

RE: W0137 Lot 137 W0

Site Information:

Customer: Project Name: W0137 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.4 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 51 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1	Seal# I47856934	Truss Name A1	Date 9/10/2021	No. 21	Seal# I47856954	Truss Name D9	Date 9/10/2021
2	147856935	A2	9/10/2021	22	147856955	D10	9/10/2021
3	147856936	A3	9/10/2021	23	l47856956	D11	9/10/2021
4	147856937	B1	9/10/2021	24	l47856957	E1	9/10/2021
5	147856938	B2	9/10/2021	25	l47856958	E2	9/10/2021
6	147856939	C1	9/10/2021	26	l47856959	G1	9/10/2021
7	147856940	C2	9/10/2021	27	l47856960	G2	9/10/2021
8	147856941	C3	9/10/2021	28	l47856961	G3	9/10/2021
9	147856942	C4	9/10/2021	29	l47856962	H1	9/10/2021
10	147856943	C5	9/10/2021	30	l47856963	H2	9/10/2021
11	147856944	C6	9/10/2021	31	l47856964	J1	9/10/2021
12	147856945	C7	9/10/2021	32	l47856965	J2	9/10/2021
13	147856946	D1	9/10/2021	33	147856966	J3	9/10/2021
14	147856947	D2	9/10/2021	34	147856967	J4	9/10/2021
15	147856948	D3	9/10/2021	35	l47856968	J5	9/10/2021
16	147856949	D4	9/10/2021	36	l47856969	J8	9/10/2021
17	147856950	D5	9/10/2021	37	l47856970	J9	9/10/2021
18	147856951	D6	9/10/2021	38	l47856971	J10	9/10/2021
19	147856952	D7	9/10/2021	39	l47856972	K1	9/10/2021
20	147856953	D8	9/10/2021	40	147856973	K2	9/10/2021

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Kansas is April 30, 2022.

Kansas COA: E-943

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Garcia, Juan

MiTek USA, Inc. 16023 Swinglev Ridge Rd Chesterfield, MO 63017 314-434-1200

RE: W0137 - Lot 137 W0

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Site Information:

50

51

147856983

147856984

Proje Lot/B Addre		Project Name: W	Subdivision:	
City, 0	County:			State:
No.	Seal#	Truss Name	Date	
41	147856974	K3	9/10/2021	
42	147856975	LAY2	9/10/2021	
43	147856976	R1	9/10/2021	
44	147856977	V1	9/10/2021	
45	147856978	V2	9/10/2021	
46	147856979	V3	9/10/2021	
47	147856980	V4	9/10/2021	
48	147856981	V5	9/10/2021	
49	147856982	V6	9/10/2021	

V7

V8

9/10/2021

9/10/2021

RE: W0137 Lot 137 W0

Site Information:

Customer: Project Name: W0137 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

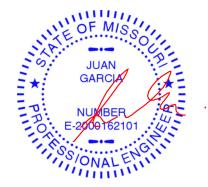
Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise]

Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.4 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 51 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	147856934	A1	9/10/2021	21	l47856954	D9	9/10/2021
2	147856935	A2	9/10/2021	22	I47856955	D10	9/10/2021
3	147856936	A3	9/10/2021	23	147856956	D11	9/10/2021
4	147856937	B1	9/10/2021	24	147856957	E1	9/10/2021
5	147856938	B2	9/10/2021	25	l47856958	E2	9/10/2021
6	147856939	C1	9/10/2021	26	l47856959	G1	9/10/2021
7	147856940	C2	9/10/2021	27	l47856960	G2	9/10/2021
8	I47856941	C3	9/10/2021	28	147856961	G3	9/10/2021
9	147856942	C4	9/10/2021	29	147856962	H1	9/10/2021
10	147856943	C5	9/10/2021	30	147856963	H2	9/10/2021
11	147856944	C6	9/10/2021	31	147856964	J1	9/10/2021
12	147856945	C7	9/10/2021	32	147856965	J2	9/10/2021
13	147856946	D1	9/10/2021	33	147856966	J3	9/10/2021
14	147856947	D2	9/10/2021	34	147856967	J4	9/10/2021
15	147856948	D3	9/10/2021	35	147856968	J5	9/10/2021
16	147856949	D4	9/10/2021	36	147856969	J8	9/10/2021
17	147856950	D5	9/10/2021	37	147856970	J9	9/10/2021
18	147856951	D6	9/10/2021	38	l47856971	J10	9/10/2021
19	147856952	D7	9/10/2021	39	147856972	K1	9/10/2021
20	147856953	D8	9/10/2021	40	147856973	K2	9/10/2021


The truss drawing(s) referenced above have been prepared by MiTak LISA. Inc. under my direct supervision

MiTek USA, Inc under my direct supervision based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Missouri is December 31, 2022. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Garcia, Juan

September 10, 2021

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

RE: W0137 - Lot 137 W0

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Site Information:

50

51

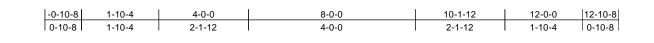
147856983

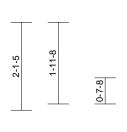
147856984

Proje Lot/B Addre		Project Name: W	Subdivision:	
City, 0	County:			State:
No.	Seal#	Truss Name	Date	
41	147856974	K3	9/10/2021	
42	147856975	LAY2	9/10/2021	
43	147856976	R1	9/10/2021	
44	147856977	V1	9/10/2021	
45	147856978	V2	9/10/2021	
46	147856979	V3	9/10/2021	
47	147856980	V4	9/10/2021	
48	147856981	V5	9/10/2021	
49	147856982	V6	9/10/2021	

V7

V8


9/10/2021


9/10/2021


Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	A1	Hip Girder	1	1	Job Reference (optional)	147856934

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:17 ID:tqN7sT75_x0NUjjqCBNgM1yf1Fr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-9-8

2-1-4

2-0-0

Scale = 1:27.6

Plate Offsets (X, Y): [3:0-6-4,Edge], [4:0-4-4,0-2-12], [5:0-3-0,0-2-8], [6:0-6-8,Edge]

2-0-0

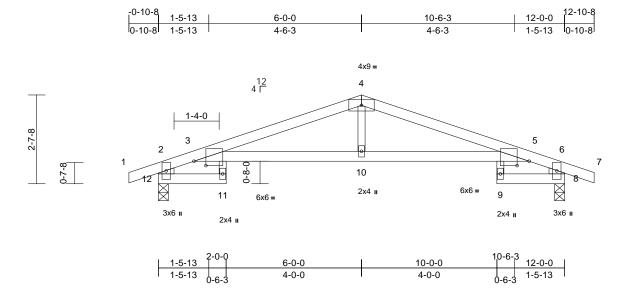
2-1-4

	∧, ı). [5.0-0-4,∟uge],	[4:0-4-4,0-2-12], [5:	0-3-0,0-2-	oj, [0.0-0-0,Euį	le]								
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO	0/00/4	CSI TC BC WB	0.81 0.54 0.07	DEFL Vert(LL) Vert(CT) Horz(CT)	-0.30 0.23	(loc) 10-11 10-11 7	l/defl >872 >475 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144
BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	()	pt* 3-6:2x4 SPF 21(pt* 12-3,6-9:2x4 SP athing directly applie cept -7 max.): 4-5. applied or 10-0-0 or 8-8, 7=902/0-3-8	5) 5PF 500F 6) F 7) ed or 8)	on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate joint 2 and 1 This truss is International R802.10.2 a Graphical pu or the orient bottom chore Hanger(s) or	Matrix-S nas been designe n chord in all area by 2-00-00 wide v yo other members capable of withs 77 lb uplift at joint designed in acco Residential Code and referenced sta rlin representatio ation of the purlin b. other connectior icient to support	as where vill fit betw s. on (by oth standing 1 t 7. wrdance w e sections andard AN an does no along the n device(s	a rectangle veen the bott 97 lb uplift at th the 2018 R502.11.1 a SI/TPI 1. ot depict the s top and/or) shall be	Opsf om to t and size	10-11	>999	240	Weight: 43 lb	
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp C; I cantilever	4-5=-2691/477, 5-6= 7-8=0/4 2-12=0/0, 3-11=-439 6-10=-428/2679, 7-9 3-12=0/65, 6-9=0/65 4-10=-47/162, 5-10= ed roof live loads have	C 4), 7=-197 (LC 5) pression/Maximum 4, 3-4=-2613/471, -2690/468, 6-7=-38 //2595, 10-11=-434/; =0/0 , 4-11=0/219, =0/177 been considered fo (3-second gust) DL=6.0psf; h=25ft; (vyelope) exterior zor ; end vertical left an	6/89, 1(2612, Lu 1) r Cat. le; d	up at 6-0-0, top chord, ar 34 lb down a 7-11-4 on bc connection c 0) In the LOAD of the truss a DAD CASE(S) Dead + Roo Plate Increa Uniform Lo Vert: 1-4 7-9=20 Concentrat Vert: 4=-	of Live (balanced ase=1.15	and 47 lb in nd 45 lb u lb down a design/se sponsibili n, loads ap (F) or ba): Lumber 8=-70, 2-	up at 8-0-0 c p at 4-0-0, a and 45 lb up a election of su y of others. pplied to the f ck (B). Increase=1.	on and at ch face 15, -20,				NUM E-2000 S/ON UCE 16	ALENGIN

Provide adequate drainage to prevent water ponding. 3)

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



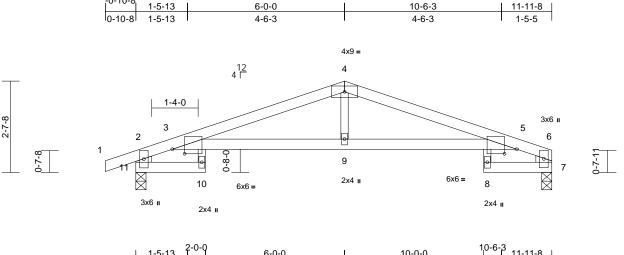
VINSA ENGLI

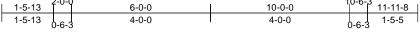
Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	A2	Roof Special	1	1	Job Reference (optional)	147856935

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:20 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:34
---------	------


Plate Offsets	(X, Y): [3:0-4-4,0-1-9],	[5:0-4-4,0-1-9]										
Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.63 0.73	DEFL Vert(LL) Vert(CT)	in -0.15 -0.27	(loc) 11 11	l/defl >953 >514	L/d 360 240	PLATES MT20	GRIP 197/144
BCLL BCDL	0.0*	Rep Stress Incr Code	YES IRC2018/TPI2014	WB Matrix-R	0.09	Horz(CT) Wind(LL)	0.24	8 11	n/a >999	n/a 240	Weight: 35 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 4-0-8 oc purlins, ex Rigid ceiling directly bracing. (lb/size) 8=614/0-3 Max Horiz 12=-27 (L Max Uplift 8=-113 (L (lb) - Maximum Com Tension 1-2=0/24, 2-3=-132// 4-5=-1143/116, 5-6= 2-12=-610/124, 6-8=	pt* 12-2,8-6:2x6 SPI athing directly applie cept end verticals. applied or 6-0-0 oc 8-8, 12=614/0-3-8 C 9) C 5), 12=-113 (LC 4 pression/Maximum 66, 3-4=-1143/105, -132/53, 6-7=0/24, -610/122 55/1062, 5-10=-55/1 2, 4-10=0/300	6) This truss is Internationa R802.10.2 / F LOAD CASE(S rd or	designed in acco Residential Cod and referenced sta	e sections	ith the 2018 R502.11.1					JU/ GAR SS/ON/	MISSOU CIA BER
 this desig Wind: AS Vasd=91r II; Exp C; cantilever right expc 3) This truss chord live 4) * This trus on the bo 3-06-00 tt chord and 5) Provide m bearing p 		(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon; end vertical left and 0 plate grip DOL=1.6 a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto by others) of truss to	Cat. e; d S0 ds. psf m							. HIIIIN.	16 Donosine Septembe	ISAS ON INT



Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	A3	Roof Special	2	1	Job Reference (optional)	147856936

-0-10-8

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:20 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

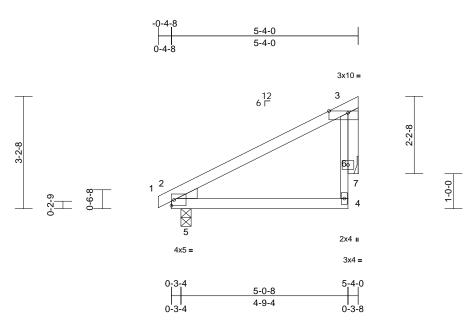
Scale = 1:33.1

Plate Offsets (X, Y): [3:0-4-4.0-1-9], [5:0-4-4.0-1-9]

Plate Offsets ((X, Y): [3:0-4-4,0-1-9],	[5:0-4-4,0-1-9]										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.66	Vert(LL)	-0.15	` <i>Ś</i>	>911	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.75	Vert(CT)	-0.27	8	>504	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.09	Horz(CT)	0.24	7	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.12	10	>999	240	Weight: 34 lb	FT = 10%
LUMBER			6) This truss is	s designed in acc	ordance w	ith the 2018						
TOP CHORD	2x4 SPF No.2		Internationa	al Residential Coc	le sections	s R502.11.1 a	and					
BOT CHORD	2x4 SPF No.2		R802.10.2	and referenced st	andard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2 *Exce No.2	ept* 11-2,7-6:2x6 SP	F LOAD CASE(S) Standard								
BRACING												
TOP CHORD	Structural wood she 3-11-4 oc purlins, e		ed or									ш.
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc									NE OF	MISS
REACTIONS	(lb/size) 7=531/0-3	3-8, 11=616/0-3-8								1	A	
	Max Horiz 11=33 (LC									2	A	·
	Max Uplift 7=-64 (LC	C 5), 11=-114 (LC 4)								-	JU.	
FORCES	(lb) - Maximum Com Tension	pression/Maximum								Ξ*	GAF	
TOP CHORD	1-2=0/24, 2-3=-133/	50, 3-4=-1151/123,								5-1	i	im E
	4-5=-1151/122, 5-6=	-126/36, 2-11=-612	/125,								NUM	• 41.
	6-7=-531/76									-	C: E-2000	162101
BOT CHORD	10-11=-57/0, 3-9=-6	9/1071, 5-9=-69/107	'1,							1	· ··· -·	
WEBS	7-8=-57/0 3-10=0/72, 5-8=0/72	4 0-0/200									1.05	ENG I
NOTES	5-10=0/72, 5-6=0/72	., 4-9=0/299									I,ON	
	ed roof live loads have	been considered fo										inn.
this design		been considered to										ш.
	 CE 7-16; Vult=115mph	(3-second gust)										GAD
	nph; TCDL=6.0psf; BC		Cat.								NUAN	CARCIA
II; Exp C;	Enclosed; MWFRS (er	velope) exterior zor	ne;								S CE	NSA
	left and right exposed											SO .
	sed; Lumber DOL=1.6		60								JUAN JOE PT 16	1 E
	has been designed for									-	1 1 6	052
	load nonconcurrent wi									-	10	952 📔
	s has been designed f		ipst							-	P: /	1 :5:
	tom chord in all areas									-	6.	4. 142

3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 114 lb uplift at joint 11 and 64 lb uplift at joint 7.


ANSAS NUT September 10,2021

Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	B1	MONOPITCH	7	1	Job Reference (optional)	147856937

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:20 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

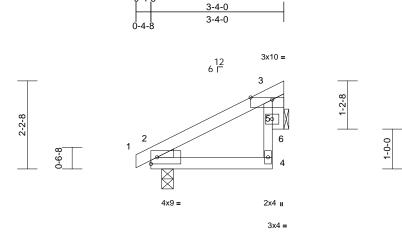
Scale = 1:32.9

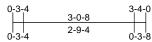
Plate Offsets (X, Y): [3:0-6-8,Edge]

				_									
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.23	Vert(LL)	-0.01	4-5	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.22	Vert(CT)	-0.03	4-5	>999	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	7	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 18 lb	FT = 10%	
LUMBER			6) This truss i	s designed in ac	cordance w	ith the 2018							
TOP CHORD	2x4 SPF No.2			al Residential Co									
BOT CHORD	2x4 SPF No.2		R802.10.2	and referenced	standard AN	ISI/TPI 1.							
WEBS	2x3 SPF No.2		LOAD CASE(S) Standard									
OTHERS	2x4 SPF No.2												
WEDGE	Left: 2x4 SP No.3												
BRACING													
TOP CHORD	Structural wood she	athing directly appli	ed or									111.	
	5-4-0 oc purlins, ex	cept end verticals.									IN OF	MICH	
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	C								NE	SS	
	bracing.										A		6
REACTIONS	(lb/size) 5=286/0-3	3-8, 7=185/ Mechan	ical								A		2
	Max Horiz 5=92 (LC	8)								2	JU,		-
	Max Uplift 5=-28 (LC	C 8), 7=-63 (LC 8)								-+	GAR	CIA	-
FORCES	(lb) - Maximum Com	pression/Maximum									:	: ^	
	Tension									= 1	NIL INA		- 21

TOP CHORD 1-2=-3/0, 2-3=-180/0, 4-6=0/94, 3-6=-151/125 BOT CHORD 2-5=0/101, 4-5=-26/87 WEBS 3-7=-52/11

NOTES


- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 This trues has been desired for a 40 or of bettern
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 5 and 63 lb uplift at joint 7.



NiTek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	B2	Monopitch	6	1	Job Reference (optional)	147856938

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:21 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:28.9

Plate Offsets (X, Y): [3:0-6-8,Edge]

- 1410 0110010 ((,,, ,): [0:0 0 0,20g0]											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	0.00	2-4	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	0.00	2-4	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	2-4	>999	240	Weight: 11 lb	FT = 10%
LUMBER TOP CHORD	2x4 SPF No.2			s designed in aco al Residential Co			and					

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

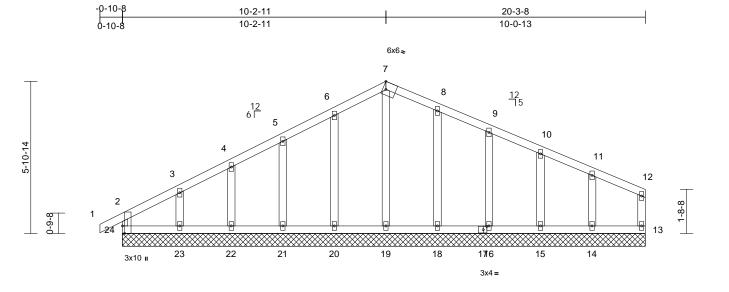
TOP CHORD	2x4 SPF No.2
BOT CHORD	2x4 SPF No.2
WEBS	2x3 SPF No.2
OTHERS	2x4 SPF No.2
WEDGE	Left: 2x3 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	3-4-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(lb/size) 2=179/0-3-8, 6=109/ Mechanical
	Max Horiz 2=56 (LC 5)
	Max Uplift 2=-22 (LC 8), 6=-37 (LC 8)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-3/0, 2-3=-118/0, 4-5=0/60, 3-5=-69/54

 TOP CHORD
 1-2=-3/0, 2-3=-118/0, 4-5=0/60, 3-5=-69/54

 BOT CHORD
 2-4=-20/59

 WEBS
 3-6=-22/0

NOTES


- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 This truss has been designed for a 10.0 osf bottom
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint 2 and 37 lb uplift at joint 6.

Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	C1	GABLE	1	1	Job Reference (optional)	147856939

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:21 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

20-3-8

Scale = 1:44.7 Plate Offsets (X, Y): [7:Edge,0-3-8], [17:0-1-11,0-1-8], [24:0-3-8,Edge]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	197/144	
TCDL		10.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	n/a	-	n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.07	Horz(CT)	0.00	13	n/a	n/a			
BCDL		10.0	Code	IRC20	18/TPI2014	Matrix-R	-			-			Weight: 86 lb	FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SPF 2x3 SPF 2x4 SPF Structura	No.2 No.2 *Exce No.2 Il wood she	pt* 12-13:2x4 SPF N athing directly applied cept end verticals.	o.2 d or	BOT CHORD	20-21=-18/29, 19-20=-18/29, 18-19=-18/29, 16-18=-18/29, 15-16=-18/29, 14-15=-18/29, 13-14=-18/29 7-19=-128/0, 6-20=-151/80, 5-21=-138/80, 4-22=-141/71, 3-23=-140/103, 8-18=-151/72, 9-16=-139/73, 10-15=-139/69, 11-14=-148/84									
BOT CHORD			applied or 10-0-0 oc		this design				r				NE OF	MISS	
REACTIONS	Max Horiz Max Uplift Max Grav	15=178/24 18=188/22 20=188/22 22=179/22 24=170/22 24=91 (LC 13=-19 (L 13=-19 (L 21=-57 (LC 23=-94 (L 13=77 (LC 15=178 (L 13=170 (L 20=191 (L 20=191 (L 22=179 (L	C 8) C 8), 14=-64 (LC 9), C 9), 16=-50 (LC 9), C 9), 20=-56 (LC 8), C 8), 22=-43 (LC 8), C 8), 24=-53 (LC 4), C 1), 14=190 (LC 22), C 22), 16=179 (LC 1), C 21), 21=179 (LC 1), C 1), 23=185 (LC 21), C 1), C 1),	, , , , , , , , , , , , , , , , , , ,	 Vasd=91m II; Exp C; E cantilever I right expos Truss desi only. For s see Standa or consult All plates a Gable requ Truss to be braced aga Gable stuce This truss chord live I * This truss on the bott 	E 7-16; Vult=115n ph; TCDL=6.0psf; Enclosed; MWFRS eft and right expose ed; Lumber DOL= gned for wind load studs exposed to ward and Industry Gable qualified building d ure 2x4 MT20 unles irites continuous bo e fully sheathed fro ainst lateral movern is spaced at 2-0-0 has been designed oad nonconcurren s has been designed om chord in all are l by 2-00-00 wide w	BCDL=6.1 (envelope ed; end v 1.60 plate s in the pl vind (norm End Deta esigner as so otherwi vitom chor m one fac nent (i.e. c oc. d for a 10.1 t with any ed for a liv as where	Dpsf; h=25ft; (a) exterior zor vertical left an grip DOL=1. ane of the tru- al to the face ils as applical s per ANSI/TF se indicated. d bearing. e or securely iagonal web) D psf bottom other live loa e load of 20.0 a rectangle	ne; d 60 ss), ole, ole, PI 1. ds. opsf			Min * Phine	JUAN C	CIA BER	
FORCES	Tension		pression/Maximum		chord and	any other member	s.							\sim	11
TOP CHORD					bearing pla 24, 19 lb u uplift at joir 23, 48 lb u	the capable of with- plift at joint 13, 56 nt 21, 43 lb uplift at plift at joint 18, 50 nt 15 and 64 lb upli	standing 5 lb uplift at i joint 22, 9 lb uplift at	i3 lb́ uplift at j joint 20, 57 lb 94 lb uplift at j joint 16, 44 lb	oint o oint			THUN,	PROCESSION		1111

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

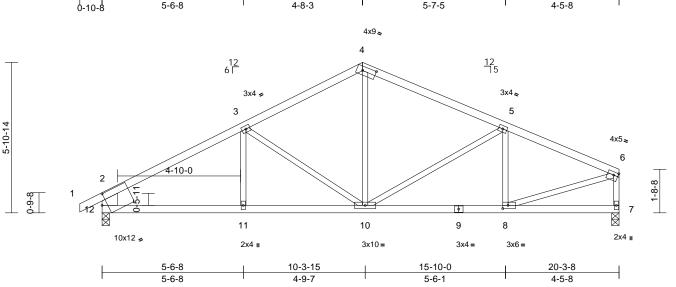
Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	C2	Roof Special	1	1	Job Reference (optional)	147856940

10-2-11

Wheeler Lumber, Waverly, KS - 66871,

-0-10-8

5-6-8


 In Special
 I
 Job Reference (optional)

 Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:21
 Page: 1

 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f
 Page: 1

15-10-0

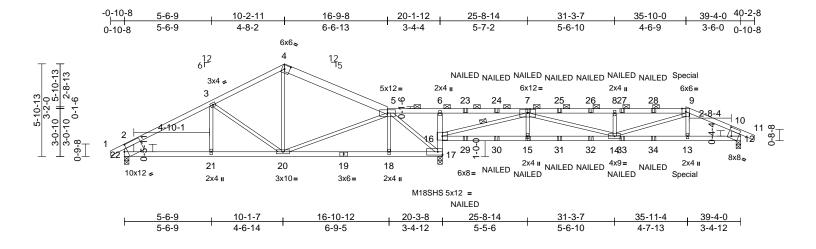
20-3-8

Scale = 1:45.2

Plate Offsets (X, Y): [4:0-6-4,0-2-0], [6:0-2-0,0-1-8], [8:0-2-8,0-1-8], [12:0-2-7,0-4-14]

		1	-	1		-						
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.86	Vert(LL)	-0.09	10-11	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.74	Vert(CT)	-0.17	10-11	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.35	Horz(CT)	0.03	7	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.05	10-11	>999	240	Weight: 75 lb	FT = 10%
UMBER			6) This truss is	designed in acco	ordance wi	ith the 2018						
OP CHORD	2x4 SPF No.2			I Residential Cod			nd					
OT CHORD	2x4 SPF No.2		R802.10.2 a	and referenced sta	andard AN	ISI/TPI 1.						
VEBS	2x3 SPF No.2 *Exce	ept* 12-2:2x8 SP DS	S LOAD CASE(S	Standard								
BRACING		-	•									
OP CHORD	Structural wood she	athing directly applie	ed or									
	2-2-0 oc purlins, ex	cept end verticals.										
SOT CHORD	Rigid ceiling directly	applied or 10-0-0 or										111.
	bracing.										UL OF	MICH
REACTIONS	(lb/size) 7=892/0-3	3-8, 12=980/0-3-8									NE	SS
	Max Horiz 12=-90 (L	.C 6)								~	A	
	Max Uplift 7=-112 (L	.C 9), 12=-137 (LC 8)							20	A	
ORCES	(lb) - Maximum Com	pression/Maximum								2	JU/	
	Tension									-+	GAR	CIA
OP CHORD	1-2=0/37, 2-3=-1285	5/161, 3-4=-965/158									:	: C =
	4-5=-974/155, 5-6=-									= 11		in =
	2-12=-874/167, 6-7=										NUM	• 41-
OT CHORD	11-12=-156/1041, 10	,								-	E-2000	162101
	8-10=-118/992, 7-8=									1	A	
VEBS	3-11=0/152, 3-10=-3	,	,								1. So	
	5-10=-269/127, 5-8=	-226/101, 6-8=-106	(1005								I, ON	ALEIN
IOTES											- 1111	IIII

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 137 lb uplift at joint 12 and 112 lb uplift at joint 7.


16952 Bornal ENGINE 16952 September 10,2021

Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	C3	Roof Special Girder	1	1	Job Reference (optional)	147856941

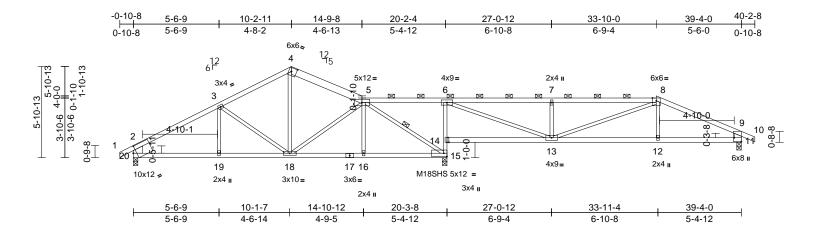
Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:22 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:73.5

Plate Offsets (X, Y): [4:0-3-15,0-3-0], [12:0-2-13,0-6-6], [22:0-2-7,0-4-14]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.87	Vert(LL)	-0.18	14-15	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.97	Vert(CT)	-0.34		>666	240	M18SHS	197/144
BCLL	0.0*	Rep Stress Incr	NO		WB	0.95		0.02	17	n/a	n/a	1	
BCDL	10.0	Code		18/TPI2014	Matrix-S		Wind(LL)		14-15	>999	240	Weight: 143 lb	FT = 10%
												, ,	
LUMBER				NOTES									mber Increase=1.15,
TOP CHORD	2x4 SPF No.2 *Exce		2,	 Unbalanced 	roof live loads h	nave been	considered fo	or		ate Incre			una l
	9-11:2x4 SPF 2100			this design.					U	niform L	oads (lb/ft)	
BOT CHORD	2x4 SPF No.2 *Exce	ept* 17-6:2x4 SPF 21	00F		7-16; Vult=115			-					0,′5-9- - 7 0, ⁄9- 10=-70,
	1.8E				h; TCDL=6.0psf				-			-22=-20, 12-16=	-20
WEBS		ept* 22-2,12-10:2x8 \$	SP		closed; MWFR				C	oncentra	ated L	bada (lb)	
	DSS				ft and right expo d; Lumber DOL:					Vert: 9=	=-74 (90/ ≓ -33 (F), 1 5 -	A17 (F), 13= 40 (F),
BRACING					quate drainage t					23=-33	(F), 2	4=-33 (F), 25=-35	3 (F), 26=-33 (F), (F), 30=-17 (F)
TOP CHORD		athing directly applie	u ui		e MT20 plates u							2=-17 (F), 29=-17 2=-17 (F), 33=-17	
		cept end verticals, a	iu		as been designe			<i>.</i>		51=-17	` 		
	2-0-0 oc purlins (3-1	,			ad nonconcurre			ads			=7	NUM	BER :
BOT CHORD	Rigid ceiling directly	applied or 5-4-1 oc			has been design						-	C. E-2000	162101
WEDO	bracing.	7.40			m chord in all ar			opo.			-	A.	
WEBS	1 Row at midpt	7-16			by 2-00-00 wide			om				1.00	GN
REACTIONS	(lb/size) 12=1068/ 22=880/0	0-3-8, 17=2166/0-3-8	3,	chord and a	ny other membe	rs.						IN ON	ALENI
	Max Horiz 22=000/0				hanical connect							1111	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
	Max Uplift 12=-249 (,	2)		e capable of with								
	22=-165		9),		lb uplift at joint	12 and 383	3 lb uplift at jo	pint					
	Max Grav 12=1075	· · ·	C 1)	17.									
	22=880 (I		с I),		designed in acc								
FORCES	(lb) - Maximum Corr	,			Residential Co nd referenced s			and					
TORCES	Tension	ipression/maximum						- :					
TOP CHORD	1-2=0/37, 2-3=-1109	9/211 3-4=-798/200		 Graphical pu or the orient 	ation of the purli			size					
		47/641, 6-7=-81/870	_	bottom chore		in along the						, un	
	7-8=-2566/634, 8-9=	,	,	10) "NAILED" in		148"v3")	or 3-12d					INAN	GARC
	9-10=-1658/378, 10	-11=0/32, 2-22=-784	/193,		5") toe-nails per							N 30	NO
	10-12=-933/239			11) Hanger(s) of								, JOE	NOED
BOT CHORD	21-22=-210/889, 20				ficient to suppor			195					1 N S
	18-20=-217/351, 17				126 lb up at 35						-		
	16-17=-1363/320, 6			lb down at 3	35-9-4 on bottom	n chord. T	he design/				-	16	952 : -
	15-16=-435/1835, 1				such connection	device(s)	is the					DE 16	- m
	13-14=-305/1450, 1		~~	responsibility	,							D.	
WEBS		333/153, 4-20=-58/26		12) In the LOAD				face				- 01: KA	12:14:
		=0/264, 5-17=-1293/1 154/792, 8-14=-483/2	20		are noted as from	nt (F) or ba	ck (B).					1 Column	VSn. G
	9-14=-299/1197, 9-1	,	20,	LOAD CASE(S)	Standard							I SION	VAL ENIN
	7-16=-2778/595	10 - 12/120										1111	ininini.
	1 10-2110/030											Cantomba	* 10.0001


September 10,2021

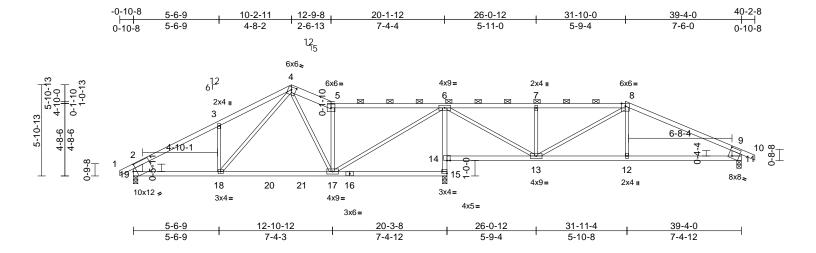
Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	C4	Roof Special	1	1	Job Reference (optional)	147856942

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:23 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:74.5

Plate Offsets ()	X, Y): [4:0-3-15,0-3-0], [11:Edge,0-5-8], [2	0:0-2-7,0-	-4-14]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		8/TPI2014	CSI TC BC WB Matrix-S	0.81 0.70 0.58	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.26 0.03 0.10	(loc) 12-13 12-13 15 12-13	l/defl >999 >883 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18SHS Weight: 141 lb	GRIP 197/144 197/144 FT = 10%			
TOP CHORD BOT CHORD VEBS BRACING TOP CHORD BOT CHORD VEBS	2-0-0 oc purlins (3-1 Rigid ceiling directly bracing, Except: 3-6-8 oc bracing: 14 6-0-0 oc bracing: 13 1 Row at midpt	pt* 15-6:2x3 SPF Nc pt* 20-2:2x8 SP DS 2.0E athing directly applie xcept end verticals, a 0-9 max.): 5-8. applied or 10-0-0 oc -15 -14. 5-15	2 5.2 2) 5, d or 3) 4) 5 6)	this design. Wind: ASCE Vasd=91mp II; Exp C; Er cantilever le right expose Provide ade All plates an This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a	57-16; Vult=115m h; TCDL=6.0psf; tclosed; MWFRS ft and right expos d; Lumber DOL= quate drainage to e MT20 plates un as been designed ad nonconcurremi has been designed m chord in all are by 2-00-00 wide v y other member:	aph (3-sec BCDL=6. (envelope ed; end 1 1.60 plate p prevent less othel l for a 10. t with any ed for a liv as where vill fit betw S.	cond gust) Dpsf; h=25ft; exterior zoo grip DOL=1 water pondin wise indicate 0 psf bottom other live loz e load of 20. a rectangle veen the bott	Cat. ine; nd .60 g. ed. ads. 0psf				JUA GAR				
	3-6-8 oc bracing: 14-15 6-0-0 oc bracing: 13-14. EBS 1 Row at midpt 5-15 EACTIONS (lb/size) 11=874/0-3-8, 15=1852/0-3-8, 20=926/0-3-8 Max Horiz 20=101 (LC 8) Max Uplift 11=-181 (LC 9), 15=-277 (LC 9), 20=-141 (LC 8) Max Grav 11=879 (LC 22), 15=1852 (LC 1), 20=926 (LC 1)			bearing plat joint 20, 181 15. This truss is Internationa R802.10.2 a Graphical pu	chanical connection e capable of withs lb uplift at joint 1 designed in accord I Residential Codu nd referenced sta urlin representation	standing 1 1 and 277 ordance w e sections andard An on does no	41 lb uplift a 7 lb uplift at jo ith the 2018 5 R502.11.1 a ISI/TPI 1. ot depict the	t pint and			Philip	NUME E-20001	• 41			
TOP CHORD	Tension 1-2=0/37, 2-3=-1191/167, 3-4=-881/152, 4-5=-848/166, 5-6=0/230, 6-7=-1343/326, 7-8=-1345/328, 8-9=-1327/263, 9-10=0/30, 2-0=076/270, 0-14, 2702/263, 9-10=0/30,			DRD 1-2=0/37, 2-3=-1191/167, 3-4=-881/152, 4-5=-848/166, 5-6=0/230, 6-7=-1343/326,			or the orient bottom chor OAD CASE(S)		along the	top and/or					IN JUAN C	ARCIA
BOT CHORD	19-20=-172/960, 18 16-18=-59/785, 15-1 14-15=-1140/253, 6 13-14=-268/32, 12-1 11-12=-176/1142	-19=-172/960, 6=-57/788, -14=-1066/287,									mm.	UCE TOCE	952			
NEBS	3-19=0/159, 3-18=-3		,								1111	ORESSION	SAS ON			
												Contombo	10.0004			


NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	C5	Roof Special	1	1	Job Reference (optional)	147856943

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:23 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:74.5

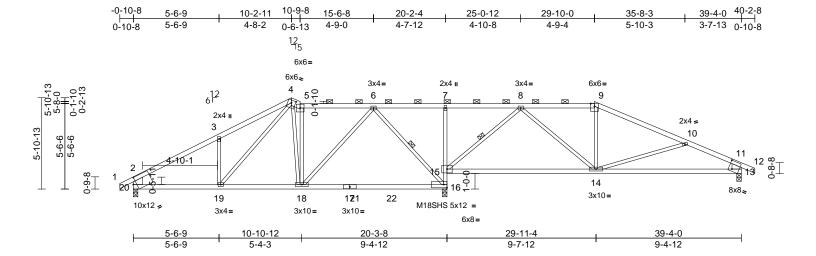
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.82	Vert(LL)	-0.16	17-18	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.61	Vert(CT)	-0.28	17-18	>842	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.46	Horz(CT)	-0.02	11	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.06	17-18	>999	240	Weight: 142 lb	FT = 10%

LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 *Except* 4-5:2x6 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 *Except* 19-2,11-9:2x8 SP DSS Structural wood sheathing directly applied or 3-1-9 oc purlins, except end verticals, and 2-0-0 oc purlins (5-8-9 max.): 5-8. Rigid ceiling directly applied or 3-5-6 oc bracing.	 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
REACTIONS	(lb/size) 11=850/0-3-8, 15=1904/0-3-8, 19=897/0-3-8 Max Horiz 19=101 (LC 8) Max Uplift 11=-184 (LC 9), 15=-275 (LC 9), 19=-142 (LC 8) Max Grav 11=863 (LC 24), 15=1973 (LC 2), 19=920 (LC 2)	 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 142 lb uplift at joint 19, 275 lb uplift at joint 15 and 184 lb uplift at joint 11. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
FORCES	(lb) - Maximum Compression/Maximum Tension	 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or
TOP CHORD	1-2=0/37, 2-3=-1212/165, 3-4=-1144/282, 4-5=-932/214, 5-6=-808/154, 6-7=-803/255, 7-8=-805/256, 8-9=-1183/252, 9-10=0/32, 2-19=-809/169, 9-11=-782/229	bottom chord. LOAD CASE(S) Standard
BOT CHORD	18-19=-171/999, 17-18=-64/691, 15-17=-295/34, 14-15=-1875/312, 6-14=-1780/343, 13-14=-379/50, 12-13=-147/1000, 11-12=-144/1007	
WEBS	3-18=-275/206, 4-18=-167/498, 4-17=-111/365, 5-17=-663/230, 6-17=-66/1290, 6-13=-198/1330, 7-13=-413/170, 8-13=-247/22, 8-12=0/261	

1) Unbalanced roof live loads have been considered for this design.

OF MIS NXS * PROVIN JUAN GARCIA NUMBER E-2000162101 8 6 S S ONALE 16952 Bon Ansa⁹ September 10,2021 September 10,2021

11111


Page: 1

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	C6	Roof Special	1	1	Job Reference (optional)	147856944

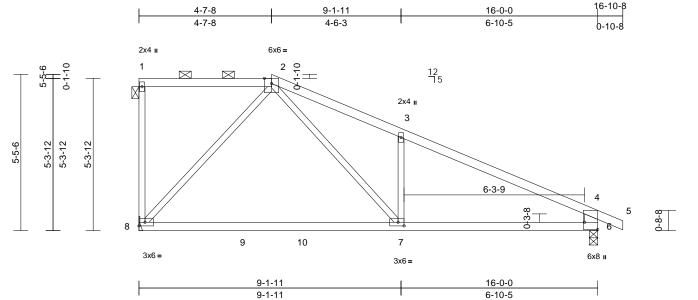
Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:24 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:74.5

Plate Offsets (X, Y): [4:0-3-3,0-2-2], [13:0-2-13,0-6-6], [20:0-2-7,0-4-14]

-												-	
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	1.00	Vert(LL)	-0.25	16-18	>959	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.85	Vert(CT)	-0.44	16-18	>539	240	M18SHS	197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.45	Horz(CT)	-0.04	13	n/a	n/a		
BCDL	10.0	Code	IRC201	18/TPI2014	Matrix-S		Wind(LL)	0.06	14-15	>999	240	Weight: 147 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 *Exc 2x4 SPF 2100F 1.8 No.2, 15-13:2x4 SF 2x3 SPF No.2 *Exc DSS Structural wood shi except end vertical (5-11-7 max.): 5-9. Rigid ceiling directl bracing, Except: 2-10-13 oc bracing 1 Row at midpt (lb/size) 13=868/ 20=918/ Max Horiz 20=101 (Max Uplift 13=-187 20=-144 Max Grav 13=887 (20=941 ((lb) - Maximum Cor Tension 1-2=0/37, 2-3=-120 (lb) - Maximum Cor Tension 1-2=0/37, 2-3=-120 (4-5=-883/178, 5-6= 7-8=0/220, 8-9=-92 10-11=-1279/337, 1 2-20=-808/175, 11- 19-20=-178/998, 11 6-18=-53/451, 15- 7-15=-346/138, 14- 13-14=-256/1093 3-19=-282/202, 4-1 4-18=-93/458, 6-18 9-14=-34/152, 5-18	ept* 4-5:2x6 SPF No.2 E *Except* 16-7:2x3 S PF No.2 ept* 20-2,13-11:2x8 S eathing directly applied s, and 2-0-0 oc purlins y applied or 10-0-0 oc : 15-16. 8-15, 6-16 0-3-8, 16=1864/0-3-8, -3-8 (LC 8) (LC 9), 16=-267 (LC S (LC 24), 16=1931 (LC (LC 2) npression/Maximum 3/174, 3-4=-1140/289 -827/152, 6-7=0/207, 9/245, 9-10=-1051/22 11-12=0/32, 13=-784/289, 16=-1080/224, 15=-90/542, 9=-194/391, =-15/571, 8-15=-971/2	2 P d, 3 4, 4 5, 6 7, 1), 8 2), 8 2, L 204,	 Unbalanced this design. Wind: ASCE Vasd=91mpl II; Exp C; En cantilever lef right exposed Provide aded All plates are This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b chord and ar Provide med bearing plate joint 20, 187 16. This truss is International R802.10.2 ar Graphical put 	roof live loads ha 7-16; Vult=115m h; TCDL=6.0psf; closed; MWFRS t and right expos d; Lumber DOL= quate drainage to b MT20 plates un is been designed ad nonconcurrent has been designed in chord in all are by 2-00-00 wide v hanical connectifie a capable of withs lb uplift at joint 1 designed in acco Residential Codu nd referenced sta rlin representatio ation of the purlin f.	aph (3-sec BCDL=6.0 (envelope ed; end 1 less other for a 10.0 with any d for a 10.0 for	considered for cond gust) Dpsf; h=25ft; a) exterior zo vertical left ar grip DOL=1 water pondin wise indicate D psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps ers) of truss ers) of truss ith the 2018 ith the 2018 ith the 2018 a SI/TPI 1. bt depict the	Cat. ine; ind .60 .60 .60 .60 .ed. ads. Opsf .to to to to tand				JUA GAR NUME E-20001	MISSOCA NN CIA


September 10,2021

Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	C7	Half Hip	1	1	Job Reference (optional)	147856945

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:24 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

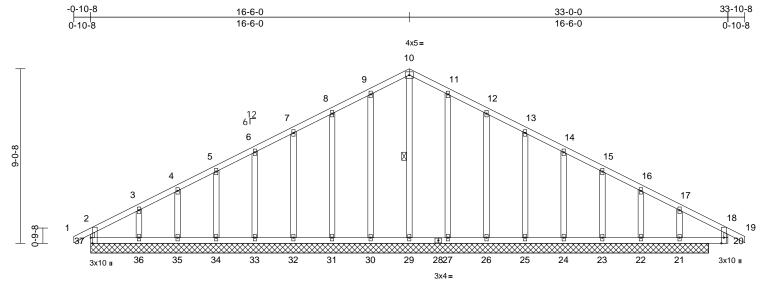
Scale = 1:40.2

Plate Offsets (X, Y): [6:Edge,0-5-8], [7:0-2-8, 0-1-8]

- 1410 0110010 ((,,, ,). [e:=age;e e e];	[1.0 2 0,0 1 0]											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.69	Vert(LL)	-0.25	7-8	>758	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.47	Vert(CT)	-0.44	7-8	>432	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.72	Horz(CT)	0.01	6	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.03	7-8	>999	240	Weight: 56 lb	FT = 10%
LUMBER			7)	Provide me	chanical connecti	ion (by oth	ers) of truss	to					
TOP CHORD	2x4 SPF No.2		,	bearing plat	e capable of with	standing 1	12 lb uplift a	it joint					
BOT CHORD	2x4 SPF 2100F 1.8E				o uplift at joint 6.								
WEBS	2x3 SPF No.2 *Exce	pt* 6-4:2x6 SP DSS	S 8)		designed in acc								
BRACING					I Residential Coc			and					
TOP CHORD					and referenced st								
	4-6-4 oc purlins, ex		and 9)		urlin representation of the purlir			size					
	2-0-0 oc purlins (6-0	,		bottom choi		n along the	top and/or						Un.
BOT CHORD		applied or 10-0-0 o		DAD CASE(S								OF	MISH
	bracing.			UAD CASE(S	Stanuaru							N X E	
REACTIONS		3-8, 8=702/ Mechan	ical								1	18	
	Max Horiz 8=-225 (L										-	JU/	AN :2-
	Max Uplift 6=-129 (L Max Grav 6=799 (LC										5	GAR	
FORCES	(lb) - Maximum Com										= *		
FURCES	Tension	pression/maximum										1	
TOP CHORD		8/55 2-3=-1091/24	7								= 7	NUM	BER 🥰
	3-4=-1135/141, 4-5=										- 7	E-2000	• []].
BOT CHORD											-	A	. 2.
WEBS	2-8=-633/136, 2-7=-	165/797, 3-7=-356/2	226								1	1 S	G
NOTES												I,SON	ALENN
1) Unbalance	ed roof live loads have	been considered fo	r									- 4111	iiiii
this design													
	CE 7-16; Vult=115mph												IIIII.
	nph; TCDL=6.0psf; BC											INAN	GARC
	Enclosed; MWFRS (er left and right exposed											N 30	No. A I
	sed; Lumber DOL=1.6											CE	NSED .
	dequate drainage to pr												- ~ \ B
	has been designed for		9.								-	1	
	load nonconcurrent wi		ds.									16	952 !
	se has been designed f											-1 -7	

- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Refer to girder(s) for truss to truss connections. 6)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



For 10 2021

Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	D1	GABLE	1	1	Job Reference (optional)	147856946

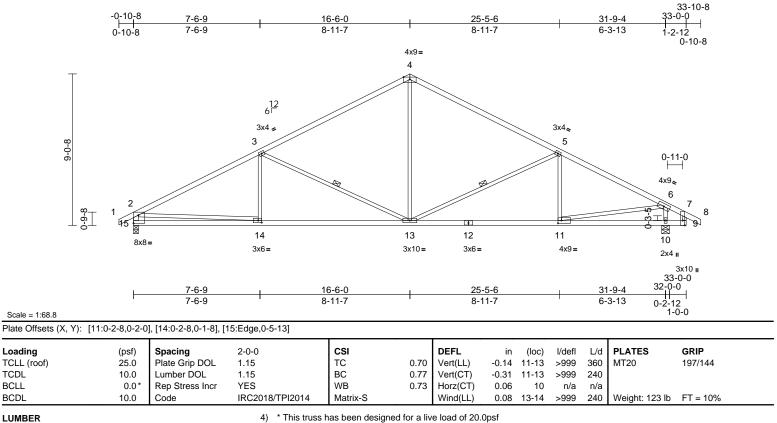
Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:24 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

33	\mathbf{n}	\mathbf{n}	

Scale = 1:59.7

Plate Offsets (X, Y): [37:0-3-8,Edge]


	(X, T): [37:0 0 0,Edg	5]										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.23 0.18 0.17	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.01	(loc) - - 21	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 164 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x4 SPF No.2 Structural wood she 10-0-0 oc purlins, e Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 21=399/3 23=212/2 25=183/3 30=195/3 30=195/3 30=195/3 32=181/3 34=187/3 36=265/3 Max Horiz 37=-135 Max Uplift 21=-74 (I 23=-53 (I	eathing directly applied except end verticals. y applied or 6-0-0 oc 10-29 32-0-0, 22=52/32-0-0, 32-0-0, 24=172/32-0-0 32-0-0, 29=311/32-0-0 32-0-0, 31=175/32-0-0 32-0-0, 31=178/32-0-0 32-0-0, 37=54/32-0-0 (LC 13) LC 9), 22=-56 (LC 9), LC 9), 24=-54 (LC 9),	TOP CHORE	 2-37=-118/69, 1- 3-4=-88/222, 4-5 6-7=0/256, 7-8=(9-10=0/277, 10- 12-13=0/228, 13 15-16=0/208, 16 18-19=0/31, 18-2 	52-52/238, 52-52/238, 52-52/238, 54-52 54-52 54-52 54-52 52-28/20 52-28/20 52-28/20 52-28/20 52-28/20 52-28-15 52-29-30-15 52-29-30-15 52-29-30-15 52-29-30-15 52-29-30-15 52-29-30-15 52-29-30 52-2	5-6=-23/246 =0/277, 11-12=0/255 , 14-15=0/20 3/86, 3/86, 3/86, 3/86, 3/86, 3/86, 3/86, 3/86, 3/86, 3/86, 3/86, 5, 8-31=-137 77, 5-34=-143 22, 5/82, 7/7,78, /76, 17-21=-2	7/81, 3/230, 7/81, 3/81, 251/98	on 1 3-00 cho 9) Pro bea 37, upli 34, upli 25, upli 10) Nor 11) This Inte R80 LOAD (he bottc 6-00 tall rd and a vide me ring plad 51 lb up ft at join 34 lb up ft at join 35 lb up ft at join 36 lb up ft at join 36 lb up ft at join 36 lb up ft at join 36 lb up ft at join 30 lb up ft at	om cho by 2-0 uny oth chanic te cape ilift at ju t 32, 53 ilift at ju t 27, 54 ilift at ju t 22 at ard bea s destig and ref	een designed fou rot in all areas w loo-00 wide Will fil er membars. a connection (b able of withstance oint 30, 57 lb µp 3 lb uplift at joint eint 35, 12010 u 8 lb uplift at joint eint 35, 12010 u 8 lb uplift at joint oint 24, 53 lb up int 24, 53 lb up int 24, 53 lb up int contain accordan derflat Code sec iere ocep standan ndard	r a live load of 20.0psf here a rectangle between the bottom Yothers) optruss to ling 67 lb up(if at joint lift at joint 31, 54 lb 33, 59 lb upliff at joint pirit at joint 36, 47 lb 26, 53 lb upliff at joint lift at joint 23, 56 lb Ght 21. Revevorequired ice with the 2018 thogs R502011.1 and rd ANSIATPL 1.
FORCES	27=-47 (31=-57 () 33=-53 () 35=-34 () 35=-34 () 37=-67 () Max Grav 21=399 () 23=212 () 25=183 () 27=197 () 30=195 () 32=181 () 34=187 () 36=265 ()	LC 9), 26=-58 (LC 9), LC 9), 30=-51 (LC 8), LC 8), 32=-54 (LC 8), LC 8), 34=-59 (LC 8), LC 8), 36=-120 (LC 8), LC 1), 22=59 (LC 16), LC 1), 24=172 (LC 22) LC 1), 26=175 (LC 1), LC 22), 29=332 (LC 1 LC 1), 31=177 (LC 21) LC 1), 33=179 (LC 21) LC 1), 35=166 (LC 21) LC 1), 37=131 (LC 21) npression/Maximum	this desi 2) Wind: A Vasd=91 II; Exp C cantileve right exp), 3) Truss de only. Fo 8), or consu), 4) All plates), 5) Truss to braced a 6) Gable st 7) This trus		nph (3-sec BCDL=6. 6 (envelop sed; end s 1.60 plate ls in the pl vind (norm End Deta designer a: ss otherwio om one fac nent (i.e. c oc. d for a 10.	cond gust) Opsf; h=25ft; e) exterior zoo vertical left ar grip DOL=1. ane of the tru al to the face is as applica s per ANSI/TI se indicated. e or securely liagonal web) O psf bottom	Cat. ne; nd 60 sss), ble, PI 1.			. THINK	SSION	952 WALENGIN

Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	D2	Common	7	1	Job Reference (optional)	147856947

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:25 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

on the bottom chord in all areas where a rectangle

chord and any other members.

LOAD CASE(S) Standard

joint 15 and 213 lb uplift at joint 10.

5)

6)

3-06-00 tall by 2-00-00 wide will fit between the bottom

Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 203 lb uplift at

This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

Loading

TCDL

BCLL

BCDL

TOP CHORD	2x4 SPF 2100F 1.8E
BOT CHORD	2x4 SPF No.2
WEBS	2x3 SPF No.2 *Except* 15-2:2x4 SPF 2100F
	1.8E
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	3-10-14 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
WEBS	1 Row at midpt 3-13, 5-13
REACTIONS	(lb/size) 10=1597/0-5-8, 15=1490/0-3-8

	Max Horiz 15=-135 (LC 9)
	Max Uplift 10=-213 (LC 9), 15=-203 (LC 8)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/32, 2-3=-2347/300, 3-4=-1629/246,
	4-5=-1628/254, 5-6=-2064/262, 6-7=-89/8,
	7-8=0/31, 2-15=-1418/241, 7-9=-58/0
BOT CHORD	14-15=-257/605, 13-14=-308/2004,
	11-13=-135/1775, 10-11=0/82, 9-10=0/82
WEBS	3-14=0/264, 3-13=-803/287, 4-13=-25/732,

8, 3-14=0/264, 3-13=-803/287, 4-13=-25/732, 5-13=-583/252, 5-11=-155/125, 6-11=-154/1738, 6-10=-1457/263, 2-14=-51/1403

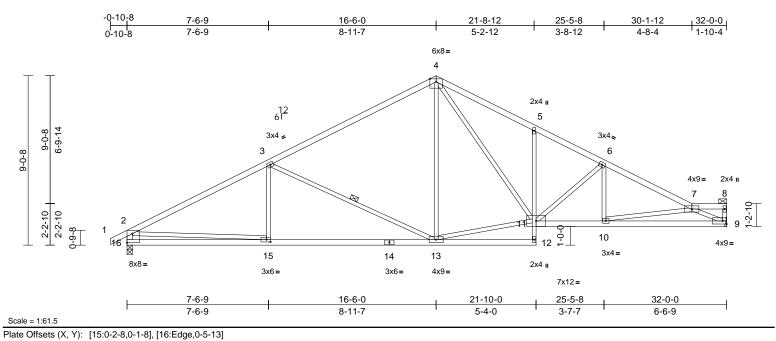
NOTES

Unbalanced roof live loads have been considered for 1) this design.

Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 This truss has been designed for a 10.0 psf bottom 3)

chord live load nonconcurrent with any other live loads.

11 MI 0 111 * PHUM JUAN GARCIA NUMBER D F -2000162101 C 6 E ONAL min 16952 BORNAL ENGLAND MUMULI I

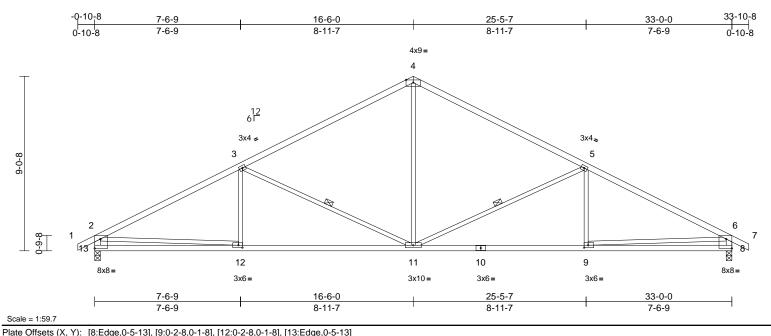

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	D3	Roof Special	5	1	Job Reference (optional)	147856948

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:25 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	λ, Τ). [15.0-2-6,0-1-6], [10.Luge,0-5-15]										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI20	CSI TC BC WB 14 Matrix-S	0.73 0.73 0.74	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.16 -0.38 0.10 0.07	13-15	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 131 lb	GRIP 197/144 FT = 10%
	2-2-0 oc purlins, ex2-0-0 oc purlins (6-0Rigid ceiling directly bracing.1 Row at midpt	pt* 12-5:2x3 SPF No pt* 16-2:2x4 SPF 21 athing directly applie cept end verticals, ar i-0 max.): 7-8. applied or 10-0-0 oc 3-13 Mechanical, 0-3-8 _C 5)	0F chord 5) * This 0.2 on the 00F 3-06-0 chord 6) Refer 9 and 9 and 8) This t Intern R802. 9) Graph or the bottor	russ has been designed live load nonconcurren truss has been designed bottom chord in all are 00 tall by 2-00-00 wide and any other member to girder(s) for truss to be mechanical connecti 1g plate capable of with 29 lb uplift at joint 16. russ is designed in accu ational Residential Cod 10.2 and referenced st tical purlin representatio orientation of the purlir n chord. SE(S) Standard	t with any ed for a liv eas where will fit betw s. truss com on (by oth standing ? ordance w e sections andard Al on does n	other live load ve load of 20.0µ a rectangle ween the botto nections. ners) of truss to 15 lb uplift at jo vith the 2018 s R502.11.1 ar NSI/TPI 1. ot depict the si	psf m o nint			11111111111111111111111111111111111111	JUA GAR	
FORCES	(lb) - Maximum Com Tension										E-20001	• 41.
TOP CHORD	1-2=0/32, 2-3=-2376	-2229/51, 6-7=-2620)/22,								SSIONA	LENGILI
BOT CHORD	15-16=-145/590, 13- 12-13=0/73, 11-12= 10-11=0/2303, 9-10-	0/66, 5-11=-318/107,									anni Anni	ARC III
WEBS	11-13=0/1282, 4-11	=0/261, 7-10=-245/89									UAN C	NSED
NOTES	,										1	
1) Unbalance	d roof live loads have	been considered for								Ξ	169	952
Vasd=91m II; Exp C; E and right e Lumber DC	E 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er xposed ; end vertical l DL=1.60 plate grip DC equate drainage to pr	DL=6.0psf; h=25ft; C hvelope); cantilever le left and right exposed DL=1.60	eft d;								PROCESSION	AL ENGLIT

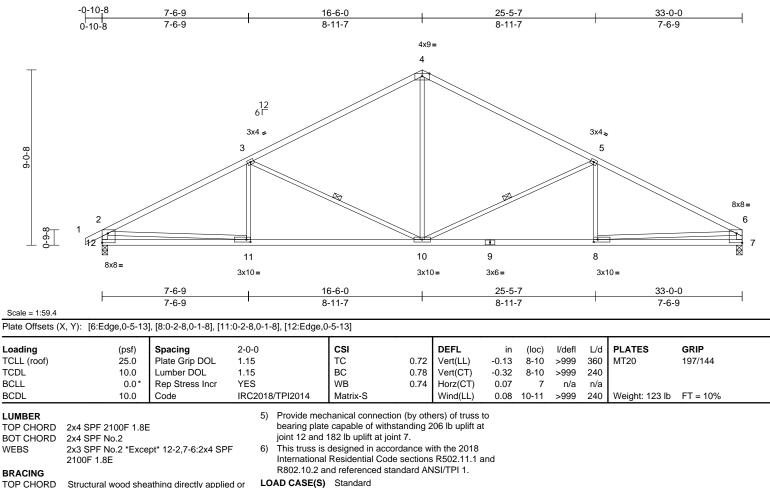

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

September 10,2021

Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	D4	Common	2	1	Job Reference (optional)	147856949

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:25 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1


	K, Y): [8:Edge,0-5-13	j, [9.0-2-0,0-1-0], [12	.0-2-0,0-1	-oj, [13.Euge,u	-5-15]								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.71 0.77 0.73	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.31 0.08	(loc) 11-12 11-12 8 11-12	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 124 lb	GRIP 197/144 FT = 10%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x3 SPF No.2 *Exce 2100F 1.8E Structural wood she 2-2-0 oc purlins, exi Rigid ceiling directly bracing. 1 Row at midpt	ept* 13-2,8-6:2x4 SPI athing directly applie cept end verticals. applied or 10-0-0 oc 5-11, 3-11 -3-8, 13=1543/0-3-8 LC 9) C 9), 13=-206 (LC 8)	= 6) d or LC	bearing plate joint 13 and 2 This truss is International	hanical connection capable of withst 206 lb uplift at join designed in accor Residential Code nd referenced star Standard	anding 2 t 8. dance w sections	206 lb uplift at ith the 2018 s R502.11.1 a				*	JUA GAR	
TOP CHORD	Tension 1-2=0/32, 2-3=-2450 4-5=-1739/261, 5-6= 2-13=-1470/243, 6-8 12-13=-258/617, 11 9-11=-179/2095, 8-9 4-11=-32/832, 5-11=)/305, 3-4=-1739/261 :-2450/305, 6-7=0/32 }=-1470/243 :12=-313/2095, }=-135/617	.,								Philip	NUME E-20001	• 41-
	3-11=-798/286, 3-12 6-9=-43/1482												
NOTES	d roof live loade have	haan appaidered for										IN AN C	GARC
this design 2) Wind: ASC	d roof live loads have E 7-16; Vult=115mph ph; TCDL=6.0psf; BC	(3-second gust)										ICE	NSEO
II; Exp C; E cantilever le right expos	eft and right exposed eft and right exposed ed; Lumber DOL=1.6	velope) exterior zon ; end vertical left and 0 plate grip DOL=1.6	e; I									UCE DE	952
4) * This truss on the botto 3-06-00 tal	has been designed for oad nonconcurrent wi s has been designed for om chord in all areas I by 2-00-00 wide will any other members.	th any other live load or a live load of 20.0 where a rectangle	osf									September	ALENGINI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ſ	Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
	W0137	D5	Common	1	1	Job Reference (optional)	147856950

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:26 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

NOTES

WEBS

BOT CHORD

REACTIONS (lb/size)

WEBS

FORCES

TOP CHORD

BOT CHORD

bracing.

Tension

1 Row at midpt

Max Horiz 12=143 (LC 8)

5-10, 3-10

7=1471/0-3-8, 12=1544/0-3-8

Max Uplift 7=-182 (LC 9), 12=-206 (LC 8)

(lb) - Maximum Compression/Maximum

4-5=-1743/261, 5-6=-2455/306,

2-12=-1471/243, 6-7=-1397/219

8-10=-200/2108, 7-8=-88/479

11-12=-266/617, 10-11=-322/2098,

1-2=0/32, 2-3=-2452/305, 3-4=-1741/261,

4-10=-34/837, 5-10=-810/289, 5-8=0/255

3-10=-798/286, 3-11=0/261, 2-11=-56/1485,

 Unbalanced roof live loads have been considered for this design.

6-8=-112/1634

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

JUAN GARCIA υ NUMBER T F -2000162101 C 6 E ONAL min 16952 BOTH STORAGE SECTION ALLENCE JOIN September 10,2021

11111

0

MI

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	D6	Roof Special	1	1	Job Reference (optional)	147856951

Loading

TCDL

BCLL

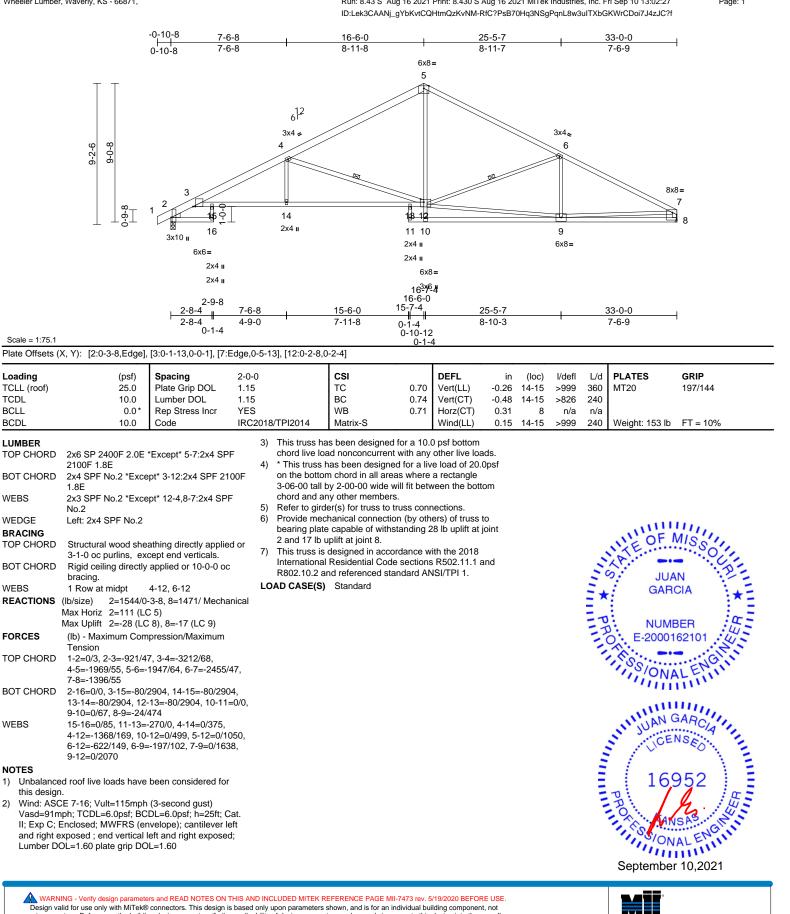
BCDL

WEBS

WEDGE

WEBS

WEBS


NOTES

1)

2)

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:27

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	D7	Roof Special	1	1	Job Reference (optional)	147856952

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:27 Page: 1 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0<mark>-10-</mark>8 17-10-12 20-5-4 7-6-9 16-6-0 25-5-8 33-0-0 0-10-8 8-11-7 7-6-9 1-4-12 2-6-8 5-0-4 7-6-9 8x8= 5 6 4x9 👟 7 12 61 3x4 🞜 3x6 👟 4 8 Ø **A**3 1/1 3-0-0 2-0-0 5x12= 8x8= 3-0-0/ 3 9 15 --0 Z 17 16 ₿ 12

8x12=

11

5x12=

	6x6=								
					16-7-4				
	2-8-4 2-9-8	7-6-9	1	15-6-0	15-7-1218-0-0	20-4-0	25-5-8	33-0-0	1
	2-8-4 0-1-4	4-9-2	I	7-11-7	0-1-12 1-4-12	2-4-0	5-1-8	7-6-9	
icale = 1:63.8					0-11-8				

8x8=

Scale = 1:63.8	

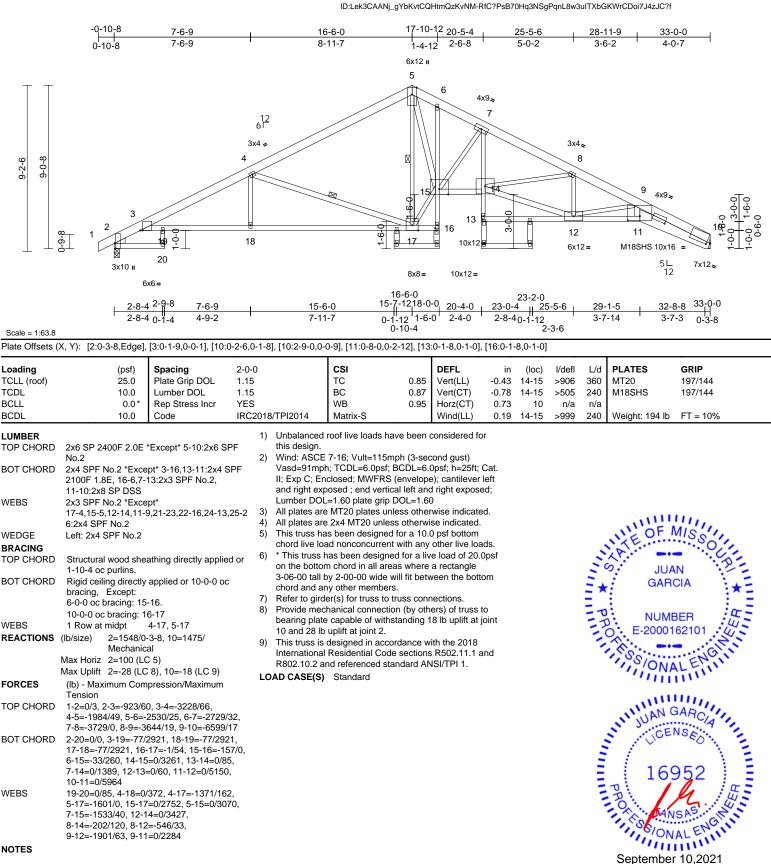
8-9-9

19

3x10 II

9-2-6 9-0-8

00010 = 1.00.0													
Plate Offsets ((X, Y): [2:0-3-8,Edge]	, [3:0-1-9,0-0-1], [5:0-	5-12,Ec	lge], [9:Edge,0-5	-13], [15:0-1-8,0-	-1-0]						-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	018/TPI2014	CSI TC BC WB Matrix-S	0.71 0.83 0.96	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.58 0.54	(loc) 13-14 13-14 10 17-18	l/defl >999 >678 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 172 lb	GRIP 197/144 FT = 10%
LUMBER		1		2) Wind: ASCE	7-16: \/ult=115r	mph (3-sec	cond quist)						
TOP CHORD	2100F 1.8E	*Except* 5-9:2x4 SP ept* 3-15:2x4 SPF 21	F	Vasd=91mpl II; Exp C; En	h; TCDL=6.0psf; closed; MWFRS cosed ; end verti	BCDL=6.0 (envelope	0psf; h=25ft; e); cantilever	left					
Derenens	1.8E, 15-6,7-12:2x3				=1.60 plate grip								
WEBS	2x3 SPF No.2 *Exce 16-4,14-5,20-22,21- 10-9:2x4 SPF 2100F	15:2x4 SPF No.2,		 This truss has chord live lost 	e 2x4 MT20 unle as been designed ad nonconcurrer	d for a 10.0 It with any	0 psf bottom other live loa	ads.					11.
WEDGE	Left: 2x4 SPF No.2				has been design			0psf				N'OF	Miche
BRACING					m chord in all are by 2-00-00 wide			om				NE	SSO
TOP CHORD	Structural wood she 3-9-12 oc purlins, e	eathing directly applie	d or		ny other member			om			- 5	18	
BOT CHORD WEBS REACTIONS	Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 14 10-0-0 oc bracing: 1 1 Row at midpt	r applied or 10-0-0 oc 1-15. 15-16 4-16, 5-16 1-3-8, 10=1471/ zal C 7)		 7) Provide med bearing plate 2 and 17 lb t 8) This truss is International 	er(s) for truss to hanical connecti e capable of with uplift at joint 10. designed in accc Residential Coc nd referenced st Standard	ion (by oth istanding 2 ordance w de sections	ers) of truss t 28 lb uplift at j ith the 2018 3 R502.11.1 a	joint			II * Philip	9 JUA GAR NUMI E-20001	CIA *
FORCES	(lb) - Maximum Con Tension											CON/ON/	
TOP CHORD	1-2=0/3, 2-3=-921/4 4-5=-1957/51, 5-6=-	7, 3-4=-3222/68, -2537/30, 6-7=-2682/ 2411/39, 9-10=-1392/										IN UAN C	BARCI
BOT CHORD	16-17=-80/2917, 15 6-14=-23/171, 13-14	/2917, 17-18=-80/291 -16=-1/63, 14-15=-18 4=0/3119, 12-13=0/7 =0/21, 10-11=-42/568	32/0, 2,									TICE	NSED
WEBS	18-19=0/85, 4-17=0 5-16=-1676/0, 14-16	/373, 4-16=-1399/168 6=0/2799, 5-14=0/323 13=0/2397, 8-13=0/10	3, 34,								11111	169 PRO	952 H
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for										Santamba	AL ENGINI

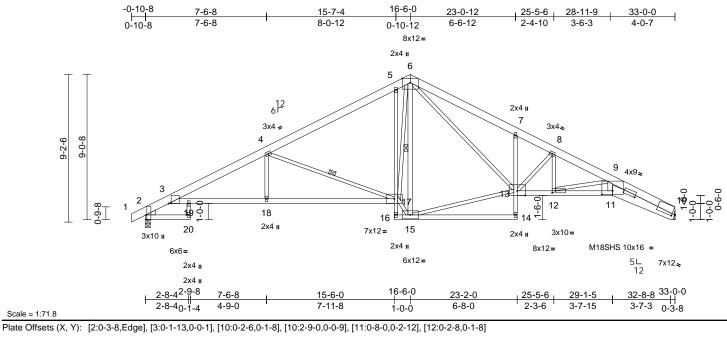


September 10,2021

Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	D8	Roof Special	1	1	Job Reference (optional)	147856953

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:29

Page: 1

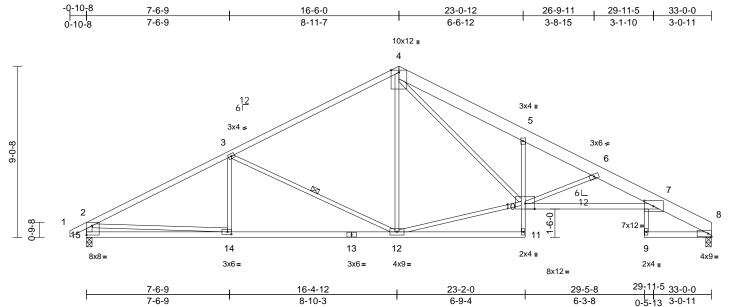


Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	D9	Roof Special	2	1	Job Reference (optional)	147856954

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:29 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (2	X, Y): [2:0-3-8,Edge],	[3:0-1-13,0-0-1], [10:0	0-2-6,0-1	1-8], [10:2-9-0,0)-0-9], [11:0-8-0,0 -	-2-12], [1	2:0-2-8,0-1-8]]					
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.85 0.87 0.94	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	0.63	(loc) 13 17-18 10 17-18	l/defl >999 >567 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18SHS Weight: 186 lb	GRIP 197/144 197/144 FT = 10%
	No.2 2x4 SPF No.2 *Exce 2100F 1.8E, 5-16,14 11-10:2x8 SP DSS 2x3 SPF No.2 *Exce No.2 Left: 2x4 SPF No.2 Structural wood she 1-9-15 oc purlins. Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 16 1 Row at midpt	ept* 15-6,11-9:2x4 SPI athing directly applied applied or 10-0-0 oc -17,15-16. 4-17, 6-15 -3-8, 10=1475/ al C 5) S 8), 10=-18 (LC 9)	F 2) F 3) H or 5) 6) 7) 8)	 this design. Wind: ASCE Vasd=91mpl II; Exp C; En and right exp Lumber DOL All plates are this truss ha chord live loa * This truss f on the bottor 3-06-00 tall t chord and ar Refer to gird Provide mec bearing plate 10 and 28 lb This truss is International 	roof live loads ha 7-16; Vult=115m h; TCDL=6.0psf; I closed; MWFRS bosed ; end vertic =1.60 plate grip I as been designed ad nonconcurrent has been designed ad nonconcurrent has been designed m chord in all area y 2-00-00 wide w hy other members er(s) for truss to t hanical connectic a capable of withs uplift at joint 2. designed in acco Residential Coda Standard	ph (3-see BCDL=6. (envelop; al left ann DOL=1.6 less othe for a 10. with any d for a liv as where vill fit betv s. rruss conn on (by oth tanding ' rdance we sections	considered fo cond gust) 0psf; h=25ft; (e); cantilever l d right expose 0 wise indicate: 0 psf bottom other live loar re load of 20.0 a rectangle veen the botto nections. ers) of truss t 18 lb uplift at jo ith the 2018 s R502.11.1 a	Cat. left ed; d. ds. Dpsf om oint				JUA GARI O. E-20001	CIA *
TOP CHORD	Tension 1-2=0/3, 2-3=-924/6 4-5=-2028/53, 5-6=- 6-7=-3000/135, 7-8= 9-10=-6584/19				Clandara							IN JUAN C	SARC
BOT CHORD	2-20=0/0, 3-19=-68/ 17-18=-68/2923, 16- 5-17=-37/316, 15-16	6=-37/98, 14-15=0/77, -247/133, 12-13=0/33										LICE!	952
WEBS NOTES	19-20=0/86, 4-18=0/ 15-17=0/2030, 6-17= 13-15=0/1413, 6-13=	/385, 4-17=-1348/136 =-86/1752, 6-15=-155	1/0,								III III	AN SION	SAS NOTIN
												1000	mm.


September 10,2021

MiTek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	uss Truss Type Qty Ply Lot 137 W0		Lot 137 W0		
W0137	D10	Roof Special	1	1	Job Reference (optional)	147856955

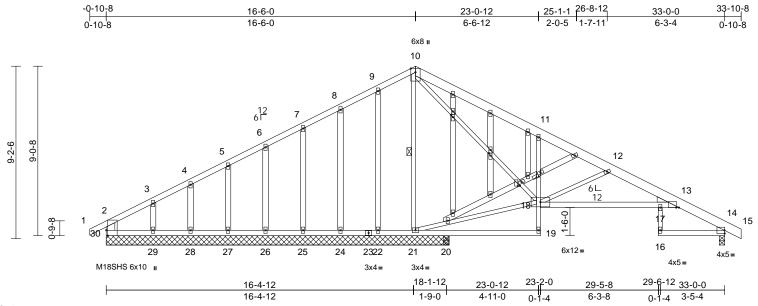
Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:30 ID:Lek3CAANj_gYbKvtCQHtrnQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:60.8

Plate Offsets (X, Y):	[7:0-5-13,0-3-8], [14:0-2-8,0-1-8], [15:Edge,0-5-1	3]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.88	Vert(LL)	-0.32	9	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.72	Vert(CT)	-0.66	7-10	>599	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.72	Horz(CT)	0.42	8	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S	-	Wind(LL)	0.22	9	>999	240	Weight: 164 lb	FT = 10%
LUMBER TOP CHORD	2x4 SPF 2100F 1.8E DSS	·	4)	chord live loa * This truss h	s been designed ad nonconcurrent as been designe n chord in all area	t with any ed for a liv	other live loa e load of 20.						
BOT CHORD	2x4 SPF No.2 *Exce 10-7:2x4 SPF 2100F	1.8E	,	3-06-00 tall b	y 2-00-00 wide v	vill fit betv		om					
WEBS	2x3 SPF No.2 *Exce 1.8E	ept* 15-2:2x4 SPF 21		chord and any other members.5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 174 lb uplift at the second se									
BRACING	ight 9 and 206 lb uplift at joint 15								116.				
TOP CHORD	 Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and 									MISS			
BOT CHORD	Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 8-9				nd referenced sta			anu				JUA	N
WEBS	•	3-12		()							-	GAR	
		-3-8, 15=1546/0-3-8									2 *	CAR CAR	··· :*=
	Max Horiz 15=-145 (,									2	÷	
	Max Uplift 8=-174 (L										=1	NUME	BER C
FORCES	(lb) - Maximum Com	pression/Maximum										E-20001	62101 :4
	Tension										-	A	
TOP CHORD	1-2=0/32, 2-3=-2456 4-5=-3042/476, 5-6= 6-7=-4200/477, 7-8= 2-15=-1474/243	3076/334, 773/131,	,									SS/ONA	LENGIN
BOT CHORD	14-15=-270/616, 12- 11-12=-7/32, 10-11= 7-10=-356/4139, 8-9	=0/103, 5-10=-342/22	9,									MILAN C	SARC
WEBS	7-9=0/80, 4-12=-4/3 4-10=-318/1791, 3-1 6-10=-1603/258, 2-1	4=0/264, 3-12=-769/	274,									LICE	NSED
NOTES											-	1	
this design 2) Wind: ASC Vasd=91m II; Exp C; I cantilever	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6	(3-second gust) DL=6.0psf; h=25ft; C velope) exterior zono ; end vertical left and	е;								THE STREET	169 PROCESSION September	SAS PUIL


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

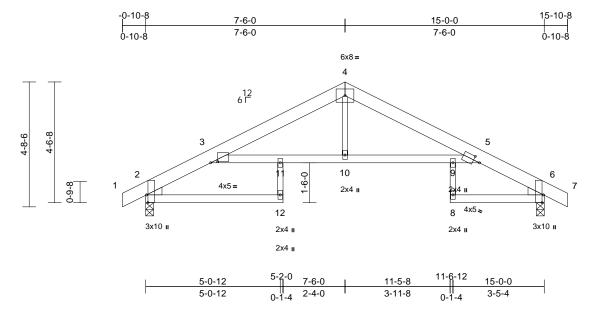
Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	D11	Roof Special Structural Gable	1	1	Job Reference (optional)	147856956

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:31 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:61.5

Plate Offsets ((X, Y): [13:0-1-12,Edg	e], [30:0-3-8,Edge], [3	2:0-1-10,0-0-4], [33:0)-0-3,0-1-5], [37:0	-1-10,0-1-0], [40:0-1-10,0	0-1-0]					
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.67 0.41 0.90	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.27 0.11	(loc) 17-18 17-18 14 17-18	l/defl >999 >642 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18SHS Weight: 186 lb	GRIP 197/144 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 *Exce 2x3 SPF No.2 *Exce 31-32,32-33,33-34:2 2x4 SPF No.2 Right: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing, Except: 10-0-0 oc bracing: 1 10-0-0 oc bracing: 1 10-0-0 oc bracing: 1 1 Row at midpt (lb/size) 14=424/0	athing directly applied cept end verticals. applied or 6-0-0 oc 8-19,14-16. 7-18 10-21 -3-8, 20=158/0-3-8,	.2 2, BOT CHORD or WEBS	1-2=0/35, 2-3=- 4-5=-76/825, 5- 7-8=0/818, 8-9= 10-11=0/312, 1 13-14=-180/79, 29-30=-706/28; 27-28=-706/28; 20-21=-45/0, 15; 11-18=-389/24; 13-17=-48/290, 16-17=0/61, 10 18-21=-668/28; 12-18=-505/156; 8-24=-131/82, 7 5-27=-153/81, 4	6=-39/819, =0/826, 9-1 1-12=0/247 3, 28-29=-7 3, 26-27=-7 3, 24-25=-7 3, 24-25=-7 3, 21-22=-7 3, 21-22=-7 3, 21-22=-7 4, 14-16=0/0 -21=-1290/ 0, 10-18=-2 5, 9-22=-15 7-25=-144/7	6-7=-13/820, 0=0/818, 7, 12-13=-293, 2-30=-58/45 06/283, 06/283, 06/283, 18-19=0/74, 8/290, 178, 44/776, 8/62, 77, 6-26=-138	/139, 1 /77,	bea join 34 at ju 31 10) Thi Inte R80	aring plat It 30, 110 Ib uplift a oint 25, t Ib uplift a s truss is ernationa	te capa D lb up at joint 53 lb u at joint s desig al Resi and ref	able of withstand lift at joint 14, 23 22, 59 lo upiift at ohift at joint 26, 66 28 and 133 lour need in accordan dential Code sec effenced standar ndard	BER 162101
	24=158/1 26=173/1 28=86/18 30=-406/ Max Horiz 30=-147 (22=-34 (L 25=-53 (L 27=-60 (L 29=-133 (21=1388 24=168 (L 26=177 (L	(LC 13) (LC 9), 21=-230 (LC 9), (C 8), 24=-59 (LC 8), (C 8), 26=-53 (LC 8), (LC 8), 30=-525 (LC 2), (LC 8), 30=-525 (LC 2), (LC 1), 20=239 (LC 3), (LC 1), 22=214 (LC 1), (LC 21), 25=186 (LC 1), LC 21), 27=204 (LC 1), (LC 21), 29=500 (LC 1), (C 9)	NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91n II; Exp C; 1 cantilever right export 3) Truss design only. For see Stand or consult 4) All plates a 5) All plates a 6) Gable stud 7) This truss chord live 8) * This trus on the bot 3-06-00 ta	ed roof live loads I CE 7-16; Vult=115 ph; TCDL=6.0psi Enclosed; MWFR left and right expo- sed; Lumber DOL gned for wind loa studs exposed to ard Industry Gabl qualified building are MT20 plates u are 2x4 MT20 uni- las spaced at 2-0-(has been designed load nonconcurrere s has been designed tom chord in all au II by 2-00-00 wide any other member	simph (3-see f; BCDL=6. S (envelop sed; end + a=1.60 plate ds in the pl wind (norm e End Deta designer a unless otherw 0 oc. ed for a 10. other a live reas where e will fit betw	cond gust) Opsf; h=25ft; (e) exterior zor vertical left an e grip DOL=1. ane of the tru: all to the face ills as applical s per ANSI/TF trwise indicate is indicated. 0 psf bottom other live loa e load of 20.0 a rectangle	Cat. he; d 60 ss), ble, Pl 1. d. ds. 0psf				LICE	GARCIA NSEO 952


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

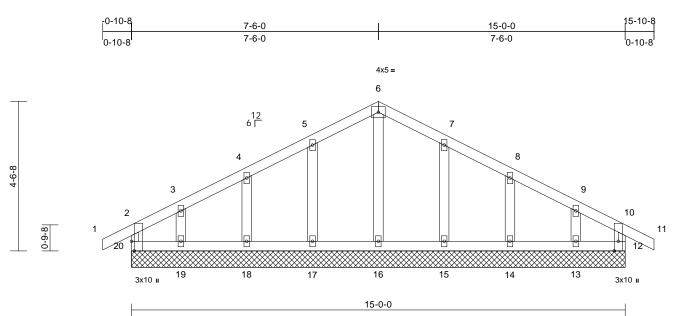
Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	E1	Roof Special	1	1	Job Reference (optional)	147856957

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:31 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:43.4

Plate Offsets (X, Y): [2:0-3-8,Edge], [3:0-3-1,0-0-9], [5:0-2-15,0-1-13], [6:0-3-8,Edge]

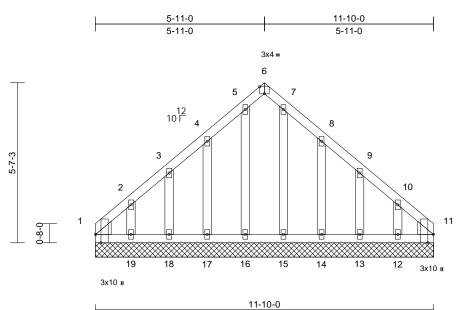

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.70	Vert(LL)	-0.28	9-1Ó	>629	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.86	Vert(CT)	-0.51	9-10	>347	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.11	Horz(CT)	0.55	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.21	3-11	>857	240	Weight: 61 lb	FT = 10%
BCDL LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASG Vasd=91n II; Exp C; cantilever right expo 3) This truss chord live 4) * This truss on the bot 3-06-00 ta	10.0 2x6 SPF 1650F 1.4f 2x4 SPF No.2 2x3 SPF No.2 Left: 2x4 SPF No.2 Right: 2x4 SPF No.2 Structural wood she 5-7-1 oc purlins. Rigid ceiling directly bracing. Except: 10-0-0 oc bracing: 9 (lb/size) 2=733/0-5 Max Horiz 2=-74 (LC Max Uplift 2=-105 (L (lb) - Maximum Com Tension 1-2=0/3, 2-3=-348/1 4-5=-1224/140, 5-6= 2-12=0/0, 3-11=-53/ 9-10=-53/1119, 5-9= 11-12=0/103, 8-9=0 ed roof live loads have	Code athing directly applie applied or 10-0-0 or -10 -8, 6=733/0-3-8 -33) C 8), 6=-105 (LC 9) pression/Maximum 16, 3-4=-1226/104, 363/76, 6-7=0/3 1119, 10-11=-53/11 -53/1119, 6-8=0/0 /82, 4-10=0/354 been considered for (3-second gust) DL=6.0psf; h=25ft; G velope) exterior zor ; end vertical left an 0 plate grip DOL=1.0 r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle	IRC2018/TPI2014 5) Provide met bearing plat joint 2 and 1 6) This truss is Internationa R802.10.2 a LOAD CASE(S) ed or 19, 19, 19, 19, 10, 10, 10, 10, 10, 10, 10, 10	Matrix-S chanical connecti e capable of with 05 lb uplift at joir designed in accc I Residential Cod and referenced st	ion (by oth istanding 1 nt 6. ordance w le sections	Wind(LL) ers) of truss 05 lb uplift a ith the 2018 5 R502.11.1 a	0.21 to t		>857	240	JUAN C	MISSOCA NN CIA
											Septembe	r 10,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	E2	Common Supported Gable		1	Job Reference (optional)	147856958
Wheeler Lumber, Waverly, KS - 6	66871,	Run: 8.43 S Aug 16 2	6 2021 MiTek Industries, Inc. Fri Sep 10 13:02:32	Page: 1		

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:32 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:35


Plate Offsets (X, Y): [20:0-3-8,Edge]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-R	0.07 0.02 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 57 lb	GRIP 197/144 FT = 10%
	2x4 SPF No.2 2x3 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (lb/size) 12=136/15 16=173/15 18=186/15 20=136/15 Max Horiz 20=74 (LC Max Uplift 12=-27 (LL 17=-53 (LL 17=-53 (LL 19=-68 (LL Max Grav 12=138 (L 16=173 (L	cept end verticals. applied or 6-0-0 oc 5-0-0, 13=140/15-0-0 5-0-0, 15=187/15-0-0 5-0-0, 17=187/15-0-0 5-0-0, 19=140/15-0-0 5-0-0 5-0, 19=140/15-0-0 5-0-0 5-0, 19=140/15-0-0 5-0, 13=-63 (LC 9), C 8), 13=-63 (LC 9), C 8), 13=-63 (LC 9), C 8), 13=-63 (LC 2), C 8), 20=-37 (LC 4), C 2), 13=140 (LC 1), C 1), 17=189 (LC 22), C 1), 17=189 (LC 21), C 1), 19=140 (LC 1),	2) d or 3) , 4) , 5) , 6) , 7) 8) 9)), 10	this design. Wind: ASCE Vasd=91mph II; Exp C; En cantilever lef right exposed Truss design only. For stu see Standard or consult qu All plates are Gable requirn Truss to be f braced again Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa thord and ar provide mec bearing plate 20, 27 lb upli	roof live loads have 7-16; Vult=115mp n; TCDL=6.0psf; Bo closed; MWFRS (c t and right exposed d; Lumber DOL=1. ed for wind loads i dids exposed to wind d Industry Gable Ei alified building des 2 x4 MT20 unless es continuous botto ully sheathed from st lateral movement spaced at 2-0-0 oc s been designed f ad nonconcurrent w as been designed n chord in all areas y 2-00-00 wide with hanical connection capable of withsta ft at joint 12, 58 lb	h (3-sec CDL=6.0 enveloped d; end V 60 plate n the plate n the plate n the plate ind Deta signer as otherwi pm chor one fac nt (i.e. d c. or a 10.0 vith any for a livs s where I fit betw (by oth anding 3 uplift at	cond gust) Dpsf; h=25ft; i e) exterior zoi vertical left an grip DOL=1. ane of the tru al to the face is as applica is as applica is per ANSI/TI se indicated. d bearing. e or securely iagonal web) D psf bottom other live loa a rectangle veen the botti ers) of truss t 7 lb uplift at j joint 17, 52 li	Cat. ne; id 60 sss)), ble, PI 1. / opsf oom to joint b			The American	JUA GAR NUME 50001	CIA *
FORCES	3-4=-34/67, 4-5=-27/ 6-7=-32/110, 7-8=-27	/31, 2-3=-48/50, /93, 5-6=-32/118, 7/83, 8-9=-25/59,		uplift at joint 15, 53 lb upli) This truss is International R802.10.2 ar DAD CASE(S)	3 lb upli lance w sections	t at joint 13. ith the 2018 R502.11.1 a				11111	UCE	SARCIA NSEO	
BOT CHORD	9-10=-40/41, 10-11= 19-20=-27/48, 18-19 16-17=-27/48, 15-16 13-14=-27/48, 12-13	=-27/48, 17-18=-27/4 =-27/48, 14-15=-27/4	18,									169 PH	952 5
WEBS	6-16=-133/0, 5-17=- 3-19=-104/77, 7-15= 9-13=-104/74											AR SION	AL ENGLIS
NULES													

Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	G1	GABLE	1	1	Job Reference (optional)	147856959

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:32 ID:p4_c7DvQapVS5sHzVsjKN5yiJAW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:40.3

Plate Offsets (X, Y):	[1:0-3-8,Edge], [6:0-2-0,Edge], [11:0-3-8,Edge]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.04	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.03	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.03	Horiz(TL)	0.00	11	n/a	n/a		
BCDL		10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 59 lb	FT = 10%
LUMBER				W	/EBS	2-19=-119/116,	3-18=-100	/74 4-17=-10	4/89					
TOP CHORD	2x4 SPF	No 2			220	5-16=-89/19, 7-								
BOT CHORD	2x4 SPF					9-13=-100/74, 1	,		,					
OTHERS	2x4 SPF			N	OTES									
WEDGE		SPF No.2				d roof live loads l		oonoidorod fo						
TEDOL		6 SPF No.2	,	1	this design.		lave been		л					
BRACING				2	0	E 7-16; Vult=115	mph (2 co)	cond quet)						
TOP CHORD	Structura	l wood she	athing directly applie			oh; TCDL=6.0ps			Cat					
	6-0-0 oc		atiling directly applie	u ui		nclosed; MWFR								
BOT CHORD	Rigid ceil		applied or 10-0-0 or	;		eft and right expo							NEOF	VISS
	bracing.			-		ed; Lumber DOL							P	
REACTIONS	(lb/size)		0-0, 11=61/11-10-0			ned for wind loa							~··	·
			1-10-0, 13=117/11-1	,		tuds exposed to rd Industry Gabl						2	S JU	
			1-10-0, 15=104/11-1			ualified building							GAR	CIA
			1-10-0, 17=123/11-1			e 2x4 MT20 unl							:	: 7 =
			1-10-0, 19=126/11-1	0-0 4		res continuous b						= -		im E
		1=-137 (L		6		s spaced at 1-4-0		u bearing.				= -	NUM	BER
	Max Uplift		6), 11=-27 (LC 7),	_		as been designe		and hottom					C . E-2000	162101 :41
			LC 9), 13=-56 (LC 9), '		ad nonconcurre			ade			1	A	
			C 9), 16=-3 (LC 5),	8									1000	GN
		17=-74 (L 19=-105 (C 8), 18=-57 (LC 8),	0	 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 								I,SON	I EPIN
	May Cray		C 8), 11=113 (LC 9),										1111	iiiiii
	Max Grav		_C 16), 13=125 (LC 9),	16)										
			_C 16), 15=125 (LC			chanical connec		ers) of truss t	to					1111.
			LC 10), 15=104 (LC LC 15), 17=131 (LC	·), ·		te capable of wit							ALL NO	GARCI
			_C 15), 19=153 (LC			lb uplift at joint 1							11 UAN	ALCIA .
FORCES	(lb) Mox		pression/Maximum	10)	uplift at join	t 16, 52 lb uplift a	at joint 1, 2	7 lb uplift at jo	oint				N CE	NSA .
FUNCES	Tension		pression/maximum		11, 76 lb up	lift at joint 14, 56	6 lb uplift at	joint 13 and	101					SO .
TOP CHORD		/116 2-3	97/76, 3-4=-81/56,		lb uplift at jo	pint 12.							1 / C	1 2
			/64, 6-7=-42/60,	1		s designed in acc							1 10	
			/26, 9-10=-82/46,			al Residential Co			and			=	: 16	952 : 🗄
	10-11=-1		120, 0, 10 = 02, 40,		R802.10.2	and referenced s	tandard Al	ISI/TPI 1.				-	D:	
BOT CHORD		/134, 18-19	=-57/134.	L	OAD CASE(S) Standard						-	H.	M
		,	7=-57/134,		-								- A HAN	ISAS S.S.
			5=-57/134,										1,50	GUN
	13-14=-5	7/134, 12-1	3=-57/134,										ON ON	ALEN
	11-12=-5	7/134											1111	mm
													Septembe	
													Sehrenine	1 10,2021

Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	G2	COMMON	5	1	Job Reference (optional)	147856960

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:32 ID:p4_c7DvQapVS5sHzVsjKN5yiJAW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

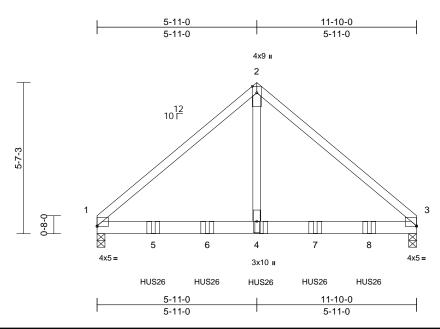
5-11-0 11-10-0 5-11-0 5-11-0 4x5 = 2 1<u>2</u> 10 Г 5-7-3 3 0-8-0 Ø 4 6x6 = 6x6 = 2x4 II 5-11-0 11-10-0 5-11-0 5-11-0

Scale =	1.40.3

Plate Offsets (X, Y): [1:Edge,0-2-12], [3:Edge,0-2-12]

	[1.Euge,0-2-12	:], [3:Edge,0-2-12]										
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.52 0.32 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.06 0.01	(loc) 3-4 3-4 3	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.03	1-4	>999	240	Weight: 38 lb	FT = 10%
BOT CHORD 2x4 WEBS 2x3 WEDGE Left Rigt BRACING TOP CHORD Stru 6-0- BOT CHORD Rigi brac REACTIONS (lb/siz Max I FORCES (lb) Ten TOP CHORD 1-22 BOT CHORD 1-22	0 oc purlins. d ceiling directly sing. ze) 1=519/0-3 Horiz 1=-137 (L Uplift 1=-50 (LC	C 8), 3=-50 (LC 9) npression/Maximum 578/101	Internationa R802.10.2 a LOAD CASE(S)	Matrix-S designed in acco Residential Code nd referenced sta Standard	e sections	R502.11.1 a	0.03	1-4	>999	240	Weight: 38 lb 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	BER
 Unbalanced roo this design. Wind: ASCE 7-1 Vasd=91mph; T II; Exp C; Enclos cantilever left ar right exposed; L This truss has b chord live load r * This truss has on the bottom cl 3-06-00 tall by 2 chord and any o Provide mechar 	6; Vult=115mph CDL=6.0psf; BC sed; MWFRS (er dright exposed umber DOL=1.6 een designed fo bonconcurrent wi been designed f nord in all areas -00-00 wide will ther members. ical connection i pable of withstar	(3-second gust) DL=6.0psf; h=25ft; C twelope) exterior zon ; end vertical left ann 0 plate grip DOL=1.6 r a 10.0 psf bottom th any other live load for a live load of 20.0 where a rectangle fit between the botto	Cat. le; d 30 ds. lpsf m							"THUMP	LICE	GARCIA NSEO 952

- 2 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 50 lb uplift at joint 5) 1 and 50 lb uplift at joint 3.


MiTek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

September 10,2021

Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	G3	COMMON GIRDER	1	2	Job Reference (optional)	147856961

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:33 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

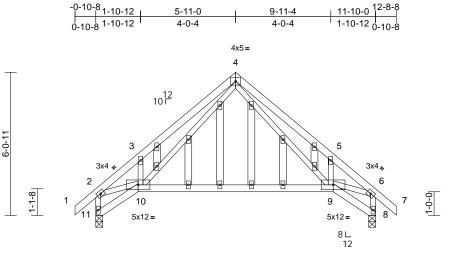
Page: 1

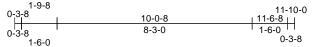
Scale	= 1:42.7

Plate Offsets (X, Y): [1:Edge,0-0-4], [3:Edge,0-0-4]

.oading (psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof) 25.0	Plate Grip DOL	1.15		тс	0.69	Vert(LL)	-0.08	1-4	>999	360	MT20	197/144
CDL 10.0	Lumber DOL	1.15		BC	0.64	Vert(CT)	-0.14	1-4	>999	240		
CLL 0.0	Rep Stress Incr	NO		WB	0.64	Horz(CT)	0.01	3	n/a	n/a		
CDL 10.0	Code	IRC2018	8/TPI2014	Matrix-S		Wind(LL)	0.04	1-4	>999	240	Weight: 102 lb	FT = 10%
4-11-5 oc purlins OT CHORD Rigid ceiling direct bracing. EACTIONS (lb/size) 1=406 Max Horiz 1=-135 Max Uplift 1=-125	eathing directly applie y applied or 10-0-0 oc 0-3-8, 3=4238/0-3-8 LC 6) LC 8), 3=-127 (LC 9) mpression/Maximum i=-4344/179 -60/3168 ether with 10d vs: 2x4 - 1 row at 0-9-0 llows: 2x6 - 2 rows - 1 row at 0-9-0 oc. y applied to all plies, ack (B) face in the LO unections have been s noted as (F) or (B), e been considered for h (3-second gust) CDL=6.0psf; h=25ft; C mvelope) exterior zon d ; end vertical left and	6) d or 7) 8) 9) 10 LC 1) 0 AD	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide meci bearing plate joint 1 and 12 This truss is International R802.10.2 ar Use Simpsor Truss) or eq 2-1-0 from the back face of D) Fill all nail ho DAD CASE(S) Dead + Roo Plate Increas Uniform Loa Vert: 1-2: Concentrate Vert: 4=-	of Live (balanced ase=1.15	with any d for a liv as where will fit betw 5. In (by oth- tanding 1 3. Ir dance wi e sections indard AN (26 (14-10) t 2-0-0 oc -0 to com r is in con): Lumber 3=-20	other live loz e load of 20. a rectangle veen the bott ers) of truss 1 23 lb uplift at th the 2018 R502.11.1 a ISI/TPI 1. bd Girder, 4- max. startin nect truss(es tact with lum Increase=1.	Opsf om to t 10d g at) to ber.				JUAN C BOOK SYON September	CIA BER 62101 LENG ALENG

- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	H1	GABLE	1	1	Job Reference (optional)	147856962

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:33 ID:p4_c7DvQapVS5sHzVsjKN5yiJAW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5

BRACING

TOP CHORD

BOT CHORD

FORCES

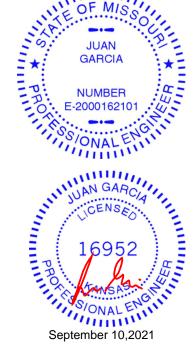
TOP CHORD

BOT CHORD

WEBS

NOTES 1

REACTIONS (lb/size)


bracing.

Tension

Scale = 1:48.7	Scale = 1:48.7											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.22	Vert(LL)	-0.15	9-10	>913	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.51	Vert(CT)	-0.32	9-10	>441	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.22	Horz(CT)	0.04	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.02	9-10	>999	240	Weight: 66 lb	FT = 10%
LUMBER 8) * This truss has been designed for a live load of 20.0psf TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 OTHERS 2x4 SPF No.2 9) Bearing at joint(s) 11, 8 considers parallel to grain value												

- Bearing at joint(s) 11, 8 considers parallel to grain value 9) using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 71 lb uplift at joint 11 and 71 lb uplift at joint 8.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

1)	Unbalanced roof live loads have been considered for
	this design.
2	Wind ACCE 7 10: With 115mph (2 second such)

Max Horiz 11=185 (LC 7)

Structural wood sheathing directly applied or

8=592/0-3-8, 11=592/0-3-8

5-9-10 oc purlins, except end verticals.

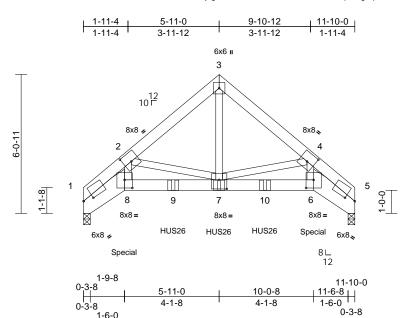
Max Uplift 8=-71 (LC 9), 11=-71 (LC 8)

(lb) - Maximum Compression/Maximum

1-2=0/44, 2-3=-860/115, 3-4=-943/273, 4-5=-896/208, 5-6=-844/48, 6-7=0/44, 2-11=-602/98, 6-8=-597/58

10-11=-199/216, 9-10=-27/344, 8-9=-20/45

4-9=-155/511, 5-9=-239/202, 4-10=-208/622, 3-10=-233/198, 2-10=-51/633, 6-9=-1/633


Rigid ceiling directly applied or 10-0-0 oc

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated. Truss to be fully sheathed from one face or securely 5)
- braced against lateral movement (i.e. diagonal web). 6) Gable studs spaced at 1-4-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Job	Truss	Truss Type Qty		Ply	Lot 137 W0		
W0137	H2	Roof Special Girder	1	2	Job Reference (optional)	147856963	

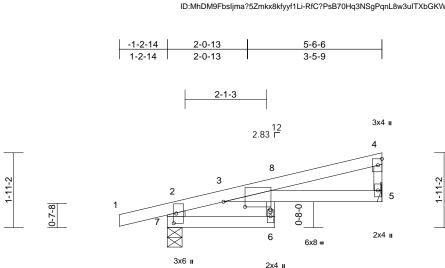
Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:33 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

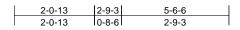
Page: 1

Scale = 1:50.3

	(X, T). [1.0-3- 4 ,0-1-0]	, [2.0-4-0,0-4-0], [4.0-	4-0,0-4-0	l, [0.0-0- 4 ,0-1-0), [0.0-4-0,0-4-4]	, [7.0-4-0	0-4-12], [0.0-	4-0,0-4-4	.]					
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.51 0.43 0.61	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.07 -0.12 0.12 0.04	(loc) 6-7 6-7 5 7-8	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 167 lb	GRIP 197/144 FT = 10%	
 (0.131"x3' Top chord staggered Bottom ch staggered oc. Web conn All loads a except ifn CASE(S) provided t unless oth 	2x10 SP DSS *Exce 2.0E 2x4 SPF No.2 Structural wood she 4-9-10 oc purlins. Rigid ceiling directly bracing. (lb/size) 1=4038/0 Max Horiz 1=-118 (L (Max Uplift 1=-118 (L (lb) - Maximum Com Tension 1-2=-9231/342, 2-3: 3-4=-4205/182, 4-5: 1-8=-321/6661, 7-8: 6-7=-125/5259, 5-6: 3-7=-110/4781, 4-7: 4-6=-63/4970, 2-7=: s to be connected toge ") nails as follows: 1at 0-9-0 oc. nords connected as follow 1at 0-9-0 oc. 2x6 - 2 ro exected as follows: 2x4 are considered equally noted as front (F) or ba section. Ply to ply com o distribute only loads pervise indicated.	LC 8), 5=-118 (LC 9) hpression/Maximum =-4205/157, =-9231/242 =-267/5259, =-150/6661 =-2100/191, -2100/232, 2-8=-139/ ther with 10d s: 2x6 - 2 rows lows: 2x10 - 2 rows wws staggered at 0-4- - 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO hections have been noted as (F) or (B),	5) d or 6) 7) 8) 9) 4970 1(12 0 0 AD 1)	Vasd=91mpł II; Exp C; En cantilever lef right exposed This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Bearing at jo using ANSi/T designer sho Provide mec bearing plate 1 and 118 lb This truss is International R802.10.2 ar U Use Simpsor Truss) or equ 3-11-0 from back face of I) Fill all nail hc 2) Hanger(s) or provided suff lb down and lb up at 10-C of such conn others. DAD CASE(S) Dead + Roo Plate Increa Uniform Loa	of Live (balanced ase=1.15	BCDL=6. (envelopped; end v 1.60 plate for a 10. : with any d for a 10. : ers parall in formul ty of bear on (by oth standing 1 or dance w e sections and (A1-1): treat and (A1-1)	Opsf; h=25ft; (a) exterior zor vertical left an grip DOL=1. D psf bottom other live loa e load of 20.0 a rectangle veen the botto el to grain val a. Building ing surface. ers) of truss t 18 lb uplift at the 2018 s R502.11.1 a SIS/TPI 1. Dd Girder, 4-1 c max. starting nnect truss(er htact with lum b) shall be ated load(s) 1 design/select boonsibility of	ne; id 60 .ds. Dpsf om lue to to to g at s) to ber. 408 hd 27 ion 15,		9=-1408	8 (B), 1	(B), 6=-1408 (B), 10=-1408 (B) JUA GARG NUME E-20001 SS/ONA LCE 169 D	MISSOUR N CIA BER 62101 LENG	
												Sontombor		

September 10,2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

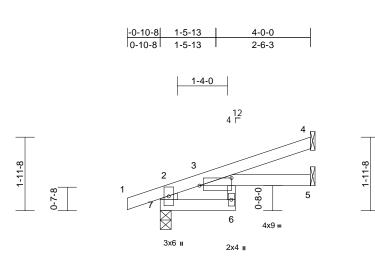

Plate Offsets (X, Y): [1:0-5-4,0-1-6], [2:0-4-0,0-4-8], [4:0-4-0,0-4-8], [5:0-5-4,0-1-6], [6:0-4-0,0-4-4], [7:0-4-0,0-4-12], [8:0-4-0,0-4-4]

Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	147050004	
W0137	J1	Diagonal Hip Girder	2	1	Job Reference (optional)	147856964	

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:34 ID:MhDM9Fbsljma?5Zmkx8kfyyf1Li-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.7


Plate Offsets (X, Y): [3:0-6-11,0-1-10], [7:0-3-0,0-0-12]

	(,, ,,). [3.0-0-11,0-1-1	0], [7.0-0-0,0-0-12]										
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.38	DEFL Vert(LL)	in -0.06	(loc) 6	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.27	Vert(CT)	-0.14	6	>432	240	-	
BCLL	0.0*	Rep Stress Incr	NO	WB	0.03	Horz(CT)	0.04	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.07	6	>890	240	Weight: 17 lb	FT = 10%
 Vasd=91n II; Exp C; cantilever right expo This truss chord live * This trus on the bot 3-06-00 ta chord and Refer to g Provide m bearing pl 7 and 40 I This truss Internation 	2x4 SPF No.2 2x3 SPF No.2 *Exce 5-6-6 oc purlins, exc Rigid ceiling directly bracing. (Ib/size) 5=225/ Ma Max Horiz 7=63 (LC Max Uplift 5=-40 (LC (Ib) - Maximum Com Tension 2-7=-340/113, 1-2=0 3-4=-138/15, 4-5=-13	athing directly applie cept end verticals. applied or 6-0-0 oc echanical, 7=364/0-4 5) 8), 7=-99 (LC 4) pression/Maximum /24, 2-3=-33/63, 51/55 09 (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left and D plate grip DOL=1.6 • a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto s connections. by others) of truss to ding 99 lb uplift at jo ence with the 2018 ections R502.11.1 ar	cat. e; b) cat. e; b) cat. e; b) cat.	or other connection ufficient to support 27 lb up at 2-9-8, i 8 on top chord, and d 4 lb down and 3 le edesign/selection ID CASE(S) section s are noted as fron S) Standard Roof Live (balanced rease=1.15 Loads (lb/ft) -2=-70, 2-4=-70, 6- rated Loads (lb) i=6 (F=3, B=3)	concentra and 66 lb d 4 lb dow lb up at 2 of such co ers. n, loads a t (F) or ba d): Lumber	ted load(s) 6 down and 27 n and 3 lb up -7-15 on bott nnection dev oplied to the ck (B).	lb o at om <i>v</i> ice face				DONE E OF JU/ GAR NUM E-2000 SS/ON JU/ SS/ON JU/ CE 16 DONE TAN SEPTEMBE	CIA BER 162101 ALEN SAS 952 USAS

Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	J2	Jack-Open	3	1	Job Reference (optional)	147856965

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:34 ID:3oEsYD58y7cPaowtrqv6VJyf1ML-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

	2-0-0	
1-5-13	T	4-0-0
1-5-13	0-6-3	2-0-0

Scale = 1:30.7

Plate Offsets (X, Y): [3:0-10-4,0-2-7]

- 1410 0110010 (,, i). [0.0 10 4 ,0 2 7	1										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.16 0.15 0.02	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.03 0.01 0.02	(loc) 6 6 5 6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 12 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	Structural wood she 4-0-0 oc purlins, ex Rigid ceiling directly bracing. (Ib/size) 4=107/ M	 v applied or 6-0-0 oc lechanical, 5=54/ cal, 7=267/0-3-8 cal, 7=-63 (LC 4) 	Internatio R802.10. 2 LOAD CASE ed or	is designed in acc nal Residential Coc 2 and referenced st (S) Standard	de sections	R502.11.1 a	and			*	ARE OF JUJ GAR	
FORCES	(lb) - Maximum Con Tension 2-7=-250/76, 1-2=0/									PH	NUM	• 41.
BOT CHORD WEBS NOTES	2-7-2-230/70, 1-2-0/ 3-4=-30/27 6-7=-46/0, 3-5=0/0 3-6=0/58 CE 7-16; Vult=115mph									111	KSS/ON	ALENGINI
Vasd=91n II; Exp C; cantilever right expor 2) This truss chord live 3) * This trus on the bot 3-06-00 ta chord and 4) Refer to gi 5) Provide m bearing pl	ph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 has been designed fo load nonconcurrent w is has been designed fo tom chord in all areas all by 2-00-00 wide will any other members. irder(s) for truss to tru techanical connection ate capable of withsta b uplift at joint 4.	XDL=6.0psf; h=25ff; C nvelope) exterior zon ; end vertical left and 60 plate grip DOL=1.6 r a 10.0 psf bottom ith any other live load for a live load of 20.0 where a rectangle fit between the botto iss connections. (by others) of truss to	ie; d 30 ds. psf m							annua.	UCE	GARCIA NSEO 952

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 10,2021

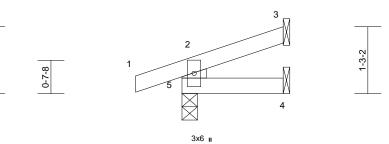
16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	J3	Jack-Open	4	1	Job Reference (optional)	147856966

1-3-2

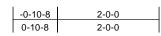
Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:34 ID:E6ql9Yc2NqZ4nesBVQBkttyf1Mz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

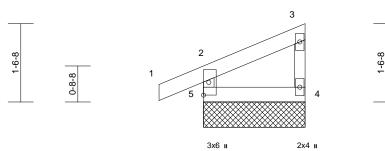

September 10,2021

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

1-10-15


0		4 0 4	~
Scale	=	1:21	.8

Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.08	DEFL Vert(LL)	in 0.00	(loc) 4-5	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 6 lb	FT = 10%
LUMBER TOP CHORD	2x4 SPF No.2			•		•					•	
BOT CHORD												
WEBS	2x6 SPF No.2											
BRACING												
TOP CHORD	Structural wood she	athing directly applie	ed or									
		except end verticals										
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	5									
REACTIONS		chanical, 4=10/									IN OF	MICH
		al, 5=178/0-3-8									NE	SS
	Max Horiz 5=36 (LC										· · · · ·	
	Max Uplift 3=-22 (LC Max Grav 3=40 (LC		170							-	S. JUA	NI P
	(LC 1)	1), 4=20 (LC 3), 5=	170							-	GAR	
FORCES	(lb) - Maximum Corr	ppression/Maximum								= *	GAR	
1 ONOLO	Tension	iprocolori/maximum								=	1	
TOP CHORD	2-5=-154/76, 1-2=0/	24, 2-3=-24/9								- 7	NUMI	BEB C
BOT CHORD	4-5=0/0									-1	E-20001	• []]
NOTES										1	. L-2000	
	CE 7-16; Vult=115mph										A	GN
	nph; TCDL=6.0psf; BC										I,SONI	ENIN
	Enclosed; MWFRS (er										1111	iiiiii
	left and right exposed sed; Lumber DOL=1.6											
	has been designed fo		50								UCE T	IIIII.
	load nonconcurrent wi		ds								IN UAN C	GARC
	s has been designed f										N 20	····· A .
on the bot	tom chord in all areas	where a rectangle									CE	NSED
	Il by 2-00-00 wide will	fit between the botto	m							-	i Alton	1
	any other members.									-		
	irder(s) for truss to tru										169	952
	echanical connection ate capable of withstar									-	D:	1
	b uplift at joint 3.	nung oo in upint at j	JIIIL							-	B	4. 145
	is designed in accorda	ance with the 2018									- An KAN	ISAS PAS
	nal Residential Code s		nd								1.50	Gin
	and referenced stand										ON	ALE
LOAD CASE	S) Standard											IIIII.
•											Sontombo	r 10 2021


Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	J4	Jack-Closed Supported Gable	1	1	Job Reference (optional)	147856967

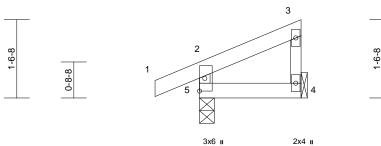
Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:35 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-0-0

Scale = 1:22.7

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 7 lb	FT = 10%
BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS (I M FORCES TOP CHORD BOT CHORD SOT CHORD SOT CHORD BOT CHORD SOT	0.0* 10.0 2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood shea 2-0-0 oc purlins, exc Rigid ceiling directly bracing.	Rep Stress Incr Code athing directly applie cept end verticals. applied or 10-0-0 or 0, 5=168/2-0-0 5). 5), 5=-40 (LC 4) pression/Maximum 26, 2-3=-43/9, 3-4=- (3-second gust) DL=6.0psf; h=25ft; G velope) exterior zor ; end vertical left an 0 plate grip DOL=1.0 the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TF n chord bearing. ne face or securely (i.e. diagonal web). a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto by others) of truss to	YES IRC2018/TPI2014 9) This truss is Internationa R802.10.2 (Content C	WB Matrix-R s designed in acco al Residential Code and referenced sta	0.00 ordance w e sections	Horz(CT) ith the 2018 5 R502.11.1 a	0.00	4		n/a	JU GAF	MISSOLAN AN ICIA BER 162101 AL ENG


MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	J5	Jack-Closed	5	1	Job Reference (optional)	147856968

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:35 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-10-8 2-0-0 0-10-8 2-0-0



2x4 🛚

2-0-0

Scale = 1:22.7

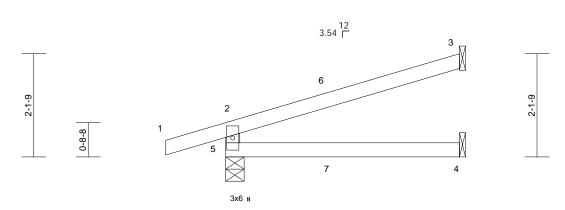
Scale = 1:22.7												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	4-5	>999	240		
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB Matrix-R	0.00	Horz(CT) Wind(LL)	0.00 0.00	4 4-5	n/a >999	n/a 240	Weight: 7 lb	FT = 10%
BCDL	10.0	Code	IRG2010/1FI2014	Wallix-R		WIND(LL)	0.00	4-5	>999	240	weight. 7 ib	FI = 10%
LUMBER												
TOP CHORD	2x4 SPF No.2											
BOT CHORD	2x4 SPF No.2											
WEBS	2x3 SPF No.2											
BRACING		athing discatly appli										
TOP CHORD	Structural wood she 2-0-0 oc purlins, ex		ed or									
BOT CHORD	Rigid ceiling directly		ic.									
ber energy	bracing.											
REACTIONS	(lb/size) 4=62/ Me	chanical, 5=168/0-3	-8								NILL.	1911
	Max Horiz 5=58 (LC	5)									NE OF	MISS
	Max Uplift 4=-19 (LC	C 5), 5=-40 (LC 4)								1	A	0,1
FORCES	(lb) - Maximum Corr	pression/Maximum								2		·
	Tension									2	o JU	
TOP CHORD BOT CHORD	2-5=-149/52, 1-2=0/ 4-5=-19/12	26, 2-3=-43/9, 3-4=	-45/24							=*	GAF	
NOTES	4-5=-19/12									-	÷	
	CE 7-16; Vult=115mph	(2 second quist)								- 7	NUN	
	nph; TCDL=6.0psf; BC		Cat							- 7	E-2000	• 41.
	Enclosed; MWFRS (er										L-2000	102101
	left and right exposed									1	A	- GN
	sed; Lumber DOL=1.6		60								1.S/ON	AL ENIN
	has been designed fo										1111	anin' a
	load nonconcurrent wi											
A) ^ I his frus	s has been designed f	or a live load of 20 (Inet									

4) Refer to girder(s) for truss to truss connections.

- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 40 lb uplift at joint 5 and 19 lb uplift at joint 4.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1


Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	J8	Diagonal Hip Girder	1	1	Job Reference (optional)	147856969

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:35 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

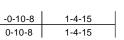
4-9-14

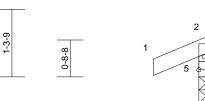
<u> </u>		
Scale	=	1:23.8

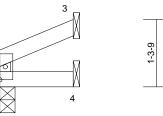
Leading TCLL (roof) (psf) 25.0 LUMER Spacing Plate Grip DL 2-0-0 1.15 CSI DEFL in (ioc) ///defl L/d BCLL 0.0° Plate Grip DL 1.15 BC 0.21 Vert(L1) -0.02 4.5 >999 360 BCLL 0.0° Rep Stress Incr NO WB 0.00 Horz(CT) 0.01 3 n/a n/a BCDL 10.0 Code IRC2018/TPI2014 WB 0.00 Horz(CT) 0.01 3 n/a n/a IMMER Code IRC2018/TPI2014 WB 0.00 Horz(CT) 0.01 4.5 >999 240 Weight: 13 Ib FT = 10% UMBER Code IRC2018/TPI2014 Matrix-R Wind(L1) 0.02 4.5 >999 240 Weight: 13 Ib FT = 10% VEBS 2x4 SPF No.2 BRACING Toce Code Toce Co														
BCDL 10.0 Code IRC2018/TPI2014 Matrix-R Wind(LL) 0.02 4-5 >999 240 Weight: 13 lb FT = 10% LUMBER TOP CHORD 2x4 SPF No.2 </th <th>TCLL (roof) TCDL</th> <th>25.0 10.0</th> <th>Plate Grip DOL Lumber DOL</th> <th>1.15 1.15</th> <th>TC BC</th> <th>0.21</th> <th>Vert(LL) Vert(CT)</th> <th>-0.02 -0.05</th> <th>4-5 4-5</th> <th>>999 >999</th> <th>360 240</th> <th>-</th> <th></th> <th></th>	TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC	0.21	Vert(LL) Vert(CT)	-0.02 -0.05	4-5 4-5	>999 >999	360 240	-		
TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 4-9-14 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 cc bracing. REACTIONS (lb/size) 3=140/ Mechanical, 4=52/ Max Horiz 5=70 (LC 4) Max Grav 3=140 (LC 1), 4=86 (LC 3), 5=317 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-5=-280/130, 1-2=0/27, 2-3=-70/30 BOT CHORD 4-5=0/0 NUMBER 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; B=25t; Cdat. I]: Exp (C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and circle vertica						0.00						Weight: 13 lb	FT = 10%	
Tores (ib) - Maximum Compression/Maximum Tension TOP CHORD 2-5=-280/130, 1-2=0/27, 2-3=-70/30 BOT CHORD 4-5=0/0 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed ; end vertical left and right exposed ; end vertical left and	TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 Structural wood s 4-9-14 oc purlins, Rigid ceiling direc bracing. (Ib/size) 3=140/ Mecha Max Horiz 5=70 (I Max Uplift 3=-64 (Max Grav 3=140 (LC 1)	except end verticals. tty applied or 10-0-0 or Mechanical, 4=52/ nical, 5=317/0-4-9 _C 4) LC 8), 5=-92 (LC 4) (LC 1), 4=86 (LC 3), 5=	ed or (s) is the constant of the formula of the for	ed sufficient to suppo and 22 lb up at 2-1-0 2-1-0 on top chord, ar and 2 lb down and 2 The design/selection re responsibility of ot LOAD CASE(S) secti truss are noted as fro SE(S) Standard + Roof Live (balance Increase=1.15 rm Loads (lb/ft) rt: 1-2=-70, 2-3=-70, entrated Loads (lb)	rt concentr, , and 66 lb nd 2 lb dow lb up at 2- n of such co hers. on, loads a nt (F) or ba	ated load(s) 6 down and 22 /n and 2 lb up 1-0 on bottom onnection dev pplied to the lock (B).	lb at vice face			"III.			
BOT CHORD 4-5=0/0 NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed ; end vertical left and right exposed ; end vertical left and		Tension		ve	n. 7=4 (F=2, D=2)						Ξ.		ľ	E
NOTES 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed ; end vertical left and			2=0/27, 2-3=-70/30								=	•	• 4	53
Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed ; end vertical left and		4 5-6/6									-	C. E-2000	162101	-
2) This truss has been designed for a 10.0 psf bottom	Vasd=91m II; Exp C; E cantilever I right expos	nph; TCDL=6.0psf; Enclosed; MWFRS left and right expos sed; Lumber DOL=	BCDL=6.0psf; h=25ft; ((envelope) exterior zor ed ; end vertical left an I.60 plate grip DOL=1.0	ne; Id								SS ON	AL ENGLIN	•

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 92 lb uplift at joint 5 and 64 lb uplift at joint 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD


Mitek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017


Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	Jə	Jack-Open	2	1	Job Reference (optional)	147856970

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:35 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

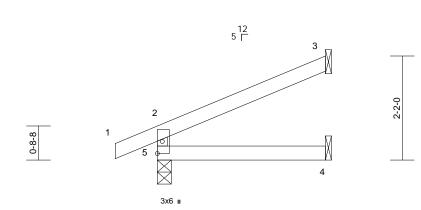
3x6 "

1-4-15

Scale =	4.00.0
Scale =	1:22.2

Ocale = 1.22.2												
Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.06 0.01	DEFL Vert(LL) Vert(CT)	in 0.00 0.00	(loc) 4-5 4-5	l/defl >999 >999	L/d 360 240	PLATES MT20	GRIP 197/144
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB Matrix-R	0.00	Horz(CT) Wind(LL)	0.00 0.00	3 4-5	n/a >999	n/a 240	Weight: 5 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	1-4-15 oc purlins, e	eathing directly applie except end verticals. Applied or 10-0-0 or										
FORCES	(lb) - Maximum Con Tension	npression/Maximum								Ξ*	GAN	*=
TOP CHORD BOT CHORD NOTES	2-5=-136/45, 1-2=0/ 4-5=0/0									Phili	NUM E-2000	• 41-
Vasd=91m II; Exp C; I cantilever	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6	DL=6.0psf; h=25ft; 0 nvelope) exterior zor ; end vertical left and	ne; d								SS ON	AL ENGIN
2) This truss	has been designed fo load nonconcurrent w	r a 10.0 psf bottom									IL JUAN	GARC
3) * This trus on the bot 3-06-00 ta	s has been designed to tom chord in all areas Il by 2-00-00 wide will any other members.	for a live load of 20.0 where a rectangle	psf								LICE	NSED
5) Provide m bearing pla	right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 4) Refer to girder(s) for truss to truss connections. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 34 lb uplift at joint 5 and 19 lb uplift at joint 3.									952		
Ínternatior	is designed in accord nal Residential Code s and referenced stand	ections R502.11.1 a	nd								AN SSION	VSAS. GININ
LOAD CASE(S) Standard										Sontombo	r 10 2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


September 10,2021

Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	J10	Jack-Open	8	1	Job Reference (optional)	147856971

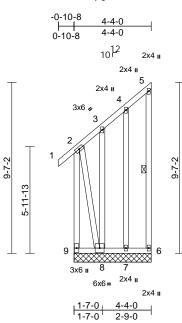
2-2-0

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:35 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

3-6-0

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15	тс	0.16	Vert(LL)	-0.01	4-5	>999	360	MT20	197/144
TCDL	1	0.0	Lumber DOL	1.15	BC	0.10	Vert(CT)	-0.01	4-5	>999	240		
BCLL		0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	3	n/a	n/a		
BCDL	1	0.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	4-5	>999	240	Weight: 10 lb	FT = 10%
LUMBER													
TOP CHORD	2x4 SPF No.2												
BOT CHORD	2x4 SPF No.2												
WEBS	2x3 SPF No.2												
BRACING													
TOP CHORD			athing directly applie	ed or									
			cept end verticals.										
BOT CHORD	bracing.	irectly	applied or 10-0-0 oc	;									115
REACTIONS	· · ·		echanical, 4=37/									N' OF	MIGUL
	Max Horiz 5=6		al, 5=229/0-3-8									NE	Sol
			C 8), 5=-34 (LC 8)								2	18	
			C 1), 4=63 (LC 3), 5=	-229							20	JUA	N :D
	(LC		- ,, (,, -								Ξ.	GAR	
FORCES	(lb) - Maximur Tension	n Con	npression/Maximum								Ξ*	GAIT	× E
TOP CHORD		1-2=0/	26, 2-3=-56/31								= 7	NUM	
BOT CHORD		1 2-0/	20, 2 0 - 00,01								= 5		• 41.
NOTES											-1	E-20001	102101
	CE 7-16; Vult=1	15mph	(3-second gust)								1	A	- GN
			DL=6.0psf; h=25ft; C									S/ONI	ENIN
			nvelope) exterior zon									1111	i i i i i i i i i i i i i i i i i i i
			; end vertical left and 0 plate grip DOL=1.6										
			r a 10.0 psf bottom	0								LICE THE	IIIII.
			ith any other live load	ds.								IN IAN C	GARC
			for a live load of 20.0									1 30	NO
			where a rectangle									UCE	NOED .
			fit between the botto	m							-		1 4
	any other mem		iss connections.								-	1 1 0	
			(by others) of truss to)								10	952 🗧
			nding 34 lb uplift at jo								-	P	1 : <u>e</u> =
	b uplift at joint 3											0.	14:143
	6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and										ISA?		
				nd								SION	AL ENUIL
	R802.10.2 and referenced standard ANSI/TPI 1.												
LUAD CASE(5) Standard												* 10 0001

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



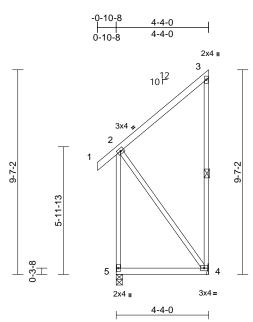
September 10,2021

Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	K1	Monopitch Supported Gable	2	1	Job Reference (optional)	147856972

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:36 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:64.7
---------	--------


Scale = 1:64.7													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TI	PI2014	CSI TC BC WB Matrix-P	0.32 0.03 0.36	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 53 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 4-4-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 6=47/4-4- 8=107/4-4 Max Horiz 9=-221 (L Max Uplift 6=-23 (LC (LC 5), 9= Max Grav 6=50 (LC	 applied or 10-0-0 oc 5-6 0, 7=128/4-4-0, 4-0, 9=153/4-4-0, C 6) 2 8), 7=-77 (LC 8), 8= -508 (LC 6) 	ci 7) * 00 3 ci 8) P b b b b b b 9) T Ir Ir R LOAL	hord live loa This truss h n the bottor -06-00 tall b hord and ar rovide mec earing plate joint 9, 23 lb o uplift at joi his truss is nternational	designed in accor Residential Code nd referenced sta	with any d for a liv as where vill fit betv s. n (by oth tanding 5 14 lb uplif rdance w e sections	other live load e load of 20.0 a rectangle veen the botto ers) of truss to 08 lb uplift at t at joint 8 and ith the 2018 s R502.11.1 ar	ipsf om d 77			4 × 50	JUA GAR	CIA ★
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Corr Tension 2-9=-648/519, 1-2=(3-4=-98/53, 4-5=-40 8-9=-155/139, 7-8=(3-8=-76/45, 4-7=-11)/46, 2-3=-139/49,)/21, 5-6=-40/29)/0, 6-7=0/0									The second se	E-2000	• 41-
NOTES	3-8=-76/45, 4-7=-11	7/94, 2-8=-575/641											
 Wind: AS(Vasd=91n II; Exp C; cantilever exposed; Truss des only. For see Stand or consult Gable req Truss to b braced ag 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed Lumber DOL=1.60 pla igned for wind loads in studs exposed to wind lard Industry Gable En qualified building desi uires continuous botto e fully sheathed from of painst lateral movemen ds spaced at 1-4-0 oc.	DL=6.0psf; h=25ft; C nvelope) exterior zono ; end vertical left te grip DOL=1.60 the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP m chord bearing. one face or securely	e; s le,								annun.	PROCESSION	952 952 ALENG

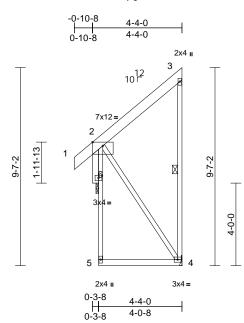
Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	К2	Monopitch	6	1	Job Reference (optional)	147856973

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:36 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = $1:54$

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.47	Vert(LL)	-0.02	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.17	Vert(CT)	-0.03	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.29	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 30 lb	FT = 10%
LUMBER			LOAD CASE(S)	Standard								
TOP CHORD	2x4 SPF No.2		.,									
BOT CHORD												
WEBS	2x3 SPF No.2											
BRACING	.											
TOP CHORD			ed or									
BOT CHORD	4-4-0 oc purlins, ex Rigid ceiling directly											
BOT CHORD	bracing.	applied of 10-0-0 0										
WEBS	1 Row at midpt	3-4										1117
REACTIONS		echanical, 5=262/0-	-3-8								OF	MISSI
	Max Horiz 5=-221 (L										NXE	
	Max Uplift 4=-266 (L	C 8), 5=-69 (LC 6)								5	7	
	Max Grav 4=335 (L0	C 15), 5=287 (LC 16	6)								∽. JU/	AN
FORCES	(lb) - Maximum Com	npression/Maximum								24	GAR	CIA
TODOLODD	Tension									2.0	1	10 E
TOP CHORD	1-2=0/44, 2-3=-110/ 2-5=-246/111	80, 3-4=-149/112,								= T		in I
BOT CHORD										= 5	NUM	• 41.
WEBS	2-4=-238/266									-	E-2000	162101
NOTES										1	A	
	CE 7-16; Vult=115mph	(3-second aust)									1.SION	ENI
	nph; TCDL=6.0psf; BC											
	Enclosed; MWFRS (er		ne;									11.0
	left and right exposed											1111.
	Lumber DOL=1.60 plat has been designed for										11 UAN	GARO
	load nonconcurrent wi		ads								Nº 30	····· A **
	ss has been designed f										CE	NSED
	ttom chord in all areas									2	l / ř	~ ^ ^ E
	all by 2-00-00 wide will	fit between the bott	om							11111		
	any other members.										16	952
	irder(s) for truss to trus nechanical connection (to							-	DI	1 i c =
	late capable of withstar									-	-H.	h .! # 5
	d 69 lb uplift at joint 5.		L.								- A HAN	SAS SS
	is designed in accorda	ance with the 2018									1.50	NGIN
	nal Residential Code se		and								IN ON	ALE
R802.10.2	2 and referenced stand	lard ANSI/TPI 1.										um.
											Septembe	r 10 2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

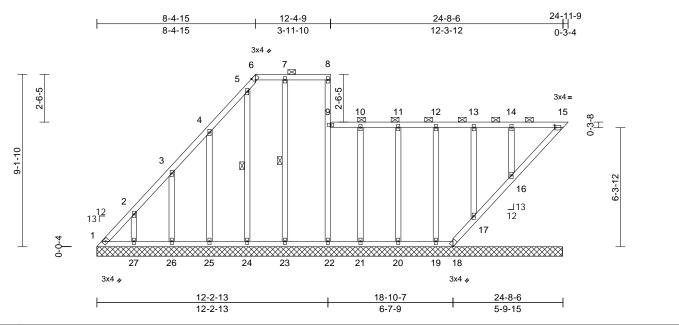
September 10,2021

Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	КЗ	Monopitch	4	1	Job Reference (optional)	147856974

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:36 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:55.8

Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.30 0.13 0.03	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.02 -0.07 -0.01	(loc) 4-5 4-5 4 4-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a	PLATES MT20 Weight: 36 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2	Code	7) Provide n	nechanical connection late capable of withs		ers) of truss t	to	4-5	>999	240	weight. So ib	F I = 10%
WEBS 2x3 SPF No.2 8) This truss is designed in accordance with the 2018 OTHERS 2x4 SPF No.2 International Residential Code sections R502.11.1 and BRACING R802.10.2 and referenced standard ANSI/TPI 1. TOP CHORD Structural wood sheathing directly applied or LOAD CASE(S)											
BOT CHORD Structural wood snei 4-4-0 oc purlins, exi BOT CHORD Rigid ceiling directly bracing.	cept end verticals.		Standard								900.
bracing. WEBS 1 Row at midpt 3-4 REACTIONS (Ib/size) 4=155/ Mechanical, 6=276/0-1-8 Max Horiz 6=-222 (LC 6) Max Uplift 4=-181 (LC 8) Max Grav 4=159 (LC 15), 6=276 (LC 1)											
FORCES (Ib) - Maximum Com Tension									<u>=</u> *	. GAN	*
TOP CHORD 1-2=0/57, 2-3=-131/8 5-6=0/78, 2-6=-237/0									EPH	E-20001	• 111
BOT CHORD 4-5=-55/13 WEBS 2-4=-24/100										S E-2000	
NOTES 1) Wind: ASCE 7-16; Vult=115mph Vasd=91mph; TCDL=6.0psf; BC		Cat.								S/ON/	IL ENUT
cantilever left and right exposed exposed; Lumber DOL=1.60 plat	II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60										
 2) This truss has been designed for chord live load nonconcurrent wi 3) * This truss has been designed for on the bottom chord in all areas 3-06-00 tall by 2-00-00 wide will 	th any other live load or a live load of 20.0 where a rectangle	psf							IIII.	UCE 1 C	NSE0


- chord and any other members. Refer to girder(s) for truss to truss connections. 4)
- Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building 5) designer should verify capacity of bearing surface.
- 6) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.

Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	LAY2	Lay-In Gable	1	1	Job Reference (optional)	147856975

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:37 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

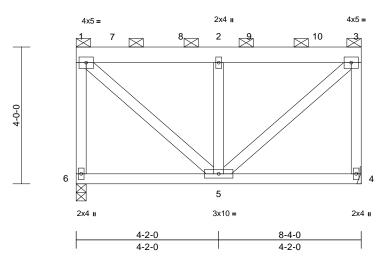
Page: 1

Plate Offsets (X, Y): [6:0-1-7,Edge], [15:0-0-10,0-1-8]

Scale = 1:61

	x, ı): [0:0 i i,⊵ugo	, [10:0 0 10,0 1 0]											
Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD	(psf) 25.0 10.0 0.0* 10.0 2x4 SPF No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	-		CSI TC BC WB Matrix-S 1-2=-523/179, 2-3= 4-5=-135/59, 5-6=-			in n/a n/a 0.00					GRIP 197/144 FT = 10% others) of truss to ng 87 lb uplift at joint
BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins, e 2-0-0 oc purlins (6-	eathing directly applie kcept end verticals, ar 0-0 max.): 6-8, 9-22, 9	d or nd 9-15.	OT CHORD	7-845/36, 9-22- 9-1036/59, 10-11 12-1336/59, 13-1 1-2761/34, 26-27 24-2561/34, 23-2 21-2262/34, 20-2 18-1962/34, 17-1 15-16-103/69	119/54, =-36/59 4=-36/5 7=-61/34 24=-61/3 21=-62/3	8-9=-71/34, , 11-12=-36/5 9, 14-15=-36/ , 25-26=-61/3 4, 22-23=-61/ 4, 19-20=-62/	/61 4, 34, 34,	1, 3 upl joir 52 at j and 10) Not	30 lb upli ift at join at 26, 13 lb uplift a oint 20, 3 d 48 lb u n Standa	ift at joi It 18, 13 4 lb up at joint 39 lb u plift at j ard bea	int 22, 84 lb uplift 31 lb uplift at join 11 at joint 25, 111 23,48 lb uplift at 0 jift at joint 19, 36 joint 16.	at joint 15, 26 lb 47, 3,28 lb uplift at 1 lb uplift at joint 24, joint 21, 32 lb uplift b uplift at joint 17 eview required
BOT CHORD	Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 1	y applied or 10-0-0 oc 5-16.	W	EBS	2-27=-163/149, 3-2 4-25=-173/158, 5-2 7-23=-164/79, 10-2	24=-130	135,		Ínte R8	ernationa 02.10.2 a	al Resid and ref	ential Code sect	ANSI/TPI 1.
	16=257/2 18=11/2 20=183/2 22=160/2 24=168/2 26=179/2 Max Horiz 1=421 (L Max Uplift 1=-87 (L) 16=-48 (l 18=-26 (l 20=-32 (l 22=-30 (l) 24=-111 26=-128 Max Grav 1=373 (L	,	N(), 1)), 2)), 2) 3), 3) 3), 4) 5) 6)	OTES Unbalanced this design. Wind: ASCE Vasd=91mp II; Exp C; Er cantilever le right expose Truss desig only. For st see Standar or consult q Provide ade All plates ar Gable studs	11-20=-140/58, 12- 13-17=-123/52, 14- roof live loads hav 7-16; Vult=115mp h; TCDL=6.0psf; Bi nclosed; MWFRS (ef ft and right exposer d; Lumber DOL=1. ned for wind loads is uds exposed to wind d Industry Gable E ualified building des quate drainage to p e 2x4 MT20 unless spaced at 2-0-0 oc	19=-14: -16=-19- e been of h (3-sec CDL=6. envelope d; end v 60 plate n the plate d (norm nd Deta signer as prevent v otherwick	3/59, 4/78 considered for ond gust) 0psf; h=25ft; (e) exterior zon rertical left ann grip DOL=1.6 ane of the trus al to the face) ils as applicat s per ANSI/TF water ponding se indicated.	Cat. le; d 50 ss , ple, Pl 1.	or t	he orien tom cho CASE(S	itation rd.) Sta	of the purlin along	
FORCES	18=76 (L 20=183 (22=160 (24=168 (26=203 (C 9), 19=175 (LC 1), LC 22), 21=176 (LC 1 LC 22), 23=210 (LC 2 LC 1), 25=213 (LC 15 LC 15), 27=209 (LC 1 npression/Maximum), 22), 8) 5),	chord live lo * This truss on the botto 3-06-00 tall	as been designed for ad nonconcurrent v has been designed m chord in all areas by 2-00-00 wide wil ny other members.	vith any for a liv s where	other live load e load of 20.0 a rectangle	psf			THUR .	A SSION	ALENGHII

September 10,2021


16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	R1	Flat Girder	1	1	Job Reference (optional)	147856976

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:37 ID:Lek3CAANi_qYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:33.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	-0.01	5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.13	Vert(CT)	-0.02	5-6	>999	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.21	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P		Wind(LL)	0.00	5	>999	240	Weight: 47 lb	FT = 10%

LUMBER

TOP CHORD	2x6 SPF No.2
BOT CHORD	2x4 SPF No.2
WEBS	2x4 SPF No.2
BRACING	
	2.0.0 as purling (6.0.0 may

TOP CHORD	2-0-0 oc purlins (6-0-0 max.): 1-3, except
	end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc

- bracing. **REACTIONS** (lb/size) 4=764/ Mechanical, 6=788/0-3-8 Max Horiz 6=-138 (LC 4)
- FORCES (b) Maximum Compression/Maximum Tension TOP CHORD 1-6=-754/10, 1-2=-527/0, 2-3=-527/0,
- 3-4=-730/16 BOT CHORD 5-6=-121/108, 4-5=-51/39
- WEBS 1-5=-11/710, 2-5=-857/12, 3-5=-11/710 NOTES
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

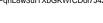

Plate Increase=1.15

Uniform Loads (lb/ft)

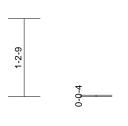
Vert: 1-3=-70, 4-6=-20

Concentrated Loads (lb)

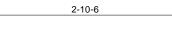
Vert: 7=-209, 8=-206, 9=-206, 10=-206



Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	V1	Valley	1	1	Job Reference (optional)	147856977


Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:37 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


2x4 ı


1-2-9

2-10-6

:18				1				l.					
	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
of)	25.0	Plate Grip DOL	1.15	тс	0.07	Vert(LL)	n/a	-	n/a	999	MT20	197/144	
	10.0	Lumber DOL	1.15	BC	0.04	Vert(TL)	n/a	-	n/a	999			
	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a			
	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 6 lb	FT = 10%	

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

LUMBER

Scale = 1:1 Loading TCLL (roof TCDI BCLL BCDL

LOWIDER		
TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2
WEBS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	2-11-0 oc	purlins, except end verticals.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	1=93/2-10-6, 3=93/2-10-6
	Max Horiz	1=38 (LC 5)
	Max Uplift	1=-13 (LC 8), 3=-21 (LC 8)
FORCES	(lb) - Max	imum Compression/Maximum

Tension

TOP CHORD

1-2=-34/22, 2-3=-72/33 BOT CHORD 1-3=-12/9

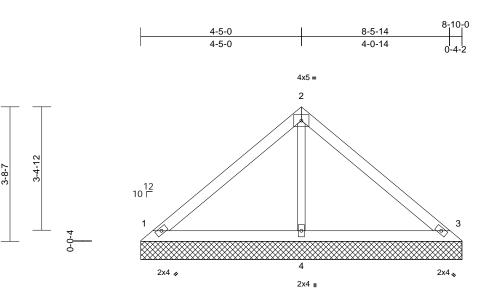
NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing. 3)

- Gable studs spaced at 2-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 7) bearing plate capable of withstanding 13 lb uplift at joint 1 and 21 lb uplift at joint 3.

MIS 0 VIII * PRUM JUAN GARCIA NUMBER F -2000162101 C E ONAL mm 16952 Bonses NAN GARCIA ICENSES 16952 Bonses NANSAS September 10,202 G



September 10,2021

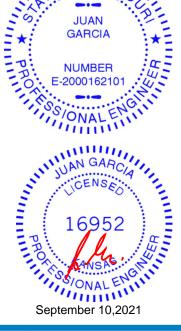
Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	V2	Valley	1	1	Job Reference (optional)	147856978

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:37 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

S

(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
25.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	197/144
10.0	Lumber DOL	1.15	BC	0.14	Vert(TL)	n/a	-	n/a	999		
0.0*	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	0.00	3	n/a	n/a		
10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 25 lb	FT = 10%
	25.0 10.0 0.0*	25.0Plate Grip DOL10.0Lumber DOL0.0*Rep Stress Incr	25.0 Plate Grip DOL 1.15 10.0 Lumber DOL 1.15 0.0* Rep Stress Incr YES 10.0 Code IRC2018/TPI2014	25.0 Plate Grip DOL 1.15 TC 10.0 Lumber DOL 1.15 BC 0.0* Rep Stress Incr YES WB 10.0 Code IRC2018/TPI2014 Matrix-P	25.0 Plate Grip DOL 1.15 TC 0.31 10.0 Lumber DOL 1.15 BC 0.14 0.0* Rep Stress Incr YES WB 0.06	25.0 Plate Grip DOL 1.15 TC 0.31 Vert(LL) 10.0 Lumber DOL 1.15 BC 0.14 Vert(TL) 0.0* Rep Stress Incr YES WB 0.06 Horiz(TL)	25.0 Plate Grip DOL 1.15 TC 0.31 Vert(LL) n/a 10.0 Lumber DOL 1.15 BC 0.14 Vert(TL) n/a 0.0* Rep Stress Incr YES WB 0.06 Horiz(TL) 0.00	25.0 Plate Grip DOL 1.15 TC 0.31 Vert(LL) n/a - 10.0 Lumber DOL 1.15 BC 0.14 Vert(TL) n/a - 0.0* Rep Stress Incr YES WB 0.06 Horiz(TL) 0.00 3	25.0 Plate Grip DOL 1.15 TC 0.31 Vert(LL) n/a - n/a 10.0 Lumber DOL 1.15 BC 0.14 Vert(TL) n/a - n/a 0.0* Rep Stress Incr YES WB 0.06 Horiz(TL) 0.00 3 n/a	25.0 Plate Grip DOL 1.15 TC 0.31 Vert(LL) n/a - n/a 999 10.0 Lumber DOL 1.15 BC 0.14 Vert(TL) n/a - n/a 999 0.0* Rep Stress Incr YES WB 0.06 Horiz(TL) 0.00 3 n/a n/a	25.0 Plate Grip DOL 1.15 TC 0.31 Vert(LL) n/a - n/a 999 MT20 10.0 Lumber DOL 1.15 BC 0.14 Vert(TL) n/a - n/a 999 MT20 0.0* Rep Stress Incr YES WB 0.06 Horiz(TL) 0.00 3 n/a n/a

8-10-0


BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	6-0-0 oc p	ourlins.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	1=219/8-10-0, 3=219/8-10-0,
		4=289/8-10-0
	Max Horiz	1=-88 (LC 4)
	Max Uplift	1=-45 (LC 8), 3=-56 (LC 9)

NOTES	
WEBS	2-4=-188/45
BOT CHORD	1-4=-20/72, 3-4=-20/72
TOP CHORD	1-2=-153/75, 2-3=-147/59
	Tension
FORCES	(lb) - Maximum Compression/Maximum
	1 = 40 (10 0), 0 = 50 (10 0)

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- International Residential Code sections R502.11.1 and
- R802.10.2 and referenced standard ANSI/TPI 1.

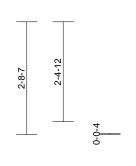
LOAD CASE(S) Standard

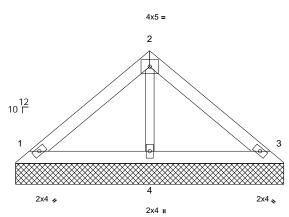
MIS

0

Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	V3	Valley	1	1	Job Reference (optional)	147856979

3-2-10


Wheeler Lumber, Waverly, KS - 66871,


Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:38 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-2-10 2-10-8 4x5 =

6-1-1

6-5-3

Scale = 1:27.6												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	l /d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.15	Vert(LL)	n/a	(100)	n/a		MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 18 lb	FT = 10%
LUMBER		•	8) Provide me	chanical connec	tion (by oth	ers) of truss t	to					

LOWIDER		
TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2
OTHERS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied
	6-0-0 oc p	ourlins.
BOT CHORD	Rigid ceili	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	1=154/6-5-3, 3=154/6-5-3,
		4=203/6-5-3
	Max Horiz	1=62 (LC 5)
	Max Uplift	1=-32 (LC 8), 3=-39 (LC 9)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	-
TOP CHORD	1-2=-107/	/53, 2-3=-103/42
BOT CHORD	1-4=-14/5	1, 3-4=-14/51
WEBS	2-4=-132/	/32

WEBS

- NOTES
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

bearing plate capable of withstanding 32 lb uplift at joint 1 and 39 lb uplift at joint 3.

- This truss is designed in accordance with the 2018 9) International Residential Code sections R502.11.1 and
- R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

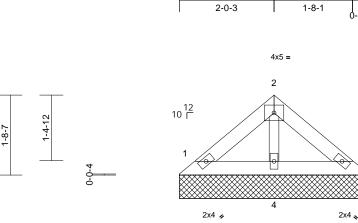
or

1

Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	V4	Valley	1	1	Job Reference (optional)	147856980

2-0-3

Wheeler Lumber, Waverly, KS - 66871,


Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:38 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-8-4

1-8-1

3

2x4 u

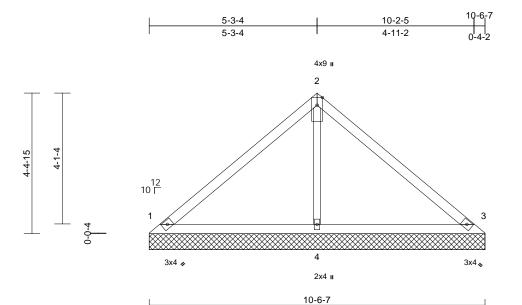
4-0-6

Scale = 1:24.5

_

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.04	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.01	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 10 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 4-1-0 oc purlins. Rigid ceiling directly bracing.	applied or 10-0-0 oc	bearing p 1 and 23 9) This truss Internatic d or R802.10. LOAD CASE	nechanical connec late capable of wit lb uplift at joint 3. s is designed in acr nal Residential Co 2 and referenced s (S) Standard	hstanding 1 cordance w	8 lb uplift at j ith the 2018 8 R502.11.1 a	joint					111.
	4=117/4-0 Max Horiz 1=36 (LC	5)									TE OF	MISSO
FORCES	Max Uplift 1=-18 (LC (lb) - Maximum Com									1	JUL	AN P

- Tension TOP CHORD 1-2=-62/31, 2-3=-59/24 BOT CHORD 1-4=-8/29, 3-4=-8/29
- WEBS 2-4=-76/18
- NOTES Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.



Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	V5	Valley	1	1	Job Reference (optional)	147856981

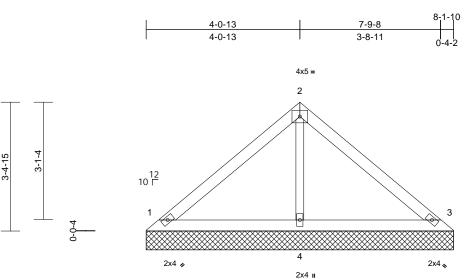
Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:38 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

:38 Pa

Scale	1 = 1	1:36.1	

Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.34	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.20	Vert(TL)	n/a	-	n/a	999	101120	137/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.20	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code		8/TPI2014	Matrix-S	0.10	110112(112)	0.00	0	n/a	Π/a	Weight: 30 lb	FT = 10%
LUMBER			8)	Provide mec	hanical connect	ion (by oth	ers) of truss	to		-			
TOP CHORD	2x4 SPF No.2		,	bearing plate	capable of with	nstanding 4	1 lb uplift at	joint					
BOT CHORD	2x4 SPF No.2			1, 53 lb uplift	at joint 3 and 9	lb uplift at	joint 4.						
OTHERS	2x3 SPF No.2		9)		designed in acc								
BRACING					Residential Co			and					
TOP CHORD	Structural wood she	athing directly applie	ed or	R802.10.2 a	nd referenced s	tandard AN	NSI/TPI 1.						
	6-0-0 oc purlins.		LC	DAD CASE(S)	Standard								
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	С										
REACTIONS	(lb/size) 1=245/10- 4=390/10-	-6-7, 3=245/10-6-7, -6-7										VIL OF	MISS
	Max Horiz 1=-106 (L	C 6)										N.XE	
	Max Uplift 1=-41 (LC (LC 8)	8), 3=-53 (LC 9), 4	=-9								1	JU/	
FORCES	(lb) - Maximum Com Tension	pression/Maximum									Ē*	GAR	
TOP CHORD	1-2=-203/94, 2-3=-2	02/75									Ξ.	:	:
BOT CHORD	1-4=-24/94, 3-4=-24	/94									- 7	NUMI	SEB :0
WEBS	2-4=-239/59										-7	E-20001	• 41
NOTES												L-20001	.2.101
1) Unbalance	ed roof live loads have	been considered fo	r								1	· · · · ·	- dia
, this desigr	۱.											1,SIONI	ENI
2) Wind: ASC	CE 7-16; Vult=115mph	(3-second gust)										- INA	1 in
14 1 04			• •										

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf
 on the bottom chord in all areas where a rectangle
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.



Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	V6	Valley	1	1	Job Reference (optional)	147856982

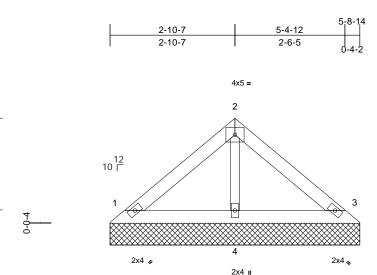
Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:38 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-1-10

4.20 5

Scale = 1:30.5												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.26	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.05	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 23 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.		bearing plate 1 and 51 lb t 9) This truss is International R802.10.2 a LOAD CASE(S)	hanical connecti e capable of with uplift at joint 3. designed in acc Residential Coo nd referenced st Standard	istanding 4 ordance w de sections	11 lb uplift at j ith the 2018 8 R502.11.1 a	oint					1
REACTIONS	(lb/size) 1=200/8-1 4=264/8-1 Max Horiz 1=-80 (LC Max Uplift 1=-41 (LC	2 4)									THE OF	MISSOU
FORCES	(lb) - Maximum Com Tension	pression/Maximum								Ξ	GAR	
TOP CHORD	1-2=-139/69, 2-3=-1	34/54								- *		×-

BOT CHORD 1-4=-18/66, 3-4=-18/66 WEBS 2-4=-172/41


- NOTES
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	V7	Valley	1	1	Job Reference (optional)	147856983

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:38 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-8-14

					5-6-14				_		
(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
25.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	197/144
10.0	Lumber DOL	1.15	BC	0.05	Vert(TL)	n/a	-	n/a	999		
0.0*	Rep Stress Incr	YES	WB	0.02	Horiz(TL)	0.00	3	n/a	n/a		
10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 15 lb	FT = 10%
2x4 SPF No.2 2x4 SPF No.2		bearing pla 1 and 34 lb	te capable of wit uplift at joint 3.	hstanding 2	28 lb uplift at j		·	_		·	
	25.0 10.0 0.0* 10.0 2x4 SPF No.2 2x4 SPF No.2	25.0 Plate Grip DOL 10.0 Lumber DOL 0.0* Rep Stress Incr 10.0 Code 2x4 SPF No.2 2x4 SPF No.2	25.0 Plate Grip DOL 1.15 10.0 Lumber DOL 1.15 0.0* Rep Stress Incr YES 10.0 Code IRC2018/TPI2014 8) Provide me bearing pla 2x4 SPF No.2 2x4 SPF No.2 1 and 34 lb	25.0 Plate Grip DOL 1.15 TC 10.0 Lumber DOL 1.15 BC 0.0* Rep Stress Incr YES WB 10.0 Code IRC2018/TPI2014 Matrix-P 2x4 SPF No.2 8) Provide mechanical connect bearing plate capable of with 2x4 SPF No.2 1 and 34 lb uplift at joint 3.	25.0 Plate Grip DOL 1.15 TC 0.11 10.0 Lumber DOL 1.15 BC 0.05 0.0* Rep Stress Incr YES WB 0.02 10.0 Code IRC2018/TPI2014 Matrix-P 2x4 SPF No.2 8) Provide mechanical connection (by oth bearing plate capable of withstanding 2 2x4 SPF No.2 1 and 34 lb uplift at joint 3.	25.0 Plate Grip DOL 1.15 TC 0.11 Vert(LL) 10.0 Lumber DOL 1.15 BC 0.05 Vert(TL) 0.0* Rep Stress Incr YES WB 0.02 Horiz(TL) 10.0 Code IRC2018/TPI2014 Matrix-P Horiz(TL) 2x4 SPF No.2 SProvide mechanical connection (by others) of truss bearing plate capable of withstanding 28 lb uplift at 1 and 34 lb uplift at joint 3. Uplift at joint 3.	(psf) 25.0 10.0Spacing Plate Grip DOL2-0-0 1.15 Lumber DOLCSI TCDEFLin Vert(LL)n/a Vert(LL)0.0* 10.00.0* Code1.15 IRC2018/TPI2014BC0.05 WB0.02 Matrix-PVert(TL) Horiz(TL)n/a 0.008)Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 1 and 34 lb uplift at joint 3.8)	(psf) 25.0 10.0Spacing Plate Grip DOL2-0-0 1.15CSI TCDEFLin(loc) Vert(LL)10.0 0.0* 10.0Lumber DOL Lumber DOL1.15BC0.05 WBVert(LL)n/a-0.0* 10.0Rep Stress Incr CodeYES IRC2018/TPI2014WB0.02 Matrix-PVert(TL)n/a-8) 2x4 SPF No.2Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 1 and 34 lb uplift at joint 3.8)	(psf) 25.0 10.0Spacing Plate Grip DOL2-0-0 1.15CSI TCDEFLin(loc)l/defl10.0 0.0* 10.0Lumber DOL Code1.15TC0.11 BCVert(LL)n/a-n/aWB Matrix-P0.02Vert(TL) Horiz(TL)n/a-n/a-n/a8) 2x4 SPF No.2Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 1 and 34 lb uplift at joint 3.8)Provide mechanical connection (by others) of truss to 1 and 34 lb uplift at joint 3.	(psf) 25.0 10.0 0.0* 10.0Spacing Plate Grip DOL Lumber DOL 1.152-0-0 1.15CSI TC 0.11 BC WB Matrix-PDEFL Vert(LL) n/ain n (loc) Vert(LL) Vert(TL) n/aIn n/a999 999 999 Vert(TL) Na0.0* 10.00.0* Code1.15 IRC2018/TPI2014BC WB Matrix-P0.05 WB Matrix-PDEFL Vert(LL) n/ain n/a10002x4 SPF No.28) 2x4 SPF No.2Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 1 and 34 lb uplift at joint 3.8)	(psf) 25.0 10.0 0.0* 10.0 2.04Spacing Plate Grip DOL 1.152-0-0 1.15 TC CCSI TC 0.11 BC WB MEDEFL Vert(LL) n/a 10.0in(loc) I/defl L/d WH Vert(LL) N/a N/aPLATES MT200.0* 10.0 0.0* 10.01.15 Rep Stress Incr CodeTC YES VES IRC2018/TPI2014DEFL BC NB 0.02inin(loc) ICI/defl MT20L/d MT202x4 SPF No.2 2x4 SPF No.28) 1 and 34 lb uplift at joint 3.Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 1 and 34 lb uplift at joint 3.8)Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 1 and 34 lb uplift at joint 3.8)

OTHERS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	5-9-7 oc p	ourlins.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	1=135/5-8-14, 3=135/5-8-14,
		4=178/5-8-14
	Max Horiz	1=-54 (LC 4)
	Max Uplift	1=-28 (LC 8), 3=-34 (LC 9)

2-1-4

2-4-15

FORCES	(lb) - Maximum Compression/Maximum Tension
TOP CHORD	1-2=-94/47, 2-3=-90/37
BOT CHORD	1-4=-12/45, 3-4=-12/45
WEBS	2-4=-116/28
-	

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and
- R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

111 MIS

0

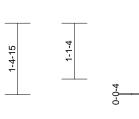
Page: 1

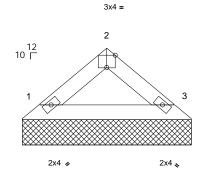
Job	Truss	Truss Type	Qty	Ply	Lot 137 W0	
W0137	V8	Valley	1	1	Job Reference (optional)	147856984

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 13:02:39 ID:Lek3CAANj_gYbKvtCQHtmQzKvNM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-11-15

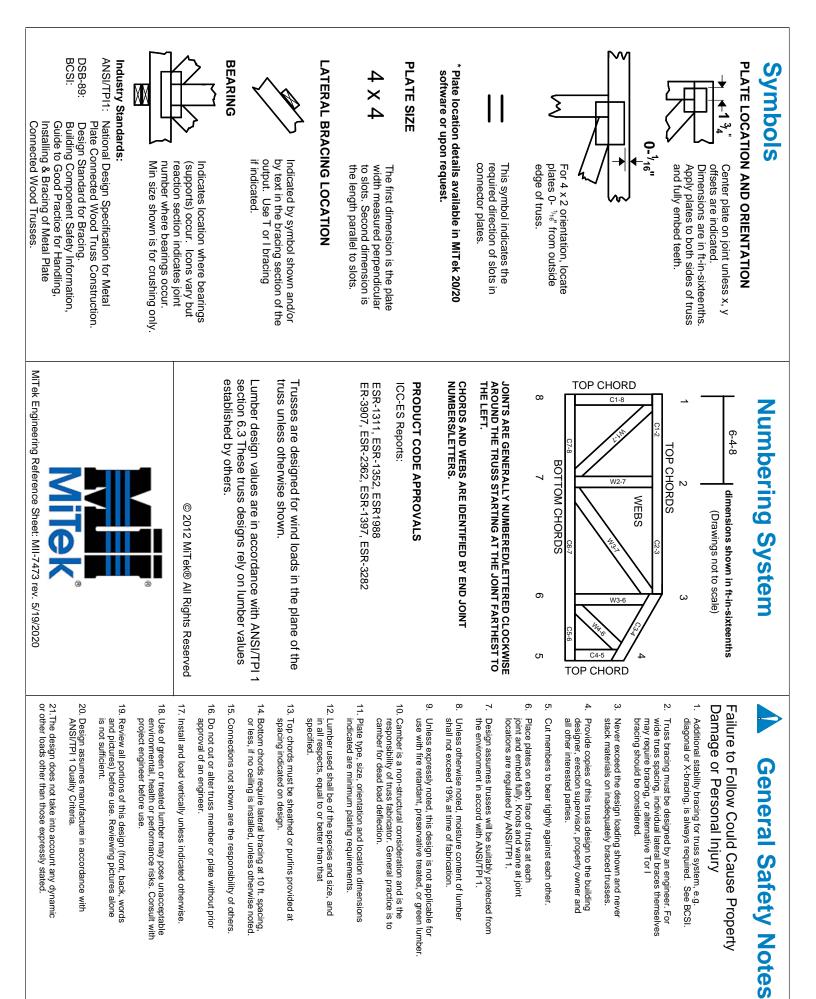
1-3-14


1-8-0


1-8-0

September 10,2021

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017



3-4-1

Scale = 1:22.8

Plate Offsets (X, Y): [2:0-2-0,Edge]

	2 0,2090]											
oading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.03	Vert(LL)	n/a	-	n/a	999	MT20	197/144
CDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(TL)	n/a	-	n/a	999	-	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 8 lb	FT = 10%
UMBER OP CHORD 2x4 SPF N STACING OP CHORD 2x4 SPF N SRACING OP CHORD Structural 3-4-10 oc SOT CHORD Rigid ceili bracing. REACTIONS (Ib/size) Max Horiz Max Uplift FORCES (Ib) - Maxi Tension	No.2 No.2 wood she purlins. ng directly 1=116/3-4 1=-28 (LC 1=-12 (LC imum Corr	athing directly applie applied or 10-0-0 or 4-1, 3=116/3-4-1 2 6) 2 8), 3=-12 (LC 9) apression/Maximum	9) This trus Internatio R802.10. LOAD CASE ed or	s is designed in acc nal Residential Coo 2 and referenced si (S) Standard	de sections	s R502.11.1 a	and			un.	JU GAF	MISSOL
OP CHORD 1-2=-94/3 30T CHORD 1-3=-8/55	,	/30								=*	GAP	
NOTES										3		
 Unbalanced roof live lo this design. 	oads have	been considered for	r								NUM	• 41.
 Wind: ASCE 7-16; Vul Vasd=91mph; TCDL= II; Exp C; Enclosed; M cantilever left and righ right exposed; Lumber 	6.0psf; BC IWFRS (er it exposed r DOL=1.6	DL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an 0 plate grip DOL=1.0	ne; d 60								ASS/ON	ALENGINI
 Truss designed for wir only. For studs expos see Standard Industry or consult qualified but Coble requires continue 	ed to wind Gable En ilding desi	l (normal to the face) d Details as applicat gner as per ANSI/TF), ole,								IN JUAN	GARCIA
 Gable requires continut Gable studs spaced at 		m chora bearing.										
 This truss has been de 		r a 10.0 psf bottom								- 3		
chord live load noncor			ds.								16	952 : =
* This truss has been)psf							-	0. 7	- i a -
on the bottom chord in										-	H.	MA . 145
3-06-00 tall by 2-00-00		tit between the botto	om								- A KA	NSAS SAS
chord and any other m Provide mechanical co		(by others) of truce to	0								150	NGIN
bearing plate capable											10/01	VALE
1 and 12 lb uplift at joi											100	inne.
											Septembe	er 10 2021

