



RE: RR117 Lot 117 RR

# Site Information:

Customer: Project Name: RR117 Lot/Block: Address: City:

Model: Subdivision: State:

# General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.4 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 82 individual, dated Truss Design Drawings and 0 Additional Drawings.

| No. | Seal#     | Truss Name | Date       | No. | Seal#     | Truss Name | Date       |
|-----|-----------|------------|------------|-----|-----------|------------|------------|
| 1   | 148527889 | A1         | 10/27/2021 | 21  | 148527909 | D6         | 10/27/2021 |
| 2   | 148527890 | A2         | 10/27/2021 | 22  | l48527910 | E1         | 10/27/2021 |
| 3   | l48527891 | A3         | 10/27/2021 | 23  | l48527911 | E2         | 10/27/2021 |
| 4   | l48527892 | A4         | 10/27/2021 | 24  | l48527912 | E3         | 10/27/2021 |
| 5   | 148527893 | B1         | 10/27/2021 | 25  | l48527913 | E4         | 10/27/2021 |
| 6   | 148527894 | B2         | 10/27/2021 | 26  | l48527914 | G1         | 10/27/2021 |
| 7   | 148527895 | B3         | 10/27/2021 | 27  | l48527915 | G2         | 10/27/2021 |
| 8   | 148527896 | B4         | 10/27/2021 | 28  | l48527916 | H1         | 10/27/2021 |
| 9   | 148527897 | C1         | 10/27/2021 | 29  | l48527917 | H2         | 10/27/2021 |
| 10  | 148527898 | C2         | 10/27/2021 | 30  | l48527918 | H3         | 10/27/2021 |
| 11  | 148527899 | C3         | 10/27/2021 | 31  | l48527919 | H4         | 10/27/2021 |
| 12  | 148527900 | C4         | 10/27/2021 | 32  | 148527920 | H5         | 10/27/2021 |
| 13  | I48527901 | C5         | 10/27/2021 | 33  | l48527921 | H6         | 10/27/2021 |
| 14  | 148527902 | C6         | 10/27/2021 | 34  | 148527922 | J1         | 10/27/2021 |
| 15  | 148527903 | C7         | 10/27/2021 | 35  | 148527923 | J2         | 10/27/2021 |
| 16  | 148527904 | D1         | 10/27/2021 | 36  | 148527924 | J3         | 10/27/2021 |
| 17  | 148527905 | D2         | 10/27/2021 | 37  | 148527925 | J4         | 10/27/2021 |
| 18  | 148527906 | D3         | 10/27/2021 | 38  | 148527926 | J5         | 10/27/2021 |
| 19  | 148527907 | D4         | 10/27/2021 | 39  | 148527927 | J6         | 10/27/2021 |
| 20  | 148527908 | D5         | 10/27/2021 | 40  | 148527928 | J7         | 10/27/2021 |
|     |           |            |            |     |           |            |            |

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Kansas is April 30, 2022. Kansas COA: E-943

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Garcia, Juan

MiTek USA, Inc. 16023 Swinglev Ridge Rd Chesterfield, MO 63017 314-434-1200



# RE: RR117 - Lot 117 RR

# MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

# Site Information:

| Lot/E<br>Addr | ect Customer:<br>Block:<br>ess:<br>County: | Project Name: RF | R117       |
|---------------|--------------------------------------------|------------------|------------|
| No.           | Seal#                                      | Truss Name       | Date       |
| 41            | 148527929                                  | J8               | 10/27/2021 |
| 42            | 148527930                                  | J9               | 10/27/2021 |
| 43            | l48527931                                  | J10              | 10/27/2021 |
| 44            | 148527932                                  | J11              | 10/27/2021 |
| 45            | 148527933                                  | J12              | 10/27/2021 |
| 46            | 148527934                                  | J13              | 10/27/2021 |
| 47            | 148527935                                  | J14              | 10/27/2021 |
| 48            | 148527936                                  | J15              | 10/27/2021 |
| 49            | 148527937                                  | J16              | 10/27/2021 |
| 50            | 148527938                                  | J17              | 10/27/2021 |
| 51            | 148527939                                  | J18              | 10/27/2021 |
| 52            | 148527940                                  | J19              | 10/27/2021 |
| 53            | 148527941                                  | J20              | 10/27/2021 |
| 54            | 148527942                                  | J21              | 10/27/2021 |
| 55            | 148527943                                  | J22              | 10/27/2021 |
| 56            | 148527944                                  | J23              | 10/27/2021 |
|               |                                            |                  |            |

Subdivision:

State:

| 46 | 148527934 | J13  | 10/27/2021 |
|----|-----------|------|------------|
| 47 | 148527935 | J14  | 10/27/2021 |
| 48 | 148527936 | J15  | 10/27/2021 |
| 49 | 148527937 | J16  | 10/27/2021 |
| 50 | 148527938 | J17  | 10/27/2021 |
| 51 | 148527939 | J18  | 10/27/2021 |
| 52 | 148527940 | J19  | 10/27/2021 |
| 53 | I48527941 | J20  | 10/27/2021 |
| 54 | 148527942 | J21  | 10/27/2021 |
| 55 | 148527943 | J22  | 10/27/2021 |
| 56 | 148527944 | J23  | 10/27/2021 |
| 57 | 148527945 | J24  | 10/27/2021 |
| 58 | 148527946 | J25  | 10/27/2021 |
| 59 | 148527947 | J26  | 10/27/2021 |
| 60 | 148527948 | J27  | 10/27/2021 |
| 61 | 148527949 | K1   | 10/27/2021 |
| 62 | 148527950 | K2   | 10/27/2021 |
| 63 | I48527951 | K3   | 10/27/2021 |
| 64 | 148527952 | K4   | 10/27/2021 |
| 65 | 148527953 | LAY1 | 10/27/2021 |
| 66 | 148527954 | LAY2 | 10/27/2021 |
| 67 | 148527955 | LAY3 | 10/27/2021 |
| 68 | 148527956 | LAY4 | 10/27/2021 |
| 69 | 148527957 | LAY5 | 10/27/2021 |
| 70 | 148527958 | LAY6 | 10/27/2021 |
| 71 | 148527959 | LAY7 | 10/27/2021 |
| 72 | 148527960 | LAY8 | 10/27/2021 |
| 73 | I48527961 | V1   | 10/27/2021 |
| 74 | 148527962 | V2   | 10/27/2021 |
| 75 | 148527963 | V3   | 10/27/2021 |
| 76 | 148527964 | V4   | 10/27/2021 |
| 77 | 148527965 | V5   | 10/27/2021 |
| 78 | 148527966 | V6   | 10/27/2021 |
| 79 | 148527967 | V7   | 10/27/2021 |
| 80 | 148527968 | V8   | 10/27/2021 |
| 81 | 148527969 | V9   | 10/27/2021 |
| 82 | 148527970 | V10  | 10/27/2021 |
|    |           |      |            |



RE: RR117 Lot 117 RR

# Site Information:

Customer: Project Name: RR117 Lot/Block: Address: City:

Model: Subdivision: State:

# General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise]

Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.4 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 82 individual, dated Truss Design Drawings and 0 Additional Drawings.

| No. | Seal#     | Truss Name | Date       | No. | Seal#     | Truss Name | Date       |
|-----|-----------|------------|------------|-----|-----------|------------|------------|
| 1   | 148527889 | A1         | 10/27/2021 | 21  | 148527909 | D6         | 10/27/2021 |
| 2   | 148527890 | A2         | 10/27/2021 | 22  | 148527910 | E1         | 10/27/2021 |
| 3   | 148527891 | A3         | 10/27/2021 | 23  | 148527911 | E2         | 10/27/2021 |
| 4   | 148527892 | A4         | 10/27/2021 | 24  | 148527912 | E3         | 10/27/2021 |
| 5   | 148527893 | B1         | 10/27/2021 | 25  | 148527913 | E4         | 10/27/2021 |
| 6   | 148527894 | B2         | 10/27/2021 | 26  | 148527914 | G1         | 10/27/2021 |
| 7   | 148527895 | B3         | 10/27/2021 | 27  | 148527915 | G2         | 10/27/2021 |
| 8   | 148527896 | B4         | 10/27/2021 | 28  | 148527916 | H1         | 10/27/2021 |
| 9   | 148527897 | C1         | 10/27/2021 | 29  | 148527917 | H2         | 10/27/2021 |
| 10  | 148527898 | C2         | 10/27/2021 | 30  | 148527918 | H3         | 10/27/2021 |
| 11  | 148527899 | C3         | 10/27/2021 | 31  | 148527919 | H4         | 10/27/2021 |
| 12  | 148527900 | C4         | 10/27/2021 | 32  | 148527920 | H5         | 10/27/2021 |
| 13  | 148527901 | C5         | 10/27/2021 | 33  | 148527921 | H6         | 10/27/2021 |
| 14  | 148527902 | C6         | 10/27/2021 | 34  | 148527922 | J1         | 10/27/2021 |
| 15  | 148527903 | C7         | 10/27/2021 | 35  | 148527923 | J2         | 10/27/2021 |
| 16  | 148527904 | D1         | 10/27/2021 | 36  | 148527924 | J3         | 10/27/2021 |
| 17  | 148527905 | D2         | 10/27/2021 | 37  | 148527925 | J4         | 10/27/2021 |
| 18  | 148527906 | D3         | 10/27/2021 | 38  | 148527926 | J5         | 10/27/2021 |
| 19  | 148527907 | D4         | 10/27/2021 | 39  | 148527927 | J6         | 10/27/2021 |
| 20  | 148527908 | D5         | 10/27/2021 | 40  | 148527928 | J7         | 10/27/2021 |
|     |           |            |            |     |           |            |            |

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Missouri is December 31, 2022. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Garcia, Juan

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

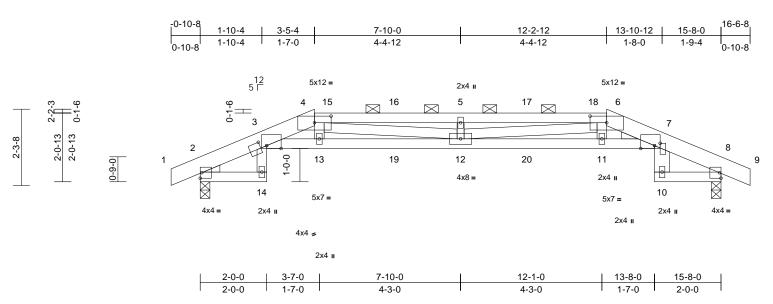


# RE: RR117 - Lot 117 RR

# MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

# Site Information:

| Lot/E<br>Addr | ect Customer:<br>Block:<br>ess:<br>County: | Project Name: RF | R117       |
|---------------|--------------------------------------------|------------------|------------|
| No.           | Seal#                                      | Truss Name       | Date       |
| 41            | 148527929                                  | J8               | 10/27/2021 |
| 42            | 148527930                                  | J9               | 10/27/2021 |
| 43            | l48527931                                  | J10              | 10/27/2021 |
| 44            | 148527932                                  | J11              | 10/27/2021 |
| 45            | 148527933                                  | J12              | 10/27/2021 |
| 46            | 148527934                                  | J13              | 10/27/2021 |
| 47            | 148527935                                  | J14              | 10/27/2021 |
| 48            | 148527936                                  | J15              | 10/27/2021 |
| 49            | 148527937                                  | J16              | 10/27/2021 |
| 50            | 148527938                                  | J17              | 10/27/2021 |
| 51            | 148527939                                  | J18              | 10/27/2021 |
| 52            | 148527940                                  | J19              | 10/27/2021 |
| 53            | 148527941                                  | J20              | 10/27/2021 |
| 54            | 148527942                                  | J21              | 10/27/2021 |
| 55            | 148527943                                  | J22              | 10/27/2021 |
| 56            | 148527944                                  | J23              | 10/27/2021 |
|               |                                            |                  |            |


Subdivision:

State:

| 46 | 148527934 | J13  | 10/27/2021 |
|----|-----------|------|------------|
| 47 | 148527935 | J14  | 10/27/2021 |
| 48 | 148527936 | J15  | 10/27/2021 |
| 49 | 148527937 | J16  | 10/27/2021 |
| 50 | 148527938 | J17  | 10/27/2021 |
| 51 | 148527939 | J18  | 10/27/2021 |
| 52 | 148527940 | J19  | 10/27/2021 |
| 53 | I48527941 | J20  | 10/27/2021 |
| 54 | 148527942 | J21  | 10/27/2021 |
| 55 | 148527943 | J22  | 10/27/2021 |
| 56 | 148527944 | J23  | 10/27/2021 |
| 57 | 148527945 | J24  | 10/27/2021 |
| 58 | 148527946 | J25  | 10/27/2021 |
| 59 | 148527947 | J26  | 10/27/2021 |
| 60 | 148527948 | J27  | 10/27/2021 |
| 61 | 148527949 | K1   | 10/27/2021 |
| 62 | 148527950 | K2   | 10/27/2021 |
| 63 | I48527951 | K3   | 10/27/2021 |
| 64 | 148527952 | K4   | 10/27/2021 |
| 65 | 148527953 | LAY1 | 10/27/2021 |
| 66 | 148527954 | LAY2 | 10/27/2021 |
| 67 | 148527955 | LAY3 | 10/27/2021 |
| 68 | 148527956 | LAY4 | 10/27/2021 |
| 69 | 148527957 | LAY5 | 10/27/2021 |
| 70 | 148527958 | LAY6 | 10/27/2021 |
| 71 | 148527959 | LAY7 | 10/27/2021 |
| 72 | 148527960 | LAY8 | 10/27/2021 |
| 73 | I48527961 | V1   | 10/27/2021 |
| 74 | 148527962 | V2   | 10/27/2021 |
| 75 | 148527963 | V3   | 10/27/2021 |
| 76 | 148527964 | V4   | 10/27/2021 |
| 77 | 148527965 | V5   | 10/27/2021 |
| 78 | 148527966 | V6   | 10/27/2021 |
| 79 | 148527967 | V7   | 10/27/2021 |
| 80 | 148527968 | V8   | 10/27/2021 |
| 81 | 148527969 | V9   | 10/27/2021 |
| 82 | 148527970 | V10  | 10/27/2021 |
|    |           |      |            |

| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | A1    | Hip Girder | 1   | 2   | Job Reference (optional) | 148527889 |

#### Run: 8.43 E Jul 16 2021 Print: 8.430 E Jul 16 2021 MiTek Industries, Inc. Wed Oct 27 12:56:39 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-vXP5RNhaWID\_20B33Xzp5t56sF9KlvHu1nDiSryPN9e



Scale = 1:34.7

# Plate Offsets (X, Y): [3:0-5-3,Edge], [3:0-2-5,0-2-5], [4:0-6-0,0-2-6], [6:0-6-0,0-2-6], [7:0-4-15,Edge], [7:0-0-14,0-2-1]

|                                                                                                                                                                                                                                                                                                             | , , , , , , [oio o o,⊇ago],                                                                                                                       | [=== = =,= <b>=</b> 0]; [                                         |                             | ,, [ : 0,0 <u>-</u> 0                                                                                                                                                                                                           | .,, [                                                                                                                                                                 | .,                                                          | ,. = .]                                                                        |                              |                                                                                                                     |                                                                                           |                                                                                    |                                                                                                                                                      |                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL                                                                                                                                                                                                                                                                      | (psf)<br>25.0<br>10.0<br>0.0*                                                                                                                     | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr        | 2-0-0<br>1.15<br>1.15<br>NO | 0/5010044                                                                                                                                                                                                                       | CSI<br>TC<br>BC<br>WB                                                                                                                                                 | 0.66<br>0.61<br>0.14                                        | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                       | in<br>-0.18<br>-0.35<br>0.23 | (loc)<br>12<br>12<br>8                                                                                              | l/defl<br>>998<br>>525<br>n/a                                                             | L/d<br>360<br>240<br>n/a                                                           | PLATES<br>MT20                                                                                                                                       | <b>GRIP</b><br>197/144                                                                                                                                                        |
| BCDL                                                                                                                                                                                                                                                                                                        | 10.0                                                                                                                                              | Code                                                              | IRC201                      | 8/TPI2014                                                                                                                                                                                                                       | Matrix-S                                                                                                                                                              | -                                                           | Wind(LL)                                                                       | 0.18                         | 12                                                                                                                  | >999                                                                                      | 240                                                                                | Weight: 118 lb                                                                                                                                       | FT = 10%                                                                                                                                                                      |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>WEDGE<br>BRACING<br>TOP CHORD                                                                                                                                                                                                                                   | 2x6 SPF No.2 *Exce<br>2x4 SPF No.2<br>2x4 SPF No.2 *Exce<br>5-12:2x3 SPF No.2<br>Left: 2x3 SPF No.2<br>Right: 2x3 SPF No.2<br>Structural wood she | pt* 7-10:2x6 SPF Nr                                               | o.2,<br>3)<br>4)            | except if note<br>CASE(S) see<br>provided to c<br>unless other<br>Unbalanced<br>this design.<br>Wind: ASCE                                                                                                                      | considered equa<br>ad as front (F) or<br>ction. Ply to ply co<br>listribute only loa<br>wise indicated.<br>roof live loads ha<br>7-16; Vult=115m<br>n; TCDL=6.0psf; I | back (B)<br>onnection<br>ds noted<br>ive been<br>oph (3-sec | face in the LC<br>s have been<br>as (F) or (B),<br>considered fo<br>cond gust) | DAD<br>or                    | pro<br>lb d<br>at 3<br>dow<br>9-1(<br>165<br>75 l<br>up a                                                           | vided su<br>own and<br>3-10-0, 7<br>/n and 4<br>D-0, and<br>Ib down<br>b down<br>at 3-10- | fficient<br>d 96 lb<br>75 lb do<br>2 lb up<br>72 lb<br>n and 9<br>and 3<br>0, 32 l | up at 3-5-4,72 li<br>own and 42 lib up<br>at 7, 10-0, 75 lib<br>down and 43 lib u<br>26 lib up at 12-2-1<br>lib up at 3-5-4, 32<br>b down and 45 lib | ntrated load(s) 165<br>down and 43 lb up<br>at / \$-10.07 75 lb<br>down and 42 lb up at<br>at 11-10.00 and<br>2 on top choid, and<br>1b down and 15 lb<br>up at 5-10-0, 32 lb |
|                                                                                                                                                                                                                                                                                                             | TOP CHORD Structural wood sheathing directly applied or<br>6-0-0 oc purlins, except<br>2-0-0 oc purlins (5-6-5 max.): 4-6.                        |                                                                   |                             |                                                                                                                                                                                                                                 | closed; MWFRS<br>t and right expos<br>d; Lumber DOL=                                                                                                                  | ed ; end v<br>1.60 plate                                    | vertical left an<br>grip DOL=1.                                                | id<br>60                     | 9-1<br>lb d                                                                                                         | 0-0, and<br>own and                                                                       | 32 lb<br>3 3 lb                                                                    | down and 15 lb u<br>p at 12-2 0 on b                                                                                                                 | down and 15 lb up at<br>p at 11-10-0, and 75<br>oftom chord. The                                                                                                              |
| BOT CHORD         Rigid ceiling directly applied or 10-0 oc bracing.           REACTIONS         (lb/size)         2=1002/0-3-8, 8=1002/0-3-8           Max Horiz         2=-31 (LC 13)           Max Uplift         2=-218 (LC 4), 8=-218 (LC 5)           Max Grav         2=1002 (LC 21), 8=1002 (LC 22) |                                                                                                                                                   |                                                                   | 5)<br>6)<br>7)              | This truss ha<br>chord live loa<br>* This truss h<br>on the bottor                                                                                                                                                              | quate drainage to<br>s been designed<br>ad nonconcurrent<br>nas been designe<br>n chord in all are<br>ov 2-00-00 wide v                                               | for a 10.<br>with any<br>d for a liv<br>as where            | ) psf bottom<br>other live loa<br>e load of 20.0<br>a rectangle                | ids.<br>Opsf                 | resp<br>LOAD (<br>1) De<br>Pla                                                                                      | consibili<br>CASE(S<br>ead + Ro<br>ate Incre                                              | ty of ot<br>) Stat<br>oof Live<br>ease=1                                           | hers.<br>ndard<br>e (balanced)) Aug<br>.15                                                                                                           | idevioe(s), is the<br>berthcrease=1.15,                                                                                                                                       |
| FORCES                                                                                                                                                                                                                                                                                                      | (lb) - Max. Comp./Ma<br>(lb) or less except w<br>2-3=-536/138, 3-4=-                                                                              | hen shown.                                                        |                             | <ul><li>3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.</li><li>8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 218 lb uplift at</li></ul> |                                                                                                                                                                       |                                                             |                                                                                |                              | Uniform Loads (lb/ft)<br>Vert: 1-4=-70, 4-6=-70, 6-9=-70, 2-14=-20, 3-7=-20,<br>8-10=-20<br>Concentrated Loads (lb) |                                                                                           |                                                                                    |                                                                                                                                                      |                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                             | 4-15=-4577/1068, 15<br>5-16=-4577/1068, 5-<br>17-18=-4577/1068, 6<br>6-7=-3423/769, 7-8=                                                          | 5-16=-4577/1068,<br>17=-4577/1068,<br>6-18=-4577/1068,<br>543/129 | 9)                          | joint 2 and 2<br>This truss is<br>International                                                                                                                                                                                 | 18 lb uplift at join<br>designed in acco<br>Residential Code<br>nd referenced sta                                                                                     | t 8.<br>ordance w<br>e sections                             | ith the 2018<br>R502.11.1 a                                                    |                              | Co                                                                                                                  |                                                                                           |                                                                                    | ( )                                                                                                                                                  |                                                                                                                                                                               |
| BOT CHORD                                                                                                                                                                                                                                                                                                   | 3-13=-726/3430, 13-<br>12-19=-717/3444, 12<br>11-20=-720/3439, 7-                                                                                 | 2-20=-720/3439,<br>-11=-725/3411                                  | 1(                          |                                                                                                                                                                                                                                 | rlin representatio<br>ation of the purlin<br>I.                                                                                                                       |                                                             |                                                                                | size                         |                                                                                                                     |                                                                                           |                                                                                    | JUAN CE                                                                                                                                              | ARCIA                                                                                                                                                                         |
| WEBS                                                                                                                                                                                                                                                                                                        | 4-12=-307/1156, 5-1<br>6-12=-308/1161                                                                                                             | 2=-313/148,                                                       |                             |                                                                                                                                                                                                                                 |                                                                                                                                                                       |                                                             |                                                                                |                              |                                                                                                                     |                                                                                           | 1                                                                                  |                                                                                                                                                      | 0                                                                                                                                                                             |
| (0.131"x3")<br>Top chords<br>staggered                                                                                                                                                                                                                                                                      | to be connected togei<br>) nails as follows:<br>s connected as follows<br>at 0-9-0 oc, 2x4 - 1 ro<br>ords connected as follows                    | s: 2x6 - 2 rows<br>w at 0-9-0 oc.                                 |                             |                                                                                                                                                                                                                                 |                                                                                                                                                                       |                                                             |                                                                                |                              |                                                                                                                     |                                                                                           | THINK.                                                                             | PHO                                                                                                                                                  | SAS NULL                                                                                                                                                                      |

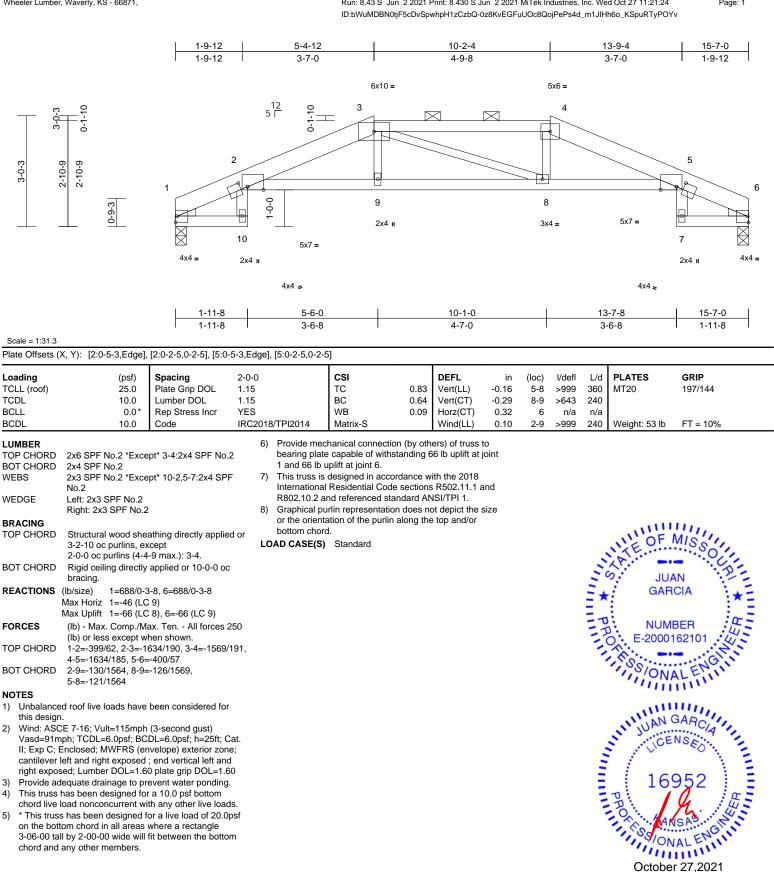
Web connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc, 2x3 - 1 row at 0-9-0 oc.

# October 27,2021

Page: 1



| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | A1    | Hip Girder | 1   | 2   | Job Reference (optional) | 148527889 |


Vert: 4=-41 (F), 6=-41 (F), 13=-107 (F), 12=-32 (F), 5=-17 (F), 11=-107 (F), 15=-17 (F), 16=-17 (F), 17=-17 (F), 18=-17 (F), 19=-32 (F), 20=-32 (F) Run: 8.43 E Jul 16 2021 Print: 8.430 E Jul 16 2021 MiTek Industries, Inc. Wed Oct 27 12:56:39 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-vXP5RNhaWID\_20B33Xzp5t56sF9KlvHu1nDiSryPN9e Page: 2



| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | A2    | Нір        | 1   | 1   | Job Reference (optional) | 148527890 |

#### Run: 8 43 S. Jun. 2 2021 Print: 8 430 S. Jun. 2 2021 MiTek Industries. Inc. Wed Oct 27 11:21:24 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-0z8KvEGFuUOc8QojPePs4d\_m1JIHh6o\_KSpuRTyPOYv

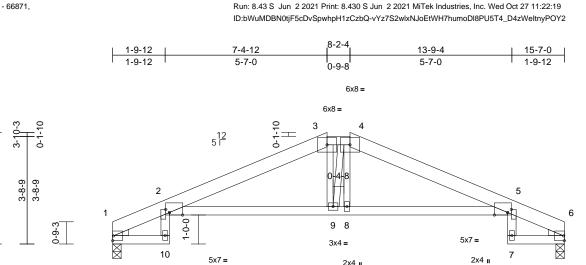
Page: 1

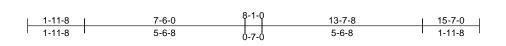


Provide adequate drainage to prevent water ponding. 3) 4) This truss has been designed for a 10.0 psf bottom

2)

- chord live load nonconcurrent with any other live loads. \* This truss has been designed for a live load of 20.0psf 5)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.


MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017


October 27,2021

GIT

| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | A3    | Нір        | 1   | 1   | Job Reference (optional) | 148527891 |

3-10-3





Scale = 1:39.7

### Plate Offsets (X, Y): [2:0-5-7,Edge], [2:0-1-4,0-1-9], [5:0-5-7,Edge], [5:0-1-4,0-1-9]

4x4 =

2x4 II

2x4 II

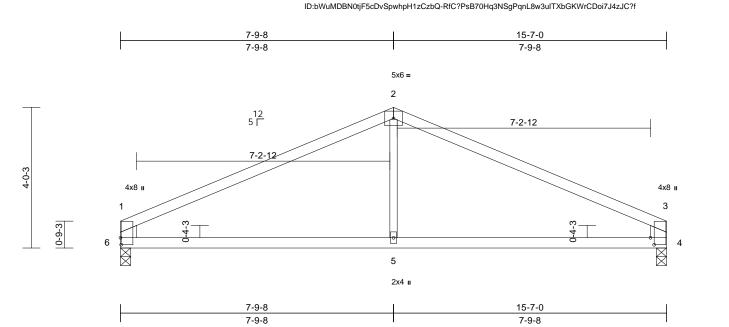
|                                                                                          |                                                                                                                                               |                                                                                                                                                | , , ,                                                                                                                             |          |                                                                  |                                                                                      |              |       |        |              |               |          |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------|-------|--------|--------------|---------------|----------|
| Loading                                                                                  | (psf)                                                                                                                                         | Spacing                                                                                                                                        | 2-0-0                                                                                                                             | csi      |                                                                  | DEFL                                                                                 | in           | (loc) | l/defl | L/d          | PLATES        | GRIP     |
| TCLL (roof)                                                                              | 25.0                                                                                                                                          | Plate Grip DOL                                                                                                                                 | 1.15                                                                                                                              | TC       | 0.88                                                             | Vert(LL)                                                                             | -0.21        | 2-9   | >879   | 360          | MT20          | 197/144  |
| TCDL                                                                                     | 10.0                                                                                                                                          | Lumber DOL                                                                                                                                     | 1.15                                                                                                                              | BC       | 0.62                                                             | Vert(CT)                                                                             | -0.39        | 2-9   | >470   | 240          |               |          |
| BCLL                                                                                     | 0.0*                                                                                                                                          | Rep Stress Incr                                                                                                                                | YES                                                                                                                               | WB       | 0.10                                                             | Horz(CT)                                                                             | 0.41         | 6     | n/a    | n/a          |               |          |
| BCDL                                                                                     | 10.0                                                                                                                                          | Code                                                                                                                                           | IRC2018/TPI2014                                                                                                                   | Matrix-S |                                                                  | Wind(LL)                                                                             | 0.15         | 2-9   | >999   | 240          | Weight: 56 lb | FT = 10% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>WEDGE<br>BRACING<br>TOP CHORD                | 2x6 SPF No.2 *Exce<br>2x4 SPF No.2<br>2x3 SPF No.2 *Exce<br>No.2<br>Left: 2x3 SPF No.2<br>Right: 2x3 SPF No.2<br>Structural wood she          | pt* 10-2,5-7:2x4 SP<br>athing directly applie                                                                                                  | 2 bearing pla<br>1 and 84 lb<br>F 7) This truss i<br>Internation:<br>R802.10.2<br>8) Graphical p<br>or the orier<br>bottom choose |          | standing 8<br>ordance w<br>e sections<br>andard AN<br>on does no | i4 lb uplift at j<br>ith the 2018<br>is R502.11.1 a<br>ISI/TPI 1.<br>ot depict the s | joint<br>and |       |        |              | UNIT OF       | MISSO    |
| BOT CHORD                                                                                | 2-2-0 oc purlins, except LOAD CASE(S) Standard 2-0-0 oc purlins (4-6-10 max.): 3-4.                                                           |                                                                                                                                                |                                                                                                                                   |          |                                                                  |                                                                                      |              |       |        |              |               |          |
|                                                                                          | (lb/size) 1=688/0-3<br>Max Horiz 1=61 (LC<br>Max Uplift 1=-84 (LC                                                                             |                                                                                                                                                |                                                                                                                                   |          |                                                                  |                                                                                      |              |       |        | E*           | GAR           | CIA      |
| FORCES                                                                                   | (lb) - Max. Comp./Ma<br>(lb) or less except w                                                                                                 |                                                                                                                                                | 250                                                                                                                               |          |                                                                  |                                                                                      |              |       |        |              | NUM           | • 41.    |
| TOP CHORD                                                                                | 1-2=-399/84, 2-3=-1<br>4-5=-1318/115, 5-6=                                                                                                    | 312/118, 3-4=-1222/                                                                                                                            | 143,                                                                                                                              |          |                                                                  |                                                                                      |              |       |        | 1            |               | - Chi    |
| BOT CHORD                                                                                | 2-9=-76/1214, 8-9=-                                                                                                                           | 42/1223, 5-8=-45/12                                                                                                                            | 20                                                                                                                                |          |                                                                  |                                                                                      |              |       |        |              | S/ONI         | NEPIN    |
| WEBS                                                                                     | 3-9=-115/294                                                                                                                                  |                                                                                                                                                |                                                                                                                                   |          |                                                                  |                                                                                      |              |       |        |              | 1111          | in       |
| NOTES                                                                                    |                                                                                                                                               |                                                                                                                                                |                                                                                                                                   |          |                                                                  |                                                                                      |              |       |        |              |               |          |
| this desigr                                                                              | ed roof live loads have<br>n.<br>CE 7-16; Vult=115mph                                                                                         |                                                                                                                                                |                                                                                                                                   |          |                                                                  |                                                                                      |              |       |        |              | IN UAN        | GARCIA   |
| Vasd=91rr<br>II; Exp C; I<br>cantilever<br>right expos<br>3) Provide ac<br>4) This truss | ph; TCDL=6.0ps; BC<br>Enclosed; MWFRS (er<br>left and right exposed<br>sed; Lumber DOL=1.6<br>Jequate drainage to pr<br>has been designed for | DL=6.0psf; h=25ft; (<br>ivelope) exterior zon<br>; end vertical left and<br>0 plate grip DOL=1.6<br>event water ponding<br>r a 10.0 psf bottom | e;<br>d<br>50                                                                                                                     |          |                                                                  |                                                                                      |              |       |        | ATTINA STATE | I LICE        | 952 E    |

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 \* This truss has been designed for a live load of 20.0psf

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. October 27,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MITEK<sup>®</sup> 16023 Swingley Ridge Rd Chesterfield, MO 63017 Page: 1


4x4 =

2x4 🛛

| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | A4    | Common     | 1   | 1   | Job Reference (optional) | 148527892 |

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Oct 26 12:47:32

Wheeler Lumber, Waverly, KS - 66871,



| Scale = 1:32.9 |  |
|----------------|--|
|----------------|--|

#### Plate Offsets (X, Y): [1:0-2-6,0-0-4], [3:0-2-6,0-1-4]

|             | 1, 1, 1, |                 |                 |          |      |          |       |       |        |     |               |          |
|-------------|----------|-----------------|-----------------|----------|------|----------|-------|-------|--------|-----|---------------|----------|
| Loading     | (psf)    | Spacing         | 2-0-0           | CSI      |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL (roof) | 25.0     | Plate Grip DOL  | 1.15            | TC       | 0.86 | Vert(LL) | -0.07 | 4-5   | >999   | 360 | MT20          | 197/144  |
| TCDL        | 10.0     | Lumber DOL      | 1.15            | BC       | 0.42 | Vert(CT) | -0.16 | 4-5   | >999   | 240 |               |          |
| BCLL        | 0.0*     | Rep Stress Incr | YES             | WB       | 0.10 | Horz(CT) | 0.02  | 4     | n/a    | n/a |               |          |
| BCDL        | 10.0     | Code            | IRC2018/TPI2014 | Matrix-R |      | Wind(LL) | 0.03  | 5-6   | >999   | 240 | Weight: 41 lb | FT = 10% |

- LUMBER

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 2x6 SPF No.2 \*Except\* 5-2:2x3 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) 4=681/0-3-8, 6=681/0-3-8 Max Horiz 6=-37 (LC 9) Max Uplift 4=-86 (LC 9), 6=-86 (LC 8) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-928/114, 2-3=-928/114, 1-6=-594/134, 3-4=-594/134 BOT CHORD 5-6=-44/758, 4-5=-44/758 WEBS 2-5=0/306

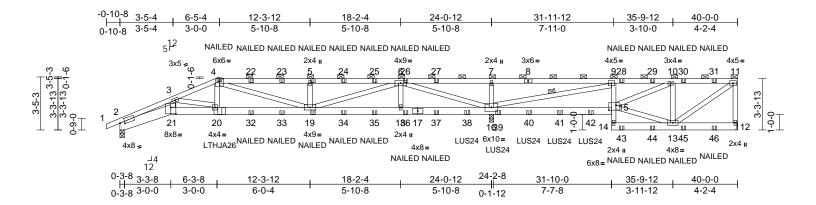
#### NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 86 lb uplift at joint 6 and 86 lb uplift at joint 4.

- 6) This truss is designed in accordance with the 2018
  - International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard




Page: 1



| Job   | Truss | Truss Type      | Qty | Ply | Lot 117 RR               |           |
|-------|-------|-----------------|-----|-----|--------------------------|-----------|
| RR117 | B1    | Half Hip Girder | 1   | 2   | Job Reference (optional) | 148527893 |

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:47:33 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



Scale = 1:74.6

#### Plate Offsets (X, Y): [2:0-3-8,0-2-1], [15:0-5-8,0-4-0], [21:0-4-0,0-5-0]

|                                                | X, Y): [2:0-3-8,0-2-1],                                                                                                                                                                                      | [15.0-5-6,0-4-0], [21                                                                                                                                                                                                                                                                                                                                                              | 1.0-4-0,0-0                                                      | -0J                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                    |                                                                                                                                                                       |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                        | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                 | 2-0-0<br>1.15<br>1.15<br>NO<br>IRC201                            | 8/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.85<br>0.45<br>0.83                                                                                                                                                                                                                                                                                                                         | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Wind(LL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.36<br>0.13                                                      | (loc)<br>19-20<br>19-20<br>12<br>19-20                                                                                                                                | l/defl<br>>999<br>>803<br>n/a<br>>999                                                                                                                                                                                    | L/d<br>360<br>240<br>n/a<br>240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>PLATES</b><br>MT20<br>Weight: 413 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>GRIP</b><br>197/144<br>FT = 10%                                                                                                                                                                                                                                                                                                                                                              |
|                                                | 2x6 SP 2400F 2.0E<br>DSS, 9-14:2x4 SPF<br>2x4 SPF No.2<br>Structural wood she<br>4-6-11 oc purlins, e<br>2-0-0 oc purlins (4-8<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(lb/size) 2=1803/0 | No.2<br>athing directly applie<br>xcept end verticals, i<br>-15 max.): 4-11.<br>applied or 10-0-0 oc<br>9-16<br>-3-8, 12=965/ Mecha<br>0-3-8, (req. 0-3-12)<br>7)<br>C 4), 12=-86 (LC 4),<br>LC 5)<br>.C 1), 12=981 (LC 20<br>(LC 1)<br>pression/Maximum<br>426, 3-4=-5142/321,<br>-5060/188,<br>-168/3108,<br>-11=-956/115,<br>-21=-428/5418,<br>8-19=-43/2163,<br>-16=-246/1544, | P<br>and N<br>1)<br>anical,<br>2)<br>0),<br>3)<br>4)<br>5)<br>6) | OTES<br>2-ply truss to<br>(0.131"x3") r<br>Top chords<br>oc.<br>Bottom chorn<br>staggered at<br>oc, 2x4 - 1 rc<br>Web connec<br>All loads are<br>except if not<br>CASE(S) se<br>provided to c<br>unless other<br>Unbalanced<br>this design.<br>Wind: ASCE<br>Vasd=91mpi<br>II; Exp C; Er<br>and right exp<br>Lumber DOL<br>Provide adee<br>This truss ha<br>chord live loa<br>* This truss I<br>on the bottor<br>3-06-00 tall I<br>chord and at<br>WARNING:<br>than input be | 3-21=-92/1271, 3-<br>4-20=-52/1257, 4-<br>6-19=-191/3052, 6<br>6-16=-5551/184, 7<br>9-16=-4698/388, 1<br>10-15=-135/527, 1<br>11-13=-103/1138<br>b be connected tog<br>hails as follows:<br>connected as follows:<br>connected as follows:<br>connected as follows:<br>considered equal<br>ed as font (F) or t<br>totion. Ply to ply co<br>distribute only load<br>wise indicated.<br>roof live loads hav<br>7-16; Vult=115mp<br>h; TCDL=6.0psf; E<br>loclosed; MWFRS (<br>oosed; end vertica<br>=1.60 plate grip D<br>quate drainage to<br>as been designed<br>ad nonconcurrent<br>has been designed<br>m chord in all area<br>by 2-00-00 wide w<br>hy other members.<br>Required bearing saring size.<br>er(s) for truss to tr | 19=0/54<br>-18=0/2'<br>-16=-59<br>3-15=-8<br>0-13=-7<br>gether wi<br>ws: 2x4 -<br>bilows: 2<br>rows sta<br>4 - 1 row<br>by applie-<br>back (B)<br>nnection<br>ls noted<br>we been of<br>both (3-sec<br>SCDL=6.1<br>envelope<br>al left and<br>OCL=1.60<br>prevent to<br>for a 10.1<br>with any<br>s where<br>ill fit betw<br>-<br>size at jo | <ul> <li>a), 5-19=-785/.</li> <li>b), 5-19=-785/.</li> <li>c), 3/128, 3/889, 74/211, 5/128, 3/889, 74/211, 5/128, 3/889, 74/211, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128, 5/128,</li></ul> | 0<br>-0<br>DAD<br>r<br>Cat.<br>eft<br>d;<br>J.<br>ds.<br>psf<br>om | usir<br>des<br>11) Pro<br>bea<br>12,<br>12) Thia<br>R8(<br>13) Gra<br>or t<br>bott<br>14) Use<br>Left<br>to c<br>15) Use<br>Tru<br>22-<br>fror<br>16) Fill<br>17) "NA | ng ANSÍ<br>igner sh<br>vide me<br>uring pla<br>102 lb u<br>s truss is<br>prnationa<br>22.10.2<br>uphical p<br>he orien<br>tom cho<br>e Simpsi<br>s Si or e<br>6-0 from<br>t face o<br>all nail f<br>VILED" in<br>48"x3.2 | (TTP1 1 i i nould vi<br>chanic te capa<br>pupilit at gamma and the capa<br>pupilit at the capa<br>truss (c to the capat<br>truss (c to the capat truss (c to the capat truss (c to the capat trus))) | angle to grain for<br>arify capadity of b<br>al conpection (b)<br>ble of withstandii<br>joint 2 and 3191t<br>ared in accordance<br>tential Code sect<br>erenced standard<br>presentation doe<br>of the purlin along<br>b) the purlin along<br>b) the fourt faces<br>s) to (fourt faces<br>t) to (fourt faces)<br>t) to (fourt faces)<br>t) to (fourt faces)<br>s) to | earing surface.<br>Where S of truss to<br>by 36 b oplif at joint<br>uplift at joint 16<br>with the 2018<br>ions R502.11.1 and<br>TANSI/TPI 1.<br>the top and/or<br>C2THUA26 of 2 ply,<br>10 from the test<br>the top and/or<br>C2THUA26 of 2 ply,<br>10 from the test<br>10 dorder, 2-10d<br>o o max. starting at<br>o connect truss(es) to<br>contact with lumber.<br>3") or 3-12d<br>judines. |

- WARNING: Required bearing size at joint(s) 16 greater 8) than input bearing size.
- 9) Refer to girder(s) for truss to truss connections.

# Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2/2/2/ BE-VRE USE. Design valid for use only with MITEK® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



| Job   | Truss | Truss Type      | Qty | Ply | Lot 117 RR               |           |
|-------|-------|-----------------|-----|-----|--------------------------|-----------|
| RR117 | B1    | Half Hip Girder | 1   | 2   | Job Reference (optional) | 148527893 |

# Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:47:33 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

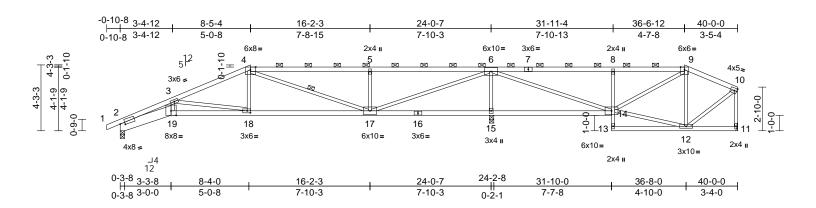
Page: 2

#### LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
  - Uniform Loads (lb/ft)

Vert: 1-4=-70, 4-11=-70, 2-21=-20, 15-21=-20, 12-14=-20

Concentrated Loads (lb)


Vert: 4=97 (F), 22=-510 (F), 19=-87 (F), 5=-97 (F), 22=-97 (F), 23=-97 (F), 24=-97 (F), 25=-97 (F), 26=-97 (F), 27=-97 (F), 28=-126 (F), 29=-126 (F), 30=-126 (F), 31=-126 (F), 32=-87 (F), 33=-87 (F), 34=-87 (F), 35=-87 (F), 36=-87 (F), 37=-87 (F), 38=-253 (F), 39=-253 (F), 40=-253 (F), 41=-253 (F), 42=-253 (F), 43=-58 (F), 44=-58 (F), 45=-58 (F),



| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | B2    | Нір        | 1   | 1   | Job Reference (optional) | 148527894 |

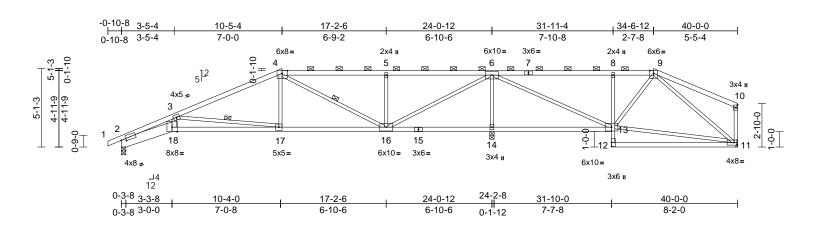
Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:47:34 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



#### Scale = 1:74.6

| Plate Offsets (X, Y): | ate Offsets (X, Y): [2:0-3-8,0-2-1], [4:0-4-2,Edge], [18:0-2-8,0-1-8] |                 |                 |          |      |          |       |       |        |     |                |          |  |
|-----------------------|-----------------------------------------------------------------------|-----------------|-----------------|----------|------|----------|-------|-------|--------|-----|----------------|----------|--|
| Loading               | (psf)                                                                 | Spacing         | 2-0-0           | csi      |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES         | GRIP     |  |
| TCLL (roof)           | 25.0                                                                  | Plate Grip DOL  | 1.15            | TC       | 0.83 | Vert(LL) | -0.20 | 18-19 | >999   | 360 | MT20           | 197/144  |  |
| TCDL                  | 10.0                                                                  | Lumber DOL      | 1.15            | BC       | 0.95 | Vert(CT) | -0.38 | 17-18 | >759   | 240 |                |          |  |
| BCLL                  | 0.0*                                                                  | Rep Stress Incr | YES             | WB       | 0.87 | Horz(CT) | 0.13  | 15    | n/a    | n/a |                |          |  |
| BCDL                  | 10.0                                                                  | Code            | IRC2018/TPI2014 | Matrix-S |      | Wind(LL) | 0.11  | 18-19 | >999   | 240 | Weight: 150 lb | FT = 10% |  |


| FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>NOTES | 8-13:2x3 SPF No.2<br>2x3 SPF No.2<br>Structural wood sheathing directly applied or<br>2-10-4 oc purlins, except end verticals, and<br>2-0-0 oc purlins (3-4-5 max.): 4-9.<br>Rigid ceiling directly applied or 2-2-0 oc<br>bracing.<br>1 Row at midpt 4-17<br>(lb/size) 2=984/0-3-8, 11=466/ Mechanical,<br>15=2199/0-3-8<br>Max Horiz 2=86 (LC 7)<br>Max Uplift 2=-21 (LC 4), 11=-11 (LC 4),<br>15=-100 (LC 5)<br>Max Grav 2=984 (LC 19), 11=509 (LC 20),<br>15=2199 (LC 1)<br>(lb) - Maximum Compression/Maximum<br>Tension<br>1-2=0/3, 2-3=-3580/80, 3-4=-1804/44,<br>4-5=-1218/95, 5-6=-1216/93, 6-8=-525/74,<br>8-9=-505/76, 9-10=-385/43, 10-11=-484/25<br>2-19=-140/3239, 18-19=-129/2963,<br>17-18=-59/1624, 15-17=-1176/52,<br>14-15=-1176/52, 13-14=0/84, 8-14=-471/113,<br>12-13=-20/25, 11-12=-29/22<br>3-19=0/1012, 3-18=-1345/128, 4-18=0/422,<br>4-17=-438/34, 5-17=-581/137,<br>6-17=-113/2539, 6-15=-2008/199,<br>6-14=-88/1679, 12-14=0/308, 9-14=-32/208,<br>9-12=-221/60, 10-12=0/398<br>ed roof live loads have been considered for | <ul> <li>2) Wind: ASCE 7-16; Vult=115mph (3-second gust)<br/>Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.<br/>II; Exp C; Enclosed; MWFRS (envelope); cantilever left<br/>and right exposed; end vertical left and right exposed;<br/>Lumber DOL=1.60 plate grip DOL=1.60</li> <li>3) Provide adequate drainage to prevent water ponding.</li> <li>4) This truss has been designed for a 10.0 psf bottom<br/>chord and any other members.</li> <li>6) Refer to girder(s) for truss to truss connections.</li> <li>7) This truss has been designed for allow the view of the bottom<br/>chord and any other members.</li> <li>6) Refer to girder(s) for truss to truss connections.</li> <li>7) Provide mechanical connection (by others) of truss to<br/>bearing plate capable of withstanding 21 lb uplift at joint<br/>2, 11 lb uplift at joint 15.</li> <li>9) This truss is designed in accordance with the 2018<br/>International Residential Code sections R502.11.1 and<br/>R802.10.2 and referenced standard ANSI/TP1 1.</li> <li>10) Graphical purlin representation does not depict the size<br/>or the orientation of the purlin along the top and/or<br/>bottom chord.</li> <li>LOAD CASE(S) Standard</li> </ul> |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | October 27,2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | B3    | Нір        | 1   | 1   | Job Reference (optional) | 148527895 |

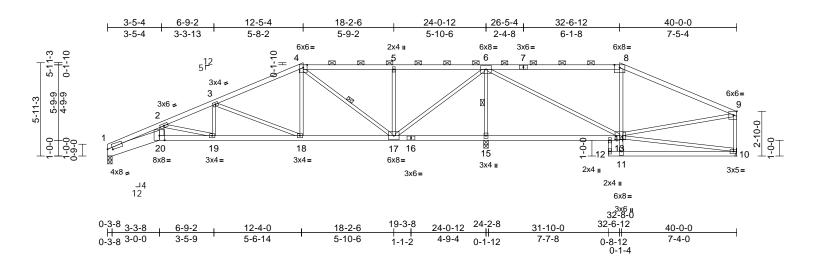
Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:47:35 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



#### Scale = 1:74.8

## Plate Offsets (X, Y): [2:0-3-8,0-2-1], [4:0-4-2,Edge]


|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                            |                                                                  |                                        |                                       |                                 |                                            |                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------|---------------------------------------|---------------------------------|--------------------------------------------|--------------------------------------------------|
| Loading         (psf)           TCLL (roof)         25.0           TCDL         10.0           BCLL         0.0*           BCDL         10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr                                                                                                                                                                                                                                                                                                                                   | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                      | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                    | 0.88<br>0.96<br>0.83                                                                                                                                                                                                                                                                        | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Wind(LL)                                                                                                                                                                                                                                                                                       | -0.45<br>0.15                                                    | (loc)<br>17-18<br>17-18<br>14<br>17-18 | l/defl<br>>999<br>>632<br>n/a<br>>999 | L/d<br>360<br>240<br>n/a<br>240 | PLATES<br>MT20<br>Weight: 156 lb           | <b>GRIP</b><br>197/144<br>FT = 10%               |
| 8-12:2x3 SPF No.2           WEBS         2x3 SPF No.2 *Exce           BRACING         Structural wood she           TOP CHORD         Structural wood she           except end verticals<br>(6-0-0 max.): 4-9.         BOT CHORD           BOT CHORD         Rigid ceiling directly<br>bracing.           WEBS         1 Row at midpt           REACTIONS         (lb/size)         2=929/0-<br>14=2341/           Max Horiz         2=87 (LC<br>Max Uplift         2=19 (LC<br>14=-92 (L<br>Max Grav           FORCES         (lb) - Maximum Com<br>Tension         1-2=0/3, 2-3=-3575/<br>4-5=-580/88, 5-6=-5<br>8-9=-314/76, 9-10=-           BOT CHORD         1-2=0/3, 2-3=-3575/<br>4-5=-560/164, 14<br>13-14=-1293/49, 12<br>8-13=-442/105, 11- | 3-17, 4-16<br>3-8, 11=379/ Mechanic<br>(0-3-8, (req. 0-3-11)<br>7)<br>C 8), 11=-13 (LC 9),<br>C 5)<br>C 19), 11=473 (LC 20),<br>(LC 1)<br>npression/Maximum<br>(100, 3-4=-1357/42,<br>577/87, 6-8=-331/75,<br>116/55, 10-11=-202/48<br>-18=-125/2932,<br>-16=-1293/49,<br>-13=0/163,<br>12=0/69<br>-1771/188, 4-17=0/438<br>=-493/115,<br>4=-2161/188,<br>13=-39/227,<br>=-333/25 | <ul> <li>Vi</li> <li>II;</li> <li>ar</li> <li>2</li> <li>3) Pr</li> <li>6) W</li> <li>5) *</li> <li>5) *</li> <li>6) W</li> <li>cr</li> <li>cr</li> <li>cr</li> <li>cr</li> <li>dr</li> <li>dr<td>/asd=91mph<br/>l; Exp C; Enc<br/>and right exp C;<br/>Provide adeq<br/>This truss has<br/>shord live loa:<br/>This truss has<br/>shord live loa:<br/>This truss has<br/>shord live loa:<br/>This truss has<br/>shord and an<br/>VARNING: R<br/>VARNING: R<br/>VARNING: R<br/>Provide mech<br/>bearing at join<br/>sing ANSI/T<br/>designer shou<br/>pearing plate<br/>2, 92 lb uplift<br/>This trus is a<br/>f802.10.2 an<br/>Graphical pur</td><td>er(s) for truss to tr<br/>nt(s) 2 considers<br/>Pl 1 angle to grai<br/>uld verify capacity<br/>nanical connection<br/>capable of withst<br/>at joint 14 and 13<br/>Jesigned in accor<br/>Residential Code<br/>dr eferenced star<br/>lin representation<br/>tion of the purlin a</td><td>CDL=6.0<br/>envelope<br/>al left and<br/>OCL=1.60<br/>prevent '<br/>for a 10.0<br/>with any<br/>d for a liv<br/>s where<br/>ill fit betw<br/>size at jo<br/>uss conr<br/>parallel t<br/>n formula<br/>v of bearin<br/>h (by oth<br/>anding 1<br/>b lb uplift<br/>dance w<br/>sections<br/>ndard AN<br/>h does nd</td><td>Dpsf; h=25ft;<br/>;); cantilever<br/>right expos<br/>vater pondin<br/>0 psf bottom<br/>other live loa<br/>e load of 20.<br/>a rectangle<br/>reen the bott<br/>int(s) 14 gre<br/>ections.<br/>o grain value<br/>a Building<br/>ng surface.<br/>ers) of truss<br/>9 lb uplift at<br/>at joint 11.<br/>th the 2018<br/>R502.11.1<br/>is V/TPI 1.<br/>t depict the</td><td>left<br/>ed;<br/>g.<br/>ads.<br/>0psf<br/>atom<br/>ater<br/>to<br/>joint</td><td></td><td></td><td></td><td>DO E-20001<br/>SS/ONA<br/>LCE<br/>169<br/>S/ON</td><td>CIA<br/>BER<br/>62101<br/>LENO<br/>NSEO<br/>52<br/>SAS</td></li></ul> | /asd=91mph<br>l; Exp C; Enc<br>and right exp C;<br>Provide adeq<br>This truss has<br>shord live loa:<br>This truss has<br>shord live loa:<br>This truss has<br>shord live loa:<br>This truss has<br>shord and an<br>VARNING: R<br>VARNING: R<br>VARNING: R<br>Provide mech<br>bearing at join<br>sing ANSI/T<br>designer shou<br>pearing plate<br>2, 92 lb uplift<br>This trus is a<br>f802.10.2 an<br>Graphical pur | er(s) for truss to tr<br>nt(s) 2 considers<br>Pl 1 angle to grai<br>uld verify capacity<br>nanical connection<br>capable of withst<br>at joint 14 and 13<br>Jesigned in accor<br>Residential Code<br>dr eferenced star<br>lin representation<br>tion of the purlin a | CDL=6.0<br>envelope<br>al left and<br>OCL=1.60<br>prevent '<br>for a 10.0<br>with any<br>d for a liv<br>s where<br>ill fit betw<br>size at jo<br>uss conr<br>parallel t<br>n formula<br>v of bearin<br>h (by oth<br>anding 1<br>b lb uplift<br>dance w<br>sections<br>ndard AN<br>h does nd | Dpsf; h=25ft;<br>;); cantilever<br>right expos<br>vater pondin<br>0 psf bottom<br>other live loa<br>e load of 20.<br>a rectangle<br>reen the bott<br>int(s) 14 gre<br>ections.<br>o grain value<br>a Building<br>ng surface.<br>ers) of truss<br>9 lb uplift at<br>at joint 11.<br>th the 2018<br>R502.11.1<br>is V/TPI 1.<br>t depict the | left<br>ed;<br>g.<br>ads.<br>0psf<br>atom<br>ater<br>to<br>joint |                                        |                                       |                                 | DO E-20001<br>SS/ONA<br>LCE<br>169<br>S/ON | CIA<br>BER<br>62101<br>LENO<br>NSEO<br>52<br>SAS |

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

October 27,2021

| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | B4    | Нір        | 1   | 1   | Job Reference (optional) | 148527896 |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:47:35 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1



#### Scale = 1:73.2

| 2-0-0           | 0.01                  |                             |                                                                                              |                                                                                                                                |                                                                                                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                             |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                     |
|-----------------|-----------------------|-----------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | CSI                   |                             | DEFL                                                                                         | in                                                                                                                             | (loc)                                                                                                                                                     | l/defl                                                                                                                                                                             | L/d                                                                                                                                                                                                         | PLATES                                                                                                                                                                                                                              | GRIP                                                                                                                                                                                                                                |
| DOL 1.15        | тс                    | 0.91                        | Vert(LL)                                                                                     | -0.15                                                                                                                          | 19-20                                                                                                                                                     | >999                                                                                                                                                                               | 360                                                                                                                                                                                                         | MT20                                                                                                                                                                                                                                | 197/144                                                                                                                                                                                                                             |
| L 1.15          | BC                    | 0.87                        | Vert(CT)                                                                                     | -0.27                                                                                                                          | 19-20                                                                                                                                                     | >999                                                                                                                                                                               | 240                                                                                                                                                                                                         |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                     |
| Incr YES        | WB                    | 0.84                        | Horz(CT)                                                                                     | 0.11                                                                                                                           | 15                                                                                                                                                        | n/a                                                                                                                                                                                | n/a                                                                                                                                                                                                         |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                     |
| IRC2018/TPI2014 | Matrix-S              |                             | Wind(LL)                                                                                     | 0.08                                                                                                                           | 19-20                                                                                                                                                     | >999                                                                                                                                                                               | 240                                                                                                                                                                                                         | Weight: 159 lb                                                                                                                                                                                                                      | FT = 10%                                                                                                                                                                                                                            |
| 0               | OL 1.15<br>s Incr YES | OL 1.15 BC<br>s Incr YES WB | OL         1.15         BC         0.87           s Incr         YES         WB         0.84 | DL         1.15         BC         0.87         Vert(CT)           s Incr         YES         WB         0.84         Horz(CT) | DL         1.15         BC         0.87         Vert(CT)         -0.27           s Incr         YES         WB         0.84         Horz(CT)         0.11 | DL         1.15         BC         0.87         Vert(CT)         -0.27         19-20           s Incr         YES         WB         0.84         Horz(CT)         0.11         15 | DL         1.15         BC         0.87         Vert(CT)         -0.27         19-20         >999           s Incr         YES         WB         0.84         Horz(CT)         0.11         15         n/a | DL         1.15         BC         0.87         Vert(CT)         -0.27         19-20         >999         240           s Incr         YES         WB         0.84         Horz(CT)         0.11         15         n/a         n/a | DL         1.15         BC         0.87         Vert(CT)         -0.27         19-20         >999         240           s Incr         YES         WB         0.84         Horz(CT)         0.11         15         n/a         n/a |

| LUMBER    |                                                                                             |     | Wind: ASCE 7-16; Vult=115mph (3-second gust)                                                                   |
|-----------|---------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------|
| TOP CHORD | 2x4 SPF No.2                                                                                |     | Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.                                                             |
| BOT CHORD | 2x4 SPF No.2 *Except* 1-20:2x8 SP DSS,                                                      |     | II; Exp C; Enclosed; MWFRS (envelope); cantilever left                                                         |
|           | 14-12:2x3 SPF No.2                                                                          |     | and right exposed; end vertical left and right exposed;                                                        |
| WEBS      | 2x3 SPF No.2 *Except* 20-2:2x4 SPF No.2                                                     |     | Lumber DOL=1.60 plate grip DOL=1.60                                                                            |
| BRACING   |                                                                                             |     | Provide adequate drainage to prevent water ponding.                                                            |
| TOP CHORD | Structural wood sheathing directly applied or 2-10-11 oc purlins, except end verticals, and | ,   | This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.    |
|           | 2-0-0 oc purlins (3-2-14 max.): 4-8.                                                        |     | * This truss has been designed for a live load of 20.0psf                                                      |
| BOT CHORD | Rigid ceiling directly applied or 5-4-12 oc<br>bracing.                                     |     | on the bottom chord in all areas where a rectangle<br>3-06-00 tall by 2-00-00 wide will fit between the bottom |
| WEBS      | 1 Row at midpt 4-17, 6-15                                                                   |     | chord and any other members.                                                                                   |
| REACTIONS | (lb/size) 1=849/0-3-8, 10=369/ Mechanical,<br>15=2360/0-3-8, (reg. 0-3-11)                  |     | WARNING: Required bearing size at joint(s) 15 greater<br>than input bearing size.                              |
|           | Max Horiz 1=86 (LC 7)                                                                       |     | Refer to girder(s) for truss to truss connections.                                                             |
|           | Max Uplift 1=-16 (LC 8), 10=-29 (LC 9),                                                     |     | Bearing at joint(s) 1 considers parallel to grain value                                                        |
|           | 15=-72 (LC 5)                                                                               |     | using ANSI/TPI 1 angle to grain formula. Building                                                              |
|           | Max Grav 1=849 (LC 19), 10=485 (LC 20),<br>15=2360 (LC 1)                                   | 9)  | designer should verify capacity of bearing surface.<br>Provide mechanical connection (by others) of truss to   |
|           |                                                                                             |     | bearing plate capable of withstanding 16 lb uplift at joint                                                    |
| FORCES    | (lb) - Maximum Compression/Maximum<br>Tension                                               |     | 1, 29 lb uplift at joint 10 and 72 lb uplift at joint 15.                                                      |
| TOP CHORD | 1-2=-3259/106, 2-3=-1857/57, 3-4=-989/55,                                                   |     | This truss is designed in accordance with the 2018                                                             |
| IOP CHORD | 4-5=-294/87, 5-6=-292/85, 6-8=-325/67,                                                      |     | International Residential Code sections R502.11.1 and                                                          |
|           | 8-9=-441/72, 9-10=-429/64                                                                   |     | R802.10.2 and referenced standard ANSI/TPI 1.                                                                  |
| BOT CHORD | 1-20=-133/2940, 19-20=-121/2643,                                                            |     | Graphical purlin representation does not depict the size                                                       |
|           | 18-19=-42/1708, 17-18=-12/833,                                                              |     | or the orientation of the purlin along the top and/or<br>bottom chord.                                         |
|           | 15-17=-1087/59, 14-15=-1087/59,                                                             |     |                                                                                                                |
|           | 13-14=-1062/88, 12-14=-343/0, 11-12=-84/0,                                                  | LOA | AD CASE(S) Standard                                                                                            |
|           | 10-11=-26/1                                                                                 |     |                                                                                                                |
| WEBS      | 2-20=-7/934, 2-19=-966/81, 3-18=-933/100,                                                   |     |                                                                                                                |
|           | 4-18=0/472, 4-17=-823/35, 5-17=-384/89,                                                     |     |                                                                                                                |
|           | 6-17=-35/1607, 6-15=-2198/157,                                                              |     |                                                                                                                |
|           | 0 40 0/4007 44 40 0/F44 0 40 400/40F                                                        |     |                                                                                                                |
|           | 6-13=-6/1387, 11-13=0/544, 8-13=-492/105,<br>10-13=-9/60, 3-19=0/339, 9-13=-54/271          |     |                                                                                                                |

1) Unbalanced roof live loads have been considered for this design.

16952 Dotober 27,2021

OF MIS

JUAN GARCIA

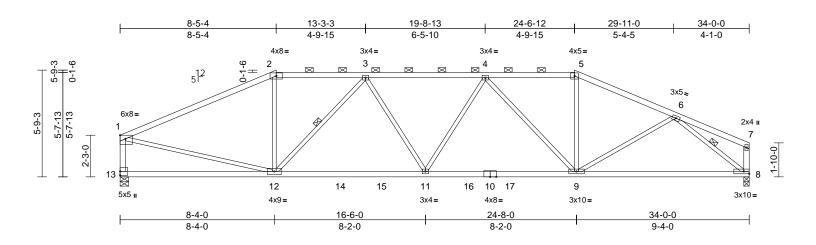
NUMBER E-2000162101

S'ONALES

unin .

GIT

F


1X8 \* PAOL

rss.



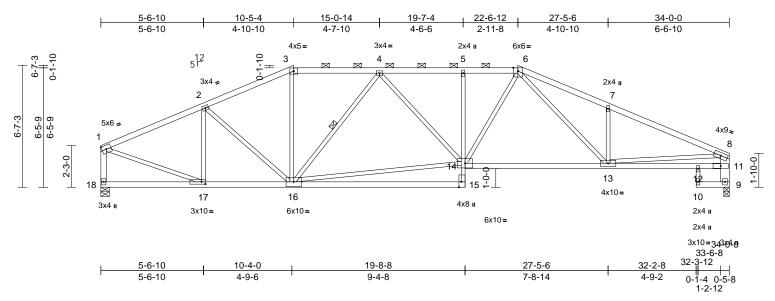
| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | C1    | Нір        | 1   | 1   | Job Reference (optional) | 148527897 |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:47:36 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



#### Scale = 1:62.3

# Plate Offsets (X, Y): [1:Edge,0-2-5]


|             | ,, i): [1:Eugo,o 2 o]                        |                        |         |               |                                          | -          |                |       |       |        |     |                |            |
|-------------|----------------------------------------------|------------------------|---------|---------------|------------------------------------------|------------|----------------|-------|-------|--------|-----|----------------|------------|
| Loading     | (psf)                                        | Spacing                | 2-0-0   |               | CSI                                      |            | DEFL           | in    | (loc) | l/defl | L/d | PLATES         | GRIP       |
| TCLL (roof) | 25.0                                         | Plate Grip DOL         | 1.15    |               | TC                                       | 0.89       | Vert(LL)       | -0.21 | . ,   | >999   | 360 | MT20           | 197/144    |
| TCDL        | 10.0                                         | Lumber DOL             | 1.15    |               | BC                                       | 0.96       | Vert(CT)       | -0.37 | 11-12 | >999   | 240 |                |            |
| BCLL        | 0.0*                                         | Rep Stress Incr        | YES     |               | WB                                       | 0.97       | Horz(CT)       | 0.08  | 8     | n/a    | n/a |                |            |
| BCDL        | 10.0                                         | Code                   | IRC2018 | /TPI2014      | Matrix-S                                 |            | Wind(LL)       | 0.11  | 11    | >999   | 240 | Weight: 128 lb | FT = 10%   |
|             |                                              | 1                      |         |               |                                          |            | · · · ·        |       |       |        |     | -              |            |
| LUMBER      |                                              |                        | ,       |               | s been designed                          |            |                |       |       |        |     |                |            |
| TOP CHORD   | 2x4 SPF No.2 *Exce<br>1.8E                   | ept* 1-2:2x4 SPF 210   |         |               | ad nonconcurrent<br>as been designe      |            |                |       |       |        |     |                |            |
| BOT CHORD   | 2x4 SPF No.2 *Exce<br>1.8E                   | ept* 10-8:2x4 SPF 21   | 00F     |               | n chord in all area<br>by 2-00-00 wide v |            | 0              | om    |       |        |     |                |            |
| WEBS        | 2x3 SPF No.2 *Exce<br>No.2                   | ept* 13-1,8-7:2x4 SP   | F<br>6) |               | y other members                          |            |                |       |       |        |     |                |            |
| BRACING     |                                              |                        |         |               | capable of withs                         |            | 84 lb uplift a | t     |       |        |     |                | na s       |
| TOP CHORD   | Structural wood she                          | athing directly applie | ed,     |               | 178 lb uplift at joir                    |            |                |       |       |        |     |                |            |
|             |                                              | , and 2-0-0 oc purlin  |         | International | designed in acco<br>Residential Code     | e sections | R502.11.1 a    | and   |       |        |     | IN E OF        | NISSO .    |
| BOT CHORD   | Rigid ceiling directly<br>bracing.           | applied or 2-2-0 oc    | 8)      | Graphical pu  | nd referenced sta<br>rlin representatio  | n does no  | ot depict the  | size  |       |        | 3   | JUA            | N          |
| WEBS        | 1 Row at midpt                               | 3-12, 6-8              |         |               | tion of the purlin                       | along the  | e top and/or   |       |       |        | 2.  | GAR            |            |
| REACTIONS   |                                              | -3-8, 13=1517/0-5-8    |         | bottom chord  |                                          |            |                |       |       |        | - * | :              | :*=        |
|             | Max Horiz 13=-71 (L                          |                        | LO      | AD CASE(S)    | Standard                                 |            |                |       |       |        | -   | ÷              |            |
|             | Max Uplift 8=-178 (L                         | C 5), 13=-184 (LC 4    | )       |               |                                          |            |                |       |       |        | = 7 | NUME           | BER C      |
|             | Max Grav 8=1591 (I                           | LC 2), 13=1593 (LC 2   | 2)      |               |                                          |            |                |       |       |        | - ) | E-20001        | 62101 :00- |
| FORCES      | (lb) - Maximum Com<br>Tension                | npression/Maximum      |         |               |                                          |            |                |       |       |        | -   | A              |            |
| TOP CHORD   | 1-2=-2167/297, 2-3=                          | 1011/30/               |         |               |                                          |            |                |       |       |        |     | 1.05           | ENGIN      |
|             | 3-4=-2545/401, 4-5=                          | ,                      |         |               |                                          |            |                |       |       |        |     | ONA            | LLIN       |
|             | 5-6=-2283/322, 6-7=                          | ,                      |         |               |                                          |            |                |       |       |        |     |                | 1111       |
|             | 1-13=-1465/226, 7-8                          |                        |         |               |                                          |            |                |       |       |        |     |                | un.        |
| BOT CHORD   | 12-13=-51/159, 11-1                          | 12=-339/2418,          |         |               |                                          |            |                |       |       |        |     | 11111          | ARO        |
|             | 9-11=-349/2482, 8-9                          |                        |         |               |                                          |            |                |       |       |        |     | NUANC          | AACIA      |
| WEBS        | ,                                            | 12=0/529, 3-12=-837    | ,       |               |                                          |            |                |       |       |        |     | N.CE           | NSA .      |
|             | ,                                            | 22/176, 4-9=-740/178   | 3,      |               |                                          |            |                |       |       |        |     |                | SO         |
|             | 5-9=-23/598, 6-9=0/                          | 538, 6-8=-2039/327     |         |               |                                          |            |                |       |       |        | -   | UCE<br>TOCE    | A 2        |
| NOTES       |                                              |                        |         |               |                                          |            |                |       |       |        | -   | 1.00           | 150        |
| ,           | ed roof live loads have                      | been considered for    | •       |               |                                          |            |                |       |       |        | -   | 105            | 952        |
| this design |                                              | (0                     |         |               |                                          |            |                |       |       |        | -   | D:             | 1. 1. 5    |
|             | CE 7-16; Vult=115mph<br>nph; TCDL=6.0psf; BC |                        | Cot .   |               |                                          |            |                |       |       |        |     | 0.             | 4.14:      |
|             | Enclosed; MWFRS (er                          |                        |         |               |                                          |            |                |       |       |        |     | AN             | SAS        |
|             | left and right exposed                       |                        |         |               |                                          |            |                |       |       |        |     | 1,00           | ENGIN      |
|             | sed; Lumber DOL=1.6                          |                        |         |               |                                          |            |                |       |       |        |     | ON             | ALLIN      |
|             | dequate drainage to pr                       |                        |         |               |                                          |            |                |       |       |        |     | 111            |            |
|             |                                              | -                      |         |               |                                          |            |                |       |       |        |     | October        | 27,2021    |



| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | C2    | Нір        | 1   | 1   | Job Reference (optional) | 148527898 |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:47:37 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

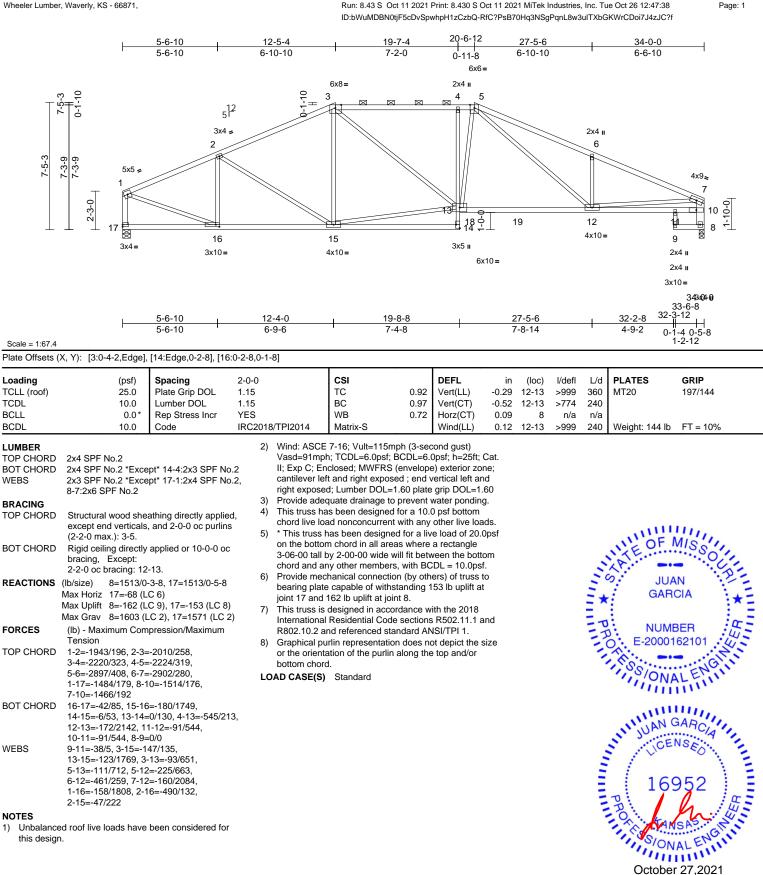


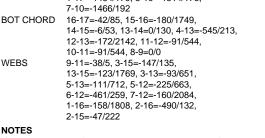
Scale = 1:62.3

### Plate Offsets (X, Y): [15:0-3-8,Edge], [17:0-2-8,0-1-8]

|                                                                       | , , , , , [.e.e e e,_ege                                                                                         | , [                                                                |          |                                                                             |                                                                                                                                                       | -                                                        |                                                     |                               |                                       |                                       |                                 |                                  |                                    |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|-------------------------------|---------------------------------------|---------------------------------------|---------------------------------|----------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL<br>LUMBER<br>TOP CHORD | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0<br>2x4 SPF No.2                                                            | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code | 2)       | Vasd=91mp                                                                   | CSI<br>TC<br>BC<br>WB<br>Matrix-S<br>: 7-16; Vult=115m<br>h; TCDL=6.0psf;<br>iclosed: MWFRS                                                           | BCDL=6.                                                  | 0psf; h=25ft;                                       | -0.55<br>0.10<br>0.13<br>Cat. | (loc)<br>15-16<br>15-16<br>9<br>13-14 | l/defl<br>>999<br>>738<br>n/a<br>>999 | L/d<br>360<br>240<br>n/a<br>240 | PLATES<br>MT20<br>Weight: 145 lb | <b>GRIP</b><br>197/144<br>FT = 10% |
| BOT CHORD<br>WEBS                                                     | 2x4 SPF No.2 *Exce<br>2x3 SPF No.2 *Exce<br>9-8:2x6 SPF No.2                                                     |                                                                    |          | cantilever le<br>right expose                                               | ft and right exposed; Lumber DOL=                                                                                                                     | èd ; end \<br>1.60 plate                                 | vertical left ar<br>grip DOL=1.                     | nd<br>60                      |                                       |                                       |                                 |                                  |                                    |
| BRACING<br>TOP CHORD                                                  | Structural wood sheat<br>2-6-9 oc purlins, exc<br>2-0-0 oc purlins (3-7                                          | cept end verticals, ar                                             |          | This truss ha<br>chord live lo<br>* This truss                              | quate drainage to<br>as been designed<br>ad nonconcurrent<br>has been designe                                                                         | for a 10.0<br>with any<br>d for a liv                    | 0 psf bottom<br>other live loa<br>e load of 20.0    | ids.                          |                                       |                                       |                                 |                                  | 1997                               |
|                                                                       | Rigid ceiling directly<br>bracing.<br>1 Row at midpt                                                             | applied or 10-0-0 oc<br>4-16<br>-3-8, 18=1513/0-5-8<br>C 4)        | 6)       | 3-06-00 tall<br>chord and a<br>Provide med<br>bearing plate<br>joint 18 and | m chord in all area<br>by 2-00-00 wide v<br>ny other members<br>chanical connectic<br>e capable of withs<br>154 lb uplift at join<br>designed in acco | vill fit betv<br>s.<br>on (by oth<br>standing 1<br>nt 9. | veen the bott<br>ers) of truss t<br>58 lb uplift at | to                            |                                       |                                       | *****                           | JUA<br>GARG                      |                                    |
| FORCES                                                                | (lb) - Maximum Com<br>Tension                                                                                    | ,. , ,                                                             | 7)       | Internationa                                                                | Residential Code                                                                                                                                      | e sections                                               | s R502.11.1 a                                       | and                           |                                       |                                       | P                               | NUME                             | BER C                              |
| TOP CHORD                                                             | 1-2=-1860/228, 2-3=<br>3-4=-1764/282, 4-5=<br>5-6=-2418/385, 6-7=<br>7-8=-2752/313, 1-18<br>9-11=-1448/168, 8-1  | 2403/384,<br>2731/387,<br>=-1452/189,                              | 8)<br>L( | Graphical pu                                                                | urlin representatio<br>ation of the purlin<br>d.                                                                                                      | n does no                                                | ot depict the s                                     | size                          |                                       |                                       | 1111                            | E-20001                          | • 41.                              |
| BOT CHORD                                                             | 17-18=-31/77, 16-17<br>15-16=0/138, 14-15=<br>13-14=-245/2149, 12<br>11-12=-98/527, 9-10                         | ′=-177/1656,<br>=0/172, 5-14=-309/11<br>2-13=-98/527,<br>⊨=0/0     | ,        |                                                                             |                                                                                                                                                       |                                                          |                                                     |                               |                                       |                                       |                                 | IN UAN C                         | ARCI                               |
| WEBS                                                                  | 10-12=-36/6, 2-17=-{<br>3-16=-16/439, 4-16=<br>14-16=-286/2085, 4-<br>8-13=-186/1945, 1-1<br>7-13=-396/226, 6-14 | 812/183,<br>·14=-24/358,<br>7=-190/1696,                           |          |                                                                             |                                                                                                                                                       |                                                          |                                                     |                               |                                       |                                       | WILLIN,                         | LICE                             | νs <sub>ε0</sub><br>952            |
| NOTES                                                                 |                                                                                                                  |                                                                    |          |                                                                             |                                                                                                                                                       |                                                          |                                                     |                               |                                       |                                       | -                               | 10:                              | E E                                |
| <ol> <li>Unbalance</li> </ol>                                         | ed roof live loads have                                                                                          | been considered for                                                |          |                                                                             |                                                                                                                                                       |                                                          |                                                     |                               |                                       |                                       | -                               |                                  |                                    |

Unbalanced roof live loads have been considered for 1) this design.





SONAL ENGLISH

October 27,2021

| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | C3    | Нір        | 1   | 1   | Job Reference (optional) | 148527899 |

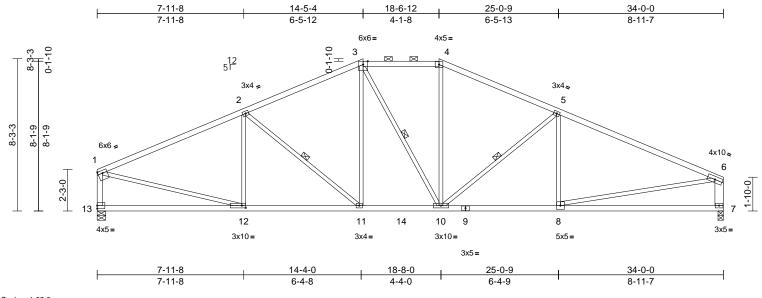
Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Oct 26 12:47:38





Unbalanced roof live loads have been considered for 1) this design.




MUMMINI,

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | C4    | Нір        | 1   | 1   | Job Reference (optional) | 148527900 |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:47:39 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



Scale = 1:62.6

# Plate Offsets (X, Y): [1:0-3-0,0-1-12], [12:0-2-8,0-1-8]

|             | (7, 1): [1:0 0 0,0 1 12                                            | .,, [                |                 |                               |                                          | -                      | -              |       |       |        |     |                 |          |
|-------------|--------------------------------------------------------------------|----------------------|-----------------|-------------------------------|------------------------------------------|------------------------|----------------|-------|-------|--------|-----|-----------------|----------|
| Loading     | (psf)                                                              | Spacing              | 2-0-0           |                               | CSI                                      |                        | DEFL           | in    | (loc) | l/defl | L/d | PLATES          | GRIP     |
| TCLL (roof) | 25.0                                                               | Plate Grip DOL       | 1.15            |                               | тс                                       | 0.99                   | Vert(LL)       | -0.16 | 7-8   | >999   | 360 | MT20            | 197/144  |
| TCDL        | 10.0                                                               | Lumber DOL           | 1.15            |                               | BC                                       | 0.81                   | Vert(CT)       | -0.33 | 7-8   | >999   | 240 |                 |          |
| BCLL        | 0.0*                                                               | Rep Stress Incr      | YES             |                               | WB                                       | 0.63                   | Horz(CT)       | 0.06  | 7     | n/a    | n/a |                 |          |
| BCDL        | 10.0                                                               | Code                 | IRC201          | 8/TPI2014                     | Matrix-S                                 |                        | Wind(LL)       | 0.07  | 11-12 | >999   | 240 | Weight: 139 lb  | FT = 10% |
| LUMBER      |                                                                    |                      | 3)              | Provide ade                   | quate drainage t                         | o prevent              | water pondin   | q.    |       |        |     |                 |          |
| TOP CHORD   | 2x4 SPF No.2 *Exce<br>1.8E                                         | ept* 4-6:2x4 SPF 210 | 00F 4)          | This truss ha                 | is been designe<br>ad nonconcurrer       | d for a 10.0           | 0 psf bottom   |       |       |        |     |                 |          |
| BOT CHORD   |                                                                    |                      | 5)              |                               | nas been design                          |                        |                | 0psf  |       |        |     |                 |          |
| WEBS        | 2x3 SPF No.2 *Exce<br>7-6:2x6 SPF No.2                             | ept* 13-1:2x4 SPF N  | 0.2,            | 3-06-00 tall I                | n chord in all are<br>by 2-00-00 wide    | will fit betv          | veen the bott  |       |       |        |     |                 |          |
| BRACING     |                                                                    |                      | 0               |                               | ny other membe<br>hanical connect        |                        |                |       |       |        |     |                 |          |
| TOP CHORD   | Structural wood she<br>except end verticals<br>(4-4-15 max.): 3-4. |                      |                 | bearing plate<br>joint 13 and | e capable of with<br>179 lb uplift at jo | nstanding 1<br>pint 7. | 71 Ib uplift a |       |       |        |     | VU'OF           | MISS     |
| BOT CHORD   | Rigid ceiling directly<br>bracing.                                 | applied or 10-0-0 o  | c 7)            | International                 | designed in acc<br>Residential Coc       | de sections            | R502.11.1      | and   |       |        | 1   | A               | -00      |
| WEBS        | 1 Row at midpt                                                     | 3-10, 5-10, 2-11     | <b>C</b> 1      |                               | nd referenced st                         |                        |                |       |       |        | 20  | S: JUA          | N :==    |
| REACTIONS   | (lb/size) 7=1513/0                                                 | -3-8, 13=1513/0-5-8  | 8)              |                               | rlin representati<br>ation of the purli  |                        |                | size  |       |        | 24  | GAR             |          |
|             | Max Horiz 13=-65 (L                                                | .C 4)                |                 | bottom chore                  |                                          | n along the            | top anu/or     |       |       |        | - * |                 |          |
|             | Max Uplift 7=-179 (L                                               | C 9), 13=-171 (LC 8  | 3)              | DAD CASE(S)                   |                                          |                        |                |       |       |        | -   | 1               |          |
|             | Max Grav 7=1570 (I                                                 | LC 2), 13=1573 (LC   | 2) <sup>L</sup> | UAD CASE(S)                   | Standard                                 |                        |                |       |       |        | =   | NUME            | BER :    |
| FORCES      | (lb) - Maximum Com<br>Tension                                      | npression/Maximum    |                 |                               |                                          |                        |                |       |       |        | E   | E-20001         | 62101    |
| TOP CHORD   | 1-2=-2124/231, 2-3=<br>3-4=-1685/253, 4-5=<br>5-6=-2298/258, 1-13  | -1912/242,           |                 |                               |                                          |                        |                |       |       |        |     | SSIONA          | LENGTIN  |
|             | 6-7=-1426/227                                                      |                      |                 |                               |                                          |                        |                |       |       |        |     |                 | 11.1     |
| BOT CHORD   | 10-11=-71/1668, 8-1                                                |                      |                 |                               |                                          |                        |                |       |       |        |     | UNIT JUAN CLOCE | SARO     |
| WEBS        | 7-8=-63/230<br>3-11=-53/412, 3-10=                                 |                      | /428,           |                               |                                          |                        |                |       |       |        |     | IL JURI         | NSA      |
|             | 5-10=-499/199, 5-8=                                                |                      |                 |                               |                                          |                        |                |       |       |        |     |                 | 02       |
|             | 1-12=-125/1819, 6-8                                                | ,                    |                 |                               |                                          |                        |                |       |       |        |     |                 | 1 2 2    |
|             | 2-11=-357/174, 2-12                                                | 2=-283/129           |                 |                               |                                          |                        |                |       |       |        | -   | 1 100           |          |
| NOTES       | a di wa aƙ Kuta Ita a da K                                         | have consider 17     | _               |                               |                                          |                        |                |       |       |        |     | 10              | 992 =    |
| ,           | ed roof live loads have                                            | been considered to   | r               |                               |                                          |                        |                |       |       |        | -   | P               | n :#=    |
| this design | n.<br>CE 7-16; Vult=115mph                                         | (3-second quet)      |                 |                               |                                          |                        |                |       |       |        | -   | 0.              | Na: 143  |
|             | nph; TCDL=6.0psf; BC                                               |                      | Cat             |                               |                                          |                        |                |       |       |        |     | - AN            | SAS      |
|             | Enclosed; MWFRS (er                                                |                      |                 |                               |                                          |                        |                |       |       |        |     | 1, 50,          | ENGIN    |
|             | left and right exposed                                             |                      |                 |                               |                                          |                        |                |       |       |        |     | ON              | ALE      |
|             | sed; Lumber DOL=1.6                                                |                      |                 |                               |                                          |                        |                |       |       |        |     |                 |          |
| <b>2</b> 1  |                                                                    |                      |                 |                               |                                          |                        |                |       |       |        |     | Octobo          | 07 2021  |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



October 27,2021

| Job                             | Truss | Truss Type           | Qty            |              | Lot 117 RR                                      |           |
|---------------------------------|-------|----------------------|----------------|--------------|-------------------------------------------------|-----------|
| RR117                           | C5    | Нір                  | 1              | 1            | Job Reference (optional)                        | l48527901 |
| Wheeler Lumber, Waverly, KS - 6 | 6871. | Run: 8.43 S Oct 11 2 | 021 Print: 8.4 | 430 S Oct 11 | 2021 MiTek Industries, Inc. Tue Oct 26 12:47:40 | Page: 1   |

|                                          | , waveny, Ka                | 5 - 0007 1,        |                                              |              |                                                                              |                                                                       |                                                                                         |                                                                                |                               |                |              |            | KWrCDoi7J4zJC?f              | Fage                      | . 1 |
|------------------------------------------|-----------------------------|--------------------|----------------------------------------------|--------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------|----------------|--------------|------------|------------------------------|---------------------------|-----|
|                                          |                             |                    |                                              |              |                                                                              | 17-6-12                                                               |                                                                                         |                                                                                |                               |                |              |            |                              |                           |     |
|                                          |                             | 5-6-10             | 1                                            | 2-9-1        | 16-5-4                                                                       | 16-6-12                                                               | 25-0-8                                                                                  | 2                                                                              |                               | 33-            | 10-4         |            | 39-0-0                       | 39-10-8                   |     |
|                                          |                             | 5-6-10             |                                              | 7-2-8        | 3-8-3                                                                        |                                                                       | 7-5-12                                                                                  |                                                                                | 1                             |                | )-12         |            | 5-1-12                       |                           |     |
|                                          |                             | 0010               |                                              |              | 000                                                                          | 1-0-0                                                                 |                                                                                         | -                                                                              |                               | 00             |              |            | 0.12                         | 0-10-0                    |     |
|                                          |                             |                    |                                              |              |                                                                              | 2x4                                                                   | II                                                                                      |                                                                                |                               |                |              |            |                              |                           |     |
|                                          |                             |                    |                                              |              |                                                                              | 5x5=                                                                  |                                                                                         |                                                                                |                               |                |              |            |                              |                           |     |
|                                          |                             |                    |                                              |              |                                                                              | 4                                                                     |                                                                                         |                                                                                |                               |                |              |            |                              |                           |     |
| 10-1-3<br>9-1-3<br>2-3-0                 | 5x5 ≠<br>1<br>19 ₩<br>3x4 µ |                    | 5 <sup>12</sup><br>3x4 =<br>2<br>18<br>3x10= |              | 2x4 II<br>3<br>17 20<br>4x8=                                                 | 5<br>0<br>0<br>                                                       | ¢                                                                                       |                                                                                | x4s<br>6 3x<br>3<br>x10=      |                |              |            | 5x6≈<br>8<br>₩<br>12<br>4x5= | 9 10 <del>0</del><br>6x8= |     |
|                                          |                             |                    |                                              |              |                                                                              | 3x5                                                                   |                                                                                         |                                                                                |                               |                |              |            |                              |                           |     |
|                                          | <b> </b>                    | 5-6-10             |                                              | 2-9-1        | 17-5                                                                         |                                                                       | 25-0-8                                                                                  |                                                                                | I                             |                | 10-4         |            | 34-0-0 39-0-0                | <u> </u>                  |     |
| Scale = 1:73                             |                             | 5-6-10             |                                              | 7-2-8        | 4-8                                                                          | -/                                                                    | 7-7-0                                                                                   |                                                                                |                               | 8-9            | -12          |            | 0-1-12 5-0-0                 |                           |     |
|                                          | X, Y): [11:E                | dge,0-5-4          | ], [18:0-2-8,0-1-8]                          |              |                                                                              |                                                                       |                                                                                         |                                                                                |                               |                |              |            |                              |                           |     |
|                                          |                             |                    | 1                                            | -            |                                                                              | 1                                                                     |                                                                                         |                                                                                |                               | -              |              |            |                              | -                         |     |
| Loading                                  |                             | (psf)              | Spacing                                      | 2-0-0        |                                                                              | CSI                                                                   |                                                                                         | DEFL                                                                           | in                            | (loc)          | l/defl       | L/d        | PLATES                       | GRIP                      |     |
| TCLL (roof)<br>TCDL                      |                             | 25.0<br>10.0       | Plate Grip DOL<br>Lumber DOL                 | 1.15<br>1.15 |                                                                              | TC<br>BC                                                              | 0.82<br>0.66                                                                            | Vert(LL)<br>Vert(CT)                                                           | -0.15<br>-0.29                | 13-15<br>13-15 | >999<br>>999 | 360<br>240 | MT20                         | 197/144                   |     |
| BCLL                                     |                             | 0.0*               | Rep Stress Incr                              | YES          |                                                                              | WB                                                                    | 0.69                                                                                    |                                                                                | -0.29                         | 13-15          | >999<br>n/a  | 240<br>n/a |                              |                           |     |
| BCDL                                     |                             | 10.0               | Code                                         |              | 8/TPI2014                                                                    | Matrix-S                                                              | 0.03                                                                                    | Wind(LL)                                                                       |                               | 16-17          |              | 240        | Weight: 169 lb               | FT = 10%                  |     |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS | 2x4 SPF N                   | No.2<br>No.2 *Exce | pt* 5-15:2x3 SPF I<br>pt* 11-9,19-1:2x4 :    | 2)<br>No.2   | Wind: ASCE<br>Vasd=91mpl<br>II; Exp C; En<br>cantilever lef<br>right exposed | 7-16; Vult=<br>n; TCDL=6.<br>closed; MV<br>t and right<br>d; Lumber I | =115mph (3-sec<br>0psf; BCDL=6.0<br>VFRS (envelope<br>exposed ; end v<br>DOL=1.60 plate | cond gust)<br>Dpsf; h=25ft;<br>e) exterior zo<br>vertical left a<br>grip DOL=1 | ; Cat.<br>one;<br>ind<br>I.60 |                |              |            | <u>-</u>                     |                           |     |

BRACING TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 12-13,11-12. 1 Row at midpt 5-16 WEBS 1 Row at midpt 2-17, 6-16 REACTIONS (lb/size) 12=2083/0-3-8, 19=1472/0-5-8 Max Horiz 19=-190 (LC 9) Max Uplift 12=-310 (LC 9), 19=-186 (LC 8)

#### Max Grav 12=2141 (LC 2), 19=1535 (LC 2) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-1901/238, 2-3=-1922/258, 3-4=-1898/361, 4-5=-1708/336, 5-6=-1744/257, 6-8=-1785/238, 8-9=-177/513, 9-10=0/27, 9-11=-29/55, 1-19=-1454/210 BOT CHORD 18-19=-49/207, 17-18=-215/1711, 16-17=-27/1436, 15-16=0/126, 5-16=-423/222, 13-15=0/108, 12-13=-385/187, 11-12=-64/16 WEBS 2-18=-463/150, 2-17=-137/118, 3-17=-434/224, 4-17=-221/718, 4-16=-268/778, 13-16=-49/1464, 9-12=-326/189, 1-18=-186/1771, 6-13=-568/162, 6-16=-171/164, 8-12=-1879/389, 8-13=-161/2003

#### NOTES

1) Unbalanced roof live loads have been considered for this design.

3) Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom 4)

- chord live load nonconcurrent with any other live loads. 5) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 186 lb uplift at joint 19 and 310 lb uplift at joint 12.
- This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard



11111

0



| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | C6    | Нір        | 1   | 1   | Job Reference (optional) | 148527902 |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:47:41 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

39-10-8 7-11-7 25-0-9 33-10-4 39-0-0 14-5-4 18-6-12 7-11-7 6-5-13 4-1-8 6-5-13 8-9-11 5-1-12 0-10-8 6x6= 5x5= 9-3-3 1-10 0-1-10 3 4 5<sup>12</sup> =  $\boxtimes$ 3x4 🚽 3x4 👟 5 2 3x6**≈** 6 9-1-9 8-1-9 9-3-3 6x6 🚅 5x6~ 7 2-3-0 8 20 9 0-6-0 ę E 10 18 215 ę 19 T. 4x5= ø 3x10= 14 13 12 11 6x8= 3x4= 3x4 II 3x6= 4x10= 4x5= 2x4 II 6x8= \_ . . \_ 34-0-0 ~ ~ ~ ~

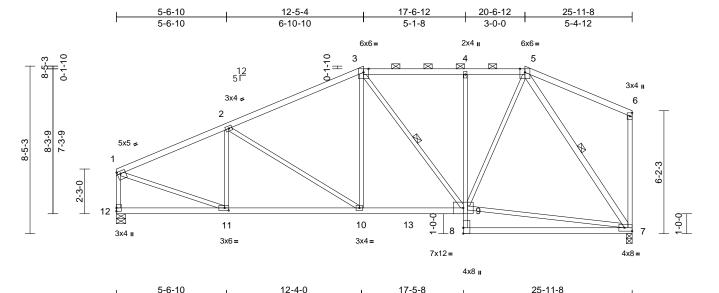
| 7-11-7 | 14-4-0 | 17-5-8 10-0-12 | 23-0-0 | 25-0-9 | 33-10-4 | 39-0-0       |  |
|--------|--------|----------------|--------|--------|---------|--------------|--|
| 7-11-7 | 6-4-9  | 3-1-8 1-1-4    | 4-4-0  | 2-0-9  | 8-9-11  | 0-1-12 5-0-0 |  |
|        |        | 0-1-4          |        |        |         |              |  |

Scale = 1:73.5

| Plate Offsets (X, Y                                                                                                                                                                                              | Y): [1:0-3-0,0-1-12]                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ], [10:Edge,0-5-4], [16                                                                                                                                                                                                                                                                                                                                                                                      | 6:0-3-8,0-                                                                                                                                | 3-0], [17:0-2-0,                                                                                                                                                                                                                                                                                                         | Edge], [19:0-2-8                                                                                                                                                                                                                                                                                                                                                            | 3,0-1-8]                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                          |                                                                |                                              |                                       |                                 |                                                       |                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------|---------------------------------------|---------------------------------|-------------------------------------------------------|-----------------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                   | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                    | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                           | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201                                                                                                    | 8/TPI2014                                                                                                                                                                                                                                                                                                                | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                                                                                                                           | 0.96<br>0.70<br>0.69                                                                                                                                                                                                                                              | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Wind(LL)                                                                                                                                                                                                                                                     | -0.28<br>0.05                                                  | (loc)<br>11-12<br>11-12<br>11<br>11<br>17-18 | l/defl<br>>999<br>>999<br>n/a<br>>999 | L/d<br>360<br>240<br>n/a<br>240 | <b>PLATES</b><br>MT20<br>Weight: 164 lb               | <b>GRIP</b><br>197/144<br>FT = 10%      |
| LUMBER<br>TOP CHORD 2<br>BOT CHORD 2<br>WEBS 2<br>WEBS 2<br>BOT CHORD 5<br>WEBS 1<br>REACTIONS (Ib<br>Ma<br>Ma<br>FORCES (I<br>TOP CHORD 1<br>TOP CHORD 1<br>S<br>BOT CHORD 1<br>1<br>WEBS 3<br>4<br>4<br>7<br>7 | x4 SPF No.2<br>x4 SPF No.2 *Exce<br>x3 SPF No.2 *Exce<br>lo.2<br>Structural wood she:<br>except end verticals;<br>4-6-7 max.): 3-4.<br>Rigid ceiling directly<br>racing.<br>Row at midpt<br>/size) 11=2083/<br>ax Horiz 20=-174 (<br>ax Uplift 11=-296 (<br>ax Grav 11=2147 (<br>b) - Maximum Com<br>rension<br>-2=-2071/230, 2-3=<br>i-4=-1600/234, 4-5=<br>i-10=-30/52, 1-20=-<br>9-20=-43/240, 18-1<br>7-18=-28/1609, 16-<br>5-17=-51/0, 14-15=<br>1-12=-379/187, 10- | athing directly applied,<br>and 2-0-0 oc purlins<br>applied or 6-0-0 oc<br>3-16, 5-16, 2-18<br>0-3-8, 20=1472/0-5-8<br>LC 9), 20=-171 (LC 8<br>(LC 2), 20=1540 (LC<br>pression/Maximum<br>-1827/226,<br>-1810/220,<br>-177/507, 8-9=0/27,<br>1411/211<br>9=-163/1839,<br>-172-25/1526,<br>-6/94, 12-14=0/116,<br>-11=-71/17<br>-194/162, 14-16=0/20<br>-312/188,<br>2=-604/150,<br>-1877/378,<br>8=-361/174, | 2)<br>o.2<br>F<br>3)<br>(1, 4)<br>5)<br>6)<br>(1)<br>(2)<br>7)<br>8)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1 | Wind: ASCE<br>Vasd=91mph<br>II; Exp C; En<br>cantilever lef<br>right exposed<br>Provide adee<br>This truss ha<br>chord live loa<br>* This truss f<br>on the bottor<br>3-06-00 tall b<br>chord and ar<br>Provide mec<br>bearing plate<br>joint 20 and 2<br>This truss is<br>International<br>R802.10.2 ar<br>Graphical pu | 7-16; Vult=115r<br>n; TCDL=6.0psf;<br>closed; MWFRS<br>t and right exposi-<br>d; Lumber DOL=<br>quate drainage t<br>s been designed<br>n chord in all are<br>by 2-00-00 wide<br>y other membe<br>hanical connecti-<br>e capable of with<br>296 lb uplift at jo<br>designed in acc<br>Residential Coo<br>nd referenced st<br>flin representati-<br>ation of the purlin<br>t. | BCDL=6.6<br>(envelope<br>sed; end v<br>=1.60 plate<br>of pravent v<br>d for a 10.0<br>nt with any<br>led for a live<br>eas where<br>will fit betw<br>rs, with BC<br>ion (by oth<br>standing 1<br>bint 11.<br>ordance w<br>de sections<br>tandard AN<br>on does no | cond gust)<br>opps; h=25ft;<br>exterior zo<br>vertical left ar<br>grip DOL=1.<br>water pondin.<br>O psf bottom<br>other live loa<br>e load of 20.<br>a rectangle<br>veen the bott<br>CDL = 10.0ps<br>ers) of truss i<br>71 lb uplift ar<br>ith the 2018<br>& R502.11.1 a<br>SI/TP1 1.<br>bt depict the s | Cat.<br>ne;<br>id<br>60<br>g.<br>dds.<br>Dpsf<br>f.<br>to<br>t |                                              |                                       |                                 | JUA<br>GARC<br>NUME<br>20001<br>SS/ONA<br>UCEI<br>165 | MISSOUR<br>CIA<br>BER<br>62101<br>ULENO |

#### NOTES

 Unbalanced roof live loads have been considered for this design.


> 16023 Swingley Ridge Rd Chesterfield, MO 63017

October 27,2021

| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | C7    | Нір        | 1   | 1   | Job Reference (optional) | 148527903 |

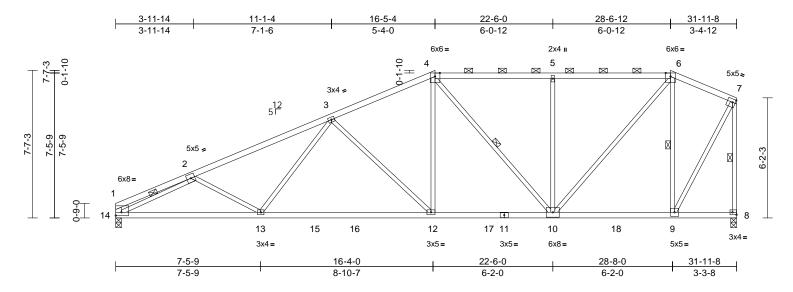
#### Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:47:41 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



|                                     | 5-6-10                          | 12-4-0 | 17-5-8 | 25-11-8 |  |
|-------------------------------------|---------------------------------|--------|--------|---------|--|
|                                     | 5-6-10                          | 6-9-6  | 5-1-8  | 8-6-0   |  |
| Scale = 1:58                        |                                 |        |        |         |  |
| Plate Offsets (X, Y): [1:0-2-0,0-1- | 8] [7·Edge 0-2-0] [11·0-2-8 0-  | 1-8]   |        |         |  |
|                                     | oj, [1:Edge,o E oj, [11:0 E e,o | [ 0]   |        |         |  |
|                                     |                                 |        |        |         |  |

|                                                                                                                                                                       | , .). [                                                                                                                                                                                                                          |                                                                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                     |                                                                                                                                           |                                                                                                                             |                       |         |        |        |                               |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------|---------|--------|--------|-------------------------------|----------|
| Loading                                                                                                                                                               | (psf)                                                                                                                                                                                                                            | Spacing                                                                                                                                                                                                         | 2-0-0                                                                                                                                                                       | csi                                                                                                                                                                                                                                                                                 |                                                                                                                                           | DEFL                                                                                                                        | in                    | (loc)   | l/defl | L/d    | PLATES                        | GRIP     |
| TCLL (roof)                                                                                                                                                           | 25.0                                                                                                                                                                                                                             | Plate Grip DOL                                                                                                                                                                                                  | 1.15                                                                                                                                                                        | TC                                                                                                                                                                                                                                                                                  | 0.55                                                                                                                                      | Vert(LL)                                                                                                                    | -0.20                 | 7-8     | >999   | 360    | MT20                          | 197/144  |
| TCDL                                                                                                                                                                  | 10.0                                                                                                                                                                                                                             | Lumber DOL                                                                                                                                                                                                      | 1.15                                                                                                                                                                        | BC                                                                                                                                                                                                                                                                                  | 0.59                                                                                                                                      | Vert(CT)                                                                                                                    | -0.40                 | 7-8     | >776   | 240    | -                             |          |
| BCLL                                                                                                                                                                  | 0.0*                                                                                                                                                                                                                             | Rep Stress Incr                                                                                                                                                                                                 | YES                                                                                                                                                                         | WB                                                                                                                                                                                                                                                                                  | 0.52                                                                                                                                      | Horz(CT)                                                                                                                    | 0.04                  | 7       | n/a    | n/a    |                               |          |
| BCDL                                                                                                                                                                  | 10.0                                                                                                                                                                                                                             | Code                                                                                                                                                                                                            | IRC2018/TPI2014                                                                                                                                                             | Matrix-S                                                                                                                                                                                                                                                                            |                                                                                                                                           | Wind(LL)                                                                                                                    | 0.04                  | 9-10    | >999   | 240    | Weight: 123 lb                | FT = 10% |
|                                                                                                                                                                       | 2x4 SPF No.2 *Exce<br>2x3 SPF No.2 *Exce<br>Structural wood she<br>4-1-3 oc purlins, ex<br>2-0-0 oc purlins (5-7<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt                                                         | pt* 7-5:2x4 SPF No.<br>athing directly applie<br>cept end verticals, ar<br>-3 max.): 3-5.<br>applied or 10-0-0 oc<br>3-9, 5-7<br>-3-8, 12=1159/0-5-8<br>.C 7)<br>.C 5), 12=-140 (LC 8)<br>.C 2), 12=1208 (LC 2) | on the bot<br>3-06-00 tz<br>chord and<br>6) Provide m<br>bearing pl<br>joint 12 ar<br>7) This truss<br>Internation<br>R802.10.2<br>8) Graphical<br>or the orie<br>bottom ch | s has been design<br>tom chord in all are<br>Il by 2-00-00 wide<br>any other member<br>echanical connecti<br>ate capable of with<br>d 140 lb uplift at jo<br>is designed in acc<br>nal Residential Coc<br>and referenced st<br>purlin representati<br>ntation of the purlin<br>prd. | eas where<br>will fit betw<br>rs, with BC<br>ion (by oth<br>standing 1<br>bint 7.<br>ordance w<br>de sections<br>candard AN<br>on does no | a rectangle<br>veen the bott<br>CDL = 10.0ps<br>ers) of truss<br>40 lb uplift a<br>th the 2018<br>R502.11.1 a<br>NSI/TPI 1. | fom<br>if.<br>to<br>t |         |        | *      | JUA<br>GAR                    |          |
|                                                                                                                                                                       | Tension                                                                                                                                                                                                                          |                                                                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                     |                                                                                                                                           |                                                                                                                             |                       |         |        | 3      | NUME                          | • 41.    |
| TOP CHORD                                                                                                                                                             | 1-2=-1458/177, 2-3=-1324/198,<br>3-4=-993/208, 4-5=-988/208, 5-6=-127/112,<br>6-7=-181/80, 1-12=-1127/164                                                                                                                        |                                                                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                     |                                                                                                                                           |                                                                                                                             |                       | E-20001 | 62101  |        |                               |          |
| BOT CHORD                                                                                                                                                             | 11-12=-208/53, 10-1<br>9-10=-206/1145, 8-9<br>7-8=0/145                                                                                                                                                                          | ,                                                                                                                                                                                                               | 34,                                                                                                                                                                         |                                                                                                                                                                                                                                                                                     |                                                                                                                                           |                                                                                                                             |                       |         |        |        | NONA                          | LENIN    |
| WEBS                                                                                                                                                                  | 3-10=-2/368, 3-9=-2<br>5-9=-87/865, 5-7=-1<br>1-11=-130/1348, 2-1<br>2-11=-318/127                                                                                                                                               | 177/215,                                                                                                                                                                                                        | ,                                                                                                                                                                           |                                                                                                                                                                                                                                                                                     |                                                                                                                                           |                                                                                                                             |                       |         |        |        | ILI JUAN C                    | ARCIA    |
| NOTES                                                                                                                                                                 |                                                                                                                                                                                                                                  |                                                                                                                                                                                                                 |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                     |                                                                                                                                           |                                                                                                                             |                       |         |        |        | UCE                           | NOED     |
| <ol> <li>Unbalance<br/>this design</li> <li>Wind: ASC<br/>Vasd=91m<br/>II; Exp C; I<br/>cantilever<br/>right expo:</li> <li>Provide ac</li> <li>This truss</li> </ol> | ed roof live loads have<br>n.<br>CE 7-16; Vult=115mph<br>nph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>left and right exposed<br>sed; Lumber DOL=1.6<br>dequate drainage to pr<br>has been designed fo<br>load nonconcurrent wi | (3-second gust)<br>DL=6.0psf; h=25ft; C<br>ivelope) exterior zon<br>; end vertical left and<br>0 plate grip DOL=1.6<br>event water ponding<br>r a 10.0 psf bottom                                               | Cat.<br>e;<br>d<br>b0                                                                                                                                                       |                                                                                                                                                                                                                                                                                     |                                                                                                                                           |                                                                                                                             |                       |         |        | annus. | PBO<br>DC<br>SS/ON<br>October | SAS THU  |


MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

| A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not        |
| a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall |
| building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing    |
| is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the             |
| fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component      |
| Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601                                                   |

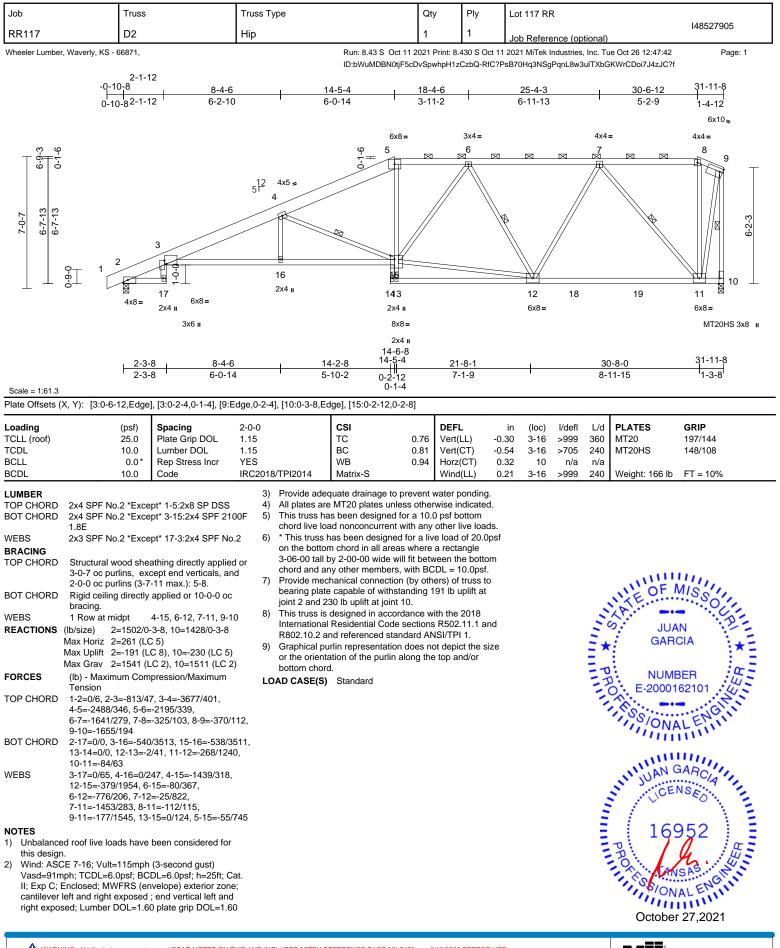
| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | D1    | Hip        | 1   | 1   | Job Reference (optional) | 148527904 |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:47:42 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



Scale = 1:59.3


### Plate Offsets (X, Y): [1:Edge,0-2-0], [7:0-1-12,0-2-0], [8:Edge,0-1-8]

|                                                                                                                                                                                |                                                                                                                                                                                                                                    |                                                                                                     |                                                                                                |                                                                                                                                                                                                          |                                                                                                               |                                                                                                                                                                 |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -               |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------|
| Loading                                                                                                                                                                        | (psf)                                                                                                                                                                                                                              | Spacing                                                                                             | 2-0-0                                                                                          | csi                                                                                                                                                                                                      |                                                                                                               | DEFL                                                                                                                                                            | in (loc) | l/defl  | L/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PLATES          | GRIP     |
| TCLL (roof)                                                                                                                                                                    | 25.0                                                                                                                                                                                                                               | Plate Grip DOL                                                                                      | 1.15                                                                                           | TC                                                                                                                                                                                                       | 0.73                                                                                                          |                                                                                                                                                                 | 28 12-13 |         | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MT20            | 197/144  |
| TCDL                                                                                                                                                                           | 10.0                                                                                                                                                                                                                               | Lumber DOL                                                                                          | 1.15                                                                                           | BC                                                                                                                                                                                                       | 0.96                                                                                                          |                                                                                                                                                                 | 49 12-13 |         | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |          |
| BCLL                                                                                                                                                                           | 0.0*                                                                                                                                                                                                                               | Rep Stress Incr                                                                                     | YES                                                                                            | WB                                                                                                                                                                                                       | 0.84                                                                                                          | ( )                                                                                                                                                             | 08 8     |         | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |          |
| BCDL                                                                                                                                                                           | 10.0                                                                                                                                                                                                                               | Code                                                                                                | IRC2018/TPI                                                                                    |                                                                                                                                                                                                          |                                                                                                               | - (- / -                                                                                                                                                        | 10 12-13 |         | 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Weight: 134 lb  | FT = 10% |
|                                                                                                                                                                                |                                                                                                                                                                                                                                    |                                                                                                     |                                                                                                |                                                                                                                                                                                                          |                                                                                                               |                                                                                                                                                                 |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |          |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS                                                                             | Structural wood she<br>2-4-4 oc purlins, ex<br>2-0-0 oc purlins (4-5<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(Ib/size) 8=1427/0<br>Max Horiz 14=253 (I<br>Max Uplift 8=-197 (L                                  | applied or 2-2-0 oc<br>4-10, 6-9, 2-14, 7-8<br>-3-8, 14=1427/0-3-8<br>LC 5)<br>C 5), 14=-184 (LC 8) | on<br>3-0<br>chc<br>6) Pro<br>bea<br>join<br>d or join<br>Inte<br>R8(<br>8) Gra<br>or t<br>bot | he bottom chord<br>5-00 tall by 2-00-<br>rd and any other<br>vide mechanical<br>ring plate capab<br>t 14 and 197 lb u<br>t truss is designe<br>rnational Reside<br>2.10.2 and refer<br>phical purlin rep | ed in accordance w<br>ntial Code sections<br>enced standard AN<br>resentation does no<br>the purlin along the | a rectangle<br>ween the bottom<br>CDL = 10.0psf.<br>ers) of truss to<br>184 lb uplift at<br>ith the 2018<br>s R502.11.1 and<br>VSI/TPI 1.<br>ot depict the size |          |         | in the second se | S JUA           |          |
|                                                                                                                                                                                | Max Grav 8=1539 (I                                                                                                                                                                                                                 | _C 2), 14=1512 (LC 2                                                                                | 2)                                                                                             |                                                                                                                                                                                                          |                                                                                                               |                                                                                                                                                                 |          |         | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 | : 2 =    |
| FORCES                                                                                                                                                                         | (lb) - Maximum Com<br>Tension                                                                                                                                                                                                      | pression/Maximum                                                                                    |                                                                                                |                                                                                                                                                                                                          |                                                                                                               |                                                                                                                                                                 |          |         | Ξτ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NUME            |          |
| TOP CHORD                                                                                                                                                                      | 1-2=-438/23, 2-3=-2<br>4-5=-1461/277, 5-6=                                                                                                                                                                                         |                                                                                                     | ,                                                                                              |                                                                                                                                                                                                          |                                                                                                               |                                                                                                                                                                 |          |         | 1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E-20001         | • 41.    |
| BOT CHORD                                                                                                                                                                      | 13-14=-452/2458, 12<br>10-12=-266/1724, 9                                                                                                                                                                                          | 2-13=-335/2182,<br>-10=-141/653, 8-9=-8                                                             | 34/63                                                                                          |                                                                                                                                                                                                          |                                                                                                               |                                                                                                                                                                 |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S/ONA           | LENIN    |
| WEBS                                                                                                                                                                           | ,                                                                                                                                                                                                                                  | 3=0/414, 3-12=-640/2<br>422/103,<br>)=-186/1265,                                                    |                                                                                                |                                                                                                                                                                                                          |                                                                                                               |                                                                                                                                                                 |          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IN JUAN C       | ARCIA    |
| NOTES                                                                                                                                                                          | 2 . 1- 200 //001                                                                                                                                                                                                                   |                                                                                                     |                                                                                                |                                                                                                                                                                                                          |                                                                                                               |                                                                                                                                                                 |          |         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | I UCE           | NSEO     |
| <ul> <li>this design</li> <li>Wind: ASC</li> <li>Vasd=91n</li> <li>II; Exp C;</li> <li>cantilever</li> <li>right exposized</li> <li>Provide act</li> <li>This truss</li> </ul> | ed roof live loads have<br>n.<br>CE 7-16; Vult=115mph<br>nph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>left and right exposed<br>sed; Lumber DOL=1.6<br>dequate drainage to pr<br>has been designed fo<br>load nonconcurrent with | cat.<br>e;<br>l<br>0                                                                                |                                                                                                |                                                                                                                                                                                                          |                                                                                                               |                                                                                                                                                                 |          | CHINES. | ROAL SAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 952<br>ALENGINI |          |

- 4) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

October 27,2021



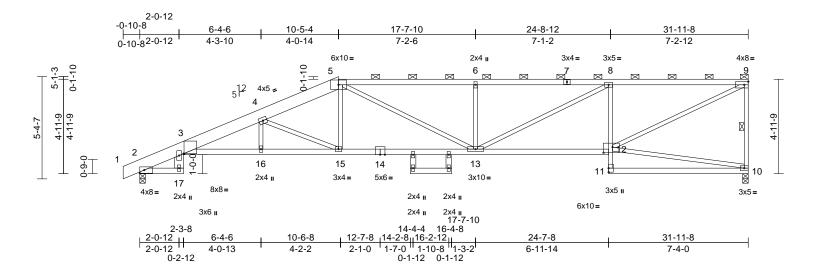


| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | D3    | Half Hip   | 1   | 1   | Job Reference (optional) | 148527906 |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:47:43 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



Scale = 1:60.5


| Plate Offsets (                                                                                    | X, Y): [3:0-6-12,Edge                                                                                                                         | ], [3:0-2-4,0-1-4], [5:0                                                                                                                                                                                                                         | )-3-4,0-3-                             | 0], [9:Edge,0-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -8]                               |                                                                                                                                                              |                                                                                                                                                                                       |                        |                                        |                                       |                                 |                                  |                                    |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------|---------------------------------------|---------------------------------|----------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                     | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                         | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                               | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201 | 8/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CSI<br>TC<br>BC<br>WB<br>Matrix-S | 0.73<br>0.59<br>0.81                                                                                                                                         | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Wind(LL)                                                                                                                                  | -0.56<br>0.31          | (loc)<br>13-14<br>13-14<br>10<br>13-14 | l/defl<br>>999<br>>681<br>n/a<br>>999 | L/d<br>360<br>240<br>n/a<br>240 | PLATES<br>MT20<br>Weight: 155 lb | <b>GRIP</b><br>197/144<br>FT = 10% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS |                                                                                                                                               | E *Except* 2-15:2x4 \$<br>No.2<br>ppt* 15-3,10-8:2x4 \$F<br>athing directly applie<br>cept end verticals, ar<br>i-11 max.): 5-9.<br>applied or 10-0-0 oc<br>8-10<br>-3-8, 10=1426/0-3-8<br>C 5)<br>C 4), 10=-254 (LC 5)<br>LC 2), 10=1499 (LC 2) | PF 5;<br>d or<br>id 6;<br>7;<br>L      | <ul> <li>chord live loa</li> <li>* This truss I<br/>on the bottoo</li> <li>3-06-00 tall I<br/>chord and an</li> <li>Provide mechanism</li> <li>provide mechanism<td></td><td>with any<br/>ed for a liv<br/>as where<br/>vill fit betw<br/>s, with BC<br/>on (by oth<br/>standing 2<br/>nt 2.<br/>rdance w<br/>e sections<br/>undard AN<br/>n does no</td><td>other live load<br/>e load of 20.0<br/>a rectangle<br/>veen the bott<br/>DL = 10.0psi<br/>ers) of truss I<br/>54 lb uplift al<br/>the 2018<br/>a R502.11.1 a<br/>ISI/TPI 1.<br/>bt depict the s</td><td>Dpsf<br/>om<br/>co<br/>co</td><td></td><td></td><td>111 * Ph</td><td>JUA<br/>GAR<br/>NUME<br/>E-20001</td><td>BER U</td></li></ul> |                                   | with any<br>ed for a liv<br>as where<br>vill fit betw<br>s, with BC<br>on (by oth<br>standing 2<br>nt 2.<br>rdance w<br>e sections<br>undard AN<br>n does no | other live load<br>e load of 20.0<br>a rectangle<br>veen the bott<br>DL = 10.0psi<br>ers) of truss I<br>54 lb uplift al<br>the 2018<br>a R502.11.1 a<br>ISI/TPI 1.<br>bt depict the s | Dpsf<br>om<br>co<br>co |                                        |                                       | 111 * Ph                        | JUA<br>GAR<br>NUME<br>E-20001    | BER U                              |
| TOP CHORD                                                                                          | Tension<br>1-2=0/6, 2-3=-805/5<br>4-5=-4080/542, 5-6=<br>6-7=-2578/422, 7-8=<br>9-10=-181/79                                                  |                                                                                                                                                                                                                                                  | 60,                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                                                                                                                                                              |                                                                                                                                                                                       |                        |                                        |                                       |                                 | SS/ONA                           |                                    |
| BOT CHORD                                                                                          | 2-15=0/0, 3-14=-603<br>12-13=0/136, 6-13=-<br>10-11=-300/1365                                                                                 |                                                                                                                                                                                                                                                  |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                                                                                                                                                              |                                                                                                                                                                                       |                        |                                        |                                       |                                 | IN AN C                          | ARC                                |
| WEBS                                                                                               | 3-15=0/65, 4-14=-97<br>5-13=-63/371, 11-13<br>7-13=-75/535, 7-11=<br>8-10=-1805/341                                                           | 3=-404/2044,                                                                                                                                                                                                                                     | ,                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                                                                                                                                                              |                                                                                                                                                                                       |                        |                                        |                                       | 111                             | LICE                             | NSEO                               |
| Vasd=91m<br>II; Exp C; I<br>cantilever<br>right expos                                              | CE 7-16; Vult=115mph<br>ph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>left and right exposed<br>sed; Lumber DOL=1.6<br>Jequate drainage to pr | DL=6.0psf; h=25ft; C<br>tyclope) exterior zon<br>; end vertical left and<br>0 plate grip DOL=1.6                                                                                                                                                 | e;<br>I<br>O                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                                                                                                                                                              |                                                                                                                                                                                       |                        |                                        |                                       | THINK .                         | PROX SON                         | SAS NUT                            |

October 27,2021



| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | D4    | Half Hip   | 1   | 1   | Job Reference (optional) | 148527907 |

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:47:43 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



Scale = 1:60.5

### Plate Offsets (X, Y): [3:0-0-5,0-0-0], [12:0-5-12,0-3-8]

| Plate Olisets (                                                                                    | A, T). [3.0-0-5,0-0-0],                                                                                                                                                                                                                                                                                                                       | [12.0-5-12,0-5-6]                                                                                                                                                                                  |                                                |                                                                                                                                                                                                                                                                                       |                                   |                                                                                                                                          |                                                                                                                                                                         |                       |                                        |                                       |                                 | -                                       |                                    |          |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------|---------------------------------------|---------------------------------|-----------------------------------------|------------------------------------|----------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                     | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                         | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                 | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201         | 8/TPI2014                                                                                                                                                                                                                                                                             | CSI<br>TC<br>BC<br>WB<br>Matrix-S | 0.76<br>0.77<br>0.88                                                                                                                     | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Wind(LL)                                                                                                                    | -0.58<br>0.35         | (loc)<br>13-15<br>13-15<br>10<br>13-15 | l/defl<br>>999<br>>659<br>n/a<br>>999 | L/d<br>360<br>240<br>n/a<br>240 | <b>PLATES</b><br>MT20<br>Weight: 147 lb | <b>GRIP</b><br>197/144<br>FT = 10% |          |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS | 2x4 SPF 2100F 1.8E<br>DSS<br>2x4 SPF No.2 *Exce<br>1.8E, 8-11:2x3 SPF<br>2x3 SPF No.2 *Exce<br>18-20,19-21:2x4 SP<br>Structural wood she<br>3-0-12 oc purlins, e<br>2-0-0 oc purlins, e<br>2-0-0 oc purlins (3-9<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(lb/size) 2=1492/0<br>Max Horiz 2=206 (LC<br>Max Uplift 2=-202 (L | ept* 3-14:2x4 SPF 21<br>No.2<br>ept* 17-3:2x6 SPF Nr<br>F No.2<br>athing directly applie<br>xcept end verticals,<br>i-1 max.): 5-9.<br>applied or 8-1-13 or<br>9-10<br>-3-8, 10=1425/0-3-8<br>C 5) | P 4)<br>100F 5)<br>5.2, 5)<br>ed or 6)<br>C 7) | <ul> <li>chord live loa</li> <li>* This truss h<br/>on the bottor</li> <li>3-06-00 tall h</li> <li>chord and ar</li> <li>Provide mec</li> <li>bearing plate</li> <li>joint 10 and</li> <li>This truss is</li> <li>International</li> <li>R802.10.2 a</li> <li>Graphical pu</li> </ul> |                                   | with any<br>d for a liv<br>as where<br>rill fit betv<br>n (by oth<br>tanding 2<br>nt 2.<br>rdance w<br>sections<br>ndard AN<br>n does no | other live load<br>e load of 20.0<br>a rectangle<br>veen the botti<br>ers) of truss I<br>259 lb uplift at<br>the 2018<br>5 R502.11.1 a<br>USI/TPI 1.<br>bt depict the s | Opsf<br>om<br>to<br>t |                                        |                                       |                                 | JUA<br>GAR                              |                                    |          |
| FORCES                                                                                             | (lb) - Maximum Com<br>Tension<br>1-2=0/6, 2-3=-719/7<br>4-5=-3049/472, 5-6=<br>6-8=-3145/559, 8-9=<br>9-10=-1351/305                                                                                                                                                                                                                          | '<br>3, 3-4=-3846/519,<br>3145/559,                                                                                                                                                                |                                                |                                                                                                                                                                                                                                                                                       |                                   |                                                                                                                                          |                                                                                                                                                                         |                       |                                        |                                       | 1111                            | E-20001                                 | 62101                              |          |
| BOT CHORD                                                                                          | 2-17=0/20, 3-16=-67<br>15-16=-668/3777, 13<br>12-13=-489/2341, 1<br>8-12=-956/288, 10-1<br>3-17=0/68, 4-16=-18                                                                                                                                                                                                                                | 3-15=-518/2773,<br>1-12=0/148,<br>1=0/62                                                                                                                                                           | 10                                             |                                                                                                                                                                                                                                                                                       |                                   |                                                                                                                                          |                                                                                                                                                                         |                       |                                        |                                       |                                 |                                         | ARCIA                              |          |
| NOTES<br>1) Wind: ASC<br>Vasd=91n<br>II; Exp C;<br>cantilever<br>right expo:                       | 5-15=-30/595, 5-13=<br>6-13=-505/212, 8-13<br>10-12=-92/40, 9-12=<br>CE 7-16; Vult=115mph<br>mph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>left and right exposed<br>sed; Lumber DOL=1.6<br>dequate drainage to pr                                                                                                                           | 117/417,<br>}=-133/908,<br>504/2575<br>(3-second gust)<br>DL=6.0psf; h=25ft; (<br>nvelope) exterior zor<br>; end vertical left an<br>0 plate grip DOL=1.6                                          | Cat.<br>ie;<br>d<br>60                         |                                                                                                                                                                                                                                                                                       |                                   |                                                                                                                                          |                                                                                                                                                                         |                       |                                        |                                       | CHINNE.                         | DAL SSION                               | 952<br>SA5. CH<br>ALENGIN          | WWWWIPPL |

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

October 27,2021

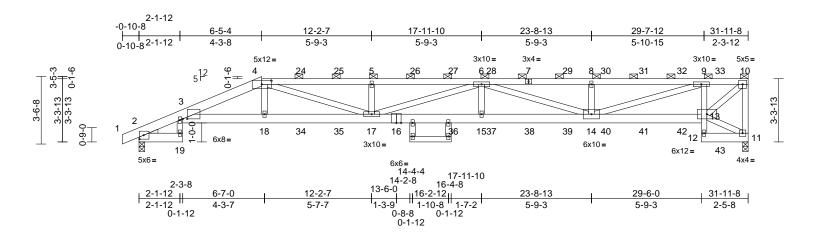
| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | D5    | Half Hip   | 1   | 1   | Job Reference (optional) | 148527908 |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:47:44 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

#### 8-5-4 19-2-4 24-8-12 31-11-8 14-1-0 6-3-8 5-7-12 5-1-5 5-6-8 7-2-12 5x7= 3x4= 3x4= 3x4= 2x4 II 6x8= 0-1-10 0-1-10 4 6 8 5 2 12 5 - $\bowtie$ $\bowtie$ $\bowtie$ $\bowtie$ $\bowtie$ $\bowtie$ $\nabla$ 4-1-9 4-1-9 4-1-9 4-6-7 3 0-6-0 13 è 15 14 e 11 10 Ř 3x4= Ř 16 10x12 =6x8= 3x5 II 4x8= MT20HS 3x10 = 4x5= 2x4 II 2x4 II 2x4 II 3x6 II 2x4 II 3x4= 16-7-10 16-2-12 14-4-4 16-2-3-8 2-1-12 II 16-4-8 8-6-8 10-7-8 14-2-8 24-7-8 31-11-8 0-1-12 F 2-1-12 <sup>||</sup> 0-1-12 6-2-15 2-1-0 3-7-0 7-11-14 7-4-0 0-1-12 1-10-8 0-3-2

Scale = 1:60.5


Plate Offsets (X, Y): [3:0-7-11,Edge]

|                   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,         | .1                   |          |                |                                         |               |                |       |       |        |            |                                         |               |    |
|-------------------|-----------------------------------------------|----------------------|----------|----------------|-----------------------------------------|---------------|----------------|-------|-------|--------|------------|-----------------------------------------|---------------|----|
| Loading           | (psf)                                         | Spacing              | 2-0-0    |                | CSI                                     |               | DEFL           | in    | (loc) | l/defl | L/d        | PLATES                                  | GRIP          |    |
| TCLL (roof)       | 25.0                                          | Plate Grip DOL       | 1.15     |                | тс                                      | 0.81          | Vert(LL)       | -0.41 | 13-15 | >932   | 360        | MT20                                    | 197/144       |    |
| TCDL              | 10.0                                          | Lumber DOL           | 1.15     |                | BC                                      | 0.57          | Vert(CT)       | -0.76 | 13-15 | >504   | 240        | MT20HS                                  | 148/108       |    |
| BCLL              | 0.0*                                          | Rep Stress Incr      | YES      |                | WB                                      | 0.82          | Horz(CT)       | 0.43  | 10    | n/a    | n/a        |                                         |               |    |
| BCDL              | 10.0                                          | Code                 | IRC2018/ | TPI2014        | Matrix-S                                |               | Wind(LL)       | 0.33  | 13-15 | >999   | 240        | Weight: 138 lb                          | FT = 10%      |    |
| LUMBER            |                                               |                      | 4)       | This truss ha  | s been designed                         | d for a 10 (  | ) nsf hottom   |       |       |        |            |                                         |               |    |
| TOP CHORD         | 2x8 SP DSS *Excep                             | nt* 4-7-2x4 SPF No 2 | ,        |                | d nonconcurren                          |               |                | ads.  |       |        |            |                                         |               |    |
|                   | 7-9:2x4 SPF 2100F                             |                      |          |                | as been design                          |               |                |       |       |        |            |                                         |               |    |
| BOT CHORD         | 2x4 SPF No.2 *Exce                            |                      | ,        |                | n chord in all are                      |               |                | -1    |       |        |            |                                         |               |    |
|                   | 2100F 1.8E, 8-11:2>                           |                      |          | 3-06-00 tall b | y 2-00-00 wide                          | will fit betw | een the bott   | om    |       |        |            |                                         |               |    |
| WEBS              | 2x3 SPF No.2 *Exce                            | ept*                 |          |                | y other member                          |               |                |       |       |        |            |                                         |               |    |
|                   | 16-3,12-9,17-19,18-                           | 20:2x4 SPF No.2      |          |                | nanical connecti                        |               |                |       |       |        |            |                                         |               |    |
| BRACING           |                                               |                      |          |                | capable of with                         |               | 62 lb uplift a | t     |       |        |            |                                         | III.          |    |
| TOP CHORD         | Structural wood she                           |                      |          |                | 218 lb uplift at jo<br>designed in acco |               | ith the 2019   |       |       |        |            | UN OF I                                 | MIG           |    |
|                   | 2-6-7 oc purlins, ex                          |                      |          |                | Residential Cod                         |               |                | and   |       |        |            | NE                                      | SS            |    |
|                   | 2-0-0 oc purlins (2-6                         | ,                    |          |                | nd referenced st                        |               |                |       |       |        | - 5        | 18                                      |               |    |
| BOT CHORD         | Rigid ceiling directly<br>bracing.            | applied or 8-10-12   | OC       |                | rlin representation                     |               |                | size  |       |        | -          | JUA                                     | N . 7         | -  |
| WEBS              | 1 Row at midpt                                | 6-12                 | ,        | or the orienta | tion of the purlir                      | n along the   | top and/or     |       |       |        | -          | GAR                                     |               | 1  |
|                   |                                               | -3-8, 10=1425/0-3-8  |          | bottom chord   |                                         |               |                |       |       |        | <b>=</b> * | GAN                                     |               | 1  |
|                   | Max Horiz 2=170 (L0                           |                      | LOA      | AD CASE(S)     | Standard                                |               |                |       |       |        | Ξ.         | :                                       | :             | -  |
|                   | Max Uplift 2=-218 (L                          |                      | 5)       |                |                                         |               |                |       |       |        | = 7        |                                         | BER 🤆         | 1  |
| FORCES            | (lb) - Maximum Com                            |                      | ,        |                |                                         |               |                |       |       |        | - 7        | E-20001                                 | • [] [        | -  |
|                   | Tension                                       |                      |          |                |                                         |               |                |       |       |        | -          | A                                       |               |    |
| TOP CHORD         | 1-2=0/6, 2-3=-713/8                           | 7, 3-4=-3351/509,    |          |                |                                         |               |                |       |       |        | 1          | 100                                     | G             |    |
|                   | 4-5=-3210/523, 5-6=                           | ,                    |          |                |                                         |               |                |       |       |        |            | IN ONL                                  | LENN          |    |
|                   | 6-8=-2883/549, 8-9=                           | =-2873/557,          |          |                |                                         |               |                |       |       |        |            | 1111                                    | iiiii         |    |
| BOT CHORD         | 9-10=-1351/306<br>2-16=0/15, 3-15=-59         | 21/2109              |          |                |                                         |               |                |       |       |        |            |                                         | •             |    |
| BOT CHORD         | 13-15=-777/3955, 1                            | ,                    |          |                |                                         |               |                |       |       |        |            |                                         | IIIII.        |    |
|                   | 11-12=0/147, 8-12=                            | ,                    | 35       |                |                                         |               |                |       |       |        |            | IN IAN C                                | SARC !!!      |    |
| WEBS              | 3-16=0/66, 4-15=-1/                           |                      |          |                |                                         |               |                |       |       |        |            | 1 20                                    | ···· A        |    |
|                   | 5-13=0/173, 6-13=0                            | ,                    | ,        |                |                                         |               |                |       |       |        |            | CE                                      | NSED.         | 2  |
|                   | 10-12=-76/32, 9-12=                           | -599/3061            |          |                |                                         |               |                |       |       |        | -          | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) |               | -  |
| NOTES             |                                               |                      |          |                |                                         |               |                |       |       |        | =          | UAN CLICE                               |               | =  |
| 1) Wind: ASC      | CE 7-16; Vult=115mph                          | (3-second gust)      |          |                |                                         |               |                |       |       |        | -          | 169                                     | 952           | Ξ. |
|                   | nph; TCDL=6.0psf; BC                          |                      |          |                |                                         |               |                |       |       |        | -          | DI                                      | : œ           | -  |
|                   | Enclosed; MWFRS (er                           |                      |          |                |                                         |               |                |       |       |        | -          | P.                                      | <b>U</b> . 14 | 5  |
|                   | left and right exposed<br>sed; Lumber DOL=1.6 |                      |          |                |                                         |               |                |       |       |        |            | - Anter Han                             | SAS S         |    |
|                   | sed; Lumber DOL=1.6<br>dequate drainage to pr |                      |          |                |                                         |               |                |       |       |        |            | 1.50                                    | NGIN          |    |
|                   | are MT20 plates unles                         |                      |          |                |                                         |               |                |       |       |        |            | ON                                      | ALE           |    |
| o, / iii piates e | are mirze plates unles                        |                      | u.       |                |                                         |               |                |       |       |        |            | 111                                     | nnn.          |    |
|                   |                                               |                      |          |                |                                         |               |                |       |       |        |            | October                                 | r 27,2021     |    |

16023 Swingley Ridge Rd Chesterfield, MO 63017

| Job   | Truss | Truss Type      | Qty | Ply | Lot 117 RR               |           |
|-------|-------|-----------------|-----|-----|--------------------------|-----------|
| RR117 | D6    | Half Hip Girder | 1   | 3   | Job Reference (optional) | 148527909 |

Run: 8.43 E Jul 16 2021 Print: 8.430 E Jul 16 2021 MiTek Industries, Inc. Wed Oct 27 13:11:12 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-NI5IRXEZAD5Fg1sf9fcIRmC3PmnC3CFEYSSr3IyPMy0 Page: 1



#### Scale = 1:60.4

# Plate Offsets (X, Y): [2:0-2-11,0-2-8], [3:0-2-13,0-0-0], [4:0-6-0,0-2-6]

|                                                                                                     | A, T). [2.0-2-11,0-2-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | j, [3.0-2-13,0-0-0], [4<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .0-0-0,0-2                   | -0]                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                               |                                                                                                                                                                                                                                                |                              |                                                                                                       |                                                                                                                                                                        |                                                                                                                                     |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL                                                              | (psf)<br>25.0<br>10.0<br>0.0*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-0-0<br>1.15<br>1.15<br>NO  |                                                                                                                                                                                                                | CSI<br>TC<br>BC<br>WB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.95<br>0.56<br>0.46                                                                                                          | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                                                                                                                                                                                       | in<br>-0.44<br>-0.79<br>0.36 | 15-17<br>11                                                                                           | l/defl<br>>864<br>>480<br>n/a                                                                                                                                          | L/d<br>360<br>240<br>n/a                                                                                                            | PLATES<br>MT20                                                                                                                                                                                                                                                                     | <b>GRIP</b><br>197/144                                                                                                                                                                                                                                                                                                                 |
| BCDL                                                                                                | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IRC201                       | 8/TPI2014                                                                                                                                                                                                      | Matrix-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                               | Wind(LL)                                                                                                                                                                                                                                       | 0.27                         | 15-17                                                                                                 | >999                                                                                                                                                                   | 240                                                                                                                                 | Weight: 509 lb                                                                                                                                                                                                                                                                     | FI = 10%                                                                                                                                                                                                                                                                                                                               |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>WEDGE<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 2x4 SPF No.2 *Exce<br>2x6 SP 2400F 2.0E<br>SPF No.2<br>2x4 SPF No.2<br>Left: 2x3 SPF No.2<br>Structural wood she<br>6-0-0 oc purlins, exi<br>2-0-0 oc purlins (5-1<br>Rigid ceiling directly<br>bracing, Except:<br>6-0-0 oc bracing: 11<br>(lb/size) 2=2835/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Except* 9-12,20-21:<br>athing directly applie<br>cept end verticals, ar<br>0-15 max.): 4-10.<br>applied or 10-0-0 oc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2x4<br>N<br>1)<br>d or<br>nd | 3-ply truss to<br>(0.131*x3") n<br>Top chords c<br>staggered at<br>Bottom chorc<br>staggered at<br>Web connect<br>All loads are<br>except if note                                                              | 3-19=-52/712, $4-184-17=-58/2859, 5-15-15=0/547, 6-14=-549/547, 6-14=-549/547, 6-14=-549/5575, 10^{-1}4^{-1} be connected tog-iails as follows:connected as follows:0-9-0$ oc, $2x4 - 1$ r<br>$10^{-9}$ oc, $2x4 -$ | 7=-718,<br>-3161/20<br>0-13=-2<br>ether wi<br>vs: 2x6 -<br>ow at 0-<br>llows: 2<br>ow at 0-<br>- 1 row<br>y applie<br>ack (B) | <ul> <li>(192, 6-17=-8€</li> <li>(17, 8-14=-645, 92/4297</li> <li>th 10d</li> <li>2 rows</li> <li>9-0 oc.</li> <li>x6 - 2 rows</li> <li>9-0 oc.</li> <li>at 0-9-0 oc.</li> <li>at 0-9-0 oc.</li> <li>d to all plies, face in the LO</li> </ul> | /153,                        | or the<br>bott<br>12) Har<br>prov<br>lb d<br>at 8<br>dow<br>at 2<br>dow<br>at 2<br>dow<br>at 2<br>140 | ne orien<br>om choi<br>vided su<br>own and<br>3-6-0, 13<br>vn and 4<br>14-6-0, 1<br>vn and 3<br>20-6-0, 1<br>vn and 3<br>20-6-0, 1<br>vn and 3<br>26-6-0, a<br>lb dowr | tation of<br>rd.<br>or other<br>fficient<br>d 43 lb<br>30 lb do<br>2 lb up<br>14 lb up<br>14 lb up<br>14 lb up<br>and 10<br>m and 5 | of the purlin alon<br>r connection dev<br>to support conc<br>up at $6-5-4$ , $130$<br>own and $42$ lb up<br>to at $12-6-0$ , $130$<br>down and $34$ lb u<br>to at $18-6-0$ , $114$<br>down and $34$ lb u<br>to at $24-6-0$ , $107$<br>7 lb down and $33$<br>51 lb up at $30-6-107$ | es not depict the size<br>ig the top and/or<br>rice(s) shall be<br>sentrated load(s) 139<br>D lb down and 42 lb up<br>p at 10-6-0, 130 lb<br>lb down and 42 lb up<br>up at 16-6-0, 114 lb<br>lb down and 34 lb up<br>up at 22-6-0, 114 lb<br>lb down and 30 lb up<br>O lb up at 28-6-0, and<br>0 on top chord, and<br>4, 78 lb down at |
|                                                                                                     | Max Horiz 2=100 (LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |                                                                                                                                                                                                                | ction. Ply to ply cor<br>listribute only loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                               |                                                                                                                                                                                                                                                |                              |                                                                                                       |                                                                                                                                                                        |                                                                                                                                     |                                                                                                                                                                                                                                                                                    | down at 12-6-0, 87 lb                                                                                                                                                                                                                                                                                                                  |
| FORCES                                                                                              | Max Uplift 2=-208 (L<br>(lb) - Max. Comp./Ma<br>(lb) or less except w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ax. Ten All forces 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | unless other                                                                                                                                                                                                   | wise indicated.<br>roof live loads have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                               |                                                                                                                                                                                                                                                | •                            | 20-6                                                                                                  | 6-0, 87 I                                                                                                                                                              | b dowr                                                                                                                              | n at 22-6-0, 87 lt                                                                                                                                                                                                                                                                 | -6-0, 87 lb down at<br>b down at 24-6-0, 94<br>nd 94 lb down and 15                                                                                                                                                                                                                                                                    |
| TOP CHORD                                                                                           | 2-3=-1819/133, 3-4=<br>4-24=-11145/735, 2-<br>5-25=-11146/735, 5-<br>26-27=-11145/735, (<br>6-28=-8912/468, 7-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8839/707,<br>4-25=-11145/735,<br>-26=-11145/735,<br>6-27=-11145/735,<br>28=-8912/468,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4)                           | Wind: ASCE<br>Vasd=91mph<br>II; Exp C; En<br>and right exp                                                                                                                                                     | 7-16; Vult=115mp<br>n; TCDL=6.0psf; Bo<br>closed; MWFRS (e<br>bosed ; end vertical<br>=1.60 plate grip D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CDL=6.0<br>envelope<br>I left and                                                                                             | Dpsf; h=25ft; C<br>e); cantilever le<br>d right exposed                                                                                                                                                                                        | eft                          | cho<br>(s) i                                                                                          | rd. The<br>s the reater<br>ar applie                                                                                                                                   | desigr<br>sponsi<br>d to ply                                                                                                        | n/selection of suc<br>bility of others.<br>y: 1(Front)                                                                                                                                                                                                                             | t 30-6-0 on bottom<br>ch connection device                                                                                                                                                                                                                                                                                             |
|                                                                                                     | 7-29=-8912/468, 8-2<br>8-30=-8912/468, 9-<br>9-32=-3319/220, 10-<br>10-14=2820/200<br>3-169-732/8443108<br>34-35=-736/8551, 11-<br>16-17=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>14-39=-699/11907,<br>14-39=-699/11907,<br>14-39=-699/11907,<br>14-39=-699/11907,<br>14-39=-699/11907,<br>14-39=-699/11907,<br>14-39=-699/11907,<br>15-36=-699/11907,<br>14-39=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11907,<br>15-36=-699/11000,<br>15-36=-699/11000,<br>15-36=-699/11000,<br>15-36=-699/11000,<br>15-36=-699/11000,<br>15-36=-699/11000,<br>15-36=-699/11000,<br>15-36=-699/11000,<br>15-36=-699/11000,<br>15-36=-699/11000,<br>15-36=-699/11000,<br>15-36=-699/11000,<br>15-36=-699/1000,<br>15-36=-699/1000,<br>15-36=-600,<br>15-36=-600,<br>15-36=-600,<br>15-36=-60 | 31-99/2/468,<br>32-8312/468,<br>33=-8319/220<br>34=-736/8551,<br>735=-736/8551,<br>16-36=-699/11907,<br>38-99-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>38-39=-699/11907,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-40,<br>39-4 | 5)<br>6)<br>7)<br>8)<br>9)   | All plates are<br>This truss ha<br>chord live loa<br>* This truss h<br>on the botton<br>3-06-00 tall b<br>chord and an<br>Provide mecl<br>bearing plate<br>joint 11 and 2<br>)) This truss is<br>International | quate drainage to p<br>2x4 MT20 unless<br>is been designed fr<br>ad nonconcurrent v<br>nas been designed<br>in chord in all areas<br>by 2-00-00 wide will<br>y other members.<br>hanical connection<br>e capable of withsts<br>208 lb uplift at joint<br>designed in accord<br>Residential Code in<br>nd referenced stan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | otherwi<br>or a 10.0<br>vith any<br>for a liv<br>s where<br>Il fit betw<br>(by oth<br>anding 1<br>2.<br>dance w<br>sections   | se indicated.<br>D psf bottom<br>other live loac<br>e load of 20.0)<br>a rectangle<br>veen the botto<br>ers) of truss to<br>75 lb uplift at<br>ith the 2018<br>s R502.11.1 ar                                                                  | ds.<br>psf<br>m              |                                                                                                       |                                                                                                                                                                        | . annua.                                                                                                                            | PROCESSION                                                                                                                                                                                                                                                                         | GARCIA<br>952<br>VSAS<br>VAL ENGINE                                                                                                                                                                                                                                                                                                    |

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

**MiTek**<sup>®</sup> 16023 Swingley Ridge Rd Chesterfield, MO 63017

| Job   | Truss | Truss Type      | Qty | Ply | Lot 117 RR               |           |
|-------|-------|-----------------|-----|-----|--------------------------|-----------|
| RR117 | D6    | Half Hip Girder | 1   | 3   | Job Reference (optional) | 148527909 |

Run: 8,43 E Jul 16 2021 Print: 8,430 E Jul 16 2021 MiTek Industries. Inc. Wed Oct 27 13:11:12 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-NI5IRXEZAD5Fg1sf9fcIRmC3PmnC3CFEYSSr3IyPMy0 Page: 2

#### LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15
  - Uniform Loads (lb/ft)

Vert: 1-4=-70, 4-10=-70, 2-19=-20, 3-13=-20,

11-12=-20 Concentrated Loads (lb)

Soncentrated Loads (lb) Vert: 4=-116 (B), 7=-97 (B), 18=-524 (B), 17=-73 (B), 5=-116 (B), 24=-116 (B), 25=-116 (B), 26=-116 (B), 27=-97 (B), 28=-97 (B), 29=-97 (B), 30=-97 (B), 31=-91 (B), 32=-91 (B), 33=-126 (B), 34=-73 (B), 35=-73 (B), 36=-87 (B), 37=-87 (B), 38=-87 (B), 39=-87 (B), 40=-87 (B), 41=-94 (B), 42=-94 (B), 42=-58 (B)

43=-58 (B)



| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | E1    | Hip Girder | 1   | 1   | Job Reference (optional) | l48527910 |

0-1-6

2-2-3

2-0-13 2-0-13

2-2-3

Scale = 1:33.4

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:47:48 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

14-10-8

0-10-8

5

6

-0-10-8 3-5-4 10-6-12 14-0-0 0-10-8 3-5-4 3-5-4 7-1-8 Special Special NAILED NAILED NAILED 12 5 Г 5x5 = 5x5 = 3 4 φ 5 2-9-4 2-9-4 2 0-6-0 ç 4 ┢ 10 ΠΠ ΠΠ  $\mathbb{R}$  $\mathbb{R}$ 9 14 15 16 8 6x8 II 6x8 II 2x4 II 3x4 =Special NAILED NAILED NAILED Special 3-4-0 10-8-0 14-0-0 3-4-0 7-4-0 3-4-0 Plate Offsets (X, Y): [7:Edge,0-5-8]

|                                                                                                                                                                                                                                                          | X, 1). [7.Luge,0-5-0]                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                 |                                                           |                                 |                                       |                                 |                                 |                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------|---------------------------------------|---------------------------------|---------------------------------|----------------------------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                           | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                           | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-0-0<br>1.15<br>1.15<br>NO<br>IRC2018                                                                                            | 3/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                                                 | 0.90<br>0.90<br>0.09                                                                                                                                                                                                                                                       | Vert(CT)                                                                                                                                                                                                                                                                                                        | in<br>-0.15<br>-0.35<br>0.03<br>0.12                      | (loc)<br>8-9<br>8-9<br>7<br>8-9 | l/defl<br>>999<br>>471<br>n/a<br>>999 | L/d<br>360<br>240<br>n/a<br>240 | PLATES<br>MT20<br>Weight: 45 lb | <b>GRIP</b><br>197/144<br>FT = 10%                 |
| FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>NOTES<br>1) Unbalance<br>this design<br>2) Wind: ASC<br>Vasd=91m<br>II; Exp C; I<br>cantilever<br>right expos<br>3) Provide ac<br>4) This truss<br>chord live<br>5) * This truss<br>on the bot<br>3-06-00 ta | 2-0-0 oc purlins (4-7<br>Rigid ceiling directly<br>bracing.<br>(lb/size) 7=850/0-3<br>Max Horiz 10=17 (LC<br>Max Uplift 7=-179 (L<br>(lb) - Maximum Com<br>Tension<br>1-2=0/30, 2-3=-1341<br>4-5=-1322/261, 5-6=<br>5-7=-748/158<br>9-10=-212/1181, 8-5<br>7-8=-202/1156<br>3-9=0/269, 3-8=-46/ | ept* 10-2,7-5:2x6 SP<br>athing directly applie<br>cept end verticals, ar<br>'5 max.): 3-4.<br>applied or 10-0-0 or<br>3-8, 10=850/0-3-8<br>C 7)<br>C 5), 10=-178 (LC 4<br>pression/Maximum<br>1/265, 3-4=-1152/260<br>e0/30, 2-10=-743/15;<br>D=-220/1176,<br>21, 4-8=0/279<br>been considered for<br>(3-second gust)<br>DL=6.0psf; h=25ft; C<br>twelope) exterior zon<br>; end vertical left and<br>0 plate grip DOL=1.6<br>event water ponding<br>r a 10.0 psf bottom<br>ith any other live load<br>or a live load of 20.0<br>where a rectangle | 7)<br>8)<br>ed or<br>9)<br>10)<br>10)<br>10)<br>10)<br>10)<br>11)<br><b>LO</b><br>1)<br>Cat.<br>e;<br>d<br>500<br>-<br>ds.<br>psf | bearing plate<br>joint 10 and 1<br>This truss is d<br>International<br>R802.10.2 ar<br>Graphical pu<br>or the orienta<br>bottom chord<br>"NAILED" ind<br>(0.148"x3.25<br>) Hanger(s) or<br>provided suff<br>Ib down and<br>122 Ib up at<br>3-5-4, and 55<br>design/select<br>responsibility<br>) In the LOAD<br>of the truss a<br><b>AD CASE(S)</b><br>Dead + Rooc<br>Plate Increas<br>Uniform Loa<br>Vert: 1-2:<br>7-10=-20<br>Concentrate<br>Vert: 3=-6<br>11=-28 (F | ticates 3-10d (0.<br>") toe-nails per N<br>other connection<br>icient to support<br>122 lb up at 3-5<br>10-6-12 on top c<br>5 lb down at 10-1<br>ion of such conr<br>of others.<br>CASE(S) section<br>re noted as front<br>Standard<br>of Live (balanced<br>use=1.15<br>ads (lb/ft)<br>=-70, 2-3=-70, 3- | standing 1<br>nt 7.<br>ordance w<br>e sections<br>andard AN<br>on does no<br>along the<br>148"x3") of<br>19S guidil<br>n device(s<br>concentra<br>4, and 16<br>shord, and<br>5-0 on bol<br>ection de<br>n, loads a<br>; (F) or ba<br>): Lumber<br>4=-70, 4-1<br>, 9=-36 (F | 178 lb uplift a<br>ith the 2018<br>is R502.11.1 a<br>SI/TPI 1.<br>bt depict the se<br>a top and/or<br>or 3-12d<br>nes.<br>i) shall be<br>ated load(s) 1<br>33 lb down ar<br>at 55 lb down ar<br>ttom chord. T<br>vice(s) is the<br>pplied to the<br>ck (B).<br>f Increase=1.<br>5=-70, 5-6=-7<br>i), 8=-36 (F), | t<br>and<br>size<br>163<br>nd<br>at<br>The<br>face<br>15, |                                 |                                       |                                 | PROCESSION                      | CIA<br>BER<br>162101<br>ALENG<br>NSEO<br>952<br>44 |

- right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom 4)
- chord live load nonconcurrent with any other live loads. 5) \* This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



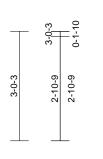
| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | E2    | Нір        | 1   | 1   | Job Reference (optional) | 148527911 |

5-5-4

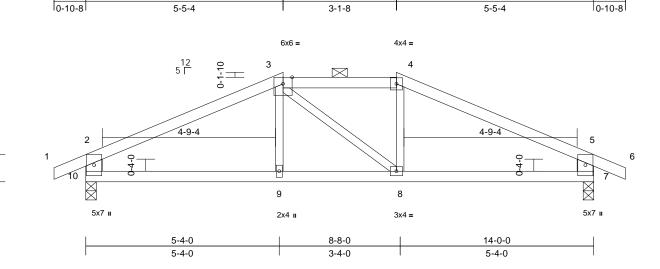
Wheeler Lumber, Waverly, KS - 66871,

-0-10-8

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:47:48 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


14-10-8

14-0-0


Page: 1

October 27,2021

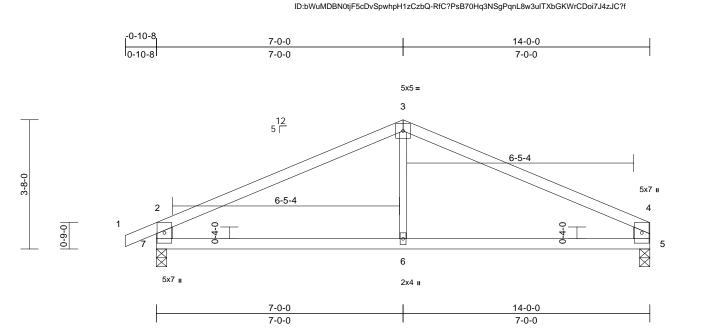
MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017



0-6-0



8-6-12


Scale = 1:31.8

| Loading                                       | (psf)                                                                | Spacing                                   | 2-0-0                                      | CSI                                                                                     |                                        | DEFL                                      | in    | (loc) | l/defl | L/d | PLATES        | GRIP      |
|-----------------------------------------------|----------------------------------------------------------------------|-------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------|-------|-------|--------|-----|---------------|-----------|
| TCLL (roof)                                   | 25.0                                                                 | Plate Grip DOL                            | 1.15                                       | тс                                                                                      | 0.58                                   | Vert(LL)                                  | -0.05 | 8-9   | >999   | 360 | MT20          | 197/144   |
| TCDL                                          | 10.0                                                                 | Lumber DOL                                | 1.15                                       | BC                                                                                      | 0.37                                   | Vert(CT)                                  | -0.10 | 8-9   | >999   | 240 |               |           |
| BCLL                                          | 0.0*                                                                 | Rep Stress Incr                           | YES                                        | WB                                                                                      | 0.05                                   | Horz(CT)                                  | 0.02  | 7     | n/a    | n/a |               |           |
| BCDL                                          | 10.0                                                                 | Code                                      | IRC2018/TPI2014                            | Matrix-S                                                                                |                                        | Wind(LL)                                  | 0.03  | 8-9   | >999   | 240 | Weight: 44 lb | FT = 10%  |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS      |                                                                      | ept* 10-2,7-5:2x6 SP                      | Internation<br>R802.10.2<br>F 8) Graphical | is designed in acco<br>al Residential Cod<br>and referenced sta<br>purlin representatio | le sections<br>andard AN<br>on does no | R502.11.1 a<br>SI/TPI 1.<br>ot depict the |       |       |        |     |               |           |
|                                               | No.2                                                                 |                                           |                                            | ntation of the purlin                                                                   | n along the                            | e top and/or                              |       |       |        |     |               |           |
| BRACING                                       |                                                                      |                                           | bottom cho                                 |                                                                                         |                                        |                                           |       |       |        |     |               |           |
| TOP CHORD                                     | Structural wood she<br>5-4-12 oc purlins, e<br>2-0-0 oc purlins (6-0 | xcept end verticals, a<br>0-0 max.): 3-4. | and                                        | <ol> <li>Standard</li> </ol>                                                            |                                        |                                           |       |       |        |     |               | 10        |
| BOT CHORD                                     | Rigid ceiling directly<br>bracing.                                   | applied or 10-0-0 oc                      |                                            |                                                                                         |                                        |                                           |       |       |        |     | N'OF          | MIS       |
| REACTIONS                                     | 0                                                                    | 3-8, 10=687/0-3-8                         |                                            |                                                                                         |                                        |                                           |       |       |        |     | NYE           |           |
|                                               | Max Horiz 10=27 (LO                                                  |                                           |                                            |                                                                                         |                                        |                                           |       |       |        | 5   | 74            |           |
|                                               | Max Uplift 7=-90 (LC                                                 |                                           |                                            |                                                                                         |                                        |                                           |       |       |        | -   | ∽. JU/        | AN :      |
| FORCES                                        | (lb) - Maximum Com<br>Tension                                        | pression/Maximum                          |                                            |                                                                                         |                                        |                                           |       |       |        | Ξ×  | GAR           |           |
| TOP CHORD                                     | 1-2=0/30, 2-3=-877/<br>4-5=-877/96, 5-6=0/<br>5-7=-612/128           |                                           |                                            |                                                                                         |                                        |                                           |       |       |        | PP  | NUM           | • [] [    |
| BOT CHORD                                     |                                                                      | 34/727, 7-8=-34/729                       |                                            |                                                                                         |                                        |                                           |       |       |        | -1  | E-2000        | 162101    |
| WEBS                                          | 3-9=0/152, 3-8=-107                                                  | 7/107, 4-8=0/152                          |                                            |                                                                                         |                                        |                                           |       |       |        | 1   | £             |           |
| NOTES                                         |                                                                      |                                           |                                            |                                                                                         |                                        |                                           |       |       |        |     | S/ON          | NI ENIN   |
| <ol> <li>Unbalance<br/>this design</li> </ol> | ed roof live loads have                                              | been considered for                       |                                            |                                                                                         |                                        |                                           |       |       |        |     | 1111          | Think     |
| 0                                             | <br>CE 7-16; Vult=115mph                                             | (3-second gust)                           |                                            |                                                                                         |                                        |                                           |       |       |        |     |               |           |
|                                               | nph; TCDL=6.0psf; BC                                                 |                                           | Cat.                                       |                                                                                         |                                        |                                           |       |       |        |     |               |           |
|                                               | Enclosed; MWFRS (er                                                  |                                           |                                            |                                                                                         |                                        |                                           |       |       |        |     | TICE<br>TICE  | SARCIA    |
|                                               | left and right exposed                                               |                                           |                                            |                                                                                         |                                        |                                           |       |       |        |     | N CE          | NSA       |
|                                               | sed; Lumber DOL=1.6                                                  |                                           |                                            |                                                                                         |                                        |                                           |       |       |        |     |               | 0         |
|                                               | dequate drainage to pr<br>has been designed fo                       |                                           |                                            |                                                                                         |                                        |                                           |       |       |        | -   | 1 J           | - A E     |
|                                               | load nonconcurrent w                                                 |                                           | le                                         |                                                                                         |                                        |                                           |       |       |        |     | 1.0           | 050       |
|                                               | s has been designed f                                                |                                           |                                            |                                                                                         |                                        |                                           |       |       |        | -   | 10            | 952 🛛 🗖   |
| ,                                             | tom chord in all areas                                               |                                           | p0.                                        |                                                                                         |                                        |                                           |       |       |        | -   | PT:           |           |
| 3-06-00 ta                                    | all by 2-00-00 wide will                                             | fit between the botto                     | m                                          |                                                                                         |                                        |                                           |       |       |        |     | 0             | 143       |
|                                               | any other members.                                                   |                                           |                                            |                                                                                         |                                        |                                           |       |       |        |     | A MAN         | ISA3      |
|                                               | echanical connection                                                 |                                           |                                            |                                                                                         |                                        |                                           |       |       |        |     | 1,00/0        | IN EN IN  |
|                                               | ate capable of withsta                                               | nding 90 lb uplift at jo                  | pint                                       |                                                                                         |                                        |                                           |       |       |        |     | 1111          | ALTIN     |
| 10 and 90                                     | lb uplift at joint 7.                                                |                                           |                                            |                                                                                         |                                        |                                           |       |       |        |     | Ostaha        | r 07 0001 |

| J | lob   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|---|-------|-------|------------|-----|-----|--------------------------|-----------|
| F | RR117 | E3    | Common     | 3   | 1   | Job Reference (optional) | 148527912 |

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:47:49

Wheeler Lumber, Waverly, KS - 66871,



| Scale = | 1:32.7 |
|---------|--------|
|---------|--------|

| Loading     | (psf) | Spacing         | 2-0-0           | csi      |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
|-------------|-------|-----------------|-----------------|----------|------|----------|-------|-------|--------|-----|---------------|----------|
| TCLL (roof) | 25.0  | Plate Grip DOL  | 1.15            | тс       | 0.65 | Vert(LL) | -0.05 | 6-7   | >999   | 360 | MT20          | 197/144  |
| TCDL        | 10.0  | Lumber DOL      | 1.15            | BC       | 0.36 | Vert(CT) | -0.11 | 6-7   | >999   | 240 |               |          |
| BCLL        | 0.0*  | Rep Stress Incr | YES             | WB       | 0.09 | Horz(CT) | 0.01  | 5     | n/a    | n/a |               |          |
| BCDL        | 10.0  | Code            | IRC2018/TPI2014 | Matrix-R |      | Wind(LL) | 0.03  | 6-7   | >999   | 240 | Weight: 38 lb | FT = 10% |

| LUM | BER | l |
|-----|-----|---|
|-----|-----|---|

| TOP CHORD | 2x4 SPF No.2     |
|-----------|------------------|
| BOT CHORD | 2x4 SPF No.2     |
| WEBS      | 2x6 SPF No.2 *Ex |

| VEBS 2x | SPF No.2 *Except* 6-3:2x3 SPF No.2 |
|---------|------------------------------------|
|---------|------------------------------------|

| BRACING |  |
|---------|--|
|         |  |

| Structural wood sheathing directly applied or        |
|------------------------------------------------------|
| 5-0-8 oc purlins, except end verticals.              |
| Rigid ceiling directly applied or 10-0-0 oc bracing. |
|                                                      |

| REACTIONS | (lb/size)  | 5=606/0-3-8, 7=690/0-3-8    |
|-----------|------------|-----------------------------|
|           | Max Horiz  | 7=47 (LC 8)                 |
|           | Max Uplift | 5=-77 (LC 9), 7=-103 (LC 8) |
| FORCES    | (lb) Mov   | imum Compression/Maximum    |

| FURCES    | (ib) - Maximum Compression/Maximum    |
|-----------|---------------------------------------|
|           | Tension                               |
| TOP CHORD | 1-2=0/30, 2-3=-820/104, 3-4=-815/102, |
|           | 2-7=-620/149, 4-5=-529/120            |
| BOT CHORD | 6-7=-38/662, 5-6=-38/662              |
| WEBS      | 3-6=0/276                             |

# WEBS

NOTES

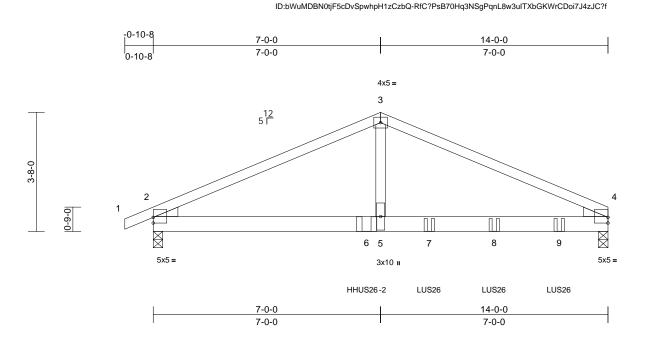
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3)
- chord live load nonconcurrent with any other live loads. \* This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 103 lb uplift at joint 7 and 77 lb uplift at joint 5.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Page: 1




| Job   | Truss | Truss Type    | Qty | Ply | Lot 117 RR               |           |
|-------|-------|---------------|-----|-----|--------------------------|-----------|
| RR117 | E4    | Common Girder | 1   | 2   | Job Reference (optional) | 148527913 |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:47:49

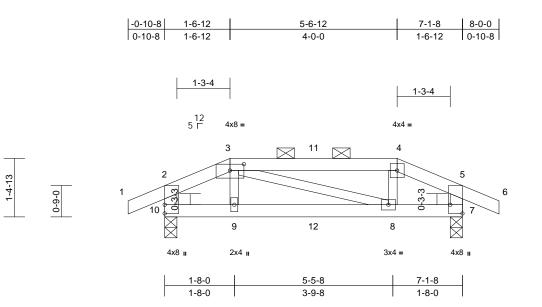
Page: 1

Wheeler Lumber, Waverly, KS - 66871,



#### Scale = 1:35.5 Plate Offsets (X, Y): [2:Edge,0-2-2], [4:Edge,0-2-2]

| TCLL (roof)                                                                                                                                         | psf)<br>25.0                                                                                                                                                                                                                                                                                                                                             | Spacing<br>Plate Grip DOL                                                                                                                                                                                                                                         | 2-0-0<br>1.15                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CSI<br>TC                       | 0.68                                                                                                                                                                                                                                                                                   | DEFL<br>Vert(LL)                                                                                                                                                                                                                                                                                                                                             | in<br>-0.08                                                                                             | (loc)<br>4-5 | l/defl<br>>999 | L/d<br>360 | PLATES<br>MT20 | <b>GRIP</b><br>197/144                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------|----------------|------------|----------------|-------------------------------------------------|
| TCDL<br>BCLL                                                                                                                                        | 10.0<br>0.0*                                                                                                                                                                                                                                                                                                                                             | Lumber DOL<br>Rep Stress Incr                                                                                                                                                                                                                                     | 1.15<br>NO                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BC<br>WB                        | 0.39<br>0.25                                                                                                                                                                                                                                                                           | Vert(CT)<br>Horz(CT)                                                                                                                                                                                                                                                                                                                                         | -0.13<br>0.01                                                                                           | 4-5<br>4     | >999<br>n/a    | 240<br>n/a |                |                                                 |
|                                                                                                                                                     | 10.0                                                                                                                                                                                                                                                                                                                                                     | Code                                                                                                                                                                                                                                                              |                                                         | 3/TPI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Matrix-S                        | 0.20                                                                                                                                                                                                                                                                                   | Wind(LL)                                                                                                                                                                                                                                                                                                                                                     | 0.04                                                                                                    | 4-5          | >999           | 240        | Weight: 113 lb | FT = 10%                                        |
| 6-0-0 oc purli<br>BOT CHORD Rigid ceiling<br>bracing.<br>REACTIONS (Ib/size) 2=<br>Max Horiz 2=<br>Max Uplift 2=<br>FORCES (Ib) - Maximu<br>Tension | <ul> <li>- 2.0E</li> <li>No.3</li> <li>No.3</li> <li>od she</li> <li>ns.</li> <li>directly</li> <li>1549/0</li> <li>1549/0</li> <li>58 (LC</li> <li>173 (L</li> <li>173 (L</li> <li>-3025/</li> <li>0, 4-5=</li> <li>follows</li> <li>as foll</li> <li>as foll</li> <li>s: 2x4 -</li> <li>qually</li> <li>or bar</li> <li>loads</li> <li>Joad</li> </ul> | C 8), 4=-193 (LC 9)<br>pression/Maximum<br>274, 3-4=-3013/272<br>193/2630<br>ther with 10d<br>s: 2x4 - 1 row at 0-9-0<br>ows: 2x6 - 2 rows<br>1 row at 0-9-0 oc.<br>applied to all plies,<br>ck (B) face in the LOA<br>tections have been<br>noted as (F) or (B), | 5)<br>d or 6)<br>7)<br>8)<br>9)<br>10<br>11<br>LC<br>1) | Vasd=91mph<br>II; Exp C; En<br>cantilever lef<br>right exposed<br>This truss ha<br>chord live loa<br>* This truss ha<br>chord live loa<br>* This truss ha<br>on the botton<br>3-06-00 tall b<br>chord and an<br>Provide med<br>bearing plate<br>joint 4 and 17<br>This truss is<br>International<br>R802.10.2 ar<br>Use Simpsor<br>4-10d Truss)<br>connect truss<br>Use Simpsor<br>Truss) or equ<br>8-6-0 from th<br>back face of<br>Fill all nail ho<br>Dead + Roo<br>Plate Increa<br>Uniform Loa<br>Vert: 1-3<br>Concentrate | of Live (balanced):<br>ise=1.15 | CDL=6.<br>enveloped<br>() end ()<br>60 plate<br>for a 10.<br>with any<br>d for a liv<br>s where<br>ill fit betw<br>h (by oth<br>anding 1<br>2.<br>dance w<br>sections<br>ndard AN<br>S26-2 (1<br>5-6-13 fro<br>of bottoo<br>26 (4-10c<br>2-0-0 oc<br>0 to con<br>is in cor<br>: Lumber | Opsf; h=25ft;<br>e) exterior zo<br>vertical left ar<br>grip DOL=1<br>) psf bottom<br>other live loz<br>e load of 20.<br>a rectangle<br>veen the bott<br>ers) of truss<br>93 lb uplift a<br>ith the 2018<br>is R502.11.1 a<br>USI/TPI 1.<br>4-10d Girder<br>m the left en<br>n chord.<br>d Girder, 3-10<br>c max. startin<br>nect truss(es<br>ntact with lurr | ne;<br>nd<br>.60<br>ads.<br>Opsf<br>om<br>to<br>t<br>and<br>d<br>to<br>y<br>g at<br>) to<br>ber.<br>15, |              |                |            | UCE            | CIA<br>BER<br>62101<br>ALENGA<br>ALENGA<br>NSEO |


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



October 27,2021

| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | G1    | Hip Girder | 1   | 1   | Job Reference (optional) | 148527914 |

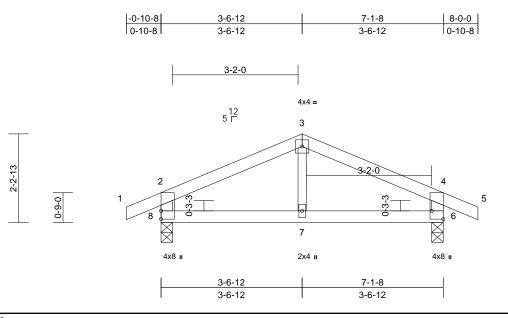
Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:47:50 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



### Plate Offsets (X, Y): [3:0-4-0,0-1-13], [7:Edge,0-3-8]

| ,                                                                                                                                             |                            |                      |       |                    |                                          |             |                 |       |       |        |      | -             | -                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------|-------|--------------------|------------------------------------------|-------------|-----------------|-------|-------|--------|------|---------------|--------------------|
| Loading                                                                                                                                       | (psf)                      | Spacing              | 2-0-0 |                    | csi                                      |             | DEFL            | in    | (loc) | l/defl | L/d  | PLATES        | GRIP               |
| TCLL (roof)                                                                                                                                   | 25.0                       | Plate Grip DOL       | 1.15  |                    | тс                                       | 0.27        | Vert(LL)        | -0.02 | 8-9   | >999   | 360  | MT20          | 197/144            |
| TCDL                                                                                                                                          | 10.0                       | Lumber DOL           | 1.15  |                    | BC                                       | 0.22        | Vert(CT)        | -0.03 | 8-9   | >999   | 240  |               |                    |
| BCLL                                                                                                                                          | 0.0*                       | Rep Stress Incr      | NO    |                    | WB                                       | 0.03        | Horz(CT)        | 0.00  | 7     | n/a    | n/a  |               |                    |
| BCDL                                                                                                                                          | 10.0                       | Code                 | IRC20 | 18/TPI2014         | Matrix-S                                 |             | Wind(LL)        | 0.01  | 8-9   | >999   | 240  | Weight: 24 lb | FT = 10%           |
| UMBER                                                                                                                                         |                            |                      | e     | ) Provide med      | chanical connecti                        | on (by oth  | ers) of truss t | 0     |       |        |      |               |                    |
| OP CHORD                                                                                                                                      | 2x4 SPF No.2               |                      |       |                    | e capable of with                        |             |                 |       |       |        |      |               |                    |
| OT CHORD                                                                                                                                      | 2x4 SPF No.2               |                      |       | joint 10 and       | 100 lb uplift at joi                     | int 7.      |                 |       |       |        |      |               |                    |
| VEBS                                                                                                                                          | 2x3 SPF No.2 *Exce         | ept* 10-2,7-5:2x4 SP | PF 7  |                    | designed in acco                         |             |                 |       |       |        |      |               |                    |
|                                                                                                                                               | No.2                       |                      |       |                    | Residential Cod                          |             |                 | nd    |       |        |      |               |                    |
| BRACING                                                                                                                                       |                            |                      |       |                    | ind referenced sta                       |             |                 |       |       |        |      |               |                    |
| TOP CHORD Structural wood sheathing directly applied or<br>6-0-0 oc purlins, except end verticals, and<br>2-0-0 oc purlins (6-0-0 max.): 3-4. |                            |                      |       |                    | urlin representation ation of the purlin |             |                 | lize  |       |        |      |               |                    |
|                                                                                                                                               |                            |                      | nd    | bottom chor        |                                          | i along the |                 |       |       |        |      |               | 1117               |
| OT CHORD                                                                                                                                      | Rigid ceiling directly     |                      |       | r other connection | n device(s                               | ) shall be  |                 |       |       |        | N'OF | MISSI         |                    |
| SOT CHORD                                                                                                                                     | bracing.                   | applied of 10-0-0 of |       |                    | fficient to support                      |             |                 | 7 lb  |       |        | 3    | NXE           |                    |
| REACTIONS                                                                                                                                     | 0                          | 3-8, 10=375/0-3-8    |       |                    | 2 lb up at 1-6-12                        |             |                 |       |       |        | ~    | 74            |                    |
|                                                                                                                                               | Max Horiz 10=17 (L         | ,                    |       |                    | 2, and 57 lb down                        |             |                 |       |       |        |      | JU,           | AN                 |
|                                                                                                                                               | Max Uplift 7=-100 (L       | ,                    | l)    |                    | nd 6 lb down and<br>3 lb up at 3-6-12    |             |                 |       |       |        | 24   | GAF           |                    |
| FORCES                                                                                                                                        | (lb) - Maximum Con         | pression/Maximum     | ,     |                    | on bottom chord.                         |             |                 |       |       |        | - *  |               | 17 <u>-</u>        |
|                                                                                                                                               | Tension                    |                      |       |                    | ction device(s) is                       |             | 0               |       |       |        | -    | ÷             | :~ T               |
| OP CHORD                                                                                                                                      | 1-2=0/27, 2-3=-367/        |                      | 1     |                    | CASE(S) section                          |             |                 |       |       |        | = 7  | NUM           | BER :              |
|                                                                                                                                               | 4-5=-367/94, 5-6=0/        | 27, 2-10=-307/86,    |       | of the truss       | are noted as from                        | t (F) or ba | ck (B).         |       |       |        |      | C: E-2000     | 162101             |
|                                                                                                                                               | 5-7=-307/85                |                      | _ L   | OAD CASE(S)        | Standard                                 |             |                 |       |       |        | 1    |               |                    |
| BOT CHORD                                                                                                                                     | 9-10=-64/299, 8-9=-        |                      | 9 1   | ) Dead + Ro        | of Live (balanced                        | d): Lumber  | Increase=1.     | 15,   |       |        |      | 1. So         |                    |
| VEBS                                                                                                                                          | 3-9=-30/89, 3-8=-8/8       | 8, 4-8=-32/89        |       | Plate Incre        |                                          |             |                 |       |       |        |      | IN ON         | ALEIN              |
| IOTES                                                                                                                                         |                            |                      |       | Uniform Lo         |                                          |             |                 |       |       |        |      | - 1111        | 111 <sup>1</sup> . |
|                                                                                                                                               | ed roof live loads have    | been considered fo   | r     |                    | 2=-70, 2-3=-70, 3·                       | -4=-70, 4-  | 5=-70, 5-6=-7   | 0,    |       |        |      |               | 110.               |
| this design                                                                                                                                   | 1.<br>CE 7-16; Vult=115mph | (2 cocond quet)      |       | 7-10=-20           |                                          |             |                 |       |       |        |      | , initia      |                    |
|                                                                                                                                               |                            |                      | Cat   |                    | ted Loads (lb)                           | -2 (E)      |                 |       |       |        |      | NAU           | GARCIN             |
| Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.                                                                                            |                            |                      |       | vent 9=            | 3 (F), 8=3 (F), 12                       | .=3 (٢)     |                 |       |       |        |      | N 50          | No                 |

- II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding. 3) 4)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 20.0psf 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.




Page: 1

**MiTe**k<sup>®</sup> 16023 Swingley Ridge Rd Chesterfield, MO 63017

| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |  |
|-------|-------|------------|-----|-----|--------------------------|-----------|--|
| RR117 | G2    | Common     | 2   | 1   | Job Reference (optional) | 148527915 |  |

#### Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Oct 26 12:47:51 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



Scale = 1:29.1

Plate Offsets (X, Y): [6:Edge,0-3-8]

|             |       |                 |                 |          | -    | · · · ·  |       |       |        |     | i             |          |
|-------------|-------|-----------------|-----------------|----------|------|----------|-------|-------|--------|-----|---------------|----------|
| Loading     | (psf) | Spacing         | 2-0-0           | CSI      |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL (roof) | 25.0  | Plate Grip DOL  | 1.15            | TC       | 0.21 | Vert(LL) | -0.01 | 7     | >999   | 360 | MT20          | 197/144  |
| TCDL        | 10.0  | Lumber DOL      | 1.15            | BC       | 0.14 | Vert(CT) | -0.02 | 7     | >999   | 240 |               |          |
| BCLL        | 0.0*  | Rep Stress Incr | YES             | WB       | 0.04 | Horz(CT) | 0.00  | 6     | n/a    | n/a |               |          |
| BCDL        | 10.0  | Code            | IRC2018/TPI2014 | Matrix-R |      | Wind(LL) | 0.00  | 7-8   | >999   | 240 | Weight: 21 lb | FT = 10% |

- LUMBER
- TOP CHORD
- 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 2x4 SPF No.2 \*Except\* 7-3:2x3 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.
- REACTIONS (lb/size) 6=379/0-3-8, 8=379/0-3-8 Max Horiz 8=-15 (LC 13) Max Uplift 6=-63 (LC 9), 8=-63 (LC 8) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/27, 2-3=-333/49, 3-4=-333/48, 4-5=0/27, 2-8=-328/85, 4-6=-328/85 7-8=-4/254, 6-7=-4/254
- BOT CHORD WEBS 3-7=0/123

# NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 63 lb uplift at joint 8 and 63 lb uplift at joint 6.

- 6) This truss is designed in accordance with the 2018
  - International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

MIS Wint PRUM JUAN GARCIA NUMBER F -2000162101 C 3 E ONAL 1111 DCtober 27,202 JGIT October 27,2021

1111

0

Page: 1



| Job                             | Truss                | Truss Type     | Qty          | Ply                                             | Lot 117 RR               |           |
|---------------------------------|----------------------|----------------|--------------|-------------------------------------------------|--------------------------|-----------|
| RR117                           | H1                   | Hip Girder     | 1            | 1                                               | Job Reference (optional) | 148527916 |
| Wheeler Lumber, Waverly, KS - 6 | Run: 8.43 S Oct 11 2 | 021 Print: 8.4 | 430 S Oct 11 | 2021 MiTek Industries, Inc. Tue Oct 26 12:47:51 | Page: 1                  |           |

3-0-3

Loading

TCDL

BCLL

TCLL (roof)

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Oct 26 12:47:51 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-10-8 5-5-4 10-0-0 14-6-12 20-0-0 4-6-12 5-5-4 5-5-4 4-6-12 0-10-8 NAILED NAILED NAILED NAILED NAILED NAILED NAILED 6x6 = 2x4 ı 6x6 = 12 5 Г 3 15 5 12 13 4 14 0-1-6 φ  $\bowtie$  $\sim$  $\times$ 2 ℣ℙℿ ПТ ΠГ 2-10-13 2-10-13 8x8 👟 6 0-6-0 ПП ΠΓ 10 16 17 9 18 19 8 8x8 -5x6 = 3x10 =5x6 = NAILED NAILED NAILED NAILED Special NAILED Special 10-0-0 20-0-0 5-4-0 14-8-0 5-4-0 4-8-0 4-8-0 5-4-0 Scale = 1:42.3 Plate Offsets (X, Y): [6:0-3-12,0-2-12], [8:0-2-8,0-2-8], [10:0-2-8,0-2-8], [11:0-3-12,0-2-12] PLATES Spacing 2-0-0 CSI DEFL in (loc) l/defl L/d GRIP (psf) Plate Grip DOL 25.0 1.15 тс 0.87 Vert(LL) -0.15 8-9 >999 360 MT20 197/144 10.0 Lumber DOL 1.15 BC 0.88 Vert(CT) -0.28 8-9 >831 240

| BCDL                                     |                                             | 10.0                       | Code                                                              | IRC2018    | 3/TPI2014                                                      |
|------------------------------------------|---------------------------------------------|----------------------------|-------------------------------------------------------------------|------------|----------------------------------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS | 2x4 SPF I<br>2x4 SPF I<br>2x3 SPF I<br>No.2 | No.2                       | ot* 11-2,7-6:2x6 SPI                                              | 5)<br>F 6) | * This tru<br>on the bo<br>3-06-00 t<br>chord an<br>Refer to o |
| BRACING<br>TOP CHORD                     | Structural<br>2-7-4 oc p                    | ourlins, exc               | athing directly applie<br>ept end verticals, ar<br>·8 max.): 3-5. | 7)<br>d or | Provide r<br>bearing p<br>joint 11 a<br>This truss             |
| BOT CHORD                                |                                             |                            | applied or 10-0-0 oc                                              |            | Internatio<br>R802.10.                                         |
| REACTIONS                                | Max Horiz                                   | 11=1743/0<br>11=24 (LC     |                                                                   | 9)         | Graphica<br>or the ori<br>bottom cl<br>) "NAILED               |
| FORCES                                   |                                             |                            | pression/Maximum                                                  |            | (0.148"x3)<br>Hanger(s)                                        |
| TOP CHORD                                | 1-2=0/30,<br>4-5=-3582                      | 2/397, 5-6=                | /345, 3-4=-3582/397<br>-3121/343,<br>=-1594/184                   | <b>7</b> , | provided<br>lb down a<br>lb up at<br>of such c                 |
| BOT CHORD                                |                                             | 07/602, 9-1<br>2813, 7-8=  | 0=-294/2800,<br>-61/478                                           | 12         | others.<br>) In the LO                                         |
| WEBS                                     | 3-10=0/33                                   | 33, 3-9=-81<br>60, 5-8=0/3 | /968, 4-9=-695/180,<br>325, 2-10=-233/2271                        |            | of the true<br>OAD CASE<br>Dead +                              |
| NOTES<br>1) Unbalance                    | ed roof live l                              | oads have                  | been considered for                                               | ,          | Plate In<br>Uniform                                            |
|                                          |                                             |                            |                                                                   |            |                                                                |

0.0

Rep Stress Incr

NO

- this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding. 3)
- This truss has been designed for a 10.0 psf bottom 4) chord live load nonconcurrent with any other live loads.

s truss has been designed for a live load of 20.0psf e bottom chord in all areas where a rectangle -00 tall by 2-00-00 wide will fit between the bottom d and any other members.

0.81

Horz(CT)

Wind(LL)

0.05

0.10

7

9 >999

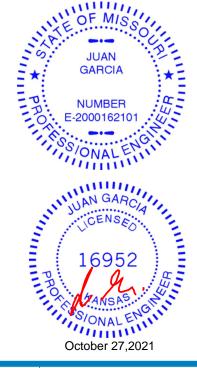
n/a n/a

240

Weight: 71 lb

FT = 10%

to girder(s) for truss to truss connections.


WB

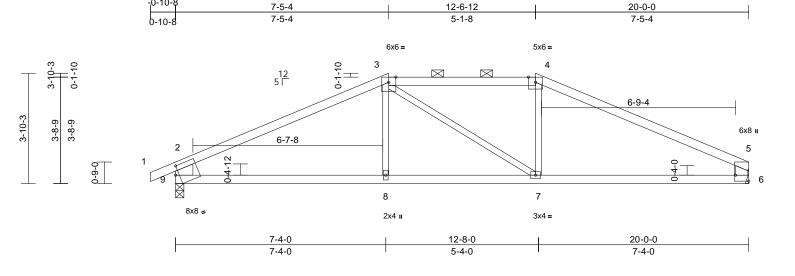
Matrix-S

- ide mechanical connection (by others) of truss to ing plate capable of withstanding 176 lb uplift at 11 and 160 lb uplift at joint 7.
- truss is designed in accordance with the 2018 national Residential Code sections R502.11.1 and 10.2 and referenced standard ANSI/TPI 1.
- hical purlin representation does not depict the size e orientation of the purlin along the top and/or m chord.
- LED" indicates 3-10d (0.148"x3") or 3-12d 8"x3.25") toe-nails per NDS guidlines.
- ger(s) or other connection device(s) shall be ded sufficient to support concentrated load(s) 344 wn and 77 lb up at 5-5-4, and 344 lb down and 77 at 14-6-0 on bottom chord. The design/selection ch connection device(s) is the responsibility of
- e LOAD CASE(S) section, loads applied to the face e truss are noted as front (F) or back (B).
- ASE(S) Standard
  - d + Roof Live (balanced): Lumber Increase=1.15, te Increase=1.15 iform Loads (lb/ft)

Vert: 1-2=-70, 2-3=-70, 3-5=-70, 5-6=-70, 7-11=-20 Concentrated Loads (lb)

Vert: 3=-94 (F), 5=-94 (F), 10=-344 (F), 9=-44 (F), 4=-94 (F), 8=-344 (F), 12=-94 (F), 13=-94 (F), 14=-94 (F), 15=-94 (F), 16=-44 (F), 17=-44 (F), 18=-44 (F), 19=-44 (F)






| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | H2    | Hip        | 1   | 1   | Job Reference (optional) | 148527917 |

-0-10-8

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:47:52 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



Scale = 1:40.2

## Plate Offsets (X, Y): [5:Edge,0-5-8], [9:0-1-8,0-3-9]

|                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                    | [0.0 1 0,0 0 0]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                             |                                                                                       |                       |                                                                   |                                                                             |                              |                          |                               |                          |                |                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------|--------------------------|-------------------------------|--------------------------|----------------|------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL                                                                                                                                                                                                                              | (psf)<br>25.0<br>10.0<br>0.0*                                                                                                                                                                                                                                                                                                                                                                      | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2-0-0<br>1.15<br>1.15<br>YES                                                                                |                                                                                       | CSI<br>TC<br>BC<br>WB | 0.99<br>0.71<br>0.15                                              | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)                                    | in<br>-0.15<br>-0.28<br>0.04 | (loc)<br>7-8<br>7-8<br>6 | l/defl<br>>999<br>>848<br>n/a | L/d<br>360<br>240<br>n/a | PLATES<br>MT20 | <b>GRIP</b><br>197/144 |
| BCDL                                                                                                                                                                                                                                                                | 10.0                                                                                                                                                                                                                                                                                                                                                                                               | Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IRC2018/                                                                                                    | /TPI2014                                                                              | Matrix-S              | 0.10                                                              | Wind(LL)                                                                    | 0.06                         | 7-8                      | >999                          | 240                      | Weight: 61 lb  | FT = 10%               |
| FORCES<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>NOTES<br>1) Unbalance<br>this desigr<br>2) Wind: ASC<br>Vasd=91n<br>II; Exp C; I<br>and right e<br>Lumber DU<br>3) Provide ac<br>4) This truss<br>chord live<br>5) * This trus<br>on the bot<br>3-06-00 ta<br>chord and | 2x4 SPF No.2<br>2x3 SPF No.2 *Exce<br>6-5:2x6 SP 2400F 2.<br>Structural wood she<br>except end verticals<br>(4-10-5 max.): 3-4.<br>Rigid ceiling directly<br>bracing.<br>(lb/size) 6=874/ Mr<br>Max Horiz 9=28 (LC<br>Max Uplift 9=-16 (LC<br>(lb) - Maximum Com<br>Tension<br>1-2=0/32, 2-3=-1374<br>4-5=-1368/18, 2-9=-<br>8-9=0/1162, 7-8=0/1<br>3-8=0/237, 3-7=-158<br>ed roof live loads have | athing directly applie<br>and 2-0-0 oc purlins<br>applied or 10-0-0 oc<br>echanical, 9=961/0-3<br>10)<br>: 4)<br>pression/Maximum<br>1/21, 3-4=-1163/35,<br>872/61, 5-6=-765/48<br>158, 6-7=0/1166<br>1/165, 4-7=0/221<br>been considered for<br>(3-second gust)<br>DL=6.0psf; h=25ft; C<br>velope); cantilever le<br>left and right exposed<br>u=1.60<br>event water ponding<br>r a 10.0 psf bottom<br>th any other live load<br>or a live load of 20.0<br>where a rectangle<br>fit between the botto | 8)<br>d, 9)<br>5<br><b>LO</b><br>-8<br>-8<br>-8<br>-8<br>-8<br>-8<br>-8<br>-8<br>-8<br>-8<br>-8<br>-8<br>-8 | bearing plate<br>9.<br>This truss is<br>International<br>R802.10.2 ar<br>Graphical pu |                       | standing 1<br>ordance wi<br>e sections<br>andard AN<br>on does no | 6 lb uplift at<br>th the 2018<br>R502.11.1 a<br>ISI/TPI 1.<br>ot depict the | joint<br>and                 |                          |                               |                          | PROTICE        | BER<br>162101          |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

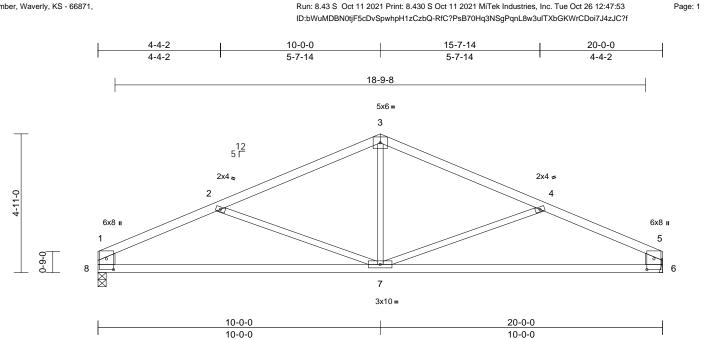


October 27,2021

| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | НЗ    | Нір        | 1   | 1   | Job Reference (optional) | 148527918 |

#### Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:47:52 Page: 1 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 10-6-12 9-5-4 3-7-2 16-4-14 20-0-0 1-1-8 5-10-2 3-7-2 5-10-2 3-7-2 18-9-8 6x6 = 5x6 = 0-1-10 H 3 4 12 5 Г 2x4 🕿 2x4 = 4-8-3 4-6-9 4-6-9 2 5 $\square$ 6x8 II 6x8 II 1 6 0-6-0 10 7 9 8 4x8 = 3x4 = 10-8-0 1-4-0 20-0-0 9-4-0 9-4-0 9-4-0

Scale = 1:44.3


#### Plate Offsets (X, Y): [1:0-4-10,0-3-0], [6:0-4-10,0-3-0]

| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                   | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2                                     | CSI<br>TC<br>BC<br>WB<br>014 Matrix-S                                                                                                                                                                                           | 0.98<br>0.68<br>0.24                                                                | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Wind(LL)                            | in<br>-0.17<br>-0.34<br>0.04<br>0.08 | (loc)<br>8-9<br>7-8<br>7<br>8-9 | l/defl<br>>999<br>>680<br>n/a<br>>999 | L/d<br>360<br>240<br>n/a<br>240 | PLATES<br>MT20<br>Weight: 70 lb | <b>GRIP</b><br>197/144<br>FT = 10% |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------|---------------------------------|---------------------------------------|---------------------------------|---------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2x4 SPF No.2<br>2x4 SPF No.2<br>2x3 SPF No.2 *Exce<br>Structural wood she<br>except end verticals<br>(5-4-1 max.): 3-4.<br>Rigid ceiling directly                                                                                                                                                                                                                                       | athing directly applie<br>, and 2-0-0 oc purlin                           | bear<br>10 a<br>DSS 8) This<br>Inter<br>ed, R80<br>s 9) Grap<br>or th<br>c botto | ide mechanical conne-<br>ing plate capable of wi<br>nd 10 lb uplift at joint 7<br>truss is designed in ac<br>national Residential C<br>2.10.2 and referenced<br>bical purlin represent<br>e orientation of the pur<br>om chord. | ithstanding 1<br>7.<br>ccordance wi<br>ode sections<br>standard AN<br>ation does no | 0 lb uplift at j<br>th the 2018<br>R502.11.1 a<br>ISI/TPI 1.<br>ot depict the s | oint                                 |                                 |                                       |                                 | 1111                            | Mich                               |
| bracing.<br>REACTIONS (lb/size) 7=873/ Mechanical, 10=873/0-3-8<br>Max Horiz 10=26 (LC 10)<br>Max Uplift 7=-10 (LC 9), 10=-10 (LC 8)<br>LOAD CASE(S) Standard                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                           |                                                                                  |                                                                                                                                                                                                                                 |                                                                                     |                                                                                 |                                      |                                 |                                       |                                 | AN AN                           |                                    |
| FORCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (lb) - Maximum Com<br>Tension<br>1-2=-1414/77, 2-3=-                                                                                                                                                                                                                                                                                                                                    | pression/Maximum                                                          | 26                                                                               |                                                                                                                                                                                                                                 |                                                                                     |                                                                                 |                                      |                                 |                                       | Ē*                              | . GAR                           | CIA *                              |
| BOT CHORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4-5=-1160/4, 5-6=-1-<br>6-7=-762/57<br>9-10=-75/1214, 8-9=                                                                                                                                                                                                                                                                                                                              | 414/77, 1-10=-763/5                                                       | 57,                                                                              |                                                                                                                                                                                                                                 |                                                                                     |                                                                                 |                                      |                                 |                                       | PHU                             | NUM<br>E-2000                   | • 41.                              |
| WEBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2-9=-258/133, 3-9=-<br>4-8=0/206, 5-8=-259                                                                                                                                                                                                                                                                                                                                              | 25/269, 4-9=-163/17                                                       |                                                                                  |                                                                                                                                                                                                                                 |                                                                                     |                                                                                 |                                      |                                 |                                       | 1                               | SSION                           | ALENGIII                           |
| , this desigr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                           | r                                                                                |                                                                                                                                                                                                                                 |                                                                                     |                                                                                 |                                      |                                 |                                       |                                 |                                 |                                    |
| <ul> <li>1) Orbital accert root live loads have been considered for this design.</li> <li>2) Wind: ASCE 7-16; Vult=115mph (3-second gust)<br/>Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.<br/>II; Exp C; Enclosed; MWFRS (envelope); cantilever left<br/>and right exposed ; end vertical left and right exposed;<br/>Lumber DOL=1.60 plate grip DOL=1.60</li> <li>3) Provide adequate drainage to prevent water ponding.</li> <li>4) This truss has been designed for a 10.0 psf bottom<br/>chord live load nonconcurrent with any other live loads.</li> <li>16952 m</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                           |                                                                                  |                                                                                                                                                                                                                                 |                                                                                     |                                                                                 |                                      |                                 |                                       |                                 |                                 |                                    |
| <ul> <li>4) This truss chord live</li> <li>5) * This trus on the both</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Provide adequate drainage to prevent water ponding.</li> <li>This truss has been designed for a 10.0 psf bottom<br/>chord live load nonconcurrent with any other live loads.</li> <li>* This truss has been designed for a live load of 20.0psf<br/>on the bottom chord in all areas where a rectangle<br/>3-06-00 tall by 2-00-00 wide will fit between the bottom</li> </ul> |                                                                           |                                                                                  |                                                                                                                                                                                                                                 |                                                                                     |                                                                                 |                                      |                                 |                                       |                                 |                                 |                                    |
| chord and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | any other members.<br>irder(s) for truss to trus                                                                                                                                                                                                                                                                                                                                        |                                                                           |                                                                                  |                                                                                                                                                                                                                                 |                                                                                     |                                                                                 |                                      |                                 |                                       |                                 | SSION                           | ALENGIN                            |

#### 4 mm October 27,2021



| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | H4    | Common     | 4   | 1   | Job Reference (optional) | 148527919 |



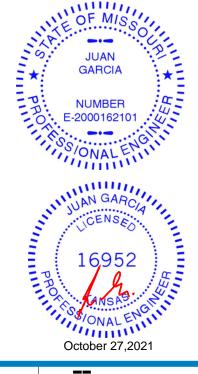
#### Plate Offsets (X, Y): [1:0-4-10.0-3-0]. [5:0-4-10.0-3-0]

|             |       | ,[]             |                 |          |      |          |       |       |        |     |               |          |
|-------------|-------|-----------------|-----------------|----------|------|----------|-------|-------|--------|-----|---------------|----------|
| Loading     | (psf) | Spacing         | 2-0-0           | CSI      |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL (roof) | 25.0  | Plate Grip DOL  | 1.15            | TC       | 0.81 | Vert(LL) | -0.19 | 7     | >999   | 360 | MT20          | 197/144  |
| TCDL        | 10.0  | Lumber DOL      | 1.15            | BC       | 0.74 | Vert(CT) | -0.37 | 6-7   | >628   | 240 |               |          |
| BCLL        | 0.0*  | Rep Stress Incr | YES             | WB       | 0.31 | Horz(CT) | 0.04  | 6     | n/a    | n/a |               |          |
| BCDL        | 10.0  | Code            | IRC2018/TPI2014 | Matrix-S |      | Wind(LL) | 0.08  | 7     | >999   | 240 | Weight: 64 lb | FT = 10% |

- LUMBER
- TOP CHORD
- 2x4 SPF No.2
- BOT CHORD 2x4 SPF No.2 2x3 SPF No.2 \*Except\* 8-1,6-5:2x8 SP DSS WEBS
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and

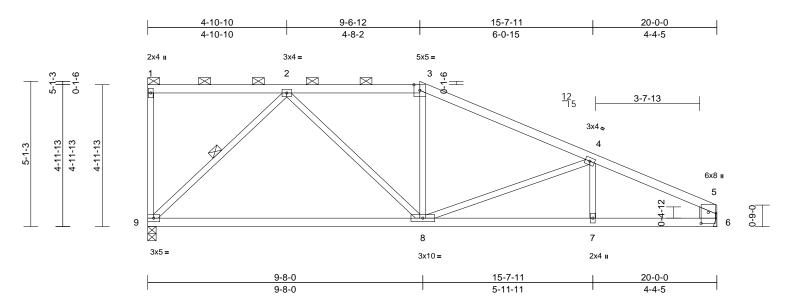
R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


| BRACING   |             |                                    |
|-----------|-------------|------------------------------------|
| TOP CHORD |             | wood sheathing directly applied or |
|           | 3-3-5 oc p  | ourlins, except end verticals.     |
| BOT CHORD | Rigid ceili | ing directly applied or 10-0-0 oc  |
|           | bracing.    |                                    |
| REACTIONS | (lb/size)   | 6=873/ Mechanical, 8=873/0-3-8     |
|           | Max Horiz   | 8=29 (LC 8)                        |
|           | Max Uplift  | 6=-12 (LC 9), 8=-12 (LC 8)         |
| FORCES    | (lb) - Max  | imum Compression/Maximum           |
|           | Tension     |                                    |

TOP CHORD 1-2=-1414/76, 2-3=-1103/14, 3-4=-1103/14, 4-5=-1414/77, 1-8=-758/60, 5-6=-758/60

BOT CHORD 7-8=-72/1216, 6-7=-43/1216 WEBS 3-7=0/434, 4-7=-331/139, 2-7=-331/139


#### NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom 3)
- chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 5)
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 12 lb uplift at joint 8 and 12 lb uplift at joint 6.



| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | H5    | Half Hip   | 1   | 1   | Job Reference (optional) | 148527920 |

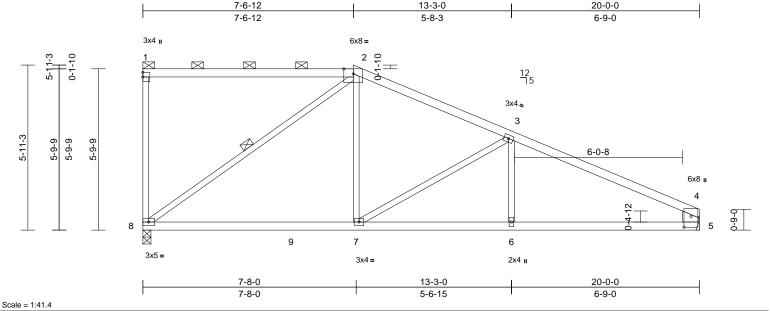
Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:47:54 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



Scale = 1:40.5

Plate Offsets (X, Y): [5:0-4-10,0-3-0]

| Leading<br>TCLL (roof)     (pat)<br>(pat)     Spacing<br>Plates Grp Dol.<br>(pat)     Spacing<br>Plates Grp Dol.<br>(pat)     2-0-0<br>(pat)     CSi<br>TC     CSi<br>TC     CSi<br>TC     Display<br>(pat)     Display<br>(pat)     Plates<br>(pat)     Plates<br>(pat)     GRIP<br>(pat)       UMBER<br>FOC CORD     0.00<br>(pat)     Pates Grp Dol.<br>(pat)     1:5<br>(pat)     TC     0.00<br>(pat)     Plates Grp Dol.<br>(pat)     1:00<br>(pat)     1:00<br>(p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                          | (,,, ,). [0.0 1 10]0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                    |                                                                                                                                                                             |                                                              |                                                                                                       |                    |          |       |              |                              |                                         |               |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------|----------|-------|--------------|------------------------------|-----------------------------------------|---------------|----------|
| TCDL       10.0       Imper DoL       1.15       BC       0.67       Ver(CT)       0.41       8-9       559       240         BCDL       10.0       Rep Stress for YES       MarkovS       0.41       Horz(CT)       0.02       6       na       ná                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Loading                                                                                                                                                                                                                                                                                                                                                  | (psf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Spacing                                                                                                                                              | 2-0-0                                                                                                                                                                       |                                                              | CSI                                                                                                   |                    | DEFL     | in    | (loc)        | l/defl                       | L/d                                     | PLATES        | GRIP     |
| TCDL       0.0       Lumber DOL       1.15       BC       0.67       Ver(CT)       0.41       8-9       >569       240         BCDL       10.0       Code       Rep Stress for YES       Matrix-S       0.41       Ver(CT)       0.44       8-9       >569       240         BCDL       10.0       Code       Rep Stress for YES       Matrix-S       0.41       Ver(CT)       0.44       8-9       >569       240         LUMBER       Code       10.0       Code       7       Provide mechanical connection (ty others) to bearing plate capable of vitrus to bearing plate capable of vitrus and capable of vitrus and capable of vitrus to bearing plate capable of vitrus to bearing vitrus to the capable of vitrus to the capable vitrus vitr                                                                                                                                                                                                                                                                                                                                                                                                                                               | TCLL (roof)                                                                                                                                                                                                                                                                                                                                              | 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Plate Grip DOL                                                                                                                                       | 1.15                                                                                                                                                                        |                                                              | тс                                                                                                    | 0.60               | Vert(LL) | -0.20 | 8-9          | >999                         | 360                                     | MT20          | 197/144  |
| BCDL     10.0     Code     IRC2018/TPI2014     Matrix-S     Wind(LL)     0.06     7.8     >999     240     Weight: 7.2 is     FT = 10%       LUMBER<br>TOP CHORD     2x4 SPF No.2     Except 6-5:2x8 SP DSS     Partial connection (by others) of truss to<br>bearing plate capable of withstanding 43 is upfit at joint 9<br>and 12 is upfit at joint 6.     7)     Provide mechanical connection (by others) of truss to<br>bearing plate capable of withstanding 43 is upfit at joint 9<br>and 12 is upfit at joint 6.     7)     Provide mechanical connection (by others) of truss to<br>bearing plate capable of withstanding 43 is upfit at joint 9<br>and 12 is upfit at joint 6.     7)     Provide mechanical connection (by others) of truss to<br>bearing plate capable of withstanding 43 is upfit at joint 9<br>and 12 is upfit at joint 6.     7)     Provide mechanical connection (by others) of truss to<br>bearing plate capable of withstanding 43 is upfit at joint 9<br>and 12 is upfit at joint 6.     7)     Provide mechanical connection (by others) of truss to<br>bearing plate of the others and dat NSI/TPI 1.     1)     This truss has bear head plate the plate of the plate of the plate of the others and the others an                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                             |                                                              | BC                                                                                                    | 0.67               |          | -0.41 |              |                              |                                         |               |          |
| BCDL     10.0     Code     IRC2018/TPI2014     Matrix-S     Wind(LL)     0.06     7.8     >999     240     Weight: 7.2 is     FT = 10%       LUMBER<br>TOP CHORD     2x4 SPF No.2     Except 6-5:2x8 SP DSS     Partial connection (by others) of truss to<br>bearing plate capable of withstanding 43 is upfit at joint 9<br>and 12 is upfit at joint 6.     7)     Provide mechanical connection (by others) of truss to<br>bearing plate capable of withstanding 43 is upfit at joint 9<br>and 12 is upfit at joint 6.     7)     Provide mechanical connection (by others) of truss to<br>bearing plate capable of withstanding 43 is upfit at joint 9<br>and 12 is upfit at joint 6.     7)     Provide mechanical connection (by others) of truss to<br>bearing plate capable of withstanding 43 is upfit at joint 9<br>and 12 is upfit at joint 6.     7)     Provide mechanical connection (by others) of truss to<br>bearing plate capable of withstanding 43 is upfit at joint 9<br>and 12 is upfit at joint 6.     7)     Provide mechanical connection (by others) of truss to<br>bearing plate of the others and dat NSI/TPI 1.     1)     This truss has bear head plate the plate of the plate of the plate of the others and the others an                                                                                                                                                                                                                                                    | BCLL                                                                                                                                                                                                                                                                                                                                                     | 0.0*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rep Stress Incr                                                                                                                                      | YES                                                                                                                                                                         |                                                              | WB                                                                                                    | 0.41               | Horz(CT) | 0.02  | 6            | n/a                          | n/a                                     |               |          |
| <ul> <li>TOP CHORD 2x4 SPF No.2</li> <li>Bort CHORD 2x4 SPF No.2 "Except" 6-5:2x8 SP DSS</li> <li>BRACING</li> <li>TOP CHORD Structural wood sheathing directly applied or 40-012 op putine, except end verticals, and 40-12 op putine, except end verticals, and 20-00 op putine (5-89 max); 1-3.</li> <li>BOT CHORD Rijd ceiling directly applied or 10-0-00 bracing.</li> <li>WEBS 1 Row at midpt 2-9</li> <li>REACTIONS (Disize) 6-862/Mechanical, 9-882/0-3-8 Max Hoirs 9156 (CL 4)</li> <li>Max Upitif 6-12 (CL 9), 943 (CL 4)</li> <li>FORCES (b) - Maximum Compression/Maximum Tension</li> <li>TOP CHORD 1-9-14/136, 1-2-66/39, 2-3-9-979/34, 3-4-5-1136/29, 4-5-8-13/02, 0-7-13/1230</li> <li>MOTES</li> <li>1) Unbalanced roof live loads have been considered for this design.</li> <li>2) Wind: ASCE 7-16; Vull-115mp (3-second gust) Vasd-91mph; TODL=60, 05; fb:Cl.a. 6, 05; fb</li></ul> |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |                                                                                                                                                                             | PI2014                                                       |                                                                                                       | -                  | · · ·    |       |              |                              |                                         | Weight: 72 lb | FT = 10% |
| chord and any other members.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>WEBS<br>REACTIONS<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>BOT CHORD<br>WEBS<br>NOTES<br>1) Unbalance<br>this desigr<br>2) Wind: ASC<br>Vasd=91n<br>II; Exp C;<br>and right e<br>Lumber D<br>3) Provide ac<br>4) This truss<br>chord live<br>5) * This trus<br>on the bot | 2x4 SPF No.2<br>2x4 SPF 2100F 1.8E<br>2x3 SPF No.2 *Exce<br>Structural wood she<br>4-0-12 oc purlins, e<br>2-0-0 oc purlins, e<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(Ib/size) 6=882/ M<br>Max Horiz 9=-155 (L<br>Max Uplift 6=-12 (LC<br>(Ib) - Maximum Com<br>Tension<br>1-9=-141/35, 1-2=-6<br>3-4=-1135/23, 4-5=-<br>8-9=-2/687, 7-8=-13<br>2-9=-944/90, 2-8=0/<br>4-8=-270/104, 4-7=-<br>ed roof live loads have<br>n.<br>CE 7-16; Vult=115mph<br>nph; TCDL=6.0psf; BC<br>Enclosed; AWFRS (er<br>Enclosed; end vertical I<br>OL=1.60 plate grip DC<br>dequate drainage to pr<br>has been designed foi<br>load nonconcurrent wi<br>shas been designed foi | Provide mech<br>pearing plate<br>9 and 12 lb u<br>This truss is o<br>nternational<br>R802.10.2 ar<br>Graphical pu<br>for the orienta<br>pottom chord | hanical connection<br>capable of withs<br>plift at joint 6.<br>designed in acco<br>Residential Code<br>nd referenced sta<br>rlin representatio<br>titon of the purlin<br>I. | tanding 4<br>rdance wi<br>sections<br>indard AN<br>n does no | ers) of truss t<br>3 lb uplift at j<br>ith the 2018<br>5 R502.11.1 a<br>ISI/TPI 1.<br>ot depict the s | to<br>joint<br>and | 7-8      |       | 111 * Philip | JUA<br>GAR<br>NUMI<br>SS/ON/ | MISSOUD<br>CIA<br>BER<br>62101<br>ALENG |               |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ss connections.                                                                                                                                      |                                                                                                                                                                             |                                                              |                                                                                                       |                    |          |       |              |                              |                                         |               |          |


MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

October 27,2021

| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | H6    | Half Hip   | 1   | 1   | Job Reference (optional) | 148527921 |

#### Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:47:55 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

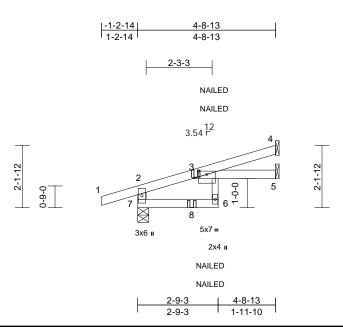
Page: 1



#### Plate Offsets (X, Y): [2:0-4-2.Edge], [4:0-4-10.0-3-0]

| Plate Olisets (                                                                                    | (X, Y): [2:0-4-2,Edge],                                                                                                                                                                                                                  | [4:0-4-10,0-3-0]                                                                                                                                     |                                      |                                                                                                                                                        | -        |                                                                                 |                                                                                              |               |          |             |            |                 |          |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------|----------|-------------|------------|-----------------|----------|
| Loading                                                                                            | (psf)                                                                                                                                                                                                                                    | Spacing                                                                                                                                              | 2-0-0                                |                                                                                                                                                        | CSI      |                                                                                 | DEFL                                                                                         | in            | (loc)    | l/defl      | L/d        | PLATES          | GRIP     |
| TCLL (roof)<br>TCDL                                                                                | 25.0                                                                                                                                                                                                                                     | Plate Grip DOL                                                                                                                                       | 1.15                                 |                                                                                                                                                        | TC<br>BC | 0.90                                                                            | Vert(LL)                                                                                     | -0.15         | 6-7      | >999        | 360        | MT20            | 197/144  |
| BCLL                                                                                               | 10.0<br>0.0*                                                                                                                                                                                                                             | Lumber DOL<br>Rep Stress Incr                                                                                                                        | 1.15<br>YES                          |                                                                                                                                                        | WB       | 0.91<br>0.82                                                                    | Vert(CT)<br>Horz(CT)                                                                         | -0.26<br>0.03 | 7-8<br>5 | >888<br>n/a | 240<br>n/a |                 |          |
| BCLL<br>BCDL                                                                                       | 10.0                                                                                                                                                                                                                                     | Code                                                                                                                                                 |                                      | 8/TPI2014                                                                                                                                              | Matrix-S | 0.02                                                                            | Wind(LL)                                                                                     | 0.03          | 6-7      | >999        | 240        | Weight: 72 lb   | FT = 10% |
|                                                                                                    | 1010                                                                                                                                                                                                                                     | 0000                                                                                                                                                 |                                      | 0,1112011                                                                                                                                              |          |                                                                                 |                                                                                              | 0.00          |          |             | 2.0        | 110igitti 12 io | 1070     |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>REACTIONS | 2x4 SPF No.2<br>2x3 SPF No.2 *Exce<br>Structural wood she<br>3-11-0 oc purlins, e<br>2-0-0 oc purlins (3-9<br>Rigid ceiling directly<br>bracing.<br>1 Row at midpt<br>(lb/size) 5=882/ M/<br>Max Horiz 8=-182 (L<br>Max Uplift 5=-18 (LC | athing directly applie<br>xcept end verticals,<br>-12 max.): 1-2.<br>applied or 10-0-0 o<br>2-8<br>echanical, 8=882/0-<br>C 4)<br>2 9), 8=-41 (LC 4) | 7)<br>S 8)<br>ed or<br>and 9)<br>c L | <ul> <li>Provide med<br/>bearing plat</li> <li>8 and 18 lb</li> <li>This truss is<br/>Internationa<br/>R802.10.2 a</li> <li>Graphical point</li> </ul> |          | on (by oth<br>standing 4<br>ordance w<br>le sections<br>andard AN<br>on does no | ers) of truss<br>1 lb uplift at<br>th the 2018<br>R502.11.1 a<br>ISI/TPI 1.<br>ot depict the | joint<br>and  |          |             |            | S. JU<br>GAF    |          |
| ORCES                                                                                              | Max Grav 5=918 (LC<br>(lb) - Maximum Com<br>Tension                                                                                                                                                                                      |                                                                                                                                                      |                                      |                                                                                                                                                        |          |                                                                                 |                                                                                              |               |          |             | EP         | NUM             |          |
| TOP CHORD                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                      |                                      |                                                                                                                                                        |          |                                                                                 |                                                                                              |               |          |             |            | E-2000          | • []].   |
| BOT CHORD<br>WEBS                                                                                  |                                                                                                                                                                                                                                          | 240, 5-6=0/1240                                                                                                                                      |                                      |                                                                                                                                                        |          |                                                                                 |                                                                                              |               |          |             |            | SSION           | ALENGII  |
| NOTES                                                                                              |                                                                                                                                                                                                                                          |                                                                                                                                                      |                                      |                                                                                                                                                        |          |                                                                                 |                                                                                              |               |          |             |            |                 | 10.5     |
| <ol> <li>Unbalance<br/>this design</li> </ol>                                                      |                                                                                                                                                                                                                                          | r                                                                                                                                                    |                                      |                                                                                                                                                        |          |                                                                                 |                                                                                              |               |          |             | 1111AN     | GARC            |          |
| Vasd=91n<br>II; Exp C;<br>and right e<br>Lumber D<br>3) Provide ad                                 | CE 7-16; Vult=115mph<br>nph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>exposed ; end vertical I<br>iOL=1.60 plate grip DO<br>dequate drainage to pr<br>has been designed for                                                             | DL=6.0psf; h=25ft; (<br>hvelope); cantilever<br>left and right expose<br>DL=1.60<br>event water ponding                                              | left<br>ed;                          |                                                                                                                                                        |          |                                                                                 |                                                                                              |               |          |             | MILLI.     | UCE             | 952      |

- 4)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. \* This truss has been designed for a live load of 20.0psf 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



ANSAS ONAL ENGINE

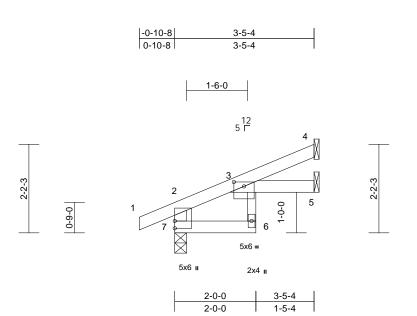
| Job   | Truss | Truss Type          | Qty | Ply | Lot 117 RR               |           |
|-------|-------|---------------------|-----|-----|--------------------------|-----------|
| RR117 | J1    | Diagonal Hip Girder | 2   | 1   | Job Reference (optional) | 148527922 |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:47:56 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



Scale = 1:39.6 Plate Offsets (X, Y): [3:0-3-8.0-1-6]

| Plate Offsets (X, Y): [3:0-3-8,0-1-6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                            |                                                |                                          |                      |                                                      |                                      |                      |                                       |                                 |                                 |                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------|----------------------|------------------------------------------------------|--------------------------------------|----------------------|---------------------------------------|---------------------------------|---------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                      | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                         | 2-0-0<br>1.15<br>1.15<br>NO<br>IRC2018/TPI2014 | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-R | 0.40<br>0.28<br>0.00 | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Wind(LL) | in<br>-0.04<br>-0.09<br>0.04<br>0.05 | (loc)<br>6<br>5<br>6 | l/defl<br>>999<br>>615<br>n/a<br>>999 | L/d<br>360<br>240<br>n/a<br>240 | PLATES<br>MT20<br>Weight: 14 lb | <b>GRIP</b><br>197/144<br>FT = 10% |
| BCDL       10.0       Code       IRC2018/TPI2014       Matrix-R       Wind(LL)       0.05       6       >999       240       Weight: 14 lb       FT = 10%         LUMBER<br>TOP CHORD       2x4 SPF No.2       Except* 6-3:2x3 SPF No.2       Structural wood sheathing directly applied or 60-00 cordinates 3:100 (0.148'x3) or 2:12d (0.148'x3) or 2:12d (0.148'x3.25') toe-nails per NDS guidlines.       6)       This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.       7)       "NALED" indicates 3:100 (0.148'x3) or 2:12d (0.148'x3) or 2:12d (0.148'x3.25') toe-nails per NDS guidlines.       6)       In the LOAD CASE(S) Scion.loads applied to the face of the truss are noted as front (F) or back (B).         BOT CHORD       REACTIONS       (Ib/size)       4=122/ Mechanical, 5=72/ Mechanical, 7=319/0-4-9 Max Horiz 7=68 (LC 4), T==68 (LC 4), T==58 (LC 1), Sets (LC 2), T==58 (LC 1), Sets (LC 2), T==58 (LC 2), T==50 (LC 1), Sets (LC 2), T==56 (LC 2), T==50 (LC 1), Sets (LC 2), T==56 (LC 2), T==50 (LC 1), Sets (LC 2), Sets (LC 2), T==50 (LC 2), Sets (L |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                            |                                                |                                          |                      |                                                      |                                      |                      |                                       |                                 |                                 |                                    |
| <ul> <li>right exposition</li> <li>2) This truss chord live chord live on the bot 3-06-00 ta chord and</li> <li>4) Refer to gi</li> <li>5) Provide m bearing place</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | left and right exposed<br>sed; Lumber DOL=1.6<br>has been designed for<br>load nonconcurrent w<br>is has been designed<br>tom chord in all areas<br>ill by 2-00-00 wide will<br>any other members.<br>irder(s) for truss to tru-<br>echanical connection<br>ate capable of withsta<br>b uplift at joint 4. | 30 plate grip DOL=1.6<br>or a 10.0 psf bottom<br><i>i</i> th any other live load<br>for a live load of 20.0<br>where a rectangle<br>I fit between the botto<br>uss connections.<br>(by others) of truss to | 60<br>Js.<br>psf<br>m                          |                                          |                      |                                                      |                                      |                      |                                       | WITHIN .                        | PROFILE                         | 952<br>WSA9<br>NAL ENGINE          |



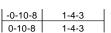

| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | J2    | Jack-Open  | 7   | 1   | Job Reference (optional) | 148527923 |

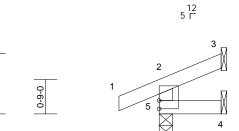
Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:47:57 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

October 27,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017




Scale = 1:28.4


Plate Offsets (X, Y): [3:0-3-0,0-1-5]

| 1 1410 0110010 (                                                                                                                  | (,,, ,). [e:e e e;e : e]                                                                                                                                                                                                               |                                                                                                                                                  |                       |                                                                                                  |             |                  |             |            |                |            |                |                        |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------|-------------|------------------|-------------|------------|----------------|------------|----------------|------------------------|
| Loading<br>TCLL (roof)                                                                                                            | (psf)<br>25.0                                                                                                                                                                                                                          | Spacing<br>Plate Grip DOL                                                                                                                        | 2-0-0<br>1.15         | CSI<br>TC                                                                                        | 0.17        | DEFL<br>Vert(LL) | in<br>-0.01 | (loc)<br>6 | l/defl<br>>999 | L/d<br>360 | PLATES<br>MT20 | <b>GRIP</b><br>197/144 |
| TCDL                                                                                                                              | 10.0                                                                                                                                                                                                                                   | Lumber DOL                                                                                                                                       | 1.15                  | BC                                                                                               | 0.13        | Vert(CT)         | -0.02       | 6          | >999           | 240        |                |                        |
| BCLL                                                                                                                              | 0.0*                                                                                                                                                                                                                                   | Rep Stress Incr                                                                                                                                  | YES                   | WB                                                                                               | 0.00        | · · ·            | 0.01        | 5          | n/a            | n/a        |                | <b>FT</b> 400/         |
| BCDL                                                                                                                              | 10.0                                                                                                                                                                                                                                   | Code                                                                                                                                             | IRC2018/TPI2014       | Matrix-R                                                                                         |             | Wind(LL)         | 0.02        | 6          | >999           | 240        | Weight: 11 lb  | FT = 10%               |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS                                        | 2x4 SPF No.2 *Exce<br>2x4 SPF No.2<br>Structural wood she<br>3-5-4 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>(Ib/size) 4=87/ Me<br>Mechanic<br>Max Horiz 7=63 (LC<br>Max Uplift 4=-38 (LC<br>(LC 8)<br>Max Grav 4=87 (LC | eathing directly applie<br>ccept end verticals.<br>/ applied or 6-0-0 oc<br>hchanical, 5=52/<br>cal, 7=234/0-3-8<br>8)<br>C 8), 5=-3 (LC 8), 7=- | 2 R802.10<br>LOAD CAS | ss is designed in acc<br>onal Residential Cod<br>1.2 and referenced st<br>E( <b>S</b> ) Standard | de sections | R502.11.1 a      | and         |            |                |            | JU/<br>GAR     |                        |
| FORCES                                                                                                                            | (LC 1)<br>(Ib) - Maximum Con                                                                                                                                                                                                           | npression/Maximum                                                                                                                                |                       |                                                                                                  |             |                  |             |            |                | =          | NUM            | BER A                  |
|                                                                                                                                   | Tension                                                                                                                                                                                                                                | -                                                                                                                                                |                       |                                                                                                  |             |                  |             |            |                |            | E-20001        | 162101                 |
| TOP CHORD<br>BOT CHORD                                                                                                            | 2-7=-223/53, 1-2=0/<br>6-7=-16/0, 3-6=0/47                                                                                                                                                                                             |                                                                                                                                                  | 24/28                 |                                                                                                  |             |                  |             |            |                | 1          | - · ·          |                        |
| NOTES                                                                                                                             | 0-7=-10/0, 3-0=0/47                                                                                                                                                                                                                    | , 3-5=0/0                                                                                                                                        |                       |                                                                                                  |             |                  |             |            |                |            | 1.SSION        | ENGIN                  |
| Vasd=91n<br>II; Exp C;<br>cantilever<br>right expo                                                                                | CE 7-16; Vult=115mph<br>nph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>left and right exposed<br>sed; Lumber DOL=1.6                                                                                                                   | CDL=6.0psf; h=25ft; (<br>nvelope) exterior zor<br>; end vertical left and<br>60 plate grip DOL=1.6                                               | ne;<br>d              |                                                                                                  |             |                  |             |            |                |            | IN JUAN        | GARCIA II              |
|                                                                                                                                   | has been designed fo<br>load nonconcurrent w                                                                                                                                                                                           |                                                                                                                                                  | ds                    |                                                                                                  |             |                  |             |            |                |            | CE             | NSED                   |
| <ol> <li>This trus<br/>on the bot<br/>3-06-00 ta<br/>chord and</li> <li>Refer to gi</li> <li>Provide m<br/>bearing pla</li> </ol> | is has been designed if<br>atom chord in all areas<br>all by 2-00-00 wide will<br>any other members.<br>irder(s) for truss to tru<br>bechanical connection<br>ate capable of withsta<br>blift at joint 4 and 3 lb to                   | for a live load of 20.0<br>where a rectangle<br>fit between the botto<br>uss connections.<br>(by others) of truss to<br>nding 30 lb uplift at jo | psf<br>om<br>o        |                                                                                                  |             |                  |             |            |                | THINK.     | PRO 16         | 952                    |
|                                                                                                                                   |                                                                                                                                                                                                                                        |                                                                                                                                                  |                       |                                                                                                  |             |                  |             |            |                |            | · · · · · · ·  | 11111                  |

| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | J3    | Jack-Open  | 12  | 1   | Job Reference (optional) | 148527924 |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:47:57 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1





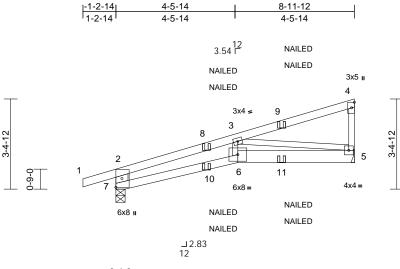
1-3-12

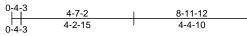


5x6 🛛

1-4-3

Scale = 1:25.1


| TCLL (roof)       25.0       Plate Grip DOL       1.15       TC       0.07       Vert(LL)       0.00       4-5       >999       3         TCDL       10.0       Lumber DOL       1.15       BC       0.02       Vert(CT)       0.00       4-5       >999       3         BCL       0.0*       Rep Stress Incr       YES       WB       0.00       Horz(CT)       0.00       3       n/a       i         BCDL       10.0       Code       IRC2018/TPI2014       Matrix-R       Wind(LL)       0.00       4-5       >999       2         LUMBER       10.0       Code       IRC2018/TPI2014       Matrix-R       Wind(LL)       0.00       4-5       >999       2         LUMBER       10.0       Code       IRC2018/TPI2014       Matrix-R       Wind(LL)       0.00       4-5       >999       2         LUMBER       TOP CHORD       2x4 SPF No.2       WES       2x4 SPF No.2       WES       2x4 SPF No.2         BOT CHORD       Structural wood sheathing directly applied or       1-4-3 oc purins, except end verticals.       BOT CHORD       807 CHORD       807 CHORD       319/ Mechanical, 4=4/       Machanical, 5=156/0-3-8       Max Horiz 5=33 (LC 5)       Max Horiz 5=33 (LC 1), 4=20 (LC 3), 5=156 |                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PLATES         GRIP           MT20         197/144           40         Veight: 5 lb         FT = 10%                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |  |
| Mechanical, 5=156/0-3-8<br>Max Horiz 5=33 (LC 5)<br>Max Uplift 3=-17 (LC 8), 5=-36 (LC 4)<br>Max Grav 3=19 (LC 1), 4=20 (LC 3), 5=156<br>(LC 1)<br>FORCES (lb) - Maximum Compression/Maximum<br>Tension<br>TOP CHORD 2-5=-136/46, 1-2=0/27, 2-3=-25/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TOP CHORD       2x4 SPF No.2         BOT CHORD       2x4 SPF No.2         WEBS       2x4 SPF No.2         BRACING       Structural wood sheathing directly applied or 1-4-3 oc purlins, except end verticals.         BOT CHORD       Rigid ceiling directly applied or 10-0 oc bracing.         REACTIONS       (lb/size)       3=19/ Mechanical, 4=4/ |  |  |  |  |  |  |  |  |  |  |
| Tension<br>TOP CHORD 2-5=-136/46, 1-2=0/27, 2-3=-25/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JUAN<br>GABCIA                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |
| Max Grav     3=19 (LC 1), 4=20 (LC 3), 5=156<br>(LC 1)       FORCES     (Ib) - Maximum Compression/Maximum<br>Tension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |  |




| Job   | Truss | Truss Type          | Qty | Ply | Lot 117 RR               |           |
|-------|-------|---------------------|-----|-----|--------------------------|-----------|
| RR117 | J4    | Diagonal Hip Girder | 1   | 1   | Job Reference (optional) | 148527925 |

#### Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:47:58 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





Scale = 1:43.4

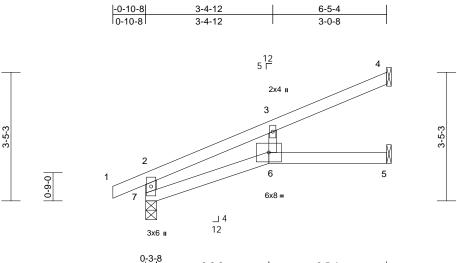
| Loading                                                          | (psf)                                                                                   | Spacing              | 2-0-0                                                      | CSI                                                                                                                                                                          |                                                                           | DEFL                                                           | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------|-------|-------|--------|-----|---------------|----------|
| TCLL (roof)                                                      | 25.0                                                                                    | Plate Grip DOL       | 1.15                                                       | TC                                                                                                                                                                           | 0.83                                                                      | Vert(LL)                                                       | -0.12 | 6     | >901   | 360 | MT20          | 197/144  |
| TCDL                                                             | 10.0                                                                                    | Lumber DOL           | 1.15                                                       | BC                                                                                                                                                                           | 0.62                                                                      | Vert(CT)                                                       | -0.20 | 6     | >508   | 240 |               |          |
| BCLL                                                             | 0.0*                                                                                    | Rep Stress Incr      | NO                                                         | WB                                                                                                                                                                           | 0.48                                                                      | Horz(CT)                                                       | 0.06  | 5     | n/a    | n/a |               |          |
| BCDL                                                             | 10.0                                                                                    | Code                 | IRC2018/TPI20                                              | 14 Matrix-S                                                                                                                                                                  |                                                                           | Wind(LL)                                                       | 0.10  | 6     | >994   | 240 | Weight: 32 lb | FT = 10% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD | 2x4 SPF No.2 *Exce<br>2x3 SPF No.2 *Exce<br>Structural wood she<br>4-2-11 oc purlins, e |                      | 2 Intern<br>8) "NAIL<br>(0.14)<br>1 or 9) In the<br>of the | russ is designed in ac<br>ational Residential CC<br>10.2 and referenced s<br>ED" indicates 3-10d (<br>"x3.25") toe-nails per<br>LOAD CASE(S) secti<br>truss are noted as fro | ode sections<br>standard AN<br>0.148"x3") o<br>NDS guidli<br>ion, loads a | R502.11.1 a<br>NSI/TPI 1.<br>or 2-12d<br>nes.<br>pplied to the | and   |       |        |     |               |          |
| BOT CHORD                                                        | Rigid ceiling directly<br>bracing.                                                      | applied or 10-0-0 oc |                                                            | <b>SE(S)</b> Standard d + Roof Live (balance)                                                                                                                                | ed): Lumbei                                                               | Increase=1                                                     | .15,  |       |        |     |               |          |
| REACTIONS                                                        | (lb/size) 5=450/ M<br>Max Horiz 7=123 (L0<br>Max Uplift 5=-109 (L<br>(lb) - Maximum Com | .C 8), 7=-139 (LC 4) | Unif<br>V<br>Con                                           | e Increase=1.15<br>orm Loads (lb/ft)<br>ert: 1-2=-70, 2-4=-70,<br>centrated Loads (lb)<br>ert: 9=-59 (F=-30, B=-                                                             | ,                                                                         |                                                                |       |       |        | 11  | XA.E.OF       | MISSOU   |

Tension TOP CHORD 2-7=-647/208, 1-2=0/29, 2-3=-1079/256, 3-4=-122/35, 4-5=-193/81 BOT CHORD 6-7=-283/985, 5-6=-270/997 WEBS 3-6=0/287, 3-5=-951/274

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 139 lb uplift at joint 7 and 109 lb uplift at joint 5.

Vert: 9=-59 (F=-30, B=-30), 10=-1 (F=0, B=0 11=-41 (F=-21, B=-21)






| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | J5    | Jack-Open  | 13  | 1   | Job Reference (optional) | 148527926 |

#### Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:47:59 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

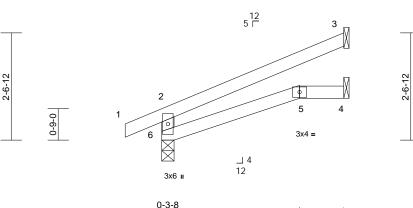


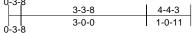




Scale = 1:30.8

| 00010 = 1.00.0                                                            |                                                                                                                                     |                                                                                     |                                                |                                                                         |          |                         |             |            |                |            |                |                        |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------|----------|-------------------------|-------------|------------|----------------|------------|----------------|------------------------|
| Loading<br>TCLL (roof)                                                    | (psf)<br>25.0                                                                                                                       | Spacing<br>Plate Grip DOL                                                           | 2-0-0<br>1.15                                  | CSI<br>TC                                                               | 0.41     | <b>DEFL</b><br>Vert(LL) | in<br>-0.11 | (loc)<br>6 | l/defl<br>>672 | L/d<br>360 | PLATES<br>MT20 | <b>GRIP</b><br>197/144 |
| TCDL                                                                      | 10.0                                                                                                                                | Lumber DOL                                                                          | 1.15                                           | BC                                                                      | 0.50     | Vert(CT)                | -0.20       | 6-7        | >371           | 240        |                |                        |
| BCLL                                                                      | 0.0*                                                                                                                                | Rep Stress Incr                                                                     | YES                                            | WB                                                                      | 0.02     | Horz(CT)                | 0.07        | 5          | n/a            | n/a        |                |                        |
| BCDL                                                                      | 10.0                                                                                                                                | Code                                                                                | IRC2018/TPI2014                                | Matrix-P                                                                |          | Wind(LL)                | 0.09        | 6-7        | >851           | 240        | Weight: 18 lb  | FT = 10%               |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD          | 2x4 SPF No.2<br>2x4 SPF No.2 *Exce<br>Structural wood she                                                                           | athing directly applie                                                              | International<br>R802.10.2 a<br>2 LOAD CASE(S) | designed in accor<br>Residential Code<br>nd referenced star<br>Standard | sections | R502.11.1 a             | and         |            |                |            |                |                        |
| BOT CHORD                                                                 | 6-0-0 oc purlins, exe<br>Rigid ceiling directly<br>bracing.                                                                         |                                                                                     |                                                |                                                                         |          |                         |             |            |                |            |                |                        |
| REACTIONS                                                                 | ( )                                                                                                                                 |                                                                                     |                                                |                                                                         |          |                         |             |            |                | 1          | LATE OF        | MISSOU                 |
| FORCES                                                                    | (lb) - Maximum Com<br>Tension                                                                                                       | pression/Maximum                                                                    |                                                |                                                                         |          |                         |             |            |                | E          | JU/<br>GAR     |                        |
| TOP CHORD                                                                 | 2-7=-251/16, 1-2=0/2<br>3-4=-27/56                                                                                                  | 27, 2-3=-76/20,                                                                     |                                                |                                                                         |          |                         |             |            |                | <b>E</b> * | Grift          | *                      |
| BOT CHORD                                                                 | ,                                                                                                                                   |                                                                                     |                                                |                                                                         |          |                         |             |            |                | = 7        | NUM            | BER :                  |
| WEBS                                                                      | 3-6=-90/62                                                                                                                          |                                                                                     |                                                |                                                                         |          |                         |             |            |                |            | E-20001        | 62101 :41              |
| NOTES                                                                     |                                                                                                                                     |                                                                                     |                                                |                                                                         |          |                         |             |            |                | 1          | 1              |                        |
| Vasd=91n<br>II; Exp C;<br>and right e<br>Lumber D                         | CE 7-16; Vult=115mph<br>nph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>exposed ; end vertical I<br>OL=1.60 plate grip DO            | DL=6.0psf; h=25ft; C<br>hvelope); cantilever le<br>left and right expose<br>PL=1.60 | eft                                            |                                                                         |          |                         |             |            |                |            | SS/ON/         |                        |
|                                                                           | has been designed for<br>load nonconcurrent wi                                                                                      |                                                                                     | łe                                             |                                                                         |          |                         |             |            |                |            | IN AN C        | GARO                   |
| <ol> <li>This trus<br/>on the bot<br/>3-06-00 ta<br/>chord and</li> </ol> | ss has been designed fi<br>tom chord in all areas '<br>all by 2-00-00 wide will<br>any other members.<br>irder(s) for truss to tru: | or a live load of 20.0<br>where a rectangle<br>fit between the botto                | psf                                            |                                                                         |          |                         |             |            |                | 1111       | PR 16          | NSEO                   |
| 5) Bearing at<br>using ANS<br>designer s                                  | t joint(s) 7 considers pa<br>SI/TPI 1 angle to grain<br>should verify capacity c                                                    | arallel to grain value<br>formula. Building<br>of bearing surface.                  |                                                |                                                                         |          |                         |             |            |                | 1111       | PRO            | 952<br>hai             |
| bearing pl                                                                | echanical connection (<br>ate capable of withstar<br>uplift at joint 4.                                                             |                                                                                     |                                                |                                                                         |          |                         |             |            |                |            | Octobe         | AL ENGLIN              |





| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | J6    | Jack-Open  | 2   | 1   | Job Reference (optional) | 148527927 |

#### Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:00 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f







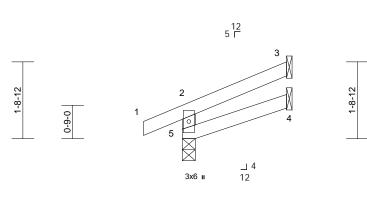


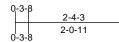
Scale = 1:27.5

| oodio = hErio                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                           |                                    |                                      |            |               |       |       |        |                   |                        |                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------------|------------|---------------|-------|-------|--------|-------------------|------------------------|-----------------------|
| Loading                                                                                                                                                                                                                           | (psf)                                                                                                                                                                                                                                                                                                                                                                | Spacing                                                                                                                                                                                                                                   | 2-0-0                              | csi                                  |            | DEFL          | in    | (loc) | l/defl | L/d               | PLATES                 | GRIP                  |
| TCLL (roof)                                                                                                                                                                                                                       | 25.0                                                                                                                                                                                                                                                                                                                                                                 | Plate Grip DOL                                                                                                                                                                                                                            | 1.15                               | тс                                   | 0.25       | Vert(LL)      | -0.01 | 5-6   | >999   | 360               | MT20                   | 197/144               |
| TCDL                                                                                                                                                                                                                              | 10.0                                                                                                                                                                                                                                                                                                                                                                 | Lumber DOL                                                                                                                                                                                                                                | 1.15                               | BC                                   | 0.15       | Vert(CT)      | -0.03 | 5-6   | >999   | 240               |                        |                       |
| BCLL                                                                                                                                                                                                                              | 0.0*                                                                                                                                                                                                                                                                                                                                                                 | Rep Stress Incr                                                                                                                                                                                                                           | YES                                | WB                                   | 0.00       | · · ·         | 0.01  | 3     | n/a    | n/a               |                        |                       |
| BCDL                                                                                                                                                                                                                              | 10.0                                                                                                                                                                                                                                                                                                                                                                 | Code                                                                                                                                                                                                                                      | IRC2018/TPI2014                    | Matrix-R                             | 0.00       | Wind(LL)      | 0.02  | 5-6   | >999   | 240               | Weight: 12 lb          | FT = 10%              |
|                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                      | cept end verticals.<br>applied or 6-0-0 oc<br>echanical, 4=49/<br>al, 6=267/0-3-8<br>8)<br>c 8), 6=-36 (LC 8)                                                                                                                             | R802.10.2 a<br><b>LOAD CASE(S)</b> | Residential Cod<br>nd referenced sta | e sections | s R502.11.1 a | and   |       |        | n <sub>in</sub> . | JUA                    |                       |
| Vasd=91m<br>II; Exp C; E<br>cantilever I                                                                                                                                                                                          | (lb) - Maximum Com<br>Tension<br>2-6=-233/76, 1-2=0/.<br>5-6=-28/8, 4-5=0/0<br>CE 7-16; Vult=115mph<br>hph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>left and right exposed                                                                                                                                                                                         | 27, 2-3=-69/38<br>(3-second gust)<br>DL=6.0psf; h=25ft; (<br>ivelope) exterior zon<br>; end vertical left and                                                                                                                             | ie;<br>d                           |                                      |            |               |       |       |        | * 85.             | GAR<br>NUME<br>E-20001 | BER U                 |
| <ol> <li>This truss I<br/>chord live I</li> <li>* This truss<br/>on the bott<br/>3-06-00 tal<br/>chord and</li> <li>Refer to gii</li> <li>Bearing at<br/>using ANS<br/>designer sI</li> <li>Provide me<br/>bearing pla</li> </ol> | sed; Lumber DOL=1.6<br>has been designed foi<br>load nonconcurrent wi<br>s has been designed f<br>iom chord in all areas<br>Il by 2-00-00 wide will<br>any other members.<br>rder(s) for truss to tru<br>joint(s) 6 considers pa<br>(J/TPI 1 angle to grain<br>hould verify capacity of<br>echanical connection (<br>ate capable of withstar<br>p uplift at joint 3. | r a 10.0 psf bottom<br>th any other live load<br>or a live load of 20.0<br>where a rectangle<br>fit between the botto<br>ss connections.<br>arallel to grain value<br>formula. Building<br>of bearing surface.<br>(by others) of truss to | ds.<br>psf<br>om                   |                                      |            |               |       |       |        | . annua           | PROCESSION             | BARCIA<br>NSEO<br>952 |

October 27,2021




| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | J7    | Jack-Open  | 2   | 1   | Job Reference (optional) | 148527928 |


-0-10-8

0-10-8

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:01 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1





2-4-3

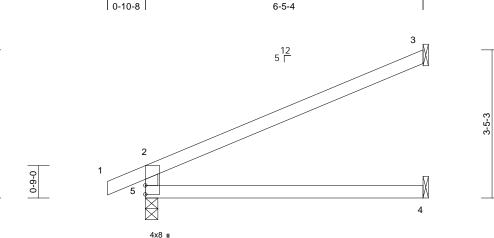
2-4-3

Scale = 1:26

| Loading                                | (psf)                                                                                                                                                                                                                                   | Spacing                                                                          | 2-0-0                                       | csi                                                                        |          | DEFL        | in   | (loc) | l/defl | L/d  | PLATES       | GRIP      |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------|----------|-------------|------|-------|--------|------|--------------|-----------|
| TCLL (roof)                            | 25.0                                                                                                                                                                                                                                    | Plate Grip DOL                                                                   | 1.15                                        | тс                                                                         | 0.07     | Vert(LL)    | 0.00 | 4-5   | >999   | 360  | MT20         | 197/144   |
| TCDL                                   | 10.0                                                                                                                                                                                                                                    | Lumber DOL                                                                       | 1.15                                        | BC                                                                         | 0.03     | Vert(CT)    | 0.00 | 4-5   | >999   | 240  |              |           |
| BCLL                                   | 0.0*                                                                                                                                                                                                                                    | Rep Stress Incr                                                                  | YES                                         | WB                                                                         | 0.00     | Horz(CT)    | 0.00 | 3     | n/a    | n/a  |              |           |
| BCDL                                   | 10.0                                                                                                                                                                                                                                    | Code                                                                             | IRC2018/TPI2014                             | Matrix-R                                                                   |          | Wind(LL)    | 0.00 | 4-5   | >999   | 240  | Weight: 7 lb | FT = 10%  |
|                                        | Mechanic                                                                                                                                                                                                                                | cept end verticals.<br>applied or 6-0-0 oc<br>chanical, 4=20/<br>al, 5=185/0-3-8 | Internationa<br>R802.10.2 a<br>LOAD CASE(S) | designed in accor<br>I Residential Code<br>and referenced star<br>Standard | sections | R502.11.1 a | and  |       |        |      | INTE OF      | MISSO     |
|                                        | Max Horiz 5=45 (LC 5)<br>Max Uplift 3=-35 (LC 8), 5=-31 (LC 4)<br>Max Grav 3=59 (LC 1), 4=39 (LC 3), 5=185<br>(LC 1)<br>GARCIA                                                                                                          |                                                                                  |                                             |                                                                            |          |             |      |       |        |      |              |           |
| FORCES                                 | (lb) - Maximum Com                                                                                                                                                                                                                      | pression/Maximum                                                                 |                                             |                                                                            |          |             |      |       |        | - *  |              | *=        |
| TOP CHORD                              | Tension<br>2-5=-162/50, 1-2=0/                                                                                                                                                                                                          | 27 2 2 - 27/17                                                                   |                                             |                                                                            |          |             |      |       |        | = 11 | i            |           |
| BOT CHORD                              | 2-5=-162/50, 1-2=0/<br>4-5=-15/10                                                                                                                                                                                                       | 27, 2-3=-37/17                                                                   |                                             |                                                                            |          |             |      |       |        | = 5  | NUM          | • 41.     |
| NOTES                                  | 4-3=-13/10                                                                                                                                                                                                                              |                                                                                  |                                             |                                                                            |          |             |      |       |        | -1   | E-2000       | 162101    |
|                                        | CE 7-16; Vult=115mph                                                                                                                                                                                                                    | (3-second quet)                                                                  |                                             |                                                                            |          |             |      |       |        | 1    | ~~· -·       |           |
| Vasd=91m<br>II; Exp C; I<br>cantilever | hph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>left and right exposed<br>sed; Lumber DOL=1.6                                                                                                                                            | DL=6.0psf; h=25ft; (<br>nvelope) exterior zor<br>; end vertical left an          | ne;<br>d                                    |                                                                            |          |             |      |       |        |      | SS/ON        | AL ENGIN  |
|                                        | has been designed fo                                                                                                                                                                                                                    |                                                                                  |                                             |                                                                            |          |             |      |       |        |      |              |           |
|                                        | load nonconcurrent w                                                                                                                                                                                                                    |                                                                                  |                                             |                                                                            |          |             |      |       |        |      | NAU          | GARCIA    |
| on the bott<br>3-06-00 ta              | <ul> <li>* This truss has been designed for a live load of 20.0psf<br/>on the bottom chord in all areas where a rectangle</li> <li>3-06-00 tall by 2-00-00 wide will fit between the bottom<br/>chord and any other members.</li> </ul> |                                                                                  |                                             |                                                                            |          |             |      |       |        |      |              |           |
|                                        | 4) Refer to girder(s) for truss to truss connections.                                                                                                                                                                                   |                                                                                  |                                             |                                                                            |          |             |      |       |        |      |              |           |
|                                        | joint(s) 5 considers pa<br>I/TPI 1 angle to grain                                                                                                                                                                                       |                                                                                  |                                             |                                                                            |          |             |      |       |        |      | P            |           |
| designer s                             | hould verify capacity of                                                                                                                                                                                                                | of bearing surface.                                                              |                                             |                                                                            |          |             |      |       |        |      | 3            | Ma. # 5   |
| bearing pla                            | echanical connection<br>ate capable of withstan<br>o uplift at joint 3.                                                                                                                                                                 |                                                                                  |                                             |                                                                            |          |             |      |       |        |      | KSSION       | SAS ON IN |

October 27,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017


| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | J8    | Jack-Open  | 5   | 1   | Job Reference (optional) | 148527929 |

-0-10-8

Wheeler Lumber, Waverly, KS - 66871,

#### Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:02 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f







6-5-4

| Loading     | (psf) | Spacing         | 2-0-0           | CSI      |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
|-------------|-------|-----------------|-----------------|----------|------|----------|-------|-------|--------|-----|---------------|----------|
| TCLL (roof) | 25.0  | Plate Grip DOL  | 1.15            | TC       | 0.63 | Vert(LL) | -0.07 | 4-5   | >999   | 360 | MT20          | 197/144  |
| TCDL        | 10.0  | Lumber DOL      | 1.15            | BC       | 0.37 | Vert(CT) | -0.16 | 4-5   | >477   | 240 |               |          |
| BCLL        | 0.0*  | Rep Stress Incr | YES             | WB       | 0.00 | Horz(CT) | 0.05  | 3     | n/a    | n/a |               |          |
| BCDL        | 10.0  | Code            | IRC2018/TPI2014 | Matrix-R |      | Wind(LL) | 0.05  | 4-5   | >999   | 240 | Weight: 17 lb | FT = 10% |

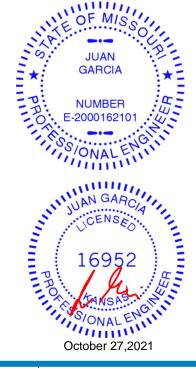
LUMBER

| TOP CHORD<br>BOT CHORD<br>WEBS | 2x4 SPF<br>2x4 SPF<br>2x4 SPF | No.2                                                                |
|--------------------------------|-------------------------------|---------------------------------------------------------------------|
| BRACING                        | 274 01 1                      | 110.2                                                               |
| TOP CHORD                      |                               | I wood sheathing directly applied<br>purlins, except end verticals. |
| BOT CHORD                      |                               | ing directly applied or 10-0-0 oc                                   |
| REACTIONS                      | (lb/size)                     | 3=196/ Mechanical, 4=78/                                            |

|            | Mechanical, 5=358/0-3-8           |
|------------|-----------------------------------|
| Max Horiz  | 5=80 (LC 8)                       |
| Max Uplift | 3=-57 (LC 8), 5=-4 (LC 8)         |
| Max Grav   | 3=196 (LC 1), 4=118 (LC 3), 5=358 |
|            | (LC 1)                            |
|            |                                   |

applied or

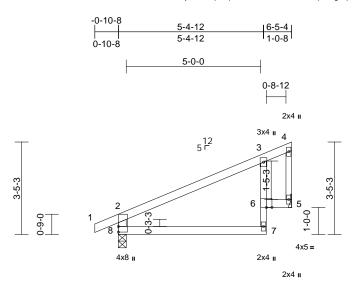
3-5-3


#### FORCES (Ib) - Maximum Compression/Maximum Tension

#### TOP CHORD 2-5=-311/56, 1-2=0/27, 2-3=-92/59 BOT CHORD 4-5=0/0

#### NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 4 lb uplift at joint 5 and 57 lb uplift at joint 3.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard





| Job   | Truss | Truss Type  | Qty | Ply | Lot 117 RR               |           |
|-------|-------|-------------|-----|-----|--------------------------|-----------|
| RR117 | J9    | Jack-Closed | 5   | 1   | Job Reference (optional) | 148527930 |

Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Oct 26 12:48:02 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1





| Loading     | (psf) | Spacing         | 2-0-0           | CSI      |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
|-------------|-------|-----------------|-----------------|----------|------|----------|-------|-------|--------|-----|---------------|----------|
| TCLL (roof) | 25.0  | Plate Grip DOL  | 1.15            | TC       | 0.29 | Vert(LL) | -0.03 | 7-8   | >999   | 360 | MT20          | 197/144  |
| TCDL        | 10.0  | Lumber DOL      | 1.15            | BC       | 0.36 | Vert(CT) | -0.06 | 7-8   | >999   | 240 |               |          |
| BCLL        | 0.0*  | Rep Stress Incr | YES             | WB       | 0.00 | Horz(CT) | 0.01  | 5     | n/a    | n/a |               |          |
| BCDL        | 10.0  | Code            | IRC2018/TPI2014 | Matrix-R |      | Wind(LL) | 0.01  | 7-8   | >999   | 240 | Weight: 20 lb | FT = 10% |

| BOT CHORD | 2x4 SPF No.2 *Except* 7-3:2x3 SPF No.2 |
|-----------|----------------------------------------|
| WEBS      | 2x4 SPF No.2 *Except* 4-5:2x3 SPF No.2 |

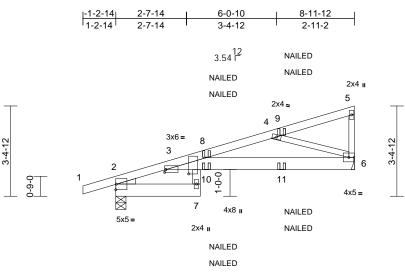
| BRACING   |                                                                                       |
|-----------|---------------------------------------------------------------------------------------|
| TOP CHORD | Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. |
| BOT CHORD | Rigid ceiling directly applied or 10-0-0 oc bracing.                                  |
| DEADTIONO | (lb/size) 5 070/ Mechanical 0 050/0 0 0                                               |

REACTIONS (lb/size) 5=273/ Mechanical, 8=356/0-3-8 Max Horiz 8=96 (LC 5) Max Uplift 5=-24 (LC 8), 8=-14 (LC 8)

| FORCES    | (lb) - Maximum Compression/Maximum   |
|-----------|--------------------------------------|
|           | Tension                              |
| TOP CHORD | 2-8=-313/51, 1-2=0/27, 2-3=-218/14,  |
|           | 3-4=-55/27, 4-5=-43/0                |
| BOT CHORD | 7-8=-23/136, 6-7=0/107, 3-6=-162/75, |
|           | 5-6=-16/42                           |

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 14 lb uplift at joint 8 and 24 lb uplift at joint 5.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

MIS 0 Wint PRUM JUAN GARCIA NUMBER F 2000162101 C 3 E ONAL IIIII DCtober 27,202 JGIT October 27,2021



| Job   | Truss | Truss Type          | Qty | Ply | Lot 117 RR               |           |
|-------|-------|---------------------|-----|-----|--------------------------|-----------|
| RR117 | J10   | Diagonal Hip Girder | 1   | 1   | Job Reference (optional) | 148527931 |

Run: 8,43 S Jun 2 2021 Print: 8,430 S Jun 2 2021 MiTek Industries, Inc. Wed Oct 27 11:27:42 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-xh\_EFUrMtd0zUViMY0BWOLeKEhLoF1XdFGOujZyPOT? Page: 1





Scale = 1:43.4

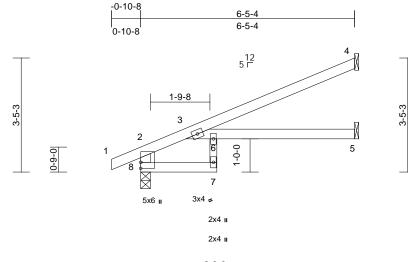
#### Plate Offsets (X, Y): [3:0-1-15,0-10-5], [3:0-0-8,0-1-4]

| oading                           | (psf)                                           | Spacing                | 2-0-0         | CSI                                                                             |             | DEFL          | in    | (loc) | l/defl | L/d | PLATES        | GRIP        |
|----------------------------------|-------------------------------------------------|------------------------|---------------|---------------------------------------------------------------------------------|-------------|---------------|-------|-------|--------|-----|---------------|-------------|
| CLL (roof)                       | (53)                                            | Plate Grip DOL         | 1.15          | TC                                                                              | 0.92        | Vert(LL)      | -0.20 | (100) | >531   | 360 | MT20          | 197/144     |
|                                  | 10.0                                            | Lumber DOL             | 1.15          | BC                                                                              | 0.58        | Vert(CT)      | -0.39 | 7     | >268   | 240 |               | 10//111     |
| BCLL                             | 0.0*                                            | Rep Stress Incr        | NO            | WB                                                                              | 0.21        | Horz(CT)      | 0.00  | 6     | n/a    | n/a |               |             |
| BCDL                             | 10.0                                            | Code                   | IRC2018/TPI2  |                                                                                 | 0.21        | Wind(LL)      | 0.23  | 7     | >462   | 240 | Weight: 36 lb | FT = 10%    |
| DODL                             | 10.0                                            | Code                   | 11(02010/1112 |                                                                                 | -           |               | 0.25  |       | 2402   | 240 | Weight. 30 lb | 11 = 1078   |
| LUMBER<br>TOP CHORD<br>BOT CHORD |                                                 | E                      | Ínter         | truss is designed in accontrational Residential Cod<br>2.10.2 and referenced st | le sections | s R502.11.1 a | and   |       |        |     |               |             |
| WEBS                             | 2x3 SPF No.2 *Exce                              | 00+* 7 2.2v4 CDE No    |               | LED" indicates 3-10d (0.                                                        |             |               |       |       |        |     |               |             |
| VEDGE                            | Left: 2x3 SPF No.2 Exce                         | pt 7-5.2x4 SFF NU      | · /           | 8"x3.25") toe-nails per N                                                       | , -         |               |       |       |        |     |               |             |
| BRACING                          | Len. 2x3 011 110.2                              |                        |               | ELOAD CASE(S) sectio                                                            |             |               | face  |       |        |     |               |             |
| TOP CHORD                        | Structural wood she                             | othing directly opplie | ·             | e truss are noted as fron                                                       |             |               |       |       |        |     |               |             |
|                                  | 6-0-0 oc purlins, ex                            | cept end verticals.    | LOAD C        | ASE(S) Standard                                                                 | .,          | . ,           |       |       |        |     |               | 111.        |
| BOT CHORD                        | Rigid ceiling directly<br>bracing.              | applied or 6-0-0 oc    | Pla           | ad + Roof Live (balanced<br>e Increase=1.15                                     | d): Lumbei  | r Increase=1. | 15,   |       |        |     | NE OF         | MISS        |
| REACTIONS                        | (lb/size) 2=567/0-4<br>Max Horiz 2=114 (L0      | 4-9, 6=479/ Mechani    | icai          | form Loads (lb/ft)<br>/ert: 1-5=-70, 2-7=-20, 3                                 | -6=-20      |               |       |       |        | 1   | (P            |             |
|                                  | Max Uplift 2=-162 (L                            |                        |               | icentrated Loads (lb)                                                           |             |               |       |       |        | 20  | JU/           | AN 22       |
| ORCES                            | (lb) - Max. Comp./M                             |                        | ,             | /ert: 9=-26 (F=-13, B=-13                                                       | 3), 10=-32  | (F=-16, B=-   | 16),  |       |        | 2.  | GAR           |             |
| UNCES                            | (lb) or less except w                           |                        |               | 1=-87 (F=-44, B=-44)                                                            |             |               |       |       |        | - * | :             | :*-         |
| OP CHORD                         | · · ·                                           |                        |               |                                                                                 |             |               |       |       |        | Ξ.  | 1             |             |
| BOT CHORD                        |                                                 |                        |               |                                                                                 |             |               |       |       |        | = 7 | NUM           | BER :       |
|                                  | 6-11=-265/743                                   | ,                      |               |                                                                                 |             |               |       |       |        | - 7 | E-2000        | • 41.       |
| VEBS                             | 4-6=-753/296                                    |                        |               |                                                                                 |             |               |       |       |        | -   | A             |             |
| OTES                             |                                                 |                        |               |                                                                                 |             |               |       |       |        | 1   | 100           | G           |
|                                  | CE 7-16; Vult=115mph                            | (3-second aust)        |               |                                                                                 |             |               |       |       |        |     | IN ON         | ALENI       |
|                                  | nph; TCDL=6.0psf; BC                            |                        | Cat.          |                                                                                 |             |               |       |       |        |     | 1111          | inn         |
|                                  | Enclosed; MWFRS (er                             |                        |               |                                                                                 |             |               |       |       |        |     |               | •           |
|                                  | left and right exposed                          |                        |               |                                                                                 |             |               |       |       |        |     |               | IIIII.      |
| • •                              | sed; Lumber DOL=1.6                             |                        | 60            |                                                                                 |             |               |       |       |        |     | The IG        | GARC        |
|                                  | has been designed for                           |                        |               |                                                                                 |             |               |       |       |        |     | 1. 70         | ····· A ··· |
|                                  | load nonconcurrent wi                           |                        |               |                                                                                 |             |               |       |       |        |     | CE            | NSEN        |
|                                  | s has been designed f<br>tom chord in all areas |                        | Jpst          |                                                                                 |             |               |       |       |        |     |               | ~ \ =       |
|                                  | all by 2-00-00 wide will                        |                        | m             |                                                                                 |             |               |       |       |        |     | 1.1           |             |
|                                  | any other members.                              | in between the bolic   |               |                                                                                 |             |               |       |       |        |     | : 16          | 952         |
|                                  | irder(s) for truss to trus                      | ss connections         |               |                                                                                 |             |               |       |       |        | =   | - · · · ·     |             |
|                                  | echanical connection (                          |                        | 0             |                                                                                 |             |               |       |       |        | -   | D.            |             |
|                                  | ate capable of withstar                         |                        |               |                                                                                 |             |               |       |       |        |     | 0.            | 14:45       |
|                                  | d 162 lb uplift at joint 2.                     |                        |               |                                                                                 |             |               |       |       |        |     | 1 AN          | VSAS        |
| -                                |                                                 |                        |               |                                                                                 |             |               |       |       |        |     | 1, 5/00       | IN ENIN     |
|                                  |                                                 |                        |               |                                                                                 |             |               |       |       |        |     |               | AL          |
|                                  |                                                 |                        |               |                                                                                 |             |               |       |       |        |     | Ontel         | - 07 0004   |
|                                  |                                                 |                        |               |                                                                                 |             |               |       |       |        |     | Uctobe        | r 27,2021   |

- 3 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 4)
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 134 lb uplift at joint 6 and 162 lb uplift at joint 2.

## **MiTek**° 16023 Swingley Ridge Rd Chesterfield, MO 63017

| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | J11   | Jack-Open  | 5   | 1   | Job Reference (optional) | 148527932 |


#### Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:03 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



.

October 27,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017



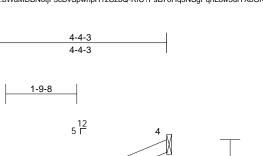


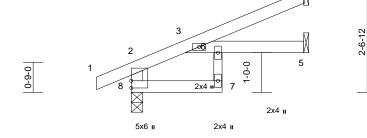
Scale = 1:34.7

| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                                               | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                             | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                         | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2014 | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                             | 0.54<br>0.47<br>0.02 | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Wind(LL) | in<br>-0.10<br>-0.20<br>0.11<br>0.08 | (loc)<br>5-6<br>5-6<br>5<br>5-6 | l/defl<br>>765<br>>380<br>n/a<br>>948 | L/d<br>360<br>240<br>n/a<br>240 | PLATES<br>MT20<br>Weight: 18 lb                       | <b>GRIP</b><br>197/144<br>FT = 10%                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------|----------------------|------------------------------------------------------|--------------------------------------|---------------------------------|---------------------------------------|---------------------------------|-------------------------------------------------------|-----------------------------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD                                                                                                | 2x4 SPF No.2<br>2x4 SPF No.2 *Exce<br>Structural wood she<br>6-0-0 oc purlins, ex | ept* 7-6:2x3 SPF No.:<br>athing directly applie<br>cept end verticals.<br>applied or 10-0-0 oc                                                                                                                                                                                                             | Internationa<br>R802.10.2<br>2 LOAD CASE(S      | s designed in acco<br>al Residential Code<br>and referenced sta<br>) Standard | e sections           | 8 R502.11.1 a                                        | nd                                   |                                 |                                       |                                 |                                                       |                                                           |
| REACTIONS                                                                                                                                                                    |                                                                                   | 8)                                                                                                                                                                                                                                                                                                         | =370                                            |                                                                               |                      |                                                      |                                      |                                 |                                       | in in                           | ATE OF JUA                                            |                                                           |
| Vasd=91n<br>II; Exp C;<br>and right c<br>Lumber D<br>2) This truss<br>chord live<br>3) * This trus<br>on the bot<br>3-06-00 ta<br>chord and<br>4) Refer to g<br>5) Provide m | 3-4=-55/58                                                                        | 27, 2-3=-114/0,<br>6=0/0<br>(3-second gust)<br>DL=6.0psf; h=25ft; C<br>ivelope); cantilever le<br>left and right exposed<br>DL=1.60<br>r a 10.0 psf bottom<br>th any other live load<br>or a live load of 20.0<br>where a rectangle<br>fit between the botto<br>ss connections.<br>(by others) of truss to | əft<br>d;<br>lis.<br>posf<br>m                  |                                                                               |                      |                                                      |                                      |                                 |                                       |                                 | NUME<br>E-20001<br>SS/ON/<br>JCE<br>160<br>PROFISS/ON | BER<br>162101<br>ALENG<br>SARCIA<br>NSEO<br>952<br>HALENG |

| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | J12   | Jack-Open  | 2   | 1   | Job Reference (optional) | 148527933 |

-0-10-8


0-10-8


2-6-12

Wheeler Lumber, Waverly, KS - 66871,

#### Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:03 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1







Scale = 1:29.1

2)

3)

4) 5)

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Refer to girder(s) for truss to truss connections.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 lb uplift at joint 8, 50 lb uplift at joint 4 and 2 lb uplift at joint 5.

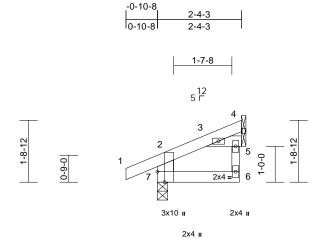
chord and any other members.

\* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

| Scale = 1:29.1 |                                           |                         |                 |                    |           |              |       |       |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|----------------|-------------------------------------------|-------------------------|-----------------|--------------------|-----------|--------------|-------|-------|--------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Loading        | (psf)                                     | Spacing                 | 2-0-0           | csi                |           | DEFL         | in    | (loc) | l/defl | L/d | PLATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GRIP     |
| TCLL (roof)    | 25.0                                      | Plate Grip DOL          | 1.15            | TC                 | 0.18      | Vert(LL)     | -0.02 | 7     | >999   | 360 | MT20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 197/144  |
| TCDL           | 10.0                                      | Lumber DOL              | 1.15            | BC                 | 0.21      | Vert(CT)     | -0.03 | 5-6   | >999   | 240 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| BCLL           | 0.0*                                      | Rep Stress Incr         | YES             | WB                 | 0.00      | Horz(CT)     | 0.02  | 5     | n/a    | n/a |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| BCDL           | 10.0                                      | Code                    | IRC2018/TPI2014 | Matrix-R           |           | Wind(LL)     | 0.02  | 7     | >999   | 240 | Weight: 13 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FT = 10% |
| LUMBER         |                                           |                         | 6) This truss i | s designed in acco | ordance w | ith the 2018 |       |       |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| TOP CHORD      | 2x4 SPF No.2                              |                         |                 | al Residential Cod |           |              | and   |       |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| BOT CHORD      | 2x4 SPF No.2 *Exce                        | ept* 7-6:2x3 SPF No     | .2 R802.10.2    | and referenced st  | andard AN | ISI/TPI 1.   |       |       |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| WEBS           | 2x4 SPF No.2                              |                         | LOAD CASE(S     | ) Standard         |           |              |       |       |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| BRACING        |                                           |                         |                 |                    |           |              |       |       |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| TOP CHORD      |                                           | eathing directly applie | ed or           |                    |           |              |       |       |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                | 4-4-3 oc purlins, ex                      |                         |                 |                    |           |              |       |       |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| BOT CHORD      | Rigid ceiling directly<br>bracing.        | / applied or 10-0-0 o   | С               |                    |           |              |       |       |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| REACTIONS      | 0                                         | lechanical, 5=72/       |                 |                    |           |              |       |       |        |     | United and a second sec | 1100     |
|                | Mechanic                                  | cal, 8=277/0-3-8        |                 |                    |           |              |       |       |        |     | NE OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MISS     |
|                | Max Horiz 8=78 (LC                        | ,                       |                 |                    |           |              |       |       |        | 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,1      |
|                | Max Uplift 4=-50 (LC                      | C 8), 5=-2 (LC 8), 8=   | -31             |                    |           |              |       |       |        | 2   | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
|                | (LC 8)                                    |                         | 277             |                    |           |              |       |       |        | 2   | JU/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
|                | Max Grav 4=112 (L<br>(LC 1)               | C 1), 5=00 (LC 3), 6    | =211            |                    |           |              |       |       |        | = * | GAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| FORCES         | ( )                                       | npression/Maximum       |                 |                    |           |              |       |       |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| TOROLO         | Tension                                   | npression/maximum       |                 |                    |           |              |       |       |        | = 0 | NUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| TOP CHORD      | 2-8=-264/56, 1-2=0/                       | /27, 2-3=-132/0,        |                 |                    |           |              |       |       |        | -5  | E-2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • 41.    |
|                | 3-4=-37/36                                |                         |                 |                    |           |              |       |       |        |     | E-2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102101   |
| BOT CHORD      | 7-8=-34/64, 6-7=0/4                       | 7, 3-6=-64/34, 5-6=0    | 0/0             |                    |           |              |       |       |        | 1   | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - GN     |
| NOTES          |                                           |                         |                 |                    |           |              |       |       |        |     | I.S/ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NI ENIN  |
|                | CE 7-16; Vult=115mph                      |                         | _               |                    |           |              |       |       |        |     | 1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Think    |
|                | nph; TCDL=6.0psf; BC                      |                         |                 |                    |           |              |       |       |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                | Enclosed; MWFRS (elleft and right exposed |                         |                 |                    |           |              |       |       |        |     | IN UAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11111    |
|                | sed; Lumber DOL=1.6                       |                         |                 |                    |           |              |       |       |        |     | 11 UAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GARC     |
|                | has been designed for                     |                         |                 |                    |           |              |       |       |        |     | N 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A        |






| A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not        |
| a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall |
| building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing    |
| is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the             |
| fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component      |
| Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601                                                   |

| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | J13   | Jack-Open  | 2   | 1   | Job Reference (optional) | 148527934 |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:04 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

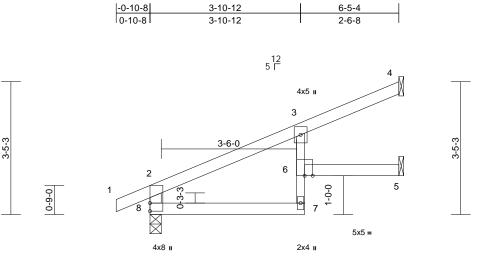
October 27,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017



2-3-8 2-3-8 0-0-11

Scale = 1:32.2


### Plate Offsets (X, Y): [7:0-3-8,Edge]

| Loading                                                                                                                                                                                            | (psf)                                                                                                                                                                                                                                                                                                                                                            | Spacing                                                                                                                                                                                                                                                                                               | 2-0-0                                         | csi                                                                      |          | DEFL        | in   | (loc) | l/defl | L/d      | PLATES       | GRIP     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------|----------|-------------|------|-------|--------|----------|--------------|----------|
| TCLL (roof)                                                                                                                                                                                        | 25.0                                                                                                                                                                                                                                                                                                                                                             | Plate Grip DOL                                                                                                                                                                                                                                                                                        | 1.15                                          | TC                                                                       | 0.08     | Vert(LL)    | 0.00 | 3     | >999   | 360      | MT20         | 197/144  |
| TCDL                                                                                                                                                                                               | 10.0                                                                                                                                                                                                                                                                                                                                                             | Lumber DOL                                                                                                                                                                                                                                                                                            | 1.15                                          | BC                                                                       | 0.03     | Vert(CT)    | 0.00 | 3     | >999   | 240      |              |          |
| BCLL                                                                                                                                                                                               | 0.0*                                                                                                                                                                                                                                                                                                                                                             | Rep Stress Incr                                                                                                                                                                                                                                                                                       | YES                                           | WB                                                                       | 0.00     | Horz(CT)    | 0.00 | 5     | n/a    | n/a      |              |          |
| BCDL                                                                                                                                                                                               | 10.0                                                                                                                                                                                                                                                                                                                                                             | Code                                                                                                                                                                                                                                                                                                  | IRC2018/TPI2014                               | Matrix-R                                                                 |          | Wind(LL)    | 0.00 | 3     | >999   | 240      | Weight: 9 lb | FT = 10% |
|                                                                                                                                                                                                    | 2x4 SPF No.2 *Exce<br>2x6 SPF No.2<br>Structural wood she<br>2-4-3 oc purlins, ex<br>Rigid ceiling directly<br>bracing.<br>(Ib/size) 4=40/ Me<br>Mechanic<br>Max Horiz 7=45 (LC<br>Max Uplift 4=-19 (LC<br>(LC 4)<br>Max Grav 4=40 (LC<br>(LC 1)                                                                                                                 | athing directly applied<br>cept end verticals.<br>applied or 10-0-0 oc<br>chanical, 5=44/<br>al, 7=193/0-3-8<br>5)<br>: 8), 5=-3 (LC 8), 7=-3<br>1), 5=66 (LC 3), 7=19                                                                                                                                | International<br>R802.10.2 at<br>LOAD CASE(S) | designed in accorr<br>Residential Code<br>nd referenced star<br>Standard | sections | R502.11.1 a | nd   |       |        |          | GAR          | CIA *    |
| FORCES<br>TOP CHORD<br>BOT CHORD<br>NOTES                                                                                                                                                          | (lb) - Maximum Com<br>Tension<br>2-7=-170/47, 1-2=0/<br>6-7=-7/9, 5-6=0/38,<br>CE 7-16; Vult=115mph                                                                                                                                                                                                                                                              | 30, 2-3=-41/0, 3-4=-1<br>3-5=-9/7                                                                                                                                                                                                                                                                     | 1/13                                          |                                                                          |          |             |      |       |        | 1111     | E-20001      | • 41.    |
| Vasd=91m<br>II; Exp C; I<br>cantilever<br>right expos<br>2) This truss<br>chord live<br>3) * This truss<br>on the bott<br>3-06-00 ta<br>chord and<br>4) Refer to gi<br>5) Provide m<br>bearing pla | ph; TCDL=6.0ps; BC<br>Enclosed; MWFRS (er<br>left and right exposed<br>sed; Lumber DOL=1.6<br>has been designed foi<br>load nonconcurrent wi<br>s has been designed f<br>tom chord in all areas<br>II by 2-00-00 wide will<br>any other members.<br>irder(s) for truss to tru<br>echanical connection (<br>ate capable of withstar<br>lift at joint 4 and 3 lb u | DL=6.0psf; h=25ft; C<br>velope) exterior zone;<br>; end vertical left and<br>0 plate grip DOL=1.6<br>r a 10.0 psf bottom<br>th any other live load<br>or a live load of 20.0p<br>where a rectangle<br>fit between the bottor<br>ss connections.<br>by others) of truss to<br>nding 33 lb uplift at jo | ə;<br>O<br>S.<br>Dosf<br>n                    |                                                                          |          |             |      |       |        | . THUMAN | PROFESSION   | ALENO    |

| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | J14   | Jack-Open  | 2   | 1   | Job Reference (optional) | 148527935 |

#### Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:05 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f







Scale = 1:29.8

| 00010 - 112010                                      |                                                                                                                           |                                                                           |                 | -        |      |          |       |       |        |        |               |           |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------|----------|------|----------|-------|-------|--------|--------|---------------|-----------|
| Loading                                             | (psf)                                                                                                                     | Spacing                                                                   | 2-0-0           | csi      |      | DEFL     | in    | (loc) | l/defl | L/d    | PLATES        | GRIP      |
| TCLL (roof)                                         | 25.0                                                                                                                      | Plate Grip DOL                                                            | 1.15            | TC       | 0.36 | Vert(LL) | -0.08 | 3     | >961   | 360    | MT20          | 197/144   |
| TCDL                                                | 10.0                                                                                                                      | Lumber DOL                                                                | 1.15            | BC       | 0.51 | Vert(CT) | -0.14 | 7     | >546   | 240    |               |           |
| BCLL                                                | 0.0*                                                                                                                      | Rep Stress Incr                                                           | YES             | WB       | 0.00 | Horz(CT) | 0.05  | 5     | n/a    | n/a    |               |           |
| BCDL                                                | 10.0                                                                                                                      | Code                                                                      | IRC2018/TPI2014 | Matrix-R |      | Wind(LL) | 0.06  | 6     | >999   | 240    | Weight: 18 lb | FT = 10%  |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING | 2x4 SPF No.2<br>2x4 SPF No.2 *Exce<br>2x4 SPF No.2                                                                        | ept* 7-3:2x3 SPF No                                                       | .2              |          |      |          |       |       |        |        |               |           |
| TOP CHORD                                           | Structural wood she 6-0-0 oc purlins, ex                                                                                  |                                                                           | ed or           |          |      |          |       |       |        |        |               |           |
| BOT CHORD                                           | Rigid ceiling directly<br>bracing.                                                                                        |                                                                           | 0               |          |      |          |       |       |        |        |               | IG.       |
| REACTIONS                                           |                                                                                                                           |                                                                           | -4 (LC          |          |      |          |       |       |        | 111    | TE OF         | MISSOUT   |
| FORCES                                              | (lb) - Maximum Com<br>Tension                                                                                             | pression/Maximum                                                          |                 |          |      |          |       |       |        | Ξ×     | GAR           | CIA *=    |
| TOP CHORD                                           | 2-8=-330/34, 1-2=0/<br>3-4=-23/55                                                                                         | 27, 2-3=-263/0,                                                           |                 |          |      |          |       |       |        | EP     | NUM           |           |
| BOT CHORD                                           | 7-8=-34/178, 6-7=0/                                                                                                       | 79, 3-6=-17/75, 5-6=                                                      | =0/0            |          |      |          |       |       |        | -1     | E-20001       | • 41-     |
| NOTES                                               |                                                                                                                           |                                                                           |                 |          |      |          |       |       |        |        | L-20001       | 102101    |
| Vasd=91m<br>II; Exp C; I<br>and right e             | CE 7-16; Vult=115mph<br>nph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>exposed ; end vertical<br>OL=1.60 plate grip DC    | DL=6.0psf; h=25ft; (<br>nvelope); cantilever l<br>left and right expose   | eft             |          |      |          |       |       |        |        | SS/ON/        | AL ENGLIN |
|                                                     | has been designed fo                                                                                                      |                                                                           | da              |          |      |          |       |       |        |        | ALL NO        | GAR       |
| 3) * This trus<br>on the bot<br>3-06-00 ta          | load nonconcurrent wi<br>s has been designed f<br>tom chord in all areas<br>Il by 2-00-00 wide will<br>any other members. | or a live load of 20.0<br>where a rectangle                               | psf             |          |      |          |       |       |        | annun. | LICE          | NSEO      |
| 5) Provide m<br>bearing pla<br>8, 32 lb up          | irder(s) for truss to tru<br>echanical connection<br>ate capable of withstar<br>blift at joint 4 and 3 lb u               | (by others) of truss to<br>nding 4 lb uplift at joi<br>Iplift at joint 5. |                 |          |      |          |       |       |        | THUN,  | 16<br>PRO     | 952 H     |
| Internation<br>R802.10.2                            | is designed in accordanal Residential Code search and referenced stand                                                    | ections R502.11.1 a                                                       | nd              |          |      |          |       |       |        |        | AKSSION       | AL ENGINI |
| LOAD CASE(                                          | S) Standard                                                                                                               |                                                                           |                 |          |      |          |       |       |        |        | Octobe        | r 27,2021 |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

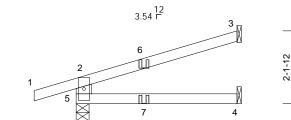
MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017


| Job   | Truss | Truss Type          | Qty | Ply | Lot 117 RR               |           |
|-------|-------|---------------------|-----|-----|--------------------------|-----------|
| RR117 | J15   | Diagonal Hip Girder | 2   | 1   | Job Reference (optional) | 148527936 |

2-1-12

0-6-0

#### Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:06 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1







NAILED NAILED 4-8-13



4x8 II

Scale = 1:33.9

| Scale = 1:33.9                                                                             |                                                                                                                                                         |                                                                                                                         |                             |                                                                                                                                                             |                                                                                                                             |                                                          |                                              |       |       |        |      |               |            |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------|-------|-------|--------|------|---------------|------------|
| Loading                                                                                    | (psf)                                                                                                                                                   | Spacing                                                                                                                 | 2-0-0                       |                                                                                                                                                             | CSI                                                                                                                         |                                                          | DEFL                                         | in    | (loc) | l/defl | L/d  | PLATES        | GRIP       |
| TCLL (roof)                                                                                | 25.0                                                                                                                                                    | Plate Grip DOL                                                                                                          | 1.15                        |                                                                                                                                                             | тс                                                                                                                          | 0.31                                                     | Vert(LL)                                     | -0.02 | 4-5   | >999   | 360  | MT20          | 197/144    |
| TCDL                                                                                       | 10.0                                                                                                                                                    | Lumber DOL                                                                                                              | 1.15                        |                                                                                                                                                             | BC                                                                                                                          | 0.19                                                     | Vert(CT)                                     | -0.04 | 4-5   | >999   | 240  |               |            |
| BCLL                                                                                       | 0.0*                                                                                                                                                    | Rep Stress Incr                                                                                                         | NO                          |                                                                                                                                                             | WB                                                                                                                          | 0.00                                                     | Horz(CT)                                     | 0.01  | 3     | n/a    | n/a  |               |            |
| BCDL                                                                                       | 10.0                                                                                                                                                    | Code                                                                                                                    | IRC2018/                    | /TPI2014                                                                                                                                                    | Matrix-R                                                                                                                    |                                                          | Wind(LL)                                     | 0.01  | 4-5   | >999   | 240  | Weight: 13 lb | FT = 10%   |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 2x4 SPF No.2<br>2x4 SPF No.2<br>2x6 SPF No.2<br>Structural wood she<br>4-8-13 oc purlins, e<br>Rigid ceiling directly<br>bracing.<br>(Ib/size) 3=132/ M | eathing directly applie<br>except end verticals.<br>' applied or 10-0-0 or<br>echanical, 4=48/<br>al, 5=315/0-4-9<br>4) | 7)<br>8)<br>LO,<br>ed or 1) | "NAILED" inc<br>(0.148"x3.25<br>In the LOAD<br>of the truss a<br><b>AD CASE(S)</b><br>Dead + Roo<br>Plate Increa<br>Uniform Loa<br>Vert: 1-2<br>Concentrate | dicates 3-10d (0.<br>") toe-nails per N<br>CASE(S) section<br>re noted as from<br>Standard<br>of Live (balanced<br>ase=1.15 | NDS guidlii<br>n, loads ar<br>t (F) or bad<br>l): Lumber | or 2-12d<br>nes.<br>oplied to the<br>ck (B). | face  |       | 2000   | 240  | Viegne 10 ID  | MISSOU     |
| FORCES                                                                                     | Max Grav 3=132 (LC<br>(LC 1)<br>(lb) - Maximum Com                                                                                                      |                                                                                                                         | =315                        |                                                                                                                                                             |                                                                                                                             |                                                          |                                              |       |       |        | E*   | JU/<br>GAR    |            |
|                                                                                            | Tension                                                                                                                                                 |                                                                                                                         |                             |                                                                                                                                                             |                                                                                                                             |                                                          |                                              |       |       |        | -    |               |            |
| TOP CHORD<br>BOT CHORD                                                                     | 2-5=-281/132, 1-2=0<br>4-5=0/0                                                                                                                          | J/29, 2-3=-09/29                                                                                                        |                             |                                                                                                                                                             |                                                                                                                             |                                                          |                                              |       |       |        |      | NUM           | • 41.      |
|                                                                                            | 4-5=0/0                                                                                                                                                 |                                                                                                                         |                             |                                                                                                                                                             |                                                                                                                             |                                                          |                                              |       |       |        |      | C: E-2000     | 162101     |
| NOTES                                                                                      |                                                                                                                                                         | (a                                                                                                                      |                             |                                                                                                                                                             |                                                                                                                             |                                                          |                                              |       |       |        | /    | A             | - 21:      |
| Vasd=91m<br>II; Exp C; I<br>cantilever                                                     | CE 7-16; Vult=115mph<br>nph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>left and right exposed<br>sed; Lumber DOL=1.6                                    | DL=6.0psf; h=25ft; (<br>nvelope) exterior zor<br>; end vertical left an                                                 | ne;<br>d                    |                                                                                                                                                             |                                                                                                                             |                                                          |                                              |       |       |        |      | SS/ON         | AL ENGIN   |
|                                                                                            | has been designed fo                                                                                                                                    |                                                                                                                         |                             |                                                                                                                                                             |                                                                                                                             |                                                          |                                              |       |       |        |      | , un          |            |
| , chord live                                                                               | load nonconcurrent w                                                                                                                                    | ith any other live loa                                                                                                  |                             |                                                                                                                                                             |                                                                                                                             |                                                          |                                              |       |       |        |      | IN UAN        | SARC       |
| on the bott<br>3-06-00 ta                                                                  | s has been designed f<br>tom chord in all areas<br>ill by 2-00-00 wide will<br>any other members.                                                       | where a rectangle                                                                                                       |                             |                                                                                                                                                             |                                                                                                                             |                                                          |                                              |       |       |        |      | THE LOCE      | NSEO       |
| , 0                                                                                        | irder(s) for truss to tru                                                                                                                               |                                                                                                                         |                             |                                                                                                                                                             |                                                                                                                             |                                                          |                                              |       |       |        | =    | 16            | 952        |
| bearing pla<br>5 and 60 l                                                                  | echanical connection<br>ate capable of withsta<br>b uplift at joint 3.                                                                                  | nding 94 lb uplift at jo                                                                                                |                             |                                                                                                                                                             |                                                                                                                             |                                                          |                                              |       |       |        | 1111 | PRO           | ha Ha      |
| Ínternation                                                                                | is designed in accorda<br>nal Residential Code s<br>and referenced stand                                                                                | ections R502.11.1 a                                                                                                     | nd                          |                                                                                                                                                             |                                                                                                                             |                                                          |                                              |       |       |        |      | LESSION       | IAL ENGINI |
|                                                                                            |                                                                                                                                                         |                                                                                                                         |                             |                                                                                                                                                             |                                                                                                                             |                                                          |                                              |       |       |        |      | Octobo        | r 07 0001  |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



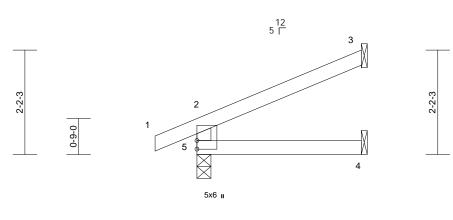
| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | J16   | Jack-Open  | 5   | 1   | Job Reference (optional) | 148527937 |

-0-10-8

0-10-8

Wheeler Lumber, Waverly, KS - 66871,

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:06 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


3-5-4

3-5-4

3-5-4

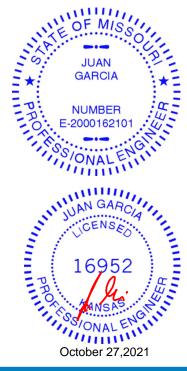


MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017



| Scale = 1:24.1 |       |                 |                 | 1        |      |          |       | 1     |        |     |               |          |
|----------------|-------|-----------------|-----------------|----------|------|----------|-------|-------|--------|-----|---------------|----------|
| Loading        | (psf) | Spacing         | 2-0-0           | CSI      |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL (roof)    | 25.0  | Plate Grip DOL  | 1.15            | TC       | 0.14 | Vert(LL) | -0.01 | 4-5   | >999   | 360 | MT20          | 197/144  |
| TCDL           | 10.0  | Lumber DOL      | 1.15            | BC       | 0.09 | Vert(CT) | -0.01 | 4-5   | >999   | 240 |               |          |
| BCLL           | 0.0*  | Rep Stress Incr | YES             | WB       | 0.00 | Horz(CT) | -0.01 | 3     | n/a    | n/a |               |          |
| BCDL           | 10.0  | Code            | IRC2018/TPI2014 | Matrix-R |      | Wind(LL) | 0.01  | 4-5   | >999   | 240 | Weight: 10 lb | FT = 10% |

| LUMBER    |            |                                                                        |
|-----------|------------|------------------------------------------------------------------------|
| TOP CHORD | 2x4 SPF I  | No.2                                                                   |
| BOT CHORD | 2x4 SPF I  | No.2                                                                   |
| WEBS      | 2x4 SPF I  | No.2                                                                   |
| BRACING   |            |                                                                        |
| TOP CHORD |            | l wood sheathing directly applied or<br>purlins, except end verticals. |
| BOT CHORD |            | ing directly applied or 10-0-0 oc                                      |
| REACTIONS | (lb/size)  | 3=98/ Mechanical, 4=36/<br>Mechanical, 5=228/0-3-8                     |
|           | Max Horiz  | 5=63 (LC 8)                                                            |
|           | Max Uplift | 3=-52 (LC 8), 5=-33 (LC 8)                                             |
|           |            |                                                                        |

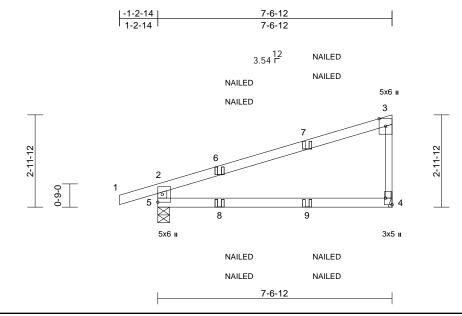

#### Max Grav 3=98 (LC 1), 4=60 (LC 3), 5=228 (LC 1) FORCES (Ib) - Maximum Compression/Maximum Tension

#### TOP CHORD 2-5=-200/64, 1-2=0/27, 2-3=-54/29 BOT CHORD 4-5=0/0

#### NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 33 lb uplift at joint 5 and 52 lb uplift at joint 3.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard




| Job   | Truss | Truss Type          | Qty | Ply | Lot 117 RR               |           |
|-------|-------|---------------------|-----|-----|--------------------------|-----------|
| RR117 | J17   | Diagonal Hip Girder | 2   | 1   | Job Reference (optional) | 148527938 |

#### Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:07 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

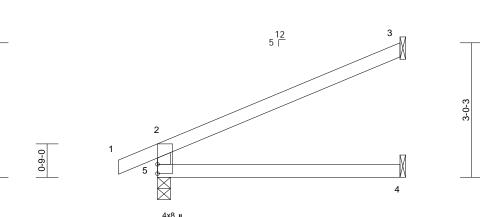


?f



#### Plate Offsets (X, Y): [4:Edge,0-2-8]

|              | 7, 1). [4.Luge,0-2-0]                       |                                                |          |                          |                                 |              |             |       |       |        |     |                                       |                   |
|--------------|---------------------------------------------|------------------------------------------------|----------|--------------------------|---------------------------------|--------------|-------------|-------|-------|--------|-----|---------------------------------------|-------------------|
| Loading      | (psf)                                       | Spacing                                        | 2-0-0    |                          | csi                             |              | DEFL        | in    | (loc) | l/defl | L/d | PLATES                                | GRIP              |
| TCLL (roof)  | 25.0                                        | Plate Grip DOL                                 | 1.15     |                          | TC                              | 0.86         |             | -0.11 | 4-5   | >780   | 360 | MT20                                  | 197/144           |
| TCDL         | 10.0                                        | Lumber DOL                                     | 1.15     |                          | BC                              | 0.51         | Vert(CT)    | -0.24 | 4-5   | >361   | 240 |                                       |                   |
| BCLL         | 0.0*                                        | Rep Stress Incr                                | NO       |                          | WB                              | 0.00         | · · ·       | 0.00  | 4     | n/a    | n/a |                                       |                   |
| BCDL         | 10.0                                        | Code                                           | IRC2018  | /TPI2014                 | Matrix-R                        |              | Wind(LL)    | 0.05  | 4-5   | >999   | 240 | Weight: 21 lb                         | FT = 10%          |
|              |                                             | 1                                              |          |                          |                                 |              |             | _     |       |        |     |                                       |                   |
| LUMBER       |                                             |                                                | 8)       |                          | CASE(S) section                 |              |             | face  |       |        |     |                                       |                   |
| TOP CHORD    | 2x4 SPF No.2                                |                                                |          |                          | re noted as from                | nt (F) or ba | ск (В).     |       |       |        |     |                                       |                   |
| BOT CHORD    | 2x4 SPF No.2                                |                                                |          | AD CASE(S)               |                                 |              |             |       |       |        |     |                                       |                   |
| WEBS         | 2x4 SPF No.2 *Exce                          | ept* 3-4:2x3 SPF No.                           | 2 1)     |                          | of Live (balanced               | d): Lumber   | Increase=1. | 15,   |       |        |     |                                       |                   |
| BRACING      |                                             |                                                |          | Plate Increa             |                                 |              |             |       |       |        |     |                                       |                   |
| TOP CHORD    | Structural wood she<br>6-0-0 oc purlins, ex | eathing directly applie<br>cept end verticals. | d or     | Uniform Loa<br>Vert: 1-2 | ads (lb/ft)<br>=-70, 2-3=-70, 4 | -5=-20       |             |       |       |        |     |                                       |                   |
| BOT CHORD    | Rigid ceiling directly                      | applied or 10-0-0 oc                           | ;        | Concentrate              | ed Loads (lb)                   |              |             |       |       |        |     |                                       | н <u>л.</u>       |
|              | bracing.                                    |                                                |          |                          | 2 (F=-1, B=-1), 8               | 8=7 (F=4, E  | 3=4), 9=-13 |       |       |        |     | IN OF                                 | MICH              |
| REACTIONS    | (lb/size) 4=328/ M                          | echanical, 5=435/0-4                           | l-9      | (F=-7, B=                | -7)                             |              |             |       |       |        |     | NE                                    | SS                |
|              | Max Horiz 5=122 (LC                         |                                                |          |                          |                                 |              |             |       |       |        |     | ·                                     |                   |
|              | Max Uplift 4=-80 (LC                        | C 8), 5=-123 (LC 4)                            |          |                          |                                 |              |             |       |       |        | -   | 2 · · · · ·                           |                   |
| FORCES       | (lb) - Maximum Com<br>Tension               | npression/Maximum                              |          |                          |                                 |              |             |       |       |        | Ξ.  | JUA<br>GAR                            |                   |
| TOP CHORD    | 2-5=-383/180, 1-2=0                         | )/27 2-3=-199/21                               |          |                          |                                 |              |             |       |       |        | =*  | GATT                                  | *=                |
|              | 3-4=-228/112                                |                                                |          |                          |                                 |              |             |       |       |        | Ξ., |                                       |                   |
| BOT CHORD    | 4-5=-43/87                                  |                                                |          |                          |                                 |              |             |       |       |        | =7  | NUME                                  | BER :             |
| NOTES        |                                             |                                                |          |                          |                                 |              |             |       |       |        |     | C E-20001                             | 62101 :41         |
|              | CE 7-16; Vult=115mph                        | (3-second aust)                                |          |                          |                                 |              |             |       |       |        | -   | A                                     |                   |
|              | nph; TCDL=6.0psf; BC                        |                                                | Cat.     |                          |                                 |              |             |       |       |        |     | · · · · · · · · · · · · · · · · · · · | GN                |
| II; Exp C; E | Enclosed; MWFRS (er                         | nvelope) exterior zon                          | e;       |                          |                                 |              |             |       |       |        |     | I,ONI                                 | LENN              |
|              | left and right exposed                      |                                                |          |                          |                                 |              |             |       |       |        |     |                                       | iiii <sup>i</sup> |
|              | sed; Lumber DOL=1.6                         |                                                | 60       |                          |                                 |              |             |       |       |        |     |                                       |                   |
|              | has been designed fo                        |                                                |          |                          |                                 |              |             |       |       |        |     | I I I I I I I I I I I I I I I I I I I | 1111              |
|              | load nonconcurrent w                        |                                                |          |                          |                                 |              |             |       |       |        |     | IN UAN C                              | GARO              |
|              | s has been designed f                       |                                                | psf      |                          |                                 |              |             |       |       |        |     | N. 70                                 | ····· A           |
|              | tom chord in all areas                      |                                                |          |                          |                                 |              |             |       |       |        |     | CE                                    | NSE               |
|              | Il by 2-00-00 wide will any other members.  | In between the bolto                           | m        |                          |                                 |              |             |       |       |        |     |                                       |                   |
|              | rder(s) for truss to trus                   | es connections                                 |          |                          |                                 |              |             |       |       |        |     |                                       | 1 A E             |
|              | echanical connection                        |                                                | <b>`</b> |                          |                                 |              |             |       |       |        |     | 160                                   | 952               |
|              | ate capable of withsta                      |                                                | ,        |                          |                                 |              |             |       |       |        | -   | 10.                                   | 552               |
|              | 80 lb uplift at joint 4.                    | nung 120 ib upint ut                           |          |                          |                                 |              |             |       |       |        | -   | T.                                    | h : 55            |
|              | is designed in accorda                      | ance with the 2018                             |          |                          |                                 |              |             |       |       |        |     | 0                                     | 14. 14 S          |
|              | al Residential Code s                       |                                                | nd       |                          |                                 |              |             |       |       |        |     | AM                                    | ISAS. RASI        |
|              | and referenced stand                        |                                                |          |                          |                                 |              |             |       |       |        |     | 1 SSIC                                | ENUI              |
| 7) "NAILED"  | indicates 3-10d (0.148                      | 3"x3") or 2-12d                                |          |                          |                                 |              |             |       |       |        |     | I I I I                               | AL                |
| (0.148"x3.2  | 25") toe-nails per NDS                      | 6 guidlines.                                   |          |                          |                                 |              |             |       |       |        |     |                                       |                   |
|              |                                             |                                                |          |                          |                                 |              |             |       |       |        |     | Octobe                                | r 27,2021         |




| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | J18   | Jack-Open  | 7   | 1   | Job Reference (optional) | 148527939 |

#### Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:07 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f







xo II

-0-10-8

0-10-8

| 5-5-4 |
|-------|
|       |

5-5-4

5-5-4

| Loading     | (psf) | Spacing         | 2-0-0           | csi      |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES        | GRIP     |
|-------------|-------|-----------------|-----------------|----------|------|----------|-------|-------|--------|-----|---------------|----------|
| TCLL (roof) | 25.0  | Plate Grip DOL  | 1.15            | TC       | 0.43 | Vert(LL) | -0.03 | 4-5   | >999   | 360 | MT20          | 197/144  |
| TCDL        | 10.0  | Lumber DOL      | 1.15            | BC       | 0.26 | Vert(CT) | -0.08 | 4-5   | >810   | 240 |               |          |
| BCLL        | 0.0*  | Rep Stress Incr | YES             | WB       | 0.00 | Horz(CT) | 0.03  | 3     | n/a    | n/a |               |          |
| BCDL        | 10.0  | Code            | IRC2018/TPI2014 | Matrix-R |      | Wind(LL) | 0.03  | 4-5   | >999   | 240 | Weight: 14 lb | FT = 10% |

LUMBER

Scale = 1:25.8

| 2x4 SPF I   | No.2                                                                          |
|-------------|-------------------------------------------------------------------------------|
| 2x4 SPF I   | No.2                                                                          |
| 2x4 SPF I   | No.2                                                                          |
|             |                                                                               |
| Structural  | wood sheathing directly applied or                                            |
| 5-5-4 oc p  | ourlins, except end verticals.                                                |
| Rigid ceili | ing directly applied or 10-0-0 oc                                             |
| bracing.    |                                                                               |
| (lb/size)   | 3=164/ Mechanical, 4=64/                                                      |
|             | 2x4 SPF I<br>2x4 SPF I<br>Structural<br>5-5-4 oc p<br>Rigid ceili<br>bracing. |

|            | Mechanical, 5=314/0-3-8          |
|------------|----------------------------------|
| Max Horiz  | 5=68 (LC 8)                      |
| Max Uplift | 3=-49 (LC 8), 5=-4 (LC 8)        |
| Max Grav   | 3=164 (LC 1), 4=99 (LC 3), 5=314 |
|            | (LC 1)                           |
|            |                                  |

3-0-3

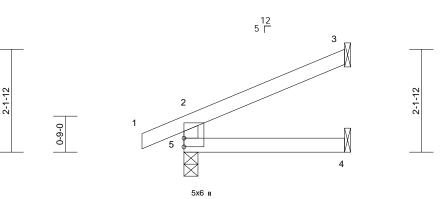
#### FORCES (Ib) - Maximum Compression/Maximum Tension

#### TOP CHORD 2-5=-274/48, 1-2=0/27, 2-3=-78/49 BOT CHORD 4-5=0/0

#### NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 4 lb uplift at joint 5 and 49 lb uplift at joint 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard






| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | J19   | Jack-Open  | 3   | 1   | Job Reference (optional) | 148527940 |

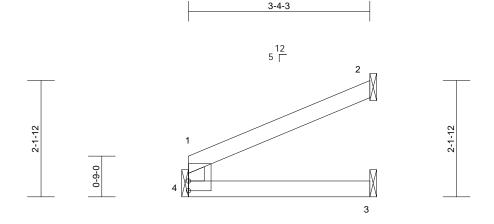
Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:07 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1





3-4-3

Scale = 1:24


| Scale = 1:24                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                                   |                      |                                                      |                                     |                                 |                                       |                                 |                                                     |                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------|----------------------|------------------------------------------------------|-------------------------------------|---------------------------------|---------------------------------------|---------------------------------|-----------------------------------------------------|------------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                                    | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                     | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                          | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2014  | CSI<br>TC<br>BC<br>WB<br>Matrix-R | 0.13<br>0.08<br>0.00 | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Wind(LL) | in<br>0.00<br>-0.01<br>0.00<br>0.00 | (loc)<br>4-5<br>4-5<br>3<br>4-5 | l/defl<br>>999<br>>999<br>n/a<br>>999 | L/d<br>360<br>240<br>n/a<br>240 | PLATES<br>MT20<br>Weight: 9 lb                      | <b>GRIP</b><br>197/144<br>FT = 10% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD                                                                                                                                                                                                                                     | 2x4 SPF No.2<br>2x4 SPF No.2<br>Structural wood she<br>3-4-3 oc purlins, ex<br>Rigid ceiling directly<br>bracing.                                                                                                                                                                                                                                                                                                                                                         | y applied or 10-0-0 o                                                                                                                                                                                                                                                                                                                                                       |                                                  |                                   |                      |                                                      |                                     |                                 |                                       |                                 |                                                     | 111.                               |
| REACTIONS                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C 8), 5=-33 (LC 8)                                                                                                                                                                                                                                                                                                                                                          | 224                                              |                                   |                      |                                                      |                                     |                                 |                                       | in in                           | ALE OF                                              | MISSO<br>AN<br>RCIA                |
| <ul> <li>Vasd=91rr<br/>II; Exp C; I<br/>cantilever<br/>right expos</li> <li>2) This truss<br/>chord live</li> <li>3) * This trus<br/>on the bot</li> <li>3-06-00 ta<br/>chord and</li> <li>4) Refer to gi</li> <li>5) Provide m<br/>bearing pla<br/>5 and 51 II</li> <li>6) This truss<br/>Internation</li> </ul> | Tension<br>2-5=-197/63, 1-2=0,<br>4-5=0/0<br>CE 7-16; Vult=115mph<br>ph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (e<br>left and right exposed<br>sed; Lumber DOL=1.6<br>load nonconcurrent w<br>s has been designed<br>for hord in all areas<br>II by 2-00-00 wide will<br>any other members.<br>rder(s) for truss to tru<br>echanical connection<br>ate capable of withsta<br>o uplift at joint 3.<br>is designed in accord<br>all Residential Code s<br>and referenced stand | h (3-second gust)<br>DL=6.0psf; h=25ft; (<br>nvelope) exterior zor<br>1; end vertical left an<br>30 plate grip DOL=1.1<br>or a 10.0 psf bottom<br>ith any other live loa<br>for a live load of 20.0<br>where a rectangle<br>fit between the botto<br>uss connections.<br>(by others) of truss t<br>inding 33 lb uplift at ju-<br>ance with the 2018<br>sections R502.11.1 a | ne;<br>d<br>60<br>ds.<br>)psf<br>om<br>o<br>oint |                                   |                      |                                                      |                                     |                                 |                                       | C PHONE CONTINUES               | NUN<br>E-2000<br>SS/ON<br>LOE<br>16<br>PROXING S/OT | GARCIA<br>NSEO                     |
| LUAD CASE(                                                                                                                                                                                                                                                                                                        | Si Stanuaru                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                             |                                                  |                                   |                      |                                                      |                                     |                                 |                                       |                                 | Octobe                                              | er 27,2021                         |



| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | J20   | Jack-Open  | 1   | 1   | Job Reference (optional) | 148527941 |

#### Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:08 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f





5x6 🛛

Matrix-R

IRC2018/TPI2014

|                |       | 3-4-3           |       |     |      |          |       |       |        |     |        |         |
|----------------|-------|-----------------|-------|-----|------|----------|-------|-------|--------|-----|--------|---------|
| Scale = 1:21.3 |       | -               |       |     |      |          | 1     |       |        |     |        |         |
| Loading        | (psf) | Spacing         | 2-0-0 | CSI |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES | GRIP    |
| TCLL (roof)    | 25.0  | Plate Grip DOL  | 1.15  | TC  | 0.15 | Vert(LL) | 0.00  | 3-4   | >999   | 360 | MT20   | 197/144 |
| TCDL           | 10.0  | Lumber DOL      | 1.15  | BC  | 0.09 | Vert(CT) | -0.01 | 3-4   | >999   | 240 |        |         |
| BCLL           | 0.0*  | Rep Stress Incr | YES   | WB  | 0.00 | Horz(CT) | 0.01  | 2     | n/a    | n/a |        |         |

Wind(LL)

0.01

3-4

>999

240

Weight: 8 lb

FT = 10%

| L | ш | M | R | F | R |  |
|---|---|---|---|---|---|--|

BCDL

| LOWIDER   |            |                                      |
|-----------|------------|--------------------------------------|
| TOP CHORD | 2x4 SPF    | No.2                                 |
| BOT CHORD | 2x4 SPF    | No.2                                 |
| WEBS      | 2x4 SPF    | No.2                                 |
| BRACING   |            |                                      |
| TOP CHORD | Structura  | I wood sheathing directly applied or |
|           | 3-4-3 oc   | purlins, except end verticals.       |
| BOT CHORD | Rigid ceil | ing directly applied or 10-0-0 oc    |
|           | bracing.   |                                      |
| REACTIONS | (lb/size)  | 2=101/ Mechanical, 3=40/             |
|           | . ,        | Mechanical, 4=141/Mechanical         |

10.0

Code

|           | Mechanical, 4=141/ Mechanical    |
|-----------|----------------------------------|
| Max Horiz | z 4=46 (LC 5)                    |
| Max Uplif | t 2=-52 (LC 8), 4=-7 (LC 8)      |
| Max Grav  | 2=101 (LC 1), 3=60 (LC 3), 4=141 |
|           | (LC 1)                           |
|           | -                                |

#### FORCES (Ib) - Maximum Compression/Maximum Tension

## TOP CHORD 1-4=-118/38, 1-2=-52/31 BOT CHORD 3-4=0/0

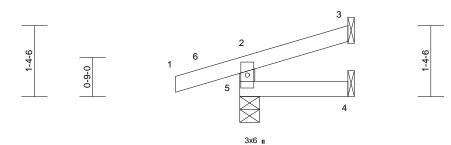
#### NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb uplift at joint 4 and 52 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard






| Job   | Truss | Truss Type          | Qty | Ply | Lot 117 RR               |           |
|-------|-------|---------------------|-----|-----|--------------------------|-----------|
| RR117 | J21   | Diagonal Hip Girder | 2   | 1   | Job Reference (optional) | 148527942 |

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:09 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-1-2-14 2-1-0 1-2-14 2-1-0



2-1-0



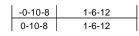
| Scale = 1:22.2 | :22.2 | 1 | = | le | Sca |
|----------------|-------|---|---|----|-----|
|----------------|-------|---|---|----|-----|

| 3cale = 1.22.2                 |                                                                                                                                                   |                                                               |                       |                                                                                                                                                                                                                      |                  |                                                                                                                                              |                                                                                                               |                                               |                     |                        |                   |                |                        |   |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------|------------------------|-------------------|----------------|------------------------|---|
| Loading<br>TCLL (roof)<br>TCDL | (psf<br>25.0<br>10.0                                                                                                                              | ) Plate Grip DOL                                              | 2-0-0<br>1.15<br>1.15 |                                                                                                                                                                                                                      | CSI<br>TC<br>BC  | 0.07<br>0.02                                                                                                                                 | DEFL<br>Vert(LL)<br>Vert(CT)                                                                                  | in<br>0.00<br>0.00                            | (loc)<br>4-5<br>4-5 | l/defl<br>>999<br>>999 | L/d<br>360<br>240 | PLATES<br>MT20 | <b>GRIP</b><br>197/144 |   |
| BCLL<br>BCDL                   | 0.0<br>10.0                                                                                                                                       |                                                               | NO<br>IRC201          | 8/TPI2014                                                                                                                                                                                                            | WB<br>Matrix-R   | 0.00                                                                                                                                         | Horz(CT)<br>Wind(LL)                                                                                          | 0.00<br>0.00                                  | 3<br>4-5            | n/a<br>>999            | n/a<br>240        | Weight: 7 lb   | FT = 10%               |   |
|                                | 2-1-0 oc purlins,<br>Rigid ceiling dire<br>bracing.<br>(Ib/size) 3=21/<br>Max Horiz 5=43<br>Max Uplift 3=-24<br>5=-11.<br>Max Grav 3=21<br>(LC 1) | (LC 12), 4=-6 (LC 19),<br>3 (LC 6)<br>(LC 1), 4=17 (LC 3), 5= | oc L<br>1,<br>-71     | provided sui<br>down and 5<br>up at -1-2-1<br>such connect<br>) In the LOAD<br>of the truss<br>OAD CASE(5)<br>) Dead + Ro<br>Plate Incre<br>Concentrat<br>Vert: 1=<br>Trapezoida<br>Vert: 1=<br>(F=35, E<br>B=27)-tc | of Live (balance | rt concentra<br>I, and 14 lb<br>The desig<br>is the respon-<br>on, loads a<br>nt (F) or ba<br>ed): Lumber<br>11)<br>to-6=-18 (F<br>F=27, B=2 | Ated load(s) 1<br>down and 5<br>n/selection of<br>nsibility of oth<br>pplied to the<br>ck (B).<br>Increase=1. | lb<br>f<br>hers.<br>face<br>15,<br>6=0<br>27, |                     |                        |                   | JU<br>GAF      | RCIA                   |   |
| TOP CHORD<br>BOT CHORD         | 2-5=-73/108, 1-2<br>4-5=0/0                                                                                                                       | =-3/10, 2-3=-15/3                                             |                       |                                                                                                                                                                                                                      |                  |                                                                                                                                              |                                                                                                               |                                               |                     |                        | 1                 | E-2000         | 162101                 | 4 |

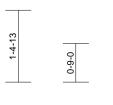
NOTES

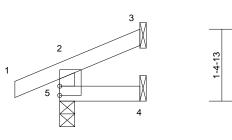
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. \* This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 113 lb uplift at joint 5, 24 lb uplift at joint 3 and 6 lb uplift at joint 4.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601




Page: 1





| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | J22   | Jack-Open  | 3   | 1   | Job Reference (optional) | 148527943 |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:10 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1







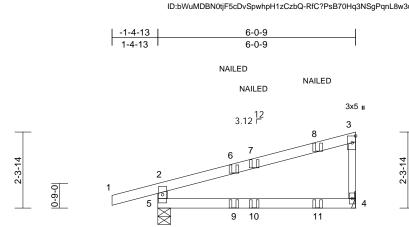


5x6 II

1-6-12

| Sca | le. | _ | 1:22.5 |  |
|-----|-----|---|--------|--|

| Loading                                  | (psf)                                           | Spacing                  | 2-0-0           | csi      |      | DEFL     | in   | (loc) | l/defl | L/d | PLATES       | GRIP                                                                                                            |
|------------------------------------------|-------------------------------------------------|--------------------------|-----------------|----------|------|----------|------|-------|--------|-----|--------------|-----------------------------------------------------------------------------------------------------------------|
| TCLL (roof)                              | (53)                                            | Plate Grip DOL           | 1.15            | TC       | 0.07 | Vert(LL) | 0.00 | 4-5   | >999   | 360 | MT20         | 197/144                                                                                                         |
| TCDL                                     | 10.0                                            | Lumber DOL               | 1.15            | BC       | 0.02 | Vert(CT) | 0.00 | 4-5   | >999   | 240 |              |                                                                                                                 |
| BCLL                                     | 0.0*                                            | Rep Stress Incr          | YES             | WB       | 0.00 | Horz(CT) | 0.00 | 3     | n/a    | n/a |              |                                                                                                                 |
| BCDL                                     | 10.0                                            | Code                     | IRC2018/TPI2014 | Matrix-R | 0.00 | Wind(LL) | 0.00 | 4-5   | >999   | 240 | Weight: 5 lb | FT = 10%                                                                                                        |
|                                          |                                                 |                          |                 |          |      |          |      |       |        |     |              |                                                                                                                 |
| LUMBER                                   |                                                 |                          |                 |          |      |          |      |       |        |     |              |                                                                                                                 |
| TOP CHORD                                |                                                 |                          |                 |          |      |          |      |       |        |     |              |                                                                                                                 |
| BOT CHORD                                |                                                 |                          |                 |          |      |          |      |       |        |     |              |                                                                                                                 |
| WEBS                                     | 2x4 SPF No.2                                    |                          |                 |          |      |          |      |       |        |     |              |                                                                                                                 |
| BRACING                                  |                                                 |                          |                 |          |      |          |      |       |        |     |              |                                                                                                                 |
| TOP CHORD                                |                                                 |                          | ed or           |          |      |          |      |       |        |     |              |                                                                                                                 |
|                                          | 1-6-12 oc purlins, e                            |                          |                 |          |      |          |      |       |        |     |              |                                                                                                                 |
| BOT CHORD                                | Rigid ceiling directly<br>bracing.              | applied or 10-0-0 of     | 2               |          |      |          |      |       |        |     |              | • 1                                                                                                             |
| REACTIONS                                | (lb/size) 3=29/ Me                              | chanical, 4=8/           |                 |          |      |          |      |       |        |     |              | 1111                                                                                                            |
| Mechanical, 5=161/0-3-8                  |                                                 |                          |                 |          |      |          |      |       |        |     |              |                                                                                                                 |
| Max Horiz 5=36 (LC 5)                    |                                                 |                          |                 |          |      |          |      |       |        |     |              |                                                                                                                 |
| Max Uplift 3=-22 (LC 8), 5=-35 (LC 4)    |                                                 |                          |                 |          |      |          |      |       |        |     |              |                                                                                                                 |
| Max Grav 3=29 (LC 1), 4=24 (LC 3), 5=161 |                                                 |                          |                 |          |      |          |      |       |        |     |              |                                                                                                                 |
|                                          | (LC 1)                                          |                          |                 |          |      |          |      |       |        | 24  | GAR          | CIA :                                                                                                           |
| FORCES                                   | (lb) - Maximum Com<br>Tension                   | pression/Maximum         |                 |          |      |          |      |       |        | Ξ.  |              |                                                                                                                 |
| TOP CHORD                                |                                                 | 27. 2-3=-27/7            |                 |          |      |          |      |       |        | - 7 | NUM          |                                                                                                                 |
| BOT CHORD                                |                                                 |                          |                 |          |      |          |      |       |        | -5  |              | • []]                                                                                                           |
| NOTES                                    |                                                 |                          |                 |          |      |          |      |       |        | -1  | E-20001      | 102101                                                                                                          |
|                                          | CE 7-16; Vult=115mph                            | (3-second aust)          |                 |          |      |          |      |       |        | 1   | A            | - dala                                                                                                          |
|                                          | nph; TCDL=6.0psf; BC                            |                          | Cat.            |          |      |          |      |       |        |     | 1,SION       | FNI                                                                                                             |
|                                          | Enclosed; MWFRS (er                             |                          |                 |          |      |          |      |       |        |     |              |                                                                                                                 |
|                                          | left and right exposed                          |                          |                 |          |      |          |      |       |        |     |              | Here and a second se |
|                                          | sed; Lumber DOL=1.6                             |                          | 60              |          |      |          |      |       |        |     |              | 1117.                                                                                                           |
|                                          | has been designed for                           |                          |                 |          |      |          |      |       |        |     | ALL NO       | GARO                                                                                                            |
|                                          | load nonconcurrent wi                           |                          |                 |          |      |          |      |       |        |     | NUAN         | CIA I                                                                                                           |
|                                          | s has been designed f<br>tom chord in all areas |                          | ipsr            |          |      |          |      |       |        |     | CE           | NSA                                                                                                             |
|                                          | all by 2-00-00 wide will                        |                          | m               |          |      |          |      |       |        |     |              |                                                                                                                 |
|                                          | any other members.                              |                          |                 |          |      |          |      |       |        | -   | 6 A          | 1 2                                                                                                             |
|                                          | irder(s) for truss to tru                       | ss connections.          |                 |          |      |          |      |       |        | -   | 1 1 6        | 952 🛛 🗧                                                                                                         |
|                                          | echanical connection (                          |                          | 0               |          |      |          |      |       |        | -   | 10           | 952                                                                                                             |
|                                          | ate capable of withstar                         | nding 35 lb uplift at jo | pint            |          |      |          |      |       |        |     | UCE          |                                                                                                                 |
|                                          | b uplift at joint 3.                            |                          |                 |          |      |          |      |       |        |     | 0.           | 14:45                                                                                                           |
|                                          | is designed in accorda                          |                          |                 |          |      |          |      |       |        |     | AM           | ISAS. R.                                                                                                        |
|                                          | nal Residential Code s                          |                          | nd              |          |      |          |      |       |        |     | 1. SION      | IN EN IN                                                                                                        |
|                                          | 2 and referenced stand                          | ard ANSI/TPT1.           |                 |          |      |          |      |       |        |     |              | AL                                                                                                              |
| LOAD CASE(                               | S) Standard                                     |                          |                 |          |      |          |      |       |        |     | Octobo       | r 07 0001                                                                                                       |


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



| Job   | Truss | Truss Type          | Qty | Ply | Lot 117 RR               |           |
|-------|-------|---------------------|-----|-----|--------------------------|-----------|
| RR117 | J23   | Diagonal Hip Girder | 2   | 1   | Job Reference (optional) | 148527944 |

#### Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:10 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f





3x6 II

NAILED

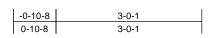
2x4 🛛

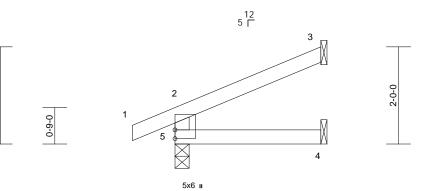
NAILED

NAILED

6-0-9

Scale = 1:35.2


| Loa                                                             | ding         | (psf)                                           | Spacing                | 2-0-0         |           | csi                |           | DEFL          | in    | (loc) | l/defl | L/d | PLATES        | GRIP      |
|-----------------------------------------------------------------|--------------|-------------------------------------------------|------------------------|---------------|-----------|--------------------|-----------|---------------|-------|-------|--------|-----|---------------|-----------|
|                                                                 | L (roof)     | 25.0                                            | Plate Grip DOL         | 1.15          |           | TC                 | 0.48      | Vert(LL)      | -0.04 | 4-5   | >999   | 360 | MT20          | 197/144   |
| TCD                                                             | L            | 10.0                                            | Lumber DOL             | 1.15          |           | BC                 | 0.30      | Vert(CT)      | -0.09 | 4-5   | >750   | 240 |               |           |
| BCL                                                             | L            | 0.0*                                            | Rep Stress Incr        | NO            |           | WB                 | 0.00      | Horz(CT)      | 0.00  | 4     | n/a    | n/a |               |           |
| BCD                                                             | )L           | 10.0                                            | Code                   | IRC2018/TPI20 | )14       | Matrix-R           |           | Wind(LL)      | 0.01  | 4-5   | >999   | 240 | Weight: 17 lb | FT = 10%  |
| LUN                                                             | IBER         |                                                 |                        | 8) In the     | e LOAD    | CASE(S) section    | , loads a | pplied to the | face  |       |        |     |               |           |
| TOP                                                             | CHORD        | 2x4 SPF No.2                                    |                        | of the        | e truss a | ire noted as front | (F) or ba | ck (B).       |       |       |        |     |               |           |
|                                                                 | CHORD        | 2x4 SPF No.2                                    |                        |               | ASE(S)    | Standard           |           |               |       |       |        |     |               |           |
| WEE                                                             |              | 2x4 SPF No.2 *Exce                              | ept* 3-4:2x3 SPF No.:  | ,             |           | of Live (balanced) | : Lumber  | Increase=1.   | 15,   |       |        |     |               |           |
|                                                                 | CING         |                                                 |                        |               |           | ase=1.15           |           |               |       |       |        |     |               |           |
| TOP                                                             | CHORD        |                                                 | athing directly applie |               |           | ads (lb/ft)        | - 20      |               |       |       |        |     |               |           |
| BOT                                                             | CHORD        | 6-0-0 oc purlins, ex                            | cept end verticals.    |               |           | =-70, 2-3=-70, 4-5 | 5=-20     |               |       |       |        |     |               |           |
| bracing. Vert: 8=-2 (B), 9=3 (B), 10=-1 (F), 11=-7 (B)          |              |                                                 |                        |               |           |                    |           |               |       | 115   |        |     |               |           |
| REACTIONS (lb/size) 4=253/ Mechanical, 5=384/0-4-11             |              |                                                 |                        |               |           |                    |           |               |       | Mille |        |     |               |           |
| Max Horiz 5=92 (LC 7)<br>Max Liplift 4=-59 (LC 8) 5=-118 (LC 4) |              |                                                 |                        |               |           |                    |           |               |       |       | SS     |     |               |           |
| Max Uplift 4=-59 (LC 8), 5=-118 (LC 4)                          |              |                                                 |                        |               |           |                    |           |               |       |       |        |     |               |           |
| FORCES (Ib) - Maximum Compression/Maximum<br>Tension            |              |                                                 |                        |               |           |                    |           |               |       |       |        | 20  | JU/           | AN P      |
| TOP                                                             | CHORD        | 2-5=-338/160, 1-2=0                             | 0/27, 2-3=-145/15,     |               |           |                    |           |               |       |       |        | =+  | GAR           | CIA       |
| BOT                                                             | CHORD        | 3-4=-178/87<br>4-5=-29/69                       |                        |               |           |                    |           |               |       |       |        |     | :             |           |
| NOT                                                             |              | 4-3=-23/03                                      |                        |               |           |                    |           |               |       |       |        | = 0 | NUM           |           |
|                                                                 |              | CE 7-16; Vult=115mph                            | (3-second qust)        |               |           |                    |           |               |       |       |        | -5  | E-20001       | • 41.     |
|                                                                 |              | nph; TCDL=6.0psf; BC                            |                        | Cat.          |           |                    |           |               |       |       |        |     | E-20001       | 102101    |
|                                                                 | II; Exp C; E | Enclosed; MWFRS (er                             | nvelope) exterior zon  | e;            |           |                    |           |               |       |       |        |     | · • • • •     | GN        |
|                                                                 |              | left and right exposed                          |                        |               |           |                    |           |               |       |       |        |     | 1,SONI        | ENIN      |
|                                                                 | •            | sed; Lumber DOL=1.6                             |                        | 50            |           |                    |           |               |       |       |        |     | 1111          | iiiiii    |
|                                                                 |              | has been designed fo<br>load nonconcurrent wi   |                        | ls.           |           |                    |           |               |       |       |        |     |               |           |
|                                                                 |              | s has been designed f                           |                        |               |           |                    |           |               |       |       |        |     | THE LOE       |           |
|                                                                 |              | tom chord in all areas                          | 0                      |               |           |                    |           |               |       |       |        |     | NUAN          | ARCIN     |
|                                                                 |              | Il by 2-00-00 wide will                         | fit between the botto  | m             |           |                    |           |               |       |       |        |     | N CE          | NSA       |
|                                                                 |              | any other members.<br>rder(s) for truss to trus | ss connections         |               |           |                    |           |               |       |       |        |     |               | - O ·     |
|                                                                 |              | echanical connection                            |                        | <b>`</b>      |           |                    |           |               |       |       |        |     | 1 A State 1   | - A E -   |
|                                                                 |              | ate capable of withstar                         |                        |               |           |                    |           |               |       |       |        |     | 1 1 60        | 952       |
| 1                                                               | 5 and 59 lt  | b uplift at joint 4.                            | • • •                  |               |           |                    |           |               |       |       |        | -   | 10            | 552       |
|                                                                 |              | is designed in accorda                          |                        |               |           |                    |           |               |       |       |        | -   | D.            |           |
|                                                                 |              | al Residential Code s                           |                        | nd            |           |                    |           |               |       |       |        |     | On Kan        | 5145      |
|                                                                 |              | and referenced stand<br>indicates 2-12d (0.148  |                        |               |           |                    |           |               |       |       |        |     |               | SAGE      |
|                                                                 | NAILED       |                                                 | 5 x5.25 ) toe-nalls pe | 1             |           |                    |           |               |       |       |        |     | SION          | ALENIN    |
|                                                                 |              |                                                 |                        |               |           |                    |           |               |       |       |        |     | 1111          | IIIIII.   |
|                                                                 |              |                                                 |                        |               |           |                    |           |               |       |       |        |     |               | r 27,2021 |
|                                                                 |              |                                                 |                        |               |           |                    |           |               |       |       |        |     | 2 2.500       | ,-•       |




| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | J24   | Jack-Open  | 2   | 1   | Job Reference (optional) | 148527945 |

2-0-0

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:11 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



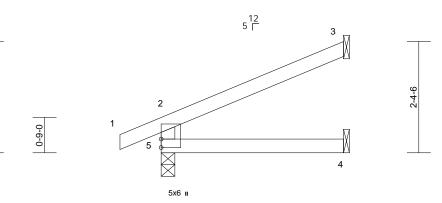


3-0-1

Scale = 1:23.7

| Scale = 1:23.7                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                              |                                |                       |                      |                                          |                             |                          |                               |                          |                |                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------|----------------------|------------------------------------------|-----------------------------|--------------------------|-------------------------------|--------------------------|----------------|------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL                                                                                                                                                                                                | (psf)<br>25.0<br>10.0<br>0.0*                                                                                                                                                                                                                                                                                                                                                               | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr                                                                                                                                                                            | 2-0-0<br>1.15<br>1.15<br>YES   | CSI<br>TC<br>BC<br>WB | 0.10<br>0.06<br>0.00 | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT) | in<br>0.00<br>-0.01<br>0.00 | (loc)<br>4-5<br>4-5<br>3 | l/defl<br>>999<br>>999<br>n/a | L/d<br>360<br>240<br>n/a | PLATES<br>MT20 | <b>GRIP</b><br>197/144 |
| BCDL                                                                                                                                                                                                                                  | 10.0                                                                                                                                                                                                                                                                                                                                                                                        | Code                                                                                                                                                                                                                                         | IRC2018/TPI2014                | Matrix-R              |                      | Wind(LL)                                 | 0.00                        | 4-5                      | >999                          | 240                      | Weight: 9 lb   | FT = 10%               |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD                                                                                                                                                         | 2x4 SPF No.2<br>2x4 SPF No.2<br>Structural wood she<br>3-0-1 oc purlins, ex                                                                                                                                                                                                                                                                                                                 | cept end verticals.                                                                                                                                                                                                                          |                                |                       |                      | •                                        |                             |                          |                               |                          |                |                        |
| REACTIONS                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                             | C 8), 5=-32 (LC 8)                                                                                                                                                                                                                           | 210                            |                       |                      |                                          |                             |                          |                               |                          | S. JU          | MISSOUT                |
| FORCES                                                                                                                                                                                                                                | (lb) - Maximum Com                                                                                                                                                                                                                                                                                                                                                                          | npression/Maximum                                                                                                                                                                                                                            |                                |                       |                      |                                          |                             |                          |                               | Ξ*                       | GAI            | *=                     |
| Vasd=91n<br>II; Exp C;<br>cantilever                                                                                                                                                                                                  | 4-5=0/0<br>CE 7-16; Vult=115mph<br>nph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>left and right exposed                                                                                                                                                                                                                                                                                    | n (3-second gust)<br>CDL=6.0psf; h=25ft; (<br>nvelope) exterior zor<br>; end vertical left an                                                                                                                                                | ne;<br>Id                      |                       |                      |                                          |                             |                          |                               | Philip                   |                | IBER<br>162101         |
| <ol> <li>This truss<br/>chord live</li> <li>* This trus<br/>on the bot<br/>3-06-00 ta<br/>chord and</li> <li>Refer to g</li> <li>Provide m<br/>bearing 15<br/>5 and 45 I</li> <li>This truss<br/>Internation<br/>R802.10.2</li> </ol> | sed; Lumber DOL=1.6<br>has been designed fo<br>load nonconcurrent w<br>is has been designed fo<br>tom chord in all areas<br>all by 2-00-00 wide will<br>any other members.<br>irder(s) for truss to tru<br>techanical connection<br>techanical connection<br>ate capable of withstat<br>b uplift at joint 3.<br>is designed in accorda<br>all Residential Code s<br>2 and referenced stance | r a 10.0 psf bottom<br>ith any other live loa<br>for a live load of 20.0<br>where a rectangle<br>fit between the botto<br>iss connections.<br>(by others) of truss t<br>nding 32 lb uplift at j<br>ance with the 2018<br>ections R502.11.1 a | ds.<br>Dpsf<br>om<br>o<br>oint |                       |                      |                                          |                             |                          |                               | . THINK                  | LICE           | GARCIA<br>NSEO<br>952  |
| LOAD CASE(                                                                                                                                                                                                                            | S) Standard                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                              |                                |                       |                      |                                          |                             |                          |                               |                          | Octobe         | er 27,2021             |




| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | J25   | Jack-Open  | 5   | 1   | Job Reference (optional) | 148527946 |

2-4-6

#### Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:11 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f







3-10-8

| Scale |  |  |
|-------|--|--|
|       |  |  |

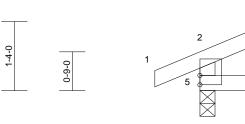
|                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                           |                                                                           |                 |          |      | i        |       |       |        |             |               |          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------|----------|------|----------|-------|-------|--------|-------------|---------------|----------|
| Loading                                                                                                                                                                                                                                       | (psf)                                                                                                                                                                                                                                                     | Spacing                                                                   | 2-0-0           | csi      |      | DEFL     | in    | (loc) | l/defl | L/d         | PLATES        | GRIP     |
| TCLL (roof)                                                                                                                                                                                                                                   | 25.0                                                                                                                                                                                                                                                      | Plate Grip DOL                                                            | 1.15            | TC       | 0.19 | Vert(LL) | -0.01 | 4-5   | >999   | 360         | MT20          | 197/144  |
| TCDL                                                                                                                                                                                                                                          | 10.0                                                                                                                                                                                                                                                      | Lumber DOL                                                                | 1.15            | BC       | 0.12 | Vert(CT) | -0.02 | 4-5   | >999   | 240         |               |          |
| BCLL                                                                                                                                                                                                                                          | 0.0*                                                                                                                                                                                                                                                      | Rep Stress Incr                                                           | YES             | WB       | 0.00 | Horz(CT) | 0.01  | 3     | n/a    | n/a         |               |          |
| BCDL                                                                                                                                                                                                                                          | 10.0                                                                                                                                                                                                                                                      | Code                                                                      | IRC2018/TPI2014 | Matrix-R |      | Wind(LL) | 0.01  | 4-5   | >999   | 240         | Weight: 11 lb | FT = 10% |
| LUMBER<br>TOP CHORD 2x4 SPF No.2<br>BOT CHORD 2x4 SPF No.2<br>WEBS 2x4 SPF No.2<br>BRACING<br>TOP CHORD Structural wood sheathing directly applied or<br>3-10-8 oc purlins, except end verticals.<br>BOT CHORD Reinfordity applied or 10.0 oc |                                                                                                                                                                                                                                                           |                                                                           |                 |          |      |          |       |       |        |             |               |          |
| BOT CHORD                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                           |                                                                           |                 |          |      |          |       |       |        |             |               |          |
|                                                                                                                                                                                                                                               | REACTIONS (lb/size)       3=112/ Mechanical, 4=43/<br>Mechanical, 5=246/0-3-8         Max Horiz       5=70 (LC 8)         Max Uplift       3=-59 (LC 8), 5=-35 (LC 8)         Max Grav       3=112 (LC 1), 4=69 (LC 3), 5=246         (LC 1)       GARCIA |                                                                           |                 |          |      |          |       |       |        |             |               |          |
| FORCES                                                                                                                                                                                                                                        | (lb) - Maximum Con                                                                                                                                                                                                                                        | npression/Maximum                                                         |                 |          |      |          |       |       |        | Ξ*          | GAR           |          |
| TOP CHORD                                                                                                                                                                                                                                     | Tension<br>2-5=-216/70, 1-2=0                                                                                                                                                                                                                             | /27 2-361/33                                                              |                 |          |      |          |       |       |        | = 1         |               | or =     |
| BOT CHORD                                                                                                                                                                                                                                     | 4-5=0/0                                                                                                                                                                                                                                                   | 21, 2-3=-01/33                                                            |                 |          |      |          |       |       |        | = 5         | NUME          | • [] []  |
| NOTES                                                                                                                                                                                                                                         | 4-3-0/0                                                                                                                                                                                                                                                   |                                                                           |                 |          |      |          |       |       |        | -1          | E-20001       | 62101    |
| 1) Wind: ASC<br>Vasd=91m<br>II; Exp C; I<br>cantilever                                                                                                                                                                                        | CE 7-16; Vult=115mph<br>nph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (e<br>left and right exposed                                                                                                                                                              | CDL=6.0psf; h=25ft; 0<br>nvelope) exterior zon<br>; end vertical left and | ie;<br>d        |          |      |          |       |       |        |             | ESS/ONF       | LENGINI  |
|                                                                                                                                                                                                                                               | sed; Lumber DOL=1.6<br>has been designed fo                                                                                                                                                                                                               |                                                                           | 50              |          |      |          |       |       |        |             |               | 1111.    |
|                                                                                                                                                                                                                                               | load nonconcurrent w                                                                                                                                                                                                                                      |                                                                           | ds              |          |      |          |       |       |        |             | IN AN C       | ARC      |
| 3) * This trust<br>on the bott<br>3-06-00 ta                                                                                                                                                                                                  | s has been designed<br>tom chord in all areas<br>Il by 2-00-00 wide will<br>any other members.                                                                                                                                                            | for a live load of 20.0 where a rectangle                                 | psf             |          |      |          |       |       |        |             | IN JUCE       | NSED     |
|                                                                                                                                                                                                                                               | irder(s) for truss to tru                                                                                                                                                                                                                                 | uss connections.                                                          |                 |          |      |          |       |       |        | =           | 160           | 952      |
| bearing pla                                                                                                                                                                                                                                   | echanical connection<br>ate capable of withsta<br>b uplift at joint 3.                                                                                                                                                                                    |                                                                           |                 |          |      |          |       |       |        | IIIIII IIII | PRO           |          |
| Ínternation                                                                                                                                                                                                                                   | 6) This truss is designed in accordance with the 2018<br>International Residential Code sections R502.11.1 and<br>R802.10.2 and referenced standard ANSI/TPI 1.                                                                                           |                                                                           |                 |          |      |          |       |       |        |             |               |          |
| LOAD CASE(                                                                                                                                                                                                                                    | S) Standard                                                                                                                                                                                                                                               |                                                                           |                 |          |      |          |       |       |        |             |               | 07.0004  |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | J26   | Jack-Open  | 2   | 1   | Job Reference (optional) | 148527947 |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:11 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

-0-10-8 1-4-13 0-10-8 1-4-13



3

4





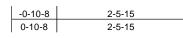
5x6 II

1-4-13

| Sca | le | _ | 1:22.3 |  |
|-----|----|---|--------|--|

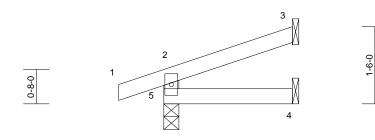
| TCLL (roof)         25.0         Plate Grip DOL         1.15         TC         0.07         Vert(LL)         0.00         4-5         >999         360         MT20           TCDL         10.0         Lumber DOL         1.15         BC         0.02         Vert(CT)         0.00         4-5         >999         240           BCLL         0.0*         Rep Stress Incr         YES         WB         0.00         Horz(CT)         0.00         3         n/a         n/a           BCDL         10.0         Code         IRC2018/TPI2014         Matrix-R         Wind(LL)         0.00         4-5         >999         240         Weight                                                                                                                                                                                                                     | LATES         GRIP           IT20         197/144           /eight: 5 lb         FT = 10% |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| BCDL         10.0         Code         IRC2018/TPI2014         Matrix-R         Wind(LL)         0.00         4-5         >999         240         Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | /eight: 5 lb FT = 10%                                                                     |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                           |  |  |  |  |  |  |  |  |  |
| LUMBER<br>TOP CHORD 2x4 SPF No.2<br>BOT CHORD 2x4 SPF No.2<br>WEBS 2x4 SPF No.2<br>BRACING<br>TOP CHORD Structural wood sheathing directly applied or<br>1-4-13 oc purlins, except end verticals.<br>BOT CHORD Rigid ceiling directly applied or 10-0-0 oc<br>bracing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                           |  |  |  |  |  |  |  |  |  |
| REACTIONS (Ib/size)       3=21/ Mechanical, 4=5/<br>Mechanical, 5=157/0-3-8         Max Horiz       5=34 (LC 5)         Max Uplift       3=-18 (LC 8), 5=-36 (LC 4)         Max Grav       3=21 (LC 1), 4=21 (LC 3), 5=157         (LC 1)       GARCIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                           |  |  |  |  |  |  |  |  |  |
| FORCES (Ib) - Maximum Compression/Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                           |  |  |  |  |  |  |  |  |  |
| TOP CHORD 2-5=-137/46, 1-2=0/27, 2-3=-25/5<br>BOT CHORD 4-5=0/0<br>NOTES<br>1) Wind: ASCE 7-16; Vult=115mph (3-second gust)<br>Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.<br>II; Exp C; Enclosed; MWFRS (envelope) exterior zone;<br>cantilever left and right exposed ; end vertical left and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                           |  |  |  |  |  |  |  |  |  |
| <ul> <li>right exposed; Lumber DOL=1.60 plate grip DOL=1.60</li> <li>2) This truss has been designed for a 10.0 psf bottom<br/>chord live load nonconcurrent with any other live loads.</li> <li>3) * This truss has been designed for a live load of 20.0psf<br/>on the bottom chord in all areas where a rectangle<br/>3-06-00 tall by 2-00-00 wide will fit between the bottom<br/>chord and any other members.</li> <li>4) Refer to girder(s) for truss to truss connections.</li> <li>5) Provide mechanical connection (by others) of truss to<br/>bearing plate capable of withstanding 36 lb uplift at joint<br/>5 and 18 lb uplift at joint 3.</li> <li>6) This truss is designed in accordance with the 2018<br/>International Residential Code sections R502.11.1 and<br/>R802.10.2 and referenced standard ANSI/TPI 1.</li> <li>LOAD CASE(S) Standard</li> </ul> |                                                                                           |  |  |  |  |  |  |  |  |  |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601




| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | J27   | Jack-Open  | 2   | 1   | Job Reference (optional) | 148527948 |

1-6-0


Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:12 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





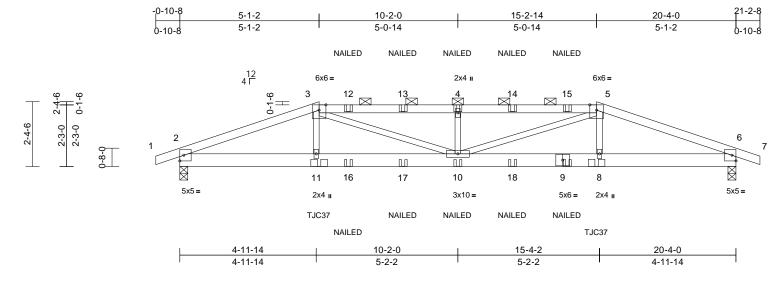
2-5-15



3x5 II

| Scal | <u> </u> | - 1. | 22 | 3 |
|------|----------|------|----|---|

| Ocale = 1.22.0                                                                                        |                                                                                                                                                                                                                                         |                                                                         |                 |          |      |          |      |       |        |            |              |           |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------|----------|------|----------|------|-------|--------|------------|--------------|-----------|
| Loading                                                                                               | (psf)                                                                                                                                                                                                                                   | Spacing                                                                 | 2-0-0           | CSI      |      | DEFL     | in   | (loc) | l/defl | L/d        | PLATES       | GRIP      |
| TCLL (roof)                                                                                           | 25.0                                                                                                                                                                                                                                    | Plate Grip DOL                                                          | 1.15            | тс       | 0.07 | Vert(LL) | 0.00 | 4-5   | >999   | 360        | MT20         | 197/144   |
| TCDL                                                                                                  | 10.0                                                                                                                                                                                                                                    | Lumber DOL                                                              | 1.15            | BC       | 0.04 | Vert(CT) | 0.00 | 4-5   | >999   | 240        | -            |           |
| BCLL                                                                                                  | 0.0*                                                                                                                                                                                                                                    | Rep Stress Incr                                                         | YES             | WB       | 0.00 | Horz(CT) | 0.00 | 3     | n/a    | n/a        |              |           |
| BCDL                                                                                                  | 10.0                                                                                                                                                                                                                                    | Code                                                                    | IRC2018/TPI2014 | Matrix-R |      | Wind(LL) | 0.00 | 4-5   | >999   | 240        | Weight: 7 lb | FT = 10%  |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS            | 2x4 SPF No.2<br>2x4 SPF No.2<br>Structural wood she<br>2-5-15 oc purlins, e<br>Rigid ceiling directly<br>bracing.                                                                                                                       | except end verticals.                                                   |                 |          |      |          |      |       |        |            |              | 1907.     |
|                                                                                                       | Wetchnical, 5=190/0-3-8         Max Horiz       5=43 (LC 4)         Max Uplift       3=-65 (LC 1), 4=42 (LC 3), 5=190         (LC 1)       GARCIA                                                                                       |                                                                         |                 |          |      |          |      |       |        |            |              |           |
| FORCES                                                                                                | (lb) - Maximum Con<br>Tension                                                                                                                                                                                                           | npression/Maximum                                                       |                 |          |      |          |      |       |        | <u>=</u> * | GAN          | *         |
| TOP CHORD                                                                                             |                                                                                                                                                                                                                                         | /23, 2-3=-32/15                                                         |                 |          |      |          |      |       |        | - 7        | NUM          | BER : C-  |
| BOT CHORD                                                                                             | 4-5=0/0                                                                                                                                                                                                                                 |                                                                         |                 |          |      |          |      |       |        | -7         | E-2000       | • 41.     |
| NOTES                                                                                                 |                                                                                                                                                                                                                                         |                                                                         |                 |          |      |          |      |       |        |            | L-2000       | 102101.2  |
| Vasd=91n<br>II; Exp C;<br>cantilever                                                                  | CE 7-16; Vult=115mph<br>nph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>left and right exposed                                                                                                                                           | DL=6.0psf; h=25ft; (<br>nvelope) exterior zor<br>; end vertical left an | ne;<br>d        |          |      |          |      |       |        |            | SS/ON        | ALENGIN   |
|                                                                                                       | sed; Lumber DOL=1.6                                                                                                                                                                                                                     |                                                                         | 00              |          |      |          |      |       |        |            |              | 11111     |
|                                                                                                       | has been designed fo                                                                                                                                                                                                                    |                                                                         | ds              |          |      |          |      |       |        |            | IN AN        | GARC      |
| <ul> <li>3) * This trus<br/>on the bot<br/>3-06-00 ta<br/>chord and</li> <li>4) Refer to g</li> </ul> | <ul> <li>* This truss has been designed for a live load of 20.0psf<br/>on the bottom chord in all areas where a rectangle</li> <li>3-06-00 tall by 2-00-00 wide will fit between the bottom<br/>chord and any other members.</li> </ul> |                                                                         |                 |          |      |          |      |       |        |            |              |           |
| bearing pl                                                                                            | echanical connection<br>ate capable of withsta<br>b uplift at joint 3.                                                                                                                                                                  |                                                                         |                 |          |      |          |      |       |        |            | PRO          | la #      |
| 6) This truss<br>Internation                                                                          | International Residential Code sections R502.11.1 and<br>R802.10.2 and referenced standard ANSI/TPI 1.                                                                                                                                  |                                                                         |                 |          |      |          |      |       |        |            |              |           |
| LOAD CASE(                                                                                            | S) Standard                                                                                                                                                                                                                             |                                                                         |                 |          |      |          |      |       |        |            |              | r 27 2021 |


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | K1    | Hip Girder | 1   | 1   | Job Reference (optional) | 148527949 |

#### Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:12 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



Scale = 1:42.1

| _                                                                                                                                              |                                                          |                                                                                                                                                                                                                 | i                                                                                                    |                  |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                            |                                                                                                                                     |                                                                                                                                                 |                            |       |        |                |               |          |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------|--------|----------------|---------------|----------|
| Lo                                                                                                                                             | ading                                                    | (psf)                                                                                                                                                                                                           | Spacing                                                                                              | 2-0-0            |                                                                                                                                                                                                                                                 | csi                                                                                                                                                                                                                                                        |                                                                                                                                     | DEFL                                                                                                                                            | in                         | (loc) | l/defl | L/d            | PLATES        | GRIP     |
| TC                                                                                                                                             | LL (roof)                                                | 25.0                                                                                                                                                                                                            | Plate Grip DOL                                                                                       | 1.15             |                                                                                                                                                                                                                                                 | TC                                                                                                                                                                                                                                                         | 0.93                                                                                                                                | Vert(LL)                                                                                                                                        | -0.19                      | 10    | >999   | 360            | MT20          | 197/144  |
| TC                                                                                                                                             | DL                                                       | 10.0                                                                                                                                                                                                            | Lumber DOL                                                                                           | 1.15             |                                                                                                                                                                                                                                                 | BC                                                                                                                                                                                                                                                         | 1.00                                                                                                                                | Vert(CT)                                                                                                                                        | -0.34                      | 10    | >702   | 240            |               |          |
| BC                                                                                                                                             | LL                                                       | 0.0*                                                                                                                                                                                                            | Rep Stress Incr                                                                                      | NO               |                                                                                                                                                                                                                                                 | WB                                                                                                                                                                                                                                                         | 0.37                                                                                                                                | Horz(CT)                                                                                                                                        | 0.06                       | 6     | n/a    | n/a            |               |          |
| BC                                                                                                                                             | DL                                                       | 10.0                                                                                                                                                                                                            | Code                                                                                                 | IRC201           | 8/TPI2014                                                                                                                                                                                                                                       | Matrix-S                                                                                                                                                                                                                                                   |                                                                                                                                     | Wind(LL)                                                                                                                                        | 0.17                       | 10    | >999   | 240            | Weight: 75 lb | FT = 10% |
| TC<br>BC<br>WE<br>BR<br>TC<br>BC<br>RE                                                                                                         |                                                          | 2x6 SPF No.2<br>2x3 SPF No.2<br>Structural wood she<br>2-0-0 oc purlins, ex<br>2-0-0 oc purlins (2-3<br>Rigid ceiling directly<br>bracing.<br>(Ib/size) 2=1357/0<br>Max Horiz 2=-34 (LC<br>Max Uplift 2=-333 (L | ccept<br>-5 max.): 3-5.<br>applied or 9-4-6 oc<br>-3-8, 6=1357/0-3-8<br>: 13)<br>C 4), 6=-333 (LC 5) | 8)<br>d or<br>9) | <ul> <li>International<br/>R802.10.2 au</li> <li>Graphical pu<br/>or the orienta<br/>bottom chore</li> <li>Use Simpson<br/>equivalent at<br/>to back face<br/>right, sloping</li> <li>Use Simpson<br/>equivalent at<br/>(es) to back</li> </ul> | designed in acco<br>Residential Code<br>ad referenced sta<br>rlin representatio<br>ation of the purlin<br>b.<br>Strong-Tie TJC:<br>5-1-2 from the le<br>of bottom chord,<br>0.0 deg. down.<br>15-2-14 from the<br>acce of bottom chord<br>ng 0.0 deg. down | e sections<br>indard AN<br>n does no<br>along the<br>37 (4 nail<br>eft end to<br>skewed 5<br>37 (4 nail<br>e left end<br>iord, skew | : R502.11.1 a<br>ISI/TPI 1.<br>ot depict the s<br>top and/or<br>90-150) or<br>connect truss<br>i1.3 deg.to th<br>, 30-90) or<br>to connect trus | size<br>s(es)<br>ie<br>uss |       |        | 11.            | IN OF         | MISSOL   |
| FO                                                                                                                                             | RCES                                                     | (lb) - Maximum Com<br>Tension                                                                                                                                                                                   | pression/Maximum                                                                                     |                  | 11) Fill all nail holes where hanger is in contact with lumber.<br>12) "NAILED" indicates 3-10d (0.148"x3") or 3-12d GARCIA                                                                                                                     |                                                                                                                                                                                                                                                            |                                                                                                                                     |                                                                                                                                                 |                            |       |        |                |               |          |
| тс                                                                                                                                             | P CHORD                                                  | 1-2=0/1, 2-3=-3034/<br>4-5=-3658/855, 5-6=                                                                                                                                                                      |                                                                                                      |                  | (0.148"x3.25") toe-nails per NDS guidlines.                                                                                                                                                                                                     |                                                                                                                                                                                                                                                            |                                                                                                                                     |                                                                                                                                                 |                            |       |        |                |               | *        |
| BC                                                                                                                                             | T CHORD                                                  | 2-11=-612/2766, 10-<br>8-10=-587/2744, 6-8                                                                                                                                                                      | -11=-611/2745,                                                                                       |                  | 13) In the LOAD CASE(S) section, loads applied to the face<br>of the truss are noted as front (F) or back (B).                                                                                                                                  |                                                                                                                                                                                                                                                            |                                                                                                                                     |                                                                                                                                                 |                            |       |        |                |               | • []].   |
| WE                                                                                                                                             | BS                                                       | 3-11=-19/396, 3-10=<br>4-10=-589/269, 5-10                                                                                                                                                                      | -253/1078,                                                                                           | 1`               | <ul> <li>LOAD CASE(S) Standard</li> <li>1) Dead + Roof Live (balanced): Lumber Increase=1.15,<br/>Plate Increase=1.15</li> </ul>                                                                                                                |                                                                                                                                                                                                                                                            |                                                                                                                                     |                                                                                                                                                 |                            |       |        |                | E-2000        | 102101   |
| NC                                                                                                                                             | TES                                                      |                                                                                                                                                                                                                 |                                                                                                      |                  |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                            |                                                                                                                                     |                                                                                                                                                 |                            |       |        |                | FNI           |          |
|                                                                                                                                                |                                                          | ed roof live loads have                                                                                                                                                                                         | been considered for                                                                                  |                  | Vert: 1-3=-70, 3-5=-70, 5-7=-70, 2-6=-20                                                                                                                                                                                                        |                                                                                                                                                                                                                                                            |                                                                                                                                     |                                                                                                                                                 |                            |       |        |                | NON!          | 41-111   |
| .,                                                                                                                                             | this design                                              |                                                                                                                                                                                                                 |                                                                                                      |                  |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                            |                                                                                                                                     |                                                                                                                                                 |                            |       |        |                |               | Un.      |
| 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vert: 9=-23 (B), 11=-221 (B), 10=-23 (B), 4=-42 (B),<br>Vasd=01mph; TCDI = 6 0psf; b=25ft; Cot |                                                          |                                                                                                                                                                                                                 |                                                                                                      |                  |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                            |                                                                                                                                     |                                                                                                                                                 |                            |       |        | BARCIA<br>NSEO |               |          |
|                                                                                                                                                | chord live load nonconcurrent with any other live loads. |                                                                                                                                                                                                                 |                                                                                                      |                  |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                            |                                                                                                                                     |                                                                                                                                                 |                            |       |        |                |               |          |
| 5)                                                                                                                                             |                                                          | s has been designed f                                                                                                                                                                                           |                                                                                                      | psf              |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                            |                                                                                                                                     |                                                                                                                                                 |                            |       |        | =              | 1 10          |          |
|                                                                                                                                                | للمط مطلا مرم                                            | مممعم المصالمعمام مسمه                                                                                                                                                                                          | uhara a reatanala                                                                                    |                  |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                            |                                                                                                                                     |                                                                                                                                                 |                            |       |        |                | <b>U</b> •    |          |

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 333 lb uplift at joint 2 and 333 lb uplift at joint 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



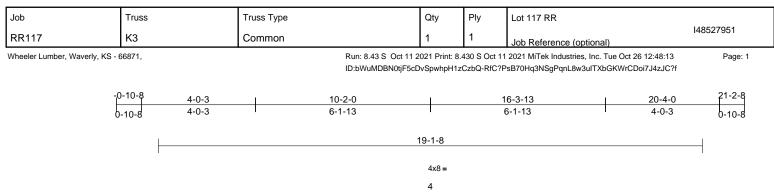

SIONAL ENGINE

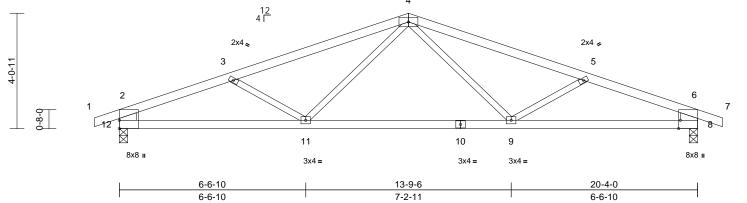
| Job |     | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |  |
|-----|-----|-------|------------|-----|-----|--------------------------|-----------|--|
| RR′ | 117 | K2    | Hip        | 1   | 1   | Job Reference (optional) | 148527950 |  |

#### Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:13 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f






Scale = 1:41.8


#### Plate Offsets (X, Y): [7:0-3-8,Edge]

| Plate Olisets (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (X, Y): [7:0-3-8,Edge]                                                                                                                                                                                                                                                            |                                                                    |                                          |            |                                          |                      |                                                      |                                      |                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------|------------|------------------------------------------|----------------------|------------------------------------------------------|--------------------------------------|------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------|--|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                             | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/ | /TPI2014   | <b>CSI</b><br>TC<br>BC<br>WB<br>Matrix-S | 0.65<br>0.59<br>0.17 | DEFL<br>Vert(LL)<br>Vert(CT)<br>Horz(CT)<br>Wind(LL) | in<br>-0.12<br>-0.24<br>0.05<br>0.08 | (loc)<br>9-10<br>9-10<br>7<br>9-10 | l/defl<br>>999<br>>990<br>n/a<br>>999 | L/d<br>360<br>240<br>n/a<br>240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>PLATES</b><br>MT20<br>Weight: 60 lb | <b>GRIP</b><br>197/144<br>FT = 10%    |  |
| BOBL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.0                                                                                                                                                                                                                                                                              | 0000                                                               | 11(02010/                                | 1112011    | Matrix 0                                 |                      | Wind(EE)                                             | 0.00                                 | 0 10                               | 2000                                  | 210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wolght. 00 lb                          | 11 - 10/0                             |  |
| LUMBER<br>TOP CHORD<br>BOT CHORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TOP CHORD2x4 SPF 2100F 1.8E *Except* 3-4:2x4 SPF<br>No.2bearing plate capable of withstanding 197 lb uplift at<br>joint 11 and 197 lb uplift at joint 7.BOT CHORD2x4 SPF No.27)WEBS2x3 SPF No.2 *Except* 11-2,7-5:2x8 SP DSSInternational Residential Code sections R502.11.1 and |                                                                    |                                          |            |                                          |                      |                                                      |                                      |                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                   |                                                                    |                                          |            |                                          |                      |                                                      |                                      |                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |  |
| BRACING       R802.10.2 and referenced standard ANSI/TPI 1.         TOP CHORD       Structural wood sheathing directly applied or 4-11-7 oc purlins, except end verticals, and 2-0-0 oc purlins (4-2-9 max.): 3-4.       8)       Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.         BOT CHORD       Rioid ceiling directly applied or 10-0-0 oc.       LOAD CASE(S)       Standard                                                                                                                                                                       |                                                                                                                                                                                                                                                                                   |                                                                    |                                          |            |                                          |                      |                                                      |                                      |                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |  |
| BOT CHORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Rigid ceiling directly<br>bracing.                                                                                                                                                                                                                                                | applied or 10-0-0 oc                                               | ; LO/                                    | AD CASE(S) | Standard                                 |                      |                                                      |                                      |                                    |                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ATE                                    | SO                                    |  |
| REACTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (lb/size) 7=970/0-3<br>Max Horiz 11=33 (LC<br>Max Uplift 7=-197 (L                                                                                                                                                                                                                |                                                                    | )                                        |            |                                          |                      |                                                      |                                      |                                    |                                       | in the second se | JU/<br>GAR                             |                                       |  |
| FORCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (lb) - Maximum Com<br>Tension                                                                                                                                                                                                                                                     | pression/Maximum                                                   |                                          |            |                                          |                      |                                                      |                                      |                                    |                                       | Ξ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        | ΩΞ                                    |  |
| TOP CHORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                   |                                                                    |                                          |            |                                          |                      |                                                      |                                      |                                    |                                       | Philip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NUMI<br>E-20001                        | • 41.                                 |  |
| BOT CHORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10-11=-190/1464, 9-<br>7-9=-164/1464                                                                                                                                                                                                                                              | -10=-193/1460,                                                     |                                          |            |                                          |                      |                                                      |                                      |                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SS/ON                                  | ENGIN                                 |  |
| WEBS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3-10=0/239, 3-9=-18                                                                                                                                                                                                                                                               | 86/187, 4-9=0/239                                                  |                                          |            |                                          |                      |                                                      |                                      |                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1111                                   | i i i i i i i i i i i i i i i i i i i |  |
| NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                   |                                                                    |                                          |            |                                          |                      |                                                      |                                      |                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |  |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ed roof live loads have                                                                                                                                                                                                                                                           | been considered for                                                | r                                        |            |                                          |                      |                                                      |                                      |                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |  |
| <ol> <li>Unbalanced roof live loads have been considered for<br/>this design.</li> <li>Wind: ASCE 7-16; Vult=115mph (3-second gust)<br/>Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.<br/>II; Exp C; Enclosed; MWFRS (envelope) exterior zone;<br/>cantilever left and right exposed; end vertical left and<br/>right exposed; Lumber DOL=1.60 plate grip DOL=1.60</li> <li>Provide adequate drainage to prevent water ponding.</li> <li>This truss has been designed for a 10.0 psf bottom<br/>chord live load nonconcurrent with any other live loads.</li> <li>* This truss has been designed for a live load of 20.0psf</li> </ol> |                                                                                                                                                                                                                                                                                   |                                                                    |                                          |            |                                          |                      |                                                      |                                      |                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 952                                    |                                       |  |
| on the bottom chord in all areas where a rectangle<br>3-06-00 tall by 2-00-00 wide will fit between the bottom<br>chord and any other members.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                   |                                                                    |                                          |            |                                          |                      |                                                      |                                      |                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                       |  |

# WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601





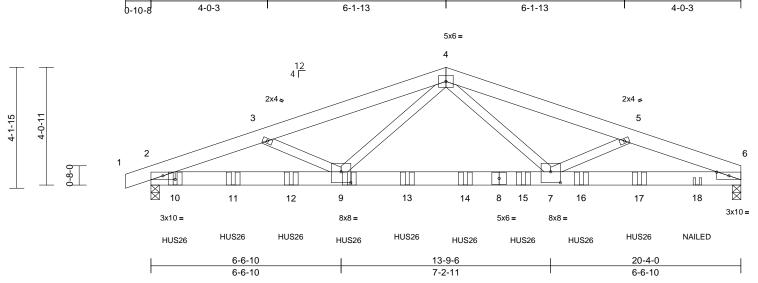


#### Scale = 1:40.5

#### Plate Offsets (X, Y): [8:0-3-8,Edge]

|                                                                | (/(, 1): [0:0 0 0,Eugo]                                                                                        |                         |                       |                         |                |                      |              |           |             |            |               |           |  |  |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------|-------------------------|----------------|----------------------|--------------|-----------|-------------|------------|---------------|-----------|--|--|
| Loading                                                        | (psf)                                                                                                          | Spacing                 | 2-0-0                 | CSI                     |                | DEFL                 | in           | (loc)     | l/defl      | L/d        | PLATES        | GRIP      |  |  |
| TCLL (roof)                                                    | 25.0                                                                                                           | Plate Grip DOL          | 1.15                  | TC                      | 0.81           | Vert(LL)             | -0.17        | 9-11      | >999        | 360        | MT20          | 197/144   |  |  |
| TCDL<br>BCLL                                                   | 10.0<br>0.0*                                                                                                   | Lumber DOL              | 1.15<br>YES           | BC<br>WB                | 0.63           | Vert(CT)             | -0.32        | 9-11      | >730        | 240        |               |           |  |  |
| BCDL                                                           | 10.0                                                                                                           | Rep Stress Incr<br>Code | IRC2018/TPI2014       | Matrix-S                | 0.12           | Horz(CT)<br>Wind(LL) | 0.05<br>0.12 | 8<br>9-11 | n/a<br>>999 | n/a<br>240 | Weight: 65 lb | FT = 10%  |  |  |
|                                                                | 10.0                                                                                                           | Code                    |                       |                         |                |                      |              | 3-11      | 2333        | 240        | Weight. 00 lb | 11 = 1078 |  |  |
| LUMBER<br>TOP CHORD                                            | 2v4 SDE 2100E 1 9                                                                                              | F                       |                       | mechanical connection   |                |                      |              |           |             |            |               |           |  |  |
| BOT CHORD                                                      |                                                                                                                | E                       |                       | and 180 lb uplift at jo |                | ioo ib upiirt u      | L.           |           |             |            |               |           |  |  |
| WEBS                                                           |                                                                                                                | ept* 12-2,8-6:2x8 SP    | ,                     | s is designed in acco   |                | ith the 2018         |              |           |             |            |               |           |  |  |
|                                                                | 2400F 2.0E International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. |                         |                       |                         |                |                      |              |           |             |            |               |           |  |  |
| BRACING                                                        |                                                                                                                |                         |                       |                         | andard AN      | NSI/TPI 1.           |              |           |             |            |               |           |  |  |
| TOP CHORD                                                      |                                                                                                                | eathing directly applie | d or LOAD CASE        | (S) Standard            |                |                      |              |           |             |            |               |           |  |  |
| 3-9-12 oc purlins, except end verticals.                       |                                                                                                                |                         |                       |                         |                |                      |              |           |             |            |               |           |  |  |
| 3OT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. |                                                                                                                |                         |                       |                         |                |                      |              |           |             |            |               |           |  |  |
| REACTIONS                                                      | (lb/size) 8=970/0-3                                                                                            | 3-8, 12=970/0-3-8       |                       |                         |                |                      |              |           |             | 1          |               | 000       |  |  |
|                                                                | Max Horiz 12=-49 (L                                                                                            | ,                       |                       |                         |                |                      |              |           |             | -          |               | · D=      |  |  |
|                                                                | Max Uplift 8=-180 (L                                                                                           | ,, , , ,                | )                     |                         |                |                      |              |           |             | 2          | GAR           |           |  |  |
| FORCES                                                         | (lb) - Maximum Corr<br>Tension                                                                                 | npression/Maximum       |                       |                         |                |                      |              |           |             | = *        | CAN           |           |  |  |
| TOP CHORD                                                      |                                                                                                                | 3/290, 3-4=-1502/196    | δ.                    |                         |                |                      |              |           |             | Ξ.,        |               |           |  |  |
|                                                                | 4-5=-1502/196, 5-6=                                                                                            | =-1713/290, 6-7=0/26    | ,                     |                         |                |                      |              |           |             | = 7        | NUM           | BER :     |  |  |
|                                                                | 2-12=-888/206, 6-8=                                                                                            |                         |                       |                         |                |                      |              |           |             | -1         | O: E-20001    | 162101    |  |  |
| BOT CHORD                                                      | 11-12=-263/1537, 9<br>8-9=-226/1537                                                                            | -11=-105/1179,          |                       |                         |                |                      |              |           |             | 1          | A             |           |  |  |
| WEBS                                                           |                                                                                                                | 255/195, 4-11=-11/34    | 8.                    |                         |                |                      |              |           |             |            | 1.SION        | ENIN      |  |  |
|                                                                | 3-11=-255/194                                                                                                  |                         | - ,                   |                         |                |                      |              |           |             |            | - I ON        | ALLIN     |  |  |
| NOTES                                                          |                                                                                                                |                         |                       |                         |                |                      |              |           |             |            |               | 1.1.1     |  |  |
| ,                                                              | ed roof live loads have                                                                                        | been considered for     |                       |                         |                |                      |              |           |             |            |               | IIIII.    |  |  |
| this design<br>2) Wind: AS(                                    | n.<br>CE 7-16; Vult=115mph                                                                                     | (2 cocond quet)         |                       |                         |                |                      |              |           |             |            | UCE<br>DE     | GARC      |  |  |
| ,                                                              | nph; TCDL=6.0psf; BC                                                                                           |                         | Cat.                  |                         |                |                      |              |           |             |            | N' SOUCE      | NSA       |  |  |
|                                                                | Enclosed; MWFRS (er                                                                                            |                         |                       |                         |                |                      |              |           |             | - 2        |               | 0         |  |  |
|                                                                | left and right exposed                                                                                         |                         |                       |                         |                |                      |              |           |             |            | 1.1           | - N E     |  |  |
|                                                                | sed; Lumber DOL=1.6<br>has been designed fo                                                                    |                         | 50                    |                         |                |                      |              |           |             |            | 16            | 952       |  |  |
|                                                                | load nonconcurrent w                                                                                           |                         | ls.                   |                         |                |                      |              |           |             | =          | 1. 10         |           |  |  |
|                                                                | s has been designed f                                                                                          |                         |                       |                         |                |                      |              |           |             | -          | "P            | 4         |  |  |
|                                                                | tom chord in all areas                                                                                         |                         |                       |                         |                |                      |              |           |             |            | - A KAN       | SAS       |  |  |
|                                                                | all by 2-00-00 wide will<br>any other members.                                                                 | fit between the botto   | m                     |                         |                |                      |              |           |             |            | 1.            | NGIN      |  |  |
| chora ana                                                      | any other members.                                                                                             |                         |                       |                         |                |                      |              |           |             |            | NON           | VALE      |  |  |
|                                                                |                                                                                                                |                         |                       |                         |                |                      |              |           |             |            |               |           |  |  |
|                                                                |                                                                                                                |                         |                       |                         |                |                      |              |           |             |            | Octobe        | r 27,2021 |  |  |
|                                                                |                                                                                                                |                         |                       |                         |                |                      |              |           |             |            |               |           |  |  |
| WARN                                                           | NING - Verify design parameter                                                                                 | ers and READ NOTES ON   | THIS AND INCLUDED MIT | EK REFERENCE PAGE M     | II-7473 rev. 5 | /19/2020 BEFOF       | RE USE.      |           |             |            |               |           |  |  |
|                                                                | alid for use only with MiTek®                                                                                  |                         |                       |                         |                |                      |              |           |             |            |               |           |  |  |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601




| Job   | Truss | Truss Type    | Qty | Ply | Lot 117 RR               |           |
|-------|-------|---------------|-----|-----|--------------------------|-----------|
| RR117 | К4    | COMMON GIRDER | 1   | 3   | Job Reference (optional) | 148527952 |

10-2-0

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:14 Page: 1 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 16-3-13 20-4-0



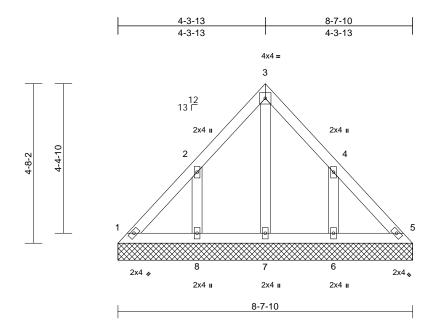
Scale = 1:39.7

#### Plate Offsets (X, Y): [2:0-5-1,0-1-8], [6:0-5-1,0-1-8], [7:0-4-0,0-4-8], [9:0-4-0,0-4-8]

-0-10-8

4-0-3

| Loading                                                                                                                                                                                                                                                              | (psf)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Spacing                                                                                                                                                                                                                                                                                                                  | 2-0-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 | csi      |      | DEFL     | in                   | (loc)                                                                     | l/defl | L/d | PLATES         | GRIP     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------|------|----------|----------------------|---------------------------------------------------------------------------|--------|-----|----------------|----------|
| TCLL (roof)                                                                                                                                                                                                                                                          | 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Plate Grip DOL                                                                                                                                                                                                                                                                                                           | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 | тс       | 0.31 | Vert(LL) | -0.13                | 7-9                                                                       | >999   | 360 | MT20           | 197/144  |
| TCDL                                                                                                                                                                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lumber DOL                                                                                                                                                                                                                                                                                                               | 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 | BC       | 0.56 | Vert(CT) | -0.23                | 7-9                                                                       | >999   | 240 |                |          |
| BCLL                                                                                                                                                                                                                                                                 | 0.0*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rep Stress Incr                                                                                                                                                                                                                                                                                                          | NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 | WB       | 0.39 | Horz(CT) | 0.04                 | 6                                                                         | n/a    | n/a |                |          |
| BCDL                                                                                                                                                                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Code                                                                                                                                                                                                                                                                                                                     | IRC201                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8/TPI2014                                                                                                       | Matrix-S |      | Wind(LL) | 0.07                 | 7-9                                                                       | >999   | 240 | Weight: 317 lb | FT = 10% |
| BOT CHORD<br>WEBS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS (<br>FORCES<br>TOP CHORD<br>BOT CHORD<br>BOT CHORD<br>WEBS<br>NOTES<br>1) 3-ply truss (<br>(0.131"x3")<br>Top chords<br>staggered a<br>Web conne<br>2) All loads ar<br>except if no<br>CASE(5) a | 6-0-0 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>(lb/size) 2=5495/0<br>Max Horiz 2=67 (LC<br>Max Uplift 2=-263 (L<br>(lb) - Maximum Com<br>Tension<br>1-2=0/7, 2-3=-10644<br>4-5=-11173/223, 5-6<br>2-9=-455/9870, 7-9=<br>6-7=-313/10147<br>4-7=0/4786, 5-7=-4/<br>3-9=-24/719<br>to be connected toge<br>nails as follows:<br>s connected as follows:<br>at 0-9-0 oc.<br>ords connected as follows: 2x4 -<br>re considered equally<br>bed as front (F) or ba<br>ection. Ply to ply com<br>o distribute only loads<br>srwise indicated. | C 4), 6=-185 (LC 5)<br>pression/Maximum<br>4/473, 3-4=-10818/35<br>5=-10953/365<br>166/7189,<br>796, 4-9=-142/4309,<br>ther with 10d<br>s: 2x6 - 2 rows<br>ows: 2x6 - 2 rows<br>ows: 2x6 - 2 rows<br>-1 row at 0-9-0 oc.<br>applied to all plies,<br>ck (B) face in the LO<br>nections have been<br>noted as (F) or (B), | ond gust)<br>ond gust)<br>opps; h=25ft;<br>a) exterior zo<br>vertical left ar<br>grip DOL=1.<br>) ps bottom<br>other live load<br>e load of 20.<br>a rectangle<br>veen the bott<br>ers) of truss :<br>85 lb uplift ar<br>ith the 2018<br>is R502.11.1 a<br>ISJ/TPI 1.<br>Od Girder, 4-<br>c max. startin<br>onnect truss(<br>Dd Girder, 6-<br>tat 16-10-0 fm<br>t face of botto<br>tact with lum<br>or 3-12d<br>nes.<br>Increase=1.<br>862 (F), 12=-<br>853 (F), 16=- | ne;<br>nd<br>60<br>dds.<br>0psf<br>om<br>to<br>t<br>10d<br>g at<br>es)<br>10d<br>om<br>om<br>ber.<br>15,<br>853 |          |      |          | JUAN C<br>BROCKSSONA | MISSOUR<br>NCIA<br>BER<br>62101<br>ALENO<br>SARCIA<br>NSEO<br>52<br>ALENO |        |     |                |          |


October 27,2021



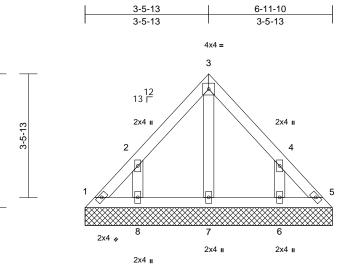
| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | LAY1  | GABLE      | 1   | 1   | Job Reference (optional) | 148527953 |

#### Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:14 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f





| Scale = | 1:33.8 |
|---------|--------|
|---------|--------|


|              |                                   |         | i                                               |            |                  |                                            |             |                |      |       |        |     |               |           |
|--------------|-----------------------------------|---------|-------------------------------------------------|------------|------------------|--------------------------------------------|-------------|----------------|------|-------|--------|-----|---------------|-----------|
| Loading      | (r                                | osf)    | Spacing                                         | 2-0-0      | 1                | csi                                        |             | DEFL           | in   | (loc) | l/defl | L/d | PLATES        | GRIP      |
| TCLL (roof)  |                                   | 5.0     | Plate Grip DOL                                  | 1.15       |                  | тс                                         | 0.06        | Vert(LL)       | n/a  | -     | n/a    | 999 | MT20          | 197/144   |
| TCDL         | 1                                 | 0.0     | Lumber DOL                                      | 1.15       |                  | BC                                         | 0.03        | Vert(TL)       | n/a  | -     | n/a    | 999 |               |           |
| BCLL         |                                   | 0.0*    | Rep Stress Incr                                 | YES        |                  | WB                                         | 0.03        | Horiz(TL)      | 0.00 | 5     | n/a    | n/a |               |           |
| BCDL         | 1                                 | 0.0     | Code                                            | IRC2       | 018/TPI2014      | Matrix-P                                   |             |                |      |       |        |     | Weight: 32 lb | FT = 10%  |
| LUMBER       |                                   |         |                                                 |            | 6) This truss ha | s been designed                            | for a 10.   | 0 psf bottom   |      |       |        |     |               |           |
| TOP CHORD    | 2x4 SPF No.2                      |         |                                                 |            |                  | ad nonconcurrent                           |             |                | ds.  |       |        |     |               |           |
| BOT CHORD    | 2x4 SPF No.2                      |         |                                                 |            |                  | nas been designe                           |             |                | Opsf |       |        |     |               |           |
| OTHERS       | 2x4 SPF No.2                      |         |                                                 |            |                  | n chord in all area                        |             |                |      |       |        |     |               |           |
| BRACING      | _                                 |         |                                                 |            |                  | by 2-00-00 wide w<br>by other members      |             | veen the botto | m    |       |        |     |               |           |
| TOP CHORD    | Structural woo<br>6-0-0 oc purlin |         | athing directly applied                         | d or       | 8) Provide med   | hanical connectio                          | n (by oth   |                |      |       |        |     |               |           |
| BOT CHORD    | Rigid ceiling d                   |         | applied or 10-0-0 oc                            |            |                  | e capable of withs<br>at joint 5, 161 lb u |             |                |      |       |        |     |               |           |
| DELOTIONO    | bracing.                          |         |                                                 |            | uplift at joint  |                                            | piire at jo |                |      |       |        |     |               | ULL.      |
| REACTIONS    |                                   |         | 10, 5=88/8-7-10,<br>7-10, 7=103/8-7-10,         |            |                  | designed in accor                          |             |                |      |       |        |     | N'OF          | MISSIL    |
|              |                                   | 19/8-7  |                                                 |            |                  | Residential Code<br>nd referenced sta      |             |                | ind  |       |        |     | 1 XE          |           |
|              | Max Horiz 1=1                     | 15 (LC  | C 5)                                            |            |                  |                                            | nuaru Ar    | N31/TFTT.      |      |       |        | ~   | X4            |           |
|              |                                   |         | 2 4), 5=-4 (LC 5), 6=-1                         | 61         | LOAD CASE(S)     | Standard                                   |             |                |      |       |        |     | S JUA         | AN        |
|              |                                   |         | -161 (LC 8)                                     |            |                  |                                            |             |                |      |       |        | 24  | GAR           | CIA :==   |
|              |                                   |         | C 16), 5=100 (LC 18),<br>C 16), 7=124 (LC 18),  |            |                  |                                            |             |                |      |       |        | 2.0 | 1             |           |
|              |                                   | 250 (LC |                                                 |            |                  |                                            |             |                |      |       |        | = T | · · · · · ·   | in=       |
| FORCES       |                                   | ``      | pression/Maximum                                |            |                  |                                            |             |                |      |       |        | = 3 | NUM           | • [] ] .  |
|              | Tension                           |         |                                                 |            |                  |                                            |             |                |      |       |        | -1  | E-20001       | 162101    |
| TOP CHORD    |                                   | 2-3=-1  | 00/86, 3-4=-91/69,                              |            |                  |                                            |             |                |      |       |        | 1   | · · · · ·     |           |
|              | 4-5=-106/75                       |         |                                                 |            |                  |                                            |             |                |      |       |        |     | IS/ON         | ENIN      |
| BOT CHORD    | 1-8=-48/102, 7<br>5-6=-48/102     | (-8=-4  | 8/102, 6-7=-48/102,                             |            |                  |                                            |             |                |      |       |        |     | 1111          | ihin      |
| WEBS         | 3-7=-87/3, 2-8                    | =-204   | /189, 4-6=-204/188                              |            |                  |                                            |             |                |      |       |        |     |               |           |
| NOTES        |                                   |         |                                                 |            |                  |                                            |             |                |      |       |        |     | THUNN UAN C   |           |
| 1) Unbalance | ed roof live loads                | s have  | been considered for                             |            |                  |                                            |             |                |      |       |        |     | NAN           | ARCIN     |
| this design  |                                   |         |                                                 |            |                  |                                            |             |                |      |       |        |     | S CE          | NSA       |
|              |                                   |         | (3-second gust)<br>DL=6.0psf; h=25ft; C         | <b>•</b> + |                  |                                            |             |                |      |       |        | 1   | in Lion       | SO .      |
|              |                                   |         | velope) exterior zone                           |            |                  |                                            |             |                |      |       |        | -   | 6 / E         | 1 2       |
|              |                                   |         | ; end vertical left and                         |            |                  |                                            |             |                |      |       |        | -   | 16            | 952       |
|              |                                   |         | 0 plate grip DOL=1.6                            |            |                  |                                            |             |                |      |       |        | =   | - IU          |           |
|              |                                   |         | the plane of the trus                           |            |                  |                                            |             |                |      |       |        | -   | D.            |           |
|              |                                   |         | (normal to the face),<br>d Details as applicabl |            |                  |                                            |             |                |      |       |        |     | - On the Har  | 5.1.54    |
|              |                                   |         | gner as per ANSI/TPI                            |            |                  |                                            |             |                |      |       |        |     | 1.60          | G         |
|              |                                   |         | m chord bearing.                                |            |                  |                                            |             |                |      |       |        |     | ON ON         | ALEN      |
| 5) n/a       |                                   |         | 5                                               |            |                  |                                            |             |                |      |       |        |     | 1111          | mm.       |
|              |                                   |         |                                                 |            |                  |                                            |             |                |      |       |        |     | Ootobo        | r 07 0001 |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | LAY2  | GABLE      | 1   | 1   | Job Reference (optional) | 148527954 |

#### Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:15 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



6-11-10

| Scale = 1:32.5                                                                  |                                   |                                                                                                 |                   | I                                                                                                          |                                                                                                                                                                                    |                                                                                                       |                                                                                                     |                                    |       | I      |     |               |          |
|---------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------|-------|--------|-----|---------------|----------|
| Loading                                                                         | (psf                              | Spacing                                                                                         | 2-0-0             |                                                                                                            | CSI                                                                                                                                                                                |                                                                                                       | DEFL                                                                                                | in                                 | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL (roof)                                                                     | 25.0                              |                                                                                                 | 1.15              |                                                                                                            | тс                                                                                                                                                                                 | 0.05                                                                                                  | Vert(LL)                                                                                            | n/a                                | -     | n/a    | 999 | MT20          | 197/144  |
| TCDL                                                                            | 10.0                              | Lumber DOL                                                                                      | 1.15              |                                                                                                            | BC                                                                                                                                                                                 | 0.03                                                                                                  | Vert(TL)                                                                                            | n/a                                | -     | n/a    | 999 |               |          |
| BCLL                                                                            | 0.0                               | * Rep Stress Incr                                                                               | YES               |                                                                                                            | WB                                                                                                                                                                                 | 0.03                                                                                                  | Horiz(TL)                                                                                           | 0.00                               | 5     | n/a    | n/a |               |          |
| BCDL                                                                            | 10.0                              | Code                                                                                            | IRC201            | 8/TPI2014                                                                                                  | Matrix-P                                                                                                                                                                           |                                                                                                       |                                                                                                     |                                    |       |        |     | Weight: 25 lb | FT = 10% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD | 6-0-0 oc purlins.                 | sheathing directly applictly applied or 10-0-0                                                  | 8)                | chord live lo<br>* This truss<br>on the botto<br>3-06-00 tall<br>chord and a<br>Provide me<br>bearing plat | as been designe<br>bad nonconcurre<br>has been desig<br>m chord in all at<br>by 2-00-00 wit<br>ny other membe<br>chanical connec<br>te capable of wit<br>ft at joint 5, 137<br>t 6 | nt with any<br>ned for a liv<br>reas where<br>e will fit betw<br>ers.<br>tion (by othe<br>hstanding 3 | other live loa<br>e load of 20.1<br>a rectangle<br>veen the bott<br>ers) of truss<br>3 lb uplift at | ads.<br>Opsf<br>tom<br>to<br>joint |       |        |     |               | 11.      |
|                                                                                 | 6=180<br>8=180<br>Max Horiz 1=-91 | 5-11-10, 5=46/6-11-10<br>/6-11-10, 7=113/6-11-<br>/6-11-10<br>(LC 4)<br>(LC 6), 5=-18 (LC 7), ( | 10, <sup>9)</sup> | This truss is<br>Internationa                                                                              | designed in ac<br>I Residential Co<br>and referenced s                                                                                                                             | de sections                                                                                           | R502.11.1 a                                                                                         | and                                |       |        |     | XA.E. OF      | MISSOU   |

|          | Max Grav | (LC 9), 8=-137 (LC 8)<br>1=79 (LC 17), 5=72 (LC 18), 6=206<br>(LC 16), 7=117 (LC 18), 8=206 (LC<br>15) |
|----------|----------|--------------------------------------------------------------------------------------------------------|
| FORCES   | · · ·    | mum Compression/Maximum                                                                                |
| TODOLODD | Tension  |                                                                                                        |

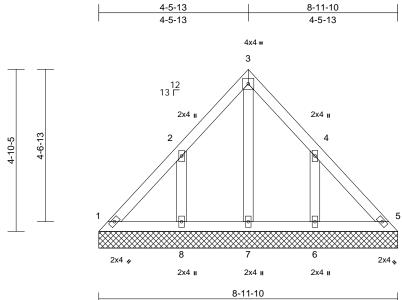
3-9-5

# $\begin{array}{rl} \text{TOP CHORD} & 1\text{-}2\text{-}109/80, 2\text{-}3\text{-}97/68, 3\text{-}4\text{-}90/55, \\ & 4\text{-}5\text{-}96/60 \\ \text{BOT CHORD} & 1\text{-}8\text{-}36/76, 7\text{-}8\text{-}36/76, 6\text{-}7\text{-}\text{-}36/76, \\ & 5\text{-}6\text{-}\text{-}36/76 \\ \text{WEBS} & 3\text{-}7\text{-}\text{-}75/0, 2\text{-}8\text{-}171/158, 4\text{-}6\text{-}\text{-}171/157 \\ \end{array}$

## NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, and the study of the default of the study.
- or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing.
- 5) n/a




Page: 1



| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | LAY3  | GABLE      | 1   | 1   | Job Reference (optional) | 148527955 |

#### Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:15 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



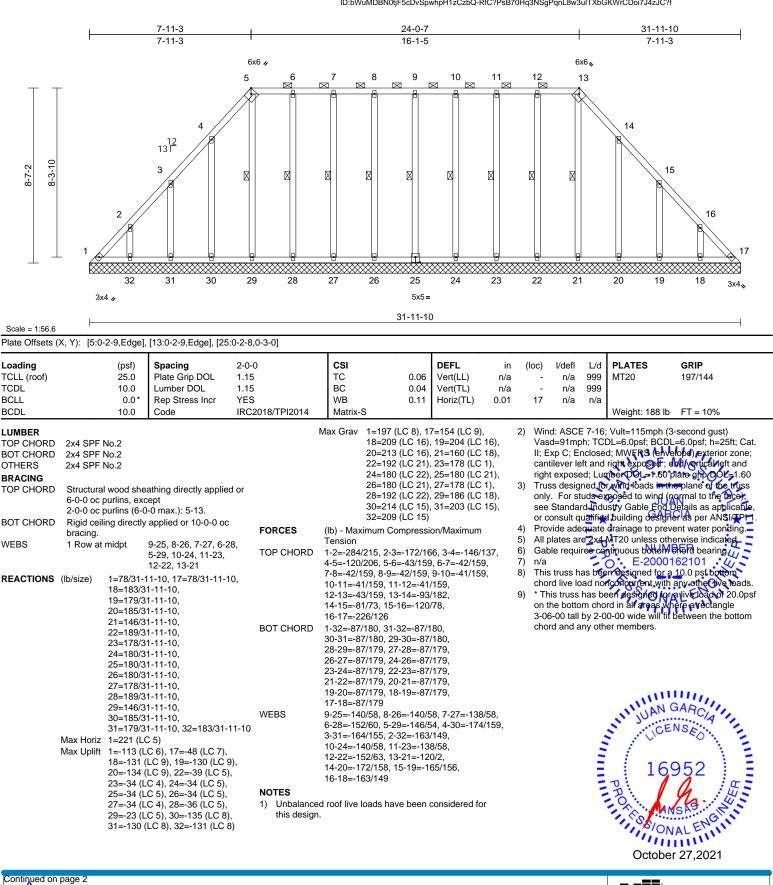


| Scale = | 1:34.6 |
|---------|--------|
|---------|--------|

| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                       | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201                                                                                                                                                              | 8/TPI2014                                                   | CSI<br>TC<br>BC<br>WB<br>Matrix-P                                                                                   | 0.07<br>0.03<br>0.03                                                                                                                                            | DEFL<br>Vert(LL)<br>Vert(TL)<br>Horiz(TL) | in<br>n/a<br>n/a<br>0.00 | (loc)<br>-<br>-<br>5 | l/defl<br>n/a<br>n/a<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L/d<br>999<br>999<br>n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PLATES<br>MT20<br>Weight: 34 lb | <b>GRIP</b><br>197/144<br>FT = 10% |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2x4 SPF No.2<br>2x4 SPF No.2<br>Structural wood she<br>6-0-0 oc purlins.<br>Rigid ceiling directly<br>bracing.<br>(Ib/size) 1=95/8-1<br>6=229/8-<br>8=229/8-<br>Max Horiz 1=120 (LI<br>Max Uplift 1=-22 (LC<br>UC 9), 8:<br>Max Grav 1=118 (LI<br>6=261 (LI | 8)<br>, 9)<br>168 <b>L</b> (                                       | chord live loa<br>* This truss h<br>on the bottom<br>3-06-00 tall b<br>chord and an<br>Provide mech<br>bearing plate<br>1, 2 lb uplift at<br>uplift at joint (<br>This truss is of<br>International | designed in accor<br>Residential Code<br>nd referenced star | with any<br>d for a liv<br>is where<br>ill fit betv<br>n (by oth<br>anding 2<br>plift at joi<br>dance w<br>sections | other live load<br>re load of 20.0<br>a rectangle<br>veen the botto<br>ers) of truss to<br>22 lb uplift at jo<br>int 8 and 168<br>ith the 2018<br>s R502.11.1 a | opsf<br>om<br>o<br>oint<br>Ib             |                          |                      | In the second se | JUA<br>GAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                 |                                    |
| 8=261 (LC 15)<br>FORCES (lb) - Maximum Compression/Maximum<br>Tension<br>TOP CHORD 1-2=-126/100, 2-3=-100/90, 3-4=-91/72,<br>4-5=-109/80<br>BOT CHORD 1-8=-50/107, 7-8=-50/107, 6-7=-50/107,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                             |                                                                    |                                                                                                                                                                                                     |                                                             |                                                                                                                     |                                                                                                                                                                 |                                           |                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in the second se | NUMI<br>E-20001                 | • 41.                              |
| <ul> <li>5-6=-50/107</li> <li>WEBS 3-7=-89/4, 2-8=-213/197, 4-6=-213/197</li> <li>NOTES</li> <li>1) Unbalanced roof live loads have been considered for this design.</li> <li>2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60</li> <li>3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.</li> <li>4) Gable requires continuous bottom chord bearing.</li> <li>5) n/a</li> </ul> |                                                                                                                                                                                                                                                             |                                                                    |                                                                                                                                                                                                     |                                                             |                                                                                                                     |                                                                                                                                                                 |                                           |                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . AUTUAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PRO 169                         | BARCIA<br>NSEO<br>952              |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601




October 27,2021

| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | LAY4  | GABLE      | 1   | 1   | Job Reference (optional) | 148527956 |

#### Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:16 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Mitek<sup>®</sup> 16023 Swingley Ridge Rd Chesterfield, MO 63017



| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | LAY4  | GABLE      | 1   | 1   | Job Reference (optional) | 148527956 |

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 113 lb uplift at joint 1, 48 lb uplift at joint 17, 34 lb uplift at joint 25, 34 lb uplift at joint 26, 34 lb uplift at joint 27, 36 lb uplift at joint 28, 23 lb uplift at joint 29, 135 lb uplift at joint 30, 130 lb uplift at joint 31, 131 lb uplift at joint 32, 34 lb uplift at joint 24, 34 lb uplift at joint 23, 39 lb uplift at joint 22, 134 lb uplift at joint 20, 130 lb uplift at joint 19 and 131 lb uplift at joint 18.

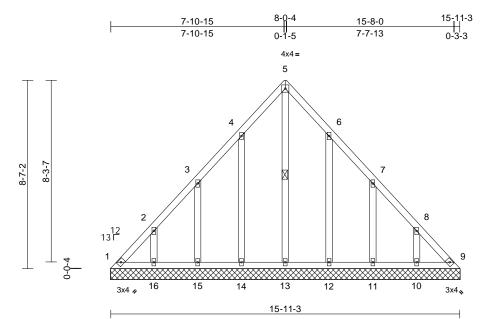
11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:16 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 2




| Job   | Truss | Truss Type   | Qty | Ply | Lot 117 RR               |           |
|-------|-------|--------------|-----|-----|--------------------------|-----------|
| RR117 | LAY5  | Lay-In Gable | 2   | 1   | Job Reference (optional) | 148527957 |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:16 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

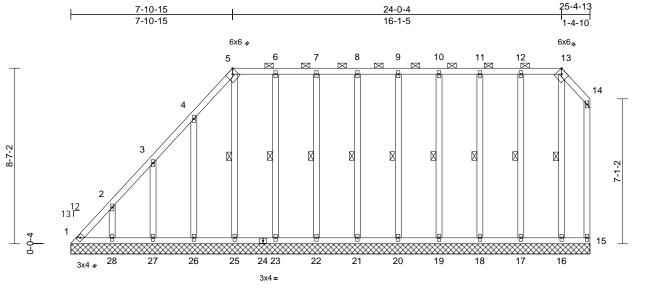
Page: 1

October 27,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017



Scale = 1:52.6


| Loading<br>TCLL (roof)         (ps)<br>2.50         Spacing<br>Plate Grip DOL<br>Lumber DOL<br>1.15         CSI<br>TC<br>TCL<br>DC         DEFL<br>0.00         in<br>(loc)         (idc)         Udd<br>Lub         PLATES<br>Plate         ORP<br>PLATE           BCL         0.00         Rep Stress incl         YES         TCL<br>UMBER         0.01         Rep Stress incl         YES         0.01         PLATES         ORP           COUL         1.00         Code         VES         0.01         PLATES         ORP           UMBER         0.00         Rep Stress incl         YES         VES         0.01         9         n/a         n/a           DOT CHORD         2:4 SPF No.2         Stress incl         YES         -13-17321 4 -14-178/155.         Stress incl         YES         10 -0 -0 oc<br>bracking ing directly applied or 10-0 -0 oc<br>bracking in the period of live loads in the plane of twind loads in the pla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TC<br>BC<br>WB<br>Matrix-S<br>WEBS 5-13=-173/21, 4<br>3-15=-164/156,<br>6-12=-174/154,<br>8-10=-163/149<br>NOTES<br>1) Unbalanced roof live loads I<br>this design.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.06<br>0.04<br>0.11<br>Vert(LL)<br>Vert(TL)<br>Horiz(TL<br>Horiz(TL<br>4-14=-176/155,<br>, 2-16=-163/149,<br>, 7-11=-165/157,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/a<br>n/a<br>.) 0.01                                                                            | -                                                                                                   | n/a<br>n/a                                                                                          | 999<br>999                                                                                             | MT20                                                                                                                           | 197/144                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| BCDL         10.0         Code         IRC2018/TP12014         Marks         Weight: 79 lb         FT = 10%           LUMBER<br>TOP CHORD         2x4 SPF No.2           Status         Weight: 79 lb         FT = 10%           BOT CHORD         2x4 SPF No.2          Status         Status         WEBS         5-13-173/21, 4-14176/155, 3-15-163/149, 6-12-173/23, 4-14-1-163/149, 6-12-174/156, 7-11-106/157, 8-15-163/149, 6-12-174/156, 7-11-106/157, 8-15-163/149, 6-12-174/156, 7-11-106/157, 8-10-163/149, 6-12-174/156, 7-11-106/157, 8-10-163/149, 6-12-174/156, 7-11-106/157, 8-10-163/149, 6-12-174/156, 7-11-106/157, 8-10-163/149, 6-12-174/156, 7-11-106/157, 12-174/15, 1-11-10, 12-183/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-11-10, 12-187/15-116-10, 12-187/15-116-10, 12-19/10/16-10, 12-187/15-116-10, 12                                                                                                                                                                                                                                                                                                                                                                                                 | Matrix-S           WEBS         5-13=-173/21, 4           3-15=-164/156, 6-12=-174/154, 8-10=-163/149           NOTES           1) Unbalanced roof live loads I this design.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4-14=-176/155,<br>, 2-16=-163/149,<br>, 7-11=-165/157,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,<br>                                                                                            |                                                                                                     |                                                                                                     |                                                                                                        |                                                                                                                                | FT = 10%                                                  |
| TOP CHORD<br>B0T CHORD<br>OTHERS         2x4 SPF No.2         3-15—164/156, 2-16-163/149,<br>6-20 or purins.           BRACING<br>TOP CHORD<br>BCT CHORD<br>BOT CHORD<br>BOT CHORD<br>WEBS         Structural wood sheathing directly applied or 10-0-0 or<br>bracing.         NOTES           BRACTIONS<br>BOT CHORD<br>WEBS         Structural wood sheathing directly applied or 10-0-0 or<br>bracing.         NOTES           WEBS         1. Row at might<br>1-81/15-11-10,<br>10-183/15-11-10,<br>11-179/15-11-10,<br>11-179/15-11-10,<br>11-179/15-11-10,<br>11-179/15-11-10,<br>11-179/15-11-10,<br>11-137/15-11-10,<br>11-137/15-11-10,<br>11-137/15-11-10,<br>11-137/15-11-10,<br>11-137/15-11-10,<br>11-137/15-11-10,<br>11-137/15-11-10,<br>11-137/15-11-10,<br>11-137/15-11-10,<br>11-137/15-11-10,<br>11-137/15-11-10,<br>11-137/15-11-10,<br>11-137/15-11-10,<br>11-137/15-11-10,<br>11-137/15-11-10,<br>11-137/15-11-10,<br>11-137/15-11-10,<br>11-137/15-11-10,<br>11-137/15-11-10,<br>11-137/15-11-10,<br>11-137/15-11-10,<br>11-137/15-11-10,<br>11-137/15-11-10,<br>11-137/15-11-10,<br>11-137/15-11-10,<br>11-137/15-11-10,<br>11-137/15-11-10,<br>11-137/15-11-10,<br>11-137/15-11-10,<br>11-137/15-11-10,<br>11-137/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10,<br>12-22/8/15-11-10, | 3-15=-164/156,<br>6-12=-174/154,<br>8-10=-163/149<br>NOTES<br>1) Unbalanced roof live loads I<br>this design.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , 2-16=-163/149,<br>, 7-11=-165/157,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d for                                                                                            |                                                                                                     |                                                                                                     |                                                                                                        |                                                                                                                                |                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>Vasd=91mph; TCDL=6.0ps</li> <li>II; Exp C; Enclosed; MWFR cantilever left and right exporight exposed; Lumber DOL</li> <li>Truss designed for wind loa only. For studs exposed to see Standard Industry Gabl or consult qualified building</li> <li>All plates are 2x4 MT20 unl</li> <li>Gable requires continuous t</li> <li>Gable studs spaced at 2-0-17</li> <li>This truss has been design chord live load nonconcurre</li> <li>* This truss has been design on the bottom chord in all a 3-06-00 tall by 2-00-00 wide chord and any other membe</li> <li>Provide mechanical connect bearing plate capable of wit 1, 59 lb uplift at joint 15, 131 lb uplift joint 12, 132 lb uplift at joint 10.</li> <li>This truss is designed in act International Residential Co R802.10.2 and referenced s</li> </ul> | f; BCDL=6.0psf; h=25<br>S (envelope) exterior<br>osed ; end vertical left<br>=1.60 plate grip DOL-<br>ids in the plane of the<br>wind (normal to the fa<br>le End Details as appl<br>designer as per ANS<br>less otherwise indicate<br>bottom chord bearing.<br>0 oc.<br>ed for a 10.0 psf botto<br>ent with any other live<br>ned for a 10.0 psf botto<br>ent with any other live<br>exist in the beare a rectangl<br>e will fit between the b<br>ers.<br>bottom (by others) of trust<br>thstanding 95 lb uplift<br>lb uplift at joint 14, 13<br>t at joint 16, 130 lb up<br>: 11 and 131 lb uplift a<br>cordance with the 201<br>bode sections R502.11. | Sift; Cat.<br>zone;<br>t and<br>=1.60<br>truss<br>ace),<br>licable,<br>l/TPI 1.<br>ed.           |                                                                                                     |                                                                                                     |                                                                                                        | GAP<br>NUM<br>E-2000<br>SS/ON<br>UCE<br>16<br>PROXISSION                                                                       | BER<br>162101<br>ALENG<br>SARCIA<br>NSEO<br>952<br>SALENG |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  |                                                                                                     |                                                                                                     |                                                                                                        | I, ON                                                                                                                          | VALE                                                      |
| VONAL ENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                  |                                                                                                     |                                                                                                     |                                                                                                        |                                                                                                                                | 1111                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | International Residential Co<br>R802.10.2 and referenced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | International Residential Code sections R502.11<br>R802.10.2 and referenced standard ANSI/TPI 1. | International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. | International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. | International Residential Code sections R502.11.1 and<br>R802.10.2 and referenced standard ANSI/TPI 1. | International Residential Code sections R502.11.1 and<br>R802.10.2 and referenced standard ANSI/TPI 1.<br>DAD CASE(S) Standard |                                                           |



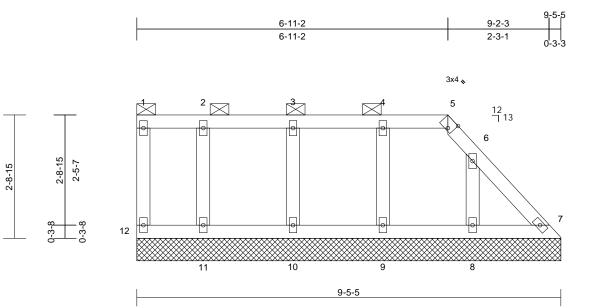
| Job   | Truss | Truss Type   | Qty | Ply | Lot 117 RR               |           |
|-------|-------|--------------|-----|-----|--------------------------|-----------|
| RR117 | LAY6  | Lay-In Gable | 1   | 1   | Job Reference (optional) | 148527958 |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:17 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



| 25. | 4-  | 1  | 3 |
|-----|-----|----|---|
| 20  | -4- | 1. | 0 |


Scale = 1:56.4 Plate Offsets (X, Y): [5:0-2-9,Edge], [13:0-2-9,Edge]

| - 1010 0110010 (                                                                                | ,, ,, ,, [0.0                                                                                                                                                | 2 0,20g0],                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [13.0-2-3,Euge]                                                                                                                                                                                                                                                               |                                                                  |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |                                                                                                                                |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                  |                                                                                                                                                              | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                   | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                            | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC201                           | 8/TPI2014                                                                                                                                                                                                                                                                                                                                             | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                                                                                                          | 0.25<br>0.09<br>0.11                                                                                                                                                                                                                                                                                          | <b>DEFL</b><br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | in<br>n/a<br>n/a<br>0.00                         | (loc)<br>-<br>-<br>15                                                                                                          | l/defl<br>n/a<br>n/a<br>n/a                                                                                                                                                                                                                                            | L/d<br>999<br>999<br>n/a                                                                                                                                                        | PLATES<br>MT20<br>Weight: 166 lb                                                                                                                                                                                                                                                                                                                    | <b>GRIP</b><br>197/144<br>FT = 10%                                                                                                                                                                                                                                                                                                       |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>WEBS<br>REACTIONS | 2x4 SPF<br>2x4 SPF<br>2x4 SPF<br>Structura<br>6-0-0 oc<br>2-0-0 oc<br>Rigid ceil<br>bracing.<br>1 Row at<br>(lb/size)<br>Max Horiz<br>Max Uplift<br>Max Grav | No.2<br>No.2<br>No.2<br>No.2<br>I wood she:<br>purlins, exc<br>purlins, exc<br>purlins (6-0<br>ing directly<br>midpt<br>1=61/25-4<br>16=144/25<br>18=178/22<br>22=177/22<br>22=165/22<br>22=177/22<br>22=165/22<br>22=177/22<br>22=165/22<br>22=177/22<br>22=131 (LC<br>1=-141 (L<br>18=-38 (L<br>20=-34 (L<br>20=-34 (L<br>20=-34 (L<br>27=-130 (<br>1=254 (LC<br>16=144 (L<br>18=178 (L<br>20=180 (L<br>22=177 (L<br>22=180 (L<br>22=177 (L<br>25=180 (L<br>27=203 (L | athing directly applie<br>cept end verticals, ar<br>-0 max.): 5-13.<br>applied or 10-0-0 oc<br>13-16, 12-17, 11-18<br>10-19, 9-20, 8-21, 7-<br>6-23, 5-25<br>I-13, 15=48/25-4-13,<br>5-4-13, 17=191/25-4<br>5-4-13, 21=180/25-4<br>5-4-13, 26=183/25-4<br>5-4-13, 26=183/25-4 | d or B <sup>(1)</sup><br>d or d or | OP CHORD<br>OT CHORD<br>OT CHORD<br>/EBS<br>Unbalanced<br>this design.<br>Unbalanced<br>this design.<br>Wind: ASC<br>Vasd=91m;<br>II; Exp C; E<br>cantilever la<br>right expos<br>Truss desig<br>only. For s<br>see Standa<br>or consult c<br>Provide add<br>or Consult c<br>Provide add<br>All plates a<br>Gable requ<br>Gable stud;<br>This truss f | 1-2=-348/255, 2-3<br>4-5=-201/161, 5-6<br>7-8=-116/106, 8-9<br>10-11=-116/106, 1<br>12-13=-117/105, 1<br>14-15=-183/135<br>1-28=-102/77, 27-<br>26-27=-102/77, 22<br>23-25=-100/76, 12<br>17-28=-100/76, 12<br>17-18=-100/76, 16<br>13-16=-114/142, 1<br>11-18=-139/59, 10<br>9-20=-140/58, 8-2<br>6-23=-155/66, 5-2<br>4-26=-171/157, 3-<br>2-28=-166/151 | =-117/10<br>=-116/10<br>11-12=-1<br>3-14=-2<br>28=-102<br>5-26=-10<br>2-23=-10<br>3-19=-10<br>3-19=-10<br>3-19=-10<br>3-19=-14<br>1=-140/5<br>5=-141/1<br>27=-164.<br>// e been of<br>so plate<br>in the pl<br>nd (norm<br>ind Deta<br>signer at<br>prevent is<br>so therwit<br>tom choir<br>c.<br>for a 10.1 | 15, 6-7=-116/10         16, 9-10=-116/10         16, 9-10=-116/10         16, 9-10=-116/10         16, 9-10=-116/10         16, 9-10=-116/10         177, 2/77, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0/76, 0 | 96,<br>006,<br>58,<br>58,<br>0<br>5<br>e,,<br>1. | on t<br>3-0<br>cho<br>10) Pro<br>bea<br>join<br>upli<br>19,<br>upli<br>25,<br>133<br>11) This<br>Inte<br>R8<br>12) Gra<br>or t | the botto<br>6-00 tall<br>ord and a<br>vide me<br>aring pla<br>t 1, 78 II<br>ff at join<br>133 Ib up<br>iff at join<br>133 Ib up<br>iff at join<br>133 Ib up<br>blo upliff<br>s truss is<br>ernationa<br>02.10.2 a<br>phical p<br>he orien<br>tom cho<br><b>CASE(S</b> | om cho<br>by 2-0<br>any oth<br>hcchanic<br>te cape<br>b uplift<br>t t2, 4;<br>uplift at<br>t t2, 4;<br>uplift at<br>t at join<br>al Resi<br>uurlin re<br>tation o<br>rd.<br>Sta | een designed for i<br>rol in all areas wh<br>0-00 wide Willfiff<br>er members F<br>al confection (by<br>able of withstandii<br>out 20, 34 Brobhi<br>21b uplift at joint 2<br>ibint 26, 130 lb u<br>22b uplift at joint 2<br>ibint 26, 130 lb u<br>28. NUME<br>ned in Economic and<br>area and<br>profesentaling dop<br>of the puplin along<br>ndard | a live load of 20.0psf<br>ere a rectangle<br>setwagen the bottom<br>VIS<br>others) optruss to<br>og 141 lb uplift at<br>point 21, 34 lb<br>23, 98 lb uplift at joint<br>Part joint 21, 34 lb<br>23, 98 lb uplift at joint<br>Part joint 27 and<br>SER<br>6 with the 2018<br>ions R502 441 and<br>JANSI/TEN<br>ANSI/TEN<br>the top and/or |
|                                                                                                 |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                               |                                                                  |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |                                                                                                                                |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                 | Octobei                                                                                                                                                                                                                                                                                                                                             | 27,2021                                                                                                                                                                                                                                                                                                                                  |



| Job   | Truss | Truss Type   | Qty | Ply | Lot 117 RR               |           |
|-------|-------|--------------|-----|-----|--------------------------|-----------|
| RR117 | LAY7  | Lay-In Gable | 1   | 1   | Job Reference (optional) | 148527959 |

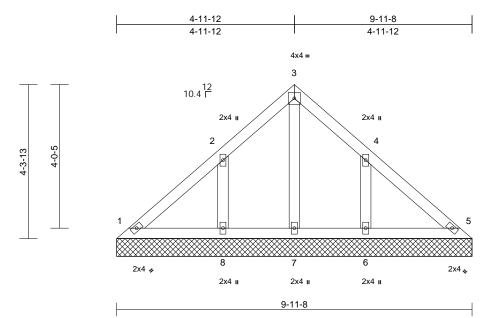
Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:17 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



Scale = 1:25.7

Plate Offsets (X, Y): [5:0-1-7,Edge]

| Loading<br>TCLL (roof)<br>TCDL<br>BCLL<br>BCDL                                                       | (psf)<br>25.0<br>10.0<br>0.0*<br>10.0                                                                                                                                                                                                                                                                                                                           | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                 | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/T                                      | PI2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CSI<br>TC<br>BC<br>WB<br>Matrix-S                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.05<br>0.02<br>0.02                                                                                                                                                                                    | <b>DEFL</b><br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                                                                                                                                                                                                                         | in<br>n/a<br>n/a<br>0.00                                                   | (loc)<br>-<br>-<br>7 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 34 lb | <b>GRIP</b><br>197/144<br>FT = 10% |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------|-----------------------------|--------------------------|---------------------------------|------------------------------------|
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD<br>REACTIONS | 2x4 SPF No.2<br>2x4 SPF No.2<br>2x4 SPF No.2<br>2x4 SPF No.2<br>Structural wood she<br>6-0-0 oc purlins, ex<br>2-0-0 oc purlins, ex<br>2-0-0 oc purlins (6-C<br>Rigid ceiling directly<br>bracing.<br>(lb/size) 7=59/9-5-<br>9=179/9-4<br>11=160/9<br>Max Horiz 12=-98 (L<br>Max Uplift 7=-17 (LC<br>(LC 4), 10<br>5), 12=-17<br>Max Grav 7=91 (LC<br>9=179 (LC | cept end verticals, an<br>-0 max.): 1-5.<br>applied or 10-0-0 oc<br>5, 8=180/9-5-5,<br>5-5, 10=185/9-5-5,<br>-5-5, 12=46/9-5-5<br>C 4)<br>c 5), 8=-78 (LC 9), 9=<br>-36 (LC 5), 11=-33<br>4 (LC 4) | ed or 5) C<br>and 6) C<br>and 7) T<br>c 8) *<br>e=-40 1<br>(LC a<br>10) T<br>I | only. For stu<br>see Standard<br>Provide adec<br>All plates are<br>Gable require<br>Gable studs :<br>This truss ha<br>on the botton<br>b-06-00 tall b<br>behord and an<br>Provide mecl<br>pearing plate<br>2, 17 lb upli<br>tt joint 10, 40<br>This truss is on<br>the number of the struss is of the stru | ed for wind loads i<br>dids exposed to wind<br>d Industry Gable E<br>alified building des<br>quate drainage to p<br>2x4 MT20 unless<br>es continuous bott<br>spaced at 2-0-0 ou<br>s been designed f<br>ad nonconcurrent v<br>has been designed<br>in chord in all areas<br>by 2-00-00 wide wi<br>by other members.<br>hanical connection<br>e capable of withsta<br>ft at joint 7, 33 lb u<br>D lb uplift at joint 9<br>designed in accord<br>Residential Code<br>nd referenced stan | nd (norm<br>nd Deta<br>signer as<br>prevent v<br>or externiv<br>or a 10.<br>with any<br>f for a liv<br>s where<br>Il fit betv<br>n (by oth<br>anding 1<br>uplift at jo<br>and 78<br>dance w<br>sections | al to the face<br>Is as applical<br>as per ANSI/TK<br>water ponding<br>se indicated.<br>d bearing.<br>) psf bottom<br>other live load<br>e load of 20.0<br>a rectangle<br>veen the botto<br>ers) of truss t<br>4 lb uplift at join<br>tint 11, 36 lb<br>b uplift at join<br>tint the 2018<br>R502.11.1 a | ),<br>ole,<br>Pl 1.<br>J.<br>ds.<br>opsf<br>om<br>ooint<br>uplift<br>it 8. |                      |                             |                          | JU/<br>GAR<br>SS/001            | CIA <b>*</b>                       |
| FORCES                                                                                               | (lb) - Maximum Com<br>Tension<br>1-12=-35/17, 1-2=-3<br>3-4=-32/26, 4-5=-32<br>6-7=-92/79                                                                                                                                                                                                                                                                       | 2/26, 2-3=-32/26,                                                                                                                                                                                  | o<br>b                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                          | ize                                                                        |                      |                             |                          |                                 | GARO                               |
| BOT CHORD                                                                                            |                                                                                                                                                                                                                                                                                                                                                                 | /75                                                                                                                                                                                                | ,                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                          |                                                                            |                      |                             |                          | ILCE                            | NSED                               |
| Vasd=91r<br>II; Exp C;<br>cantilever                                                                 | 6-8=-146/94<br>CE 7-16; Vult=115mph<br>mph; TCDL=6.0psf; BC<br>Enclosed; MWFRS (er<br>r left and right exposed<br>sed; Lumber DOL=1.6                                                                                                                                                                                                                           | (3-second gust)<br>DL=6.0psf; h=25ft; C<br>nvelope) exterior zon<br>; end vertical left and                                                                                                        | Cat.<br>le;                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                          |                                                                            |                      |                             | THINK .                  | BORNES/ON                       | 952<br>JSAS CHUI                   |




October 27,2021

| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | LAY8  | GABLE      | 1   | 1   | Job Reference (optional) | 148527960 |

#### Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:18 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

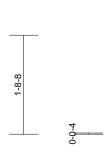
Page: 1

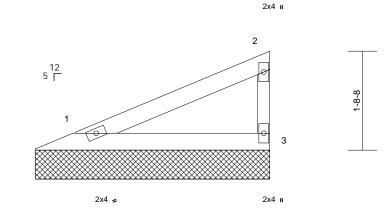


Scale = 1:32.3

|              |                                 | 1                                                   |                 |                                              |              | <u> </u>         |        |          |     | 1             |           |
|--------------|---------------------------------|-----------------------------------------------------|-----------------|----------------------------------------------|--------------|------------------|--------|----------|-----|---------------|-----------|
| Loading      | (psf)                           | Spacing                                             | 2-0-0           | CSI                                          |              | DEFL             | in (lo | c) l/def |     | PLATES        | GRIP      |
| TCLL (roof)  | 25.0                            | Plate Grip DOL                                      | 1.15            | TC                                           | 0.08         | Vert(LL)         | n/a    | - n/a    |     | MT20          | 197/144   |
| TCDL         | 10.0                            | Lumber DOL                                          | 1.15            | BC                                           | 0.04         | Vert(TL)         | n/a    | - n/a    |     |               |           |
| BCLL         | 0.0                             |                                                     | YES             | WB                                           | 0.03         | Horiz(TL) (      | 0.00   | 5 n/a    | n/a |               |           |
| BCDL         | 10.0                            | Code                                                | IRC2018/TPI2014 | 4 Matrix-S                                   |              |                  |        |          |     | Weight: 34 lb | FT = 10%  |
| LUMBER       |                                 |                                                     | 6) This tru     | ss has been designe                          | d for a 10.  | 0 psf bottom     |        |          |     |               |           |
| TOP CHORD    | 2x4 SPF No.2                    |                                                     |                 | ve load nonconcurrer                         |              |                  |        |          |     |               |           |
| BOT CHORD    | 2x4 SPF No.2                    |                                                     | 7) * This tr    | uss has been design                          | ed for a liv | e load of 20.0ps | f      |          |     |               |           |
| OTHERS       | 2x4 SPF No.2                    |                                                     |                 | oottom chord in all are                      |              |                  |        |          |     |               |           |
| BRACING      |                                 |                                                     |                 | tall by 2-00-00 wide                         |              | ween the bottom  |        |          |     |               |           |
| TOP CHORD    | Structural wood s               | neathing directly appli                             |                 | nd any other membe                           |              |                  |        |          |     |               |           |
|              | 6-0-0 oc purlins.               |                                                     | , h             | mechanical connecti<br>plate capable of with |              |                  |        |          |     |               |           |
| BOT CHORD    |                                 | tly applied or 10-0-0 o                             |                 | b uplift at joint 8 and                      |              |                  |        |          |     |               |           |
|              | bracing.                        |                                                     | 0) This true    | ss is designed in acc                        |              |                  |        |          |     |               | 11.       |
| REACTIONS    |                                 | 9-11-8, 5=108/9-11-8,                               | Ínternat        | ional Residential Coc                        |              |                  |        |          |     | IN OF         | MIS       |
|              | 6=254/<br>8=254/                | 9-11-8, 7=101/9-11-8,                               | R802.10         | 0.2 and referenced st                        | andard Al    | NSI/TPI 1.       |        |          |     | NE            | Sol.      |
|              | Max Horiz 1=-104                |                                                     | LOAD CAS        | E(S) Standard                                |              |                  |        |          |     | A             |           |
|              |                                 | (LC 4)<br>C 4), 6=-134 (LC 9), 8                    | 2134            |                                              |              |                  |        |          | -   | S: JU         | ANI · D-  |
|              | (LC 8)                          | 0 4), 0= 104 (20 0), 0                              | - 104           |                                              |              |                  |        |          | -   |               |           |
|              |                                 | LC 16), 5=108 (LC 1)                                |                 |                                              |              |                  |        |          | = * | GAF           |           |
|              | 6=274                           | LC 16), 7=120 (LC 18                                | 3),             |                                              |              |                  |        |          |     | 1             | 1 2       |
|              | 8=274                           | LC 15)                                              |                 |                                              |              |                  |        |          | - 7 | NUM           | BEB : C-  |
| FORCES       |                                 | mpression/Maximum                                   |                 |                                              |              |                  |        |          |     | C. E-2000     | • []].    |
|              | Tension                         |                                                     |                 |                                              |              |                  |        |          |     |               |           |
| TOP CHORD    |                                 | -87/88, 3-4=-80/74,                                 |                 |                                              |              |                  |        |          | 1   | 1.0.          | G         |
|              | 4-5=-83/66                      | 0/04 07 00/04                                       |                 |                                              |              |                  |        |          |     | INS/ON        | ALENIN    |
| BOT CHORD    | 1-8=-38/84, 7-8=-<br>5-6=-38/84 | 38/84, 6-7=-38/84,                                  |                 |                                              |              |                  |        |          |     | 1111          | iiiiii    |
| WEBS         |                                 | 10/158, 4-6=-210/158                                |                 |                                              |              |                  |        |          |     |               |           |
| NOTES        | 0.00,202                        |                                                     |                 |                                              |              |                  |        |          |     |               | IIIII.    |
|              | ed roof live loads ha           | ve been considered fo                               | nr              |                                              |              |                  |        |          |     | ANIAN         | GARC      |
| this design  |                                 |                                                     |                 |                                              |              |                  |        |          |     | UCE<br>DE 16  | A         |
| 2) Wind: ASC | CE 7-16; Vult=115m              | oh (3-second gust)                                  |                 |                                              |              |                  |        |          |     | ICE           | NSED      |
|              |                                 | CDL=6.0psf; h=25ft;                                 |                 |                                              |              |                  |        |          |     | ( / Č         | - N - E   |
|              |                                 | envelope) exterior zo                               |                 |                                              |              |                  |        |          | -   |               |           |
|              |                                 | d; end vertical left ar                             |                 |                                              |              |                  |        |          |     | 16            | 952       |
| 0 1          | ,                               | .60 plate grip DOL=1.                               |                 |                                              |              |                  |        |          | -   | 0:            | i a E     |
|              |                                 | in the plane of the trund<br>nd (normal to the face |                 |                                              |              |                  |        |          |     | P.            | 1 145     |
|              |                                 | End Details as applica                              |                 |                                              |              |                  |        |          |     | - A KA        | ICAS      |
|              |                                 | signer as per ANSI/T                                |                 |                                              |              |                  |        |          |     | 1.50          | GIN       |
|              | uires continuous bot            |                                                     |                 |                                              |              |                  |        |          |     | 10/ON         | VALEN     |
| 5) n/a       |                                 | 5                                                   |                 |                                              |              |                  |        |          |     |               | IIIII.    |
| ,            |                                 |                                                     |                 |                                              |              |                  |        |          |     | Ostaba        | - 07 0004 |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601





October 27,2021

| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | V1    | Valley     | 2   | 1   | Job Reference (optional) | 148527961 |

#### Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:18 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





or

| 4-0-10 |  |
|--------|--|

4-0-10

| Scale | _ | 1 | • 1 | ł |
|-------|---|---|-----|---|

| Scale = 1:19.9                                      |                                              |                 |                 |                                                               |              |               |      |       |        |     |               |          |
|-----------------------------------------------------|----------------------------------------------|-----------------|-----------------|---------------------------------------------------------------|--------------|---------------|------|-------|--------|-----|---------------|----------|
| Loading                                             | (psf)                                        | Spacing         | 2-0-0           | CSI                                                           |              | DEFL          | in   | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL (roof)                                         | 25.0                                         | Plate Grip DOL  | 1.15            | TC                                                            | 0.19         | Vert(LL)      | n/a  | -     | n/a    | 999 | MT20          | 197/144  |
| TCDL                                                | 10.0                                         | Lumber DOL      | 1.15            | BC                                                            | 0.10         | Vert(TL)      | n/a  | -     | n/a    | 999 |               |          |
| BCLL                                                | 0.0*                                         | Rep Stress Incr | YES             | WB                                                            | 0.00         | Horiz(TL)     | 0.00 | 3     | n/a    | n/a |               |          |
| BCDL                                                | 10.0                                         | Code            | IRC2018/TPI2014 | Matrix-P                                                      |              |               |      |       |        |     | Weight: 10 lb | FT = 10% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING | 2x4 SPF No.2<br>2x4 SPF No.2<br>2x3 SPF No.2 |                 | Ínternational   | designed in ac<br>Residential Co<br>nd referenced<br>Standard | ode sections | s R502.11.1 a |      |       |        |     |               |          |

| BRACING   |             |                                   |
|-----------|-------------|-----------------------------------|
| TOP CHORD | Structural  | wood sheathing directly applied   |
|           | 4-1-4 oc p  | ourlins, except end verticals.    |
| BOT CHORD | Rigid ceili | ing directly applied or 10-0-0 oc |
|           | bracing.    |                                   |
| REACTIONS | (lb/size)   | 1=146/4-0-10, 3=146/4-0-10        |
|           | Max Horiz   | 1=60 (LC 5)                       |
|           | Max Uplift  | 1=-21 (LC 8), 3=-33 (LC 8)        |
| FORCES    | (lb) - Max  | imum Compression/Maximum          |
|           | Tension     |                                   |
| TOP CHORD | 1-2=-53/3   | 5. 2-3=-114/53                    |

BOT CHORD 1-3=-19/15

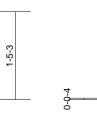
NOTES

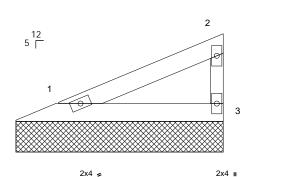
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing. 3)

- Gable studs spaced at 4-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 7) bearing plate capable of withstanding 21 lb uplift at joint 1 and 33 lb uplift at joint 3.

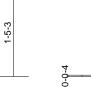






| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | V2    | Valley     | 1   | 1   | Job Reference (optional) | 148527962 |

#### Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:19 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 🛚


Page: 1





3-4-10

1-5-3





| Scale = 1: | 18.8 |
|------------|------|
|------------|------|

| Loading             | (psf)                                                   | Spacing                      | 2-0-0            | CSI<br>TC         | 0.11         | DEFL                 | in         | (loc) | l/defl     | L/d<br>999 | PLATES<br>MT20 | <b>GRIP</b><br>197/144 |
|---------------------|---------------------------------------------------------|------------------------------|------------------|-------------------|--------------|----------------------|------------|-------|------------|------------|----------------|------------------------|
| TCLL (roof)<br>TCDL | 25.0<br>10.0                                            | Plate Grip DOL<br>Lumber DOL | 1.15<br>1.15     | BC                | 0.11<br>0.06 | Vert(LL)<br>Vert(TL) | n/a<br>n/a | -     | n/a<br>n/a | 999<br>999 | 101120         | 197/144                |
| BCLL                | 0.0*                                                    | Rep Stress Incr              | YES              | WB                | 0.06         | Horiz(TL)            | 0.00       | - 3   | n/a<br>n/a | 999<br>n/a |                |                        |
| BCDL                | 10.0                                                    | Code                         | IRC2018/TPI2014  | Matrix-P          | 0.00         | TION2(TL)            | 0.00       | 3     | n/a        | 11/a       | Weight: 8 lb   | FT = 10%               |
| LUMBER              |                                                         | ļ                            | 8) This truss is | designed in acc   | ordonoo w    | ith the 2019         |            |       |            |            |                |                        |
| TOP CHORD           | 2x4 SPF No.2                                            |                              |                  | Residential Cod   |              |                      | and        |       |            |            |                |                        |
| BOT CHORD           | 2x4 SPF No.2                                            |                              |                  | and referenced st |              |                      |            |       |            |            |                |                        |
| WEBS                | 2x3 SPF No.2                                            |                              | LOAD CASE(S)     | Standard          |              |                      |            |       |            |            |                |                        |
| BRACING             |                                                         |                              | ()               | etandara          |              |                      |            |       |            |            |                |                        |
| TOP CHORD           | Structural wood she                                     | athing directly appli        | ed or            |                   |              |                      |            |       |            |            |                |                        |
|                     | 3-5-4 oc purlins, except end verticals.                 |                              |                  |                   |              |                      |            |       |            |            |                |                        |
| BOT CHORD           | Rigid ceiling directly                                  | applied or 10-0-0 o          | с                |                   |              |                      |            |       |            |            |                |                        |
|                     | bracing.                                                |                              |                  |                   |              |                      |            |       |            |            |                | 10.5                   |
| REACTIONS           | (                                                       | 4-10, 3=116/3-4-10           |                  |                   |              |                      |            |       |            |            | UNDE.          | Mich                   |
|                     | Max Horiz 1=47 (LC                                      | ,                            |                  |                   |              |                      |            |       |            |            | NE             | SS                     |
|                     | Max Uplift 1=-17 (LC                                    |                              |                  |                   |              |                      |            |       |            | -          | A              |                        |
| FORCES              | (lb) - Maximum Com                                      | npression/Maximum            |                  |                   |              |                      |            |       |            | -          | A              | ANI : D=               |
| TOP CHORD           | Tension<br>1-2=-42/28, 2-3=-90                          | ///2                         |                  |                   |              |                      |            |       |            | 2          | JU/            |                        |
| BOT CHORD           | ,                                                       | //42                         |                  |                   |              |                      |            |       |            | =*         | GAR            |                        |
| NOTES               | 1 0= 10/12                                              |                              |                  |                   |              |                      |            |       |            | -          | 1              |                        |
|                     | CE 7-16; Vult=115mph                                    | (2 second quist)             |                  |                   |              |                      |            |       |            | - 7        | NUM            | BEB : C-               |
|                     | nph; TCDL=6.0psf; BC                                    |                              | Cat              |                   |              |                      |            |       |            | = ]        | E-2000         | • 41-                  |
|                     | Enclosed; MWFRS (er                                     |                              |                  |                   |              |                      |            |       |            |            | E-2000         | 102101                 |
|                     | left and right exposed                                  |                              |                  |                   |              |                      |            |       |            | 1          | · · · · ·      | - diala                |
|                     | sed; Lumber DOL=1.6                                     |                              |                  |                   |              |                      |            |       |            |            | 1,SION         | I ENIN                 |
| 2) Truce doe        | Truss designed for wind loads in the plane of the truss |                              |                  |                   |              |                      |            |       |            |            |                |                        |

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5)
- chord live load nonconcurrent with any other live loads. \* This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 7) bearing plate capable of withstanding 17 lb uplift at joint 1 and 26 lb uplift at joint 3.

46 min 16952 PROMINISAS OCTOBER 27,2021 MULLIN III October 27,2021



| Job   | Truss | Truss Type | Qty Ply |   | Lot 117 RR               |           |
|-------|-------|------------|---------|---|--------------------------|-----------|
| RR117 | V3    | Valley     | 1       | 1 | Job Reference (optional) | 148527963 |

3-6-12

3-6-12

-0-10-8

0-10-8

Wheeler Lumber, Waverly, KS - 66871,

#### Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Oct 26 12:48:19 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-1-8

3-6-12



8-0-0

5

GRIP

197/144

FT = 10%

MIS

0-10-8

2 4 0-7-9 3x5 II 3x5 " 2x4 I 7-1-8 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES in (loc) Plate Grip DOL 1.15 тс 0.12 Vert(LL) n/a n/a 999 MT20 Lumber DOL BC 1 15 0.10 Vert(CT) 999 n/a n/a Rep Stress Incr YES WB 0.03 Horz(CT) 0.00 6 n/a n/a Code IRC2018/TPI2014 Matrix-R Weight: 21 lb 8) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 74 lb uplift at joint 8 and 76 lb uplift at joint 6. Structural wood sheathing directly applied or 10) This truss is designed in accordance with the 2018 6-0-0 oc purlins, except end verticals. International Residential Code sections R502.11.1 and Rigid ceiling directly applied or 10-0-0 oc R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard 0 6=265/7-1-8, 7=227/7-1-8, 8=265/7-1-8

Max Horiz 8=-19 (LC 13) Max Uplift 6=-76 (LC 9), 8=-74 (LC 8) FORCES (lb) - Maximum Compression/Maximum Tension 2-8=-238/94, 1-2=0/27, 2-3=-149/71, TOP CHORD 3-4=-149/68, 4-5=0/27, 4-6=-238/96 BOT CHORD 7-8=-24/92, 6-7=-24/92 WEBS 3-7=-145/23 NOTES

2x4 SPF No.2

2x4 SPF No.2

2x4 SPF No.2

2x3 SPF No.2

bracing.

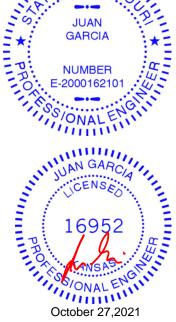
Unbalanced roof live loads have been considered for 1) this design

(psf)

25.0

10.0

10.0


0.0\*

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

Gable studs spaced at 4-0-0 oc. 6)

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601







Loading

TCDI

BCLL

BCDL

WEBS

OTHERS

BRACING

TOP CHORD

BOT CHORD

**REACTIONS** (lb/size)

LUMBER

TOP CHORD

BOT CHORD

TCLL (roof)

| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | V4    | Valley     | 1   | 1   | Job Reference (optional) | 148527964 |

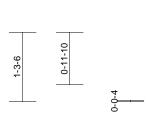
3-0-5

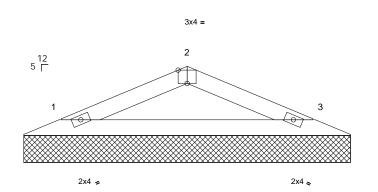
3-0-5

Wheeler Lumber, Waverly, KS - 66871,

#### Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:19 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

5-4-4


2-3-15




. .

6-0-10

0-8-6

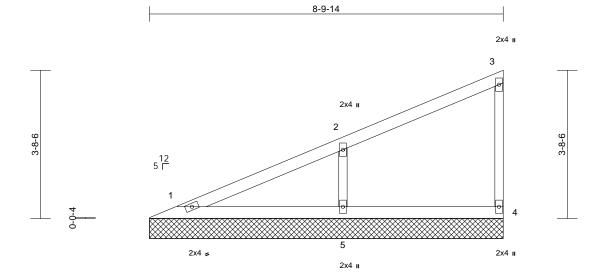




6-0-10

Scale = 1:21.3

Plate Offsets (X, Y): [2:0-2-0,Edge]


| <b>_oading</b><br>FCLL (roof)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (psf)<br>25.0                                                       | Spacing<br>Plate Grip DOL | 2-0-0<br>1.15  | CSI<br>TC                                                                                           | 0.09        | DEFL<br>Vert(LL) | in<br>n/a | (loc)<br>- | l/defl<br>n/a | L/d<br>999 | PLATES<br>MT20 | <b>GRIP</b><br>197/144 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------|----------------|-----------------------------------------------------------------------------------------------------|-------------|------------------|-----------|------------|---------------|------------|----------------|------------------------|
| TCDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.0                                                                | Lumber DOL                | 1.15           | BC                                                                                                  | 0.23        | Vert(TL)         | n/a       | -          | n/a           | 999        |                |                        |
| BCLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0*                                                                | Rep Stress Incr           | YES            | WB                                                                                                  | 0.00        | Horiz(TL)        | 0.00      | 3          | n/a           | n/a        |                |                        |
| BCDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.0                                                                | Code                      | IRC2018/TPI20  | 14 Matrix-P                                                                                         |             |                  |           |            |               |            | Weight: 13 lb  | FT = 10%               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2x4 SPF No.2<br>2x4 SPF No.2                                        |                           | Intern<br>R802 | russ is designed in act<br>ational Residential Co<br>10.2 and referenced s<br><b>SE(S)</b> Standard | de sections | R502.11.1 a      | Ind       |            |               |            |                |                        |
| (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Structural wood shea<br>6-0-0 oc purlins.<br>Rigid ceiling directly |                           |                |                                                                                                     |             |                  |           |            |               |            |                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | bracing.                                                            |                           |                |                                                                                                     |             |                  |           |            |               |            |                | 1117                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | o/size) 1=209/6-0<br>ax Horiz 1=-17 (LC<br>ax Uplift 1=-27 (LC      | ,                         |                |                                                                                                     |             |                  |           |            |               |            | AFEOF          | MISSO                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (lb) - Maximum Com<br>Tension                                       | pression/Maximum          |                |                                                                                                     |             |                  |           |            |               | E          | JU,            |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1-2=-235/69, 2-3=-23<br>1-3=-48/193                                 | 35/69                     |                |                                                                                                     |             |                  |           |            |               | Ξ*         | GAF            | RCIA *                 |
| NOTES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                     |                           |                |                                                                                                     |             |                  |           |            |               | = 1        | 1              | in in                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | roof live loads have                                                | been considered for       | r              |                                                                                                     |             |                  |           |            |               | = 5        | NUM            | • 41.                  |
| this design.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 40. 14.14 445                                                     | (0                        |                |                                                                                                     |             |                  |           |            |               | -1         | E-2000         | 162101                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7-16; Vult=115mph<br>h; TCDL=6.0psf; BC                             |                           | Cat            |                                                                                                     |             |                  |           |            |               |            | A              | G                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | closed; MWFRS (en                                                   |                           |                |                                                                                                     |             |                  |           |            |               |            | S/ON           | ALENI                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t and right exposed                                                 |                           |                |                                                                                                     |             |                  |           |            |               |            | - 4411         | iiiii                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d; Lumber DOL=1.6                                                   |                           |                |                                                                                                     |             |                  |           |            |               |            |                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ed for wind loads in<br>Ids exposed to wind                         |                           |                |                                                                                                     |             |                  |           |            |               |            | , initi        |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d Industry Gable End                                                |                           |                |                                                                                                     |             |                  |           |            |               |            | NAU            | GARCIN                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | alified building desig                                              |                           |                |                                                                                                     |             |                  |           |            |               |            | N CE           | NSA                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | es continuous bottor                                                | m chord bearing.          |                |                                                                                                     |             |                  |           |            |               | 1          |                | - O ·                  |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | spaced at 4-0-0 oc.                                                 | 10.0 (1 //                |                |                                                                                                     |             |                  |           |            |               | -          | 6 A            | - A 3                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | is been designed for<br>ad nonconcurrent wi                         |                           | de             |                                                                                                     |             |                  |           |            |               | -          | 16             | 952                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | has been designed for                                               |                           |                |                                                                                                     |             |                  |           |            |               | =          | 10             | 552                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n chord in all areas                                                |                           | ,501           |                                                                                                     |             |                  |           |            |               | -          | HO             |                        |
| right exposed; Lumber DOL=1.60 plate grip DOL=1.60<br>3) Truss designed for wind loads in the plane of the truss<br>only. For studs exposed to wind (normal to the face),<br>see Standard Industry Gable End Details as applicable,<br>or consult qualified building designer as per ANSI/TPI 1.<br>4) Gable requires continuous bottom chord bearing.<br>5) Gable studs spaced at 4-0-0 oc.<br>5) This truss has been designed for a 10.0 psf bottom<br>chord live load nonconcurrent with any other live loads.<br>7) * This truss has been designed for a live load of 20.0psf<br>on the bottom chord in all areas where a rectangle<br>3-06-00 tall by 2-00-00 wide will fit between the bottom |                                                                     |                           |                |                                                                                                     |             |                  |           |            |               |            |                |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ny other members.                                                   |                           |                |                                                                                                     |             |                  |           |            |               |            | 1.6.141        | VSA                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | hanical connection (                                                |                           |                |                                                                                                     |             |                  |           |            |               |            | 1, SION        | VAL ENIN               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e capable of withstar                                               | naing 27 ib uplift at jo  | DINT           |                                                                                                     |             |                  |           |            |               |            | 1111           | inini'i                |
| i anu z <i>i</i> id t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ıplift at joint 3.                                                  |                           |                |                                                                                                     |             |                  |           |            |               |            |                | er 27,2021             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |                           |                |                                                                                                     |             |                  |           |            |               |            | 000000         |                        |

16023 Swingley Ridge Rd Chesterfield, MO 63017

| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | V5    | Valley     | 1   | 1   | Job Reference (optional) | 148527965 |

#### Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries. Inc. Tue Oct 26 12:48:19 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

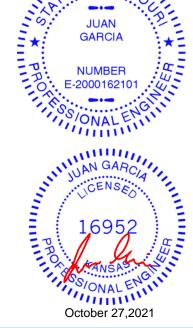




| Scale | _ | 1.28 | 7 |
|-------|---|------|---|

8-9-14

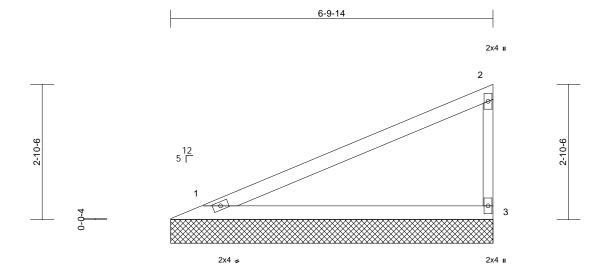
| Scale = 1:28.7                                      |                                                                       |                       |                                  |                                                                                                                                                                                                                                                                                                                                                       |      |           |      |       |        | •   |               |          |
|-----------------------------------------------------|-----------------------------------------------------------------------|-----------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|------|-------|--------|-----|---------------|----------|
| Loading                                             | (psf)                                                                 | Spacing               | 2-0-0                            | CSI                                                                                                                                                                                                                                                                                                                                                   |      | DEFL      | in   | (loc) | l/defl | L/d | PLATES        | GRIP     |
| TCLL (roof)                                         | 25.0                                                                  | Plate Grip DOL        | 1.15                             | TC                                                                                                                                                                                                                                                                                                                                                    | 0.26 | Vert(LL)  | n/a  | -     | n/a    | 999 | MT20          | 197/144  |
| TCDL                                                | 10.0                                                                  | Lumber DOL            | 1.15                             | BC                                                                                                                                                                                                                                                                                                                                                    | 0.13 | Vert(TL)  | n/a  | -     | n/a    | 999 |               |          |
| BCLL                                                | 0.0*                                                                  | Rep Stress Incr       | YES                              | WB                                                                                                                                                                                                                                                                                                                                                    | 0.07 | Horiz(TL) | 0.00 | 4     | n/a    | n/a |               |          |
| BCDL                                                | 10.0                                                                  | Code                  | IRC2018/TPI2                     | 014 Matrix-P                                                                                                                                                                                                                                                                                                                                          |      |           |      |       |        |     | Weight: 24 lb | FT = 10% |
| TOP CHORD<br>BOT CHORD<br>WEBS<br>OTHERS<br>BRACING | 2x4 SPF No.2<br>2x4 SPF No.2<br>2x3 SPF No.2<br>2x3 SPF No.2          | athing dispaths and i | 4 an<br>8) This<br>Inter<br>R802 | <ol> <li>Provide mechanical connection (by others) of truss to<br/>bearing plate capable of withstanding 23 lb uplift at joint<br/>4 and 120 lb uplift at joint 5.</li> <li>This truss is designed in accordance with the 2018<br/>International Residential Code sections R502.11.1 and<br/>R802.10.2 and referenced standard ANSI/TPI 1.</li> </ol> |      |           |      |       |        |     |               |          |
| TOP CHORD                                           | Structural wood she<br>6-0-0 oc purlins, ex<br>Rigid ceiling directly | cept end verticals.   | verticals.                       |                                                                                                                                                                                                                                                                                                                                                       |      |           |      |       |        |     |               |          |
| REACTIONS                                           | bracing.<br>5 (lb/size) 1=142/8-9-14, 4=129/8-9-14,                   |                       |                                  |                                                                                                                                                                                                                                                                                                                                                       |      |           |      |       |        |     |               |          |


#### REACTIONS (lb/size) 1=142/8-9-14, 4=129/8-9-14, 5=451/8-9-14 Max Horiz 1=146 (LC 5) Max Uplift 4=-23 (LC 5), 5=-120 (LC 8) FORCES (Ib) - Maximum Compression/Maximum

Tension TOP CHORD 1-2=-115/69, 2-3=-101/28, 3-4=-100/40 BOT CHORD 1-5=-48/36, 4-5=-48/36 2-5=-351/180

# WEBS

## NOTES


- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 4)
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members.





| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |
|-------|-------|------------|-----|-----|--------------------------|-----------|
| RR117 | V6    | Valley     | 1   | 1   | Job Reference (optional) | 148527966 |

Run: 8,43 S Oct 11 2021 Print: 8,430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:20 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



| Loading                                             | (psf)                                                                                     | Spacing                 | 2-0-0                  | CSI                                                                     |             | DEFL        | in   | (loc) | l/defl | L/d | PLATES        | GRIP     |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------|------------------------|-------------------------------------------------------------------------|-------------|-------------|------|-------|--------|-----|---------------|----------|
| TCLL (roof)                                         | 25.0                                                                                      | Plate Grip DOL          | 1.15                   | TC                                                                      | 0.72        | Vert(LL)    | n/a  | (100) | n/a    | 999 | MT20          | 197/144  |
| TCDL                                                | 10.0                                                                                      | Lumber DOL              | 1.15                   | BC                                                                      | 0.72        | Vert(TL)    | n/a  |       | n/a    | 999 | 101120        | 137/144  |
|                                                     |                                                                                           |                         |                        | -                                                                       |             | · · ·       |      | -     |        |     |               |          |
| BCLL<br>BCDL                                        | 0.0*<br>10.0                                                                              | Rep Stress Incr<br>Code | YES<br>IRC2018/TPI2014 | WB<br>Matrix-P                                                          | 0.00        | Horiz(TL)   | 0.00 | 3     | n/a    | n/a | Weight: 17 lb | FT = 10% |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>WEBS<br>BRACING | 2x4 SPF No.2<br>2x4 SPF No.2<br>2x3 SPF No.2                                              |                         | Ínternationa           | s designed in ac<br>al Residential Cc<br>and referenced s<br>) Standard | de sections | R502.11.1 a | and  |       |        |     |               |          |
| TOP CHORD                                           | Structural wood sheathing directly applied or<br>6-10-8 oc purlins, except end verticals. |                         |                        |                                                                         |             |             |      |       |        |     |               |          |
| BOT CHORD                                           | Rigid ceiling directly applied or 10-0-0 oc<br>bracing.                                   |                         |                        |                                                                         |             |             |      |       |        |     |               |          |
| REACTIONS                                           | bracing.<br>5 (Ib/size) 1=271/6-9-14, 3=271/6-9-14<br>Max Horiz, 1=110 (I C 5)            |                         |                        |                                                                         |             |             |      |       |        |     |               |          |

6-9-14

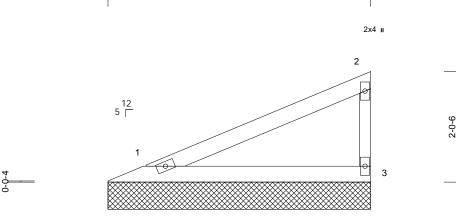
|           | Max Horiz             | 1=110 (LC 5)               |
|-----------|-----------------------|----------------------------|
|           | Max Uplift            | 1=-40 (LC 8), 3=-62 (LC 8) |
| FORCES    | (lb) - Max<br>Tension | imum Compression/Maximum   |
| TOP CHORD | 1-2=-98/6             | 5, 2-3=-211/98             |
| BOT CHORD | 1-3=-36/2             | 7                          |

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 4-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.
- \* This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 7) bearing plate capable of withstanding 40 lb uplift at joint 1 and 62 lb uplift at joint 3.

- Infinition JUAN GARCIA NUMBER E-2000162101 C 3 E ONAL mm 16952 Dotober 27,2021




October 27,2021

| Job   | Truss | Truss Type Qty Ply Lot 117 RR |   | Lot 117 RR |                          |           |
|-------|-------|-------------------------------|---|------------|--------------------------|-----------|
| RR117 | V7    | Valley                        | 1 | 1          | Job Reference (optional) | 148527967 |

2-0-6

#### Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:20 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f





4-9-14

4-9-14

2x4 🚅

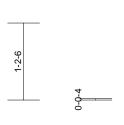
2x4 II

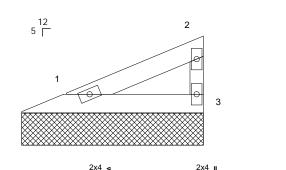
| Scale : | - 1.21 | 2  |
|---------|--------|----|
| Scale : | = 1.21 | .2 |

| Loading         (psf)           TCLL (roof)         25.0           TCDL         10.0           BCLL         0.0*           BCDL         10.0                                                          | Spacing<br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2-0-0<br>1.15<br>1.15<br>YES<br>IRC2018/TPI2014                                                                                          | CSI<br>TC<br>BC<br>WB<br>Matrix-P                            | 0.30<br>0.16<br>0.00 | DEFL<br>Vert(LL)<br>Vert(TL)<br>Horiz(TL) | in<br>n/a<br>n/a<br>0.00 | (loc)<br>-<br>-<br>3 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20<br>Weight: 12 lb                                                     | <b>GRIP</b><br>197/144<br>FT = 10%                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------|-------------------------------------------|--------------------------|----------------------|-----------------------------|--------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| LUMBER<br>TOP CHORD 2x4 SPF No.2<br>BOT CHORD 2x4 SPF No.2<br>WEBS 2x3 SPF No.2<br>BRACING<br>TOP CHORD Structural wood she:<br>4-10-8 oc purlins, e:<br>BOT CHORD Rigid ceiling directly<br>bracing. | athing directly applie<br>xcept end verticals.<br>applied or 10-0-0 oc<br>-14, 3=181/4-9-14<br>5)<br>: 8), 3=-41 (LC 8)<br>pression/Maximum<br>1/65<br>(3-second gust)<br>DL=6.0psf; h=25ft; C<br>welope) exterior zon<br>; end vertical left an<br>0 plate grip DOL=1.6<br>the plane of the trus<br>(normal to the face)<br>d Details as applicat<br>gner as per ANSI/TF<br>n chord bearing.<br>: a 10.0 psf bottom<br>th any other live load<br>or a live load of 20.0<br>where a rectangle<br>fit between the botto<br>by others) of truss to | 8) This truss is<br>Internationa<br>R802.10.2<br>LOAD CASE(S<br>ad or<br>c<br>Cat.<br>he;<br>d<br>60<br>ss<br>s,<br>o,<br>pole,<br>P1 1. | s designed in acc<br>al Residential Coc<br>and referenced st | le sections          | s R502.11.1 a                             | nd                       |                      |                             |                          | DATE OF<br>JU/<br>GAR<br>NUM<br>E-2000<br>SS/ON/<br>JUAN<br>CE<br>160<br>PROCESS/ON | MISSOLA<br>NCIA<br>BER<br>162101<br>ALEN<br>SARCIA<br>NSEO<br>952 |

- chord live load nonconcurrent with any other live loads. \* This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 26 lb uplift at joint 1 and 41 lb uplift at joint 3.

**MiTek**<sup>®</sup> 16023 Swingley Ridge Rd Chesterfield, MO 63017


| Job   | Truss | Truss Type Qty Ply Lot 117 RR |   | Lot 117 RR |                          |           |
|-------|-------|-------------------------------|---|------------|--------------------------|-----------|
| RR117 | V8    | Valley                        | 1 | 1          | Job Reference (optional) | 148527968 |


#### Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Oct 26 12:48:20 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 I

Page: 1







2-9-14



1-2-6



| Scale = 1:17.9 |       |                 |                 |          |      |           |      |       |        |     |              |          |
|----------------|-------|-----------------|-----------------|----------|------|-----------|------|-------|--------|-----|--------------|----------|
| Loading        | (psf) | Spacing         | 2-0-0           | CSI      |      | DEFL      | in   | (loc) | l/defl | L/d | PLATES       | GRIP     |
| TCLL (roof)    | 25.0  | Plate Grip DOL  | 1.15            | TC       | 0.07 | Vert(LL)  | n/a  | -     | n/a    | 999 | MT20         | 197/144  |
| TCDL           | 10.0  | Lumber DOL      | 1.15            | BC       | 0.04 | Vert(TL)  | n/a  | -     | n/a    | 999 |              |          |
| BCLL           | 0.0*  | Rep Stress Incr | YES             | WB       | 0.00 | Horiz(TL) | 0.00 | 3     | n/a    | n/a |              |          |
| BCDL           | 10.0  | Code            | IRC2018/TPI2014 | Matrix-P |      |           |      |       |        |     | Weight: 6 lb | FT = 10% |

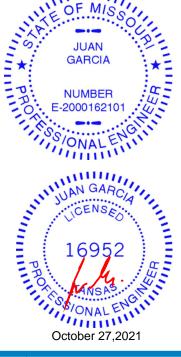
2-9-14

LUMBER

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 2x3 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 2-10-8 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc BOT CHORD bracing. REACTIONS (lb/size) 1=91/2-9-14, 3=91/2-9-14

#### Max Horiz 1=37 (LC 5) Max Uplift 1=-13 (LC 8), 3=-21 (LC 8) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-33/22, 2-3=-71/33

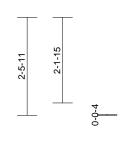
BOT CHORD

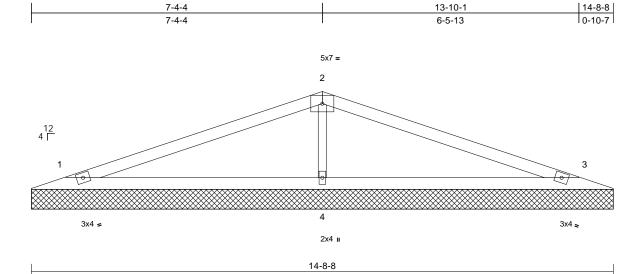

- NOTES
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)

1-3=-12/9

- Gable studs spaced at 4-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.
- 6) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 7) bearing plate capable of withstanding 13 lb uplift at joint 1 and 21 lb uplift at joint 3.

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard


8) This truss is designed in accordance with the 2018






| Job   | Truss | Truss Type | Qty | Ply | Lot 117 RR               |           |  |
|-------|-------|------------|-----|-----|--------------------------|-----------|--|
| RR117 | V9    | Valley     | 1   | 1   | Job Reference (optional) | 148527969 |  |

Run: 8.43 S Oct 11 2021 Print: 8.430 S Oct 11 2021 MiTek Industries, Inc. Tue Oct 26 12:48:20 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f





| Scale = 1:29.1                                                                                                                                                                                              |                                                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                            |                              |                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                         |                                                                                                     |                          |                      |                             |                          |                                  |                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------|----------------------|-----------------------------|--------------------------|----------------------------------|---------------------------------|
| Loading<br>TCLL (roof)<br>TCDL<br>BCLL                                                                                                                                                                      |                                                                                                                                                                                                | (psf)<br>25.0<br>10.0<br>0.0*                                                                                                                                     | <b>Spacing</b><br>Plate Grip DOL<br>Lumber DOL<br>Rep Stress Incr                                                                                                                                                                                                                          | 2-0-0<br>1.15<br>1.15<br>YES |                                                                                                                                                                                             | CSI<br>TC<br>BC<br>WB                                                                                                                                                                                           | 0.61<br>0.35<br>0.09                                                                                    | <b>DEFL</b><br>Vert(LL)<br>Vert(TL)<br>Horiz(TL)                                                    | in<br>n/a<br>n/a<br>0.00 | (loc)<br>-<br>-<br>3 | l/defl<br>n/a<br>n/a<br>n/a | L/d<br>999<br>999<br>n/a | PLATES<br>MT20                   | <b>GRIP</b><br>197/144          |
| BCDL                                                                                                                                                                                                        |                                                                                                                                                                                                | 10.0                                                                                                                                                              | Code                                                                                                                                                                                                                                                                                       | IRC201                       | 8/TPI2014                                                                                                                                                                                   | Matrix-S                                                                                                                                                                                                        |                                                                                                         |                                                                                                     |                          |                      |                             |                          | Weight: 34 lb                    | FT = 10%                        |
| LUMBER<br>TOP CHORD<br>BOT CHORD<br>OTHERS<br>BRACING<br>TOP CHORD<br>BOT CHORD                                                                                                                             | 2x4 SPF No<br>2x3 SPF No<br>Structural w<br>6-0-0 oc pu<br>Rigid ceiling<br>bracing.<br>(Ib/size) 1<br>4<br>Max Horiz 1<br>Max Uplift 1<br>(I<br>Max Grav 1<br>4                               | 0.2<br>0.2<br>0.2<br>vood shear<br>rlins.<br>g directly<br>=253/14-<br>=660/14-<br>=38 (LC<br>LC 4)<br>=261 (LC<br>=660 (LC<br>hum Com<br>1, 2-3=-10<br>3-4=-1/40 | athing directly applie<br>applied or 10-0-0 oc<br>8-8, 3=253/14-8-8,<br>8-8<br>8)<br>4), 3=-60 (LC 9), 4=<br>2 21), 3=261 (LC 22)<br>2 1)<br>pression/Maximum<br>05/49                                                                                                                     | 7)<br>8)<br>d or<br>9)<br>L  | <ul> <li>* This truss I<br/>on the bottoo<br/>3-06-00 tall I<br/>chord and ai</li> <li>Provide mec<br/>bearing plate<br/>1, 60 lb uplif</li> <li>This truss is<br/>International</li> </ul> | has been designe<br>n chord in all are<br>yy 2-00-00 wide v<br>yy other members<br>hanical connectio<br>e capable of withs<br>: at joint 3 and 60<br>designed in accor<br>Residential Code<br>nd referenced sta | as where<br>will fit betw<br>s.<br>on (by oth<br>standing 5<br>b lb uplift a<br>ordance w<br>e sections | a rectangle<br>veen the botto<br>55 lb uplift at ju<br>it joint 4.<br>ith the 2018<br>i R502.11.1 a | om<br>o<br>pint          |                      |                             |                          | JUA<br>GAR<br>NUMI<br>O. E-20001 |                                 |
| NOTES                                                                                                                                                                                                       | 2-4=-400/13                                                                                                                                                                                    | 58                                                                                                                                                                |                                                                                                                                                                                                                                                                                            |                              |                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                         |                                                                                                     |                          |                      |                             |                          | 1. So                            |                                 |
|                                                                                                                                                                                                             |                                                                                                                                                                                                | ads have                                                                                                                                                          | been considered for                                                                                                                                                                                                                                                                        |                              |                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                         |                                                                                                     |                          |                      |                             |                          | 1, ONA                           |                                 |
| <ul> <li>Vasd=91n<br/>II; Exp C;<br/>cantilever<br/>right expo:</li> <li>3) Truss desionly. For<br/>see Stand<br/>or consult</li> <li>4) Gable req</li> <li>5) Gable stut</li> <li>6) This truss</li> </ul> | nph; TCDL=6.<br>Enclosed; MW<br>left and right e<br>sed; Lumber I<br>igned for wind<br>studs exposed<br>lard Industry G<br>qualified build<br>uires continuo<br>ds spaced at 4<br>has been des | 0psf; BCI<br>VFRS (en<br>exposed ;<br>DOL=1.60<br>I loads in<br>d to wind<br>Gable End<br>ding desig<br>bus bottor<br>4-0-0 oc.<br>signed for                     | (3-second gust)<br>DL=6.0psf; h=25ft; C<br>velope) exterior zonr;<br>; end vertical left and<br>0 plate grip DOL=1.6<br>the plane of the trus<br>(normal to the face),<br>d Details as applicab<br>gner as per ANSI/TPI<br>n chord bearing.<br>a 10.0 psf bottom<br>th any other live load | e;<br>0<br>s<br>le,<br>∣1.   |                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                         |                                                                                                     |                          |                      |                             | . annua.                 | PROKESS/ON                       | ARCIA<br>NSEO<br>952<br>ALENOIT |



| Job   | Truss | Truss Type | Qty Ply Lot 117 RR |   | Lot 117 RR               |           |
|-------|-------|------------|--------------------|---|--------------------------|-----------|
| RR117 | V10   | Valley     | 1                  | 1 | Job Reference (optional) | 148527970 |

1-3-15

1-7-11

Scale = 1:23.5 Loading

TCLL (roof)

TCDI

BCLL

BCDL

LUMBER

TOP CHORD



Run: 8 43 S. Oct 11 2021 Print: 8 430 S. Oct 11 2021 MiTek Industries. Inc. Tue Oct 26 12:48:21 ID:bWuMDBN0tjF5cDvSpwhpH1zCzbQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 4-10-4 8-10-1 9-8-8 4-10-4 3-11-13 0-10-7 4x5 =2 12 4 Г 3 4 2x4 🕿 2x4 = 2x4 🛛 9-8-8 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP in (loc) Plate Grip DOL 1.15 тс 0.21 Vert(LL) n/a n/a 999 MT20 197/144 BC Lumber DOL 1 15 0.13 999 Vert(TL) n/a n/a Rep Stress Incr YES WB 0.05 Horiz(TL) 0.00 3 n/a n/a Code IRC2018/TPI2014 Matrix-S Weight: 21 lb FT = 10% 7) \* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 34 lb uplift at joint

International Residential Code sections R502.11.1 and

1, 37 lb uplift at joint 3 and 37 lb uplift at joint 4.

This truss is designed in accordance with the 2018

R802.10.2 and referenced standard ANSI/TPI 1.

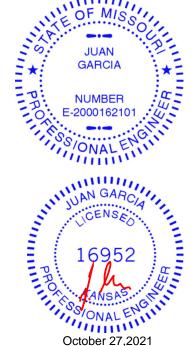
BOT CHORD 2x4 SPF No.2 2x3 SPF No.2 OTHERS BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) 1=155/9-8-8, 3=155/9-8-8, 4=405/9-8-8 Max Horiz 1=-24 (LC 9) 1=-34 (LC 4), 3=-37 (LC 9), 4=-37 Max Uplift (LC 4) Max Grav 1=160 (LC 21), 3=160 (LC 22), 4=405 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension

(psf)

25.0

10.0

10.0


2x4 SPF No.2

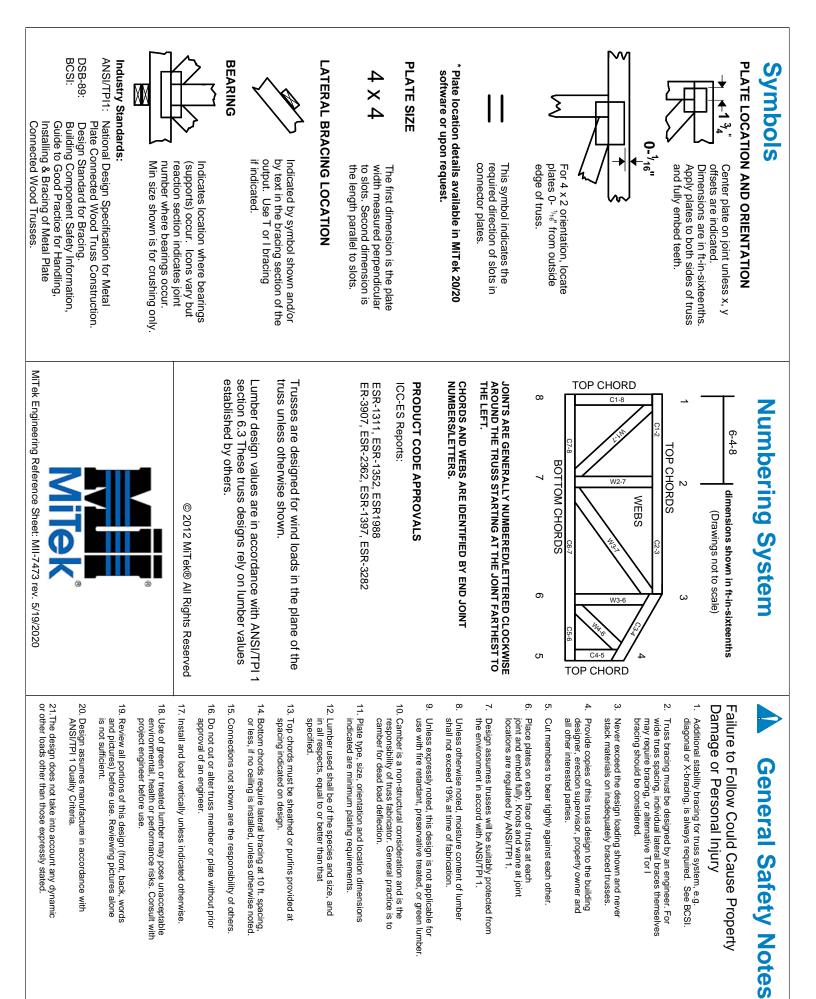
0.0\*

TOP CHORD 1-2=-65/37, 2-3=-65/30 BOT CHORD 1-4=-1/25, 3-4=-1/25 WEBS 2-4=-285/84

# NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 5) 6)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.




# October 27,2021

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

9)

LOAD CASE(S) Standard

