C 15), 6=360 (LC 2), 7=501 (LC 2), 6:3:01(LC 2) 1:150 du 2:10:2 and referenced standard ANSI/TP1 1. 1:2:2:2:2:4:101, 2:3=173/67, 3:4=141/70, 4:5=:115/48 1:7=:397/1, 5:6=:393/11 3:6=:277/140, 2:7=:370/205 2:2:7 - 16: Vult=115mph (3:second gust) pri, TCDL=6.05, th=2:5t; Cat. cncosed; MWFRS (envelope) exterior zone; eft and right exposed ;	25.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1	25.0 Plare Gr p. DOL 1.15 TC 0.38 Vert(TL) n/a - n/a 999 10.0 Lumber DOL 1.15 BC 0.21 WB 0.15 Horiz(TL) n/a - n/a 999 2x4 SPF No.2 Code IRC2018/TPI2014 WB 0.15 Horiz(TL) n/a - n/a 999 2x4 SPF No.2 SPF No.2 - This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle

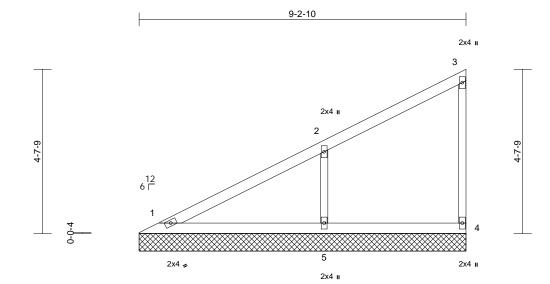
Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	V15	Valley	1	1	Job Reference (optional)	149010992

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:45 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale	= 1:40	
-------	--------	--

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.26	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.14	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0		YES	WB	0.10	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 35 lb	FT = 10%
UMBER				uss has been design			psf					
TOP CHORD	2x4 SPF No.2			ottom chord in all are		0						
BOT CHORD	2x4 SPF No.2			tall by 2-00-00 wide								
NEBS	2x3 SPF No.2			nd any other member								
OTHERS	2x3 SPF No.2			mechanical connecti plate capable of with								
BRACING			E 110	o uplift at joint 6 and			Jin					
TOP CHORD		neathing directly appli		ss is designed in acc								
		except end verticals.	, 	ional Residential Cod			nd					
BOT CHORD	bracing.	tly applied or 10-0-0 o		0.2 and referenced st								1117
REACTIONS	0	1-6-10, 5=141/11-6-1	0 LOAD CAS	E(S) Standard							N'OF	MISSI
REAGINGING		11-6-10, 7=339/11-6-1									144	
	Max Horiz 1=226	,								~	18	
	Max Uplift 5=-34 (_C 5), 6=-119 (LC 8),								20	JU/	AN 22
	7=-102	()								2.	GAR	
		LC 16), 5=180 (LC 15	5),							- *		×-
		LC 2), 7=342 (LC 2)								=	1	
FORCES	· · /	mpression/Maximum								=7	NUM	BER
	Tension	454/70 0 4 400/50									C. E-2000	162101
TOP CHORD	1-2=-191/64, 2-3= 4-5=-109/45	-151/72, 3-4=-132/59	,							-1	A	
BOT CHORD	1-7=-77/59, 6-7=-	77/59 5-6=-77/59									1. So	
WEBS	3-6=-311/163, 2-7	,									I,ON	ALEIN
NOTES												1111
	CE 7-16; Vult=115m	oh (3-second aust)										
		CDL=6.0psf; h=25ft;	Cat.								THUNDAN UAN	
		envelope) exterior zo									NAU	GARCIN
		ed ; end vertical left ar									N STOF	NSA
		.60 plate grip DOL=1.										0
		in the plane of the tru								-	1.1	1 2
		nd (normal to the face and Details as applica								_	1 10	
		signer as per ANSI/T								-	10	952 📔 🗄
	uires continuous bot									=	P	1. 1. 2.
	ds spaced at 4-0-0 c									-	0.	14:42
		for a 10.0 psf bottom									- AN	SAS
chord live	load nonconcurrent	with any other live loa	ds.								1,00,00	ENGIN
											ON ON	ALEN
												100V
											Novembe	r 30,2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	V16	Valley	1	1	Job Reference (optional)	149010993

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:45 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:32.5		·		•								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.28	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.15	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.08	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 26 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2		bearing plate 4 and 143 lb 8) This truss is Internationa R802.10.2 a	chanical connect e capable of wit o uplift at joint 5. designed in acc I Residential Co and referenced s	hstanding 2 cordance w	8 lb uplift at ith the 2018 R502.11.1 a	joint					
TOP CHORD	Structural wood she 6-0-0 oc purlins. ex	0 7 11	ed or LOAD CASE(S)	Standard								

9-2-10

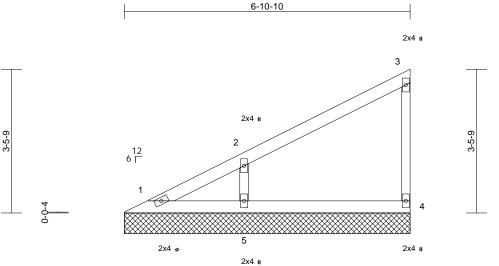
	6-0-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	1=166/9-2-10, 4=125/9-2-10,
		5=477/9-2-10
	Max Horiz	1=178 (LC 5)
	Max Uplift	4=-28 (LC 5), 5=-143 (LC 8)

FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-141/83, 2-3=-122/46, 3-4=-98/41
BOT CHORD	1-5=-60/46, 4-5=-60/46
WEBS	2-5=-362/192

WEBS

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.



Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	V17	Valley	1	1	Job Reference (optional)	149010994

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:46 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-10-10

Scale = 1:27.8

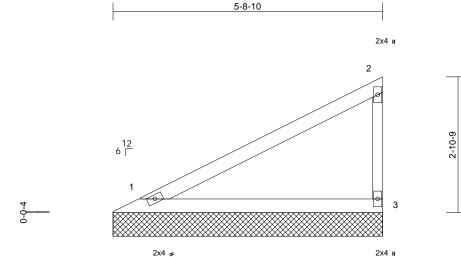
				_								
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.05	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 19 lb	FT = 10%
LUMBER			7) Provide me	chanical connectior	ר (bv oth	ers) of truss to	C					
TOP CHORD	2x4 SPF No.2			e capable of withst								
BOT CHORD	2x4 SPF No.2			o uplift at joint 5.								
WEBS	2x3 SPF No.2			designed in accord								
OTHERS	2x3 SPF No.2			I Residential Code			nd					
BRACING	.			and referenced star	idard Ar	NSI/TPTT.						
TOP CHORD			d or LOAD CASE(S	Standard								
BOT CHORD	6-0-0 oc purlins, ex Rigid ceiling directly											
BOT CHORD	bracing.	applied of 10-0-0 oc	,									1117.
REACTIONS	0	0-10, 4=142/6-10-10,									NOF	MISO
	5=368/6-1	10-10								1	XE.	0,1
	Max Horiz 1=129 (LC									5	X	
	Max Uplift 4=-27 (LC	,, , , ,								-	⊅: JUA	
	Max Grav 1=66 (LC (LC 1)	16), 4=142 (LC 1), 5	=368							F.+	GAR	CIA
FORCES	(Ib) - Maximum Corr	proceion/Maximum									1	1 1 1
FORCES	Tension	ipression/iviaximum								= 0	NUM	
TOP CHORD		05/43, 3-4=-111/46								= 5		• 41-
BOT CHORD	,	,								-1	E-20001	162101
WEBS	2-5=-286/159									1	A	- diala
NOTES											1.SION	ENI
	CE 7-16; Vult=115mph											
	nph; TCDL=6.0psf; BC											11.
	Enclosed; MWFRS (er											1111.
	left and right exposed sed; Lumber DOL=1.6										N'AN (GARO
	igned for wind loads in										N. 30	····· A 1
	studs exposed to wind										CE	NSE
	lard Industry Gable En										1 / Y	× \ 3
	qualified building desi		11.							=	1.1	1 E
	uires continuous botto	m chord bearing.									THUNN JUAN	952 : =
	ds spaced at 4-0-0 oc.	r a 10.0 mail hattam								-	0:	1 9
	has been designed fo load nonconcurrent wi		19							-	B:	1 145
	s has been designed f										- A HAN	SAS. AS
	tom chord in all areas										1.50	NGIN
	all by 2-00-00 wide will	fit between the botto	m								I, ON	ALE
chord and	any other members.											nnn.
											Novembe	r 30,2021

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	V18	Valley	1	1	Job Reference (optional)	149010995

BOT CHORD

BRACING TOP CHORD

WEBS


2x4 SPF No.2

2x3 SPF No.2

Structural wood sheathing directly applied or 5-9-2 oc purlins, except end verticals.

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:46 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-10-9

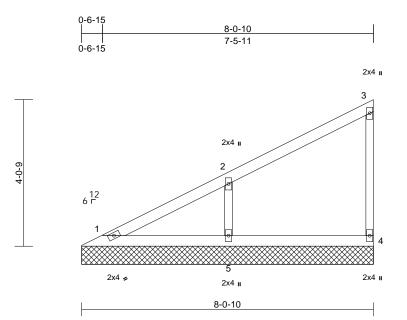
Scale = 1:24.4												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.49	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.26	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 15 lb	FT = 10%
LUMBER TOP CHORD	2x4 SPF No.2			s designed in acc al Residential Co			and				<u></u>	

5-8-10

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

November 30,2021


3-3-2 de pullins, except end venticals.
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc
bracing.
REACTIONS (lb/size) 1=226/5-8-10, 3=226/5-8-10
Max Horiz 1=105 (LC 7)
Max Uplift 1=-29 (LC 8), 3=-55 (LC 8)
FORCES (Ib) - Maximum Compression/Maximum
Tension
TOP CHORD 1-2=-96/63, 2-3=-176/86
BOT CHORD 1-3=-36/27
NOTES
1) Wind: ASCE 7-16; Vult=115mph (3-second gust)
Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.
II; Exp C; Enclosed; MWFRS (envelope) exterior zone;
cantilever left and right exposed ; end vertical left and
right exposed; Lumber DOL=1.60 plate grip DOL=1.60
Truss designed for wind loads in the plane of the truss
only. For studs exposed to wind (normal to the face),
see Standard Industry Gable End Details as applicable,
or consult qualified building designer as per ANSI/TPI 1.
 Gable requires continuous bottom chord bearing.
4) Gable studs spaced at 4-0-0 oc.
5) This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads.
6) * This truss has been designed for a live load of 20.0psf
on the bottom chord in all areas where a rectangle
3-06-00 tall by 2-00-00 wide will fit between the bottom
chord and any other members.

Provide mechanical connection (by others) of truss to 7) bearing plate capable of withstanding 29 lb uplift at joint 1 and 55 lb uplift at joint 3.

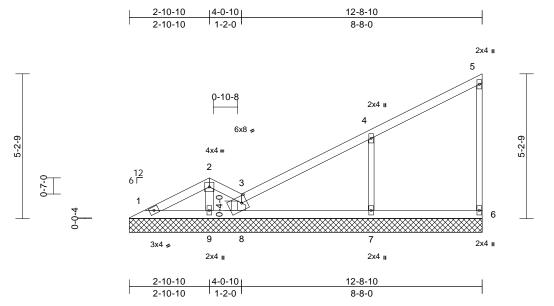
Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	V19	Valley	1	1	Job Reference (optional)	149010996

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:46 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.8

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.22	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 23 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 or 0-10, 4=136/8-0-10, 0-10 0-5) 5-5), 5=-124 (LC 8) 0-16), 4=136 (LC 1),	bearing plate 4 and 124 lb 8) This truss is International R802.10.2 a d or LOAD CASE(S)	hanical connectio e capable of withs uplift at joint 5. designed in accor Residential Code nd referenced star Standard	tanding 2 rdance w sections	26 lb uplift at jo ith the 2018 3 R502.11.1 at	pint				JUA GAR	
FORCES	(lb) - Maximum Com Tension	,								EP	NUM	
TOP CHORD	1-2=-125/72, 2-3=-1									=1	- E-20001	• 41.
BOT CHORD WEBS	1-5=-52/40, 4-5=-52 2-5=-322/180	/40								-1	A	
	2-3=-322/100										1. So	
NOTES		(2 accord suct)									IN ONA	AL EIN
,	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC		`ot								1111	inn.
	Enclosed; MWFRS (er											
	left and right exposed											
	sed; Lumber DOL=1.6										NAU	ARCIN
	igned for wind loads in										Nº JOICE	NSA
	studs exposed to wind											0
	lard Industry Gable En qualified building desi										LICE TRANS	1 E
	uires continuous botto										169	050
, ,	ds spaced at 4-0-0 oc.									-	10:	952
5) This truss	has been designed fo	r a 10.0 psf bottom								-	P	1. 155
	load nonconcurrent wi										0.4	MAS
	s has been designed f		psf								- ANNAN	SAS
	tom chord in all areas	0									10SION	AL ENIN
	all by 2-00-00 wide will any other members.	in between the botto	111									
choru anu	any other members.											11111


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

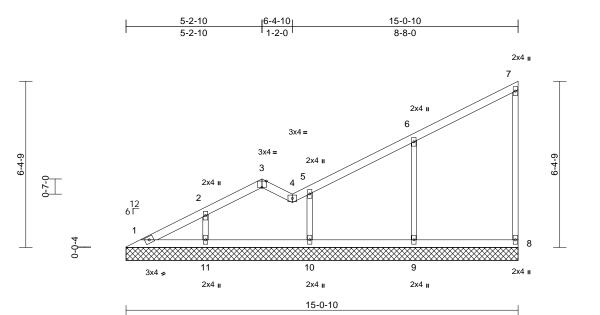
Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	V20	Valley	1	1	Job Reference (optional)	149010997

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:47 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:41.5

Plate Offsets (X, Y): [3:0-2-4,0-3-0]

			-										-
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.27	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.13	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.09	Horiz(TL)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 38 lb	FT = 10%
 LUMBER LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 *Except* 5-6:2x3 SPF No.2 OTHERS 2x3 SPF No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (Ib/size) 1=96/12-8-10, 9=109/12-8-10, 9=109/12-8-10, 9=109/12-8-10, 9=109/12-8-10, 9=109/12-8-10, 9=109/12-8-10, 9=109/12-8-10, 9=109/12-8-10, 9=109/12-8-10, 9=109/12-8-10, 9=109/12-8-10, 9=109/12-8-10, 0=109/12-8-10, 9=109/12-8-10, 0=109/12-8-10, 9=109/12-8-10, 9=109/12-8-10, 9=109/12-8-10, 9=109/12-8-10, 9=109/12-8-10, 9=109/12-8-10, 9=109/12-8-10, 9=109/12-8-10, 9=109/12-8-10, 0=109/12-8-10, 9=109/12-8-10, 0=109/12-8-10, 9=109/12-8-10, 0=109/12-8-10, 9=109/12-8-10, 0=109/12-8-10, 9=109/12-8-10, 0=109/12-8-10, 9=109/12-8-10, 0=109/12-8-10, 9=109/12-8-10, 0=109/12-8-10, 9=109/12-8-10, 0=109/12-8-10, 9=109/12-8-10, 0=109/12-8-10, 9=109/12-8-10, 0=109/12-8-10, 9=109/12-8-10, 0=109/12-8-10,										MISSOURIA NN CIA			
FORCES	(lb) - Maximum Com Tension	pression/Maximum										ISS ON	ENGLIN
TOP CHORD	1-2=-169/46, 2-3=-1 4-5=-128/53, 5-6=-1											1111	iiii.
BOT CHORD	1-9=-68/53, 8-9=-68 6-7=-68/53	/53, 7-8=-68/53,										min	
WEBS	4-7=-354/189, 2-9=-	85/153, 3-8=-239/13										IN UAN C	MACIN
NOTES												N CE	NSA
Vasd=911 II; Exp C; cantilever right expc 2) Truss des only. For see Stand or consul 3) Provide a	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er r left and right exposed seed; Lumber DOL=1.6 signed for wind loads in studs exposed to wind dard Industry Gable En- t qualified building desig dequate drainage to pr quires continuous bottor	DL=6.0psf; h=25ft; C velope) exterior zone; end vertical left and 0 plate grip DOL=1.6 the plane of the trus: (normal to the face), d Details as applicab gner as per ANSI/TPI event water ponding.	e; 0 6,								. THUNK	PROX CAN	545 ALENCIAL



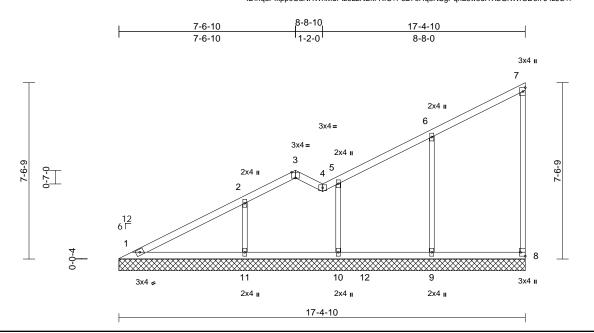
November 30,2021

Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	V21	Valley	1	1	Job Reference (optional)	149010998

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:47 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:44.2

Plate Offsets (X, Y): [3:0-2-0,Edge]


		-				-					-	-
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.32	Vert(LL)	n/a	(.00)	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.14	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.13	Horiz(TL)	0.00	8	n/a	n/a	1	
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S	0.10		0.00	0	1.70		Weight: 46 lb	FT = 10%
		0000		induite o							Trongina To no	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood sh 6-0-0 oc purlins, e Rigid ceiling direct bracing. (lb/size) 1=70/15	eathing directly applied xcept end verticals. y applied or 10-0-0 oc -0-10, 8=143/15-0-10,	 5) Gable requir 6) Gable studs 7) This truss h chord live lo 8) * This truss on the botto 3-06-00 tall chord and a 9) Provide mec bearing plat 8, 115 h up 	e 2x4 MT20 unless res continuous bot spaced at 4-0-0 c as been designed ad nonconcurrent has been designer m chord in all area by 2-00-00 wide w ny other members shanical connectio e capable of withs lift at joint 9, 58 lb	tom chor oc. for a 10.0 with any d for a liv as where vill fit betw s, with BC n (by oth tanding 3	d bearing. 0 psf bottom other live loa re load of 20.0 a rectangle veen the botto CDL = 10.0psf ers) of truss t 38 lb uplift at j	Dpsf om o oint			3	NE OF	MISSOU
	11=328/ Max Horiz 1=251 (I Max Uplift 8=-38 (L 10=-58 (I Max Grav 1=135 (I	_C 5) C 5), 9=-115 (LC 8), LC 8), 11=-136 (LC 8) _C 16), 8=183 (LC 15) _C 2), 10=366 (LC 2),	U, uplift at joint 10) This truss is Internationa R802.10.2 a	uplift at joint 11.) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. PAD CASE(S) Standard							GAR GAR NUMI E-20001	CIA *
FORCES	(lb) - Maximum Co Tension	mpression/Maximum									ESS ION	ENGLIN
TOP CHORD		151/28, 3-4=-121/20, 158/72, 6-7=-137/65,										
BOT CHORD	1-11=-86/65, 10-11 8-9=-86/65	=-86/65, 9-10=-86/65,	,								IN UAN C	SARCI
WEBS	6-9=-303/155, 5-10	=-282/109, 2-11=-254	/179								N STOFF	NSA
NOTES											JUE	E0
 Wind: AS Vasd=91r II; Exp C; cantilever right expc Truss des only. For see Stanc or consult 	Enclosed; MWFRS (left and right expose sed; Lumber DOL=1. signed for wind loads studs exposed to win ard Industry Gable E qualified building des	h (3-second gust) CDL=6.0psf; h=25ft; C envelope) exterior zond d; end vertical left and 60 plate grip DOL=1.6 n the plane of the trus d (normal to the face), nd Details as applicab signer as per ANSI/TPI prevent water ponding.	e; I 0 s I 1.							111111VV	PROTOCOLOGICAL PROPERTY OF ANY	952 ALENGIII 30,2021

🔥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

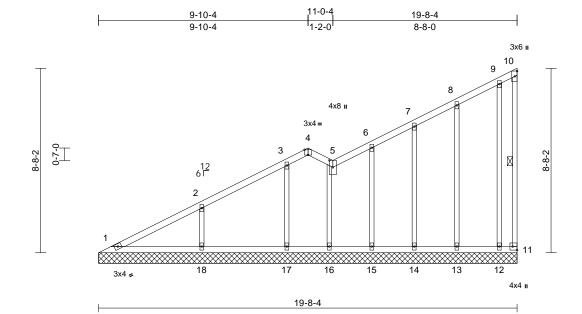
Job	Truss	Truss Type	Qty	Ply	Lot 58 W2	
W258	V22	Valley	1	1	Job Reference (optional)	149010999

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:48 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:49.3

Plate Offsets (X, Y): [3:0-2-0,Edge], [8:Edge,0-2-8]

	(, .), [, [e:==9e;e = e]	_		_							
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.46		n/a	(.00)	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.17	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.21	Horiz(TL)	0.00	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI								Weight: 55 lb	FT = 10%
											Ŭ	
LUMBER				ole requires continuous b		d bearing.						
TOP CHORD				ole studs spaced at 4-0-0								
BOT CHORD				s truss has been designe								
WEBS	2x3 SPF No.2			rd live load nonconcurre								
OTHERS	2x3 SPF No.2			his truss has been design			Upst					
BRACING			0.0	he bottom chord in all a								
TOP CHORD		eathing directly applie		6-00 tall by 2-00-00 wide rd and any other membe								
	6-0-0 oc purlins, ex		0) D	vide mechanical connec								1111.
BOT CHORD		y applied or 10-0-0 or		ring plate capable of wit							Nº OF	MISSIL
	bracing.		8 1	19 lb uplift at joint 9, 52							NE.	
REACTIONS	· · · ·	7-4-10, 8=140/17-4-1	0, uni	ft at joint 11.							× P	
		7-4-10, 10=321/17-4-	^{10,} 9) Thi	s truss is designed in ac	cordance w	ith the 2018				-	S. JU/	NI : 2-
	11=465/ ²		Inte	International Residential Code sections R502.11.1 and							GAR	
	Max Horiz 1=299 (L	,	R8	R802.10.2 and referenced standard ANSI/TPI 1.								
	Max Uplift 8=-43 (L		LOAD	LOAD CASE(S) Standard								
	Max Grav 1=234 (L	LC 8), 11=-165 (LC 8								= -	NUM	
		.C 2), 10=342 (LC 2),								= 5	•	• 41.
	11=483 (-	E-2000	162101
FORCES		npression/Maximum								1	A	
TORCES	Tension	npression/maximum									1.08	ENGIN
TOP CHORD		170/31, 3-4=-132/28,									ON!	ALEIN
		172/81, 6-7=-149/76,										III.
	7-8=-109/48											
BOT CHORD		1=-102/78, 9-10=-102	2/78.								, in the	
	8-9=-102/78										11 UAN	GARC
WEBS	6-9=-312/153, 5-10	=-254/102, 2-11=-35	0/216								The	NO
NOTES											UCE	NOED .
	CE 7-16; Vult=115mpl	h (3-second aust)								-		1 2
	mph; TCDL=6.0psf; B0		Cat.							=	1	
	Enclosed; MWFRS (e									-	: 16	952 =
cantilever	r left and right exposed	; end vertical left and	d							=	DI	
	osed; Lumber DOL=1.6									-	D.	
	signed for wind loads in										- A MAR	10 45
	studs exposed to win										18	G
	dard Industry Gable Er										S/ON	ALENIN
	t qualified building des										1111	in the second se
Provide a	dequate drainage to p	revent water ponding	J.								Novembe	r 30 2021
											NOVENDE	1 00,2021


16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply Lot 58 W2 1 Job Reference (optional)	Lot 58 W2	
W258	V23	Valley	1	1	Job Reference (optional)	149011000

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Nov 30 10:20:48 ID:hquPfxpp0CdNHWhMuPizeLzNEki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1 490

Scale = 1:54.2

Plate Offsets (X, Y): [4:0-2-0,Edge], [5:0-3-15,0-2-0], [11:Edge,0-2-8]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.60	Vert(LL)	n/a	-	n/a	999	MT20	197/144	
TCDL		10.0	Lumber DOL	1.15		BC	0.14	Vert(TL)	n/a	-	n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.18	Horiz(TL)	0.00	11	n/a	n/a			
BCDL		10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 82 lb	FT = 10%	
LUMBER				N	EBS	2-18=-330/176, 3	3-17=-225	/166.							
TOP CHORD	2x4 SPF N	10.2				5-16=-131/17, 6-			/82,						
BOT CHORD						3-13=-149/74, 9-			, ,						
WEBS	2x3 SPF N			N	OTES										
OTHERS	2x3 SPF N					7-16; Vult=115n	nnh (3-ser	cond aust)							
BRACING				.,		n; TCDL=6.0psf;			Cat.						
TOP CHORD	Structural	wood she	athing directly applie	d or		closed; MWFRS									
			cept end verticals.		cantilever lef	t and right expos	sed; end v	vertical left an	d					ID.	
BOT CHORD	Rigid ceili	ng directly	applied or 6-0-0 oc		right expose	d; Lumber DOL=	1.60 plate	grip DOL=1.	60						
	bracing.	- /		2)		ed for wind load							NEOF	NISS	
WEBS	1 Row at	midpt	10-11			ids exposed to w						1	A		
REACTIONS	(lb/size)		-8-4, 11=14/19-8-4,			d Industry Gable						2	A		2
		12=133/1	9-8-4, 13=190/19-8-4	l,		alified building d						-	S: JUA		-
			9-8-4, 15=182/19-8-4	·		quate drainage to			j .				GAR	CIA	-
			9-8-4, 17=282/19-8-4			e 2x4 MT20 unle es continuous bo						= ^			1
		18=435/1		5)		spaced at 2-0-0		d bearing.				5-1		:~	- 2
	Max Horiz					is been designed		0 pcf bottom				= +	NUM	BER :	-
	Max Uplift		(LC 7), 12=-77 (LC 8)	, ',		ad nonconcurren			eh				O. E-20001	62101 :41	-
			.C 8), 14=-61 (LC 8), .C 8), 17=-126 (LC 8)	8		has been designe						-	A		•
		15=-43 (L 18=-126 (, 0,		n chord in all are			poi				· · · · · · · · ·	Giv	
			C 16), 11=77 (LC 4),			y 2-00-00 wide			om				I,ONI	LENN	
			LC 16), 13=190 (LC 1)		y other member							- 4411	iiiii	
			LC 1), 15=182 (LC 1)		Provide mec	hanical connecti	on (by oth	ers) of truss t	0						
			LC 16), 17=282 (LC 1		bearing plate	capable of with	standing 1	02 lb uplift at						1111	
		18=435 (L		,,		Ib uplift at joint 1							N'INN C	GARC	
FORCES	(lb) - Maxi	imum Com	pression/Maximum			joint 15, 61 lb u		it 14, 40 lb up	lift				Nº 300	····· A	
	Tension					id 77 lb uplift at j							CE	NSE	-
TOP CHORD	1-2=-290/	99, 2-3=-2	32/82, 3-4=-152/39,	10		designed in acco									-
			88/57, 6-7=-184/67,			Residential Cod			nd			-	$\sim 10^{-1}$	- A.	=
	7-8=-169/	80, 8-9=-1	49/91, 9-10=-81/57,			nd referenced sta	andard Ar	NSI/TPT1.					: 160	952	=
	10-11=-67			L	OAD CASE(S)	Standard						-	10	552	-
BOT CHORD													P	0. 15	-
			16=-119/90,										0.	M. H	-
			14=-119/90,										- A	ISAS.	ð -
	12-13=-11	9/90, 11-1	12=-119/90										1, 56,	ENGIN	
													UN ON	ALCIN	
													Novombo	20 2021	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

November 30,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

