

RE: Lot 18 OS Lot 18 OS

Site Information:

Customer: Project Name: Lot 18 OS Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.4 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 41 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1 2 3 4 5 6 7 8 9	Seal# 147536599 147536600 147536601 147536602 147536603 147536604 147536605 147536606 147536606	Truss Name A1 A2 A3 A4 A5 B1 B2 B3 B4	Date 8/20/2021 8/20/2021 8/20/2021 8/20/2021 8/20/2021 8/20/2021 8/20/2021 8/20/2021	No. 21 22 23 24 25 26 27 28 29	Seal# 147536619 147536620 147536621 147536622 147536623 147536624 147536625 147536626 147536626	Truss Name D2 D3 E1 E2 E3 E4 E5 G1 G2	Date 8/20/2021 8/20/2021 8/20/2021 8/20/2021 8/20/2021 8/20/2021 8/20/2021 8/20/2021
9	I47536607	B4	8/20/2021	29	147536627	G2	8/20/2021
10	I47536608	B5	8/20/2021	30	147536628	G3	8/20/2021
11	I47536609	B6	8/20/2021	31	147536629	J1	8/20/2021
12	I47536610	B7	8/20/2021	32	147536630	J2	8/20/2021
13	I47536611	B8	8/20/2021	33	147536631	J3	8/20/2021
14	I47536612	B9	8/20/2021	34	147536632	J4	8/20/2021
15	I47536613	B10	8/20/2021	35	147536633	J5	8/20/2021
16	I47536614	B11	8/20/2021	36	147536634	LAY1	8/20/2021
17	I47536615	B12	8/20/2021	37	147536635	LAY2	8/20/2021
18	I47536616	C1	8/20/2021	38	147536636	V1	8/20/2021
19	I47536617	C2	8/20/2021	39	147536637	V2	8/20/2021
20	I47536618	D1	8/20/2021	40	147536638	V3	8/20/2021

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Kansas is April 30, 2022.

Kansas COA: E-943

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Garcia, Juan

1 of 2

August 20, 2021

MiTek USA, Inc. 16023 Swinglev Ridge Rd Chesterfield, MO 63017 314-434-1200

RE: Lot 18 OS - Lot 18 OS

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Site Information:

Proje Lot/B Addr	ect Customer: llock: ess:	Project Name: Lo	ot 18 OS	Subdivision:
City,	County:			State:
No. 41	Seal# I47536639	Truss Name V4	Date 8/20/2021	

RE: Lot 18 OS Lot 18 OS

Site Information:

Customer: Project Name: Lot 18 OS Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 115 mph Floor Load: N/A psf

MiTek USA, Inc.

314-434-1200

16023 Swingley Ridge Rd Chesterfield, MO 63017

This package includes 41 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Seal# 147536599 147536600 147536601 147536602 147536603 147536604 147536605 147536606 147536607 147536608 147536609 147536610 147536611	Truss Name A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 B6 B7 B8 B0	Date 8/20/2021 8/20/2021 8/20/2021 8/20/2021 8/20/2021 8/20/2021 8/20/2021 8/20/2021 8/20/2021 8/20/2021 8/20/2021 8/20/2021 8/20/2021	No. 21 22 23 24 25 26 27 28 29 30 31 32 33	Seal# 147536619 147536620 147536621 147536622 147536623 147536624 147536624 147536626 147536627 147536627 147536629 147536630 147536631	Truss Name D2 D3 E1 E2 E3 E4 E5 G1 G2 G3 J1 J2 J3	Date 8/20/2021 8/20/2021 8/20/2021 8/20/2021 8/20/2021 8/20/2021 8/20/2021 8/20/2021 8/20/2021 8/20/2021 8/20/2021
11 12 13	I47536610 I47536611	B6 B7 B8	8/20/2021 8/20/2021 8/20/2021	31 32 33	I47536630 I47536631	J1 J2 J3	8/20/2021 8/20/2021 8/20/2021
14 15 16 17 18	l47536612 l47536613 l47536614 l47536615 l47536616 l47536616	B9 B10 B11 B12 C1 C2	8/20/2021 8/20/2021 8/20/2021 8/20/2021 8/20/2021	34 35 36 37 38 20	147536632 147536633 147536634 147536635 147536636	J4 J5 LAY1 LAY2 V1 V2	8/20/2021 8/20/2021 8/20/2021 8/20/2021 8/20/2021
20	147536618	D1	8/20/2021	40	147536638	V3	8/20/2021

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Missouri is December 31, 2022. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

RE: Lot 18 OS - Lot 18 OS

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Site Information:

Proje Lot/B Addr	ect Customer: llock: ess:	Project Name: Lo	ot 18 OS	Subdivision:
City,	County:			State:
No. 41	Seal# I47536639	Truss Name V4	Date 8/20/2021	

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	A1	Half Hip Girder	2	1	Job Reference (optional)	147536599

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:16

Page: 1

Wheeler Lumber, Waverly, KS - 66871,

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.50	Vert(LL)	-0.17	6-7	>900	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.59	Vert(CT)	-0.35	6-7	>431	240		
BCLL	0.0*	Rep Stress Incr	NO		WB	0.83	Horz(CT)	0.03	6	n/a	n/a		
BCDL	10.0	Code	IRC2018	/TPI2014	Matrix-S		Wind(LL)	0.05	6-7	>999	240	Weight: 40 lb	FT = 10%
BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp C; E cantilever right expos 3) Provide and 4) This truss chord live 5) * This truss on the bott 3-06-00 tal chord and 6) Provide m bearing pla joint 6 and	10.0 2x4 SPF No.2 2x4 SPF 2100F 1.8E 2x3 SPF No.2 Structural wood sheat 3-5-15 oc purlins, e) 2-0-0 oc purlins (3-11 Rigid ceiling directly bracing. (lb/size) 2=991/0-3 Max Uplift 2=-251 (L0 (lb) - Maximum Com 1-2=0/6, 2-3=-2161/4 4-5=-91/9, 5-6=-1657 (2-7=-396/1967, 6-7= 3-7=0/424, 4-6=-167 ed roof live loads have b 2: 7-16; Vult=115mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en left and right exposed; sed; Lumber DOL=1.6(lequate drainage to profile lequate drainage to profile load nonconcurrent with s has been designed for load nonconcurrent with s has been de	Code athing directly applie ccept end verticals, a 0-15 max.): 3-5. applied or 10-0-0 oc -8, 6=957/0-3-8 7) C 4), 6=-223 (LC 4) pression/Maximum H32, 3-4=-1950/433, 72 -484/1603 4/535, 4-7=0/498 been considered for (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon c end vertical left anc 0 plate grip DDL=1.6 event water ponding, a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle it between the botto by others) of truss to ding 223 lb uplift at	IRC2018, 7) 8) d or 9) 10) 11) LO, 1) at. 2; 0 s. psf n	/TPI2014 This truss is a International R802.10.2 ar Graphical pu or the orienta "NAILED" inc (0.148"x3.25 Hanger(s) or provided suff lb down and design/select responsibility In the LOAD of the truss a AD CASE(S) Dead + Roo Plate Increas Uniform Los Vert: 1–3 Concentrate Vert: 3=- 9=-90 (F)	Matrix-S designed in accord Residential Codes and referenced stan- rlin representation tion of the purlin a icitates 3-10d (0.14 ') toe-nails per ND other connection of cicient to support co- 59 lb up at 5-0-0 cion of such connect of others. CASE(S) section, re noted as front (I Standard of Live (balanced): se=1.15 ads (lb/ft) =-70, 3-5=-70, 2-6= ad Loads (lb) 20 (F), 7=-288 (F), 10=-28 (F), 11=-2	lance w sections dard AN does no long the 8"x3") of S guidlin device (s oncentra no botto tion de loads ap F) or ba Lumber =-20 4=-90 (28 (F), 1	Wind(LL) th the 2018 R502.11.1 a ISI/TPI 1. ot depict the s top and/or or 3-12d nes.) shall be ted load(s) 2 m chord. The vice(s) is the oplied to the f ck (B). Increase=1. F), 8=-90 (F), 2=-28 (F)	0.05 nd size	6-7	>999	240	Weight: 40 Ib DEEOF JUA GARG NUME E-20001 SS/ONA SS/ONA 169 169	FT = 10%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

NITEK* 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	A2	Half Hip	2	1	Job Reference (optional)	147536600

7-0-0

Wheeler Lumber, Waverly, KS - 66871,

-0-10-8

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:18 $ID:o4kj_qNbgcPdkaiod3y3M4ymezL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff$

12-11-8

Page: 1

Scale = 1:31.2

Plate Offecte (X	V١٠	[2.Edge	0-0-101	[4·Edge 0-2-8]	

Plate Olisets (.	A, T). [Z.Euge,0-0-10]	j, [4.⊏uge,0-2-oj												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TP	I2014	CSI FC BC WB Matrix-S	0.74 0.49 0.88	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.06 -0.14 0.02 0.05	(loc) 2-6 2-6 5 2-6	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 40 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood shea 3-4-13 oc purlins, e: 2-0-0 oc purlins (6-0 Bioid ceiling directly	athing directly applie xcept end verticals, a -0 max.): 3-4. applied or 10.0-0 oc	7) Th Int R8 8) Gr or d or bo and LOAD	is truss is de ernational Re 02.10.2 and aphical purlir the orientatic ttom chord. CASE(S)	esigned in accord esidential Code s referenced stand n representation on of the purlin al Standard	ance w sections dard AN does no ong the	ith the 2018 R502.11.1 a ISI/TPI 1. of depict the s top and/or	nd iize					907.	
REACTIONS	(lb/size) 2=646/0-3 Max Horiz 2=108 (LC Max Uplift 2=-147 (L	3-8, 5=569/0-3-8 C 5) C 4), 5=-109 (LC 4)									1111	ARE OF JUA	NISSOLAN	1
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC	(lb) - Maximum Com Tension 1-2=0/6, 2-3=-970/15 4-5=-201/79 2-6=-127/838, 5-6=- 3-6=0/304, 3-5=-862 ed roof live loads have h. 2E 7-16; Vult=115mph	pression/Maximum 54, 3-4=-52/35, 131/831 //162 been considered for (3-second gust)									* PHUL	GAR NUME E-20001	3ER 62101	ALL DAY
 Vasd=91rr II; Exp C; I cantilever i right expos Provide ad This truss chord live * This truss on the bott 3-06-00 the chord and Provide me bearing pla joint 5 and 	ph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 lequate drainage to pri- load nonconcurrent wi s has been designed for load nonconcurrent wi s has been designed for tom chord in all areas II by 2-00-00 wide will any other members. echanical connection (ate capable of withstar 147 Ib uplift at joint 2.	DL=6.0psf;h=25ft; C DL=6.0psf;h=25ft; C velope) exterior zon; ; end vertical left anc 0 plate grip DOL=1.6 event water ponding. = a 10.0 psf bottom th any other live load or a live load of 20.0p where a rectangle fit between the bottom by others) of truss to adding 109 lb uplift at	cat. e; d 00 ls. posf m								annun.	PROFILES ION	ARCIA NSED	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall
building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing
is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the
fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component
Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	A3	Half Hip	2	1	Job Reference (optional)	l47536601

3-7-3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.27	Vert(LL)	-0.05	6-7	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.43	Vert(CT)	-0.11	6-7	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.37	Horz(CT)	0.01	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.02	2-7	>999	240	Weight: 42 lb	FT = 10%

LUMBER		
TOP CHORD	2x4 SPF	No.2
BOT CHORD	2x4 SPF	No.2
WEBS	2x3 SPF	No.2
BRACING		
TOP CHORD	Structura	I wood sheathing directly applied or
	5-2-4 oc	ourlins, except end verticals, and
	2-0-0 oc	ourlins (6-0-0 max.): 4-5.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	2=646/0-3-8, 6=569/0-3-8
	Max Horiz	2=138 (LC 5)
	Max Uplift	2=-145 (LC 4), 6=-112 (LC 4)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/6, 2	2-3=-1102/195, 3-4=-914/174,
	4 5 50/0	

174. 4-5=-50/35, 5-6=-132/54 BOT CHORD 2-7=-194/977, 6-7=-104/487 WEBS 3-7=-277/155, 4-7=-59/512, 4-6=-608/146

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding. 3) This truss has been designed for a 10.0 psf bottom 4)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 5)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 112 lb uplift at joint 6 and 145 lb uplift at joint 2.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- Graphical purlin representation does not depict the size 8) or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

Wint PRUM JUAN GARCIA NUMBER F -2000162101 C 3 E ONAL min 16952 BONNALENSAS August 20,202 VIIIIIIIIIIII JGI August 20,2021

111 MI

0

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	A4	Half Hip	2	1	Job Reference (optional)	147536602

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:19 Page: 1 ID:0T8_1rSwZFqPdvuBA5bEH3ymf_X-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 5-0-8 11-0-0 12-11-8 1-11-8 5-0-8 5-11-8 6x6 =2x4 II

Scale - 1:33.2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.42	Vert(LL)	-0.09	1-6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.49	Vert(CT)	-0.19	1-6	>823	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.26	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.02	1-6	>999	240	Weight: 43 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 5-1-1 oc purlins, exi 2-0-0 oc purlins (6-0 Disid oc functions the state	athing directly applic cept end verticals, a -0 max.): 3-4.	 8) This truss is Internationa R802.10.2 a 9) Graphical pi or the orient bottom chor nd LOAD CASE(S) 	designed in ac Residential Cc nd referenced : urlin representa ation of the pur d. Standard	cordance wi ode sections standard AN tion does no lin along the	ith the 2018 R502.11.1 a ISI/TPI 1. of depict the s top and/or	and size					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	0								ann	990.
REACTIONS FORCES	(lb/size) 1=576/ Ma Max Horiz 1=166 (LC Max Uplift 1=-97 (LC (lb) - Maximum Com	echanical, 5=576/0-3 C 5) C 4), 5=-118 (LC 4) pression/Maximum	3-8							1111	XA. JU	MISSOLD
	1 0_ 1120/040 0 2_	755/120 2 1- 56/	10							= *	GAR	

- TOF CHORE -755/128, 3-4= 4-5=-51/12 BOT CHORD
- 1-6=-257/1035, 5-6=-72/257 WEBS 2-6=-471/235, 3-6=-63/579, 3-5=-582/145

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom 4) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 6)
- Provide mechanical connection (by others) of truss to 7) bearing plate capable of withstanding 97 lb uplift at joint 1 and 118 lb uplift at joint 5.

NUMBER

-2000162101

ONALE

min

3

F

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	A5	Monopitch	2	1	Job Reference (optional)	147536603

6-2-6

6-2-6

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:19 ID:0BcZS1FFa1hp4I5wg1nF4Tymf_o-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12-11-8

6-9-2

Page: 1

6-2-6	12-11-8
6-2-6	6-9-2

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.57	Vert(LL)	-0.06	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.44	Vert(CT)	-0.13	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.49	Horz(CT)	0.02	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.04	1-5	>999	240	Weight: 41 lb	FT = 10%

L	u	м	R	F	R
_	U	141	D		n

Scale = 1:40.4

TOP CHORD	2x4 SPF No.2
BOT CHORD	2x4 SPF No.2
WEBS	2x3 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	4-11-7 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
WEBS	1 Row at midpt 2-4
REACTIONS	(lb/size) 1=576/ Mechanical, 4=576/0-3-8
	Max Horiz 1=200 (LC 7)
	Max Uplift 1=-92 (LC 4), 4=-124 (LC 8)
FORCES	(lb) - Maximum Compression/Maximum

	Tension
TOP CHORD	1-2=-1096/170, 2-3=-145/28, 3-4=-188/78
BOT CHORD	1-5=-198/987, 4-5=-198/987
WEBS	2-5=0/305, 2-4=-1024/252

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 92 lb uplift at joint 1 and 124 lb uplift at joint 4.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	B1	Roof Special Girder	2	1	Job Reference (optional)	147536604

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:19 ID:GMPpSQDtQp5qWBU2A2hFfeymeyG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

18=-635 (F)

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Scale = 1:51.7

4-11-0

Plate Offsets (X, Y):	[6:0-6-0,0-2-4],	[12:0-2-8,0-3-0]
-----------------------	------------------	------------------

TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.98	Vert(LL)	-0.53	9-11	>584	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.88	Vert(CT)	-0.93	9-11	>330	240	M18SHS	197/144
BCDI	10.0	Code	IRC201	8/TPI2014	VVB Matrix-S	0.90	Horz(CT) Wind(LT)	0.13	8 0_11	n/a	n/a 240	Weight: 118 lb	FT – 10%
BODE	10.0	oode	11(0201	0/11/2014	Matrix O		Wind(LL)	0.40	511	2000	240	Weight. The is	11 = 1070
LUMBER			5)	* This truss I	nas been desigr	ned for a liv	e load of 20	.0psf					
TOP CHORD	2x4 SPF 2100F 1.8E	E *Except* 3-6:2x4 S	SPF	on the botton	n chord in all ar	eas where	a rectangle	4.0.00					
	2400F 2.0E			3-06-00 tall i	by 2-00-00 Wide	WIII TIT DETV	veen the bot	tom					
WERS	2X0 SP DSS 2x2 SPE No 2 *Exco	0 6.0v4 CDE 21	0 E 6)	Provide med	hanical connect	tion (by oth	ers) of truss	to					
WEBS	1 8F	pt 0-0.2x4 SFF 210	JUF 9/	bearing plate	capable of with	hstanding 3	852 lb uplift a	at					
BRACING				joint 8 and 4	83 lb uplift at joi	int 2.	•						
TOP CHORD	Structural wood she	athing directly applie	ed or 7)	This truss is	designed in acc	cordance w	ith the 2018						
	3-0-1 oc purlins, ex	cept end verticals, a	nd	International	Residential Co	de sections	R502.11.1	and				N'INE	
	2-0-0 oc purlins (2-0	-11 max.): 3-6.	0)	R802.10.2 a	nd referenced s	tandard AN	ISI/TPL1.					NEOF	VISS
BOT CHORD	Rigid ceiling directly	applied or 6-6-3 oc	8)	Graphical pu	iriin representat	ion does no	ot depict the	SIZE				1.4	
	bracing.			bottom chore		in along the	top anu/or				-	A	
WEBS	1 Row at midpt	4-12, 5-9	9)	Use Simpso	n Strona-Tie LT	HJA26 (LT	HJA26 on 1	plv.			2	JUA	AN
WEBS	2 Rows at 1/3 pts	6-8	-,	Left Hand Hi	p) or equivalent	t at 5-0-6 fr	om the left e	nd to			=+	GAR	CIA :
REACTIONS	(ID/SIZE) 2=2088/0-	-3-8, 8=1664/0-3-8		connect trus	s(es) to front fac	ce of bottor	n chord.				-		
	Max Inlift 2-483 (I	57) C4) 8352 (LC8)	10) Use Simpso	n Strong-Tie HL	JS26 (14-1)	0d Girder, 6-	10d			= 7	S: NILIMI	
FORCES	(lb) - Maximum Com	oression/Maximum		Truss, Single	e Ply Girder) or	equivalent	at 12-11-4 fr	om					
TOROLO	Tension	ipression/maximum		the left end t	o connect truss	(es) to from	t face of bott	iom			-	E-20001	102101
TOP CHORD	1-2=0/12, 2-3=-5356	6/1145, 3-4=-4910/10	092, 1 [,]) Fill all nail h	les where hand	ner is in cor	ntact with lun	nher			-	· · · · · ·	G
	4-5=-8144/1699, 5-6	6=-5970/1209,	12) "NAILED" in	dicates 3-10d (0).148"x3") (or 3-12d					IS/ONI	I ENIN
	6-7=-163/50, 7-8=-2	55/109		(0.148"x3.25	") toe-nails per	NDS guidli	nes.					1111	i i i i i i
BOT CHORD	2-12=-1125/4991, 1	1-12=-1751/7571,	13	B) In the LOAD	CASE(S) section	on, loads a	pplied to the	face					
	9-11=-1676/7741, 8-	-9=-1233/6023		of the truss a	are noted as from	nt (F) or ba	ck (B).						IIII.
WEBS	3-12=-194/1395, 6-9	9=-100/918,	L	DAD CASE(S)	Standard							IN AN C	GARC
	4-12=-2850/686 5-1	1=0/7∠1, 1=-152/578	1)	Dead + Ro	of Live (balance	d): Lumber	Increase=1	.15,				1. 200	·····/A
	5-9=-1897/481	1 - 102/010,		Plate Increa	ase=1.15							CE	NSED
NOTES				Uniform Lo	ads (ID/ft) - 70, 2,6- 70,4	87-70.2	9- 20					- / ×	~ ``
1) Wind: ASC	CE 7-16: Vult=115mph	(3-second gust)		Vent 1-3	=-70, 3-0=-70, t ed Loads (lb)	b - i = -i 0, 2 - i	0=-20						N
Vasd=91m	nph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft; (Cat.	Vert: 3-	90 (F) 12288	(F) 490	(F) 1390	(F)			=	169	952
II; Exp C; I	Enclosed; MWFRS (er	velope) exterior zor	ne;	14=-90 (F). 15=-28 (F).	16=-28 (F).	17=-28 (F).	(°),			-	D	
cantilever	left and right exposed	: end vertical left an	d	19-625	(E)		0 (1),				-	DI	

right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. 2)

- All plates are MT20 plates unless otherwise indicated. 3)
- 4) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	B2	Roof Special	2	1	Job Reference (optional)	147536605

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:20 ID:wCBC69mjbxuJ1F?usiW1WKymexY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:51.3

Plate Offsets (X, Y): [2:0-0-4,0-1-2], [5:0-6-0,0-2-1]

Loading	(psf)	Spacing	2-0-0		CSI	0.05	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (root)	25.0	Plate Grip DOL	1.15			0.65	Vert(LL)	-0.22	8-10	>999	360	M120	197/144
RCU	10.0	Ron Stross Incr	VEQ			0.02		-0.40	0-10	>//0	240 n/o		
BOLL	10.0	Codo	IDC2010		Motrix S	0.93	Mind(LL)	0.10	9 10	>000	11/a	Woight: 96 lb	ET - 10%
BCDL	10.0	Code	IRCZUIC	5/1712014	watrix-5		WIND(LL)	0.16	0-10	>999	240	weight. oo ib	FI = 10%
LUMBER			5)	Provide mec	hanical connection	n (by oth	ers) of truss t	to					
TOP CHORD	2x4 SPF 2100F 1.8E No.2	E *Except* 5-6:2x4 S	PF	joint 7 and 25	53 lb uplift at joint	2.	24 id uplint at	t					
BOT CHORD	2x4 SPF No.2		6)	This truss is	designed in accor	dance wi	ith the 2018						
WEBS	2x3 SPF No.2			International	Residential Code	sections	R502.11.1 a	and					
BRACING				R802.10.2 ar	nd referenced star	ndard AN	ISI/TPI 1.						
TOP CHORD	Structural wood sheat 3-6-3 oc purlins, exc	athing directly applie cept end verticals, ar	ed or 7) nd	or the orienta	rlin representation ation of the purlin	n does no along the	t depict the s top and/or	size					110.
	2-0-0 oc purlins (3-1	1-0 max.): 3-5.			l. A							VI OF I	MIGH
BOT CHORD	Rigid ceiling directly bracing.	applied or 8-6-10 oc	; LC	DAD CASE(S)	Standard							I'VE	SO
WEBS	1 Row at midpt	5-7									1		. 0 -
REACTIONS	(lb/size) 2=1230/0-	-3-8, 7=1155/0-3-8									-	JUA	N ····
	Max Horiz 2=202 (LC	C 7)									24	GAR	
	Max Uplift 2=-253 (L	C 4), 7=-224 (LC 8)											
FORCES	(lb) - Maximum Com	pression/Maximum									-		imE
	Tension										= +		BER
TOP CHORD	1-2=0/6, 2-3=-2680/4	464, 3-4=-3195/605,	7								-1	C. E-20001	62101
	4-5=-3196/605, 5-6=	-132/44, 6-7=-185/7	/								1	A	
BUICHORD	8-10=-380/2185 7-8	-11=-470/2440, =-376/2191										1.SSIC	ENGIN
WEBS	3-11=0/295, 3-10=-1	40/806. 4-10=-548/2	212.									ONF	Lin
	5-10=-232/1078, 5-8	=0/270, 5-7=-2359/4	152										
NOTES													un.
1) Wind: AS	CE 7-16; Vult=115mph	(3-second gust)										NIC	AP
Vasd=91n	nph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft; C	Cat.									NUM	CIA .
II; Exp C;	Enclosed; MWFRS (en	velope) exterior zon	e;									CE	NSE
cantilever	left and right exposed	; end vertical left and	b										
right expo	sed; Lumber DOL=1.6	0 plate grip DOL=1.6	50								-	1 - E	1 2
 Provide ad This transition 	dequate drainage to pro	event water ponding									-	160	252 : =
3) This truss	load popooncurrent wi	th any other live lead	de								-	10:	552
 4) * This trus 	s has been designed for	or a live load of 20.0	nsf								-	The l	1. 155
on the bot	tom chord in all areas	where a rectangle	por									0.	Milles
3-06-00 ta	Il by 2-00-00 wide will	fit between the botto	m									A MAN	SAS
chord and	any other members.											1,00/00	ALEN IN
	-											IN	AL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	B3	Roof Special	2	1	Job Reference (optional)	147536606

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:20 ID:le4ux029A0n2IoFJi1QQyBymexB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:51.3

Plate Offsets (X, Y): [6:0-4-12,Edge]

Loading TCLL (roof) TCDL BCLL	(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.74 0.84 0.97	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18 -0.41 0.08	(loc) 2-12 2-12 8	l/defl >999 >759 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 197/144	
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.14	10-12	>999	240	Weight: 91 lb	FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she: 3-3-5 oc purlins, exi 2-0-0 oc purlins (2-1 Rigid ceiling directly bracing. (lb/size) 2=1230/0 Max Horiz 2=202 (LC Max Uplift 2=-253 (I	athing directly applie cept end verticals, a 0-11 max.): 4-6. applied or 7-8-2 oc -3-8, 8=1155/0-3-8 2 7) C 4) 8=-224 (I C 8)	5) 6) nd 7) L(Provide mecl bearing plate joint 8 and 25 This truss is International R802.10.2 ar Graphical pu or the orienta bottom chore DAD CASE(S)	nanical connection capable of withsta 53 lb uplift at joint 2 designed in accord Residential Code s and referenced stan rdin representation tion of the purlin a Standard	(by oth anding 2 2. Jance w sections dard AN does no long the	ers) of truss to :24 lb uplift at ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the s top and/or	o nd ize			1 ₁₁ .	VE OF /	MISSOUR	
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/6, 2-3=-2657/9 4-5=-2431/484, 5-6=	pression/Maximum 551, 3-4=-2373/425, 2431/484, 6-7=-102	, 2/33,								1 APR	GAR	BER	
BOT CHORD WEBS	7-8=-111/44 2-12=-567/2440, 10- 9-10=-202/1255, 8-9 3-12=-242/180, 4-12 5-10=-558/220, 6-10	.12=-396/2200,)=-200/1259 !=0/344, 4-10=-61/25)=-274/1303, 6-9=0/2	53, 240,									E-20001	62101	
NOTES 1) Wind: ASC Vasd=91n II; Exp C; cantilever right expo: 2) Provide ac 3) This truss chord live 4) * This trus on the bot 3-06-00 ta chord and	6-8=-1617/313 CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.60 dequate drainage to pri has been designed for load nonconcurrent wi s has been designed fit tom chord in all areas i Il by 2-00-00 wide will any other members.	(3-second gust) DL=6.0psf; h=25ft; (ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 event water ponding ra 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto	Cat. d 60 J. ds. ppsf								outility.	PROCESSION	ARCIA NSED 52 ALENOIT	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	B4	Roof Special	2	1	Job Reference (optional)	147536607

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:20 ID:tgPfp5dd5SiNR0LLzPmSM5ymewS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:51.3

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TP	I2014	SI C B atrix-S	0.69 0.78 0.55	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.16 -0.35 0.07 0.11	(loc) 8-9 8-9 8 11-12	l/defl >999 >891 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 91 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood shea 2-6-0 oc purlins, ex 2-0-0 oc purlins (3-6	athing directly applie cept end verticals, ar -13 max.): 4-6.	6) Th Intu R8 7) Gr: or d or bot nd LOAD	is truss is desig ernational Res 02.10.2 and re aphical purlin r the orientation ttom chord. CASE(S) Sta	gned in accorda idential Code so oferenced stand representation of of the purlin alo andard	ance wi ections ard AN loes no ong the	th the 2018 R502.11.1 ar SI/TPI 1. It depict the si top and/or	ize					
BOT CHORD	Rigid ceiling directly bracing.	applied or 8-4-12 oc										mu	U17.
REACTIONS	(lb/size) 2=1230/0- Max Horiz 2=202 (LC Max Uplift 2=-253 (L	-3-8, 8=1155/0-3-8 C 7) C 4), 8=-224 (LC 8)									1	XALE OF A	AIS SOL
FORCES	(lb) - Maximum Com	pression/Maximum									E	JUA	N
TOP CHORD	1-2=0/6, 2-3=-2683/4 4-5=-1853/381, 5-6= 7-8=-13/13	483, 3-4=-2097/414, 1853/381, 6-7=-91/	42,									NUME	
BOT CHORD	2-12=-490/2448, 11- 9-11=-352/1934, 8-9	-12=-490/2448,)=-81/530									=1	E-20001	62101
WEBS	3-12=0/232, 3-11=-5 4-9=-96/62, 5-9=-55 6-8=-1189/293	3/222, 6-9=-274/153	5, 1,								1	ESSIONA	LENGITI
NOTES													in the second se
 Wind: ASC Vasd=91m II; Exp C; E cantilever I right expose Provide ad This truss chord live I * This truss on the bott 3-06-00 tal chord and Provide me bearing pla joint 8 and 	b) 27-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 lequate drainage to pri- has been designed for oad nonconcurrent wi is has been designed for om chord in all areas I by 2-00-00 wide will by 2-00-00 wide will any other members. echanical connection (ate capable of withstar 253 lb uplift at joint 2.	cat. e; d NO No ds. psf m								annun.	PROPERTY OF AM	ARCIA NSEO 952 ALENGIN	

- 2) Provide adequate drainage to prevent water ponding.
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 224 lb uplift at joint 8 and 253 lb uplift at joint 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	B5	Half Hip	2	1	Job Reference (optional)	147536608

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:20 ID:EAGP_Q55wRdrc?qrl5zbRKymevr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:51.3

Loading	(psf) 25.0	Spacing Plate Grin DOI	2-0-0 1 15		CSI TC	0.69	DEFL	in -0 17	(loc) 7-8	l/defl ∽999	L/d 360	PLATES	GRIP 197/144	
	10.0	Lumber DOI	1.15		BC	0.88	Vert(CT)	-0.38	2-10	>815	240	101120	131/144	
BCLL	0.0*	Rep Stress Incr	YES		WB	0.78	Horz(CT)	0.07	2.0	n/a	n/a			
BCDL	10.0	Code	IRC2018	/TPI2014	Matrix-S		Wind(LL)	0.11	2-10	>999	240	Weight: 86 lb	FT = 10%	
LUMBER TOP CHORD SOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she: 2-6-11 oc purlins, e: 2-0-0 oc purlins (3-8 Rigid ceiling directly bracing.	athing directly applie xcept end verticals, a -8 max.): 4-6. applied or 8-2-9 oc	6) 7) and 8) LO	Provide mech bearing plate joint 7 and 25 This truss is a International R802.10.2 ar Graphical pu or the orienta bottom chord AD CASE(S)	nanical connection capable of withst 53 lb uplift at joint 2 designed in accord Residential Code nd referenced stan rlin representation tion of the purlin a Standard	a (by othe anding 2 2. dance wi sections dard AN does no long the	rs) of truss 22 lb uplift a th the 2018 R502.11.1 a SI/TPI 1. t depict the top and/or	to t and size				NU OF		
NEBS	1 Row at midpt	5-7										NE	ISS	
REACTIONS	(Ib/size) 2=1230/0- Max Horiz 2=197 (LC Max Uplift 2=-253 (L	-3-8, 7=1155/0-3-8 C 7) C 4), 7=-222 (LC 4)									110	JUA	N D	-
FORCES	(lb) - Maximum Com Tension	pression/Maximum									Ξ×	GAR		Ξ
TOP CHORD	1-2=0/6, 2-3=-2627/5 4-5=-1483/305, 5-6=	509, 3-4=-2329/448, -70/47, 6-7=-153/65									P			Ξ
BOT CHORD	2-10=-503/2415, 8-1 7-8=-263/1228	0=-301/1678,									H	E-20001	62101	-
WEBS	3-10=-406/235, 4-10 5-8=0/503, 5-7=-152)=-98/676, 4-8=-287/ 27/333	142,								1	ASS	ENGLIN	
NOTES												ONA	LEin	
1) Unbalance	ed roof live loads have	been considered for											111 ·	
 this design Wind: ASC Vasd=91rr II; Exp C; I cantilever right exposision Provide ac This truss chord live * This truss on the bott 	b. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 dequate drainage to pri has been designed for has been designed for s has been designed for tom chord in all areas	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 event water ponding • a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle	Cat. e; d S0 ds. psf								annun a	LICE	ARCIA NSEO	ANNUH III
3-06-00 ta chord and	II by 2-00-00 wide will any other members.	tit between the botto	m									SION	ALENGITI	

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding. 3)
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	B6	Half Hip	2	1	Job Reference (optional)	147536609

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:21 ID:ivteLOW2gB1tJO?aly5oMiymevI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-0-10-8 0-10-8 6-8-10 15-0-0 20-7-10 25-11-8 6-8-10 8-3-6 5-7-10 5-3-14 6x8 = 3x4 = 2x4 II 6 ⊠ 4 5 ⊠ 0-1-9 5-6-0 ဂု \bowtie \bowtie \bowtie \bowtie -_12 4 Г **R** 2x4 👟 3 5-7-3 5-4-7 5-4-7 5-4-7 0-9-0 7 Т Ø 10 9 8 11 12 4x5 = 3x6 =3x6= 4x9= 3x4= 10-0-0 17-0-4 25-11-8 7-0-3

10-0-0

Scale = 1:51.3

Plate Offsets (X, Y): [2:0-0-4,0-1-2]

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.67	Vert(LL)	-0.25	2-10	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.65	Vert(CT)	-0.51	2-10	>603	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.69	Horz(CT)	0.06	7	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.09	2-10	>999	240	Weight: 89 lb	FT = 10%	
TCDL BCLL BCLL IUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS	10.0 0.0* 10.0 10.0 2x4 SPF 2100F 1.8E No.2 2x4 SPF 2100F 1.8E 2x3 SPF No.2 Structural wood she 3-8-13 oc purlins, e 2-0-0 oc purlins, e 2-10-250 (L Max Horiz 2=227 (LC Max Uplift 2=-250 (L Max Grav 2=1255 (L (Ib) - Maximum Com Tension 1-2=-0/6, 2-3=-2664// 4-5=-1402/297, 5-6= 2-10=-556/2470, 8-1 7-8=-216/984 3-10=-601/316, 4-10 4-8=-353/149, 5-8=-	Lumber DOL Rep Stress Incr Code *Except* 4-6:2x4 SI athing directly applie xcept end verticals, a -15 max.): 4-6. applied or 10-0-0 oc 5-7 -3-8, 7=1155/0-3-8 C 4), 7=-225 (LC 4) .C 2), 7=1213 (LC 2) pression/Maximum 548, 3-4=-2264/399, -78/54, 6-7=-150/66 0=-241/1505,)=-103/815, 52/717, 5-7=-1348/29	1.15 YES IRC2018/TPI2014 5) * This true on the bo 3-06-00 ta chord and 6) Provide n bearing p joint 7 and 7) This trues Internatio R802.10. 8) Graphica or the orig bottom ch LOAD CASE	BC WB Matrix-S ss has been designe tom chord in all area all by 2-00-00 wide w any other members techanical connection ate capable of withs d 250 lb uplift at joint is designed in acco nal Residential Code 2 and referenced sta purlin representatio intation of the purlin ord. S) Standard	d for a liv as where vill fit betw s, with BC on (by oth tanding 2 2. rdance w e sections indard AN n does n along the	Vert(CT) Horz(CT) Wind(LL) e load of 20. a rectangle veen the bott DL = 10.0ps ers) of truss 25 lb uplift a th the 2018 R502.11.1 a ISI/TPI 1. t depict the e top and/or	-0.51 0.06 0.09 0psf om f. to t t size	2-10 7 2-10	>603 n/a >999	240 n/a 240	Weight: 89 lb	FT = 10%	
NOTES 1) Unbalanc	ed roof live loads have	been considered for									11 JUAN C	ARCIA	
this desig 2) Wind: ASt Vasd=91r II; Exp C; cantilever right expo 3) Provide a 4) This truss chord live	n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 dequate drainage to pr has been designed for load nonconcurrent wi	(3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon ; end vertical left anc 0 plate grip DOL=1.6 event water ponding. r a 10.0 psf bottom th any other live load	eat. e; d 00 -							. THINK	169 BOOK SYON August	52 545 AL ENGINE	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

8-11-4

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	B7	Half Hip	2	1	Job Reference (optional)	147536610

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:21 ID:MU8bQJsEr5hmlrj8VY7b1pymeur-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:51.4

Loading TCLL (roof)	(psf) 25.0 10.0	Spacing Plate Grip DOL	2-0-0 1.15 1.15		CSI TC BC	0.51	DEFL Vert(LL) Vert(CT)	in -0.26 -0.45	(loc) 8-9 8-9	l/defl >999	L/d 360 240	PLATES MT20	GRIP 197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.76	Horz(CT)	0.06	8	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.09	2-11	>999	240	Weight: 94 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF 2100F 1.8E 2x3 SPF No.2 Structural wood shea 3-0-2 oc purlins, exc	athing directly applied appt end verticals, ar 14 may : 5-7	6) 7) d or nd 8)	Provide mech bearing plate joint 8 and 24 This truss is a International R802.10.2 ar Graphical pui or the orienta	nanical connectior capable of withst 18 lb uplift at joint designed in accor Residential Code nd referenced star rlin representation tion of the purlin a	n (by oth anding 2 2. dance wi sections ndard AN n does no along the	ers) of truss t 27 lb uplift at th the 2018 R502.11.1 a ISI/TPI 1. of depict the s top and/or	to t and size					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	L	bottom chord DAD CASE(S)	Standard	J						ann	90.
WEBS	1 Row at midpt	6-8										NE OF A	AIS SIL
REACTIONS	(Ib/size) 2=1230/0- Max Horiz 2=257 (LC) Max Uplift 2=-248 (LC) Max Grav 2=1256 (LC)	3-8, 8=1155/0-3-8 ; 7) C 4), 8=-227 (LC 4) C 2), 8=1223 (LC 2)									in int	JUA GARC	N DIA
FORCES	(lb) - Maximum Com	pression/Maximum									2.0	:	<u>^</u>
TOP CHORD	1-2=0/6, 2-3=-2671/5 4-5=-1387/286, 5-6= 7-8=-128/60	523, 3-4=-2335/395, -1273/290, 6-7=-87/0	61,								PHU	NUME	62101
BOT CHORD	2-11=-548/2470, 9-1 8-9=-179/764	1=-331/1823,									1	ASS.	
WEBS	3-11=-454/244, 4-11 5-9=0/216, 6-9=-94/8	=-25/588, 4-9=-777/2 324, 6-8=-1219/275	236,									NONA	LEin
NOTES													10.
1) Unbalanc this desig	ed roof live loads have n.	been considered for										UAN G	ARCIA
 Wind: AS Vasd=91r 	CE 7-16; Vult=115mph nph: TCDL=6.0psf: BCI	(3-second gust) DL=6.0psf: h=25ft: C	at.								2	CEN	SE

- Provide adequate drainage to prevent water ponding. 3)
- This truss has been designed for a 10.0 psf bottom 4)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 5)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

111111

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	B8	Half Hip	2	1	Job Reference (optional)	147536611

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:21 ID:nQSsuPwR78mGrMS3f0iEbNymetT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:51.4

Plate Offsets (X, Y): [2:0-0-4,0-1-2], [7:Edge,0-2-8]

														_
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.77 0.84 0.57	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.18 -0.37 0.06 0.10	(loc) 9-11 9-11 8 11	l/defl >999 >844 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 96 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No.2 2x4 SPF 2100F 1.8E No.2 2x3 SPF No.2 *Exce Structural wood shea 2-2-0 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 2=1230/0 Max Horiz 2=286 (LC Max Uplift 2=-245 (L Max Grav 2=1258 (L	E *Except* 10-8:2x4 ept* 8-6:2x4 SPF No. athing directly applie cept end verticals, ar -0 max.): 6-7. applied or 10-0-0 oc 6-8, 5-9 -3-8, 8=1155/0-3-8 C7) C 4), 8=-231 (LC 4) .C 2), 8=1221 (LC 2)	5) SPF 2 6) ed or 7) 3 8) L(* This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate joint 8 and 24 This truss is International R802.10.2 ai Graphical pu or the orient bottom chorc OAD CASE(S) 	has been designed in chord in all area by 2-00-00 wide w by other members hanical connection capable of withst 45 lb uplift at joint designed in accor Residential Code nd referenced star rlin representation rlin representation standard	d for a livus where ill fit betw, with BC n (by oth aanding 2 2. dance w sections ndard AN n does no along the	e load of 20.0 a rectangle veen the bott DL = 10.0psi ers) of truss t 31 lb uplift at ith the 2018 i R502.11.1 a ISI/TPI 1. ot depict the s top and/or	Opsf f. to and size			······	JUA GAR	MISSOUR NCIA	
FORCES	(lb) - Maximum Com Tension 1-2=0/6, 2-3=-2737/5	pression/Maximum 526, 3-5=-2376/377,									1111	E-20001	3ER 62101	
BOT CHORD	5-6=-1125/243, 6-7= 2-11=-568/2535, 9-1 8-9=-161/1002	91/74, 7-8=-230/10 1=-324/1693,	0									SSION!	IL ENGIN	
NOTES	6-9=-80/912, 6-8=-1. 5-11=-13/740, 3-11=	-507/274	.84,									IN AN C	SARCIN	
 Unbalance this desig Wind: ASO Vasd=91r II; Exp C; cantilever right expo 	ed roof live loads have n. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed ised; Lumber DOL=1.60	(3-second gust) DL=6.0psf; h=25ft; (velope) exterior zon ; end vertical left and 0 plate grip DOL=1.6	Cat. le; d								ATTINA CONTRACT	P 16	NSE0 952	

Provide adequate drainage to prevent water ponding. 3) 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

ONAL ENGLISH

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	В9	Half Hip	2	1	Job Reference (optional)	147536612

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:21 Page: 1 ID:d8pWtQxtRDHYPWHQWmI18FymePm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 0-10-8 8-8-11 17-5-10 21-0-0 25-11-8 8-8-11 8-8-15 3-6-6 4-11-8 6x6= 3x4 II 6 7 0-1-9 <u>م</u> 2x4 II 6 Ø 5 3x10 = 12 4 Г 4 3x4 🚅 7-7-3 7-4-7 7-4-7 7-4-7 3 0-9-0-9-8 X 11 10 9 12 13 4x5= 3x6= 2x4 II 4x9= 6x8=

	8-8-11	17-5-10	25-11-8	
	8-8-11	8-8-15	8-5-14	
e = 1:55				

Scal Plate Offsets (X, Y): [7:Edge,0-2-8]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2017	8/TPI2014	CSI TC BC WB Matrix-S	0.64 0.60 0.79	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.22 -0.39 0.06 0.12	(loc) 8-9 2-11 8 2-11	l/defl >999 >793 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 97 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=91m II; Exp C; E cantilever right expos 3) Provide ad 4) This truss chord live l	2x4 SPF No.2 *Exct 1.8E 2x4 SPF 2100F 1.8 2x3 SPF No.2 *Exct Structural wood she 3-7-13 oc purlins, 6-2 2-0-0 oc purlins, 6-2 Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 2=1230/0 Max Horiz 2=316 (Ll Max Uplift 2=-241 (L Max Grav 2=1259 ((lb) - Maximum Con Tension 1-2=0/6, 2-3=-2630, 5-6=-1334/335, 6-7: 2-11=-469/2423, 9-7: 8-9=-146/659 6-9=-254/1282, 6-8: 5-9=-446/228, 3-11: ed roof live loads have broch CE 7-16; Vult=115mph rph; TCDL=6.0psf; BOC Enclosed; MWFRS (e left and right exposed sed; Lumber DOL=1.6 dequate drainage to pi has been designed fo load nonconcurrent w	ept* 1-4:2x4 SPF 210 E ept* 3-9:2x4 SPF No.: eathing directly applie except end verticals, a p-0 max.): 6-7. v applied or 10-0-0 oc 6-8, 3-9 p-3-8, 8=1155/0-3-8 C 5) C 4), 8=-234 (LC 4) LC 2), 8=1234 (LC 2) npression/Maximum v433, 3-5=-1381/254, =-103/79, 7-8=-164/84 11=-469/2423, =-1154/243, =0/371, 3-9=-1269/32 e been considered for n (3-second gust) CDL=6.0psf; h=25ft; Cn nvelope) exterior zon- ; end vertical left anc 50 plate grip DOL=1.6 revent water ponding, r a 10.0 psf bottom ith any other live load	5) 00F 2 6) d or 7) 3 8) LC 0 0 20 Sat. e; 1 00 Sat. e; 1 00 Sat. e; 1 00 Sat.	* This truss h on the bottom 3-06-00 tall b chord and ar Provide mecl bearing plate joint 8 and 24 This truss is International R802.10.2 ar Graphical pu or the orienta bottom chord DAD CASE(S)	as been designed in chord in all areas by 2-00-00 wide wi yy other members, hanical connectior capable of withst 11 buplift at joint is designed in accord Residential Code and referenced star rlin representation ation of the purlin a standard	for a liv s where II fit betw with BC (by oth anding 2 2. dance w sections dard AN does no along the	e load of 20.0 a rectangle veen the botto DL = 10.0psl ers) of truss ti 34 lb uplift at ith the 2018 iR502.11.1 a ISI/TPI 1. to depict the s e top and/or	Dpsf f. io it size				JUA GAR NUMI E-20001 SS/ON ICE 160 BO SS/ON ICE	MISSO NCIA BER 62101 ALENO ALENO ALENO	

> **MiTek** 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	B10	Half Hip	2	1	Job Reference (optional)	147536613

Run: 8,43 S Jul 29 2021 Print: 8,430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:22

ID:RUbWQ1Oe1OcwWbKmNp?TpmymeQT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

			<u>8-8-10</u> 8-8-10		<u>17-5</u> 8-9	-10 -0				25-11 8-5-1	-8 4	\neg
Scale = 1:58.2												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.64	Vert(LL)	-0.23	8-9	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.60	Vert(CT)	-0.39	2-11	>787	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.69	Horz(CT)	0.06	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.12	2-11	>999	240	Weight: 99 lb	FT = 10%

	64	ъ	-	о.
LU	IVI	D	_	Γ.
		_	_	

TOP CHORD	2x4 SPF No.2 *Except* 1-4:2x4 SPF 2100F 1.8E
BOT CHORD	2x4 SPF 2100F 1.8E
WEBS	2x3 SPF No.2 *Except* 9-3:2x4 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	3-7-9 oc purlins, except end verticals, and
	2-0-0 oc purlins (6-0-0 max.): 6-7.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
WEBS	1 Row at midpt 7-8, 3-9, 6-8
REACTIONS	(lb/size) 2=1230/0-3-8, 8=1155/0-3-8
	Max Horiz 2=321 (LC 4)
	Max Uplift 2=-213 (LC 4), 8=-263 (LC 4)
	Max Grav 2=1258 (LC 2), 8=1241 (LC 2)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/6, 2-3=-2624/349, 3-5=-1381/166,
	5-6=-1352/264, 6-7=-9/0, 7-8=-94/35
BOT CHORD	2-11=-569/2417, 9-11=-569/2417,
	8-9=-98/379
WEBS	3-11=0/371, 3-9=-1262/322, 5-9=-512/249, 6-9297/1470, 6-81082/288
	0-3231/1410, 0-01002/200

NOTES

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding. 3)
- This truss has been designed for a 10.0 psf bottom 4) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 5) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 263 lb uplift at joint 8 and 213 lb uplift at joint 2.

- This truss is designed in accordance with the 2018 7) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size 8) or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	B11	Half Hip	2	1	Job Reference (optional)	147536614

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:22

Page: 1

Wheeler Lumber, Waverly, KS - 66871,

Plate Offsets (X, Y): [7:Edge,0-1-8]

Scale = 1:64.9

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-S	0.75 0.60 1.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.21 -0.40 0.05 0.13	(loc) 2-11 2-11 8 2-11	l/defl >999 >769 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 105 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE BOT CHORE WEBS REACTIONS	 2x4 SPF No.2 *Exce 1.8E 2x4 SPF 2100F 1.8E 2x3 SPF No.2 *Exce No.2 Structural wood shea 3-6-5 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt (lb/size) 2=1228/0 Max Horiz 2=376 (LC Max Uplift 2=-233 (L Max Grav 2=1254 (L) 	pt* 1-4:2x4 SPF 210 pt* 7-8,9-6:2x4 SPF athing directly applie cept end verticals, ar -0 max.): 6-7. applied or 10-0-0 oc 7-8, 6-8, 3-9 -3-8, 8=1154/0-3-8 -7) C 4), 8=-241 (LC 4) C 2), 8=-241 (LC 2) proceios (Maximum	5) 0F 6) d or 1d 8) LC	* This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate joint 8 and 23 This truss is International R802.10.2 ar Graphical pu or the orienta bottom chord	has been designed in chord in all areas by 2-00-00 wide will by other members, hanical connection capable of withsts 33 lb uplift at joint 2 designed in accord Residential Code s and referenced stan rlin representation ation of the purlin a b. Standard	for a liv s where I fit betw with BC (by oth anding 2 2. Jance w sections dard AN does no long the	e load of 20.0 a rectangle veen the botto DL = 10.0psf ers) of truss t 41 lb uplift at ith the 2018 R502.11.1 a ISI/TPI 1. ot depict the s top and/or	Opsf o size			·/// * Ph	JUA GARG	AISSOUR N DIA BER	
TOP CHORE	Tension 1-2=0/6, 2-3=-2607/4 5-6=-1363/349, 6-7= 2-11=-477/2401, 9-1 8-9=-106/123	405, 3-5=-1377/236, -129/93, 7-8=-137/9 1=-477/2401,	5								111.	SS/ONA	LENGIN	Ξ
WEBS NOTES 1) Unbaland this desig 2) Wind: AS Vasd=91 II; Exp C cantileve right exp 3) Provide a 4) This trust chord live	5-9=-578/278, 6-9=- 6-8=-1182/268, 3-11 ced roof live loads have gn. CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er r left and right exposed sosed; Lumber DOL=1.60 adequate drainage to pris s has been designed for a load nonconcurrent wi	369/1657, =0/372, 3-9=-1244/3 been considered for (3-second gust) DL=6.0psf; h=25ft; C ivelope) exterior zon; ; end vertical left anc 0 plate grip DOL=1.6 event water ponding, • a 10.0 psf bottom th any other live load	905 Sat. e; 1 0								THINK STREET	PRO CONTRACTOR	ARCIA ISEO 952 952 ALENGIU	ANNUAL DAY

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	B12	Monopitch	4	1	Job Reference (optional)	147536615

Run: 8,43 S Jul 29 2021 Print: 8,430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:22

Wheeler Lumber, Waverly, KS - 66871,

ID:KJ?ByJkTLjDmOf3x4bPypVymesQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 8-8-11 17-5-10 25-11-8 0-10-8 8-8-11 8-9-0 8-5-14 3x4 II 6 3x6 = 5 12 4 Г 3x6 = 4 9-1-13 9-3-0 3x4 = 3 0-9-0 Ř 10 9 8 11 4x5= 3x6= 2x4 II 4x9= 3x6= 8-8-11 17-5-10 25-11-8 8-8-11 8-9-0 8-5-14

Scale = 1:63.1 Plate Offsets (X, Y): [8:0-2-8.0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.94	Vert(LL)	-0.21	2-10	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.60	Vert(CT)	-0.40	2-10	>774	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.98	Horz(CT)	0.07	7	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.13	2-10	>999	240	Weight: 95 lb	FT = 10%

TOP CHORD 2x4 SPF No.2 *Except* 1-4:2x4 SPF 2100F 1.8E BOT CHORD 2x4 SPF 2100F 1.8E WEBS 2x3 SPF No.2 *Except* 5-7:2x4 SPF No.2 BRACING Structural wood sheathing directly applied or TOP CHORD 2-2-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEDO 20

VVEDO	I ROW at	miapt (5-7, 3-0, 5-7
REACTIONS	(lb/size)	2=1230/0-	3-8, 7=1155/0-3-8
	Max Horiz	2=365 (LC	4)
	Max Uplift	2=-198 (LC	C 4), 7=-277 (LC 8)
	Max Grav	2=1261 (L	C 2), 7=1222 (LC 2)
FORCES	(lb) - Max	imum Com	pression/Maximum
	Tension		
TOP CHORD	1-2=0/6, 2	2-3=-2623/3	03, 3-5=-1408/134,
	5-6=-124/	47, 6-7=-23	88/113
BOT CHORD	2-10=-569	9/2414, 8-10	0=-569/2414,
	7-8=-286/	1261	

WEBS 3-10=0/371, 3-8=-1224/301, 5-8=0/779, 5-7=-1540/348

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 277 lb uplift at joint 7 and 198 lb uplift at joint 2.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	C1	Common Supported Gable	2	1	Job Reference (optional)	147536616

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:22 ID:tYBfsHapYQMCd0h8_W7bzZymeq2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:30.3

Plate Offsets (X, Y): [6:Edge,0-2-8]

LUMBER TOP CHORD 2x4 SPF BOT CHORD 2x4 SPF WEBS 2x4 SPF OTHERS 2x4 SPF BRACING TOP CHORD Structura 5-11-4 oc BOT CHORD Rigid ceil bracing. REACTIONS (lb/size)	No.2 No.2 *Exce No.2 *Exce No.2 Il wood sheet purlins, et ling directly 7=61/5-11	pt* 6-7:2x3 SPF No.2 athing directly applied xcept end verticals. applied or 6-0-0 oc	3) 4) 5) 1 or 6) 7)	Truss design only. For stu- see Standard or consult qua Gable require Truss to be fu- braced againa Gable studs s This truss has	ed for wind loads ir ds exposed to wind I Industry Gable Er alified building des es continuous botto ully sheathed from st lateral movemer spaced at 1-4-0 oc.	n the pla d (norm nd Deta igner as om chor one fac nt (i.e. d	ane of the true al to the face ils as applical s per ANSI/TF d bearing. e or securely	ss), ble, Pl 1.				
Max Horiz Max Uplift Max Grav	9=106/5-1 11=152/5- 11=100 (L 7=-31 (LC (LC 8), 11 7=77 (LC 9=118 (LC 11=152 (L	-4, 8=162/5-11-4, 1-4, 10=103/5-11-4, .11-4 .C 5) 8), 8=-89 (LC 9), 10= =-45 (LC 9) 15), 8=188 (LC 16), C 18), 10=141 (LC 15) .C 1)	8) =-76 ⁹⁾), 1C	chord live loa * This truss h on the bottorr 3-06-00 tall b chord and an Provide mech bearing plate 11, 31 lb uplif uplif at joint { 0) This truss is (International	s been designed fo d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members. nanical connection capable of withsta ft at joint 7, 76 lb up 8. designed in accord Residential Code s	or a 10.0 vith any for a liv where I fit betw (by oth unding 4 plift at jo lance w sections	D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 5 lb uplift at j bint 10 and 85 ith the 2018 R502.11.1 a	ds.)psf om oont 9 lb		The second secon	GAR NUM O, E-2000	MISSOUR AN ICIA
FORCES (lb) - Max Tension TOP CHORD 2-11=-13 3-4=-34/8	kimum Com 6/50, 1-2=0 85, 4-5=-43	pression/Maximum)/46, 2-3=-62/58, /85, 5-6=-59/62,	LC	R802.10.2 an)AD CASE(S)	nd referenced stand Standard	dard AN	ISI/TPI 1.				SS ON	AL ENGLIN
6-7=-58/3 BOT CHORD 10-11=-4 7-8=-46/4 WEBS 4-9=-93/0 NOTES 1) Unbalanced roof live I this design. 2) Wind: ASCE 7-16; Vu Vasd=91mph; TCDL= II; Exp C; Enclosed; N cantilever left and rigt right exposed; Lumbe	38 6/46, 9-10= 46), 3-10=-103 loads have µlt=115mph =6.0psf; BC WWFRS (en ht exposed er DOL=1.64	:-46/46, 8-9=-46/46, 3/81, 5-8=-142/101 been considered for (3-second gust) DL=6.0psf; h=25ft; Ca velope) exterior zone ; end vertical left and 0 plate grip DOL=1.6(at. ;;)							. diffusion	169 PROTOSION Augus	952 VSAS

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	C2	Common	8	1	Job Reference (optional)	147536617

Run: 8,43 S Jul 29 2021 Print: 8,430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:23 ID:WsvBNOjLj6tV3scSh1LPS5ymeps-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.09	Vert(LL)	-0.01	5	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(CT)	-0.01	5-6	>999	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	4	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	5-6	>999	240	Weight: 18 lb	FT = 10%	
LUMBER											_		

TOP CHORD	2x4 SPF No.2
BOT CHORD	2x4 SPF No.2
WEBS	2x4 SPF No.2 *Except* 5-2:2x3 SPF No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	5-3-8 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(lb/size) 4=225/0-3-8, 6=225/0-3-8
	Max Horiz 6=93 (LC 7)
	Max Uplift 4=-24 (LC 8), 6=-19 (LC 8)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-181/48, 2-3=-177/55, 3-4=-170/41,
	1-6=-178/44
BOT CHORD	5-6=-25/104, 4-5=-25/104
WEBS	2-5=-2/73

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 6 and 24 lb uplift at joint 4.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	D1	Monopitch	10	1	Job Reference (optional)	147536618

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:23 ID:mD69gL3zaDsltwbnhrqRSVymeo7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:33.5

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.44 0.24 0.09	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.04 -0.08 0.00 0.00	(loc) 2-6 2-6 6 2-6	l/defl >999 >902 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 29 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood shea 6-0-0 oc purlins, exa Rigid ceiling directly	athing directly applie cept end verticals. applied or 6-0-0 oc	ed or										
REACTIONS	(lb/size) 2=277/0-3 Max Horiz 2=143 (LC Max Uplift 2=-68 (LC (lb) - Maximum Com	3-8, 6=582/0-6-8 C 5) C 4), 6=-133 (LC 5) apression/Maximum								3	THE OF	MISSOU	
TOP CHORD BOT CHORD WEBS	Tension 1-2=0/6, 2-3=-153/12 4-5=-27/14 2-6=-50/29, 5-6=-50/ 3-6=-460/197, 3-5=-1	29, 3-4=-83/31, /29 58/55								int Ph	GAR		

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 4) bearing plate capable of withstanding 68 lb uplift at joint 2 and 133 lb uplift at joint 6.
- This truss is designed in accordance with the 2018 5) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	D2	Monopitch	10	1	Job Reference (optional)	147536619

2

Wheeler Lumber, Waverly, KS - 66871,

Run: 8,43 S Jul 29 2021 Print: 8,430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:23 ID:X17cwuNehu0CNm?bfbnIzmymenk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

4-0-0

S

Scale = 1:23.2													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.22	Vert(LL)	-0.01	2-4	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.14	Vert(CT)	-0.02	2-4	>999	240			
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 12 lb	FT = 10%	
LUMBER													
TOP CHORD	2x4 SPF No.2												
BOT CHORD	2x4 SPF No.2												
WEBS	2x3 SPF No.2												

TOP	CHORD
BOT	CHORD

BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	4-0-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	2=250/0-3-8, 4=159/ Mechanical
	Max Horiz	2=69 (LC 7)

1-11-3

0-9-0

Max Uplift 2=-75 (LC 4), 4=-35 (LC 8) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/6, 2-3=-69/35, 3-4=-122/57

BOT CHORD 2-4=-21/16 NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 35 lb uplift at joint 4 and 75 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	D3	Monopitch Supported Gable	2	1	Job Reference (optional)	147536620

3-7-3

0-9-0

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:23 ID:uoWng22mV53F5NHMxMnREaymems-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-6-0

9-0-0

Scale = 1:25.8

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.09 0.05 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 31 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF N 2x4 SPF N 2x4 SPF N 2x4 SPF N 6-0-0 oc pr Rigd cepin bracing. (Ib/size) Max Horiz Max Uplift	lo.2 lo.2 lo.2 lo.2 wood shea urlins, exc og directly 2=181/9-0 8=204/9-0 10=256/9- 2=142 (LC 2=-35 (LC (LC 8), 9=	athing directly applie sept end verticals. applied or 10-0-0 or -0, 7=67/9-0-0, -0, 9=150/9-0-0, 0-0 2: 5) 4), 7=-14 (LC 5), 8: -38 (LC 4), 10=-67	7 ed or c 9 L =-48 (LC 8)	 * This truss h on the botton 3-06-00 tall b chord and an Provide mect bearing plate 7, 35 Ib uplift at joint 9 and This truss is a International R802.10.2 ar OAD CASE(S) 	as been designed n chord in all area y 2-00-00 wide w y other members nanical connection capable of withst at joint 2, 67 lb u 48 lb uplift at join designed in accor Residential Code nd referenced star Standard	d for a liv is where ill fit betw n (by oth tanding 1 plift at joi it 8. dance wi sections ndard AN	e load of 20.0 a rectangle veen the botto ers) of truss t 4 lb uplift at j nt 10, 38 lb u ith the 2018 R502.11.1 a ISI/TPI 1.	0psf om oint plift nd				JUA GAR	NISSOURIE
FORCES (lb) - Maximum Compression/Maximum Tension Tension TOP CHORD 1-2=0/6, 2-3=-113/41, 3-4=-81/17, 4-5=-70/24, 5-6=-60/27, 6-7=-52/23 BOT CHORD 2-10=-45/34, 9-10=-45/34, 8-9=-45/34, 7-8=-45/34								BER 62101						
 NOTES 1) Wind: ASC Vasd=91rr II; Exp C; I cantilever right exposed or consult 2) Truss desi only. For see Stand or consult 3) All plates a 4) Gable reqt 5) Gable stut 6) This truss chord live 	CE 7-16; Vult hph; TCDL=6 Enclosed; M left and right sed; Lumber igned for win studs expose ard Industry qualified buil are 2x4 MT2i uires continu ds spaced at has been de load noncon	a=115mph 6.0psf; BCI WFRS (en exposed : DOL=1.6(d loads in ad to wind Gable Enc dding desig 0 unless o ous bottor 2-0-0 oc. signed for current wit	(3-second gust) DL=6.0psf; h=25ft; (velope) exterior zor ; end vertical left an) plate grip DOL=1. the plane of the true (normal to the face) d Details as applicat ner as per ANSI/TF therwise indicated. n chord bearing. a 10.0 psf bottom th any other live load	Cat. ne; d 60 ss), ble, PI 1. ds.								. anna	PROFILE SON	ARCIA NSEO ALENGINI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	E1	Common Supported Gable	4	1	Job Reference (optional)	147536621

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:23 ID:lxgkA1Oq2PNtl1YSkOlhZHymejr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:46.3

Plate Offsets (X, Y): [6:0-2-0,Edge]

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-R	0.12 0.10 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 13	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 80 lb	GRIP 197/144 FT = 10%
LUMBER WEBS 3-20=-155/121, 4-19=-156/127, 5-18=-139/0, 7.17=-195/61, 8-16=-146/139, 9-15=-145/90, 10-14=-172/138 NOTES WEBS 2x4 SPF No.2 NOTES OTHERS 2x4 SPF No.2 NOTES BOT CHORD Structural wood sheathing directly applied or 6-0-0 cc purlins, except end verticals. NOTES BOT CHORD Rigid ceiling directly applied or 10-0-0 cc bracing. 13=162/16-0-0, 14=164/16-0-0, 15=184/16-0-0, 15=184/16-0-0, 19=178/16-0-0, 19=183/16-0-0, 21=162/16-0-0, 14=164/16-0-0, 21=162/16-0-0, 12=162/16-0-0, 14=164/16-0-0, 21=162/16-0-0, 21=162/16-0-0, 15=184/16-0-0, 19=178/16-0-0, 19=183/16-0-0, 20=164/16-0-0, 21=162/16-0-0, 11=163/16-0-0, 21=162/16-0-0, 11=163/16-0-0, 21=162/16-0-0, 21=162/16-0-0, 11=163/16-0-0, 21=162/16-0-0,							JUA GARO NUME 50 E-20001	MISSOUP N CIA SER 62101					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 2-21=-145/45, 1-2=0 3-4=-53/97, 4-5=-78, 6-7=-70/129, 7-8=-1. 9-10=-153/153, 10-1 11-13=-198/114 20-21=-162/171, 19- 18-19=-162/171, 15- 14-15=-162/171, 13-	pression/Maximum)/43, 2-3=-57/59, /169, 5-6=-81/176, 20/229, 8-9=-136/163 1=-200/189, 11-12=0 -20=-162/171, -18=-162/171, -14=-162/171, -14=-162/171	1(3,)/43, 1 [,] L	 chord and an provide mecl bearing plate 21, 133 lb up uplift at joint joint 16, 58 lb 14. 1) This truss is a International R802.10.2 ar OAD CASE(S)	y other members hanical connectio capable of withs lift at joint 13, 12: 19, 21 lb uplift at o uplift at joint 15 designed in accoo Residential Code nd referenced sta Standard	n (by oth tanding 3 3 lb uplift joint 17, ⁻ and 146 rdance w e sections ndard AN	ers) of truss t 12 Ib uplift at j at joint 20, 93 117 Ib uplift a Ib uplift at joir ith the 2018 5 R502.11.1 a ISI/TPI 1.	o oint 7 Ib t nt			Contraction of the second seco	PROCESSION	ARCIA VSEO 552

40000 August 20,2021

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	E2	Common	10	1	Job Reference (optional)	147536622

Run: 8,43 S Jul 29 2021 Print: 8,430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:24 ID:pM8GSn_aWSZw7Zns6B7B2cymej4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:50.5	
----------------	--

Plate Offsets (X, Y): [2:0-1-7,0-1-12], [6:0-1-2,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.96	Vert(LL)	-0.12	8-9	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.49	Vert(CT)	-0.24	8-9	>788	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.21	Horz(CT)	0.01	8	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.04	8-9	>999	240	Weight: 64 lb	FT = 10%

LUMBER

TOP CHORD 2x4 SPF No.2

BOT CHORD 2x4 SPF No.2 2x3 SPF No.2 *Except* 10-2:2x6 SPF No.2, WEBS 8-6:2x6 SP DSS BRACING Structural wood sheathing directly applied, TOP CHORD except end verticals.

- BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.
- REACTIONS (lb/size) 8=777/0-3-8, 10=777/0-3-8 Max Horiz 10=-230 (LC 6) Max Uplift 8=-101 (LC 9), 10=-91 (LC 8) FORCES (lb) - Maximum Compression/Maximum
- Tension TOP CHORD 1-2=0/46, 2-3=-637/119, 3-4=-584/135, 4-5=-614/129, 5-6=-808/147, 6-7=0/46, 2-10=-700/121, 6-8=-684/143 BOT CHORD 9-10=-133/435, 8-9=-51/554

WEBS 4-9=-6/306. 5-9=-222/207. 3-9=-50/161 NOTES

- Unbalanced roof live loads have been considered for 1) this design
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 5) bearing plate capable of withstanding 91 lb uplift at joint 10 and 101 lb uplift at joint 8.

6) This truss is designed in accordance with the 2018

International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	E3	Common	8	1	Job Reference (optional)	147536623

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:24 ID:nXe?qst6_BoswR8_AbRTmDymefK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [2:0-1-7,0-1-12], [6:0-3-8,Edge]

-											-			
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.95	Vert(LL)	-0.11	7-8	>999	360	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.48	Vert(CT)	-0.23	7-8	>801	240		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.21	Horz(CT)	0.01	7	n/a	n/a		
BCDL		10.0	Code	IRC2018/TF	PI2014	Matrix-S		Wind(LL)	0.03	8	>999	240	Weight: 62 lb	FT = 10%
LUMBER TOP CHORD	2x4 SPF No	o.2		6) Pi be	rovide mech earing plate	nanical connection capable of withsta	i (by oth anding 7	ers) of truss ' lb uplift at jo	to bint 9					
BOT CHORD	2x4 SPF No	o.2		ar	nd 2 lb uplif	at joint 7.								
WEBS	2x3 SPF No No.2	o.2 *Exce	pt* 9-2,7-6:2x6 SPF	7) Th In	nis truss is o ternational	designed in accord Residential Code	dance wi	ith the 2018 R502.11.1 a	and					
BRACING				R	802.10.2 ar	id referenced stan	dard AN	ISI/TPI 1.						
TOP CHORD	Structural v except end	vood shea verticals.	athing directly applied	i, LOAD	CASE(S)	Standard								
BOT CHORD	Rigid ceilin bracing.	g directly	applied or 10-0-0 oc										NE OF A	MISS
REACTIONS	(lb/size) 7 Max Horiz 9	7=697/ Me 9=-172 (Le	echanical, 9=779/0-3 C 6)	-8								10	ZP	N
	Max Uplift /	/=-2 (LC §	9), 9=-7 (LC 8)									-	: 000	
FORCES	(lb) - Maxin	num Com	pression/Maximum									=*	GAR	
		2 620/	16 2 1 - 596/62									=	:	1 I I I I I I I I I I I I I I I I I I I
TOP CHORD	4-5615/5	-3=-030/4 8 5-681	+0, 3-4=-300/03, 16/58 2-9701/40									- 7		BER C-
	6-7=-599/4	0, 0 0– 0 5	10/00, 2 3= 101/40,									-1	F-20001	62101
BOT CHORD	8-9=-101/3	99, 7-8=- ⁻	18/571									-	A	
WEBS	4-8=0/306,	5-8=-224	/135, 3-8=-31/139									1	10.	
NOTES													1,SONIA	ENIN
1) Unbalance this design	ed roof live loa n.	ads have	been considered for										2000	inn
2) Wind: ASC Vasd=91m	CE 7-16; Vult= nph; TCDL=6.	=115mph .0psf; BCl	(3-second gust) DL=6.0psf; h=25ft; C	at.										AD
II; Exp C; I	Enclosed; MV	VFRS (en	velope); cantilever le	ft									NUAN	CIA
and right e	exposed ; end	vertical I	eft and right exposed	,									CE	NSE
Lumber D	OL=1.60 plate	e grip DO	L=1.60									-		
3) This truss	has been des	signed for	a 10.0 psf bottom									-	1.1	1 2
chord live	load noncond	current wi	th any other live load	S.								-	160	252
4) This trus	s has been u	esigned id	where a rectangle	51								-	103	52
3-06-00 ta	ll by 2-00-00	wide will f	fit between the bottor	n								-	D:	155
chord and	any other me	embers.										-	0.	1a: 45
5) Refer to gi	irder(s) for tru	iss to trus	s connections.										- AN	SA
-													I SION	AL ENIN
													1111	in the second se
													Auquet	20 2021

- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 4)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	E4	Roof Special	4	1	Job Reference (optional)	147536624

7-4-0

5-9-12

0-10-8 1-6-4 0-10-8 1-6-4

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:24 ID:t7Jxf679Q15cctnYVxFrmEymecR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

12-8-13 16-0-0 5-4-13 3-3-3 4x5 = 4

Plate Offsets (X, Y): [6:0-3-8,Edge]

Scale = 1:50.3

-														
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		тс	0.47	Vert(LL)	-0.12	7-8	>999	360	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.60	Vert(CT)	-0.24	7-8	>784	240		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.21	Horz(CT)	0.03	7	n/a	n/a		
BCDL		10.0	Code	IRC2018	/TPI2014	Matrix-S		Wind(LL)	0.03	8-9	>999	240	Weight: 63 lb	FT = 10%
LUMBER				6)	Provide mech	nanical connection	(by oth	ers) of truss t	0					
TOP CHORD	2x4 SPF No.	.2			bearing plate	capable of withsta	inding 9	ib uplift at jo	int					
MERS	2X4 SPF NO.	.Z	ot* 11 2.2v4 SDE No	2 7)	This trues is a	designed in accord	ance w	ith the 2018						
WEBS	7-6:2x6 SPF	No.2	DU 11-2.224 OFF NO	.2, 1)	International	Residential Code s	sections	R502.11.1 a	nd					
BRACING	a						uaru An	ISI/TELT.						
TOP CHORD	Structural we 5-6-11 oc pu	ood shea urlins, ex	athing directly applied (cept end verticals.	dor LO	AD CASE(S)	Standard								ш.
BOT CHORD	Rigid ceiling bracing.	directly	applied or 10-0-0 oc										NE OF A	AISS
REACTIONS	(lb/size) 7= Max Horiz 11	=701/ Me 1=158 (I	echanical, 11=777/0-	3-8								1	(P)	
	Max Uplift 7=	=-5 (LC 9), 11=-9 (LC 8)									20	JUA	N
FORCES	(lb) - Maxim	um Com	pression/Maximum									24	GAR	
	Tension											- ^		1 1
TOP CHORD	1-2=0/43, 2-	3=-566/2	20, 3-4=-635/69,									= 11		in E
	4-5=-621/56 6-7=-603/49	, 5-6=-82	23/63, 2-11=-487/2,									-1	F-20001	BER 44
BOT CHORD	10-11=-66/4 8-9=-49/419	44, 9-10 7-8=-21	=0/89, 3-10=-204/57	,								1		- ANN
WEBS	3-8=-52/112	, 4-8=0/3	316, 5-8=-224/134										IS/ONIA	ENIN
NOTES													- CINP	Lin.
1) Unbalance	ed roof live load	ds have	been considered for											
this desigr	۱.													1117.
2) Wind: ASC	CE 7-16; Vult=	115mph	(3-second gust)										NN C	ARO
Vasd=91m	nph; TCDL=6.0	Opsf; BCI	DL=6.0psf; h=25ft; C	at.									Nº 300	····· A
II; Exp C; I	Enclosed; MW	FRS (en	velope); cantilever le	eft 1.								1	CE	NSEN.
and right e	OL -1 60 plata		L and right exposed	l;										
3) This truss	bas been desi	igned for	a 10.0 nsf bottom										1	1 A E
chord live	load nonconcu	urrent wit	h any other live load	s.									169	952 : =
4) * This trus	s has been de	signed fo	or a live load of 20.0p	osf								-	T	
on the bot	tom chord in a	II areas v	vhere a rectangle									-	D.	Y . ! # =
3-06-00 ta	ll by 2-00-00 w	vide will f	it between the bottor	n									A Max	6 S S .
chord and	any other mer	mbers.											1,50	GUN
 Keter to gi 	iraer(s) for trus	s to trus	s connections.										O/ON	ALENIN
													August	20 2021

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Refer to girder(s) for truss to truss connections.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

August 20,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	E5	Roof Special	2	1	Job Reference (optional)	147536625

Run: 8,43 S Jul 29 2021 Print: 8,430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:24 ID:PTpPaOWsfAGx4youxNLacBymebw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:50.3

Offsets (X_Y) [6:0-1-2 0-1-8]

late Olisets (.	A, T). [0.0-1-2,0-1-0]												
Loading TCLL (roof) TCDL	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15	CSI TC BC	0.58 0.60	DEFL Vert(LL) Vert(CT)	in -0.12 -0.24	(loc) 8-9 8-9	l/defl >999 >773	L/d 360 240	PLATES MT20	GRIP 197/144	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.21	Horz(CT)	0.03	8	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.03	9	>999	240	Weight: 64 lb	FT = 10%	
UMBER	2x4 SPF No.2	-	6) This truss is International	designed in ad Residential C	ccordance wi	th the 2018 R502.11.1 a	and						

TOP CHORD

- BOT CHORD 2x4 SPF No.2 2x3 SPF No.2 *Except* 12-2:2x4 SPF No.2, WEBS 8-6:2x6 SP DSS BRACING TOP CHORD Structural wood sheathing directly applied or 5-2-11 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) 8=781/0-3-8, 12=774/0-3-8 Max Horiz 12=204 (LC 7) Max Uplift 8=-108 (LC 9), 12=-93 (LC 8) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/43, 2-3=-563/85, 3-4=-634/150,
- 4-5=-620/127, 5-6=-815/159, 6-7=0/46, 2-12=-484/57, 6-8=-689/152 BOT CHORD 11-12=-94/476, 10-11=0/88, 3-11=-206/95, 9-10=-104/443, 8-9=-59/560 WEBS 4-9=-25/316, 3-9=-51/158, 5-9=-221/205
- NOTES
- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 93 lb uplift at joint 12 and 108 lb uplift at joint 8.

R802.10.2 and referenced standard ANSI/TPI 1.									
LOAD CASE(S) Standard									

Page: 1

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	G1	Common Supported Gable	2	1	Job Reference (optional)	147536626

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:25 ID:ka1cLzMW3Hgx2zY6G2jmcMymeIA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Т

Scale = 1:40.6

Loading		(psf)	Spacing	2-0-0		CSI	0.07	DEFL	in n/o	(loc)	l/defl	L/d	PLATES	GRIP
		25.0		1.15			0.07	Vert(LL)	n/a	-	n/a	999	W120	197/144
RCU		10.0	Ron Stross Incr	1.15 VES			0.05		0.00	- 14	n/a	999		
BCDL		10.0	Code	IRC2)18/TPI2014	Matrix-R	0.08	11012(01)	0.00	14	n/a	n/a	Weight: 64 lb	FT = 10%
LUMBER					NOTES					-				
TOP CHORD	2x4 SPF	No.2			1) Unbalanced	roof live loads	have been	considered fo	or					
BOT CHORD	2x4 SPF	No.2			this design.									
WEBS	2x4 SPF	No.2			2) Wind: ASCE	7-16; Vult=11	5mph (3-se	cond gust)	. .					
OTHERS	2x4 SPF	No.2			Vasd=91mp	h; TCDL=6.0ps	St; BCDL=6.	Opst; h=25tt;	Cat.					
BRACING	Christeline	مامام مم	othing discatly opplie		cantilever le	ft and right exp	osed : end	vertical left ar	ne, nd					
TOP CHORD	10-0-0 or	n wood sne	atining directly applie	a or	right expose	d; Lumber DOI	L=1.60 plate	grip DOL=1.	60					
BOT CHORD	Rigid cei	lina directly	applied or 6-0-0 oc		Truss design	ned for wind loa	ads in the pl	ane of the tru	SS					
	bracing.	<u> </u>			only. For stu	uds exposed to	wind (norm	al to the face),					2011
REACTIONS	(lb/size)	14=151/1	1-8-0, 15=112/11-8-0	0,	see Standar	a Industry Gab	le End Deta	IIIS as applica	DIE, DI 1				NEOF	MISS
		16=121/1	1-8-0, 17=127/11-8-0	D,	 All plates are 	aiiileu bulluliig ≥ 2x4 MT20 un	less otherw	ise indicated	FT I.			1	NY CON	0,1
		18=139/1	1-8-0, 19=127/11-8-0	0,	5) Gable requir	es continuous	bottom cho	rd bearing.				- 5	X	
		20=121/1	1-8-0, 21=112/11-8-0	Ο,	6) Truss to be t	fully sheathed f	rom one fac	ce or securely	,			-	JU	AN
	Max Horiz	22=131/1	1-8-0 (I.C. 6)		braced agair	nst lateral move	ement (i.e. o	liagonal web)					GAR	
	Max Uplift	14=-66 (L	.C 5), 15=-116 (LC 9).	7) Gable studs	spaced at 1-4-	0 oc.							
		16=-52 (L	.C 9), 17=-50 (LC 9),	,,	 I his truss has a shored live loss 	as been design	ed for a 10.	0 psf bottom	do			= 7		
		19=-51 (L	C 8), 20=-50 (LC 8),		9) * This trues	has been desid	ined for a liv	e load of 20 (ius. Inst					
		21=-121 ((LC 8), 22=-84 (LC 4)	on the botto	m chord in all a	reas where	a rectangle	5951			-	E-2000	102101
	Max Grav	14=1/1 (L 16=123 (L	LC 15), 15=171 (LC 1 C 22) 17-137 (LC 1	16), 16)	3-06-00 tall	by 2-00-00 wid	e will fit bety	veen the bott	om			-	· · · · ·	- diala
		18=180 (L	C 18) 19=138 (I C	15)	chord and a	ny other memb	ers.						1.S/ON	NI ENIN
		20=123 (L	LC 21), 21=181 (LC	15),	10) Provide med	chanical conne	ction (by oth	ers) of truss t	to					Think .
		22=186 (L	LC 16)		22 66 lb up	e capable of wi	thstanding 8	ioint 19 50 II	oint					
FORCES	(lb) - Max	kimum Com	pression/Maximum		uplift at joint	20. 121 lb upli	ft at ioint 21	. 50 lb uplift a	t					IIIII.
	Tension				joint 17, 52 l	b uplift at joint	16 and 116	lb uplift at joir	nt				IN IAN	GARC
TOP CHORD	2-22=-14	0/111, 1-2=	=0/46, 2-3=-10/34,		15.								1 20	A
	3-4=-107 6-731/	/111, 4-5=- 161 7-81	9/99, 5-6=-51/137, 9/155, 8-9=-33/130		This truss is	designed in ac	cordance w	ith the 2018					ICE UCE	NSED
	9-10=-44	/93. 10-11=	=-86/96, 11-12=-11/3	3.	International	Residential Co	ode sections	s R502.11.1 a	ind					1 2
	12-13=0/	46, 12-14=-	-133/107	-,	R802.10.2 a	na referencea	standard Ar	NSI/TPT1.				-	1 10	
BOT CHORD	21-22=-8	7/92, 20-21	I=-87/92, 19-20=-87/	92,	LUAD CASE(S)	Standard						-	16	952 : :
	18-19=-8	7/92, 17-18	3=-87/92, 16-17=-87/	92,									P.	
	15-16=-8	7/92, 14-15	=-87/92										-20:1	1:14:
WEBS	7-18=-15 4-2113	0/0, 6-19=- 2/117 3-22	/110/65, 5-20=-96/73 2159/127	,									- AN	VSAS.
	8-17=-10	9/65. 9-16=	=-96/74. 10-15=-126/	113.									1.0010	ENGIN
	11-14=-1	34/101	,,	-,										AL
													Augus	+ 20 2021
													Augus	st 20,2021

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	G2	Common	4	1	Job Reference (optional)	147536627

Run: 8,43 S Jul 29 2021 Print: 8,430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:25 ID:Oum8s4V2FzBEUpSQzZxa5tymel_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:42.6

Plate Offsets (X, Y): [6:0-3-8,Edge]

				-								-
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.38	Vert(LL)	-0.02	7-8	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.23	Vert(CT)	-0.05	7-8	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.01	6	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	-0.03	7-8	>999	240	Weight: 39 lb	FT = 10%

- LUMBER
- TOP CHORD
- 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 2x4 SPF No.2 *Except* 7-3:2x3 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) 6=583/0-3-8, 8=583/0-3-8 Max Horiz 8=-176 (LC 6) Max Uplift 6=-72 (LC 9), 8=-72 (LC 8) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/46, 2-3=-510/109, 3-4=-510/109, 4-5=0/46, 2-8=-528/124, 4-6=-528/124
- BOT CHORD 7-8=-4/311, 6-7=-4/311 WEBS 3-7=0/241

NOTES

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 72 lb uplift at joint 8 and 72 lb uplift at joint 6.

- 6) This truss is designed in accordance with the 2018
 - International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	G3	Common Girder	2	2	Job Reference (optional)	147536628

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:25 ID:i4GUdbpv?YHXyeeVLPnDaFymebY-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:43.9

Plate Offsets (X, Y): [1:0-3-12,0-2-4], [3:0-3-12,0-1-12]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.43	Vert(LL)	-0.03	5-6	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15		BC	0.24	Vert(CT)	-0.06	5-6	>999	240			
BCLL	0.0*	Rep Stress Incr	NO		WB	0.24	Horz(CT)	0.01	4	n/a	n/a			
BCDL	10.0	Code	IRC2018	3/TPI2014	Matrix-R		Wind(LL)	0.02	5-6	>999	240	Weight: 106 lb	FT = 10%	
3CDL JUMBER TOP CHORD 3OT CHORD WEBS 3RACING TOP CHORD 3OT CHORD 3OT CHORD 3OT CHORD 3OT CHORD 3OT CHORD 3OT CHORD WEBS NOTES 1) 2-ply truss (0.131*x3" Top chord 0c, 2x6 - 2 Bottom ch staggered Web conn 2) All loads a except if n CASE(S) : provided t unless oth 3) Unbalance this desigr 4) Wind: ASC Vasd=91n II, Exp C; 1) Caster and Caster a	10.0 2x4 SPF No.2 2x6 SP 2400F 2.0E 2x6 SPF No.2 *Exce Structural wood sheat 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (lb/size) 4=2243/0- Max Horiz 6=-151 (Li Max Uplift 4=-87 (LC (lb) - Maximum Com 1-2=-1944/140, 2-3= 1-6=-1371/126, 3-4= 5-6=-38/1388, 4-5=-3 2-5=-5/1968 to be connected toget 1) nails as follows: as connected as follows: a considered equally ords connected as follows: a considered equally to its but only loads have a conf live loads have b context only to ply connol of the loads have b context only to ply connol of the loads have b context only to ply connol of the loads have b context only to ply connol of the loads have b context only to ply connol of the loads have b context only to ply connol of the loads have b context only to ply connol of the loads have b context only to ply connol of the loads have b context only the loads have b context only the ply connol of the loads have b context only the loads have b context only the loads have b context only the context only the loads have b context only the context only the loads have b context only the context only the context only the loads have b context only the	Code pt* 5-2:2x4 SPF No.: athing directly applie cept end verticals. applied or 10-0-0 oc 3-8, 6=2158/0-3-8 C 6) 9), 6=-82 (LC 8) pression/Maximum -1944/140, -1371/126 38/1388 ther with 10d s: 2x4 - 1 row at 0-9-0 -0 oc. by Signa C - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO, bections have been noted as (F) or (B), been considered for (3-second gust) DL=6.0psf; h=25ft; C velope) exterior zon; ; end vertical left anc 0 plate grip DOL=1.6	IRC2018 5) 6) 2 d or 7) 8) 9) 10 LC 10 LC 11) 0	3/TPI2014 This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Provide mecl bearing plate 6 and 87 lb u This truss is International R802.10.2 ar Use Simpsor Truss) or equ 2-0-0 from th back face of) Fill all nail ho PAD CASE(S) Dead + Roo Plate Increa Uniform Loa Vert: 1-2: Concentrate Vert: 5=-1 10=-681	Matrix-R s been designed for an chord in all areas by 2-00-00 wide will y other members. hanical connection capable of withsta plift at joint 4. designed in accord Residential Codes and referenced stan h Strong-Tie LUS2 uivalent spaced at 2 e left end to 10-0-0 bottom chord. les where hanger i Standard of Live (balanced): ase=1.15 ads (lb/ft) =-70, 2-3=-70, 4-6= ad Loads (lb) 677 (B), 7=-677 (B (B)	or a 10.0 vith any for a liv s where I fit betw (by oth anding 8 dance wi sections dard AN 6 (4-10d 2-0-0 oc 0 to cont is in cont Lumber =-20), 8=-67	Wind(LL) p psf bottom other live loa e load of 20.1 a rectangle reen the botti ers) of truss to 2 lb uplift at j th the 2018 R502.11.1 a SI/TPI 1. Girder, 4-10 max. startin nect truss(es tact with lum Increase=1. 7 (B), 9=-681	0.02 dds. Dpsf om to oint and dd g at) to ber. 15, I (B),	5-6	>999	240 × P.	Weight: 106 lb	FT = 10%	

cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

MIT MiTek

16023 Swingley Ridge Rd Chesterfield, MO 63017

August 20,2021

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS				
Lot 18 OS	J1	Diagonal Hip Girder	4	1	Job Reference (optional)	147536629			

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:25 ID:f9iz84NTmcUAq40uvBz8d4ymf?x-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x4 =

LOAD CASE(S) Standard

Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-3=-70, 2-4=-20

1)

2x4 II

NAILED

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.93	Vert(LL)	-0.12	2-4	>680	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.53	Vert(CT)	-0.23	2-4	>340	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 19 lb	FT = 10%

Dead + Roof Live (balanced): Lumber Increase=1.15,

LUMBER

4.04 5

TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2
WEBS	2x3 SPF I	No.2
BRACING		
TOP CHORD	Structura	l wood sheathing directly applied or
	6-0-0 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(lb/size)	2=410/0-4-9, 4=289/ Mechanical
	Max Horiz	2=79 (LC 5)
	Max Uplift	2=-119 (LC 4), 4=-59 (LC 8)
FORCES	(lb) Max	

FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/6, 2-3=-77/46, 3-4=-222/99

BOT CHORD 2-4=-26/20

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 59 lb uplift at joint 4 and 119 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 7) "NAILED" indicates 3-10d (0.148"x3") or 2-12d
- (0.148"x3.25") toe-nails per NDS guidlines.
- In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

JUAN GARCIA D. NUMBER E-2000162101 UAN GARCIA JCENSEO 16952 BO N 16952

MI

0

August 20,2021

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	J2	Jack-Open	8	1	Job Reference (optional)	147536630

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:26 ID:XrqmiBbJqxQF8E7b9lq71aymf0x-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

2-10-15

Scale =	1:22.1
---------	--------

Loading TCLL (roof) TCDL BCU	(psf) 25.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.09 0.07 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.01 0.00	(loc) 2-4 2-4 3	l/defl >999 >999	L/d 360 240 n/a	PLATES MT20	GRIP 197/144	
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P	0.00	11012(01)	0.00	Ū	n/a	n/a	Weight: 8 lb	FT = 10%	
JUMBER FOP CHORD 3OT CHORD 3RACING FOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 Structural wood she 2-10-15 oc purlins. Rigid ceiling directly bracing.	athing directly applie applied or 10-0-0 or	ed or										
REACTIONS	(ID/size) 2=207/0-3 4=27/ Me Max Horiz 2=52 (LC Max Uplift 2=-64 (LC Max Grav 2=207 (LC (LC 3)	3-8, 3=81/ Mechanic chanical 4) 2 4), 3=-44 (LC 8) C 1), 3=81 (LC 1), 4=							1111	ALE OF	MISSOUT		

FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/6, 2-3=-46/24

BOT CHORD 2-4=0/0

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 44 lb uplift at joint 3 and 64 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	J3	Jack-Open	16	1	Job Reference (optional)	147536631

-0-10-8

0-10-8

Wheeler Lumber, Waverly, KS - 66871,

Run: 8,43 S Jul 29 2021 Print: 8,430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:26 ID:xQWvKDdC7soq?irAqtNqfDymf0u-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-0-0

5-0-0

5-0-0

10.0 Code IRC2018/TPI2014 Matrix-P

LOAD CASE(S) Standard

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:23.6	I						ļ					
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.40	Vert(LL)	-0.03	2-4	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.24	Vert(CT)	-0.06	2-4	>909	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 13 lb	FT = 10%

LUMBER

TOP CHORD 2x4 SPF No.2 2x4 SPF No.2 BOT CHORD BRACING TOP CHORD Structural wood sheathing directly applied or 5-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (lb/size) 2=295/0-3-8, 3=160/ Mechanical, 4=48/ Mechanical Max Horiz 2=80 (LC 4) Max Uplift 2=-74 (LC 4), 3=-81 (LC 8) 2=295 (LC 1), 3=160 (LC 1), 4=96 Max Grav (LC 3) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/6, 2-3=-62/46 BOT CHORD 2-4=0/0

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 81 lb uplift at joint 3 and 74 lb uplift at joint 2.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

MIS

0

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	J4	Jack-Closed Supported Gable	2	1	Job Reference (optional)	147536632

5-0-0

5-0-0

-0-10-8

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:26 ID:m6x1ku6Hi9r9orvsAH5DHfymf0G-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scal	le	=	1	:26	

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-P	0.10 0.06 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 16 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood sh 5-0-0 oc purlins, e Rigid ceiling direct bracing. (lb/size) 2=180/5 6=267/5 Max Horiz 2=83 (L Max Uplift 2=-50 (I	eathing directly appli xcept end verticals. ly applied or 10-0-0 c -0-0, 5=52/5-0-0, -0-0 C 5) .C 4), 5=-9 (LC 5), 6=	7) 8) ed or LC c	Provide mecl bearing plate 5, 50 lb uplift This truss is o International R802.10.2 ar	nanical connection capable of withst at joint 2 and 66 designed in accor Residential Code di referenced star Standard	n (by othi tanding 9 Ib uplift a rdance wi sections ndard AN	ers) of truss t Ib uplift at joi t joint 6. th the 2018 R502.11.1 a ISI/TPI 1.	o int			111	KALE OF /	MISSOUR	
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=91m II; Exp C; I cantilever	(Ib) - Maximum Cc Tension 1-2=0/6, 2-3=-66/4 2-6=-26/20, 5-6=-2 3-6=-204/104 CE 7-16; Vult=115mp nph; TCDL=6.0psf; E Enclosed; MWFRS (left and right expose	mpression/Maximum 1, 3-4=-47/14, 4-5=-4 6/20 h (3-second gust) CDL=6.0psf; h=25ft; envelope) exterior zo d; end vertical left ar	l1/15 Cat. ne; id								* 24	GAR NUME 50. E-20001	BER 62101	

or consult qualified building designer as per ANSI/TPI 1. 3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

16952 POR ANSAS August 20,202 PROVINSIONAL ET JOIT August 20,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

JUAN GARCIA

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	J5	Jack-Closed Girder	2	1	Job Reference (optional)	147536633

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:26 ID:FTjpUknDRF5jkvtBiY3LKYymf_7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

HUS26

HUS26

5-0-0

Casla		1.07	0
Scale	= 1	1.77	8

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.45	Vert(LL)	-0.06	2-4	>910	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15	BC	0.94	Vert(CT)	-0.12	2-4	>488	240			
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	4	n/a	n/a			
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P		Wind(LL)	0.05	2-4	>999	240	Weight: 17 lb	FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x6 SPF No.2 2x3 SPF No.2 Structural wood she 5-0-0 oc purlins, ex Rigid ceiling directly bracing.	athing directly applie cept end verticals. applied or 5-1-14 o	8) Fill all na 9) In the LC of the tru LOAD CASE 1) Dead + ed or Plate In Uniform c Vert: Concen	il holes where han AD CASE(S) sect ss are noted as fro (S) Standard Roof Live (balanci crease=1.15 Loads (lb/ft) 1-3=-70, 2-4=-20 trated Loads (lb)	ger is in cor ion, loads a ont (F) or ba ed): Lumber	ntact with lum pplied to the ck (B). • Increase=1.	nber. face 15,					11	
REACTIONS	(lb/size) 2=956/0-3 Max Horiz 2=82 (LC Max Uplift 2=-210 (L	8-8, 4=655/ Mechan 5) C 4), 4=-129 (LC 8)	ical Vert:	5=-556 (B), 6=-55	6 (B)						TE OF	MISSO	
FORCES	(lb) - Maximum Com	pression/Maximum								-	~	-	

TOP CHORD 1-2=0/12, 2-3=-70/43, 3-4=-159/73 BOT CHORD 2-4=-25/19

Tension

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 129 lb uplift at joint 4 and 210 lb uplift at joint 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Use Simpson Strong-Tie HUS26 (14-10d Girder, 6-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 1-0-12 from the left end to 3-0-12 to connect truss(es) to back face of bottom chord.

JUAN

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	LAY1	Lay-In Gable	2	1	Job Reference (optional)	147536634

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:26 ID:D4C98rl5ClbYhZs6FTsElXymfO_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Mitek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

Scale = 1:42.5

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-P	0.44 0.02 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 42 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF I 2x4 SPF I 2x4 SPF I 2x4 SPF I Structural 6-0-0 oc p Rigid ceili bracing. (Ib/size) Max Horiz Max Uplift Max Grav	No.2 No.2 No.2 No.2 No.2 No.2 No.2 No.2	athing directly applied cept end verticals. applied or 10-0-0 oc 1-3, 6=63/7-10-3, 0-3, 8=180/7-10-3, 0-3 2 5) C 6), 6=-104 (LC 7), C 8), 8=-126 (LC 8), C 8) 5 5), 6=109 (LC 4), 7:	5) 6) 7) d or 8) 9) LC =213	Gable studs s This truss has chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Provide mect bearing plate joint 1, 104 lb lb uplift at join This truss is of International R802.10.2 an DAD CASE(S)	spaced at 2-0-0 oc s been designed fi d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide wil y other members. nanical connection capable of withsta uplift at joint 6, 12 t 8 and 127 lb upl designed in accord Residential Code of referenced stan Standard	c. or a 10. with any for a liv s where Il fit betv (by oth anding 1 23 lb upi ift at joir dance w sections dard AN	D psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss to 22 lb uplift at lift at joint 9, 1 t7. ith the 2018 s R502.11.1 at ISI/TPI 1.	ds. psf m 26 nd			110 * P	JUA GARG	MISSOURI NIA *
FORCES	(lb) - Max	(LC 15), 8 15)	=202 (LC 15), 9=203	B (LC								H	E-20001	62101
TOP CHORD	Tension 1-2=-338/ 4-5=-188/	227, 2-3=-2 129, 5-6=-1	272/181, 3-4=-225/14 101/118	46,									SS/ONA	
BOT CHORD	1-9=-111/ 6-7=-111/	84, 8-9=-1 84	11/84, 7-8=-111/84,										min	
 WEBS NOTES 1) Wind: ASC Vasd=91m II; Exp C; I cantilever right expos 2) Truss desi only. For see Stand or consult 3) All plates a 4) Gable required 	2-9=-163/ DE 7-16; Vu aph; TCDL= Enclosed; M left and righ sed; Lumbe gned for win studs expos ard Industry qualified bu are 2x4 MT2 uires continu	147, 3-8=- ⁻ lt=115mph 6.0psf; BCI IWFRS (en t exposed : r DOL=1.60 nd loads in ted to wind of Gable End Gable End go unless o uous bottor	(3-second gust) DL=6.0psf; h=25ft; C velope) exterior zone ; end vertical left and D plate grip DOL=1.6 the plane of the trus: (normal to the face), d Details as applicabl gner as per ANSI/TPI therwise indicated. n chord bearing.	53 at. ; 0 s le, 11.								Thunny .	Den Solon August	20,2021

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	LAY2	Lay-In Gable	2	1	Job Reference (optional)	147536635

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:26

Page: 1

Wheeler Lumber, Waverly, KS - 66871,

ID:NgOuzAbhVr82Lf5YxQT7IBymfBG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 0-3-4 H 0-3-4 11-3-6 20-10-3 11-0-2 9-6-13 13⁄1 12 10 9 3x4 8 21-11-15 рċ Ю ¥ 5 16 8-5-4 8-5-4 ⊔12.65 12 12.65¹² 18 ***** 21 20 19 $\frac{\times}{23}$ $\frac{\infty}{22}$ 25 3x4 🎣 3x4 🚅 12-10-2 20-10-3 H 12-10-2 8-0-1

Casla			044
Scale	=	1 ° 1	044

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL		10.0	Lumber DOL	1.15		BC	0.03	Vert(TL)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.18	Horiz(TL)	0.00	16	n/a	n/a		
BCDL		10.0	Code	IRC2)18/TPI2014	Matrix-S							Weight: 183 lb	FT = 10%
LUMBER					TOP CHORD	1-2=-1236/471, 2	-3=-1121/	427,		9) Bev	eled pla	te or s	him required to p	rovide full bearing
TOP CHORD	2x4 SPF N	lo.2			:	3-4=-994/380, 4-5	5=-870/33	4, 5-6=-745/2	288,	surf	ace with	n truss	chord at joint(s)	14, 18, 17, 16, 15.
BOT CHORD	2x4 SPF N	10.2				6-8=-620/241, 8-9	9=-495/19	5, 9-10=-370	/149,	10) This	truss is	s desig	ned in accordance	e with the 2018
WEBS	2x4 SPF N	10.2				10-11=-246/108,	11-12=-1	15/67,		Ínte	rnationa	I Resid	lential Code sect	ions R502.11.1 and
OTHERS	2x4 SPF N	lo.2				12-13=-32/13, 13	-14=-18/1	9		R80	2.10.2 a	and ref	erenced standard	J ANSI/TPI 1.
BRACING					BOT CHORD	1-25=0/0, 24-25=	0/0, 23-24	4=0/0, 22-23=	=0/0,	LOAD	ASE(S) Star	ndard	
TOP CHORD	Structural	wood shee	athing directly applied	d or	:	21-22=0/0, 20-21	=0/0, 19-2	20=0/0,				,		
	5-4-5 oc n	urlins exc	cent end verticals	4 01		18-19=-6/23, 17-18=-28/30, 16-17=-29/29,								
BOT CHORD	Rigid ceili	na directly	applied or 10-0-0 oc			15-16=-30/28, 14	-15=-21/3	1						
bol offorte	bracing	Except:			WEBS	2-25=-157/139, 3	-24=-164/	/150,						1117.
	6-0-0 oc b	racing: 15-	-16.14-15.			4-23=-163/148, 5	-22=-163/	148,					N'OF /	MISSI
WEBS	1 Row at r	midnt	13-14 6-21 8-20 9-	18		6-21=-163/148, 8	-20=-163/	148,					NXE	
		mapt	10-17, 11-16, 12-15	,	1	9-18=-163/148, 1	0-17=-162	2/147,				1	18	
REACTIONS	(lb/size)	1=53/20-1	0-3, 14=17/20-10-3,			11-10=-172/150,	12-15=-1	19/107				20	JUA	N :2-
		15=136/20	0-10-3, 16=189/20-10	0-3,		7 40. 1/1.1. 445-	- h (0					-	GAR	
		17=180/20	0-10-3, 18=175/20-10	0-3,	Vacd_01mp	- 10; Vuit=115m	ipn (3-sed	ona gusi) Doct: b=25ft: (Cat			= *	:	:*=
		19=10/20-	10-3, 20=174/20-10-	-3,		n, TCDL=0.0pSi, i		$p_{si} = 251, 0$	Jal.			=	:	
		21=181/20	0-10-3, 22=180/20-10	0-3,	cantilever let	ft and right expos	ed · Lumb	r DOI = 1.60	10,)			- 7		BEB : C -
		23=180/20	0-10-3, 24=180/20-10	0-3,	plate grin D(,			-1	E 00001	CO101 :41-
		25=180/20	0-10-3		2) Truss design	ed for wind loads	in the nl	ane of the true	22				C. E-20001	02101
	Max Horiz	1=877 (LC	28)		only. For stu	ids exposed to w	ind (norm	al to the face).			1	A	
	Max Uplift	1=-300 (L0	C 6), 14=-22 (LC 8),		see Standar	d Industry Gable	End Detai	ils as applical	ble.				1.08/01	ENUN
		15=-82 (L	C 8), 16=-132 (LC 8)	,	or consult qu	alified building de	esigner as	s per ANSI/TF	PI 1.				ONF	1L LIN
		1/=-123 (I	LC 8), 18=-128 (LC 8	3),)	 All plates are 	e 2x4 MT20 unles	s otherwi	se indicated.						III.
		20=-128 (1	LC 8), 21=-124 (LC 8	5),))	 Gable requir 	es continuous bo	ttom chor	d bearing.						
		22=-124 (1	LC 8), 23=-124 (LC 8	5), 2)	5) Gable studs	spaced at 2-0-0 d	DC.	0						
	Max Croy	24=-125 (I	100, 20 = 124 (100)))	This truss has	as been designed	for a 10.0) psf bottom					MAN	ARC
	wax Grav	1=007 (LC	(15), 14=21 (LC 15),	5)	chord live loa	ad nonconcurrent	with any	other live loa	ds.				N 30	NOWA
		17_203 (L	C 15), 10=213 (LC 1	5)	7) * This truss I	nas been designe	d for a liv	e load of 20.0)psf				ICE .	NOED .
		10-10 (1 (3) 20–196 (LC 15)	5),	on the bottor	m chord in all are	as where	a rectangle				-	(/ Č	
		21=204 (1	C(15) = 22 = 203 (I C 1)	, 5)	3-06-00 tall I	oy 2-00-00 wide v	vill fit betw	veen the botto	om			-	1.1	
		23=203 (I	C(15), 22=200 (20 1 C(15), 24=203 (1 C 1	5)	chord and a	ny other members	6.					_	: 169	352 : =
		25=203 (L	.C 15)	-,,	Provide med	hanical connection	on (by oth	ers) of truss t	0			=		
FORCES	(lb) - Mavi		nression/Maximum		bearing plate	e capable of withs	standing 2	2 lb uplift at j	oint			-	D.	
TORCES	(ib) - Maxi Tension		pression/maximum		14, 300 lb up	plift at joint 1, 124	Ib uplift a	t joint 25, 12	5 lb				0.	4.145
					uplift at joint	24, 124 ID uplift a	it joint 23,	124 ID uplift	at				A MAN	SA
					JOINT 22, 124	ib uplift at joint 2	I, 128 ID U	uplint at joint 2	.0,				1.05/01	ALEN IN
					uplift at ioint	16 and 92 lb unlie	upilitatjo ftotioint4	JIIILI7, 132 10 15	J				III ON	AL
					upint at joint	io anu oz io upin	it at joint	10.						1005

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	V1	Valley	2	1	Job Reference (optional)	147536636

7-1-8

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:27 ID:Lv5Kh_rQRuc3iiNgWkjbWVymf1v-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

					7-1-8		
Scale = 1:23.5							
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.12	Vert(LL)	n
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(TL)	r

Loading TCLL (roof) TCDL BCLL		(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.12 0.06 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
BCDL LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF N 2x4 SPF N 2x4 SPF N 2x4 SPF N Structural 6-0-0 oc p Rigid ceilir bracing. (Ib/size) Max Horiz	10.0 lo.2 lo.2 lo.2 lo.2 lo.2 lo.2 lo.2 lo.2	Code athing directly applie sept end verticals. applied or 10-0 oc -8, 5=40/7-1-8, -8, 7=290/7-1-8 5)	IRC2018/TPI201 7) Provide bearing 1, 9 lb uplift at 8) This tru- Interna d or LOAD CAS	4 Matrix-P e mechanical connec plate capable of wit uplift at joint 5, 69 lb joint 6. ss is designed in ac tional Residential Cc 0.2 and referenced s E(S) Standard	ction (by othe thstanding 6 uplift at joint cordance wi ode sections standard AN	ers) of truss t i lb uplift at joi t 7 and 25 lb ith the 2018 i R502.11.1 a ISI/TPI 1.	o int nd				Weight: 20 lb	FT = 10%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=91n II; Exp C; 1 cantilever right expos	(lb) - Maxii Tension 1-2=-69/41 4-5=-31/14 1-7=-29/22 2-7=-225/1 CE 7-16; Vull aph; TCDL=6 Enclosed; M left and right sed; Lumber	1=-6 (LC 4 8), 7=-69 (mum Comp 1, 2-3=-55/ 4 2, 6-7=-29/ 108, 3-6=-8 t=115mph 6.0psf; BCI WFRS (en WFRS (en t exposed ; DOL=1.60	 (1) 5=9 (LC 5), 6=-2 (LC 8) pression/Maximum 13, 3-4=-37/18, 22, 5-6=-29/22 34/40 (3-second gust) (2) 5-6=-29/22 (3-second gust) (2) 5-6=-29/22 (3-second gust) (3-second gust) (2) 6-0:95; h=25ft; C (3-second gust) (3-second gus	5 (LC Sat. e; J 30							* Photo	GAR NUME 50001	ALENGAL
 Truss desi only. For see Stand or consult Gable requination Gable studies This truss chord live * This truss on the bott 3-06-00 ta chord and 	igned for win studs expose ard Industry qualified bui ds spaced at has been de load noncon s has been of tom chord in ill by 2-00-00 any other m	Id loads in ed to wind Gable Enc Iding desig ious bottom 2-0-0 oc. esigned for current wit designed for all areas v wide will f embers.	it between the bottom	ie, le, l 1. Is. psf							on the second se	16 PROFINE SO/ON Augus	952 ALENGINI

MiTek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	V2	Valley	2	1	Job Reference (optional)	147536637

Run: 8,43 S Jul 29 2021 Print: 8,430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:27 ID:Lv5Kh_rQRuc3iiNgWkjbWVymf1v-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 II

Page: 1

2x4 II

3-1-6

Scale = 1:17.4												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.08	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 7 lb	FT = 10%

International Residential Code sections R502.11.1 and

8) This truss is designed in accordance with the 2018

R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

- LUMBER
- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 2x3 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 3-2-2 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.
- REACTIONS (lb/size) 1=96/3-1-6, 3=96/3-1-6 Max Horiz 1=32 (LC 7) Max Uplift 1=-16 (LC 4), 3=-20 (LC 8) FORCES (lb) - Maximum Compression/Maximum Tension 1-2=-29/19, 2-3=-75/33 TOP CHORD

1-3=-10/8

BOT CHORD NOTES

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and
- right exposed; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 4-0-0 oc. 4)
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 7) bearing plate capable of withstanding 16 lb uplift at joint 1 and 20 lb uplift at joint 3.

August 20,2021

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	V3	Valley	2	1	Job Reference (optional)	147536638

Run: 8,43 S Jul 29 2021 Print: 8,430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:27 ID:Lv5Kh_rQRuc3iiNgWkjbWVymf1v-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-2-10

Scale - 1:30.6

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.26	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.12	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.05	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI20	14 Matrix-P							Weight: 23 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood sh 6-0-0 oc purlins. Rigid ceiling directl bracing.	eathing directly appli y applied or 10-0-0 o	8) Provi bearin 1 and 9) This t Intern ed or LOAD CA c	de mechanical connecting plate capable of wit 51 lb uplift at joint 3. russ is designed in ac ational Residential Cc .10.2 and referenced s (SE(S) Standard	tion (by oth hstanding 4 cordance w de sections standard AN	ers) of truss t l2 lb uplift at j ith the 2018 s R502.11.1 a ISI/TPI 1.	oint					
REACTIONS	(lb/size) 1=202/8 4=267/8 Max Horiz 1=-81 (L Max Uplift 1=-42 (L	-2-10, 3=202/8-2-10, -2-10 C 4) C 8), 3=-51 (LC 9)									THE OF	MISSOUT

Tension TOP CHORD 1-2=-141/70, 2-3=-135/55 BOT CHORD 1-4=-18/67, 3-4=-18/67

2-4=-173/42

WEBS

- NOTES
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

GARCIA

Job	Truss	Truss Type	Qty	Ply	Lot 18 OS	
Lot 18 OS	V4	Valley	2	1	Job Reference (optional)	147536639

1-11-5

Run: 8,43 S Jul 29 2021 Print: 8,430 S Jul 29 2021 MiTek Industries, Inc. Thu Aug 19 14:44:27 ID:Lv5Kh_rQRuc3iiNgWkjbWVymf1v-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 🖌

2x4 🛛

4-7-6

2x4 💊

Scale - 1.25 5

00010 = 1.20.0												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI201	4 Matrix-P							Weight: 12 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 4-8-0 oc purlins. Rigid ceiling directly bracing.	athing directly applie applied or 10-0-0 or	8) Provide bearing 1 and 2 9) This tru- Interna R802.1 LOAD CAS	e mechanical connec plate capable of wit 7 lb uplift at joint 3. ss is designed in actional Residential Co 0.2 and referenced s E(S) Standard	tion (by oth hstanding 2 cordance w de sections standard AN	ers) of truss 2 lb uplift at ith the 2018 R502.11.1 a ISI/TPI 1.	to joint and					
REACTIONS	(lb/size) 1=105/4-7 4=138/4-7	7-6, 3=105/4-7-6, 7-6									NE OF	MISS
	Max Horiz 1=-42 (LC	2 4)								1	17.	0,1
	Max Uplift 1=-22 (LC	C 8), 3=-27 (LC 9)								5	X	
FORCES	(lb) - Maximum Com Tension	pression/Maximum								E	JU/ GAR	AN CIA

Tension TOP CHORD 1-2=-73/36, 2-3=-70/28

BOT CHORD 1-4=-9/35, 3-4=-9/35 WEBS 2-4=-90/22

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

