

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Date

3/31/2021

3/31/2021

3/31/2021

RE: Lot 26 OS Lot 26 OS

liTek

Site Information:

Customer: Project Name: Lot 26 OS Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

No.

21

22

23

Seal#

145421565

145421566

145421567

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 23 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	145421545	A1	3/31/2021
2	145421546	A2	3/31/2021
3	145421547	A3	3/31/2021
4	145421548	A4	3/31/2021
5	145421549	A5	3/31/2021
6	145421550	A6	3/31/2021
7	145421551	A7	3/31/2021
8	145421552	B1	3/31/2021
9	145421553	B2	3/31/2021
10	145421554	B3	3/31/2021
11	145421555	B4	3/31/2021
12	145421556	B5	3/31/2021
13	145421557	B6	3/31/2021
14	145421558	B7	3/31/2021
15	145421559	C1	3/31/2021
16	145421560	J1	3/31/2021
17	145421561	J2	3/31/2021
18	145421562	J3	3/31/2021
19	145421563	J4	3/31/2021
20	145421564	J5	3/31/2021

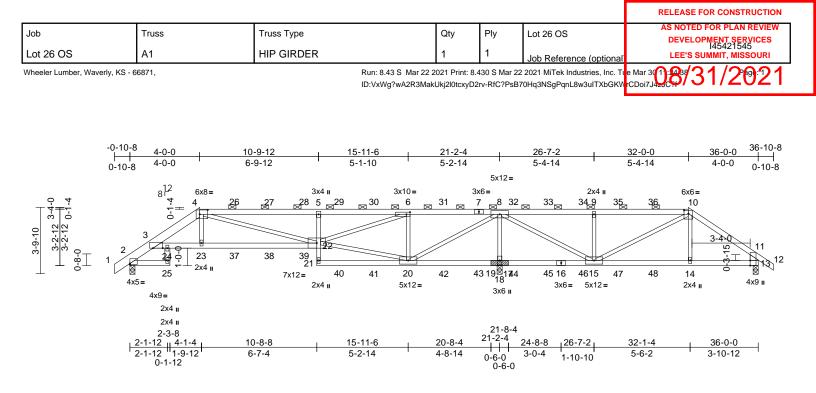
The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2021. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.


Truss Name

LAY1

LAY2

P1

Sevier, Scott

Scale = 1:66

Plate Offsets (X, Y): [2:Edge,0-0-1	1], [3:0-6-10,Edge], [4:	0-5-8,0-3-	-0], [6:0-2-8,0	-1-8], [10:0-3-0,0-2	2-3], [13:0)-3-8,Edge]						
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	8/TPI2014	CSI TC BC WB Matrix-S	0.55 0.89 0.89	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.18 -0.37 0.14 0.17	22-2 1	3 >999 3 >690 8 n/a	L/d 360 240 n/a 240	PLATES MT20 Weight: 138 lb	GRIP 197/144 FT = 10%
UMBER FOP CHORD BOT CHORD WEBS BRACING FOP CHORD	4-7:2x4 SPF 2100F 2x4 SPF No.2 *Exc 2x3 SPF No.2 *Exc 13-11:2x6 SPF No.3 Structural wood she 4-10-5 oc purlins, e 2-0-0 oc purlins (4-4	ept* 5-21:2x3 SPF No. ept* 25-24:2x4 SPF No 2 eathing directly applied except end verticals, a	2 5.2, I or nd	DT CHORD	2-25=0/0, 3-24=-2 23-37=-483/2042 38-39=-483/2042 21-22=0/125, 5-2 40-41=-10/77, 20 20-42=-1888/397 19-43=-1888/397 17-18=-1888/397 16-46=-1888/397 15-47=-59/518, 4 14-48=-59/518, 1	, 37-38=- , 22-39=- 2=-552/2 -41=-10/7 , 42-43=- , 18-19=- , 17-44=- , 16-45=- , 15-46=- 7-48=-59 3-14=-59	483/2042, 483/2042, 17, 21-40=-1 77, 1888/397, 1888/397, 1888/397, 1888/397, 1888/397, 1888/397, 1888/397, 1888/397, 1518, /529	0/77,) jo 1 8) T Ir 8) G 9) G	earing pla bint 2, 566 3. This truss is nternationa 8802.10.2 i Graphical p	te capa Ib uplit s desig al Resid and ref ourlin re tation	able of withstandi ft at joint 18 and ned in accordand dential Code sec ferenced standar	tions R502.11.1 and d ANSI/TPI 1. es not depict the size
REACTIONS	(size) 2=0-3-8, bearing b Max Horiz 2=98 (LC Max Uplift 2=-232 (I 18=-566	_C 8), 13=-147 (LC 9), (LC 5) LC 1), 13=653 (LC 22)), NC	EBS DTES	24-25=-3/73, 4-25 20-22=-47/318, 6 6-20=-1171/366, 1 8-18=-2788/648, 1 9-15=-535/230, 1 10-14=0/333	-22=-484 8-20=-51 8-15=-38 0-15=-62	/2037, 9/2596, 8/2101, 4/114,						
FORCES	Tension	npression/Maximum /174, 3-4=-2284/494,	1)	to front face 3" o.c. 8 To	 bearing block 1 with 2 rows of 10 tal fasteners. Bear 	"x3") nails sp	aced						
	4-26=-2361/512, 26 27-28=-2360/512, 5 5-29=-2284/499, 29 6-30=-2284/499, 6- 7-31=-388/127, 7-8 32-33=-65/117, 33- 9-35=-65/116, 35-30	5-27=-2360/512, 5-28=-2360/512, 9-30=-2284/499,	'117, '118,	this design. Wind: ASCI Vasd=91mp II; Exp C; E cantilever le right expose Provide ade This truss h chord live le	d roof live loads ha E 7-16; Vult=115m bh; TCDL=6.0psf; I nclosed; MWFRS eft and right expose ed; Lumber DOL= equate drainage to has been designed bad nonconcurrent has been designed	ph (3-sec BCDL=6. (envelope ed ; end v 1.60 plate prevent for a 10. with any	cond gust) 0psf; h=25ft; e) exterior zo vertical left ar grip DOL=1 water pondin 0 psf bottom other live loa	Cat. ne; nd .60 g. ads.		(8	STATE OF I SCOT SEV.	BER

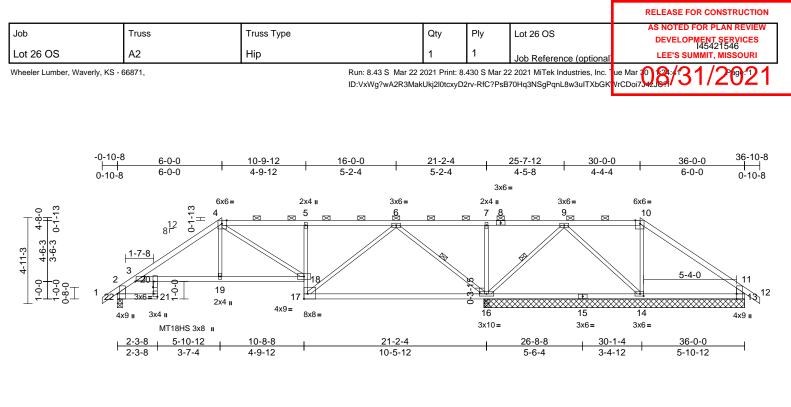
6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

March 31,2021

EZ

#SSIONAL

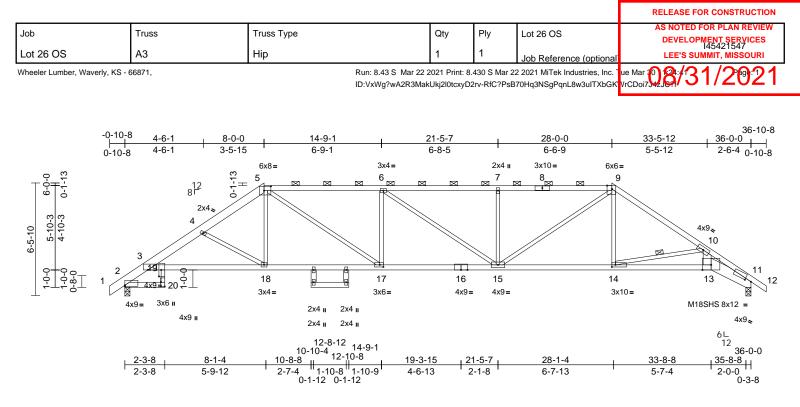
Continued on page 2 WARNING - Verify


						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 26 OS	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 145421545
Lot 26 OS	A1	HIP GIRDER	1	1	Job Reference (optional	
Wheeler Lumber, Waverly, KS - 6	e Mar 3(1):88/31/2021					

- 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 84 lb down and 36 lb up at 4-0-0, 92 lb down and 34 lb up at 6-0-0, 92 lb down and 34 lb up at 8-0-0, 92 lb down and 34 lb up at 10-0-0, 98 lb down and 46 lb up at 12-0-0, 98 lb down and 46 lb up at 14-0-0, 98 lb down and 46 lb up at 16-0-0, 98 lb down and 46 lb up at 18-0-0, 98 lb down and 46 lb up at 20-0-0, 98 lb down and 46 lb up at 22-0-0, 98 lb down and 46 lb up at 24-0-0, 98 lb down and 46 lb up at 26-0-0, 98 lb down and 46 lb up at 28-0-0, and 98 lb down and 46 lb up at 30-0-0, and 90 Ib down and 48 lb up at 32-0-0 on top chord, and 244 lb down and 93 lb up at 4-0-0, 45 lb down and 18 lb up at 6-0-0, 45 lb down and 18 lb up at 8-0-0, 45 lb down and 18 lb up at 10-0-0, 32 lb down at 12-0-0, 32 lb down at 14-0-0, 32 lb down at 16-0-0, 32 lb down at 18-0-0, 32 Ib down at 20-0-0, 32 Ib down at 22-0-0, 32 Ib down at 24-0-0, 32 lb down at 26-0-0, 32 lb down at 28-0-0, and 32 lb down at 30-0-0, and 226 lb down and 63 lb up at 31-11-3 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15
 - Uniform Loads (lb/ft) Vert: 1-4=-70, 4-10=-70, 10-11=-70, 11-12=-70,
 - 2-25=-20, 22-24=-20, 13-21=-20
 - Concentrated Loads (lb)
 - Vert: 4=-31 (B), 7=-46 (B), 23=-236 (B), 20=-25 (B), 6=-46 (B), 10=-46 (B), 14=-221 (B), 26=-31 (B), 27=-31 (B), 28=-31 (B), 29=-46 (B), 30=-46 (B), 31=-46 (B), 32=-46 (B), 33=-46 (B), 34=-46 (B), 35=-46 (B), 36=-46 (B), 37=-40 (B), 38=-40 (B), 39=-40 (B), 40=-25 (B), 41=-25 (B), 42=-25 (B), 43=-25 (B), 44=-25 (B), 45=-25 (B), 46=-25 (B), 47=-25 (B), 48=-25 (B)



Scale =	1:66.1
---------	--------

Plate Offsets ()	X, Y): [3:0-6-9,Edge],	, [4:0-3-5,Edge], [10:0-	-3-4,Edg	je], [13:0-3-8,Ec	lge], [14:0-2-8,0-	·1-8], [17:E	Edge,0-3-8], [20:0-4-0	,0-0-8],	[21:Edg	e,0-2-8], [22:0-3-8,Edge]
Loading TCLL (roof) TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD WEBS	(psf) 25.0 10.0 0.0* 10.0 2x4 SPF No.2 2x4 SPF No.2 *Exce No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201 1) PF 2)	18/TPI2014) Unbalanced this design.) Wind: ASCE Vasd=91mpl	CSI TC BC WB Matrix-S roof live loads ha 7-16; Vult=115n n; TCDL=6.0psf; closed; MWFRS	0.68 0.78 0.70 ave been of pph (3-sec BCDL=6.	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL) considered for cond gust) Opsf; h=25ft;	in -0.28 -0.58 0.20 0.10 or Cat.	(loc) 16-17 16-17 16 19-20	l/defl >886 >437 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT18HS Weight: 128 lb	GRIP 197/144 197/144 FT = 10%
BRACING TOP CHORD	No.2 Structural wood she	athing directly applied cept end verticals, and	lor 3	 cantilever lef right exposed Provide aded All plates are This truss had 	t and right exposed; d; Lumber DOL= quate drainage to MT20 plates un as been designed ad nonconcurren	sed ; end v 1.60 plate o prevent iless other d for a 10.0	vertical left an grip DOL=1. water ponding wise indicate 0 psf bottom	nd .60 g. ed.					
	(size) 13=14-11 16=14-11 Max Horiz 22=137 (L Max Uplift 13=-239 (16=-466 (Max Grav 13=474 (L	6-16, 9-16 -8, 14=14-11-8, -8, 22=0-3-8	7),), 8	 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 88 lb uplift at joint 22, 466 lb uplift at joint 16, 291 lb uplift at joint 14 and 239 lb uplift at joint 13. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and 									
FORCES	(lb) - Maximum Com Tension		, 	R802.10.2 a	nd referenced sta	andard AN	ISI/TPI 1.						
TOP CHORD	1-2=0/43, 2-3=-507/ 4-5=-390/118, 5-6=- 7-8=-423/1663, 8-9=	342/111, 6-7=-423/16 =-423/1663, 1=-385/299, 11-12=0,	É L	 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 									AISSOLA
BOT CHORD		21=-13/81, 3-20=-27/4 19=-86/654, 18=-359/161, -16=-684/190,	59,								R	Sevi	
WEBS NOTES	,	357/71, 6-17=-154/987 16=-348/141,	7,								No.	PE-2001	ENGR.
NUIES												and and	31,2021

Scale =	1:66.2
---------	--------

3cale = 1.00.2														
Plate Offsets (2	X, Y): [2:Edge,0-0-11], [3:0-5-14,Edge], [5:0)-4-12,0-	·3-0], [9:0-3-5,E	Edge], [11:0-4-7,0	-0-10], [1	4:0-2-8,0-1-8], [17:0-:	2-8,0-1-8	8], [19:0-	4-8,0-1	1-8], [20:Edge,0-2	2-8]	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-S	0.81 0.61 0.46	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.28 -0.52 0.38 0.19	(loc) 15-17 15-17 11 15-17	l/defl >999 >823 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18SHS Weight: 155 lb	GRIP 197/144 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2400F 2.0E, 9-12:2> 2x4 SPF No.2 *Exce 3-16,16-13:2x4 SPF SP DSS 2x3 SPF No.2 *Exce No.2, 13-10:2x6 SPI	ept* 20-19:2x3 SPF No 2100F 1.8E, 13-11:2x ept* 21-22,23-24:2x4 S F No.2 eathing directly applied cept	2) .2, .8 SPF 3) 4)	this design. Wind: ASCE Vasd=91mph II; Exp C; En cantilever lef right exposed Provide aded All plates are This truss ha chord live loa	roof live loads ha 7-16; Vult=115m h; TCDL=6.0psf; l closed; MWFRS t and right expose d; Lumber DOL= quate drainage to a MT20 plates unl is been designed ad nonconcurrent nas been designed	ph (3-sea BCDL=6. (enveloped; end v 1.60 plate prevent less othe for a 10. with any	cond gust) Opsf; h=25ft; (e) exterior zor vertical left an a grip DOL=1. water ponding rwise indicate 0 psf bottom other live loa	Cat. ne; d 60 g. d.						
	Rigid ceiling directly bracing. Except: 10-0-0 oc bracing: 1 1 Row at midpt (size) 2=0-3-8, Max Horiz 2=155 (L0 Max Uplift 2=-133 (L	v applied or 10-0-0 oc 17-18 10-14 11=0-3-8 C 7) .C 5), 11=-133 (LC 4)	7) 8)	 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 7) Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 133 lb uplift at joint 2 and 133 lb uplift at joint 11. 										
FORCES	(lb) - Maximum Com Tension 1-2=0/22, 2-3=-1234 4-5=-2724/346, 5-6= 6-7=-3095/402, 7-8= 8-9=-3095/403, 9-10	- 4/119, 3-4=-3147/374, =-3104/435, =-3095/402, D=-2687/295,	9) 10	 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 										
BOT CHORD	10-13=-81/1906, 5-1 9-15=-288/1209, 6-1	D=-8/109, -19=-428/2802, 6-17=-449/3104, 4-15=-164/2180, 1-13=-326/4452 =0/426, 10-14=-1463/2 17=-279/1159,	71,	OAD CASE(S)	Standard							Settorum PE-2001	ER *	
NOTES												C'SSIONA	LEL	

March 31,2021

														RELEA	SE FOR CONSTRUCT	TION
Job		Truss		Truss T	уре		Qty	/	Ply	Lot	t 26 OS				TED FOR PLAN REVI	
Lot 26 OS		A4		Hip			1		1	Jot	o Refere	nce (op	tional		ELOPMENT SERVICE 145421548 'S SUMMIT, MISSOUR	
Wheeler Lumber,	Waverly, KS - 6	6871,				Run: 8.43 S Ma	r 22 2021	Print: 8.4	430 S Mar	22 202	1 MiTek	ndustries	, Inc. T	ue Mar 10 124:	31/201	21
						ID:VxWg?wA2R	3MakUkj2l	0tcxyD2	rv-RfC?Ps	B70Hq	3NSgPqr	1L8w3ulT	XbGK	VrCDoi7342JS?1	017202	
	-0-10-8	ر د	5-10-7	10-0-0		18-1-4			26-					33-5-12	36-1 36-0-0	_
	0-10-8	5	5-10-7	4-1-9	6x8=	8-1-4	2x4		7-10)-12		6x8=		7-5-12	2-6-4 0-10)-8
0-1-13 0-1-13				0-1-13 ⊥	5		6	⊠			X	7				
_ <mark>~ -</mark> 4 <u></u> + + + -			12 8				•									
			2x4							/				\sim		
-10 7-2-3 6-2-3			4						//							
7-9-10 7-2. 6-2.															^{6x8} ∢ 8	
		3												×		
	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$		0 17 0 17		15	e 22	14	13		23	3	12			9	10
\top \leftarrow 2		4x9 <u>=</u>			U	<u> </u>	3x10) =				3x10:	-			1
	4x	:9= 3x	4 II 4x9 II			2x4 u		3x6=							M18SHS 8x12 = 5x12 _{>}	
					2x4 II 2 2x4 II	2x4 II									6∟ 12	
					12-8-12 10-10-4	2										`
	F	2-3-8 2-3-8	10-1-		10-8-8 12	10-8 18-1-4		3-15		26-1-4				33-8-8	36-0-0)
		2-3-8	7-9-1	2	0-1-12	1-12 5-2-12	1-3	2-11		6-9-5				7-7-4	2-0-0	
Scale = 1:66.4	V), D:Edge	0 0 1 1 1	[2:0 6 2 Edge] [5:	0 4 4 2 0 2	1-10-8		1 0] [16]	0.2.00	1 01 14	S-0 4 9	20091					
			, [3:0-6-2,Edge], [5:		-0], [7:0-4-12,0		1-8], [15]							_		
Loading TCLL (roof)		(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.82	DEFL Vert(L		in 0.34	(loc) 15-16	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144	
TCDL BCLL		10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES		BC WB	0.70 0.98	Vert(0 Horz(,	0.63 0.43	15-16 9	>679 n/a	240 n/a	M18SHS	197/144	
BCDL		10.0	Code		8/TPI2014	Matrix-S		Wind			15-16	>999	240	Weight: 158 I	b FT = 10%	
LUMBER TOP CHORD	0.4 ODE 0400		*	2)		7-16; Vult=115m; ; TCDL=6.0psf; E				+						
	2400F 2.0E		*Except* 1-5:2x6 S		II; Exp C; En	closed; MWFRS (t and right expose	envelope	e) exter	ior zone;							
	2100F 1.8E, *	11-9:2x8			right exposed	l; Lumber DOL=1	.60 plate	grip D	OL=1.60							
	2x3 SPF No.2 18-20,19-21:2		ot* 11-8:2x6 SPF No No.2	4)	All plates are	uate drainage to MT20 plates unle	ss other	wise in	dicated.							
BRACING TOP CHORD	Structural wo	od shea	thing directly applie			s been designed										
	2-2-0 oc purli	ns, exce		6)		as been designed n chord in all area				sf						
BOT CHORD	Rigid ceiling		applied or 10-0-0 or	;	3-06-00 tall b	y 2-00-00 wide w	ill fit betw	een th	e bottom							
	bracing. 1 Row at mid	pt 8	3-12	7)	Bearing at joi	nt(s) 9 considers PI 1 angle to grai	parallel t	o grain	value							
REACTIONS (size) 2= Max Horiz 2=	0-3-8, 9⊧ 190 (LC		0)	designer sho	uld verify capacity	of beari	ng surf	ace.							
N	/lax Uplift 2=	-147 (LC	C 8), 9=-147 (LC 9) C 2), 9=1754 (LC 2	8)	bearing plate	nanical connection capable of withst	anding 1									
FORCES	(lb) - Maximu		pression/Maximum	9)	, This truss is (17 Ib uplift at joint designed in accor	dance w									
	Tension 1-2=0/22, 2-3	8=-1328/	144, 3-4=-3044/25	5,		Residential Code nd referenced star										
	4-5=-2664/24 6-7=-2669/26			10		rlin representatior				e					an .	
	8-9=-5783/43 2-17=-88/278	84, 9-10=	=0/24		bottom chord	l	along alo	top un						OF	MISSOL	
	3-16=-249/24	21, 15-1	-22=-244/2147,	LC	DAD CASE(S)	Standard							6	ATU	W 200	
	13-14=-89/21	19, 13-2	23=-89/2119,										B	· ·	TT M.	λ .
	9-11=-350/49		12=-326/3983,										84	·[· \★	8
	5-15=-41/827 6-14=-659/27		233/752, =-246/800, 7-12=0/	590,									82	leath	Sendo	8
	8-12=-1959/4 4-15=-755/23	35, 8-11											8ª		1018807	1
NOTES													Q	- Set	OF	
 Unbalanced this design. 		is nave t											SION	AL EL		
														Marc	ch 31,2021	

														RELEASE	FOR CONSTRUCTION
Job		Truss		Truss T	уре		Qty		Ply	Lot	26 OS				D FOR PLAN REVIEW OPMENT SERVICES 145421549
Lot 26 OS		A5		Hip			1		1	Job	Refere	ence (op	tional	LEE'S	I45421549 SUMMIT, MISSOURI
Wheeler Lumber	r, Waverly, KS -	66871,				Run: 8.43 S Mai ID:VxWg?wA2R3	r 22 2021 F	Print: 8.4	430 S Mar	22 2021	1 MiTek	Industries	s, Inc. ⁻		31/2021
						ID.VXVVQ?WA2K	SIVIAKUKJZIV	JICXYD2	IV-RIC (PS	Блони	ылодеці	LOWSUII	ADGK	VICD0173-230-1	36-10-8
	<u>1-</u> -	9-11 9-11	<u>7-7-14</u> 5-10-3		2-0-0 -4-2	<u>18-0-0</u> 6-0-0			<u>24-0-0</u> 6-0-0			28-9-5 4-9-5		<u>33-7-4</u> 4-9-15	<u>36-0-0</u> 2-4-12 ₀₋₁₀₋₈
					10x1	2=	2x4 II			6	6x6=				0 10 0
66					4 4 4			3		J .	6 ₽∿				
8 0						\				//					
			12 81	3x6 и 3								\searrow	_ 4	lx9 ≈	
			01	P									X	7	
8-11-3 8-6-12 8-6-12								//							
															2x4 II
		2				7	\mathbb{N}	/				/			
			9	15	21	22	14	13	23		<u>理</u> 12				9 11 9
\perp \perp	Ä	16	~	6x6=	0 - 6		3x10=		20		3x6=				8x12=
	4x9		5x12 II		2x4 II 22	(4 I I		4x9=							5x12 _≈
		2x4	И		2x4 II 2x 12-8-12	(4 u									6∟ 12
	ı 1-	2-3-8 9-11	7-7-14	ı 10-8-	10-10-4	0 ⁻⁸ 18-0-0	19-7	7-1	24-1-4	4	1		33	-8-8	36-0-0 1 35-8-8
	1-	9-11 0-5-13	5-4-6		100-1-12 0-1 1-10-8		1-7	-1	4-6-3		1			7-4	2-0-0 0-3-8
Scale = 1:65.3 Plate Offsets (X, Y): [1:0-8], [2:0-2-15,0-1-14]	, [4:0-9-8,0-)-2-3], [12:0-2-8,0-	1-8], [15:	0-2-8,0	0-3-01						
Loading		(psf)	Spacing	2-0-0		CSI		DEFL		in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15		тс	0.65	Vert(I	_L) -	0.43	14-15	>987	360	MT20	197/144
TCDL BCLL		10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES		BC WB	0.67 0.76	Vert(Horz(,	0.77 0.40	11-12 9	>555 n/a	240 n/a		
BCDL		10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind	(LL)	0.15	11-12	>999	240	Weight: 176 lb	FT = 10%
LUMBER TOP CHORD	2x8 SP DS	S *Excen	t* 4-6:2x4 SPF No.	2) 2		7-16; Vult=115mp h; TCDL=6.0psf; B				t.					
BOT CHORD	6-10:2x4 SI	PF 2100F				closed; MWFRS (t and right expose									
BOT CHORD	2.0E, 11-9:	2x8 SP D	ISS, 13-11:2x4 SPF ISS, 13-11:2x4 SPF		right expose	d; Lumber DOL=1	.60 plate	grip D	OL=1.60						
WEBS			pt* 16-2,17-19,18-2	- /	This truss ha	s been designed f	for a 10.0	psf bo	ottom						
BRACING	SPF No.2			5)	* This truss I	ad nonconcurrent has been designed	d for a live	e load	of 20.0ps	f					
TOP CHORD	Structural v 2-7-15 oc p		athing directly appl	ied or		n chord in all area by 2-00-00 wide wi			0						
	2-0-0 oc pu	urlins (3-6	-3 max.): 4-6.	6)		ny other members, int(s) 9 considers									
BOT CHORD	bracing, E	xcept:	applied or 10-0-0 o	JC ,		TPI 1 angle to grai									
	6-0-0 oc br 10-0-0 oc b			7)	Provide med	hanical connection capable of withst	n (by othe	ers) of	truss to						
REACTIONS	(size) 1 Max Horiz 1	1=0-3-8, 9 1=-220 (L		0)	joint 1 and 1	66 lb uplift at joint	9.		-						
	Max Uplift 1	1=-134 (L	C 8), 9=-166 (LC 9 _C 2), 9=1764 (LC 2		International	designed in accor Residential Code	sections	R502.	11.1 and						
FORCES	(lb) - Maxim		pression/Maximum			nd referenced star Irlin representatior				9					
TOP CHORD	Tension 1-2=-1104/	159, 2-3=	-3020/212,		or the orient	ation of the purlin a d.	along the	top ar	nd/or						an a
	3-4=-3280/- 5-6=-2194/	441, 4-5=	-2193/184,	L	DAD CASE(S)									F. OF M	AISSO
BOT CHORD		412, 8-9=	-5496/285, 9-10=0	/24									A	151	N S
20. 01010	15-21=-179	9/1875, 2 ⁻	1-22=-179/1875,										A.	SCOTT SEVI	
	13-23=-30/	1917, 12-	3-14=-30/1917, -23=-30/1917,										8*		a *8
WEBS	2-16=0/61,	4-15=-29	1=-177/4598 91/1567, 4-14=-148	/597,									83	Scotter	inter a
	5-14=-489/2 6-12=-64/7		l=-184/535, 659/244,										N.	PE-2001	018807
NOTES			1=0/723, 3-15=-96	6/363									Y	Ser.	ENGLE
1) Unbalance		ads have	been considered for	or										S'SIONA	LE
this desigr	٦.													March	31,2021
WARN Design vice	IING - Verify desig	gn paramete	ers and READ NOTES Of connectors. This design	N THIS AND IN	CLUDED MITEK R	EFERENCE PAGE MII-	7473 rev. 5/	19/2020	BEFORE U	SE.					

													REL	EASE FOR CONSTRUCTION
Job		Truss		Truss	Туре		Qty	Ply		Lot 26 OS				
Lot 26 OS		A6		Hip			1	1		lah Datas				EVELOPMENT SERVICES 145421550 .EE'S SUMMIT, MISSOURI
Wheeler Lumber,	, Waverly, KS - 6					Run: 8.43 S Mar 22	2021 Print	: 8.430 S N	/lar 22	Job Refere 2021 MiTek Ir				⊉√21/∿@ົ21
		·				ID:VxWg?wA2R3Ma	akUkj2l0tcx	D2rv-RfC	PsB7	0Hq3NSgPqn	L8w3uITX	bGKW	rCDoi7J4zJC?	
		-0-10-8	5-10-5	-	12-9-4	14-0-0	22-0-0			27-1-10			3-5-12	36-10-8 36-0-0
		0-10-8	5-10-5	1	6-10-15	1212	8-0-0			5-1-11	1	(6-4-2	2-6-4 0-10-8
						M18SHS 5x12 = 2x4 II		f	6x6=					
	0-1-13 0-1-13				0-1-13	5 	a 🖂	⊠ .	6					
	0- <u>+</u>				-0	4		[\sim				
											3x6👟			
				12 81			<				7			
ကု				3x6 #			\\ \			/		\sim		
10-3-3	9-10-3 9-10-3			3		<u>ы</u>							\searrow	
														6x8 、
													R	Š
							20		14	13	12			9 11 10
\perp		18		17		====18 = ⊥	20		14 3x10=	13 4x9=	12 3x10=	-		11 8x8=
		8x	8 ≠	6x8=		3x6 II								5x12
						6x12=								6∟ 12
			5-10-5	1	12-10-8	22	2-1-4			27-1-10		3	33-8-8	¹² 36-0-0
Scale = 1:73.1		-	5-10-5	1	7-0-3	9-2	2-12		1	5-0-7	1	6	6-6-14	2-0-0 0-3-8
Plate Offsets (2	X, Y): [5:0-8-1	2,0-2-0	, [6:0-3-4,Edge], [1	2:0-2-8,0-	·1-8], [16:Edge,(0-2-8], [18:0-3-12,0-2-	-12]						-	
Loading		(psf)	Spacing	2-0-0		CSI		EFL		in (loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) TCDL		25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15				ert(LL) ert(CT)		40 14-15 70 14-15	>999 >614	360 240	M18SHS MT20	197/144 197/144
BCLL		0.0*	Rep Stress Incr	YES		WB	0.97 Ho	orz(CT)	0.2	25 9	n/a	n/a		
BCDL		10.0	Code		18/TPI2014	Matrix-S		ind(LL)		13 11-12	>999	240	Weight: 16	67 lb FT = 10%
LUMBER TOP CHORD		2 *Exce	pt* 5-6:2x4 SPF 21	00F	this design.	roof live loads have b			or					
BOT CHORD	1.8E 2x4 SPF 210	0F 1.8E	*Except* 18-16:2>			: 7-16; Vult=115mph (h; TCDL=6.0psf; BCE			Cat.					
			SPF No.2, 11-9:2x			nclosed; MWFRS (env ft and right exposed ;								
WEBS	2x3 SPF No.		pt* 14-5:2x4 SPF N	lo.2,	right expose	d; Lumber DOL=1.60) plate gri	DOL=1	.60					
BRACING	11-8,18-2:2x	6 SPF N	10.2	2		quate drainage to pre e MT20 plates unless								
TOP CHORD			athing directly appl	ieu ui		as been designed for ad nonconcurrent witl			ads.					
		,	cept end verticals, a -12 max.): 5-6.		6) * This truss	has been designed fo	or a live lo	ad of 20.						
BOT CHORD	Rigid ceiling bracing, Ex		applied or 10-0-0 o	DC	3-06-00 tall	m chord in all areas w by 2-00-00 wide will fi	it betweer	n the bott						
1 Dow of midor	6-0-0 oc bra		-17.	7		ny other members, wi bint(s) 9 considers par								
1 Row at midpt WEBS	1 Row at mic	dpt	5-14, 8-12			TPI 1 angle to grain for ould verify capacity of								
REACTIONS	(size) 9= Max Horiz 18		8=0-3-8 C 6)	8	 Provide med 	chanical connection (b	by others)	of truss						
	Max Uplift 9=	₌-183 (L	C 9), 18=-184 (LC	,		e capable of withstand 183 lb uplift at joint 9.		ib uplift a	t					
FORCES			.C 2), 18=1753 (LC pression/Maximum		/	designed in accordar Residential Code se			and					
TOP CHORD	Tension 1-2=0/43. 2-3	3=-2439	/229, 3-4=-2275/24	14.	R802.10.2 a	nd referenced standa	ard ANSI/	TPI 1.					A55	A COM
	4-5=-2089/3	77, 5-6=	-1716/237,	,	or the orient	ation of the purlin alor			5120				FE	OF MISSOL
		63, 9-10	=0/24, 2-18=-1660		bottom chor OAD CASE(S)							A	ST SC	COTT M.
BOT CHORD	17-18=-259/0 4-15=-222/24		17=-60/43, 15-16= 9=-96/1704,	0/127,	(-)						4	Ø.	~ /	SEVIER
			20=-96/1704, 13=-13/2172,								ς	g ö		0
	11-12=-315/3	3860, 9-	11=-352/4794									V	cette	ome aller
WEBS	3-17=-261/12 3-15=-267/18		7=-226/2110, =-269/949,									N	PE-2	2001018807
	5-14=-177/19	91, 6-14		7/314								Y	J. Son	JON H
	8-11=-63/21			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									A SIO	NAL ENG
NOTES													-	arch 31,2021

								RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Lot 26 OS		AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 145421551
Lot 26 OS	A7	Hip		1	1	Job Reference (optional	I45421551 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS	- 66871,		Run: 8.43 S Mar 22 2 ID:VxWg?wA2R3MakI	021 Print: 8 Jkj2l0tcxyD	.430 S Mar 2 2rv-RfC?PsB	2 2021 MiTek Indust 70Hq3NSgPqnL8w3	ries, Inc. T uITXbGK	ue Mar 08:431/2921
	-0-10-8 4-4-5 			-0-0 0-0 6x6	7-1	<u>1-11</u> -11	<u>33-6</u> 6-5	
11-2-3 11-2-3 11-2-3 0-1-13	3x6 3 3 2 2 8x8 = 20 6x8 =	19 22	A	23 16 3x1		3x6* 8 3x6* 9 9 15 14 3x6= 3x10	=	4x9 = 10 10 11 13 12 M18SHS 8x12 = 5x12 = 5x12 = 6L 12 36-0-0 8.8 35.8.8
Scale = 1:77.9	<u>4-4-5</u> 4-4-5	5-2-3 6	6-4-4 4-	-1-4 2-8		1-11 0-7	<u>33-</u> 6-6-	0-0 00-0-0
Plate Offsets (X, Y): [6:0-3	3-5,Edge], [7:0-3-4,Edge], [14:0	-2-8,0-1-8], [17:0-2-8,0-1-8	8], [21:0-3-12,0-2-12]					
Loading TCLL (roof)	(psf) Spacing 25.0 Plate Grip DOL		CSI TC 0.	79 Vert(in (loc) l/de .25 13-14 >99		

TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.79	Vert(LL)	-0.25	13-14	>999	360	MT20	197/144	
TCDL	10.0	Lumber DOL	1.15		BC	0.78	Vert(CT)	-0.44	13-14	>977	240	M18SHS	197/144	
BCLL	0.0*	Rep Stress Incr	YES		WB	0.72	Horz(CT)	0.28	11	n/a	n/a			
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.14	13-14	>999	240	Weight: 169 lb	FT = 10%	
BCDL LUMBER TOP CHORD BOT CHORD WEBS BOT CHORD WEBS REACTIONS	10.0 2x4 SPF No.2 2x4 SPF No.2 *Exce 13-11:2x8 SP DSS, 1.8E 2x3 SPF No.2 *Exce No.2, 21-2:2x6 SPF Structural wood shea 2-2-0 oc purlins, exc 2-2-0 oc purlins, exc 2-2-3-2408 4-5=-1945/230, 5-6= 6-7=-1515/268, 7-8= 8-9=-1951/216, 9-10 10-11=-5537/504, 1* 2-21=-1711/217 20-21=-258/614, 19- 4-18=-33/667, 18-22 17-22=-252/2359, 17 16-23=-27/1605, 15- 14-13=-385/4677 3-20=-509/139, 18-2	Code pt* 19-4:2x3 SPF No 15-13:2x4 SPF 21001 pt* 16-6,13-10:2x4 S No.2 athing directly applied cept end verticals, an -0 max.): 6-7. applied or 10-0-0 oc 4-17, 6-16, 9-16, 10- 21=0-3-8 LC 6) LC 9), 21=-198 (LC 8 (LC 16), 21=1790 (LC pression/Maximum 3/241, 3-4=-2686/319 e-1829/258, -2696/263, 1-12=0/24, -20=-21/59, 18-19=0/ =-2696/263, 1-12=0/24, -20=-21/59, 18-19=0/ =-269/2135, 16850/2198, -14=-343/3938, 20=-289/2135, 189/295, 6-17=-120/8 =-81/760, =-0/518,	N 1) 1) 12, F 2) PF dor 3) 4) 5) 6) 14 () () () () () () () () () ()	OTES Unbalanced I this design. Wind: ASCE Vasd=91mph II; Exp C; Enc cantilever left right exposed Provide adeq All plates are This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and an Bearing at joi using ANSI/T designer sho Provide mech bearing plate joint 21 and 1 This truss is a International R802.10.2 ar	roof live loads hav 7-16; Vult=115mp ; TCDL=6.0psf; B closed; MWFRS (e and right exposed ; Lumber DOL=1. uate drainage to p MT20 plates unle s been designed fi d nonconcurrent v as been designed n chord in all areas y 2-00-00 wide wil y other members, nt(s) 11 considers? PI 1 angle to grair uld verify capacity nanical connection capable of withsta 97 lb uplift at joint designed in accord Residential Code nd referenced stan flin representation tion of the purlin a	h (3-sec CDL=6.0 envelope d; end v 60 plate prevent v ss other or a 10.0 vith any for a liv s where ll fit betw with BC parallel n formula of beari (by oth anding 1 11.1 sections dard AN does no	Wind(LL) considered for opps; h=25ft; (p) exterior zon ertical left an grip DOL=1.6 water ponding wise indicatec e load of 20.0 a rectangle veen the botto DL = 10.0psf. to grain value a. Building ng surface. ers) of truss to 98 lb uplift at ith the 2018 R502.11.1 ai (SI/TPI 1.	0.14 r Cat. le; d 50 l. d. ds. lpsf om e o	13-14		240		MISSOLA F M. ER BER 018807	
												March	31 2021	

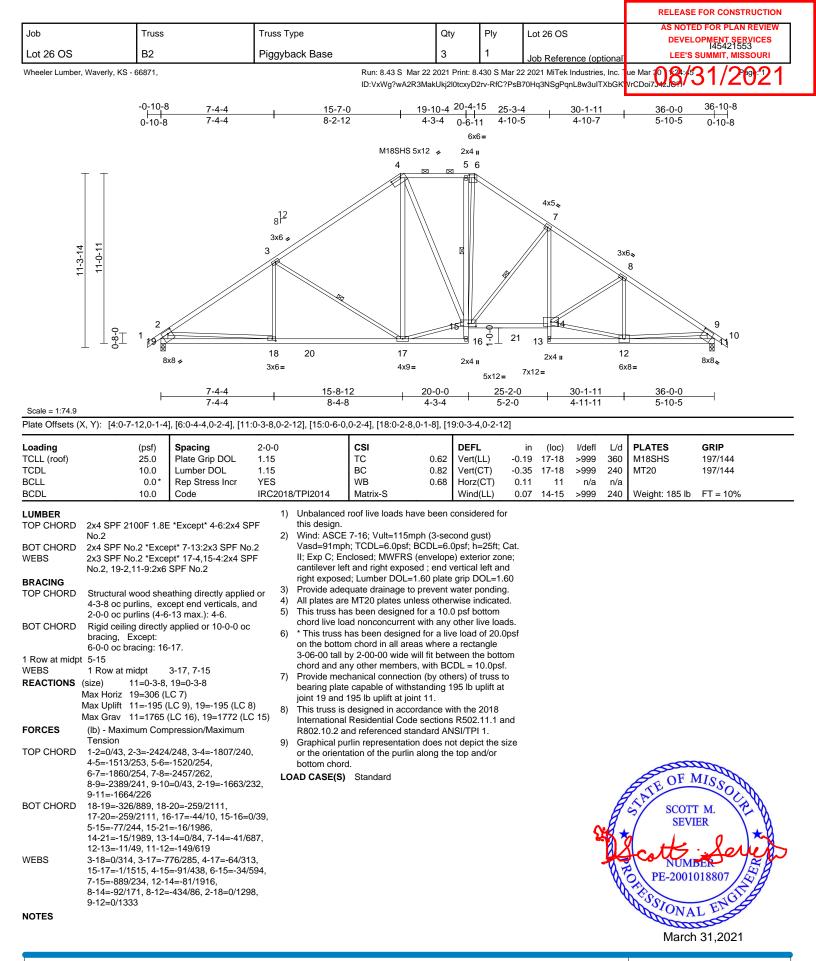
March 31,2021

									Γ	RELEA	SE FOR CONSTRUCTION	
Job	Truss	Truss Type		Qty	Ply	Lc	ot 26 OS				TED FOR PLAN REVIEW	1
Lot 26 OS	B1	Piggyback	Base	6	1	Jo	b Refere	nce (optic	onali		ELOPMENT SERVICES 145421552 SUMMIT, MISSOURI	
Wheeler Lumber, Waverly, KS -	66871,		Run: 8.43 S ID:VxWg?w	Mar 22 2021 Pr A2R3MakUkj2l0t	nt: 8.430 S xyD2rv-RfC	Mar 22 202	21 MiTek In	dustries, In	ic. Ti e	Mar 301:44 CDoi7J42CC	/J1/ZUZ1	
	-0-10-8 4-4-5	9-5-4	15-7-0	20-4-15		27-1-1 ²			3-6-1		36-10-8 -0-0	
	0-10-8 4-4-5	5-0-15	6-1-12	4-9-15 x6=	6x6=	6-8-11		1	6-5-1	2-	5-4 0-10-8	
Scale = 1:77.2 Plate Offsets (X, Y): [5:0-4 Loading	8x8 ≥ 4-4-5 4-4-5	8 ¹² 4 3x6 = 2 18 6x8 = 2 - 9-6-8 5-2-3	7x12= <4 II <u>15-8-4</u> 6-1-12	20-3-11 4-7-7 2,0-2-12]	14 3x10=	27-1-11 6-9-15	13 1 3x6=	3x10 =	33-8-1 6-6-11	4x9 8 11 M18SH5 6 1 8 3 2- 9 LATES	$9 \\ 10 \\ 3x12 = 5x12 \\ 5x12 \\ 2 \\ 36 - 0 \\ \frac{8 - 8}{10 - 0} \\ 0 - 3 - 8 \\ 36 \\ 0 - 0 \\ 0 - 3 - 8 \\ 36 \\ 0 - 0 \\ 0 - 3 - 8 \\ 36 \\ 0 - 0 \\ 0 - 3 - 8 \\ 36 \\ 0 - 0 \\ 0 - 3 - 8 \\ 36 \\ 0 - 0 \\ 0 - 3 - 8 \\ 0 - 0$	
Loading TCLL (roof) TCDL	(psr) Spacing 25.0 Plate Grip D 10.0 Lumber DO	OL 1.15	TC BC	0.79	JEFL /ert(LL) /ert(CT)		11-12	>999 3	360	MT20 M18SHS	GRIP 197/144 197/144	
BCLL	0.0* Rep Stress		WB		Horz(CT)	0.28	9		n/a			

BCDL	10.0	Code	IRC2018	/TPI2014	Matrix-S	0.72	Wind(LL)	0.
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	11-9:2x8 SP DSS, 13 1.8E 2x3 SPF No.2 *Exce No.2, 19-2:2x6 SPF I Structural wood shea	pt* 14-5,11-8:2x4 SPI No.2 athing directly applied sept end verticals, and -10 max.): 5-6.	F 3) 4) 5) I or	Vasd=91mph II; Exp C; Enc cantilever left right exposed Provide adeq All plates are This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an	7-16; Vult=115 ; TCDL=6.0ps closed; MWFR t and right expo t; Lumber DOL juate drainage MT20 plates u s been designe d nonconcurre as been design n chord in all ai y 2-00-00 wide y other membe	f; BCDL=6. S (enveloped) and the set of the	Opsf; h=25ft; e) exterior zor vertical left an g grip DOL=1. water ponding twise indicate 0 psf bottom other live loa ve load of 20.0 a rectangle ween the bott CDL = 10.0psf	ne; nd .60 g. ed. ads. 0psf om f.
	•	LC 6) C 9), 19=-195 (LC 8)	8)	using ANSI/T designer sho Provide mech bearing plate	int(s) 9 conside PI 1 angle to g uld verify capa nanical connec capable of wit 194 lb uplift at j	rain formul city of bear tion (by oth hstanding 1	a. Building ing surface. ers) of truss t	to
FORCES	(lb) - Maximum Com Tension	<i>,,</i>	9)	, This truss is o	designed in ac Residential Co	cordance w		and
TOP CHORD	1-2=0/43, 2-3=-2364 4-5=-1939/264, 5-6= 6-7=-1950/248, 7-8=	,	10)	R802.10.2 ar Graphical put	nd referenced s rlin representat ition of the pur	standard AN	NSI/TPI 1. ot depict the s	
BOT CHORD	18-19=-254/601, 17- 4-16=-35/632, 15-16 15-20=-27/1599, 14- 13-14=-42/2181, 12- 11-12=-340/3906, 9-	20=-27/1599, 13=-42/2181,	^{97,} LO	AD CASE(S)				
WEBS	3-18=-504/138, 16-1 3-16=0/245, 4-15=-9 5-14=-197/197, 6-14	8=-285/2084, 52/287, 5-15=-118/81 =-73/755, =0/512, 8-12=-1817/3	,					
NOTES								

0.14 11-12 >999

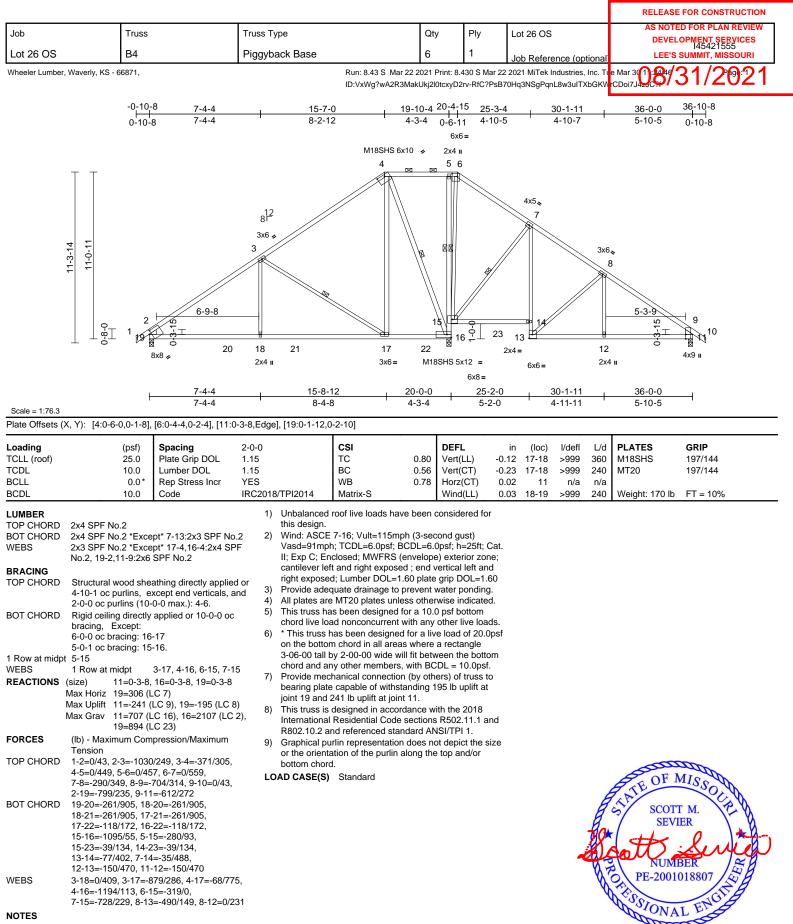
chanical connection (by others) of truss to e capable of withstanding 195 lb uplift at 194 lb uplift at joint 9.


240 Weight: 168 lb FT = 10%

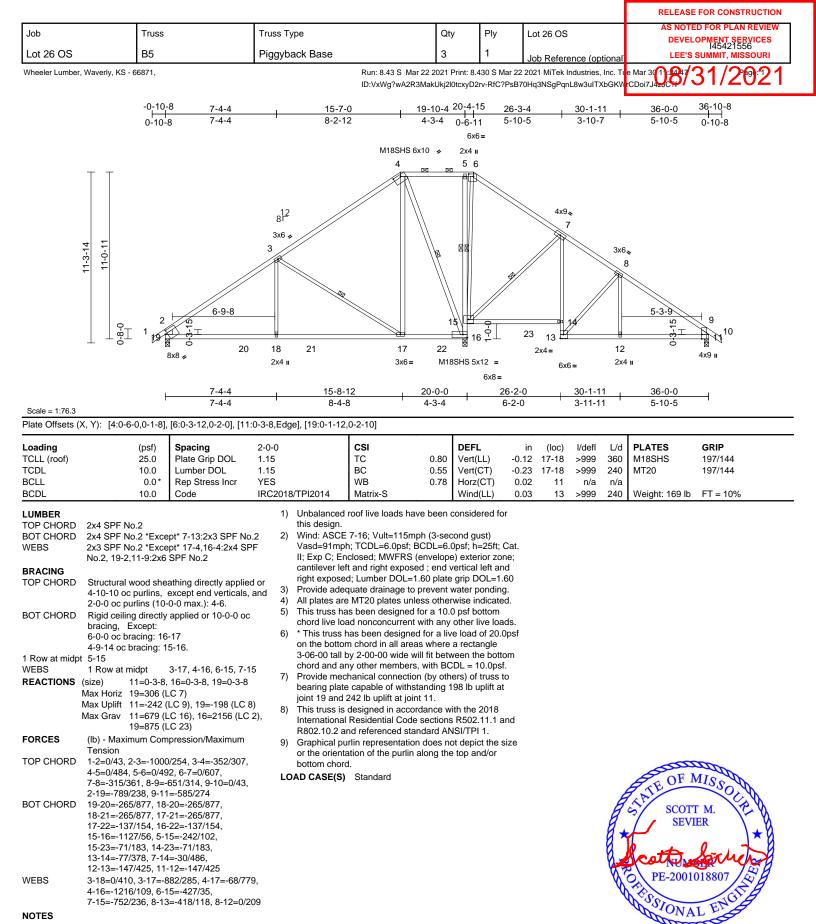
MiTek°

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

1) Unbalanced roof live loads have been considered for this design.


16023 Swingley Ridge Rd Chesterfield, MO 63017

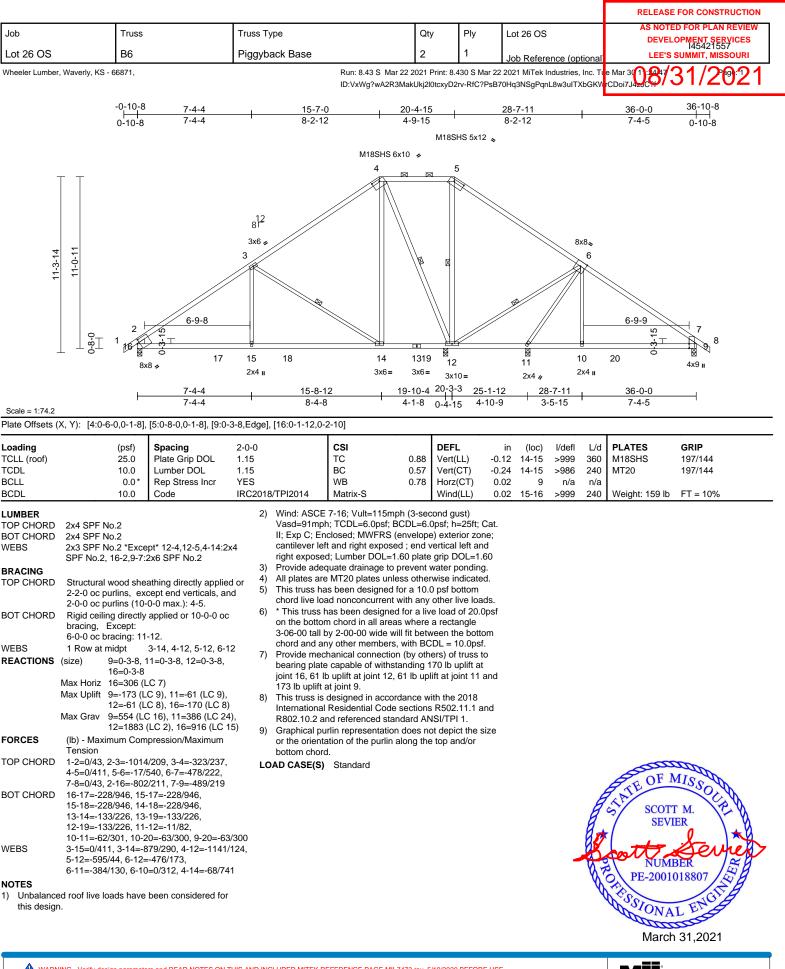
									RELEASE FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Lot 26 OS		AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES
Lot 26 OS	B3		Piggyback Base		1	1	Job Reference	e (optional)	DEVELOPMENT SERVICES 145421554 LEE'S SUMMIT, MISSOURI
Wheeler Lumber	r, Waverly, KS - 66871,			Run: 8.43 S Mar 22	2021 Print: 8	.430 S Mar 2	2 2021 MiTek Indu	stries. Inc.	ue Mar 108:431/299:21
				ID:VxWg?wA2R3Mal		2rv-RfC?PsB	70Hq3NSgPqnL8v	v3ulTXbGK	
		-10-8 7-4-4 10-8 7-4-4	<u> </u>		-4-15	<u>25-3-4</u> 4-10-5	<u>30-1-11</u> 4-10-7		<u>5-0-0</u> 36-10-8 10-50-10-8
	0-	10-0	02.	8x8 🍫 2x4 II	6x6=		1.07	Ū	
		2 20 7x12 +	8 ¹² 3x6 • 3 19 5x12=	5x12= 3x4 II 3x6 II 7x12= 2x4	" 10-4	6x8=		3x6 * 8 12 6x8=	9 9 10 10 8x8
		7-4-4	<u>15-9</u> 8-5-	-8 17-8-8	20-0-0	25-2-0 5-2-0	<u>30-1-11</u> 4-11-11		<u>8-0-0</u> 10-5
Scale = 1:83.8	X Y)· [4·0-5-4 0-3 0]		0-3-8,0-3-0], [14:0-3-4,0		0-1-12		r 11 ⁻ 11	5-	
		1		1	-	-	in (1) ''		
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		0.72 Vert		. ,	lefl L/d 999 360	PLATES GRIP MT20 197/144
TCDL BCLL	10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES		0.52 Vert	. ,		999 240 n/a n/a	
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S	Wind			99 240	Weight: 196 lb FT = 10%
			·	E 7-16; Vult=115mph (ph; TCDL=6.0psf; BCD					
TOP CHORD	No.2	E *Except* 4-6:2x6 S	II; Exp C; E	nclosed; MWFRS (env eft and right exposed ; of	elope) exte	erior zone;			
BOT CHORD	2x4 SPF No.2 *Exce No.2	•	right expos	ed; Lumber DOL=1.60	plate grip [DOL=1.60			
WEBS	2x3 SPF No.2 *Exce No.2, 20-2,11-9,21-	ept* 14-6,22-23:2x4 15:2x6 SPF No.2	4) This truss h	equate drainage to prev has been designed for a	a 10.0 psf b	ottom			
BRACING TOP CHORD	Structural wood she	eathing directly applic cept end verticals, a	ed or 5) * This truss nd on the botto 3-06-00 tall	bad nonconcurrent with has been designed for om chord in all areas with by 2-00-00 wide will fit by a chord moments	a live load	l of 20.0psf angle			
BOT CHORD	bracing, Except: 6-0-0 oc bracing: 12	y applied or 10-0-0 od 2-13.	6) Provide me	any other members. chanical connection (b te capable of withstand			t		
1 Row at midp WEBS	t 5-16 1 Row at midpt	3-17	This truss is	s designed in accordan al Residential Code sec					
	(size) 11=0-3-8 Max Horiz 20=-364 Max Uplift 11=-110 Max Grav 11=1678	(LC 9)	R802.10.2 8) Graphical p or the orien	and referenced standar ourlin representation do tation of the purlin alon	d ANSI/TP	l 1. ict the size			
FORCES		npression/Maximum	LOAD CASE(S						
TOP CHORD	1-2=0/43, 2-3=-232 4-5=-1841/0, 5-6=-1 7-8=-2302/96, 8-9=-	1835/0, 6-7=-2309/25 -2297/107, 9-10=0/4							SE OF MISSO
BOT CHORD		9=0/51, 17-18=0/149, =0/1875, 15-16=0/148 =0/58, 13-14=0/84,							SCOTT M. SEVIER
WEBS	4-16=-266/0, 14-16 6-14=-382/545, 12-	=0/1907, 3-17=-87/5 =0/1664, 6-16=0/660 14=0/1816, 8-14=-80 =0/1192, 9-12=0/125),)/183,					A A	PE-2001018807
NOTES 1) Unbalance this design	ed roof live loads have 1.	e been considered fo	r						March 31,2021
WARN			THIS AND INCLUDED MITEK				E.		



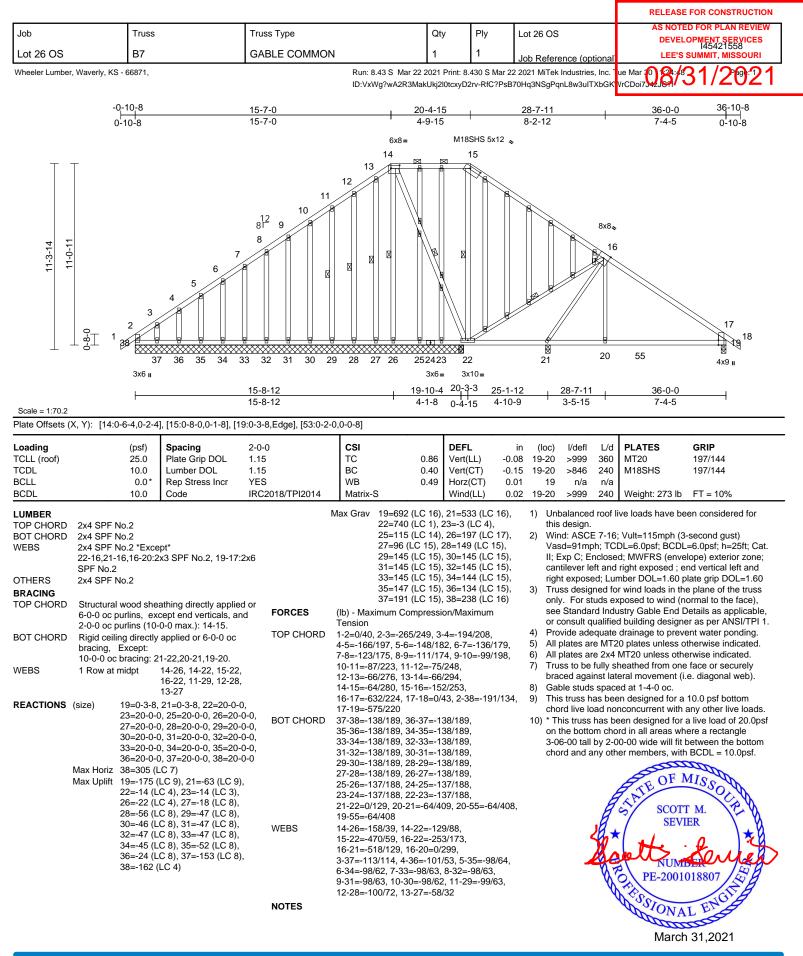
NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 31,2021



NOTES


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

March 31,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

Continued on page 2

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 26 OS	AS NOTED FOR PLAN REVIEW
300	11055	Truss Type	Quy	гіу	LOI 20 03	DEVELOPMENT SERVICES 145421558
Lot 26 OS	B7	GABLE COMMON	1	1	Job Reference (optional	
Wheeler Lumber, Waver	ly, KS - 66871,	Run: 8.43	S Mar 22 2021 Print:	8.430 S Mar	22 2021 MiTek Industries, Inc. 1	

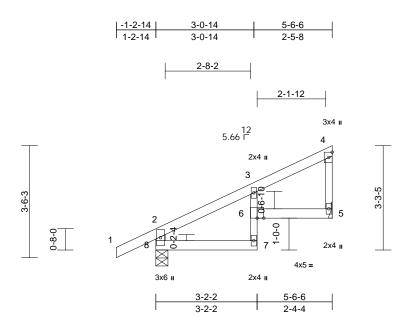
11) Provide mechanical connection (by others) of truss to Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 162 lb uplift at joint 38, 22 lb uplift at joint 26, 14 lb uplift at joint 22, 63 lb uplift at joint 21, 175 lb uplift at joint 19, 153 lb uplift at joint 37, 24 lb uplift at joint 36, 52 lb uplift at joint 35, 45 lb uplift at joint 34, 47 lb uplift at joint 33, 47 lb uplift at joint 32, 47 lb uplift at joint 31, 46 lb uplift at joint 30, 47 lb uplift at joint 29, 56 lb uplift at joint 28, 18 lb uplift at joint 27 and 14 lb uplift at joint 23.

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

ID:VxWg?wA2R3MakUkj2l0tcxyD2rv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKVrCDoi7V2Q/3/3//2U/2/


									RELEAS	E FOR CONSTRUCTION	
Job	Tru	uss	Truss Type		Qty	Ply	Lot 26 OS				ר
Lot 26 OS	C1	1	GABLE		1	1				LOPMENT SERVICES 145421559 SUMMIT, MISSOURI	
	Waverly, KS - 66871	1,	-	Run: 8.43 S Mar 22 2	2021 Print:	8.430 S Mar 2	2 2021 MiTek I	ence (optional) ndustries, Inc. Tu	e Mar 301:2049	21/2021	-
				ID:VxWg?wA2R3Mak	Ukj2l0tcxyl	D2rv-RfC?PsE	70Hq3NSgPqn	L8w3ulTXbGKW	rCDoi7J42JC	51/2021	
		-0-10-8	8	-4-0	I		16-8-0)	17-6-8		
		0-10-8	8	-4-0	1		8-4-0		0-10-8		
	6-5-14 6.2.11		x9 II		4x5 = 5	6 7 9 9 9 9 19	8 9 9 18 1 16-8-0		11 12 15 4x9 II	3	
		 0-1-	5-11-0	2-4-8			8-4-0)			
Scale = 1:46.3 Plate Offsets ()	K, Y): [2:0-3-8,Ed	lge], [14:0-3-8,Edge]									_
Loading TCLL (roof) TCDL BCLL BCDL	(psi 25.) 10.) 0.) 10.)	f) Spacing Plate Grip DOL Lumber DOL 0* Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018/TPI2014	BC 0	.37 Vei .24 Vei .17 Ho	rt(CT) -(rz(CT) (in (loc) 0.02 24-25 0.05 24-25 0.01 14 0.02 24-25	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES MT20 Weight: 93 lb	GRIP 197/144 FT = 10%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 Structural wood 6-0-0 oc purlins,	Except* 21-5:2x4 SPF No. sheathing directly applied , except end verticals. ectly applied or 10-0-0 oc	2 I or WEBS	24-25=-119/268, 23-24 22-23=-119/268, 21-22 20-21=-119/268, 19-20 18-19=-119/268, 17-18 16-17=-119/268, 15-16 14-15=-119/268 5-21=-191/129, 3-23=- 4-22=-162/196, 6-20=- 8-18=-97/62, 9-17=-96 11-15=-71/90	2=-119/26 D=-119/26 B=-119/26 6=-119/26 -476/311, -56/27, 7-	58, 58, 58, 58, 58, 58, 19=-107/73	10) Thi Inte R80 LOAD (s truss is desig ernational Resid	ned in accordand dential Code sec ferenced standar	tions R502.11.1 and	
	17=11 20=11 23=11 Max Horiz 25=-1 Max Uplift 14=-1 16=-4 18=-4 20=-8 22=-1 Max Grav 14=47 16=14 18=12 20=81 22=16 24=42 (lb) - Maximum (Tension 1-2=0/43, 2-3=-3 4-5=-215/257, 5 7-8=-290/265, 8 10-11=-307/188	1-0-0, 15=11-0-0, 16=11-(1-0-0, 18=11-0-0, 19=11-(1-0-0, 18=11-0-0, 22=11-(1-0-0, 24=0-3-8, 25=0-3-8 79 (LC 6) 96 (LC 8), 15=-184 (LC 1 16 (LC 9), 17=-47 (LC 9), 16 (LC 9), 19=-57 (LC 9), 16 (LC 15), 21=-135 (LC 15), 48 (LC 15), 15=133 (LC 5 44 (LC 8) 71 (LC 15), 15=133 (LC 5 14 (LC 15), 15=133 (LC 5 14 (LC 15), 15=133 (LC 5 14 (LC 15), 15=133 (LC 5), 14 (LC 22), 21=193 (LC 8), 30 (LC 8), 23=284 (LC 15); 22 (LC 3), 25=442 (LC 21); Compression/Maximum 334/161, 3-4=-367/343, -6=-246/278, 6-7=-287/29; -9=-299/240, 9-10=-310/2; ,11-12=-385/198, 5=-406/186, 12-14=-361/360; 14 (LC 15); 15=140; 15 (LC 15); 15=140; 16 (LC 15); 15=140; 17 (LC 15); 15=140; 18 (LC 15); 15=140; 18 (LC 15); 15=140; 18 (LC 15); 15=140; 18 (LC 15); 15=140; 18 (LC 15); 15=	 Unbalancec this design. Wind: ASCE Vasd=91mp II; Exp C; El cantilever le right expose Truss desig only. For st see Standal or consult q All plates ar Halletes ar Sort Truss to be braced agai This truss h chord live lc * This truss h chord live lc * This truss h chord live lc * This truss h chord and a pint 14, 135 Halletes ar 	I roof live loads have be E 7-16; Vult=115mph (3 wh; TCDL=6.0psf; BCDL nclosed; MWFRS (enve- fit and right exposed; e dd; Lumber DOL=1.60 p ned for wind loads in th uds exposed to wind (r rd Industry Gable End I ualified building design e 2x4 MT20 unless oth fully sheathed from one nst lateral movement (i s spaced at 1-4-0 oc. as been designed for a sad nonconcurrent with has been designed for m chord in all areas wf by 2-00-00 wide will fit ny other members. chanical connection (by e capable of withstandi 5 lb uplift at joint 21, 33: at joint 22, 8 lb uplift at foint 16, 184 lb uplift at 25.	3-second L=6.0psf; alope) ex and vertic plate grip the plane of the plane of the plane of the plane of the plate of th	gust) h=25f; Cat terior zone; al left and DOL=1.60 of the truss the face), applicable, ANSI/TPI 1 dicated. securely nal web). bottom r live loads. d of 20.0ps ctangle the bottom of truss to o uplift at at joint 23, 57 lb uplift at joint 17,	f		SCOT SEV NUM PE-2001	BER 018807	7

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

						RELEASE FOR CONSTRUCTION
loh	Truss	Truss Type	Qty	Plv	Lot 26 OS	AS NOTED FOR PLAN REVIEW
000	11035	Truss Type		1 19		DEVELOPMENT SERVICES 145421560
Lot 26 OS	J1	Diagonal Hip Girder	1	1	Job Reference (optional)	
Wheeler Lumber, Waverly, K	66871,	Run: 8.43 S Mar 22	2021 Print: 8	.430 S Mar 22	2 2021 MiTek Industries, Inc. Tu	

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. The Mar 3 3 3 A 20 3 A 20

Scale = 1:36.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.26	Vert(LL)	-0.04	6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.41	Vert(CT)	-0.07	7	>946	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.03	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.04	6	>999	240	Weight: 18 lb	FT = 10%
LUMBER		•	7) Hanger(s) o	or other connecti	on device(s) shall be						

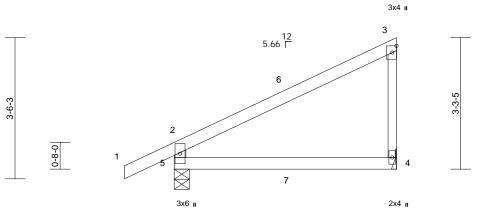
LUMBER

TOP CHORD	2x4 SPF I	No.2
BOT CHORD	2x4 SPF I	No.2 *Except* 7-3:2x3 SPF No.2
WEBS	2x4 SPF I	No.2 *Except* 4-5:2x3 SPF No.2
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	5-6-6 oc p	ourlins, except end verticals.
BOT CHORD	Rigid ceili	ing directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	5= Mechanical, 8=0-4-9
	Max Horiz	8=118 (LC 5)
	Max Uplift	5=-58 (LC 8), 8=-62 (LC 8)
	Max Grav	5=224 (LC 1), 8=346 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	2-8=-322/	/88, 1-2=0/41, 2-3=-249/25,
	3-4=-71/1	8, 4-5=-130/48
DOT CHODD		27 0 7 0/02 2 0 45/02

BOT CHORD 7-8=-48/137, 6-7=0/62, 3-6=-15/62, 5-6=-26/50

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 62 lb uplift at joint 8 and 58 lb uplift at joint 5.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


- Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 79 lb down and 43 lb up at 2-9-8, and 79 lb down and 43 lb up at 2-9-8 on top chord, and 6 lb down and 1 lb up at 3-0-14, and 6 lb down and 1 lb up at 3-0-14 on bottom chord. The design/selection of such connection device (s) is the responsibility of others. In the LOAD CASE(S) section, loads applied to the face
- 8) of the truss are noted as front (F) or back (B).
- LOAD CASE(S) Standard
- Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15 Uniform Loads (lb/ft) Vert: 1-2=-70, 2-4=-70, 7-8=-20, 5-6=-20 Concentrated Loads (lb)

Vert: 7=2 (F=1, B=1)

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

						RELEASE FOR CONSTRUCTIO	1
ob	Truss	Truss Type	Qty	Ply	Lot 26 OS	AS NOTED FOR PLAN REVIEV DEVELOPMENT SERVICES	
ot 26 OS	J2	Diagonal Hip Girder	1	1	Job Reference (optional	DEVELOPMENT SERVICES 145421561 LEE'S SUMMIT, MISSOURI	
neeler Lumber, Waverly, KS -	66871,	Run: 8.43 ID:VxWgî	S Mar 22 2021 Print: 8 WA2R3MakUkj2l0tcxyE	3.430 S Mar)2rv-RfC?Ps	22 2021 MiTek Industries, Inc. Tu B70Hq3NSgPqnL8w3uITXbGKW	e Mar 3(1):85731/292 rCDoi7J4z/CH9731/292	
		-1-2-14	5-6-6				
		-1-2-14	<u>5-6-6</u> 5-6-6				

Scale	=	1:28.7	

Scale = 1:28.7												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.42	Vert(LL)	-0.03	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.26	Vert(CT)	-0.07	4-5	>929	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.02	4-5	>999	240	Weight: 17 lb	FT = 10%

5-6-6

-0			
τo	0	10	E.

- 2x4 SPF No.2 TOP CHORD
- BOT CHORD 2x4 SPF No.2

2x4 SPF No.2 *Except* 3-4:2x3 SPF No.2 WEBS BRACING TOP CHORD Structural wood sheathing directly applied or 5-6-6 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

- **REACTIONS** (size) 4= Mechanical, 5=0-4-9 Max Horiz 5=135 (LC 5) Max Uplift 4=-57 (LC 8), 5=-64 (LC 8) Max Grav 4=224 (LC 1), 5=346 (LC 1) FORCES (lb) - Maximum Compression/Maximum
- Tension TOP CHORD 2-5=-306/106, 1-2=0/41, 2-6=-160/25, 3-6=-69/44, 3-4=-160/78 5-7=-32/44, 4-7=-32/44

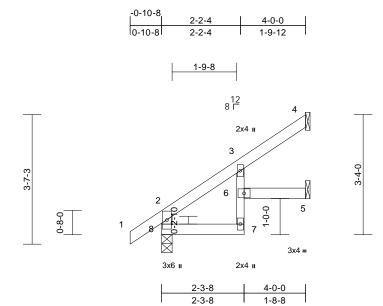
BOT CHORD

NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 64 lb uplift at joint 5 and 57 lb uplift at joint 4.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

- provided sufficient to support concentrated load(s) 79 lb down and 43 lb up at 2-9-8, and 79 lb down and 43 lb up at 2-9-8 on top chord, and 6 lb down and 1 lb up at 2-9-8, and 6 lb down and 1 lb up at 2-9-8 on bottom chord. The design/selection of such connection device (s) is the responsibility of others.
- In the LOAD CASE(S) section, loads applied to the face 8) of the truss are noted as front (F) or back (B).

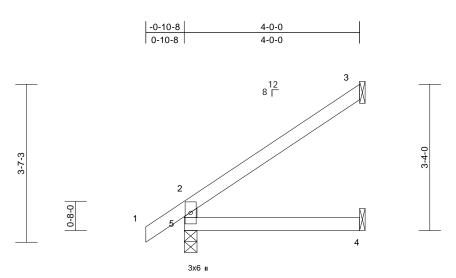
LOAD CASE(S) Standard


- Dead + Roof Live (balanced): Lumber Increase=1.15, 1) Plate Increase=1.15 Uniform Loads (lb/ft)
 - Vert: 1-2=-70, 2-3=-70, 4-5=-20 Concentrated Loads (lb)

Vert: 7=2 (F=1, B=1)

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Lot 26 OS	J3	Jack-Open	4	1	Job Reference (optional)	
Job	Truss	Truss Type	Qty	Ply	Lot 26 OS	DEVELOPMENT SERVICES 145421562
loh	Truco	Truco	Otre	Plv	1 -+ -20 -00	AS NOTED FOR PLAN REVIEW
						RELEASE FOR CONSTRUCTION


Scale = 1:32

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) TCDL	25.0	Plate Grip DOL Lumber DOL	1.15	TC BC	0.14	Vert(LL) Vert(CT)	-0.01	6 7	>999 >999	360 240	MT20	197/144
BCLL	10.0 0.0*	Rep Stress Incr	1.15 YES	WB	0.19 0.00	Horz(CT)	-0.02 0.01	5	>999 n/a	240 n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R	0.00	Wind(LL)	0.01	6	>999	240	Weight: 13 lb	FT = 10%
LUMBER			LOAD CASE(S)	Standard								
TOP CHORD BOT CHORD	2x4 SPF No.2	ept* 7-3:2x3 SPF No	2									
WEBS	2x4 SPF No.2	ept 7-3.2x3 011 140	.2									
BRACING												
TOP CHORD	Structural wood she 4-0-0 oc purlins, ex	eathing directly applie	ed or									
BOT CHORD		y applied or 10-0-0 or	C									
	bracing.											
REACTIONS	(size) 4= Mech 8=0-3-8	anical, 5= Mechanica	al,									
	Max Horiz 8=84 (LC											
	Max Uplift 4=-34 (L											
	Max Grav 4=104 (L 8=252 (L											
FORCES	(lb) - Maximum Cor Tension	mpression/Maximum										
TOP CHORD	2-8=-235/11, 1-2=0	/40, 2-3=-143/0,										
BOT CHORD	3-4=-29/52 7-8=-26/70, 6-7=0/4	12 2 6- 2/51 5 6-0/	0									
NOTES	7-8=-20/70, 0-7=0/2	+3, 3-0=-2/31, 3-0=0/	0									
	CE 7-16; Vult=115mpl	h (3-second gust)										
	nph; TCDL=6.0psf; B0 Enclosed; MWFRS (e											
	exposed ; end vertical										STATE	alle
	OL=1.60 plate grip D0										TATE OF I	MISS
	has been designed fo load nonconcurrent w		ds							A	N	NS
3) * This truss	s has been designed	for a live load of 20.0								A	SCOT SEV	$1 M. \qquad \forall \checkmark \forall \lambda$
	tom chord in all areas		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							Ra	SEV.	
	Il by 2-00-00 wide wil any other members.	i nit between the botto							1	B X		
, 0	rder(s) for truss to tru								-		NUM	REVIEW
	echanical connection ate capable of withsta									87	PE-2001	
4 and 6 lb	uplift at joint 5.									V	The	
,	is designed in accord		امم								FESSIONA	LEN
	al Residential Code s and referenced stand		na								CONA	T
											March	1 31,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

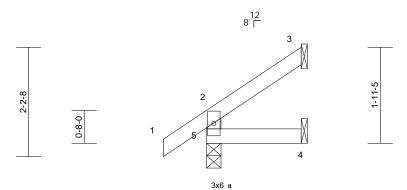
						RELEASE FOR CONSTRUCTION
lob	Truss	Truce Type	Qty	Plv	Lot 26 OS	AS NOTED FOR PLAN REVIEW
Job	TTUSS	Truss Type	Qiy	Fiy	LOI 26 US	DEVELOPMENT SERVICES 145421563
Lot 26 OS	J4	Jack-Open	11	1	Job Reference (optional	
						00/04/0004

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. ue Mar 08:131/2021 ID:VxWg?wA2R3MakUkj2l0tcxyD2rv-RfC?PsB70Hq3NSgPqnL8w3uITXbGK VrCDoi70-2017/02017

4-0-0

Casla		4.00.0
Scale	=	1:26.3

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	-0.01	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.13	Vert(CT)	-0.02	4-5	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	4-5	>999	240	Weight: 12 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SPF No.2 2x4 SPF No.2 Structural wood she 4-0-0 oc purlins, ex	cept end verticals.										
BOT CHORD	Rigid ceiling directly bracing.	applied of 10-0-0 o	С									
REACTIONS	0	8)										
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD BOT CHORD	2-5=-221/24, 1-2=0/	40, 2-3=-85/54										
NOTES												
Vasd=91n II; Exp C; and right e Lumber D 2) This truss	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er exposed; end vertical I OOL=1.60 plate grip DC b has been designed foi load nonconcurrent wi	DL=6.0psf; h=25ft; hvelope); cantilever left and right expose DL=1.60 r a 10.0 psf bottom	left ed;								ATE OF	MISSOL
on the bot 3-06-00 ta chord and 4) Refer to g 5) Provide m	ss has been designed f ttom chord in all areas all by 2-00-00 wide will d any other members. girder(s) for truss to tru nechanical connection (late capable of withstar	where a rectangle fit between the botto ss connections. (by others) of truss t	o								SCOT SEV	BER BER
 3. 6) This truss Internation 	is designed in accorda nal Residential Code so 2 and referenced stand	ance with the 2018 ections R502.11.1 a								A.	PE-2001	L ENGILE


MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

March 31,2021

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 26 OS	AS NOTED FOR PLAN REVIEW
565	11035	Thuss Type	Quy	l' iy	101 20 03	DEVELOPMENT SERVICES 145421564
Lot 26 OS	J5	Jack-Open	4	1	Job Reference (optional	
					-	

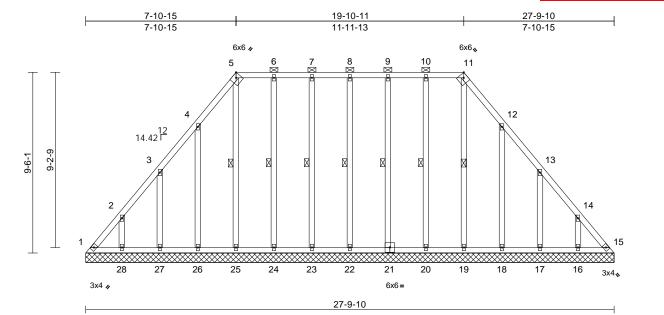
Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. ue Mar 02:3/31/2021 ID:VxWg?wA2R3MakUkj2l0tcxyD2rv-RfC?PsB70Hq3NSgPqnL8w3uITXbGK vrCDoi7.2017/2021

1-10-15

Scale =	1:23.3
---------	--------

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	0.00	4-5	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	4-5	>999	240		
BCLL	0.0	* Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 6 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 Structural wood sl 1-10-15 oc purlins Rigid ceiling direc	neathing directly applie , except end verticals tly applied or 10-0-0 or										
	bracing.											
REACTIONS	(size) 3= Mec 5=0-3-8	hanical, 4= Mechanica	al,									
FORCES	(LC 1)		=171									
TOROLO	Tension	mpression/maximum										
TOP CHORD		0/40, 2-3=-48/22										
BOT CHORD	4-5=0/0											
NOTES												
Vasd=91r II; Exp C; cantilever right expo 2) This truss chord live 3) * This trus on the bol 3-06-00 ta	Enclosed; MWFRS (left and right expose sed; Lumber DOL=1 has been designed load nonconcurrent ss has been designe- ttom chord in all aree all by 2-00-00 wide w	BCDL=6.0psf; h=25ft; (envelope) exterior zor d; end vertical left an .60 plate grip DOL=1.1 for a 10.0 psf bottom with any other live loa d for a live load of 20.0 s where a rectangle ill fit between the botto	ne; d 60 ds. Jpsf								STATE OF I	TM. YEY
 Refer to g Provide m bearing pl 5 and 37 l 	late capable of withs lb uplift at joint 3.	russ connections. n (by others) of truss t anding 16 lb uplift at j									NUM PE-2001	
G) This truck	in designed in sees	donoo with the 2010								10		

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

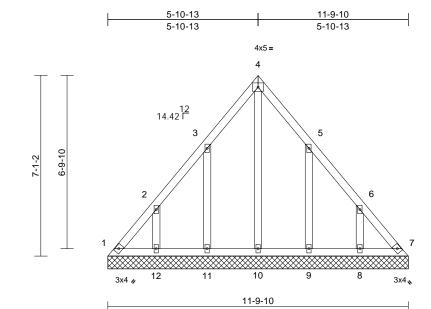
ESSIONAL E the March 31,2021

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 26 OS	AS NOTED FOR PLAN REVIEW
					10120 00	DEVELOPMENT SERVICES 145421565
Lot 26 OS	LAY1	GABLE	1	1	Job Reference (optional	
•	•					00/01/0001

Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. ue Mar 0 34/31/2021 ID:VxWg?wA2R3MakUkj2l0tcxyD2rv-RfC?PsB70Hq3NSgPqnL8w3uITXbGK

Scale = 1.00.0	Scale	= 1:60.6
----------------	-------	----------

Plate Offsets (X, Y): [5:0-2-11,Edge], [11:0-2-11,Edge]


	(., .). [,=-:9	, [····· = ···,=-·3•]											
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	018/TPI2014	CSI TC BC WB Matrix-S	0.07 0.04 0.14	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 15	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 172 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SPF No 2x4 SPF No Structural w 6-0-0 oc pur 2-0-0 oc pur Rigid ceiling bracing. 1 Row at mi	o.2 o.2 rlins, exc rlins (6-0 g directly idpt	athing directly applie ept -0 max.): 5-11. applied or 10-0-0 oc 8-22, 7-23, 6-24, 5- 9-21, 10-20, 11-19), 15=27-9-10.	ed or C 25,	BOT CHORD	1-2=-337/251, 2-3= 4-5=-135/226, 5-6= 7-8=-45/167, 8-9=- 10-11=-46/166, 11- 12-13=-96/81, 13-1 14-15=-282/164 1-28=-108/208, 25 24-25=-108/209, 22 22-23=-108/209, 22 20-21=-108/209, 15 8-19=-108/209, 15 16-17=-108/209, 15 16 16 16 16 16 16 16 16 16 16	-46/167 45/167, 12=-98 4=-147 28=-10 5-26=-1 3-24=-1 1-22=-1 3-24=-1 1-22=-1 5-20=-1 5-16=-1	r, 6-7=-45/167 9-10=-44/166 /196, /105, 8/208, 08/208, 08/209, 08/209, 08/209, 08/209, 08/209, 08/209,	, ,	on 3-0 3-0 chc 10) Pro bea join upli 25, upli 20, 151 11) Thi	the botto 6-00 tall ord and a ovide me aring plat at 1, 82 lt ift at join 162 lb u 161 lb u I lb uplift s truss is	om cho by 2-0 any oth chanic te capa o uplift t 23, 3 uplift at t 28, 3 uplift at at join s desig	rd in all areas wh 10-00 wide will fit I ter members. al connection (by able of withstandii at joint 15, 32 lb u 4 lb uplift at joint 2 joint 26, 152 lb u 5 lb uplift at joint 2 joint 18, 152 lb u it 16. ned in accordanc	others) of truss to og 150 lb uplift at uplift at joint 22, 35 lb 24, 24 lb uplift at joint 21, 39 lb uplift at joint plift at joint 17 and e with the 2018
REACTIONS	1(1) 2(2) 24 20 20	6=27-9-1 8=27-9-1 0=27-9-1 2=27-9-1 4=27-9-1	0, 17=27-9-10, 0, 19=27-9-10, 0, 21=27-9-10, 0, 23=27-9-10, 0, 25=27-9-10, 0, 27=27-9-10,		WEBS NOTES	8-22=-140/57, 7-23 5-25=-151/63, 4-26 3-27=-174/177, 2-2 9-21=-139/59, 10-2 12-18=-186/184, 10 14-16=-170/168	=-187/1 8=-170 0=-148	85, /168, /62, 11-19=-12	,	 International Residential Code sections R502.11.1 ar R802.10.2 and referenced standard ANSI/TPI 1. 12) Graphical purlin representation does not depict the si or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 				ANSI/TPI 1. s not depict the size
	Max Horiz 1: Max Uplift 1: 10 11 22 23 23 24	=-252 (L0 =-150 (L0 6=-151 (1 8=-161 (1 21=-35 (L0 23=-35 (L0 25=-24 (L0		9),)),)),	 this design. Wind: ASC Vasd=91mj II; Exp C; E cantilever logistic exposision Truss designation 	E 7-16; Vult=115mp bh; TCDL=6.0psf; B(nclosed; MWFRS (e eft and right exposed ed; Lumber DOL=1.1 uned for wind loads i	h (3-seo CDL=6. envelop d ; end v 60 plate n the pl	cond gust) Opsf; h=25ft; C e) exterior zon /ertical left and grip DOL=1.6 ane of the trus	Cat. e; d 60 ss			H	STATE OF M	AISSOLA
	Max Grav 1: 10 11 20 22 24 24 24 24 24 24 24 24 24 24 24 24	=249 (LC 6=214 (L 8=226 (L 0=187 (L 2=182 (L 4=188 (L 6=227 (L 8=215 (L	2 8), 15=206 (LC 9), C 16), 17=214 (LC C 16), 19=162 (LC C 21), 21=179 (LC C 22), 23=179 (LC C 22), 25=191 (LC C 15), 27=213 (LC C 15), 27=213 (LC	16), 17), 1), 1), 18), 15),	see Standa or consult of Provide add 5) All plates a 6) Gable requ 7) Gable studs 8) This truss h	uds exposed to win rd Industry Gable Er jualified building des equate drainage to p re 2x4 MT20 unless ires continuous botto s spaced at 2-0-0 oc juas been designed for aad nonconcurrent w	nd Deta ligner a orevent otherwi om choi c. or a 10.	ils as applicab s per ANSI/TP water ponding se indicated. d bearing. 0 psf bottom	ble, 11 1.		-	A STATE	SEVI NUM PE-20010	ER D18807
FORCES	(lb) - Maxim Tension	um Com	pression/Maximum		cnora IIVê la	Dad nonconcurrent w	viin any	ouner live load	15.				SSIONA	LELSS

March 31,2021

Job Tru	russ	Truss Type	Qty	Ply	Lot 26 OS	
Lot 26 OS LA	AY2	GABLE	1	1	Job Reference (optional	DEVELOPMENT SERVICES 145421566 LEE'S SUMMIT, MISSOURI

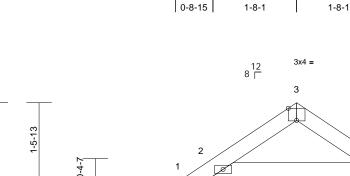
Run: 8.43 S Mar 22 2021 Print: 8.430 S Mar 22 2021 MiTek Industries, Inc. Tue Mar 30387/31/2021 ID:VxWg?wA2R3MakUkj2l0tcxyD2rv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKW CDoi7J&C7/31/2021

Scale = 1:45.2

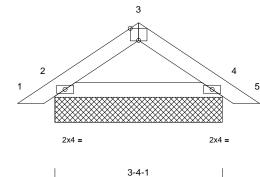
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.06	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.04	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.10	Horiz(TL)	0.00	7	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-S							Weight: 54 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=11-9-1 11=11-9- 11=11-9- Max Horiz 1=-185 (L (LC 9), 9; 8), 12=-1 Max Grav 1=175 (L (LC 16), 1;	C 6), 7=-53 (LC 7), 8= =-157 (LC 9), 11=-15 51 (LC 8)	ed or 	 only. For stu see Standarn or consult qu All plates are Gable requir Gable studs This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 1, 53 lb uplift uplift at joint joint 8. This truss is International 	ed for wind loa ids exposed to d Industry Gabl lalified building 2x4 MT20 unl es continuous t spaced at 0-0-0 is been designe ad nonconcurre nas been designe ad nonconcurre nas been designe ad nonconcurre as been designe n chord in all al y 2-00-00 wide y other membe hanical connect e capable of wide tat joint 7, 158 12, 157 Ib uplif designed in acc Residential Con dor ferenced s	wind (norm e End Deta designer a: ess otherwi bottom chor 0 oc. ed for a 10.0 mt with any med for a liv reas where e will fit betw ers. tion (by oth hstanding & lb uplift at jo t at joint 9 a cordance w de sections	al to the face ils as applica is per ANSI/TI se indicated. d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle ween the botto ers) of truss t 30 lb uplift at j bint 11, 151 ll und 151 lb upl ith the 2018 is R502.11.1 a), ble, PI 1. ds. Dpsf om co oint o iift at					
FORCES	(lb) - Maximum Con Tension	npression/Maximum	I	OAD CASE(S)									
TOP CHORD		-143/104, 3-4=-112/1 17/68, 6-7=-220/125											
BOT CHORD	1-12=-84/169, 11-12 10-11=-84/169, 9-10 7-8=-84/169	2=-84/169, 0=-84/169, 8-9=-84/1	69,									TATE OF I	MISSO
WEBS	4-10=-125/13, 3-11 2-12=-167/168, 5-9	=-188/184, =-187/183, 6-8=-167/	169								B	S SCOT	тм.
NOTES											Bh.	SEV	IER \ V
 Unbalanced roof live loads have been considered for this design. 											83		
2) Wind: ASC Vasd=91n II; Exp C; cantilever	 CE 7-16; Vult=115mpł nph; TCDL=6.0psf; BC Enclosed; MWFRS (e left and right exposed sed; Lumber DOL=1.6	CDL=6.0psf; h=25ft; C nvelope) exterior zon ; end vertical left and	le; d								N SA	PE-2001	124

	RELEASE FOR CONSTRUCTION					
Job	Truss	Truss Type	Qty	Plv	Lot 26 OS	AS NOTED FOR PLAN REVIEW
000	11035	inuss type	Qty	i iy	LUI 20 03	DEVELOPMENT SERVICES 145421567
Lot 26 OS	P1	Piggyback	22	1	Job Reference (optional	
Wheeler Lumber, Waver						

-0-8-15


ID:VxWg?wA2R3MakUkj2l0tcxyD2rv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWCDoi7J4z4CW731/2021

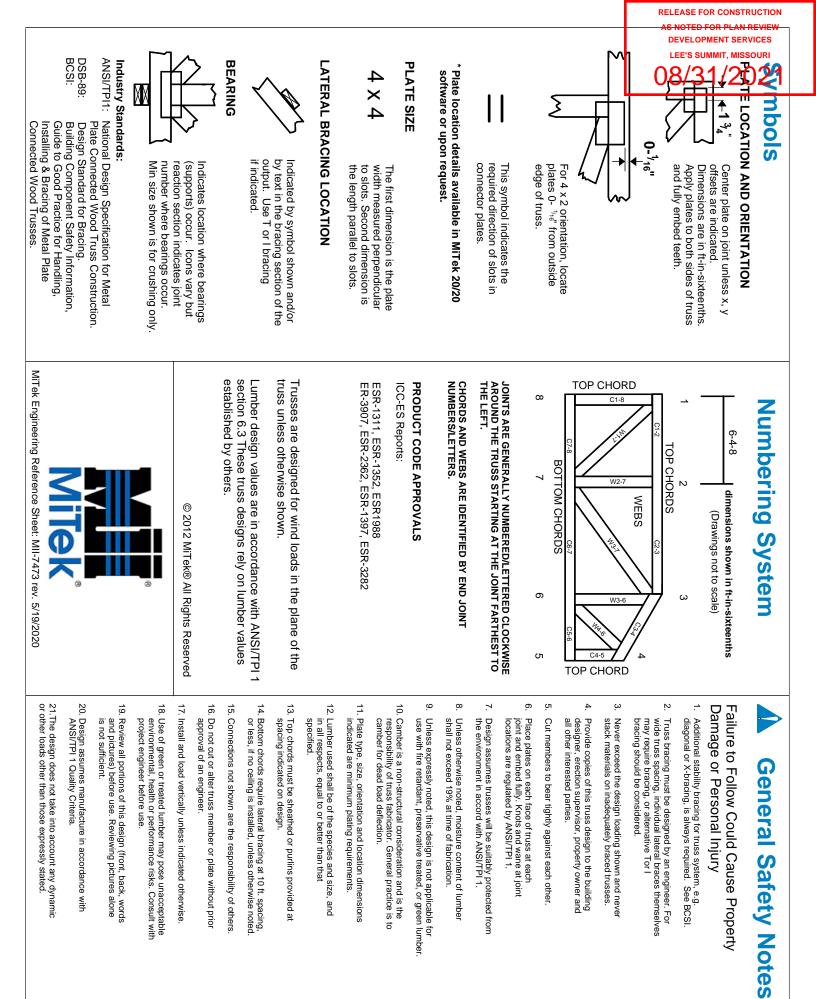
3-4-1


4-1-0

0-8-15

1-8-1

Scale = 1:23


Plate Offsets (X, Y): [3:0-2-0,Edge]

Flate Offsets (∧, f). [3.0-2-0,Euge]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-P	0.04 0.11 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 197/144 FT = 10%
	2x4 SPF No.2 2x4 SPF No.2 Structural wood she 4-9-15 oc purlins. Rigid ceiling directly bracing. (size) 2=3-4-1, 4 Max Horiz 2=37 (LC Max Horiz 2=37 (LC Max Uplift 2=-29 (LC Max Grav 2=184 (LC (lb) - Maximum Com Tension 1-2=0/17, 2-3=-130/ 4-5=0/17	applied or 10-0-0 o 4=3-4-1 7) 2 8), 4=-29 (LC 9) C 1), 4=184 (LC 1) 1pression/Maximum	bearing (2 and 29 9) This trus ed or R802.10 c 10) See Star Detail for consult c LOAD CASE	nechanical connecti- late capable of with: lb uplift at joint 4. s is designed in acco- nal Residential Cod 2 and referenced sta dard Industry Piggyl Connection to base ualified building des (S) Standard	standing 2 ordance w e sections andard AN back Trus e truss as a	29 lb uplift at j ith the 2018 s R502.11.1 a ISI/TPI 1. s Connection	oint nd					
BOT CHORD	2-4=-9/79											
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered fo	r									
Vasd=91m II; Exp C; E cantilever I	CE 7-16; Vult=115mph hph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6	DL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an	ne; Id								THE OF	MISSO
only. For see Standa	gned for wind loads in studs exposed to wind ard Industry Gable En qualified building desig	l (normal to the face d Details as applical), ble,								STAT SCOT	I M. YA
4) Gable requ	uires continuous botto										and a	X X
6) This truss chord live l	Is spaced at 2-0-0 oc. has been designed for load nonconcurrent wi s has been designed f	ith any other live loa							2	A.	NUM PE-2001	BER 018807
3-06-00 tal	tom chord in all areas Il by 2-00-00 wide will any other members.	0	om							Y	NUM PE-2001	L ENGLIS
											Marcl	n 31,2021

- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

