

RE: RR73 Lot 73 RR

Site Information:

Customer: Project Name: RR73 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.4 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 35 individual, dated Truss Design Drawings and 0 Additional Drawings.

	0.1"	– N	5.		o	- N	5.4
No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	l47852410	B1	9/10/2021	21	l47852430	J4	9/10/2021
2	147852411	B2	9/10/2021	22	I47852431	J5	9/10/2021
3	147852412	C1	9/10/2021	23	147852432	R1	9/10/2021
4	147852413	C2	9/10/2021	24	147852433	R2	9/10/2021
5	147852414	C3	9/10/2021	25	147852434	V1	9/10/2021
6	147852415	D1	9/10/2021	26	147852435	V2	9/10/2021
7	147852416	D2	9/10/2021	27	147852436	V3	9/10/2021
8	147852417	E1	9/10/2021	28	147852437	V4	9/10/2021
9	147852418	E2	9/10/2021	29	147852438	V5	9/10/2021
10	147852419	E3	9/10/2021	30	147852439	V6	9/10/2021
11	147852420	E4	9/10/2021	31	147852440	V7	9/10/2021
12	147852421	G1	9/10/2021	32	l47852441	V8	9/10/2021
13	147852422	G2	9/10/2021	33	147852442	V9	9/10/2021
14	147852423	G3	9/10/2021	34	147852443	V10	9/10/2021
15	147852424	G4	9/10/2021	35	147852444	V11	9/10/2021
16	147852425	G5	9/10/2021				
17	147852426	G6	9/10/2021				
18	147852427	G7	9/10/2021				
19	147852428	G8	9/10/2021				
20	147852429	G9	9/10/2021				

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Kansas is April 30, 2022. Kansas COA: E-943

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

MiTek USA, Inc. 16023 Swinglev Ridge Rd Chesterfield, MO 63017 314-434-1200

RE: RR73 Lot 73 RR

Site Information:

Customer: Project Name: RR73 Lot/Block: Address: City:

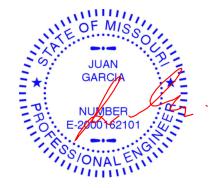
Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 35 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	147852410	B1	9/10/2021	21	147852430	J4	9/10/2021
2	147852411	B2	9/10/2021	22	147852431	J5	9/10/2021
3	147852412	C1	9/10/2021	23	147852432	R1	9/10/2021
4	147852413	C2	9/10/2021	24	147852433	R2	9/10/2021
5	147852414	C3	9/10/2021	25	147852434	V1	9/10/2021
6	147852415	D1	9/10/2021	26	147852435	V2	9/10/2021
7	147852416	D2	9/10/2021	27	147852436	V3	9/10/2021
8	147852417	E1	9/10/2021	28	147852437	V4	9/10/2021
9	147852418	E2	9/10/2021	29	147852438	V5	9/10/2021
10	147852419	E3	9/10/2021	30	147852439	V6	9/10/2021
11	147852420	E4	9/10/2021	31	147852440	V7	9/10/2021
12	147852421	G1	9/10/2021	32	147852441	V8	9/10/2021
13	147852422	G2	9/10/2021	33	147852442	V9	9/10/2021
14	147852423	G3	9/10/2021	34	147852443	V10	9/10/2021
15	147852424	G4	9/10/2021	35	147852444	V11	9/10/2021
16	147852425	G5	9/10/2021				
17	147852426	G6	9/10/2021				
18	147852427	G7	9/10/2021				
19	147852428	G8	9/10/2021				
20	147852429	G9	9/10/2021				


The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

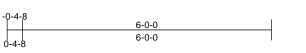
My license renewal date for the state of Missouri is December 31, 2022. Missouri COA: 001193

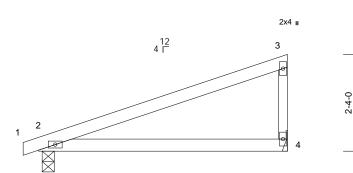
IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

September 10, 2021

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	B1	Monopitch	7	1	Job Reference (optional)	l47852410


2-5-3


0-4-0

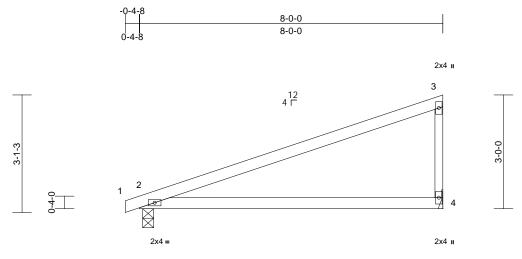

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:32 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 🛛

2x4 =

Scale = 1:27.8

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.64	Vert(LL)	-0.07	2-4	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.35	Vert(CT)	-0.13	2-4	>526	240		
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB Matrix-P	0.00	Horz(CT)	0.00	4	n/a	n/a	Weight: 16 lb	FT = 10%
DODL	10.0	Code		Mduix-i							Weight. To ib	11 = 1078
LUMBER												
TOP CHORD BOT CHORD	2x4 SPF No.2											
WEBS	2x4 SPF No.2 2x3 SPF No.2											
BRACING												
TOP CHORD	Structural wood she	athing directly applie	ed or									
	6-0-0 oc purlins, ex											
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or										
REACTIONS	0	3-8, 4=257/ Mechani	cal									1117
	Max Horiz 2=91 (LC										NOF	MISO
	Max Uplift 2=-65 (LC	C 4), 4=-55 (LC 8)									XE	0,1
FORCES	(lb) - Maximum Com	npression/Maximum								2	A	
TOP CHORD	Tension 1-2=0/6, 2-3=-79/52	2 4- 200/80								2	S JUA	
BOT CHORD	2-4=-28/22	, 3-4=-200/69								=*	GAR	
NOTES										Ξ.	1	
	E 7-16; Vult=115mph	(3-second gust)								==	NUMI	BER
	ph; TCDL=6.0psf; BC										C: E-20001	62101
	Enclosed; MWFRS (er left and right exposed									1	· · · ·	
	sed; Lumber DOL=1.6										1.SSIC	ENGIN
2) This truss I	has been designed fo	r a 10.0 psf bottom									UN A	1 in
	load nonconcurrent wi											LD S
	s has been designed f om chord in all areas		pst								LICE PRO	IIIII.
	ll by 2-00-00 wide will		m								IN IAN C	SARC
	any other members.										N JU.	NO
	rder(s) for truss to trus										LICE	ED
	echanical connection (ate capable of withstar										1	· \ €
	o uplift at joint 2.	nuing 55 ib upint at j								Ξ	160	952
	is designed in accorda									=	19	552
	al Residential Code s		nd							-	D.	
	and referenced stand	iaru ANSI/TPT1.									- A that	SAS
LOAD CASE(S	j Stanuaru										1.00	NGIN
											ON	ALE
											Sontombo	r 1() 2()21

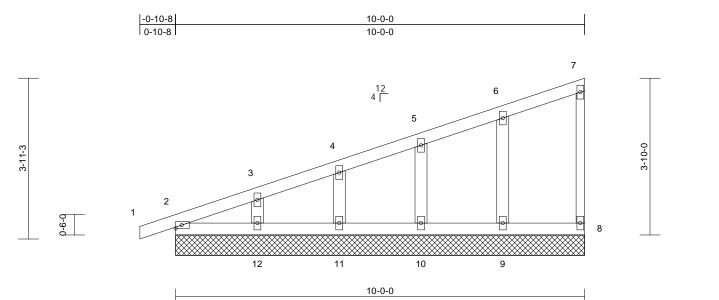

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

September 10,2021

Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	B2	Monopitch	3	1	Job Reference (optional)	147852411

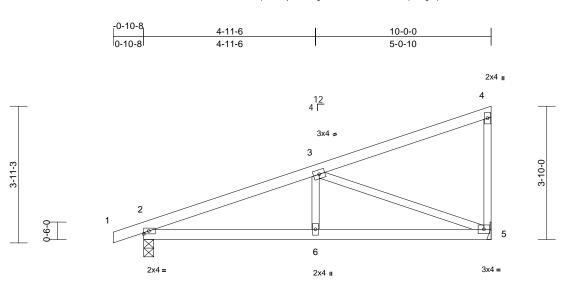
Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:34 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:30.4


Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.77 0.42 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.34 0.00	(loc) 2-4 2-4 4	l/defl >553 >276 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 21 lb	GRIP 197/144 FT = 10%
BOT CHORD 2x WEBS 2x BRACING TOP CHORD St G BOT CHORD R REACTIONS (Ib/ Mai FORCES (Ib/ TOP CHORD 1- BOT CHORD 1- BOT CHORD 1- BOT CHORD 2- NOTES 1) Wind: ASCE 7 Vasd=91mph; II; Exp C; Encl cantilever left a right exposed; 2) This truss has chord live load 3) * This truss has on the bottom 3-06-00 tall by chord and any 4) Refer to girder 5) Provide mecha bearing plate of 4 and 79 lb up 6) This truss is d International R	-0-0 oc purlins, exi igid ceiling directly racing. (size) 2=386/0-3 x Horiz 2=121 (LC x Uplift 2=-79 (LC b) - Maximum Com ension -2=0/6, 2-3=-105/70 -4=-38/29 7-16; Vult=115mph TCDL=6.0psf; BC losed; MWFRS (er and right exposed ; Lumber DOL=1.6; been designed for d nonconcurrent wi as been designed for chord in all areas (2-00-00 with star of the truss to trus anical connection (capable of withstar blift at joint 2. esigned in accorda Residential Code sid d referenced stand	athing directly applie cept end verticals. applied or 10-0-0 or 3-8, 4=348/ Mechani C 5) i 4), 4=-74 (LC 8) pression/Maximum 0, 3-4=-270/121 (3-second gust) DL=6.0psf; h=25ft; C vvelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto is connections. by others) of truss to dding 74 lb uplift at jo ance with the 2018 ections R502.11.1 at	cal Cat. e; d 50 ds. psf m o bint								JUA GAR NUMI SS/ON CE 160 Septembe	CIA BER 162101 ALENG NSEO 952 HALENG

Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	C1	GABLE	1	1	Job Reference (optional)	147852412

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:34 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Scale	1 – د	:28.2	

00010 = 1.20.2											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in (lo	c) l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	n/a	- n/a		MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.03	. ,	n/a	- n/a			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horz(CT) 0	.00	8 n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI201	4 Matrix-S						Weight: 35 lb	FT = 10%
LUMBER				uss has been designed							
TOP CHORD	2x4 SPF No.2			ive load nonconcurren							
BOT CHORD	2x4 SPF No.2			russ has been designe							
WEBS	2x3 SPF No.2			bottom chord in all are 0 tall by 2-00-00 wide v							
OTHERS	2x4 SPF No.2			and any other member		ween the bottom					
BRACING			O) Duratified	e mechanical connecti		ners) of truss to					
TOP CHORD		athing directly applie		plate capable of with							
BOT CHORD	6-0-0 oc purlins, ex	cept end verticals.	0 00 1	o uplift at joint 2, 52 lb							
BOT CHORD	bracing.	applied of 10-0-0 oc	át joint 9.	11, 42 lb uplift at joint	10 and 40	6 lb uplift at joint				and the	1111
REACTIONS	()	-0-0, 8=69/10-0-0,	9) This tr	uss is designed in acco	ordance w	vith the 2018				NE OF	MISS
		-0-0, 10=177/10-0-0,	Interna	tional Residential Cod						1	0,1
		0-0-0, 12=182/10-0-0	D R802.1	0.2 and referenced sta	andard Al	NSI/TPI 1.					
	Max Horiz 2=158 (Lo		LOAD CA	SE(S) Standard					2	JU,	
	Max Uplift $2=-22$ (LC)=-42 (LC 8), 11=-44		. ,						GAR	CIA
	4), 12=-5		(LO						31		: E
FORCES	(lb) - Maximum Con Tension	npression/Maximum							=1	NUM	• [] [
TOP CHORD	1-2=0/6, 2-3=-129/2	7 3-4=-102/21							-	O: E-2000	162101
	4-5=-86/21, 5-6=-76								1	· · · · ·	
	7-8=-53/22	. ,								1,00,	
BOT CHORD	2-12=-50/37, 11-12=	=-50/37, 10-11=-50/3	7,							ON	ALEIN
	9-10=-50/37, 8-9=-5	60/37									TITE.
WEBS		=-141/67, 5-10=-138/	68,							2.11	
	6-9=-151/62										GAD !!!
NOTES										PRO 16	CARCIN
	CE 7-16; Vult=115mph									N CE	NSA
	nph; TCDL=6.0psf; BC								2		0
	Enclosed; MWFRS (er left and right exposed								-	1 / L	1 A E
	sed; Lumber DOL=1.6								-	10	050
	igned for wind loads in									10	952 🗧
	studs exposed to wind								-	P: 1	· · · · · ·
	ard Industry Gable En									-0. /	Maillis
	qualified building desi		'l 1.							- AN	VSAS.
	are 2x4 MT20 unless of									1 SKI	ENGIN
, ,	uires continuous botto	0								I I I	ALL
5) Gable stud	ds spaced at 2-0-0 oc.										
										Septembe	r 10,2021

Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	C2	Monopitch	9	1	Job Reference (optional)	l47852413

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:34 ID:2ncXplsxOfbjlB6l7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale =	1:33.2
---------	--------

Scale = 1:33.2												
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.30	Vert(LL)	-0.02	2-6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.26	Vert(CT)	-0.04	5-6	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.50	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.02	2-6	>999	240	Weight: 33 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2											
TOP CHORD	Structural wood she		ed or									
	6-0-0 oc purlins, ex	cept end verticals.										

	• • • • • F
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc

 bracing.

 REACTIONS
 (Ib/size)
 2=514/0-3-8, 5=435/ Mechanical Max Horiz
 2=158 (LC 5)

 Max Horiz
 2=158 (LC 5)
 Max Holight
 2=115 (LC 4)
 5=-94 (LC 8)

	Max Opline 2=-115 (LC 4), 5=-94 (LC 6)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/6, 2-3=-782/113, 3-4=-109/21,
	4-5=-141/57
BOT CHORD	2-6-134/682 5-6-134/682

 BOT CHORD
 2-6=-134/682, 5-6=-134/6

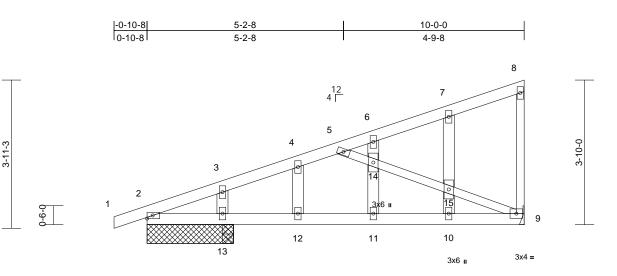
 WEBS
 3-6=0/228, 3-5=-714/178

NOTES

F

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 94 lb uplift at joint 5 and 115 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



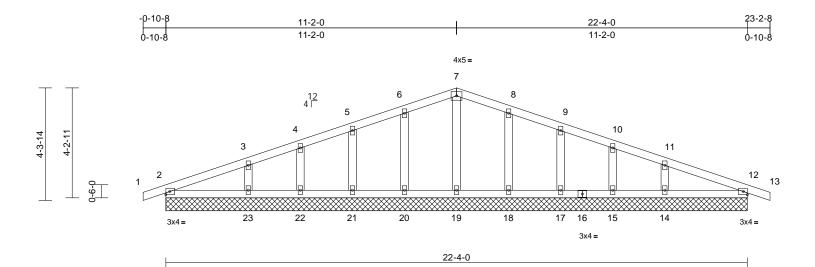
Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	C3	Monopitch Structural Gable	1	1	Job Reference (optional)	147852414

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:34 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:30.5	
----------------	--

Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.18	DEFL Vert(LL)	in -0.03	(loc) 10-11	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144
TCDL BCLL BCDL	10.0 0.0* 10.0	Lumber DOL Rep Stress Incr Code	1.15 YES IRC2018/TP	912014	BC WB Matrix-S	0.28 0.30	Vert(CT) Horz(CT) Wind(LL)	-0.05 0.01 0.03	10-11 9 10-11	>999 n/a >999	240 n/a 240	Weight: 38 lb	FT = 10%
BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Wind(L) 0.03 10-11 >999 240 Weight: 38 lb FT = 10% LUMBER TOP CHORD 2x4 SPF No.2 5 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6 • This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6 • This truss has been designed for a 10.0 psf bottom chord any other members. 6 • This truss has been designed for a 10.0 psf bottom chord any other members. 6 • This truss has been designed for a 10.0 psf bottom chord any other members. 6 • This truss has been designed for a 10.0 psf bottom chord any other members. 6 • This truss has been designed for a 10.0 psf bottom chord any other members. 7 • Period enchanical connection (by others) of truss to bearing plate capable of vituss to bearing plate capable of vitus to truss to bearing plate capable of vitus to truss to bearing plate capable of vitus to and sold uplift at joint 3. 9 • This truss has been designed for a 0.0 psf bottom chord any other members. • This truss has been designed for a 10.0 psf bottom chord any other members. • This truss has been designed for a coordance with the 2018 rescords plate capable of vitus to and sold uplift a joint 2. • This truss has been designed for a coordance with the 2018 rescords plate capable of vitus to and referenced standard ANSI/TPl 1. • DAD CASE(S)<													
 Wind: AS Vasd=91r II; Exp C; cantilever right expc Truss des only. For see Stanc or consult All plates 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft; C velope) exterior zone ; end vertical left and 0 plate grip DOL=1.6 the plane of the truss: (normal to the face), d Details as applicabl gner as per ANSI/TPI	e; 0 e,								annua.	102	952 ALENUIT


- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable studs spaced at 2-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	D1	Common Supported Gable	1	1	Job Reference (optional)	147852415

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:35 ID:2ncXplsxOfbjlB6l7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:44.3

00010 = 1.44.0															
Loading	(ps	f)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.	,	Plate Grip DOL	1.15		TC	0.09		n/a	(100)	n/a	999	MT20	197/144	
TCDL	10		Lumber DOL	1.15		BC	0.06	Vert(CT)	n/a	-	n/a	999	1		
BCLL		0*	Rep Stress Incr	YES		WB	0.03	Horz(CT)	0.00	12	n/a	n/a			
BCDL	10.		Code		018/TPI2014	Matrix-S	0.00		0.00				Weight: 77 lb	FT = 10%	
		-						I			-				
LUMBER						7-19=-123/0, 6-20=									
TOP CHORD						4-22=-117/57, 3-23									
BOT CHORD					9	9-17=-144/69, 10-1	15=-117	/57, 11-14=-2	205/99						
OTHERS	2x4 SPF No.2				NOTES										
BRACING						roof live loads hav	e been	considered fo	or						
TOP CHORD			athing directly applie	d or	this design.										
	6-0-0 oc purlins					7-16; Vult=115mp			_						
BOT CHORD	0 0	ectly	applied or 10-0-0 oc			h; TCDL=6.0psf; B									
	bracing.					closed; MWFRS (111.	
REACTIONS	· /		-4-0, 12=191/22-4-0,			t and right expose d; Lumber DOL=1.							IN OF	MICH	
			2-4-0, 15=145/22-4-0			ned for wind loads							NE	SS	
			2-4-0, 18=186/22-4-0 2-4-0, 20=186/22-4-0			ids exposed to wir							A		
			2-4-0, 20=186/22-4-0 2-4-0, 22=145/22-4-0			d Industry Gable E						-	~··		
	23=2			,		alified building des						2	S JUA		-
	Max Horiz 2=-71				4) All plates are	e 2x4 MT20 unless	otherwi	se indicated.				-+	GAR	CIA	-
			2 4), 12=-54 (LC 5),		5) Gable requir	es continuous bott	om choi	d bearing.						10	
			C 9), 15=-36 (LC 5),			spaced at 2-0-0 or						= T	1	in in	- C
			C 9), 18=-46 (LC 9),			as been designed f							NUMI	• [] [-
	20=-4	6 (L	C 8), 21=-44 (LC 8),			ad nonconcurrent v						-	O: E-20001	62101 .4.	-
			C 4), 23=-70 (LC 8)			nas been designed			Opsf			1	· · · · ·		
			C 1), 12=191 (LC 1),			n chord in all area							1, 50,		
			_C 22), 15=145 (LC 2			by 2-00-00 wide wi by other members.		veen the bott	om				ON/	ALEIN	
			-C 1), 18=189 (LC 22			hanical connection		ore) of truce t	0					nn.	
			C 1), 20=189 (LC 21			e capable of withst									
			_C 1), 22=145 (LC 21 _C 21)	ı),		t at joint 20, 44 lb u			onn				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
500050		`	,			22, 70 lb uplift at jo			joint				MAN	SARC	
FORCES	(Ib) - Maximum Tension	Lom	pression/Maximum			ift at joint 17, 36 lb							UAN CLOE	NO	
TOP CHORD		1/50	, 3-4=-47/60, 4-5=-28)/7E	uplift at joint	14 and 54 lb uplift	at joint	12.					I'V I'VE	NOED .	-
TOP CHORD			, 3-4=-47/60, 4-5=-26 /110, 7-8=-31/106,	5/75,		designed in accord						-			-
			8/47, 10-11=-35/28,			Residential Code			and			-			=
	11-12=-56/38, 1					nd referenced star	ndard Al	ISI/TPI 1.					169	952 :	-
BOT CHORD			3/57, 21-22=-3/57,		LOAD CASE(S)	Standard							D	1	-
	,		-3/57, 18-19=-3/57,										D.		-
		-17=	-3/57, 14-15=-3/57,									10	- a the	10 NS	
	12-14=-3/57												C C AN	ST. G	
													S/ON	ALENI	
													1111	in the second	

September 10,2021

Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	D2	Common	5	1	Job Reference (optional)	147852416

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:35 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

23-2-8

0-10-8

6 7

Ø

-0-10-8 5-3-15 11-2-0 17-0-1 22-4-0 5-3-15 5-10-1 5-10-1 5-3-15 0-10-8 4x9 = 4 12 4 Г 2x4 2x4 🥠 3 5 4-2-11 0-9-c 10 9 8 3x6 = 3x4 = 3x4 = 3x6 =

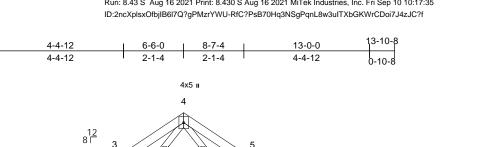
Scale = 1:44.3

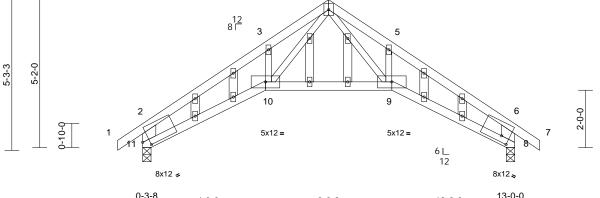
4-3-14

Plate Offsets (X, Y): [2:Edge,0-0-10], [6:Edge,0-0-10]

	,, ,, ,, [<u>L</u> . <u>L</u> ugo,o o , o]; [0:2090;0 0 10]										
oading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.47	Vert(LL)	-0.12	9-10	>999	360	MT20	197/144
CDL	10.0	Lumber DOL	1.15	BC	0.69	Vert(CT)	-0.25	6-9	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.19	Horz(CT)	0.07	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.08	9-10	>999	240	Weight: 68 lb	FT = 10%
UMBER			6) This truss i	s designed in acc	cordance w	ith the 2018						
OP CHORD	2x4 SPF No.2			al Residential Co			and					
OT CHORD	2x4 SPF No.2		R802.10.2	and referenced s	standard AN	ISI/TPI 1.						
VEBS	2x3 SPF No.2		LOAD CASE(S) Standard								
RACING			·	,								
OP CHORD	Structural wood she	athing directly applie	ed or									
	3-7-2 oc purlins.	0 7 11										
OT CHORD	Rigid ceiling directly	applied or 10-0-0 or	0									111.
	bracing.										IN OF	MICH
EACTIONS	(lb/size) 2=1063/0	-3-8, 6=1063/0-3-8									NE	SS
	Max Horiz 2=-71 (LC	C 13)									A	
	Max Uplift 2=-189 (L	.C 4), 6=-189 (LC 5)									A	
ORCES	(lb) - Maximum Corr	pression/Maximum								2	JU/	
	Tension									-+	GAR	
OP CHORD	1-2=0/6, 2-3=-2232/	355, 3-4=-1909/259,	,								:	
	4-5=-1909/260, 5-6=	-2232/355, 6-7=0/6								1	•	im-
OT CHORD	2-10=-333/2049, 9-1	10=-127/1406,								- 7	NUM	• 41-
	6-9=-280/2049										O . E-2000	162101 :4
/EBS	4-9=-59/541, 5-9=-4	18/221, 4-10=-58/54	1,							1	A	
	3-10=-418/221										1.80	Gin
IOTES											I,ON	ALEIN

- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 189 lb uplift at joint 2 and 189 lb uplift at joint 6.


Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	E1	GABLE	1	1	Job Reference (optional)	147852417


0-10-8

0-10-8

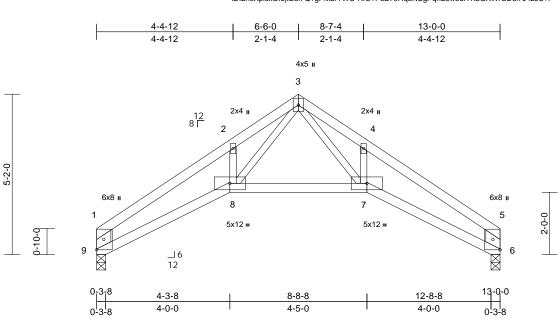
Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:35

Page: 1

υĽ	J 4-3-8	8-8-8	12-8-8	
0-3	-8 4-0-0	4-5-0	4-0-0	0-3-8

Scale = 1:40.3 Plate Offsets (X, Y): [8:0-3-5,0-2-7], [11:0-2-13,0-2-7]

Plate Offsets	(X, Y): [8:0-3-5,0-2-7],	[11:0-2-13,0-2-7]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TF	912014	CSI TC BC WB Matrix-S	0.69 0.61 0.17	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.16 -0.29 0.27 0.08	(loc) 9-10 9-10 8 9-10	l/defl >968 >511 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 55 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this desig	2x4 SPF No.2 2x3 SPF No.2 *Exce 2x4 SPF No.2 *Exce 2x4 SPF No.2 Structural wood she 5-3-11 oc purlins, e Rigid ceiling directly bracing. (lb/size) 8=642/0-3 Max Horiz 11=-154 (Max Uplift 8=-88 (LC (lb) - Maximum Com Tension 1-2=0/43, 2-3=-1287 4-5=-1069/195, 5-6= 2-11=-1009/165, 6-5 10-11=-127/1104, 9 4-9=-180/520, 5-9=- 3-10=0/172 xed roof live loads have	ept* 11-2,8-6:2x6 SF athing directly applie xcept end verticals. applied or 10-0-0 o 3-8, 11=642/0-3-8 LC 6) 5 9), 11=-88 (LC 8) pression/Maximum 7/152, 3-4=-1079/27 -1287/84, 6-7=0/43 3=-1009/102 -10=0/624, 8-9=-11/ 31/204, 4-10=-219/5	c c 8) * * * * * * * * * * * * * * * * * *	nord live loa This truss h in the bottom 06-00 tall b ord and an earing at jo sing ANSI/T esigner sho rovide mecle earing plate l and 88 lb his truss is ternational 802.10.2 ar	s been designed id nonconcurrent ias been designed n chord in all area y 2-00-00 wide w y other members int(s) 11, 8 consid PI 1 angle to grai uld verify capacity hanical connection capable of withst uplift at joint 8. designed in accor Residential Code nd referenced star Standard	with any d for a liv s where ill fit betv lers para in formul y of bear n (by oth tanding & rdance w sections	other live loa e load of 20.0 a rectangle veen the botto lilel to grain va a. Building ing surface. ers) of truss t 88 lb uplift at j ith the 2018 s R502.11.1 a	Opsf om alue o oint			11111111111111111111111111111111111111		CIA BER 162101	
 Wind: AS Vasd=911 II; Exp C; cantilever right expo Truss des only. For see Stamo or consul All plates Truss to b braced ag 	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed osed; Lumber DOL=1.6 signed for wind loads in studs exposed to wind dard Industry Gable En t qualified building desi are 2x4 MT20 unless of be fully sheathed from of gainst lateral movemen ids spaced at 1-4-0 oc.	DL=6.0psf; h=25ff; (velope) exterior zor ; end vertical left an 0 plate grip DOL=1. the plane of the tru (normal to the face d Details as applical gner as per ANSI/TF therwise indicated. one face or securely	ne; d 60 ss), ble, PI 1.									LICE	952 ALENON	In the second se


- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 5)
- 6) Gable studs spaced at 1-4-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	E2	Roof Special	5	1	Job Reference (optional)	147852418

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:35 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:37.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.63	Vert(LL)	-0.25	7-8	>598	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.87	Vert(CT)	-0.46	7-8	>325	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.18	Horz(CT)	0.41	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.14	7-8	>999	240	Weight: 44 lb	FT = 10%
	LIMBED 6) Provide mechanical connection (by others) of truss to											

LUMBER

- 2x4 SPF No.2 TOP CHORD

BOT CHORD 2x4 SPF No.2

2x3 SPF No.2 *Except* 9-1,6-5:2x6 SP DSS WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 4-2-2 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) 6=564/0-3-8, 9=564/0-3-8 Max Horiz 9=-135 (LC 4) Max Uplift 6=-62 (LC 9), 9=-62 (LC 8)

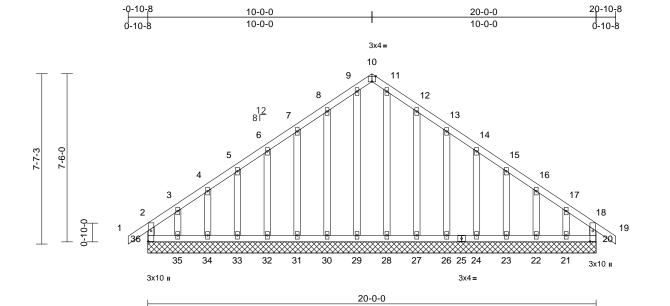
FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-1280/169, 2-3=-1096/288, 3-4=-1096/228, 4-5=-1280/101, 1-9=-899/147. 5-6=-899/100 BOT CHORD 8-9=-153/1074, 7-8=-3/606, 6-7=-39/1026

WEBS 3-7=-197/549, 4-7=-50/195, 3-8=-229/612, 2-8=-35/172 NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 9, 6 considers parallel to grain value 5) using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

- rovide mechanical connection (by othe bearing plate capable of withstanding 62 lb uplift at joint 9 and 62 lb uplift at joint 6.
- This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and
- R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	E3	GABLE	1	1	Job Reference (optional)	147852419

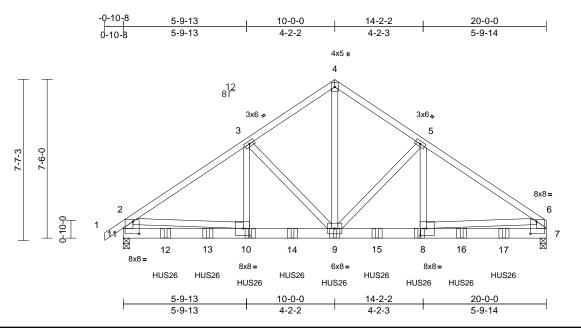
Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:36 ID:2ncXplsxOfbjlB6l7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:51.4

Plate Offsets (X, Y): [10:0-2-0,Edge], [20:0-5-10,0-1-8], [36:0-5-10,0-1-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.06	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.09	Horz(CT)	0.00	20	n/a	n/a		
BCDL	10.0	Code	IRC2018/T	PI2014	Matrix-R							Weight: 115 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS (2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 co purlins, ex Rigid ceiling directly bracing. (b/size) 20=148/2 22=127/2 24=120/2 27=119/2 33=119/2 35=83/20 Max Horiz 36=-213 (Lagrandows)	athing directly applied cept end verticals. applied or 6-0-0 oc 0-0-0, 23=119/20-0-0 0-0-0, 28=122/20-0-0 0-0-0, 28=122/20-0-0 0-0-0, 30=119/20-0-0 0-0-0, 32=120/20-0-0 0-0-0, 34=127/20-0-0 -0-0, 36=148/20-0-0 LC 6) C 5), 21=-120 (LC 9),	TOP or BOT WEB	CHORD	$\begin{array}{c} 2.36=-162/77, 1-2\\ 3.4=-110/109, 4-5\\ 6-7=-76/125, 7-8\\ 9-10=-39/137, 10\\ 11-12=-34/165, 11\\ 13-14=-40/103, 12\\ 16-17=-71/69, 17\\ 18-20=-136/43\\ 35-36=-93/121, 32\\ 33-34=-93/121, 32\\ 31-32=-93/121, 22\\ 29-30=-93/121, 22\\ 22-28=-93/121$	i=-102/10 -64/150, -11=-35/1 -15=-49, -15=-49, -18=-129, 4-35=-93, -2-33=-93, 0-31=-93, 3-29=-93, 3-27=-93, 3-24=-93, -34=-99/5 =-98/63, 88=-108/(0,24)	00, 5-6=-89/10 8-9=-54/184, 33, (1/28, (79, 15-16=-5 (94, 18-19=0) (121,	9/60, 40, 64, /82,	cr 9) * - or 3- cr 10) Pr be 36 up 32 up 24 b 11) Tr In Ra	ord live I Fhis truss the bott 06-00 tal ord and ovide me aring pla 5, 53 lb u olift at joir 2, 47 lb u olift at joir 4, 50 lb u uplift at joir 5, 50 lb u uplift at joir 5, 50 lb u uplift at joir is truss i	oad noi s has be om cho I by 2-0 any offi- echanio techan	en designed for a nconcurrent with aen designed for rd in all areas with 000 wide will fit er members. al connection (by able of withstand be of withstand be uplift at joint off 31, 64 lb upli 3 b uplift at joint be uplift at joint be uplift at joint be uplift at joint contact and a second antial Codo second erenced standard	10.0 psf bottom any other live loads. a live load of 20.0psf ere 3 rectangle between the bottom of 96 lb uplift at joint fift at joint 35, 26 lb 33, 45 lb uplift at joint ft at joint 30, 66 lb 26, 45 lb uplift at joint f6a joint 22 and 120 as with the 2018 joint 802, 11.1 and
FORCES	24=-45 (L 27=-66 (L 31=-47 (L 33=-51 (L 35=-133 (22=127 (l 24=124 (l 27=128 (l 29=146 (l 31=125 (l 33=126 (l	C 9), 23=-50 (LC 9), C 9), 26=-47 (LC 9), C 9), 30=-64 (LC 8), C 8), 32=-45 (LC 8), C 8), 34=-28 (LC 8), LC 8), 36=-96 (LC 4) LC 15), 21=137 (LC 1), C 16), 26=125 (LC 1), LC 16), 28=135 (LC 1), LC 16), 32=124 (LC 1), LC 15), 32=124 (LC 1), LC 15), 34=127 (LC 2), LC 15), 36=201 (LC 1), ppression/Maximum	b), c c), c c),	Inbalance, his design. Vind: ASC (asd=91m) I; Exp C; E antilever la ight expose fruss desig only. For s see Standa or consult c All plates a Sable requ rruss to be praced aga	d roof live loads ha	ve been of ph (3-sec 3CDL=6.0 (envelope dot; end v .60 plate in the pla nd (norm End Deta ssigner as s otherwi tom chor n one fac ent (i.e. d	considered fo cond gust) Dpsf; h=25ft; (e) exterior zor vertical left an grip DOL=1. ane of the tru: al to the face ils as applical s per ANSI/TF se indicated. d bearing. e or securely	Cat. ne; d 60 ss), ole, PI 1.			. annua.	PROTOCOLO	BARCIA NSEO 952


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 10,2021

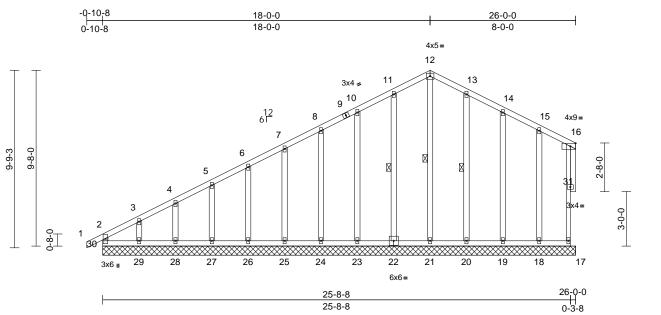
Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	E4	COMMON GIRDER	1	4	Job Reference (optional)	147852420

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:36 ID:2ncXplsxOfbjlB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:54.5

Plate Offsets (X, Y): [6:0-3-8,0-7-0], [8:0-3-8,0-4-0], [10:0-3-8,0-4-0], [11:0-3-8,0-7-0]

September 10,2021


Page: 1

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	G1	Common Supported Gable	1	1	Job Reference (optional)	147852421

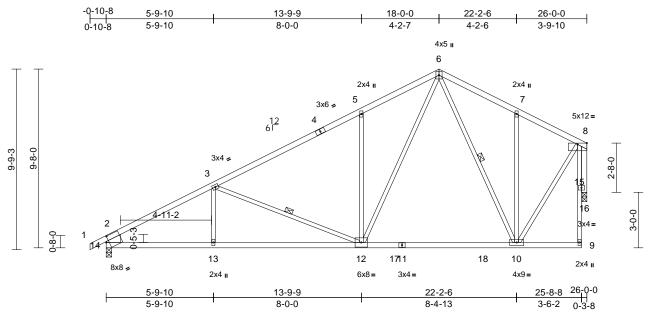
Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:37 ID:IDtRPq1?Lc2VCzhL7BaNIUyf3yz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

25-8-8 25-8-8

Scale = 1:63.3	·		2	25-8-8						0-3-8	
Loading (psf) ICLL (roof) 25.0 ICDL 10.0 3CLL 0.0* 3CDL 10.0	Plate Grip DOL1.Lumber DOL1.Rep Stress IncrY	0-0 15 15 ES 8C2018/TPI2014	CSI TC BC WB Matrix-R	0.26 0.07 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 17	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 148 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 *Excep OTHERS 2x4 SPF No.2 *Excep OTHERS 2x4 SPF No.2 BRACING TOP CHORD Structural wood shear 6-0-0 oc purlins, exc BOT CHORD Rigid ceiling directly a bracing. WEBS 1 Row at midpt 1 REACTIONS (lb/size) 17=64/26-0 19=180/26 21=167/26 23=179/26 23=179/26 29=164/26 Max Horiz 30=287 (LC 21=-14 (LC 23=-56 (LC 27=-54 (LC 29=-128 (L Max Grav 17=89 (LC 19=180 (LC 21=179 (LC 25=180 (LC 25=180 (LC 25=-140 (LC 25=-140 (LC 25=-140 (LC 25=180 (LC 25=179 (LC 25=179 (LC 25=179 (LC 27=-179 (LC 25=179 (LC 27=-179 (LC 25=-10) (LC 27=-179 (LC 27=-179 (LC 25=-10) (LC 27=-179 (LC 25=10) (LC 27=-179 (LC 25=10) (L	bt* 16-17:2x3 SPF No.2 thing directly applied or ept end verticals. applied or 10-0-0 oc 12-21, 11-22, 13-20 0-0, 18=177/26-0-0, -0-0, 22=187/26-0-0, -0-0, 22=187/26-0-0, -0-0, 22=180/26-0-0, -0-0, 24=180/26-0-0, -0-0, 28=184/26-0-0, -0-0, 30=161/26-0-0 C 5) 24), 18=-59 (LC 9), 29), 20=-53 (LC 9), 29), 20=-53 (LC 8), 28), 28=-37 (LC 8), 28), 28=-37 (LC 8), 28), 28=-31 (LC 4) 16), 18=177 (LC 22), C 22), 20=189 (LC 22), C 15), 22=190 (LC 1), C 21), 28=184 (LC 1), C 21), 28=184 (LC 1), C 15), 30=225 (LC 16)	TOP CHORD BOT CHORD WEBS 1) Unbalanced this design. 2) Wind: ASCE Vasd=91mp II; Exp C; Er cantilever le right expose 3) Truss desig only. For st see Standar or consult q 4) All plates ar 5) Gable requi 6) Truss to be braced agai 7) Gable studs 8) This truss h chord live lc 9) * This truss on the botto 3-06-00 tall	2-30=-189/53, 1-2 3-4=-211/92, 4-5= 6-7=-164/120, 7-8 10-11=-120/161, 1 12-13=-98/166, 1 14-15=-95/110, 1 29-30=-76/57, 28- 26-27=-76/57, 25- 23-24=-76/57, 18- 12-21=-148/53, 1 10-23=-139/80, 8 6-26=-140/77, 5-2 3-29=-126/119, 1 14-19=-140/78, 1 14-1	195/94, 149/13 11-12=-11 3-14=-99, 5-16=-11. -29=-76/5 -26=-76/5 -24=-76/5 -22=-76/5 -1-22=-150 5-18=-130 ve been of ph (3-sec 3CDL=6.1 (envelope ed; end v 1.60 plate in the pla nd (norm End Deta as goner as s otherwittom chor n one fac ent (i.e. do c. for a 10.0 with any d for a liva s where vill fit betw	5-6=-179/107 4, 8-10=-135, 02/172, 141, 1/41, 1/96, 16-17=-1 7, 27-28=-76, 7, 24-25=-76, 7, 20-21=-76, 7, 17-18=-76, 0/76, 78, 7-25=-144, 0, 4-28=-143, 0/78, 3/99 considered for cond gust) 0/78, 3/99 considered for cond gust) 0/78, ane of the trus grip DOL=1.6 ane of the trus ser ANSI/TF se indicated. d bearing. e or securely iagonal web). 0 psf bottom other live load a rectangle	r, 1447, 99/71 757, 757 0/78, 69, 0/78, 69, 0/78, 69, 0/78, 69, 0/78, 69, 0/78, 69, 0/78, 69, 0/78, 69, 0/71 0/78, 69, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12	bear 30, 4 uplif 24, 5 uplif joint 59 lt 11) This Inter	ring plat 43 lb up t at join 54 lb up t at join 29, 53 5 uplift a truss is rnationa 2.10.2 a ASE(S)	e capa lift at jc 122, 56 lift at jc 27, 33 lift at jc 27, 33 lift at jc 27, 33 lift at jc 1 Resign Star Star	al connection (by ible of withstandir ible of withstandir ible of withstandir ible of withstandir ible uplift at joint 2 int 25, 53 lo puplif 18, for a coordand the in accordand the in accordand the intaccordand the i	others) of truss to g 51 lb uplift at joint t at joint 21, 52 lb BJ 54 lb uplift at joint par joint 26, 58 lb 8, 128 lb uplift at uplift at joint 19 and with the 2018 Oha R502.11.1 and ANSI/TPI 1. BER 62101 ANSI/TPI 1. BER 62101 ARCIA SES 52 53 54 52 53 54 55 55 55 55 55 55 55 55 55

chord and any other members.



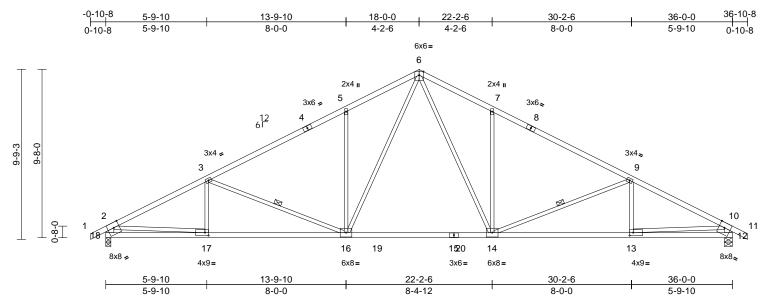
September 10,2021

Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	G2	Roof Special	6	1	Job Reference (optional)	147852422

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:37 ID:2ncXplsxOfbjlB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:62.3 Plate Offsets (X, Y): [14:0-1-13,0-3-8]


`													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.78		-0.22	10-12	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.97	Vert(CT)			>830	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.72	Horz(CT)	0.16	16	n/a	n/a		
BCDL	10.0	Code	IRC2018	B/TPI2014	Matrix-S		Wind(LL)	0.12	12-13	>999	240	Weight: 115 lb	FT = 10%
LUMBER			4)		nas been designe			0psf					
TOP CHORD	2x4 SPF No.2 *Exce 1.8E	ept* 1-4:2x4 SPF 210	0F	3-06-00 tall b	n chord in all are by 2-00-00 wide v	vill fit betv	veen the bott						
BOT CHORD	2x4 SPF No.2		->		y other members	,							
WEBS	2x3 SPF No.2 *Exce	ept* 14-2:2x10 SP D	SS 5)		int(s) 16 conside PI 1 angle to gra			ie					
OTHERS	2x4 SPF No.2				uld verify capaci								
		othing discatly opplie	d an (6)		hanical connection			to					
TOP CHORD	Structural wood she 3-8-6 oc purlins, ex	cept end verticals.	a or -,	bearing plate	capable of withs 137 lb uplift at joi	standing 1						NU'DE I	MIGHT
BOT CHORD	Rigid ceiling directly bracing.	applied or 2-2-0 oc	7)	This truss is	designed in acco	rdance w						INTE.	Soli
WEBS	1 Row at midpt	3-12, 6-10			Residential Code nd referenced sta			and			2	A	· P ·
REACTIONS	(lb/size) 14=1237/	0-3-8, 16=1121/0-3-2	2	DAD CASE(S)		illualu Al	N31/1F11.				2	JUA	
	Max Horiz 14=245 (I			DAD CASE(S)	Stanuaru						-+	GAR	
	Max Uplift 14=-181 (1	:0
	Max Grav 14=1275		2)								= T		
FORCES	(lb) - Maximum Com	pression/Maximum									= 3	NUME	• 41.
	Tension	NOED DE 4074/400	,								-	E-20001	62101
TOP CHORD	1-2=0/39, 2-3=-1910 5-6=-1361/332, 6-7=		,								1	A	
	9-15=-3/28, 8-15=-3	,	,									1.SIG	ENIN
BOT CHORD	13-14=-375/1624. 12											UN P	Lin
	10-12=-58/715, 9-10	,											10.5
WEBS	8-10=-98/995, 3-13=		20,										IIII.
	5-12=-519/272, 6-10											NN C	APOL
	7-10=-340/183, 6-12	2=-277/1085,										N JUA	······································
	8-16=-1207/138											LICE THE	NSE
NOTES	ad reaf live leads have	heen ennidered for											
this design	ed roof live loads have	been considered for									-	1 A	- A -
0	 CE 7-16; Vult=115mph	(3-second aust)										169	952
	nph; TCDL=6.0psf; BC		Cat.								-	T	
	Enclosed; MWFRS (er										-	D.	U
	left and right exposed											- Q	S.S
	sed; Lumber DOL=1.6		60									E. C.	Short
	has been designed fo											I, SON	ALENI
chord live	load nonconcurrent wi	ith any other live load	1S.									1111	in the second se
												September	10 2021
												September	10,2021
	NNG - Verify design parameter	ers and READ NOTES ON	THIS AND IN		EFERENCE PAGE MI	I-7473 rev 5	19/2020 BEFOR	EUSE.					

Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	G3	Common	3	1	Job Reference (optional)	147852423

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:37 ID:2ncXplsxOfbjIB6l7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

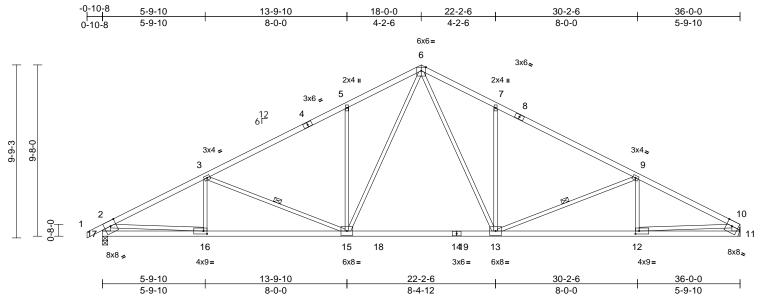
Scale = 1:66.2

Plate Offsets (X, Y): [12:0-3-12,Edge], [13:0-2-8,0-2-0], [17:0-2-8,0-2-0], [18:0-3-12,Edge]

												-
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.92	Vert(LL)	-0.26	14-16	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.53	Vert(CT)	-0.43	14-16	>996	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.74	Horz(CT)	0.08	12	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI201	4 Matrix-S		Wind(LL)	0.11	16-17	>999	240	Weight: 145 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	(lb/size) 12=1677/ Max Horiz 18=-150 (Max Uplift 12=-224 (ept* 18-2,12-10:2x6 a eathing directly applie applied or 10-0-0 or 9-14, 3-16 (0-5-8, 18=1677/0-3- (LC 13) (LC 9), 18=-224 (LC	chord li 4) * This t SPF on the l 3-06-00 chord a ed, 5) Provide bearing c joint 18 6) This tru Interna 8 R802.1 LOAD CAS 8)	ss has been designed ve load nonconcurrent uss has been designed bottom chord in all are to tall by 2-00-00 wide v nd any other members mechanical connectio plate capable of withs and 224 lb uplift at joi ss is designed in acco ional Residential Code 0.2 and referenced sta E(S) Standard	with any ed for a liv as where vill fit betw s, with BC on (by oth standing 2 nt 12. wrdance w e sections	other live load re load of 20.0p a rectangle ween the bottor CDL = 10.0psf. .ers) of truss to 224 lb uplift at rith the 2018 s R502.11.1 an	psf m			in in the second se	JUA GAR	
	Max Grav 12=1743	(LC 2), 18=1743 (LC	C 2)							2.0	1	
FORCES	(lb) - Maximum Com	npression/Maximum								==		
TOP CHORD	1-2=0/35, 2-3=-2882/343, 3-5=-2373/287, 5-6=-2351/431, 6-7=-2351/431, 7-9=-2373/287, 9-10=-2882/343, 10-11=0/35, 2-18=-1638/249, 10-12=-1638/248							NUME E-20001	• 41.			
WEBS	6-14=-284/1056, 7- 9-14=-572/220, 9-13 6-16=-284/1056, 5- 3-16=-572/220, 3-17 2-17=-157/1925, 10	3=-42/164, 16=-500/276, 7=-42/164,									UCE	ARCIA
this design 2) Wind: ASO Vasd=91n II; Exp C; cantilever	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en left and right exposed sed; Lumber DOL=1.6	n (3-second gust) DL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an	Cat. ne; d							THINK.	169 PROCESSION	SAS CHUIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 10,2021


Job	Truss	Truss Type	Qty Ply Lot 73 RR		Lot 73 RR	
RR73	G4	Common	3	1	Job Reference (optional)	147852424

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:38 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

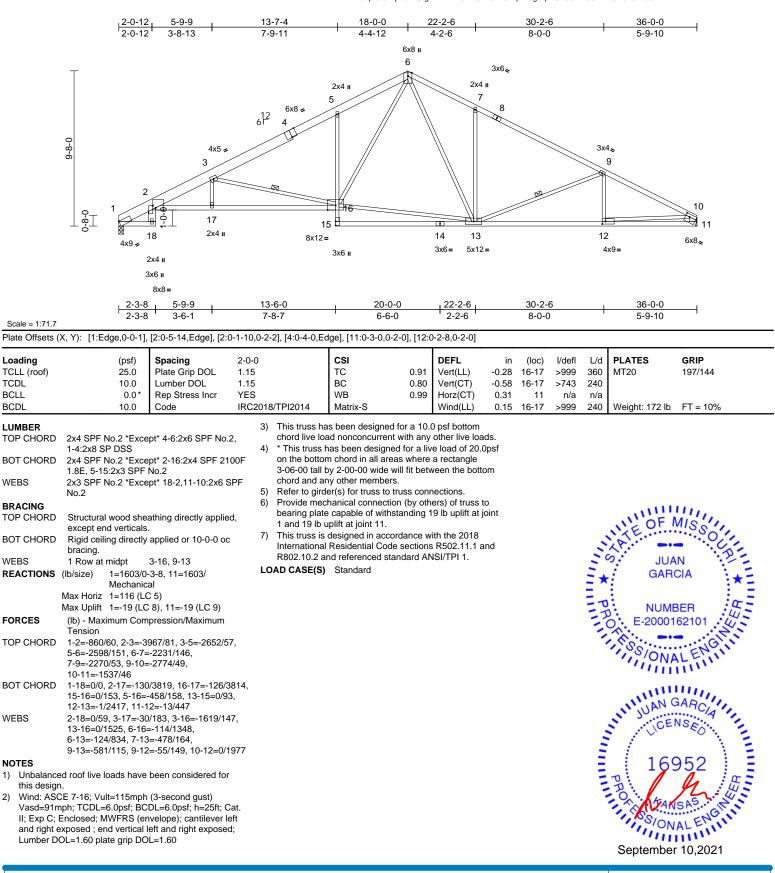
September 10,2021

MiTek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

Scale = 1:65.1

Plate Offsets (X, Y): [11:0-3-12,Edge], [12:0-2-8,0-2-0], [16:0-2-8,0-2-0], [17:0-3-12,Edge]

			-									1	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.92	Vert(LL)	-0.27	13-15	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.53	Vert(CT)	-0.43	13-15	>994	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.70	Horz(CT)	0.08	11	n/a	n/a		
BCDL	10.0	Code	IRC2018/1	TPI2014	Matrix-S		Wind(LL)	0.08	15-16	>999	240	Weight: 144 lb	FT = 10%
	2x4 SPF 2100F 1.8E 2x3 SPF No.2 *Exce No.2 Structural wood she except end verticals Rigid ceiling directly bracing. 1 Row at midpt	ept* 17-2,11-10:2x6 \$ athing directly applie applied or 10-0-0 oc 9-13, 3-15 Mechanical, 0-3-8 .C 5) C 9), 17=-31 (LC 8) (LC 2), 17=1744 (LC	4) d, 5) 7) LOA	chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Refer to girdé Provide mech bearing plate 11 and 31 lb This truss is o International	s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide wil y other members, er(s) for truss to tru- nanical connection capable of withsta uplift at joint 17. designed in accorc Residential Code s and referenced stan Standard	vith any for a liv s where I fit betw with BC uss conr (by oth anding 1 dance w sections	other live load e load of 20.0p a rectangle veen the bottor DL = 10.0psf. nections. ers) of truss to 9 lb uplift at jo ith the 2018 $\approx 502.11.1$ an	n int			·/////////////////////////////////////	JUA GAR	
TOP CHORD	(ib) - Maximum Com Tension 1-2=0/35, 2-3=-2884 5-6=-2353/149, 6-7= 7-9=-2377/55, 9-10= 2-17=-1639/57, 10-1	1/46, 3-5=-2375/55, 2353/150, 2890/47,									1111	E-20001	• 41.
BOT CHORD	16-17=-107/674, 15- 13-15=0/1618, 12-13	,	/514										105
WEBS	6-13=-117/1074, 7-1 9-13=-586/111, 9-12 6-15=-117/1073, 5-1 3-15=-572/109, 3-16 10-12=0/2024	3=-495/165, 2=-52/158, 5=-500/166,										LICE PR	NSED
this design 2) Wind: ASC Vasd=91m II; Exp C; I and right e	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er exposed ; end vertical l OL=1.60 plate grip DC	(3-second gust) DL=6.0psf; h=25ft; C nvelope); cantilever le left and right exposed	cat. eft								11111VV	AR SCION	SAS NOTIN

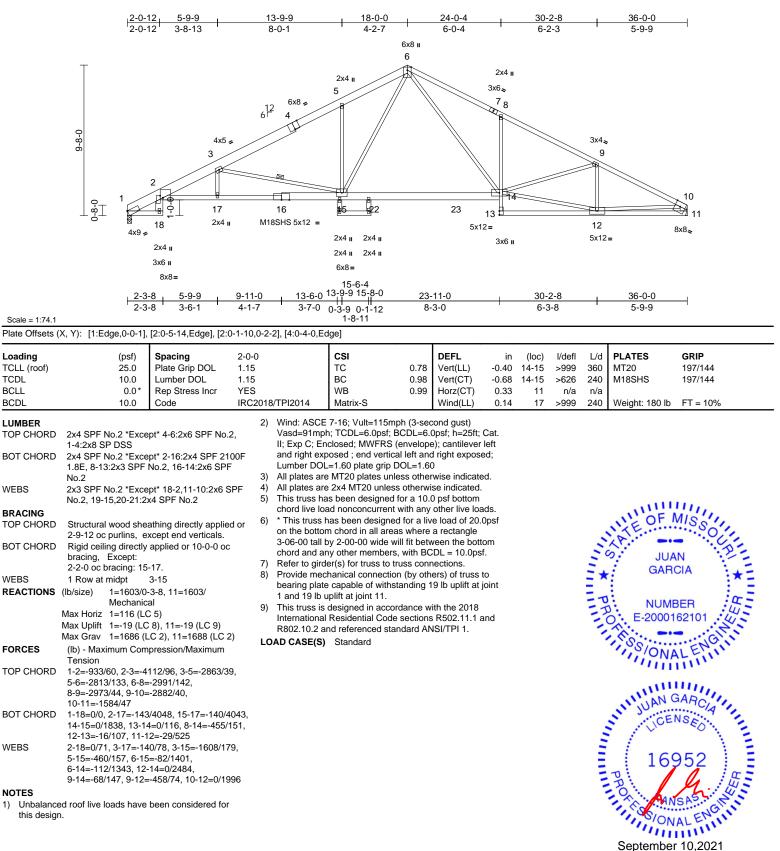

Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	G5	Roof Special	3	1	Job Reference (optional)	147852425

1)

2)

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:38 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	G6	Roof Special	1	1	Job Reference (optional)	147852426

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:38 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1)

Loading

TCDL

BCLL

BCDL

WEBS

WEBS

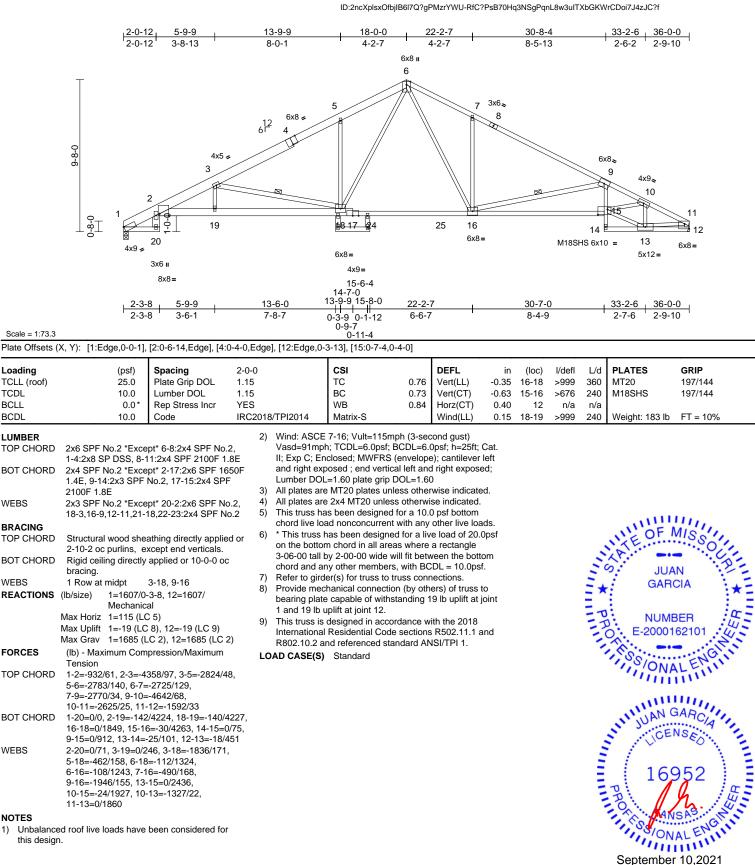
FORCES

WEBS

NOTES

LUMBER

this design.


September 10,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a duss system planteets and property incorporate dust using in the version of the system planteets and property incorporate dust using indicated is to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual itruss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	G7	Roof Special	2	1	Job Reference (optional)	147852427

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:39

Page: 1

11-13=0/1860 NOTES

Loading

TCDL

BCLL

BCDL

WEBS

WEBS

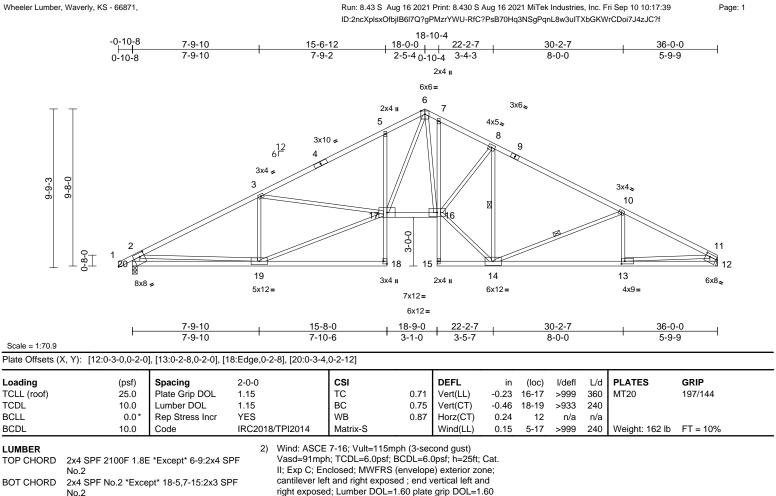
FORCES

WEBS

BRACING

LUMBER

TCLL (roof)


1) Unbalanced roof live loads have been considered for this design.

5-18=-462/158, 6-18=-112/1324, 6-16=-108/1243, 7-16=-490/168, 9-16=-1946/155, 13-15=0/2436, 10-15=-24/1927, 10-13=-1327/22,

> MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

September 10,2021

Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	G8	Roof Special	1	1	Job Reference (optional)	147852428

2x4 SPF No.2 *Except* 18-5,7-15:2x3 SPF		cantilever left and right exposed ; end vertical left and
No.2		right exposed; Lumber DOL=1.60 plate grip DOL=1.60
2x3 SPF No.2 *Except* 20-2,12-11:2x6 SP	3)	This truss has been designed for a 10.0 psf bottom
DSS		chord live load nonconcurrent with any other live loads.
	4)	* This truss has been designed for a live load of 20.0psf
Structural wood sheathing directly applied or		on the bottom chord in all areas where a rectangle

- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 5) Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to
 - bearing plate capable of withstanding 224 lb uplift at joint 20 and 199 lb uplift at joint 12.
- This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

NOTES

WEBS

WEBS

WEBS

FORCES

TOP CHORD

BOT CHORD

BRACING

TOP CHORD

BOT CHORD

REACTIONS (lb/size)

1) Unbalanced roof live loads have been considered for

2-8-12 oc purlins, except end verticals.

Rigid ceiling directly applied or 9-7-4 oc

12=1598/ Mechanical,

Max Uplift 12=-199 (LC 9), 20=-224 (LC 8)

1-2=0/35, 2-3=-2728/327, 3-5=-3201/384,

19-20=-367/899, 18-19=0/30, 17-18=0/133, 5-17=-424/243, 16-17=-101/2235, 15-16=0/12, 7-16=-14/161, 14-15=-2/9, 13-14=-255/2412, 12-13=-75/467

5-6=-3137/502, 6-7=-2576/351,

7-8=-2752/345, 8-10=-2251/290,

10-11=-2770/344, 2-20=-1604/264,

3-19=-818/241, 17-19=-376/2471 3-17=0/448, 6-17=-361/1423, 6-16=-172/998,

8-16=-28/752, 8-14=-1339/149, 14-16=-117/2541, 10-14=-594/221, 10-13=-42/174, 2-19=-7/1435,

(Ib) - Maximum Compression/Maximum

20=1678/0-3-8

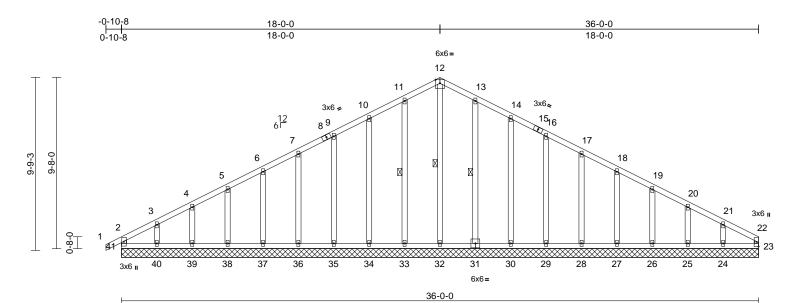
Max Horiz 20=160 (LC 12)

8-14, 10-14

bracing.

Tension

11-12=-1536/221


11-13=-181/1952

1 Row at midpt

this design.

Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	G9	Common Supported Gable	1	1	Job Reference (optional)	147852429

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:39 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:65.1

Scale = 1.05.1											
Loading (psf) TCLL (roof) 25.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.07 0.06 0.13	Vert(CT)	in n/a n/a 0.01	(loc) - - 23	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 183 lb	GRIP 197/144 FT = 10%
OTHERS 2x4 SPF No.2 BRACING 5 TOP CHORD Structural wood sh 6-0-0 oc purlins, e Rigid ceiling direct bracing. BOT CHORD 1 Row at midpt REACTIONS (lb/size) 23=75/3 25=177/ 27=180/ 29=180/ 31=187/ 35=180/ 37=180/ 39=185/ 41=169/ Max Horiz 41=69/ 41=169/ Max Horiz Max Horiz 41=169/ 41=169/ Max Uplift 24=-100 26=-57 28=-54/ 30=-58 33=-50/ 35=-53/ 37=-53	(LC 12) (LC 9), 25=-43 (LC 9), LC 9), 27=-53 (LC 9), LC 9), 29=-53 (LC 9), LC 9), 31=-48 (LC 9), LC 8), 34=-57 (LC 8), LC 8), 36=-54 (LC 8), LC 8), 38=-57 (LC 8), LC 8), 40=-112 (LC 8),	2	27=180 29=180 31=189 33=190 35=180 37=180 39=185	(LC 1), ; (LC 1), ; (LC 1), ; (LC 2), (LC 2), (LC 2), (LC 1), ; (LC 17), mpressi =0/32, 2; -102/105 -56/182, -12=-46, 3-14=-43, 3-19=-43, 22=-133, 3-49=-27, -38=-27, 3-38=-27, 3-32=-27, 3-29=-27, 3-29=-27, 3-29=-27, 3-29=-27, 3-29=-27, 3-29=-27, 3-29=-27, 3-29=-140, 3-20=-140, 3-2	26=181 (LC 22 28=180 (LC 22 28=180 (LC 22 30=179 (LC 22 33=179 (LC 1 36=180 (LC 1 38=179 (LC 1 38=179 (LC 1 40=163 (LC 21 on/Maximum -3=-190/79, 5, 5-6=-78/1311, 9-10=-45/208, /257, /206, /128, /76, 19-20=-60 /36, 22-23=-75 /120, /120	2), 2), 2), 18), 1), 3 1), 3 1), 4 5 6 7 9 0/50, 5/2 0/78,	Vas II; E cant righ:) Trus only see or c) All p) Gab) Trus brac () Gab 3) This choi) * Th on ti 3-06	d=91mp xp C; Ei tilever let t exposes ss desig v. For st Standa onsult q blates ar ble requi ss to be sed agai ble studs is truss he botto 5-00 tall rd and a	h; TCI nclose eff and ed; Lur ned fo cutose ed; Lur ned fo res co fully si inst lat inst inst inst lat inst lat inst inst inst inst inst inst inst inst	d; MWFRS (enver right exposed); E mber DOL-1.00 (r wind loads in th Josed to wind (r stry Gable End I dhuilding design MT20 unless with minuous bottom heathed from one eral movement (i ad at 2.0-0.000 or designed for a designed for a for in all areas wi 00-00 wide will/fil er members.	L=6.0psf; h=25ft; Cat. elope) exterior zone; end vertical left and pare grip DOL=1.60 here grip DOL=1.60 here grip DOL=1.60 here a per ANSt/TP11. Grives indicated, chord bearing; e face or securely car diagonal ve8). 162101 10.0 psf bottom any other live toads. a live toad of 20.0psf here a rectangle between the bottom

NOTES

1) Unbalanced roof live loads have been considered for this design.

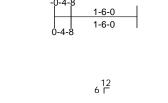
21-24=-150/103

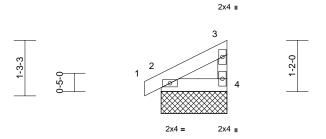
Page: 1

Job	Truss	Truss Type		Ply	Lot 73 RR	
RR73	G9	Common Supported Gable	1	1	Job Reference (optional)	147852429

- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 41 lb uplift at joint 41, 50 lb uplift at joint 33, 57 lb uplift at joint 34, 53 lb uplift at joint 35, 54 lb uplift at joint 36, 53 lb uplift at joint 37, 57 lb uplift at joint 38, 40 lb uplift at joint 39, 112 lb uplift at joint 40, 48 lb uplift at joint 31, 58 lb uplift at joint 30, 53 lb uplift at joint 29, 54 lb uplift at joint 28, 53 lb uplift at joint 27, 57 lb uplift at joint 26, 43 lb uplift at joint 25 and 100 lb uplift at joint 24.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:39 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2



Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	J4	Jack-Closed Supported Gable	2	1	Job Reference (optional)	147852430

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:40 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1-6-0

Scale = 1:26.2	

3) Gable requires continuous bottom chord bearing.

This truss has been designed for a 10.0 psf bottom

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 15 lb uplift at joint

chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf

Gable studs spaced at 2-0-0 oc.

chord and any other members.

4 and 17 lb uplift at joint 2.

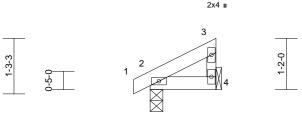
4)

5)

6)

7)

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.03	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 5 lb	FT = 10%
LUMBER			8) This truss i	s designed in acc	ordance wi	ith the 2018						
TOP CHORD	2x4 SPF No.2			al Residential Coc			ind					
BOT CHORD	2x4 SPF No.2		R802.10.2	and referenced st	andard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2		LOAD CASE(S	 Standard 								
BRACING												
TOP CHORD	Structural wood she		ed or									
	1-6-0 oc purlins, ex		_									
BOT CHORD	Rigid ceiling directly bracing.	applied of 10-0-0 o	C									
REACTIONS	0	-0, 4=59/1-6-0										1117.
	Max Horiz 2=35 (LC	,									OF	MISS
	Max Uplift 2=-17 (LC									1	NYE	0,1
FORCES	(lb) - Maximum Con	npression/Maximum								5	Yr.	
	Tension									5	JU.	
TOP CHORD	1-2=0/5, 2-3=-36/18	3, 3-4=-45/24								F 4	GAF	
BOT CHORD	2-4=-11/9										:	: 2 =
NOTES		(2)								= 0		
,	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC		Cat							-5	NUM	• 41.
	Enclosed; MWFRS (e									-1	E-2000	162101
	left and right exposed									1	A	- day
	sed; Lumber DOL=1.6										1.SION	ENIN
	igned for wind loads ir										- IN	ALTIN'
	studs exposed to wind											11.1
	lard Industry Gable En											GAD
or consult	qualified building desi	igner as per ANSI/TI	-11.									GAD



Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	J5	Jack-Closed	2	1	Job Reference (optional)	147852431

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:40 ID:2ncXplsxOfbjlB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

12 6 Г

1-6-0

Scale = 1:26.2

Scale = 1:26.2												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.02	Vert(LL)	0.00	2-4	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	2-4	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 5 lb	FT = 10%
LUMBER												
TOP CHORD	2x4 SPF No.2											
BOT CHORD	2x4 SPF No.2											
WEBS	2x3 SPF No.2											
BRACING												
TOP CHORD	Structural wood she	athing directly appli	ed or									
	1-6-0 oc purlins, ex	cept end verticals.										
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	C									
	bracing.											
REACTIONS	(lb/size) 2=94/0-3-	8, 4=57/ Mechanica	al								AND LE	
	Max Horiz 2=35 (LC	5)									NE OF	MISS
	Max Uplift 2=-17 (LC	C 8), 4=-15 (LC 8)								1	1	0,1
FORCES	(Ih) Maximating Cam										X1	

FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/5, 2-3=-36/18, 3-4=-44/23

TOP CHORD 1-2=0/5, 2-3=-36/18, 3-4=-44/23 BOT CHORD 2-4=-11/9 NOTES

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 15 lb uplift at joint 4 and 17 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	R1	Common Girder	1	2	Job Reference (optional)	147852432

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:40 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-10-8 5-9-10 22-2-6 25-10-8 13-9-10 18-0-0 30-2-6 36-0-0 0-10-8 5-9-10 8-0-0 4-2-6 4-2-6 3-8-2 4-3-14 5-9-10 6x6 ı 6 3x6 **≈** 2x4 i 2x4 I 5 7 3x6 ≠ 8 6x8 12 61 4 9 9-8-0 6-9-3 3x4 3x6 👟 3 10 11 0-8-0 刻 Ř 17 16 15 14 13 20 12 21 22 18 19 4x5= 5x12 2x4 ı 4x9= 4x9= 8x8= 3x10 II 8x8= LUS26 LUS26 111526 HGUS26-2 LUS26 5-9-10 13-9-10 25-10-8 30-2-6 36-0-0 22-2-6 5-9-10 8-0-0 8-4-12 3-8-2 4-3-14 5-9-10 Scale = 1:64.7 Plate Offsets (X, Y): [2:Edge,0-0-13], [11:Edge,0-1-14], [13:0-3-8,0-4-12] Loading Spacing 2-0-0 CSI DEFL in (loc) l/defl L/d PLATES GRIP (psf) Plate Grip DOL TCLL (roof) 25.0 1.15 тс 0.86 Vert(LL) -0.20 13-14 >999 360 MT20 197/144 TCDL 10.0 Lumber DOL 1.15 BC 0.75 Vert(CT) -0.3613-14 >999 240 BCLL Rep Stress Incr WB Horz(CT) 0.09 0.0 NO 0.76 11 n/a n/a

LUMBER TOP CHORD 2x4 SPF No.2 *Except* 1-4,8-11:2x4 SPF 2100F 1.8E BOT CHORD 2x6 SP 2400F 2.0E 2x4 SPF No.2 WEBS WEDGE Right: 2x6 SP No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 4-2-15 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (lb/size) 2=3060/0-3-8. 11=6329/0-5-8 Max Horiz 2=108 (LC 7) Max Uplift 2=-191 (LC 8), 11=-591 (LC 9) Max Grav 2=3222 (LC 13), 11=6606 (LC 14) FORCES (Ib) - Maximum Compression/Maximum Tension 1-2=0/11, 2-3=-6053/371, 3-5=-5541/395, TOP CHORD 5-6=-5513/490, 6-7=-7411/688, 7-9=-7404/621, 9-10=-10562/927, 10-11=-12029/1069 BOT CHORD 2-17=-367/5300, 16-17=-367/5300, 14-16=-242/4520, 13-14=-694/9386 12-13=-872/10400, 11-12=-872/10400 WEBS 6-14=-542/5153, 7-14=-274/113, 10-13=-1404/221, 10-12=-150/1684 6-16=-154/996, 5-16=-473/165, 3-16=-427/230, 3-17=0/258, 9-14=-4970/572, 9-13=-550/5266 NOTES 2-ply truss to be connected together with 10d 1)

10.0

Code

IRC2018/TPI2014

BCDL

(0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 2 rows staggered at 0-6-0 oc. Bottom chords connected as follows: 2x6 - 3 rows staggered at 0-4-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

Wind(LL)

0.13

Matrix-S

- Unbalanced roof live loads have been considered for 3) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 4) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 191 lb uplift at ioint 2 and 591 lb uplift at joint 11.

This truss is designed in accordance with the 2018 8) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Use Simpson Strong-Tie HGUS26-2 (20-16d Girder, 8-16d Truss) or equivalent at 25-10-7 from the left end to connect truss(es) to front face of bottom chord.

10) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss) or equivalent spaced at 2-0-0 oc max, starting at 27-11-4 from the left end to 33-11-4 to connect truss(es) to front face of bottom chord.

- 11) Fill all nail holes where hanger is in contact with lumber. LOAD CASE(S) Standard
- Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1 15 Uniform Loads (lb/ft) Vert: 1-6=-70, 6-11=-70, 2-11=-20 Concentrated Loads (lb)

Vert: 13=-3933 (F), 12=-544 (F), 20=-544 (F), 21=-544 (F), 22=-544 (F)

Weight: 411 lb FT = 10%

ALLIN

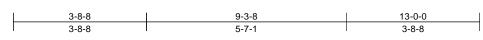
0

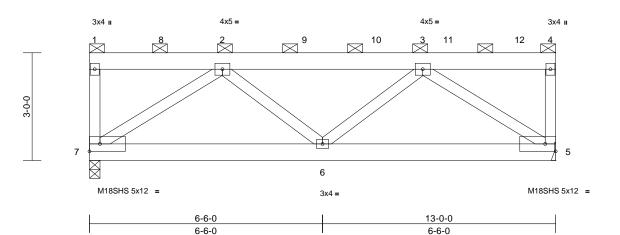
MIS

>999

13

240


Page: 1



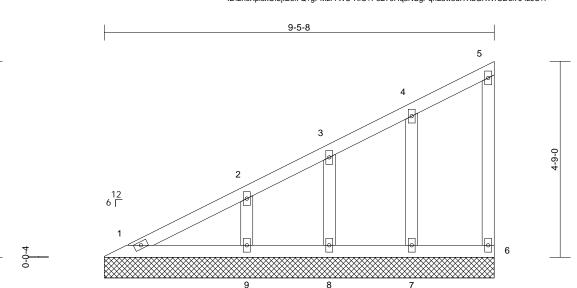
Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	R2	Flat Girder	1	2	Job Reference (optional)	147852433

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:40 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32.1

00000 = 1.02.1													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.71	Vert(LL)	-0.04	6	>999	360	M18SHS	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.49	Vert(CT)	-0.07	6	>999	240	MT20	197/144
BCLL	0.0*	Rep Stress Incr	NO		WB	0.50	Horz(CT)	0.03	5	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S		Wind(LL)	0.03	6	>999	240	Weight: 137 lb	FT = 10%
LUMBER TOP CHORD 2x6 BOT CHORD 2x6 WEBS 2x4 BRACING TOP CHORD 2-0- end BOT CHORD 2-0- end BOT CHORD 2-0- end BOT CHORD 2-0- end BOT CHORD 2-0- end brac REACTIONS (Ib/siz Max I Max I Max 0 FORCES (Ib) Ten: TOP CHORD 1-7- 3-4= BOT CHORD 6-7= WEBS 2-6- 3-5= NOTES 1) 2-ply truss to be (0.131*x3*) nails Top chords conr oc, 2x6 - 2 rows Bottom chords conr oc, 2x6 - 2 rows Bottom chords conr oc, 2x6 - 2 rows Bottom chords con castaggered at 0-9 Web connected 2) All loads are conr except if noted a CASE(S) section provided to distri unless otherwise 3) Wind: ASCE 7-1 Vasd=91mph; TI II; Exp C; Enclos and right expose Lumber DOL=1.	SPF No.2 SPF No.2 SPF No.2 SPF No.2 O oc purlins (5-8 verticals. d ceiling directly ing. ze) 5=3953/1 Horiz 7=-77 (LC Jplift 5=-425 (L Grav 5=4392 (I - Maximum Corr sion =-595/97, 1-2=-9 =-520/4807, 5-6= =0/201, 2-7=-580 (-5830/601 connected toge as follows: taggered at 0-1 connected as follow: staggered at 0-1 connected as follow: staggered at 0-1 connected as follows: staggered at 0-1 connected as follo	 3-7 max.): 1-4, excep applied or 10-0-0 oc Mechanical, 7=3598/0 C 5), 7=-416 (LC 4) _C 13), 7=4056 (LC 1 _pression/Maximum 1/26, 2-3=-4844/430, 13/105 -509/4830 >2/599, 3-6=0/174, ther with 10d s: 2x4 - 1 row at 0-9-0 -9-0 oc. ows: 2x6 - 2 rows -1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO/ hections have been noted as (F) or (B), noted as (F) or (B), notedoas (F) or (B), (3-second gust) DL=6.0psf; h=25ft; C novelope); cantilever left and right exposed 	5) 6) 7) t 8) 9) -3-8 10] 4) 11] 12] 0 LO 1) AD at. sft 1;	All plates are This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and ar Refer to girdd Provide mecl bearing plate joint 7 and 42) This truss is International R802.10.2 ar) Graphical pu or the orienta bottom chorc) Hanger(s) or provided suff lb down and lb up at 2-0- 1235 lb dowr 121 lb up at 10-0-0, and 1 top chord. T device(s) is t DAD CASE(S) Dead + Roc Plate Increas Uniform Loa Vert: 1-4:	MT20 plates unless s been designed f d nonconcurrent v has been designed n chord in all area y 2-00-00 wide wi yo other members. arr(s) for truss to tru- hanical connection capable of withst 25 lb uplift at joint designed in accor Residential Code nd referenced star rlin representation ticient to support c 67 lb up at 0-1-12 0, 1235 lb down at n and 121 lb up at 8-0-0, and 1235 lb down at he design/selection he responsibility o Standard of Live (balanced): ase=1.15	ior a 10. with any t for a liv s where uss conr h (by oth anding 4 5. dance w sections ndard AN a does no along the device(s oncentra 2, 1235 ll 6-0-0, 1 b down a 122 lb u n of suc f others.	wise indicate wise indicate other live loa e load of 20.0 a rectangle veen the botto nections. ers) of truss t 16 lb uplift at ith the 2018 r R502.11.1 a ISI/TPI 1. of depict the se top and/or) shall be ted load(s) 2 o down and 1 o up at 4-0-0 235 lb down ind 121 lb up p at 12-0-0 o h connection	d. ds. Dpsf om o nd size 05 21 , and at n				SS/ONA SS/ONA GAR	MISSOUR ALENGIN


September 10,2021

Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	V1	Valley	1	1	Job Reference (optional)	147852434

4-9-0

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:41 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

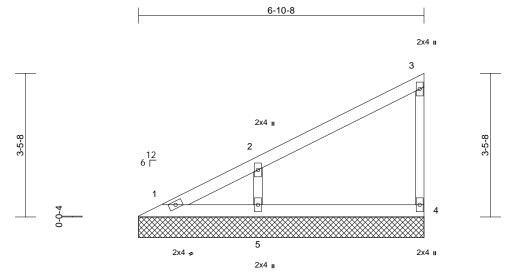
9-5-8

Scale = 1:27.9

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.03	Horiz(TL)	0.00	6	n/a	n/a		
BCDL		10.0	Code	IRC20	18/TPI2014	Matrix-S							Weight: 34 lb	FT = 10%
LUMBER				(This truss has a second sec	as been designed	for a 10.	0 psf bottom						
TOP CHORD	2x4 SPF No.	2			chord live lo	ad nonconcurrent	t with any	other live loa	ds.					
BOT CHORD	2x4 SPF No.	2		-	7) * This truss	has been designe	ed for a liv	e load of 20.0)psf					
WEBS	2x4 SPF No.	2				m chord in all are								
OTHERS	2x4 SPF No.	2				by 2-00-00 wide v		veen the botto	om					
BRACING						ny other members								
TOP CHORD			athing directly applie	ed or ⁸		chanical connection e capable of withe								
			cept end verticals.			t at joint 9, 45 lb u								
BOT CHORD		directly	applied or 10-0-0 oc)	uplift at joint		apint at jo		•					111.
	bracing.			9		designed in acco	ordance w	ith the 2018					IN OF	MICH
REACTIONS			5-8, 6=67/9-5-8,			Residential Code			nd				NE	SS
		=196/9-5 =267/9-5	5-8, 8=149/9-5-8,		R802.10.2 a	nd referenced sta	andard Al	NSI/TPI 1.				~	A	
	9= Max Horiz 1=			1	OAD CASE(S)	Standard							<u>.</u>	· p:-
			5), 7=-58 (LC 8), 8=	15								-	JU	
			-80 (LC 8)	40								= *	GAR	
			C 16), 6=67 (LC 1), 7	′ =196										
			149 (LC 1), 9=267 (= 0	NUM	
FORCES	(lb) - Maximu	um Com	pression/Maximum									= 5		• 41.
	Tension												E-2000	102101
TOP CHORD			14/36, 3-4=-101/44,									1	· ···· -·	- day
	4-5=-80/46, 5												1.SION	FNI
BOT CHORD		8-9=-62/	/47, 7-8=-62/47,											ALTIN
	6-7=-62/47													10.5
WEBS	2-9=-200/108	8, 3-8=-	119/70, 4-7=-152/71										JUAN LICE	1111.
NOTES	_													GARO
			(3-second gust)										NUAN	CIA
			DL=6.0psf; h=25ft; C										CE	NSA
			velope) exterior zon ; end vertical left and											0
			0 plate grip DOL=1.6									-	1 A	- A E
			the plane of the trus										16	952
			(normal to the face)									-	10	902 : -
			d Details as applicab									-	PP	1 1 5
or consult	qualified building	ing desig	gner as per ANSI/TP	Y 1.									0.	Mar. 145
			therwise indicated.										- A MAN	ISA
			m chord bearing.										1,55	ENGIN
5) Gable stu	ds spaced at 2-	-0-0 oc.											UN ON	AL
														1005
													Septembe	r 10,2021

- 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 4)
- Gable studs spaced at 2-0-0 oc. 5)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


September 10,2021

Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	V2	Valley	1	1	Job Reference (optional)	147852435

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:41 ID:2ncXplsxOfbjlB6l7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

C?f

6-10-8

Scale = 1:27.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.05	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 19 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2		bearing plat 4 and 110 lk 8) This truss is Internationa	chanical connect e capable of wite o uplift at joint 5. designed in ac I Residential Co and referenced s	thstanding 2 cordance w ode sections	?7 lb́ uplift at j ith the 2018 s R502.11.1 a	oint					
TOP CHORD	Structural wood she		ed or LOAD CASE(S)	Standard								
BOT CHORD	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (Ib/size) 1=47/6-10		c								NU OF	MISSIL
REACTIONS	(ID/SIZE) 1=47/0-10	, ,									NAE	

5=368/6-10-8 Max Horiz 1=129 (LC 5) Max Uplift 4=-27 (LC 8), 5=-110 (LC 8) Max Grav 1=66 (LC 16), 4=142 (LC 1), 5=368 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-110/58, 2-3=-105/43, 3-4=-111/46

BOT CHORD 1-5=-44/33, 4-5=-44/33 WEBS 2-5=-286/159

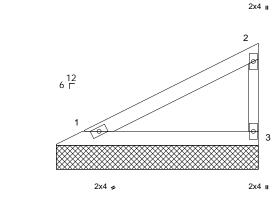
NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 4-0-0 oc.

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.



Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	V3	Valley	1	1	Job Reference (optional)	147852436

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:41 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-1-8

4-2-8

Scale = 1:24				1				1				
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.23	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 11 lb	FT = 10%

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

LUN	IBER
TOP	CHO

LOWIDER		
TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2
WEBS	2x3 SPF N	No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	4-3-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	1=158/4-2-8, 3=158/4-2-8
	Max Horiz	1=73 (LC 5)
	Max Uplift	1=-20 (LC 8), 3=-39 (LC 8)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHORD	1-2=-67/4	4, 2-3=-123/60
BOT CHORD	1-3=-25/1	9

NOTES

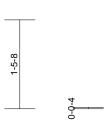
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

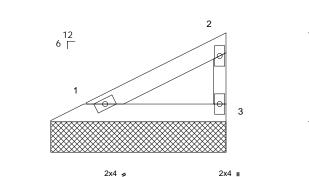
Gable requires continuous bottom chord bearing. 3)

- Gable studs spaced at 2-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 7) bearing plate capable of withstanding 20 lb uplift at joint 1 and 39 lb uplift at joint 3.

MIS 0 VIII * PRUM JUAN GARCIA NUMBER E-2000162101 C E ONAL min 16952 Bonses Nalenses September 10,202 G September 10,2021

Page: 1


Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	V4	Valley	1	1	Job Reference (optional)	147852437


Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:41 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 🛛

1-5-8

Page: 1

2-10-8

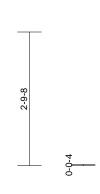
2-10-8

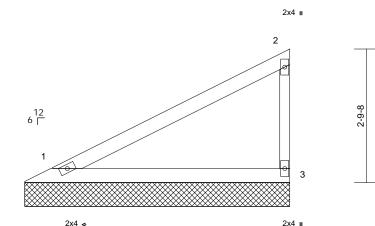
Scale = 1:18.9

Scale = 1:18.9												
Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.08 0.04	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 197/144
BCLL	0.0*	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P	0.00	110112(112)	0.00	Ũ	n/a	n/a	Weight: 7 lb	FT = 10%
BOT CHORD 25 WEBS 25 BRACING TOP CHORD S BOT CHORD S BOT CHORD R BOT CHORD R FORCES (Ib/ Ma FORCES (Ib/ TOP CHORD 1- BOT CHORD 1- BOT CHORD 1- BOT CHORD 1- BOT CHORD 1- BOT CHORD 1- NOTES 1) Wind: ASCE 7 Vasd=91mph; II; Exp C; Enc cantilever left right exposed 2) Truss designe only. For stuc see Standard or consult qua 3) Gable require 4) Gable studs s 5) This truss has chord live load or the bottom 3-06-00 tall by chord and any 7) Provide mech	-11-0 oc purlins, e igid ceiling directly racing. (size) 1=98/2-10 x Horiz 1=46 (LC x Uplift 1=-13 (LC b) - Maximum Corr ension -2=-42/27, 2-3=-76 -3=-16/12 7-16; Vult=115mph ; TCDL=6.0psf; BC losed; MWFRS (er and right exposed ; Lumber DOL=1.6 do for wind loads in ds exposed to wind ladisfied building desi s continuous botto paced at 2-0-0 oc. been designed fo d nonconcurrent w as been designed fo chord in all areas / 2-00-00 wide will / other members. anical connection capable of withstai	 b), 3=-24 (LC 8) appression/Maximum a) b), 337 c) (3-second gust) c) DL=6.0psf; h=25ft; (c) nvelope) exterior zor c) end vertical left ani i) plate grip DOL=1.6 c) the plane of the trus d) normal to the face) d) Details as applicat gner as per ANSI/TF 	Cat. LOAD CASE(ad or c Cat. he; d 60 55 b), ple, Pl 1. ds. b)psf om o	s designed in acco al Residential Cod and referenced sta 5) Standard	e sections	s R502.11.1 a	and				JUAN LICE	ACIA IBER 162101 ALENO SAS 952 USAS VAL ENO VAL

- 6 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 13 lb uplift at joint 1 and 24 lb uplift at joint 3.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017


Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	V5	Valley	1	1	Job Reference (optional)	147852438


5-6-8

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:41 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:24.1												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.45	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.24	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 14 lb	FT = 10%
LUMBER	UMBER 8) This truss is designed in accordance with the 2018											

International Residential Code sections R502.11.1 and

LUMBER

LUMBER		
TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2
WEBS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	5-7-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	1=218/5-6-8, 3=218/5-6-8
	Max Horiz	1=101 (LC 5)
	Max Uplift	1=-28 (LC 8), 3=-53 (LC 8)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	

TOP CHORD

1-2=-92/61, 2-3=-170/83 BOT CHORD 1-3=-35/26

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing. 3)

Gable studs spaced at 4-0-0 oc. 4)

- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 7) bearing plate capable of withstanding 28 lb uplift at joint 1 and 53 lb uplift at joint 3.

R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

MI

0

Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	V6	Valley	1	1	Job Reference (optional)	147852439

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:41 ID:DdCVaaoyvmklWX2oorm_IUyf4?s-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-2-8 2x4 🛛 3 2x4 🛛 2 4-1-8 4-1-8 12 6 Г 0-0-4 4 5 2x4 🍃 2x4 🛛 2x4 II

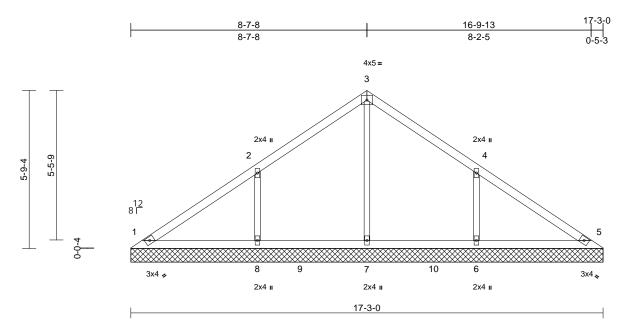
8-2-8

Scale = 1:30.4

Scale = 1.30.4												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.23	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI201	4 Matrix-P							Weight: 23 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD		·	bearing	e mechanical connect g plate capable of with 127 lb uplift at joint 5.							•	
WEBS	2x3 SPF No.2			uss is designed in acc	ordance w	ith the 2018						
OTHERS	2x3 SPF No.2			tional Residential Cod			nd					
BRACING	2/10/01/11/10/12			0.2 and referenced st								
TOP CHORD	Structural wood sh	eathing directly appli		SE(S) Standard								
BOT CHORD	6-0-0 oc purlins, e	earling directly appli xcept end verticals. ly applied or 10-0-0 o										
	bracing.	ly applied of 10-0-0 d	0C									Milli
REACTIONS	(lb/size) 1=119/8 5=423/8	-2-8, 4=135/8-2-8, -2-8								di la construcción de la	NYE OF	MISSO
	Max Horiz 1=157 (I	_C 5)								-	1r	
	Max Uplift 4=-26 (L	.C 5), 5=-127 (LC 8)								20	S. JU	AN
	Max Grav 1=125 (I 5=423 (I	,, , , , ,	,							E*	GAF	RCIA +=
FORCES	(lb) - Maximum Co Tension	mpression/Maximum								=		
TOP CHORD		115/44, 3-4=-105/44								= 5	NUM	• 41.
BOT CHORD	,									- 1	C: E-2000	162101
WEBS	2-5=-329/183									-	A	
NOTES	20 020,100										1, 50,	
	CE 7-16; Vult=115mp	b (2 second quist)									ON.	ALEIN
	mph; TCDL=6.0psf; B		Cat									inn.
	Enclosed; MWFRS (e											
	left and right expose											
	sed; Lumber DOL=1.										MAIN	GARC
	signed for wind loads i										N 30	NONA
only. For	studs exposed to win	d (normal to the face	e),								I I I I CE	NSED
	dard Industry Gable E											
	qualified building des		PI 1.							-	1	1 E
	uires continuous bott										16	952 : =
,	ds spaced at 4-0-0 oc									-	TI	
	has been designed f									-	D.	9
	load nonconcurrent v										- On the	5.5.43
	ss has been designed		upsr								A A	VSh
	ttom chord in all areas all by 2-00-00 wide wi		om								1, SION	IN ENIN
	any other members.		UIII								1111	
choru and	any other members.											1005

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


September 10,2021

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	V7	Valley	1	1	Job Reference (optional)	147852440

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:41 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:42.1

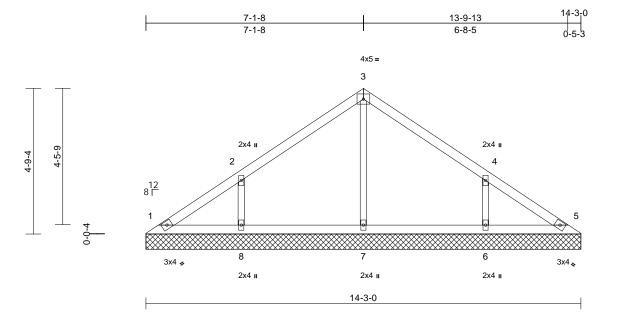
				_										
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.23	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.14	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.13	Horiz(TL)	0.00	5	n/a	n/a		
BCDL		10.0	Code	IRC2)18/TPI2014	Matrix-S							Weight: 50 lb	FT = 10%
LUMBER						as been designed								
TOP CHORD						ad nonconcurrent								
BOT CHORD						nas been designe)psf					
OTHERS	2x3 SPF No.	2				n chord in all are								
BRACING						by 2-00-00 wide v								
TOP CHORD			athing directly applie	d or		ny other members hanical connectio								
BOT CHORD	6-0-0 oc purl		applied or 10-0-0 oc			capable of withs								
BUT CHURL	bracing.	unecuy	applied of 10-0-0 oc		1, 176 lb upl	ift at joint 8 and 1	75 lb upli	ft at joint 6.						
REACTIONS	(lb/size) 1=	=174/17-	-3-0, 5=174/17-3-0,			designed in acco Residential Code			nd				, min	1917
	6=	-437/17-	-3-0, 7=249/17-3-0,			nd referenced sta			na				NE OF	MISS
	8=	-437/17-	-3-0					NOI/1111.					17.	0,1
	Max Horiz 1=				LOAD CASE(S)	Standard						-	X	
			9), 6=-175 (LC 9),										S: JU	AN
		=-176 (L	,									= .	: GAR	CIA :1
			C 16), 5=177 (LC 15)									- 7		× -
		· ·	C 16), 7=350 (LC 15)),								-		
		=535 (LC	,									= 7	NUM	BER :
FORCES	(lb) - Maximu Tension	um Com	pression/Maximum										E-2000	162101
TOP CHORD		0 7 2 -	149/129, 3-4=-140/1	07								1	A	
TOP CHORE	4-5=-114/72	0, 2-3=-	149/129, 3-4=-140/1	07,									1. So	
BOT CHORD		7-8=-42/	/97, 6-7=-42/97,										IN ON	ALEIN
	5-6=-42/97		. , ,											THE .
WEBS	3-7=-181/0, 2	2-8=-35	5/222, 4-6=-355/222										JUAN JUAN JCE TR	1115
NOTES														
1) Unbaland	ced roof live load	ds have	been considered for										NAU	SARCIN
this desig													N STOF	NSA
			(3-second gust)											0
			DL=6.0psf; h=25ft; C									-	1.1	1.2
			velope) exterior zon										1 10	0.50
			; end vertical left and									=	: 16	952
			0 plate grip DOL=1.6 the plane of the trus									-	D:	/ i œ =
			(normal to the face)									-	-P.	1 145

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.

> **MiTek**[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017


IN 2021

September 10,2021

Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	V8	Valley	1	1	Job Reference (optional)	147852441

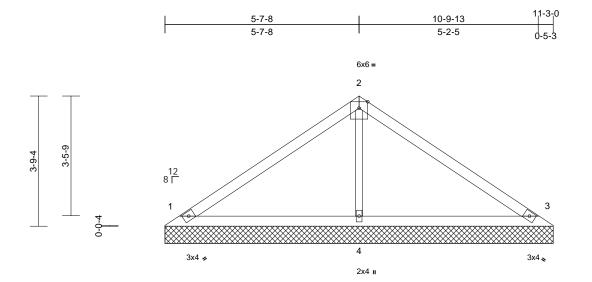
Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:42 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1.277

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.17	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.10	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.10	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 40 lb	FT = 10%
	2x4 SPF No.2 2x3 SPF No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directh bracing. (Ib/size) 1=109/14 6=352/14 8=352/14 Max Horiz 1=-116 (I Max Uplift 1=-13 (LG 8=-146 (I Max Grav 1=120 (L	LC 4) C 4), 6=-146 (LC 9), LC 8) .C 16), 5=109 (LC 1),	7) d or 8) 9)	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 1, 146 lb upli This truss is International	s been designed ad nonconcurrent has been designed by 2-00-00 wide w yy other members hanical connectio capable of withs ft at joint 8 and 1 designed in accon Residential Code of referenced sta Standard	with any d for a liv as where rill fit betv n (by oth tanding 1 46 lb uplit rdance w a sections	other live load re load of 20.0 a rectangle veen the botto (3 lb uplift at jo (5 lb uplift at jo (1 at joint 6. (1 th the 2018 (3 R502.11.1 at))	0psf om o oint			The second se	So JUA GAR	
FORCES	8=370 (L (Ib) - Maximum Cor	.C 16), 7=280 (LC 1), .C 15) npression/Maximum									I	NUMI	• 41-
TOP CHORD	Tension 1-2=-126/86, 2-3=-´ 4-5=-97/47	145/107, 3-4=-140/84										The second	ENGINI
BOT CHORD	1-8=-30/77, 7-8=-30 5-6=-30/77	0/77, 6-7=-30/77,										UNIT	
WEBS	3-7=-198/13, 2-8=-2	294/187, 4-6=-294/18	7										ш <u>л.</u>
NOTES													SAD
 Unbalance this design 	ed roof live loads have n.	e been considered for										IN JUAN C	NGHCIA
Vasd=91n II; Exp C; cantilever right expos	CE 7-16; Vult=115mpl nph; TCDL=6.0psf; BC Enclosed; MWFRS (e left and right exposed sed; Lumber DOL=1.6 igned for wind loads in	CDL=6.0psf; h=25ft; C invelope) exterior zon I ; end vertical left and 60 plate grip DOL=1.6	e; I O								A THE	PRO 16	952
only. For see Stand or consult 4) Gable req	studs exposed to wind lard Industry Gable Er qualified building des uires continuous botto ds spaced at 4-0-0 oc	d (normal to the face) nd Details as applicab igner as per ANSI/TP om chord bearing.	le,									PORESSION	AL ENGINI
J Gable Slut	us spaceu al 4-0-0 00											Septembe	r 10,2021

- 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	V9	Valley	1	1	Job Reference (optional)	147852442

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:42 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

11-3-0

Scale	ı — 1	.22	Λ

		i					i					i	
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.38	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.23	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.09	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 30 lb	FT = 10%
LUMBER			8)	Provide mec	hanical connectio	n (by oth	ers) of truss t	0					
TOP CHORD	2x4 SPF No.2		,		capable of withs								
BOT CHORD	2x4 SPF No.2			1, 57 lb uplift	at joint 3 and 18	lb uplift a	it joint 4.						
OTHERS	2x3 SPF No.2		9)		designed in acco								
BRACING					Residential Code			nd					
TOP CHORD	Structural wood shea	athing directly applie	ed or	R802.10.2 a	nd referenced sta	ndard AN	ISI/TPI 1.						
	6-0-0 oc purlins.		LC	DAD CASE(S)	Standard								
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 of	D										
REACTIONS	(lb/size) 1=239/11- 4=453/11-	·3-0, 3=239/11-3-0, ·3-0										VL'OF	MISS
	Max Horiz 1=-90 (LC	4)										1 XE	
	Max Uplift 1=-45 (LC	,	=-18								~	Xr	
	(LC 8)											S: JU/	AN
FORCES	(lb) - Maximum Com Tension	pression/Maximum									E*	GAR	
TOP CHORD	1-2=-179/85, 2-3=-17	78/65									=	:	:
BOT CHORD	1-4=-18/83, 3-4=-18/	/83									- 7	NUM	BER C
WEBS	2-4=-295/75										- 7	F-2000	• 41.
NOTES												L-2000	102101
1) Unbalance this design	ed roof live loads have n.	been considered fo	r									ESS/ON	ENGLI
2) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)											i iiii

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 7)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	V10	Valley	1	1	Job Reference (optional)	147852443

4-1-8

4-1-8

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:42 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x5 =

4

2x4 I

7-9-13

3-8-5

8-3-0

0-5-3

3

2x4 💊

2 12 8 Г 0-0-7

			L			8-3-0						
Scale = 1:27.9											1	
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.25	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 21 lb	FT = 10%
LUMBER	LUMBER 8) Provide mechanical connection (by others) of truss to											

TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2
OTHERS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	6-0-0 oc p	ourlins.
BOT CHORD	Rigid ceili	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	1=186/8-3-0, 3=186/8-3-0,
	(<i>'</i>	4=289/8-3-0
	Max Horiz	1=-64 (LC 4)
	Max Uplift	1=-41 (LC 8), 3=-49 (LC 9)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-115/	/59, 2-3=-111/44
BOT CHORD	1-4=-13/5	4, 3-4=-13/54

2-5-9

2-9-4

- BC
- WEBS

NOTES

Unbalanced roof live loads have been considered for 1) this design.

2-4=-197/50

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

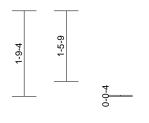
- bearing plate capable of withstanding 41 lb uplift at joint 1 and 49 lb uplift at joint 3.
- This truss is designed in accordance with the 2018 9) International Residential Code sections R502.11.1 and
- R802.10.2 and referenced standard ANSI/TPI 1.

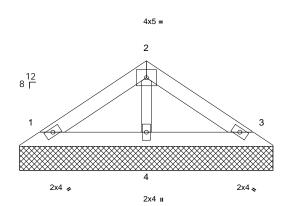
LOAD CASE(S) Standard

2x4

MIS

0




Job	Truss	Truss Type	Qty	Ply	Lot 73 RR	
RR73	V11	Valley	1	1	Job Reference (optional)	147852444

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Fri Sep 10 10:17:42 ID:2ncXplsxOfbjIB6I7Q?gPMzrYWU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-3-0 2-7-8 4-9-13 2-7-8 2-2-5

5-3-0

Scale = 1:23.9												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.08 0.04 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 13 lb	GRIP 197/144 FT = 10%
	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 5-3-12 oc purlins. Rigid ceiling directly bracing. (lb/size) 1=110/5-3 4=171/5-3 Max Horiz 1=-38 (LC Max Uplift 1=-24 (LC	applied or 10-0-0 or 3-0, 3=110/5-3-0, 3-0 3 4)	bearing pl 1 and 29 9) This truss Internation ed or R802.10.2 LOAD CASE(echanical connect ate capable of wit b uplift at joint 3. is designed in ac nal Residential Cc 2 and referenced s S) Standard	thstanding 2 cordance w ode sections	24 lb uplift at j ith the 2018 5 R502.11.1 a	joint			3	NE OF	MISSOU
FORCES	(lb) - Maximum Com									3	ر JU	AN 2

- Tension TOP CHORD 1-2=-68/35, 2-3=-66/26 BOT CHORD 1-4=-8/32, 3-4=-8/32
- WEBS 2-4=-117/29

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

GARCIA

