

MiTek USA, Inc. 16023 Swinglev Ridge Rd Chesterfield, MO 63017 314-434-1200

RE: Lot 33 OS Lot 33 OS

Site Information:

Customer: Project Name: Lot 33 OS Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise]

Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.4 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 27 individual, dated Truss Design Drawings and 0 Additional Drawings.

No	o. Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	147581506	B1	8/24/2021	21	l47581526	V4	8/24/2021
2	147581507	B2	8/24/2021	22	l47581527	V5	8/24/2021
3	147581508	B3	8/24/2021	23	l47581528	V6	8/24/2021
4	147581509	C1	8/24/2021	24	l47581529	V7	8/24/2021
5	l47581510	C2	8/24/2021	25	l47581530	V8	8/24/2021
6	l47581511	C3	8/24/2021	26	l47581531	V9	8/24/2021
7	l47581512	D1	8/24/2021	27	l47581532	V10	8/24/2021
8	l47581513	D2	8/24/2021				
9	147581514	D3	8/24/2021				
10	147581515	E1	8/24/2021				
11	I47581516	E2	8/24/2021				
12	I47581517	E3	8/24/2021				
13	I47581518	E4	8/24/2021				
14	I47581519	E5	8/24/2021				
15	147581520	E6	8/24/2021				
16	I47581521	E7	8/24/2021				
17	I47581522	R1	8/24/2021				
18	147581523	V1	8/24/2021				
19	147581524	V2	8/24/2021				
20	147581525	V3	8/24/2021				

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Kansas is April 30, 2022. Kansas COA: E-943

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

RE: Lot 33 OS Lot 33 OS

Site Information:

Customer: Project Name: Lot 33 OS Lot/Block: Address: City:

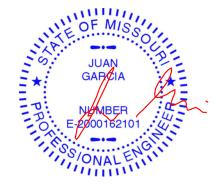
Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 27 individual, dated Truss Design Drawings and 0 Additional Drawings.

			_				_
No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	147581506	B1	8/24/2021	21	l47581526	V4	8/24/2021
2	147581507	B2	8/24/2021	22	147581527	V5	8/24/2021
3	147581508	B3	8/24/2021	23	l47581528	V6	8/24/2021
4	147581509	C1	8/24/2021	24	147581529	V7	8/24/2021
5	147581510	C2	8/24/2021	25	I47581530	V8	8/24/2021
6	147581511	C3	8/24/2021	26	l47581531	V9	8/24/2021
7	147581512	D1	8/24/2021	27	147581532	V10	8/24/2021
8	I47581513	D2	8/24/2021				
9	147581514	D3	8/24/2021				
10	I47581515	E1	8/24/2021				
11	147581516	E2	8/24/2021				
12	147581517	E3	8/24/2021				
13	147581518	E4	8/24/2021				
14	147581519	E5	8/24/2021				
15	147581520	E6	8/24/2021				
16	147581521	E7	8/24/2021				
17	147581522	R1	8/24/2021				
18	147581523	V1	8/24/2021				
19	147581524	V2	8/24/2021				
20	147581525	V3	8/24/2021				


The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

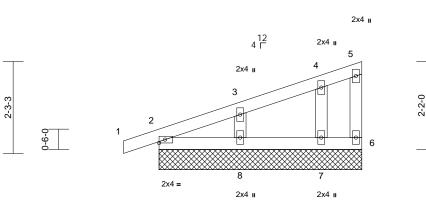
Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Missouri is December 31, 2022. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Garcia, Juan

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200


Job	Truss	Truss Type	Qty	Ply	Lot 33 OS	
Lot 33 OS	B1	GABLE	1	1	Job Reference (optional)	147581506

-0-10-8 0-10-8

Wheeler Lumber, Waverly, KS - 66871,

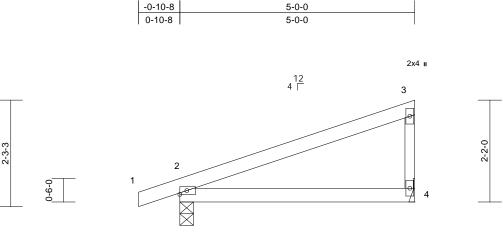
Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Mon Aug 23 11:23:36 ID:osAYHNvzKvVfCyc7SJ3nBHyQU1I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 🛛

5-0-0

5-0-0 5-0-0

Scale = 1:28.4												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.05 0.03 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 197/144 FT = 10%
BCDL 10.0 Code IRC2018/TPI2014 Matrix-P Weight Weight 17 Ib FT = 10% LUMBER TOP CHORD 2x4 SPF No.2 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 6 lb uplif at joint 6, 43 lb uplif at joint 2, 49 lb uplif at joint 3 and 36 lb uplif at joint 7. 8) OTHERS 2x4 SPF No.2 8) 8) 8) 8) 8) 10.0 Code 8 BRACING TOP CHORD Structural wood sheathing directly applied or 5-0-0 oc purlins, except end verticals. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard LOAD CASE(S) Standard Standard Standard S FORCES (lb) - Maximum Compression/Maximum Tension 12.20(6, 2-3=-64/27, 3-4=-47/21, 4-5=-34/19, 5-6=-11/8 5-6=-11/8 S S BOT CHORD 2.8=-26/20, 7-8=-26/20, 6-7=-26/20 WEBS 3.8=-142/77, 4-7=-116/55 NUMBER E-2000162101 NUMBER 12.20(b, 14 M th More More More More More More More More												
 1) Wind: ASCE 7-16; Vull=115mph (3-second gust) Vasd=91mph; TCDL=6.0ps; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing. 4) Gable studs spaced at 2-0-0 oc. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a 10.0 psf bottom chord and any other members. 								AL ENGINI				



Job	Truss	Truss Type	Qty	Ply	Lot 33 OS	
Lot 33 OS	B2	Monopitch	3	1	Job Reference (optional)	147581507

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Mon Aug 23 11:23:38 ID:osAYHNvzKvVfCyc7SJ3nBHyQU1I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 =

WB

Matrix-P

2x4 🛛

4

n/a n/a

Weight: 14 lb

FT = 10%

;				5-0-0									
	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.39	DEFL Vert(LL)	in -0.03	(loc) 2-4	l/defl >999		PLATES MT20	GRIP 197/144	
	10.0	Lumber DOL	1.15	BC	0.23	()	-0.06	2-4	>933	240	-		

0.00

Horz(CT)

0.00

 IMDED	

BCLL

BCDL

Scale = 1:24.5 Loading TCLL (roof) TCDI

LUMBER	
TOP CHORD	2x4 SPF No.2
BOT CHORD	2x4 SPF No.2
WEBS	2x3 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	5-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(lb/size) 2=293/0-3-8, 4=206/ Mechanical

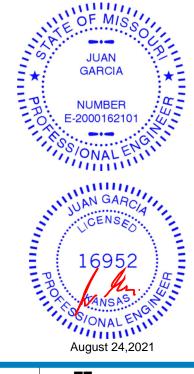
0.0*

10.0

Rep Stress Incr

Code

YES

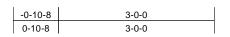

IRC2018/TPI2014

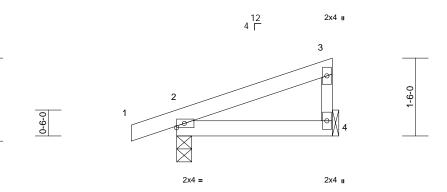
Max Horiz 2=84 (LC 5) Max Uplift 2=-81 (LC 4), 4=-45 (LC 8) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD

1-2=0/6, 2-3=-74/45, 3-4=-159/73 BOT CHORD 2-4=-26/20 NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 45 lb uplift at joint 4 and 81 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard




MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 33 OS	
Lot 33 OS	B3	Monopitch	7	1	Job Reference (optional)	147581508

1-7-3

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Mon Aug 23 11:23:38 ID:osAYHNvzKvVfCyc7SJ3nBHyQU1I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-0-0

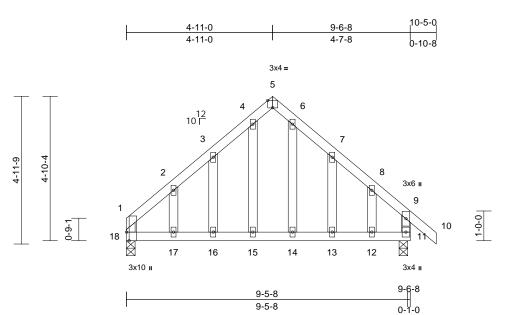
Scale = 1:22.2	
----------------	--

00010 = 1.22.2												
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	0.00	2-4	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	-0.01	2-4	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 9 lb	FT = 10%
LUMBER												
TOP CHORD	2x4 SPF No.2											
BOT CHORD	2x4 SPF No.2											
WEBS	2x3 SPF No.2											
BRACING												
TOP CHORD			ed or									
	3-0-0 oc purlins, ex											
BOT CHORD	0 0 ,	applied or 10-0-0 o	C									
	bracing.											III.
REACTIONS	(lb/size) 2=208/0-3 Max Horiz 2=54 (LC	3-8, 4=110/ Mechan	Ical								OF	MIS
	Max Uplift 2=-70 (LC	,									N X E	Sol
FORCES	(lb) - Maximum Com									1	18	
FUNCES	Tension	ipression/Maximum								20	JU,	AN
TOP CHORD		. 3-4=-83/40								Ξ.	GAF	
BOT CHORD		,								= *	:	*:
NOTES										Ξ.	1	

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 4 and 70 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 33 OS	
Lot 33 OS	C1	Common Supported Gable	1	1	Job Reference (optional)	147581509

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Mon Aug 23 11:23:38 ID:osAYHNvzKvVfCyc7SJ3nBHyQU1I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

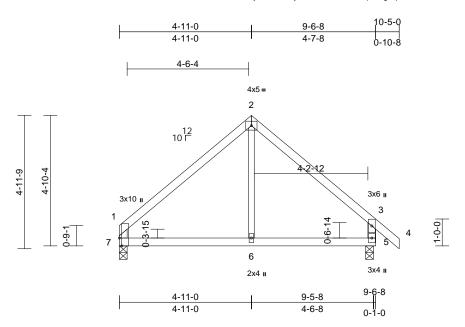
Scal	<u> </u>	1:38.7	

Plate Offsets (X, Y): [5:0-2-0,Edge], [18:0-3-8,Edge]

						-							
_oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
FCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.23	Vert(LL)	-0.03	16-17	>999	360	MT20	197/144
FCDL	10.0	Lumber DOL	1.15		BC	0.24	Vert(CT)	-0.05	16-17	>999	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.02	Horz(CT)	0.00	11	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-R	-	Wind(LL)	0.04	16-17	>999	240	Weight: 46 lb	FT = 10%
			5)		fully sheathed fro								
OP CHORD	2x4 SPF No.2		6)	•	nst lateral mover spaced at 1-4-0		liagonal web)	•					
OT CHORD	2x4 SPF No.2 2x4 SPF No.2		(0) 7)		as been designed) nef hottom						
VEBS OTHERS	2x4 SPF No.2 2x4 SPF No.2		()		ad nonconcurrent			de					
	214 OFF INU.Z		8)		has been designe								
		othing disectly appli	-,		m chord in all are			540					
OP CHORD	Structural wood she 6-0-0 oc purlins, ex		eu or		by 2-00-00 wide v		0	om					
OT CHORD	Rigid ceiling directly				ny other member								111 ₁
OT CHORD	bracing.	applied of 10-0-0 0	9)		hanical connection		ers) of truss t	0				OF	MISSI
EACTIONS	0	-3-8, 18=412/0-3-8			e capable of with	standing 4	l0 lb uplift at j	oint				NKE	0/1
	Max Horiz 18=-139 (uplift at joint 11.						~	1	
	Max Uplift 11=-62 (L		10		designed in acco						20	JU,	AN
ORCES	(lb) - Maximum Corr				Residential Cod			ind			2.	GAF	ICIA :
ORCES	Tension	ipression/iviaximum			nd referenced sta	andard AN	ISI/TPI 1.				- *	:	:*
OP CHORD	1-18=-312/35, 1-2=-	382/45 2-3337/74	4 L(DAD CASE(S)	Standard						Ξ.	÷	
	3-4=-323/111, 4-5=-	,	,								= 7	NUM	BER .
	6-7=-333/114, 7-8=-										-7	E-2000	• 41.
	9-10=0/46, 9-11=-4		-,										102101.2
OT CHORD	17-18=-6/260, 16-17	7=-6/260, 15-16=-6/2	260,								1	· • · · · ·	- GN
	14-15=-6/260, 13-14	4=-6/260, 12-13=-6/2	260,									1, SION	I EN I
	11-12=-6/260											I NIN	ALTIN
/EBS	2-17=-45/54, 3-16=-	74/65, 4-15=-34/102	2,										1002
	6-14=-36/102, 7-13=												116.
OTES													GAD
Unbalance	ed roof live loads have	been considered fo	or									NAUAN	MACIA .
this desigr	າ.											N CE	NSA

- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated. 4)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


16023 Swingley Ridge Rd Chesterfield, MO 63017

CENSED

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 33 OS	
Lot 33 OS	C2	Common	1	1	Job Reference (optional)	147581510

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Mon Aug 23 11:23:39 ID:osAYHNvzKvVfCyc7SJ3nBHyQU1I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1:42.9
---------	--------

Plate Offsets (X, Y): [1:0-3-8,Edge]

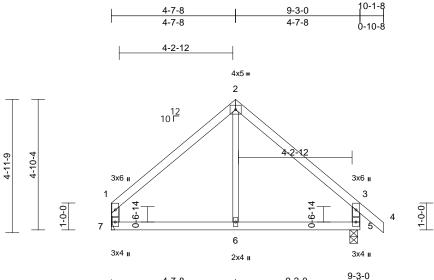
			1									
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	-0.01	6-7	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.15	Vert(CT)	-0.03	6-7	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	-0.01	6-7	>999	240	Weight: 31 lb	FT = 10%

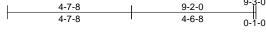
LUMBER		
TOP CHORD	2x4 SPF No.2	
BOT CHORD	2x4 SPF No.2	
WEBS	2x4 SPF No.2 *Except* 6-2:2x3 SPF No.2	
BRACING		
TOP CHORD	Structural wood sheathing directly applied	or
	6-0-0 oc purlins, except end verticals.	
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc	
	bracing.	
REACTIONS	(lb/size) 5=492/0-3-8, 7=412/0-3-8	
	Max Horiz 7=-139 (LC 4)	
	Max Uplift 5=-62 (LC 9), 7=-40 (LC 8)	
FORCES	(lb) - Maximum Compression/Maximum	
	Tension	
TOP CHORD	1-2=-408/86, 2-3=-411/90, 3-4=0/46,	
	3-5=-440/102, 1-7=-362/81	
BOT CHORD	6-7=-4/253, 5-6=-4/253	
WEBS	2-6=0/191	
NOTES		

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 7 and 62 lb uplift at joint 5.

- 6) This truss is designed in accordance with the 2018
 - International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- LOAD CASE(S) Standard




Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 33 OS	
Lot 33 OS	C3	Common	1	1	Job Reference (optional)	147581511

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Mon Aug 23 11:23:39 ID:osAYHNvzKvVfCyc7SJ3nBHyQU1I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1:42.9
---------	--------

Scale = 1:42.9												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.27	Vert(LL)	-0.01	5-6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.16	Vert(CT)	-0.03	5-6	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	-0.01	6-7	>999	240	Weight: 31 lb	FT = 10%
LUMBER TOP CHORD	2x4 SPF No.2		LOAD CASE(S) Standard								

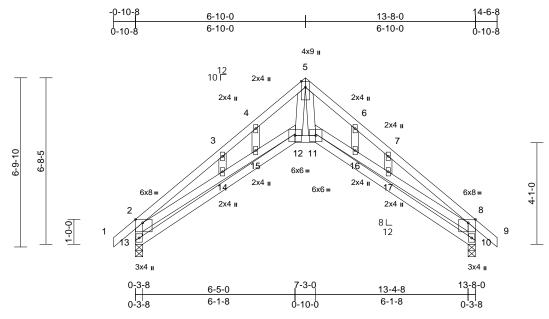
		10.2
BOT CHORD	2x4 SPF N	lo.2
WEBS	2x4 SPF N	lo.2 *Except* 6-2:2x3 SPF No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	6-0-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	5=479/0-3-8, 7=399/ Mechanical
	Max Horiz	7=-142 (LC 4)
	Max Uplift	5=-61 (LC 9), 7=-37 (LC 8)
FORCES	(lb) - Maxi	mum Compression/Maximum
	Tension	·

TOP CHORD	1-2=-381/86, 2-3=-388/87, 3-4=0/46
	1-7=-342/77, 3-5=-425/102
BOT CHORD	6-7=-8/238, 5-6=-8/238
WEBS	2-6=0/177

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf
- 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 37 lb uplift at joint 7 and 61 lb uplift at joint 5.
- This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


Page: 1

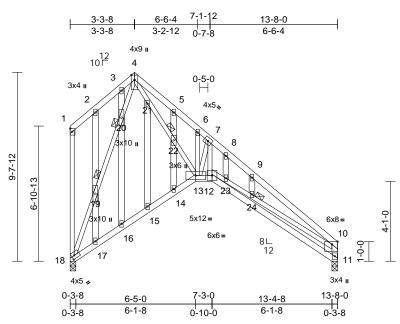
Job	Truss	Truss Type	Qty	Ply	Lot 33 OS	
Lot 33 OS	D1	Roof Special Structural Gable	1	1	Job Reference (optional)	147581512

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Mon Aug 23 11:23:39 ID:osAYHNvzKvVfCyc7SJ3nBHyQU1I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:46.3 Plate Offsets (X, Y): [2:0-3-8,Edge], [8:0-3-8,Edge]

	(A, T). [2.0-3-6,Euge],	[o.u-s-o,Euge]										-		
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.47 0.32 0.59	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)		(loc) 11-12 10-11 10 12	l/defl >999 >917 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 70 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS	 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 4-2-12 oc purlins, e Rigid ceiling directly bracing. (lb/size) 10=673/0 Max Horiz 13=-200 (Max Uplift 10=-81 (L (lb) - Maximum Com Tension 1-2=0/46, 2-3=-1527 4-5=-1367/60, 5-6=-7-8=-1555/13, 8-9=(8-10=-823/194 	xcept end verticals. applied or 10-0-0 oc -3-8, 13=673/0-3-8 LC 6) C 9), 13=-81 (LC 8) pression/Maximum 7/0, 3-4=-1408/0, 1369/64, 6-7=-1461/ //46, 2-13=-850/257, -12=-12/1017, 14/782, 2-14=0/808, =0/820, 11-16=-83/9 -17=-101/982,	6) 7) d or 8) ; 9) 10 41, 11 41, LC	Truss to be f braced again Gable studs This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar Bearing at jo value using A designer sho) Provide mec bearing plate 13 and 81 lb) This truss is International	2 2x4 MT20 unless ully sheathed from stateral moveme spaced at 1-4-0 or s been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide wide y other members. int(s) 13, 10 consi NSI/TPI 1 angle f uld verify capacity hanical connection capable of withst uplift at joint 10. designed in accor Residential Code nd referenced star Standard	n one fac ent (i.e. c c. for a 10. with any d for a liv s where ill fit betv ders par to grain f v of bear n (by oth anding & dance w sections	e or securely liagonal web) D psf bottom other live loa e load of 20.0 a rectangle veen the botto allel to grain ormula. Built ing surface. ers) of truss t b1 lb uplift at j ith the 2018 s R502.11.1 a	Dpsf om ding to oint					BER 162101	
 this desig Wind: AS Vasd=91I II; Exp C; cantilever right expo Truss des only. For see Stand 	ed roof live loads have in. ICE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 signed for wind loads in studs exposed to wind dard Industry Gable En t qualified building design	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 the plane of the trus (normal to the face) d Details as applicab	Cat. e; d 50 ss , le,								. allilling.	PROFESSION	952	ANNULLIN,


- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 33 OS	
Lot 33 OS	D2	Roof Special Structural Gable	1	1	Job Reference (optional)	l47581513

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Mon Aug 23 11:23:39 ID:osAYHNvzKvVfCyc7SJ3nBHyQU1I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:58.9 Plate Offsets (X, Y): [10:0-3-8,Edge], [18:0-1-11,0-2-0]

18-19=-634/0, 19-20=-638/0, 4-20=-686/0,

12-23=-79/989, 23-24=-79/1138,

10-24=-88/1100, 2-19=-61/103, 17-19=-61/101, 3-20=0/90, 16-20=-7/59, 15-21=0/136, 5-22=-80/73, 14-22=-70/69,

8-23=-2/378, 9-24=-100/52

1) Unbalanced roof live loads have been considered for

4-21=0/1202, 21-22=0/1085, 13-22=0/1080,

6-13=-152/409, 7-13=-1166/196, 7-12=0/464,

WEBS

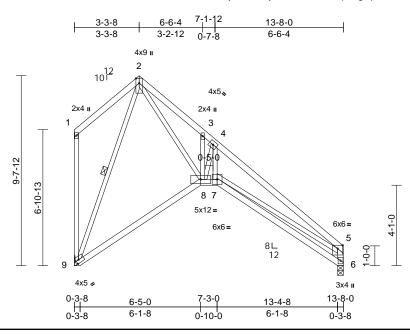
NOTES

this design.

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	(531)	Plate Grip DOL	1.15		TC	0.52	Vert(LL)	-0.10	(100)	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.32	Vert(LL)	-0.18	11-12	>999	240	101120	197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.52	Horz(CT)	0.24	11	>034 n/a	n/a		
BCDL	10.0	Code		8/TPI2014	Matrix-S	0.08	Wind(LL)	0.24	12	>999	240	Weight: 99 lb	FT = 10%
LUMBER		•	2)	Wind: ASCE	7-16; Vult=115m	nh (2 cor	cond quict)						
TOP CHORD	2x4 SPF No.2		۷)		h; TCDL=6.0psf; I			Cat					
BOT CHORD	2x4 SPF No.2 2x4 SPF No.2				nclosed; MWFRS								
WEBS	2x3 SPF No.2 *Exc	ont* 11 10.0v4 CDE	No 2		ft and right expose								
OTHERS	2x3 SPF N0.2 Exc 2x4 SPF No.2	ept 11-10.2x4 SPF	INU.Z		d; Lumber DOL=1								
	ZA4 OFF NU.Z		3)		ned for wind loads								
	o				uds exposed to wi								
OP CHORD	Structural wood she		ed or	see Standard Industry Gable End Details as applicable.									
	4-0-1 oc purlins, ex			or consult qualified building designer as per ANSI/TPI 1.									
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	^{iC} 4)		e 2x4 MT20 unles							N'OF	MISSI
	bracing.		5)		fully sheathed from							NAE	
OINTS	1 Brace at Jt(s): 19		- /		nst lateral movem							17	
	20, 22, 24		6)		spaced at 1-4-0 c		0 /				- 0	· ·	ANI : D -
REACTIONS	· /)-3-8, 18=604/0-3-8	7)	This truss ha	as been designed	for a 10.0) psf bottom				2	JU JU	
	Max Horiz 18=-336		. ,	chord live lo	ad nonconcurrent	with any	other live loa	ads.			- +	GAF	RCIA :+
	Max Uplift 11=-44 (I	_C 9), 18=-125 (LC 9	9) 8)	* This truss	has been designe	d for a liv	e load of 20.	0psf				:	1 C
ORCES	(lb) - Maximum Cor	npression/Maximum	- /		m chord in all area						-	• • • • • • • • • • • • • • • • • • •	in
	Tension				by 2-00-00 wide w			om			= 7	NUM	IBER :
OP CHORD	1-2=-200/145, 2-3=	-159/140, 3-4=-126/	172,	chord and a	ny other members	S.						C: E-2000	162101 :4
	4-5=-1108/47, 5-6=	-1131/40, 6-7=-1381	/64, 9)	Bearing at jo	pint(s) 11, 18 cons	iders par	allel to grain				-	A	
	7-8=-1318/17, 8-9=	-1604/12, 9-10=-171	6/9,	value using	ANSI/TPI 1 angle	to grain f	ormula. Buil	ding			1.1	10.	G
	1-18=-196/126, 10-	11=-744/135		designer sho	ould verify capacit	y of bear	ng surface.	-				1.S/ON	AL ENIN
OT CHORD	17-18=-157/410, 16	-17=-131/429,	10		hanical connectio			to				111	1111
	15-16=-137/440, 14	,		bearing plate	e capable of withs	tanding 4	4 lb uplift at	joint					L L L L L L L L L L L L L L L L L L L
	13-14=-118/411, 12	-13=-25/1228,			lb uplift at joint 18								110.
	11-12=-117/416		11		designed in acco		ith the 2018						

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 33 OS	
Lot 33 OS	D3	Roof Special	7	1	Job Reference (optional)	147581514

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Mon Aug 23 11:23:40 ID:osAYHNvzKvVfCyc7SJ3nBHyQU1I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

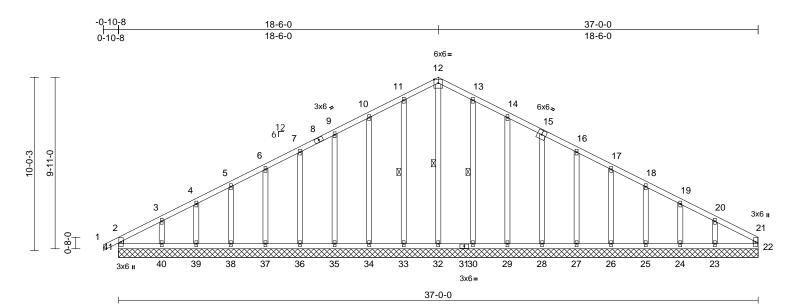

Scale = 1:58.5

Plate Offsets (X,	Y):	[9:0-1-11,0-2-0]
-------------------	-----	------------------

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.58	Vert(LL)	-0.09	8-9	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.36	Vert(CT)	-0.20	8-9	>793	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.53		0.20	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TP	12014	Matrix-S	0.00	Wind(LL)	-0.04	8-9	>999	240	Weight: 69 lb	FT = 10%
	10.0	oode	11(02010/11	2014	Matrix 0		WING(EE)	0.04	0.5	2000	240	Weight. 00 lb	11 = 1070
LUMBER					hanical connectior								
TOP CHORD					capable of withst	anding 4	14 lb uplift at j	joint					
BOT CHORD					uplift at joint 9.								
WEBS	2x3 SPF No.2 *Exce	ept* 6-5:2x4 SPF No.2			designed in accor								
BRACING			DC		Residential Code			and					
TOP CHORD		athing directly applied	101		nd referenced star	idard Ar	NSI/TPLT.						
	3-5-15 oc purlins, e			CASE(S)	Standard								
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc											Mille.
WEBS	1 Row at midpt	2-9										NEOF	NISS I
REACTIONS	(lb/size) 6=604/0-3	3-8, 9=604/ Mechanic	al								1		
	Max Horiz 9=-336 (L	.C 6)									2	A	
	Max Uplift 6=-44 (LC	C 9), 9=-125 (LC 9)									2	JUA	
FORCES	(lb) - Maximum Com Tension	pression/Maximum									Ξ*	GAR	CIA *=
TOP CHORD		1185/40, 3-4=-1289/	06.								Ξ.,		
		193/119, 5-6=-694/13									=7	NUMI	BER :
BOT CHORD	8-9=-175/425, 7-8=-	14/1184, 6-7=-108/3*	8									E-20001	162101
WEBS	2-9=-598/0, 2-8=0/1	193, 3-8=-161/199,									1	A	
	4-8=-976/312, 4-7=0)/655, 5-7=-70/1143										1.00	
NOTES												I,ONI	ALENN
1) Unbalanc	ed roof live loads have	been considered for										- 1111	iiiii
this desig													
	CE 7-16; Vult=115mph											in m	IIIII.
	mph; TCDL=6.0psf; BC											I AN C	GARC
	Enclosed; MWFRS (er											N 30	····· A
	left and right exposed											CE	NSEN
	bsed; Lumber DOL=1.6 has been designed for		0										
	load nonconcurrent wi		e								-		1 - E -
	ss has been designed f											169	952
,	ttom chord in all areas										1	DI	
	all by 2-00-00 wide will		n								-	D	
chord and	any other members.											20.14	1919 141
	girder(s) for truss to trus											AN AN	Shirt
	t joint(s) 6 considers pa											1, SION	IN ENIN
	SI/TPI 1 angle to grain											1111	in the second se
designer	should verify capacity c	of bearing surface.										Augus	+ 24 2021
												Augus	t 24,2021

Job	Truss	Truss Type	Qty	Ply	Lot 33 OS	
Lot 33 OS	E1	Common Supported Gable	1	1	Job Reference (optional)	147581515

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Mon Aug 23 11:23:40 ID:osAYHNvzKvVfCyc7SJ3nBHyQU1I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:66.6

Loading TCLL (roof)	(p 25		Spacing Plate Grip DOL	2-0-0 1.15		CSI TC		0.07	DEFL Vert(LL)	in n/a	(lo	'	/defl n/a	L/d 999	PLATES MT20	GRIP 197/144
TCDL		0.0	Lumber DOL	1.15		BC		0.07	Vert(CT)	n/a			n/a	999		101/111
BCLL		0).0 *	Rep Stress Incr	YES		WB		0.07	Horz(CT)	0.01			n/a	n/a		
BCDL	10		Code		2018/TPI2014	Matrix	-R	0.14	11012(01)	0.01		22	n/a	n/a	Weight: 191 lb	FT = 10%
			0000			Maan						-			Wolght. To Tib	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD			athing directly applied	d or		Max Grav	24=168 26=180 28=180 30=189 33=189 35=180 37=180	8 (LC 1), 2 0 (LC 1), 2 0 (LC 1), 2 9 (LC 22), 9 (LC 21), 0 (LC 1), 3 0 (LC 1), 3	23=223 (LC 25=183 (LC 2 27=178 (LC 2 29=181 (LC 1 32=213 (LC 34=179 (LC 36=180 (LC 2 38=181 (LC 2	22), 22), 1), 18), 1), 21), 21),	3)	Vasd= II; Exp cantile right e: Truss o only. I see St	91mp C; Er ever le xpose desigi For st tandar	h; TCl nclose ft and d; Lur ned fo uds ex d Indu	d; MWFRS (envi right exposed); t nber DOL=1.60 r wind loads in th loosed to wind (r ustry Gable End	L=6.0psf; h=25ft; Cat. elope) exterior zone; end vertical left and plate grip DOL=1.60 ne.plane.of.the truss normal to the face), Details as applicable,
BOT CHORD			applied or 10-0-0 oc			<i></i>	41=18	9 (LC 1)	40=199 (LC 2		4)	All plat	tes ar	e 2x4	MT20 unless /of	er as per ANSI/TPI 1.
WEBS	1 Row at midpt		12-32, 11-33, 13-30		FORCES			ompressi	on/Maximum						ntinuous bottom	
	24=1 26=7 30=7 33=7 35=7 37=1 Max Uplift 23=- 27=- 29=- 33=- 35=- 35=- 35=- 35=- 35=- 35=- 35	68/3 80/3 86/3 87/3 80/3 80/3 80/3 80/3 75/3 89/3 65 (L 107 (558 (L 559 (L 49 (L 553 (L 553 (L) 553 (L)	LC 9), 24=-38 (LC 9) C 9), 26=-53 (LC 9), C 9), 28=-53 (LC 9), C 9), 30=-47 (LC 9), C 9), 30=-47 (LC 9), C 8), 34=-57 (LC 8), C 8), 38=-54 (LC 8), C 8), 40=-115 (LC 8)	, , , , ,	TOP CHORD BOT CHORD WEBS	3-4=-12 6-7=-71, 10-11=- 12-13=- 14-16=- 17-18=- 20-21=- 40-41=- 38-33=- 36-37=- 32-33=- 27-28=- 27-28=- 23-24=- 12-32=- 10-34=- 6-37=-1 3-40=-1 14-29=- 16-27=-	67/46, 1-5/89, 4-5- 5/89, 4-5- 50/244, 1 50/244, 1 51/167, 1 51/87, 18 128/36, 2 27/121, 3 27/121, 3 27/121, 3 27/121, 2 27/121, 2 27/121, 2 27/121, 2 27/121, 2 27/121, 2 181/0, 11 139/81, 9 40/77, 5- 51/119, 1 138/77, 1	=-102/113 =-60/191, 1-12=-53, 3-14=-50, 6-17=-51, -19=-62/6, 1-22=-85, 9-40=-27, 7-38=-27, 3-34=-27, 0-32=-27, 8-29=-27, 6-27=-27, 4-25=-27, 2-23=-140, -33=-140,	215, 113, 11, 19-20=-87 10 121,	7, 7/37, 10/78,	7) 8) 9)	braced Gable This tri chord I * This on the 3-06-0 chord i	d agai studs russ ha live lo truss botto 00 tall and a	nst lat space as bee ad no has be m cho by 2-0 ny oth	eral movement of at 2.0-0.000 protestigned for a productivent with ser destigned for rd in all areas wi 0-00 wide will fil er members.	e face or securely EEE diagonal well). 162101 a floo pst bottom any gine live loads. a live load of 20.0psf here a rectangle between the bottom GARC NSE 952

NOTES

1) Unbalanced roof live loads have been considered for this design.

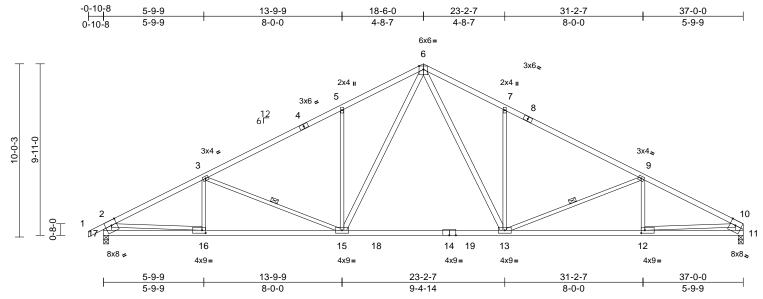
20-23=-170/112

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 33 OS	
Lot 33 OS	E1	Common Supported Gable	1	1	Job Reference (optional)	l47581515

- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 41, 49 lb uplift at joint 33, 57 lb uplift at joint 34, 53 lb uplift at joint 35, 54 lb uplift at joint 36, 53 lb uplift at joint 37, 59 lb uplift at joint 38, 36 lb uplift at joint 39, 115 lb uplift at joint 40, 47 lb uplift at joint 30, 59 lb uplift at joint 29, 53 lb uplift at joint 28, 53 lb uplift at joint 27, 53 lb uplift at joint 26, 58 lb uplift at joint 25, 38 lb uplift at joint 24 and 107 lb uplift at joint 23.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Mon Aug 23 11:23:40 ID:osAYHNvzKvVfCyc7SJ3nBHyQU1I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	Lot 33 OS	
Lot 33 OS	E2	Common	3	1	Job Reference (optional)	147581516

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Mon Aug 23 11:23:41 ID:osAYHNvzKvVfCyc7SJ3nBHyQU1I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:66.6

Plate Offsets (X, Y): [11:0-3-12,Edge], [12:0-2-8,0-2-0], [16:0-2-8,0-2-0], [17:0-3-12,Edge]

						-							
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.93	Vert(LL)	-0.34	13-15	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.59	Vert(CT)	-0.56	13-15	>790	240		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.72	Horz(CT)	0.08	11	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.11	15-16	>999	240	Weight: 154 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF 2100F 1.8	=	3) 4)	chord live loa	s been designed ad nonconcurrent as been designe	with any	other live loa						
WEBS	2x3 SPF No.2 *Exce No.2, 17-2,11-10:2x	ept* 13-6,15-6:2x4 S	PF ,	on the bottor	n chord in all area by 2-00-00 wide w	as where	a rectangle	•					
BRACING					y other members								
TOP CHORD	Structural wood she except end verticals		ed, 5)	bearing plate	hanical connection capable of withs	tanding 2							
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	6)	This truss is	204 lb uplift at joir designed in acco	rdance w						NE OF /	AISS
WEBS	1 Row at midpt	9-13, 3-15			Residential Code			and			1	1	0,1
REACTIONS	(lb/size) 11=1643/	0-3-8, 17=1723/0-3-	8		nd referenced sta	indard AN	ISI/TPI 1.				5	X	
	Max Horiz 17=164 (I		LC	DAD CASE(S)	Standard							🤊 JUA	N
	Max Uplift 11=-204	(LC 9), 17=-230 (LC	8)								24	GAR	
	Max Grav 11=1730	(LC 2), 17=1795 (LC	2)								= ~		
FORCES	(lb) - Maximum Com		,								Ξ_		
	Tension										= 7		BER :
TOP CHORD	1-2=0/35, 2-3=-2975	5/355. 3-5=-2490/297	7.									E-20001	62101 :00
	5-6=-2472/446, 6-7=		,								-	A	. 2.
	7-9=-2492/298, 9-10)=-2981/357,									1	10.	GN
	2-17=-1686/255, 10	-11=-1619/228										1.S/ONI	ENIN
BOT CHORD	16-17=-240/692, 15	-16=-407/2599,										- CINF	
	13-15=-77/1656, 12	-13=-266/2611,											10.5
	11-12=-76/533												115.
WEBS	6-13=-287/1109, 7-1	13=-507/281,										JUAN C	11.
	9-13=-571/225, 9-12	2=-63/145,										MAU	ARCIN
	6-15=-286/1107, 5-1	15=-511/282,										Nº JOIE	No. A
	3-15=-557/221, 3-16	6=-53/152,										UCE	ED . S
	2-16=-168/1985, 10	-12=-191/2085										(1 C	1 2
NOTES											-	1	=
1) Unbalance	ed roof live loads have	been considered for	r								11111	169	952 : =
, this design											-	D: 17.	
												· ·	

Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NONAL ENGLISH

August 24,2021

Job	Truss	Truss Type	Qty	Ply	Lot 33 OS	
Lot 33 OS	E3	COMMON GIRDER	1	3	Job Reference (optional)	147581517

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Mon Aug 23 11:23:41 ID:osAYHNvzKvVfCyc7SJ3nBHyQU1I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

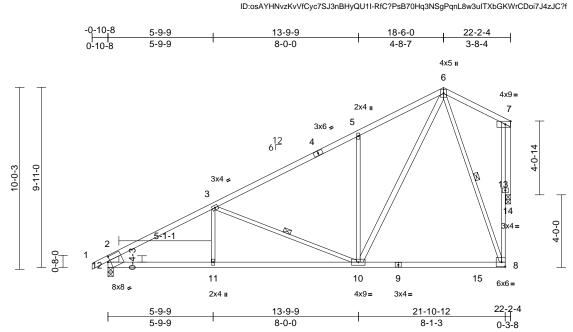
Page: 1

-0-10-8 5-9-9 13-9-9 18-6-0 23-2-7 31-2-7 37-0-0 5-9-9 8-0-0 4-8-7 8-0-0 5-9-9 0-10-8 4-8-7 6x6 II 6 3x6. 2x4 u 2x4 II 5 7 3x6 🚽 8 12 6 4 10-0-3 9-11-0 3x4 🖌 3x6 👟 3 9 10 0-8-0 ĕ 15 13 17 18 14 16 12 19 20 21 11 22 23 4x9= 4x5= 2x4 II 6x8= 4x9= 12x12 =3x6 II 5-9-9 13-9-9 23-2-7 31-2-7 37-0-0 5-9-9 8-0-0 9-4-14 8-0-0 5-9-9

Scale = 1:66.2

Plate Offsets (X, Y): [2:Edge,0-0-13], [10:Edge,0-0-3]

			-									-	
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.81	Vert(LL)		12-14	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.44	Vert(CT)	-0.36	12-14	>999	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.61	Horz(CT)	0.06	10	n/a	n/a		
BCDL	10.0	Code	IRC20	8/TPI2014	Matrix-S		Wind(LL)	0.12	12-14	>999	240	Weight: 634 lb	FT = 10%
		•						-					
LUMBER					considered equa				U	hiform L	,	,	
TOP CHORD		ept* 1-4,8-10:2x4 SPI	•		ed as front (F) or ction. Ply to ply co				~			6-10=-70, 2-10	=-20
	2100F 1.8E	*=			distribute only loa				C			ads (lb)) 40, 0004 (D)
BOT CHORD	2x6 SP 2400F 2.0E DSS	"Except" 13-10:2x8 8		unless other	wise indicated.), 18=-3631 (B), -584 (B), 22=-584 (B),
WEBS	2x4 SPF No.2		3		roof live loads ha	ve been	considered fo	or		23=-584	4 (B)		
BRACING				this design.									
TOP CHORD		athing directly applie	dor 4		7-16; Vult=115m h; TCDL=6.0psf;			Cat.					1117
BOT CHORD	6-0-0 oc purlins.	applied or 10-0-0 oc		II; Exp C; En	closed; MWFRS	(envelope	e); cantilever	left				OF	MISSI
DOT CHORD	bracing.				oosed ; end vertic			ed;				N. XE	
REACTIONS	5	-3-8, 10=7032/0-3-8,	(rea		=1.60 plate grip						-	××	
REACTIONS	(15/3126) 2=4001/0	-5-0, 10-7052/0-5-0,	(ieq. 5		s been designed						2	S: JU	AN 2
	Max Horiz 2=111 (L0	. 24)			ad nonconcurrent						-		
	Max Uplift 2=-329 (L		6		nas been designe			Opst			- 7	·:	:*=
	Max Grav 2=4322 (L				n chord in all are by 2-00-00 wide v			om			Ξ.		
FORCES	(lb) - Maximum Com	1. (,		by 2-00-00 wide v						=1	NUN	IBER :
	Tension		7		Required bearing						-	E-2000	162101
TOP CHORD	1-2=0/11, 2-3=-8229	9/649, 3-5=-7951/687		than input be							-	A	
	5-6=-7927/786, 6-7=		8) Provide med	hanical connectio	on (by oth	ers) of truss	to			1	1.00	G
	7-9=-11397/1130, 9-			bearing plate	e capable of withs	standing 3	329 lb uplift a	t				I,SON	ALENIN
BOT CHORD	2-15=-613/7200, 14-			joint 2 and 9	13 lb uplift at join	t 10.						1111	ann.
	12-14=-512/6624, 1		9		designed in acco								
	10-11=-1437/12078				Residential Code			and					111 <i>11</i>
WEBS	6-12=-980/8162, 7-1				nd referenced sta							AL AN	GARO
	9-12=-2279/634, 9-1	,	1		other connection							Nº JUN	
	6-14=-92/1256, 5-14 3-14=-207/371, 3-15				ficient to support							CE	NSEN.
	3-14=-207/371, 3-10	5=0/191			231 lb up at 22-0 11-4, 584 lb dowr								
NOTES					and 137 lb up at						-	1.1	1 5
	s to be connected toge) nails as follows:	ther with 10d			28-11-4, 584 lb c							16	952
	ls connected as follows	s [.] 2x4 - 1 row at 0-6-(h		584 lb down and						-		952
oc.		x r 110w at 0-0-0	,		and 137 lb up at						-	PF .	1.55
	ords connected as foll	ows: 2x6 - 2 rows			selection of such							-0.	Mr. AS
	at 0-9-0 oc, 2x8 - 4 ro		C	responsibility	/ of others.							- 1 × 1	NSAS
oc.		00		OAD CASE(S)	Standard							1,00	ENUN
Web conn	ected as follows: 2x4 -	- 1 row at 0-9-0 oc.	1) Dead + Ro	of Live (balanced): Lumbei	Increase=1.	15,				11	VAL
				Plate Increa	ase=1.15							A	ot 24 2021


August 24,2021

Job	Truss	Truss Type	Qty	Ply	Lot 33 OS	
Lot 33 OS	E4	Roof Special	5	1	Job Reference (optional)	147581518

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Mon Aug 23 11:23:41

Page: 1

Wheeler Lumber, Waverly, KS - 66871,

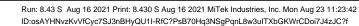
Scale = 1:63.5 Plate Offsets (X, Y): [12:0-1-10,0-3-4]

	(X, Y): [12:0-1-10,0-3-	.,										1	-	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.90	Vert(LL)	-0.23	8-10	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15		BC	0.81	Vert(CT)	-0.36	8-10	>733	240			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.79	Horz(CT)	0.21	14	n/a	n/a			
BCDL	10.0	Code	IRC2018/1	PI2014	Matrix-S		Wind(LL)	0.06	10-11	>999	240	Weight: 101 lb	FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x3 SPF No.2 *Exce 10-6:2x4 SPF No.2 2x4 SPF No.2 Structural wood she except end verticals Rigid ceiling directly bracing. 1 Row at midpt	athing directly applie applied or 10-0-0 oc 6-8, 3-10 0-3-8, 14=953/0-3-2 .C 5)	5, 5) E d, 6) F	on the bottor B-06-00 tall b shord and ar Bearing at jo using ANSI/7 designer shoc Provide mec pearing plate 2 and 58 lb This truss is international	as been designe n chord in all area by 2-00-00 wide v yy other members int(s) 14 conside PI 1 angle to gra uld verify capacit hanical connectio capable of withs uplift at joint 14. designed in acco Residential Code nd referenced sta Standard	as where vill fit betw s, with BC rs parallel in formula y of bear on (by oth standing 1 rdance w e sections	a rectangle veen the bott DL = 10.0ps to grain valu a. Building ng surface. ers) of truss 5 lb uplift at ith the 2018 r R502.11.1 a	om f. ie to joint			*	JUA GAR	· · · · ·	
	Max Grav 12=1093	,, , , ,	C 13)								En			τĒ
FORCES	(lb) - Maximum Com Tension	pression/Maximum									-5	• E-20001	• 4	12
TOP CHORD	5-6=-994/118, 6-7=- 8-13=-26/955, 7-13=	111/46, 2-12=-964/4 26/955	3,								1	SSIONI	LENGIN	2
BOT CHORD	11-12=-139/1392, 10 8-10=-41/331	0-11=-139/1392,										- 4411	inn.	
WEBS	6-8=-848/73, 3-11=0 3-10=-594/114, 6-10 7-14=-1042/58	,),									IN UAN C	SARCIA	
NOTES												CE	NSE	1
,	ed roof live loads have	been considered for											-0 .	-
Vasd=91n II; Exp C; and right e Lumber D 3) This truss	n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er exposed ; end vertical I IOL=1.60 plate grip DO has been designed for load nonconcurrent wi	DL=6.0psf; h=25ft; C ivelope); cantilever le left and right exposed rL=1.60 r a 10.0 psf bottom	əft J;								THUNNY'		952 ALENGIN	WIIIIII

Job	Truss	Truss Type	Qty	Ply	Lot 33 OS	
Lot 33 OS	E5	Roof Special	2	1	Job Reference (optional)	147581519

13-9-10

8-0-0

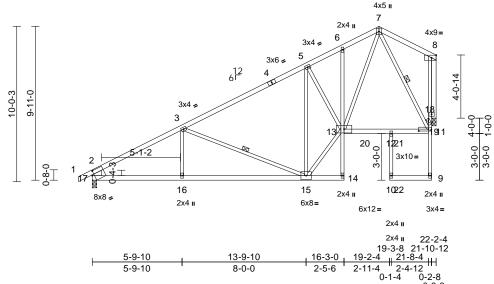

Wheeler Lumber, Waverly, KS - 66871,

-0-10-8

0-10-8

5-9-10

5-9-10



|<mark>16-1-12| 18-6-0</mark>| 2-4-2 2-4-4 3-8-4 4x5 II 7 2x4 II 4x9= 6

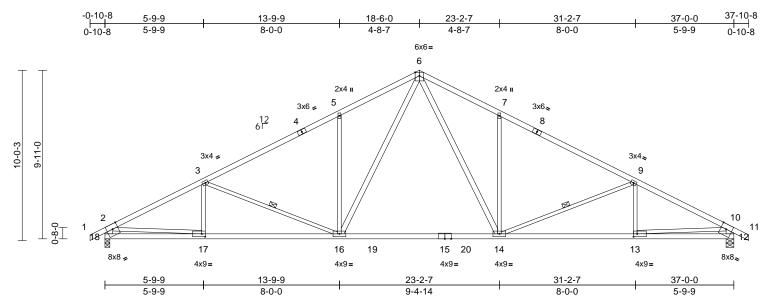
22-2-4

-

Scale = 1:74.3 Plate Offsets (X, Y): [11:0-7-8,0-1-8], [17:0-1-10,0-3-4]

], [
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.91	Vert(LL)		15-16	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.77	Vert(CT)	-0.36	15-16	>724	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.75	Horz(CT)	-0.03	19	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2	014 Matrix-S		Wind(LL)		15-16	>999	240	Weight: 111 lb	FT = 10%
-		•	-	•								-
LUMBER				truss has been des								
TOP CHORD				d live load noncond								
BOT CHORD			, ,	is truss has been d			.0pst					
WEBS	2x3 SPF No.2 *Exce	ept* 17-2:2x8 SP DS		he bottom chord in a -00 tall by 2-00-00								
OTHERS	2x4 SPF No.2			d and any other me								
BRACING			E) Boo	ring at joint(s) 19 cc								
TOP CHORD	Structural wood she except end verticals		u, í usir	g ĂNSI/TPI 1 angle	to grain formul	a. Building	ue					ш.,
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc	6) Pro	gner should verify or ride mechanical cor	nnection (by oth	ers) of truss					NE OF	MISS
WEBS	1 Row at midpt	7-11, 3-15		ing plate capable o		41 lb uplift a	it			1	17.	0,1
JOINTS	1 Brace at Jt(s): 11			17 and 189 lb uplif						5	Y	. 0-
REACTIONS	(lb/size) 17=1063/	0-3-8, 19=953/0-3-2		truss is designed in			I				S: JUA	N
	Max Horiz 17=294 (I		inte	national Residentia 2.10.2 and reference			and			24	GAR	
	Max Uplift 17=-141 (LC 8), 19=-189 (LC	8)			NGI/TELT.						
	Max Grav 17=1084	(LC 2), 19=1049 (LC	(2)	ASE(S) Standard						-		-
FORCES	(lb) - Maximum Com Tension	pression/Maximum								=	NUMI	• 41.
TOP CHORD		2/177. 3-5=-981/114									. L-2000	
	5-6=-1011/200, 6-7=	,										GAN
	2-17=-965/163, 9-11										1,SIONI	ENI
	8-18=-165/915	,	,								- CINI	
BOT CHORD	16-17=-353/1359, 1	5-16=-353/1359,										111.
	14-15=-21/1, 13-14=	-48/0, 6-13=-17/76,										II.G.
	12-13=-97/489, 11-1	2=-97/489, 9-10=0/	0								11.11	
WEBS	10-12=0/57, 5-13=-8										NUAN	AACIA
	7-11=-853/203, 3-16		224,								N CE	NSA
	5-15=-577/184, 13-1	5=-218/1343,										-0°-
	8-19=-1052/189									-		1 1 2
NOTES											UCE T	
	ed roof live loads have	been considered for	r							=	169	952 : :
this desig										-	DI	i a :
	CE 7-16; Vult=115mph		_							-	H.	1
	nph; TCDL=6.0psf; BC										- A KAN	CAS A
	Enclosed; MWFRS (er										1,50	G
	 left and right exposed osed; Lumber DOL=1.6 										ON ON	ALENN
ngni expo	Seu, Lumber DOL=1.0	o plate grip DOL=1.0	00								1111	inni,
											Augus	t 24,2021
											Augus	, _ ∪ _ 1

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017


Job	Truss	Truss Type	Qty	Ply	Lot 33 OS	
Lot 33 OS	E6	Common	7	1	Job Reference (optional)	147581520

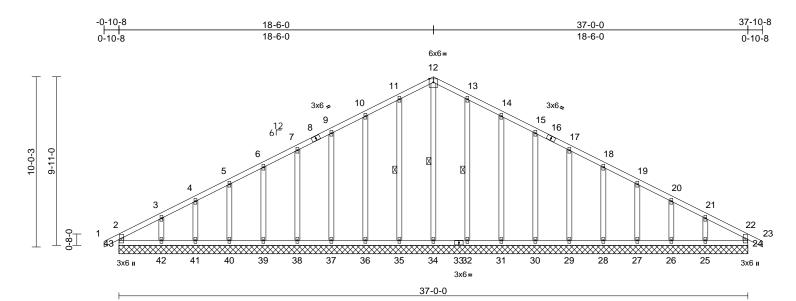
Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Mon Aug 23 11:23:42 ID:osAYHNvzKvVfCyc7SJ3nBHyQU1I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

August 24,2021

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Scale = 1:67.8


Plate Offsets (X, Y): [12:0-3-12,Edge], [13:0-2-8,0-2-0], [17:0-2-8,0-2-0], [18:0-3-12,Edge]

	(., .). [,e]; [: e: e = e; e = e];	[
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.93	Vert(LL)	-0.34	14-16	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.59	Vert(CT)	-0.56	14-16	>789	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.68	Horz(CT)	0.08	12	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI20	14 Matrix-S	-	Wind(LL)	0.11	16-17	>999	240	Weight: 155 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF 2100F 1.8I 2x3 SPF No.2 *Exce No.2, 18-2,12-10:2x Structural wood she except end verticals Rigid ceiling directly bracing. 1 Row at midpt	ept* 14-6,16-6:2x4 Si 6 SPF No.2 athing directly applie applied or 10-0-0 or 9-14, 3-16 0-5-8, 18=1722/0-3- _C 8)	chorc 4) * This PF on th 3-06- chorc ed, 5) Provi beari joint c 6) This i Interr R802 8 LOAD C/	russ has been designer live load nonconcurrer truss has been design e bottom chord in all are 00 tall by 2-00-00 wide and any other member de mechanical connecti hg plate capable of with 8 and 230 lb uplift at jo russ is designed in accu ational Residential Coo .10.2 and referenced st ASE(S) Standard	nt with any ed for a live as where will fit betw rs, with BC ion (by oth standing 2 int 12. ordance w le sections	other live load re load of 20. a rectangle veen the bott CDL = 10.0ps ers) of truss 230 lb uplift a ith the 2018 \$ R502.11.1 a	0psf om f. to t			"und	S. JUA GAR	
	Max Grav 12=1795									- 7		×-
FORCES	(lb) - Maximum Con		,							Ξ.		~
	Tension									= +	NUM	BER :
TOP CHORD BOT CHORD	5-6=-2471/446, 6-7= 7-9=-2489/297, 9-10 2-18=-1686/255, 10	=-2471/446,)=-2975/355, 10-11= -12=-1686/254 -17=-398/2598,	,								0. E-20001	62101 . W
	12-13=-91/621	1.1 2.10/2000,										
WEBS	6-14=-287/1108, 7- 9-14=-557/221, 9-13 6-16=-287/1108, 5- 3-16=-557/221, 3-13 2-17=-167/1984, 10	3=-52/152, 16=-512/282, 7=-52/152,								į	JUAN C	BARCIA NSEO
this desig 2) Wind: AS Vasd=91r II; Exp C; cantilever	ed roof live loads have in. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (ei r left and right exposed ssed; Lumber DOL=1.6	(3-second gust) IDL=6.0psf; h=25ft; (nvelope) exterior zon ; end vertical left and	Cat. ie; d							1111VV	DOR SION	952 ALENGINI

Job	Truss	Truss Type	Qty	Ply	Lot 33 OS	
Lot 33 OS	E7	Common Supported Gable	1	1	Job Reference (optional)	147581521

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Mon Aug 23 11:23:43 ID:osAYHNvzKvVfCyc7SJ3nBHyQU1I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:67.8

Scale = 1:67.8												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.07 0.06 0.14	Vert(CT)	in n/a n/a).01	(loc) - - 24	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 192 lb	GRIP 197/144 P FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 24=185/3 26=175/3 28=180/3 30=180/3 32=187/3 37=180/3 39=180/3 39=180/3 41=175/3 43=185/3 Max Horiz 43=-156 Max Uplift 24=-8 (L0 26=-40 (l 28=-53 (l	y applied or 10-0-0 oc 12-34, 11-35, 13-32 37-0-0, 25=198/37-0-0, 37-0-0, 29=180/37-0-0, 37-0-0, 31=179/37-0-0, 37-0-0, 34=157/37-0-0, 37-0-0, 38=180/37-0-0, 37-0-0, 40=181/37-0-0, 37-0-0, 40=181/37-0-0, 37-0-0, 42=198/37-0-0, 37-0-0 (LC 9) C 5), 25=-100 (LC 9), LC 9), 29=-54 (LC 9), LC 9), 29=-54 (LC 9),	FORCES TOP CHORD	28=18 30=18 32=18 35=18 37=18 39=18 41=17 43=18 (lb) - Maximum C Tension 2-43=-163/46, 1- 3-4=-121/90, 4-5 6-7=-64/165, 7-9 10-11=-43/244, 1 12-13=-46/258, 1 14-15=-44/168, 1- 12-21=-80/43, 21 22-24=-163/20 42-43=-27/139, 4 40-41=-27/139, 3 38-39=-27/139, 3 36-37=-27/139, 3	5 (LC 1), : 0 (LC 1), : 0 (LC 1), : 9 (LC 22) 9 (LC 22) 9 (LC 21), 0 (LC 1), : 5 (LC 1),	27=181 (LC 22), 29=180 (LC 22), 31=179 (LC 1), 36=179 (LC 1), 36=179 (LC 1), 38=180 (LC 21), 40=181 (LC 21), 40=181 (LC 21), 42=199 (LC 21), on/Maximum -3=-181/83, 5-6=-75/140, 9=10=-44/217, /266, /215, /141, /29, 19-20=-57/6 /39, 22-23=0/32, /139, /139, /139, /139,	2) , 3) 4) 5) 6) 7) 8)	this (Wind Vasc II; E> canti right Trus only see (or cc All p Gabl Trus brac Gabl O This chor Y Thi 3-06 chor	design. d: ASCE d=91mp xp C; E liever let e expose s desig . For st Standa onsult q lates ar le requi is to be sed agai le studs truss h e botto 5-00 tall d and a	E 7-16; bh; TCI nclose eff and ed; Lur ined fo tuds ex rd Inde re 2x4 irres co fully s inst latts s space as bee bad nor has be bad nor has be has be bad nor has be bad nor has be has b	Vult=115mph (DL=6.0psf, BOD d; MWPRS (env right exposed ; https: DOL=1.60, f wind loads in ti gosed to wind (stry GableEnd d building design MT20 unless oft htnuous bottom beathed from on the attest fr	L = 6.0psf; h=25ft; Cat. (eligine) exiterior zone; end vertical left and plate grip DOL = 1.60 he plane of the rriss normal to the face); Tertails as applicable, ner as per ANSI/TPI 1. herwise indicated. Ispere bearing. tertace or securely (i.e. diagonal web). a 10.0 psf bottom rany other live loads. I alive load of 20.0psf here a rectangle t between the bottom
	30=-53 (I 32=-47 (I 36=-57 (I 38=-54 (I 40=-59 (I	_C 9), 29=-54 (LC 9), _C 9), 31=-58 (LC 9), _C 9), 35=-49 (LC 8), _C 8), 37=-53 (LC 8), _C 8), 39=-53 (LC 8), _C 8), 41=-36 (LC 8), (LC 8), 43=-36 (LC 4)	WEBS NOTES	30-37=27/139, 3 34-35=-27/139, 3 31-32=-27/139, 2 27-28=-27/139, 2 25-26=-27/139, 2 25-26=-27/139, 2 12-34=-181/0, 11 0-36=-139/81, 9 6-39=-140/77, 5- 3-42=-151/119, 1 14-31=-139/81, 2 17-29=-140/78, 1 19-27=-141/80, 2 21-25=-151/111	32-34=-27 30-31=-27 28-29=-27 26-27=-27 24-25=-27 -35=-149 0-37=-140 40=-141/8 3-32=-14 5-30=-14 8-28=-14	/139, /139, /139, /139, /73, /77, 7-38=-140/7 11, 4-41=-137/66 9/71, 0/77,	,			outility,	11,55/01	GARCIA 952

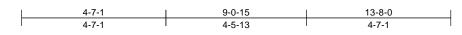
Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

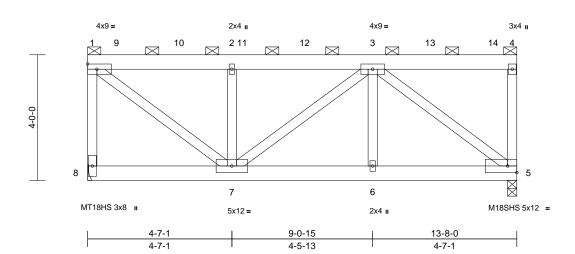
August 24,2021

Job	Truss	Truss Type	Qty	Ply	Lot 33 OS	
Lot 33 OS	E7	Common Supported Gable	1	1	Job Reference (optional)	l47581521

- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 36 lb uplift at joint 43, 8 lb uplift at joint 24, 49 lb uplift at joint 35, 57 lb uplift at joint 36, 53 lb uplift at joint 37, 54 lb uplift at joint 38, 53 lb uplift at joint 39, 59 lb uplift at joint 40, 36 lb uplift at joint 41, 114 lb uplift at joint 42, 47 lb uplift at joint 32, 58 lb uplift at joint 31, 53 lb uplift at joint 30, 54 lb uplift at joint 29, 53 lb uplift at joint 28, 57 lb uplift at joint 27, 40 lb uplift at joint 26 and 100 lb uplift at joint 25.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

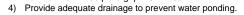
LOAD CASE(S) Standard


Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Mon Aug 23 11:23:43 ID:osAYHNvzKvVfCyc7SJ3nBHyQU1I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2



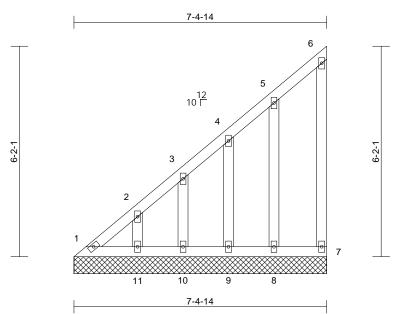
Job	Truss	Truss Type	Qty	Ply	Lot 33 OS	
Lot 33 OS	R1	Flat Girder	1	2	Job Reference (optional)	147581522

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Mon Aug 23 11:23:43 ID:osAYHNvzKvVfCyc7SJ3nBHyQU1I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

Scale = 1:36.7

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.48 0.39 0.54	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.04 -0.07 0.02 0.02	(loc) 6-7 6-7 5 6-7	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT18HS MT20 M18SHS Weight: 162 lb	GRIP 197/144 197/144 197/144 FT = 10%
	2x6 SPF No.2 2x6 SPF No.2 2x4 SPF No.2 2-0-0 oc purlins (6-0 end verticals. Rigid ceiling directly bracing. (lb/size) 5=3755/0 Max Horiz 8=-108 (L Max Uplift 5=-425 (L Max Grav 5=-4276 (L (lb) - Maximum Corr	applied or 10-0-0 oc -3-8, 8=3651/ Mecha C 6) C 5), 8=-219 (LC 4) -C 13), 8=4132 (LC 1	6 7 9t 9 9 1 14)	 This truss ha chord live loa This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate joint 8 and 42 This truss is International R802.10.2 ar 	MT20 plates unl is been designed ad nonconcurrent nas been designe n chord in all area by 2-00-00 wide w yo other members er(s) for truss to th hanical connectio e capable of withs 25 lb uplift at joint designed in accoo Residential Code nd referenced sta	for a 10.0 with any d for a liv as where vill fit betw s. russ conr n (by oth tanding 2 5. rdance w e sections ndard AN	D psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss : 19 lb uplift ar ith the 2018 s R502.11.1 a JSI/TPI 1.	ids. Opsf om to t				VP.E. OF /	MISSOUR
TOP CHORD BOT CHORD WEBS NOTES 1) 2-ply truss (0.131"x3" Top chords oc, 2x6 - 2 Bottom chu	Tension 1-8=-4040/236, 1-2= 2-3=-3616/200, 3-4= 7-8=-80/129, 6-7=-2 1-7=-254/4513, 2-7= 3-6=0/171, 3-5=-459 to be connected toge) nails as follows: s connected as follows: rows staggered at 0-5 ords connected as follows	3616/200, 104/42, 4-5=-1335/, 91/3675, 5-6=-291/3 -2725/155, 3-7=-90/ 95/331 ther with 10d s: 2x4 - 1 row at 0-9-0 9-0 oc.	239 1 675 108, 0	or the orienta bottom choro 2) Hanger(s) or provided suff Ib down and up at 2-11-0 1067 Ib down 42 Ib up at 8 10-11-0, and top chord. T device(s) is t .OAD CASE(S)	other connection ficient to support of 42 lb up at 0-11- , 1067 lb down ar n and 42 lb up at 8-11-0, and 1083 l 1092 lb down an he design/selection he responsibility of Standard	along the device(s concentra 0, 1067 II nd 42 Ib u 6-11-0, 1 Ib down a id 176 Ib on of suc of others.	e top and/or ated load(s) 1 b down and 4 up at 4-11-0, 067 lb down and 173 lb up up at 12-11- h connection	074 I2 lb and at 0 on			* Philip	GARG NUME E-20001	CIA *
Web conno 2) All loads a except if n CASE(S) s provided tt unless oth 3) Wind: ASC Vasd=91m II; Exp C; If and right e Lumber DO	at 0-9-0 oc. ected as follows: 2x4 - ire considered equally oted as front (F) or ba section. Ply to ply conr o distribute only loads erwise indicated. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er exposed ; end vertical I OL=1.60 plate grip DC dequate drainage to pr	applied to all plies, ck (B) face in the LO. nections have been noted as (F) or (B), (3-second gust) DL=6.0psf; h=25ft; C nvelope); cantilever le eft and right exposed uL=1.60	AD Cat. eft J;	Plate Increa Uniform Los Vert: 1-4 Concentrate Vert: 3=-							annua.	PROX SION	NSEO


MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

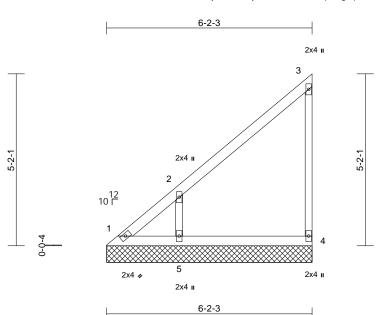
August 24,2021

Job	Truss	Truss Type	Qty	Ply	Lot 33 OS	
Lot 33 OS	V1	Valley	1	1	Job Reference (optional)	147581523

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Mon Aug 23 11:23:43 ID:osAYHNvzKvVfCyc7SJ3nBHyQU1I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.8


Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.22	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.01	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.04	Horiz(TL)	0.00	7	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-P							Weight: 37 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (Ib/size) 1=53/7-4- 8=136/7-4 10=114/7 Max Horiz 1=228 (LC Max Uplift 1=-55 (LC	applied or 10-0-0 oc 14, 7=51/7-4-14, 4-14, 9=119/7-4-14, -4-14, 11=144/7-4-14 C 5) C 6), 7=-55 (LC 7), 8= -61 (LC 8), 10=-57 (I	d or 8) 9) -65	Gable studs This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Provide mech bearing plate 1, 55 lb uplift at joint 10, 6 This truss is International	es continuous bott spaced at 1-4-0 or spaced at 1-4-0 or s been designed f da nonconcurrent v has been designed n chord in all area y 2-00-00 wide wi yo other members. hanical connection capable of withst at joint 7, 72 lb up I lb uplift at joint 9 designed in accorr Residential Code nd referenced star Standard	c. or a 10. with any I for a liv s where Il fit betw anding 5 blift at joi and 65 dance w sections	0 psf bottom other live loa ve load of 20.0 a rectangle veen the botto ers) of truss t 55 lb uplift at ji int 11, 57 lb u lb uplift at joi th the 2018 s R502.11.1 a	Opsf om oint olint plift nt 8.				S JU/ GAR	
	Max Grav 1=141 (LC (LC 15), 9	()									Phil	NUMI	• 41.
FORCES	(lb) - Maximum Com Tension	pression/Maximum									1	1000	GITT
TOP CHORD		185/119, 3-4=-156/99 23/85, 6-7=-61/66	9,									1,5/ON/	AL ENTIT
BOT CHORD	1-11=-81/62, 10-11= 8-9=-81/62, 7-8=-81	81/62, 9-10=-81/62, /62										am	unn.
WEBS	2-11=-121/91, 3-10= 5-8=-115/84	=-97/72, 4-9=-101/77,										IN JUAN	SARCIA
Vasd=91n II; Exp C; cantilever right expo 2) Truss des only. For see Stand or consult	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 igned for wind loads in studs exposed to wind lard Industry Gable En qualified building desig are 2x4 MT20 unless of	DL=6.0psf; h=25ft; C nvelope) exterior zono ; end vertical left and 0 plate grip DOL=1.6 the plane of the trus I (normal to the face), d Details as applicab gner as per ANSI/TP	e; 0 s								. THUNK	PROTECTION AUGUS	952 AL ENGINE

Job	Truss	Truss Type	Qty	Ply	Lot 33 OS	
Lot 33 OS	V2	Valley	1	1	Job Reference (optional)	147581524

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Mon Aug 23 11:23:43 ID:osAYHNvzKvVfCyc7SJ3nBHyQU1I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:34.7

Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.31 0.10 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 20 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x3 SPF No.2 2x3 SPF No.2 Structural wood sh 6-0-0 oc purlins, e Rigid ceiling direct bracing. (Ib/size) 1=11/6-2 5=360/6 Max Horiz 1=189 (L Max Uplift 1=-70 (L (LC 8) Max Grav 1=123 (L	y applied or 10-0-0 or -3, 4=143/6-2-3, 2-3 C 7) C 6), 4=-57 (LC 5), 5 C 5), 4=167 (LC 15),	ed or C C C C C C C C C C C C C	s has been design tom chord in all ard Il by 2-00-00 wide any other membe echanical connect ate capable of with lift at joint 4 and 1 is designed in acc hal Residential Coo and referenced st S) Standard	eas where will fit betw rs. ion (by oth standing 7 80 lb uplift ordance w de sections	a rectangle veen the bott '0 lb uplift at j at joint 5. ith the 2018 is R502.11.1 a	om to joint			*	JU/ GAR	
 Vasd=91n II; Exp C; cantilever right expo Truss des only. For see Stand or consult Gable req Gable stut This truss 	Tension	npression/Maximum -166/86, 3-4=-135/76 7/51 n (3-second gust) CDL=6.0psf; h=25ft; (nvelope) exterior zor i; end vertical left an 50 plate grip DOL=1. n the plane of the truu d (normal to the face nd Details as applical igner as per ANSI/TF om chord bearing. or a 10.0 psf bottom	Cat. te; d 60 ss), ole, 21 1.							PERIO CONTRACTOR	PROTICE PROTICE	GARCIA NSEO 952

- 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 33 OS	
Lot 33 OS	V3	Valley	1	1	Job Reference (optional)	147581525

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Mon Aug 23 11:23:44 ID:osAYHNvzKvVfCyc7SJ3nBHyQU1I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-11-13 2x4 II 2 4-2-1 4-2-1 12 10 ┌ 0 0-0-4 3 2x4 🍫 2x4 🛚

4-11-13

Scale = 1:29.3

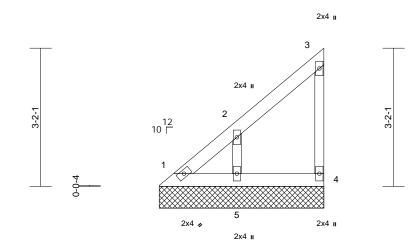
Scale = 1:29.3												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.40 0.21 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 15 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD 2 BOT CHORD 2 WEBS 2 BRACING TOP CHORD 8 BOT CHORD 8 REACTIONS (III M. FORCES (TOP CHORD 1	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 5-0-2 oc purlins, ex Rigid ceiling directly pracing.	athing directly applic cept end verticals. applied or 10-0-0 or 11-13, 3=203/4-11-1 C 7) 8), 3=-70 (LC 8) C 1), 3=228 (LC 15) ipression/Maximum	8) This truss is Internationa R802.10.2 a LOAD CASE(S) ed or	designed in acco Residential Code and referenced sta	e sections	R502.11.1 a	nd				GAF NUM	MISSOUR AN ICIA
 Wind: ASCE Vasd=91mph II; Exp C; Encantilever lefright exposed Truss design only. For studies and the standard or consult quitable studies Gable required Gable studies This truss has chord live load * This truss has on the bottom 3-06-00 tall b chord and and Provide medical 	closed; MWFRS (er t and right exposed d; Lumber DOL=1.6 ued for wind loads in ids exposed to wind d Industry Gable En- ialified building desi- es continuous botto spaced at 4-0-0 oc. is been designed for ad nonconcurrent wi has been designed for a chord in all areas by 2-00-00 wide will by other members. hanical connection (e capable of withstar	DL=6.0psf; h=25ff; (ivelope) exterior zor ; end vertical left an 0 plate grip DOL=1. the plane of the true (normal to the face d Details as applical gner as per ANSI/TF m chord bearing. r a 10.0 psf bottom th any other live loa or a live load of 20.0	ne; d 60 ss oble,							The summer	PROCESSION PROCESSION	ALENGIN

*u*nny August 24,2021

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 33 OS	
Lot 33 OS	V4	Valley	1	1	Job Reference (optional)	147581526

3-9-6

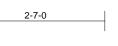

3-9-6

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Mon Aug 23 11:23:44 ID:osAYHNvzKvVfCyc7SJ3nBHyQU1I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

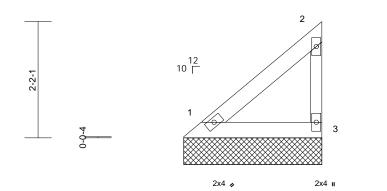
Scale = 1:26.5


Loading	(ps) Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.	· · ·	1.15		тс	0.10	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.		1.15		BC WB	0.02	Vert(TL)	n/a	-	n/a	999		
BCLL BCDL	0. 10.		YES IRC2018/TF	912014	vvв Matrix-P	0.03	Horiz(TL)	0.00	4	n/a	n/a	Weight: 12 lb	FT = 10%
			0) *	This towns he		-1 f - 1 - 1 - 1)					
LUMBER TOP CHORD	2x4 SPF No.2				as been designe chord in all area			pst					
BOT CHORD					/ 2-00-00 wide v			om					
WEBS	2x3 SPF No.2				y other members								
OTHERS	2x3 SPF No.2				anical connection capable of withs								
BRACING	o		1		at joint 4 and 93			om					
TOP CHORD		sheathing directly appli , except end verticals.			lesigned in acco								
BOT CHORD		ctly applied or 10-0-0 c	n In		Residential Code			nd					
	bracing.		R		d referenced sta	indard AN	ISI/TPI 1.						1111
REACTIONS		3-9-6, 4=69/3-9-6,	LOAD	CASE(S)	Standard							NE OF	MISS
		/3-9-6									1	A	
	Max Horiz 1=110	(LC 5) (LC 4), 4=-31 (LC 5), 5	503								-	S. JU	ANI : D-
	(LC 8		55								2	GAF	
		(LC 16), 4=82 (LC 15),	5=201								= *	GAR	
	(LC 1	'									=		
FORCES	(lb) - Maximum (Tension	Compression/Maximum									= 7	NUM	• 41.
TOP CHORD		=-87/45, 3-4=-67/40									-1	C: E-2000	162101
BOT CHORD	, -	,									1	A	
WEBS	2-5=-159/118											IS/ON	AL ENIN
NOTES													
		nph (3-second gust) BCDL=6.0psf; h=25ft;	Cot										
		6 (envelope) exterior zo											11111
cantilever	left and right expo	sed ; end vertical left ar	าน่									11 UAN	GARCIN
		1.60 plate grip DOL=1.											NSA
		is in the plane of the tru vind (normal to the face									1		0
		End Details as applica									-	6 / C.	1 2
or consult	qualified building	lesigner as per ANSI/T									=	16	952
		ottom chord bearing.									1	11	
	ds spaced at 2-0-0	oc. d for a 10.0 psf bottom									-	D.	
		it with any other live loa	ads.									- A HAI	SAS . AS
		. ,										1.50	ENGIN
													VALE
												A	1111
												Augus	st 24,2021

- 5)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 33 OS	
Lot 33 OS	V5	Valley	1	1	Job Reference (optional)	147581527


Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Mon Aug 23 11:23:44 ID:2oM?zB0IS7vhcBHyf?oB1wyl_VL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-7-0

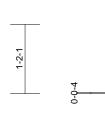
2-2-,

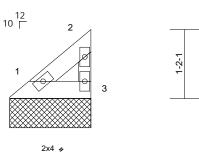
Scal	<u> </u>	- 1 -	21	5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P	-						Weight: 7 lb	FT = 10%
LUMBER			8) This truss is	designed in acco	ordance w	ith the 2018						
TOP CHORD	2x4 SPF No.2			I Residential Code			nd					
BOT CHORD	2x4 SPF No.2		R802.10.2 a	and referenced sta	andard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2		LOAD CASE(S	Standard								
BRACING												
TOP CHORD			ed or									
	2-7-5 oc purlins, ex											
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	С									
REACTIONS	0	0, 3=95/2-7-0									A MILLI	
	Max Horiz 1=70 (LC										NE OF	MISS
	Max Uplift 1=-2 (LC									1	1.	0/1
	Max Grav 1=95 (LC									2		·
FORCES	(lb) - Maximum Com	pression/Maximum								2	S JU	
	Tension	140								= +	GAF	
TOP CHORD BOT CHORD	,	/40										
NOTES	1-5=-25/19									= 7	NUN	
	CE 7-16; Vult=115mph	(2 accord quat)								= 5		• 41.
	mph; TCDL=6.0psf; BC		Cat							-1	E-2000	102101
	Enclosed; MWFRS (er									1	A	- day
	left and right exposed										IS/ON	AL ENIN
	osed; Lumber DOL=1.6										1111	ALIN
	signed for wind loads in											10.
	studs exposed to wind dard Industry Gable En-											
	t qualified building desig										IN AN	GARC
	quires continuous botto										N. 201	A
	, ids spaced at 2-0-0 oc.	0									CE	NSED
	s has been designed for									-	(/ Č	1 N 2
	load nonconcurrent wi									-	1	0.50
	ss has been designed f ttom chord in all areas		Opsf							-	: 16	952 : =
	all by 2-00-00 wide will		om							-	DI	1 1 2 2
	any other members.	in botween the Doll								-	PRO 16	h 145
	nechanical connection ((by others) of truss t	0								- A HA	NSAS
	late capable of withstar	nding 2 lb uplift at jo	int 1								1.80.	ENG IN
and 33 lb	uplift at joint 3.										1,00	VALE
												nnn.

August 24,2021

Page: 1




Job	Truss	Truss Type	Qty	Ply	Lot 33 OS	
Lot 33 OS	V6	Valley	1	1	Job Reference (optional)	147581528

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Mon Aug 23 11:23:44 ID:2oM?zB0IS7vhcBHyf?oB1wyl_VL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

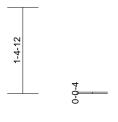
2x4 II

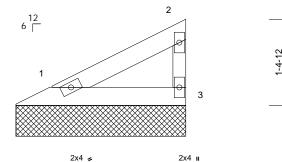
1-4-10

Scale =	1:19.6
---------	--------

00010 - 1.10.0												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.01	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.01	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P		()					Weight: 4 lb	FT = 10%
LUMBER		-	8) This truss is	designed in acco	ordance w	ith the 2018		-				
TOP CHORD	2x4 SPF No.2			Residential Code			ind					
BOT CHORD			R802.10.2 a	ind referenced sta	andard AN	ISI/TPI 1.						
WEBS	2x3 SPF No.2		LOAD CASE(S	Standard								
BRACING												
TOP CHORD	Structural wood she		ed or									
	1-4-14 oc purlins, e											
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	C									
REACTIONS	0	-10, 3=41/1-4-10										1111
REACTION	Max Horiz 1=30 (LC	,									Nº OF	MISSI
	Max Uplift 1=-1 (LC										NKE	
	Max Grav 1=41 (LC									~	YA	-
FORCES	(lb) - Maximum Com										JU/	AN
	Tension									24	GAR	CIA :
TOP CHORD	,	/20								2.0	1	101
BOT CHORD	1-3=-11/8									==	•	im=
NOTES											NUM	• 41-
	CE 7-16; Vult=115mph									-	C: E-2000	162101
	nph; TCDL=6.0psf; BC Enclosed; MWFRS (er									1	A	
	left and right exposed										1.05	ENGIN
	sed; Lumber DOL=1.6										I, ON	ALLIN
• •	signed for wind loads in											III.
	studs exposed to wind	`	,,									III.
	ard Industry Gable En										LICE	GAD
	qualified building desi		ין 1.								NUAN	CIA
	uires continuous botto ds spaced at 2-0-0 oc.										. CE	NSE.
	has been designed fo											10
	load nonconcurrent w		ds.							-	1 A State 1	1 5
6) * This trus	ss has been designed f	for a live load of 20.0)psf							-	16	952
	ttom chord in all areas									-	Y	
	all by 2-00-00 wide will	fit between the botto	om							-	D.	
	any other members.										- 0. · · A.	5141
	nechanical connection late capable of withsta										1.00	G
	uplift at joint 3.	noning i ib upint at jo									S/ON	ALENIN
											1111	mm
											Augus	t 24,2021
											,	

Job	Truss	Truss Type	Qty	Ply	Lot 33 OS	
Lot 33 OS	V7	Valley	1	1	Job Reference (optional)	147581529


Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Mon Aug 23 11:23:44 ID:osAYHNvzKvVfCyc7SJ3nBHyQU1I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

2-9-0

2x4 II

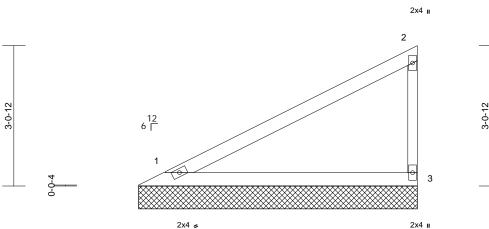
Scale	- 1	.10	7 0

00010 = 1.10.1												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 7 lb	FT = 10%
LUMBER			8) This truss i	s designed in acc	ordance w	ith the 2018						
TOP CHORD	2x4 SPF No.2			al Residential Co			and					
BOT CHORD	2x4 SPF No.2			and referenced s								
WEBS	2x3 SPF No.2		LOAD CASE(S									
BRACING												
TOP CHORD	Structural wood she	athing directly appli	ed or									
	2-9-8 oc purlins, ex											
BOT CHORD	Rigid ceiling directly		C									
	bracing.											• 1.9 m
REACTIONS	(lb/size) 1=93/2-9-	-0, 3=93/2-9-0										1111
	Max Horiz 1=43 (LC	7)									NE OF	MISS
	Max Uplift 1=-12 (LC	C 8), 3=-23 (LC 8)								1	17.	0,4
FORCES	(lb) - Maximum Con	npression/Maximum								5	<u> </u>	
	Tension									2	JU JU	
TOP CHORD	1-2=-39/26, 2-3=-72	2/35								-+	GAF	
BOT CHORD	1-3=-15/11										:	
NOTES										= 1		
	CE 7-16; Vult=115mph		. .							- 5	NUM	• 41.
	nph; TCDL=6.0psf; BC									-	C. E-2000	162101
	Enclosed; MWFRS (er left and right exposed									1	A	
	sed; Lumber DOL=1.6										1. 50	
	igned for wind loads in										NON	ALEN
	studs exposed to wind											um.
	ard Industry Gable En											
	qualified building desi											
	uires continuous botto										NAU	GARCI
	ds spaced at 4-0-0 oc.										UCE DE 16	NO
	has been designed fo											ED . S
	load nonconcurrent w									-	1 A A A A A A A A A A A A A A A A A A A	1 2 2
	s has been designed f		Opst								1	0-01 =
	tom chord in all areas Il by 2-00-00 wide will		om								: 16	952
	any other members.	in between the bott	UII							-	DI	: <u>a</u>
	echanical connection	(by others) of truss	to							-	· P.	No: 145
	ate capable of withsta										- A . Ha	NIGAS
	b uplift at joint 3.	······································									1.500	GN
	. ,										10/01	VALE
												unne.
											Augus	st 24,2021

- 6) uss has been designed for a live load of 20.0pst on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 1 and 23 lb uplift at joint 3.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 33 OS	
Lot 33 OS	V8	Valley	1	1	Job Reference (optional)	147581530


6-1-0

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Mon Aug 23 11:23:44 ID:osAYHNvzKvVfCyc7SJ3nBHyQU1I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1

Page: 1

BOT CHORD

Scale = 1:25.1									1			
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.57	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.31	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 16 lb	FT = 10%
LUMBER TOP CHORD	2x4 SPF No.2	•		s designed in ac al Residential Co			ind					

6-1-0

International Residential Code sections R502.11.1
D002 40 2 and referenced standard ANCI/TDL4

R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

MI "IIIT PHILIP JUAN GARCIA NUMBER E-2000162101 C 160

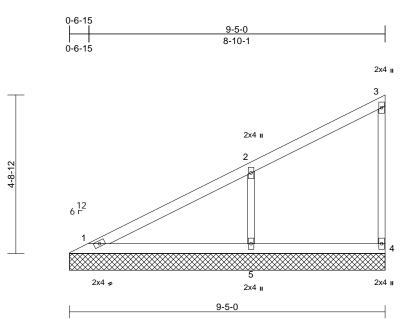
 \cap

mini August 24,2021

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

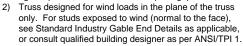
WEBS	2x3 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6-1-8 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(lb/size) 1=243/6-1-0, 3=243/6-1-0
	Max Horiz 1=112 (LC 5)
	Max Uplift 1=-31 (LC 8), 3=-59 (LC 8)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-103/68, 2-3=-189/92
BOT CHORD	1-3=-38/29

2x4 SPF No.2


NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 4-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 7) bearing plate capable of withstanding 31 lb uplift at joint 1 and 59 lb uplift at joint 3.

Job	Truss	Truss Type	Qty	Ply	Lot 33 OS	
Lot 33 OS	V9	Valley	1	1	Job Reference (optional)	l47581531

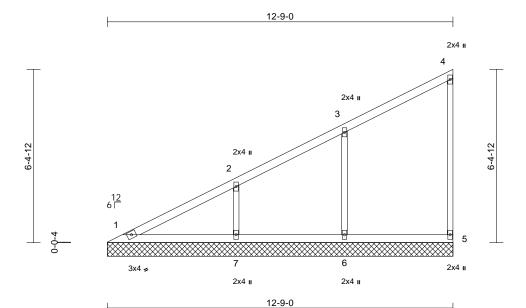

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Mon Aug 23 11:23:44 ID:osAYHNvzKvVfCyc7SJ3nBHyQU1I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:34.4

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.30	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.16	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.08	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S							Weight: 27 lb	FT = 10%
LUMBER			7)		hanical connection								
TOP CHORD	2x4 SPF No.2				capable of with	standing 2	28 lb uplift at jo	oint					
	2x4 SPF No.2		8)		uplift at joint 5. designed in acco	rdonoo w	ith the 2019						
WEBS OTHERS	2x3 SPF No.2 2x3 SPF No.2		0)		Residential Code			nd					
BRACING	2X3 3FF N0.2				nd referenced sta			i u					
TOP CHORD	Structural wood she	eathing directly applie	dor L(OAD CASE(S)									
	6-0-0 oc purlins, ex		u 01 🗖	0/12 0/102(0)	Otaridara								
BOT CHORD		applied or 10-0-0 oc											
	bracing.											A MARTIN	1111
REACTIONS	(lb/size) 1=174/9- 5=490/9-	5-0, 4=121/9-5-0,										NEOF	MISS
	Max Horiz 1=182 (L											· · · · ·	
	Max Uplift 4=-28 (LC										-	S. JU/	ANI P
FORCES		npression/Maximum									-	GAR	
TORGES	Tension	npression/maximum									= *	GAH	
TOP CHORD	1-2=-144/87, 2-3=-1	24/48, 3-4=-96/41									=	1	
BOT CHORD	1-5=-62/47, 4-5=-62										- 7	NUM	BEB : C -
WEBS	2-5=-372/197										-1	E-2000	• 41.
NOTES												L-2000	
1) Wind: ASC	CE 7-16; Vult=115mph	n (3-second gust)									1	£0	G
	nph; TCDL=6.0psf; BC											S/ON	ALENIN
	Enclosed; MWFRS (e											1111	iiiii
	left and right exposed												
	sed; Lumber DOL=1.6 gned for wind loads in												11111
	studs exposed to wind											AND	GARC
	ard Industry Gable En											1. 20	A
	qualified building desi											ICE	NSED
Gable requ	uires continuous botto	m chord bearing.									-	1 / Y	~ \ <u>-</u>
	ds spaced at 4-0-0 oc.										-	1	1 E
	has been designed fo											PRO 16	952 =
	load nonconcurrent w										-	DI	
	s has been designed tom chord in all areas		DST									T.	H
	Il by 2-00-00 wide will		m									- A HAY	ICAS
	any other members.											1.55	GN
												ON	ALEN
												100	IIIII.
												Augus	t 24,2021
												3	

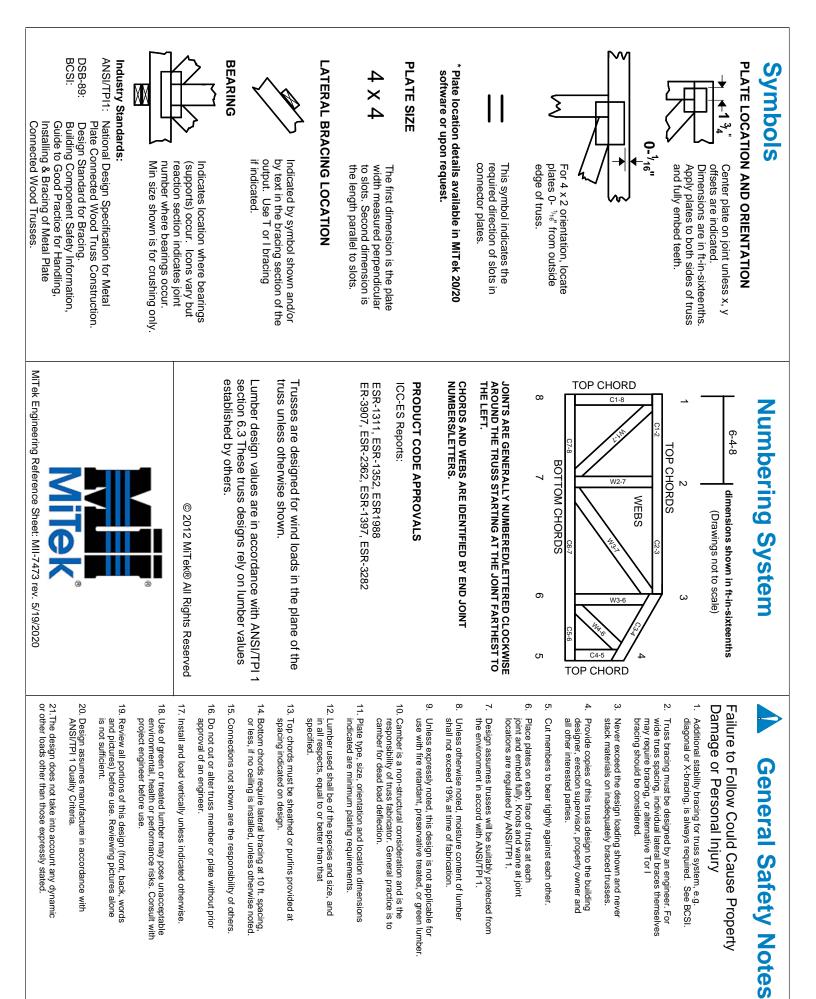
- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 33 OS	
Lot 33 OS	V10	Valley	1	1	Job Reference (optional)	147581532

Run: 8.43 S Aug 16 2021 Print: 8.430 S Aug 16 2021 MiTek Industries, Inc. Mon Aug 23 11:23:45 ID:osAYHNvzKvVfCyc7SJ3nBHyQU1I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.32	Vert(LL)	n/a	-	n/a	999	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.14	Vert(TL)	n/a	-	n/a	999			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.13	Horiz(TL)	0.00	5	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S							Weight: 39 lb	FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (lb/size) 1=151/12 6=379/12 Max Horiz 1=251 (L Max Uplift 5=-37 (LL 7=-124 (I Max Grav 1=198 (L	y applied or 10-0-0 oc 2-9-0, 5=144/12-9-0, 2-9-0, 7=411/12-9-0 C 5), 5 5), 6=-113 (LC 8), _C 8) C 16), 5=185 (LC 15)	d or Big Content bearing plat bearing be	has been designe m chord in all area by 2-00-00 wide w ny other members shanical connection e capable of withs iff at joint 6 and 1 designed in accoo Residential Code nd referenced sta Standard	as where vill fit betw s, with BC on (by oth standing 3 24 lb uplif rdance w e sections	a rectangle veen the botto DL = 10.0psf ers) of truss t 7 lb uplift at j ft at joint 7. ith the 2018 5 R502.11.1 a	om o oint			* 111	JU/ GAR		
FORCES	•	C 2), 7=417 (LC 2) npression/Maximum								-7	NUM	BEB a	
	Tension	161/71, 3-4=-137/65,								-7	E-20001	• 41.	
TOP CHORD						-		-					
BOT CHORD WEBS	1-7=-85/65, 6-7=-85 3-6=-297/153, 2-7=										SONAL ENIN		
NOTES												un.	
Vasd=91n II; Exp C; cantilever right expo 2) Truss desi only. For see Stand or consult 3) Gable req 4) Gable retu 5) This truss	CE 7-16; Vult=115mpl nph; TCDL=6.0psf; BC Enclosed; MWFRS (e left and right exposed sed; Lumber DOL=1.6 igned for wind loads in studs exposed to winn ard Industry Gable Er qualified building des uires continuous botto ds spaced at 4-0-0 oc has been designed fo load nonconcurrent w	CDL=6.0psf; h=25ft; C nvelope) exterior zon I; end vertical left and 60 plate grip DOL=1.6 n the plane of the trus d (normal to the face) nd Details as applicab igner as per ANSI/TP on chord bearing.	e; 1 0 s le, 11.							THUNK.	PRO 160	DS2	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

August 24,2021

