

MiTek USA, Inc. 16023 Swinglev Ridge Rd Chesterfield, MO 63017 314-434-1200

RE: MN125 Lot 125 MN

li lek

Site Information:

Customer: Project Name: MN125 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.4 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 37 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	147847532	A1	9/10/2021	21	147847552	H8	9/10/2021
2	147847533	A2	9/10/2021	22	147847553	J1	9/10/2021
3	147847534	A3	9/10/2021	23	147847554	J2	9/10/2021
4	147847535	B1	9/10/2021	24	147847555	J3	9/10/2021
5	147847536	B2	9/10/2021	25	147847556	J4	9/10/2021
6	147847537	B3	9/10/2021	26	147847557	K1	9/10/2021
7	147847538	C1	9/10/2021	27	147847558	K2	9/10/2021
8	147847539	C2	9/10/2021	28	147847559	P1	9/10/2021
9	147847540	C3	9/10/2021	29	147847560	P2	9/10/2021
10	147847541	D1	9/10/2021	30	l47847561	P3	9/10/2021
11	147847542	D2	9/10/2021	31	147847562	P4	9/10/2021
12	147847543	D3	9/10/2021	32	147847563	V1A	9/10/2021
13	147847544	D4	9/10/2021	33	147847564	V2A	9/10/2021
14	147847545	D5	9/10/2021	34	147847565	V3A	9/10/2021
15	147847546	D6	9/10/2021	35	147847566	V4A	9/10/2021
16	147847547	G1	9/10/2021	36	147847567	V5A	9/10/2021
17	147847548	G2	9/10/2021	37	147847568	V6A	9/10/2021
18	147847549	H5	9/10/2021				
19	147847550	H6	9/10/2021				
20	147847551	H7	9/10/2021				

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Kansas is April 30, 2022. Kansas COA: E-943

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

September 10, 2021

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

RE: MN125 Lot 125 MN

MiTek

Site Information:

Customer: Project Name: MN125 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 37 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	147847532	A1	9/10/2021	21	147847552	H8	9/10/2021
2	147847533	A2	9/10/2021	22	147847553	J1	9/10/2021
3	147847534	A3	9/10/2021	23	147847554	J2	9/10/2021
4	147847535	B1	9/10/2021	24	147847555	J3	9/10/2021
5	147847536	B2	9/10/2021	25	147847556	J4	9/10/2021
6	147847537	B3	9/10/2021	26	147847557	K1	9/10/2021
7	147847538	C1	9/10/2021	27	147847558	K2	9/10/2021
8	147847539	C2	9/10/2021	28	147847559	P1	9/10/2021
9	147847540	C3	9/10/2021	29	147847560	P2	9/10/2021
10	l47847541	D1	9/10/2021	30	l47847561	P3	9/10/2021
11	147847542	D2	9/10/2021	31	147847562	P4	9/10/2021
12	147847543	D3	9/10/2021	32	147847563	V1A	9/10/2021
13	147847544	D4	9/10/2021	33	147847564	V2A	9/10/2021
14	147847545	D5	9/10/2021	34	147847565	V3A	9/10/2021
15	147847546	D6	9/10/2021	35	147847566	V4A	9/10/2021
16	147847547	G1	9/10/2021	36	147847567	V5A	9/10/2021
17	147847548	G2	9/10/2021	37	147847568	V6A	9/10/2021
18	147847549	H5	9/10/2021				
19	147847550	H6	9/10/2021				
20	147847551	H7	9/10/2021				

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Missouri is December 31, 2022. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

16023 Swingley Ridge Rd Chesterfield, MO 63017

Continued on page 2

						RELEASE FOR CONSTRUCTION
lab	Truco	Truco Turo	0.54	DIV	L at 105 MN	AS NOTED FOR PLAN REVIEW
300	TTUSS	Truss Type	QIY	Fly	LOU 125 IVIN	DEVELOPMENT SERVICES
MN125	A1	GABLE	1	1		I47847532
		0, 011	·		Job Reference (optional	

- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Bearing at joint(s) 24, 31 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 225 lb uplift at joint 47, 2 lb uplift at joint 26, 50 lb uplift at joint 24, 21 lb uplift at joint 32, 74 lb uplift at joint 31, 340 lb uplift at joint 46, 43 lb uplift at joint 45, 77 lb uplift at joint 44, 68 Ib uplift at joint 43, 72 lb uplift at joint 42, 72 lb uplift at joint 41, 104 lb uplift at joint 40, 122 lb uplift at joint 39, 137 lb uplift at joint 35, 42 lb uplift at joint 34, 11 lb uplift at joint 33, 12 lb uplift at joint 28 and 92 lb uplift at joint 27
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 37 lb down and 27 lb up at 17-1-0, and 37 lb down and 27 lb up at 19-1-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 16) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

- LOAD CASE(S) Standard 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft)
 - Vert: 1-2=-70, 2-12=-70, 12-21=-70, 21-24=-70, 24-25=-70, 32-47=-20, 26-31=-20
 - Concentrated Loads (lb)
 - Vert: 37=-37 (F), 36=-37 (F)

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. ri Sep 1 08034 21/2921 ID:CE6VMFpH?UjHIw0tSib8KqyZPwR-RfC?PsB70Hq3NSgPqnL8w3uITXbG WrCDohr42xCfr 21/2921

											RELEASE	FOR CONSTRUCTION
Job	Job Truss			Т	russ Type		Qty	Ply	Lot 125 MN	I	AS NOTE DEVEL	ED FOR PLAN REVIEW OPMENT <u>SER</u> VICES
MN125		A3		Р	iggyback Base		2	1	Job Refere	nce (optional	LEE'S	I47847534 SUMMIT, MISSOURI
Wheeler Lumber	r, Waverly, KS -	66871,				Run: 8.43 S Aug 10	6 2021 Print: 8. Ilw0tSib8Kav7	430 S Aug 1 PwR-RfC?Ps	6 2021 MiTek I B70Ha3NSaP	ndustries, Inc. I	ri Sep 1 030739 (WrCDorr 420071	21/2021
		-0-10-8	8 575			40.0.0		, with the second		30-5-11	04 5 0 35-4-0	
		0-10-8	<u>5 5-7-5</u> 3 5-7-5		9-10-4 1-2-15	6-10-12	<u>23-1-12</u> 6-4-12		<u>29-8-12</u> 6-7-0	0-8-15	3-11-13 0-10-8	
						0.0		2.40		4x9=		
						6×8=		3x6=		2x4 II 8 9	12	
	ΤΤ											
					3x4 🖌						10	o_⊤
					1 ² 4 5					138	8x12	°⊤ T
	φ. O					×					0	
	12-1			3x6 #						11-2		11-2
				K	⊠		//			, i		
			5-2-9									
	o-T	2			NZ B	21 0 16	22	15	22	1 4 -		0-0 0 0
	Τ Τ ΞΤ	20 E	0 0	19	⊟ 18 3x4=	21 <u>↓</u> 10 3x6=	22	4x9=	25	2x4 II 6x ⁻	12=	<u> </u>
		UX UX		2x4 I	3x6	=						
		F	<u>5-7-5</u> 5-7-5		9-11-8 10-1-12 4-4-3 0-2-4	<u>16-10-12</u> 6-9-0	<u>23-1-12</u> 6-3-0		<u>29-10-8</u> 6-8-12		4-5-8 4-7-0	
$\frac{\text{Scale} = 1:78.4}{\text{Plate Offsets (}}$	X, Y): [6:0-5-	12,0-2-0], [9:0-6-8,0-2-0]	, [12:0-4	-9,0-6-10], [20:0-5	-10,0-1-8]						
Loading		(psf)	Spacing	2-	0-0	CSI	DEFI	_	in (loc)	l/defl L/d	PLATES	GRIP
TCLL (roof) TCDL		25.0 10.0	Plate Grip DO Lumber DOL	L 1. 1.	15 15	TC BC	0.74 Vert(0.71 Vert(LL) -0. CT) -0.	15 14-15 26 14-15	>999 360 >999 240	MT20	197/144
BCLL BCDI		0.0* 10.0	Rep Stress Inc	r YE	ES C2018/TPI2014	WB Matrix-S	0.44 Horz	(CŤ) 0. (LL) 0	07 12 07 14	n/a n/a >999 240	Weight [,] 177 lb	FT = 10%
			0000		1) Unbalance	ed roof live loads have	been conside	ered for		210	rioigini irr ib	
TOP CHORD	2x4 SPF No 1.8E	0.2 *Exce	pt* 9-11:2x4 SP	F 2100F	this design 2) Wind: AS	n. CE 7-16; Vult=115mph	(3-second qu	ust)				
BOT CHORD WEBS	2x4 SPF No 2x3 SPF No	0.2 *Exce	pt* 18-4:2x3 SP pt*	F No.2	Vasd=91n II; Exp C;	nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en	DL=6.0psf; h velope) exte	=25ft; Cat. rior zone;				
	16-6,15-6,7- 12-10:2x8 S	-15,15-13 P DSS	3,20-2:2x4 SPF	No.2,	cantilever right expo	left and right exposed ; sed; Lumber DOL=1.60	end vertical plate grip D	left and OL=1.60				
	Structural w	rood sho	athing directly a	oplied or	 Provide ad This truss 	dequate drainage to pre has been designed for	event water p a 10.0 psf b	onding. ottom				Min.
TOP CHORD	4-4-12 oc p	urlins, ex	xcept end vertic	als, and	chord live 5) * This trus	load nonconcurrent wit s has been designed for	h any other l or a live load	ive loads. of 20.0psf			ILE OF	MISS
BOT CHORD	Rigid ceiling	directly	applied or 10-0-	0 oc	on the bot 3-06-00 ta	tom chord in all areas v Il by 2-00-00 wide will f	where a recta it between th	angle ie bottom		1	S	D
1 Dow of midn	6-0-0 oc bra	acing: 16	-17.		chord and 6) Provide m	any other members, w echanical connection (ith BCDL = 1 by others) of	0.0psf. truss to		Ē.	GAR	CIA
WEBS	1 Row at mi	idpt	6-16, 7-15		bearing pl joint 17 ar	ate capable of withstan Id 94 lb uplift at joint 12	ding 276 lb ເ	plift at		E		
REACTIONS	(lb/size) 1 2	2=1149/0 0=439/0-	0-3-8, 17=1627/ -3-8	0-3-8,	 This truss Internation 	is designed in accorda al Residential Code se	nce with the ections R502	2018 .11.1 and			E-20001	BER 162101
	Max Horiz 2 Max Uplift 1	0=393 (L 2=-94 (L	.C 8) C 4), 17=-276 (l	C 8)	R802.10.2 8) Graphical	and referenced standa	ard ANSI/TPI oes not depi	1. 1. 1.		1	1	GINI
	Max Grav 1 2	2=1218 (0=442 (L	(LC 2), 17=1818 .C 21)	(LC 15)	or the orie	ntation of the purlin alo ord.	ng the top ar	nd/or			S/ON/	ALENIN
FORCES	(lb) - Maxim Tension	ium Com	pression/Maxim	um	LOAD CASE(S) Standard						105
TOP CHORD	1-2=0/40, 2- 4-6=-748/92	-3=-372/ [,] 2, 6-7=-6 ⁻	11, 3-4=-113/26 70/123, 7-8=-15	7, 24/219,							IN AN C	GARC
	8-9=-1498/2 2-20=-397/2	201, 9-10 22, 10-12	=-1563/186, 10 =-1072/117	11=0/42	,						I CE	NSE
BOT CHORD	19-20=-217 17-18=-98/3	/277, 18- 383, 4-17	19=-217/277, =-1315/220.							-	i / č	× ∖ ≣
	16-17=-147 13-14=0/16	/25, 15-1 1. 8-13=-	6=-104/521, 14 553/221.	15=0/13	,					Ξ	16	952 🗧
WEBS	12-13=-146 3-19=0/237	/1223 . 3-18=-4	72/163 4-16=-4	8/824							PA	h. JEE
	6-16=-337/1 7-15=-830/2	112, 6-15 49, 13-1	=-125/341, 5=-185/1028								- AR MAR	ISAS. CINI
NOTES	7-13=-120/9	928, 9-13	=-254/1103								S/ON	ALENI
NULES											Septembe	r 10,2021

												RELE	ASE FOR CONSTRUCTION
Job		Truss		Truss T	уре		Qt	у	Ply	Lot 125 MN		AS N	
MN125		B1		GABLE			1		1	lob Boforor	on (ontion		I47847535
Wheeler Lumber	r, Waverly, KS -	66871,		-		Run: 8.43 S	Aug 16 2021	Print: 8.4	30 S Aug 1	6 2021 MiTek Ir	ndustries, In	c. Fri Sep 1 0837	⊯ 21/2@21
						ID:CE6VMFp	H?UjHIw0tSi	b8KqyZP	wR-RfC?Ps	B70Hq3NSgPq	nL8w3ulTX	bG (WrCDol75425	μ ζ 1/2021
		-0-10-8	5-4 10-1-5	1	16-9-0	23	3-1-12	27	-6-0	31-9-4	36-1-3	40-1-0 40-	11-8
		0-10-8	7-8-1 5-4	ļ	6-7-12	6	-4-12	4-	4-4	4-3-4	4-4-0	3-11-13 0-1	10-8
						6x8=		8x8=	2x4	u 6x8	3= 2x4 II	6x6 = 17	
	тт					6 /₩		7 ॑िर्⊾	8		10	11 2x4 II	
				3	3x10 #								3
				3x	.6 #				19		27	26	149 75 °5⊥ ⊤
				844	Ŧ					18 2x4	17 I	16 8x8. 6x8=	*
	2-1-3		/				12	×		Ņ	2x4 II	2x4 I	Q Q
	2 2		678							7-11	3x6 II		7-11
			3										
	Q	2						₩		20 1			0_0
	T TộI	1	25	24	28	23 22	29	21 3	0 2x4				<u> </u>
	0	5x1	2 #	4x9	=	3x6= 3x6=	8	3x12=	М	18SHS 9x16 =			
		M	118SHS 8x12 =										
		2-	12 3-8										
		0-3-8	<u> </u>	+	<u>16-10-12</u> 6-9-8	2 2	<u>3-1-12</u> 6-3-0	+ 27- 4-	7-12 6-0	<u>35-11</u> 8-4-	<u>-15</u> 3	40-1-0 4-1-1	
Scale = 1:88.6 Plate Offsets (X Y) 6.0-5-	2-	0-0 1 [7:0-3-8 Edge] [11	0-4-4 0-2-	-4] [15:0-3-0.0	-2-4] [16:0-4-0	0-2-01 [24	0-2-8.0	-2-01				
	,, , ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,	12,0 2 0	, [1:0 0 0, 2 dg0], [11	.0 1 1,0 2	1, [10.0 0 0,0		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.0 2 0,0	2 0]		1/1 /1 1		
TCLL (roof)		(psr) 25.0	Plate Grip DOL	2-0-0 1.15		TC	0.81	Vert(L	L) -0.	In (loc) .45 20	>999 36	50 MT20	GRIP 197/144
TCDL BCLL		10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES		BC WB	0.69 0.91	Vert(C	CT) -0.	.76 20 .44 15	>628 24 n/a n	40 M18SHS /a	197/144
BCDL		10.0	Code	IRC2018	3/TPI2014	Matrix-S		Wind(LL) 0.	.30 20	>999 24	40 Weight: 217	' lb FT = 10%
		0 * 5		W	EBS 3	3-25=-403/220	6, 3-24=-19	84/654,	126/0/1	11) This	truss is de	signed in accord	lance with the 2018
TOP CHORD	2100F 1.8E	0.2 "Exce	pt" 6-11,1-5:2x4 SPF		6	6-21=-231/226	, 7-21=-296	4/557,	-130/941,	R802	2.10.2 and	referenced stan	dard ANSI/TPI 1.
BOT CHORD	2x4 SPF 21 DSS, 20-8,2	00F 1.8E 22-20:2x4	*Except* 2-25:2x10 I SPF No.2	SP	ç	9-21=-530/364 9-19=-271/1710	48, 7-19=-7 6, 11-16=-1	03/4836 37/1131	, ,	12) Grap or the	hical purlii e orientatio	n representation on of the purlin a	does not depict the size long the top and/or
WEBS	2x3 SPF No 25-3.24-3.2	0.2 *Exce	pt*):2x4 SPF No.2.		ç	16-26=-305/203 9-27=-2348/39	30, 13-26=- 7, 16-27=-2	300/200 399/406	13, i,	botto	m chord.	Standard	
	23-6,7-21,1	9-7:2x4 S	SPF 2100F 1.8E,		ç	12-26=-36/203 -18=0/163	, 10-27=-73	/34, 17-:	27=0/43,	LOAD O	AOE(0) (uun.
OTHERS	2x4 SPF No).2		NC	DTES							NEO	FMISS
BRACING TOP CHORD	Structural w	/ood shea	athing directly applied	1) d,	Unbalanced this design.	roof live loads	have been	conside	red for			NAP.	
	except end (2-10-13 ma	verticals,	, and 2-0-0 oc purlins	2)	Wind: ASCE Vasd=91mp	7-16; Vult=115 1: TCDL=6.0ps	5mph (3-seo f: BCDL=6.	cond gu: 0psf: h=	st) 25ft: Cat.		-	5	IUAN P
BOT CHORD	Rigid ceiling	g directly	applied or 10-0-0 oc		II; Exp C; En	closed; MWFR	S (envelop	e) exteri	or zone; eft and		= =	*	
	7-6-6 oc bra	acing: 24-	-25.		right exposed	d; Lumber DOL	=1.60 plate	grip DC	DL=1.60		3	D. NL	
WEBS JOINTS	1 Row at mi 1 Brace at J	idpt Jt(s): 26,	3-24, 4-23, 6-21, 7-2	1 3)	only. For stu	ids exposed to	wind (norm	ane of the	e face),			O E-200	0162101
REACTIONS	27 (lb/size) 2	-1858/0-	.3-8 15-1864/0-3-8		see Standard or consult qu	d Industry Gab	le End Deta designer a	iils as ap s per AN	oplicable, NSI/TPI 1.			1.650	GIN
REACTION	Max Horiz 2	=405 (LC	8) 8)	4) 5)	Provide adeo All plates are	uate drainage MT20 plates u	to prevent	water po rwise ind	onding. dicated.			11,00	NALE
	Max Uplift 2 Max Grav 2	=-189 (L0 =1967 (L	C 8), 15=-145 (LC 5) .C 2), 15=1963 (LC 2	() 6) 7)	Gable studs	spaced at 2-0-	0 oc.	0 ncf bo	ttom				1100
FORCES	(lb) - Maxim Tension	num Com	pression/Maximum	()	chord live loa	ad nonconcurre	ent with any	other liv	/e loads.			1111	N GARC
TOP CHORD	1-2=0/19, 2	-3=-5921	/994, 3-4=-2975/297	, 8)	* This truss h on the bottor	as been desig n chord in all a	ned for a liv reas where	e load o a rectar	of 20.0psf ngle			11. 30	ENSA
4-6=-2244/272, 6-7=-1771/248, 3-06-00 tall by 2-00-00 wide will fit betwee 7-8=-5846/841, 8-9=-5876/843, chord and any other members, with BCDI			veen the	e bottom).0psf.			E /						
	9-10=-2519 11-12=-279	/287, 10- 6/328, 12	11=-2519/287, 2-13=-2957/333,	9)	Bearing at jo	int(s) 2 conside	ers parallel	to grain	value			Ξ [1	6952
13-14=0/39, 13-15=-1865/166 BOT CHORD 2-25=-1236/5100, 24-25=-1093/4374, 10) Brovide mechanical connection (by others) of trues to					a la								
201 01010	23-24=-445	/2409, 21	1-23=-245/1774,	10	Provide mec bearing plate	nanical connect capable of wit	ະແon (by oth hstanding 1	ers) of t 189 lb up	russ to olift at			= 0, 1	10:15:
	20-21=-2/14	+, 19-20= /4447, 17	0/95, 8-19=-239/104 7-18=-625/4447,	,	joint 2 and 14	45 lb uplift at jo	int 15.					11500	ENGIN
16-17=-625/4447, 15-16=-51/482						NAL							

September 10,2021

									RELEASE	FOR CONSTRUCTION
Job	Tru	ss	Truss Type		Qty	Ply	Lot 125 MN		AS NOTE DEVEL	D FOR PLAN REVIEW
MN125	B2		Piggyback Base		3	1	Job Referer	nce (optional	LEE'S	I47847536 SUMMIT, MISSOURI
Wheeler Lumber	r, Waverly, KS - 66871	9		Run: 8.43 S Aug 10	6 2021 Print: 8	.430 S Aug 16	6 2021 MiTek lı	ndustries, Inc.	iri Sep 1 033740	21/2021
	:	2-5-4		ID:CE6VMFpH?UjF	lw0tSib8KqyZ	PwR-RfC?Ps	B70Hq3NSgPc	nL8w3ulTXbG	KWrCDol75425C?f	_ 1/2021
	-0-10-8	3 10-1-5	<u> </u>	23-1-12	2 2	7-6-0	31-9-4	36-1-3	40-1-0 40-11	-8
	0-10-8	2-5-4	0-7-12	6x8=	8x8=	 2x4	4-3-4 II 4)	4-4-0 (9=	6x6=	-0
-	г т			6	7	8	g 		10 12 17	
			3x10 🖌							
			3x6 🕫			15/				129 ه م ل
			8 ¹² 4 ⁵						14 8x8=	0
 5	0 0	/		A	×		0		0X8=	
5	12						-11-2			-11-2
		6x8 ≠			$\parallel \parallel /$	/	2			8
_		21	20 22	19 18 2	3 17	24 2x4	16 ⊥ ∎			676 040
	O ⊠ 5	x12 🎜	4x9=	3x6=	8x12=	N	118SHS 9x16	=		
		M18SHS 8x12 =		3x6=						
		_16 12 2-3-8								
	0-3- H	·8 <u>10-1-5</u>	16-10-12	23-1-12	2 2	7-7-12	35-1	<u>1-15</u>	40-1-0	
Scale = 1:86.2	0-0-	2-0-0				100	0			
Plate Offsets ((X, Y): [6:0-5-12,0-	2-0], [7:0-3-8,Edge], [10:	0-3-0,0-1-12], [13:Edge	,0-6-0], [20:0-2-8,0-2 	-0]				1	
Loading TCLL (roof)	(psf) 25.0) Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.81 Vert(L LL) -0.4	in (loc) 46 14-15	l/defl L/d >999 360	PLATES MT20	GRIP 197/144
	10.0) Lumber DOL	1.15 VES	BC W/B	0.73 Vert	CT) -0.8	82 14-15	>582 240	M18SHS	197/144
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S	Wind	(CT) 0.3 I(LL) 0.3	30 16	>999 240	Weight: 207 lb	FT = 10%
LUMBER TOP CHORD	2x4 SPF No.2 *E	xcept* 6-10,1-5:2x4 SPF	WEBS	3-21=-403/2209, 3-2 4-20=0/544, 4-19=-9	0=-1986/655 90/317, 6-19	, ⊫-136/940,				
BOT CHORD	2x4 SPF 2100F 1	.8E *Except* 2-21:2x10	SP	15-17=-534/3674, 7-	=-2990/302, 15=-712/487	⁷ 6,				
WEBS	DSS, 16-8,18-16 2x3 SPF No.2 *E	:2x4 SPF No.2 xcept*		9-15=-217/1825, 10- 11-14=-267/2108, 9-	14=-126/126 14=-2321/47	6 76				
	21-3,20-3,17-6,17 19-6,7-17,15-7:2x	7-15,13-11:2x4 SPF No.: x4 SPF 2100F 1.8E	2, NOTES 1) Unbalanced	roof live loads have	been consid	ered for				
	Structural wood o	boothing directly opplied	this design.	7-16: Vult-115mph	(3-second a	uet)			VU'OF /	MISSI
	except end vertic	als, and 2-0-0 oc purlins	Vasd=91mp	n; TCDL=6.0psf; BCI	DL=6.0psf; h	=25ft; Cat.			I ATE	0
BOT CHORD	(2-10-11 max.): 6 Rigid ceiling dire	ctly applied or 10-0-0 oc	cantilever let	t and right exposed ;	end vertical	left and		1	S JUA	N P
	bracing, Except 7-6-6 oc bracing:	: 20-21	right expose 3) Provide ade	d; Lumber DOL=1.60	o plate grip L event water p	OOL=1.60 bonding.		Ξ÷	GAR	
WEBS	9-6-6 oc bracing: 1 Row at midpt	14-15. 3-20, 4-19, 6-17, 7-1	 All plates are This truss has 	MT20 plates unless is been designed for	otherwise in a 10.0 psf b	ndicated. ottom		E		
DEACTIONS	(lb/size) 0.400	9-14 2/0.2.8.42.4802/0.2.8	chord live lo	ad nonconcurrent wit	h any other l or a live load	live loads.			D. E-20001	62101
REACTIONS	(ID/SIZE) 2=186 Max Horiz 2=406	(LC 8)	on the bottor	n chord in all areas v	where a recta	angle			10	GIN
	Max Uplift 2=-189 Max Grav 2=197	9 (LC 8), 13=-153 (LC 5) 1 (LC 2), 13=1961 (LC 2	chord and an	y other members, w	ith BCDL = $$	10.0psf.			I,SONA	LENIN
FORCES	(lb) - Maximum C	compression/Maximum	7) Bearing at journal of the second secon	int(s) 2 considers pa [PI 1 angle to grain f	rallel to grain ormula. Bui	n value Iding				110°
TOP CHORD	1-2=0/19, 2-3=-5	931/995, 3-4=-2983/297	designer sho 8) Provide med	ould verify capacity o hanical connection (f bearing sur ov others) of	face. truss to				APOLI
	4-6=-2251/273, 6 7-8=-5890/851, 8	6-7=-1780/251, 8-9=-5950/844,	bearing plate	capable of withstan	ding 189 lb u	uplift at			IN JUANE	NO CIA
	9-10=-2506/264, 11-12=0/36. 11-1	10-11=-2923/311, 3=-1920/154	9) This truss is	designed in accorda	nce with the	2018			S LICE	ED
BOT CHORD	2-21=-1237/5108	8, 20-21=-1094/4381,	International R802.10.2 a	Residential Code se	ctions R502 ard ANSI/TP	.11.1 and I 1.			1.00	150
	16-17=-3/11, 15-	16=0/93, 8-15=-227/100,	10) Graphical pu or the orient	rlin representation d ation of the purlin alo	oes not depi ng the top a	ct the size nd/or			D 10	
	14-15=-671/4429	9, 13-14=-74/373	bottom chore	l. Oten den l	5 op u				8	Yu HE
			LOAD CASE(S)	Standard					TAN AN	SAS
									ON	ALE

September 10,2021

									RELEASE	FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Lot 125 M	N	AS NOTE DEVEL	D FOR PLAN REVIEW OPMENT SERVICES
MN125	В3		Piggyback Base		2	1	Job Refere	ence (optiona	LEE'S	I47847537 SUMMIT, MISSOURI
Wheeler Lumber	r, Waverly, KS - 66871,			Run: 8.43 S Aug 16	2021 Print: 8	8.430 S Aug	16 2021 MiTek	Industries, Inc.	1 ri Sep 1 08374	21/2021
	2-5- -0-10-8 0-10-8 2-5-	-4 10-1-5 -7-8-1 -4	<u> </u>	<u>23-1-12</u> 6-4-12 6x8= 6	4x9= 7	27-6-0 4-4-4 3	<u> 30-1-4 </u> 2-7-4 x4 ∥ 6x8= 3 9	<u>36-1-3</u> 5-11-15	<u>40-1-0</u> 40-11 3-11-13 0-10 6x6= 10 12_	-8 -8
12-1-3		4x9 = 3 23 8v8 =	$3x10 \neq$ $3x6 \neq$ $8^{12} + 5$ 22 + 24 3x10 =	21 20 25 3x6=	5 19 6x8=	26 2	12x12 II 3x4 II 18 x4 II M18SHS	5x12 =	10 477 38-5 111 0 11 0 111 0 11 0 11 0 11 0 11 0 11 0 11 0 11 0 11 0 11	1-0-0 1-0-0 1-0-0 1-0-1 1-0-0 1-0-1 1-0-1 1-0-1 1-0-1 1-0-1 1-0-1 1-0-1 1-0-1
Scale = 1:86.2	2-3 0-3-8 0-3-8 0-3-8 2-0	-8 -8 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0	<u>16-10-12</u> 6-9-8	<u>23-1-12</u> 6-3-0	2 2	<u>7-7-12</u> 4-6-0	<mark>30-0-0</mark> 2-4-4	<u>35-11-15</u> 5-11-15	40-1-0	
Plate Offsets (X, Y): [2:0-4-4,0-2-0],	[6:0-6-4,0-2-4], [7:0-3	3-8,0-2-0], [10:0-4-4,0-2	-4], [13:0-3-8,Edge],	22:0-2-8,0-	1-8]				
Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD	(psf) 25.0 10.0 0.0* 10.0 2x4 SPF No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014 WEBS	CSI TC BC WB Matrix-S 3-23=-365/1746, 3-22 4-22=0/524, 4-21=-96	0.73 0.89 0.96 Pe-1727/632 0.95/315, 6-2	L (LL) - (CT) - :(CT) d(LL) 5, I=-134/92	in (loc) 0.22 22-23 0.42 22-23 0.09 13 0.16 22-23 1,	I/defl L/c >999 360 >858 240 n/a n/a >999 240	 PLATES MT20 M18SHS Weight: 203 lb 	GRIP 197/144 197/144 FT = 10%
BOT CHORD	2x4 SPF No.2 *Exce 23-20:2x4 SPF 2100 No.2 2x3 SPF No.2 *Exce 23-3,21-6,19-6,7-19, No.2	:pt* 2-23:2x10 SP DS)F 1.8E, 9-15:2x3 SPI :pt* ,19-17,13-11:2x4 SPF	S, NOTES 1) Unbalanced this design.	5-19=-674/168, 7-19= 17-19=-238/1684, 7-1 9-17=-353/2572, 10-1 roof live loads have b	=-831/236, 7=-179/14 5=-529/8, been consid	79, 10-14=0/23 ered for	32			
BRACING TOP CHORD BOT CHORD	Structural wood she 2-2-0 oc purlins, ex 2-0-0 oc purlins (3-5 Rigid ceiling directly bracing, Except: 2-0.5 oc bracing; 22	athing directly applied cept end verticals, an i-8 max.): 6-10. applied or 10-0-0 oc	 2) Wind: ASCE I or Vasd=91mpl d I; Exp C; En cantilever lef right expose 3) Provide aded 4) All plates are 	7-16; Vult=115mph (n; TCDL=6.0psf; BCE closed; MWFRS (env t and right exposed ; d; Lumber DOL=1.60 quate drainage to pre MT20 plates unless	3-second g DL=6.0psf; H velope) exte end vertica plate grip I vent water	ust) n=25ft; Cat erior zone; I left and DOL=1.60 ponding. ndicated	t.	in in	S JUA	N DIA
WEBS REACTIONS	6-0-0 oc bracing: 16 2-2-0 oc bracing: 15 1 Row at midpt (lb/size) 2=1397/0- 15=1883// Max Horiz 2=406 (LC Max Uplift 2=-157 (L 15=-302 (Max Grav 2=1516 (L	17 17 16. -3-22, 4-21, 6-19, 7-1 -3-8, 13=444/0-3-8, 0-3-8 C 8), 13=444/0-3-8, C 8), 13=4/0 (LC 9), LC 5) -C 15), 13=470 (LC 1	 5) This truss has chord live los of the bottom 6) * This truss has chord live los of the bottom 3-06-00 tall h chord and ar 7) Bearing at jo using ANSI/ designer sho 6), Discussional characteristic designer showed and the bottom 	is been designed for ad nonconcurrent with as been designed for n chord in all areas w by 2-00-00 wide will fin yo other members, wi int(s) 2 considers par TPI 1 angle to grain for uld verify capacity of	a 10.0 psf t n any other r a live load where a rect t between t th BCDL = rallel to grai pormula. Bu bearing su	live loads. I of 20.0ps angle he bottom 10.0psf. n value Iding rface.	- sf	THE R. P.	NUME E-20001	BER 62101
FORCES	15=2019 (lb) - Maximum Com	(LC 2) pression/Maximum	8) Provide mec bearing plate	nanical connection (b capable of withstand	by others) o ding 157 lb	uplift at			IL AN C	ARC
TOP CHORD	Tension 1-2=0/19, 2-3=-4586 4-6=-1321/212, 6-7= 7-8=-2134/264, 8-9= 9-10=-44/188, 10-11 11-13=-416/105 2-23=-1152/3997 22	5/892, 3-4=-2040/236, 715/151, 2057/239, =-456/67, 11-12=0/3/ 2-23=-1023/3428	joint 2, 302 ll 9) This truss is International R802.10.2 a 10) Graphical pu or the orienta bottom chord	o uplitt at joint 15 and designed in accordar Residential Code se nd referenced standa rlin representation do ation of the purlin alou I.	84 Ib uplift nce with the ctions R502 rd ANSI/TF bes not dep ng the top a	at joint 13 2018 2.11.1 and 1 1. ict the size nd/or	3. Ə		The local	15E
	21-22=-394/1717, 19 18-19=-1/9, 17-18=0 16-17=-258/69, 15-1 9-16=-1584/337, 14-	9-21=-164/1019,)/94, 8-17=-37/52, 16=-1715/333, -15=0/340, 13-14=-3/3	LOAD CASE(S)	Standard					September	AL ENGLISH 10,2021

						RELEASE FOR CONSTRUCTION
loh	Truce	Trues Type	Otv	DIV	Lot 125 MN	AS NOTED FOR PLAN REVIEW
305	11035	Truss Type	Quy	i iy		DEVELOPMENT SERVICES
MN125	C1	Monopitch	2	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -						

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Iri Sep 101034 21/2021 ID:CE6VMFpH?UjHIw0tSib8KqyZPwR-RfC?PsB70Hq3NSgPqnL8w3uITXb6 WrCDore42 21/2021

Scale = 1:64.1

Plate Offsets (X, Y): [7:0-2-11,0-4-0]

												-
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.75	Vert(LL)	-0.12	5-6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.53	Vert(CT)	-0.24	5-6	>745	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.66	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	-0.09	5-6	>999	240	Weight: 63 lb	FT = 10%
LUMBER 6) This truss is designed in accordance with the 2018 TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 *Except* 4-5:2x4 SPF No.2, 7-2:2x6 SPF No.2 LOAD CASE(S) Standard Standard												
BRACING												
TOP CHORD	COP CHORD Structural wood sheathing directly applied or 5-5-12 oc purlins, except end verticals.										ю.	
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc									NE OF I	MISS
WEBS	1 Row at midpt	4-5, 3-5								1	A	
REACTIONS	(lb/size) 5=655/ M Max Horiz 7=426 (LC Max Uplift 5=-199 (L Max Grav 5=853 (LC	echanical, 7=738/0-3 C 5) C 8), 7=-72 (LC 8) C 15), 7=810 (LC 16)	8								b JUA GAR	
FORCES	(lb) - Maximum Com Tension	pression/Maximum								ET	NUME	BER E
TOP CHORD	1-2=0/43, 2-3=-935/ 4-5=-258/112, 2-7=-	55, 3-4=-299/147, 690/120									E-20001	62101
BOT CHORD WEBS	6-7=-177/746, 5-6=- 3-6=0/407, 3-5=-835	177/746 5/287									SS ON	ENGLIN
NOTES	,											Lin.
 Wind: ASC Vasd=91n II; Exp C; cantilever right expo This truss chord live * This truss on the bot 3-06-00 ta chord and Refer to g Provide m bearing pl joint 5 and 	CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 has been designed foi load nonconcurrent wi s has been designed f tom chord in all areas II by 2-00-00 wide will any other members, v irder(s) for truss to trus echanical connection (ate capable of withstar 172 lb uplift at joint 7.							. annua.	PROMOSE IN CAN	ALENCIA		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 10,2021

						RELEASE FOR CONSTRUCTION
Joh Truss	20		Otv	DIV	Lot 125 MN	AS NOTED FOR PLAN REVIEW
300 1103	55	nuss rype	QUY	гіу	LOU 125 MIN	DEVELOPMENT SERVICES
MN125 C2		Monopitch	5	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Scale = 1:74

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. iri Sep 1 00 44 21/2 221 ID:CE6VMFpH?UjHIw0tSib8KqyZPwR-RfC?PsB70Hq3NSgPqnL8w3uITXbGxWrCDoh422Cff 21/2 221

Plate Offsets (X, Y): [3:0-0-14,0-0-2], [5:0-0-13,0-1-8]													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.51	Vert(LL)	-0.12	10-11	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.65	Vert(CT)	-0.23	10-11	>778	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.59	Horz(CT)	0.17	6	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.22	10-11	>798	240	Weight: 66 lb	FT = 10%	
LUMBER	UMBER 5) Provide mechanical connection (by others) of truss to												

LUMBER TOP CHORD	2x4 SPF 2100F 1.8E	 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 273 lb uplift at
BOT CHORD	2x4 SPF No.2 *Except* 9-7:2x3 SPF No.2	joint 6.
WEBS	2x4 SPF No.2 *Except* 4-10,8-4:2x3 SPF No.2	 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and
BRACING		R802.10.2 and referenced standard ANSI/TPI 1.
TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.	LOAD CASE(S) Standard
BOT CHORD	Rigid ceiling directly applied or 6-0-0 oc bracing.	
WEBS	1 Row at midpt 5-6, 4-8	
REACTIONS	(lb/size) 6=659/ Mechanical, 13=736/0-3-8	
	Max Horiz 13=415 (LC 8)	
	Max Uplift 6=-273 (LC 8)	
	Max Grav 6=690 (LC 15), 13=736 (LC 1)	
FORCES	(lb) - Maximum Compression/Maximum Tension	
TOP CHORD	1-2=0/40, 2-3=-423/0, 3-4=-898/9,	
	4-5=-211/111, 6-8=-661/287, 5-8=-224/146,	
	2-13=-753/84	
BOT CHORD	12-13=0/0, 3-11=-319/746, 10-11=-319/746,	
	9-10=-319/746, 8-9=-322/754, 7-9=0/19,	
	6-7=-8/2	
WEBS	11-12=-63/75, 4-10=0/357, 4-8=-834/361	
NOTES		
1) Wind: ASC	CE 7-16; Vult=115mph (3-second gust)	
Vasd=91n	nph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.	
III: Eve C	Enclosed: MM/ERS (any close) exterior zene:	

II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
2) This truss has been designed for a 10.0 psf bottom

- chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.

						RELEASE FOR CONSTRUCTION
lob	Truce	Trues Type	Otv	DIV	Lot 125 MN	AS NOTED FOR PLAN REVIEW
305	11033	Truss Type	QUY	i iy		DEVELOPMENT SERVICES
MN125	C3	GABLE	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS - (Run: 8.43 S Aug 16 2	2021 Print: 8.	.430 S Aug 1	6 2021 MiTek Industries, Inc. I	ri Sep 1 03 34 7 1 / 7 1	

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. 17 Sep 1 0694 21/2921 ID:CE6VMFpH?UjHIw0tSib8KqyZPwR-RfC?PsB70Hq3NSgPqnL8w3uITXbGkWrCDoh42201

Scale = 1:60.9

Plate Offsets (X, Y): [11:Edge,0-1-8], [19:0-5-10,0-1-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.49	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.21	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.12	Horz(CT)	0.00	11	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-R							Weight: 95 lb	FT = 10%
			v	VEBS 3	3-18=-169/174.4	4-17=-145	/79. 5-16=-14	8/97.					
	2v4 SPE No 2				6-15=-147/93. 7·	-14=-146/9	4. 8-13=-153	/101.					
BOT CHORD	2x4 SPE No 2			ç	9-12=-159/150		.,	, ,					
WEBS	2x4 SPF No 2												
OTHERS	2x4 SPF No 2		1		7 16: \/ult_116	mph (2 ag	and quat)						
BRACING	2011 110.2		I	/ Wind. ASCE	7-10, $Vuit=115i$		Doef: b=25ft: 1	Cat					
TOP CHORD	Structural wood she	athing directly applie	d or	II: Exp C: En	closed: MWFRS	6 (envelop	e) exterior zoi	ne:					
	6-0-0 oc purlins, ex	cept end verticals.	u 01	cantilever lef	t and right expos	sed ; end	ertical left an	id					117
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc		right expose	d; Lumber DOL=	=1.60 plate	grip DOL=1.	60					
	bracing.		2) Truss design	ed for wind load	ls in the pl	ane of the tru	SS				NE OF	SSI
WEBS	1 Row at midpt	10-11, 8-13, 9-12		only. For stu	ids exposed to v	vind (norm	al to the face),			1	A	0,1
REACTIONS	(lb/size) 11=32/15	-0-0, 12=148/15-0-0,		see Standard	Industry Gable	e End Deta	ils as applica	ble,			2	A	
	13=188/1	5-0-0, 14=179/15-0-0),	or consult qu	alified building o	designer a	s per ANSI/TI	PI 1.			-	JUA	AN
	15=181/1	5-0-0, 16=178/15-0-0), 3	 All plates are 	2x4 MT20 unle	ss otherw	se indicated.				24	GAR	CIA
	17=187/1	5-0-0, 18=149/15-0-0), 4) Gable requir	es continuous be	ottom choi	d bearing.				- 1		
	19=154/1	5-0-0	5) I russ to be f	ully sheathed fro	om one fac	e or securely				-		-
	Max Horiz 19=426 (I	LC 5)	~	Draced again	ist lateral moven	nent (i.e. c	liagonal web)				=	NUMI	BER :
	Max Uplift 11=-119 ((LC 7), 12=-80 (LC 8)	, b	 Gable studs This trues has 	spaced at 2-0-0	0C.						E-20001	62101 :4:5
	13=-59 (L	-C 8), 14=-75 (LC 8),) This truss ha	s been designed	d lor a 10.	other live lea	de			-	A	. 4.
	15=-67 (L	-C 8), 16=-78 (LC 8),	c			ad for a liv		us. Joof				10 ····	G
	1/=-38 (L	LC 8), 18=-226 (LC 8)	, 0	on the bottor	n chord in all are	eu iui a iiv	a rectande	Jhai				I,SONI	ENIN
	19=-140 (3-06-00 tall b	v 2-00-00 wide	will fit het	veen the hott	nm				1111	in in the second se
	Max Grav 11=105 (I	LC 4), 12=148 (LC 1)	, 	chord and ar	y other member	rs		5111					
	15=200 (1	LC 15), 14=164 (LC 1 LC 15), 16=189 (LC 1	5),) Provide mec	hanical connecti	ion (by oth	ers) of truss t	o					HID.
	17-187 (1	LC 1) 18–243 (LC 15	5), -	bearing plate	capable of with	standing 1	46 lb uplift at					AL AND	GAD
	19=345 (I	LC 5)	<i>,</i>),	joint 19, 119	Ib uplift at joint 1	11, 226 Ĭb	uplift at joint 1	18,				NUAN	CIA
FORCES	(lb) Maximum Corr	prossion/Maximum		38 lb uplift at	joint 17, 78 lb u	plift at joir	t 16, 67 lb up	lift				S CE	NSA
IONOLO	Tension	ipression/iviaximum		at joint 15, 7	5 lb uplift at joint	: 14, 59 lb	uplift at joint 1	13			1	Lio	10
TOP CHORD	2-19=-269/118 1-2=	=0/40, 2-3=-413/261		and 80 lb up	lift at joint 12.						-		1 2
	3-4=-326/210, 4-5=-	298/191. 5-6=-259/10	67. 1	0) This truss is	designed in acc	ordance w	ith the 2018					1 1 0	
	6-7=-243/155, 7-8=-	225/151, 8-9=-207/14	47,	International	Residential Coc	le sections	R502.11.1 a	ind				10	992 :
	9-10=-104/73, 10-11	1=-56/57	,	R802.10.2 a	nd referenced st	andard Al	ISI/TPI 1.				-	D.	
BOT CHORD	18-19=-149/113, 17	-18=-149/113,	L	OAD CASE(S)	Standard						-	201	M. 145
	16-17=-149/113, 15	-16=-149/113,										- A HAN	ISAS SS
	14-15=-149/113, 13	-14=-149/113,										1.50	Gin
	12-13=-149/113, 11	-12=-149/113										ON	ALEN
												1111	

September 10,2021

												REL	EASE FOR CONSTRUCTION
Job		Truss		Truss T	уре		Qty	Ply	Lot	t 125 MN	I	AS D	NOTED FOR PLAN REVIEW EVELOPM <u>ENT SER</u> VICES
MN125		D1		GABLE			1	1	Jol	b Referei	nce (optiona	<mark>п с</mark>	I47847541 EE'S SUMMIT, MISSOURI
Wheeler Lumbe	er, Waverly, KS	- 66871,				Run: 8.43 S	Aug 16 2021 H?UiHIw0tSit	Print: 8.430 S A 8KavZPwR-Rf	Aug 16 202 C?PsB70H	21 MiTek I Ha3NSaPa	ndustries, Inc. nL8w3uITXb0	iri Sep 10 08 KWrCDob44	2/21/2021
							-,			1 5			
			-0-10-8				11-6	-8					
			10-10-81				11-6	-8				1	
												7 8	
							12			6		P P	
							4 [- 5	_				
								3					
	-5-6						4						-4-3
	4				3	\bigcirc	e						7
			2		-								
			1	\leq			-						
		<u>-</u>											<u></u>
				xx x x x x x x x x x x x x x x x x x x	14		13	12	******	11	******	10	
							11.0	0					
Scale = 1:31.2			F				11-0	-0					
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl L/d	PLATES	GRIP
TCLL (roof) TCDL		25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.08 0.05	Vert(LL) Vert(CT)	n/a n/a	-	n/a 999 n/a 999	MT20	197/144
BCLL BCDL		0.0* 10.0	Rep Stress Incr Code	YES IRC201	8/TPI2014	WB Matrix-S	0.03	Horz(CT)	0.00	9	n/a n/a	Weight: 45	5 lb FT = 10%
LUMBER 24 SPF No.2 21 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. OTHERS 2x4 SPF No.2 31 All plates are 2x4 MT20 unless otherwise indicated. BRACING 34 All plates are 2x4 MT20 unless otherwise indicated. BTOP CHORD Structural wood sheathing directly applied or 10-0-0 co bracing. 34 All plates are 2x4 MT20 unless otherwise indicated. BOT CHORD Rigid ceiling directly applied or 10-0-0 co bracing. Gable studs spaced at 2-0-0 c. 67 REACTIONS (Ib/size) 2=178/11-6-8, 9=-4/11-6-8, 12=184/11-6-8, 12									JUAN ARCIA				
FORCES	(lb) - Maxir	num Com	pression/Maximum	LC	DAD CASE(S)	Standard						1.SSI	ENGIN
TOP CHORD	Tension 1-2=0/6, 2- 4-5=-95/22	3=-144/38 , 5-6=-86/	8, 3-4=-111/18, /22, 6-7=-73/28,									111	
BOT CHORD WEBS	7-8=-51/3/ 2-14=-57/4 11-12=-57/ 3-14=-186/ 6-11=-147/	′, 8-9=-17/ .3, 13-14= ′43, 10-11 ′96, 4-13= ′69, 7-10=	/14 =-57/43, 12-13=-57/ =-57/43, 9-10=-57/ =-125/61, 5-12=-14 =-102/47	/43, /43 2/68,								Salara Contraction	N GARCIA
NOTES 1) Wind: AS(Vasd=91n II; Exp C; cantilever right expo	CE 7-16; Vult nph; TCDL=6 Enclosed; M\ left and right ised; Lumber	=115mph .0psf; BC WFRS (er exposed DOL=1.60	(3-second gust) DL=6.0psf; h=25ft; ivelope) exterior zc ; end vertical left a 0 plate grip DOL=1	Cat. ne; nd .60								1 December 1 Septem	6952 ONAL ENGINE

2x4 II

3x4 =

Scale =	1:35.5
---------	--------

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.43	Vert(LL)	-0.04	2-6	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.37	Vert(CT)	-0.09	2-6	>999	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.66	Horz(CT)	0.01	5	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.03	2-6	>999	240	Weight: 37 lb	FT = 10%	
LUMBER													
TOP CHORD	2x4 SPF No.2												
BOT CHORD	2x4 SPF No.2												
WEBS	2x3 SPF No.2												
BRACING													
TOP CHORD	Structural wood she	athing directly appli	ed or										
	5-7-8 oc purlins, ex	cept end verticals.											
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 c	C										
	bracing.												
REACTIONS	(lb/size) 2=583/0-3-8. 5=505/ Mechanical												
	Max Horiz 2=181 (LC 5)												
	Max Uplift 2=-126 (LC 4). 5=-109 (LC 8)												

	Max Uplint 2=-126 (LC 4), 5=-109 (LC 8)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/6, 2-3=-877/127, 3-4=-118/26,
	4-5=-140/56

 BOT CHORD
 2-6=-147/760, 5-6=-147/760

 WEBS
 3-6=0/269, 3-5=-817/202

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 109 lb uplift at joint 5 and 126 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

3x4 =

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 125 MN	AS NOTED FOR PLAN REVIEW
MN125	D3	Monopitch	3	1	Job Reference (optional	147847543 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS - 6	66871,	Run: 8.43 S Aug ID:CE6VMFpH?L	16 2021 Print: 8 JjHIw0tSib8KqyZ	.430 S Aug 1 PwR-RfC?Ps	6 2021 MiTek Industries, Inc. I sB70Hq3NSgPqnL8w3uITXbG	iri Sep 1 0:04#21/2:0 :21 WrCDohe4&c#f
		6-2-5 6-2-5		<u>11-</u> 5-4	6-8 1-3	

Scale =	1:38.3
---------	--------

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.46 0.37 0.67	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.04 -0.09 0.01 0.03	(loc) 1-5 1-5 4 1-5	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 36 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SPF No. 2x4 SPF No. 2x3 SPF No. Structural w 5-5-11 oc pu Rigid ceiling bracing. (lb/size) 1= Max Horiz 1= 	.2 .2 .2 ood shea urlins, ex directly =508/0-3 =179 (LC	athing directly applie ccept end verticals. applied or 10-0-0 oc -8, 4=508/ Mechani 5 5)	d or : cal								VIE OF /	MISS
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS Vasd=91 II; Exp C; cantileve right expr 2) This truss	Max Horiz 1=179 (LC 5) Max Uplift 1=-81 (LC 4), 4=-110 (LC 8) Max Uplift 1=-81 (LC 4), 4=-110 (LC 8) (RCES (lb) - Maximum Compression/Maximum Tension IP CHORD 1-2=-872/133, 2-3=-118/26, 3-4=-138/55 IT CHORD 1-5=-151/772, 4-5=-151/772 EBS 2-5=0/271, 2-4=-830/206 VIES Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed ; Lumber DOL=1.60 plate grip DOL=1.60 This trues has been designed for a 10.0 nsf bottom									N CIA BER 62101			
 chord live * This tru on the bc 3-06-00 t chord and 4) Refer to (5) Provide n bearing p 1 and 110 6) This truss Internatic R802.10. 	e load nonconcu ss has been de ottom chord in a all by 2-00-00 w d any other mer girder(s) for trus mechanical com olate capable of 0 lb uplift at join s is designed in onal Residential 2 and reference (S) Standard	urrent wit signed fo II areas v vide will f mbers. ss to trus nection (i withstan t 4. accorda Code se ed standa	h any other live load or a live load of 20.0 where a rectangle it between the botto s connections. by others) of truss to ding 81 lb uplift at jo nce with the 2018 actions R502.11.1 at ard ANSI/TPI 1.	ts. psf m o pint							annun.	THUSUAN CLICE	ARCIA NSEO 952 ALENGIN

16023 Swingley Ridge Rd Chesterfield, MO 63017

September 10,2021

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 125 MN	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
MN125	D4	Monopitch	4	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -	66871,	Run: 8.43 S Aug 16 2 ID:CE6VMFpH?UjHlw	2021 Print: 8. /0tSib8KqyZł	430 S Aug 1 PwR-RfC?Ps	6 2021 MiTek Industries, Inc. I B70Hq3NSgPqnL8w3uITXbG	ri Sep 100421/2021
		-0-10-8	5-11-0			
		0-10-8	5-11-0		I	
					2x4 II	
			12		3	
			41			
					P	
	4					~
	-6-1			~		2-5-1

Scale = 1:25.7												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.59	Vert(LL)	-0.06	2-4	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.34	Vert(CT)	-0.12	2-4	>550	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 17 lb	FT = 10%

LUMBER

TOP CHORD	2x4 SPF No.2
BOT CHORD	2x4 SPF No.2
WEBS	2x3 SPF No 2

TTLD0	2/0 0111	10.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	5-11-0 oc	purlins, except end verticals.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	2=333/0-3-8, 4=249/ Mechanical
	Max Horiz	2=97 (LC 7)

Max Uplift 2=-87 (LC 4), 4=-54 (LC 8) FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/6, 2-3=-85/54, 3-4=-192/88 BOT CHORD 2-4=-30/23 NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 54 lb uplift at joint 4 and 87 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

														RELEASE FOR CONSTRUCTION
Job		Truss			Truss Ty	ре		Qt	y P	Ply L	ot 125 M	N		AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
MN125		D5			GABLE			1	1	J	ob Refere	ence (op	tional	147847545 LEE'S SUMMIT, MISSOURI
Wheeler Lumbe	er, Waverly, KS -	66871,					Run: 8.43 S Au ID:CE6VMFpH?	g 16 2021 UjHlw0tSil	Print: 8.430 b8KqyZPwl	0 S Aug 16 2 R-RfC?PsB7	021 MiTek 0Hq3NSgF	Industries PqnL8w3u	s, Inc. I ITXbG	ri Sep 10004821/2021 (WrCDonred 229021
			_ī 0-10-8					13-11	-0					1
			0-10-8					13-11	-0					
														9
	T												8	
								.1 <u>2</u>			7		P	
								4	6		De			
							F			\bigcirc	T			
	-2-14						5							
	ப்					4		Γ						ى م
					3	e								
			2		-									
	9-9-0	_		2		E								10
			3	3x4 =	16	15	o 14		13		12		11	
			L					13-11	-0					
Scale = 1:34.5			•							:				
Loading		(psf)	Spacing	DOI	2-0-0		CSI	0.40	DEFL	in	(loc)	l/defl	L/d	PLATES GRIP
TCLL (roof)		25.0 10.0	Lumber DC	DOL DL	1.15 1.15		BC	0.19 0.05	Vert(LL) Vert(CT) n/a `) n/a	-	n/a n/a	999 999	M120 197/144
BCLL		0.0*	Rep Stress	3 Incr	YES	/TPI2014	WB Matrix-S	0.05	Horz(C1	Г) 0.00	10	n/a	n/a	Weight: 53 lb ET = 10%
		10.0	Code		2)		2v4 MT20 uplog	o othorwi	on indicat					Weight. 33 ib FT = 10 %
TOP CHORD	2x4 SPF No	.2			3) 4)	Gable requir	es continuous bot	ttom chor	d bearing	leu. I.				
BOT CHORD WEBS	2x4 SPF No 2x3 SPF No	0.2 0.2			5) 6)	Gable studs	spaced at 2-0-0 c is been designed	oc. for a 10.0) psf botto	om				
OTHERS	2x4 SPF No	.2			-)	chord live loa	ad nonconcurrent	with any	other live	loads.				
BRACING TOP CHORD	Structural w	ood shea	athing directl	lv applier	/) dor	on the bottor	nas been designe n chord in all area	a for a liv as where	a rectang	20.0pst jle				
	6-0-0 oc pur	rlins, exc	cept end vert	ticals.		3-06-00 tall b chord and ar	by 2-00-00 wide w	/ill fit betv 5.	veen the b	oottom				
BOT CHORD	bracing.	Juliecity	applied of 10	0-0-0 00	8)	Provide mech	hanical connectio	n (by oth	ers) of tru	iss to				
REACTIONS	(lb/size) 2:	=149/13- 1=189/13	-11-0, 10=65 3-11-0, 12=1	/13-11-0 79/13-11), 1-0.	10, 5 lb uplift	at joint 2, 56 lb u	plift at joi	nt 16, 44	Ib uplift			ف	LE OF MISSO
	1:	3=180/13	3-11-0, 14=1	80/13-11	1-0,	42 lb uplift at	i joint 12 and 45 lt	o uplift at	iplift at jo	int 13,			3	LA CD
	Max Horiz 2	=216 (LC	C 5)	02/13-11	9)	This truss is International	designed in accor Residential Code	rdance w	ith the 20 R502 11	18 1 and			Ξ.	GARCIA
	Max Uplift 2: (L	=-5 (LC 4 _C 4), 12	4), 10=-19 (L !=-42 (LC 8),	.C 5), 11: , 13=-43	=-45 (LC	R802.10.2 ar	nd referenced sta	ndard AN	ISI/TPI 1.				- *	* =
	4), 14=-43 6=-56 (L(3 (LC 8), 15=	:-44 (LC 4	4), LO	AD CASE(S)	Standard						==	NUMBER
FORCES	(lb) - Maxim	um Com	pression/Ma	ıximum									=	O. E-2000162101
TOP CHORD	Tension 1-2=0/6, 2-3	8=-181/27	7, 3-4=-152/2	22,									1	So Gilli
	4-5=-132/22	2, 5-6=-1 ² 8-9=-76/	17/22, 6-7=- ⁻ /42 9-10=-5	105/22, 1/24										ONALE
BOT CHORD	2-16=-68/52	2, 15-16=	-68/52, 14-1	5=-68/52 -12=-68/	2, 52									ANUD.

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and
- right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP11.

DE-2000162101

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.72 0.54 0.68	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.11 -0.22 0.02 0.04	(loc) 5-6 5-6 5 2-6	l/defl >999 >739 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 45 lb	GRIP 197/144 FT = 10%	
BCDL LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=91m II; Exp C; E cantilever I right expos 2) This truss chord live I 3.0 * This truss on the bott 3-06-00 tal chord and 4) Refer to gi 5) Provide me bearing pla joint 5 and 6) This truss I Internation BOT 102	2x4 SPF N 2x3 SPF N 2x3 SPF N 3x3 SPF N Structural V 4-5-0 oc p Rigid ceilin bracing. 1 Row at m (lb/size) 2 Max Uplift 2 (lb) - Maxin Tension 1-2=0/6, 2- 4-5=-221/1 3-6=0/327, 2-6=-224/1 3-6=0/327, CE 7-16; Vult ph; TCDL=6 Enclosed; MV left and right sed; Lumber has been dei load noncond s has been dei load concond s has been dei load	10.0 0.2 0.2 0.2 wood shea urlins, exc g directly hidpt 2=89/0-3 2=216 (LC 2=-143 (Lr num Com 3=-1240/ ² 108, 5-6= 3-5=-113 =115mph .0psf; BCI VFRS (en exposed DOL=1.6 signed for current wit lesigned for current wite lesigned for internet size to trus nnector (f withstar 1 joint 2. n accorda al Code se and stood	Code athing directly applie cept end verticals. applied or 10-0-0 oc 3-5 C 4), 5=-612/ Mechanic C 5) C 4), 5=-132 (LC 8) pression/Maximum 187, 3-4=-163/47, -224/1108 1/278 (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon ; end vertical left and D plate grip DOL=1.6 c a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto s connections. by others) of trust to doing 132 lb uplift at unce with the 2018 actions R502.11.1 ar act ANS/CTPL1	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.04	2-6	>999	240 * PT	Weight: 45 lb DE OF JUA GARO NUME E-20001 SS/ONA UCEL 165 PROCESSION	FT = 10%	
LOAD CASE(S	S) Standard		aiu ANSI/TPTT.									September	10,2021	

16023 Swingley Ridge Rd Chesterfield, MO 63017

						RELEASE FOR CONSTRUCTION
lob	Truss		Otv	Plv	Lot 125 MN	AS NOTED FOR PLAN REVIEW
000	11033		Qly	l''y		DEVELOPMENT SERVICES
MN125	G1	Common Supported Gable	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -	ri Sep 1 03 34 2 1 / 2 1 1					

ug 16 2021 Print: 8.430 S Aug 16 2021 MiTek In Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. In Sep 10 08 3744 2 1 / 2 Pag 12 1 ID:CE6VMFpH?UjHIw0tSib8KqyZPwR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDorr42xCff

Scale = 1:43.7

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.08 0.05 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 76 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF I 2x4 SPF I 2x4 SPF I Structural 6-0-0 oc p Rigid ceili bracing. (Ib/size) Max Horiz Max Uplift Max Grav	No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2	athing directly applie applied or 10-0-0 oc -0-0, 12=186/22-0-0, 2-0-0, 15=152/22-0-0 2-0-0, 22=158/22-0-0 2-0-0, 22=152/22-0-0 2-0-0, 22=152/22-0-0 2-0-0, 22=152/22-0-0 8) -4), 12=-53 (LC 5), C 9), 15=-38 (LC 5), C 9), 15=-38 (LC 5), C 9), 12=-83 (LC 2), C 9), 12=-86 (LC 1), C 9), 12=186 (LC 1), C 1), 12=186 (LC 2), C 1), 12=186 (LC 2), C 1), 12=189 (LC 22), C 1), 22=152 (LC 21), C 21)), 2), 3), 3), 3), 4 2 2 2 2), 5), 5), 5), 5), 5), 5), 5), 5	 VEBS 7 VEBS 7 VInbalanced this design. Wind: ASCE Vasd=91mph II; Exp C; Encantilever left right exposec Truss design only. For stu see Standarc or consult qu All plates are Gable studs : This truss ha chord live loa * This truss ha on the botton 3-06-00 tall b chord and an Provide mech bearing plate 2, 46 lb uplift at ioint : 	7-19=-123/0, 6-20= 1-22=-122/59, 3-22 0-17=-143/69, 10-1 roof live loads hav 7-16; Vult=115mp ; TCDL=6.0psf; B closed; MWFRS (it and right expose t; Lumber DOL=1. ed for wind loads ds exposed to wint lindustry Gable E alified building des 2x4 MT20 unless es continuous bott spaced at 2-0-0 or s been designed in chord in all areas y 2-00-00 wide wi y 2-00-00 wide wi y other members. nanical connectior capable of withst at joint 20, 44 lb u 22. 67 lb uplift at ib	=-150/70 3=-195/9 15=-122/ re been of cond (3-sec CDL=6.0 CDL=6.0 cCDL=6.0	 5-21=-143/6 7, 8-18=-150 59, 11-14=-1 considered fo cond gust) Opsf; h=25ft; (exterior zor retrical left an grip DOL=1. ane of the tru at to the face is as applical per ANSI/Tf se indicated. d bearing. Opsf bottom other live loae load of 20.0 a rectangle veen the bottot ers) of truss t 4 lb uplift at j bint 21, 38 lb 	68, //70, 95/95 r Cat. ne; id 60 ss), ble, PI 1. ds. Dpsf om o ont ioint				JU GAF NUM E-2000	MISSOURAN AN ACIA MBER MI62101
FORCES TOP CHORD BOT CHORD	(lb) - Max Tension 1-2=0/6, 2 5-6=-29/9 8-9=-29/7 11-12=-5- 2-23=-3/5 20-21=-3/ 17-18=-3/ 12-14=-3/	imum Com 2-3=-79/56, 0, 6-7=-31/ 5, 9-10=-2/ 4/36, 12-13 6, 22-23=-7 56, 19-20= 56, 15-17= 56	pression/Maximum 3-4=-47/58, 4-5=-26 (108, 7-8=-31/104, 8/46, 10-11=-34/26, =0/6 3/56, 21-22=-3/56, -3/56, 18-19=-3/56, -3/56, 14-15=-3/56,	8/73, ₁	 a) a form a fo	f at joint 17, 38 lb 14 and 53 lb uplift designed in accord Residential Code nd referenced star Standard	at joint at at joint at dance w sections ndard AN	iont 15, 65 lt 12. R502.11.1 a SI/TPI 1.	ind			. and the second	PRO TO	952

"HILLING September 10,2021

Scale = 1:43.7

Plate Offsets (X, Y): [2:Edge,0-0-10], [6:Edge,0-0-10]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.52 0.67 0.18	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.12 -0.22 0.06 0.08	(loc) 9-10 2-10 6 9-10	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 67 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2		6) This truss is International R802.10.2 a	designed in acco Residential Cod nd referenced st	ordance wi le sections andard AN	th the 2018 R502.11.1 a ISI/TPI 1.	and	0.10		210	Volgin. or ib	
NEBS BRACING TOP CHORD	2x3 SPF No.2 Structural wood shea 3-5-15 oc purlins.	athing directly applie	EOAD CASE(S)	Standard								
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	c								WHE I	
REACTIONS	(lb/size) 2=1048/0- Max Horiz 2=70 (LC Max Uplift 2=-187 (L	-3-8, 6=1048/0-3-8 12) C 4), 6=-187 (LC 5)								1	XATE OF	WISSOL P
FORCES	(lb) - Maximum Com Tension	pression/Maximum								Ξ.	GAR	
TOP CHORD	1-2=0/6, 2-3=-2209/3 4-5=-1883/253, 5-6=	355, 3-4=-1883/253 -2209/355, 6-7=0/6	,							Ē		21
BOT CHORD	2-10=-335/2029, 9-1 6-9=-283/2029	0=-127/1384,								H	F-20001	BER 44
WEBS	4-9=-52/528, 5-9=-4 3-10=-417/223	17/224, 4-10=-52/52	28,							1	Ĩ	GINI
NOTES											1.S/ONI	ENIN
1) Unbalance	ed roof live loads have	been considered for	r								1111	initi
this docia	^											

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 187 lb uplift at joint 2 and 187 lb uplift at joint 6.

16952 BOONAL ENGINE September 10,2021 September 10,2021

ALL DATE OF THE OWNER OF THE OWNE

Plate Offsets (X, Y):	[10:0-3-8,Edge], [16:0-3-8,Edge]	

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		тс	0.07	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.02	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.03	Horz(CT)	0.00	10	n/a	n/a		
BCDL		10.0	Code	IRC20	18/TPI2014	Matrix-R							Weight: 42 lb	FT = 10%
				2) Wind: ASCE	7-16; Vult=115mph	ה (3-sec	cond gust)	Cat					
POT CHORD	2X4 SPF	NO.Z			II: Exp C: Ep	r, TCDL=0.0pSi, BC	nvelon	$p_{si} = 2511, v$	oal.					
BUT CHURD	2X4 SPF	NO.Z			cantilever lef	t and right exposed	l · end v	ertical left an	id,					
OTHERS	2x4 SFF	No.2			right expose	d: Lumber DOL=1.6	50 plate	arip DOL=1.	60					
BRACINC	274 01 1	10.2		3) Truss design	ed for wind loads in	h the pl	ane of the tru	SS					
	Structuro	l wood chor	othing directly applie	dor	only. For stu	ds exposed to wind	d (norm	al to the face),					
	10-0-0 oc	purlins, ex	xcept end verticals.	u ui	see Standard or consult qu	Industry Gable En alified building desi	nd Deta	ils as applical s per ANSI/TF	ble, PI 1.					1117
BOICHORD	bracing.	ing directly	applied or 6-0-0 oc	4) All plates are	2x4 MT20 unless of a continuous botto	otherwi	se indicated.					NE OF !	MISS
REACTIONS	(lb/size)	10=136/17 12=197/17 14=197/17	1-0-0, 11=133/11-0-0 1-0-0, 13=174/11-0-0 1-0-0, 15=133/11-0-0), 6), 7) Truss to be f braced agair) Gable studs	ully sheathed from st lateral movemen spaced at 2-0-0 oc.	one fac nt (i.e. c	e or securely liagonal web)				in the	JUA	N
		16=136/1	1-0-0	8) This truss ha	s been designed fo	ora 10.) psf bottom				-+	GAR	
	Max Horiz	16=-117 (chord live loa	ad nonconcurrent w	ith any	other live loa	ds.				:	: 2 =
	Max Uplift	10=-19 (L) 12=-65 (L) 15=-70 (L)	C 8), 11=-66 (LC 9), C 9), 14=-65 (LC 8), C 8), 16=-34 (LC 4)	9) * This truss h on the bottor	as been designed f n chord in all areas	for a liv where	e load of 20.0 a rectangle	Opsf			P	NUME	BER
	Max Grav	10=140 (L 12=201 (L 14=200 (L 16=140 (L	.C 22), 11=155 (LC 1 .C 16), 13=174 (LC 1 .C 21), 15=163 (LC 1 .C 21)	16), 1), 1 15), 1	 a) 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. b) 700 mechanical connection (by others) of truss to bearing plate capable of withstanding 34 lb uplift at joint to 200 mechanical to 200 m								SS/ON	LENGIN
FORCES	(lb) - Max Tension	imum Com	pression/Maximum		uplift at joint	15, 65 lb uplift at joi	int 12 a	nd 66 lb uplif	t at					1102
TOP CHORD	2-16=-12 3-4=-48/7	5/31, 1-2=0 2 4-5=-42/	/36, 2-3=-66/68, /96, 5-6=-33/87	1	1) This truss is	designed in accord	ance w	ith the 2018	nd				IN AN C	SARO
	6-7=-32/6	5. 7-8=-41/	/50. 8-9=0/36.		R802 10 2 a	d referenced stand		IQI/TDI 1	inu				N	····· A .
	8-10=-12	5/24	,			Oten derd		10 /1111.					CE	NSE
BOT CHORD	15-16=-5	2/56, 14-15	=-52/56, 13-14=-52/	56, ^L	UAD CASE(S)	Standard								
	12-13=-5	2/56, 11-12	=-52/56, 10-11=-52/	56									1 de 1	
WEBS	5-13=-13 6-12=-16	5/0, 4-14=- [.] 0/91, 7-11=	160/91, 3-15=-119/8 115/79	1,									169	952
NOTES													7	1. 1.55
 Unbalance this design 	ed roof live l n.	oads have	been considered for										ORESSION	AL ENGIN
													111	

September 10,2021

DIVAGING		
TOP CHORD	Structural 4-5-7 oc p	l wood sheathing directly applied ourlins, except end verticals.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 10-0-0 oc
REACTIONS	(lb/size)	6=670/4-9-8, 7=69/4-9-8, 8=43/4-9-8, 9=-14/0-3-8, 11=741/0-3-8
	Max Horiz	11=-153 (LC 6)
	Max Uplift	6=-88 (LC 8), 7=-163 (LC 9), 8= (LC 5), 9=-65 (LC 21), 11=-125 8)
	Max Grav	6=670 (LC 1), 7=179 (LC 22), 8=109 (LC 21), 9=100 (LC 8), 11=741 (LC 1)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TOP CHORD	1-2=0/39,	2-3=-770/123, 3-4=-773/164,

4-5=0/39, 2-11=-677/188, 4-6=-683/174 BOT CHORD 10-11=-51/549, 9-10=-51/549, 8-9=-51/549,

7-8=-51/549, 6-7=-51/549 WEBS 3-10=0/274 NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 2) II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

- Gable studs spaced at 2-0-0 oc. 6) This truss has been designed for a 10.0 psf bottom 7) chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 8)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 125 lb uplift at joint 11, 88 lb uplift at joint 6, 45 lb uplift at joint 8, 163 lb uplift at joint 7 and 65 lb uplift at joint 9.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

or

-45

(LC

MIS

0

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.71	Vert(LL)	-0.06	7-8	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.45	Vert(CT)	-0.13	7-8	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.10	Horz(CT)	0.01	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.05	7-8	>999	240	Weight: 46 lb	FT = 10%

- LUMBER
- TOP CHORD
- 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 2x6 SPF No.2 *Except* 7-3:2x3 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 4-3-4 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) 6=754/0-3-8, 8=754/0-3-8 Max Horiz 8=153 (LC 7) Max Uplift 6=-105 (LC 9), 8=-105 (LC 8) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/39, 2-3=-802/121, 3-4=-802/121, 4-5=0/39, 2-8=-694/163, 4-6=-694/163 BOT CHORD 7-8=-13/569, 6-7=-13/569

WEBS

NOTES

Unbalanced roof live loads have been considered for 1) this design

3-7=0/332

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 105 lb uplift at joint 8 and 105 lb uplift at joint 6.

- 6) This truss is designed in accordance with the 2018
 - International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

11111

0

MIS

Plate Offsets (X, Y): [1:Edge,0-1-4], [3:Edge,0-1-4]

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.88 0.50 0.34	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.08 -0.16 0.01 0.07	(loc) 1-4 1-4 3 1-4	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 127 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) 2-ply truss (0.131"x3" Top chord oc. Bottom ch staggered Web conn 2) All loads a except ifn CASE(S) s provided tu unless oth 3) Unbalance this desigy this desigy (4) Wind: ASC Vasd=91n II; Exp C; I cantilever right expos	2x4 SPF N 2x6 SP 244 2x4 SPF N Left: 2x4 SP Right: 2x4 Structural ¹ Rigid ceilir bracing. (lb/size) Max Horiz Max Uplift (lb) - Maxir Tension 1-2=-3198, 1-4=-400/2 2-4=-398/2 to be connect ords connected ords connected ords connected ords connected section. Ply t o distribute o nerwise indica ed roof live lo CE 7-16; Vult nph; TCDL=6 Enclosed; M left and right sed; Lumber	0.2 DOF 2.0E 0.2 P No.3 SP No.3 SP No.3 wood shear ig directly 1=2643/0- 1=-127 (Li 1=-455 (Li num Com /562, 2-3= 580, 3-4= 736 cted toget ows: as follows ted as follows t	athing directly applied. applied or 10-0-0 oc 3-8, 3=2488/0-3-8 C 6) C 8), 3=-425 (LC 9) pression/Maximum -3198/562 -400/2580 ther with 10d :: 2x4 - 1 row at 0-9-0 cows: 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies, cx (B) face in the LOA pections have been noted as (F) or (B), been considered for (3-second gust) DL=6.0psf; h=25ft; Ca ivelope) exterior zone; ; end vertical left and D plate grip DOL=1.60	5) 6) 7) 8) 9) 10] LO 1)	This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Provide mech bearing plate joint 1 and 42 This truss iog International R802.10.2 ar Use Simpson Truss) or equ 1-5-4 from th back face of I) Fill all nail ho PAD CASE(S) Dead + Roo Plate Increa Uniform Loa Vert: 1-2= Concentrate Vert: 5=-5 9=-537 (E	s been designed for d nonconcurrent w as been designed h chord in all areas y 2-00-00 wide wil y other members. hanical connection capable of withsta 25 lb uplift at joint 3 designed in accord Residential Codes and referenced stand Strong-Tie LUS22 ivalent spaced at 2 e left end to 13-5-4 bottom chord. les where hanger i Standard of Live (balanced): se=1.15 ads (lb)ft) =-70, 2-3=-70, 1-3= ed Loads (lb) 537 (B), 6=-537 (B), 11	or a 10.0 vith any for a liv where I fit betw (by oth unding 4 a. lance w sections dard AN 6 (4-10c 2-0-0 oc I to con s in cor Lumber =-20), 7=-537 (psf bottom other live loa e load of 20.0 a rectangle veen the botto try of truss t 55 lb uplift at th the 2018 R502.11.1 a ISI/TPI 1. Girder, 3-10 max. starting hect truss(es) tact with lum Increase=1. ⁻ 7 (B), 8=-537 B)	ds. Dpsf om d g at) to ber. 15, 7 (B),				DO E-20001 SS ONA LICEL 160 September	MISSOUR BER 62101 NSEO 52 HU SARCIA NSEO

Mitek* 16023 Swingley Ridge Rd Chesterfield, MO 63017

						RELEASE FOR CONSTRUCTION
lob	Truss	Truss Type	Otv	Plv	Lot 125 MN	AS NOTED FOR PLAN REVIEW
000	11035		Guy	i iy		DEVELOPMENT SERVICES
MN125	J1	Jack-Closed Supported Gable	2	1	Job Reference (optional)	LEE'S SUMMIT, MISSOURI
· · · · · · · · · · · · · · · · · · ·						00/01/0001

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. ri Sep 1 0804 21/2021 ID:CE6VMFpH?UjHIw0tSib8KqyZPwR-RfC?PsB70Hq3NSgPqnL8w3uITXbG WrCDohr422 1/2021

1-6-0

Sca	le –	1.26.2)

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.03	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 5 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SPF No.2 8) This truss is designed in accordance with the 2018 2x4 SPF No.2 International Residential Code sections R502.11.1 and 2x3 SPF No.2 R802.10.2 and referenced standard ANSI/TPI 1. 2x3 SPF No.2 LOAD CASE(S) Standard											
TOP CHORD	Structural wood she 1-6-0 oc purlins, ex	athing directly applie cept end verticals.	ed or									
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	C									
REACTIONS	\$ (Ib/size) 2=93/1-6-0, 4=59/1-6-0 Max Horiz 2=35 (LC 5) Max Uplift 2=-17 (LC 8), 4=-15 (LC 8)											
FORCES	(Ib) - Maximum Compression/Maximum Tension											
TOP CHORD	1-2=0/5, 2-3=-36/18	3-4=-45/24								2	: GAE	

NOTES

BOT CHORD 2-4=-11/9

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 7) bearing plate capable of withstanding 15 lb uplift at joint 4 and 17 lb uplift at joint 2.

υ NUMBER T F 2000162101 0 E ONAL 1111 16952 Dentember 10,2021 PROVINCE ANSA September 10,2021

						RELEASE FOR CONSTRUCTION
loh	Trues		Otv	DIV	Lot 125 MN	AS NOTED FOR PLAN REVIEW
305	11035	Thuss Type	Quy	I IY	LOUTZOIMIN	DEVELOPMENT
MN125	J2	Jack-Closed	2	1	Job Reference (optional)	LEE'S SUMMIT, MISSOURI
	00071	B				00/04/0004

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Iri Sep 1 0894 21/2921 ID:CE6VMFpH?UjHIw0tSib8KqyZPwR-RfC?PsB70Hq3NSgPqnL8w3uITXb6 WrCDoh422Cfi 21/2921

Scale = 1:26.2												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.02	Vert(LL)	0.00	2-4	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	2-4	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 5 lb	FT = 10%
LUMBER												
TOP CHORD	2x4 SPF No.2											

1-6-0

TOF CHORD	2X4 3FF NU.Z
BOT CHORD	2x4 SPF No.2
WEBS	2x3 SPF No.2

BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	1-6-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	2=94/0-3-8, 4=57/ Mechanical
	Max Horiz	2=35 (LC 5)

	Max Uplift 2=-17 (LC 8), 4=-15 (LC 8)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/5, 2-3=-36/18, 3-4=-44/23

BOT CHORD 2-4=-11/9

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 15 lb uplift at joint 4 and 17 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

						RELEASE FOR CONSTRUCTION
leb	Truce		Otv	DIV	Lot 125 MN	AS NOTED FOR PLAN REVIEW
500	11055	Truss Type	Qly	гу	LOU 125 IVIN	DEVELOPMENT SERVICES
MN125	J3	Jack-Closed	2	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
				-		

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. ri Sep 1 0804 21/2021 ID:CE6VMFpH?UjHIw0tSib8KqyZPwR-RfC?PsB70Hq3NSgPqnL8w3uITXbG WrCDohr422 1/2021

2-0-0

Scale	_	1.21	5
Scale	=	1.21	.5

Scale = 1:21.5							I					
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.05	Vert(LL)	0.00	2-4	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	0.00	2-4	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 6 lb	FT = 10%
LUMBER												
TOP CHORD	2x4 SPF No.2											
BOT CHORD	2x4 SPF No.2											
WEBS	2x3 SPF No.2											
BRACING												

DRACING		
TOP CHORD	Structura	l wood sheathing directly applied or
	2-0-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	2=163/0-3-8, 4=69/ Mechanical
	Max Horiz	2=39 (LC 5)
	Max Unlift	2 = -60 (I C 4) 4 = -14 (I C 8)

	Max Opline 2=-60 (LC 4), 4=-14 (LC 6)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/6, 2-3=-41/15, 3-4=-50/26
BOT CHORD	2-4=-12/9

NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 14 lb uplift at joint 4 and 60 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 125 MN	AS NOTED FOR PLAN REVIEW DEVEL OPMENT SERVICES
MN125	J4	Jack-Closed Supported Gable	1	1	Job Reference (optional	I47847556 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS - (ri Sep 1 080 45 2 1 / 219 2 1 WrCDolf 422 4 f					

2-0-0

Scale =	1:21.5
---------	--------

Loading		(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15	тс	0.05	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL		10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 6 lb	FT = 10%
LUMBER				9) This truss is	designed in accord	ance w	ith the 2018						
TOP CHORD	2x4 SPF No.2	2		International	Residential Code s	ections	R502.11.1 a	nd					
BOT CHORD	2x4 SPF No.2	2		R802.10.2 a	nd referenced stand	dard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2	2		LOAD CASE(S)	Standard								
BRACING													
TOP CHORD Structural wood sheathing directly applied or													
	2-0-0 oc pun Rigid ceiling	directly	applied or 10-0-0 oc										
BOT CHORD	bracing.	unecuy	applied of 10-0-0 oc										
REACTIONS	(lb/size) 2=	161/2-0	-0, 4=71/2-0-0									N'INE I	
	Max Horiz 2=	=39 (LC	5)									NEOF	ISS
	Max Uplift 2=	⊧-58 (LC	4), 4=-15 (LC 8)									A	
FORCES	(lb) - Maximu Tension	ım Com	pression/Maximum								30	JUA	N
TOP CHORD	1-2=0/6, 2-3=	=-40/16,	3-4=-52/26								2.	GAB	
BOT CHORD	2-4=-12/9										- *		×-
NOTES											Ξ.,		
1) Wind: ASC	CE 7-16; Vult=1	15mph	(3-second gust)								=7	NUME	BER :
Vasd=91n	nph; TCDL=6.0	psf; BCI	DL=6.0psf; h=25ft; C	at.								C. E-20001	62101 :4
II; Exp C;	Enclosed; MWF	FRS (en	velope) exterior zone	e;							1	A	
cantilever	left and right ex	xposed :	; end vertical left and	0								1. So	NG'I
2) Truss des	ianed for wind I	loads in	the plane of the trus	s								ONA	LEIN
only. For	studs exposed	to wind	(normal to the face).										un.
see Stand	ard Industry Ga	able End	d Details as applicab	le,								2.11	
or consult	qualified building	ng desig	ner as per ANSI/TP	l 1.								1111	
3) Gable req	uires continuou	is bottor	n chord bearing.									NANU	AACIA
4) Gable stu	ds spaced at 2-	•0-0 oc.	a 10.0 mat hattam									CE	NSA
5) This truss	load popconcu	gned for	a 10.0 psi bollom	e							1		50
6) * This trus	s has been des	signed fo	or a live load of 20 0r	nsf							-	1	1 2
on the bot	tom chord in all	l areas \	where a rectangle								-	160	252
3-06-00 ta	all by 2-00-00 w	ide will f	fit between the bottor	m							-	10	552
chord and	any other mem	nbers.									-	Þ. /	
7) Provide m	echanical conn	ection (by others) of truss to) • ,								0.	14:145
bearing pl	ate capable of the state of the	withstan	iding 15 ib uplift at jo	Int								1 Com	SA
8) Reveled n	late or shim rec	e. Tuired to	nrovide full bearing									I SION	ALENIN
surface wi	ith truss chord a	at ioint(s	3) 2.									1111	in the second se
54.1450 W													

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 10,2021

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 125 MN	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
MN125	K1	Roof Special	7	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS - 6	ri Sep 1 0804 21/2921					

Plate Offsets (X, Y): [1:Edge,0-1-8], [3:0-3-11,0-3-0], [5:0-3-8,Edge]

Scale = 1:64.5

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TP	12014	CSI TC BC WB Matrix-S	0.67 0.42 0.63	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.20 -0.39 0.01 0.02	(loc) 6-8 6-8 6 9-10	l/defl >599 >303 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 95 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x4 SPF 2100F 1.8E 2x3 SPF No.2 *Exce Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 8-1 1 Row at midpt (lb/size) 6=557/ M 11=748/0 Max Horiz 11=-251 (athing directly applie cept end verticals. applied or 10-0-0 oc 9. 3-9 echanical, 8=930/0-3 -3-8 (LC 4)	5) Re 6) Pro be: 2 11, 7) Th d or Int LOAD	offer to girde ovide mech aring plate , 91 lb uplif is truss is c ernational 1 002.10.2 an CASE(S)	r(s) for truss to tru: lanical connection capable of withsta t at joint 6 and 83 I lesigned in accord Residential Code s d referenced stanc Standard	ss conr (by oth nding 8 b uplift ance wi ections lard AN	ections. ers) of truss to 2 lb uplift at jo at joint 8. ith the 2018 .R502.11.1 ar ISI/TPI 1.) nd			"IIII"	JUA GARC	AISSOUR	
FORCES TOP CHORD BOT CHORD WEBS	Max Uplift 6=-91 (LC (LC 8) (lb) - Maximum Com Tension 1-2=-746/98, 2-3=-5 4-5=-602/142, 1-11= 10-11=-220/236, 9-1 8-9=-12/188, 6-8=-3 2-10=-122/102, 2-9=	2 9), ś=-83 (LC 9), 11 pression/Maximum 52/174, 3-4=-536/15 -725/92, 5-6=-466/1- 10=-128/684, 6/425 -362/193, 3-9=-25/20	=-82 9, 48 04,								* PHON	NUME 5. E-20001 SS/ONA	ER 62101	WILLIN .
NOTES 1) Unbalancı this desigy 2) Wind: ASK Vasd=91n II; Exp C; cantilever right expo 3) This truss chord live 4) * This trus on the bot 3-06-00 ta chord and	1-10=-54/643, 4-9=- ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed used; Lumber DOL=1.6 has been designed fo load nonconcurrent wi ss has been designed fi ttom chord in all areas all by 2-00-00 wide will I any other members.	113/468, 4-8=-869/2 been considered for (3-second gust) DL=6.0psf; h=25ft; C tivelope) exterior zone; end vertical left and 0 plate grip DOL=1.6 r a 10.0 psf bottom ith any other live load for a live load of 20.0 where a rectangle fit between the bottom	13 at. ə; 0 s. osf m								annun.	169 BOCK SKON September	ARCIA 152 ALENCIA 10,2021	Annun De

16023 Swingley Ridge Rd Chesterfield, MO 63017

						RELEASE FOR CONSTRUCTION
lob	Truce	Trues Type	Otv	DIV	Lot 125 MN	AS NOTED FOR PLAN REVIEW
505	11033	Truss Type	Quy	i iy	LOU 125 WIN	DEVELOPMENT SERVICES
MN125	K2	Roof Special Supported Gable	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Iri Sep 1 03634/21/299:21

Scale = 1:59

Plate Offsets (X, Y): [7:Edge,0-3-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.15 0.11 0.16	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 15	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 130 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 2x4 SPF No.2 Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 15=83/25- 17=170/21 19=180/23 22=187/22 24=187/22 26=179/22 28=135/21 Max Horiz 29=-251 (athing directly applied cept end verticals. applied or 10-0-0 oc 7-23 -1-0, 16=215/25-1-0, 5-1-0, 21=179/25-1-0, 5-1-0, 23=162/25-1-0, 5-1-0, 27=187/25-1-0, 5-1-0, 29=13/25-1-0 LC 4)	TOP CHORD or BOT CHORD WEBS	10P CHORD 1-29=-56//44, 2-3=-45//64, 2-3=-45//64, 2-3=-45//64, 2-3=-45//64, 2-3=-45//64, 2-3=-45//64, 2-3=-45//64, 2-3=-45//64, 2-3=-45//64, 2-3=-45//64, 2-3=-45//64, 2-3=-45//64, 2-3=-93//217, 2-192//217, 2-192//21, 2-192//217, 2-28=-143//04, 2-23=-192//207, 25-26=-192//207, 15-16=-192//207, 16-17=-192//207, 15-16=-192//207, 15-12=-142//89, 10-19=-144//84, 13-16=-195/125 9) This truss is designed in a condext of whith the device of the total condext of total condext of total by condext of the total condext of total condext of t									n int int 7
FORCES	Max Uplift 15=-125 (17=-43 (L 19=-60 (L) 22=-56 (L) 24=-63 (L 28=-121 (Max Grav 15=187 (L 17=170 (L 19=183 (L 22=196 (L 24=192 (L 26=186 (L 28=216 (L 28=216 (L (lb) - Maximum Com Tension	LC 5), 16=-127 (LC 9 C 9), 18=-66 (LC 9), C 9), 21=-65 (LC 9), C 9), 23=-29 (LC 6), C 8), 25=-75 (LC 8), C 8), 27=-71 (LC 8), LC 8), 29=-99 (LC 6), C 6), 16=273 (LC 16, C 1), 18=191 (LC 16), C 16), 21=182 (LC 11), C 16), 23=264 (LC 8), C 15), 25=187 (LC 12), C 15), 27=191 (LC 12), pression/Maximum	 Unbalance this design 2) Wind: ASC Vasd=91m II; Exp C; E cantilever I right expose Truss desi only. For s see Standa or consult All plates a 5), 5) Gable requires braced aga Truss to be braced aga Gable studies This truss chord live I 	d roof live loads have E 7-16; Vult=115mph ph; TCDL=6.0psf; BC inclosed; MWFRS (er eft and right exposed ed; Lumber DOL=1.6 gned for wind loads in tuds exposed to winc and Industry Gable En qualified building desi re 2x4 MT20 unless of ires continuous botto inst lateral movemen s spaced at 2-0-0 oc. has been designed fo oad nonconcurrent w	i (3-sec DL=6. hvelope ; end v 0 plate i the pla I (norm d Deta gner as otherwi m chor one fac t (i.e. d r a 10.0 ith any	considered for cond gust) Dpsf; h=25ft; (e) exterior zor rertical left an- grip DOL=1.(ane of the trus al to the face) ils as applicat s per ANSI/TF se indicated. d bearing. e or securely iagonal web). D psf bottom other live load	r Cat. ne; d 60 ss s, ble, PI 1.			. antiture.	PROFILES	GARCIA NSEO 952	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 10,2021

		• •												
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.06 0.04 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 44 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF 2x4 SPF 2x4 SPF 2x4 SPF 2x4 SPF Kigid ceil bracing. (Ib/size) Max Horiz Max Uplift Max Grav	No.2 No.2 No.2 No.2 I wood shead burlins. ing directly 2=108/12: 10=229/13 12=150/13 14=174/13 2=-17 (LC (LC 9), 11 8), 14=-70 2=109 (LC 10=236 (L 12=152 (L 12=152 (L 14=182 (L)	athing directly applie applied or 10-0-0 oc -1-13, 8=144/12-1-1; 2-1-13, 11=172/12-1 2-1-13, 13=188/12-1 2-1-13 C 6) : 4), 8=-9 (LC 9), 10= =-60 (LC 9), 13=-76 0 (LC 8) C 16), 8=144 (LC 1), C 16), 11=178 (LC - C 18), 13=198 (LC - C 15)	2 d or 4 3, 6 -13, 7 -13, 8 -79 (LC 9 (LC 9 (5),	 Wind: ASCE Vasd=91mph II; Exp C; En cantilever lef right exposed Truss design only. For stu- see Standard or consult qu All plates are Gable require Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 9 Ib uplift a at joint 14, 60 	7-16; Vult=115m; 7-16; Vult=115m; 1; TCDL=6.0psf; B closed; MWFRS (t and right expose d; Lumber DOL=1 led for wind loads ids exposed to wird d Industry Gable E lailfied building de 2x4 MT20 unless es continuous bott spaced at 2-0-0 o is been designed ad nonconcurrent t has been designed n chord in all area by 2-00-00 wide winy other members. hanical connection e capable of withst at joint 8, 76 lb upl 0 lb uplift at joint 1	bh (3-sec CDL=6.	ond gust) pps; h=25ft; (a) exterior zor vertical left an grip DOL=1. ane of the true al to the face ils as applical s per ANSI/TF se indicated. d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 7 lb uplift at jo lb uplift at jo	Cat. ne; d 60 ss s, , ole, el 1. ds. opsf om o int int				JUA GAR NUMI E-20001	MISSOUR CIA BER 162101
TOP CHORD	(lb) - Max Tension 1-2=0/17, 4-5=-75/9 7-8=-71/4	2-3=-94/8 9, 5-6=-58 6, 8-9=0/1	pression/Maximum 1, 3-4=-87/63, /87, 6-7=-57/41, 7	1	 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) See Standard Industry Piggyback Truss Connection 								GARCIA .	
BOT CHORD	2-14=-33/ 11-12=-3	/73, 13-14= 3/73, 10-11	-33/73, 12-13=-33/7 =-33/73, 8-10=-33/7	3, ³ L	consult quali	fied building desig Standard	ner.					-	I'V TICE	NSED
WEBS	5-12=-110/0, 4-13=-159/100, 3-14=-139/91, 6-11=-144/84, 7-10=-176/104											Ξ	16	952
NOTES 1) Unbalance this design	ed roof live l n.	oads have	been considered for									HIL.	Paore Branch	AL ENGINE

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 10,2021

											RELEASE		ON
Job		Truss		Truss Type		Qty	Ply	Lot ²	125 MN		AS NOTE	ED FOR PLAN REVIE OPMENT SERVICES	W
MN125		P3		Piggyback		1	1	Job	Reference (or	otional	LEE'S	147847561 SUMMIT, MISSOURI	I
Wheeler Lumber	r, Waverly, KS	66871,		•	Run: 8.43 S Aug	16 2021 Pri	int: 8.430 S A	ug 16 2021	MiTek Industrie	es, Inc. I	ri Sep 1 030748	21/202	1
					ID:CE6VMFpH?U	JHIWUTSID8	KqyZPWR-RfC	S?PSB70H0	q3NSgPqnL8W3	ULIXDG	CWICDON-3423C ?T		-
			-0-8-15	5-9-10	8-3-7			17-	9-5		18-7-4		
			0-8-15	5-9-10	2-5-13			9-5)-14		0-9-15		
					6	6x6 👟							
Scale = 1:44.3	6-0-4	2-4-0 	1 2 3x4=	8 ¹² 3 14 8-3-7 8-3-7	4	x6 x	6 16 12-6-3 4-2-12	1 7 5 12 6x6=	2 17 8 11 11 5-	9-5 3-2	9 10 3x4=	0-4-5	
Plate Offsets (X, Y): [5:Ed	ge,0-3-8]					-						
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-S	0.20 \ 0.15 \ 0.12 H	DEFL /ert(LL) /ert(CT) Horz(CT)	in n/a n/a 0.00	(loc) l/defl - n/a - n/a 9 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 70 lb	GRIP 197/144 FT = 10%	
BCDL10.0CodeIRC2018/TPI2014Matrix-SWeight: 70 lbFT = 109LUMBER TOP CHORD2x4 SPF No.2FT = 109BOT CHORD2x4 SPF No.2 * Except* 3.14:2x3 SPF No.2 <td>MISSOLA CIA BER 62101</br></td> <td></td>								MISSOLA CIA BER 					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	 (lb) - Maximum Compression/Maximum Tension 10) This truss is a International R802.10.2 ar R802.10.2 ar R802.10.2 ar R802.10.2 ar R802.10.2 ar III) See Standard Detail for Cor Consult qualit 12-13=-47/108, 13-14=-47/108, 12-13=-47/108, 11-12=-45/115, 9-11=-45/115 13-15=-210/0, 5-15=-185/2, 4-15=-68/51, 15-16=-64/48, 12-16=-70/54, 6-16=-50/29, 7-12=-203/122, 8-11=-212/120, 3-14=-301/179 Consult qualit consult quality parameters of the loads have been considered for s design. 				ss is designed in accord onal Residential Code s 0.2 and referenced stand ndard Industry Piggybar r Connection to base tri qualified building desigr E(S) Standard	lance with sections R dard ANS ck Truss (uss as app ner.	the 2018 (502.11.1 ar (/TPI 1. Connection plicable, or	nd		. AUTUAL.	PHORE TO A	DS2	

September 10,2021

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.18	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.08	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 18 lb	FT = 10%
I IIINED 8) Provide mechanical connection (by others) of trues to												

TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2
OTHERS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	6-0-0 oc p	ourlins.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	1=152/7-3-0, 3=152/7-3-0,
	. ,	4=257/7-3-0
	Max Horiz	1=48 (LC 5)
	Max Uplift	1=-34 (LC 8), 3=-40 (LC 9)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHORD	1-2=-86/4	5, 2-3=-83/33
BOT CHORD	1-4=-9/39	, 3-4=-9/39
WEBS	2-4=-179/	46

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

rovide mechanical connection (by othe bearing plate capable of withstanding 34 lb uplift at joint 1 and 40 lb uplift at joint 3.

- This truss is designed in accordance with the 2018 9) International Residential Code sections R502.11.1 and
- R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

1111

0

Scale = 1:22.7											·		
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.07	Vert(LL)	n/a	-	n/a	999	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horiz(TL)	0.00	3	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 12 lb	FT = 10%	
LUMBER TOP CHORD	8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 22 lb uplift at joint												
BOT CHORD	2x4 SPF No.2		1 and 26 lb	uplift at joint 3.									

OTHERS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	5-0-7 oc p	ourlins.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	1=96/4-11-9, 3=96/4-11-9,
		4=163/4-11-9
	Max Horiz	1=-30 (LC 4)
	Max Uplift	1=-22 (LC 8), 3=-26 (LC 9)
FORCES	(lb) - Max	imum Compression/Maximum

FORCES

- Tension 1-2=-55/28, 2-3=-52/21 TOP CHORD
- BOT CHORD 1-4=-6/25, 3-4=-6/25 WEBS 2-4=-114/29

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and
- R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

11111

0

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 125 MN	AS NOTED FOR PLAN REVIEW
						DEVELOPMENT SERVICES 147847565
MN125	V3A	Valley	1	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS - 6	66871,	Run: 8.43 S Aug 16 ID:CE6VMFpH?UjHIv	2021 Print: 8. v0tSib8KqyZ	430 S Aug 1 PwR-RfC?Ps	6 2021 MiTek Industries, Inc. I B70Hq3NSqPqnL8w3uITXbG	ri Sep 1 06049 21/29 21

2-8-2

3x4 =

2-2-3

0-10-2

1-4-1

Scale = 1:23.2

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading (psf) TCLL (roof) 25.0	Spacing Plate Grip DOL	2-0-0 1.15 1.15	CSI TC 0.01 BC 0.03	DEFL Vert(LL) n	in (loc) /a -	l/defl n/a	L/d 999	PLATES MT20	GRIP 197/144
BCLL 0.0* BCDL 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB 0.00 Matrix-P	Horiz(TL) 0.0	00 3	n/a	n/a	Weight: 5 lb	FT = 10%
BCLL 0.0* BCDL 10.0 BCDL 10.0 LUMBER TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 BRACING Structural wood she TOP CHORD Structural wood she 2-9-0 oc purlins. BOT CHORD BOT CHORD Rigid ceiling directly bracing. REACTIONS REACTIONS (lb/size) 10.0 Hax Horiz FORCES (lb) - Maximum Com Tension TOP CHORD 10P CHORD 1-2=-70/21, 2-3=-70 BOT CHORD 1-3=-11/50 NOTES 1) Unbalanced roof live loads have this design. 2) Wind: ASCE 7-16; Vult=115mpf Vasd=91mph; TCDL=6.0psf; BC I; Exp C; Enclosed; MWFRS (er cantilever left and right exposed right exposed; Lumber DOL=1.6 3) Truss designed for wind loads ir only. For studs exposed to wind see sect andard Industry Gable En or consult qualified building desi 4) Gable requires continuous botto 5) Gable studs spaced at 2-0-0 oc. 6) This truss has been	Rep Stress Incr Code athing directly applied applied or 10-0-0 oc 2, 3=75/2-8-2 2 6) 8), 3=-9 (LC 9) pression/Maximum //21 been considered for (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zone ; end vertical left and 0 plate grip DOL=1.6 the plane of the truss (normal to the face), d Details as applicabl gner as per ANSI/TPI m chord bearing. r a 10.0 psf bottom ith any other live load for a live load of 20.0p where a rectangle	YES IRC2018/TPI2014 9) This truss is International R802.10.2 ar LOAD CASE(S) d or at. e; 0 5 s le, 11. s. psf	WB 0.00 Matrix-P designed in accordance w Residential Code section nd referenced standard A Standard	Horiz(TL) 0.1 vith the 2018 s R502.11.1 and NSI/TPI 1.	00 3	n/a		Weight: 5 lb D D D D D D D D D D D D D D D D D D D	NISSOUR 62101 ALENG
 chord and any other members. Provide mechanical connection bearing plate capable of withsta and 9 lb uplift at joint 3. 	(by others) of truss to nding 9 lb uplift at joir	nt 1						September	AL ENGINE 10,2021

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.37 0.22 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 29 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No 2x4 SPF No 2x3 SPF No Structural w 6-0-0 oc pur Rigid ceiling bracing.	.2 .2 ood shea lins. directly	athing directly applie applied or 10-0-0 oc	8) 9) d or L(Provide mec bearing plate 1, 55 lb uplift This truss is International R802.10.2 ar DAD CASE(S)	hanical connectio capable of withs at joint 3 and 22 designed in acco Residential Code nd referenced sta Standard	n (by oth tanding 4 Ib uplift a rdance w s sections ndard AN	ers) of truss ti 55 lb uplift at ju 15 joint 4. 116 the 2018 127 R502.11.1 a 128 R502.11.1 a	o pint nd					111.
REACTIONS	(Ib/size) 1= 4= Max Horiz 1= Max Uplift 1= (L	=227/11- =469/11- =-78 (LC =-45 (LC .C 8)	3-2, 3=227/11-3-2, 3-2 4) 8), 3=-55 (LC 9), 4=	22								111	XP. JUA	MISSOU
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximu Tension 1-2=-156/76 1-4=-14/71, 2-4=-314/81	um Com , 2-3=-15 3-4=-14/	pression/Maximum 56/56 71									*	GAR NUMI C. E-20001	CIA *
 Unbalance this design Wind: ASC Vasd=91n II; Exp C; 	ed roof live loa n. CE 7-16; Vult= nph; TCDL=6.0 Enclosed; MW	ds have 115mph)psf; BCI 'FRS (en	been considered for (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon	Cat. e;									SSION!	
 cantilever right expo Truss des only. For see Stand or consult 	left and right e sed; Lumber D igned for wind studs exposed lard Industry G qualified build	exposed OL=1.60 loads in to wind able End ing desig	; end vertical left and) plate grip DOL=1.6 the plane of the trus (normal to the face) d Details as applicab gner as per ANSI/TP a chord boaring	1 60 ;s , le, I 1.									LICE	SARCIA NSEO
 4) Gable req 5) Gable stur 6) This truss chord live 7) * This trus on the bot 3-06-00 ta chord and 	dires continuo ds spaced at 4 has been desi load nonconcu is has been de tom chord in a ill by 2-00-00 w any other mer	-0-0 oc. igned for urrent wit signed fo ll areas v vide will f mbers.	a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto	ls. psf m								III.	PROKE SION	AL ENGLISH
WARN Design v	VING - Verify designation of the second seco	n parameter th MiTek®	rs and READ NOTES ON connectors. This design i	THIS AND IN s based only	CLUDED MITEK RI	EFERENCE PAGE MII	-7473 rev. 5 dividual bui	/19/2020 BEFOR	E USE. , not				Septembe	r 10,2021

- or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6)
- chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.18 0.08	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) - -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 197/144
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 18 lb	FT = 10%

LOWIDER		
TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2
OTHERS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	6-0-0 oc p	ourlins.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	1=152/7-3-2, 3=152/7-3-2,
		4=258/7-3-2
	Max Horiz	1=-48 (LC 4)
	Max Uplift	1=-34 (LC 8), 3=-40 (LC 9)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-86/4	5, 2-3=-83/33
BOT CHORD	1-4=-9/40	, 3-4=-9/40
WEBS	2-4=-180/	46
NOTEO		

NOTES

L

E E

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 34 lb uplift at joint 1 and 40 lb uplift at joint 3.

- This truss is designed in accordance with the 2018 9) International Residential Code sections R502.11.1 and
- R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

1111 MIS

0

							RELEASE FOR CONSTRUCTION
1	lob	Truce	Truce Type	Otv	DIV	Lot 125 MN	AS NOTED FOR PLAN REVIEW
	300	11055	Truss Type	Quy	гіу	LUC 125 IVIN	DEVELOPMENT SERVICES
	MN125	V6A	Valley	1	1	lob Reference (optional)	LEE'S SUMMIT, MISSOURI
	Wheeler Lumber, Waverly, KS - (1 66871,	Run: 8.43 S Aug 16 I ID:CE6VMFpH?UjHlv	2021 Print: 8. w0tSib8KqyZ	.430 S Aug 1 PwR-RfC?Ps	6 2021 MiTek Industries, Inc. I B70Hq3NSgPqnL8w3uITXbG	in Sep 10004221/2021 WrCDonw422Cff

1-7-9

3-3-2

3x4 =

2

2-9-3

1-1-10

Scale	= 1:23	

Plate Offsets (X, Y): [2:0-2-0,Edge]

0-11-11

	() [; -] -]											
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.02	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 7 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2		9) This truss Internation R802.10.2	is designed in acc nal Residential Coo 2 and referenced s	cordance w de sections tandard AN	ith the 2018 8 R502.11.1 a NSI/TPI 1.	and					
BRACING			LOAD CASE	S) Standard								
TOP CHORD	Structural wood she	eathing directly appli	ied or									
	Bigid ceiling directly	applied or 10-0-0 c										
BOTCHORD	bracing.											
REACTIONS	(lb/size) 1=101/3-3 Max Horiz 1=17 (LC Max Uplift 1=-12 (LC	3-2, 3=101/3-3-2 7) C 8), 3=-12 (LC 9)									ATE OF	MISSO
FORCES	(lb) - Maximum Com	npression/Maximum	1							-	à	ANI : D=
	Tension									2		
TOP CHORD	1-2=-94/28, 2-3=-94	/28								=*	GAF	
BOT CHORD	1-3=-15/67									2	:	
NOTES										- 7	NUM	IBER : C-
1) Unbalanc	ed roof live loads have	been considered for	or							-7	E-2000	162101
this desig	N. CE 7 16: Vult-115mph	(2 accord quat)									J. L-2000	102101
Z) Wind. AS Vasd=91r	mph: TCDI =6 0psf: BC	DI = 6 Onsf h = 25 ft	Cat								S.o	G
II: Exp C:	Enclosed: MWFRS (er	nvelope) exterior zo	ne:								I,SON	ALENIN
cantilever	left and right exposed	; end vertical left ar	nd								1111	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
right expo	osed; Lumber DOL=1.6	0 plate grip DOL=1	.60									
Truss des	signed for wind loads in	the plane of the tru	ISS									IIIII.
only. For	studs exposed to wind	(normal to the face	e),								NIN	GARC
see Stand	dard Industry Gable En	d Details as applica	IDIE,								N 30	····· A /
4) Gable rec	uires continuous botto	m chord bearing	FT 1.								CE	NSED
5) Gable stu	ids spaced at 2-0-0 oc.	in chora bearing.								- 2	7 / Y	
 This truss 	has been designed fo	r a 10.0 psf bottom									1	1 E
chord live	load nonconcurrent w	ith any other live loa	ads.							- 3	16	952
7) * This true	ss has been designed f	for a live load of 20.	0psf							-	DI	
on the bo	ttom chord in all areas	where a rectangle									H:	4 H
3-06-00 ta	all by 2-00-00 wide will	fit between the bott	om									1 1

- 3
- 5
- 6
- 7

chord and any other members.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 1 and 12 lb uplift at joint 3. 8)

