

RE: Lot 2 OS Lot 2 OS

Site Information:

Customer: Project Name: Lot 2 OS Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 27 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	147787250	A1	9/7/2021	21	147787270	B1	9/7/2021
2	147787251	A2	9/7/2021	22	147787271	LAY1	9/7/2021
3	147787252	A3	9/7/2021	23	147787272	LAY2	9/7/2021
4	147787253	A4	9/7/2021	24	147787273	V1	9/7/2021
5	147787254	A5	9/7/2021	25	147787274	V2	9/7/2021
6	147787255	A6	9/7/2021	26	147787275	V3	9/7/2021
7	147787256	A7	9/7/2021	27	147787276	V4	9/7/2021
8	147787257	A8	9/7/2021				
9	147787258	A9	9/7/2021				
10	147787259	A10	9/7/2021				
11	147787260	A11	9/7/2021				
12	I47787261	A12	9/7/2021				
13	147787262	A13	9/7/2021				
14	147787263	A14	9/7/2021				
15	147787264	A15	9/7/2021				
16	147787265	A16	9/7/2021				
17	147787266	A17	9/7/2021				
18	147787267	A18	9/7/2021				
19	147787268	A19	9/7/2021				
20	147787269	A20	9/7/2021				

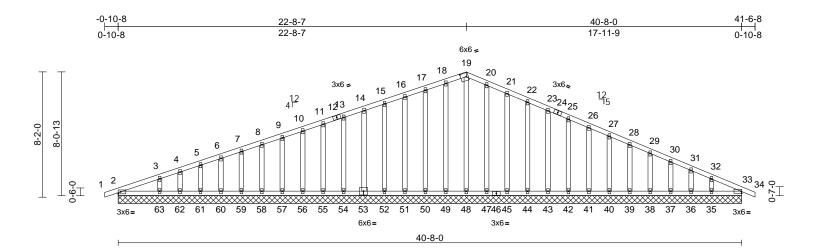
The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2021. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.


MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Sevier, Scott

Job	Truss	Truss Type	Qty	Ply	Lot 2 OS	
Lot 2 OS	A1	Roof Special Supported Gable	4	1	Job Reference (optional)	147787250

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Tue Sep 07 08:52:48 ID:q6SPGwyY2XfiPIHfSAmENyz6Qwt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:75.1

Plate Offsets (X, Y): [19:0-4-7,0-3-0]

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-	0.06 0.04 0.12 -S	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 33	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 228 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF N Structural 6-0-0 oc pr Rigid ceilir bracing. (Ib/size)	lo.2 lo.2 wood she urlins. og directly 2=176/40- 35=155/41 37=123/41 39=120/44 43=120/44 43=120/44 43=120/44 50=120/44 55=120/44 58=120/44 60=118/44	athing directly applie applied or 10-0-0 oc -8-0, 33=154/40-8-0 0-8-0, 36=108/40-8-0 0-8-0, 36=108/40-8-0 0-8-0, 40=120/40-8-1 0-8-0, 42=120/40-8-1 0-8-0, 47=123/40-8-1 0-8-0, 51=120/40-8-1 0-8-0, 51=120/40-8-1 0-8-0, 51=120/40-8-1 0-8-0, 51=120/40-8-1 0-8-0, 51=120/40-8-1 0-8-0, 51=120/40-8-1 0-8-0, 51=120/40-8-1 0-8-0, 61=130/40-8-0 -8-0, 61=226/40-8-0 C 8)	5 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,		$\begin{array}{c} 2=-19 \ (LC \ 9), \ 33\\ (LC \ 9), \ 36=-28 \ (\\ 9), \ 38=-32 \ (LC \ 9), \ 4\\ 42=-32 \ (LC \ 9), \ 4\\ 42=-32 \ (LC \ 9), \ 4\\ 47=-18 \ (LC \ 9), \ 4\\ 50=-33 \ (LC \ 4), \ 5\\ 52=-28 \ (LC \ 4), \ 5\\ 56=-28 \ (LC \ 4), \ 5\\ 60=-28 \ (LC \ 4), \ 5\\ 60=-28 \ (LC \ 4), \ 6\\ 62=-12 \ (LC \ 1), \ 3\\ 35=156 \ (LC \ 22), \ 37=123 \ (LC \ 1), \ 4\\ 3=120 \ (LC \ 1), \ 4\\ 45=121 \ (LC \ 21), \ 5\\ 52=121 \ (LC \ 1), \ 5\\ 54=119 \ (LC \ 21), \ 5\\ 56=120 \ (LC \ 1), \ 5\ 5\\ 56=120 \ (LC \ $	LC 9), 37=-3:), 39=-32 (LC), 39=-32 (LC 1=-32 (LC 9) 5=-38 (LC 9) 9=-19 (LC 8) 1=-28 (LC 4) 3=-28 (LC 4) 7=-28 (LC 4) 7=-28 (LC 8) 9=-28 (LC 8) 9=-28 (LC 8) 3=-51 (LC 1) 36=108 (LC 33=-154 (LC 1) 36=108 (LC 33=-154 (LC 1) 36=108 (LC 40=120 (LC 1) 40=120 (LC 1) 47=124 (LC 47=124 (LC 55=120 (LC 57=120 (LC 57=120 (LC 59=120 (LC 59=120 (LC 1)) 59=120 (LC 1) 59=120 (LC 1) 50=120 (LC 1)	2 (LC 2 9), , , , , , , , , , , , , ,	TOP CH	IORD	4-5=-7 7-8=-6 10-11 13-14 15-16 17-18 19-20 21-22 23-25 27-28 30-31 33-34	=-28/135, 11-13= =-20/157, 14-15= =-21/179, 16-17= =-21/202, 18-19= =-25/208, 20-21= =-24/162, 22-23= =-24/13, 25-26= =-24/58, 28-29=-2 =-44/23, 31-32=-6	3, 6-7=-75/92, 14, 9-10=-38/124, -20/146, -21/168, -21/190, -22/208, -24/137, -24/90, 26-27=-24/74, 24/3, 29-30=-31/29, 64/16, 32-33=-109/28, MISSOULT
				FORCES	(lb) - Max Tension	ximum Compressi	on/Maximum				*		*

PE-200101880

September 7,2021

EL

DEFESSIONAL

Job	Truss	Truss Type	Qty	Ply	Lot 2 OS	
Lot 2 OS	A1	Roof Special Supported Gable	4	1	Job Reference (optional)	147787250

BOT CHORD 2-63=-10/117, 62-63=-10/117, 61-62=-10/117,

	60-61=-10/117, 59-60=-10/117,
	58-59=-10/117, 57-58=-10/117,
	56-57=-10/117, 55-56=-10/117,
	54-55=-10/117, 52-54=-10/117,
	51-52=-10/117, 50-51=-10/117,
	49-50=-10/117, 48-49=-10/117,
	47-48=-10/117, 45-47=-10/117,
	44-45=-10/117, 43-44=-10/117,
	42-43=-10/117, 41-42=-10/117,
	40-41=-10/117, 39-40=-10/117,
	38-39=-10/117, 37-38=-10/117,
	36-37=-10/117, 35-36=-10/117,
	33-35=-10/117
VEBS	19-48=-114/0, 18-49=-97/35, 17-50=-94/49,
	16-51=-93/44, 15-52=-93/45, 14-53=-94/44,
	13-54=-93/45, 11-55=-93/44, 10-56=-93/44,
	9-57=-93/44, 8-58=-93/44, 7-59=-93/45,
	6-60=-92/44, 5-61=-99/47, 4-62=-64/32,
	3-63=-167/91, 20-47=-97/34, 21-45=-94/54,
	22-44=-93/48, 23-43=-93/48, 25-42=-93/48,
	26-41=-93/48, 27-40=-93/48, 28-39=-93/48,
	29-38=-93/48, 30-37=-95/49, 31-36=-86/43,

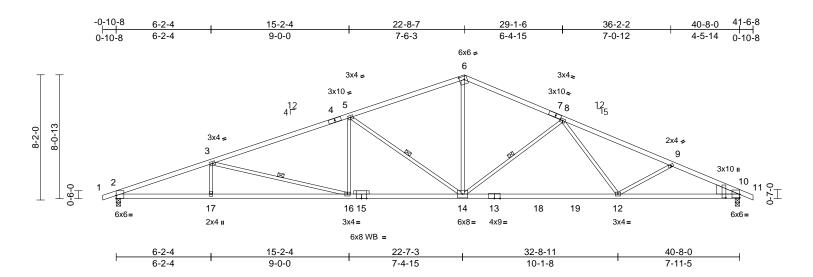
NOTES

1) Unbalanced roof live loads have been considered for this design.

32-35=-118/77

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated.
 Gable requires continuous bottom chord bearing.
- 5) Gable requires continuous bottom c6) Gable studs spaced at 1-4-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 2, 9 lb uplift at joint 33, 19 lb uplift at joint 49, 33 lb uplift at joint 50, 28 lb uplift at joint 51, 28 lb uplift at joint 52, 28 lb uplift at joint 53, 29 lb uplift at joint 54, 28 lb uplift at joint 55, 28 lb uplift at joint 56, 28 lb uplift at joint 57, 28 lb uplift at joint 58, 28 lb uplift at joint 57, 28 lb uplift at joint 56, 28 lb uplift at joint 57, 28 lb uplift at joint 66, 30 lb uplift at joint 61, 22 lb uplift at joint 62, 65 lb uplift at joint 63, 18 lb uplift at joint 47, 38 lb uplift at joint 43, 32 lb uplift at joint 42, 32 lb uplift at joint 43, 32 lb uplift at joint 40, 32 lb uplift at joint 39, 32 lb uplift at joint 38, 32 lb uplift at joint 37, 28 lb uplift at joint 36 and 57 lb uplift at joint 35.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Tue Sep 07 08:52:48 ID:q6SPGwyY2XfiPIHfSAmENyz6Qwt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	Lot 2 OS	
Lot 2 OS	A2	Roof Special	8	1	Job Reference (optional)	147787251

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Tue Sep 07 08:52:50 ID:0EdaZh4RSv19D?dnb_SpJGz6Qwi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

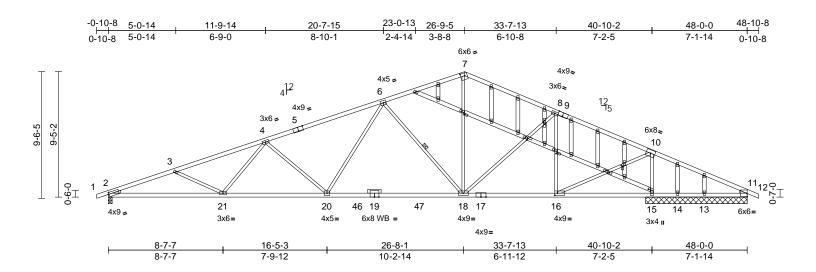
Scale =	1:75.1
---------	--------

Plate Offsets ((X, Y): [2:Edge,0-2-5]	, [6:0-3-12,0-2-8], [7:	0-4-7,0-1-8	3], [10:Edge,0-	2-10], [10:0-2-11	1,0-10-13]							
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.97	Vert(LL)	-0.46	12-14	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.72	Vert(CT)		12-14	>590	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.95	Horz(CT)	0.19	10	n/a	n/a		
BCDL	10.0	Code	IRC2018	8/TPI2014	Matrix-S		Wind(LL)	0.24	16-17	>999	240	Weight: 144 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD WEBS REACTIONS	SPF No.2 2x4 SPF 2100F 1.8f 2x3 SPF No.2 2x3 SPF No.2 Right: 2x8 SP DSS Structural wood she Rigid ceiling directly bracing. 1 Row at midpt	E eathing directly applie applied or 9-4-14 or 3-16, 5-14, 8-14 I-3-8, 10=1888/0-3-8 C 8) .C 4), 10=-239 (LC 9	5) 6) 2 LC	on the botton 3-06-00 tall I chord and an Provide med bearing plate joint 2 and 2 This truss is International	has been design m chord in all are by 2-00-00 wide ny other membel chanical connecti e capable of with 39 lb uplift at join designed in acc Residential Coo nd referenced st Standard	eas where will fit betw rs, with BC ion (by oth istanding 3 int 10. ordance wi de sections	a rectangle veen the both DL = 10.0psi ers) of truss t 18 lb uplift at th the 2018 R502.11.1 a	om f. to t					
FORCES	(lb) - Maximum Com Tension	<i>,</i>	_,										
TOP CHORD	1-2=0/6, 2-3=-4773/ 5-6=-2694/392, 6-8=	/679, 3-5=-3747/541, =-2745/412,)=-3857/475, 10-11=											
BOT CHORD	2-17=-690/4436, 16 14-16=-450/3481, 1 10-12=-377/3430											CE N	
WEBS	5-14=-1243/320, 6-1	1014/255, 5-16=0/52 14=-142/1510, 2=0/536, 9-12=-244/2	·								Å	STATE OF M	M SOLAN
NOTES											a	SEVI	
,	ed roof live loads have	been considered for									6+		• \ ★ ∅
this desig											Ø	the .	
	CE 7-16; Vult=115mph									7		Jolly J	server
	nph; TCDL=6.0psf; BC									_	23	NUMI	
	Enclosed; MWFRS (er										N	PE-20010	018807

II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
3) This truss has been designed for a 10.0 psf bottom

chord live load nonconcurrent with any other live loads.

September 7,2021


BSSIONAL EN

Job	Truss	Truss Type	Qty	Ply	Lot 2 OS	
Lot 2 OS	A3	Roof Special Structural Gable	4	1	Job Reference (optional)	147787252

Run: 8.43 E Aug 16 2021 Print: 8.430 E Aug 16 2021 MiTek Industries, Inc. Tue Sep 07 11:29:47 ID:Bura03dgskim7vZQkxmNelz6Qw?-3GFS3i18eYr98B907?_EYLhUsrNoShCsE4?Bgdyg1g4

Page: 1

Scale =	1:86.6

Plate Offsets (2		1], [5:0-4-8,Edge], [7:0-], [36:0-1-6,0-1-0], [43:0			Edge], [16:0-2-8,0	-2-0], [23	:0-1-4,0-1-0]], [24:0-0	-2,0-1-12	2], [25:0-	·1-4,0-'	1-0], [26:0-1-8,0-1	-0],
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.98	Vert(LL)	-0.51	18-20	>967	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.72	Vert(CT)	-0.86	18-20	>565	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.99	Horz(CT)	0.12	15	n/a	n/a		
BCDL	10.0	Code	RC2018	3/TPI2014	Matrix-S		Wind(LL)	0.22	20-21	>999	240	Weight: 217 lb	FT = 10%
UMBER FOP CHORD BOT CHORD WEBS DTHERS WEDGE BRACING FOP CHORD	2x4 SPF No.2 *Exce 1.8E 2x4 SPF 2100F 1.8E 2x3 SPF No.2 *Exce 22-23,23-24,24-25,2 No.2 2x4 SPF No.2 Left: 2x3 SPF No.2 Right: 2x3 SPF No.2 Structural wood she	ept* 5-7:2x4 SPF 2100F ppt* 5-26,26-27:2x4 SPF athing directly applied.	W	EBS Unbalanced this design. Wind: ASCE Vasd=91mp II; Exp C; Er cantilever le	3-21=-289/206, 4 6-20=-101/1067, 1 7-18=-121/976, 8 8-16=-921/199, 1 10-15=-2565/383 roof live loads ha 5 7-16; Vult=115m h; TCDL=6.0psf; f closed; MWFRS ft and right expose	5-18=-12 18=-77/5 0-16=-28 we been ph (3-sec 3CDL=6. (envelop ed ; end v	3, 4-20=-87(36/353, i98, 7/2632, considered f cond gust) Opsf; h=25ft; a) exterior zc vertical left a)/296, or ; Cat. one; nd	2021	2000	240	Weight: 217 lo	112100
OT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc	3)	Truss desig	ed; Lumber DOL=1 ned for wind loads	in the pl	ane of the tr	uss					
NEBS	1 Row at midpt	6-18			uds exposed to wi								
EACTIONS	All bearings 7-7-8. ex	cept 2=0-3-8			d Industry Gable I								
	13 except (LC 23), 1 (LC 4) Max Grav All reactio	00 (lb) or less at joint(s 2=-324 (LC 4), 11=-34 4=-147 (LC 2), 15=-31 ons 250 (lb) or less at jo , 14 except 2=1880 (LC	, 5) 8 6) 1 7) int 7)	All plates ar Gable studs This truss ha chord live lo * This truss on the botto 3-06-00 tall	ualified building de e 2x4 MT20 unles spaced at 2-0-0 c as been designed ad nonconcurrent has been designe m chord in all are by 2-00-00 wide w ny other members	s otherwi oc. for a 10. with any d for a liv as where vill fit betw	D psf bottom other live lo e load of 20 a rectangle veen the bot	ads. .0psf				THE OF M	AISS
ORCES		ax. Ten All forces 250) 8)		chanical connection						6	9,50	N'OS
TOP CHORD	(lb) or less except w 2-3=-4417/738, 3-4= 4-5=-3315/500, 5-6= 6-7=-1893/341, 7-8= 8-9=-1396/225, 9-10 10-11=-196/1234	4209/624, 3235/525, 1949/351,	9)	bearing plat joint(s) 13 e 14=147. This truss is Internationa	e capable of withs xcept (jt=lb) 2=324 designed in acco I Residential Code	tanding 1 4, 15=310 rdance w	00 lb uplift a 0, 11=347, ith the 2018 \$ R502.11.1	at				SCOTT SEVI	
BOT CHORD	2-21=-776/4095, 20- 20-46=-326/2524, 19 19-47=-326/2524, 19 17-18=-55/1359, 16- 15-16=-1037/206, 14 13-14=-1037/206, 11	9-46=-326/2524, 8-47=-326/2524, -17=-55/1359, 4-15=-1037/206,	LC	002.10.2 a	nd referenced sta		101/1711.				A A	PE-20010	L ENGINE

September 7,2021

Job	Truss	Truss Type	Qty	Ply	Lot 2 OS	
Lot 2 OS	A4	Roof Special	4	1	Job Reference (optional)	147787253

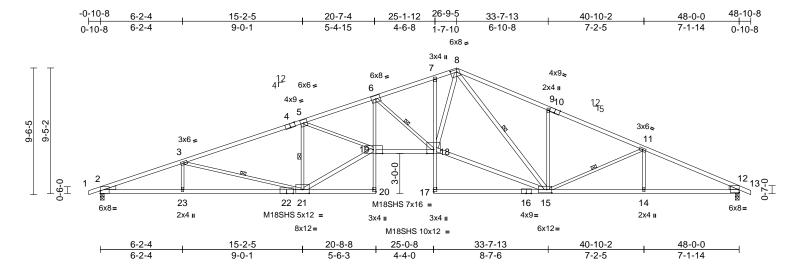
Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Tue Sep 07 08:52:51 ID:ecYqRXa94vnWE0U4qPcprVz6Qqv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-0-10-<u>8 5-0-14</u> 48-10-8 11-9-14 20-7-15 26-9-5 33-7-13 40-10-2 48-0-0 0-10-8 5-0-14 6-9-0 8-10-1 6-1-6 6-10-8 7-2-5 7-1-14 0-10-8 6x6 = 7 4x9**≈** 4x5 🚅 4¹² 3x6 👟 6 89 12 15 4x9 🚅 3x6 = $\overline{}$ 5 9-6-5 9-5-2 3x6**≈** 4 10 2x4 👟 3 11 12 9. 2 0-9-0 k 19 18 20 17 21 16 15 22 14 13 6x8= 6x8= 3x6= 4x5= M18SHS 5x12 = 6x8= 3x6= 2x4 II 5x12 WB = <u>8-7-7</u> 8-7-7 40-10-2 48-0-0 16-5-3 26-8-1 33-7-13 _ 7-9-12 6-11-12 7-1-14 10-2-14 7-2-5

Scale = 1:86.6

Plate Offsets (X, Y): [2:Edge,0-2-5], [5:0-4-8,Edge], [7:0-3-12,0-2-8], [9:0-4-4,Edge], [11:Edge,0-2-10], [14:0-2-8,0-1-8]													
Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS	(psf) 25.0 10.0 0.0* 10.0 2x4 SPF 2100F 1.8E 2x4 SPF 2100F 1.8E 2x3 SPF No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014 Wind: ASCE Vasd=91mpl II; Exp C; En cantilever lef	CSI TC BC WB Matrix-S 7-16; Vult=115 h; TCDL=6.0psf closed; MWFR3 t and right expo	0.95 0.92 0.98 imph (3-sec f; BCDL=6.0 S (envelope osed ; end v	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL) ond gust) 0psf; h=25ft;) exterior zo ertical left ar	-1.17 0.26 0.30 Cat. one; nd	(loc) 16-18 16-18 11 18	l/defl >840 >489 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18SHS Weight: 173 lb	GRIP 197/144 197/144 FT = 10%
OTHERS WEDGE BRACING TOP CHORD BOT CHORD WEBS	2x3 SPF No.2 Left: 2x4 SP No.3 Right: 2x4 SPF No.2 Structural wood shee 2-2-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt	athing directly applied	3) 4) d or 5) 6)	All plates are This truss ha chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar	d; Lumber DOL: MT20 plates u is been designe ad nonconcurrel nas been design n chord in all ar by 2-00-00 wide y other membe Required bearin	Inless other ed for a 10.0 nt with any ned for a liv reas where will fit betw ers, with BC	wise indicate) psf bottom other live loa e load of 20. a rectangle /een the bott DL = 10.0ps	ed. ads. Opsf tom					
REACTIONS	(lb/size) 2=2218/0 11=2218/0 Max Horiz 2=163 (LC Max Uplift 2=-368 (L Max Grav 2=2318 (L (lb) - Maximum Com	3-8, (req. 0-3-10), D-3-8, (req. 0-3-10) C 8) C 4), 11=-278 (LC 9) C 2), 11=2324 (LC 2	8)	Provide mec bearing plate joint 2 and 2 This truss is International	input bearing si hanical connect capable of with 78 lb uplift at joi designed in acc Residential Con nd referenced s	tion (by oth hstanding 3 int 11. cordance wi de sections	68 lb uplift a th the 2018 R502.11.1 a	t					
TOP CHORD	Tension 1-2=0/6, 2-3=-5618/8 4-6=-4640/660, 6-7= 7-8=-3324/490, 8-10 10-11=-4797/510, 11	-3241/478, =-4088/477,	L	DAD CASE(S)	Standard							Contraction of the	
BOT CHORD	2-19=-878/5214, 18- 16-18=-453/3790, 14 13-14=-381/4282, 12	4-16=-294/3701,									Å	STATE OF M	AISSOLA
WEBS NOTES	6-16=-1218/351, 7-1 8-16=-974/284, 8-14 10-14=-677/205, 10- 3-19=-223/194, 4-19 6-18=-102/1051	=-8/521, 13=0/315,	96,							ė	R.	SCOT SEVI	service
 Unbalance this design 	ed roof live loads have n.	been considered for									Ø	FESSIONA	158


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

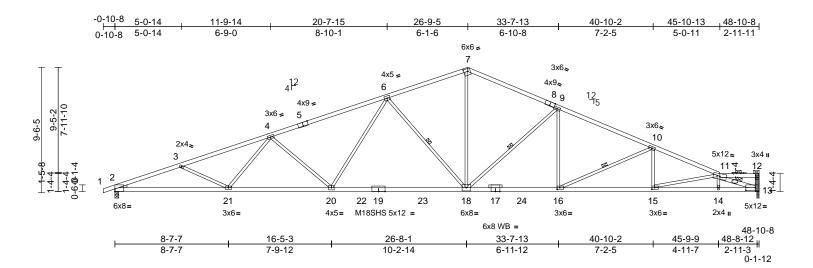
Job	Truss	Truss Type	Qty	Ply	Lot 2 OS	
Lot 2 OS	A5	Roof Special	4	1	Job Reference (optional)	147787254

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Tue Sep 07 08:52:52 ID:m6qk9_kJ0uQgI?_a5eLttFz6Qqi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:86.6

Plate Offsets (2	X, Y): [2:Edge,0-2-5]	, [4:0-4-8,Edge], [8:0-	5-8,0-2-4	4], [10:0-4-8,Edg	ge], [12:Edge,0-	2-10], [15:0	-4-8,0-3-0], [[19:0-8-8	,Edge],	[20:Edg	e,0-2-8	;]	
Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD	(psf) 25.0 10.0 0.0* 10.0 2x4 SPF 2100F 1.8F 2400F 2.0E	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code E *Except* 1-4:2x4 SI	2-0-0 1.15 1.15 YES IRC20 2 PF	18/TPI2014) Wind: ASCE Vasd=91mp II; Exp C; Er	CSI TC BC WB Matrix-S 7-16; Vult=115 h; TCDL=6.0psf cclosed; MWFR	0.95 0.82 0.97 mph (3-sec ; BCDL=6.0 S (envelope	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL) cond gust) Dpsf; h=25ft; e) exterior zoo	in -0.67 -1.21 0.53 0.48 Cat. ne;	(loc) 20 18-19 12 20	l/defl >849 >472 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18SHS Weight: 202 lb	GRIP 197/144 197/144 FT = 10%
BOT CHORD	2x4 SPF 2100F 1.8 SPF No.2, 17-16:2x 2x3 SPF No.2 *Exce		2x3 3	right expose	ft and right expo d; Lumber DOL e MT20 plates u	=1.60 plate	grip DOL=1.	.60					
WEDGE		18-8,15-8:2x4 SPF No	-	 This truss has chord live loss * This truss l 	as been designe ad nonconcurre nas been desigr	ed for a 10.0 nt with any ned for a liv) psf bottom other live loa e load of 20.0	ads.					
BRACING TOP CHORD BOT CHORD	Structural wood she Rigid ceiling directly bracing.	eathing directly applie applied or 8-6-0 oc		3-06-00 tall l chord and and) Provide med	m chord in all ar by 2-00-00 wide by other member chanical connect	will fit betw ers. tion (by oth	veen the bott	to					
	1 Row at midpt		7	joint 2 and 2) This truss is International R802.10.2 a	e capable of with 78 lb uplift at joi designed in acc Residential Co nd referenced s	nt 12. cordance wi de sections	ith the 2018 R502.11.1 a						
FORCES	(lb) - Maximum Corr Tension		L	OAD CASE(S)	Standard								
TOP CHORD	1-2=0/6, 2-3=-5568/ 5-6=-6933/973, 6-7= 7-8=-4807/714, 8-9=	,	3=0/6									Contraction of the	and
BOT CHORD	2-23=-846/5161, 21 20-21=-5/26, 19-20= 18-19=-779/6516, 1 7-18=-212/106, 15- ⁻ 14-15=-385/4036, 1	=0/66, 6-19=-276/208 7-18=0/143, 17=0/33,	8,									STATE OF M	гм.
WEBS	3-23=0/322, 3-21=-5 19-21=-694/4966, 5 6-18=-2587/454, 15 8-18=-433/3133, 8-1	947/260, 5-21=-2147/ -19=-187/2359, -18=-352/3966,								-	K	PE-2001	
NOTES 1) Unbalance this design	ed roof live loads have										Ŷ	PESSIONA Contomb	


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 2 OS	
Lot 2 OS	A6	Roof Special	2	1	Job Reference (optional)	147787255

Run: 8.43 E Aug 16 2021 Print: 8.430 E Aug 16 2021 MiTek Industries, Inc. Tue Sep 07 11:30:12 ID:mNMAkoxz07ZFqdnrbi9s3qz6QqR-mSOfkxM3HrFKtKkDCAzZ82J6OjZHHv8rRn176Zyg1ff

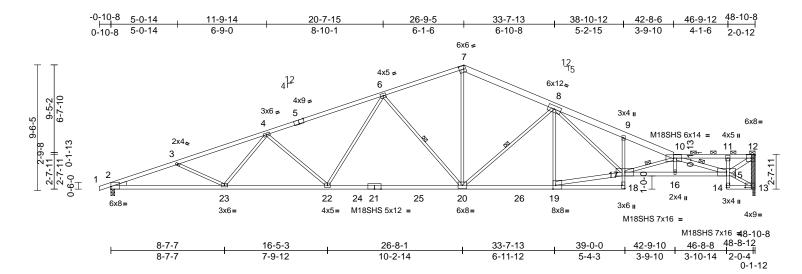
Page: 1

Scale = 1:87.4

APPLY 2 X 4 SPF/DF/SP NO.2 SCAB TO ONE FACE OF TRUSS AS SHOWN. ATTACH WITH (0.131" X 3") NAILS PER THE FOLLOWING NAIL SCHEDULE: 2 x 3'S - 1 ROW, 2 x 4'S - 2 ROWS,

2 x 6'S AND LARGER - 3 ROWS: SPACED @ 2" O.C. USE 2" MEMBER END DISTANCE.

Plate Offsets (X, Y): [2:Edge,0-2-5], [5:0-4-8,Edge], [7:0-3-12,0-2-8], [8:0-4-7,Edge], [13:0-8-8,0-2-8], [15:0-2-8,0-1-8], [16:0-2-8,0-1-8]													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.90 0.84 0.98	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.74 -1.26 0.29 0.33	(loc) 18-20 18-20 13 18-20	l/defl >793 >461 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18SHS Weight: 182 lb	GRIP 197/144 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS LBR SCAB WEDGE BRACING	SPF No.2 2x4 SPF 2100F 1.8E 2x3 SPF No.2 *Exce No.2 2x3 SPF No.2 12-13 SPF No.2 12-13 SPF No.2 on Left: 2x3 SPF No.2	ept* 12-13,13-11:2x4 5	SPF W	'EBS	2-21=-894/5322, 2(20-22=-470/3912, 1 19-23=-470/3912, 1 17-18=-319/3928, 1 16-24=-319/3928, 1 14-15=-600/5359, 1 4-21=0/406, 4-20=- 6-18=-1217/351, 7- 9-18=-1101/300, 1 9-16=-15/635, 10-1 11-15=-582/115	19-22=- 18-23=- 17-24=- 15-16=- 13-14=- 856/29 18=-22 1-13=-5	470/3912, 470/3912, 319/3928, 487/4790, 606/5360 6, 6-20=-102/ 5/2023, 549/617,	,	bea join 10) This Inte R80 11) Gra or t	t 2 and 2 s truss is rnationa 02.10.2 a phical p he orien com cho	te capa 265 lb a desig al Resid and ref urlin re tation o rd.	able of withstandii uplift at joint 13. ned in accordanc dential Code sect erenced standarc presentation doe of the purlin along	e with the 2018 ions R502.11.1 and I ANSI/TPI 1. s not depict the size
TOP CHORD	except end verticals (6-0-0 max.): 11-12. Rigid ceiling directly bracing, Except: 8-3-6 oc bracing: 2-2 9-1-1 oc bracing: 20	applied or 10-0-0 oc 21 -21.	N(1) 2)	OTES Unbalanced this design. Wind: ASCE Vasd=91mp II; Exp C; Ed	roof live loads have 7-16; Vult=115mpl h; TCDL=6.0psf; Bd colosed; MWFRS (e ft and right expose	h (3-sec CDL=6.0 envelope	cond gust) Opsf; h=25ft; (e) exterior zor	Cat. ne;	ANCHOI THE MIN AS COLI THE RE	RAGE, O NMUM R UMN CAI SPONSIE	R OTHI EQUIRI PS, BE/ BILITY (RING PLATES, SP ER MEANS TO ALL ED SUPPORT WID ARING BLOCKS, E DF THE TRUSS HE BUILDING DES	.OW FOR TH (SUCH TC.) ARE
	9-1-1 oc bracing: 20-21. /EBS 1 Row at midpt 6-18, 9-18, 11-13, 10-16 EACTIONS (lb/size) 2=2258/0-3-8, (req. 0-3-11), 13=2185/(0-2-0 + bearing block), (req.0-3-10) Max Horiz 2=167 (LC 8) Max Uplift 2=-371 (LC 4), 13=-265 (LC 9) Max Grav 2=2360 (LC 2), 13=2304 (LC 2) ORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.				a and nght exposed ad; Lumber DOL=1.6 quate drainage to p e MT20 plates unles as been designed f ad nonconcurrent w has been designed m chord in all areas by 2-00-00 wide wil ny other members, Required bearing s i nput bearing size. bint(s) 13 considers TPI 1 angle to grain ould verify capacity	60 plate prevent v ss other or a 10.0 vith any for a liv s where I fit betv with BC ize at jo parallel formula	grip DOL=1. water ponding wise indicate 0 psf bottom other live loa e load of 20.0 a rectangle ween the botto DL = 10.0psf int(s) 2, 13 to grain valu a. Building	60 g. d. ds. Dpsf om				STATE OF M SCOTT SEVI SEVI PE-20010 PE-20010	ER DI8807


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 2 OS	
Lot 2 OS	A7	Roof Special	2	1	Job Reference (optional)	147787256

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Tue Sep 07 08:52:54 ID:YkQT6ze_7F_tPhoBYbjhyGz6QpW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:87.4

APPLY 2 X 4 SPF/DF/SP NO.2 SCAB TO ONE FACE OF TRUSS AS SHOWN. ATTACH WITH (0.131" X 3") NAILS PER THE FOLLOWING NAIL SCHEDULE: 2 x 3'S - 1 ROW, 2 x 4'S - 2 ROWS,

2 x 6'S AND LARGER - 3 ROWS: SPACED @ 2" O.C. USE 2" MEMBER END DISTANCE.


Plate Offsets (X, Y): [2:Edge,0-2-5], [5:0-4-8,Edge], [7:0-4-4,0-3-0], [13:0-5-8,0-2-0], [18:Edge,0-2-8], [19:0-2-8,Edge]													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	18/TPI2014	CSI TC BC WB Matrix-S	0.89 0.92 0.98	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.84 -1.45 0.46 0.39	20-22 20-22 13	l/defl >692 >403 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18SHS Weight: 208 lb	GRIP 197/144 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD	No.2, 10-12:2x4 SP 2x4 SPF 2100F 1.8	E *Except* F No.2, 17-15:2x4 SPI	SPF	OT CHORD	2-23=-897/5320, 20-22=-473/3910 18-19=-15/224, 1 16-17=-953/8651 14-15=0/32, 11-1 3-23=-218/194, 4	, 19-20=- 7-18=0/9 , 15-16=- 5=-322/1 -23=0/40	343/3974, 9, 9-17=-221/ 948/8654, 15, 13-14=-1(6, 4-22=-857/	0/35	bea join 10) Thi Inte R80	ring plat t 2 and 2 s truss is rnationa)2.10.2 a	te capa 268 lb s desig al Resid and ref	able of withstandi uplift at joint 13. ned in accordand dential Code sect erenced standard	ions R502.11.1 and ANSI/TPI 1.
WEBS LBR SCAB WEDGE BRACING	2x3 SPF No.2 *Exce 12-13,19-17,15-10,1 12-13 SPF No.2 on Left: 2x4 SP No.3	15-12:2x4 SPF No.2			6-22=-102/1050, 7-20=-220/2028, 8-19=-573/133, 1 8-17=-395/2858, 10-15=-5630/557 12-15=-470/3853	8-20=-11 7-19=-33 10-17=-2 , 13-15=-	33/297, 4/3818, 756/344, 39/34,		or t	he orien	tation o rd.	of the purlin along	s not depict the size the top and/or
TOP CHORD BOT CHORD	except end verticals (2-7-15 max.): 10-12	eathing directly applie s, and 2-0-0 oc purlins 2. / applied or 2-2-0 oc	; N 1)	this design.	l roof live loads ha	ave been o	considered fo	or	ANCH THE M	ORAGE, IINIMUM	OR OT REQUI	EARING PLATES, S HER MEANS TO A RED SUPPORT W EARING BLOCKS,	LLOW FOR IDTH (SUCH
WEBS REACTIONS		C 12) LC 4), 13=-268 (LC 9))-15 k), 3) 4)	2) Wind: ASCE 7-16; Vull=115mph (3-second gust) Th						THE RESPONSIBILITY OF THE TRUSS MANUFACTURER OR THE BUILDING DESIGNER.			
FORCES TOP CHORD	(Ib) - Maximum Con Tension 1-2=0/6, 2-3=-5732/ 4-6=-4765/666, 6-7= 7-8=-3478/496, 8-9= 9-10=-6606/691, 10 11-12=-3166/369, 1	/863, 3-4=-5596/759, =-3376/483, =-6533/764,)-11=-3314/387,	6) 7) 8)	 * This truss on the botto 3-06-00 tall chord and a WARNING: greater thar Bearing at jusing ANSI/ 	ad nonconcurrent has been designe om chord in all are by 2-00-00 wide v any other members Required bearing n input bearing siz oint(s) 13 conside (TPI 1 angle to gra ould verify capaci	ed for a liv as where will fit betv s, with BC size at jo e. rs paralle ain formula	e load of 20.0 a rectangle veen the botto DL = 10.0pst int(s) 2, 13 to grain valu a. Building	Opsf om f.			A State	PE-2001	JENGITZ

September 7,2021

Job	Truss	Truss Type	Qty	Ply	Lot 2 OS	
Lot 2 OS	A8	Roof Special	2	1	Job Reference (optional)	147787257

Run: 8.43 E Aug 16 2021 Print: 8.430 E Aug 16 2021 MiTek Industries, Inc. Tue Sep 07 11:33:38 ID:cuLZqv13a40LFcEKQJHBF0z6Qp0-k4rXzNrHm8C5b?ToGRgtVUrKRmsoY4r9pqx0Ldyg1cR Page: 1

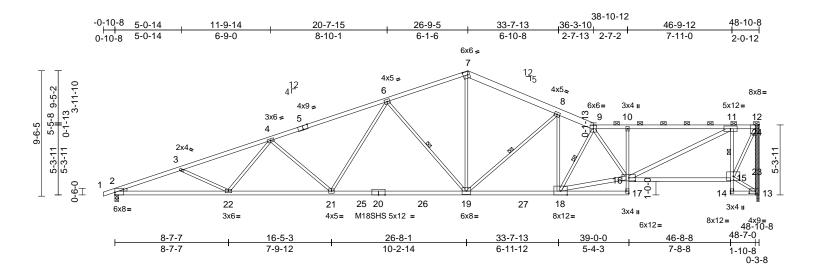
Scale = 1:87.4

APPLY 2 X 4 SPF/DF/SP NO.2 SCAB TO ONE FACE OF TRUSS AS SHOWN. ATTACH WITH (0.131" X 3") NAILS PER THE FOLLOWING NAIL SCHEDULE: 2 X 3'S - 1 ROW, 2 X 4'S - 2 ROWS, 2 X 5'S AND L APGEP 2 POWS: SPACED @ 2" OC, LISE 2" MEMPER

2 x 6'S AND LARGER - 3 ROWS: SPACED @ 2" O.C. USE 2" MEMBER END DISTANCE.

Plate Offsets	Plate Offsets (X, Y): [2:Edge,0-2-5], [5:0-4-8,Edge], [7:0-4-4,0-3-0], [10:0-4-8,0-3-4], [12:0-3-8,Edge], [13:0-5-8,0-2-0], [17:Edge,0-2-8], [18:0-4-0,0-2-8]												
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.89	Vert(LL)	-0.79	19-21	>742	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.94	Vert(CT)	-1.35	19-21	>432	240	M18SHS	197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.99	Horz(CT)	0.39	13	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S		Wind(LL)	0.35	19-21	>999	240	Weight: 211 lb	FT = 10%
LUMBER			E	BOT CHORD	2-22=-898/5320, 2	21-22=-7	43/5024,		9) Pro	vide me	chanic	al connection (by	others) of truss to
TOP CHORD	2x4 SPF 2100F 1.8	BE *Except* 7-10:2x6	SPF		21-23=-473/3910	20-23=-	473/3910,		bea	aring pla	te capa	able of withstandi	ing 368 lb uplift at
	No.2, 10-12:2x4 SF				20-24=-473/3910							uplift at joint 13.	
BOT CHORD					19-25=-391/3973							ned in accordance	
		F No.2, 14-13:2x4 SF	PF		9-16=-47/503, 15-	16=-721	/6451,						tions R502.11.1 and
	No.2				11-15=-501/211	057/00		4050				erenced standar	
WEBS		ept* 12-13,18-16:2x4	SPF V	VEBS	4-22=0/406, 4-21= 6-19=-1194/347,			/1050,					es not depict the size
	No.2, 15-10:2x4 SF				8-19=-1131/281,					ne orien tom cho		of the purlin along	g the top and/or
LBR SCAB	13-12 SPF No.2 or				16-18=-352/3851								
WEDGE	Left: 2x3 SPF No.2				10-16=-1640/298				LOAD	CASE(S) Sta	ndard	
BRACING	Other strengthere and all	the in a stress of the same li	1		12-15=-386/2874		,						
TOP CHORD		eathing directly applies, and 2-0-0 oc purlin		NOTES					SUDE			EARING PLATES,	SDECIAL
	(3-1-9 max.): 10-12		15 1		d roof live loads ha	ve been	considered for	or				HER MEANS TO	
BOT CHORD	()	 y applied or 2-2-0 oc		this design					THE N	MINIMUN	I REQU	IRED SUPPORT V	VIDTH (SUCH
Der enere	bracing.	y applied of 2 2 0 00		2) Wind: ASC	E 7-16; Vult=115m	ph (3-seo	cond gust)					BEARING BLOCKS	s, ETC.) ARE
WEBS	1 Row at midpt	6-19, 8-19, 10-15			ph; TCDL=6.0psf; I							R THE BUILDING D	DESIGNER.
REACTIONS	(lb/size) 2=2258/	0-3-8, (req. 0-3-11),			Enclosed; MWFRS								
	13=2185	5/(0-2-0 + bearing blo	ck),		eft and right expose							A	all
	(req.0-3-	·10)			ed; Lumber DOL=1							EF OF I	MISSO
	Max Horiz 2=175 (L	C 8)			equate drainage to						4	ATE OF I	N.S.
		LC 4), 13=-272 (LC 9	4 9) F		re MT20 plates unl has been designed						H	SCOT	TM YEN
		(LC 2), 13=2303 (LC			oad nonconcurrent						H	SEV	
FORCES		Max. Ten All forces	,		s has been designe						1		
	(lb) or less except v				om chord in all area						80	- the	0
TOP CHORD					I by 2-00-00 wide w			tom		_	- K	hottz.	LONGN
	4-5=-4765/628, 5-6	s=-4684/659,		chord and	any other members	, with BC	DL = 10.0ps	sf.		-		NUM	SEL TAN
	6-7=-3376/476, 7-8		7	') WARNING	: Required bearing	size at jo	oint(s) 2, 13				N	ON PE-2001	018807
	8-9=-6564/718, 9-1				n input bearing size						Q	- Charles	188
	10-11=-1738/203,	11-12=-1677/197,	8		joint(s) 13 consider			ue				0.55	ENO'S
	12-13=-2280/274				I/TPI 1 angle to gra							SIONA	LE

designer should verify capacity of bearing surface.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 2 OS	
Lot 2 OS	A9	Roof Special	2	1	Job Reference (optional)	147787258

Run: 8.43 E Aug 16 2021 Print: 8.430 E Aug 16 2021 MiTek Industries, Inc. Tue Sep 07 11:34:25 ID:Y42cy1gI6Miq6IoW1ykdvCz6QoB-s7AIqRQmia7RkDZrXp0uuOHMZivU3L34cep0UOyg1bi

Page: 1

Scale = 1:87.4

Plate Offsets (X, Y): [2:Edge,0-2-5]	, [5:0-4-8,Edge], [7:0	-4-4,0-3-0)], [12:0-3-8,Ed	ge], [13:0-5-8,0-2	-0], [16:0-	5-12,0-2-12],	[17:Ed	ge,0-2-8]			-	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.90	Vert(LL)	-0.72	19-21	>813	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.84	Vert(CT)	-1.23		>474	240	M18SHS	197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.96	- (-)	0.30		n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S	-	Wind(LL)	0.32	19-21	>999	240	Weight: 215 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD	No.2 2x4 SPF 2100F 1.8	E *Except* 7-9:2x6 S E *Except* 'F No.2, 16-15,14-13	PF		4-22=0/407, 4-21 6-19=-1193/347, 8-19=-1119/258, 9-18=-1580/186, 9-16=-298/90, 11 12-15=-371/2613	7-19=-20 8-18=-3/7 16-18=-4 -16=-381	6/2024, '21, 76/4692,	1048,	or t		tation (rd.	of the purlin along	as not depict the size the top and/or
WEBS		ept* 12-13,16-11:2x4	SPF N	IOTES	12 10- 07 1/2010	,							
LBR SCAB WEDGE BRACING TOP CHORD BOT CHORD 1 Row at midp WEBS REACTIONS	No.2, 18-16:2x4 SF 13-12 SPF No.2 or Left: 2x3 SPF No.2 or Structural wood she except end vertical: (2-11-8 max.): 9-12 Rigid ceiling directly bracing. Except: t 11-15 1 Row at midpt (lb/size) 2=2258/0	F 2100F 1.8E e side eathing directly applie s, and 2-0-0 oc purlin / applied or 6-0-0 oc 6-19, 8-19, 9-18)-3-8, (req. 0-3-11), ((0-2-0 + bearing bloc 10) C 7) _C 4), 13=-279 (LC 9	1 2 .d, s 3 4 5 5(k), 6 7)	 Attached 5-3 No.2 with 1 for 0.2. Unbalanced this design. Wind: ASCE Vasd=91mp II; Exp C; Er cantilever le right expose Provide ade All plates are This truss ha chord live lo * This truss ha chord live struss ha chord live lo * This truss ha chord live lo 	3-11 scab 12 to 1 row(s) of 10d (0.1 roof live loads ha roof live loads ha roof live loads ha root live loads ha root live loads ha root live loads ha root live loads root li	I31"x3") n ave been o hph (3-sec BCDL=6.1 (envelope ed; end v 1.60 plate p prevent i less other i for a 10.4 t with any ed for a liv as where will fit betw	ails spaced 9' considered for cond gust) 0psf; h=25ff; (a) exterior zon vertical left am grip DOL=1.6 water ponding wise indicate(0 psf bottom other live loar e load of 20.0 a rectangle veen the botto	Cat. ne; d 30 l. ds. psf mm	ANCHO THE MI AS COL THE RE	ORAGE, C NIMUM F LUMN CA ESPONSI	OR OTH REQUIR APS, BE BILITY	ARING PLATES, SF IER MEANS TO AL ED SUPPORT WIE ARING BLOCKS, E OF THE TRUSS I'HE BUILDING DES	LOW FOR DTH (SUCH STC.) ARE SIGNER.
FORCES		lax. Ten All forces) WARNING:	ny other member Required bearing input bearing siz	size at jo					4	TATE OF M	MISSOL
BOT CHORD	2-3=-5734/847, 3-4 4-5=-4766/618, 5-6 6-7=-3379/465, 7-8 8-9=-4319/461, 9-1 10-11=-4595/474, 1 13-23=-2286/288, 2 12-24=-2286/288 2-22=-897/5322, 21 21-25=-470/3912, 2 20-26=-470/3912, 1 19-27=-428/3967, 1 10-16=-528/208, 15 11-15=-2105/387	=-4685/648, =-3480/478, 0=-4571/473, 1-12=-1183/131, 3-24=-2286/288, -22=-741/5026, 0-25=-470/3912, 8-27=-428/3967,		using ANSI/ designer sho 0) Provide meo bearing plate joint 2 and 2 1) This truss is International	bint(s) 13 conside TPI 1 angle to gra buld verify capaci chanical connecti e capable of with: 79 Ib uplift at join designed in acco I Residential Cod nd referenced sta	ain formula ty of beari on (by oth standing 3 it 13. ordance w e sections	a. Building ing surface. ers) of truss to 364 lb uplift at ith the 2018 \$ R502.11.1 at	D		¢		SCOT SEVI PE-2001 PE-2001 SIONA September	ER BER 018807

Job	Truss	Truss Type	Qty	Ply	Lot 2 OS	
Lot 2 OS	A10	Roof Special	2	1	Job Reference (optional)	147787259

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Tue Sep 07 08:52:55 ID:5QY4tJ4?KVs8ZppsTNqMk9z6Qng-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

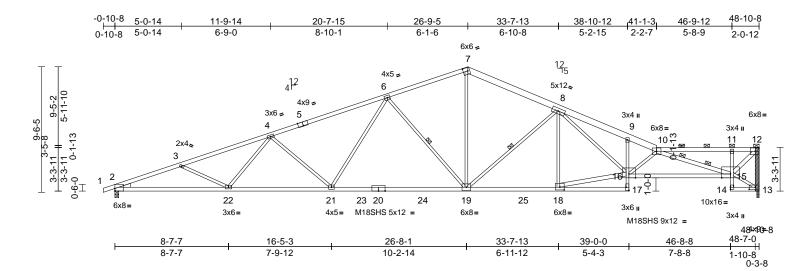
Page: 1

0-3-8

38-10-12 37-10-13 -0-10-8 0-10-8 48-10-8 5-0-14 11-9-14 20-7-15 26-9-5 33-7-13 46-9-12 ++ 5-0-14 6-9-0 8-10-1 6-1-6 6-10-8 4-3-0 0-11-15 7-11-0 2-0-12 6x6 = 7 12 15 4x5 🚅 4¹² 1 4-9-8 9-5-2 0-1-13 4-7-10 6 4x5≈ 3x4 u 8x8= 8 4x9 🚅 6x6= 6x12= 3x6 **≠** 5 ო 910 9-6-5 11 12 4 2x4 4-7-11 4-7-11 4-7-11 3 15 0-9-0 □-0-0 ė <u>₿</u>17 14 13 X 23 2**2**1 26 207 19 28 298 6x8= 3x4 II 3x6 II 3x6= M18SHS 6x14 = M18SHS 5x12 = 6x8= 5x12= = 4^{4x9}= 48-10-8 48-7-0 8x12= 7x12= 46-8-8 8-7-7 16-5-3 26-8-1 33-7-13 39-0-0 8-7-7 7-9-12 10-2-14 6-11-12 5-4-3 7-8-8 1-10-8

Scale = 1:87.4

TOP CHORD 2x4 SPF 2100F 1.8E *Except* 7-9:2x6 SPF 6-21=-102/104 No.2 7-19=-210/202 BOT CHORD 2x4 SPF 2100F 1.8E *Except* 8-18=-11/702, 17-10,11-14:2x3 SPF No.2, 16-15,14-13:2x4 16-18=-552/53	0.90 0.85 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.96 0.97 0.96 0.97	in (loc) -0.74 19-21) -1.26 19-21 -) 0.32 13 -) 0.33 19-21 -) 0.33 19-21 -) 0.33 19-21 	I/defl L/d >791 360 >461 240 n/a n/a >999 240 aphical purlin rep the orientation o tom chord. CASE(S) Stan	PLATES MT20 M18SHS Weight: 213 lb presentation doe of the purlin along ndard	GRIP 197/144 197/144 FT = 10% s not depict the size
TCLL (roof)25.0Plate Grip DOL1.15TCTCDL10.0Lumber DOL1.15BCBCDL0.0*Rep Stress IncrYESWBBCDL10.0CodeIRC2018/TPI2014Matrix-SLUMBERNo.2SPF 2100F 1.8E *Except* 7-9:2x6 SPFS-23=-218/194TOP CHORD2x4 SPF 2100F 1.8E *Except* 7-9:2x6 SPF $6-21=102/104$ TOT CHORD2x4 SPF 2100F 1.8E *Except* 17-10,11-14:2x3 SPF No.2, 16-15,14-13:2x4S-18=-11/702, 7-19=-210/202BOT CHORD2x3 SPF No.2 *Except* 12-13:2x4 SPF No.2, 16-15,14-13:2x416-18=-552/53, 11-16=-434/43, 12-15=-379/27WEBS2x3 SPF No.2 *Except* 12-13:2x4 SPF No.2, 18-16,16-11:2x4 SPF 2100F 1.8ENOTESLBR SCAB13-12 SPF No.2 one side1)Attached 4-7-11 scab 12 to No.2 with 1 row(s) of 10d (o.c.,WEDGELeft: 2x4 SP No.3NOTESBOT CHORDRigid ceiling directly applied or 6-0-0 oc bracing,1)WEBS1 Row at midpt6-19, 8-19, 9-18REACTIONS(Ib/size)2=2258/0-3-8, (req. 0-3-11), 13=2185/(0-2-0 + bearing block), (req.0-3-10)Max Horiz 2=188 (LC 5)6)This truss has been design	0.90 0.85 0.96 Vert(LL) Vert(CT) Horz(CT) Wind(LL) 4, 4-23=0/407, 4-21=-85 8, 6-19=-1193/347, 21, 8-19=-1113/271, 9-18=-2105/263, 392, 9-16=-156/358, 365, 13-15=-24/87, 30 0.131 "x3") nails spaced	-0.74 19-21) -1.26 19-21 -) 0.32 13 -) 0.33 19-21 	>791 360 >461 240 n/a n/a >999 240 aphical purlin rep the orientation o tom chord. CASE(S) Stan	MT20 M18SHS Weight: 213 lb presentation doe of the purlin along ndard	197/144 197/144 FT = 10% s not depict the size
LUMBER TOP CHORD 2x4 SPF 2100F 1.8E *Except* 7-9:2x6 SPF No.2 WEBS 3-23=-218/194 6-21=-102/104 7-19=-210/202 BOT CHORD 2x4 SPF 2100F 1.8E *Except* 17-10,11-14:2x3 SPF No.2, 16-15,14-13:2x4 SPF No.2 8-18=-11/702, 16-18=-552/52 18-16,16-11:2x4 SPF No.2, 18-16,16-11:2x4 SPF 2100F 1.8E 8-18=-11/702, 16-18=-552/52, 11-16=-434/42 WEBS 2x3 SPF No.2 *Except* 12-13:2x4 SPF No.2, 18-16,16-11:2x4 SPF 2100F 1.8E NOTES LBR SCAB 13-12 SPF No.2 one side 10 WEDGE Left: 2x4 SP No.3 NOTES BACING TOP CHORD Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins (2-5-6 max.): 9-12. 1) BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. 2=2258/0-3-8, (req. 0-3-11), 13=2185/(0-2-0 + bearing block), (req.0-3-10) 3) Wind: ASCE 7-16; Vult=11 WEBS 1 Row at midpt 6-19, 8-19, 9-18 3) Wind: ASCE 7-16; Vult=11 REACTIONS (lb/size) 2=2258/0-3-8, (req. 0-3-11), (req.0-3-10) 3) 4) Provide adequate drainage 5) 4) Max Horiz 2=188 (LC 5) 6) This truss has been design	4, 4-23=0/407, 4-21=-85 48, 6-19=-1193/347, 11, 8-19=-1113/271, 9-18=-2105/263, 192, 9-16=-156/358, 165, 13-15=-24/87, 730 0 13, front face(s) 2x4 S 0.131"x3") nails spaced	SPF SUPP d 9" THE N	aphical purlin re- the orientation o tom chord. CASE(S) Stan	presentation doe of the purlin along	s not depict the size
TOP CHORD $2x4$ SPF 2100F 1.8E *Except* 7-9:2x6 SPF $6-21=-10/104$ NO.2 BOT CHORD $2x4$ SPF 2100F 1.8E *Except* $7-19=-210/202$ BOT CHORD $2x4$ SPF 2100F 1.8E *Except* $8-18=-11/702$, TOP CHORD $2x4$ SPF No.2 $16-18=-552/53$ SPF No.2 SPF No.2 $11-16=-434/43$ WEBS $2x3$ SPF No.2 *Except* 12-13:2x4 SPF No.2, 18-16,16-11:2x4 SPF 2100F 1.8E NOTES LBR SCAB $13-12$ SPF No.2 one side $11-16=-434/45$ WEDGE Left: $2x4$ SP No.3 NOTES BRACING Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins (2-5-6 max.): 9-12. 0 BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. 0 WEBS 1 Row at midpt $6-19, 8-19, 9-18$ REACTIONS (lb/size) $2=2258/0-3-8, (req. 0-3-11), 13=2185/(0-2-0 + bearing block), (req. 0-3-10)$ Max Horiz $2=188 (LC 5)$ 1 Provide adequate drainage	 18, 6-19=-1193/347, 19=-1113/271, 9-18=-2105/263, 192, 9-16=-156/358, 165, 13-15=-24/87, 30 13, front face(s) 2x4 S 0.131"x3") nails spaced 	or ti bott LOAD (SPF SUPP d 9" ANCH THE M	the orientation of tom chord. CASE(S) Stan	f the purlin along	
LBR SCAB WEDGE13-12 SPF No.2 one side Left: 2x4 SP No.31)Attached 4-7-11 scab 12 to No.2 with 1 row(s) of 10d (o.c.BRACING TOP CHORDStructural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins (2-5-6 max.): 9-12.1)Attached 4-7-11 scab 12 to No.2 with 1 row(s) of 10d (o.cBOT CHORD REACTIONSStructural wood sheathing directly applied or 6-0-0 oc bracing.1)Attached 4-7-11 scab 12 to No.2 with 1 row(s) of 10d (o.cWEBS REACTIONS1 Row at midpt (bl/size)6-19, 8-19, 9-18 2=2258/0-3-8, (req. 0-3-11), 13=2185/(0-2-0 + bearing block), (req.0-3-10)1)Attached 4-7-11 scab 12 to No.2 with 1 row(s) of 10d (o.cWind:SCE 7-16; Vult=11 Vasd=91mph; TCDL=6.0p II; Exp C; Enclosed; MWFF cantilever left and right exp right exposed; Lumber DO Provide adequate drainage 5)4II plates are MT20 plates This truss has been design	0.131"x3") nails spaced	ed 9" ANCH THE N			
WEBS 1 Row at midpt 6-19, 8-19, 9-18 cantilever left and right exprision right exposed; Lumber DO REACTIONS (lb/size) 2=2258/0-3-8, (req. 0-3-11), 13=2185/(0-2-0 + bearing block), (req.0-3-10) 4) Provide adequate drainage Max Horiz 2=188 (LC 5) 6) This truss has been design	5mph (3-second gust) sf; BCDL=6.0psf; h=25f	d for THE R MANU 5ft; Cat.	MINIMUM REQUI OLUMN CAPS, BE RESPONSIBILITY	ARING PLATES, S HER MEANS TO A RED SUPPORT W EARING BLOCKS, OF THE TRUSS THE BUILDING D	ALLOW FOR /IDTH (SUCH , ETC.) ARE
Max Gray 2=2359 (LC 2) 13=2302 (LC 2) 7) * This truss has been desig	bosed ; end vertical left a L=1.60 plate grip DOL= a to prevent water pondi unless otherwise indica ed for a 10.0 psf botton ent with any other live lo gned for a live load of 20	t and =1.60 ding. cated. om loads. 20.0psf			T
FORCES (lb) - Maximum Compression/Maximum Tension on the bottom chord in all a 3-06-00 tall by 2-00-00 wid chord and any other memb 3-06-00 tall by 3-06-00 tal	le will fit between the bc pers, with BCDL = 10.0p ing size at joint(s) 2, 13 size. iders parallel to grain va grain formula. Building acity of bearing surface. ction (by others) of truss ithstanding 366 lb uplift pint 13.	pottom)psf. 3 value g e. ss to ft at		State OF M SEVI SEVI NUM PE-20010	ER Geruce


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 2 OS	
Lot 2 OS	A11	Roof Special	2	1	Job Reference (optional)	147787260

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Tue Sep 07 08:52:56 ID:5zbx0xUKKy8Je2PPSWRK7Kz6Qn8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

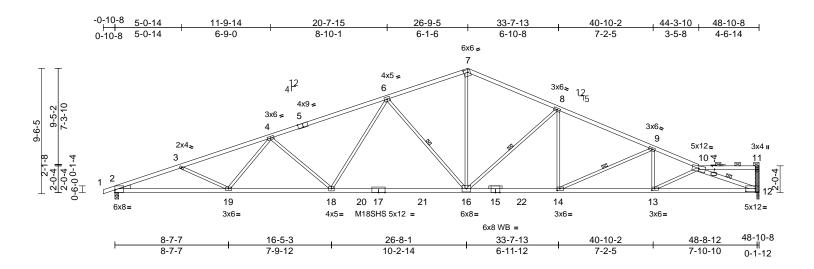
Page: 1

Scale = 1:87.4

APPLY 2 X 4 SPF/DF/SP NO.2 SCAB TO ONE FACE OF TRUSS AS SHOWN. ATTACH WITH (0.131" X 3") NAILS PER THE FOLLOWING NAIL SCHEDULE: 2 x 3'S - 1 ROW, 2 x 4'S - 2 ROWS, 2 x 6'S AND LARGER - 3 ROWS: SPACED @ 2" O.C. USE 2" MEMBER END DISTANCE.

Plate Offsets	(X, Y): [2:Edge,0-2-5],	, [5:0-4-8,Edge], [7:0-	4-4,0-3-0]	, [13:0-5-8,0-2	2-0], [17:Edge,0-2-8	8], [18:0-	4-0,0-2-8]						
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.90 0.86 0.97	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-1.38 0.40	(loc) 19-21 19-21 13 19-21	l/defl >727 >423 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18SHS Weight: 209 lb	GRIP 197/144 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS LBR SCAB WEDGE BRACING	No.2, 10-12:2x4 SPI 2x4 SPF 2100F 1.8t 17-9,11-14:2x3 SPF 2400F 2.0E, 14-13:2 2x3 SPF No.2 *Exce 12-13,18-16,15-10,1 12-13 SPF No.2 on Left: 2x4 SP No.3	E *Except* · No.2, 16-15:2x4 SPI 2x4 SPF No.2 ept* ·5-12:2x4 SPF No.2 e side	SPF F W	EBS	2-22=-898/5320, 2 19-21=-473/3910, 17-18=-45/207, 16 15-16=-831/7191, 11-15=-402/161, 1 3-22=-218/194, 4-2 6-21=-102/1050, 6 7-19=-218/2031, 8 8-18=-573/134, 16 8-16=-369/2828, 1 10-15=-5227/567, 12-15=-395/3162	18-19=- -17=0/9 14-15=0 3-14=-6 22=0/40 -19=-11 -19=-11 -18=-33 0-16=-1	369/3977, 8, 9-16=-56/8 1/27, 1/0 6, 4-21=-857/ 95/347, 37/291, 0/3847, 569/273,	*	bea join 10) Thi Inte R80 11) Gra or t bot	aring pla at 2 and 2 s truss is ernationa 02.10.2 aphical p	te capa 270 lb s desig al Resid and ref ourlin re tation o rd.	able of withstandii uplift at joint 13. ned in accordanc dential Code sect erenced standarc presentation doe of the purlin along	ions R502.11.1 and ANSI/TPI 1. s not depict the size
	except end verticals (3-4-14 max.): 10-12 Rigid ceiling directly bracing. 1 Row at midpt 2 Rows at 1/3 pts (Ib/size) 2=2258/0 13=2185/ (req.0-3-1 Max Horiz 2=173 (LC Max Uplift 2=-369 (L Max Grav 2=2359 (I	r applied or 6-0-0 oc 6-19, 8-19 10-15 -3-8, (req. 0-3-11), (0-2-0 + bearing bloc (0) C 8) .C 4), 13=-270 (LC 9) LC 2), 13=2303 (LC 2	s N(1) 2) (k), 3) 4) 5)	OTES Unbalanced this design. Wind: ASCE Vasd=91mp II; Exp C; Er cantilever le right expose Provide ade All plates ar This truss ha chord live lo	roof live loads hav Froof live loads hav Froof live loads hav Frool	oh (3-sec CDL=6. envelope d ; end v 60 plate prevent v ess other or a 10. with any	cond gust) Opsf; h=25ft; a) exterior zorvertical left ar grip DOL=1. water ponding wise indicate 0 psf bottom other live loa	Cat. ne; nd .60 g. ed. ads.	ANCH THE I AS C THE I	HORAGE MINIMUN OLUMN (RESPON	, OR O I REQU CAPS, E SIBILIT	EARING PLATES, THER MEANS TO / IRED SUPPORT W BEARING BLOCKS Y OF THE TRUSS THE BUILDING D THE BUILDING D SCOTT SEVI	ALLOW FOR ADTH (SUCH , ETC.) ARE ESIGNER.
FORCES TOP CHORD	(lb) - Maximum Compression/Maximum Tension			on the botton 3-06-00 tall I chord and an WARNING: greater than Bearing at jo using ANSI/	m chord in all area: by 2-00-00 wide wi ny other members, Required bearing s input bearing size. point(s) 13 considers TPI 1 angle to grain puld verify capacity	s where Il fit betw with BC size at jo sparalle n formul	a rectangle veen the both DL = 10.0psi int(s) 2, 13 I to grain valu a. Building	om f.				PE-2001	DI8807

September 7,2021


MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

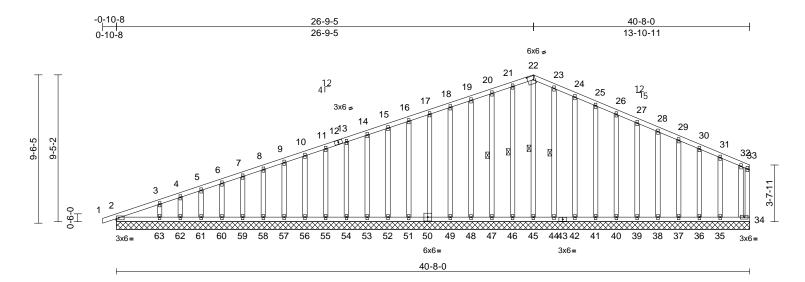
Job	Truss	Truss Type	Qty	Ply	Lot 2 OS	
Lot 2 OS	A12	Roof Special	2	1	Job Reference (optional)	147787261

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Tue Sep 07 08:52:56 ID:mNMAkoxz07ZFqdnrbi9s3qz6QqR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:87.4

APPLY 2 X 4 SPF/DF/SP NO.2 SCAB TO ONE FACE OF TRUSS AS SHOWN. ATTACH WITH (0.131" X 3") NAILS PER THE FOLLOWING NAIL SCHEDULE: 2 X 3'S - 1 ROW, 2 X 4'S - 2 ROWS, 2 X 6'S AND LARGER - 3 ROWS: SPACED @ 2" O.C. USE 2" MEMBER END DISTANCE.


	Visto Offects (X, X), [2)Edgo 0.2.5] [5:0.4.8 Edgo] [7:0.3.12:0.2.8] [12:0.8.8 0.2.8] [12:0.2.8 0.1.8]												
Plate Offsets (2	ate Offsets (X, Y): [2:Edge,0-2-5], [5:0-4-8,Edge], [7:0-3-12,0-2-8], [12:0-8-8,0-2-8], [13:0-2-8,0-1-8], [14:0-2-8,0-1-8]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.90 0.84 0.98	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.74 -1.26 0.29 0.33	(loc) 16-18 16-18 12 16-18	l/defl >792 >461 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18SHS Weight: 184 lb	GRIP 197/144 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS LBR SCAB WEDGE	2x4 SPF 2100F 1.8E SPF No.2 2x4 SPF 2100F 1.8E 2x3 SPF No.2 *Exce No.2 2x3 SPF No.2 12-11 SPF No.2 on Left: 2x4 SP No.3	ept* 11-12,12-10:2x4	SPF	this design. Wind: ASCI	E 7-16; Vult=115	0, 6-16=-12 5, 10-13=-4 42, 8-16=-1 9-13=0/457, have been o 5mph (3-sec	17/351, 39/132, 103/300, 9-14=-930/1 considered fo	99 or	or the both both both both both both both both	PLEMENT HORAGE MINIMUN OLUMN (tation o d.) Stat (ARY B , OR O 1 REQL CAPS, I	of the purlin along ndard EARING PLATES, THER MEANS TO JIRED SUPPORT V BEARING BLOCKS	SPECIAL ALLOW FOR VIDTH (SUCH
BRACING TOP CHORD BOT CHORD WEBS	Structural wood she except end verticals (6-0-0 max.): 10-11. Rigid ceiling directly bracing. 1 Row at midpt		4) All plates are MT20 plates unless otherwise indicated.							DESIGNER.			
REACTIONS	(lb/size) 2=2258/0 13=2185// (req.0-3-1 Max Horiz 2=170 (LC Max Uplift 2=-371 (L Max Grav 2=2360 (L	k), 6)	on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 7) WARNING: Required bearing size at joint(s) 2, 12					AISSOUR					
FORCES	(lb) - Maximum Com Tension 1-2=0/6, 2-3=-5734// 4-6=-4767/668, 6-7= 7-8=-3457/498, 8-9= 9-10=-5210/544, 10- 11-12=-184/67	865, 3-4=-5598/761, 3370/485, 4331/492,	8) 9)	Bearing at j using ANSI, designer sh Provide me bearing plat joint 2 and 2	n input bearing s oint(s) 12 consid /TPI 1 angle to g iould verify capa chanical connect te capable of wit 266 lb uplift at jo	ders parallel grain formula acity of beari ction (by oth thstanding 3 pint 12.	a. Building ng surface. ers) of truss t 71 lb uplift at	to		١		NOMI PE-20010	ER Some
BOT CHORD	2-19=-896/5322, 18- 16-18=-472/3912, 14 13-14=-495/4777, 12	4-16=-321/3930,	10	Internationa	s designed in ac al Residential Co and referenced s	ode sections	R502.11.1 a	Ind			Ŷ	SSIONA	L ENGINE

September 7,2021

Job	Truss	Truss Type	Qty	Ply	Lot 2 OS	
Lot 2 OS	A13	Roof Special Supported Gable	2	1	Job Reference (optional)	147787262

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Tue Sep 07 08:52:56 ID:5nBDjN6JJdZ4GtpCxksIh4z6QmL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:74

Plate Offsets (X, Y): [22:0-4-7,0-3-0]

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matr	C).08).04).11	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 34	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 273 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	6-0-0 oc pur Rigid ceiling bracing. 1 Row at mi (lb/size) 2: 3 3 3 3 3 4 4 4 4 4 4 5 5 5 5 5 5 5 6 6	0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	athing directly applie cept end verticals. applied or 10-0-0 oc 22-45, 21-46, 20-47 23-44 -8-0, 34=86/40-8-0, 0-8-0, 36=118/40-8-(0-8-0, 40=120/40-8-(0-8-0, 42=120/40-8-(0-8-0, 42=120/40-8-(0-8-0, 42=120/40-8-(0-8-0, 42=120/40-8-(0-8-0, 51=118/40-8-(0-8-0, 51=118/40-8-(0-8-0, 51=120/40-8-(0-8-0, 51=120/40-8-(0-8-0, 51=120/40-8-(0-8-0, 51=120/40-8-(0-8-0, 51=120/40-8-(0-8-0, 51=131/40-8-(8-0, 63=234/40-8-0	;),),),),),),),),),),),		 9), 38=-32 (40=-32 (LC 42=-38 (LC 46=-16 (LC 48=-29 (LC 50=-28 (LC 56=-28 (LC 56=-28 (LC 58=-28 (LC 60=-28 (LC 62=-21 (LC 35=131 (LC 37=120 (LC 37=120 (LC 44=123 (LC 46=123 (LC 46=123 (LC 50=120 (LC 52=120 (LC 52=120 (LC 54=120 (LC 56=120 (LC 56=120 (LC 58=120 (LC 58=120 (LC 60=118 (LC 	$\begin{array}{l} -29 (I(LC 9 9), 4 \\ (LC 9 9), 4 \\ 8), 4 \\ 8), 4 \\ 4), 5 \\ 4), 5 \\ 4), 5 \\ 4), 5 \\ 4), 5 \\ 22), \\ 22)$	$\begin{array}{c} \text{C} 9), 37=32\\ \text{,}, 39=-32 (\text{LC} 4)\\ 1=-32 (\text{LC} 9)\\ 7=-34 (\text{LC} 4)\\ 9=-28 (\text{LC} 8)\\ 1=-30 (\text{LC} 8)\\ 9=-28 (\text{LC} 8)\\ 5=-28 (\text{LC} 8)\\ 5=-28 (\text{LC} 8)\\ 9=-28 (\text{LC} 8)\\ 1=-30 (\text{LC} 8)\\ 3=-69 (\text{LC} 8)\\ 40=-120 (\text{LC} 1)\\ 40=-120 (\text{LC} 1)\\ 40=-120 (\text{LC} 2)\\ 45=-120 (\text{LC} 2)\\ 55=-120 (\text{LC} 2)\\ 55=-120 (\text{LC} 1)\\ 5=-120 (\text{LC} 1)\\ 6=-1311 (\text{LC} 2)\\ 6=-1311 (\text{LC} 2)\\ 1=-100 (\text{LC} 1)\\ 5=-120 (\text{LC} 1)\\ 5=$	2 (LC 2 9), , , , , , , , , , , , , ,	TOP CF	iord	4-5=-1 7-8=-1 10-11: 13-14: 15-16. 17-18: 19-20: 21-22: 23-24: 23-24: 25-26. 27-28: 29-30: 32-33:	6, 2-3=-206/48, 3 146/43, 5-6=-132/ 105/73, 8-9=-91/8 =-49/106, 11-13= =-49/128, 14-15= =-49/149, 16-17= =-49/171, 18-19= =-49/171, 18-19= =-48/191, 22-27= =-40/118, 28-29= =-36/86, 30-31=- =-58/49, 33-34=-3	/52, 6-7=-118/62, ;4, 9-10=-78/95, -50/117, -49/138, -48/160, -49/182, -49/205, -49/205, -49/205, -49/211, -46/167, -42/134, -38/102, 41/69, 31-32=-51/53, 34/39
		- 175 (LC		FORCES	(lb) - M Tensio	aximum Compi		3=234 (LC 2 on/Maximum	:1)			Ba	SEVI	ER

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017 Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 2 OS	
Lot 2 OS	A13	Roof Special Supported Gable	2	1	Job Reference (optional)	147787262

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Tue Sep 07 08:52:56

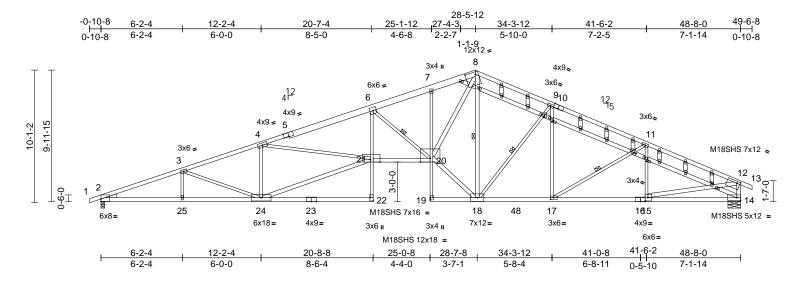
ID:5nBDjN6JJdZ4GtpCxksIh4z6QmL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Wheeler Lumber, Waverly, KS - 66871,

2-63=-49/40, 62-63=-49/40, 61-62=-49/40, BOT CHORD 60-61=-49/40, 59-60=-49/40, 58-59=-49/40, 57-58=-49/40, 56-57=-49/40, 55-56=-49/40, 54-55=-49/40, 53-54=-49/40, 52-53=-49/40, 51-52=-49/40, 49-51=-49/40, 48-49=-49/39, 47-48=-49/39, 46-47=-49/39, 45-46=-49/39, 44-45=-49/39, 42-44=-49/39, 41-42=-49/39, 40-41=-49/39, 39-40=-49/39, 38-39=-49/39, 37-38=-49/39, 36-37=-49/39, 35-36=-49/39, 34 - 35 = -49/39WEBS 22-45=-105/11, 21-46=-97/32, 20-47=-94/50, 19-48=-93/44, 18-49=-93/45, 17-50=-94/44, 16-51=-93/45, 15-52=-93/44, 14-53=-93/44, 13-54=-93/44, 11-55=-93/44, 10-56=-93/44, 9-57=-93/44, 8-58=-93/44, 7-59=-94/45, 6-60=-92/44, 5-61=-100/47, 4-62=-62/31, 3-63=-173/96, 23-44=-97/32, 24-42=-94/54, 25-41=-93/48, 26-40=-93/48, 27-39=-93/48, 28-38=-93/48, 29-37=-93/48, 30-36=-93/43, 31-35=-99/72, 32-34=-64/11

NOTES


- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 All plates are 2x4 MT20 unless otherwise indicated.
- All plates are 2x4 MT20 unless otherwise indicated
 Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 1-4-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 14 lb uplift at joint 34, 16 lb uplift at joint 46, 34 lb uplift at joint 47, 29 lb uplift at joint 48, 28 lb uplift at joint 49, 28 lb uplift at joint 50, 30 lb uplift at joint 51, 28 lb uplift at joint 52, 29 lb uplift at joint 53, 28 lb uplift at joint 54, 28 lb uplift at joint 55, 28 lb uplift at joint 56, 28 lb uplift at joint 57, 28 lb uplift at joint 60, 30 lb uplift at joint 61, 21 lb uplift at joint 62, 69 lb uplift at joint 63, 16 lb uplift at joint 44, 38 lb uplift at joint 42, 32 lb uplift at joint 41, 32 lb uplift at joint 40, 32 lb uplift at joint 37, 29 lb uplift at joint 36, 50 lb uplift at joint 37.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Lot 2 OS	
Lot 2 OS	A14	Roof Special Structural Gable	2	1	Job Reference (optional)	147787263

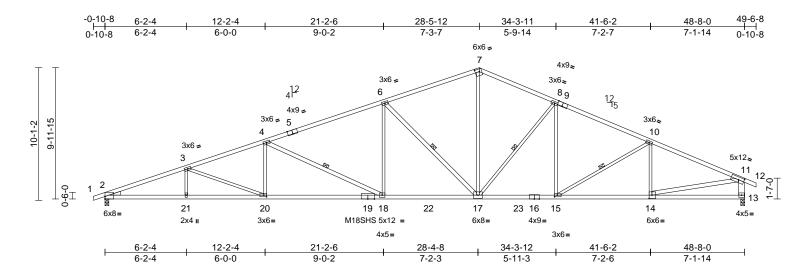
Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Tue Sep 07 08:52:57 ID:5MeftbDtFQ51Jwy4rpPBrXyhdrh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale	_	1:87.6
Scale	=	1.07.0

[2:Edge,0-2-5], [5:0-4-8,Edge], [8:0-9-4,0-2-4], [10:0-4-5,Edge], [12:0-3-0,0-1-12], [15:0-2-8,0-3-0], [16:0-4-6,Edge], [17:0-2-8,0-1-8], [21:0-8-12,Edge], [22:Edge,0-2-8], [29:0-0-3,0-1-2], [30:0-1-4,0-1-0], [31:0-2-0,0-0-4], [31:0-1-12,0-1-8], [32:0-1-4,0-1-0], [33:0-1-4,0-1-0] Plate Offsets (X, Y): CSI DEFL PLATES Loading (psf) Spacing 2-0-0 in (loc) l/defl L/d GRIP 197/144 TCLL (roof) 25.0 Plate Grip DOL 1.15 тс 0.88 Vert(LL) -0.75 22-24 >770 360 MT20 BC 0.99 M18SHS TCDL 10.0 Lumber DOL 1.15 Vert(CT) -1.37 22-24 >424 240 197/144 BCLL 0.0 Rep Stress Incr YES WB 0.93 Horz(CT) 0.53 14 n/a n/a BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.50 22 >999 240 Weight: 260 lb FT = 10% WEBS 3-25=0/212, 3-24=-515/167, 4-24=-1390/311, LUMBER TOP CHORD 2x4 SPF No.2 *Except* 5-8:2x6 SPF No.2, 21-24=-764/5144, 4-21=-175/2075, 1-5:2x4 SPF 2100F 1.8E 6-20=-2609/500, 18-20=-292/3696 8-20=-626/4790. 8-18=-1716/220. BOT CHORD 2x4 SPF 2100F 1.8E *Except* 22-6,7-19:2x3 9-18=-719/232, 9-17=0/365, 11-17=-252/148, SPF No.2, 23-22,16-14:2x4 SPF No.2 11-15=-415/141, 12-15=-248/3099 WEBS 2x4 SPF No.2 *Except* 3-25,24-3,4-24,21-4,20-6,18-9,17-9,17-11,15-NOTES 11:2x3 SPF No.2, 24-21,20-8:2x4 SPF 2100F Unbalanced roof live loads have been considered for 1) 1 8F this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) 2)

	1.8E
OTHERS	2x4 SPF No.2
WEDGE	Left: 2x4 SP No.3
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	2-1-9 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 2-2-0 oc
	bracing.
WEBS	1 Row at midpt 6-20, 8-18, 9-18, 11-17
REACTIONS	(
	14=2248/0-11-8
	Max Horiz 2=170 (LC 12)
	Max Uplift 2=-380 (LC 4), 14=-267 (LC 9)
	Max Grav 2=2309 (LC 2), 14=2324 (LC 2)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/6, 2-3=-5719/842, 3-4=-5187/764,
	4-6=-7360/1050, 6-7=-5289/744,
	7-8=-5262/793, 8-9=-3084/505,
	9-11=-3537/464, 11-12=-3620/386,
	12-13=0/27, 12-14=-2205/302
BOT CHORD	
	22-24=0/51, 21-22=0/148, 6-21=-197/1916,
	20-21=-883/6938, 19-20=0/45,
	7-20=-265/106, 18-19=-4/14,
	17-18=-255/3191, 15-17=-289/3270,
	14-15=-70/227

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are MT20 plates unless otherwise indicated.
 All plates are 2x4 MT20 unless otherwise indicated.
- All plates are 2x4 MT20 unless other
 Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf.
 9) WARNING: Required bearing size at joint(s) 2 greater than input bearing size.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 380 lb uplift at joint 2 and 267 lb uplift at joint 14.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 LOAD CASE(S) Standard


Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 2 OS	
Lot 2 OS	A15	Roof Special	2	1	Job Reference (optional)	147787264

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Tue Sep 07 08:52:58 ID:mLJ2h5cAmhxRk3t89PJP4HyhyKy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:87.6

Plate Offsets ()	X, Y): [2:Edge,0-2-5]	. [5:0-4-8.Edge]. [7:0-	-3-12.0-2	2-8]. [9:0-4-7.Ed	ne]. [11:0-4-15.0	-2-8]. [14:()-2-8.0-3-0]. [15:0-2-8	3.0-1-8].	[20:0-2-8	3.0-1-8	31	
				. 0], [0.0 1 1,Ed		2 0], [1		10.0 2 0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-		1	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.85	Vert(LL)	-0.51	18-20	>999	360	MT20	197/144
TCDL BCLL	10.0	Lumber DOL Rep Stress Incr	1.15 YES		BC	0.99 0.76	Vert(CT) Horz(CT)	-0.94 0.24		>619	240	M18SHS	197/144
BCLL BCDL	0.0* 10.0	Code		18/TPI2014	WB Matrix-S	0.76	Wind(LL)	0.24	13 18-20	n/a >999	n/a 240	Woight: 106 lb	ET - 109/
BCDL	10.0	Code	IRC20	10/1112014	Matrix-S		WIND(LL)	0.31	10-20	>999	240	Weight: 196 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD	2x4 SPF 2100F 1.88 SPF No.2 2x4 SPF 2100F 1.88 SPF No.2	E *Except* 16-13:2x4	Ļ	Vasd=91mp II; Exp C; Er cantilever le right expose	7-16; Vult=115r h; TCDL=6.0psf; iclosed; MWFRS ft and right expo d; Lumber DOL= e MT20 plates un	BCDL=6.0 (envelope sed ; end v =1.60 plate	Opsf; h=25ft; e) exterior zo vertical left ar grip DOL=1.	ne; nd .60					
WEBS	SPF No.2, 13-11:2x	ept* 17-6,14-11,18-4: 6 SPF No 2	2/1		as been designe			u.					
WEDGE	Left: 2x4 SP No.3	0 011 100.2			ad nonconcurrer			ads.					
BRACING			!		nas been design			0psf					
TOP CHORD	Structural wood she except end verticals	athing directly applie	ed,	3-06-00 tall I	m chord in all are by 2-00-00 wide	will fit betv	veen the bott						
BOT CHORD	Rigid ceiling directly bracing.	applied or 2-2-0 oc	(6) WARNING:	ny other membe Required bearin input bearing si	g size at jo		1.					
WEBS	1 Row at midpt	6-17, 8-17, 10-15, 4	-18 .		hanical connect		ore) of truce	to					
REACTIONS		-3-8, (req. 0-3-11),			e capable of with								
		0-3-8, (req. 0-3-11)			68 lb uplift at joir								
	Max Horiz 2=171 (Lo Max Uplift 2=-379 (L) 8		designed in acc Residential Coc			and					
	Max Grav 2=2333 (I	LC 2), 13=2350 (LC 2	2)		nd referenced st								
FORCES	(lb) - Maximum Com Tension	pression/Maximum	I	_OAD CASE(S)	Standard								
TOP CHORD	1-2=0/6, 2-3=-5793/ 4-6=-4134/611, 6-7= 7-8=-3109/503, 8-10 10-11=-3622/382, 1 11-13=-2233/304)=-3568/462,									4	TATE OF M	MISSOL
BOT CHORD	2-21=-855/5370, 20 18-20=-728/4953, 1 15-17=-253/3220, 1 13-14=-78/243	7-18=-461/3847,										SCOT SEVI	
WEBS NOTES	10-14=-426/140, 11	5=0/348, 10-15=-230 -14=-241/3088, 479/144, 4-20=0/446									A Star	PE-2001	158
	d roof live loads have	been considered for										SSIONA	LEY
this design												Sontomb	50

September 7,2021

Job	Truss	Truss Type	Qty	Ply	Lot 2 OS	
Lot 2 OS	A16	Roof Special	5	1	Job Reference (optional)	147787265

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Tue Sep 07 08:52:58 ID:ceyXGprA4IYGZ4QRMFHGugyhzc_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

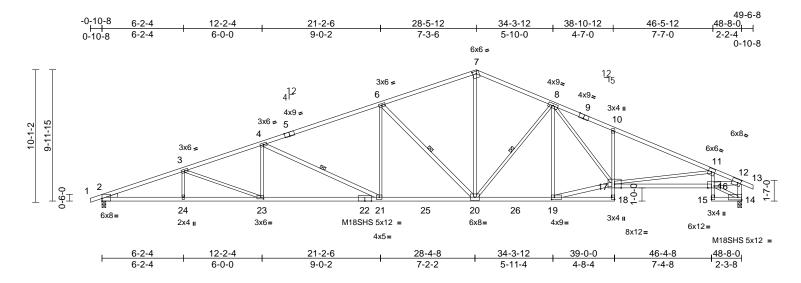


Plate Offsets (X, Y): [2:Edge, 0-2-5], [5:0-4-8, Edge], [7:0-3-8, 0-2-4], [9:0-4-8, Edge], [12:0-2-9, 0-3-0], [18:Edge, 0-2-8], [19:0-2-8, 0-2-0], [23:0-2-8, 0-1-8]

Scale = 1:87.6

- 1410 0110010 ((,,, ,); [2:2090;0 2 0]	[eie : e;=uge]; [: :e	0 0,0 2 .], [0:0 : 0, 2 490	, [· 1 .0 1 0,0 0	0],[:0:20;	go,o <u>=</u> o], [.o		= 0], [=0		. 0]		
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	(53)	Plate Grip DOL	1.15		TC	0.81	Vert(LL)	-0.53		>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.75	Vert(CT)	-0.96	21-23	>602	240	M18SHS	197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.93		0.35	14	n/a	n/a		
BCDL	10.0	Code		8/TPI2014	Matrix-S		Wind(LL)		21-23	>999	240	Weight: 205 lb	FT = 10%
											-		
LUMBER				OTES									
TOP CHORD	2x4 SPF 2100F 1.8 No.2	E *Except* 7-9:2x4 S	PF 1)) Unbalanced this design.	roof live loads ha	ave been (considered fo	or					
BOT CHORD	2x4 SPF 2100F 1.8 18-10,11-15:2x3 SP No.2		2) PF	Vasd=91mpl	7-16; Vult=115n n; TCDL=6.0psf; closed; MWFRS	BCDL=6.	0psf; h=25ft;						
WEBS	2x3 SPF No.2 *Exce	ept* -4,16-12:2x4 SPF N	0.2		t and right expos d; Lumber DOL=								
WEDGE	Left: 2x4 SP No.3	4,10 12.224 011 1	3)) All plates are	MT20 plates un	less other	rwise indicate						
BRACING			4)		is been designed								
TOP CHORD	Structural wood she 2-2-0 oc purlins, ex	athing directly applie cept end verticals.	ed or 5)) * This truss h	ad nonconcurren nas been designe	ed for a liv	e load of 20.						
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc		3-06-00 tall b	n chord in all are by 2-00-00 wide v	will fit betv	veen the bott						
WEBS	1 Row at midpt	6-20, 8-20, 4-21			y other member			f.					
REACTIONS	(lb/size) 2=2248/0	-3-8, (req. 0-3-11),	6)		Required bearing input bearing siz		oint(s) 2, 14						
	14=2248/	0-3-8, (req. 0-3-11)	7)		hanical connecti		ore) of truce	to					
	Max Horiz 2=171 (LO		.,		capable of with								
	Max Uplift 2=-380 (L				67 lb uplift at join			-					
	Max Grav 2=2337 (I		²⁾ 8)) This truss is	designed in acco	ordance w	ith the 2018						
FORCES	(lb) - Maximum Corr Tension	pression/Maximum			Residential Cod nd referenced sta			and					
TOP CHORD	,		L	OAD CASE(S)	Standard							000	The
	4-6=-4146/612, 6-7=			(-)								TATE OF M	Alcoh
	7-8=-3117/502, 8-10 10-11=-4562/487, 1	,										A TE	-050 M
	12-13=0/27, 12-14=	,									A	NY and	New
BOT CHORD	,										H	S SCOT	
	21-23=-729/4965, 2										81	SEVI	ER \\X
	19-20=-252/3223, 1	8-19=-38/95, 17-18=	0/77,								8 -		1 * 2
	10-17=-427/220, 16	,									8		
	,	-535/155, 14-15=-41	/69								N	Catton	formen g
WEBS	6-20=-1467/344, 7-2										N.	O PE-2001	018807
	8-20=-706/228, 8-19 17-19=-220/3227, 8										V	The second secon	18A
	,	1=0/225, 3-23=-479/	143.									1. S.C.	NO'B
		1235/297, 6-21=-24/8										ESSIONA	LEY
	14-16=-61/60, 12-16	6=-457/3804										and and	
												Septembe	er 7,2021

Job	Truss	Truss Type	Qty	Ply	Lot 2 OS	
Lot 2 OS	A17	Roof Special Supported Gable	2	1	Job Reference (optional)	147787266

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Tue Sep 07 08:52:59 ID:W3M06mk9XdimnHGkYBzAJ9yhzRo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:87.6

Loading		(psf)	Spacing	2-0-0	CSI TC	0.00	DEFL	in r/a	(loc)	l/defl	L/d 999	PLATES MT20	GRIP 197/144
TCLL (roof) TCDL		25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	BC	0.08 0.04	Vert(LL) Vert(CT)	n/a n/a		n/a n/a	999	WI120	197/144
BCLL		0.0*	Rep Stress Incr	YES	WB	0.11	Horz(CT)	0.00	42	n/a	n/a		
BCDL		10.0	Code	IRC2018/TPI2014	Matrix							Weight: 322 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	6-0-0 oc p Rigid ceili bracing. 1 Row at	No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2	athing directly applie cept end verticals. applied or 6-0-0 oc 24-58, 23-59, 22-60 21-61, 25-56, 26-55 8-0, 42=147/48-8-0, 8-8-0, 48=120/48-8-0 8-8-0, 48=120/48-8-0 8-8-0, 52=120/48-8-0 8-8-0, 52=120/48-8-0 8-8-0, 52=120/48-8-0 8-8-0, 63=120/48-8-0 8-8-0, 63=120/48-8-0 8-8-0, 63=120/48-8-0 8-8-0, 63=120/48-8-0 8-8-0, 72=120/48-8-0 8-8-0, 72=120/48-8-0 8-8-0, 72=120/48-8-0 8-8-0, 76=120/48-8-0 8-8-0, 76=120/48-8-0 8-8-0, 76=120/48-8-0 8-8-0, 76=120/48-8-0 8-8-0, 76=120/48-8-0 8-8-0, 78=113/48-8-0	d or),),),),),),),),),),),),),	Max Uplift	$\begin{array}{c} S\\ \\ 2=-46 \ (LC 9), 4: \\ 43=-80 \ (LC 9), 4: \\ 43=-80 \ (LC 9), 4: \\ 45=-35 \ (LC 9), 4: \\ 47=-32 \ (LC 9), 5: \\ 51=-32 \ (LC 9), 5: \\ 53=-32 \ (LC 9), 5: \\ 53=-32 \ (LC 9), 5: \\ 53=-32 \ (LC 9), 5: \\ 53=-12 \ (LC 8), 1: \\ 61=-29 \ (LC 4), 1: \\ 63=-28 \ (LC 4), 1: \\ 63=-28 \ (LC 4), 1: \\ 70=-28 \ (LC 4), 1: \\ 70=-28 \ (LC 4), 1: \\ 70=-28 \ (LC 4), 1: \\ 72=-28 \ (LC 4), 1: \\ 74=-28 \ (LC 4), 1: \\ 75=-20 \ (LC 2), 1: \\ 45=120 \ (LC 2); \\ 53=178 \ (LC 9), 60=121 \ (LC 2); \\ 53=178 \ (LC 9), 60=121 \ (LC 2); \\ 53=178 \ (LC 9), 60=121 \ (LC 2); \\ 63=120 \ (LC 1), \\ 71=120 \ (LC 2); \\ 71=120 \ (LC 2);$	$\begin{array}{l} 44=-20 \ (LC \ 9), \\ 46=-31 \ (LC \ 9), \\ 46=-31 \ (LC \ 9), \\ 48=-32 \ (LC \ 9), \\ 50=-32 \ (LC \ 9), \\ 50=-32 \ (LC \ 9), \\ 50=-35 \ (LC \ 9), \\ 50=-35 \ (LC \ 8), \\ 50=-35 \ (LC \ 8), \\ 51=-28 \ (LC \ 8), \\ 52=-28 \ (LC \ 8), \\ 53=-28 \ (LC \ 8), \\ 54=-28 \ (LC \ 8), \\ 71=-28 \ (LC \ 8), \\ 71=-28 \ (LC \ 8), \\ 73=-28 \ (LC \ 8), \\ 74=-120 \ (LC \ 1), \\ 44=-120 \ (LC \ 1), \\ 56=-124 \ (LC \ 1), \\ 56=-124 \ (LC \ 1), \\ 56=-124 \ (LC \ 1), \\ 56=-120 \ (LC \ 1), \\ 56=-120 \ (LC \ 1), \\ 66=-120 \ (LC \ 1), \\ 66=-120 \ (LC \ 1), \\ 76=-120 \ (LC \ 1), \\ 74=-120 \ (LC \ 1), \\ 74=-120 \ (LC \ 1), \\ 76=-120 \ (LC \ 1), \ (LC \ 1), \ (LC $),),),),), 22), ,),),),),),),),),)	TOP CF	iORD	4-5=-1 7-8=-1 10-11: 12-14: 15-16: 17-18: 19-20: 21-22: 23-24: 25-26: 27-28: 30-31: 32-33: 34-35: 37-38: 40-41:	6, 2-3=-195/121 144/126, 5-6=-13 104/158, 8-9=-90 =-63/191, 11-12= =-38/213, 14-15= =-38/256, 18-19= =-38/256, 18-19= =-38/278, 20-21= =-37/302, 26-27= =-37/302, 26-27= =-37/302, 26-30= =-29/201, 31-32= =-25/152, 33-34= =-21/103, 35-36= =-17/53, 38-39=- =0/26, 40-42=-13	, 3-4=-160/120, 1/137, 6-7=-117/147, 1/169, 9-10=-76/180, 49/202, 38/223, 38/245, 38/267, 38/267, 38/312, 38/317, 34/274, 31/225, 27/176, 23/127, 19/86, 36-37=-17/69 20/37, 39-40=-44/23, -5/34
				FORCES	(lb) - Ma	79=143 (LC 1) ximum Compress		,,			X	PE-2001	L ENGILE
					Tension	-						Septemb	er 7,2021

tinued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 2 OS	
Lot 2 OS	A17	Roof Special Supported Gable	2	1	Job Reference (optional)	147787266

BOT CHORD	2-79=-15/30, 78-79=-15/30, 77-78=-15/30, 76-77=-15/30, 75-76=-15/30, 74-75=-15/30,
	73-74=-15/30, 72-73=-15/30, 71-72=-15/30,
	70-71=-15/30, 69-70=-15/30, 68-69=-15/30,
	67-68=-15/30, 66-67=-15/30, 64-66=-15/30,
	63-64=-15/30, 62-63=-15/30, 61-62=-15/30,
	60-61=-15/30, 59-60=-15/30, 58-59=-15/30,
	56-58=-15/30, 55-56=-15/30, 54-55=-15/30,
	53-54=-15/30, 52-53=-15/30, 51-52=-15/30,
	50-51=-15/30, 49-50=-15/30, 48-49=-15/30,
	47-48=-15/30, 46-47=-15/30, 45-46=-15/30,
	44-45=-15/30, 43-44=-15/30, 42-43=-15/30
WEBS	24-58=-162/4, 23-59=-97/28, 22-60=-94/51,
	21-61=-93/45, 20-62=-93/44, 19-63=-93/44,
	18-64=-93/44, 17-66=-93/44, 16-67=-93/44,
	15-68=-93/44, 14-69=-93/44, 12-70=-93/44,
	11-71=-93/44, 10-72=-93/44, 9-73=-93/44,
	8-74=-93/44, 7-75=-93/44, 6-76=-93/44,
	5-77=-94/45, 4-78=-89/44, 3-79=-109/73,
	25-56=-97/23, 26-55=-94/57, 27-54=-93/48,
	28-53=-93/48, 30-52=-93/48, 31-51=-93/48,
	32-50=-93/48, 33-49=-93/48, 34-48=-93/48,
	35-47=-93/48, 36-46=-93/48, 37-45=-93/49,
	38-44=-97/43, 39-43=-77/71
NOTEO	· · · ·

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated. 4) Gable requires continuous bottom chord bearing. 5)
- 6)
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 14 lb uplift at joint 42, 46 lb uplift at joint 2, 12 lb uplift at joint 59, 35 lb uplift at joint 60, 29 lb uplift at joint 61, 28 lb uplift at joint 62, 28 lb uplift at joint 63, 28 lb uplift at joint 64, 28 lb uplift at joint 66, 28 lb uplift at joint 67, 28 lb uplift at joint 68, 28 lb uplift at joint 69, 28 lb uplift at joint 70, 28 lb uplift at joint 71, 28 lb uplift at joint 72, 28 lb uplift at joint 73, 28 lb uplift at joint 74, 28 lb uplift at joint 75, 29 lb uplift at joint 76, 29 lb uplift at joint 77, 30 lb uplift at joint 78, 53 lb uplift at joint 79, 7 lb uplift at joint 56, 41 lb uplift at joint 55, 32 lb uplift at joint 54, 32 lb uplift at joint 53, 32 lb uplift at joint 52, 32 lb uplift at joint 51, 32 lb uplift at joint 50, 32 lb uplift at joint 49, 32 lb uplift at joint 48, 32 lb uplift at joint 47, 31 lb uplift at joint 46, 35 lb uplift at joint 45, 20 lb uplift at joint 44 and 80 lb uplift at joint 43.
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

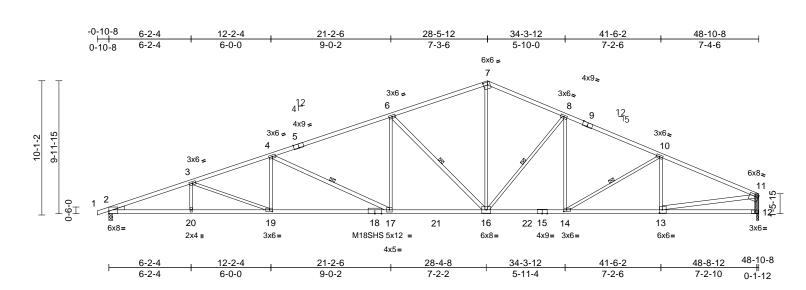
LOAD CASE(S) Standard

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Tue Sep 07 08:52:59

ID:W3M06mk9XdimnHGkYBzAJ9yhzRo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

- Gable studs spaced at 1-4-0 oc.


- 10) This truss is designed in accordance with the 2018

Job	Truss	Truss Type	Qty	Ply	Lot 2 OS	
Lot 2 OS	A18	Roof Special	2	1	Job Reference (optional)	147787267

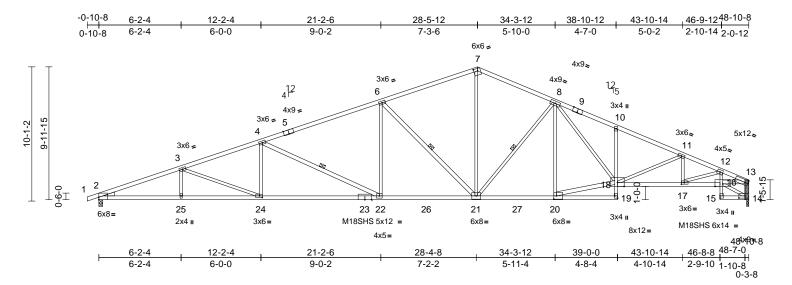
Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Tue Sep 07 08:53:00 ID:6GMQM?KsFY?_ZssIjyMaOGyi?BN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:86.6

APPLY 2 X 4 SPF/DF/SP NO.2 SCAB TO ONE FACE OF TRUSS AS SHOWN. ATTACH WITH (0.131" X 3") NAILS PER THE FOLLOWING NAIL SCHEDULE: 2 x 3'S - 1 ROW, 2 x 4'S - 2 ROWS,

2 x 6'S AND LARGER - 3 ROWS: SPACED @ 2" O.C. USE 2" MEMBER END DISTANCE.


Plate Offsets ()	K, Y): [2:Edge,0-2-5],	[5:0-4-8,Edge], [7:0-3	12,0-2-8	3], [9:0-4-8,Ed	ge], [11:0-3-0,0	-1-12], [13:0)-2-8,0-3-0], [[14:0-2-8	8,0-1-8],	[19:0-2-8	8,0-1-8]	-
Loading	(psf)	1	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0		1.15		TC	0.81	Vert(LL)	-0.51	17-19	>999	360	MT20	197/144
TCDL	10.0		1.15		BC	0.76	Vert(CT)		17-19	>623	240	M18SHS	197/144
BCLL	0.0*		YES		WB	0.80	- (-)	0.23	12	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.31	17-19	>999	240	Weight: 197 lb	FT = 10%
LUMBER			W		7-16=-214/181				LOAD	CASE(S) Sta	ndard	
TOP CHORD		E *Except* 7-9:2x4 SPI	=		8-14=-5/393, 1								
	No.2	_			10-13=-387/14			<u>_</u>					
BOT CHORD	2x4 SPF 2100F 1.8E				3-20=0/225, 3- 4-17=-1234/29			ь,					
WEBS	2x3 SPF No.2 *Exce 12-11,13-11,4-17,6-				6-16=-1469/34		070,					ARING PLATES, SP IER MEANS TO AL	
LBR SCAB	12-11 SPF No.2 on		N	DTES								ED SUPPORT WI	
WEDGE	Left: 2x4 SP No.3	6 5100			roof live loads	have been o	considered fo	or	AS COL	UMN CA	PS, BE	ARING BLOCKS, E	
BRACING			.,	this design.								OF THE TRUSS	SIGNER
TOP CHORD	Structural wood she	athing directly applied	or 2)	Wind: ASCE	7-16; Vult=11	5mph (3-sec	ond gust)		MANO	ACTORE			BIGINEIX.
	2-2-0 oc purlins, ex				h; TCDL=6.0ps								
BOT CHORD	Rigid ceiling directly	applied or 8-5-2 oc			closed; MWFR								
	bracing.		_		ft and right exp d; Lumber DOL								
WEBS		8-16, 10-14, 4-17, 6-1	6 3)		e MT20 plates i								
REACTIONS	(lb/size) 2=2258/0 13-2185/	-3-8, (req. 0-3-11), (0-2-0 + bearing block)	- /		e 3x6 MT20 uni								
	(reg.0-3-1		, 5)		as been design								
	Max Horiz 2=178 (LC	2 <u>8</u>)			ad nonconcurre							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~
	Max Uplift 2=-380 (L	,	6)		has been desig			0psf				A DE	De
		_C 2), 12=2299 (LC 2)			m chord in all a by 2-00-00 wide			om				THE OF M	VIISS VI
FORCES	(lb) - Maximum Com				ny other memb						A		1.5
	Tension		7)		Required beari						R	SCOT	TM. CM
TOP CHORD	1-2=0/6, 2-3=-5833/		,		input bearing s						R	SEVI	ER \Y
	4-6=-4178/615, 6-7=		8)		pint(s) 12 consid			le			2 1		
	7-8=-3153/506, 8-10	,			TPI 1 angle to g						XX	4	
BOT CHORD	10-11=-3781/397, 1 2-20=-867/5408, 19-			0	ould verify capa		0				X	Collyn	a server
	17-19=-740/4994, 10	,	9)		chanical connect e capable of wit						107	PE-2001	
	14-16=-266/3285, 1				46 lb uplift at jo		oo in uhiift a	L			N	11-2001	128
	12-13=-53/213		10	,	designed in ac		ith the 2018				Y	1ºSa	G B
			, i c		Residential Co			and				SIONA	LETA
				R802.10.2 a	ind referenced	standard AN	ISI/TPI 1.					and	TOT

Job	Truss	Truss Type	Qty	Ply	Lot 2 OS	
Lot 2 OS	A19	Roof Special	5	1	Job Reference (optional)	147787268

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Tue Sep 07 08:53:00 ID:0q1nA6KoxtqELzK4M5cyP?yi?S8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

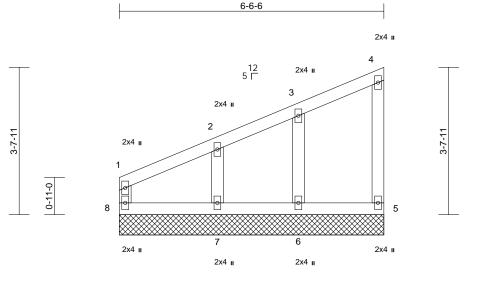
Scale = 1:86.6

APPLY 2 X 4 SPF/DF/SP NO.2 SCAB TO ONE FACE OF TRUSS AS SHOWN, ATTACH WITH (0.131" X 3") NAILS PER THE FOLLOWING NAIL SCHEDULE: 2 x 3'S - 1 ROW, 2 x 4'S - 2 ROWS, 2 x 6'S AND LARGER - 3 ROWS: SPACED @ 2" O.C. USE 2" MEMBER END DISTANCE.

Plate Offsets ((X, Y): [2:Edge,0-2-5]	, [5:0-4-8,Edge], [7:0-	-3-8,0-2-4	l, [9:0-4-8,Ed	ge], [14:0-5-8,0-2-	0], [17:0-2	-8,0-1-8], [19:E	Edge,0	-2-8], [20):0-2-8,0)-3-0],	[24:0-2-8,0-1-8]	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.81	Vert(LL)	-0.55	22-24	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.76	- (-)	-1.01	22-24	>579	240	M18SHS	197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.79	Horz(CT)	0.40	14	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.34	22-24	>999	240	Weight: 207 lb	FT = 10%
LUMBER TOP CHORD	2v4 SDE 2100E 1 9	E *Except* 7-9,9-13:2		OT CHORD	2-25=-867/5408, 22-24=-740/4994								others) of truss to ng 380 lb uplift at
TOF CHORD	SPF No.2	E Except 7-9,9-13.2	2.74		20-21=-265/3275							uplift at joint 14.	ng ooo io upiin ut
BOT CHORD	2x4 SPF 2100F 1.8	E *Except*			18-19=0/79, 10-2							ned in accordance	ce with the 2018
	19-10,12-15:2x3 SP No.2	PF No.2, 15-14:2x4 S	PF		17-18=-438/449 ² 15-16=0/36, 12-2			1				dential Code sect ferenced standar	tions R502.11.1 and d ANSI/TPI 1.
WEBS	2x3 SPF No.2 *Exce	ept*	W	EBS	6-21=-1467/344,				LOAD	CASE(S) Sta	ndard	
	21-6,20-18,14-13,22				8-21=-737/234, 8						,		
	13-16:2x4 SPF 210				18-20=-253/3212				SUPPLE			ARING PLATES, SP	PECIAL
LBR SCAB	14-13 SPF No.2 on	ie side			11-18=-390/129, 11-17=-92/76, 13				ANCHO	RAGE, C	R OTH	ER MEANS TO AL	LOW FOR
WEDGE	Left: 2x4 SP No.3				14-16=-87/21, 3-			3.				ED SUPPORT WIE ARING BLOCKS, E	
BRACING	0				4-24=0/446, 4-22							OF THE TRUSS	TC.) ARE
TOP CHORD	2-2-0 oc purlins, ex	eathing directly applie	a or N	OTES					MANUE	ACTURE	R OR 1	HE BUILDING DE	SIGNER.
BOT CHORD		applied or 10-0-0 oc			d roof live loads h	ave been	considered for						
BOT OTOTOL	bracing, Except:		, ,	this design									
	8-5-11 oc bracing: 2	2-25	2)		E 7-16; Vult=115r								
	8-5-2 oc bracing: 24				ph; TCDL=6.0psf;								The second second
	9-1-3 oc bracing: 22				Enclosed; MWFRS							OF I	ALL ALL
WEBS		6-21, 8-21, 4-22			eft and right expos ed; Lumber DOL=							TATE OF I	MISSO
REACTIONS)-3-8, (req. 0-3-11), /(0-2-0 + bearing bloc	:k) 3)		re MT20 plates ur						A		N.S
	(reg.0-3-		μ, ο) (4)		has been designed						R	SCOT	TM. VEN
		,	.,		oad nonconcurren			ls.			4	SEV	ER \V
	Max Horiz 2=178 (L		5)		s has been design					1	nla		0 +
	Max Uplift 2=-380 (L				om chord in all are						-WX	1 -1-1-7	Xin 1
	Max Grav 2=2348 (<i>,,</i>	2)		I by 2-00-00 wide			m		_	X	NUM	PER
FORCES		npression/Maximum	~		any other member						87		
	Tension	1007 0 1 5000 770	,		: Required bearing		oint(s) 2, 14				N	PE-2001	N10001
TOP CHORD	4-6=-4178/615, 6-7	/837, 3-4=-5308/779, 3098/484			n input bearing siz		to grain value				Y	100	1 STA
	7-8=-3151/504, 8-10		()		I/TPI 1 angle to gr			•				SIONA	TENA
	10.11 - 4594/501.1				hould varify capao							UN A	"A

10-11=-4584/501, 11-12=-4865/515, 12-13=-5014/546, 13-14=-2219/260

designer should verify capacity of bearing surface.


Course September 7,2021

Job	Truss	Truss Type	Qty	Ply	Lot 2 OS	
Lot 2 OS	A20	Monopitch Supported Gable	2	1	Job Reference (optional)	147787269

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Tue Sep 07 08:53:01 ID:a78XY5DQKbrHjrYYzIQ5ftyhz7p-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:28.4

WEBS

OTHERS

BRACING

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

REACTIONS (lb/size)

2x4 SPF No.2

2x4 SPF No.2

Max Horiz 8=139 (LC 5)

4-5=-59/26, 1-8=-81/0

(LC 8)

bracing.

Max Uplift

Max Grav

Tension

Structural wood sheathing directly applied or

5=77/6-6-6, 6=181/6-6-6,

7=218/6-6-6, 8=85/6-6-6

5=-26 (LC 5), 6=-33 (LC 8), 7=-92

5=77 (LC 1), 6=181 (LC 1), 7=218 (LC 1), 8=112 (LC 16)

6-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc

(Ib) - Maximum Compression/Maximum

1-2=-101/32, 2-3=-76/22, 3-4=-66/30,

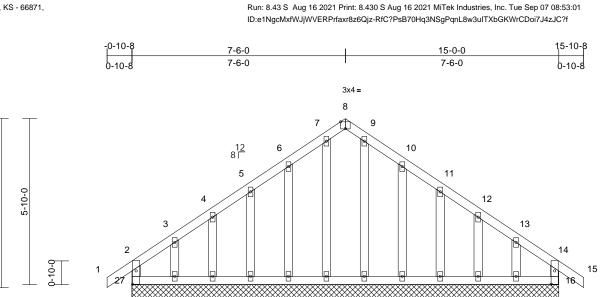
7-8=-48/34, 6-7=-48/34, 5-6=-48/34

6-6-6

(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
25.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	197/144
10.0	Lumber DOL	1.15	BC	0.06	Vert(TL)	n/a	-	n/a	999		
0.0*	Rep Stress Incr	YES	WB	0.02	Horiz(TL)	0.00	5	n/a	n/a		
10.0	Code	IRC2018/TPI2014	Matrix-R							Weight: 24 lb	FT = 10%
10.0	Code			d for a 10 (Weight: 24 lb	FT = 10%
SDE No 2		,	0			de					
SPF No.2				,							
	25.0 10.0 0.0* 10.0	25.0 Plate Grip DOL 10.0 Lumber DOL 0.0* Rep Stress Incr 10.0 Code	25.0 Plate Grip DOL 1.15 10.0 Lumber DOL 1.15 0.0* Rep Stress Incr YES 10.0 Code IRC2018/TPI2014 PSPF No.2 7) This truss h chord live log	25.0 Plate Grip DOL 1.15 TC 10.0 Lumber DOL 1.15 BC 0.0* Rep Stress Incr YES WB 10.0 Code IRC2018/TPI2014 Matrix-R 7) This truss has been designe chord live load nonconcurre	25.0 Plate Grip DOL 1.15 TC 0.06 10.0 Lumber DOL 1.15 BC 0.06 0.0* Rep Stress Incr YES WB 0.02 10.0 Code IRC2018/TPI2014 Matrix-R	25.0 Plate Grip DOL 1.15 TC 0.06 Vert(LL) 10.0 Lumber DOL 1.15 BC 0.06 Vert(TL) 0.0* Rep Stress Incr YES WB 0.02 Horiz(TL) 10.0 Code IRC2018/TPI2014 Matrix-R This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live load	25.0 Plate Grip DOL 1.15 TC 0.06 Vert(LL) n/a 10.0 Lumber DOL 1.15 BC 0.06 Vert(TL) n/a 0.0* Rep Stress Incr YES WB 0.02 Horiz(TL) 0.00 10.0 Code IRC2018/TPI2014 Matrix-R Horiz(TL) 0.00 10.0 SPF No.2 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.	25.0 Plate Grip DOL 1.15 TC 0.06 Vert(LL) n/a - 10.0 Lumber DOL 1.15 BC 0.06 Vert(TL) n/a - 0.0* Rep Stress Incr YES WB 0.02 Horiz(TL) 0.00 5 10.0 Code IRC2018/TPI2014 Matrix-R - Horiz(TL) 0.00 5 11.5 SPF No.2 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. -	25.0 Plate Grip DOL 1.15 TC 0.06 Vert(LL) n/a - n/a 10.0 Lumber DOL 1.15 BC 0.06 Vert(TL) n/a - n/a 0.0* Rep Stress Incr YES WB 0.02 Horiz(TL) 0.00 5 n/a 10.0 Code IRC2018/TPI2014 Matrix-R 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Vertice loads. Vertice loads.	25.0 Plate Grip DOL 1.15 TC 0.06 Vert(LL) n/a - n/a 999 10.0 Lumber DOL 1.15 BC 0.06 Vert(TL) n/a - n/a 999 0.0* Rep Stress Incr YES WB 0.02 Horiz(TL) 0.00 5 n/a n/a 10.0 Code IRC2018/TPI2014 Matrix-R 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Vertice loads.	25.0 Plate Grip DOL 1.15 TC 0.06 Vert(LL) n/a - n/a 999 MT20 10.0 Lumber DOL 1.15 BC 0.06 Vert(TL) n/a - n/a 999 MT20 0.0* Rep Stress Incr YES WB 0.02 Horiz(TL) 0.00 5 n/a n/a 10.0 Code IRC2018/TPI2014 Matrix-R Matrix-R Weight: 24 lb Weight: 24 lb Y This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 26 lb uplift at joint 5, 92 lb uplift at joint 7 and 33 lb uplift at joint 6.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

2-7=-166/102, 3-6=-143/61 WEBS NOTES Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated. 3)
- Gable requires continuous bottom chord bearing. 4)
- Truss to be fully sheathed from one face or securely 5)
- braced against lateral movement (i.e. diagonal web).
- 6) Gable studs spaced at 2-0-0 oc.

Job	Truss	Truss Type	Qty	Ply	Lot 2 OS	
Lot 2 OS	B1	Common Supported Gable	3	1	Job Reference (optional)	147787270

5-11-3

_{3x10 и} 26 25 24 23 22 21 20 19 18 17

Scale = 1:40.5

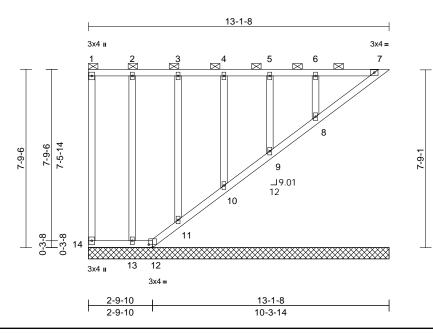
Plate Offsets (X, Y): [8:0-2-0,Edge], [16:0-5-10,0-1-8], [27:0-5-10,0-1-8]

	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES		CSI TC BC	0.07 0.04	DEFL Vert(LL) Vert(CT)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 197/144
TCDL BCLL BCDL LUMBER TOP CHORD 2x4 S	10.0 0.0*	Lumber DOL Rep Stress Incr	1.15		BC							IVITZU	197/144
BCLL BCDL LUMBER TOP CHORD 2x4 S	0.0*	Rep Stress Incr				0.04							
BCDL LUMBER TOP CHORD 2x4 S			152		WB	0.05	Horz(CT)	0.00	16	n/a	999 n/a		
LUMBER TOP CHORD 2x4 S	10.0		IDCO	018/TPI2014		0.05		0.00	10	n/a	n/a	Woight: 76 lb	FT = 10%
TOP CHORD 2x4 S		0000	IKU2	010/1812014	watrix-K							weight: 76 lb	FI = 10%
OTHERS 2x4 S BRACING TOP CHORD Struc 6-0-0 BOT CHORD Rigid REACTIONS (Ib/size Max H Max U Max G FORCES (Ib) - TOP CHORD 2-27= 3-4=-	0 oc purlins, exit d ceiling directly ing. e) 16=149/1! 18=125/1! 20=119/1! 22=123/1! 26=98/15- doriz 27=-169 (Jplift 16=-36 (L 18=-34 (L 20=-64 (L 24=-49 (L 26=-103 (20=127 (L 22=133 (L 24=126 (L 24=126 (L 24=126 (L 24=126 (L 26=52 (L Maximum Com sion =-141/52, 1-2=0 -76/74, 4-5=-68/	athing directly applie cept end verticals. applied or 6-0-0 oc 5-0-0, 17=98/15-0-0, 5-0-0, 21=123/15-0-0 5-0-0, 23=119/15-0-0 5-0-0, 23=125/15-0-0 0-0, 27=149/15-0-0	d or),),),),),),),),),),),),),	BOT CHORD WEBS 1) Unbalancee this design. 2) Wind: ASC Vasd=91m II; Exp C; E cantilever lk cantilever lk cantilever k vasd=91m II; Exp C; E cantilever k vasd=91m II; Exp C; E cantilever k see Standa or consult C 4) All plates a 5) Gable requ 6) Truss to be braced aga 7) Gable stud: 8) This truss f chord live k 9) * This truss on the bottt 3-06-00 ttal chord and a 10) Provide me	Matrix-R 26-27=-76/89, 25- 23-24=-76/89, 12- 20-21=-76/89, 19- 17-18=-76/89, 16- 3-26=-105/91, 4-2 6-23=-98/79, 7-22 10-20=-100/81, 11 13-17=-98/87 d roof live loads have E 7-16; Vult=115mp sh; TCDL=6.0psf; E nclosed; MWFRS (aft and right expose ed; Lumber DOL=1 ned for wind loads tuds exposed to wir rd Industry Gable E jualified building de re 2x4 MT20 unless ires continuous bott fully sheathed from inst lateral moveme s spaced at 1-4-0 o tas been designed by 2-00-00 wide w any other members. chanical connection te capable of withst	23=-76/8 20=-76/8 20=-76/8 17=-76/8 5=-98/56 =-107/4, -19=-98/ we been of the phase content (3-sec content (3-s	 9, 21-22=-76 9, 18-19=-76 9, 5-24=-98/62 9-21=-100/0, 62, 12-18=-9 considered for considered for cond gust) Dpsf; h=25ft; (a) exterior zor rertical left an grip DOL=1. ane of the tru al to the face ils as applicate se indicated. d bearing. e or securely iagonal web) Dpsf bottom other live loa e load of 20.0 a rectangle ween the bottom 	//89, //89, /8/57, /8/57, /r Cat. ne; id 60 ss ss), ble, PI 1.	Ínte	rnationa 02.10.2 a	I Resĭ	ferenced standard	ANSI/TPI 1.

September 7,2021

3x10 u

Page: 1


16023 Swingley Ridge Rd Chesterfield, MO 63017

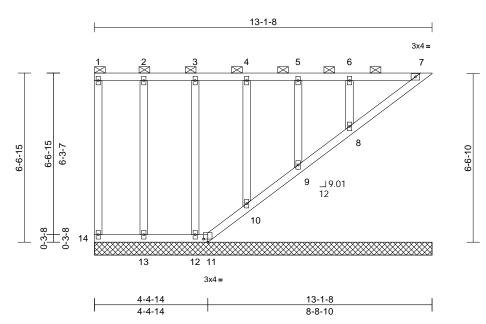
Job	Truss	Truss Type	Qty	Ply	Lot 2 OS	
Lot 2 OS	LAY1	Lay-In Gable	2	1	Job Reference (optional)	147787271

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Tue Sep 07 08:53:01 ID:?Q2IsETSTEcOc9Ez6n2sIWz6QxV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

September 7,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

Scale = 1:50.3


Plate Offsets (X, Y): [12:0-2-0,0-1-8]

		-											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.26	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.12	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.14	Horiz(TL)	0.00	7	n/a	n/a		
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-S							Weight: 68 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2-0-0 oc purlins (6-0 end verticals. Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 9- (lb/size) 7=103/13	1-0 max.): 1-7, excep applied or 10-0-0 oc 10,7-8. -1-8, 8=262/13-1-8,	1) 2)	Wind: ASCE Vasd=91mpl II; Exp C; En cantilever lef right expose Truss design only. For stu see Standard or consult qu Provide adee All plates are Gable requir Truss to be f	7-16; Vult=115m n; TCDL=6.0psf; E (closed; MWFRS (t and right exposed d; Lumber DOL=1 led for wind loads dds exposed to wi d Industry Gable B lalified building de quate drainage to e 2x4 MT20 unles: es continuous bot ully sheathed from	3CDL=6. (enveloped; end) .60 plate in the plate nd (norm End Deta esigner as prevent) s otherwittom chor n one fac	Opsf; h=25ft; e) exterior zo vertical left ar. grip DOL=1. ane of the tru al to the face ils as applica s per ANSI/TI water ponding se indicated. d bearing.	ne; nd 60 ss), ble, PI 1. g.				vveignit. oo ID	1 1 - 1078
	11=174/1 13=178/1 Max Horiz 14=-213 (Max Uplift 7=-80 (LC (LC 5), 10 5), 12=-10 14=-17 (L Max Grav 7=124 (LC 9=152 (LC 11=174 (L	C 5), 8=-49 (LC 4), 9= D=-35 (LC 4), 11=-49 D9 (LC 6), 13=-62 (LC C 4)	7) 8) -29 9) (LC 9) : 5),	braced again Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar) Provide mec bearing plate 14, 80 lb upli	Institute and the second secon	ent (i.e. d for a 10.0 with any d for a liv as where vill fit betw s. n (by oth tanding 1 o uplift at	liagonal web) O psf bottom other live loa e load of 20.0 a rectangle veen the bott ers) of truss i 7 lb uplift at j joint 12, 62 ll	Dpsf om oint o				5000	an
FORCES	(lb) - Maximum Com Tension	pression/Maximum	11	10, 29 lb upli	13, 49 lb uplift at j ift at joint 9 and 49 e or shim required	9 lb uplift	at joint 8.	•			4	TATE OF I	MISSO
TOP CHORD	1-14=-63/58, 1-2=-1 3-4=-106/80, 4-5=-1 6-7=-106/80	, ,	12) This truss is	truss chord at joir designed in accor Residential Code	rdance w	ith the 2018	- and			A	SCOT SEV	
BOT CHORD	11-12=-106/146, 10 9-10=-108/144, 8-9=	-11=-107/145, =-107/147, 7-8=-110/1	48	R802.10.2 a) Graphical pu	nd referenced sta Irlin representation ation of the purlin	ndard AN n does no	ISI/TPI 1. ot depict the s					Coltoni	Server
WEBS	2-13=-142/92, 3-11= 5-9=-121/51, 6-8=-1	=-140/65, 4-10=-144/6 98/79	,	bottom chord							N.	PE-2001	018807
NOTES			LC	OAD CASE(S)	Standard						Q	FESSIONA	L ENGINE

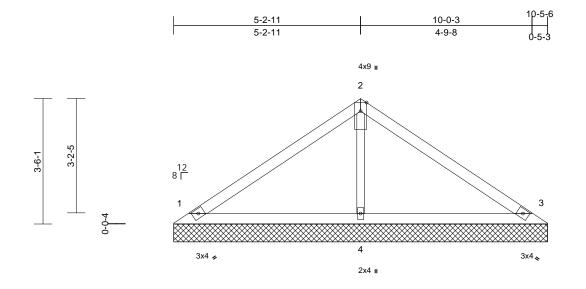
Job	Truss	Truss Type	Qty	Ply	Lot 2 OS	
Lot 2 OS	LAY2	Lay-In Gable	2	1	Job Reference (optional)	147787272

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Tue Sep 07 08:53:02 ID:?hZjR2g6STlz8m1Fcrrrx5z6QxE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:44.8

Plate Offsets (X, Y): [11:0-2-0,0-1-8]

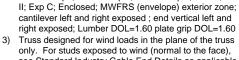
Spacing 2-0-									1	
Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	5 5 8	CSI TC BC WB Matrix-S	0.18 0.09 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 64 lb	GRIP 197/144 FT = 10%
0 max.): 1-7, except applied or 10-0-0 oc 0,7-8. 1-8, 8=261/13-1-8, 1-8, 10=185/13-1-8, 8, 12=172/13-1-8, -1-8, 14=65/13-1-8, C 6) 5), 8=-49 (LC 4), 9=-29 -36 (LC 5), 11=-47 (LC (LC 4), 13=-39 (LC 5), C 4) 15), 8=261 (LC 1), 5), 12=172 (LC 1), C 1), 14=65 (LC 1) pression/Maximum V68, 2-3=-89/68, 68, 5-6=-89/68, 8-68/89, 11-12=-68/89, -92/123, 8-9=-91/125, 139/62, 4-10=-144/60, 18/79	 Vasd=91mpf II; Exp C; Encantilever lefright exposed Truss design only. For stussee Standard or consult qu Provide adeed All plates are Gable require Truss to be fr braced again This truss had chord live load This truss had chord live load * This truss had chord and are Provide meed Provide meed Provide meed Provide meed Provide meed Bearing plate 14, 70 lb upilit at Beveled plate surface with This truss is International R802.10.2 ar Graphical pu or the orientat 	h; TCDL=6.0psf; BC closed; MWFRS (et and right exposed d; Lumber DOL=1.4 d; Lumber D	CDL=6.0 nveloped 1; end v 60 plate not he plate not he plate not he plate not her plate not her plate not her plate not her with plate and the contervent v other with not not fact it is not a state with any for a live where l fit betw (by oth unding 1 plift at je v, 36 lb plift at je to provide (s) 7, 10 ance w sections d and AM	Dipsf; h=25ft; (a) exterior zor rertical left an grip DOL=1. ane of the tru: al to the face ils as applical as per ANSI/TF water ponding se indicated. d bearing. e or securely iagonal web) D psf bottom other live loa e load of 20.0 a rectangle veen the bottor ers) of truss t 5 lb uplift at joint 1 joint 11, 39 lb uplift at joint 1 joint 2, 88. th the 2018 R502.11.1 a ISJ/TPI 1. the depict the s	ne; d 60 ss ss , pole, el 1. o l ds. opsf om o oint uplift 0, g nd				PE-2001	ler 1 M. 1 M. 1 M. 1 M. 1 M. 1 M. 1 M. 1 M.
	Lumber DOL 1.14 Rep Stress Incr YES Code IRC 0 max.): 1-7, except pplied or 10-0-0 oc 0,7-8. -8, 8=261/13-1-8, -8, 10=185/13-1-8, -8, 10=185/13-1-8, -8, 10=185/13-1-8, -8, 10=185/13-1-8, -8, 10=185/13-1-8, -8, 10=185/13-1-8, -8, 10=185/13-1-8, -3, 12=172/13-1-8, 1-8, 14=65/13-1-8, -3, 12=172/13-1-8, -3, 12=172/12, -3, 12=172/1	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014 1) Wind: ASCE Vasd=91mpt II; Exp C; En cantilever lef right exposer 2) Truss design only. For stu see Standarc 2) Truss design only. For stu see Standarc 2) Truss design only. For stu see Standarc 3) Provide adec 4) All plates are 5) Gable require 6, 10=185/13-1-8, 8, 12=172/13-1-8, 1-8, 14=65/13-1-8, 6) S, 8=-49 (LC 4), 9=-29 -36 (LC 5), 11=-47 (LC (LC 4), 13=-39 (LC 5), 4) 15), 8=-261 (LC 1), 1), 10=185 (LC 1), 5), 12=172 (LC 1), 2), 12=172 (LC 1), 1), 10=185 (LC 1), 5), 12=172 (LC 1), 2), 12=172 (LC 1), 10) Provide med bearing plate 10) Provide med bearing plate 11) Beveled plate surface with 12) This truss is International R802.10.2 ar 13) Graphical pu or the oriental bottom chorc	Lumber DOL1.15BCRep Stress IncrYESWBCodeIRC2018/TPI2014Matrix-SMatrix-S1)Wind: ASCE 7-16; Vult=115mpl Vasd=91mph; TCDL=6.0ps; BCUmax.): 1-7, except1)Wind: ASCE 7-16; Vult=115mpl Vasd=91mph; TCDL=6.0ps; BCpplied or 10-0-0 oc1.15For studs exposed to wim see Standard Industry Gable Er or consult qualified building despplied or 10-0-0 oc20Truss designed for wind loads ti only. For studs exposed to wim see Standard Industry Gable Er or consult qualified building des9,7-8.8, 12=172/13-1-8, 1.12=172/13-1-8, 3. 8=-49 (LC 4), 9=-29 -36 (LC 5), 11=-47 (LC (LC 4), 13=-39 (LC 5), 4)All plates are 2x4 MT20 unless 5)10)Forvide adequate drainage to p All plates are 2x4 MT20 unless 50Gable requires continuous botto 61 Truss to be fully sheathed from braced against lateral movemer Gable studs spaced at 2-0-0 oc 0010)1.1 1=65 (LC 1), 1.1 1=65 (LC 1), 5), 12=172 (LC 1), 5), 11=-45 (KC 1) ression/Maximum68/89, 11-12=-68/89, -92/123, 8-9=-91/125, 139/62, 4-10=-144/60,68/89, 11-12=-68/89, -92/123, 8-9=-91/125,13)Graphical purlin representation or the orientation of the purlin a bottom chord.13)Graphical purlin representation or the orientation of the purlin a bottom chord.	Lumber DOL1.15BC0.09Rep Stress IncrYESWB0.10CodeIRC2018/TPI2014Matrix-S1)Wind: ASCE 7-16; Vult=115mph (3-sec Vasd=91mph; TCDL=6.0psf; BCDL=6.0(1)Wind: ASCE 7-16; Vult=115mph (3-sec Vasd=91mph; TCDL=6.0psf; BCDL=6.0(1)For studs exposed to wind loads in the plat only. For studs exposed to wind (norm see Standard Industry Gable End Detai or consult qualified building designer as 9 Provide adequate drainage to prevent vi- 50(2)Sabe tuds spaced at 2-0-0 oc.(3)Fris truss has been designed for a 10.0 chord live load nonconcurrent with any on the bottom chord in all areas where 3-06-00 tall by 2-00-00 wide will fit betw chord and any other members.(3)Sabe studs spaced at 2-0-0 oc.(4)(1)(5)Saec1 (LC 1), (1), 14=65 (LC 1), (2), 14=456 (LC 1), (2), 12=172 (LC 1), (2), 14=65 (LC 1), (3), 12=172 (LC 1), (2), 14=65 (Lumber DOL1.15BC0.09Vert(TL)Rep Stress IncrYESWB0.10Horiz(TL)CodeIRC2018/TPI2014Matrix-S10Horiz(TL)1)Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; 0 II; Exp C; Enclosed; MWFRS (envelope) exterior zor cantilever left and right exposed; centrol expore cantilever left and right exposed; centrol expore cantilever left and right exposed; centrol expore cantilever left and right exposed; centrol expore see Standard Industry Gable End Details as applicad or consult qualified building designer as per ANSI/TF Provide adequate drainage to prevent water ponding 40. max.): 1-7, except pplied or 10-0-0 oc200. max.): 1-7, except pplied or 10-0-0 oc200. 78. -8, 8=261/13-1-8, -8, 10=185/13-1-8, -8, 12=172/13-1-8, -18, 14=65/13-1-8, -18, 14=65/13-1-8, -56, 89, 11-12=-68/89, -15, 8=261 (LC 1), 10, 10=185 (LC 1), 11, 10=185 (LC 1), 15, 12=172 (LC 1), c1), 14=65 (LC 1), ression/MaximumBC0. 7.00.00.068, 2-3=-89/68, -8, 5-6=-89/68, -9, 92/123, 8-9=-91/125,1068, 2-3=-89/68, -9, 92/123, 8-9=-91/125,1113/62, 4-10=-144/60, -92/123, 8-9=-91/125,1213/62, 4-10=-144/60, -92/123, 8-9=-91/125,1313/62, 4-10=-144/60, -92/123, 8-9=-91/125,1313/62, 4-10=-144/60, -92/123, 8-9=-91/125,1313/62, 4-10=-144/60, -92/123, 8-9=-91/125,1313/62, 4-10=-144/60, -92/123, 8-9=-91/125,1313/62, 4-10=-144/60, -92/123, 8-9=-91/125,13 <t< td=""><td>Lumber DOL Rep Stress Incr1.15BC WB0.09 WBVert(TL)n/a Horiz(TL)CodeIRC2018/TPI2014Matrix-S1)Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.602)max.): 1-7, except1Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.602)Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 33)Provide adequate drainage to prevent water ponding. 44)All plates are 2x4 MT20 unless otherwise indicated. 55)Re-172 (LC 1), 11, 14=65 (LC 1), 12, 122 (LC 1), 11, 14=65 (LC 1), 11, 14=65 (LC 1), 11, 14=65 (LC 1), 12, 122 (LC 1), 11, 14=65 (LC 1), 12, 122 (LC 1), 11, 14=65 (LC 1), 12, 122 (LC 2), 11, 14=66 (LC 1), 12, 122 (LC 2), 13, 148 (b uplift at joint 7, 47 lb uplift at joint 10, 129 lb uplift at joint 11, 39 lb uplift at joint 13, 48 (b uplift at joint 12, 36 (b uplift at joint 10, 129 lb uplift at joint 13, 48 (b uplift at joint 11, 129 lb uplift at joint 10, 12</td><td>Lumber DOL Rep Stress Incr1.15BC YES0.09 WBVert(TL)n/a Horiz(TL).000CodeIRC2018/TPI2014Matrix-SHoriz(TL)0.007Matrix-S1)Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.0.7.8.9Provide adequate drainage to prevent water ponding. Gable studs spaced at 2-0-0 oc.1.7.8.611128. 8=261/13-1-8, 8. 12=172/13-1-8, 15, 8=-49 (LC 4), 9=-29 3.66 (LC 5), 11=-47 (LC 1), 11=185 (LC 1), 10, 11=85 (LC 1), 10, 11=85 (LC 1), 10, 11=85 (LC 1), 11, 12=-68/86,71.68, 2-3a-89/68, 8. 5-6e-89/68, 92/123, 8-9=91/125,8868, 2-3a-89/68, 8. 5-6e-89/68, 92/123, 8-9=91/125,10139/62, 4-10=-144/60, 3202020139/62, 4-10=-144/60, 3202021.02239/62, 4-10=-144/60, 32021.0221.02139/62, 4-10=-144/60,270</td><td>Lumber DOL1.15BC0.09Vert(TL)n/a-n/aRep Stress IncrYESWB0.10Matrix-SHoriz(TL)0.007n/aCodeIRC2018/TPI2014Matrix-SMatrix-S10Wind: ASCE 7-16; Vult=115mph (3-second gust)Vasd=94mph; TCDL=6.0psf; h=25ft; Cat.Vasd=94mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; Lumber DOL=1.60 plate grip DOL=1.600 max.): 1-7, except7pplied or 10-0-0 oc70,7-88, 8=261/13-1-8, rest 1=5/13-1-8, rest 1=5/13-13-8, rest 1=5/13-13-13-13-13-13-13-13-13-13-13-13-13-1</td><td>Lumber DOL Rep Stress Incr Code1.15 YESBC WB0.09 WBVert(TL) n/an/a- n/an/a999 Horiz(TL)OdeIRC2018/TPI2014Matrix-S1)Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; BCDL=6.0psf; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; undvertoal left and right exposed; Lumber DOL=1.60 plate grip DOL=1.602)Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.3)Provide adequate drainage to prevent water ponding. All plates are 2x4 MT20 unless otherwise indicated. 56,7-8. -8, 8=261/13-1-8, -8, 10=185/13-1-8, -8, 12=172/13-1-8, -8, 12=172/13-1-8, -8, 12=172/13-1-8, -66 (Cb), 11=47 (LC)6, 12-12 (LC 4), 13=-39 (LC 5), -4)67)Gable studs spaced at 2-0-0 oc. This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle -3-06-00-00 wild will fit beint to rol and any other members.10)Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 15 lb uplift at joint 10, -29 buplift at joint 2, 36 lb uplift at joint 10, -29 buplift at joint 10, -2</td><td>Lumber DOL1.15BC0.09Vert(TL)n/a-n/a999Rep Stress IncrYESWB0.10Matrix-SWeight: 64 lbCodeIRC2018/TPI2014Matrix-SMatrix-SWeight: 64 lb1) Wind: ASCE 7-16; Vull=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; cumber DOL=1.6010.0007n/an/a1) max.): 1-7, except27Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANS/TPI 1.991,7-8.4) All plates are 2x4 MT20 unless otherwise indicated. 5 Gable requires continuous bottom chord bearing. 6 able studs spaced at 2-0-0 oc. 8, 12–172/13-1-8, 6, 16–45/13-1-8, 6, 16–45/13-1-8, 6, 16–45/13-1-8, 6, 16–59* This truss has been designed for a 10.0 pf bottom chord live load nonconcurrent with any other live loads. 99* This truss has been designed for a live loads. 99* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3.06–00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 15 lb uplift at joint 1, 29 lb uplift at joint 7, 47 lb uplift at joint 1, 29 lb uplift at joint 1, 48 lb uplift at joint 1, 29 lb uplift at joint 1, 48 lb uplift at joint 1, 29 lb uplift at joint 1, 48 lb uplift at joint 1, 29 lb uplift at joint 1, 41, 80 lb uplift at join</td></t<>	Lumber DOL Rep Stress Incr1.15BC WB0.09 WBVert(TL)n/a Horiz(TL)CodeIRC2018/TPI2014Matrix-S1)Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.602)max.): 1-7, except1Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.602)Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 33)Provide adequate drainage to prevent water ponding. 44)All plates are 2x4 MT20 unless otherwise indicated. 55)Re-172 (LC 1), 11, 14=65 (LC 1), 12, 122 (LC 1), 11, 14=65 (LC 1), 11, 14=65 (LC 1), 11, 14=65 (LC 1), 12, 122 (LC 1), 11, 14=65 (LC 1), 12, 122 (LC 1), 11, 14=65 (LC 1), 12, 122 (LC 2), 11, 14=66 (LC 1), 12, 122 (LC 2), 13, 148 (b uplift at joint 7, 47 lb uplift at joint 10, 129 lb uplift at joint 11, 39 lb uplift at joint 13, 48 (b uplift at joint 12, 36 (b uplift at joint 10, 129 lb uplift at joint 13, 48 (b uplift at joint 11, 129 lb uplift at joint 10, 12	Lumber DOL Rep Stress Incr1.15BC YES0.09 WBVert(TL)n/a Horiz(TL).000CodeIRC2018/TPI2014Matrix-SHoriz(TL)0.007Matrix-S1)Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.0.7.8.9Provide adequate drainage to prevent water ponding. Gable studs spaced at 2-0-0 oc.1.7.8.611128. 8=261/13-1-8, 8. 12=172/13-1-8, 15, 8=-49 (LC 4), 9=-29 3.66 (LC 5), 11=-47 (LC 1), 11=185 (LC 1), 10, 11=85 (LC 1), 10, 11=85 (LC 1), 10, 11=85 (LC 1), 11, 12=-68/86,71.68, 2-3a-89/68, 8. 5-6e-89/68, 92/123, 8-9=91/125,8868, 2-3a-89/68, 8. 5-6e-89/68, 92/123, 8-9=91/125,10139/62, 4-10=-144/60, 3202020139/62, 4-10=-144/60, 3202021.02239/62, 4-10=-144/60, 32021.0221.02139/62, 4-10=-144/60,270	Lumber DOL1.15BC0.09Vert(TL) n/a - n/a Rep Stress IncrYESWB0.10Matrix-SHoriz(TL)0.007 n/a CodeIRC2018/TPI2014Matrix-SMatrix-S10Wind: ASCE 7-16; Vult=115mph (3-second gust)Vasd=94mph; TCDL=6.0psf; h=25ft; Cat.Vasd=94mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; Lumber DOL=1.60 plate grip DOL=1.600 max.): 1-7, except7pplied or 10-0-0 oc70,7-88, 8=261/13-1-8, rest 1=5/13-1-8, rest 1=5/13-13-8, rest 1=5/13-13-13-13-13-13-13-13-13-13-13-13-13-1	Lumber DOL Rep Stress Incr Code1.15 YESBC WB0.09 WBVert(TL) n/an/a- n/an/a999 Horiz(TL)OdeIRC2018/TPI2014Matrix-S1)Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; BCDL=6.0psf; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; undvertoal left and right exposed; Lumber DOL=1.60 plate grip DOL=1.602)Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.3)Provide adequate drainage to prevent water ponding. All plates are 2x4 MT20 unless otherwise indicated. 56,7-8. -8, 8=261/13-1-8, -8, 10=185/13-1-8, -8, 12=172/13-1-8, -8, 12=172/13-1-8, -8, 12=172/13-1-8, -66 (Cb), 11=47 (LC)6, 12-12 (LC 4), 13=-39 (LC 5), -4)67)Gable studs spaced at 2-0-0 oc. This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle -3-06-00-00 wild will fit beint to rol and any other members.10)Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 15 lb uplift at joint 10, -29 buplift at joint 2, 36 lb uplift at joint 10, -29 buplift at joint 10, -2	Lumber DOL1.15BC0.09Vert(TL)n/a-n/a999Rep Stress IncrYESWB0.10Matrix-SWeight: 64 lbCodeIRC2018/TPI2014Matrix-SMatrix-SWeight: 64 lb1) Wind: ASCE 7-16; Vull=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; cumber DOL=1.6010.0007n/an/a1) max.): 1-7, except27Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANS/TPI 1.991,7-8.4) All plates are 2x4 MT20 unless otherwise indicated. 5 Gable requires continuous bottom chord bearing. 6 able studs spaced at 2-0-0 oc. 8, 12–172/13-1-8, 6, 16–45/13-1-8, 6, 16–45/13-1-8, 6, 16–45/13-1-8, 6, 16–59* This truss has been designed for a 10.0 pf bottom chord live load nonconcurrent with any other live loads. 99* This truss has been designed for a live loads. 99* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3.06–00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 15 lb uplift at joint 1, 29 lb uplift at joint 7, 47 lb uplift at joint 1, 29 lb uplift at joint 1, 48 lb uplift at joint 1, 29 lb uplift at joint 1, 48 lb uplift at joint 1, 29 lb uplift at joint 1, 48 lb uplift at joint 1, 29 lb uplift at joint 1, 41, 80 lb uplift at join


16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 2 OS	
Lot 2 OS	V1	Valley	1	1	Job Reference (optional)	147787273

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Tue Sep 07 08:53:02 ID:e8vIQv7tT8SU69TA8W3HcOyi?AK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1


53:02 Pa

10-5-6

Scale = 1:32.2

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.32	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.19	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.08	Horiz(TL)	0.00	3	n/a	n/a		
BCDL		10.0	Code	IRC20)18/TPI2014	Matrix-S							Weight: 27 lb	FT = 10%
LUMBER					8) Provide med	hanical conne	ection (by oth	ers) of truss	to					
TOP CHORD	2x4 SPF I	No.2			bearing plate	e capable of w	vithstanding 4	2 lb uplift at j	oint					
BOT CHORD	2x4 SPF I	No.2			1, 52 lb uplif	t at joint 3 and	d 16 lb uplift a	t joint 4.						
OTHERS	2x3 SPF I	No.2			9) This truss is	designed in a	ccordance wi	ith the 2018						
BRACING						Residential C			nd					
TOP CHORD	Structural	wood she	athing directly appli	ed or	R802.10.2 a	nd referenced	standard AN	ISI/TPI 1.						
	6-0-0 oc p		0 7 11		LOAD CASE(S)	Standard								
BOT CHORD	Rigid ceili	ing directly	applied or 10-0-0 o	с										
	bracing.	• •												
REACTIONS	(lb/size)	1=221/10- 4=418/10-	-5-6, 3=221/10-5-6, -5-6											
	Max Horiz	1=-83 (LC	: 4)											
	Max Uplift	1=-42 (LC (LC 8)	s), 3=-52 (LC 9), 4	=-16										
FORCES	(lb) - Max Tension	imum Com	pression/Maximum											
TOP CHORD	1-2=-165/	79, 2-3=-1	64/60											
BOT CHORD	1-4=-16/7	6, 3-4=-16	/76											
WEBS	2-4=-272/	69												
NOTES														
1) Unbalance this design		oads have	been considered fo	r										
			(3-second gust)											
Vasd=91n	nph; TCDL=	6.0psf; BC	DL=6.0psf; h=25ft;	Cat.									000	T

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
4) Gable requires continuous bottom chord bearing.

- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

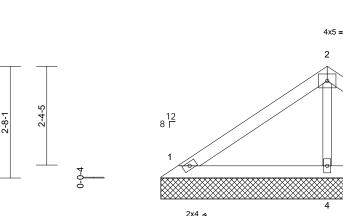
Job	Truss	Truss Type	Qty	Ply	Lot 2 OS	
Lot 2 OS	V2	Valley	1	1	Job Reference (optional)	147787274

3-11-11

3-11-11

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Tue Sep 07 08:53:02 ID:e8vIQv7tT8SU69TA8W3HcOyi?AK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


7-6-3

3-6-8

3

2x4 。

BOT CHORD

TOP CHORD

BOT CHORD

OTHERS

BRACING

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.23	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 20 lb	FT = 10%

2x4 II

7-11-6

2x4 SPF No.2 2x4 SPF No.2	bearing 1 and 4
2x3 SPF No.2	This tru
	Interna R802.1
Structural wood sheathing directly applied or 6-0-0 oc purlins.	LOAD CAS
Rigid ceiling directly applied or 10-0-0 oc bracing.	

REACTIONS	(lb/size)	1=178/7-11-6, 3=178/7-11 4=277/7-11-6						
	Max Horiz	1=61 (LC 7)						
	Max Uplift	1=-39 (LC 8), 3=-47 (LC 9)						
FORCES	(lb) - Max	imum Compression/Maximum						

Tension TOP CHORD 1-2=-110/56, 2-3=-106/42 BOT CHORD 1-4=-12/52, 3-4=-12/52

2-4=-189/48

WEBS

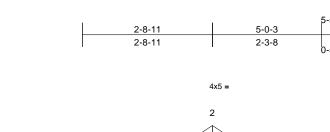
- NOTES
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

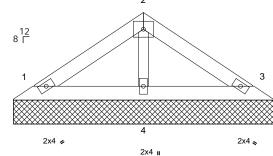
g plate capable of withstanding 39 lb uplift at joint 47 lb uplift at joint 3.

uss is designed in accordance with the 2018 ational Residential Code sections R502.11.1 and

10.2 and referenced standard ANSI/TPI 1.

SE(S) Standard





Job	Truss	Truss Type	Qty	Ply	Lot 2 OS	
Lot 2 OS	V3	Valley	1	1	Job Reference (optional)	147787275

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Tue Sep 07 08:53:02 ID:p7iM?_XkCa6brqXYVmuBiMyhz7P-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-5-6

Scale =	= 1:24.1

TOP CHORD

Scale = 1:24.1												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 13 lb	FT = 10%
BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2		bearing plat 1 and 30 lb 9) This truss is Internationa	chanical connect e capable of wir uplift at joint 3. designed in ac I Residential Co	thstanding 2 cordance wi	5 lb uplift at j th the 2018 R502.11.1 a	oint					

R802.10.2 and referenced standard ANSI/TPI 1. Structural wood sheathing directly applied or

LOAD CASE(S) Standard

1-6-5

0-0-4

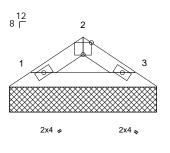
1-10-1

	5-6-2 oc p	ourlins.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	1=115/5-5-6, 3=115/5-5-6,
		4=179/5-5-6
	Max Horiz	1=-40 (LC 4)
	Max Uplift	1=-25 (LC 8), 3=-30 (LC 9)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHORD	1-2=-71/3	6, 2-3=-69/27
BOT CHORD	1-4=-8/33	8, 3-4=-8/33
WEBS	2-4=-122/	/31

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.




Job	Truss	Truss Type	Qty	Ply	Lot 2 OS	
Lot 2 OS	V4	Valley	1	1	Job Reference (optional)	147787276

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Tue Sep 07 08:53:02 ID:DiOVd0acVVUAiIG7AuRuK_yhz7M-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-11-6

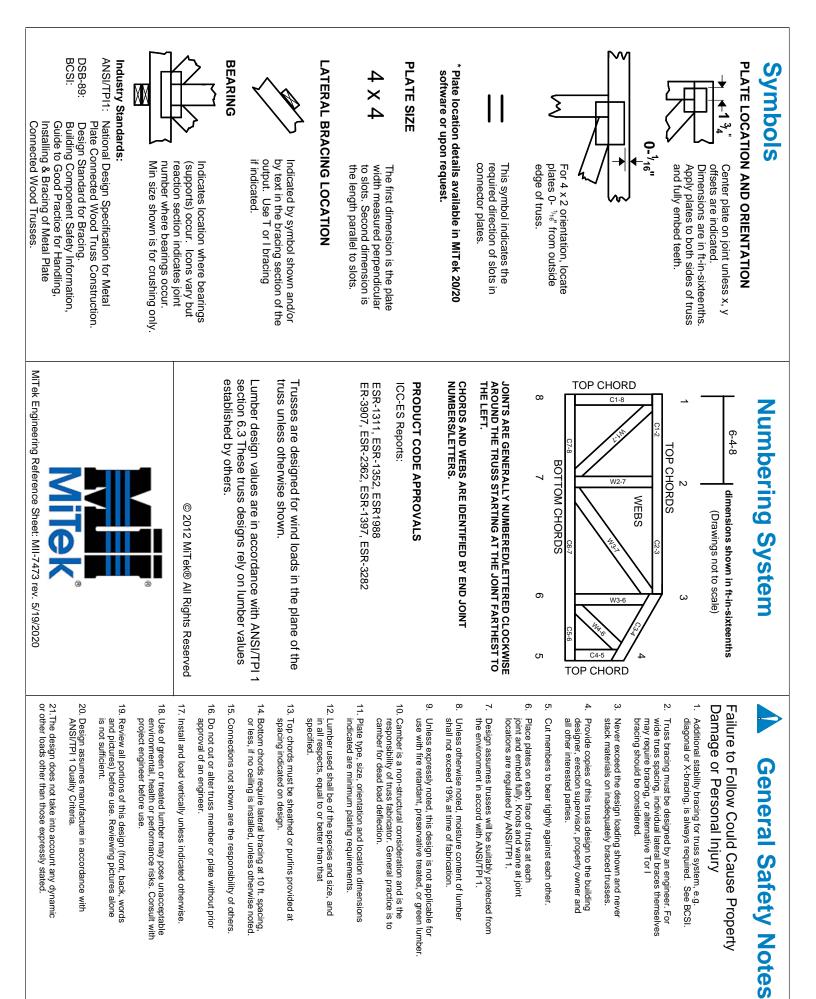
3x4 =

Scale = 1:23.1

Plate Offsets (X, Y): [2:0-2-0,Edge]

					-							
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.02	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P	-						Weight: 6 lb	FT = 10%
LUMBER			9) This truss is	s designed in acco	ordance w	ith the 2018						
TOP CHORD	2x4 SPF No.2			al Residential Cod			and					
BOT CHORD	2x4 SPF No.2		R802.10.2	and referenced sta	andard AN	ISI/TPI 1.						
BRACING			LOAD CASE(S) Standard								
TOP CHORD	Structural wood she	athing directly appli	ed or									
	3-0-2 oc purlins.											
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	С									
REACTIONS	0	1-6, 3=92/2-11-6										
	Max Horiz 1=-18 (LC											
	Max Uplift 1=-11 (LC	C 8), 3=-11 (LC 9)										
FORCES	(lb) - Maximum Con	npression/Maximum										
TOP CHORD	Tension 1-2=-80/25, 2-3=-80	205										
BOT CHORD	1-2=-80/25, 2-3=-80	//25										
NOTES	1-3=-10/34											
	ed roof live loads have	been considered fo	r									
this design		been considered to	1									
•	CE 7-16; Vult=115mph	(3-second gust)										
	nph; TCDL=6.0psf; BC											
	Enclosed; MWFRS (er											
	left and right exposed											
	sed; Lumber DOL=1.6 igned for wind loads ir										Soon	Jan
	studs exposed to wind										ATE OF	MISS
	ard Industry Gable En									6	9.21	N'SO
	qualified building desi									B	SCOT	TM XPN
	uires continuous botto									8	SEV	
5) Gable stud	ds spaced at 4-0-0 oc.	Ū.							1	Bat		
	has been designed fo									SI		71. 17th
	load nonconcurrent w								4	<u>X</u>	Man /	Kerner /
	s has been designed t		Opsf							23	5 NUM	BER
	tom chord in all areas	0								N	PE-2001	018807
3-06-00 ta	II by 2-00-00 wide will	TIT Detween the bott	om							N V	1	

7 3-06-00 tall by 2-00-00 wide will fit between the bottom


chord and any other members. Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 11 lb uplift at joint 1 and 11 lb uplift at joint 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 7,2021

ESSIONAL E

