

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

RE: Lot 11 OS Lot 11 OS

li lek

Site Information:

Customer: Project Name: Lot 11 OS Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 27 individual, dated Truss Design Drawings and 0 Additional Drawings.

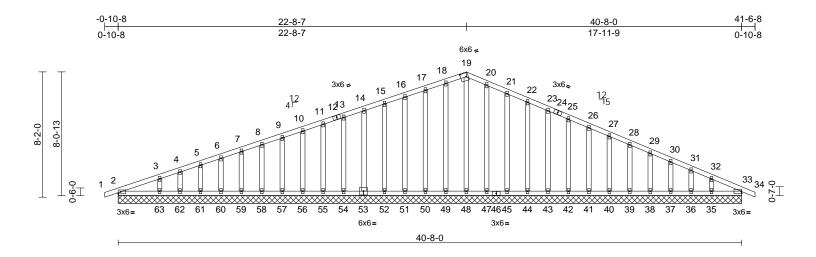
No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	147787250	A1	9/7/2021	21	147787270	B1	9/7/2021
2	I47787251	A2	9/7/2021	22	147787271	LAY1	9/7/2021
3	147787252	A3	9/7/2021	23	147787272	LAY2	9/7/2021
4	147787253	A4	9/7/2021	24	147787273	V1	9/7/2021
5	147787254	A5	9/7/2021	25	147787274	V2	9/7/2021
6	147787255	A6	9/7/2021	26	147787275	V3	9/7/2021
7	147787256	A7	9/7/2021	27	147787276	V4	9/7/2021
8	147787257	A8	9/7/2021				
9	147787258	A9	9/7/2021				
10	147787259	A10	9/7/2021				
11	147787260	A11	9/7/2021				
12	l47787261	A12	9/7/2021				
13	147787262	A13	9/7/2021				
14	147787263	A14	9/7/2021				
15	147787264	A15	9/7/2021				
16	147787265	A16	9/7/2021				
17	147787266	A17	9/7/2021				
18	147787267	A18	9/7/2021				
19	147787268	A19	9/7/2021				
20	147787269	A20	9/7/2021				

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2021. Missouri COA: 001193


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Sevier, Scott

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 11 OS	
Lot 11 OS	A1	Roof Special Supported Gable	4	1	Job Reference (optional	DEVELOPMENT SERVICES 147787250 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly,	KS - 66871,	Run: 8.43 S Aug	16 2021 Print:	8.430 S Aug '	16 2021 MiTek Industries, Inc.	

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. ue Sep 7032 8/2021 ID:q6SPGwyY2XfiPIHfSAmENyz6Qwt-RfC?PsB70Hq3NSgPqnL8w3ulTXbG WrCDoh4292 fr

Scale = 1:75.1

Plate Offsets (X, Y): [19:0-4-7,0-3-0]

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-	0.06 0.04 0.12 S	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 33	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 228 lb	GRIP 197/144 FT = 10%				
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF N 2x4 SPF N Structural 6-0-0 oc p Rigid ceilir bracing. (Ib/size)	lo.2 lo.2 lo.2 wood she urlins. ng directly 2=176/40 35=155/4 37=123/4 39=120/4 43=120/4 43=120/4 43=120/4 45=120/4 50=120/4 56=120/4 62=76/40	athing directly applie applied or 10-0-0 oc -8-0, 33=154/40-8-0 0-8-0, 36=108/40-8-0 0-8-0, 38=119/40-8-1 0-8-0, 44=120/40-8-1 0-8-0, 44=120/40-8-1 0-8-0, 44=123/40-8-1 0-8-0, 51=120/40-8-1 0-8-0, 51=120/40-8-1 0-8-0, 51=120/40-8-1 0-8-0, 51=120/40-8-1 0-8-0, 55=120/40-8-1 0-8-0, 55=120/40-8-1 0-8-0, 61=130/40-8-1 -8-0, 61=226/40-8-0 C 8)		$\begin{array}{c} 2=-19 \ (LC \ 9), \ 33\\ (LC \ 9), \ 36=-28 \ (I)\\ 9), \ 38=-32 \ (LC \ 9), \ 4\\ 42=-32 \ (LC \ 9), \ 4\\ 42=-32 \ (LC \ 9), \ 4\\ 42=-32 \ (LC \ 9), \ 4\\ 47=-18 \ (LC \ 9), \ 4\\ 50=-33 \ (LC \ 4), \ 5\\ 52=-28 \ (LC \ 4), \ 5\\ 54=-29 \ (LC \ 4), \ 5\\ 56=-28 \ (LC \ 4), \ 6\\ 2=-76 \ (LC \ 1), \ 3\\ 35=156 \ (LC \ 2), \ 4\\ 41=120 \ (LC \ 1), \ 4\\ 50=121 \ (LC \ 2), \ 5\\ 54=119 \ (LC \ 21), \ 5\\ 54=119 \ (LC \ 21), \ 5\\ 56=120 \ (LC \ 1), \ 5\\ 50=120 \ (LC \ 21), \ 5\\ 50=120 \ (LC \ 21), \ 5\\ 50=120 \ (LC \ 21), \ 5\\ 50=16 \ (LC \ 21), \ 5\ 5\ 50=16 \ (LC \ 21), \ 5\ 5\ 50=16 \ (LC \ 21), \ 5\ 5\ 5\ 5\ 5\ 5\ 5\ 5\ 5\ 5\ 5\ 5\ 5$	$\begin{array}{c} \text{LC 9}, 37=32\\ \text{,} 39=-32 (\text{LC 9})\\ \text{3}=-32 (\text{LC 9})\\ \text{3}=-32 (\text{LC 9})\\ \text{3}=-32 (\text{LC 9})\\ \text{3}=-38 (\text{LC 9})\\ \text{3}=-38 (\text{LC 9})\\ \text{3}=-38 (\text{LC 4})\\ \text{3}=-28 (\text{LC 4})\\ \text{7}=-28 (\text{LC 4})\\ \text{3}=-51 (\text{LC 1})\\ \text{3}=-10 (\text{LC 1})\\ \text{3}=-10 (\text{LC 1})\\ \text{4}=-120 (\text{LC 1})\\ \text{5}=-120 (\text{LC 5})\\ \text{5}=-120 (\text{LC 5})\\ \text{5}=-120 (\text{LC 1})\\ \text{5}=$	2 (LC 2 9), , , , , , , , , , , , , ,	TOP CH	IORD	4-5= 7-8=-6 10-11 13-14 15-16 17-18 19-20 23-25 27-28 30-31 33-34	=-28/135, 11-13= =-20/157, 14-15= =-21/179, 16-17= =-21/202, 18-19= =-24/202, 18-19= =-24/202, 18-19= =-24/162, 22-23= =-24/113, 25-26= =-24/58, 28-29=: =-24/58, 28-29=: =-24/5	13, 6-7=-75/92, 14, 9-10=-38/124, -20/146, -21/168, -21/190, -22/208, -24/188, -24/137, -24/90, 26-27=-24/74, 24/43, 29-30=-31/29, 64/16, 32-33=-109/28, M.					
FORCES						(Ib) - Maximum Compression/Maximum Tension							* SEVIER *				

\mathbf{V} **MiTek**° 16023 Swingley Ridge Rd Chesterfield, MO 63017

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 11 OS	
Lot 11 OS	A1	Roof Special Supported Gable	4	1	Job Reference (optional	DEVELOPMENT SERVICES 147787250 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -	66871,				6 2021 MiTek Industries, Inc. B70Hq3NSgPqnL8w3uITXbG	ue Sep 776324328/2921 WrCDoiry423621

BOT CHORD 2-63=-10/117, 62-63=-10/117, 61-62=-10/117,

	60-61=-10/117, 59-60=-10/117,
	58-59=-10/117, 57-58=-10/117,
	56-57=-10/117, 55-56=-10/117,
	54-55=-10/117, 52-54=-10/117,
	51-52=-10/117, 50-51=-10/117,
	49-50=-10/117, 48-49=-10/117,
	47-48=-10/117, 45-47=-10/117,
	44-45=-10/117, 43-44=-10/117,
	42-43=-10/117, 41-42=-10/117,
	40-41=-10/117, 39-40=-10/117,
	38-39=-10/117, 37-38=-10/117,
	36-37=-10/117, 35-36=-10/117,
	33-35=-10/117
WEBS	19-48=-114/0, 18-49=-97/35, 17-50=-94/49,
	16-51=-93/44, 15-52=-93/45, 14-53=-94/44,
	13-54=-93/45, 11-55=-93/44, 10-56=-93/44,
	9-57=-93/44, 8-58=-93/44, 7-59=-93/45,
	6-60=-92/44, 5-61=-99/47, 4-62=-64/32,
	3-63=-167/91, 20-47=-97/34, 21-45=-94/54,
	22-44=-93/48, 23-43=-93/48, 25-42=-93/48,
	26-41=-93/48, 27-40=-93/48, 28-39=-93/48,
	29-38=-93/48, 30-37=-95/49, 31-36=-86/43,

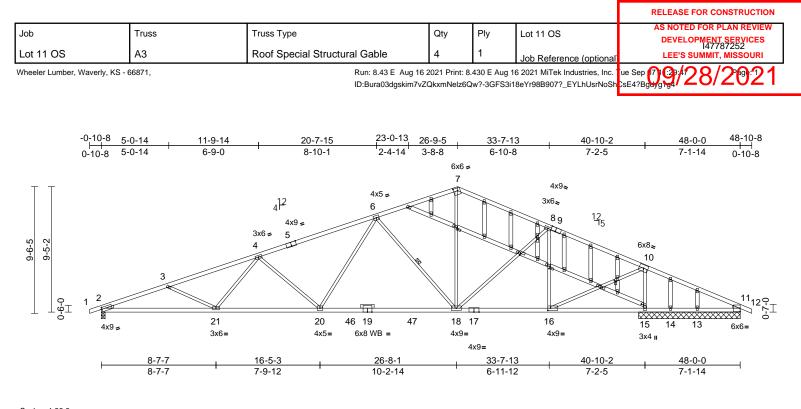
NOTES

1) Unbalanced roof live loads have been considered for this design.

32-35=-118/77

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 1-4-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 2, 9 lb uplift at joint 33, 19 lb uplift at joint 49, 33 lb uplift at joint 50, 28 lb uplift at joint 51, 28 lb uplift at joint 52, 28 lb uplift at joint 53, 29 lb uplift at joint 54, 28 lb uplift at joint 55, 28 lb uplift at joint 56, 28 lb uplift at joint 57, 28 lb uplift at joint 58, 28 lb uplift at joint 57, 28 lb uplift at joint 56, 28 lb uplift at joint 57, 28 lb uplift at joint 63, 18 lb uplift at joint 69, 28 lb uplift at joint 60, 30 lb uplift at joint 61, 22 lb uplift at joint 62, 65 lb uplift at joint 63, 18 lb uplift at joint 47, 38 lb uplift at joint 43, 32 lb uplift at joint 42, 32 lb uplift at joint 43, 32 lb uplift at joint 40, 32 lb uplift at joint 39, 32 lb uplift at joint 38, 32 lb uplift at joint 37, 28 lb uplift at joint 36 and 57 lb uplift at joint 35.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

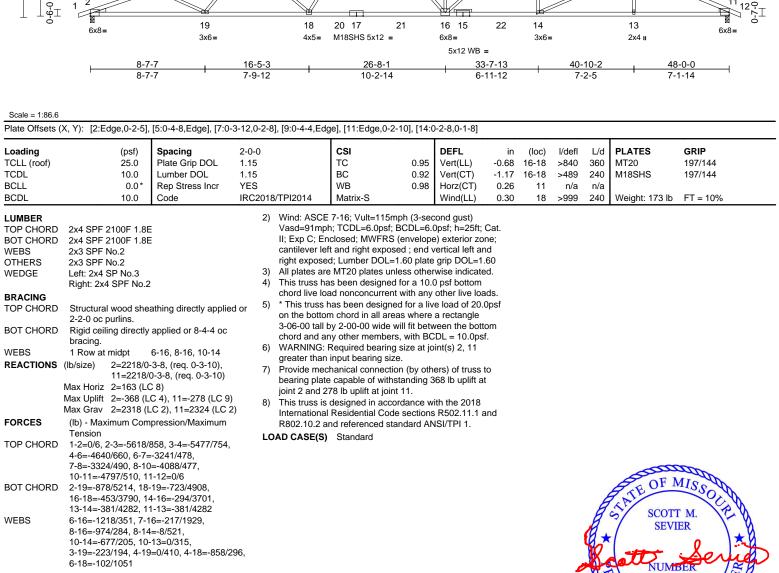
LOAD CASE(S) Standard


								RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Lot 11 OS		AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 147787251
Lot 11 OS	A2	Roof Special		8	1	Job Reference (opt	ional	I47787251 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS	- 66871,					6 2021 MiTek Industries B70Hq3NSgPqnL8w3ul		
-0-10-8	6-2-4	15-2-4	22-8-7		29-1	-6	36-2-2	40-8-0 41-6-8
0-10-8	6-2-4	9-0-0	7-6-3		6-4-1		7-0-12	4-5-14 0-10-8
				6x6 =	:			
ΤŢ		3x4 3x10 ≠ .12 ∡ 5	-	6		3x4≈ 3x10≈)	
8-2-0 8-0-13	3x4 = 3	412 4 5	*		Þ	78 1	5	2x4 =
								3x10 ⊪ 10 11 ° 5
6x6	S= 17	16 1		14	13	18 19	12	⊠ U
	2x4 I	3x4=	= .8 WB =	6x8=	4x9=		3x4=	
F	6-2-4 6-2-4	<u>15-2-4</u> 9-0-0	<u>22-7-3</u> 7-4-15			<u>32-8-11</u> 10-1-8		40-8-0 7-11-5

Scale =	1:75.1
---------	--------

Plate Offsets	(X, Y): [2:Edge,0-2-5],	, [6:0-3-12,0-2-8], [7:	0-4-7,0-1-8], [10:1	Edge,0-2-10], [10:0-2-	11,0-10-13]							
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.97 0.72 0.95	DEFL Vert(LL) Vert(CT) Horz(CT)	-0.82 0.19	(loc) 12-14 12-14 10	l/defl >999 >590 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC2018/TPI20	014 Matrix-S		Wind(LL)	0.24	16-17	>999	240	Weight: 144 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD	SPF No.2 2x4 SPF 2100F 1.8E 2x3 SPF No.2 2x3 SPF No.2 Right: 2x8 SP DSS Structural wood she	E athing directly applie	2x4 on th 3-06- chore 5) Prov beari joint 6) This ad. R802 c R802	truss has been designed bottom chord in all a context of the second seco	areas where de will fit betw bers, with BC ection (by oth ithstanding 3 oint 10. ccordance w ode sections	a rectangle veen the botto CDL = 10.0psf ers) of truss t 318 lb uplift at ith the 2018 5 R502.11.1 a	om 1. io					
NEBS	1 Row at midpt	3-16, 5-14, 8-14										
REACTIONS	(lb/size) 2=1888/0 Max Horiz 2=139 (L0 Max Uplift 2=-318 (L Max Grav 2=1937 (L	.C 4), 10=-239 (LC 9))									
FORCES	(lb) - Maximum Com	pression/Maximum										
TOP CHORD	Tension 1-2=0/6, 2-3=-4773/ 5-6=-2694/392, 6-8= 8-9=-3708/382, 9-10	-2745/412,	,									
BOT CHORD	,	-17=-690/4436,									Contraction of the	den la
WEBS	3-17=0/331, 3-16=-1 5-14=-1243/320, 6-1 8-14=-798/278, 8-12	14=-142/1510,	,							Å	STATE OF M	TM TRA
this desig 2) Wind: AS Vasd=91r II; Exp C; cantilever right expo 3) This truss	eed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er r left and right exposed ssed; Lumber DOL=1.6 s has been designed foi e load nonconcurrent wi	(3-second gust) DL=6.0psf; h=25ft; (vvelope) exterior zor ; end vertical left an 0 plate grip DOL=1.0 r a 10.0 psf bottom	Cat. ne; d 60						~		NUM PE-2001	ER BER 018807

September 7,2021



Scale = 1:86.6											
[2:0-0-12,0-1-1 Plate Offsets (X, Y): [27:0-2-0,0-0-7	1], [5:0-4-8,Edge], [7:0-3-], [36:0-1-6,0-1-0], [43:0-1		Edge], [16:0-2-8,0-2	2-0], [23	:0-1-4,0-1-0],	[24:0-0-	2,0-1-12	:], [25:0-	1-4,0-1	1-0], [26:0-1-8,0-1	1-0],
1.8E BOT CHORD 2x4 SPF 2100F 1.8E WEBS 2x3 SPF No.2 *Exce	ppt* 5-7:2x4 SPF 2100F	5 5 S C2018/TPI2014 WEBS	CSI TC BC WB Matrix-S 3-21=-289/206, 4-2 5-20=-101/1067, 6 7-18=-121/976, 8-' 3-16=-921/199, 10 10-15=-2565/383	-18=-12 18=-77/5	36/353, 598,	-0.86 0.12 0.22	(loc) 18-20 18-20 15 20-21	l/defl >967 >565 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 217 lb	GRIP 197/144 FT = 10%
No.2 OTHERS 2x4 SPF No.2 WEDGE Left: 2x3 SPF No.2 Right: 2x3 SPF No.2 BRACING TOP CHORD Structural wood she BOT CHORD Rigid ceiling directly bracing. WEBS 1 Row at midpt REACTIONS All bearings 7-7-8. ex (Ib) - Max Horiz 2=163 (LC Max Uplift All uplift 1 13 except (LC 23), 1 (LC 4) Max Grav All reaction (s) 11, 13 2), 15=28	athing directly applied. applied or 6-0-0 oc 6-18 cept 2=0-3-8 C 8) 00 (lb) or less at joint(s) : 2=-324 (LC 4), 11=-348 (4=-147 (LC 2), 15=-311 ons 250 (lb) or less at joint , 14 except 2=1880 (LC 89 (LC 2) ax. Ten All forces 250 hen shown. e-4209/624, =-3235/525, =-1949/351, 0=-1555/223, -21=-597/3670, 9-46=-326/2524, 8-47=-326/2524, 8-47=-326/2524, -17=-55/1359,	 this design. Wind: ASCE Vasd=91mpf II; Exp C; En cantilever lef right exposed Truss design only. For stu see Standarc or consult qu All plates are Gable studs This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and are Provide mecio bearing plate joint(s) 13 ex 14=147. This truss a International 	roof live loads hav 7-16; Vult=115mp n; TCDL=6.0psf; B closed; MWFRS (i t and right expose d; Lumber DOL=1. dig to wind loads uds exposed to wind d Industry Gable E tailified building det e 2x4 MT20 unless spaced at 2-0-0 ou ta been designed fad nonconcurrent to as been designed n chord in all area: y 2-00-00 wide wi y other members, hanical connection e capable of withst ccept (jt=lb) 2=324. designed in accord Residential Code nd referenced star Standard	wh (3-sec CDL=6. enveloped d; end v 60 plate in the pl d (norm nd Deta signer a: otherwi c. or a 10. with any l for a liv s where ll fit betw with BC o (by oth anding 1 , 15=310 dance w sections	cond gust) Opsf; h=25ft;; e) exterior zoi vertical left an grip DOL=1. ane of the tru al to the face fis as applical s per ANSI/TI se indicated. O psf bottom other live loa e load of 20.0 a rectangle veen the bottic DL = 10.0psf DDL = 10.0psf DDL = 10.0psf O lb uplift at O lb uplift at O lb uplift at O lb uplift	Cat. ne; id 60 ss), ble, PI 1. ds. 0psf om f. to				STATE OF M SCOT SEVI PE-20010 PE-20010 PE-20010	

September 7,2021

									RELEASE FO	R CONSTRUCTION
Job		Truss		Truss Type		Qty	Ply	Lot 11 OS		OR PLAN REVIEW MENT SERVICES 147787253
Lot 11 OS		A4		Roof Special		4	1	Job Reference (optional		147787253 MMIT, MISSOURI
Wheeler Lumber,	, Waverly, KS -	66871,			-		-	6 2021 MiTek Industries, Inc. sB70Hq3NSgPqnL8w3uITXbG		8/2021
		-0-14	11-9-14	20-7-15	26-9-5		33-7-1		48-0-	
	0-10-8 5	-0-14	6-9-0	8-10-1	6-1-6	00	6-10-8	3 7-2-5	7-1-14	4 0-10-8
						6x6 ≠ 7				
ΤŢ				12	4x5 =			4x9≈ 3x6≈		
				4 ⊢ €	3			89 12 15		
5 2				3x6= 5				75	0.0	
9-6-5 9-5-2		04		4 The			. //		^{3x6} ≈ 10	
		2x4 3			Ń		, All and a second seco			
	. 2 /					\parallel	//			11 -

NOTES

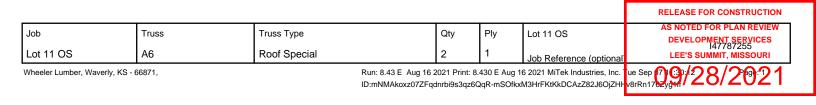
1) Unbalanced roof live loads have been considered for this design.

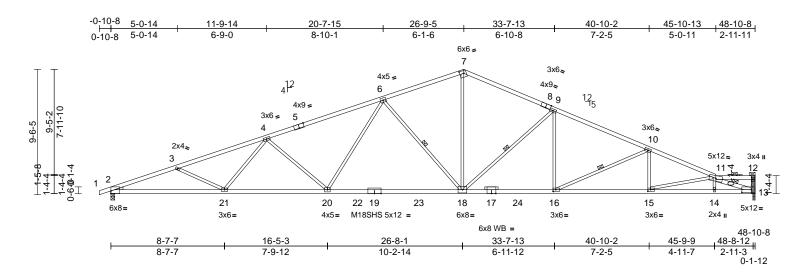
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PE-2001018807

September 7,2021

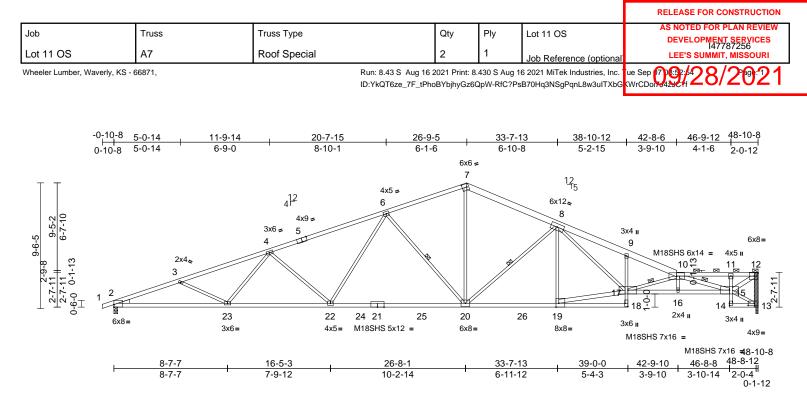
SSIONAL


0


								RELEASE FOR C	ONSTRUCTION
Job	Truss	Truss Typ	pe	Qty	Ply	Lot 11 OS		AS NOTED FOR DEVELOPMEN 147	
Lot 11 OS	A5	Roof Sp	ecial	4	1	Job Refer	ence (optional	LEE'S SUMMI	
Wheeler Lumber, Waverly,	KS - 66871,			: 8.43 S Aug 16 2021 6qk9_kJ0uQgl?_a5eL					/2021
-0-10-8	3 004	45.0.5	00.7.4	25-1-12 26-	9-5 0	7.40	40,40,0	40.0.0	48-10-8
0-10-8	024	<u>15-2-5</u> 9-0-1	<u>20-7-4</u> 5-4-15	20112		<u>3-7-13</u> -10-8	<u>40-10-2</u> 7-2-5	48-0-0	48-10-8
					6x8 =				
G-9-6 G-9-6 G-9-0 G G G G G G G G G G G G G	3x6 = 3 8= 23 2x4 II 6-2-4 6-2-4	22	6x6 = 1x9 = 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3x4 6x8 = 7 6 6 6 7 6 6 7 6 7 7 7 7 8 7 7 7 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7			0 125	3x6s 11 14 2x4 II 48-0-0 7-1-14	12 13 ♀ 6x8=

Scale = 1:86.6													
Plate Offsets (2	X, Y): [2:Edge,0-2-5],	, [4:0-4-8,Edge], [8:0-	-5-8,0-2-4], [10:0-4-8,Edǫ	ge], [12:Edge,0-2	-10], [15:0)-4-8,0-3-0], [19:0-8-8	,Edge],	[20:Edge	e,0-2-8	3]	
Loading TCLL (roof) TCDL BCDL BCDL LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS	(psf) 25.0 10.0 0.0* 10.0 25.0 10.0 0.0* 10.0 244 SPF 2100F 1.8E 2400F 2.0E 2x4 SPF 2100F 1.8E SPF No.2, 17-16:2x- 2x3 SPF No.2 *Exce 2100F 1.8E, 15-18,1 Left: 2x4 SPF No.2 Structural wood she Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 2=2218/0 Max Horiz 2=163 (LC Max Uplift 2=-368 (L	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code E *Except* 1-4:2x4 S E *Except* 20-6,7-17 4 SPF No.2 ept* 21-19:2x4 SPF 18-8,15-8:2x4 SPF N 2 eathing directly applied y applied or 8-6-0 oc 3-21, 5-21, 6-18, 8-7 11-15 -3-8, 12=2218/0-3-8 C 12) C 4), 12=-278 (LC 9	2-0-0 1.15 1.15 YES IRC201 2) PF 22x3 3) 0.2 4) 5) d. 6) 15, 7)	8/TPI2014) Wind: ASCE Vasd=91mpl II; Exp C; En cantilever lef right expose) All plates are) All plates are on the bottor 3-06-00 tall t chord and ar) Provide mec bearing plate joint 2 and 2) This truss is International	CSI TC BC WB Matrix-S 7-16; Vult=115n n; TCDL=6.0psf; closed; MWFRS t and right expose d; Lumber DOL= e MT20 plates un as been designed ad nonconcurren has been designed n chord in all are py 2-00-00 wide ty oy other member hanical connectii e capable of with 78 lb uplift at join designed in acco Residential Cod nd referenced sta	0.95 0.82 0.97 http://docs.org/ BCDL=6.1 (envelope sed; end v 1.60 plate less other i for a 10.0 t with any ed for a liva swhere will fit betv s. on (by oth standing 3 t 12. ordance w e sections	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL) Dpsf; h=25ft; () exterior zor vertical left an grip DOL=1. wise indicate 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 668 lb uplift at ith the 2018 s R502.11.1 a	in -0.67 -1.21 0.53 0.48 Cat. ne; id 60 id 60 id d. ds. Opsf om	(loc) 20 18-19 12 20	[20:Edge I/defl >849 >472 n/a >999	E,0-2-E L/d 360 240 n/a 240	PLATES MT20 M18SHS Weight: 202 lb	GRIP 197/144 197/144 FT = 10%
	Max Horiz 2=163 (LC Max Uplift 2=-368 (L (Ib) - Maximum Com Tension	C 12) LC 4), 12=-278 (LC 9 npression/Maximum /825, 3-5=-4624/683, =-4877/677,) L	R802.10.2 a	nd referenced sta			Ind					
BOT CHORD	9-11=-3864/470, 11 2-23=-846/5161, 21	-12=-4542/514, 12-1 -23=-846/5161, =0/66, 6-19=-276/208 7-18=0/143, 17=0/33,										STATE OF M	ГМ. \СУ
WEBS	3-23=0/322, 3-21=-5 19-21=-694/4966, 5 6-18=-2587/454, 15 8-18=-433/3133, 8-1	947/260, 5-21=-2147 -19=-187/2359, -18=-352/3966,	,							-	K	PE-2001	018807
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for									Y	Essiona Contomb	SPE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



APPLY 2 X 4 SPF/DF/SP NO.2 SCAB TO ONE FACE OF TRUSS AS SHOWN. ATTACH WITH (0.131" X 3") NAILS PER THE FOLLOWING NAIL SCHEDULE: 2 x 3'S - 1 ROW, 2 x 4'S - 2 ROWS, 2 x 6'S AND LARGER - 3 ROWS: SPACED @ 2" O.C. USE 2" MEMBER END DISTANCE.

Plate Offsets ((X, Y): [2:Edge,0-2-5],	[5:0-4-8,Edge], [7:0-	3-12,0-2-8], [8:0-4-7,Ed	lge], [13:0-8-8,0-2-	8], [15:0-	2-8,0-1-8], [1	6:0-2-8,	0-1-8]				
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.90 0.84 0.98	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-1.26 0.29	18-20	l/defl >793 >461 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18SHS Weight: 182 lb	GRIP 197/144 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS LBR SCAB WEDGE BRACING TOP CHORD	2x3 SPF No.2 *Exce No.2 2x3 SPF No.2 12-13 SPF No.2 on Left: 2x3 SPF No.2 Structural wood she	e side athing directly applied	SPF Wi	EBS	2-21=-894/5322, 2 20-22=-470/3912, 19-23=-470/3912, 17-18=-319/3928, 16-24=-319/3928, 14-15=-600/5359, 4-21=0/406, 4-20= 6-18=-1217/351, 7 9-18=-1101/300, 7 9-16=-15/635, 10- 11-15=-582/115	19-22=- 18-23=- 17-24=- 15-16=- 13-14=- e-856/29 7-18=-22 11-13=-5	470/3912, 470/3912, 319/3928, 487/4790, 606/5360 6, 6-20=-102/ 5/2023, 549/617,	,	bea join 10) This Inte R80 11) Gra or t bott	ring plat t 2 and 2 s truss is rnationa 02.10.2 a phical p	te capa 265 lb (s desig al Resid and ref urlin re tation o rd.	able of withstandi uplift at joint 13. ned in accordanc dential Code sect erenced standard presentation doe of the purlin along	ions R502.11.1 and ANSI/TPI 1. s not depict the size
	(6-0-0 max.): 11-12. Rigid ceiling directly bracing, Except: 8-3-6 oc bracing: 2-2 9-1-1 oc bracing: 20 1 Row at midpt (lb/size) 2=2258/0	applied or 10-0-0 oc 21 -21. 6-18, 9-18, 11-13, 10 -3-8, (req. 0-3-11), (0-2-0 + bearing bloc 0)	1) 2) 0-16	 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 								LOW FOR TH (SUCH TC.) ARE SIGNER.	
FORCES TOP CHORD	(lb) or less except w	LC 2), 13=2304 (LC 2 ax. Ten All forces 2 hen shown. 5598/762, 4686/669, 3443/500,	50	* This truss on the botto 3-06-00 tall chord and a WARNING: greater than Bearing at jusing ANSI/		d for a liv as where ill fit betv , with BC size at jo e. s paralle in formul	e load of 20.0 a rectangle veen the botto CDL = 10.0psf iint(s) 2, 13 I to grain valu a. Building	Opsf om				~/	ER DISSO7

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

APPLY 2 X 4 SPF/DF/SP NO.2 SCAB TO ONE FACE OF TRUSS AS SHOWN. ATTACH WITH (0.131" X 3") NAILS PER THE FOLLOWING NAIL SCHEDULE: 2 x 3'S - 1 ROW, 2 x 4'S - 2 ROWS,

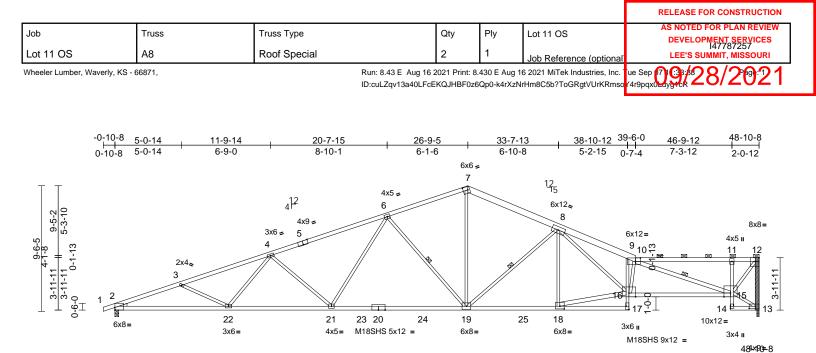

2 x 6'S AND LARGER - 3 ROWS: SPACED @ 2" O.C. USE 2" MEMBER END DISTANCE.

Plate Offsets	(X, Y): [2:Edge,0-2-5]	, [5:0-4-8,Edge], [7:0-	4-4,0-3-0], [13:0-5-8,0-2	2-0], [18:Edge,0-2	-8], [19:0-	2-8,Edge]						
Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.89 0.92 0.98	DEFL Vert(LL) Vert(CT) Horz(CT)	-1.45 0.46	(loc) 20-22 20-22 13	l/defl >692 >403 n/a	L/d 360 240 n/a	PLATES MT20 M18SHS	GRIP 197/144 197/144
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.39	20-22	>999	240	Weight: 208 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD	No.2, 10-12:2x4 SP 2x4 SPF 2100F 1.8	E *Except* 7 No.2, 17-15:2x4 SPF	SPF	OT CHORD	2-23=-897/5320, 20-22=-473/3910 18-19=-15/224, 1 16-17=-953/8651 14-15=0/32, 11-1 3-23=-218/194, 4), 19-20=- 7-18=0/99 , 15-16=- 5=-322/1	343/3974, 9, 9-17=-221/ 948/8654, 15, 13-14=-10)/35	bea join 10) This Inte	ring plat t 2 and 2 s truss is rnationa	e capa 268 lb desig I Resid	able of withstandi uplift at joint 13. ned in accordanc	ions R502.11.1 and
WEBS LBR SCAB WEDGE	2x3 SPF No.2 *Exce 12-13,19-17,15-10,1 12-13 SPF No.2 on Left: 2x4 SP No.3	ept* 15-12:2x4 SPF No.2			6-22=-102/1050, 7-20=-220/2028, 8-19=-573/133, 1 8-17=-395/2858,	2/1050, 6-20=-1195/347, (2/2028, 8-20=-1133/297, (3/133, 17-19=-334/3818, (5/2858, 10-17=-2756/344,11) Graphical purlin representation does not depic or the orientation of the purlin along the top an bottom chord.LOAD CASE(S)Standard							
BRACING TOP CHORD		eathing directly applied a, and 2-0-0 oc purlins 2.	Ń	10-15=-5630/557, 13-15=-39/34, 12-15=-470/3853, 10-16=-32/101 NOTES 1) Unbalanced roof live loads have been considered for this design.							OR OT	ARING PLATES, S	LLOW FOR
BOT CHORD	bracing. 1 Row at midpt	6-20, 8-20, 10-17, 10	-,	 this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; 								ETC.) ARE	
REACTIONS		C 12) .C 4), 13=-268 (LC 9)	3) 4)	 cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Provide adequate drainage to prevent water ponding. 4) All plates are MT20 plates unless otherwise indicated. 5) This truss has been designed for a 10.0 psf bottom 							Г М. ТЕМ		
	(lb) - Maximum Con Tension		6)) * This truss	chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle								
TOP CHORD	1-2=0/6, 2-3=-5/32/ 4-6=-4765/666, 6-7= 7-8=-3478/496, 8-9 9-10=-6606/691, 10 11-12=-3166/369, 1	=-6533/764, -11=-3314/387,	7) 8)	3-06-00 tall chord and a WARNING: greater thar Bearing at jusing ANSI	the bottom chord in all areas where a rectangle 06-00 tall by 2-00-00 wide will fit between the bottom ord and any other members, with BCDL = 10.0psf. ARNING: Required bearing size at joint(s) 2, 13 eater than input bearing size. paring at joint(s) 13 considers parallel to grain value ing ANSI/TPI 1 angle to grain formula. Building usigner should verify capacity of bearing surface.						LENGILE		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek

16023 Swingley Ridge Rd Chesterfield, MO 63017

8-7-7

8-7-7

16-5-3

7-9-12

APPLY 2 X 4 SPF/DF/SP NO.2 SCAB TO ONE FACE OF TRUSS AS SHOWN. ATTACH WITH (0.131" X 3") NAILS PER THE FOLLOWING NAIL SCHEDULE: 2 x 3'S - 1 ROW, 2 x 4'S - 2 ROWS, 2 x 5'S AND L APGEP 2 POWS: SPACED @ 2" OC, LISE 2" MEMPER

26-8-1

10-2-14

2 x 6'S AND LARGER - 3 ROWS: SPACED @ 2" O.C. USE 2" MEMBER END DISTANCE.

33-7-13

6-11-12

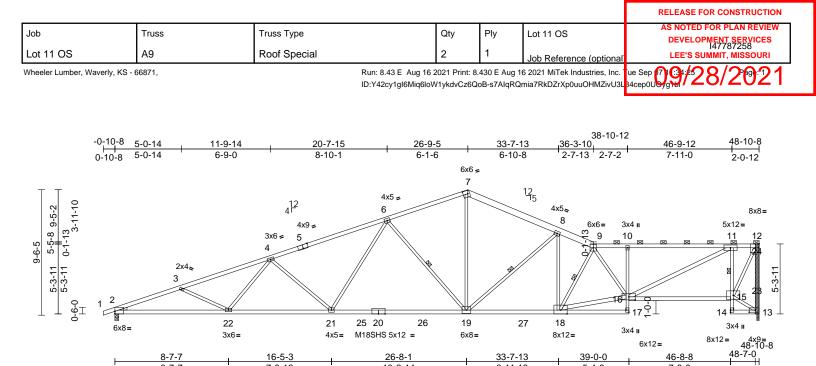
39-0-0

5-4-3

Plate Offsets	(X, Y): [2:Edge,0-2-5], [5:0-4-8,Edge], [7:0-	4-4,0-3-0], [10:0-4-8,0-	-3-4], [12:0-3-8,Edg	je], [13:0-	5-8,0-2-0], [17:E	Edge,	0-2-8], [1	8:0-4-0	,0-2-8]		
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.89	DEFL Vert(LL)	in -0.79	(loc) 19-21	l/defl >742	L/d 360	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.94	· · ·		19-21	>432	240	M18SHS	197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.99	Horz(CT)	0.39	13	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.35	19-21	>999	240	Weight: 211 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD	No.2, 10-12:2x4 SF 2x4 SPF 2100F 1.8 17-9,11-14:2x3 SPI		SPF	OT CHORD	2-22=-898/5320, 21-23=-473/3910 20-24=-473/3910 19-25=-391/3973 9-16=-47/503, 15	, 20-23=- , 19-24=- , 18-25=-	473/3910, 473/3910, 391/3973,		bea join 10) Thi Inte	t 2 and 2 t 2 and 2 s truss is rnationa	te capa 272 lb s desig al Resi	able of withstandi uplift at joint 13. ned in accordanc dential Code sect	ions R502.11.1 and
WEBS	No.2 2x3 SPF No.2 *Exc No.2, 15-10:2x4 SF	ept* 12-13,18-16:2x4	SPF W	EBS	11-15=-501/211 4-22=0/406, 4-21 6-19=-1194/347,			50,	11) Gra	phical p	ourlin re	erenced standard epresentation doe of the purlin along	s not depict the size
LBR SCAB	13-12 SPF No.2 or			8-19=-1131/281, 8-18=-573/138, bottom									,
WEDGE	Left: 2x3 SPF No.2				16-18=-352/3851				LOAD	CASE(S) Sta	ndard	
BRACING					10-16=-1640/298 12-15=-386/2874		5020/496,						
TOP CHORD		eathing directly applied s, and 2-0-0 oc purlins 2.		NOTES 1) Unbalanced roof live loads have been considered for this design THE MINIMUM REQUIRED SUPPO									ALLOW FOR
BOT CHORD	 Rigid ceiling directly bracing. 	y applied or 2-2-0 oc	2)	this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) THE MINIMUM REQUIRED SUPPORT WIDTH (S AS COLUMN CAPS, BEARING BLOCKS, ETC.) / THE RESPONSIBILITY OF THE TRUSS									
WEBS	1 Row at midpt	6-19, 8-19, 10-15			ph; TCDL=6.0psf;							THE BUILDING D	ESIGNER.
REACTIONS	6 (lb/size) 2=2258/0 13=2185 (req.0-3-	0-3-8, (req. 0-3-11), i/(0-2-0 + bearing bloc 10)		cantilever l right expos	Enclosed; MWFRS eft and right expos sed; Lumber DOL=	ed ; end v 1.60 plate	vertical left and grip DOL=1.60					E OF M	AISSO
		.C 8) LC 4), 13=-272 (LC 9) (LC 2), 13=2303 (LC 2	 4) All plates are MT20 plates unless otherwise indicated. 5) This truss has been designed for a 10.0 psf bottom 							гм.			
FORCES	(lb) or less except v		50 6)	on the bottom chord in all areas where a rectangle									
TOP CHORD	2-3=-5732/857, 3-4 4-5=-4765/628, 5-6				I by 2-00-00 wide v any other members			۱				NUL	Berych
	6-7=-3376/476, 7-8 8-9=-6564/718, 9-1	=-3478/489,	7)	7) WARNING: Required bearing size at joint(s) 2, 13							018807		
	10-11=-1738/203, 1 12-13=-2280/274		8)	greater than input bearing size.									

designer should verify capacity of bearing surface.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


September 7,2021

48-7-0

1-10-8 0-3-8

46-8-8

7-8-8

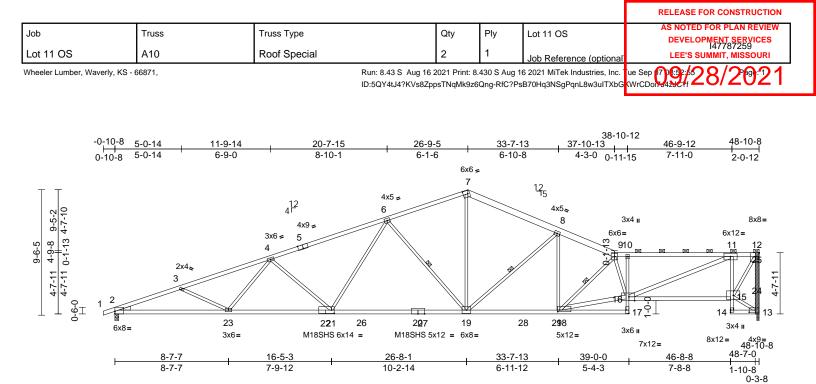
10-2-14

6-11-12

5-4-3

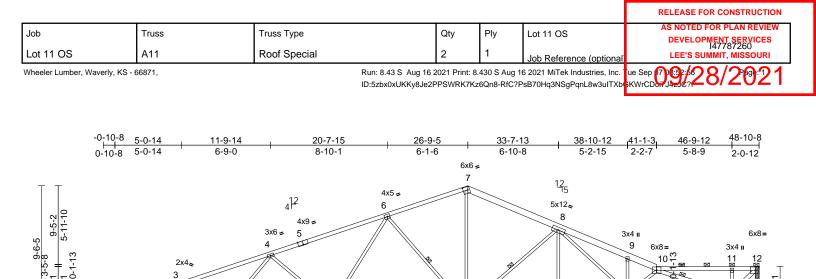
7-8-8

1-10-8 0-3-8


8-7-7

7-9-12

Scale = 1.07.4													
Plate Offsets (X, Y): [2:Edge,0-2-5]	, [5:0-4-8,Edge], [7:0-	4-4,0-3-	0], [12:0-3-8,Ed	ge], [13:0-5-8,0-2	2-0], [16:0-	5-12,0-2-12], [17:Ed	ge,0-2-8]			-	
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.90	Vert(LL)	-0.72	19-21	>813	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.84	Vert(CT)	-1.23		>474	240	M18SHS	197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.96	Horz(CT)	0.30		n/a	n/a		
BCDL	10.0	Code		18/TPI2014	Matrix-S	0.00	Wind(LL)		19-21	>999	240	Weight: 215 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD	2x4 SPF 2100F 1.8 No.2 2x4 SPF 2100F 1.8 17-10,11-14:2x3 SP SPF No.2	E *Except*	PF		4-22=0/407, 4-21 6-19=-1193/347, 8-19=-1119/258, 9-18=-1580/186, 9-16=-298/90, 11 12-15=-371/2613	7-19=-20 8-18=-3/7 16-18=-4 -16=-381	6/2024, 721, 76/4692,	048,	or t bot		tation (rd.	of the purlin along	s not depict the size the top and/or
WEBS	2x3 SPF No.2 *Exce			NOTES									
	No.2, 18-16:2x4 SP				3-11 scab 12 to 1							ARING PLATES, SF IER MEANS TO AL	
LBR SCAB	13-12 SPF No.2 on	e side			row(s) of 10d (0.1	131"x3") n	ails spaced 9"		THE MI	NIMUM F	REQUIR	ED SUPPORT WIE	OTH (SUCH
WEDGE	Left: 2x3 SPF No.2			O.C	reef live leads by							ARING BLOCKS, E	TC.) ARE
BRACING		othing directly opplie		 Unbalanced roof live loads have been considered for this design. THE RESPONSIBILITY OF THE TRUSS MANUFACTURER OR THE BUILDING DESI 									SIGNER.
TOP CHORD		athing directly applie , and 2-0-0 oc purlin		3) Wind: ASCE	7-16; Vult=115n h; TCDL=6.0psf;								
BOT CHORD	Rigid ceiling directly bracing. Except:	applied or 6-0-0 oc		cantilever le	nclosed; MWFRS ft and right expos	sed; end v	vertical left and						
1 Row at midp	t 11-15			• •	d; Lumber DOL=	•	• •	0					
WEBS	1 Row at midpt	6-19, 8-19, 9-18			quate drainage to								
REACTIONS		-3-8, (req. 0-3-11), (0-2-0 + bearing bloc		5) This truss h	e MT20 plates un as been designec ad nonconcurren	d for a 10.	0 psf bottom						
	Max Horiz 2=219 (L0	,	-		has been designe								
	Max Uplift 2=-364 (L Max Grav 2=2360 (I	.C 4), 13=-279 (LC 9)		3-06-00 tall	m chord in all are by 2-00-00 wide	will fit betw	veen the bottor	m				55000	APPE
FORCES	(lb) - Max. Comp./M (lb) or less except w	ax. Ten All forces 2 hen shown.	250	B) WARNING:	ny other member Required bearing	size at jo					4	TATE OF M	AISSO STA
TOP CHORD	2-3=-5734/847, 3-4= 4-5=-4766/618, 5-6= 6-7=-3379/465, 7-8= 8-9=-4319/461, 9-10	=-4685/648, =-3480/478,	9) Bearing at joint(s) 13 considers parallel to grain Value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.										
	10-11=-4595/474, 1 13-23=-2286/288, 2 12-24=-2286/288	1-12=-1183/131,		bearing plat	chanical connection e capable of with 179 lb uplift at join	standing 3 it 13.	364 Ib uplift at			e	X	cott	
BOT CHORD	2-22=-897/5322, 21 21-25=-470/3912, 2 20-26=-470/3912, 1 19-27=-428/3967, 1 10-16=-528/208, 15 11-15=-2105/387	0-25=-470/3912, 9-26=-470/3912, 8-27=-428/3967,		Ínternationa	designed in acco I Residential Cod Ind referenced sta	e sections	s R502.11.1 an	d			Ø	PE-2001 September	L ENGLASS


Scale = 1:87.4

Scale = 1:87.4

Plate Offsets ((X, Y): [2:Edge,0-2-5],	[5:0-4-8,Edge], [7:0-4-4,0)-3-0], [12:0-3-8,E	dge], [13:0-5-8,0-2	2-0], [16:0-	-5-4,Edge], [17:	Edge,0)-2-8], [1	8:0-1-1	4,0-1-8], [22:0-2-8,0-3-0]
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing 2-C Plate Grip DOL 1.1 Lumber DOL 1.1 Rep Stress Incr YE Code IRC	5 5	CSI TC BC WB Matrix-S	0.90 0.85 0.96		0.32	19-21 13	l/defl >791 >461 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18SHS Weight: 213 lb	GRIP 197/144 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF 2100F 1.8E No.2 2x4 SPF 2100F 1.8E 17-10,11-14:2x3 SPI SPF No.2 2x3 SPF No.2 *Exce	= *Except* 7-9:2x6 SPF = *Except* F No.2, 16-15,14-13:2x4 xpt* 12-13:2x4 SPF No.2,	WEBS	3-23=-218/194, 6-21=-102/1048 7-19=-210/2021 8-18=-11/702, 9 16-18=-552/539, 11-16=-434/436 12-15=-379/273	, 6-19=-11 , 8-19=-11 -18=-2105 2, 9-16=-1 5, 13-15=-	7, 4-21=-857/29 93/347, 13/271, /263, 56/358,	96,	12) Gra or tl	phical p he orien tom cho	ourlin re tation o rd.	presentation doe of the purlin along	s not depict the size
FORCES	except end verticals (2-5-6 max.): 9-12. Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 2=2258/0 13=2185/ (req.0-3-1 Max Horiz 2=188 (LC Max Uplift 2=-366 (L Max Grav 2=2359 (L (lb) - Maximum Com Tension	e side athing directly applied, , and 2-0-0 oc purlins applied or 6-0-0 oc 6-19, 8-19, 9-18 -3-8, (req. 0-3-11), (0-2-0 + bearing block), 0) C 5) C 4), 13=-275 (LC 9) .C 2), 13=2302 (LC 2) ppression/Maximum	 No.2 with o.c Unbalance this design Wind: ASC Vasd=91rr II; Exp C; I cantilever right expos Provide ac All plates a This truss chord live on the bot 3-06-00 ta 	I-7-11 scab 12 to 1 1 row(s) of 10d (0. ed roof live loads h b. CE 7-16; Vult=115r ph; TCDL=6.0psf; Enclosed; MWFRS left and right expo sed; Lumber DOL= lequate drainage t are MT20 plates un has been designe load nonconcurrer s has been design tom chord in all are Il by 2-00-00 wide any other membe	131"x3") n ave been mph (3-see ; BCDL=6. \$ (envelop sed ; end ' =1.60 plate o prevent nless othe d for a 10. tt with any ied for a liv eas where will fit betv	avils spaced 9" considered for Opsf; h=25ft; Ca e) exterior zone vertical left and g grip DOL=1.60 water ponding. rwise indicated. 0 psf bottom other live loads re load of 20.09 a rectangle ween the bottom	e; D s. Desf	ANCH THE M AS CC THE F	IORAGE, MINIMUN DLUMN (RESPON	, or ot I requ Caps, e Sibilit	EARING PLATES, S HER MEANS TO A IRED SUPPORT W EARING BLOCKS, Y OF THE TRUSS THE BUILDING D	LLOW FOR IDTH (SUCH ETC.) ARE ESIGNER.
TOP CHORD	1-2=0/6, 2-3=-5731/ 4-6=-4763/654, 6-7= 7-8=-3476/483, 8-9= 9-10=-5466/571, 10- 11-12=-1431/166, 12 2-23=-898/5319, 21- 19-21=-472/3909, 11 17-18=-47/142, 16-1 15-16=-232/1481, 14 11-15=-2095/379, 12	3376/471, 4343/470, -11=-5496/570, 2-13=-2282/283 -23=-743/5023, 3-19=-411/3959, 7=0/91, 10-16=-740/273, 4-15=0/24,	 8) WARNING greater the 9) Bearing at using ANS designer s 10) Provide m bearing pli joint 2 and 11) This truss Internation 	E: Required bearing an input bearing siz joint(s) 13 conside il/TPI 1 angle to gr hould verify capad echanical connect ate capable of with 275 lb uplift at join is designed in acc and referenced st	g size at jo ze. ers paralle rain formul sity of bear ion (by oth astanding 3 nt 13. ordance w de sections	bint(s) 2, 13 I to grain value a. Building ing surface. hers) of truss to 366 lb uplift at vith the 2018 s R502.11.1 and			•		SCOTT SEVI NUM PE-20010	ER DISSO7

3-3-1

6x8=

2x4. 3

8-7-7 8-7-7 22

3x6=

16-5-3

7-9-12

21

4x5=

23 20

M18SHS 5x12 =

26-8-1

10-2-14

APPLY 2 X 4 SPF/DF/SP NO.2 SCAB TO ONE FACE OF TRUSS AS SHOWN. ATTACH WITH (0.131" X 3") NAILS PER THE FOLLOWING NAIL SCHEDULE: 2 x 3'S - 1 ROW, 2 x 4'S - 2 ROWS, 2 x 6'S AND LARGER - 3 ROWS: SPACED @ 2" O.C. USE 2" MEMBER END DISTANCE.

24

19

6x8=

25

33-7-13

6-11-12

18

6x8=

39-0-0

5-4-3

Plate Offsets	(X, Y): [2:Edge,0-2-5],	, [5:0-4-8,Edge], [7:0	4-4,0-3-0], [13:0-5-8,0-2	2-0], [17:Edge,0-2	2-8], [18:0-	4-0,0-2-8]							
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.90 0.86 0.97	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-1.38 0.40	(loc) 19-21 19-21 13 19-21	l/defl >727 >423 n/a >999	L/d 360 240 n/a 240	MT20 M18SHS	GRIP 197/144 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS LBR SCAB WEDGE BRACING	No.2, 10-12:2x4 SPF	F No.2 5 *Except* 2 No.2, 16-15:2x4 SP 2x4 SPF No.2 ept* 5-12:2x4 SPF No.2	SPF F	OT CHORD /EBS	2-22=-898/5320, 19-21=-473/3911 17-18=-45/207, 15-16=-831/719 11-15=-402/161, 3-22=-218/194, 6-21=-102/1050, 7-19=-218/2031, 8-18=-573/134, 8-16=-369/2828, 10-15=-5227/56	0, 18-19=-: 16-17=0/98 1, 14-15=0 , 13-14=-6 4-22=0/406 , 6-19=-11: 8-19=-11: 16-18=-330 , 10-16=-1!	369/3977, 3, 9-16=-56/8 /27, 1/0 3, 4-21=-857/ 95/347, 37/291, 0/3847, 569/273,	,	bea join 10) Thi Inte R80 11) Gra or t bot	aring plat at 2 and 2 s truss is ernationa 02.10.2 a aphical p	te capa 270 lb (s desig al Resid and ref urlin re tation o rd.	able of withstandi uplift at joint 13. ned in accordanc dential Code sect erenced standard presentation doe of the purlin along	ions R502.11.1 and ANSI/TPI 1. s not depict the size	
BOT CHORD BOT CHORD WEBS WEBS REACTIONS	except end verticals (3-4-14 max.): 10-12 Rigid ceiling directly bracing. 1 Row at midpt 2 Rows at 1/3 pts (lb/size) 2=2258/0	and 2-0-0 oc purlin 2. applied or 6-0-0 oc 6-19, 8-19 10-15 -3-8, (req. 0-3-11), (0-2-0 + bearing bloc (0) C 8) C 4), 13=-270 (LC 9	s N 1 2 (k), 3 4 5	 NOTES Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 						SUPPLEMENTARY BEARING PLATES, SPECIAL ANCHORAGE, OR OTHER MEANS TO ALLOW FOR THE MINIMUM REQUIRED SUPPORT WIDTH (SUCH AS COLUMN CAPS, BEARING BLOCKS, ETC.) ARE THE RESPONSIBILITY OF THE TRUSS MANUFACTURER OR THE BUILDING DESIGNER.				
FORCES TOP CHORD	(lb) - Maximum Com Tension	npression/Maximum 860, 3-4=-5596/756, =-3376/480, =-6505/730, -11=-2269/255,								U18807				

September 7,2021

3-3-11

13

48⁴×₽0=-8 48-7-0

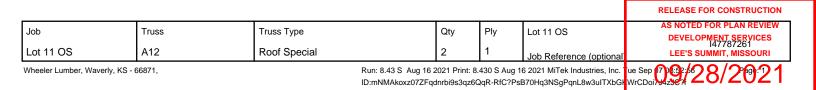
14

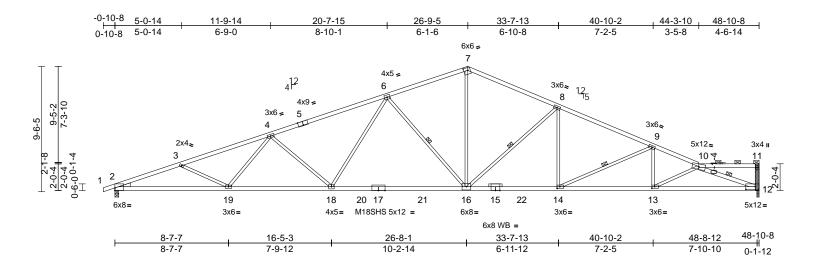
3x4 II

1-10-8 0-3-8

10x16=

[∐] 17 [†].

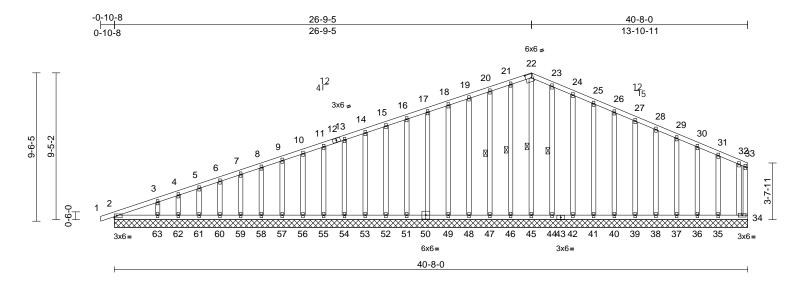

M18SHS 9x12 =


46-8-8

7-8-8

3x6 ı

APPLY 2 X 4 SPF/DF/SP NO.2 SCAB TO ONE FACE OF TRUSS AS SHOWN. ATTACH WITH (0.131" X 3") NAILS PER THE FOLLOWING NAIL SCHEDULE: 2 x 3'S - 1 ROW, 2 x 4'S - 2 ROWS, 2 x 6'S AND LARGER - 3 ROWS: SPACED @ 2" O.C. USE 2" MEMBER END DISTANCE.


Plate Offsets (X, Y): [2:Edge,0-2-5],	[5:0-4-8,Edge], [7:0-	3-12,0-2-8	3], [12:0-8-8,0)-2-8], [13:0-2-	8,0-1-8], [14:0)-2-8,0-1-8]					-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.90 0.84 0.98	Vert(CT)	in -0.74 -1.26 0.29 0.33	(loc) 16-18 16-18 12 16-18	l/defl >792 >461 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18SHS Weight: 184 lb	GRIP 197/144 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SPF 2100F 1.8E SPF No.2 2x4 SPF 2100F 1.8E 2x3 SPF No.2 *Exce No.2		SPF	EBS DTES	6-18=-102/10 7-16=-224/20 10-12=-5409	94, 4-19=0/40 950, 6-16=-12 925, 10-13=-4 9642, 8-16=-1 9, 9-13=0/457	17/351, 39/132, 103/300,	,	or ti bott LOAD (he orient com chor CASE(S)	ation o d.) Stai	of the purlin along	, I
OTHERS LBR SCAB WEDGE BRACING TOP CHORD		athing directly applied , and 2-0-0 oc purlins	1) 2) d,	Unbalanced this design. Wind: ASC Vasd=91m II; Exp C; E cantilever le	d roof live load E 7-16; Vult=1 ph; TCDL=6.0 inclosed; MWF eft and right ex ed; Lumber Do	15mph (3-sec psf; BCDL=6. FRS (envelope (posed ; end v	cond gust) Opsf; h=25ft; e) exterior zo vertical left ar	Cat. ne; nd	ANCH THE I AS C THE I	HORAGE MINIMUN OLUMN (RESPON	, OR O ^T I REQU CAPS, E SIBILIT	EARING PLATES, THER MEANS TO J JIRED SUPPORT V BEARING BLOCKS Y OF THE TRUSS R THE BUILDING D	ALLOW FOR VIDTH (SUCH 5, ETC.) ARE
BOT CHORD	Rigid ceiling directly bracing.		3) 4)	Provide ade All plates a	equate drainaç re MT20 plate nas been desig	ge to prevent v s unless other	water pondin wise indicate	g.					
REACTIONS	(lb/size) 2=2258/0-	-3-8, (req. 0-3-11), (0-2-0 + bearing bloc 0) C 8) C 4), 12=-266 (LC 9)	k), 6)	chord live k * This truss on the botto 3-06-00 tall chord and a WARNING	bad nonconcu has been des om chord in all by 2-00-00 w any other men : Required bea	rrent with any signed for a liv areas where ide will fit betv bers, with BC aring size at jo	other live loa e load of 20. a rectangle veen the bott DL = 10.0ps	0psf .om			B	STATE OF M	MISSOLD I
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=0/6, 2-3=-5734/4 4-6=-4767/668, 6-7= 7-8=-3457/498, 8-9= 9-10=-5210/544, 10- 11-12=-184/67 2-19=-896/5322, 18-	865, 3-4=-5598/761, 3370/485, 4331/492, -11=-119/13,	8) 9) 10	Bearing at j using ANSI designer sh Provide me bearing pla joint 2 and 1	n input bearing joint(s) 12 con /TPI 1 angle to nould verify ca echanical conn te capable of 266 lb uplift at s designed in a	siders parallel o grain formula pacity of beari ection (by oth withstanding 3 joint 12. accordance w	a. Building ing surface. ers) of truss 71 lb uplift a ith the 2018	to t		1		SEVI NOM PE-2001	ER SER D18807
BOT CHORD	2-19=-696/3522, 16- 16-18=-472/3912, 14 13-14=-495/4777, 12	4-16=-321/3930,			al Residential and reference			and				CSSIONA	L ENGIS

September 7,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qtv	Plv	Lot 11 OS	AS NOTED FOR PLAN REVIEW
305	11035	Truss Type	Quy	I IV		DEVELOPMENT SERVICES 147787262
Lot 11 OS	A13	Roof Special Supported Gable	2	1	Job Reference (optional	
Wheeler Lumber, Waverly, KS	- 66871,	Run: 8.43 S Aug 16	2021 Print: 8	.430 S Aug 1	6 2021 MiTek Industries, Inc.	

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. ue Sep 709:5028/2021 ID:5nBDjN6JJdZ4GtpCxksIh4z6QmL-RfC?PsB70Hq3NSgPqnL8w3ulTXbGK VrCDoi73429-1

Scale = 1:74

Plate Offsets (X, Y): [22:0-4-7,0-3-0]

	/, // [,	-						_				
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		C		Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.04	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		VB	0.11	Horz(CT)	0.00	34	n/a	n/a		
BCDL		10.0	Code	IRC2018/TPI2014	N N	Aatrix-S							Weight: 273 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No 2x4 SPF No 2x4 SPF No Structural w 6-0-0 oc pur Rigid ceiling bracing. 1 Row at mi (lb/size) 2- 33 33 44 44 44 44 44 44 44 56 55 56 56 56 56 56 56 56 56 56	2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	athing directly applie cept end verticals. applied or 10-0-0 oc 22-45, 21-46, 20-47 23-44 -8-0, 34=86/40-8-0, 0-8-0, 36=118/40-8-0, 0-8-0, 40=120/40-8-1 0-8-0, 42=120/40-8-1 0-8-0, 42=120/40-8-1 0-8-0, 45=111/40-8-1 0-8-0, 51=118/40-8-1 0-8-0, 51=118/40-8-1 0-8-0, 51=120/40-8-1 0-8-0, 51=120/40-8-1 0-8-0, 55=120/40-8-1 0-8-0, 55=120/40-8-1 0-8-0, 59=120/40-8-1 0-8-0, 61=131/40-8-1 8-0, 63=234/40-8-0 C 8)	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	Max	. (L 9) 44 44 44 55 55 56 56 56 56 57 56 56 57 33 33 33 33 33 33 33 34 44 44 44 44 55 55 56 56 56 56 56 56 56 56 56 56 56	$\begin{array}{c} = -7 \ (LC 9), 34 = \\ = .C 9), 36 = -29 \ (I, 38 = -32 \ (LC 9), 4 \\ = .38 \ (LC 4), 5 \\ = .38 \ (L$	$\begin{array}{c} \text{C} 9), 37=3;\\), 39=-32 (\text{LC} 9),\\ 1=-32 (\text{LC} 9),\\ 7=-34 (\text{LC} 4)\\ 9=-28 (\text{LC} 8),\\ 1=-30 (\text{LC} 8),\\ 3=-29 (\text{LC} 8),\\ 5=-28 (\text{LC} 4),\\ 7=-28 (\text{LC} 8),\\ 9=-28 (\text{LC} 8),\\ 9=-28 (\text{LC} 8),\\ 9=-28 (\text{LC} 8),\\ 3=-69 (\text{LC} 8),\\ 3=-60 (\text{LC} 8),\\ 3=-6$	2 (LC 2 9), , , , , , , , , , , , , ,	TOP CF	iORD	4-5=-1 7-8=-1 10-11: 13-14: 15-16. 17-18: 19-20: 21-22: 23-24: 25-26. 27-28: 29-30: 32-33:	105/73, 8-9=-91/8 =-64/106, 11-13 =-49/128, 14-15 =-49/149, 16-17 =-49/171, 18-19 =-49/193, 20-21 =-48/191, 22-23 =-48/191, 24-25 =-44/151, 26-27 =-40/118, 28-29 =	/52, 6-7=-118/62, 84, 9-10=-78/95, -50/117, -49/138, -49/182, -49/182, -49/205, -49/205, -49/211, -46/167, -42/134, -38/102, 41/69, 31-32=-51/53, 34/39
				FORCES		- Maxim nsion	um Compressio	on/Maximum				Bo	JEV.	

NUMBER

PE-2001018807

G EL

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 11 OS	AS NOTED FOR PLAN REVIEW
Lot 11 OS	A13	Roof Special Supported Gable	2	1	Job Reference (optional	DEVELOPMENT SERVICES 147787262 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS - 6	66871,	Run: 8.43 S Aug 16 2 ID:5nBDjN6JJdZ4Gtp	2021 Print: 8 Cxkslh4z6Q	430 S Aug 1 mL-RfC?PsB	6 2021 MiTek Industries, Inc. 70Hq3NSgPqnL8w3uITXbGK	ue Sep 70 00 00 00 00 00 00 00 00 00 00 00 00

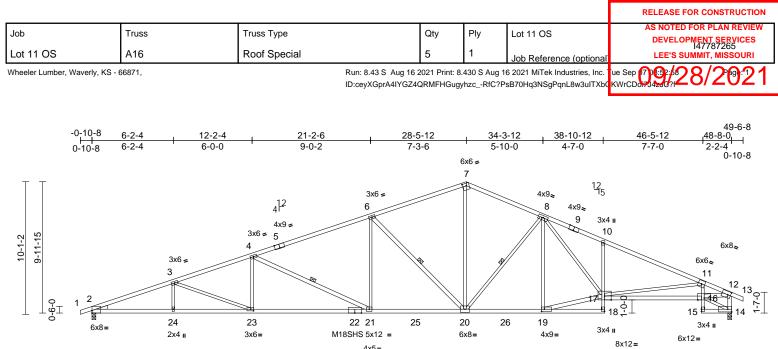
BOT CHORD	2-63=-49/40, 62-63=-49/40, 61-62=-49/40,
	60-61=-49/40, 59-60=-49/40, 58-59=-49/40,
	57-58=-49/40, 56-57=-49/40, 55-56=-49/40,
	54-55=-49/40, 53-54=-49/40, 52-53=-49/40,
	51-52=-49/40, 49-51=-49/40, 48-49=-49/39,
	47-48=-49/39, 46-47=-49/39, 45-46=-49/39,
	44-45=-49/39, 42-44=-49/39, 41-42=-49/39,
	40-41=-49/39, 39-40=-49/39, 38-39=-49/39,
	37-38=-49/39, 36-37=-49/39, 35-36=-49/39,
	34-35=-49/39
WEBS	22-45=-105/11, 21-46=-97/32, 20-47=-94/50.
	19-48=-93/44, 18-49=-93/45, 17-50=-94/44,
	16-51=-93/45, 15-52=-93/44, 14-53=-93/44,
	13-54=-93/44, 11-55=-93/44, 10-56=-93/44,
	9-57=-93/44, 8-58=-93/44, 7-59=-94/45,
	6-60=-92/44, 5-61=-100/47, 4-62=-62/31,
	3-63=-173/96, 23-44=-97/32, 24-42=-94/54,
	25-41=-93/48, 26-40=-93/48, 27-39=-93/48,
	28-38=-93/48, 29-37=-93/48, 30-36=-93/43,
	31-35=-99/72, 32-34=-64/11

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. All plates are 2x4 MT20 unless otherwise indicated. 4)
- Gable requires continuous bottom chord bearing. 5)
- 6) Gable studs spaced at 1-4-0 oc.
- This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 14 lb uplift at joint 34, 16 lb uplift at joint 46, 34 lb uplift at joint 47, 29 lb uplift at joint 48, 28 lb uplift at joint 49, 28 lb uplift at joint 50, 30 lb uplift at joint 51, 28 lb uplift at joint 52, 29 lb uplift at joint 53, 28 lb uplift at joint 54, 28 lb uplift at joint 55, 28 lb uplift at joint 56, 28 lb uplift at joint 57, 28 lb uplift at joint 58, 28 lb uplift at joint 59, 28 lb uplift at joint 60, 30 lb uplift at joint 61, 21 lb uplift at joint 62, 69 lb uplift at joint 63, 16 lb uplift at joint 44, 38 lb uplift at joint 42, 32 lb uplift at joint 41, 32 lb uplift at joint 40, 32 lb uplift at joint 39, 32 lb uplift at joint 38, 32 lb uplift at joint 37, 29 lb uplift at joint 36, 50 lb uplift at joint 35 and 7 lb uplift at joint 2.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

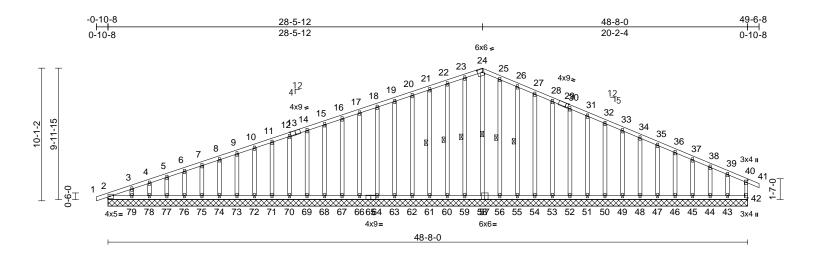
														RELEAS	E FOR CONSTRUCTION
Job		Truss			Truss Type	1		Qty		Ply	Lot 11	os			
Lot 11 OS		A14			Roof Sne	cial Struc	tural Gable	2		1		. ,			LOPMENT SERVICES 147787263 S SUMMIT, MISSOURI
Wheeler Lumber	. Waverly, KS						Run: 8.43 S Aug		Print: 8.4	430 S Aug 1		ference (Tek Indust		ue Sep 7 16:52:	
	, marchij, no						ID:5MeftbDtFQ51	Jwy4rpPE	BrXyhdrl	h-RfC?PsB7	70Hq3NSg	PqnL8w3u	ITXbGKV	rCDoi7J4zJC9	20/2021
									28-5-	12					
	-0-10-8	6-2-4		<u>2-2-4</u> 5-0-0		<u>20-7-4</u> 8-5-0	<u>25-1-12</u> 4-6-8	27-4	4-3	34-3 5-1		+	<u>41-6-2</u> 7-2-5		<u>18-8-0</u> 49-6-8 7-1-14 0-10-8
	0-10-8	6-2-4	Ċ	0-0-0		8-5-0	4-0-8	2-2	-7 1-1- 12)		0-0		7-2-5	1	7-1-14 0-10-8
								3х4 н		8		4x9 ≈			
ΤT							6x6 =	7	-		. 3	x6=			
					41 ²		6		//		1	⁹ 10	12 15		
					4x9	•	R							3x6 ≈	
<u>10-1-2</u> 9-11-15					^{4x9} = 5 4				Þ	3				11	
9-1			3x6 ≠					HK.		4	//		B		M18SHS 7x12 👟
			3					1 30					\mathbf{A}		12
0	1 2						3-0-0		\mathscr{N}				/	3x4	
			25				₽22 ⊥	19 🖶		14	18	<u>k</u>		485	14
	6x8=		25		24 6x18=	23 4x9=	M18SHS 7x1 3x6 II	6 = 3x4 II		18 4 x12=		17 3x6=		1615 4x9=	M18SHS 5x12 =
							M18SHS							6x6=	
	H	6-2-4		2-2-4	-1	20-8-8	25-0-8		3-7-8		3-12		1-0-8	_	18-8-0
		6-2-4	t	6-0-0		8-6-4	4-4-0	3	-7-1	5-6	8-4	t	5-8-11	0-5-10	7-1-14
0															
Scale = 1:87.6	[2:Ed	ge,0-2-5],	[5:0-4-8,Edg	e], [8:0-9-	4,0-2-4], [1	0:0-4-5,Ed	ge], [12:0-3-0,0-1-12	2], [15:0	-2-8,0-	3-0], [16:0	-4-6,Edg	e], [17:0-:	2-8,0-1-8	3], [21:0-8-12,Ed	ge],
Plate Offsets (2							,0-0-4], [31:0-1-12,0								
Loading		(psf)	Spacing		2-0-0		CSI		DEFL		in (lo	c) l/de	i L/d	PLATES	GRIP
TCLL (roof) TCDL		25.0 10.0	Plate Grip I Lumber DC		1.15 1.15		TC BC	0.88	Vert(L Vert(C	,	.75 22- .37 22-			MT20 M18SHS	197/144 197/144
BCLL		0.0*	Rep Stress		YES		WB	0.99 0.93	Horz(,		24 >42 14 n/a		WI IOSHS	197/144
BCDL		10.0	Code		IRC2018/T	PI2014	Matrix-S		Wind(LL) 0	.50	22 >99	9 240	Weight: 260 lb	FT = 10%
		0.45			WEB		3-25=0/212, 3-24=- 21-24=-764/5144, 4				1,				
TOP CHORD	2x4 SPF N 1-5:2x4 SF		pt* 5-8:2x6 S 1.8E	PF N0.2,			6-20=-2609/500, 18	-20=-29	2/3696	5,					
BOT CHORD			*Except* 22 14:2x4 SPF		k 3		8-20=-626/4790, 8- 9-18=-719/232, 9-1				8				
WEBS	2x4 SPF N0.2,			NU.2			11-15=-415/141, 12				σ,				
			20-6,18-9,17 1-21,20-8:2x4				roof live loads have	been c	oneido	red for					
0711550	1.8E	,	,		th	is design.									
OTHERS WEDGE	2x4 SPF N Left: 2x4 S				,		57-16; Vult=115mpl h; TCDL=6.0psf; B0			,					
	o				II	; Exp C; Ér	nclosed; MWFRS (e	nvelope) exter	ior zone;					
TOP CHORD			athing directly cept end verti				ft and right exposed d; Lumber DOL=1.6								
BOT CHORD	Rigid ceilir bracing.	ng directly	applied or 2-	2-0 oc			ned for wind loads in uds exposed to wind								
WEBS	1 Row at r	nidpt	6-20, 8-18, 9	-18, 11-17	7 S	ee Standar	d Industry Gable Er	nd Detai	ls as aj	pplicable,					
REACTIONS		2=2248/0- 14=2248/0	-3-8, (req. 0-3	-10),			ualified building des e MT20 plates unles								
	Max Horiz	2=170 (LC	C 12)				e 2x4 MT20 unless spaced at 2-0-0 oc.		e indic	ated.					
			C 4), 14=-26 C 2), 14=232		,		as been designed fo		psf bo	ottom					
FORCES		,	pression/Max	. ,			ad nonconcurrent w has been designed							STATE	ADD
	Tension				0	n the botto	m chord in all areas	where a	a recta	ngle .			. 1	FEOF	MISSO
TOP CHORD	4-6=-7360	/1050, 6-7	842, 3-4=-518 ′=-5289/744,	<i>6111</i> 04,			by 2-00-00 wide will ny other members, v						B	1251	M. T
			-3084/505, 12=-3620/38	6	9) V	/ARNING:	Required bearing si						A		TER Y
	12-13=0/2	7, 12-14=-	2205/302				earing size.	(by othe	ers) of t	truss to			8		0 1*8
BOT CHORD			25=-863/531 0/148, 6-21=-		b	earing plat	e capable of withsta	nding 3					8	La He	in the second
	20-21=-88	3/6938, 19	9-20=0/45,		JC		67 lb uplift at joint 1 designed in accord		th the 2	2018			- W		1018807
	7-20=-265 17-18=-25		9=-4/14, 5-17=-289/32	70,	Ír	iternationa	Residential Code s	ections	R502.	11.1 and			Ø	PE-200	A A
	14-15=-70						Ind referenced stand	Jaru AN	3#1PI	1.				SSION	U ENO.



Job	Truss		Truss Type		Qty	Ply	Lot 11 OS		AS N	IOTED FOR F	DNSTRUCTION PLAN REVIEW
Lot 11 OS	A15		Roof Special		2	1		ence (optional)		VELOPMEN 1477 E'S SUMMIT	
Wheeler Lumber, V	Waverly, KS - 66871,		ļ ·				g 16 2021 MiTek PsB70Hq3NSgP	Industries, Inc.	ue Sep 7 7	k 28/	2021
	-0- <u>10-8 6-2-4</u> 0-10-8 6-2-4	<u>12-2-4</u> 6-0-0	<u>21-2-6</u> 9-0-2	I	<u>28-5-12</u> 7-3-7		4-3-11 5-9-14	<u>41-6-2</u> 7-2-7		<u>48-8-0</u> 7-1-14	49-6-8
⊢ 10-1-2 ⊢ 9-11-15 ⊢	1 2 6x8=	3x6 = 3 21 2x4 II	4^{12} 3x6 = 5 4 20 3x6 =	3x6 = 6 19 18 M18SHS 5x12 = 4x5=	22	7 7 17 6x8=	4x5 3x6= 8c 4 23 16 15 4x9= 3x6i	2 ¹² 5	3x6 <i>z</i> 10 14 6x6=		5x12 x 11 12 of 13 + 4x5=
	<u>6-2-4</u> 6-2-4	12-2-4 6-0-0	<u>21-2-6</u> 9-0-2		28-4-8 7-2-3		4-3-12 -11-3	41-6-2 7-2-6		48-8-0 7-1-14	

Scale = 1:87.6													
Plate Offsets (2	X, Y): [2:Edge,0-2-5],	[5:0-4-8,Edge], [7:0-3	3-12,0-2-	•8], [9:0-4-7,Edg	ge], [11:0-4-15,0	-2-8], [14:0)-2-8,0-3-0], [15:0-2-8	8,0-1-8],	[20:0-2-8	3,0-1-8	B]	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	18/TPI2014	CSI TC BC WB Matrix-S	0.85 0.99 0.76	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.51 -0.94 0.24 0.31	13	l/defl >999 >619 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18SHS Weight: 196 lb	GRIP 197/144 197/144 FT = 10%
	SPF No.2 2x4 SPF 2100F 1.8E SPF No.2 2x3 SPF No.2 *Exce SPF No.2, 13-11:2xt Left: 2x4 SP No.3 Structural wood she except end verticals Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 2=2244/0 13=2251// Max Horiz 2=171 (LC Max Uplift 2=-379 (L Max Grav 2=2333 (L	athing directly applied applied or 2-2-0 oc 6-17, 8-17, 10-15, 4- -3-8, (req. 0-3-11), 0-3-8, (req. 0-3-11) C 8) C 4), 13=-268 (LC 9) -C 2), 13=2350 (LC 2)	2x4 3; 4; 5; 1, 18 7; 8;	 Vasd=91mpl II; Exp C; En cantilever lef right expose. All plates are This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar WARNING: I greater than Provide mec bearing plate joint 2 and 20 This truss is International 	7-16; Vult=115r 7; TCDL=6.0psf; closed; MWFRS t and right exposi- d; Lumber DOL= e MT20 plates ur is been designed ad nonconcurrer has been designed n chord in all are y 2-00-00 wide by other member Required bearing input bearing siz hanical connecti e capable of with 68 lb uplift at joir designed in accor Residential Coon nd referenced st	BCDL=6.(\$ (envelopesed; end v -1.60 plate nless other end to ra 10.0 t with any ed for a 10.0 t with any ed for a liv pass where will fit betw s, with BC g size at jo ze. on (by oth standing 3 t 13. ordance wile sections	Dpsf; $h=25ft$; e) exterior zovertical left ar- grip DOL=1. yrip DOL=1. Dpsf bottom other live load e load of 20.0 a rectangle ween the bottw DDL = 10.0psi int(s) 2, 13 ers) of truss to int(s) 2, 13 ers) of truss to ith the 2018 is R502.11.1 a	ne; id 60 id. ds. Dpsf f. to t					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=0/6, 2-3=-5793/ 4-6=-4134/611, 6-7= 7-8=-3109/503, 8-10 10-11=-3622/382, 1 11-13=-2233/304 2-21=-855/5370, 20- 18-20=-728/4953, 1	834, 3-4=-5265/775, 3052/481, 0=-3568/462, 1-12=0/30, -21=-855/5370, 7-18=-461/3847,	L	OAD CASE(S)	Standard							STATE OF M	
WEBS NOTES 1) Unbalance this design	10-14=-426/140, 11- 3-21=0/225, 3-20=-4 4-18=-1234/297, 6-1	17=-213/1789, 5=0/348, 10-15=-230/ -14=-241/3088, 179/144, 4-20=0/446, 18=-23/870	142,									PE-2001	L ENGINE

September 7,2021


			4	x5=		8x12= M18SHS 5x12 =						
L	6-2-4	12-2-4	21-2-6	28-4-8	34-3-12	39-0-0	46-4-8	48-8-0				
	6-2-4	6-0-0	9-0-2	7-2-2	5-11-4	4-8-4	7-4-8	2-3-8				

X, Y): [2:Edge,0-2-5],	[5:0-4-8,Edge], [7:0-3	3-8,0-2-4	4], [9:0-4-8,Edge	e], [12:0-2-9,0-3-0	0], [18:Ed	ge,0-2-8], [19	:0-2-8,0	-2-0], [23	3:0-2-8,0	-1-8]		
(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	18/TPI2014	CSI TC BC WB Matrix-S	0.81 0.75 0.93	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(L)	-0.96 0.35	21-23 14	l/defl >999 >602 n/a	L/d 360 240 n/a 240	PLATES MT20 M18SHS	GRIP 197/144 197/144 FT = 10%
10.0	Code	IKC20	10/1112014	Watrix-S	-	WIND(LL)	0.32	21-23	>999	240	Weight. 205 lb	FT = 10%
2x4 SPF 2100F 1.88 No.2 2x4 SPF 2100F 1.88 18-10,11-15:2x3 SP No.2 2x3 SPF No.2 *Exce 20-6,19-17,14-12,21 Left: 2x4 SP No.3 Structural wood she 2-2-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 2=2248/0 14=2248/ Max Horiz 2=171 (LC Max Uplift 2=-380 (L Max Uplift 2=-380 (L Max Grav 2=2337 (I (lb) - Maximum Com Tension 1-2=0/6, 2-3=-5804/ 4-6=-4146/612, 6-7- 7-8=-3117/502, 8-10 10-11=-4562/487, 1 12-13=0/27, 12-14= 2-24=-856/5381, 23 21-23=-729/4965, 2 19-20=-252/3223, 1 10-17=-427/220, 16 15-16=0/30, 11-16= 6-20=-1467/344, 7-2 8-20=-706/228, 8-16 17-19=-220/3227, 8	E *Except* 7-9:2x4 SF E *Except* F No.2, 15-14:2x4 SF ept* -4,16-12:2x4 SPF No extra sector of the sector of	PF 1 PF 2 p.2 3 4 d or 5 6 7) 8 L 0/77, 69 43,	IOTES) Unbalanced this design.) Wind: ASCE Vasd=91mph II; Exp C; Encode cantilever lef right exposer) All plates are) This truss ha chord live loa) * This truss ha on the bottom 3-06-00 tall b chord and ar) WARNING: F greater than) Provide mech bearing plate joint 2 and 26) This truss is International R802.10.2 ar	roof live loads ha 7-16; Vult=115m n; TCDL=6.0psf; Closed; MWFR5 t and right expos d; Lumber DOL= MT20 plates un is been designed n chord in all are by 2-00-00 wide to y other member Required bearing input bearing siz hanical connecting capable of withs 67 Ib uplift at join designed in accor Residential Cod nd referenced sta	nph (3-see BCDL=6. (envelope ed; end 1 1.60 plate less other for a 10. t with any ed for a liv as where will fit betv s, with BC e. on (by oth standing 3 t 14. ordance w e sections	considered fc cond gust) Opsf; h=25ft; e) exterior zo vertical left ar grip DOL=1. rwise indicate 0 psf bottom other live loa re load of 20. a rectangle ween the bott CDL = 10.0ps oint(s) 2, 14 uers) of truss 1 380 lb uplift ar ith the 2018 s R502.11.1 a	or Cat. ne; nd .60 ads. opsf om f. to t				STATE OF I	MISSOUR TM. ER 018807
											Septemb	er 7,2021
	(psf) 25.0 10.0 0.0* 10.0 2x4 SPF 2100F 1.8l No.2 2x4 SPF 2100F 1.8l 18-10,11-15:2x3 SP No.2 2x3 SPF No.2 *Exce 20-6,19-17,14-12,21 Left: 2x4 SP No.3 Structural wood she 2-2-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 2=2248/0 14=2248/ Max Horiz 2=171 (Lf Max Grav 2=2337 (l (lb) - Maximum Corr Tension 1-2=0/6, 2-3=-5804/ 4-6=-4146/612, 6-7- 7-8=-3117/502, 8-10 10-11=-4562/487, 1 12-13=0/27, 12-14= 2-24=-856/5381, 23 21-23=-729/4965, 2 19-20=-252/3223, 1 10-17=-427/220, 16 15-16=0/30, 11-16= 6-20=-1467/344, 7-2 8-20=-706/228, 8-15 11-17=-76/291, 3-22 4-23=0/446, 4-21=-	(psf) Spacing 25.0 Plate Grip DOL 10.0 Lumber DOL Rep Stress Incr Code 2x4 SPF 2100F 1.8E *Except* 7-9:2x4 SF No.2 2x4 SPF 2100F 1.8E *Except* 2x4 SPF 2100F 1.8E *Except* 18-10,11-15:2x3 SPF No.2, 15-14:2x4 SF No.2 2x3 SPF No.2 *Except* 20-6,19-17,14-12,21-4,16-12:2x4 SPF No Left: 2x4 SP No.3 Structural wood sheathing directly applied 2-20 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing. 1 Row at midpt 6-20, 8-20, 4-21 (lb/size) 2=2248/0-3-8, (req. 0-3-11), 14=2248/0-3-8, (req. 0-3-11), 14=2248/0-3-8, (req. 0-3-11) Max Horiz 2=171 (LC 8) Max Uplift 2=300 (LC 4), 14=-267 (LC 9) Max Grav 2=2337 (LC 2), 14=2349 (LC 2 (lb) - Maximum Compression/Maximum Tension 1-2=0/6, 2-3=-5804/835, 3-4=-5277/776, 4-6=-4146/12, 6-7=-3066/482, 7-8=-3117/502, 8-10=-4503/560, 10-11=-4562/487, 11-12=-4108/477, 12-13=0/27, 12-14=-2293/259 2-24=-856/5381, 23-24=-856/5381, 21-23=-729/4965, 20-21=-463/3858, 19-20=-252/3223, 18-19=38/95, 17-18=C 10	(psf) Spacing 2-0-0 25.0 Plate Grip DOL 1.15 10.0 Lumber DOL 1.15 10.0 Rep Stress Incr YES 0.0* Rode IRC20 2x4 SPF 2100F 1.8E *Except* 2 1 No.2 2x4 SPF 2100F 1.8E *Except* 2 2x4 SPF 2100F 1.8E *Except* 2 1 No.2 2x3 SPF No.2 *Except* 2 2v6.19-17,14-12,21-4,16-12:2x4 SPF No.2 Left: 2x4 SP No.3 3 Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals. 5 Rigid ceiling directly applied or 6-0-0 oc bracing. 1 1 1 Row at midpt 6-20, 8-20, 4-21 6 (lb/size) 2=2248/0-3-8, (req. 0-3-11), 14=2248/0-3-8, (req. 0-3-140, 74, 7-20=20322) Max Uplift 2=-380 (LC	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(psf) Spacing 2-0-0 CSI (i) Plate Grip DOL 1.15 TC 0.81 10.0 0.0* Plate Grip DOL 1.15 BC 0.75 10.0 0.0* Rep Stress Incr YES WB 0.93 10.0 Code IRC2018/TPI2014 Matrix-S NOTES 2x4 SPF 2100F 1.8E *Except* 7-9:2x4 SPF NOTES 1) Unbalanced roof live loads have been this design. 10.0 Structural wood sheathing directly applied or 6-0-0 cc bracing. 10 Umbalanced roof live load nonconcurrent with any other members, with BC 11 Structural wood sheathing directly applied or 6-0-0 cc bracing. All plates are MT20 plates unless other 43-06-00 tall by 2-00-00 wide will fit bet and right exposed; Lumber DOL=16.00 plate 3) 11 Nax Horiz 2=171 (LC 8) WARNING: Required bearing size at jc greater than input bearing size at jc greater than input bearing size at jc greater than input bearing size. 7) 11 Provide mechanical connection (by other members, with BC 6) WARNING: Required bearing size. 11 Max trize 3-730 (LC 2), 14=2349 (LC 2) 7) Provide mechanical connect	(psf) Spacing 2-0-0 CSI DEFL (i) (i) (i) (i) (i) (ii) (iii) (iiii) (iii) (iiii) (iiii) (iiii)	(pst) Spacing 2-0-0 CSI DEFL in (i) ((ps) Spacing 2-0-0 CSI Def L in (loc) (25.0 Plate Grip DOL 1.15 TC 0.81 Vert(L1) -0.53 21-23 (10.0) (10.0) (11.15 BC 0.75 Vert(CT) -0.96 21-23 (10.0) (11.15 BC (11.15 BC 0.75 Vert(CT) -0.95 1-22-14 (11.15 (11.15 (11.15 (11.15 BC (11.15	(ps) Spacing 2-0-0 CSI DEFL in (loc) I/deft 10.0 Lumber DOL 1.15 TC 0.81 Vert(L) -0.53 21-23 >609 0.0 Pate Grip DOL 1.15 BC 0.75 Vert(CT) -0.96 21-23 >609 0.0 Pate Stress Incr YES WB 0.33 Vert(CT) -0.95 14 n/a 0.0 Rode IRC2018/TPI2014 Matrix-S 0.33 Wind(LL) 0.32 21-23 >609 2x4 SPF 2100F 1.8E "Except" 7-9:2x4 SPF 10.0 10.01 15.0 11.5 TC 0.01 0.33 14 n/a 2x4 SPF 2100F 1.8E "Except" 7-9:2x4 SPF 10.0 10.01	25.0 Piste Grip DOL 1.15 TC 0.81 Vert(L) -0.53 21-23 >960 240 0.0 Rep Stress Incr YES WB 0.93 Horz(CT) -0.96 21-23 >602 240 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.35 14 n/a n/a 2x4 SPF 2100F 1.8E "Except" 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.32 21-23 >999 240 2x4 SPF 2100F 1.8E "Except" 1.0.balanced roof live loads have been considered for this design. 0.00 1.0.balanced roof live loads have been considered for this design. 0.00 0.0	(psf) Spacing 20-0 (psf) 20-0 20-0 20-0 (psi) 20-0 20-0 20-0 20-0 (psi) 20-0 20-0 20-0 20-0<

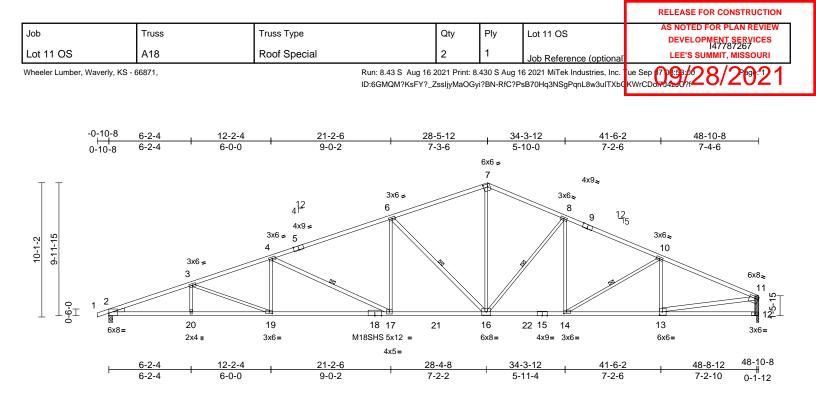
							RELEASE FOR CONSTRUCTION
Job		Truss	Truss Type	Qtv	Plv	Lot 11 OS	AS NOTED FOR PLAN REVIEW
000		11035		Quy	i iy		DEVELOPMENT SERVICES 147787266
Lot 11	OS	A17	Roof Special Supported Gable	2	1	Job Reference (optional	
Wheeler	Lumber, Waverly, KS - 6	66871,	Run: 8.43 S Aug 16 2	2021 Print: 8.	.430 S Aug 1	6 2021 MiTek Industries, Inc.	

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. ue Sep 70 39 49 28 29 10:W3M06mk9XdimnHGkYBzAJ9yhzRo-RfC?PsB70Hq3NSgPqnL8w3uITXb KWrCDer J4215 28 29 21

Scale = 1:87.6

.oading		(psf)	Spacing	2-0-0	CS			DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15	TC		0.08	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15	BC		0.04	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES	WB		0.11	Horz(CT)	0.00	42	n/a	n/a		
BCDL		10.0	Code	IRC2018/TPI2014	Ma	rix-S							Weight: 322 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF I 2x3 SPF I 2x4 SPF I Structural 6-0-0 oc p Rigid ceili bracing. 1 Row at	No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2),),),),),),),),),),),),),)		$\begin{array}{c} 45 = -35 \ (LG \\ 47 = -32 \ (LG \\ 51 = -32 \ (LG \\ 51 = -32 \ (LG \\ 53 = -32 \ (LG \\ 53 = -32 \ (LG \\ 53 = -32 \ (LG \\ 63 = -28 \ (LG \\ 72 = -28 \ (LG \ (LG \\ 72 = -28 \ (LG \ (L$	$ \begin{array}{c} (\begin{array}{c} 9 \end{array}), 4 \\ C & 9 \end{array}), 4 \\ C & 9 \\ C & 9 \\ 1, 4 \\ C & 9 \\ 1, 5 \\ C & 1 \\ 1, 5 \\ 1,$	4=-20 (LC 9), 6=-31 (LC 9), 8=-32 (LC 9), 10=-32 (LC 9), 10=-32 (LC 9), 14=-32 (LC 9), 14=-32 (LC 9), 14=-32 (LC 9), 14=-28 (LC 8), 12=-28 (LC 8), 13=-28 (LC 8), 14=-28 (LC 8), 15=-28 (LC 8), 1),),),), ; ;),),),),),),),),),),	TOP CH	IORD	4-5=-1 7-8=-1 10-11: 12-14: 15-16: 17-18: 19-20: 21-22: 23-24: 22-26: 27-28: 30-31: 32-33: 34-35: 37-38: 40-41:	04/158, 8-9=-90 =-63/191, 11-12= =-38/213, 14-15= =-38/256, 18-19= =-38/256, 18-19= =-38/256, 18-19= =-38/226, 22-21= =-37/302, 26-27= =-37/302, 26-27= =-32/250, 28-30= =-29/201, 31-32= =-25/152, 33-34= =-21/103, 35-36= =-17/53, 38-39== =0/26, 40-42=-13	1/137, 6-7=-117/14; 1/169, 9-10=-76/180, -49/202, -38/223, -38/245, -38/267, -38/288, -38/312, -38/317, -38
				FORCES	(lb) - l Tensi	Maximum Com	pressio	on/Maximum					^{ESSIONA}	LEI
					10191	211							Septemb	

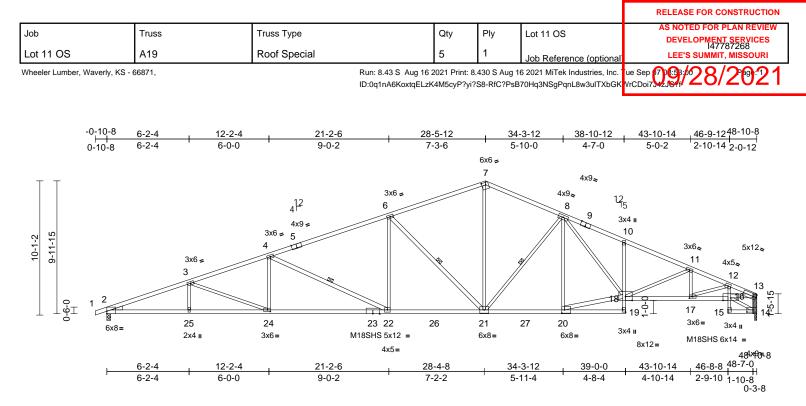
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 11 OS	AS NOTED FOR PLAN REVIEW
005	11055		Guy	1 19		DEVELOPMENT SERVICES 147787266
Lot 11 OS	A17	Roof Special Supported Gable	2	1	Job Reference (optional	
Wheeler Lumber, Waverly, KS	- 66871,				6 2021 MiTek Industries, Inc. PsB70Hq3NSgPqnL8w3uITXb	


BOT CHORD	$\begin{array}{l} 2-79=-15/30, 78-79=-15/30, 77-78=-15/30, \\ 76-77=-15/30, 75-76=-15/30, 74-75=-15/30, \\ 73-74=-15/30, 69-70=-15/30, 68-69=-15/30, \\ 70-71=-15/30, 69-70=-15/30, 68-69=-15/30, \\ 67-68=-15/30, 62-63=-15/30, 61-62=-15/30, \\ 63-64=-15/30, 59-60=-15/30, 58-59=-15/30, \\ 60-61=-15/30, 59-60=-15/30, 58-59=-15/30, \\ 53-54=-15/30, 52-53=-15/30, 51-52=-15/30, \\ 53-54=-15/30, 49-50=-15/30, 48-49=-15/30, \\ 50-51=-15/30, 49-50=-15/30, 48-49=-15/30, \\ 44-45=-15/30, 43-44=-15/30, 42-43=-15/30, \\ 44-45=-15/30, 43-44=-15/30, 42-43=-15/30, \\ 24-58=-162/4, 23-59=-97/28, 22-60=-94/51, \\ 21-61=-93/45, 20-62=-93/44, 19-63=-93/44, \\ 18-64=-93/44, 17-65=-93/44, 12-70=-93/44, \\ 11-71=-93/44, 17-75=-93/44, 6-76=-93/44, \\ 5-77=-94/45, 4-78=-89/44, 3-79=-109/73, \\ 25-56=-97/23, 26-52=-94/57, 27-54=-93/48, \\ 28-53=-93/48, 31-52=-93/48, \\ \end{array}$
	28-53=-93/48, 30-52=-93/48, 31-51=-93/48,
	32-50=-93/48, 33-49=-93/48, 34-48=-93/48,
	35-47=-93/48, 36-46=-93/48, 37-45=-93/49,
NOTES	38-44=-97/43, 39-43=-77/71

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 5)
- Gable studs spaced at 1-4-0 oc. 6)
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 14 lb uplift at joint 42, 46 lb uplift at joint 2, 12 lb uplift at joint 59, 35 lb uplift at joint 60, 29 lb uplift at joint 61, 28 lb uplift at joint 62, 28 lb uplift at joint 63, 28 lb uplift at joint 64, 28 lb uplift at joint 66, 28 lb uplift at joint 67, 28 lb uplift at joint 68, 28 lb uplift at joint 69, 28 lb uplift at joint 70, 28 lb uplift at joint 71, 28 lb uplift at joint 72, 28 lb uplift at joint 73, 28 lb uplift at joint 74, 28 lb uplift at joint 75, 29 lb uplift at joint 76, 29 lb uplift at joint 77, 30 lb uplift at joint 78, 53 lb uplift at joint 79, 7 lb uplift at joint 56, 41 lb uplift at joint 55, 32 lb uplift at joint 54, 32 lb uplift at joint 53, 32 lb uplift at joint 52, 32 lb uplift at joint 51, 32 lb uplift at joint 50, 32 lb uplift at joint 49, 32 lb uplift at joint 48, 32 lb uplift at joint 47, 31 lb uplift at joint 46, 35 lb uplift at joint 45, 20 lb uplift at joint 44 and 80 lb uplift at joint 43.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

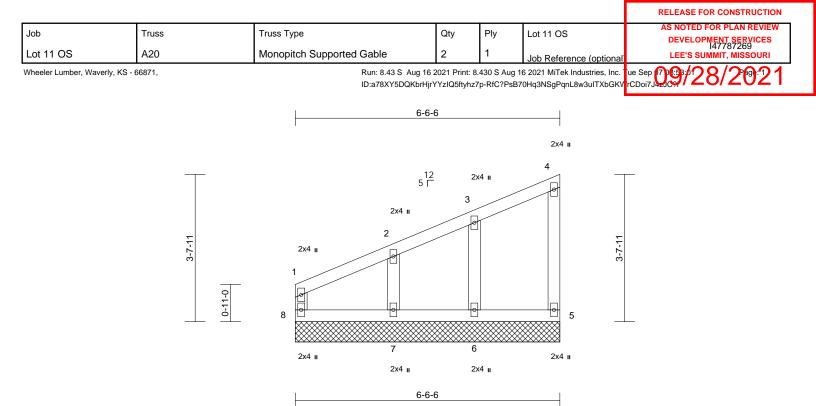
LOAD CASE(S) Standard


APPLY 2 X 4 SPF/DF/SP NO.2 SCAB TO ONE FACE OF TRUSS AS SHOWN. ATTACH WITH (0.131" X 3") NAILS PER THE FOLLOWING NAIL SCHEDULE: 2 x 3'S - 1 ROW, 2 x 4'S - 2 ROWS,

🚄 2 x 6'S AND LARGER - 3 ROWS: SPACED @ 2" O.C. USE 2" MEMBER END DISTANCE.

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.81	Vert(LL)	-0.51	17-19	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.76	- (-)	-0.94		>623	240	M18SHS	197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.80	- (-)	0.23	12	n/a	n/a		
BCDL	10.0	Code	IRC20	8/TPI2014	Matrix-S		Wind(LL)	0.31	17-19	>999	240	Weight: 197 lb	FT = 10%
LUMBER			v	/EBS	7-16=-214/18	15, 8-16=-75	5/239,		LOAD	CASE(S) Sta	ndard	
TOP CHORD		3E *Except* 7-9:2x4 S	PF		8-14=-5/393, 1								
	No.2				10-13=-387/14			-					
BOT CHORD	2x4 SPF 2100F 1.8				3-20=0/225, 3 4-17=-1234/29			э,					
NEBS	2x3 SPF No.2 *Exc 12-11,13-11,4-17,6				6-16=-1469/34		010,					ARING PLATES, SP	
_BR SCAB	12-11, 13-11, 4-17, 6 12-11 SPF No.2 o		N	OTES	2.00.000							IER MEANS TO AL	
NEDGE	Left: 2x4 SP No.3				d roof live loads	have been o	considered fo	or	AS COL	UMN CA	PS, BE	ARING BLOCKS, E	
BRACING				this design								OF THE TRUSS	SIGNER
TOP CHORD	Structural wood sh	eathing directly applie	dor 2) Wind: ASC	E 7-16; Vult=11	5mph (3-sec	ond gust)		MANO	ACTORE			SIGNER.
		xcept end verticals.			ph; TCDL=6.0p								
BOT CHORD		y applied or 8-5-2 oc			Inclosed; MWFI								
	bracing.				eft and right exp ed; Lumber DO								
WEBS	1 Row at midpt	8-16, 10-14, 4-17, 6	-16 3		re MT20 plates								
REACTIONS	(lb/size) 2=2258/ 13-2184	0-3-8, (req. 0-3-11), 5/(0-2-0 + bearing bloc			re 3x6 MT20 ur			<i>.</i>					
	(reg.0-3		5		nas been desigr								
	Max Horiz 2=178 (I	,		chord live l	oad nonconcurr	ent with any	other live loa	ids.					
	· · · · · · · · · · · · · · · · · · ·	LC 4), 12=-246 (LC 9	, 6		s has been desi			0psf				Ann	and
		(LC 2), 12=2299 (LC 3			om chord in all			~ m				TATE OF M	IISS D
FORCES		mpression/Maximum	,		l by 2-00-00 wic any other memb						A	T. P.	N.S.
	Tension	1	7		: Required bear						A	SCOTT	M. CM
TOP CHORD	1-2=0/6, 2-3=-5833	3/837, 3-4=-5308/779,			n input bearing						R	SEVI	ER \V
	4-6=-4178/615, 6-7		8) Bearing at	joint(s) 12 cons	iders parallel	to grain valu	ie			12 +		\wedge
	7-8=-3153/506, 8-1				I/TPI 1 angle to						NX X	4	
BOT CHORD	10-11=-3781/397, 2-20=-867/5408, 1		-		nould verify cap					_	X	Collynn	serve
JOT CHORD	2-20=-867/5408, 1 17-19=-740/4994.	,	9		echanical conne						117	PE-2001	
	14-16=-266/3285,	,			te capable of w 246 lb uplift at j		ou in ubilit a	L			N	-2001	SISSO ISB
	12-13=-53/213	,	1	,	s designed in a		ith the 2018				Y	1ºSe	GN B
					al Residential C			nd				SIONA	TENA

September 7,2021

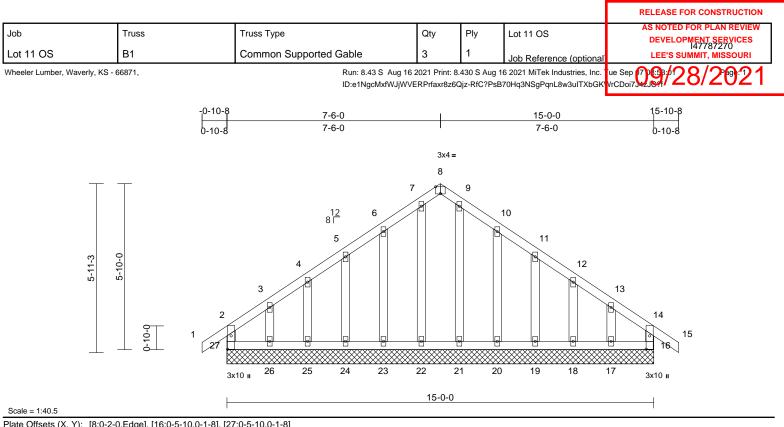


APPLY 2 X 4 SPF/DF/SP NO.2 SCAB TO ONE FACE OF TRUSS AS SHOWN, ATTACH WITH (0.131" X 3") NAILS PER THE FOLLOWING NAIL SCHEDULE: 2 x 3'S - 1 ROW, 2 x 4'S - 2 ROWS, 2 x 6'S AND LARGER - 3 ROWS: SPACED @ 2" O.C. USE 2" MEMBER END DISTANCE.

Plate Offsets (X, Y): [2:Edge,0-2-5],	[5:0-4-8,Edge], [7:0	-3-8,0-2-4]	, [9:0-4-8,Edg	ge], [14:0-5-8,0-2-0]	, [17:0-2	-8,0-1-8], [19	:Edge,0	-2-8], [20):0-2-8,0)-3-0],	[24:0-2-8,0-1-8]	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.81 0.76 0.79	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-1.01 0.40	(loc) 22-24 22-24 14 22-24	l/defl >999 >579 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18SHS Weight: 207 lb	GRIP 197/144 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD	2x4 SPF 2100F 1.8E SPF No.2 2x4 SPF 2100F 1.8E 19-10,12-15:2x3 SPI	E *Except*	2x4	OT CHORD	2-25=-867/5408, 2 22-24=-740/4994, 20-21=-265/3275, 18-19=0/79, 10-18 17-18=-438/4491,	21-22=- 19-20=- =-305/1 16-17=-	474/3888, 18/137, 60, 507/4674,		bea join 9) Thi	tring plat t 2 and 2 s truss is	te capa 246 lb s desig	able of withstandin uplift at joint 14. ned in accordanc	others) of truss to ng 380 lb uplift at e with the 2018 ions R502.11.1 and
WEBS	No.2 2x3 SPF No.2 *Exce 21-6,20-18,14-13,22 13-16:2x4 SPF 2100	-4:2x4 SPF No.2,	W	EBS	15-16=0/36, 12-16 6-21=-1467/344, 7 8-21=-737/234, 8- 18-20=-253/3212,	'-21=-21 20=-542 8-18=-2	0/1806, /123, 47/1503,	31	LOAD	CASE(S) Sta		
LBR SCAB WEDGE BRACING TOP CHORD	14-13 SPF No.2 one Left: 2x4 SP No.3 Structural wood she	athing directly applie	ed or	11-18=-390/129, 12-17=-195/71, 11-17=-92/76, 13-16=-483/4515, 14-16=-87/21, 3-25=0/225, 3-24=-477/143, 4-24=0/446, 4-22=-1234/297, 6-22=-24/869 NOTES								LOW FOR ITH (SUCH TC.) ARE	
BOT CHORD WEBS REACTIONS	(lb/size) 2=2258/0-	applied or 10-0-0 or -25 -25 -24. 6-21, 8-21, 4-22 -3-8, (req. 0-3-11), (0-2-0 + bearing blow	; 1) 2)	this design. Wind: ASCI Vasd=91mp II; Exp C; E cantilever le right expose All plates at This truss h	E 7-16; Vult=115mp bh; TCDL=6.0psf; E nclosed; MWFRS (eft and right expose ed; Lumber DOL=1 re MT20 plates unle as been designed	oh (3-sec CDL=6. envelope d ; end v .60 plate ess other for a 10.	cond gust) Opsf; h=25ft; (e) exterior zor vertical left an grip DOL=1. wise indicate O psf bottom	Cat. ne; id 60 id.			Å	STATE OF M	AISSOLA
	Max Horiz 2=178 (LC Max Uplift 2=-380 (L Max Grav 2=2348 (L (lb) - Maximum Com Tension 1-2=0/6, 2-3=-5833// 4-6=-4178/615, 6-7= 7-8=-3151/504, 8-10 10-11=-4584/501, 11 12-13=-5014/546, 13	C 4), 14=-246 (LC 9 _C 2), 14=2299 (LC pression/Maximum 837, 3-4=-5308/779, 3098/484,)=-4553/556, 1-12=-4865/515,	2) 6)	* This truss on the botto 3-06-00 tall chord and a WARNING: greater that Bearing at j using ANSI	bad nonconcurrent has been designed om chord in all area by 2-00-00 wide w any other members. Required bearing size o int(s) 14 considers /TPI 1 angle to grai iould verify capacity	d for a liv s where ill fit betw , with BC size at jo s paralle n formul	e load of 20.0 a rectangle veen the botto CDL = 10.0psf iint(s) 2, 14 I to grain valu a. Building	Opsf om) 1		SEVI NOMI PE-20010 PE-20010 Septembri	BER DI8807

ame September 7,2021

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

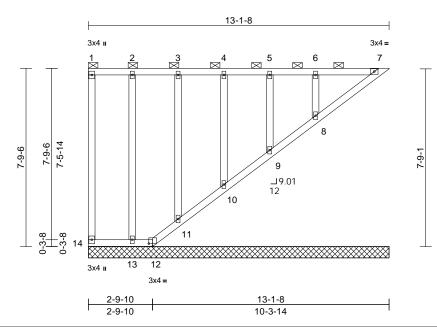

Scale	= 1:28.4

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.06	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.02	Horiz(TL)	0.00	5	n/a	n/a		
BCDL		10.0	Code	IRC201	8/TPI2014	Matrix-R							Weight: 24 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	6-0-0 oc	No.2 No.2 No.2 I wood she purlins, exe	athing directly applie cept end verticals. applied or 10-0-0 or	0	 chord live loa * This truss h on the bottor 3-06-00 tall h chord and ar Provide mec bearing plate 5, 92 lb uplifi This truss is 		ent with any ned for a liv reas where e will fit betw ers. ction (by oth thstanding 2 33 lb uplift a cordance w	other live load ve load of 20. a rectangle ween the bott ers) of truss 26 lb uplift at at joint 6. with the 2018	Opsf om to joint					
	(lb/size) Max Horiz Max Uplift	7=218/6-6 8=139 (LC 5=-26 (LC (LC 8) 5=77 (LC	6, 6=181/6-6-6, 5-6, 8=85/6-6-6 C 5) 5 5), 6=-33 (LC 8), 7: 1), 6=181 (LC 1), 7= 112 (LC 16)	=-92		Residential Co nd referenced : Standard			and					
FORCES	(lb) - Max Tension	· //	pression/Maximum											
TOP CHORD		/32, 2-3=-7 26, 1-8=-81	6/22, 3-4=-66/30, /0											
BOT CHORD WEBS		34, 6-7=-48, /102, 3-6=-	/34, 5-6=-48/34 143/61											
,	,		(3-second gust) DL=6.0psf: h=25ft: (Cat.									G OF I	MISS

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.
 II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.02
 Truss designed for wind loads in the plane of the truss
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web).
- 6) Gable studs spaced at 2-0-0 oc.

16023 Swingley Ridge Rd Chesterfield, MO 63017

Loading TCLL (roof) TCDL BCLL BCDL		.0 Plate .0 Lum .0* Rep	ncing re Grip DOL hber DOL o Stress Incr	2-0-0 1.15 1.15 YES	19/TDI2014	CSI TC BC WB Motrix P	0.07 0.04 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS (M FORCES TOP CHORD	18=1. 20=1 22=1 24=1 26=9 Max Horiz 27=-1 Max Uplift 16=-3 20=-6 24=-2 26=-1 Max Grav 16=1 18=1. 20=1. 22=1 22=1 24=1.	sheathing , except e ectly applic 49/15-0-0, 25/15-0-0, 19/15-0-0, 23/15-0-0, 8/15-0-0, 8/15-0-0, 26 (LC 5), 54 (LC 29), 54 (LC 29), 54 (LC 29), 54 (LC 29), 54 (LC 22) 27 (LC 16) 33 (LC 18) 52 (LC 25) 52 (LC 25) 52 (LC 25) 52 (LC 25) 52 (LC 25) 52 (LC 25) 53 (LC 26) 54 (LC 29), 55 (LC 26) 55 (LC 26) 56 (LC 26) 56 (LC 26) 57 (LC	g directly applie end verticals. ed or 6-0-0 oc 17=98/15-0-0, 19=119/15-0-0 21=123/15-0-0 23=119/15-0-0 27=149/15-0-0 17=-96 (LC 9), 19=-48 (LC 9), 23=-63 (LC 8), 23=-63 (LC 8), 23=-63 (LC 8), 23=-62 (LC 4), 19=125 (LC 1), 19=125 (LC 1), 23=124 (LC 1), 23=124 (LC 1), 23=124 (LC 1), 23=125 (LC 2), 27=172 (LC 1), 500, 27=172 (LC 1), 500, 200, 200, 200, 200, 200, 200, 200,	d or),),), (6), (7), (5), (6), (7), (5), (6) (6)	 WEBS NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=91mp II; Exp C; Er cantilever en right expose 3) Truss desig only. For st see Standar or consult qi 4) All plates ar 5) Gable requii 6) Truss to be braced agai 7) Gable studs 8) This truss h chord live lo 9) * This truss on the botto 3-06-00 tall chord and a 10) Provide med bearing plat 27, 36 lb up uplift at joint 23, 64 lb up 	Matrix-R 26-27=-76/89, 25 23-24=-76/89, 19 20-21=-76/89, 19 3-26=-105/91, 4-2 6-23=-98/79, 7-22 10-20=-100/81, 1 13-17=-98/87 roof live loads ha 7-16; Vult=115m h; TCDL=6.0psf; 1and right expose d; Lumber DOL=' hed for wind loads uds exposed to wi d Industry Gable uds exposed to wid alified building de e 2x4 MT20 unless res continuous bo fully sheathed fron nst lateral movem spaced at 1-4-0 or as been designed ad nonconcurrent has been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide v my other members shanical connectic e capable of withs ift at joint 16, 103 25, 49 lb uplift at ift at joint 20, 48 ll 18 and 96 lb uplift	23=-76/8 20=-76/8 20=-76/8 25=-98/56 55=-98/56 55=-98/56 55=-98/56 55=-98/56 90 (3-sec 3CDL=6.1 (envelope ed; end V. 60 plate in the pl- nd (norm End Deta sestigner at so therwit tom chor n one fac ent (i.e. d pc. for a 10.0 with any d for a liv as where vill fit betv 5 n (by oth tanding 6 lb uplift at joint 24, (b) o uplift at	 9. 21-22=-76, 9. 18-19=-76, 9. 5-24=-98/62 9. 5-24=-90/62 9-21=-100/0, 762, 12-18=-90 considered for cons	/89, /89, /89, /80, /8/57, r Cat. 	Inte	rnationa)2.10.2 a	I Resident of the second	ferenced standar	MISSOLUE MISSOLUE T M. ER 018807


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						RELEASE FOR CONSTRUCTION
lob	Truce	Truce Type	Qty	Plv	Lot 11 OS	AS NOTED FOR PLAN REVIEW
Job	Truss	Truss Type	Qly	гіу	1011103	DEVELOPMENT SERVICES 147787271
Lot 11 OS	LAY1	Lay-In Gable	2	1	Job Reference (optional	

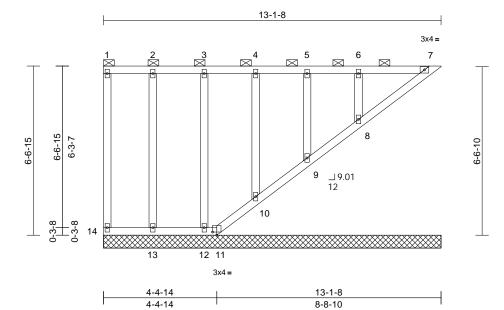
Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Tue Sep 7093428/2021 ID:?Q2IsETSTEcOc9Ez6n2sIWz6QxV-RfC?PsB70Hq3NSgPqnL8w3uITXbG WrCDonv42264

Scale = 1:50.3

Plate Offsets (X, Y): [12:0-2-0,0-1-8]

		-											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018	/TPI2014	CSI TC BC WB Matrix-S	0.26 0.12 0.14	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 68 lb	GRIP 197/144 FT = 10%
	end verticals. Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 9- (lb/size) 7=103/13: 9=152/13: 11=174/1: 13=178/1: Max Horiz 14=-213 (Max Uplift 7=-80 (LC 5), 12=-10 14=-17 (L Max Grav 7=124 (LC 9=152 (LC 11=174 (L 13=178 (L	$\begin{array}{l} -1-8, 8=\!262/13\!\cdot\!1\!\cdot\!8, \\ -1-8, 10\!=\!188/13\!\cdot\!1\!\cdot\!8, \\ 3\!\cdot\!1\!\cdot\!8, 14\!=\!66/13\!\cdot\!1\!\cdot\!8, \\ 3\!\cdot\!1\!\cdot\!8, 14\!=\!66/13\!\cdot\!1\!\cdot\!8, \\ \mathrm{LC} \ 6) \\ 5), 8\!=\!49 \ (\mathrm{LC} \ 4), 9\!=\!\!-\!2 \\ 5), 8\!=\!49 \ (\mathrm{LC} \ 4), 9\!=\!\!-\!2 \\ \mathrm{C} \ 4) \\ \mathrm{C} \ 15), 8\!=\!262 \ (\mathrm{LC} \ 1), \\ \mathrm{C} \ 1), 10\!=\!188 \ (\mathrm{LC} \ 1), \\ \mathrm{C} \ 1), 12\!=\!95 \ (\mathrm{LC} \ 5), \\ \mathrm{C} \ 1), 14\!=\!66 \ (\mathrm{LC} \ 1) \end{array}$	2) 3) 4) 5) 6) 7) 8) 29 9) 29 5),	Vasd=91mpH II; Exp C; En cantilever lef right exposed Truss design only. For stu see Standard or consult qu Provide aded All plates are Gable require Truss to be fi braced again Gable studs This truss ha chord live loa • This truss ha chord live loa • This truss ha chord and ar Provide medic bearing plate 14, 80 lb upli	7-16; Vult=115mp ; TCDL=6.0psf; Bi closed; MWFRS (et and right exposed d; Lumber DOL=1. ed for wind loads is ids exposed to wind loadustry Gable E alified building des quate drainage to p 2x4 MT20 unless es continuous botti ully sheathed from ully sheathed from ist lateral moveme spaced at 2-0-0 oc s been designed fad nonconcurrent vi nas been designed n chord in all areas y 2-00-00 wide wii y other members. hanical connectione capable of withsta ft at joint 7, 109 lb 13, 49 lb uplift at jo	CDL=6. envelope d; end v 60 plate in the pl dd (norm nd Deta signer a: orrevent i otherwi om chor one fac nt (i.e. c c) or a 10. vith any for a liv s where ll fit betw n (by oth anding 1 uplift at	Dpsf; h=25ft; a) exterior zor vertical left an grip DOL=1. ane of the tru al to the face ills as applica s per ANSI/TI water ponding se indicated. d bearing. e or securely iagonal web) D psf bottom other live load e load of 20.1 a rectangle veen the bottu- ers) of truss t 7 lb uplift at j joint 12, 62 ll	ne; nd 60 ss), ble, PI 1. g. , , , , , , , , , , , , , , , , , ,				5500	
FORCES	(lb) - Maximum Com Tension 1-14=-63/58, 1-2=-1	06/80, 2-3=-106/80,	11)	Beveled plate	ft at joint 9 and 49 e or shim required truss chord at joint	to provi	de full bearing	g			Å	TATE OF I	T M SSOL
BOT CHORD	,	3=-80/106,	13) 18	 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or 							ler *		
NOTES	5-9=-121/51, 6-8=-1			AD CASE(S)							W.	PE-2001	018807



NAL ET

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 11 OS	AS NOTED FOR PLAN REVIEW
305	11033	Truss Type	Quy	i iy	1001103	DEVELOPMENT SERVICES 147787272
Lot 11 OS	LAY2	Lay-In Gable	2	1	Job Reference (optional	
•						00/00/000/

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. ue Sep 70 34 28/2021 ID:?hZjR2g6STiz8m1Fcrrrx5z6QxE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWCDoi7J2CW/28/2021

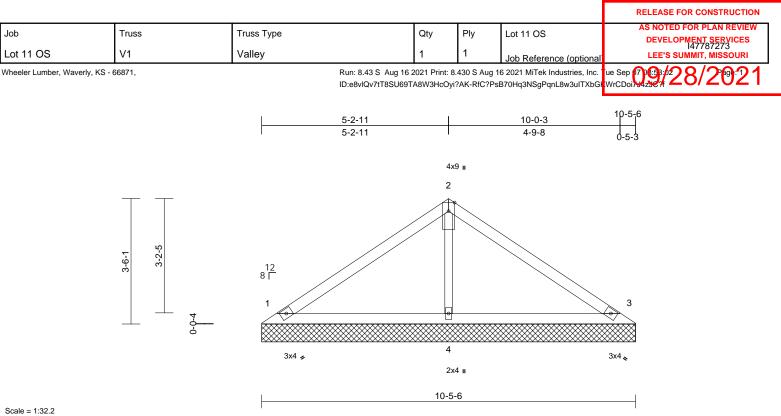

Scale = 1:44.8

Plate Offsets (X, Y): [11:0-2-0,0-1-8]

		1	-									-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI	12014	CSI TC BC WB Matrix-S	0.18 0.09 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 64 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2-0-0 oc purlins (6-0 end verticals. Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 9- (lb/size) 7=103/13 9=153/13 11=7/13- 13=186/1 Max Horiz 14=-178 (Max Uplift 7=-70 (LC (LC 5), 11 6), 12=-44 14=-15 (L Max Grav 7=114 (L0 9=153 (L0 11=47 (L0 13=186 (I	-1-8, 8=261/13-1-8, -1-8, 10=185/13-1-8, 1-8, 12=172/13-1-8, 3-1-8, 14=65/13-1-8 (LC 6) 5-3, 8=-49 (LC 4), 9=- -36 (LC 5), 11=-47 (8 (LC 4), 13=-39 (LC 5) C 4) C 15), 8=261 (LC 1), C 1), 10=185 (LC 1), C 5), 12=172 (LC 1), LC 1), 14=65 (LC 1)	1) Wiii Va: Li; i car rigt 2) Tru onl see or (3) Pro 4) All 5) Ga 6) Tru bra 7) Ga 8) Thi cho cho 29 9) * T LC on 3-0 cho 10) Pro bes 21 21 21 21 21 21 21 21 21 21 21 21 21	nd: ASCE sd=91mph sd=91mph httlever left ht exposed ss design ly. For stu e Standard consult qui ovide adeq plates are ble require ss to be f aced again ble studs s is truss hai ord live loa his truss h the bottom b6-00 tall b ord and an ovide mech aring plate , 70 lb uplif	7-16; Vult=115m; ; TCDL=6.0psf; E closed; MWFRS (t and right expose ; Lumber DOL=1 ed for wind loads ds exposed to win d Industry Gable E alified building de juate drainage to 2x4 MT20 unless es continuous bot ully sheathed fron st lateral moveme spaced at 2-0-0 o s been designed d nonconcurrent as been designed n chord in all area y 2-00-00 wide w y other members nanical connection capable of withst ft at joint 7, 47 lb lb uplift at joint 1	CDL=6. (envelope ed; end v. .60 plate in the pl. .60 plate in the pl. .60 plate in the pl. .60 plate .60 p	Dpsf; h=25ft; e) exterior zo ertical left ar grip DOL=1. ane of the tru al to the face ils as applica s per ANSI/TI se indicated. d bearing. e or securely iagonal web) D psf bottom other live load e load of 20.1 a rectangle veen the bott ers) of truss t 5 lb uplift at j bint 11, 39 lb	ne; nd 60 ss ss), ble, PI 1. g. , ds. 0psf om to oint uplift					
FORCES	(lb) - Maximum Com Tension 1-14=-51/47, 1-2=-8 3-4=-89/68, 4-5=-89 6-7=-89/68	9/68, 2-3=-89/68,	29 11) Be sur 12) Thi	Ib uplift at veled plate face with t is truss is o	joint 9 and 49 lb or shim required truss chord at join designed in accor Residential Code	uplift at jo d to provi nt(s) 7, 10 rdance w	oint 8. de full bearin), 9, 8. ith the 2018	g				STATE OF J	
BOT CHORD	13-14=-68/89, 12-13 10-11=-88/124, 9-10 7-8=-94/126	3=-68/89, 11-12=-68/8)=-92/123, 8-9=-91/12	9, R8 ^{5,} 13) Gra or t	02.10.2 an aphical pui	nd referenced star rlin representation ation of the purlin	ndard AN n does no	ISI/TPI 1. ot depict the s				87	later	Sendal
WEBS	2-13=-143/82, 3-12= 5-9=-121/51, 6-8=-1	139/62, 4-10=-144/6 98/79	0, bot	ttom chord		÷					No.	PE-2001	1×1

September 7,2021

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.32	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.19	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.08	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 27 lb	FT = 10%

BOT CHORD	2x4 SPF I	No.2
OTHERS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	6-0-0 oc p	ourlins.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	1=221/10-5-6, 3=221/10-5-6,
		4=418/10-5-6
	Max Horiz	1=-83 (LC 4)
	Max Uplift	1=-42 (LC 8), 3=-52 (LC 9), 4=-16
		(LC 8)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	

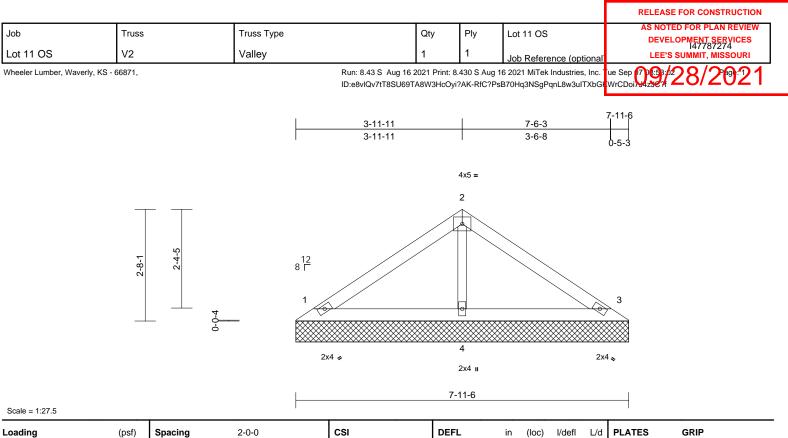
TOP CHORD 1-2=-165/79, 2-3=-164/60 BOT CHORD 1-4=-16/76, 3-4=-16/76 2-4=-272/69

WEBS

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing. 5)
- Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 7)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.


1, 52 lb uplift at joint 3 and 16 lb uplift at joint 4. 9) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

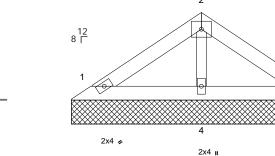
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.23	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 20 lb	FT = 10%
	Reputed a mechanical connection (by others) of truss to											

LUMBER		
TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2
OTHERS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	6-0-0 oc p	purlins.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	1=178/7-11-6, 3=178/7-11-6,
		4=277/7-11-6
	Max Horiz	1=61 (LC 7)
	Max Uplift	1=-39 (LC 8), 3=-47 (LC 9)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHORD	1-2=-110/	56, 2-3=-106/42
BOT CHORD	1-4=-12/5	2, 3-4=-12/52
WEBS	2-4=-189/	48
NOTES		

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 1 and 47 lb uplift at joint 3.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and


R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

							Г	RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Lot 11 OS		AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 147787275
Lot 11 OS	V3	Valley		1	1	Job Referenc	e (optional)	I47787275 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waver	rly, KS - 66871,		Run: 8.43 S Aug 16 ID:p7iM?_XkCa6brq)	2021 Print: <yvmubimy< td=""><td>8.430 S Au /hz7P-RfC?</td><td>ig 16 2021 MiTek Ind PsB70Hq3NSgPqnL</td><td>lustries, Inc. Tue .8w3uITXbGI(W</td><td>e Sep 0 39 28/29 21</td></yvmubimy<>	8.430 S Au /hz7P-RfC?	ig 16 2021 MiTek Ind PsB70Hq3NSgPqnL	lustries, Inc. Tue .8w3uITXbGI(W	e Sep 0 39 28/29 21
			2-8-			5-0-3	5-5-6	
			2-8-1	11	Į	2-3-8	0-5-3	
					4x5 =			
					2			
					~			

5-5-6

3

2x4 💊

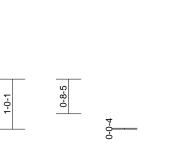
Scale = 1:24.1												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 13 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD	2x4 SPF No.2 1 and 30 2x3 SPF No.2 9) This truss Internation		bearing plat 1 and 30 lb 9) This truss is Internationa 8802.10.2 a	e capable of wit uplift at joint 3. designed in ac I Residential Co und referenced s	hstanding 2 cordance w	5 lb uplift at j ith the 2018 ; R502.11.1 a	joint					
BOT CHORD	5-6-2 oc purlins. LOAD CAS Rigid ceiling directly applied or 10-0-0 oc		LOAD CASE(S)	Standard								
	kigid centing directly applied of 10-0-0 0c											

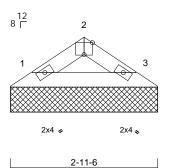
	bracing.	
REACTIONS	(lb/size)	1=115/5-5-6, 3=115/5-5-6,
		4=179/5-5-6
	Max Horiz	1=-40 (LC 4)
	Max Uplift	1=-25 (LC 8), 3=-30 (LC 9)
FORCES	()	imum Compression/Maximum
	Teneien	

1-6-5

0-0-4

1-10-1


Tension TOP CHORD 1-2=-71/36, 2-3=-69/27 BOT CHORD 1-4=-8/33, 3-4=-8/33


- WEBS 2-4=-122/31
- NOTES
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 11 OS	AS NOTED FOR PLAN REVIEW
500	11033	Truss Type	Quy	i iy	100 11 03	DEVELOPMENT SERVICES 147787276
Lot 11 OS	V4	Valley	1	1	Job Reference (optional	
Wheeler Lumber, Waverly, KS - 66871, Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Ir					16 2021 MiTek Industries, Inc.	
					sB70Hq3NSgPqnL8w3uITXbG	

3x4 =

2-6-3

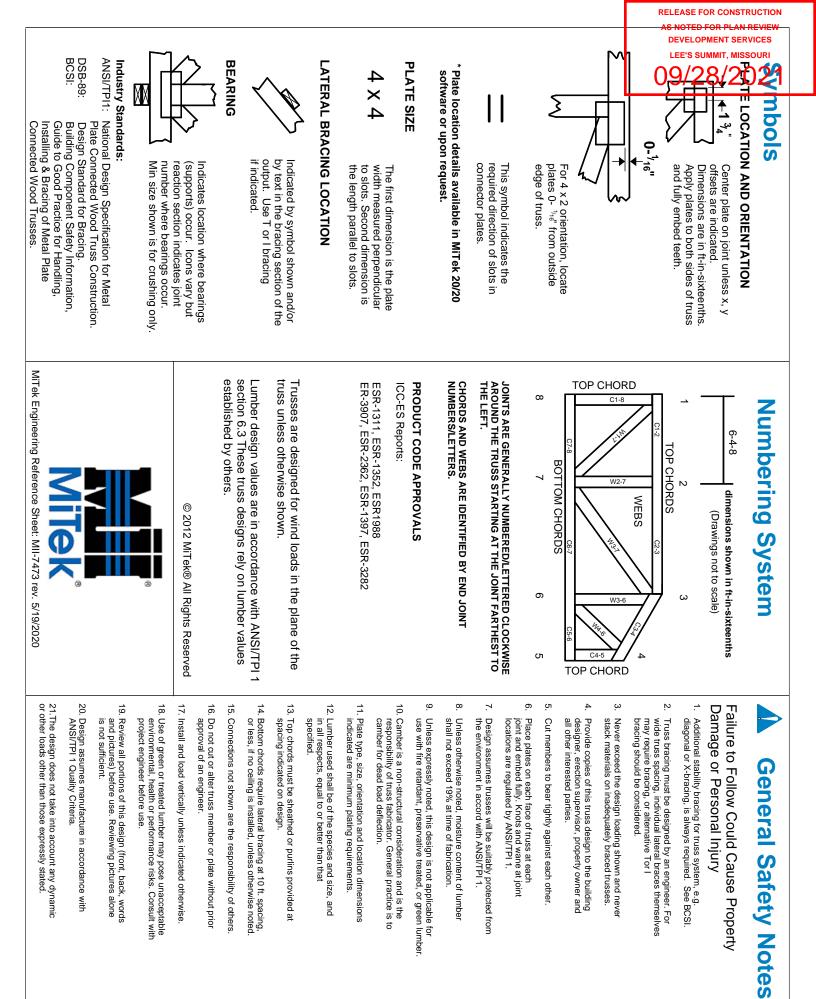
1-0-8

1-5-11

1-5-11

Scale = 1:23.1

Plate Offsets (X, Y): [2:0-2-0,Edge]


Loading TCLL (roof) (psf) Spacing 25.0 Spacing Plate Grip DOL Lumber DOL 2-0-0 CSI TC DEFL Ver(LL) in (loc) I/defl Lud L/d PLATES GRIP TCDL 10.0 10.0 Lumber DOL 1.15 BC 0.04 Ver(TL) n/a - n/a 999 MT20 197/144 BCL 0.0* Rep Stress Incr YES WB 0.00 WB n/a 197/144 BCDL 10.0 Code IRC2018/TPI2014 Matrix-P WB 0.00 3 n/a N/a <td< th=""></td<>
BCLL 0.0* Rep Stress Incr YES WB 0.00 Horiz(TL) 0.00 3 n/a n/a BCDL 10.0 Code IRC2018/TPI2014 Matrix-P Horiz(TL) 0.00 3 n/a n/a Weight: 6 lb FT = 10% LUMBER 0 2x4 SPF No.2 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. BRACING LOAD CASE(S) Standard TOP CHORD Structural wood sheathing directly applied or 3-0-2 oc purlins. LOAD CASE(S) Standard
BCDL 10.0 Code IRC2018/TPI2014 Matrix-P Weight: 6 lb FT = 10% LUMBER TOP CHORD 2x4 SPF No.2 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. BRACING TOP CHORD Structural wood sheathing directly applied or 3-0-2 oc purlins. LOAD CASE(S)
LUMBER 9) This truss is designed in accordance with the 2018 TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BACING LOAD CASE(S) TOP CHORD Structural wood sheathing directly applied or 3-0-2 oc purlins.
TOP CHORD 2x4 SPF No.2 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. BRACING LOAD CASE(S) Standard TOP CHORD Structural wood sheathing directly applied or 3-0-2 oc purlins. Standard
BOT CHORD 2x4 SPF No.2 R802.10.2 and referenced standard ANSI/TPI 1. BRACING LOAD CASE(S) Standard TOP CHORD Structural wood sheathing directly applied or 3-0-2 oc purlins.
BRACING LOAD CASE(S) Standard TOP CHORD Structural wood sheathing directly applied or 3-0-2 oc purlins.
TOP CHORD Structural wood sheathing directly applied or 3-0-2 oc purlins.
3-0-2 oc purlins.
Det offerte Trigite coning directly applied of 10-0-0 00
bracing.
REACTIONS (lb/size) 1=92/2-11-6, 3=92/2-11-6
Max Horiz 1=-18 (LC 4)
Max Uplift 1=-11 (LC 8), 3=-11 (LC 9)
FORCES (Ib) - Maximum Compression/Maximum Tension
TOP CHORD 1-2=-80/25, 2-3=-80/25
BOT CHORD 1-3=-10/54
NOTES
1) Unbalanced roof live loads have been considered for
this design.
2) Wind: ASCE 7-16; Vult=115mph (3-second gust)
Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone;
cantilever left and right exposed ; end vertical left and
right exposed: Lumber DOL = 1.60 plate grip DOL = 1.60
 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), 5) Truss designed for wind (normal to the face),
or intest designed for which leads in the plane of the flads only. For studs exposed to wind (normal to the face), see Standard Industry Cable End Dataile as applicable
see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
4) Gable requires continuous bottom chord bearing.
5) Gable studs spaced at 4-0-0 oc.
6) This truss has been designed for a 10.0 psf bottom
chord live load nonconcurrent with any other live loads.
7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
8) Provide mechanical connection (by others) of truss to
bearing plate capable of withstanding 11 lb uplift at joint

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 11 lb uplift at joint 1 and 11 lb uplift at joint 3.

September 7,2021

Con

