RELEASE FOR CONSTRUCTION AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Date

3/31/2021

3/31/2021

3/31/2021

Lot 34 OS
Site Information:

liTek

RE: Lot 34 OS

Customer: Project Name: Lot 34 OS Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

No.

21

22

23

Seal#

145421565

145421566

145421567

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 23 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	145421545	A1	3/31/2021
2	145421546	A2	3/31/2021
3	145421547	A3	3/31/2021
4	145421548	A4	3/31/2021
5	145421549	A5	3/31/2021
6	145421550	A6	3/31/2021
7	145421551	A7	3/31/2021
8	145421552	B1	3/31/2021
9	145421553	B2	3/31/2021
10	145421554	B3	3/31/2021
11	145421555	B4	3/31/2021
12	145421556	B5	3/31/2021
13	145421557	B6	3/31/2021
14	145421558	B7	3/31/2021
15	145421559	C1	3/31/2021
16	145421560	J1	3/31/2021
17	145421561	J2	3/31/2021
18	145421562	J3	3/31/2021
19	145421563	J4	3/31/2021
20	145421564	J5	3/31/2021

The truss drawing(s) referenced above have been prepared by	
MiTek USA. Inc. under my direct supervision	

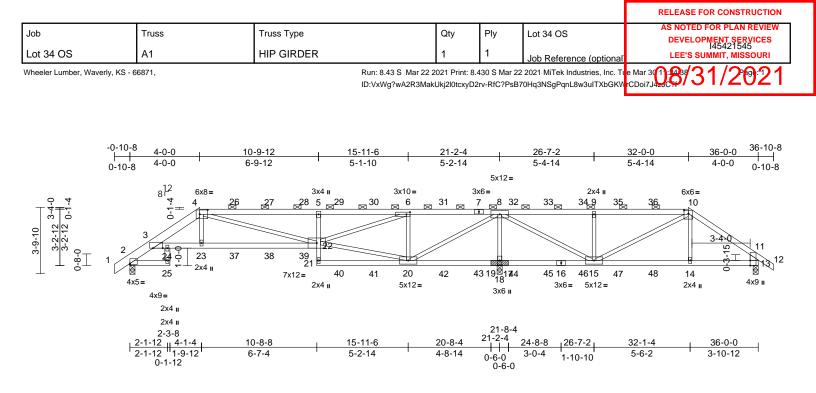
based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2021. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Truss Name


LAY1

LAY2

P1

Sevier, Scott

Scale = 1:66

Plate Offsets (X, Y): [2:Edge,0-0-1	1], [3:0-6-10,Edge], [4:	0-5-8,0-3-	-0], [6:0-2-8,0	-1-8], [10:0-3-0,0-2	2-3], [13:0)-3-8,Edge]						
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.55 0.89 0.89	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.18 -0.37 0.14 0.17	22-2 1	3 >999 3 >690 8 n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 138 lb	GRIP 197/144 FT = 10%
UMBER FOP CHORD BOT CHORD WEBS BRACING FOP CHORD	4-7:2x4 SPF 2100F 2x4 SPF No.2 *Exc 2x3 SPF No.2 *Exc 13-11:2x6 SPF No.3 Structural wood she 4-10-5 oc purlins, e 2-0-0 oc purlins (4-4	ept* 5-21:2x3 SPF No. ept* 25-24:2x4 SPF No 2 eathing directly applied except end verticals, a	2 5.2, I or nd	DT CHORD	2-25=0/0, 3-24=-2 23-37=-483/2042 38-39=-483/2042 21-22=0/125, 5-2 40-41=-10/77, 20 20-42=-1888/397 19-43=-1888/397 17-18=-1888/397 16-46=-1888/397 15-47=-59/518, 4 14-48=-59/518, 1	, 37-38=- , 22-39=- 2=-552/2 -41=-10/7 , 42-43=- , 18-19=- , 17-44=- , 16-45=- , 15-46=- 7-48=-59 3-14=-59	483/2042, 483/2042, 17, 21-40=-1 77, 1888/397, 1888/397, 1888/397, 1888/397, 1888/397, 1888/397, 1888/397, 1888/397, 1518, /529	0/77,) jo 1 8) T Ir 8) G 9) G	earing pla bint 2, 566 3. This truss is nternationa 8802.10.2 i Graphical p	te capa Ib uplit s desig al Resid and ref ourlin re tation	able of withstandi ft at joint 18 and ned in accordand dential Code sec ferenced standar	tions R502.11.1 and d ANSI/TPI 1. es not depict the size
REACTIONS	(size) 2=0-3-8, bearing b Max Horiz 2=98 (LC Max Uplift 2=-232 (I 18=-566	_C 8), 13=-147 (LC 9), (LC 5) LC 1), 13=653 (LC 22)), NC	EBS DTES	24-25=-3/73, 4-25 20-22=-47/318, 6 6-20=-1171/366, 1 8-18=-2788/648, 1 9-15=-535/230, 1 10-14=0/333	-22=-484 8-20=-51 8-15=-38 0-15=-62	/2037, 9/2596, 8/2101, 4/114,						
FORCES	Tension	npression/Maximum /174, 3-4=-2284/494,	1)	to front face 3" o.c. 8 To	 bearing block 1 with 2 rows of 10 tal fasteners. Bear)d (0.131	"x3") nails sp	aced					
	4-26=-2361/512, 26 27-28=-2360/512, 5 5-29=-2284/499, 29 6-30=-2284/499, 6- 7-31=-388/127, 7-8 32-33=-65/117, 33- 9-35=-65/116, 35-30	5-27=-2360/512, 5-28=-2360/512, 9-30=-2284/499,	'117, '118,	this design. Wind: ASCI Vasd=91mp II; Exp C; E cantilever le right expose Provide ade This truss h chord live le	d roof live loads ha E 7-16; Vult=115m bh; TCDL=6.0psf; I nclosed; MWFRS eft and right expose ed; Lumber DOL= equate drainage to las been designed bad nonconcurrent has been designed	ph (3-sec BCDL=6. (envelope ed ; end v 1.60 plate prevent for a 10. with any	cond gust) 0psf; h=25ft; e) exterior zo vertical left ar grip DOL=1 water pondin 0 psf bottom other live loa	Cat. ne; nd .60 g. ads.		(8	STATE OF I SCOT SEV.	BER

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

March 31,2021

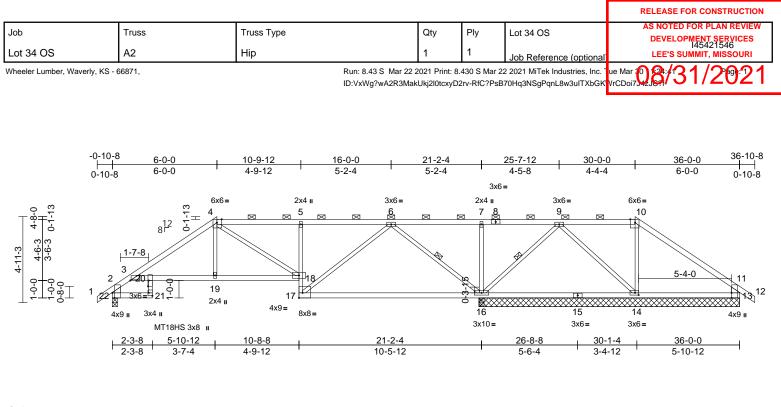
EZ

#SSIONAL

Continued on page 2 WARNING - Verify

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

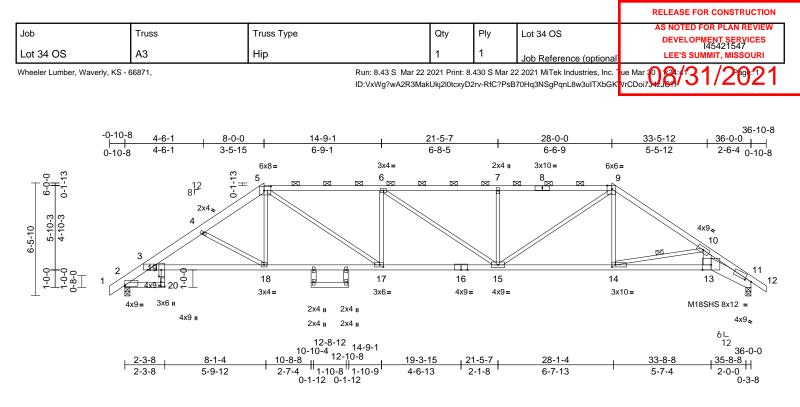
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 34 OS	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 145421545
Lot 34 OS	A1	HIP GIRDER	1	1	Job Reference (optional	
Wheeler Lumber, Waverly	y, KS - 66871,				2 2021 MiTek Industries, Inc. Tu 70Hq3NSgPqnL8w3uITXbGKV	


- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 84 lb down and 36 lb up at 4-0-0, 92 lb down and 34 lb up at 6-0-0, 92 lb down and 34 lb up at 8-0-0, 92 lb down and 34 lb up at 10-0-0, 98 lb down and 46 lb up at 12-0-0, 98 lb down and 46 lb up at 14-0-0, 98 lb down and 46 lb up at 16-0-0, 98 lb down and 46 lb up at 18-0-0, 98 lb down and 46 lb up at 20-0-0, 98 lb down and 46 lb up at 22-0-0, 98 lb down and 46 lb up at 24-0-0, 98 lb down and 46 lb up at 26-0-0, 98 lb down and 46 lb up at 28-0-0, and 98 lb down and 46 lb up at 30-0-0, and 90 Ib down and 48 lb up at 32-0-0 on top chord, and 244 lb down and 93 lb up at 4-0-0, 45 lb down and 18 lb up at 6-0-0, 45 lb down and 18 lb up at 8-0-0, 45 lb down and 18 lb up at 10-0-0, 32 lb down at 12-0-0, 32 lb down at 14-0-0, 32 lb down at 16-0-0, 32 lb down at 18-0-0, 32 Ib down at 20-0-0, 32 Ib down at 22-0-0, 32 Ib down at 24-0-0, 32 lb down at 26-0-0, 32 lb down at 28-0-0, and 32 lb down at 30-0-0, and 226 lb down and 63 lb up at 31-11-3 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15
 - Uniform Loads (lb/ft) Vert: 1-4=-70, 4-10=-70, 10-11=-70, 11-12=-70,
 - 2-25=-20, 22-24=-20, 13-21=-20
 - Concentrated Loads (lb)
 - Vert: 4=-31 (B), 7=-46 (B), 23=-236 (B), 20=-25 (B), 6=-46 (B), 10=-46 (B), 14=-221 (B), 26=-31 (B), 27=-31 (B), 28=-31 (B), 29=-46 (B), 30=-46 (B), 31=-46 (B), 32=-46 (B), 33=-46 (B), 34=-46 (B), 55=-46 (C), 26=-46 (C), 33=-46 (B), 34=-46 (B), 34=-46 (B), 32=-46 (B), 33=-46 (B), 34=-46 (B), 55=-46 (C), 26=-46 (C), 27=-46 (C), 28=-46 (C), 33=-46 (C), 32=-46 (C), 33=-46 (C), 34=-46 (C), 34=-46 (C), 34=-46 (C), 34=-46 (C), 34=-46 (C), 34=-46 (C), 35=-46 (C), 335=-46 (B), 36=-46 (B), 37=-40 (B), 38=-40 (B), 39=-40 (B), 40=-25 (B), 41=-25 (B), 42=-25 (B), 43=-25 (B), 44=-25 (B), 45=-25 (B), 46=-25 (B), 47=-25 (B), 48=-25 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



Scale = 1:66.1													
Plate Offsets (2	X, Y): [3:0-6-9,Edge],	[4:0-3-5,Edge], [10:0-3-4	4,Edge]	, [13:0-3-8,Ec	dge], [14:0-2-8,0-1	-8], [17:8	Edge,0-3-8],	[20:0-4-0	,0-0-8],	[21:Edge	e,0-2-8], [22:0-3-8,Edge]	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Plate Grip DOL1.7Lumber DOL1.7Rep Stress IncrYE	15 ES	/TPI2014	CSI TC BC WB Matrix-S	0.68 0.78 0.70	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.28 -0.58 0.20 0.10	(loc) 16-17 16-17 16 19-20	l/defl >886 >437 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT18HS Weight: 128 lb	GRIP 197/144 197/144 FT = 10%
	No.2 2x3 SPF No.2 *Exce No.2 Structural wood she 5-3-0 oc purlins, ex 2-0-0 oc purlins (6-C Rigid ceiling directly bracing. 1 Row at midpt (size) 13=14-11 16=14-11 Max Horiz 22=137 (I Max Uplift 13=-239 (16=-466 (Max Grav 13=474 (I	ept* 21-20,5-17:2x3 SPF ept* 22-2,13-11:2x6 SPF athing directly applied or cept end verticals, and I-0 max.): 4-10. applied or 5-0-4 oc 6-16, 9-16 -8, 14=14-11-8, -8, 22=0-3-8	1) 2) 3) 4) 5) 6) 7)	Unbalanced this design. Wind: ASCE Vasd=91mpf II; Exp C; En cantilever lef right exposed Provide adec All plates are This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Provide mec bearing plate 22, 466 lb up 239 lb uplift a This truss is	roof live loads hav 7-16; Vult=115mp h; TCDL=6.0psf; E closed; MWFRS (it and right expose d; Lumber DOL=1 quate drainage to e MT20 plates unle as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w by other members. hanical connection e capable of withst plift at joint 16, 291	oh (3-sec SCDL=6. envelope d ; end V .60 plate prevent t ess other for a 10.0 with any d for a livi s where ill fit betv n (by oth tanding & I lb uplift dance w	considered for cond gust) Dpsf; h=25ft; e) exterior zcovertical left an grip DOL=1 water pondin wise indicate D psf bottom other live loo e load of 20. a rectangle veen the bott ers) of truss 88 lb uplift at at joint 14 an ith the 2018	Cat. ine; ind .60 g. ed. ads. 0psf to joint nd					
FORCES	7-8=-423/1663, 8-9=	75, 3-4=-854/72, 342/111, 6-7=-423/1663, 423/1663, 11=-385/299, 11-12=0/43,	LO	Graphical pu		n does no	ot depict the	size			A	174	ALSSOLUS
BOT CHORD	21-22=-63/217, 20-2 19-20=-85/662, 18-1 17-18=-526/151, 5-1 16-17=-430/100, 15 14-15=-684/190, 13 4-19=0/314, 4-18=-3	21=-13/81, 3-20=-27/459, 19=-86/654, 18=-359/161, -16=-684/190, -14=-133/202 357/71, 6-17=-154/987,									B	SEVI	Server
NOTES	6-16=-1590/398, 7-1 9-16=-1456/302, 9-1 10-14=-249/98	,									A.	FRSSIONA	120

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale =	1:66.2
---------	--------

3cale = 1.00.2													
Plate Offsets (X, Y): [2:Edge,0-0-11	1], [3:0-5-14,Edge], [5:0	0-4-12,0-	·3-0], [9:0-3-5,E	Edge], [11:0-4-7,0	-0-10], [1	4:0-2-8,0-1-8], [17:0-:	2-8,0-1-8	3], [19:0-	4-8,0-′	I-8], [20:Edge,0-2	2-8]
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.81 0.61 0.46	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	0.38	(loc) 15-17 15-17 11 15-17	l/defl >999 >823 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18SHS Weight: 155 lb	GRIP 197/144 197/144 FT = 10%
LUMBER			1)	Unbalanced	roof live loads ha	ve been	considered fo	or					
TOP CHORD	2x4 SPF 2100F 1.8	E *Except* 1-5:2x6 SP	, í	this design.									
BOT CHORD	3-16,16-13:2x4 SPF	x4 SPF No.2 ept* 20-19:2x3 SPF No 5 2100F 1.8E, 13-11:2)	o.2, [′]	Vasd=91mpl II; Exp C; En	7-16; Vult=115m h; TCDL=6.0psf; closed; MWFRS ft and right expos	BCDL=6. (envelop	0psf; h=25ft; e) exterior zo	ne;					
WEBS	SP DSS 2x3 SPF No.2 *Exce	ept* 21-22,23-24:2x4 \$	SPF		d; Lumber DOL=								
	No.2, 13-10:2x6 SP		3)		quate drainage to								
BRACING		eathing directly applied	4) 5)		e MT20 plates un as been designed			ed.					
TOP CHORD	2-2-0 oc purlins, ex		101 7	chord live loa	ad nonconcurrent	with any	other live loa						
	2-0-0 oc purlins (3-1	,	6)		nas been designe m chord in all are			Opsf					
BOT CHORD	Bigid ceiling directly bracing. Except:	/ applied or 10-0-0 oc		3-06-00 tall b	oy 2-00-00 wide v	vill fit betv	0	om					
	10-0-0 oc bracing: 1		7)		ny other members pint(s) 11 conside		l to grain valu	A					
WEBS	1 Row at midpt	10-14	')		TPI 1 angle to gra								
REACTIONS	(size) 2=0-3-8, Max Horiz 2=155 (L0				ould verify capacit								
		_C 5), 11=-133 (LC 4)	8)		hanical connection capable of withs								
		LC 1), 11=1678 (LC 1))		33 lb uplift at joint			•					
FORCES	(lb) - Maximum Con Tension	npression/Maximum	9)		designed in acco Residential Code			ام من					
TOP CHORD		4/119, 3-4=-3147/374,			nd referenced sta			ina					an .
	4-5=-2724/346, 5-6=	,	10		Irlin representatio			size				THE OF I	Alson
	6-7=-3095/402, 7-8= 8-9=-3095/403, 9-10	,		or the orienta bottom chore	ation of the purlin	along the	e top and/or					TE	-050
	10-11=-5266/418, 1		1.0	DAD CASE(S)							B	SCOT	TM X
BOT CHORD	2-20=-49/199, 19-20	,	_	5/12 0/102(0)	Olandara						a	SEVI	
	3-19=-379/2604, 18 17-18=-324/2211, 1	,									14		1*8
	15-16=-449/3104, 1	4-15=-164/2180,									8		8
WEBS	13-14=-280/3626, 1 5-1822/538 9-14-	1-13=-326/4452 =0/426, 10-14=-1463/2	071								23	Cotton	ener
WEBS	10-13=-81/1906, 5-1	,	_/ 1,								N.	PE-2001	018807
	9-15=-288/1209, 6-	,	00								Y	223	IS B
NOTES	7-15=-522/213, 6-18	5=-83/63, 4-18=-689/2	00									SSIONA	LEN
NOTES												CONA	DEC.

March 31,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

														RELEA	SE FOR CONSTRUCT	ΓΙΟΝ
Job		Truss		Truss T	уре		Qty	/	Ply	Lot	34 OS				TED FOR PLAN REVI	
Lot 34 OS		A4		Hip			1		1	Job	Refere	nce (op	tional		ELOPMENT SERVICE 145421548 'S SUMMIT, MISSOUF	
Wheeler Lumber,	Waverly, KS - 66	6871,		- !		Run: 8.43 S Ma	r 22 2021	Print: 8.4	130 S Mar	22 202	1 MiTek	Industries	, Inc. T	ue Mar 10 👰:	31/201	21
						ID:VxWg?wA2R	3MakUkj2l	0tcxyD2	rv-RfC?Ps	B70Hq	3NSgPqr	nL8w3ulT	XbGK	VrCDoi7342JS?	01/202	
	-0-10-8		-10-7	10-0-0		18-1-4			26-0					33-5-12	36-1 36-0-0	
	0-10-8	5-	-10-7	4-1-9	6x8=	8-1-4	2x4	u	7-10)-12		6x8 =		7-5-12	2-6-4 0-10	J-8
0-1-13 0-1-13				0-1-13 ⊤	5		6	⊠		×		7				
_ <mark>~ -</mark> 4 <u></u> + + + -			12 8	-0-1			•						\sim			
			2x4							/				\sim		
-10 7-2-3 6-2-3			4													
7-9-10 7-2. 6-2.															^{6x8} *	
		3												8		
	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	16	ο 17 ^Ο		15	a 2	14	13		23		12			9	<u>10</u>
\top \leftarrow 2		<u> </u>	17 ~ _		U	<u> </u>	3x10) =				3x10:	-		MARCHER	1
	4X	9= 3x4	4x9 II			2x4 II		3x6 =							M18SHS 8x12 = 5x12	
					2x4 II 2 2x4 II	2x4 II									6∟ 12	
					12-8-12 10-10-4	2										`
	H	2-3-8 2-3-8	10-1-		10-8-8 12	-10-8 <u>18-1-4</u>		3-15		26-1-4				33-8-8	36-0-0)
		2-3-8	7-9-1	2	0-1-12	1-12 5-2-12	1-3	2-11		6-9-5				7-7-4	2-0-0 0-3-8	
Scale = 1:66.4	Vi DiEdaa	0 0 441	[2.0 C 2 Edge] [5.	0 4 4 0 0 0	1-10-8		4 01 [45	0.0.00	1 01 14	2.0.4.0	0.0.01					
			[3:0-6-2,Edge], [5:		-0], [7:0-4-12,0		- 1-8], [15:									
Loading TCLL (roof)			Spacing Plate Grip DOL	2-0-0 1.15		TC	0.82	DEFL Vert(L		in 0.34	(loc) 15-16	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144	
TCDL BCLL			Lumber DOL Rep Stress Incr	1.15 YES		BC WB	0.70 0.98	Vert(C Horz(,	0.63 0.43	15-16 9	>679 n/a	240 n/a	M18SHS	197/144	
BCDL			Code		8/TPI2014	Matrix-S		Wind(15-16	>999	240	Weight: 158 I	b FT = 10%	
LUMBER TOP CHORD	044 CDE 0400		Eugents 4 5:000 0	2)		7-16; Vult=115m ; TCDL=6.0psf; E										
	2400F 2.0E		Except* 1-5:2x6 S		II; Exp C; En	closed; MWFRS (t and right expose	envelope	e) exter	ior zone;							
	2100F 1.8E, 1	11-9:2x8			right exposed	d; Lumber DOL=1	.60 plate	grip D	OL=1.60							
	2x3 SPF No.2 18-20,19-21:2		t* 11-8:2x6 SPF N No.2	4)	All plates are	uate drainage to MT20 plates unl	ess other	wise in	dicated.							
BRACING TOP CHORD	Structural wo	od sheatl	hing directly applie			s been designed ad nonconcurrent										
	2-2-0 oc purlin 2-0-0 oc purlin	ns, excep	pt	6)		as been designe n chord in all area				f						
BOT CHORD	Rigid ceiling o		pplied or 10-0-0 or	;		y 2-00-00 wide w										
	bracing. 1 Row at mid	pt 8-	-12	7)	Bearing at joi	int(s) 9 considers PI 1 angle to gra	parallel t	o grain	value							
REACTIONS (size) 2=0 /lax Horiz 2=2	0-3-8, 9≕ 190 (LC 7		0)	designer sho	uld verify capacity	y of beari	ng surf	ace.							
N	/lax Uplift 2=-	-147 (LC	8), 9=-147 (LC 9) 2), 9=1754 (LC 2	8)	bearing plate	hanical connectio capable of withs	tanding 1									
FORCES	(lb) - Maximur		ression/Maximum	, 9)	, This truss is (17 Ib uplift at joint designed in accor	dance w									
	Tension 1-2=0/22, 2-3	=-1328/1	44, 3-4=-3044/25	5,		Residential Code nd referenced sta										
	4-5=-2664/24 6-7=-2669/26			10		rlin representation ation of the purlin				9					m	
	8-9=-5783/43 2-17=-88/278	4, 9-10=0	0/24		bottom chord	l. ·	along the	top un						OF	MISSOL	
	3-16=-249/24	21, 15-16		LC	DAD CASE(S)	Standard							B	AL	0200 C	
	13-14=-89/21	19, 13-23	3=-89/2119,										B	× /	VIER	6
	12-23=-89/21 9-11=-350/49	35											84	·	*	8
	5-15=-41/827 6-14=-659/27		233/752, -246/800, 7-12=0/	590,									83	leather	Sendo	g
	8-12=-1959/4 4-15=-755/23	35, 8-11=											8r		01018807	1
NOTES													Ø	Ser.	GTA	η.
 Unbalanced this design. 	roof live load	s have be	een considered fo											SION	AL EL	
														100	ch 31,2021	
															,	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TCLL (root) 25.0 Plate Grp DOL 1.15 TC 0.68 Ver(TC) -0.43 14-15 >987 880 MT20 197/144 BCDL 0.00 Rep Stress Incr YES WB 0.76 Ver(TC) -0.43 14-15 >987 880 MT20 197/144 BCDL 0.00 Rep Stress Incr YES WB 0.76 Ver(TC) -0.43 14-15 >987 880 MT20 197/144 BCDL 0.00 Rep Stress Incr YES WB 0.76 Ver(TC) -0.43 14-15 >987 880 MT20 197/144 UBMER Code Rep Cinc Code Rep Cinc Code Mith XSC Mith XSC Vind(LU) 0.15 11-12 999 240 Weight 176 ib FT = 10% UBMER Code Stress Tassept 4-62x4 SPF No.2 Rep Cinc Code Wind XSC Vind LDL 0.15 11-12 999 240 Weight 176 ib FT = 10% UBMER Code Tiss Tass Tass Tassee Stress Tassept 4-612x4 SPF No.2 Stresstrassee PT < 10.02															RELEASE	FOR CONSTRUCTION
Link P-100 Link	Job		Truss		Truss T	уре		Qty		Ply	Lot 3	84 OS				
Image: Description of the Difference of the	Lot 34 OS		A5		Hip			1		1	Job	Refere	nce (op	tional	LEE'S	I45421549 SUMMIT, MISSOURI
Here Tors Constructions and the back have been exceeded for the back have been exceede	Wheeler Lumber	, Waverly, KS -	66871,				Run: 8.43 S Mai	r 22 2021 F	Print: 8.4	30 S Mar 2	22 2021	MiTek I	ndustries	s, Inc. ⁻		31/2021
1 1 0.103 44.2 0.00 0.00 4.5.5 4.5.7 4.5.6 2.4.12 c/to c/to c/to c/to c/to c/to c/to c/to								JIVIAKUKJZIC			B7011q3			ADGR		
Image: 1 Image: 1 <td< td=""><td></td><td> <u>1-</u> </td><td>9-11 9-11</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		<u>1-</u> 	9-11 9-11													
Image: space of the space							2=	2x4 I								
Image: space of the space						⁴ − 4				3 0	-	6 入				
 a general production of the state have been consistence for the state of the state							λ.	Ĩ				\square				
a a				12 8		//							\backslash		1×9	
Image: transmission of the state stat	5 7 M				R									X		
Image: transmission of the state stat	8-6-1 8-6-1															
Image: 1 Image: 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																
a deg 16 24* 0xin			2			D	۵									
a deg 16 24* 0xin				ə	15	21	22	14	13	23	1	2				9 11 9
244 244 0.92 0.92 0.92 234 244 244 0.92 0.92 0.92 234 234 244 0.92 0.92 0.92 12-9-11 2-14 12-9-12 12-	$\perp \pm $	Ä	16		6x6=		1	3x10=			3	3x6=				8x12=
Value Value <th< td=""><td></td><td>473</td><td></td><td></td><td></td><td></td><td></td><td></td><td>4x9=</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		473							4x9=							
Limit 1 7.7.14 10-8 12-10-8 12-10-9 12-7.1 24-14 33.8+8 13.5-8<							(4 11									12
Seale - 16:3 0-5:3 1:1:6 -0:3 Plaie Offsets (X, Y): [1:0:8:14:0:0:2] (2:0:2:15:0:1:4] (4:0:9:8:0:0] (4:0:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:		1-	9-11	7-7-14		- <u>8 12-1</u>	10-0-0									35-8-8
Plate Offleter (X, Y): [10.8-14.0-0-2]; [20-2-16.0-1-14]; [40-9-8,0-3-0]; [80-3-0,2-3]; [12.0-2-8,0-1-4]; [15:0-2-8,0-3-0] Loading (psf) Spacing 2-0-0 CSI TC (n)	Scale - 1:65 3	'1-	9-11 0-5-13		3-0-1	00-1-12 0-1 1-10-8	12 5-1-8	1-7	-1'	4-6-3				9-	7-4	
TCLL (rod) 25.0 Plate Gip DOL 1.15 TC 0.05 Vert(T) -0.43 14-15 >987 360 MT20 197/144 BCLL 0.01 Rep Stress Incr YES WB 0.76 Hoz(CT) 0.40 19 n/a n/a BCLL 0.01 Code IRC2018/TP12014 Matrix S Wind(LL) 0.43 14-15 >987 360 MT20 197/144 BCLL 0.01 Code IRC2018/TP12014 Matrix S Wind(LL) 0.43 14-15 >987 360 MT20 197/144 BCDL 0.02 Step Step Step Step Step Step Step Step		X, Y): [1:0-8-	-14,0-0-2], [2:0-2-15,0-1-14]	, [4:0-9-8,0-	·3-0], [6:0-3-0,0)-2-3], [12:0-2-8,0-	1-8], [15:)-2-8,0	-3-0]						
TCDL 10.0 Lumber DOL 1.15 CC 0.67 Vert(CT) 0.47 11-12 >565 240 BCDL 10.0 Code IRC2018/TPI2014 Weight 176 ib FT = 10% BCDL 0.0 Code IRC2018/TPI2014 Weight 176 ib FT = 10% UUMBER 2.48 SP DSS *Except 4-6:2x4 SPF No.2, 6-102x4 SPF 2100F 1.8E IRC2018/TPI2014 Weight 176 ib FT = 10% VMicit ASEC 7-16; VUIE 115mph (3-second gust) Vert(CT) 0.40 pi /station 2000; Vert(CT) 0.40 pi /station 2000; 200F 1.8E 2x3 SPF No.2 FT = 10% Vert(CT) 0.40 pi /station 2000; 0.40 pi /station 2000; 0.40 pi /station 2000; 0.40 pi /station 2000; 0.40 pi /station 200; 0.40 pi /sta	Loading	-	(psf)	Spacing	2-0-0		CSI		DEFL		in	(loc)	l/defl	L/d	PLATES	GRIP
BCLL 0.0 ¹ Rep Stress Incr YEs We 0.76 Hor(L) 0.46 9 n²a n²a LUMBER TOP CHORD 2x8 SP DSS 'Except' 4-5:2x4 SPF No.2, 61:02x4 SPF No.2 'Except' 4-5:2x4 SPF No.2, 61:02x4 SPF No.2 'Except' 4-5:2x4 SPF No.2, 61:02x4 SPF No.2 'Except' 16-2:17-19,18-20:2x4 SPF No.2 'Except' 16-2:12-17-19,18-20:2x4 SPF No.2 'Except' 16-2:2x4 SPF No.2 'Excep	TCLL (roof)									,					MT20	197/144
 LUMBER TOP CHORD 2x8 SP DSS "Except" 4-6:2x4 SPF No.2, 6:10:2x4 SPF No.2 "Except" 1-6:2x1-SPF 2405 Wind: ASCE 7-16; Vull=115mph (3-second gust) Vasd=91mph; TCDL=6.0pt; BCDL=6.0pt; BCDL=6.0pt; BCDL=6.0pt; BCDL=6.0pt; Second 10 pt and right exposed; Index Vision 2000; Pice 100, P	BCLL		0.0*	Rep Stress Incr	YES	0/TDI204.4	WB		Horz(CT) C	0.40	9	n/a	n/a	Mainht 170 lb	FT 40%
 TOP CHORD 2x8 SP DSS "Except" 4-62x4 SPF 2x05 FP. No.2, Encott 2-10x4 SPF 10x2 * SPF No.2 * Except" 2-13x2x4 SPF 2x05 F1.32x4 SPF 2x0			10.0	Code				b (3-sec		/	J. 15 I	1-12	>999	240	weight: 176 ib	FT = 10%
 BOT CHORD 2v4 SPF No.2*Except*16:213:2x4 SPF 2400F 2100F 148 WEBS 2x5 SPF No.2*Except*16:2,17:19,18:20:2x4 SPF No:2*Except*16:2,11:17:14:40:20:19,11:177,12:40:20:05,17:14:40:40:19; SPF No:2*Except*16:2,11:19,17:12:40:20:05,17:14:40:40:19; SPF No:2*Except*16:2,11:19,17:12:40:20:05,17:14:40:40:19; SPF No:2*Except*16:2,11:19,17:12:40:20:05,17:14:40:40:19; SPF No:2*Except*16:2,11:19,17:12:40:20:05,17:14:40:40:19; SPF No:2*Except*16:2,11:19,17:12:40:20:05,17:14:40:40:19; SPF No:2*Except*16:2,11:19,17:12:40:20:05,17:14:14:19,12:10; SPF No:2*Except*16:2,11:19,17:14:10:10:10; SPF No:2*E	TOP CHORD				,	Vasd=91mp	h; TCDL=6.0psf; B	CDL=6.0	psf; h=	25ft; Cat.						
 9) Provide adequate drainage to prevent water ponding. 9) Provide adequate drainage to prevent water ponding. 9) Structural wood sheathing directly applied or 27:15 ac purifies, except 27:15 ac purifies, except 27:15 ac purifies, except 27:15 ac purifies, except 20:00 co puring, except 27:15 ac purifies, except 20:00 co puring, except 27:15 ac purifies, except 20:00 co puring, except	BOT CHORD	2x4 SPF No	o.2 *Exce	pt* 2-13:2x4 SPF 2		cantilever let	t and right expose	d; end v	ertical I	eft and						
 SPF No.2 BRACING BRACING BRACING BRACING BRACING BRACING Structural wood sheathing directly applied or 20.0 27-15 oc purlins, except 2-0-0 oc purlins (9-63 max): 4-6. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing: 14-15 Tob-0-oc bracing: 14-15 REACTIONS (size) 1-0-3-8, 9=0-3-8 Max Horiz 1=-220 (LC 6) Max Voliz 1=-220 (LC 6) Max S (Far v 1=1737 (LC 2), 9=-1764 (LC 2) BOT CHORD 121104/159, 2-33020/212, S4=-3280/441, 4-5=-2193/184, S-6=-2194/185, 6-7=-240/1197, T1-1240/239, 7-14=-240/1917, T1-24=-44739, 7-14=-240/236, WEBS 2-16-061, 1-16=-344/535, G-12647/48, 1-48-201917, T1-24=-44739, 7-14=-240/1917, T1-24=-44739, 7-14=-240/537, G-12647/48, 7-14=-148/535, G				SS, 13-11:2x4 SPF		Provide ade	quate drainage to	prevent w	ater po	onding.						
 BRACING TOP CHORD Structural wood sheathing directly applied or 27-15 oc puritins, except 2-0-0 oc puritins, except 6-0-0 oc bracing; 1-16. 10-0-0 cbracing; 1-1734 (LC 2), 9=-1764 (LC 2) 10-0-134 (LC 2), 9=-1764 (LC 2) 10-12-1104/159, 2-3=-30200/212, 3-4=-3280/41, 4-5=-21391/185, 2-3=-300/017, 11-12-48/2367, 9-11-477/4598 WEBS 2-16-0701, 1-15-29/11657, 2-14-1-418/4557, 5-14=-489/201, 6-14=-184/557, 5-14=-489/201, 6-14=-184/557, 5-14=-489/201,	WEBS		o.2 *Exce	pt* 16-2,17-19,18-2	20:2x4 4)											
 3-06-00 tall by 2-00-00 wide will fit between the bottom 2-0-0 oc purlins, except 2-0-0 oc purlins, except 2-0-0 oc bracing; 14-15 Bor CHORD Siddeling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing; 14-15 Bearing at joint(s) 9 considers parallel to grain value using ANS/TP1 1 angle to grain formula. Building designer should verify capacity of bearing surface. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 134 lb upiff at joint 1 and 166 lb upiff at joint 9. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/TP1 1. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottor chord. UAD CASE(S) Standard WEBS 2-16-001, 4-16-340, 256, -72-240/197, 11-12-a402267, 9:11-177/4598 WEBS 2-16-001, 4-16-340, 257, -14-499/201, 6-14184/535, 6-12-64/1875, 13-14-a-184/535, 6-12-64/1875, 13-14-a-184/535, 6-12-64/187, 13-12-656/363 				- 4-1	5)						f					
 Bort CHORD Rijd celling directly applied or 100-00 choraing: 1-16. 100-00 co bracing: 14-15 REACTIONS (size) 1=0-38, 9=0-38 Max Horiz 1=-220 (LC 6) Max Grav 1=1737 (LC 2), 9=1764 (LC 2) FORCES (lb) - Maximum Compression/Maximum ToP CHORD 1:2=-1104/159, 2:3=-3020/212, 3:4=-3280/414, 4:5=-2193/184, 5:6=-2:49/1185, 6:7=-240/1197, 1:4=-3290/2411, 4:5=-2193/184, 5:6=-2:49/1185, 6:7=-240/1197, 1:4=-3390/1917, 1:4=-3390/1917, 1:4=-3390/1917, 1:4=-3390/1917, 1:4=-3390/1917, 1:4=-3390/1917, 1:4=-3390/1917, 1:4=-3390/1917, 1:4=-3390/1917, 1:4=-3390/1917, 1:4=-3390/1917, 1:4=-3390/1917, 1:4=-3390/1917, 1:4=-3390/1917, 1:4=-390/191	TOP CHORD	2-7-15 oc p	ourlins, ex	cept	led of											
 braching, Exdept B-0-0 ob bracing: 1-16. 10-0-0 ob bracing: 14-15 (size) 1=0-3-8, 9=0-3-8 Max Horiz 1=-220 (LC 6) Max Grav 1=1737 (LC 2), 9=1764 (LC 2) (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-1104/159, 2-3=-3020/212, 3-45=-2193/184, 5-62194/185, 6-72401/197, 7-8=-4896/285, 9-10=0/24 BOT CHORD 1-16=-34/0, 2-15=-222/2625, 15-219-2193/187, 14-22=-1791/1875, 1-14=-30/1917, 13-23=-301/1917, 13-23=-3	BOT CHORD	Rigid ceiling	g directly		oc 6)	Bearing at jo	int(s) 9 considers	parallel to	o grain	value						
 bearing plate capable of with standing 134 ib uplift at joint 1 and 166 lb uplift at joint 9. bearing plate capable of with standing 134 ib uplift at joint 9. bearing plate capable of with standing 134 ib uplift at joint 9. bearing plate capable of with standing 134 ib uplift at joint 9. bearing plate capable of with standing 134 ib uplift at joint 9. bearing plate capable of with standing 134 ib uplift at joint 9. bearing plate capable of with standing 134 ib uplift at joint 9. bearing plate capable of with standing 134 ib uplift at joint 9. bearing plate capable of with standing 134 ib uplift at joint 9. bearing plate capable of with standing 134 ib uplift at joint 9. bearing plate capable of with standing 134 ib uplift at joint 9. bearing plate capable of with standing 134 ib uplift at joint 9. bearing plate capable of with standing 134 ib uplift at joint 9. bearing plate capable of with standing 134 ib uplift at joint 9. bearing plate capable of with standing 134 ib uplift at joint 9. bearing plate capable of with standing 134 ib uplift at joint 9. bearing plate capable of with standing 134 ib uplift at joint 9. bearing plate capable of with standing 134 ib uplift at joint 9. bearing plate capable of with standing 134 ib uplift at joint 9. bearing plate capable of with standing 134 ib uplift at joint 9. bearing plate capable of with standing 134 ib uplift at joint 9. bearing plate capable of with standing 134 ib uplift at joint 9. bearing plate capable of with standing 134 ib uplift at joint 9. bottom chord. bottom				16.		designer sho	ould verify capacity	of bearir	ng surfa	ace.						
Max Horiz 1=-220 (LC 6) Max Uplit 1=-134 (LC 8), 9=-166 (LC 9) Max Grav 1=1737 (LC 2), 9=1764 (LC 2) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2e-1104/159, 2-3-3020/212, 3-4=-3280/441, 4-5=-2193/184, 5-6=-2194/185, 6-7=-2401/197, 7-8=-4898/128, 89-6-2496/285, 9-10=0/24 BOT CHORD 1-16=-34/0, 2-15=-222/2625, 15-21=-179/1875, 21-22=-179/1875, 15-22=-179/1875, 21-22=-179/1875, 15-21=-179/1875, 21-22=-179/1875, 11-22=-80/791, 12-23=-30/1917, 11-12=-48/260, 9-11=-177/4598 WEBS 2-16=-64/739, 7-11=-180/2229, 8-11=0/723, 3-15=-966/363 NOTES 1) Unbalanced roof live loads have been considered for this design.	REACTIONS		-		7)	bearing plate	e capable of withst	anding 13								
Max Grav 1=1737 (LC 2), 9=1764 (LC 2) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-1104/159, 2-3=-3020/212, 3-4=-3280/441, 4-5=-2193/184, 5-6=-2194/185, 6-7=-2401/197, 7-8=-4898/412, 8-9=-5496/285, 9-10=0/24 BOT CHORD 1-16=-34/0, 2-15=-222/2625, 15-21=-179/1875, 21-22=-179/1875, 14-22=-179/1875, 21-22=-179/1875, 14-22=-179/1875, 21-32=-30/1917, 13-23=-30/1917, 12-23=-30/1917, 11-12=-48/2637, 9-11=-177/4598 WEBS 2-16=-0/61, 4-15=-291/1567, 4-14=-148/597, 5-14=-489/201, 6-14=-184/535, 6-12=-64/739, 7-12=-659/244, 7-11=-180/2229, 8-11=0/723, 3-15=-966/363 NOTES 1) Unbalanced roof live loads have been considered for this design.		Max Horiz 1	l=-220 (L	C 6)	. 8)	This truss is	designed in accor	dance wit								
Tension or the orientation of the purlin along the top and/or TOP CHORD 1-2=-1104/159, 2-3=-3020/212, 3-4=-3280/414, 4-5=-2193/184, 5-6=-2194/185, 6-7=-2401/197, 7-8=-4898/412, 8-9=-5496/285, 9-10=0/24 BOT CHORD 1-16=-34/0, 2-15=-222/2625, 15-21=-179/1875, 21-22=-179/1875, 14-22=-179/1875, 13-14=-30/1917, 11-12=-48/2367, 9-11=-177/4598 WEBS 2-16=0/61, 4-15=-291/1567, 4-14=-148/597, 5-14=-48/9/201, 6-14=-184/535, 6-12=-64/739, 7-12=-659/244, 7-11=-180/2229, 8-11=0/723, 3-15=-966/363 NOTES 1) Unbalanced roof live loads have been considered for this design.																
TOP CHORD 1-2=-1104/159, 2-3=-3020/212, bottom chord. 3-4=-3280/411, 4-5=-2193/184, LOAD CASE(S) Standard 5-6=-2194/185, 6-7=-2401/197,	FORCES		num Com	pression/Maximum	n 9)											
BOT CHORD 1-1634/0, 2-15222/2625, 15-21=-179/1875, 21-22=-179/1875, 14-22=-179/1875, 13-14=-30/1917, 13-23=-30/1917, 12-23=-30/1917, 11-12=-48/2367, 9-11=-177/4598 WEBS 2-16=0/61, 4-15=-291/1567, 4-14=-148/597, 5-14=-489/201, 6-14=-184/535, 6-12=-64/739, 7-12=-659/244, 7-11=-180/2229, 8-11=0/723, 3-15=-966/363 NOTES 1) Unbalanced roof live loads have been considered for this design. March 31,2021	TOP CHORD					bottom chore	d.								CONT	1000
BOT CHORD 1-1634/0, 2-15222/2625, 15-21=-179/1875, 21-22=-179/1875, 14-22=-179/1875, 13-14=-30/1917, 13-23=-30/1917, 12-23=-30/1917, 11-12=-48/2367, 9-11=-177/4598 WEBS 2-16=0/61, 4-15=-291/1567, 4-14=-148/597, 5-14=-489/201, 6-14=-184/535, 6-12=-64/739, 7-12=-659/244, 7-11=-180/2229, 8-11=0/723, 3-15=-966/363 NOTES 1) Unbalanced roof live loads have been considered for this design. March 31,2021		5-6=-2194/	185, 6-7=	-2401/197,		JAD CASE(S)	Siandard								TEOFA	NISSO STA
14-22=-179/1875, 13-14=-30/1917, 13-23=-30/1917, 12-23=-30/1917, 11-12=-48/2367, 9-11=-177/4598 WEBS 2-16=0/61, 4-15=-291/1567, 4-14=-148/597, 5-14=-489/201, 6-14=-184/535, 6-12=-64/739, 7-12=-659/244, 7-11=-180/2229, 8-11=0/723, 3-15=-966/363 NOTES 1) Unbalanced roof live loads have been considered for this design.	BOT CHORD	1-16=-34/0,	, 2-15=-2	22/2625,	" <u>-</u>									A	S SCOT	гм.
11-12=-48/2367, 9-11=-177/4598 WEBS 2-16=0/61, 4-15=-291/1567, 4-14=-148/597, 5-14=-489/201, 6-14=-184/535, 6-12=-64/739, 7-12=-659/244, 7-11=-180/2229, 8-11=0/723, 3-15=-966/363 NOTES 1) Unbalanced roof live loads have been considered for this design.		14-22=-179)/1875, 13	3-14=-30/1917,										R.	SEVI	ER
5-14=-489/201, 6-14=-184/535, 6-12=-64/739, 7-12=-659/244, 7-11=-180/2229, 8-11=0/723, 3-15=-966/363 NOTES 1) Unbalanced roof live loads have been considered for this design. March 31,2021														8,	1 de	. 2 . 1 8
6-12=-64/739, 7-12=-659/244, 7-11=-180/2229, 8-11=0/723, 3-15=-966/363 NOTES 1) Unbalanced roof live loads have been considered for this design. March 31,2021	WEBS				8/597,									83	COTON	and a start
NOTES 1) Unbalanced roof live loads have been considered for this design. March 31,2021					6/363									Ø	PE-2001	018807
this design. March 31,2021	NOTES														SSIONA	L ENG
	,		ads have	peen considered fo	or										Jaco	50
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.															March	1 31,2021
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not	WARN	ING - Verify desig	gn paramete	rs and READ NOTES ON	N THIS AND IN	CLUDED MITEK R	EFERENCE PAGE MII-	7473 rev. 5/	19/2020 [BEFORE US	SE.					

A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTEX REFERENCE PAGE MII-7473 ev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria**, DSB-89 and BCSI Building Component **Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

													REL	EASE FOR CONSTRUCTION	N
Job		Truss		Truss	Туре		Qty	Ply	L	ot 34 OS				NOTED FOR PLAN REVIEW	
Lot 34 OS		A6		Hip			1	1						EVELOPMENT SERVICES 145421550 LEE'S SUMMIT, MISSOURI	
Wheeler Lumber,	, Waverly, KS - 6					Run: 8.43 S Mar 22	2 2021 Print	: 8.430 S M		l <u>ob Refere</u>)21 MiTek Ir				a:121/201/2017	1
						ID:VxWg?wA2R3Ma	akUkj2l0tcx	yD2rv-RfC?I	PsB70⊢	lq3NSgPqnI	L8w3uITXb	GKW	rCDoi7J4zaC		
		-0-10-8	5-10-5	1	12-9-4	14-0-0	22-0-0			27-1-10	1	33	3-5-12	36-10-8 36-0-0	
		0-10-8	5-10-5	I	6-10-15	1-2-12	8-0-0	I		5-1-11	1	6	6-4-2	2-6-4 0-10-8	
						M18SHS 5x12 = 2x4 II		64	<6=						
	0-1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0				0-1-13		a a	N 10	6						
	6 - - - - - - - - - - - - - - - -				-1-0	4									
										\mathcal{N}	3x6💊				
				8 ¹²							7				
ۍ ۲	ကိုကို			3x6 #			\					\sim			
10-3-3	9-10-3 9-10-3			3		" //									
								$\langle \rangle$						6x8 、	
													8		
		1	<u> </u>			15 C	20	<u>1</u>	4	13	12			9 11 9	
\perp	T <u>3</u> T		0	17					(10=	4x9=	3x10=			8x8=	
		8X	8 🍬	6x8=		3x6 II 6x12=								5x12👟	
						0/12-								6∟ 12	
		⊢	5-10-5		12-10-8		2-1-4		<u>:</u>	27-1-10			33-8-8	¹² 36-0-0 	
Scale = 1:73.1		·	5-10-5	•	7-0-3	. 9-	2-12			5-0-7	•	6	6-6-14	2-0-0 0-3-8	
Plate Offsets ()	X, Y): [5:0-8-1	12,0-2-0]	, [6:0-3-4,Edge], [1	2:0-2-8,0-	1-8], [16:Edge,(0-2-8], [18:0-3-12,0-2	-12]								
Loading		(psf)	Spacing	2-0-0		CSI		EFL	in	. ,	l/defl	L/d	PLATES	GRIP	
TCLL (roof) TCDL		25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15				ert(LL) ert(CT)) 14-15) 14-15		360 240	M18SHS MT20	197/144 197/144	
BCLL		0.0*	Rep Stress Incr	YES		WB	0.97 Ho	orz(CT)	0.25	5 9	n/a	n/a	-		
BCDL		10.0	Code		18/TPI2014	Matrix-S		ind(LL)	0.13	8 11-12	>999	240	Weight: 16	67 lb FT = 10%	—
LUMBER TOP CHORD		2 *Exce	pt* 5-6:2x4 SPF 21	100F	this design.	roof live loads have			r						
BOT CHORD	1.8E 2x4 SPF 210)0F 1.8E	*Except* 18-16:2)			E 7-16; Vult=115mph h; TCDL=6.0psf; BCI			Cat.						
			SPF No.2, 11-9:2x			nclosed; MWFRS (en ft and right exposed ;									
WEBS	2x3 SPF No.		pt* 14-5:2x4 SPF N	No.2,	right expose	d; Lumber DOL=1.60) plate gri	p DOL=1.6	60						
BRACING	11-8,18-2:2x	6 SPF N	10.2		 All plates are 	quate drainage to pre e MT20 plates unless	s otherwis	e indicated							
TOP CHORD			athing directly appl cept end verticals,	ieu ui		as been designed for ad nonconcurrent wit			ds.						
	2-0-0 oc pur	lins (4-0	-12 max.): 5-6.	e		has been designed fo m chord in all areas v			psf						
BOT CHORD	bracing, Ex	cept:	applied or 10-0-0 o	C	3-06-00 tall	by 2-00-00 wide will f ny other members, w	it betweer	n the botto							
1 Row at midpt	6-0-0 oc bra t 4-15	cing: 16	-17.	7	Bearing at joint in the second se	pint(s) 9 considers pa	rallel to g	rain value	•						
WEBS	1 Row at mid	•	5-14, 8-12			TPI 1 angle to grain f ould verify capacity of									
REACTIONS	(size) 9= Max Horiz 18		8=0-3-8 LC 6)	8		chanical connection (l e capable of withstan			C						
			C 9), 18=-184 (LC .C 2), 18=1753 (LC	Ś	joint 18 and	183 lb uplift at joint 9		-							
FORCES	(lb) - Maximi		pression/Maximum			designed in accorda I Residential Code se			nd						
TOP CHORD	Tension 1-2=0/43, 2-	3=-2439	/229, 3-4=-2275/24	44, 1		and referenced standation de			ize				6 Constant	A MIN	
	4-5=-2089/3 6-7=-2149/2					ation of the purlin alo						1	TE	OF MISSOL	
	8-9=-5635/4	63, 9-10	=0/24, 2-18=-1660		OAD CASE(S)							8	S S	сотт м.	
BOT CHORD	4-15=-222/2	42, 15-1		:0/127,							2	8.		SEVIER	
			20=-96/1704, 13=-13/2172,								5	2 ĝ			
WEBS	11-12=-315/	3860, 9-	11=-352/4794 7=-226/2110,								-		cette	OMBES VIEL	>
	3-15=-267/1	88, 5-15	=-269/949,									N.	PE-2	2001018807	
		42, 7-12	=0/427, 8-12=-178	7/314,								X	N.820	NAL ENGLIS	
NOTES	8-11=-63/21	62, 2-17	=0/1488										all all	NAL DISCO	
10120													М	arch 31,2021	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

					RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply Lot 34 OS	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
Lot 34 OS	A7	Hip	1	1 Job Reference (op	tional DEVELOPMENT SERVICES 145421551 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -	66871,			.430 S Mar 22 2021 MiTek Industries 2rv-RfC?PsB70Hq3NSgPqnL8w3uIT	
	-0-10-8 4-4-5 	9-5-4 16-0-0 5-0-15 6-6-12	20-0-0	27-1-11 7-1-11	36-10-8 33-6-12 6-5-1 36-0-0 -1 2-5-4 40.0 -10-8 -10-8 -10-8 -10-8 -10-8 -10-8 -10-8 -10-8 -10-8 -10-8 -10-8 -10-8 -10-8 -10-0 -10-8 -10-8 -10-0 -10-8 -10-0 -10-8 -10-0 -10-8 -10-0 -10-8 -10-0 -10-8 -10-0 -10-8 -10-0 -10-8 -
0-11-0 113		2×6 ·	6x6= 6x6 6 7		0-10-8
<u></u>		$3x6 \neq \frac{4}{4x5} \neq \frac{4}{8}$		3x6 * 8 3x6 *	
11-7-3 11-2-3 11-2-3	3×6		8	9	
	2				4x9s 10
			17 23 16 x6= 3x10		13 M18SHS 8x12 =
	4.4.5	2x4 II	20.4.4	07.4.44	5x12≈ 6∟ 12 36-0-0 33-8-8 25-8-8
Scale = 1:77.9	<u>4-4-5</u> 4-4-5	<u>9-6-8 15-10-12</u> 5-2-3 6-4-4	20-1-4 4-2-8	27-1-11 7-0-7	33-8-8 35-8-8 H 6-6-13 2-0-0 0-3-8
Plate Offsets (X, Y): [6:0-3-	5,Edge], [7:0-3-4,Edge], [14:	0-2-8,0-1-8], [17:0-2-8,0-1-8], [21:0-3-12	2,0-2-12]		· · · ·
Loading	(psf) Spacing	2-0-0 CSI	DEFI	L in (loc) l/defl	L/d PLATES GRIP

Loading	(psf)	Spacing	2-0-0	CSI	DEFL	n (loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC 0.79	Vert(LL) -0.2	5 13-14	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC 0.78	Vert(CT) -0.4	4 13-14	>977	240	M18SHS	197/144
BCLL	0.0*	Rep Stress Incr	YES	WB 0.72	Horz(CT) 0.2	8 11	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S	Wind(LL) 0.1	4 13-14	>999	240	Weight: 169 lb	FT = 10%
LUMBER TOP CHORD	2x4 SPF No.2		NOTES	roof live loads have been o	appaidered for					
BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 *Exce	ont* 10-1-2x3 SPE No	,	TOOL IN TO THE TO A CONTRACT OF THE TOTAL TO A CONTRACT OF THE TO A CONTRACT OF THE TOTAL OF T						
BOT CHORD	13-11:2x8 SP DSS,	15-13:2x4 SPF 2100	F 2) Wind: ASCE	7-16; Vult=115mph (3-sec						
	1.8E			h; TCDL=6.0psf; BCDL=6.0						
WEBS	2x3 SPF No.2 *Exce No.2, 21-2:2x6 SPF	ept* 16-6,13-10:2x4 S		nclosed; MWFRS (envelope ft and right exposed ; end v						
BRACING	NU.2, 21-2.2X0 3FF	110.2		d; Lumber DOL=1.60 plate						
TOP CHORD	Structural wood she	athing directly applied		quate drainage to prevent						
		cept end verticals, an	nd 4) All plates are	e MT20 plates unless other						
	2-0-0 oc purlins (4-8	-0 max.): 6-7.		as been designed for a 10.0						
BOT CHORD	0 0 7	applied or 10-0-0 oc		ad nonconcurrent with any has been designed for a liv						
WEDO	bracing.	4 47 0 40 0 40 40	on the better	m chord in all areas where						
WEBS		4-17, 6-16, 9-16, 10-		by 2-00-00 wide will fit betw						
	(size) 11=0-3-8, Max Horiz 21=-304 (ny other members, with BC						
	Max Uplift 11=-197 (pint(s) 11 considers parallel						
	Max Grav 11=1770			TPI 1 angle to grain formula ould verify capacity of beari						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	8) Provide med	chanical connection (by oth	ers) of truss to					
TOP CHORD	1-2=0/43, 2-3=-2408	3/241, 3-4=-2686/319		e capable of withstanding 1 197 lb uplift at joint 11.	98 lb uplift at					
	4-5=-1945/230, 5-6=	,	, jennen en e	designed in accordance w	ith the 2018					
	6-7=-1515/268, 7-8=	,		Residential Code sections					000	ADD
	8-9=-1951/216, 9-10			nd referenced standard AN					OF M	Alson
	10-11=-5537/504, 1 2-21=-1711/217	1-12=0/24,		Irlin representation does no					TE	-050,0
BOT CHORD		-20=-21/59, 18-19=0/	97, bottom chore	ation of the purlin along the	e top and/or			B	STATE OF M	Mar Mar
	4-18=-33/667, 18-22	,	LOAD CASE(S)					R	Sevi	
	17-22=-252/2359, 1		LOAD CASE(S)	Standard				R	Je SEVI	
	16-23=-27/1605, 15- 14-15=-50/2198, 13-							av3	THE	· l
	11-13=-385/4677	-14=-343/3936,							olle	Zerrea
WEBS	3-20=-509/139, 18-2	20=-289/2135,					•	27	NUM	
	,	89/295, 6-17=-120/8	32,					N.	PE-2001	11880/ 24
	6-16=-208/209, 7-16							Y	1 Ce	ST B
	9-16=-967/277, 9-14 10-14=-1817/310, 10								Vh Slow	LENA
	2-20=-58/1545	0-13≓-09/2031,							A NA	The second
	2 23- 00,1010								March	31 2021

March 31,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 34 OS	AS NOTED FOR PLAN REVIEW
Lot 34 OS	B1	Piggyback Base	6	1	Job Reference (option	DEVELOPMENT SERVICES 145421552 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -	66871,	Run: 8.43 S Mar 22 2	2021 Print: 8.	430 S Mar 22	2021 MiTek Industries, Inc. DHq3NSgPqnL8w3uITXbGł	
		ID:VxWg?wA2R3Mak	Ukj2l0tcxyD2	2rv-RfC?PsB70	0Hq3NSgPqnL8w3ulTXbGł	(WrCDoi7J420047 0 17 20 2 1 36-10-8
	-0-10-8 4-4-5		4-15	27-1		-6-12 36-0-0
	0-10-8 4-4-5	5-0-15 6-1-12 4-5 6x6=	9-15 6x6	6-8-	-11 6	-5-1 2-5-4 ' ' 0-10-8
Scale = 1:77.2 Plate Offsets (X, Y): [5:0-4-	3x6 = 3 $3x6 = 1$ $3x6 = 1$ $4-4-5$ $4.0-2-4], [6:0-4-4,0-2-4], [12:0]$		6 ■ 6 20 14 3×11 3-11 7-7 2]	*		4x9 8 9 11 9 10 M18SHS 8x12 = 5x12 6L 12 36-0-0 3-8-8 6-13 2-0-0 0-3-8
Loading	(psf) Spacing	2-0-0 CSI	DEF	1	in (loc) l/defl L/	d PLATES GRIP
TCLL (roof)	25.0 Plate Grip DOL		.79 Vert(24 11-12 >999 36	
TCDL	10.0 Lumber DOL		.72 Vert(44 11-12 >974 24	
BCLL BCDL	0.0* Rep Stress Incr 10.0 Code	YES WB C IRC2018/TPI2014 Matrix-S	.72 Horz Wind		28 9 n/a n/ 14 11-12 >999 24	

BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S
LUMBER TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 *Exce 11-9:2x8 SP DSS, 13 1.8E	pt* 17-4:2x3 SPF No. 3-11:2x4 SPF 2100F	2) Wind: ASCE Vasd=91mp 2, II; Exp C; Er cantilever let right expose	h; TCDL=6. iclosed; MV ft and right e
WEBS	2x3 SPF No.2 *Exce No.2, 19-2:2x6 SPF	pt* 14-5,11-8:2x4 SP No.2	All plates are	e MT20 plat
BRACING TOP CHORD		athing directly applied cept end verticals, and -10 max.): 5-6.	d 6) * This truss I on the bottor	ad nonconc nas been de m chord in a
BOT CHORD	Rigid ceiling directly bracing.	,	3-06-00 tall I chord and ar	ny other me
WEBS REACTIONS		LC 6) C 9), 19=-195 (LC 8)	using ANSI/ designer sho 8) Provide meo bearing plate	TPI 1 angle ould verify c hanical cor e capable o
FORCES	(lb) - Maximum Com Tension		 joint 19 and 9) This truss is International 	designed ir
TOP CHORD	4-5=-1939/264, 5-6= 6-7=-1950/248, 7-8=		R802.10.2 a 10) Graphical pu or the orienta	nd reference Irlin represe ation of the
BOT CHORD	18-19=-254/601, 17- 4-16=-35/632, 15-16 15-20=-27/1599, 14- 13-14=-42/2181, 12- 11-12=-340/3906, 9-	20=-27/1599, 13=-42/2181,	^{97,} LOAD CASE(S)	Standard
WEBS	3-18=-504/138, 16-1 3-16=0/245, 4-15=-9 5-14=-197/197, 6-14	8=-285/2084, 52/287, 5-15=-118/81 =-73/755, =0/512, 8-12=-1817/3	,	
NOTES				

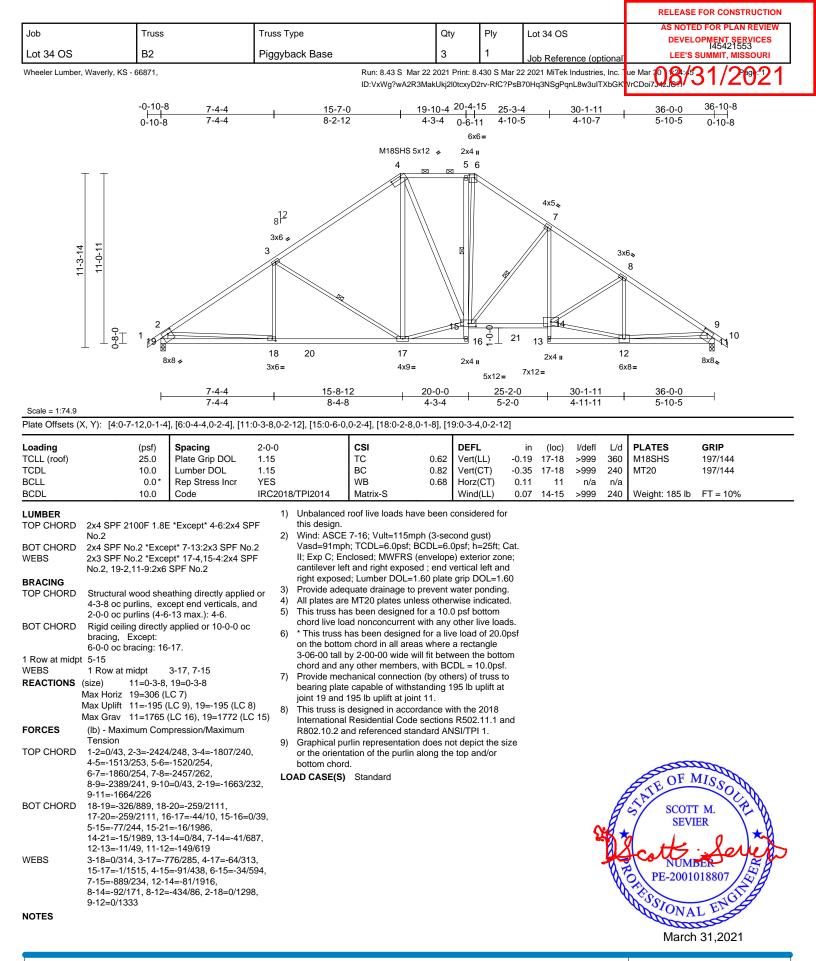
E 7-16; Vult=115mph (3-second gust) h; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. nclosed; MWFRS (envelope) exterior zone; ft and right exposed ; end vertical left and ed; Lumber DOL=1.60 plate grip DOL=1.60 equate drainage to prevent water ponding. e MT20 plates unless otherwise indicated. as been designed for a 10.0 psf bottom ad nonconcurrent with any other live loads. has been designed for a live load of 20.0psf m chord in all areas where a rectangle by 2-00-00 wide will fit between the bottom

iny other members, with BCDL = 10.0psf. oint(s) 9 considers parallel to grain value TPI 1 angle to grain formula. Building ould verify capacity of bearing surface. chanical connection (by others) of truss to

te capable of withstanding 195 lb uplift at 194 lb uplift at joint 9.

designed in accordance with the 2018 al Residential Code sections R502.11.1 and and referenced standard ANSI/TPI 1.

urlin representation does not depict the size tation of the purlin along the top and/or rd.

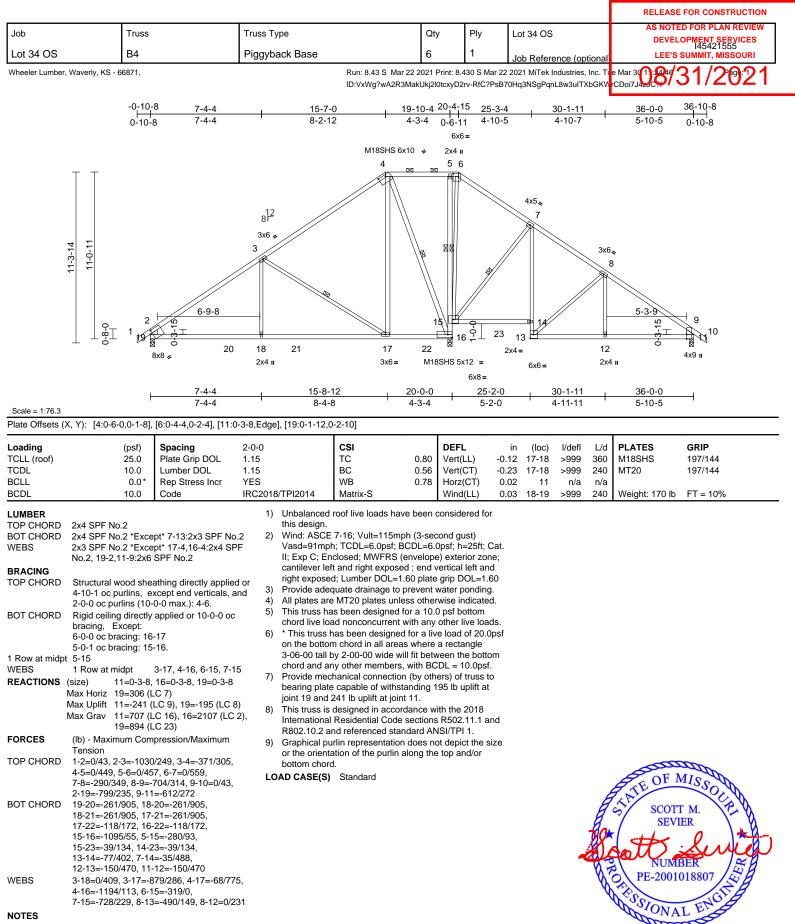


MiTek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

NOTES

1) Unbalanced roof live loads have been considered for this design.

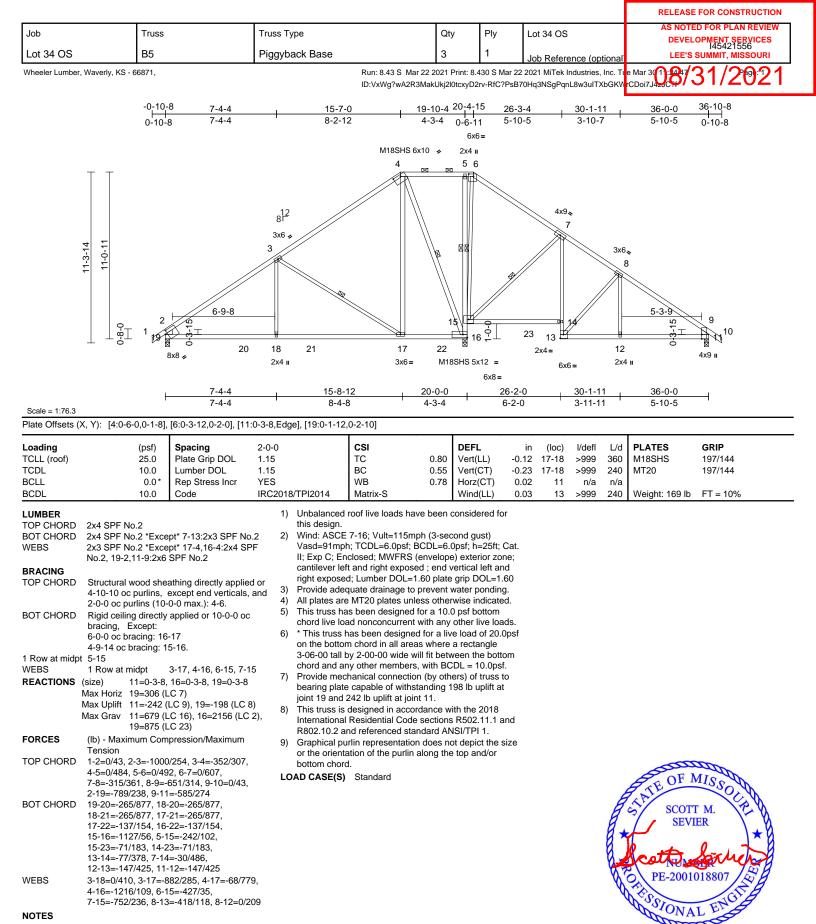
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

									RELEASE FOR CONSTRU	UCTION
Job	Truss		Truss Type		Qty	Ply	Lot 34 OS		AS NOTED FOR PLAN R DEVELOPMENT SERV	
Lot 34 OS	В3		Piggyback Bas	se	1	1	Job Referenc	e (optional)	DEVELOPMENT SERV 145421554 LEE'S SUMMIT, MISSO	
Wheeler Lumber	r, Waverly, KS - 66871,			Run: 8.43 S Mar 22	2021 Print: 8.	430 S Mar 2	2 2021 MiTek Ind	ustries. Inc.	ue Mar 1018:4531/29)21
				ID:VxWg?wA2R3Ma		2rv-RfC?PsB	70Hq3NSgPqnL8	w3ulTXbGK		
		10-8 7-4-4 10-8 7-4-4		<u>5-7-0</u> 17-9-12 ₂₀ -2-12 2-2-12 2	<u>)-4-15 2</u> 2-7-3 4	<u>25-3-4</u> 4-10-5	+ <u>30-1-11</u> 4-10-7		<u>5-0-0</u> 36-10-8 10-50-10-8	
				$8 \times 8 > 2 \times 4$	• 6x6= 6					
	11-3-14 	2 7x12 +	8 ¹² 3x6 = 3 19 5x12=	5x12= 3x4 II 3x6 II 7x12= 2x4	6 0 0 0 0 0 0 0 0 0 0 0 0 0	•• -13 6x8= 2	2x4 II 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3x6 • 8 12 6x8=	9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
		7-4-4		5-9-8 17-8-8 8-5-4 1-11-02-1	20-0-0 2	<u>5-2-0</u> 5-2-0	<u>30-1-11</u> 4-11-11		<u>8-0-0</u> 10-5	
Scale = 1:83.8 Plate Offsets (X, Y): [4:0-5-4,0-3-0]			3-4,0-2-4], [15:0-2-0,0-3-0],	0-1-12					
Loading	(psf)	Spacing	2-0-0		DEFI	-	in (loc) l/	defl L/d	PLATES GRIP	
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC (0.72 Vert(LL) -0.	.16 14-15 >	999 360	MT20 197/144	
TCDL BCLL	10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES		0.52 Vert(0.78 Horz	,	.37 14-15 > .16 11	999 240 n/a n/a		
BCDL	10.0	Code	IRC2018/TPI201		Wind	. ,	.05 7 >	999 240	Weight: 196 lb FT = 10%	
LUMBER TOP CHORD	2x4 SPF 2100F 1.8	E *Except* 4-6:2x6 S	PF Vasd=9	ASCE 7-16; Vult=115mph (91mph; TCDL=6.0psf; BCD	L=6.0psf; h	=25ft; Cat.				
BOT CHORD	No.2 2x4 SPF No.2 *Exce	·	II; Exp (PF cantilev	C; Enclosed; MWFRS (env /er left and right exposed ;	elope) exte end vertical	rior zone; left and				
WEBS	No.2	ept* 14-6,22-23:2x4 \$	right ex SPF 3) Provide	posed; Lumber DOL=1.60 adequate drainage to prev	vent water p	onding.				
	No.2, 20-2,11-9,21-		This tru	iss has been designed for a ve load nonconcurrent with						
BRACING TOP CHORD		eathing directly applie cept end verticals, a 3-0 max.): 4-6.	d or 5) * This ti nd on the I 3-06-00	russ has been designed for bottom chord in all areas w) tall by 2-00-00 wide will fit	r a live load here a recta	of 20.0psf angle				
BOT CHORD	bracing, Except: 6-0-0 oc bracing: 12	applied or 10-0-0 oc 2-13.	6) Provide	and any other members. e mechanical connection (b g plate capable of withstanc			t			
1 Row at midp WEBS	t 5-16 1 Row at midpt	3-17	This tru	iss is designed in accordan						
REACTIONS		, 20=0-3-8 (LC 13) (LC 9)	R802.1 8) Graphic or the c	tional Residential Code sec 0.2 and referenced standa cal purlin representation do prientation of the purlin alor	rd ANSI/TP	1. 1. the size				
FORCES	(lb) - Maximum Con		bottom	cnord. SE(S) Standard						
TOP CHORD	7-8=-2302/96, 8-9=-	835/0, 6-7=-2309/25 2297/107, 9-10=0/43							STE OF MISSO	`
BOT CHORD	2-20=-1611/0, 9-11: 19-20=0/795, 18-19 4-17=0/837, 16-17= 5-16=-8/115, 14-15: 7-14=-365/231, 12- 11-12=-128/565	=0/51, 17-18=0/149, 0/1875, 15-16=0/148 =0/58, 13-14=0/84,	,						SCOTT M. SEVIER	*
WEBS	4-16=-266/0, 14-16= 6-14=-382/545, 12-	=0/1907, 3-17=-87/5(=0/1664, 6-16=0/660 14=0/1816, 8-14=-80 =0/1192, 9-12=0/125	/183,						PE-2001018807	
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for							March 31,2021	
WARN				TEK REFERENCE PAGE MII-7473			E.			

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 tev. 5/19/2020 BEFORE USE. Design valid for use only with MITek@ connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

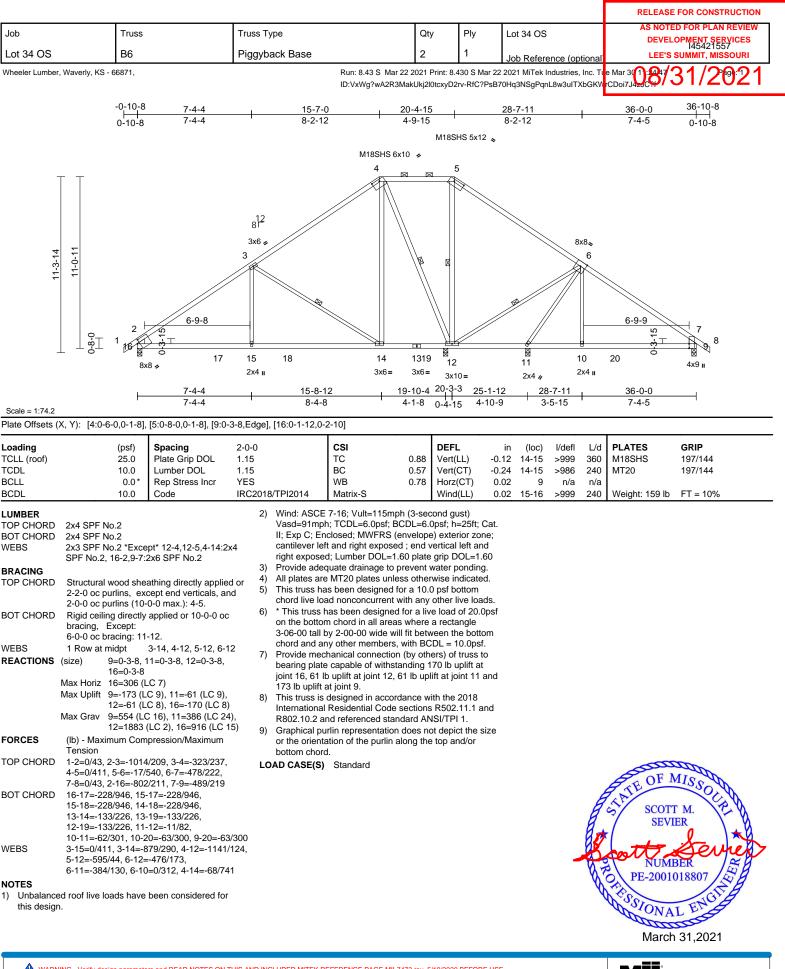


NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

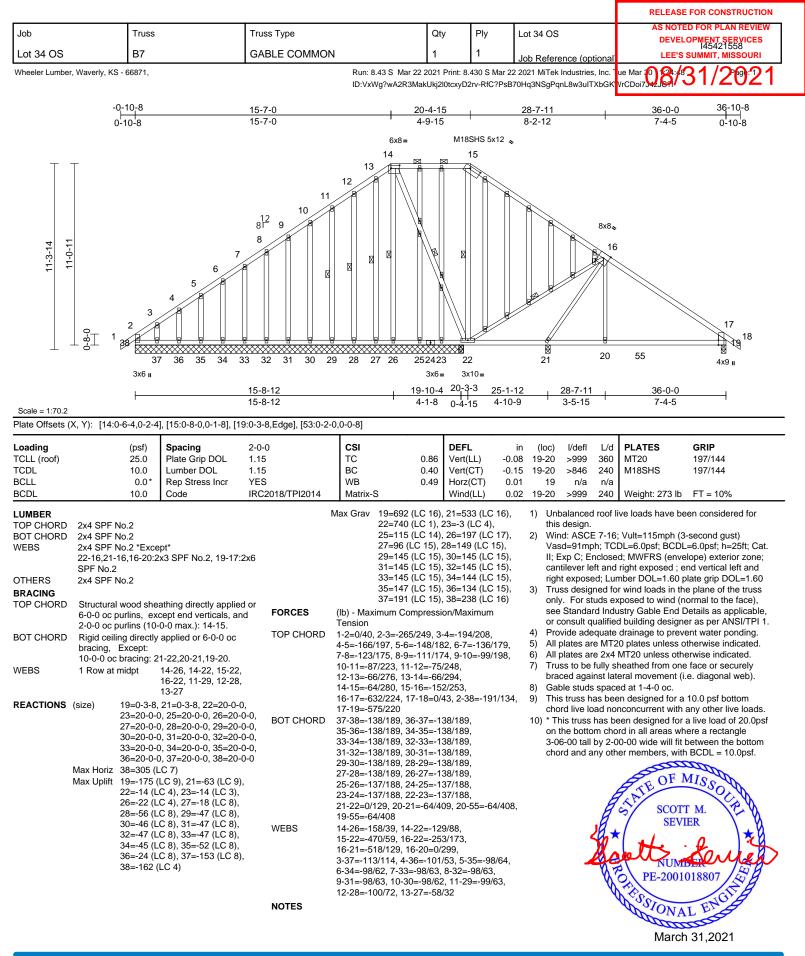
MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

March 31,2021



NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



March 31,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designe. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	DIV	Lot 34 OS	AS NOTED FOR PLAN REVIEW
505	11035	Truss Type	Qty	I IV	LUI 34 03	DEVELOPMENT SERVICES 145421558
Lot 34 OS	B7	GABLE COMMON	1	1	Job Reference (optional	
Wheeler Lumber, Waverly,	KS - 66871,	Run: 8	3.43 S Mar 22 2021 Print: 8	.430 S Mar 2	2 2021 MiTek Industries, Inc.	

11) Provide mechanical connection (by others) of truss to Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 162 lb uplift at joint 38, 22 lb uplift at joint 26, 14 lb uplift at joint 22, 63 lb uplift at joint 21, 175 lb uplift at joint 19, 153 lb uplift at joint 37, 24 lb uplift at joint 36, 52 lb uplift at joint 35, 45 lb uplift at joint 34, 47 lb uplift at joint 33, 47 lb uplift at joint 32, 47 lb uplift at joint 31, 46 lb uplift at joint 30, 47 lb uplift at joint 29, 56 lb uplift at joint 28, 18 lb uplift at joint 27 and 14 lb uplift at joint 23.

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

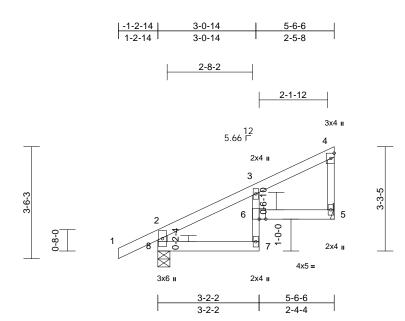
13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

ID:VxWg?wA2R3MakUkj2l0tcxyD2rv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKVrCDoi7V2JQ/ 31/2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

										RELEASE	E FOR CONSTRUCTION	
Job	Truss	;	Truss Type		Qty	/	Ply	Lot 34 OS			ED FOR PLAN REVIEW	ר ו
Lot 34 OS	C1		GABLE		1		1	Job Refere	nce (optional)		OPMENT SERVICES 145421559 SUMMIT, MISSOURI	
Wheeler Lumber	, Waverly, KS - 66871,			Run: 8.43 S Mar 2	2 2021	Print: 8.43	0 S Mar 22	2021 MiTek Ir	dustries, Inc. Tu	e Mar 30 1 : 2049	31/2021	
				ID:VxWg?wA2R3M	akUkj2l	0tcxyD2rv	-RfC?PsB7	'0Hq3NSgPqn	_8w3ulTXbGKW	rCDoi7J4zJC?f	0172021	
		-0-10-8		-4-0				16-8-0		17-6-8		
		Ó-10-8	8	-4-0		x5 =		8-4-0		Ó-10-8		
	6-5-14	4 0 1 25 0 -1-	x9 II	312 3 12 3 14 23 24 23			7	8 5 18 16-8-0	9 10 9 7 10	11 12 13 15 4x9 II	3	
		0-1-	5-11-0	8-4				<u>16-8-0</u> 8-4-0				
Scale = 1:46.3 Plate Offsets (X, Y): [2:0-3-8,Edge	-										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL		in (loc)	l/defl L/d	PLATES	GRIP	—
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC	0.37 0.24	Vert(Ll Vert(C	,	02 24-25 05 24-25	>999 360 >999 240	MT20	197/144	
BCLL	0.0*	Rep Stress Incr	YES IRC2018/TPI2014	WB Matrix-R	0.17	Horz(C	,	01 14	n/a n/a ∖999 240	Weight [,] 93 lb	FT = 10%	
24=422 (LC 3), 25=442 (LC 21) 7) This truss has been designed for a 10.0 psf bottom							dential Code sec ierenced standar ndard	tions R502.11.1 and d ANSI/TPI 1.				
FORCES TOP CHORD	Tension 1-2=0/43, 2-3=-334 4-5=-215/257, 5-6= 7-8=-290/265, 8-9= 10-11=-307/188, 1	mpression/Maximum 1/161, 3-4=-367/343, 246/278, 6-7=-287/29 299/240, 9-10=-310/2 1-12=-385/198, -406/186, 12-14=-361/ ⁻	 8) * This truss on the botto 3-06-00 tall chord and a 9) Provide met joint 14, 135 148 lb uplift at joint 19, 4 	has been designed f m chord in all areas by 2-00-00 wide will ny other members. chanical connection 1 e capable of withstar l b uplift at joint 21, 5 at joint 22, 8 lb uplift 6 lb uplift at joint 18, t joint 16, 184 lb upli	or a liv where fit betw (by oth nding 1 333 lb i at join 47 lb i	e load o a rectan veen the ers) of tr 96 lb up uplift at j t 20, 57 uplift at j	f 20.0psf gle bottom russ to lift at oint 23, lb uplift oint 17,			SCOT SEV NUM PE-2001	BER 018807	7


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 31,2021

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 34 OS	AS NOTED FOR PLAN REVIEW
005	11000		Quy	,	2010400	DEVELOPMENT SERVICES 145421560
Lot 34 OS	J1	Diagonal Hip Girder	1	1	Job Reference (optional	
Wheeler Lumber, Waverly, KS - 66871, Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Te						

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MITek Industries, Inc. The Mar 3 3 8 Mar 24 Mar 20 20 1 ID:VxWg?wA2R3MakUkj2l0tcxyD2rv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWCDoi7J4269/31/2921

Scale = 1:36.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.26	Vert(LL)	-0.04	6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.41	Vert(CT)	-0.07	7	>946	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.03	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.04	6	>999	240	Weight: 18 lb	FT = 10%
	IMPED 7) Hanger(s) or other connection device(s) shall be											

LUMBER

TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2 *Except* 7-3:2x3 SPF No.2
WEBS	2x4 SPF I	No.2 *Except* 4-5:2x3 SPF No.2
BRACING		
TOP CHORD	Structura	wood sheathing directly applied or
	5-6-6 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	5= Mechanical, 8=0-4-9
	Max Horiz	8=118 (LC 5)
	Max Uplift	5=-58 (LC 8), 8=-62 (LC 8)
	Max Grav	5=224 (LC 1), 8=346 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	2-8=-322/	/88, 1-2=0/41, 2-3=-249/25,
	3-4=-71/1	8, 4-5=-130/48
	7 0 40/4	27 6 7-0/62 2 6- 15/62

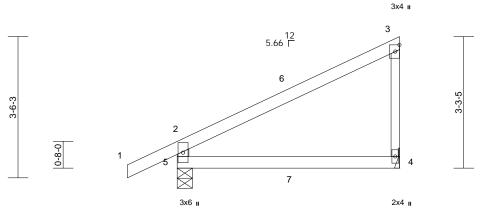
BOT CHORD 7-8=-48/137, 6-7=0/62, 3-6=-15/62, 5-6=-26/50

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 62 lb uplift at joint 8 and 58 lb uplift at joint 5.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 79 lb down and 43 lb up at 2-9-8, and 79 lb down and 43 lb up at 2-9-8 on top chord, and 6 lb down and 1 lb up at 3-0-14, and 6 lb down and 1 lb up at 3-0-14 on bottom chord. The design/selection of such connection device (s) is the responsibility of others.
 In the LOAD CASE(S) section, loads applied to the face
- of the truss are noted as front (F) or back (B).
- LOAD CASE(S) Standard
- Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-2=-70, 2-4=-70, 7-8=-20, 5-6=-20 Concentrated Loads (lb)

Vert: 7=2 (F=1, B=1)



March 31,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 34 OS	AS NOTED FOR PLAN REVIEW
Lot 34 OS	J2	Diagonal Hip Girder	1	1	Job Reference (optional	DEVELOPMENT SERVICES 145421561 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waver	rly, KS - 66871,	Run: 8.43 ID:VxWg?	S Mar 22 2021 Print: wA2R3MakUkj2l0tcxy[3.430 S Mar D2rv-RfC?Ps	22 2021 MiTek Industries, Inc. Tu B70Hq3NSgPqnL8w3uITXbGKW	e Mar 30 87/31/2021
		-1-2-14	5-6-6			
		1-2-14	5-6-6			

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.42	Vert(LL)	-0.03	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.26	Vert(CT)	-0.07	4-5	>929	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.02	4-5	>999	240	Weight: 17 lb	FT = 10%

5-6-6

LUM	BE	R
	~ .	

- TOP CHORD 2x4 SPF No.2
- BOT CHORD 2x4 SPF No.2

2x4 SPF No.2 *Except* 3-4:2x3 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 5-6-6 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 4= Mechanical, 5=0-4-9

Max Horiz 5=135 (LC 5) Max Uplift 4=-57 (LC 8), 5=-64 (LC 8) Max Grav 4=224 (LC 1), 5=346 (LC 1) FORCES (lb) - Maximum Compression/Maximum Tension

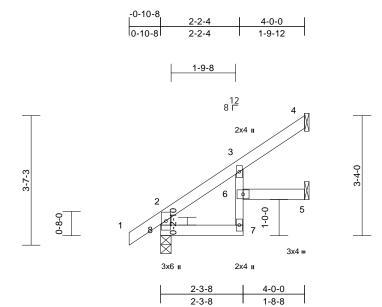
TOP CHORD 2-5=-306/106, 1-2=0/41, 2-6=-160/25, 3-6=-69/44, 3-4=-160/78 BOT CHORD 5-7=-32/44, 4-7=-32/44

- NOTES 1)
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 64 lb uplift at joint 5 and 57 lb uplift at joint 4.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- provided sufficient to support concentrated load(s) 79 lb down and 43 lb up at 2-9-8, and 79 lb down and 43 lb up at 2-9-8 on top chord, and 6 lb down and 1 lb up at 2-9-8, and 6 lb down and 1 lb up at 2-9-8 on bottom chord. The design/selection of such connection device (s) is the responsibility of others.
- In the LOAD CASE(S) section, loads applied to the face 8) of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

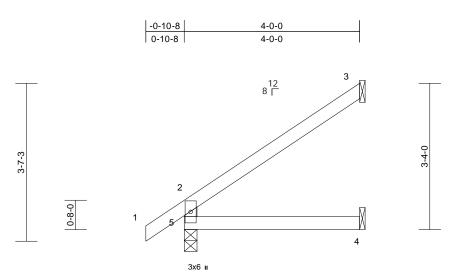
- Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15 Uniform Loads (lb/ft)
 - Vert: 1-2=-70, 2-3=-70, 4-5=-20 Concentrated Loads (lb)


Vert: 7=2 (F=1, B=1)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 34 OS	AS NOTED FOR PLAN REVIEW
000	11035		Gary	i iy	201 34 03	DEVELOPMENT SERVICES 145421562
Lot 34 OS	J3	Jack-Open	4	1	Job Reference (optional	
14/1 · · · I · · · I · · · 14/- · · · 14/- · · · · · · · · · · · · · · · · · · ·	1 160 00071		0.40.0 M. 00.0004 D			

Scale = 1:32


	()							(1)				
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	TC	0.14	DEFL Vert(LL)	in -0.01	(loc) 6	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.19	Vert(CT)	-0.02	7	>999	240	101120	1377144
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	6	>999	240	Weight: 13 lb	FT = 10%
LUMBER			LOAD CASE(S)	Standard								
TOP CHORD												
BOT CHORD WEBS	2x4 SPF No.2 *Exce 2x4 SPF No.2	ept* 7-3:2x3 SPF No.	.2									
BRACING	2X4 SPF N0.2											
TOP CHORD	Structural wood she	athing directly applie	ed or									
	4-0-0 oc purlins, ex											
BOT CHORD	Rigid ceiling directly bracing.	/ applied or 10-0-0 or	C									
REACTIONS	(size) 4= Mecha 8=0-3-8	anical, 5= Mechanica	al,									
	Max Horiz 8=84 (LC	: 8)										
	Max Uplift 4=-34 (LC	<i>,,</i> , ,										
	Max Grav 4=104 (L0 8=252 (L0											
FORCES	(lb) - Maximum Com Tension	npression/Maximum										
TOP CHORD		/40, 2-3=-143/0,										
	3-4=-29/52											
BOT CHORD	7-8=-26/70, 6-7=0/4	3, 3-6=-2/51, 5-6=0/	0									
NOTES		(0,										
	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC		Cat									
	Enclosed; MWFRS (er											The
	exposed ; end vertical		ed;								TATE OF I	ALC DI
	OL=1.60 plate grip DC has been designed fo										FEUT	NISSO ST
	load nonconcurrent w		ds							A	N	New
	s has been designed f									A	S/ SUUI	$1 M. \chi \chi$
	tom chord in all areas									1	SEV	
	all by 2-00-00 wide will	fit between the botto	om						4	<u>(N</u>	1 4	
	l any other members. irder(s) for truss to tru	iss connections								¥)	tall.	De Man
	echanical connection		0							17	NUM	BAR 750
	ate capable of withsta	nding 34 lb uplift at jo	oint							N.	PE-2001	018807
	uplift at joint 5.									Y	199	ST B
	is designed in accorda		nd								PE-2001	LENA
	2 and referenced stand										A DONA	JULY .
											March	n 31,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

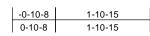
						RELEASE FOR CONSTRUCTION
lob	Truss		Qty	Plv	Lot 34 OS	AS NOTED FOR PLAN REVIEW
Job	TTUSS	Truss Type	Qty	Fiy	LOI 34 05	DEVELOPMENT SERVICES 145421563
Lot 34 OS	J4	Jack-Open	11	1	Job Reference (optional	
						00/04/0004

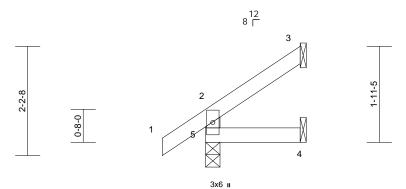
Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. ue Mar 08:131/2021 ID:VxWg?wA2R3MakUkj2l0tcxyD2rv-RfC?PsB70Hq3NSgPqnL8w3uITXbGK VrCDoi70-2017/02017

4-0-0

<u> </u>		
Scale	=	1:26.3

			;									
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	-0.01	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.13	Vert(CT)	-0.02	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	4-5	>999	240	Weight: 12 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2	athing directly appli	ed or									
	4-0-0 oc purlins, except end verticals.											
BOT CHORD	 Rigid ceiling directly bracing. 	applied or 10-0-0 o	с									
REACTIONS	(size) 3= Mecha 5=0-3-8	anical, 4= Mechanica	al,									
	Max Horiz 5=84 (LC	8)										
	Max Uplift 3=-49 (LC	8)										
	Max Grav 3=120 (LC 13), 4=72 (LC 3), 5=252											
FORCES	(LC 1) FORCES (Ib) - Maximum Compression/Maximum											
TORGEO	Tension	ipression/maximum										
TOP CHORD	,	40, 2-3=-85/54										
BOT CHORD	0 4-5=0/0											
NOTES												
Vasd=91 II; Exp C; and right	 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; 											
	s has been designed for										TEOF	MISSO
	e load nonconcurrent wi									6	184	N N
on the bo 3-06-00 t	3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.											
	bearing plate capable of withstanding 49 lb uplift at joint											
6) This truss Internatio	s is designed in accorda onal Residential Code so 2 and referenced stand	ections R502.11.1 a	nd							Ø	FESSIONA	18A
	R802.10.2 and referenced standard ANSI/TPI 1.											
	• •											- 04 0004


MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017


March 31,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

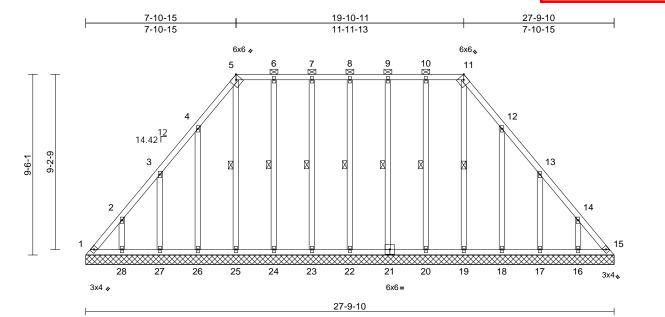
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 34 OS	AS NOTED FOR PLAN REVIEW
	11000		<u></u>	,	2010100	DEVELOPMENT SERVICES 145421564
Lot 34 OS	J5	Jack-Open	4	1	Job Reference (optional	
		-				

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. ue Mar 02:43/31/2021 ID:VxWg?wA2R3MakUkj2l0tcxyD2rv-RfC?PsB70Hq3NSgPqnL8w3uITXbGK vrCDoi704201/31/2021

1-10-15

Scale = 1:23.3

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	тс	0.07	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 6 lb	FT = 10%
LUMBER												
TOP CHORD	2x4 SPF No.2											
BOT CHORD	2x4 SPF No.2											
NEBS 2x4 SPF No.2												
BRACING												
TOP CHORD Structural wood sheathing directly applied or												
1-10-15 oc purlins, except end verticals.												
BOT CHORD Rigid ceiling directly applied or 10-0-0 oc												
	bracing.											
REACTIONS		anical, 4= Mechanic	al,									
	5=0-3-8 Max Horiz 5=65 (LC	. 8)										
Max Uplift 3=-37 (LC 8), 5=-16 (LC 8) Max Grav 3=50 (LC 15), 4=31 (LC 3), 5=171												
Max Grav $3=50$ (LC 15), $4=31$ (LC 3), $5=171$ (LC 1)												
FORCES (Ib) - Maximum Compression/Maximum												
	Tension											
TOP CHORD	,	/40, 2-3=-48/22										
BOT CHORD	4-5=0/0											
NOTES												
	CE 7-16; Vult=115mph		_									
	mph; TCDL=6.0psf; BC Enclosed; MWFRS (e											
	left and right exposed											
	osed; Lumber DOL=1.6										000	JODA
	s has been designed fo										TE OF	MISS
chord live	e load nonconcurrent w	ith any other live loa	ids.							6	7 50	- SOLA
	ss has been designed		0psf							B	SCOT	M. NEW
	ttom chord in all areas									8		
	all by 2-00-00 wide will	fit between the bott	om							BA		
	d any other members.	ion connections								X	1 et	
 4) Refer to girder(s) for truss to truss connections. 5) Provide mechanical connection (by others) of truss to 												
hoaring plate capable of withstanding 16 lb uplift at joint												
5 and 37 lb uplift at joint 3.												
6) This truss	6) This truss is designed in accordance with the 2018											
	nal Residential Code s		and								S'SIONA	FN
	2 and referenced stand	dard ANSI/TPI 1.									ON NA	IL L
LOAD CASE((S) Standard										1000	h 31 2021
											N/loro	n 31 7071


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 31,2021

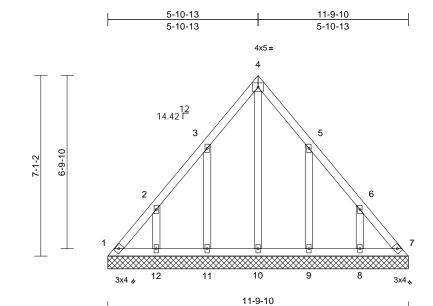
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 34 OS	AS NOTED FOR PLAN REVIEW
			<u> </u>	,	2010100	DEVELOPMENT SERVICES 145421565
Lot 34 OS	LAY1	GABLE	1	1	Job Reference (optional)	
			-			00/01/0001

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. ue Mar 08:431/2021

Scale = 1:60.6

Plate Offsets (X, Y): [5:0-2-11,Edge], [11:0-2-11,Edge]

	,, , , , [0.0	2 11,Eugo], [11.0 Z 11,E090]											
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	18/TPI2014	CSI TC BC WB Matrix-S	0.07 0.04 0.14	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 15	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 172 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS	2x4 SPF M 2x4 SPF M Structural 6-0-0 oc p 2-0-0 oc p	No.2 No.2 wood she purlins, exc purlins (6-0 ng directly midpt	athing directly applied ept I-0 max.): 5-11. applied or 10-0-0 oc 8-22, 7-23, 6-24, 5-2: 9-21, 10-20, 11-19	l or B		1-2=-337/251, 2-3= 4-5=-135/226, 5-6= 7-8=-45/167, 8-9=- 10-11=-46/166, 11- 12-13=-96/81, 13-1 14-15=-282/164 1-28=-108/208, 27- 26-27=-108/209, 25 22-23=-108/209, 12 18-19=-108/209, 15 16-17=-108/209, 15 16-17=-108	r, 6-7=-45/167 9-10=-44/166 /196, /105, 8/208, 08/208, 08/209, 08/209, 08/209, 08/209, 08/209,	7, ``	 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 150 lb uplift at joint 1, 82 lb uplift at joint 15, 32 lb uplift at joint 22, 35 lb uplift at joint 23, 34 lb uplift at joint 24, 24 lb uplift at joint 25, 162 lb uplift at joint 26, 152 lb uplift at joint 27, 151 lb uplift at joint 28, 35 lb uplift at joint 21, 39 lb uplift at joint 20, 161 lb uplift at joint 18, 152 lb uplift at joint 17 and 151 lb uplift at joint 16. 					
REACTIONS	(size)	16=27-9-7 18=27-9-7 20=27-9-7 22=27-9-7 24=27-9-7	0, 15=27-9-10, 10, 17=27-9-10, 10, 19=27-9-10, 10, 21=27-9-10, 10, 23=27-9-10, 10, 25=27-9-10, 10, 27=27-9-10, 10		IOTES	8-22=-140/57, 7-23 5-25=-151/63, 4-26 3-27=-174/177, 2-2 9-21=-139/59, 10-2 12-18=-186/184, 13 14-16=-170/168	=-139/5 =-187/1 8=-170, 0=-148,	59, 6-24=-148 85, /168, /62, 11-19=-1	/58, 22/0,	 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 at R802.10.2 and referenced standard ANSI/TPI 1. Graphical purlin representation does not depict the s or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 				
	28=27-9-10 Max Horiz 1=-252 (LC 4) Max Uplift 1=-150 (LC 6), 15=-82 (LC 7), 16=-151 (LC 9), 17=-152 (LC 9), 18=-161 (LC 9), 20=-39 (LC 5), 21=-35 (LC 4), 22=-32 (LC 5), 23=-35 (LC 4), 24=-34 (LC 5), 25=-24 (LC 5), 26=-162 (LC 8), 27=-152 (LC 8), 28=-151 (LC 8)				 this design. Wind: ASCI Vasd=91mp II; Exp C; E cantilever le right expose Truss desig 	E 7-16; Vult=115mpl bh; TCDL=6.0psf; B(nclosed; MWFRS (e eft and right exposed ed; Lumber DOL=1.0 uned for wind loads in	h (3-sec CDL=6. nvelope I ; end v 60 plate n the pl	cond gust) Opsf; h=25ft; (e) exterior zor /ertical left an grip DOL=1. ane of the tru	Cat. ne; d 60 ss			H	STATE OF M	AISSOLUTE
FORCES	$ \begin{array}{c} \text{Max Grav} & 1\!=\!249 \; (\text{LC 8}), \; 15\!=\!206 \; (\text{LC 9}), \\ & 16\!=\!214 \; (\text{LC 16}), \; 17\!=\!214 \; (\text{LC 16}), \\ & 18\!=\!226 \; (\text{LC 16}), \; 19\!=\!162 \; (\text{LC 17}), \\ & 20\!=\!187 \; (\text{LC 21}), \; 21\!=\!179 \; (\text{LC 1}), \\ & 22\!=\!182 \; (\text{LC 22}), \; 23\!=\!179 \; (\text{LC 1}), \\ & 24\!=\!188 \; (\text{LC 22}), \; 25\!=\!191 \; (\text{LC 18}), \\ & 26\!=\!227 \; (\text{LC 15}), \; 27\!=\!213 \; (\text{LC 15}), \\ & 28\!=\!215 \; (\text{LC 15}) \end{array} $					 only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. Provide adequate drainage to prevent water ponding. All plates are 2x4 MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing. Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom 							ER Service D18807	
FORCES	CES (lb) - Maximum Compression/Maximum Tension												A NA	L L STOR


March 31,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply Lot 34 OS AS NOTED FOR PLAN REVIEW Lot 34 OS LAY2 GABLE 1 1 Job Reference (optional) LEE'S SUMMIT, MISSOURI							RELEASE FOR CONSTRUCTION
	Job	Truss	Truss Type	Qty	Ply	Lot 34 OS	
	Lot 34 OS	LAY2	GABLE	1	1	Job Reference (optional	

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Tue Mar 30:55/31/2021 ID:VxWg?wA2R3MakUkj2l0tcxyD2rv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKW CDoi7J426/31/2021

Scale = 1:45.2

Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES	018/TPI2014	CSI TC BC WB Matrix S	0.06 0.04 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144 FT = 10%
BCDL		10.0	Code	IRC2	018/1912014	Matrix-S	_						Weight: 54 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF 2x4 SPF Structura 6-0-0 oc Rigid ceil bracing.	No.2 No.2 I wood she purlins. ing directly 1=11-9-1 9=11-9-1	eathing directly applie y applied or 10-0-0 oc 0, 7=11-9-10, 8=11-9 0, 10=11-9-10, 10, 12=11-9-10		see Standard or consult qu 4) All plates are 5) Gable requir 6) Gable studs 7) This truss ha chord live loz 8) * This truss h on the bottor 3-06-00 tall b	ds exposed to w I Industry Gable alified building d 2x4 MT20 unless scontinuous bo spaced at 0-0-0 s been designed d nonconcurrem as been designed n chord in all are y 2-00-00 wide	vind (norm End Deta esigner as so otherwi bottom chor oc. I for a 10.0 t with any ed for a liv eas where will fit betw	al to the face ils as applical s per ANSI/TF se indicated. d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle), ble, PI 1. ds. Dpsf					
		1=-185 (l 1=-80 (L (LC 9), 9 8), 12=-1 1=175 (L (LC 16),	,	8 (LC =212 58	 Provide mec bearing plate , 53 lb uplift uplift at joint joint 8. This truss is International 	y other members nanical connection capable of withs at joint 7, 158 lb 12, 157 lb uplift a designed in acccc Residential Code d referenced sta	on (by oth standing 8 o uplift at jo at joint 9 a ordance w e sections	0 lb uplift at j pint 11, 151 lk nd 151 lb upl ith the 2018 5 R502.11.1 a	oint o ift at					
FORCES	(lb) - Max Tension	kimum Cor	npression/Maximum		LOAD CASE(S)									
TOP CHORD		,	-143/104, 3-4=-112/12 117/68, 6-7=-220/125	,										
BOT CHORD		4/169, 9-1	2=-84/169, 0=-84/169, 8-9=-84/10	69,									TATE OF M	MISSO
WEBS			=-188/184, =-187/183, 6-8=-167/	169								A	SCOT	Г М.
this design 2) Wind: ASO Vasd=91r II; Exp C; cantilever	ed roof live n. CE 7-16; Vu nph; TCDL= Enclosed; N left and rigl	loads have Ilt=115mpl ⊧6.0psf; B0 /WFRS (e nt exposed	e been considered for n (3-second gust) CDL=6.0psf; h=25ft; C nvelope) exterior zon i; end vertical left and 50 plate grip DOL=1.6	Cat. e;								A CONTRACTOR	SEVI PE-20010 PE-20010	018807

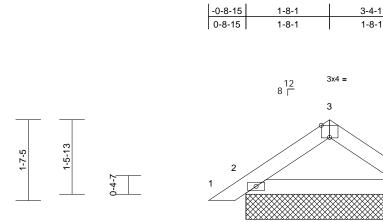
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 31,2021

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 34 OS	AS NOTED FOR PLAN REVIEW
Lot 34 OS	D1	Piggyback	22	1		DEVELOPMENT SERVICES 145421567
L0I 34 03		88,		1	Job Reference (optional	
Wheeler Lumber, Waverly,						

ID:VXWg?wA2R3MakUkj2l0tcxyD2rv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4x6C

4-1-0


0-8-15

4

Ø

2x4 =

5

Scale = 1:23

Plate Offsets (X, Y): [3:0-2-0,Edge]

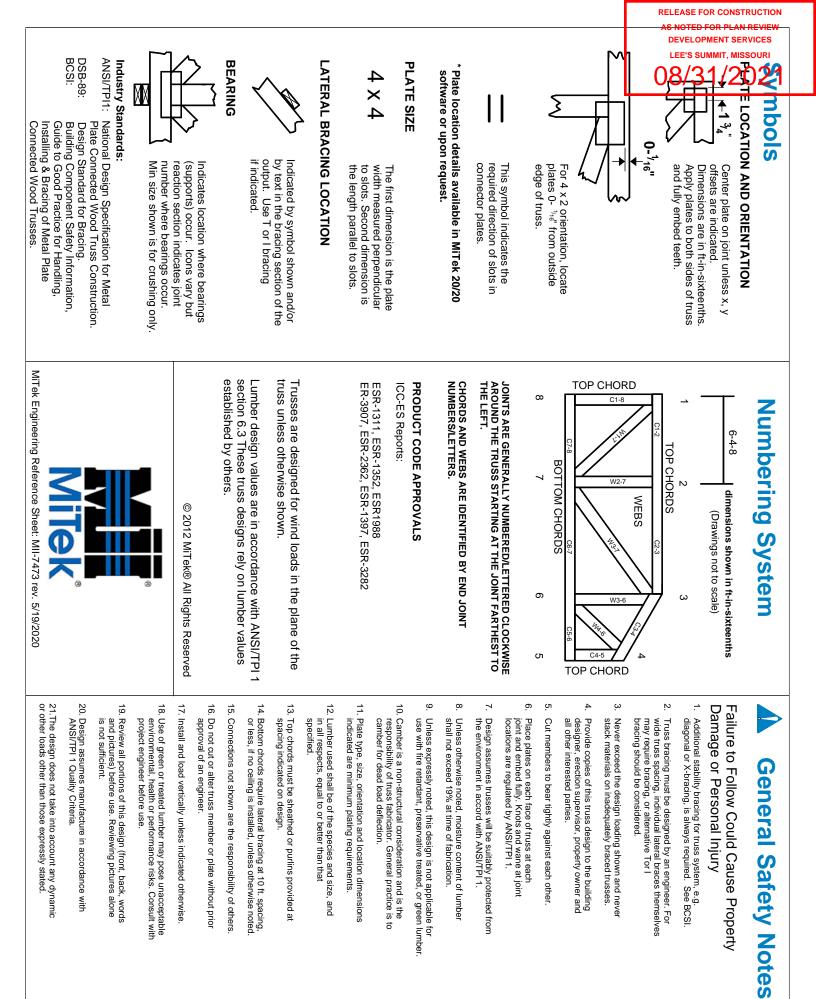
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI	CSI TC BC WB 2014 Matrix-P	0.04 0.11 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 197/144 FT = 10%
l	2x4 SPF No.2 2x4 SPF No.2 Structural wood she 4-9-15 oc purlins. Rigid ceiling directly bracing. (size) 2=3-4-1, 4 Max Horiz 2=37 (LC Max Horiz 2=37 (LC Max Uplift 2=-29 (LC Max Grav 2=184 (LC (Ib) - Maximum Com Tension 1-2=0/17, 2-3=-130/ 4-5=0/17 2-4=-9/79	applied or 10-0-0 o 4=3-4-1 7) 2 8), 4=-29 (LC 9) C 1), 4=184 (LC 1) ippression/Maximum	2 a 2 a 9) Thi ed or Inte R8(c 10) See Det cor	vide mechanical connection tring plate capable of withs and 29 lb uplift at joint 4. s truss is designed in acco rmational Residential Code 02.10.2 and referenced sta e Standard Industry Piggyb ail for Connection to base usult qualified building desi CASE(S) Standard	standing 2 ordance w e sections andard AN pack Trus truss as a	29 lb uplift at j ith the 2018 s R502.11.1 a NSI/TPI 1. s Connection	joint and					
 this design Wind: ASC Vasd=91m II; Exp C; E cantilever I right expos Truss desig only. For s see Standa 	d roof live loads have E 7-16; Vult=115mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er eft and right exposed ed; Lumber DOL=1.6 gned for wind loads in studs exposed to wind ard Industry Gable En qualified building desig	(3-second gust) DL=6.0psf; h=25ft; (velope) exterior zor ; end vertical left an 0 plate grip DOL=1. the plane of the tru (normal to the face d Details as applical	Cat. le; d 60 ss J, ble,								SCOT SEV	

2x4 =

3-4-1

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


NUMBER

PE-2001018807

March 31,2021

RESSIONAL EN

O

