

MiTek USA, Inc. 16023 Swinglev Ridge Rd Chesterfield, MO 63017 314-434-1200

RE: Lot 17 OS Lot 17 OS

ILek

Site Information:

Customer: Project Name: Lot 17 OS Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.4 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 38 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	147521362	A1	8/19/2021	21	147521382	D3	8/19/2021
2	147521363	A2	8/19/2021	22	l47521383	J1	8/19/2021
3	147521364	A3	8/19/2021	23	147521384	J2	8/19/2021
4	147521365	B1	8/19/2021	24	147521385	J3	8/19/2021
5	147521366	B2	8/19/2021	25	l47521386	LAY1	8/19/2021
6	147521367	B3	8/19/2021	26	147521387	LAY2	8/19/2021
7	147521368	B4	8/19/2021	27	l47521388	LAY3	8/19/2021
8	147521369	B5	8/19/2021	28	l47521389	V1	8/19/2021
9	147521370	B6	8/19/2021	29	l47521390	V2	8/19/2021
10	147521371	B7	8/19/2021	30	l47521391	V3	8/19/2021
11	147521372	B8	8/19/2021	31	l47521392	V4	8/19/2021
12	147521373	B9	8/19/2021	32	l47521393	V5	8/19/2021
13	147521374	B10	8/19/2021	33	l47521394	V6	8/19/2021
14	147521375	B11	8/19/2021	34	l47521395	V7	8/19/2021
15	147521376	B12	8/19/2021	35	147521396	V8	8/19/2021
16	147521377	C1	8/19/2021	36	l47521397	V9	8/19/2021
17	147521378	C2	8/19/2021	37	l47521398	V10	8/19/2021
18	147521379	C3	8/19/2021	38	l47521399	V111	8/19/2021
19	147521380	D1	8/19/2021				
20	l47521381	D2	8/19/2021				

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Kansas is April 30, 2022. Kansas COA: E-943

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Garcia, Juan

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

RE: Lot 17 OS Lot 17 OS

li lek

Site Information:

Customer: Project Name: Lot 17 OS Lot/Block: Address: City:

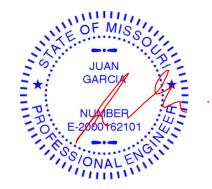
Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7 - 16[Low Rise] Roof Load: 45.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 115 mph Floor Load: N/A psf

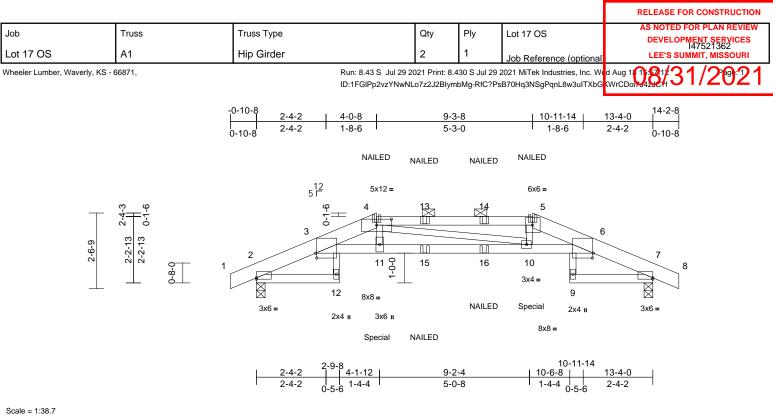
This package includes 38 individual, dated Truss Design Drawings and 0 Additional Drawings.

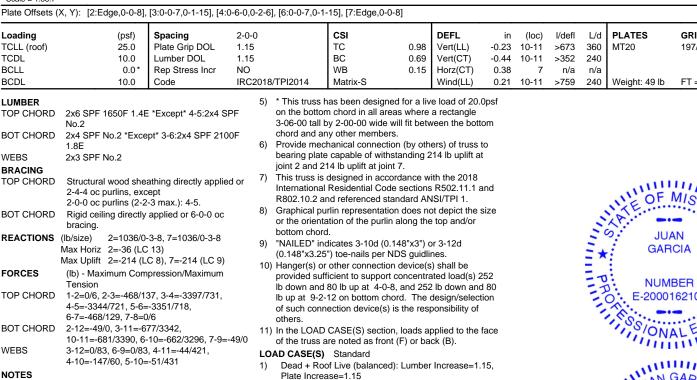
No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	147521362	A1	8/19/2021	21	147521382	D3	8/19/2021
2	147521363	A2	8/19/2021	22	147521383	 J1	8/19/2021
3	147521364	A3	8/19/2021	23	147521384	J2	8/19/2021
4	147521365	B1	8/19/2021	24	147521385	J3	8/19/2021
5	147521366	B2	8/19/2021	25	147521386	LAY1	8/19/2021
6	147521367	B3	8/19/2021	26	147521387	LAY2	8/19/2021
7	147521368	B4	8/19/2021	27	l47521388	LAY3	8/19/2021
8	l47521369	B5	8/19/2021	28	l47521389	V1	8/19/2021
9	147521370	B6	8/19/2021	29	l47521390	V2	8/19/2021
10	l47521371	B7	8/19/2021	30	l47521391	V3	8/19/2021
11	147521372	B8	8/19/2021	31	l47521392	V4	8/19/2021
12	147521373	B9	8/19/2021	32	l47521393	V5	8/19/2021
13	147521374	B10	8/19/2021	33	l47521394	V6	8/19/2021
14	147521375	B11	8/19/2021	34	l47521395	V7	8/19/2021
15	147521376	B12	8/19/2021	35	l47521396	V8	8/19/2021
16	147521377	C1	8/19/2021	36	l47521397	V9	8/19/2021
17	147521378	C2	8/19/2021	37	l47521398	V10	8/19/2021
18	l47521379	C3	8/19/2021	38	l47521399	V111	8/19/2021
19	147521380	D1	8/19/2021				
20	I47521381	D2	8/19/2021				


The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan


My license renewal date for the state of Missouri is December 31, 2022. Missouri COA: 001193


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Garcia, Juan

August 19, 2021

NOTES 1)

WEBS

Loading

TCDL

BCLL

BCDL

WEBS

BRACING

FORCES

LUMBER

TCLL (roof)

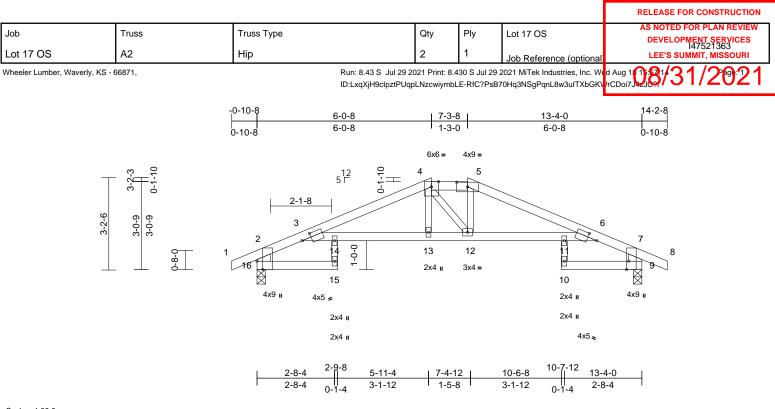
Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

- Provide adequate drainage to prevent water ponding. 3) This truss has been designed for a 10.0 psf bottom 4۱ chord live load nonconcurrent with any other live loads.
- 7-9=-20 Concentrated Loads (lb) Vert: 4=-26 (B), 5=-26 (B), 11=-252 (B), 10=-252 (B), 13=-26 (B), 14=-26 (B), 15=-59 (B), 16=-59 (B)

Vert: 1-4=-70, 4-5=-70, 5-8=-70, 2-12=-20, 3-6=-20,

Uniform Loads (lb/ft)



GRIP

197/144

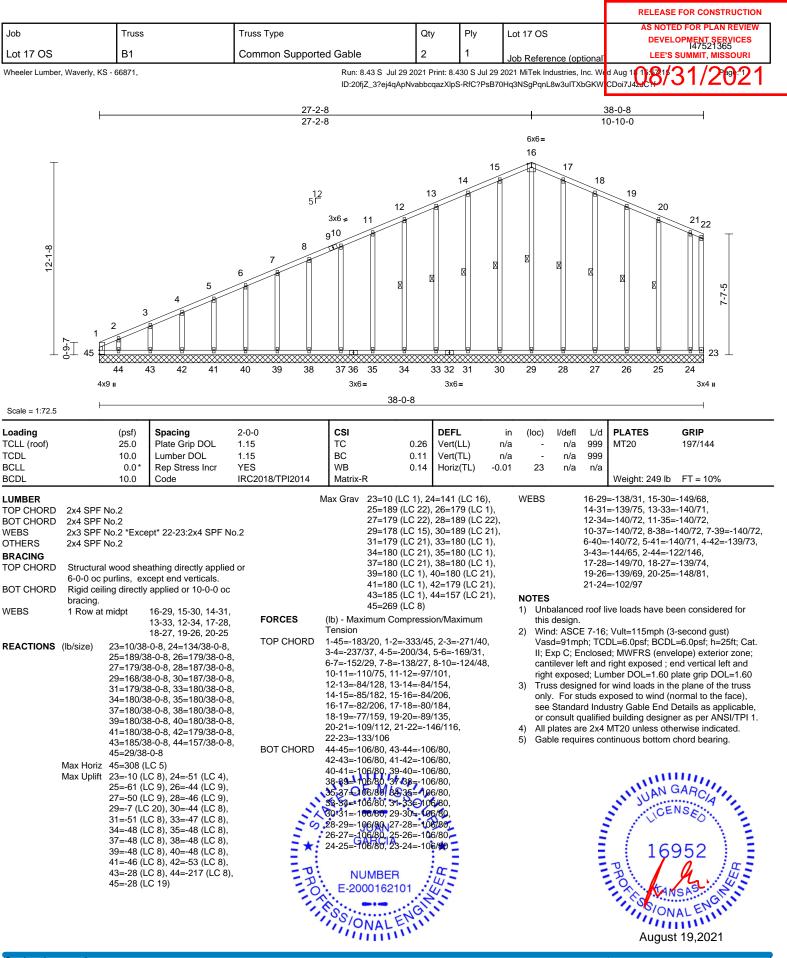
FT = 10%

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Scale =	1:39.9
---------	--------

Plate Offsets (X, Y): [3:0-4-1,0-1-10)]. [5:0-4-8.0-1-15]. [6	5:0-4-1.0-1	-10]. [9:0-3-8.	Edae]. [16:0-3-8.	Edael							
Loading	(psf)	Spacing	2-0-0	-1,1,	csi	- 5 - 1	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.63	Vert(LL)		13-14	>848	360	MT20	197/144
	10.0	Lumber DOL	1.15		BC	0.89	Vert(CT)		13-14	>461	240	11120	10//111
BCLL	0.0*	Rep Stress Incr	YES		WB	0.08	Horz(CT)	0.37	9	n/a	n/a		
BCDL	10.0	Code		8/TPI2014	Matrix-S	0.00	Wind(LL)		13-14	>999	240	Weight: 43 lb	FT = 10%
UMBER		E *Except* 4-5:2x4 S	5) SPF	on the botto	has been design m chord in all are	eas where	a rectangle	•		-		-	
BOT CHORD WEBS	No.2 2x4 SPF No.2 2x3 SPF No.2 *Exce No.2	ept* 16-2,9-7:2x6 SP	F 6)	chord and a Provide mea bearing plat	by 2-00-00 wide ny other membe chanical connect e capable of with	rs. ion (by oth	ers) of truss	to					
BRACING					uplift at joint 9.								
TOP CHORD	Structural wood she 5-9-15 oc purlins, e 2-0-0 oc purlins (5-2	xcept end verticals,		Internationa R802.10.2 a	designed in acc Residential Coo nd referenced st	de sections andard AN	R502.11.1 a ISI/TPI 1.					NIL OF	MISS
BOT CHORD	Rigid ceiling directly bracing. Except: 10-0-0 oc bracing: 1			or the orient bottom chor				size			111	JU,	AN D
	(lb/size) 9=657/0-3 Max Horiz 16=34 (LC Max Uplift 9=-95 (LC		L	DAD CASE(S)	Standard						Ē*	, GAR	
FORCES	(lb) - Maximum Com Tension										3	NUM	• 41.
TOP CHORD	1-2=0/30, 2-3=-230/ 4-5=-1128/112, 5-6= 7-8=0/30, 2-16=-688	-1239/85, 6-7=-230/	/50,									ASSION	ENGINI
BOT CHORD	15-16=0/0, 3-14=-60 12-13=-60/1125, 11- 6-11=-14/1137, 9-10	-12=-14/1137,	135,										
WEBS	14-15=0/81, 10-11= 4-12=-171/177, 5-12	, ,										MAN	GARC
NOTES	, 0 12											Nº JUNE	NS
	ed roof live loads have	been considered for	r								ŝ	, LICE	E0.
 Wind: ASC Vasd=91rr II; Exp C; I cantilever right exposition Provide act 	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 dequate drainage to pr has been designed for	DL=6.0psf; h=25ft; (nvelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 revent water ponding	ne; d 60								CHILINY.	PHONE TA	952
	load nonconcurrent wi		ds.										VAL E

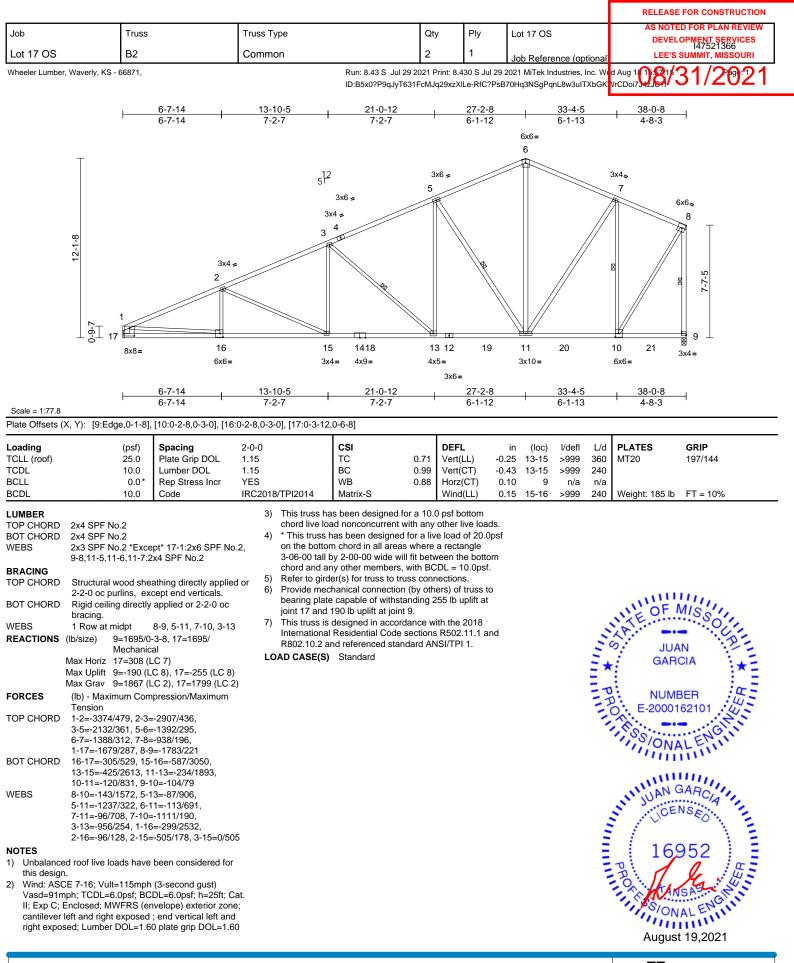
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


August 19,2021

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Lot 17 OS	AS NOTED FOR PLAN REVIEW
Lot 17 OS	A3	Roof Special Girde	r	2	4	Job Reference (optio	DEVELOPMENT SERVICES 147521364 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS - 6	66871,		Run: 8.43 S Jul 29 2	2021 Print: 8.	430 S Jul 29 2	2021 MiTek Industries, Inc	
			ID:20fjZ_3?ej4qApN	vabbcqazXlp	S-RfC?PsB70)Hq3NSgPqnL8w3uITXbG	
		2-6-12	6-8-0)-9-4	13-4-0
	I CTION REQUIRES THAT AN API	2-6-12	4-1-4	I	4	-1-4	2-6-12
FACE MOUNT HANGE	ER (SPECIFIED BY OTHERS) IS N NOTES. FACE MOUNT HANG	REQUIRED FOR		6x8 =			
ATTACHED WITH A M MANUFACTURER <u>SP</u> I	1INIMUM OF 0.148"x 3" NAILS P ECIFICATIONS.		2	3			
		12 5 Г	-				
ა ა. ა.		2				4	
ý	1 -						5
	. /		10 -	11 7	12	13	
		1	÷	3x10 i	I	7x12 =	
		98	7x12 =	S26	HUS26	6	14
	4x!	3×10 u	no	520	110320	3x10	4x9 =
		HUS26	HUS26			HUS26	HUS26
		2-9-8	6-8-0		10·	-6-8	13-4-0
Scale = 1:33.3	I	2-9-8	3-10-8	I	3-1	10-8	2-9-8
Loading	(psf) Spacing	2-0-0	CSI	DEF	L	in (loc) l/defl	L/d PLATES GRIP
TCLL (roof) TCDL	25.0 Plate Grip DOL 10.0 Lumber DOL	1.15 1.15		0.87 Vert 0.56 Vert	. ,		60 MT20 244/190 40
BCLL BCDL	0.0* Rep Stress Incr 10.0 Code	NO IRC2018/TPI2014		0.34 Horz Wind	(CT) 0.	31 5 n/a i	n/a 40 Weight: 325 lb FT = 10%
			roof live loads have b				Wolght. 020 lb 1 1 = 10/0
TOP CHORD 2x8 SP DSS BOT CHORD 2x6 SP 2400		this design.	7-16; Vult=115mph (
WEBS 2x6 SPF No.	.2 *Except* 3-7:2x4 SPF No.2	Vasd=91mp	h; TCDL=6.0psf; BCD closed; MWFRS (env	L=6.0psf; h	=25ft; Cat.		
BRACING TOP CHORD Structural we	ood sheathing directly applied	or and right exp	osed ; end vertical le	ft and right			
	lins. directly applied or 10-0-0 oc	This truss has	=1.60 plate grip DOL as been designed for a	a 10.0 psf b			
bracing. REACTIONS (lb/size) 1=	=5365/0-3-8, 5=5886/0-3-8	7) * This truss I	ad nonconcurrent with has been designed for	r a live load	of 20.0psf		AND DECK
Max Horiz 1=	,	3-06-00 tall I	n chord in all areas w by 2-00-00 wide will fit				OF MISS
Max Grav 1=	=5897 (LC 13), 5=6465 (LC 1	⁴⁾ 8) Provide mec	ny other members. hanical connection (b				
Tension	um Compression/Maximum	01	e capable of withstand 87 lb uplift at joint 5.	ling 509 lb	uplift at		JUAN GARCIA
	43, 2-3=-14031/788, /841, 4-5=-2572/142		designed in accordan Residential Code sec				10E 10E
BOT CHORD 1-8=0/0, 2-7 5-6=0/0	/=-790/14098, 4-7=-784/1412		nd referenced standa n Strong-Tie HUS26 (NUMBER
WEBS 2-8=-224/19 NOTES	14, 4-6=-35/1331, 3-7=-221/5	039 Truss) or eq	uivalent spaced at 2-0 ne left end to 12-0-0 to)-0 oc max.	starting at		O. E-2000162101
1) n/a		front face of	bottom chord.				SONALEN
2) 4-ply truss to be connect	0	LOAD CASE(S)					COTTANY.
(0.131"x3") nails as follow Top chords connected as		1) Dead + Ro Plate Increa	of Live (balanced): Lu ase=1.15	mber Incre	ase=1.15,		
staggered at 0-9-0 oc. Bottom chords connected	d as follows: 2x6 - 3 rows	Uniform Lo Vert: 1-3	ads (lb/ft) =-70, 3-5=-70, 1-8=-2	0, 2-4=-20.	5-6=-20		IN JUAN GAACIA
staggered at 0-4-0 oc.	vs: 2x6 - 2 rows staggered at	Concentrat	ed Loads (lb) 1675 (F), 10=-1679 (F				3 JUENOED II
0-9-0 oc, 2x4 - 1 row at 0			1 (F), 13=-1682 (F), 1				16952
center of the member w/							10332
except if noted as front (F) or back (B) face in the LOA ply connections have been	D					TON MANSAGE SHE

provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

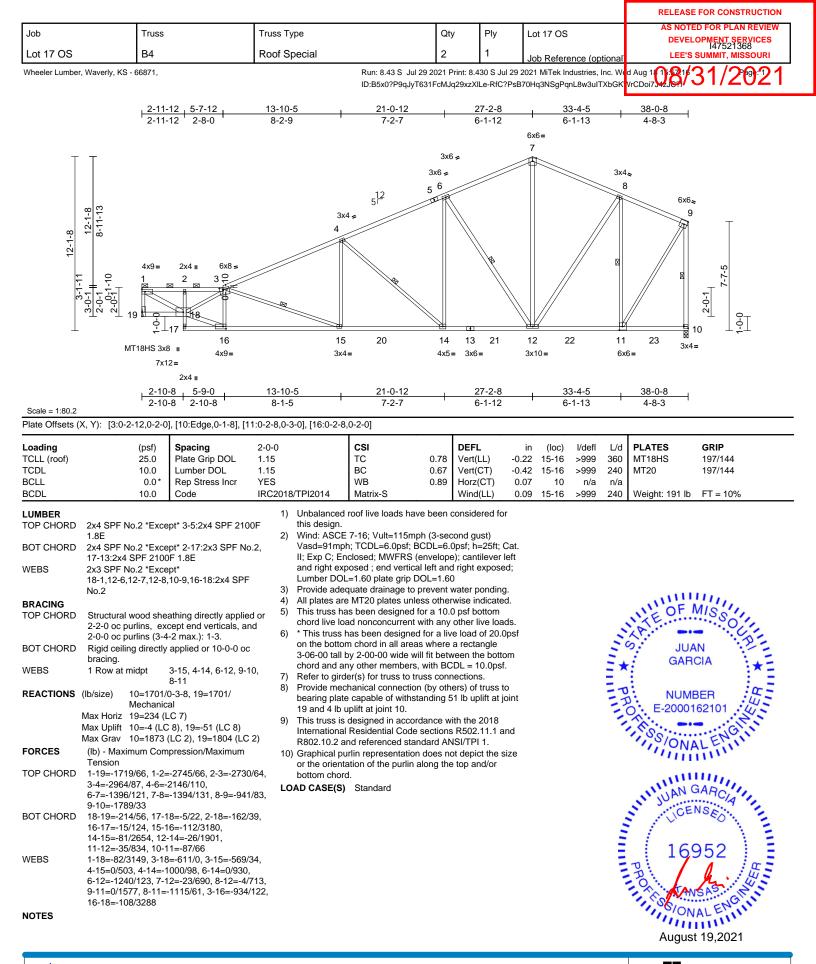
E. Mitek* g Component 16023 Swingley Ridge Rd Chesterfield, MO 63017


Continued on page 2

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 17 OS	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 147521365
Lot 17 OS	B1	Common Supported Gable	2	1	Job Reference (optional	
Wheeler Lumber, Waverl	ly, KS - 66871,	Run: 8.43 S Ju ID:20fjZ_3?ej4	ul 29 2021 Print: 8 qApNvabbcqazXlp	.430 S Jul 29 S-RfC?PsB7	2021 MiTek Industries, Inc. We 0Hq3NSgPqnL8w3uITXbGKW	d Aug 1 0:81/31/2021

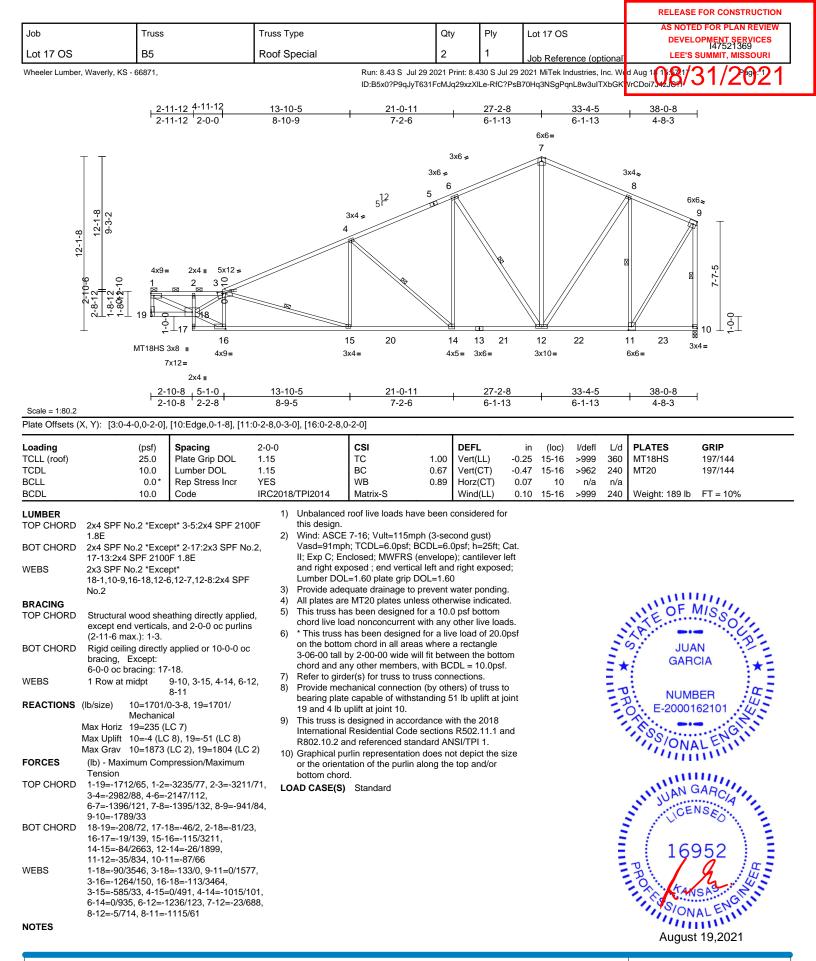
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 45, 10 lb uplift at joint 23, 7 lb uplift at joint 29, 44 lb uplift at joint 30, 51 lb uplift at joint 31, 47 lb uplift at joint 33, 48 lb uplift at joint 34, 48 lb uplift at joint 35, 48 lb uplift at joint 37, 48 lb uplift at joint 38, 48 lb uplift at joint 39, 48 lb uplift at joint 40, 46 lb uplift at joint 41, 53 lb uplift at joint 42, 28 lb uplift at joint 43, 217 lb uplift at joint 44, 46 lb uplift at joint 28, 50 lb uplift at joint 27, 44 lb uplift at joint 26, 61 lb uplift at joint 25 and 51 lb uplift at joint 24.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

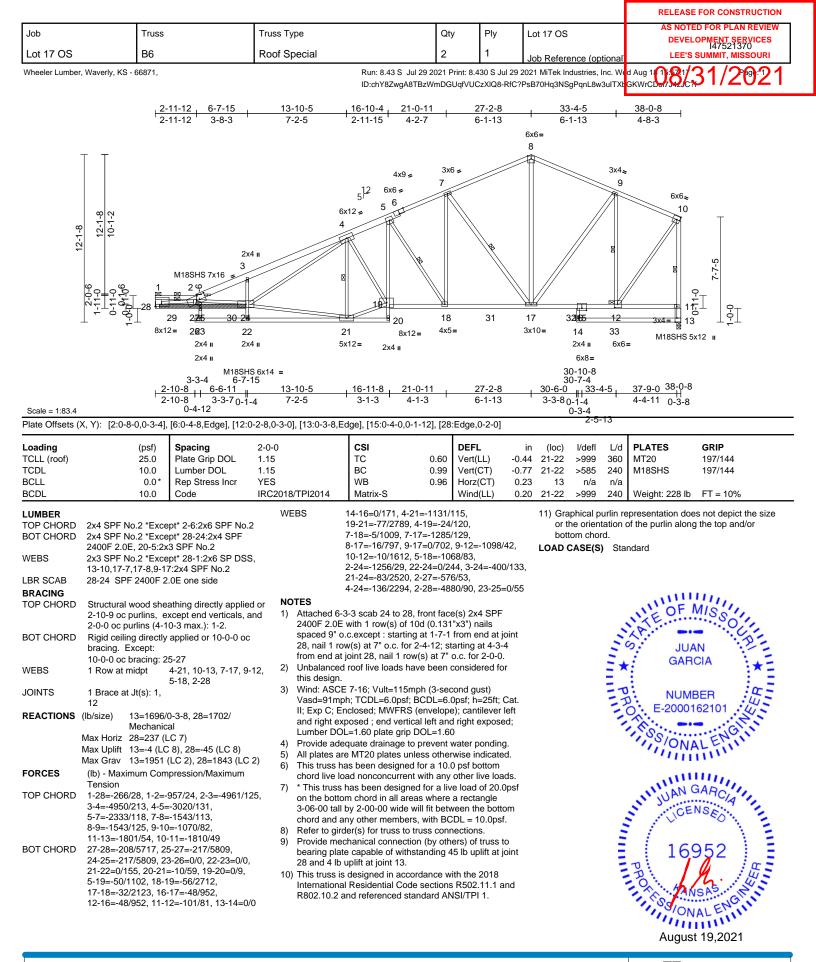
LOAD CASE(S) Standard



NiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

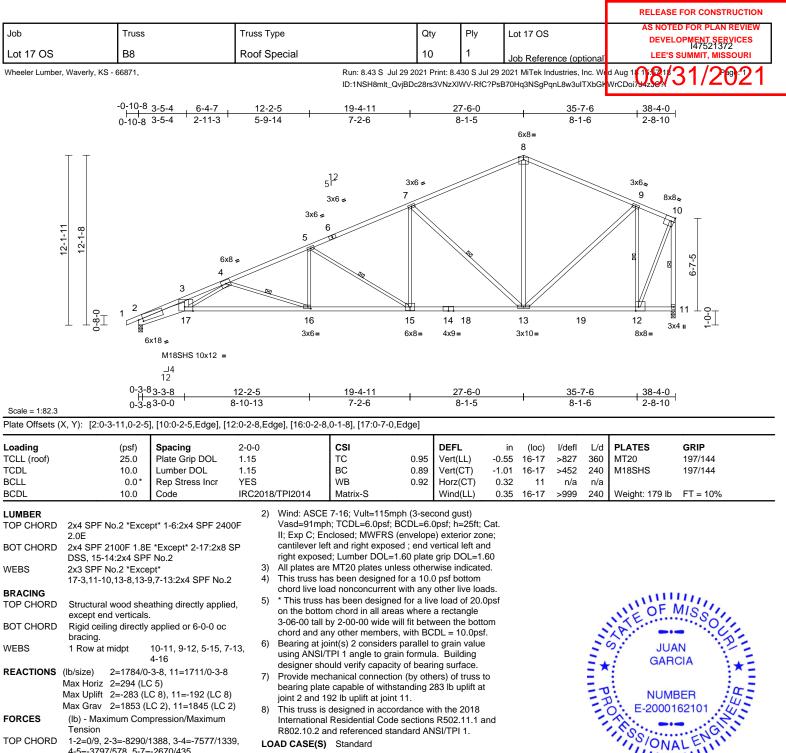
								RELEASE FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Lot 17 OS	AS NOTED FOR PLAN REVIEW
Lot 17 OS	В3		Roof Special		2	1	Job Reference (option	DEVELOPMENT SERVICES 147521367 LEE'S SUMMIT, MISSOURI
Wheeler Lumber	r, Waverly, KS - 66871,		•	Run: 8.43 S Jul 29	2021 Print: 8	430 S Jul 2	2021 MiTek Industries, Inc.	
					1FcMJq29xz)		B70Hq3NSgPqnL8w3ulTXbG	
	I	<u>3-7-12</u> <u>6-8-0</u> <u>3-7-12</u> <u>3-0-4</u>	13-10-7 7-2-7	21-0-11 7-2-5		27-2-8 6-1-13	<u>33-4-5</u> 6-1-13	<u>38-0-8</u> 4-8-3
							6x6= 7	
	2-3-11 2-3-11 1-2-5 1-2-5 1-2-5 1-2-5 1-2-13 1-2-6 1-2-13	1 2 9 2 9 1 208 19 3SHS 12x18 = M18 2x4 II M1 336HS 12x18		5^{12} $4x9$ 6x12 = 54415 $226x6 =$ 22		FI 13 23 3x6=		$3x4_s$ 8 $6x6_s$ 9 10 11 25 $3x4_z$ $3x4_z$
			-8-0 13-10-7	21-0-11	22-10	-8 27-2	-8 33-4-5	, 38-0-8 ,
Scale = 1:83.8		2-10-8 3-0-4	7-2-7	7-2-5	1-9-1			4-8-3
		0.6.4		-8,0-3-0], [20:0-6-0,0-3-)], [21:Edge	,0-2-8]		
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	BC	0.89 Horz	(LL) - (CT) - z(CT)	in (loc) l/defl L 0.40 15-16 >999 36 0.71 15-16 >642 24 0.13 10 n/a n 0.26 15-16 >999 24	60 MT20 197/144 10 M18SHS 197/144 /a
LUMBER			WEBS	19-20=0/54, 1-18=-7				
TOP CHORD	2x4 SPF No.2 *Exc 1.8E, 2-5:2x6 SPF N	ept* 1-2:2x4 SPF 210 No 2	0F	15-17=-404/2569, 4- 4-15=-155/142, 4-14				
BOT CHORD				6-14=-86/953, 6-12= 7-12=-105/688, 8-12	-1241/309,	,		
WEBS	2x3 SPF No.2 *Exc	-7,12-8,10-9:2x4 SPF		9-11=-138/1580, 8-1 16-17=0/235, 3-17=- 2-17=-1459/219, 2-1	1=-1114/18 345/194,			
BRACING TOP CHORD		eathing directly applie except end verticals, a 8-11 max.): 1-2.	and this desig 2) Wind: AS	CE 7-16; Vult=115mph	(3-second g	just)		OF MISSOU
BOT CHORD	Rigid ceiling directly bracing, Except: 2-2-0 oc bracing: 14	y applied or 10-0-0 oc 4-15.	II; Exp C; cantileve	mph; TCDL=6.0psf; BCI Enclosed; MWFRS (en r left and right exposed	velope) externed end vertica	erior zone; al left and		★ GARCIA ★
	1 Row at midpt (Ib/size) 10=1699, Mechanic Max Horiz 21=291 (Max Uplift 10=-184 Max Grav 10=1877	(LC 7) (LC 8), 21=-262 (LC	3) Provide a 4) All plates 5) This truss chord live 2) 6) * This tru	based; Lumber DOL=1.60 dequate drainage to pro- are MT20 plates unless is has been designed for a load nonconcurrent with sis has been designed for totom chord in all areas v	event water otherwise a 10.0 psf l h any other or a live load	ponding. indicated. oottom live loads. d of 20.0ps		P NUMBER E-2000162101
FORCES	(lb) - Maximum Con Tension	mpression/Maximum	3-06-00 t	all by 2-00-00 wide will f	it between t	he bottom		1111111
TOP CHORD		=-5004/799, =-1399/288,	 Refer to g Provide r bearing p joint 21 a 	d any other members, w girder(s) for truss to trus nechanical connection (late capable of withstan nd 184 lb uplift at joint 1	s connection by others) o ding 262 lb 0.	ns. f truss to uplift at		UAN GARCIA
BOT CHORD	20-21=-268/332, 18	16-19=0/0, 15-16=-15 12-14=-222/1905,	(152, Internation R802.10. 10) Graphica or the ori bottom cl		ections R502 ard ANSI/TF oes not dep	2.11.1 and PI 1. ict the size	9	16952
			LUAD CASE	(S) Standard				SO/ONAL ENGINE

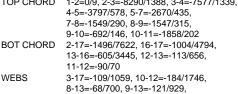

August 19,2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MITEK* 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of frusses and fruss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


MITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017



												RELEASE FOR CONSTRUCTION
Job		Truss		Truss T	/pe		Qty	Ply		Lot 17 OS		AS NOTED FOR PLAN REVIEW
Lot 17 OS		B7		Roof S	pecial		2	1		Job Referer	nce (optional	DEVELOPMENT SERVICES 147521371 LEE'S SUMMIT, MISSOURI
Wheeler Lumber	r, Waverly, KS - (66871,			Ri	un: 8.43 S Jul 29 2):IYEW89iUqBJkd7	2021 Prir	nt: 8.430 S J	lul 29 20	21 MiTek Ind	ustries, Inc. We	d Aug 1081/31/2021
							?Aetm2		J?PSB/		l de la companya de l	
		 		0-10-6 -4-15	<u> </u>	<u>21-0-13</u> 4-2-9	+	<u>27-2-8</u> 6-1-11		<u>33-5-13</u> 6-3-5	3 <u>36-5</u> 2-1	5-4 38-0-8 1-7 1-7-4
									6x6= 7	•		
	Т						3x6 ≠				3x6 ≈	
					₅ 12	6					8	6x6 ≈ 3x4 ∎
						4x5 = 5						9 10
	ထု				3x4 = 4	T		$\langle \rangle$		/		
	12-1-8			_	3			/\ \$				-1-5
			4x9 = 2	\square		1 A					Ň	
		8x8=						//	\mathbb{N}			
	<u>∽</u> _	1		//	1		1			/ 	P	
	T.º⊥	19 🖽	18	<u> </u>			15 x5=	25	14 3x10	26 -	9 27	<u>z ⊣a</u> _Ç⊥Ç 8x8 ॥
				12=	МТ	5x12= 18HS 3x8 ॥				2x4		6x6=
										2x4	ı 2x4 ı	2х4 II 2х4 II
										30-7-1	2	MT18HS 3x8 II
		H	7-3-5 7-3-5		<u>16-11-8</u> 9-8-3	<u>21-0-13</u> 4-1-5	1	<u>27-2-8</u> 6-1-11		<u>30-6-0 ∥ 3</u> 3-3-8 [∥] 2·	2 <u>3-6-8 36-</u> 10-12 3-0	7 <u>-0</u> 38-0-8 1-8 1-5-8
Scale = 1:85.4 Plate Offsets (2	X, Y): [1:Edg	e,0-3-4],	[10:Edge,0-2-4], [11	:0-3-8,Edg	e], [13:Edge,0-2-0],	, [13:0-1-8,0-1-0], [17:0-	3-8,Edge]		0-1-12	2	
Loading		(psf)	Spacing	2-0-0	CSI			DEFL		n (loc)	l/defl L/d	PLATES GRIP
TCLL (roof)		25.0	Plate Grip DOL	1.15	TC	().87	/ert(LL)	-0.3	5 17-18	>999 360	MT20 197/144
TCDL BCLL		10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES	BC WB			/ert(CT) Horz(CT)	-0.6 0.2		>668 240 n/a n/a	MT18HS 197/144
BCDL		10.0	Code	IRC2018	B/TPI2014 Mat	trix-S	١	Vind(LL)	0.1	3 15-16	>999 240	Weight: 201 lb FT = 10%
LUMBER TOP CHORD	2x4 SPF No	2		2)	Wind: ASCE 7-16 Vasd=91mph; TC				Cat.			
BOT CHORD	2x4 SPF 210	00F 1.8E	*Except* 17-5:2x3 \$	SPF	II; Exp C; Enclose and right exposed	d; MWFRS (env	elope);	cantilever	left			
WEBS	No.2, 21-22, 2x3 SPF No	.2 *Exce	pt*	- 0)	Lumber DOL=1.60	0 plate grip DOL	=1.60	•				
	20-21,14-6,1 No.2, 13-22:		7,23-24,8-14:2x4 SPI 7 No.2	= 3) 4)	All plates are MT2 This truss has bee	en designed for a	a 10.0 p	osf bottom				
BRACING TOP CHORD	Structural w	ood shee	athing directly applie	dor 5)	chord live load no * This truss has be							AND DEC
	2-11-1 oc pu	urlins, ex	cept end verticals.		on the bottom cho 3-06-00 tall by 2-0				tom			OF MISS
BOT CHORD	Rigid ceiling bracing.	directly	applied or 10-0-0 oc		chord and any oth Refer to girder(s)	ner members, wit	th BCD	L = 10.0ps			3	LP C.
WEBS REACTIONS	1 Row at mi (lb/size) 1		6-14, 5-15, 8-13, 2-1)-3-8, 19=1701/	9 6) 7)	Provide mechanic	al connection (b	y other	s) of truss			Ē	GARCIA
		lechanica	al		bearing plate capa 11 and 44 lb uplift		aing 10	ib uplift at	joint			*=
	Max Uplift 1	1=-10 (L	C 8), 19=-44 (LC 8)	8)	This truss is desig International Resi				and		ĒŢ	NUMBER
FORCES			LC 2), 19=1777 (LC pression/Maximum		R802.10.2 and ref	ferenced standa					E	O. E-2000162101
TOP CHORD	Tension		280/103, 3-5=-2843/ ⁻		AD CASE(S) Sta	indaru						100 ENGLI
IOI UIURD	5-6=-2295/1	31, 6-7=	-1511/114,									UNAL SIN
	1-19=-410/5	8, 10-11		DI,								AUUD
BOT CHORD	18-19=-223/ 16-17=0/183		'-18=0/348, 2/677, 15-16=-117/2	565,								IN GARCI
	14-15=-65/2	080, 13-										CENSE
WEBS	6-14=-1261/	143, 10-	12=-3/1362,									$\mathbb{E} / \mathbb{V} = \mathbb{V} \setminus \mathbb{E}$
	6-15=-30/10	06, 8-14	=-16/767, 5-15=-891 =0/757, 8-13=-1418/								-	16952
	3-18=-10/19 16-18=-225/		-114/109, 19=-2758/34									16952
NOTES												A CONTRACTOR OF A
 Unbalance this design 		as have	been considered for									ONAL ENGINE
												same.
												August 19,2021

8-13=-66/700, 9-13=-121/929, 9-12=-1379/265, 5-15=-1230/289, 7-15=-65/934, 7-13=-1441/374, 5-16=-21/718, 4-16=-1416/418, 4-17=-478/2683

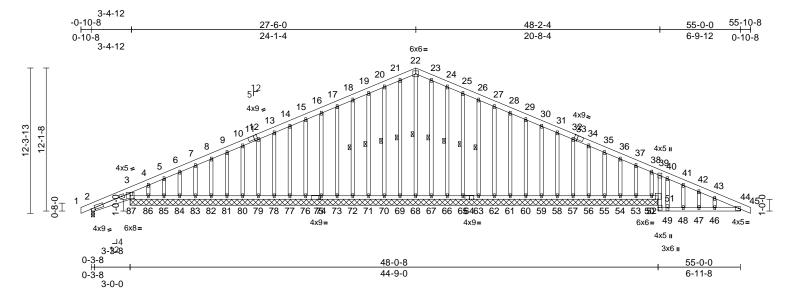
NOTES

 Unbalanced roof live loads have been considered for this design.

							REL	EASE FOR CO	NSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Lot 17 OS		NOTED FOR P	
Lot 17 OS	В9	Roof Special		2	1	Job Reference (op		EVELOPMENT 14752 EE'S SUMMIT,	MISSOURI
Wheeler Lumber, Waverly	, KS - 66871,		Run: 8.43 S Ju ID:tk8Fdtg66Ba	ul 29 2021 Print: 8 aOtbwTSHqGtXz	.430 S Jul Kibi-RfC?Ps	29 2021 MiTek Industries, sB70Hq3NSgPqnL8w3uIT>	Inc. Wed Aug 14 17: (bGKWrCDoi7J4zJC)	3/31/	2021
-0-10-8	-4-12 <u>6-5-2 12-2-5</u> 3-0-6 5-9-3	<u> </u>	<u>27-6-0</u> 8-1-5		-7-6 1-6	42-9-12	+ <u>48-2-4</u> 5-4-8	<u>55-0-0</u> 6-9-12	55-10-8
0-10-8 3	3-0-6 5-9-3 -4-12	7-2-6	8-1-5	6x6=	1-6	7-2-6	5-4-8	6-9-12	0-10-8
0-8-0 1 12-1-8 0-8-0	4x9 ± 4 3 ± 5 25	5^{12} 4x5 4x9 = 7 4x5 = 5 5 24 23	22	21	220	4x9s	4x5 \$ 11 6x8 1 1 1 1 7 1 7 1 7 5	2	13140- 13140-
	- 25 (18 =	24 23 3x6= 4x5:		21 4x9=	2 20 0 4x9=		18 ♀⊥17516 3x10= 5x12		⊥ 4x5=
0,	M18SHS 9x16 =						3x4		
0-3-8 H 0-3-8	1220	<u>19-4-11</u> 7-2-6	<u>27-6-0</u> 8-1-5		<u>-7-6</u> 1-6	<u>42-9-12</u> 7-2-6	48-0-0 48-0 5-2-4 0-0-		

Scale = 1:97.6

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		TC	0.93	Vert(LL)		24-25	>940	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.93	Vert(CT)		24-25	>520	240	M18SHS	197/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.87	Horz(CT)	0.42	16	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-S		Wind(LL)	0.38	24-25	>999	240	Weight: 280 lb	FT = 10%
LUMBER			W	EBS	3-25=-209/1925	, 8-21=-15	3/1596,						
TOP CHORD	2x6 SPF No.2 *Exce	pt* 1-6,10-14:2x6 S	Р		9-21=-497/223,	12-18=-29	2/3159,						
	DSS				9-19=-233/125,								
BOT CHORD					11-18=-1001/19	,	,						
	1650F 1.4E, 25-22:2		,		5-23=-1337/299								
	15-13:2x4 SPF No.2				7-21=-1487/377		39/441,						
NEBS	2x3 SPF No.2 *Exce				4-25=-282/1770								
	21-8,21-9,18-12,7-2	1:2x4 SPF No.2		OTES									
OTHERS	2x3 SPF No.2		1)		00F 1.8E bearing							N'OF I	ALC'LL
BRACING					front face with 2			')				NE	Ser
TOP CHORD		athing directly applie	ed or		d 3" o.c. 8 Total f	asteners. I	searing is					18	
	1-7-12 oc purlins.		2)		be SPF No.2. roof live loads h		oppidered f	~r				2 · · · · · ·	
BOT CHORD		applied or 2-2-0 oc	۷)	this design.	Tool live loads h	ave been		JI			-	JUA	2017 · · · · · · · · · · · · · · · · · · ·
VEBS	bracing. 1 Row at midpt	0.04 5.00 7.04 4	24 3)	0	E 7-16; Vult=115r	mnh (3-ser	ond qust)				= *	GAR	
		9-21, 5-23, 7-21, 4-2	27 -7		h; TCDL=6.0psf;			Cat.				÷	
REACTIONS		-3-8, 16=2888/(0-3-8 ock), (req. 0-4-12)	5 +		nclosed; MWFRS						= 1		·
	Max Horiz 2=209 (LC			cantilever le	ft and right expo	sèd ; end \	vertical left ar	nd			= 5	NUME	• []]
	Max Uplift 2=-323 (L		0	right expose	ed; Lumber DOL=	=1.60 plate	grip DOL=1	.60			- 1	C: E-20001	62101
	Max Grav 2=2279 (L		2) ⁴⁾		e MT20 plates ur			ed.				· ··· -··	
ORCES	(lb) - Maximum Com		² / 5)		as been designe							1, 50,	······································
ORCES	(ib) - Maximum Com Tension	pression/waximum			ad nonconcurrer							ONA ONA	LEIN
TOP CHORD		1202 2 1- 0207/1			has been design			0psf				- 1000	
OF CHORD	4-5=-5142/700, 5-7=	,	290,		m chord in all are								
	7-8=-2739/399, 8-9=	,			by 2-00-00 wide							, un	
	9-11=-3031/342, 11-	,			ny other member							IN UAN C	ARC
	12-13=-231/821, 13-		7)		pint(s) 2 consider TPI 1 angle to gr			9				N 30	···· A /
BOT CHORD					ould verify capac							CE	SED
	23-24=-675/4686, 21	1-23=-420/3542,	8)		chanical connecti			to			-	- / ×	~ ` \
	19-21=-141/2736, 18	3-19=-98/2044,	0)		e capable of with						-	1.1	
	16-18=-913/316, 15-	16=-21/126,			887 lb uplift at joir		20 10 upint a				_	169	72 :
	12-16=-2804/449, 13	3-15=-620/235	9)		designed in acc		ith the 2018				=	UCEI	Y Im
			0,		Residential Coc			and			-	D.	
					and referenced st							- O	10:44
			1.0	DAD CASE(S)								AN AN	SA
				2.12 0/102(0)	clandara							1, SION	AL ENIN
													ALIN



August 19,2021

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 17 OS	AS NOTED FOR PLAN REVIEW
000	11035		Giy	· 'y		DEVELOPMENT SERVICES 147521374
Lot 17 OS	B10	Roof Special Supported Gable	1	1	Job Reference (optional)	LEELS SUMMIT MISSOURI

Wheeler Lumber, Waverly, KS - 66871,

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Wed Aug 10:81/31/2021 ID:MSh3lez2_mXBfLcKUrRBNPzXIoH-RfC?PsB70Hq3NSgPqnL8w3uITXbg WrCDonv42011

Scale = 1:97.6

Loading TCLL (roof)		(psf)	Spacing Plate Grip DOL	2-0-0	CSI TC	0.92	DEFL	in 0.00	(loc) 52-53	l/defl >999	L/d 360	PLATES MT20	GRIP
TCLL (1001)		25.0 10.0	Lumber DOL	1.15 1.15	BC	0.82	Vert(LL) Vert(CT)	-0.52	52-53 44	>999 >175	360 120	MI 20	197/144
BCLL		0.0*	Rep Stress Incr	YES	WB	0.56	· · ·	-0.52	44 52	>175 n/a	n/a		
BCDL		10.0	Code	IRC2018/TPI2014			Wind(LL)		52-53	>999	240	Weight: 406 lb	FT = 10%
	-		•		Max Unlif	t 2=-68 (LC 9), 52	=-401 (I C 5))	TOP CI	HORD	1-2=0	/10, 2-3=-309/97	8 3-4=-249/871
TOP CHORD	2x6 SPF	No.2			max op	53=-928 (LC 1),				.0.12			6/873, 6-7=-199/8
BOT CHORD			ept* 2-87:2x6 SPF N	0.2,		55=-31 (LC 9), 5					7-8=-	183/872, 8-9-16	7/872 9-10=-151/
	39-50:2x4	4 SPF 210	0F 1.8E			57=-31 (LC 9), 5					10-12	=-134/872,12-13	¥118/872,
WEBS	2x3 SPF	No.2				59=-32 (LC 9), 6						=102/872, 14-15	
OTHERS	2x4 SPF	No.2				61=-32 (LC 9), 6						=+69/872, 16-17= 37/872, 18-19=	
BRACING						63=-32 (LC 9), 6 66=-36 (LC 9), 6							-20/872, /882, 21-22=0/82
TOP CHORD			eathing directly applie	ed or		(LC 5), 70=-36 (I	(//						882, 24-25=-7/87
	10-0-0 oc		applied or 5-3-11 or	-		8), 72=-32 (LC 8	s), 73=-32 (L0	C 8),			25-26	=-25/873, 26-27=	-43/873,
BOT CHORD	bracing.	ing unecuy	applied of 5-5-11 of	Li .		74=-32 (LC 8), 7	· · ·					=-61/873, 28-29=	
WEBS	1 Row at	midpt	22-68, 21-69, 20-70)		77=-32 (LC 8), 7						- -96/873, 30-31	
	ai	mapt	19-71, 18-72, 23-67			79=-32 (LC 8), 8 81=-32 (LC 8), 8						-131/873 3034 -167/873, 35-36	
			24-66, 25-65, 26-63	Ś		81=-32 (LC 8), 8 83=-32 (LC 8), 8					36-37	=-107/873, 35-30 =-205/880, 37-38	-145/621
REACTIONS	(lb/size)	2=60/0-3	-8, 52=1411/44-8-8,			85=-31 (LC 8), 8					38-39	=-257/949, 39-40	=-257/972
		53=-928/	44-8-8, 54=222/44-8	-8,		87=-121 (LC 22)		,,			40-41	=-201/772,41-42	=-206/730,
			4-8-8, 56=127/44-8-		Max Grav	2=144 (LC 21), 5		1),			42-43	=-212/696, 43-44	=-206/ 7 30, =-225/667, 44-45=
			4-8-8, 58=120/44-8-	,		53=298 (LC 5), 5							
			14-8-8, 60=120/44-8- 14-8-8, 62=121/44-8-	,		55=117 (LC 22),							
			14-8-8, 65=105/44-8-	,		57=117 (LC 22),	58=120 (LC	1),					
			4-8-8, 67=263/44-8-			59=120 (LC 22), 61=120 (LC 1), 6							
		68=542/4	4-8-8, 69=263/44-8-	8,		63=118 (LC 1), 6							
			44-8-8, 71=105/44-8-	,		66=112 (LC 22),							
			4-8-8, 73=121/44-8-			68=542 (LC 1), 6						, initi	
			4-8-8, 76=120/44-8-			70=118 (LC 21),						MAN	ARC
			14-8-8, 78=120/44-8- 14-8-8, 80=120/44-8-			72=119 (LC 21),						Nº JOINE	No
			14-8-8, 80=120/44-8-			74=120 (LC 1), 7							ED
			4-8-8, 84=121/44-8-			77=120 (LC 21), 79=120 (LC 1), 8					-	1.1	- A - 1
			4-8-8, 86=150/44-8-	,		81=120 (LC 1), 8					-	1 100	
		87=26/44	1-8-8			83=120 (LC 1), 8					-	10	952
	Max Horiz	2=209 (L	C 12)			85=117 (LC 21),					-	P	Ξ.
						87=162 (LC 21)					-	PO PO	M. 14:
				FORCES	(lb) - Ma	ximum Compressio	on/Maximum					PROPERTY	NSEO 952 ALENG
					Tension							1. So	ENGIN
												ON	ALE
													mm.

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems. See **ANS/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

August 19,2021

							RELEASE FOR CONSTRUCTION
Job Tr	russ	Truss Type		Qty	Plv	Lot 17 OS	AS NOTED FOR PLAN REVIEW
	400			Guy	,		DEVELOPMENT SERVICES 147521374
Lot 17 OS B ²	10	Roof Special Suppor	ted Gable	1	1	Job Reference (optional	
Wheeler Lumber, Waverly, KS - 6687	71,		Run: 8.43 S Jul 29 2	021 Print: 8.4	430 S Jul 29	2021 MiTek Industries, Inc. We	d Aug 1 0 8 3 1 2 9 2 1
			ID:MSh3lez2_mXBfL	CKUrRBNPz	XIoH-RfC?Ps	B70Hq3NSgPqnL8w3uITXbG	
	86-87=-790/293,	LOAD CASE(S)	Standard			1	

	85-86=-789/293, 84-85=-789/293,
	83-84=-789/293, 82-83=-789/293,
	81-82=-789/293, 80-81=-789/293,
	79-80=-789/293, 78-79=-789/293,
	77-78=-789/293, 76-77=-789/293,
	74-76=-789/293, 73-74=-789/293,
	72-73=-789/293, 71-72=-789/293,
	70-71=-789/293, 69-70=-789/293,
	68-69=-789/293, 67-68=-789/293,
	66-67=-789/293, 65-66=-789/293,
	63-65=-789/293, 62-63=-789/293,
	61-62=-789/293, 60-61=-789/293,
	59-60=-789/293, 58-59=-789/293,
	57-58=-789/293, 56-57=-789/293,
	55-56=-789/293, 54-55=-789/293,
	53-54=-789/293, 52-53=-789/293,
	51-52=-789/293, 50-51=-384/132,
	39-51=-534/180, 49-50=-612/234,
	48-49=-612/234, 47-48=-612/234,
	46-47=-612/234, 44-46=-612/234
WEBS	22-68=-516/7, 21-69=-236/20, 20-70=-92/52,
	19-71=-88/52, 18-72=-93/48, 17-73=-94/48,
	16-74=-94/48, 15-76=-93/48, 14-77=-93/48,
	13-78=-93/48, 12-79=-93/48, 10-80=-93/48,
	9-81=-93/48, 8-82=-93/48, 7-83=-94/48,
	6-84=-95/48, 5-85=-90/46, 4-86=-103/39,
	23-67=-236/24, 24-66=-85/52, 25-65=-79/52,
	26-63=-92/48, 27-62=-94/48, 28-61=-94/48,
	29-60=-93/48, 30-59=-93/48, 31-58=-93/48,
	32-57=-92/48, 34-56=-93/48, 35-55=-117/53,
	36-54=-99/49, 37-53=-174/592,
	38-52=-948/284, 40-49=-164/476,
	41-48=-5/42, 42-47=-9/27, 43-46=-17/43,
	3-87=-258/128

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 All plates are 2x4 MT20 unless otherwise indicated.
- 4) All plates are 2x4 MT20 unless of5) Gable studs spaced at 1-4-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 7) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 68 lb uplift at joint 2, 121 lb uplift at joint 87, 4 lb uplift at joint 69, 36 lb uplift at joint 70, 36 lb uplift at joint 71, 32 lb uplift at joint 72, 32 lb uplift at joint 73, 32 lb uplift at joint 74, 32 lb uplift at joint 76, 32 lb uplift at joint 77, 32 lb uplift at joint 78, 32 lb uplift at joint 79, 32 lb uplift at joint 80, 32 lb uplift at joint 81, 32 lb uplift at joint 82, 32 lb uplift at joint 83, 32 lb uplift at joint 84, 31 lb uplift at joint 85, 23 lb uplift at joint 86, 8 lb uplift at joint 67, 36 lb uplift at joint 66, 36 lb uplift at joint 65, 32 lb uplift at joint 63, 32 lb uplift at joint 62, 32 lb uplift at joint 61, 32 lb uplift at joint 60, 32 lb uplift at joint 59, 32 lb uplift at joint 58, 31 lb uplift at joint 57, 33 lb uplift at joint 56, 31 lb uplift at joint 55, 53 lb uplift at joint 54, 928 lb uplift at joint 53 and 401 Ib uplift at joint 52.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

												RELEASE FOR CONSTRUCTION
Job		Truss		Truss Type		Qty	Ply	L	ot 17 OS			AS NOTED FOR PLAN REVIEW DEVELOPMENT_SERVICES
Lot 17 OS		B11		Roof Special Su	oported Gable	1	1		lob Refere	nce (opt	ional	DEVELOPMENT SERVICES 147521375 LEE'S SUMMIT, MISSOURI
Wheeler Lumber,	Waverly, KS -	66871,			Run: 8.43 S	Jul 29 2021 Print	: 8.430 S Ju	ul 29 202	21 MiTek Inc	lustries, Ir	nc. We	$\frac{1}{1082}31/2921$
					ID:yvdnezqk6	EnLkfr2v1nn_oz	_kV4-RfC?l	PsB70H	q3NSgPqnL	8w3ulTXb	GKW	
	3-4 -0-10-8	-12		27-6-0						48	-0-0	
	0-10-83-4	-12		24-1-4			1				-6-0	
							6x6= 22					
ΤΤ						20 ²¹ 19 ²⁰		24	4x9 ≈			
				5 ¹²	17 18				2627 28	00		
				^{4x9} = 14	15					29 30	-31	
φ <u>1</u> 3				9 10 112 13								32 33 34
12-3-13 12-1-8			7 8	9	×			8 🛛	Ø			35 36 37 3x4 II
		4x5 =	5 6									
		3										
0-T	1 2											
	4x9 =		74 73 72 71 70	69 68 67 66 65	64 6632 61 60 4x9=	59 58 57	56 55 5		251 50 x9=	49 48	47 4	6 45 44 43 42 41 _{3x6=} , ^{-⊥}
		⊿4										
	3- 0-3-8	3 2 8				48-0-0						
	0-3-8 H 0-3-8					44-8-8						
Scale = 1:87.6			1 [14:0 0 0 Edge] [07	40.4.9 Edgel (62.0.4	0 Edgel [75:0 4	0.0.0.01						
	(, ř): [2:0-3	-13,0-1-9], [11:0-3-2,Edge], [27									
Loading TCLL (roof)		(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	TC		EFL ert(LL)	ir 0.00	. ,	l/defl >999	L/d 360	PLATES GRIP MT20 197/144
TCDL BCLL		10.0 0.0*	Lumber DOL Rep Stress Incr	1.15 YES	BC WB		ert(CT) orz(CT)	0.00 0.00		>999 n/a	240 n/a	
BCDL		10.0	Code	IRC2018/TPI2014	Matrix-S		/ind(LL)	0.00		>999	240	Weight: 374 lb FT = 10%
		. 0			Max Uplift 2=-3	1 (LC 9), 40=-4 9), 42=-27 (LC			TOP CH			10, 2-3=-287/126, 3-4=-196/94, 77/102, 5-6=-160/115, 6-7=-143/129,
BOT CHORD		o.2 *Exce	pt* 2-75:2x6 SPF No.		9), 44	4=-32 (LC 9), 4	5=-32 (LC),			7-8=-1	25/143 8 9 108/157 9-10=-90/171
WEBS OTHERS	2x4 SPF No 2x4 SPF No		pt* 3-75:2x3 SPF No.	2	48=-3	32 (LC 9), 47=- 32 (LC 9), 49=-	32 (LC 9)	,			13-14	=-73/185, (12+13++56/(198, =-50/212, 14-15=-50/226
BRACING TOP CHORD	Structural v	vood she:	athing directly applied	or	53=-3	31 (LC 9), 51=- 38 (LC 9), 54=-	37 (LC 9)	,			15-16= 17-18=	=50/240, 16 -175 0/254; ∋50/268, 18 ₁ 19≡-50/282, =-50/298, 20-21=51/313,
BOT CHORD	6-0-0 oc pu	ırlins, exc	cept end verticals. applied or 10-0-0 oc			36 (LC 8), 59=- 32 (LC 8), 61=-				:	21-22=	==47/307, 22-23=-46/302,
BOT CHORD	bracing, E	xcept:				32 (LC 8), 64=- 32 (LC 8), 66=-				:	23-24=	48/298, 24-25=-46/271, 43/245, 26-28=-41/220,
WEBS	6-0-0 oc bra 1 Row at m	nidpt	22-56, 21-57, 20-58,		67=-3	32 (LC 8), 68=- 32 (LC 8), 70=-	32 (LC 8)	,		:	28-29-	5-40/196, 129-130 - 3587171, - 36/147-201632+62/1126,
			19-59, 18-60, 23-55, 24-54, 25-53, 26-51		71=-3	32 (LC 8), 72=- 31 (LC 8), 74=-	32 (LC 8)	,			32-33=	=-32/110, 33-34=-30/93, 34-35=-28/77, =-31/62, 36-37=-39/48, 37-38=-64/32,
REACTIONS (8-8, 40=84/44-8-8, 4-8-8, 42=120/44-8-8,		75=-8	38 (LC 8)					38-39=	=-29/40539-40=-22/98
	4	43=120/44	4-8-8, 44=120/44-8-8, 4-8-8, 46=120/44-8-8,			30 (LC 22), 42	=120 (LĆ	1),				10000 M
	4	47=120/44	4-8-8, 48=120/44-8-8,			20 (LC 1), 44= 20 (LC 22), 46						
	5	51=120/44	4-8-8, 50=120/44-8-8, 4-8-8, 53=120/44-8-8,			20 (LC 22), 48 20 (LC 1), 50=						
			4-8-8, 55=121/44-8-8, 4-8-8, 57=121/44-8-8,			20 (LC 1), 53= 23 (LC 22), 55						
			4-8-8, 59=120/44-8-8, 4-8-8, 61=120/44-8-8,		56=1	54 (LC 18), 57 23 (LC 21), 59	=121 (LC	1),				ammun
			4-8-8, 64=120/44-8-8, 4-8-8, 66=120/44-8-8,		60=1	20 (LC 1), 61= 20 (LC 1), 64=	120 (LC 1),				WAN GARCIA
	e	67=120/44	4-8-8, 68=120/44-8-8, 4-8-8, 70=120/44-8-8,		65=1	20 (LC 21), 66	=120 (LC	1),				CENSED
	7	71=120/44	4-8-8, 72=120/44-8-8, 4-8-8, 74=88/44-8-8,		69=1	20 (LC 1), 68= 20 (LC 1), 70=	120 (LC 1),			1	
	7	75=260/44	4-8-8		73=1	20 (LC 21), 72 23 (LC 1), 74=						16952
Ν	Max Horiz 2	2=240 (LC	, v)	FORCES	75=2 (lb) - Maximum	60 (LC 1) Compression/I	Maximum					B. h. H.
					Tension							August 19,2021
												ONALEN
												August 19,2021
Continued on p	bage 2		rs and READ NOTES ON T									

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 17 OS	AS NOTED FOR PLAN REVIEW
Lot 17 OS	B11	Roof Special Supported Gable	1	1	Job Reference (optional	DEVELOPMENT SERVICES 147521375 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -	66871,	Run: 8.43 S Jul 29 2 ID:yvdnezqk6EnLkfr2	021 Print: 8.4 v1nn_oz_kV	430 S Jul 29 4-RfC?PsB7	2021 MiTek Industries, Inc. We 0Hq3NSgPqnL8w3uITXbGKW	d Aug 1 0 82/31/2021 CDoi7 J420C 7 / 31/2021

BOT CHORD	$\begin{array}{l} 2.75 = -43/55, 74.75 = -21/37, 73.74 = -21/37, \\ 72-73 = -21/37, 71.72 = -21/37, 70.71 = -21/37, \\ 69.70 = -21/37, 68-69 = -21/37, 67-68 = -21/37, \\ 66-67 = -21/37, 65-66 = -21/37, 64-65 = -21/37, \\ 62-64 = -21/37, 61-62 = -21/37, 54-65 = -21/37, \\ 59-60 = -21/37, 58-59 = -21/37, 57-58 = -21/37, \\ 50-57 = -21/37, 55-56 = -21/37, 54-55 = -21/37, \\ 53-54 = -21/37, 51-53 = -21/37, 54-55 = -21/37, \\ 49-50 = -21/37, 48-49 = -21/37, 47-48 = -21/37, \\ 43-44 = -21/37, 42-43 = -21/37, 41-42 = -21/37, \\ 40-41 = -21/37 \end{array}$
WEBS	$\begin{array}{l} 22-56=-132/6,\ 21-57=-94/8,\ 20-58=-96/52,\\ 19-59=-94/52,\ 18-60=-93/48,\ 17-61=-93/48,\\ 16-62=-93/48,\ 15-64=-93/48,\ 14-65=-93/48,\\ 13-66=-93/48,\ 15-67=-93/48,\ 14-65=-93/48,\\ 9-69=-93/48,\ 8-70=-93/48,\ 7-71=-93/48,\\ 6-72=-94/48,\ 5-73=-96/46,\ 4-74=-63/39,\\ 23-55=-94/0,\ 24-54=-96/53,\ 25-53=-94/54,\\ 26-51=-93/48,\ 28-50=-93/47,\ 29-49=-93/48,\\ 30-48=-93/48,\ 34-47=-93/48,\ 32-45=-93/46,\\ \end{array}$

NOTES

1) Unbalanced roof live loads have been considered for this design.

3-75=-219/129

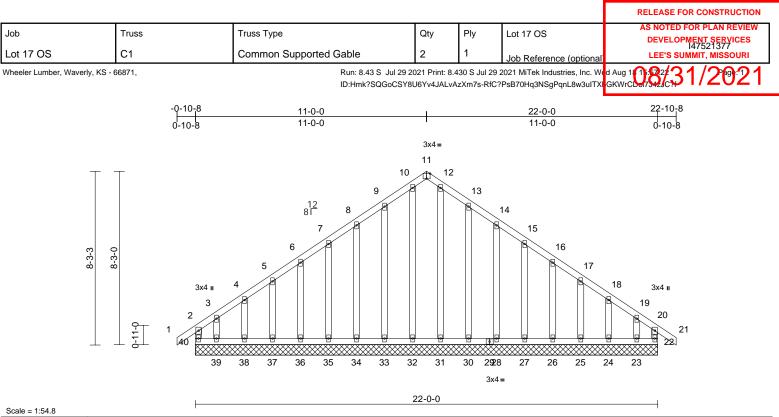
36-42=-94/45, 37-41=-98/101, 38-40=-126/3,

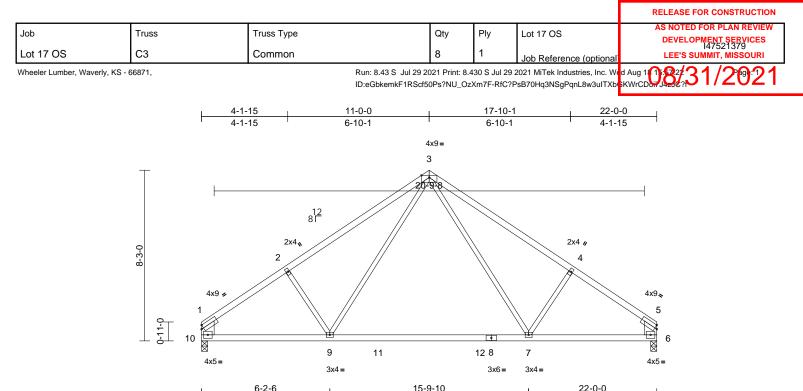
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. All plates are 2x4 MT20 unless otherwise indicated. 4)
- Gable studs spaced at 1-4-0 oc. 5)
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 8) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 4 lb uplift at joint 40, 31 lb uplift at joint 2, 88 lb uplift at joint 75, 36 lb uplift at joint 58, 36 lb uplift at joint 59, 32 lb uplift at joint 60, 32 lb uplift at joint 61, 32 lb uplift at joint 62, 32 lb uplift at joint 64, 32 lb uplift at joint 65, 32 lb uplift at joint 66, 32 lb uplift at joint 67, 32 lb uplift at joint 68, 32 lb uplift at joint 69, 32 lb uplift at joint 70, 32 lb uplift at joint 71, 32 lb uplift at joint 72, 31 lb uplift at joint 73, 22 lb uplift at joint 74, 37 lb uplift at joint 54, 38 lb uplift at joint 53, 32 lb uplift at joint 51, 31 lb uplift at joint 50, 32 lb uplift at joint 49, 32 lb uplift at joint 48, 32 lb uplift at joint 47, 32 lb uplift at joint 46, 32 lb uplift at joint 45, 32 lb uplift at joint 44, 31 lb uplift at joint 43, 27 lb uplift at joint 42 and 92 lb uplift at joint 41.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

									RELEAS	E FOR CONSTRUCTION
Job	Truss		Truss Type		Qty	Ply	Lot 17 OS			ED FOR PLAN REVIEW
Lot 17 OS	B12		Roof Special		2	1	Job Roforo	nce (optional		LOPMENT SERVICES 147521376 SUMMIT, MISSOURI
Wheeler Lumber	, Waverly, KS - 66871,			Run: 8.43 S Jul 29	2021 Print: 8	3.430 S Jul 2	9 2021 MiTek Inc	lustries, Inc. We	d Aug 1 1: 22	$\frac{21}{20021}$
				ID:Uj3PRdq6LwfU	8VGrMJFYSa	z_kV5-RfC?	PsB70Hq3NSgPo	qnL8w3ulTXbG	(WrCDoi75425C?f	51/2021
	-0-10-8 3-5-4	6-5-2 12-2-5	19-4-11	27-6	0		35-7-6	42-9	9-12	48-0-0
		-11-14 5-9-3	7-2-6	8-1-			8-1-6		2-6	5-2-4
						x6= 3				
ТТ							4x9 ≈			
			12 5	4x5 =				4x5 ≈		
			4x9 ≠	7			- Al-	10		
~ ~			4x5 =						4x5 👟	
12-3-13 12-1-8			5						11	
12		4x9 =		A A A A A A A A A A A A A A A A A A A			\$/			6x6=
	0	4								
	3	R R								2-7-0
			19	18 21	1	7	16	15	14	13 ⊥ ♀ ♀_ MT18HS 3x8 ↓
÷ 0	≊ ⊠ 6x18 =		3x6=	M18SHS 5x12 =	4	x9=	4x9=	3x6=	4x9=	
	M18SHS	9x16 =								
	_⊥4 3- 32 8									
	0- <u>3-8</u> 	12-2-5	19-4-11				35-7-6		9-12	48-0-0
Scale = 1:87.6	0-3-8 3-0-0	8-10-13	7-2-6	8-1-	ō		8-1-6	7-1	2-6	5-2-4
Plate Offsets (2	X, Y): [2:0-3-9,Edge]	, [13:0-3-8,Edge], [14	:0-2-8,0-2-0], [15:0-2	-8,0-1-8], [18:0-6-0,0-3-	0], [19:0-2-	8,0-1-8]				
Loading	(psf)	Spacing	2-0-0	CSI	DE	FL	in (loc)	l/defl L/d	PLATES	GRIP
TCLL (roof) TCDL	25.0 10.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC		. ,	-0.62 19-20 -1.13 19-20	>918 360 >508 240	MT20 M18SHS	197/144 197/144
BCLL	0.0*	Rep Stress Incr	YES	WB	0.90 Hoi	z(CT)	0.44 13	n/a n/a	MT18HS	197/144
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-S		. ,	0.39 19-20	>999 240	Weight: 251 lb	FT = 10%
LUMBER TOP CHORD	2x6 SPF No.2 *Exc	ept* 1-6,9-12:2x6 SP	·	CE 7-16; Vult=115mph mph; TCDL=6.0psf; BC			ıt.			
BOT CHORD	2x4 SPF 2400F 2.0	E *Except* 2-20:2x6 \$ 2x4 SPF 2100F 1.8E	SPF II; Exp C;	Enclosed; MWFRS (er r left and right exposed			;			
WEBS	2x3 SPF No.2 *Exc	ept*	right expo	osed; Lumber DOL=1.6	0 plate grip	DOL=1.60	I			
BRACING	17-8,17-10,7-17,3-2	20:2x4 SPF No.2	This truss	are MT20 plates unles has been designed fo	a 10.0 psf	bottom				
TOP CHORD		eathing directly applie		e load nonconcurrent wi ss has been designed f					VL'OF	1117
BOT CHORD	except end verticals Rigid ceiling directly	applied or 2-2-0 oc	on the bo	ttom chord in all areas all by 2-00-00 wide will	where a rec	tangle			NEOF	MISS
WEBS	bracing. 1 Row at midpt	10-17, 5-18, 7-17, 4	-19 chord and	d any other members, v	ith BCDL =	10.0psf.	I	2	XP	-
	(lb/size) 2=2221/0)-3-8, (req. 0-3-10),	6) WARNIN	G: Required bearing siz an input bearing size.	e at joint(s)	2, 13			S. JU	
	Max Horiz 2=240 (L	/0-3-8, (req. 0-3-9) C 8)		at joint(s) 2 considers pa SI/TPI 1 angle to grain				= = *	GAF	×=
		LC 8), 13=-244 (LC 9) LC 2), 13=2273 (LC 2	designer	should verify capacity of	f bearing s	urface.		= -	NUM	BER a
FORCES	(lb) - Maximum Con	npression/Maximum	bearing p	nechanical connection late capable of withsta	nding 322 lb				C. E-2000	• 41.
TOP CHORD	Tension 1-2=0/10, 2-3=-969	5/1437, 3-4=-8381/13	· · · · ·	d 244 lb uplift at joint 13 s is designed in accorda		e 2018		1	1.	- GIN
	4-5=-5254/705, 5-7 7-8=-2842/399, 8-1	,	Internatio	nal Residential Code s	ections R50	2.11.1 and	I		I,SON	ALENI
	10-11=-3229/365, 1			2 and referenced stand (S) Standard	ard ANSI/T	PLI.				III.
BOT CHORD	12-13=-2196/264 2-20=-1513/8823, 1	9-20=-1142/6472,								
	17-19=-711/4790, 1 14-15=-251/2432, 1								11'JUAN	CAACIA
WEBS	8-17=-154/1675, 10)-17=-626/247,							PR 16	NOED
	12-14=-254/2621, 5 5-18=-1334/301, 7-	18=-70/989,								
	7-17=-1489/379, 10 11-15=-53/567, 11-								16	952
	3-20=-228/2038, 4- 4-20=-293/1736								H.	h. 153
NOTES	. 20- 200/1700								TAT AT	VSAS
1) Unbalance this design		e been considered for							I SION	VALENUI
and design										it 19,2021
									Augus	01 13,2021

nent 16023 Swingley Ridge Rd Chesterfield, MO 63017




Plate Offsets (X, Y): [11:0-2-0.Edge]

	'): [11:0-2-0,Edge			_								
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-R	0.09 0.07 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 22	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 135 lb	GRIP 197/144 FT = 10%
BCDL LUMBER TOP CHORD 2x WEBS 2x OTHERS 2x BRACING TOP CHORD St BOT CHORD Ri br REACTIONS (Ib/s) Max	$\begin{array}{c} 10.0\\ \hline \\ 4 \ SPF \ No.2\\ \hline \\ 4 \ SPF \ No.2\\ \hline \\ 5 \ \ \ \$	Code athing directly applied cept end verticals. applied or 6-0-0 oc 2-0-0, 23=56/22-0-0, 2-0-0, 27=120/22-0-0 2-0-0, 30=119/22-0-0 2-0-0, 30=119/22-0-0 2-0-0, 34=120/22-0-0 2-0-0, 38=129/22-0-0 -0-0, 40=144/22-0-0	FORCES TOP CHOR d or BOT CHOR BOT CHOR BOT CHOR BOT CHOR BOT CHOR BOT CHOR BOT CHOR CHOR BOT CHOR CHOR BOT CHOR CHOR BOT CHOR CHOR CHOR CHOR CHOR CHOR CHOR CHOR	(lb) - Maximum Cc Tension D 2-40=-182/104, 1- 3-4=-130/127, 4-5 6-7=-91/122, 7-8= 9-10=-56/206, 10- 11-12=-37/148, 12 13-14=-30/148, 14 15-16=-48/99, 16- 18-19=-92/81, 19- 20-22=-149/62 D 39-40=-103/129, 3 37-38=-103/129, 3 33-34=-103/129, 3 31-32=-103/129, 2 26-27=-103/129, 2 26-27=-103/129, 2 24-25=-103/129, 2 24-25=-103/129, 2 24-25=-103/129, 2 24-25=-103/129, 2 24-25=-103/129, 2 33=-98/63, 7-35 9-33=-98/63, 17- 19-23=-84/104 ced roof live loads hav	mpressi 2=0/40, : =-116/11 -79/146, 11=-41/1 -79/146, 11=-41/1 -79/146, 11=-41/1 -79/146, 11=-41/1 -79/146, 11=-41/1 -79/14 -39/2 -39/2 -29-39/2 -29/2	on/Maximum 2-3=-190/167, 13, 5-6=-104/10; 8-9=-67/172, 152, 1488, 123, 14, 17-18=-70/6; 110, 20-21=0/4 03/129,	6 8, 7 8 8, 8 9 8, 1 0, 1 , 1 62, 1 59, 1 62, 59, 1 8, 1 1 59, 1 1 59, 1 1 59, 1 1 59, 1 1 59, 1 1 59, 1 1 59, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 i) Gala i) Trubra bra bra bra chc 	ble requises to be ced aga ble studs s truss h ord live lo his truss the botto 6-00 tall ord and a vide me aring pla tt 40, 86 uplift at jo tt 28, 46 uplift at go tt 28, 46 uplift at jo to tt 28, 46 uplift at jo tot 28, 46 uplift at jo to tt 28, 46 upl	ires coi fully si inst lat s space coad noon has be om cho by 2 ch any oth to chanie to cape lb uplif ioint 33, lb uplif ioint 33, lb uplif ioint 33, lb uplif and ref s desigg al Resi and ref	ntinuous bottom on heathed from one eral movement it an designed for an designed for an designed for ard in all areas wh to 00 wide will fit er members. at connection (by gole of withstand (rat joint 22,0761 , 51 b uplift at joint (a goint 35,47 IL 67 b uplift at joint (a goint 27,46 IL , 32 Ib uplift at joint (a connection (by gole of withstand (rat joint 27,46 IL , 32 Ib uplift at joint (a connection (by gole of withstand (rat joint 27,46 IL , 32 Ib uplift at joint (a connection (by gole of withstand (rat joint 27,46 IL , 32 Ib uplift at joint (a connection (by gole of the gole of the section (by gole of the for a connection (by gole of the section (b)	chord bearing. frace or securely e. (diagonal web). TO.0.pst(option any other live loads. a live load of 20.0psf are a rectargle between the bottom others) of truss to de 145 lb uplift at uplift at joint 34, 65 m30 47 lb uplift at with the 2018 ions R502.11.1 and d ANSI/TPI 1.

Δω True True True True Op Pr Lot 17 OS Attempts												RELEASE FOR CONSTR	UCTION
Let Y OS C Common 1 2 Common 1 2 Common 1 2 Common 1 2 Common 1 Common 2 Common 1 Common 2 Co	Job	т	russ		Truss Type		C	Qty	Ply	Lot 17 O	S		
The set of a up 2000 the se	Lot 17 OS	c	2		Common		3	5	1	loh Refe	rence (ontiona		
Image: bit of the state is the sta	Wheeler Lumber,	Waverly, KS - 668	371,			Run: 8.43	S Jul 29 2021	Print: 8.	430 S Jul 29	2021 MiTek	Industries, Inc. W		121
Ling 41-15 510-1 510-1 41-15 610-3 4						ID:eGbker	mkF1RScf50P	s?NU_Oz	zXm7F-RfC3	PsB70Hq3NS	SgPqnL8w3ulTXb	KWrCDoir Jazde?	
Autor Autor Autor								I					
Image: space state state space stat				0-10-8	4-1-15	6-10-1			6-1	0-1	. 4	I-1-15 0-10-8	
Image: state stat													
Image: State 182 Top: Chorn 2x4; FF 2100F1 18 DO CHORD 1x4; FF 214;		ТТ	_				×	4					
Image: state stat							2	840					
Image: state stat						12 8							
Provide matrixed and provide provide and provide and provide provide and provide and provide provide provide provide and provide p								\	$\langle \rangle$	\searrow	0.4		
 I and a set of the set o		-3-3 -3-0 -3-0			-								
find a state of the sta		á á			A A		/						
find a state of the sta									/			\searrow	
B 11 13 1410 9 B 12/12 * 3/4= 3/4= 3/4= 12/12* 3/4= 3/4= 3/4= 12/12* 5/2 0/2 0/2 0/2 0/2 0/2 5/2 0/2 0/2 0/2 0/2 0/2 0/2 5/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 5/2 0/2			0	2		\mathbb{N}						6	
B 11 13 1410 9 B 12/12 * 3/4= 3/4= 3/4= 12/12* 3/4= 3/4= 3/4= 12/12* 5/2 0/2 0/2 0/2 0/2 0/2 5/2 0/2 0/2 0/2 0/2 0/2 0/2 5/2 0/2 0/2 0/2 0/2 0/2 0/2 0/2 5/2 0/2			-11-0		•				(¢)			87	
3/4= 3/4= 3/4= 1 15-2-10 22-0-0 5:x8= 1:537 6:2-6 9:7-5 6:2-6 1 15-2-10 15-2-10 6:2-6 1 15-2-10 15-2-10 6:2-6 1 15-2-10 15-2-10 6:2-6 1 15-2-10 15-2-10 15-2-10 6:2-6 1 15-2-10 15-2-10 15-2-10 15-2-10 15-2-10 1 15-2-10<			0	×).	11 1	3		1410	9			
Solide = 155.7 6-2-6 9-7-5 6-2-6 Plate Grip Dot (Structural your of the construction of the constructural your of th				12312	. /	3x4=			3x4	4= 3x4=		12312	
Base -1:637 Plate Offsets (X, Y): [8:0-27.0-9-7], [1:2-0-1:0-0-6] Loading TCLL (rod) (ps) 2:0 Spacing Plate offsets (R, Y): [8:0-27.0-97], [1:2-0-1:0-0-6] Loading TCLL (rod) (ps) 2:0 Spacing Plate offsets (R, Y): [8:0-27.0-97], [1:2-0-1:0-0-6] BCLL 10:0 Plate offsets (R, Y): [8:0-27.0-97], [1:2-0-1:0-0-6] BCLL 0:0 Plate offsets (R, Y): [8:0-27.0-97], [1:2-0-1:0-0-6] DECL 0:0 Rep Sites (R, Y): [8:0-27.0-97], [1:2-0-1:0-0-6] DECL 0:00 Rep Sites (R, Y): [8:0-27.0-97], [1:2-0-1:0-0-6] DECL 0:00 Rep Sites (R, Y): [8:0-27.0-97], [1:2-0-1:0-0-6] BCL Code RC2010F18E FT = 10% DTO FLORD 2:4 SFP 2:100F1.8E FT = 10% BOT CHORD 2:4 SFP 2:100F1.8E FT = 10% BCT CHORD 2:4 SFP 2:100F1.8E FT = 10% BCT CHORD 2:4 SFP 2:100F1.8E FT = 10% BCT CHORD 2:4 SFP 2:100F1.8E TT = 106% BCT CHORD 2:4 SFP 2:100F1.8E TT = 10% BCT CHORD 2:4 SFP 2:100F1.8E 1:1 - 100 BCT CHORD 2:4 SFP 2:100F1													
Leading (pt) Spacing 2-0-0 CSI 0.6 VER in (loc) Vield L/d PLATES GRIP TCDL 0.0 Rep Stress Incr YES BCL 0.0.0 Rep Stress Incr YES BCL 0.0.0 S n/n MT20 197/144 BCDL 0.0.0 Rep Stress Incr YES BCL 0.0.0 9.11 >6.68 Ver(T) 0.0.3 8 n/n 9.68 9.67 YE		·	0 71 1		020						020		
TCLL (mon) 25.0 Plate Grip DOL 1.15 TC 0.08 Vert(C) -0.38 9.11 -5.78 360 MT20 197/144 BCLL 0.01 Rep Stress Incr YES WBL 0.03 8 r/s n/a N/a<	· · · · ·							-				1	
BCLL 0.01 Rop Privasition YEs WB 0.22 Horiz (1) 0.03 8 na	-			•			0.85			. ,			
BCDL 10.0 Code IRC2018/TPI2014 Matrix-S Wind(LL) 0.10 9-11 >9-99 240 Weight: 83 lb FT = 10% LUMBER TOP CHORD 2x4 SPF 2100F 1.8E Except 10-8:2x4 SPF 5 Provide mechanical connection (by others) of trus to basing plate capable of withstanding 13.5 bup/lif at joint 8. 5 Provide mechanical connection (by others) of trus to basing plate capable of withstanding 13.5 bup/lif at joint 8. 6 WEBS 2x3 SPF No.2*Except 12:2.8.6:2x8 SP DS3 FD for With specific data and and ANS/ITP1 1. 10 To trus to is designed in accordance with the 2018 international Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/ITP1 1. CAD CASE(S) Standard VERS 3:15 co putifies s=1045/0:3-8. To Provide mechanical connection (by others) of trus to basing plate capable of withstanding 13.5 bup/lif at joint 8. CAD CASE(S) Standard BOT CHORD Rigit celling directly applied or 10-0:0 max logit 8:-0:32012 and referenced standard ANS/ITP1 1. CAD CASE(S) Standard CPA CHOR 12:0046 32:0-1386/172, 3:4-1270223, 4:11-2:3502/118 (C 16), 12:-135 (L C 8) add-112:2:3109/118 (2:16), 2:12-136 (L C 8) 2:12:-1386/172, 3:4-1270223, 4:11-204261, 2:12:-1386/172, 3:4-1270223, 4:11-204261, 2:12:-1386/172, 3:4-1270223, 4:11-204261, 2:12:-1386/172, 3:4-1270223, 4:11-204261, 2:12:-1386/172, 3:4-1270223, 4:11-204261, 2:12:-12:-1386/172, 3:4-1270223, 4:11-204261, 2:12:-12:-1390/112, 3:4-1270/123, 4:12:-120/12, 2:12:-12:-12:-12:-12:-12:-12:-12:-12:-12													
 TOP CHORD 244 SPF 2100F 1.8E "Except 10-8:244 SPF No.2 "Except 10-8:244 SPF 200F 1.8E "Except 10-8:244 SPF 2100F 1.8E "Except 10-8:244 SPF 200F 1.8E "Except 12-2.8-6:286 SPD 65 BRACING 253 SPF No.2 "Except 12-2.8-6:286 SPD 65 BRACING 32-45 CP 2016 1.9E "Except 12-2.8-6:286 SPD 65 BRACING Grave 3-104 Structural wood sheathing directly applied or 10-0-0 oc bracing. REACTIONS (Ib/size) 8-1045/0-3-8, 12=10450-3-8 Max Hoirt 22-237 (LC 7) Max Hoirt 22-237 (L				•			0.20						
 BOT CHORD 2x4 SPF 2100F 1.8E* Except* 10-8:2x4 SPF No.2* Except* 10-8:2x4 SPF No.2* Except* 12-2,8-6:2x8 SP DSS BRACING Structural wood sheathing directly applied or 34-15 oc pulms, except end verticals. BOT CHORD Structural wood sheathing directly applied or 0-0 oc bracing. REACTIONS (Distre) 8 = 104500-3-8, 12=104500-3-8 Max Horz 12-237 (LC 7) Max K Joint 21:2-237 (LC 7) Max K Joint 21:2-237 (LC 7) Max K Joint 21:2-237 (LC 7) Max Grav B=1139 (LC 16), 12=1139 (LC 15) Max Grav B=1139 (LC 16), 12=1139 (LC 16) Maximum Tension 10-2046, 2-3=-1380/172, 3-4=1270/223, 4-5=-1327/174, 6-7=0/46, 2-12=1030/151, 6-8=-1037/154 BOT CHORD 11-12=-190/1182, 9-11=-6/783, 8-9=-78/1002 Max Grav B=1139 (LC 16), 12=1139 (LC 16) Distrest B=106, 8-0, 8-0=-28/239, 4-11=-104/561, 3-11=-235/240 NUMBER Liber A, Bort A, Bo		0.4 005 0400	- 4 05										
 WEBS 2x3 SPF No.2 * Except* 12-2,8-6:2x8 SP DSS International Residential Code sections R502.11.1 and R802.10:2 and referenced standard ANS//TP11. LOAD CASE(S) Standard CHORD Structural wood sheathing directly applied or 100-0 oc bracking. REACTIONS (Disize) 8-1045/0-3-8, 12=1045/0-3-8 Max Horiz 12=237 (LC 7) Max Dig 12=237 (LC 7) Max Dig 12=237 (LC 17) Max Dig 12=237 (LC 16), 12=1139 (LC 16), 24=1270/223, 4-5=1280/225, 5-6=-1379/174, 6-7=0/46, 2-12=-1080/15, 6-8=-1037/154 BOT CHORD 11-12=109/1182, 9-11=e0/783, 8-9=-781/1002 Max Grav S = 1139 (DC 16), 6-8=-1037/154 BOT CHORD 11-12=109/1182, 9-11=60/783, 8-9=-781/1002 Max Grav S = 1139 (DC 16) (DC 16)	BOT CHORD	2x4 SPF 2100F		*Except* 10-8:2x4	SPF joint 12	and 135 lb uplift a	at joint 8.		•				
 LOAD CASE(S) Standard LOAD CASE(S) Standard LOAD CASE(S) Standard BOT CHORD Right ceiling directly applied or 10-0-0 ce bracing. REACTONS (Usize) & E1045/0-3-8, 12=1045/0-3-8 Max Horiz 12=237 (LC 7) Max Grave 8=1139 (LC 16), 12=-135 (LC 8) Max Grave 8=1139 (LC 16), 12=-135 (LC 8) Max Grave 8=1139 (LC 16), 12=-135 (LC 8) Max Grave 8=1139 (LC 16), 12=-138 (HC 15) FORCES (b)- Maximum Compression/Maximum Tension TOP CHORD 1-2-046, 2-3s-1386/172, 3-4s-1270/223, 4-5s-1282/225, 56-6-1373/174, 67-046, 2-12=-1036/151, 6-8s-1037/154 BOT CHORD 11-12=-1901/182, 9-11=-6788, 8-9s-78/1002 WEBS 4-9-108/548, 5-9s-228/238, 4-11=-104/561, 3-11=-235/240 NUMBER I Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vull=115mph (3-second gust) Vasd-9-Tinph (75) (CDL-6.0pst; BCDL-6.0pst; h=25ft; Cal. II; E:p C; Enclosed; IMWFRS (envelope) exterior zone; cantilever Het and right exposed; i end wertical left and right exposed; Lumber DOL-160 pbst pto Dottom chord live load noncocurrent with any other live loads. N'This truss has been designed for a 10-0 pb totom chord and any other members, with BCDL = 10.0psf. 			*Excep	ot* 12-2,8-6:2x8 SP	DSS Interna	tional Residential	Code section	ns R502	2.11.1 and				
 38-15 oc putins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (Ib/size) 8=1045/0-3-8, 12=1045/0-3-8 Max Horiz 12=237 (LC 7) Max Jupit 8=-135 (LC 8) (12=1139 (LC 16) 12=1139 (LC 16) 12=		Structural woo	d shea	thing directly applie			d standard A	NSI/TP	ข 1.				
braing. The second seco		3-8-15 oc purli	ns, ex	cept end verticals.		(-)						MILLION.	
Max Hofiz 12-237 (LC 7) Max Uplit 8=-135 (LC 9), 12-135 (LC 8) Max Gave 8=1139 (LC 16), 12=1139 (LC 15) FORCES (b)- Maximum Compression/Maximum Tension TOP CHORD 1.2-2046, 2-3-3-1386/172, 3-4-1270/223, 4-5-1282/225, 5-6-1379/174, 6-7=046, 2-12-1036/151, 6-8-1037/154 BOT CHORD 11.12-190/1182, 9-11-e0/783, 8-9-78/1002 WEBS 4-9-108/48, 5-9-228/239, 4-11=-104/561, 3-11=-235/240 NUMBER 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this trues has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) This trues has been designed for a live load 50.0 psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0 psf. August 19,2021		bracing.	,									NE OF MISS	
Max Grav & B-1139 (LC 16), 12=1139 (LC 15) Max Grav & B-1139 (LC 16), 12=1139 (LC 15) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/46, 2-3=-1386/172, 3-4=1270/223, 4-5=-126/2225, 5-6=-1379/174, 6-7=0/46, 2-12=-1030/151, 6-8=-1037/154 BOT CHORD 11-12=-190/1182, 9-11=-6/783, 8-9=-78/1002 WEBS 4-9=-108(484, 5-9=-28/239, 4-11=-104/561, 3-11=-235/240 NUMBER 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; BCDL=6	,	· · ·										LP Up	1
FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/46, 2-3=-1386/172, 3-4=-1270/223, 4-5=-1262/225, 5-6=-1379/174, 6-7=0/46, 2-12=-1036/151, 6-8=-1037/154 BOT CHORD 11-12=-190/1182, 9-11=-6/783, 8-9=-78/1002 WEBS 4-9=-108/548, 5-9=-228/239, 4-11=-104/561, 3-11=-235/240 NUMBER 10-balanced roof live loads have been considered for this design. ?) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vsad=9-Imph; TCDL=6.0psf; B-25t; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; Lumber DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load on courcerter with any other live loads. 4) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tail by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.											E		Ē
 TOP CHORD 1-2=0/46, 2-3=-1386/172, 3-4=-1270/223, 4-5=-1379/174, 6-7=0/46, 2-12=-1037/154, 6-7=0/46, 2-12=-1037/154, 6-7=0/46, 2-12=-1037/154, 6-7=0/46, 2-12=-1037/154, 6-7=0/46, 2-12=-1037/154, 6-7=0/46, 2-12=-1037/154, 6-7=0/46, 2-12=-1037/154, 6-7=0/46, 2-12=-1037/154, 6-7=0/46, 2-12=-1037/154, 6-7=0/46, 2-12=-1037/154, 6-7=0/46, 2-12=-1037/154, 6-7=0/46, 2-12=-1037/154, 6-7=0/46, 2-12=-1037/154, 6-7=0/46, 2-12=-1037/154, 6-7=0/46, 2-12=-1037/154, 8-9=-728/200, 2-12=-001/62101, 3-11=-235/240 NOTES Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; BCDL=6.0psf;	FORCES	(lb) - Maximum									Ξ.		*=
 2-12=-1036/151, 6-8=-1037/154 BOT CHORD 11-12=-190/1182, 9-11=-6/783, 8-9=-78/1002 WEBS 4-9=-108/548, 5-9=-228/239, 4-11=-104/561, 3-11=-205/240 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; LumPer DOL=1.60 plate gip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord invel loads nonconcurrent with any other live loads. 4) * This truss has been designed of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 	TOP CHORD	1-2=0/46, 2-3=										•••••••••••••••••••••••••••••••••••••••	
 WEBS 4-9=-108/548, 5-9=-228/239, 4-11=-104/561, 3-11=-235/240 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; b=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; end vertical left and right exposed; of rol a 10.0 psf bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. August 19,2021 					D,						-	O E-2000162101	E
3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.			,	,								SS/ONAL ENGIN	•
3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.												111111	
3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.	1) Unbalanced		have b	een considered for	r								
3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.	2) Wind: ASCE	E 7-16; Vult=11										JUAN GARCIA	
3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.												CENSED	1
3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.													1
3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.					ds.							16952	
3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.	4) * This truss	has been desig	ned fo	r a live load of 20.0								EB L	μΞ.
August 19,2021	3-06-00 tall	by 2-00-00 wid	e will fi	t between the botto								K WANSA MICK	5
August 19,2021	chord and a		GIS, WI	$a_1 \cup \cup \cup \cup = 10.00$								ONAL	
		NG - Verify design	arametor				GE MIL7472 ****	5/10/2022		SE			

16023 Swingley Ridge Rd Chesterfield, MO 63017

0-2-0	13-9-10	22-0-0	í –
6-2-6	9-7-5	6-2-6	

Loading (psf) Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 25.0 Plate Grip	DOL 1.15	TC	0.69	Vert(LL)	-0.42	7-9	>610	360	MT20	197/144
TCDL 10.0 Lumber D	DL 1.15	BC	0.78	Vert(CT)	-0.70	7-9	>367	240		
BCLL 0.0* Rep Stres	Incr YES	WB	0.23	Horz(CT)	0.02	6	n/a	n/a		
BCDL 10.0 Code	IRC2018/TPI2014	Matrix-S		Wind(LL)	0.13	7-9	>999	240	Weight: 80 lb	FT = 10%

L	U	М	в	Е	R

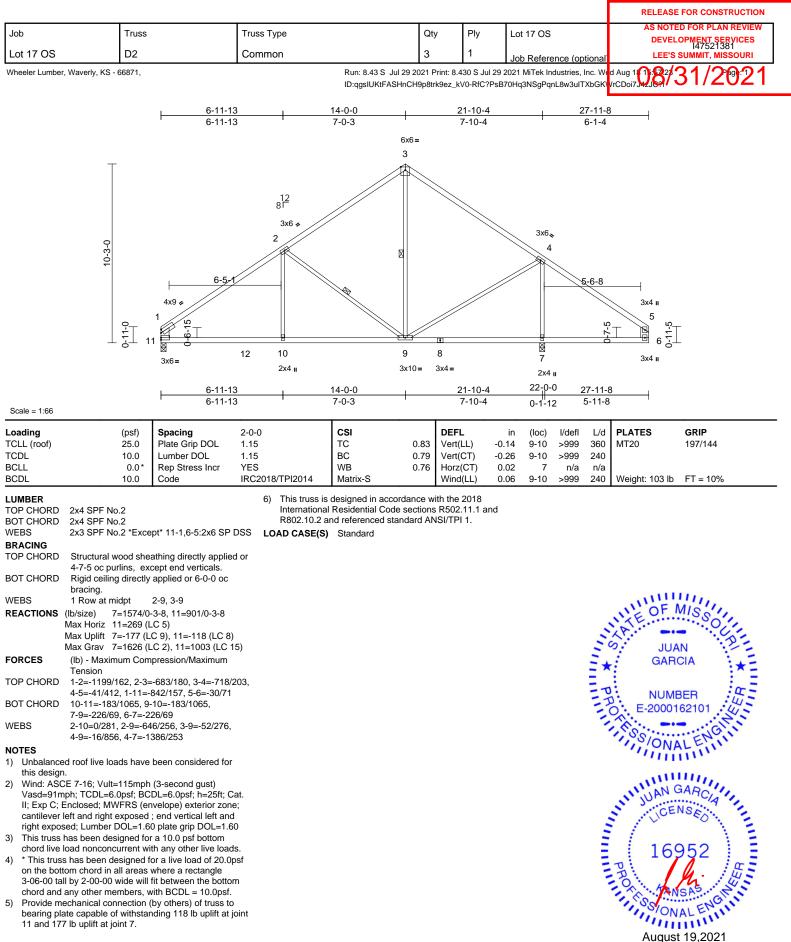
Scale = 1:55.7

TOP CHORD	2x4 SPF 2100F 1.8E
BOT CHORD	2x4 SPF 2400F 2.0E *Except* 8-6:2x4 SPF
201 01.0112	No.2
WEBS	2x3 SPF No.2 *Except* 10-1,6-5:2x8 SP DSS
BRACING	•
TOP CHORD	Structural wood sheathing directly applied or
	4-11-2 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(lb/size) 6=963/0-3-8, 10=963/0-3-8
	Max Horiz 10=-217 (LC 4)
	Max Uplift 6=-107 (LC 9), 10=-107 (LC 8)
	Max Grav 6=1063 (LC 16), 10=1063 (LC 15)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-1391/172, 2-3=-1276/223,
	3-4=-1263/225, 4-5=-1379/174,
	1-10=-935/121, 5-6=-940/125
BOT CHORD	9-10=-205/1195, 7-9=-20/774, 6-7=-107/1014
WEBS	3-7=-108/548, 4-7=-251/241, 3-9=-104/567,
	2-9=-265/244
NOTES	

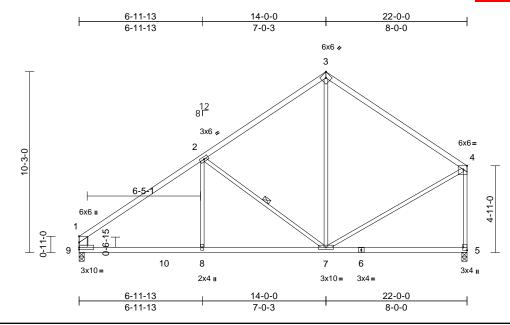
NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 107 lb uplift at joint 10 and 107 lb uplift at joint 6.

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 17 OS	AS NOTED FOR PLAN REVIEW
Lot 17 OS	D1	Common Structural Gable	1	1	Job Reference (optiona	DEVELOPMENT SERVICES 147521380 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS -	66871,	Run: 8.43 S Jul 29	2021 Print: 8	3.430 S Jul 29	2021 MiTek Industries, Inc. \	
		ID:Q5B9sJrMtXvCL	oQETkl1X?z	z_kV3-RfC?Ps	B70Hq3NSgPqnL8w3ulTXb0	GFWrCDoi794238?
		<u>11-13 11-2-3 14-0-0</u> 11-13 4-2-6 2-9-13		21-10- 7-10-4		<u>8-0-0</u> 28-10-8 -1-120-10-8
	0-10-8 6	4-2-0 2-9-15	6x6=	7-10-4	·	0-10-8
_			4			
10.3.3	Q- 	8 ¹² 3x6 ± 6-3-5 43 12		10 3x4=	3x6 \$ 5 3x4 # 9 22-11-4	6 7 3x10 #
		11-13 14-0-0 11-13 7-0-3		21-10-	4 22-0-0	28-0-0 5-0-12
Scale = 1:67.3	0			1 10	0-1-12 0-11-4	
Plate Offsets (X, Y): [8:Edg	ge,0-3-8], [13:0-3-10,0-5-6], [1	5:0-1-13,0-0-4], [16:0-2-0,0-0-1], [16:0-0-10,0	-1-6], [17:(0-1-13,0-0-4	, [32:0-1-12,0-0-4]	
Loading TCLL (roof) TCDL BCLL BCDL	(psf)Spacing25.0Plate Grip DOL10.0Lumber DOL0.0*Rep Stress Incr10.0Code	1.15 BC	0.63 Vei 0.81 Hoi	rt(LL) -0 rt(CT) -0 rz(CT) 0	in (loc) l/defl L/ .11 11-12 >999 36 .20 11-12 >999 24 .02 9 n/a n/ .04 11-12 >999 24	0 MT20 197/144 0 a
8-6:2x4 SP 14-15,15-11 OTHERS 2x4 SPF M BRACING TOP CHORD Structural W 2-2-0 oc pu BOT CHORD Rigid ceilin bracing. WEBS 1 Row at rr REACTIONS (lb/size) S Max Horiz 1 Max Uplift S Max Grav S FORCES (lb) - Maxin Tension TOP CHORD 1-2=0/46,2 4-5=-685/2 2-13=-917/ BOT CHORD 12-13=-167 9-11=-332/ WEBS 3-12=0/291 5-9=-1485/ NOTES 1) Unbalanced roof live los this design. 2) Wind: ASCE 7-16; Vult- Vasd=91mph; TCDL=6 II; Exp C; Enclosed; MW cantilever left and right right exposed; Lumber 3) Truss designed for wind only. For stude expose see Standard Industry (b.2 b.2 *Except* 13-2:2x8 SP DSS F 2400F 2.0E, 6,16-17,17-18:2x4 SPF No.2 b.2 vood sheathing directly applied rilins, except end verticals. g directly applied or 6-0-0 oc hidpt 3-11, 4-11 9=1676/0-3-8, 13=958/0-3-8 13=-288 (LC 6) 9=-210 (LC 9), 13=-143 (LC 8) 9=1712 (LC 2), 13=1060 (LC 1) hum Compression/Maximum 2-3=-1169/161, 3-4=-638/168, 00, 5-6=-81/3749, 6-7=0/40, 186, 6-8=-31/77 7(1037, 11-12=-167/1037, 128, 8-9=-332/128 , 3-11=-635/255, 4-11=-49/25 283, 5-11=-20/911 ads have been considered for	 7) This truss has been designed for chord live load nonconcurrent with 8) * This truss has been designed for on the bottom chord in all areas with a sole-ool tall by 2-00-00 wide will fi chord and any other members, with 9) Provide mechanical connection (the bearing plate capable of withstaming init 13 and 210 lb uplift at joint 9 10) This truss is designed in accordate international Residential Code set R802.10.2 and referenced standate to the trust of trust of the trust of the trust of trust of the trust of trus	he face or (i.e. diagon a 10.0 psf h any othe r a live loa where a red t between th BCDL = by others) of ding 143 lb hcc with th ctions R50	securely nal web). bottom r live loads. id of 20.0psf ctangle the bottom = 10.0psf. of truss to o uplift at we 2018 02.11.1 and		JUAN GARCIA NUMBER E-2000162101 SS/ONAL ENGINE 16952 TO SS/ONAL ENGINE 16952 August 19,2021


bearing plate capable of withstanding 118 lb uplift at joint 11 and 177 lb uplift at joint 7.

> MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

August 19,2021

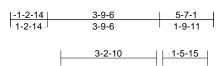
						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 17 OS	
Lot 17 OS	D3	Common	5	1	Job Reference (optional	DEVELOPMENT SERVICES 147521382 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS - 6						

ID:qgsIUKtFASHnCH9p8trk9ez_kV0-RfC?PsB70Hq3NSgPqnL8w3uITXbGK

Scale = 1:65.3

Plate Offsets (X, Y): [3:0-2-15,Edge], [4:0-2-8,Edge], [5:Edge,0-2-8]

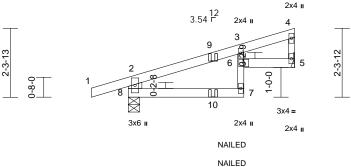
				•									
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.87	DEFL Vert(LL)	in -0.15	(loc) 7-8	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.88	Vert(CT)	-0.15	7-8	>999	240	101120	131/144
BCLL	0.0*	Rep Stress Incr	YES		WB	0.43	Horz(CT)	0.02	5	n/a	n/a		
BCDL	10.0	Code	IRC201	18/TPI2014	Matrix-S	_	Wind(LL)	0.06	7-8	>999	240	Weight: 87 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD	1.8E	ept* 3-4:2x4 SPF 210	5 00F 6	bearing plate 9 and 109 lb) This truss is	hanical connection capable of withs uplift at joint 5. designed in acco	standing 1 ordance w	16 Ib uplift a ith the 2018	t joint					
WEBS	D000 40.0 and a family data data data data data data data dat												
BRACING R802.10.2 and referenced standard ANSI/TPI 1. TOP CHORD Structural wood sheathing directly applied or LOAD CASE(S) Standard													
TOP CHORD	4-2-2 oc purlins, except end verticals.												
BOT CHORD	bracing.												
WEBS		2-7										A	
		3-8, 9=975/0-3-8									-	S. JU/	IN P
	Max Horiz 9=322 (LC Max Uplift 5=-109 (L	,									-	GAR	
	Max Grav 5=1047 (L	,, , , , ,									= *	GAIL	*=
FORCES	(lb) - Maximum Com Tension	<i>,</i>	,									NUM	BER C
TOP CHORD			/194,									E-2000	• 41.
BOT CHORD	,		/45								1	· · · · ·	
WEBS	2-8=0/263, 2-7=-616 4-7=-37/705	,										S/ON	ALENIN
NOTES													10.
this design 2) Wind: ASC Vasd=91m II; Exp C; I	ed roof live loads have n. CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed	(3-second gust) DL=6.0psf; h=25ft; (velope) exterior zor	Cat. ne;									JUAN LICE	GARCIA NSEO

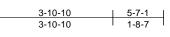

- right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

16952 August 19,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 17 OS	AS NOTED FOR PLAN REVIEW
Lot 17 OS	J1	Diagonal Hip Girder	4	1	Job Reference (optional	DEVELOPMENT SERVICES 147521383 LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS	- 66871,	Run: 8.43 S Jul 29 2	021 Print: 8.4	430 S Jul 29	2021 MiTek Industries, Inc. We	d Aug 1 1 22 2 1 / 2 1 1


الك 2021 Print: 8.430 S Jul 29 2021 Print: 8.430 S Jul 29 2021 Mi Tek Industries, Inc. Wed Aug 11 15 22 3 3 1 / 2 169 2 1 ID:Y?pl1o_bkeKADBhbMf0_oCymcGr-RfC?PsB70Hq3NSgPqnL8w3ulTXbG WrCDoi 94292 1



NAILED

Scale = 1:38.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.27	Vert(LL)	-0.03	7	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.50	Vert(CT)	-0.05	7	>999	240		
BCLL	0.0*	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.02	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.02	7	>999	240	Weight: 17 lb	FT = 10%
LUMBER	_UMBER 8) In the LOAD CASE(S) section, loads applied to the face											

TOP CHORD BOT CHORD WEBS		No.2 No.2 *Except* 7-3:2x3 SPF No.2 No.2 *Except* 4-5:2x3 SPF No.2							
BRACING									
TOP CHORD	Structural wood sheathing directly applied or								
	5-7-1 oc p	ourlins, except end verticals.							
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc							
	bracing.								
REACTIONS	(lb/size)	5=221/ Mechanical, 8=353/0-4-9							
	Max Horiz	8=77 (LC 22)							

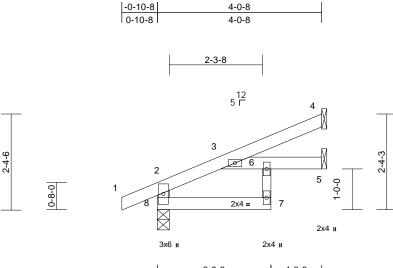
	Max Uplift 5=-49 (LC 8), 8=-106 (LC 4)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	2-8=-324/131, 1-2=0/29, 2-3=-221/28,
	3-4=-80/19, 4-5=-114/33

BOT CHORD 7-8=-42/154, 6-7=0/74, 3-6=-33/51, 5-6=-17/80 NOTES

Wind: ASCE 7-16; Vult=115mph (3-second gust) 1)

- Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom 2) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 3) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 4)
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 106 lb uplift at joint 8 and 49 lb uplift at joint 5.
- This truss is designed in accordance with the 2018 6) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.

- of the truss are noted as front (F) or back (B).
- LOAD CASE(S) Standard
- Dead + Roof Live (balanced): Lumber Increase=1.15, 1)
 - Plate Increase=1.15
 - Uniform Loads (lb/ft)
 - Vert: 1-2=-70, 2-4=-70, 7-8=-20, 5-6=-20
 - Concentrated Loads (lb) Vert: 10=2 (F=1, B=1)



August 19,2021

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Qty Ply Lot 17 OS		AS NOTED FOR PLAN REVIEW
Lot 17 OS	J2	Jack-Open	8	1	Job Reference (optional	DEVELOPMENT SERVICES 147521384 LEE'S SUMMIT, MISSOURI
Wheeler Lumber Weverly K	S 66971	2021 MiTok Industrias Inc. W/				

Wheeler Lumber, Waverly, KS - 66871,

2-9-8 4-0-8 2-9-8 1-3-0

Scale = 1:28.3

2)

3)

4) 5) This truss has been designed for a 10.0 psf bottom

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 lb uplift at joint 8, 41 lb uplift at joint 4 and 2 lb uplift at joint 5.

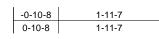
Refer to girder(s) for truss to truss connections.

chord and any other members.

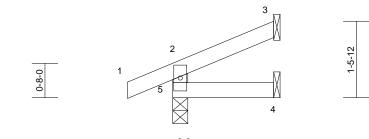
chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf

Scale = 1:28.3												
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	-0.01	3-6	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.20	Vert(CT)	-0.02	3-6	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	5	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.01	3-6	>999	240	Weight: 13 lb	FT = 10%
UMBER			6) This truss is	s designed in acc	ordance wi	ith the 2018						
FOP CHORD	2x4 SPF No.2			al Residential Coc			and					
BOT CHORD		ept* 7-6:2x3 SPF No	.2 R802.10.2	and referenced st	andard AN	ISI/TPI 1.						
VEBS	2x4 SPF No.2		LOAD CASE(S) Standard								
BRACING												
TOP CHORD		eathing directly appli	ed or									
	4-0-8 oc purlins, ex											
BOT CHORD	bracing.	y applied or 10-0-0 o	C									
REACTIONS	(lb/size) 4=96/ Me	echanical, 5=79/									UNITE OF	1111
		cal, 8=264/0-3-8									NE OF	MISS
	Max Horiz 8=74 (LC	/								1	A	0/1
	Max Uplift 4=-41 (L0	C 8), 5=-2 (LC 8), 8=	-31							2	A	
	(LC 8)		004							2	JU/	
	Max Grav 4=96 (LC (LC 1)	, 1), 5=94 (LC 3), 8=	204							= *	GAR	
ORCES	, ,	npression/Maximum									1	
ORCES	Tension	npression/maximum								= 0	NUM	
TOP CHORD	2-8=-247/55, 1-2=0	/27, 2-3=-131/0,								= 5		• 41.
	3-4=-30/31									-1	E-2000	102101
BOT CHORD	7-8=-28/70, 6-7=0/5	56, 3-6=-70/28, 5-6=0	0/0							1	· · · · ·	- day
NOTES											IS/ON	NENI
	CE 7-16; Vult=115mpl											it in the
	nph; TCDL=6.0psf; BC											11.
	Enclosed; MWFRS (e											1111.
	left and right exposed sed; Lumber DOL=1.6										IN UAN	GARCIA
	seu, Lumber DOL=1.0		00								NUM	······································

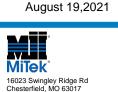


						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 17 OS	AS NOTED FOR PLAN REVIEW
300	Truss	Truss Type	Quy	FIY	10117-03	DEVELOPMENT SERVICES 147521385
Lot 17 OS	J3	Jack-Open	8	1	Job Reference (optional	
·		•	•	•		


Wheeler Lumber, Waverly, KS - 66871,

1-5-15

Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Wed Aug 1 0:82/31/2021 ID:XwibmY9xIllq3IUXNNo12symcHv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKvrcDoi7.428/31/2021

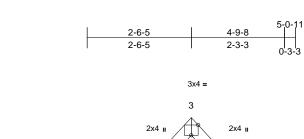


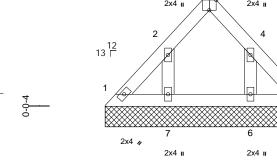
3x6 🛛

1-11-7

- ·		
Scale	=	1:22.3

Scale = 1.22.3											-	
Loading TCLL (roof)	(psf) 25.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.07	DEFL Vert(LL)	in 0.00	(loc) 4-5	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	4-5	>999	240	-	
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-R		Wind(LL)	0.00	4-5	>999	240	Weight: 6 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 Structural wood she 1-11-7 oc purlins, e	eathing directly applie except end verticals. / applied or 10-0-0 or										
REACTIONS	0	echanical, 4=14/									A MARTIN	1111
	Max Horiz 5=39 (LC Max Uplift 3=-28 (LC Max Grav 3=46 (LC (LC 1)	C 8), 5=-34 (LC 4)	173							in in	S JU/	
FORCES	(lb) - Maximum Con Tension	npression/Maximum								Ξ*	C. Martin	*
TOP CHORD	,	/27, 2-3=-32/13								= 7	NUM	BER
BOT CHORD	4-5=0/0										E-2000	162101 :4
NOTES										-	A	
Vasd=91n II; Exp C; cantilever	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed	DL=6.0psf; h=25ft; (nvelope) exterior zor ; end vertical left an	ne; d								SS/ON	ALENGIN
	sed; Lumber DOL=1.6 has been designed fo		00									11111
	load nonconcurrent w		ds.								NAN	GARC
on the bot 3-06-00 ta	ss has been designed f tom chord in all areas all by 2-00-00 wide will I any other members.	where a rectangle									LICE	NSEO
4) Refer to g	irder(s) for truss to tru									=	16	952 🗧
bearing pl	nechanical connection ate capable of withsta b uplift at joint 3.										PRO	My H
Ínternatior	is designed in accord nal Residential Code s and referenced stand	ections R502.11.1 a	nd								SION	VAL ENGINI
LOAD CASE(S) Standard										Augus	it 19,2021


						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 17 OS	AS NOTED FOR PLAN REVIEW
300	11055	Truss Type	Quy	FIY		DEVELOPMENT SERVICES 147521386
Lot 17 OS	LAY1	Lay-In Gable	2	1	Job Reference (optional)	
Wheeler Lumber, Waverly, KS						


ID:XgGwDR7Z7TGP?ydopypJGfymcxG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDwrJQgc?DI/ZUZI

5-0-11

5

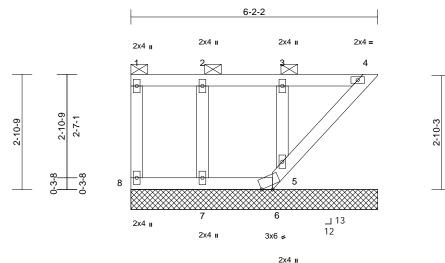
2x4 💊

2-5-7

2-9-2

Scale = 1:28

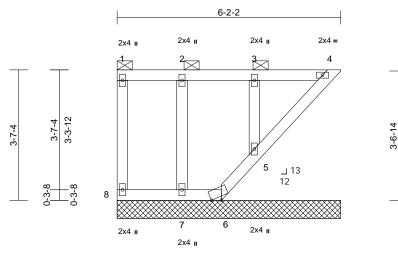
Plate Offsets (X, Y): [3:Edge,0-3-0], [4:0-0-0,Edge]


- 1010 0110010 (74)	Y): [3:Edge,0-3-0],	[4.0-0-0,Luge]											
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/T	-PI2014	CSI TC BC WB Matrix-P	0.02 0.02 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 16 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD 2 BOT CHORD 2 BRACING TOP CHORD 5 BOT CHORD 5 BOT CHORD 6 BOT CHORD 7 REACTIONS (lb REACTIONS (lb	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2 Structural wood she 5-1-2 oc purlins. Rigid ceiling directly bracing. b/size) 1=65/5-0- 6=134/5-0 lax Horiz 1=-64 (LC lax Uplift 6=-78 (LC lax Uplift 6=-78 (LC lax Grav 1=75 (LC (LC 16), 7 (lb) - Maximum Com Tension 1-2=-85/42, 2-3=-67 4-5=-84/40 1-7=-29777, 6-7=-29 2-7=-114/101, 4-6=- roof live loads have 7-16; Vult=115mph h; TCDL=6.0psf; BC Icolosed; MWFRS (er t and right exposed d; Lumber DOL=1.6 ted for wind loads in ids exposed to wind d Industry Gable En ialified building desi es continuous botto spaced at 2-0-0 oc. is been designed foi	athing directly applie applied or 10-0-0 oc 11, 5=65/5-0-11,)-11, 7=134/5-0-11 ; 4) (3), 7=-79 (LC 8) 17), 5=74 (LC 18), 6 7=151 (LC 15) (19, 3-4=-67/18, /77, 5-6=-29/77 113/100 been considered for (3-second gust) DL=6.0psf; h=25ft; C twelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP m chord bearing.	7) * 8) F 8) F 1 5 150 Cat. e; 50 50 53 11.	This truss h on the bottom 3-06-00 tall b chord and an Provide mech pearing plate 7 and 78 lb u This truss is o nternational	as been designed as chord in all areas y 2-00-00 wide will y other members. hanical connection capable of withsta plift at joint 6. designed in accord Residential Code s ad referenced stand	where I fit betw (by oth anding 7 lance w sections	a rectangle veen the botto ers) of truss to 9 lb uplift at jo ith the 2018 R502.11.1 a	om o pint				JUAN C	MISSOLAN CIA BER 162101 ALENG SARCIA NSEO 952 HALENG

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 17 OS	AS NOTED FOR PLAN REVIEW
000	11000		Guy	,		DEVELOPMENT SERVICES 147521387
Lot 17 OS	LAY2	Lay-In Gable	2	1	Job Reference (optional	
		•				

Wheeler Lumber, Waverly, KS - 66871,

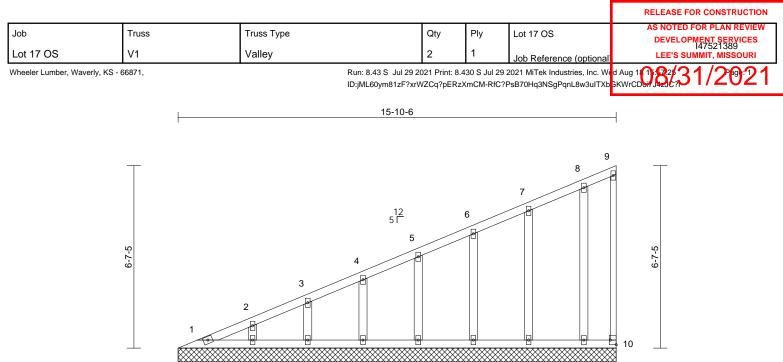
Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Wed Aug 1 0:52/31/2021 ID:5SSMEhl5deNQadtGFhElbBymcZp-RfC?PsB70Hq3NSgPqnL8w3ulTXbg WrCDoH42021


Scale	= '	1:28.8	
-------	-----	--------	--

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-P	0.06 0.04 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 197/144 FT = 10%
LUMBER 6) Gable studs spaced at 2-0-0 oc. TOP CHORD 2x4 SPF No.2 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. WEBS 2x4 SPF No.2 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 cp urlins: 1-4, except end verticals. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 cp urlins: 1-4, except end verticals. BOT CHORD 2-0-0 oc purlins: 1-4, except end verticals. 8) * Orivide mechanical connection (by others) of truss to bearing plate capable of withstanding 11 lb uplift at joint 4, 72 lb uplift at joint 5. REACTIONS (lb/size) 4=75/6-2-2, 7=178/6-2-2, 8=57/6-2-2 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 4, 5. 10) Beveled plate or shim required to provide full bearing surface with truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 12) Garphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. FORCES (lb) - Maximum Compression/Maximum Tension LOAD CASE(S) Standard LOAD CASE(S) Standard													
FORCES	(lb) - Maximum Com	· · · ·	,								- H		• 41.
TOP CHORD	1-8=-45/19, 1-2=-37, 3-4=-37/28	/28, 2-3=-37/28,									1	AS	
BOT CHORD		/37, 5-6=-29/94,										1,0/ON/	ALEIN
WEBS	2-7=-135/56, 3-5=-1	62/67											105
NOTES		(a)										ALL NO	GAR
Vasd=91n II; Exp C; cantilever right expo: 2) Truss desi only. For see Stand or consult 3) Provide ac 4) Gable req 5) Truss to b	CE 7-16; Vult=115mph pph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 igned for wind loads in studs exposed to wind ard Industry Gable En- qualified building desig dequate drainage to pr uires continuous bottoo e fully sheathed from c ainst lateral movement	DL=6.0psf; h=25ft; Ca velope) exterior zone ; end vertical left and 0 plate grip DOL=1.60 the plane of the truss (normal to the face), d Details as applicable gner as per ANSI/TPI event water ponding. m chord bearing. one face or securely	;) ;								annua.	PROCESSION	952 BASE
g													t 19,2021

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Plv	Lot 17 OS	AS NOTED FOR PLAN REVIEW
305	11055	Truss Type	Quy	гіу	10117-03	DEVELOPMENT SERVICES 147521388
Lot 17 OS	LAY3	Lay-In Gable	2	1	Job Reference (optional	
Wheeler Lumber, Waverly, KS -	d Aug 1082/31/2921					

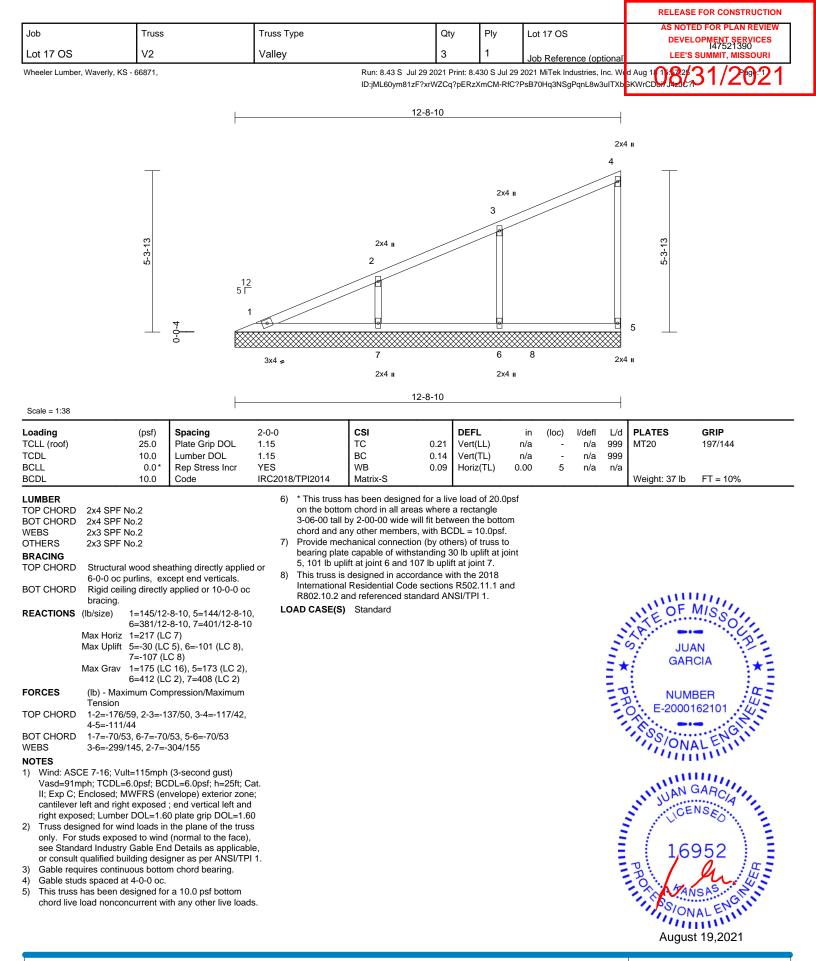
Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Wid Aug 1 1 2020 ID:h8leATTtKy8RFnyz3dUa98ymcZb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi79-2091



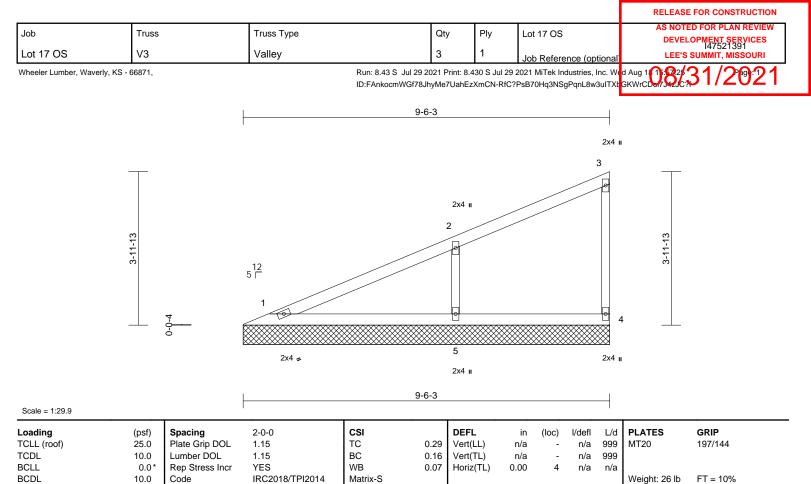
Scale =	1:31.8
---------	--------

		i											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.07	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.03	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.03	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC201	8/TPI2014	Matrix-P							Weight: 25 lb	FT = 10%
	Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 4-1 (lb/size) 4-75/6-2- 6=6/6-2-2 Max Horiz 8=94 (LC 4-52 (LC (LC 6), 7= Max Grav 4=85 (LC	2, 5=206/6-2-2, , 7=170/6-2-2, 8=59/0 2 6) 2 5), 5=-44 (LC 5), 6= 34 (LC 4), 8=-11 (LC	8) 5. 9) 10 5-2-2 11 -48 2 4) 12 -45 12	 chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Provide mech bearing plate 8, 52 lb uplift at joint 7 and Beveled plate surface with a International R802.10.2 ar Graphical pu or the orienta 	s been designed for an onconcurrent v as been designed in chord in all areas y 2-00-00 wide will y other members. nanical connection capable of withsta at joint 4, 48 lb up 44 lb uplifat joint designed in accord Residential Code at referenced stan rlin representation tion of the purlin a	vith any for a liv s where I fit betw (by oth anding 1 lift at joi 5. to provi (s) 4, 5. Jance w sections dard AN does no	other live load e load of 20.0 a rectangle veen the botto ers) of truss to 1 lb uplift at jo nt 6, 34 lb upl de full bearing ith the 2018 rs502.11.1 a ISJ/TPI 1. bt depict the s	opsf om opint lift o nd				JUA GAR	
FORCES	(lb) - Maximum Com Tension	(). (,	bottom chord. DAD CASE(S) Standard NUMBER								• 41.	
TOP CHORD	1-8=-45/19, 1-2=-47 3-4=-47/36	/36, 2-3=-47/36,										E-20001	162101
BOT CHORD	7-8=-36/47, 6-7=-36 4-5=-64/79	/47, 5-6=-54/86,										SSION!	ALENIN
WEBS	2-7=-135/55, 3-5=-1	63/67											nn,
NOTES		(0											1111.
Vasd=91m II; Exp C; I cantilever right expos 2) Truss desi only. For see Stand or consult 3) Provide ac 4) Gable req 5) Truss to b braced age	CE 7-16; Vult=115mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er left and right exposed sed; Lumber DOL=1.6 igned for wind loads in studs exposed to wind ard Industry Gable En qualified building desi dequate drainage to pr uires continuous botto e fully sheathed from o ainst lateral movemen ds spaced at 2-0-0 oc.	DL=6.0psf; h=25ft; C velope) exterior zone; ; end vertical left and 0 plate grip DOL=1.6 the plane of the trus; (normal to the face), d Details as applicabl gner as per ANSI/TPI event water ponding. m chord bearing. one face or securely	e; 0 e,								WITHIN .	PROKESS/ON	952 MAL ENGINE

Scale = 1:41.7


Plate Offsets (X, Y): [10:Edge,0-2-8]

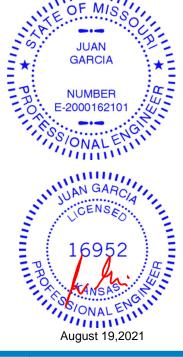
			1	_										
Loading TCLL (roof) TCDL BCLL BCDL		(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-S	0.32 0.08 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 66 lb	GRIP 197/144 FT = 10%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SPF 1 2x3 SPF 1 2x4 SPF 1 Structural 6-0-0 oc p Rigid ceill bracing. (Ib/size) Max Horiz Max Uplift	No.2 No.2 No.2 I wood she purlins, ex ing directly 11=151/1 13=179/1 15=181/1 17=202/1 1=274 (Ld 10=-37 (L 12=-46 (L 14=-47 (L 16=-46 (L 11=151 (I 13=179 (I	C 5) C 7), 11=-45 (LC 8), C 8), 13=-49 (LC 8), C 8), 15=-48 (LC 8), C 8), 17=-54 (LC 8), C 10, 10=31 (LC 15), C 1), 12=187 (LC 1), C 1), 14=180 (LC 1), C 1), 16=174 (LC 1),	2 d or 3 4 0-6, 5 0-6, 7 8 , 8	 Vasd=91mpl II; Exp C; En cantilever lef right expose Truss desigr only. For stu see Standar All plates are Gable requir Gable studs This truss ha chord live loa * This truss 1 on the bottor 3-06-00 tall t chord and ar Provide mec bearing plate 10, 54 lb upl uplift at joint 13, 46 lb upl This truss is International 	7-16; Vult=115m n; TCDL=6.0psf; I closed; MWFRS t and right expose d; Lumber DOL=' led for wind loads uds exposed to wid d Industry Gable e alified building de 2 2x4 MT20 unles es continuous bo spaced at 2-0-0 d s been designed an chord in all area by 2-00-00 wide w ny other members hanical connectio e capable of withs fit at joint 17, 46 II 15, 47 Ib uplift at iff at joint 12 and designed in acco Residential Code not referenced sta	BCDL=6. (envelope ed; end \ 1.60 plates in the plate sin the plate signer a: so therwit ttom chor bc. for a 10.0 i with any df or a liv as where vill fit betv so n (by oth tstanding 3 b uplift at joint 14, 45 lb uplii redance we e sections	Dpsf; h=25ft; (e) exterior zor ertical left an grip DOL=1. ane of the tru- al to the face is a applical s per ANSI/TF se indicated. d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 7 lb uplift at ji joint 16, 48 lk 19 lb uplift at ji t at joint 11. the the 2018 R502.11.1 a	ne; d 60 ss), ble, PI 1. ds. Opsf om o oint o joint			1111 × 8511	JU/ GAR NUMI SS/ON/	CIA *
FORCES	(lb) - Max Tension	timum Corr	pression/Maximum	L	OAD CASE(S)								IN JUAN	GARCIA
TOP CHORD	4-5=-159/	/27, 5-6=-1	08/26, 3-4=-184/27, 46/27, 6-7=-132/27, 1/53, 9-10=-32/28									-	JUAN C	NSED.
BOT CHORD	1-17=-89/ 14-15=-89	/67, 16-17=	=-89/67, 15-16=-89/67 =-89/67, 12-13=-89/6										P 16	952
WEBS		0/72, 6-13=	=-137/71, 4-15=-141/7 =-139/71, 7-12=-146/7										OR TAN	SASLING
NOTES													Augus	t 19,2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

3x4 II

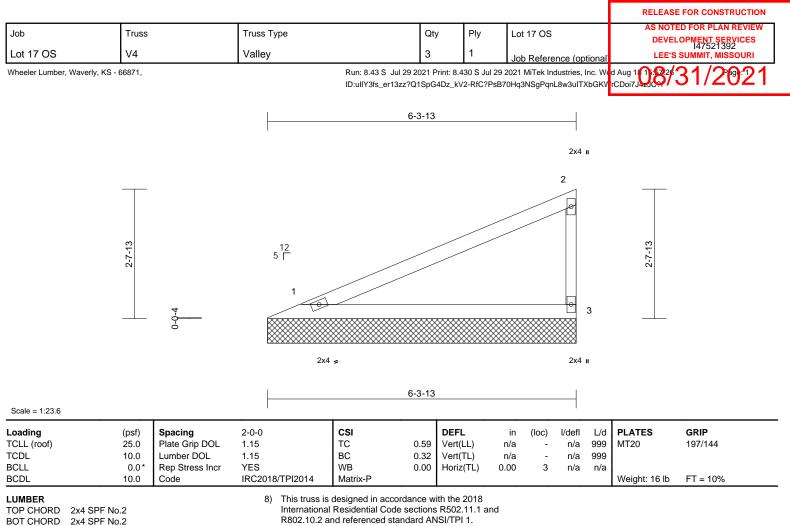
NiTek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

BCDL		10.0	Code	IR
LUMBER				
TOP CHORD	2x4 SPF I	No.2		
BOT CHORD	2x4 SPF I	No.2		
WEBS	2x3 SPF I	No.2		
OTHERS	2x3 SPF I	No.2		
BRACING				
TOP CHORD	Structural	l wood shea	athing directly applied	d or
		,	cept end verticals.	
BOT CHORD	0	ing directly	applied or 10-0-0 oc	
	bracing.			
REACTIONS	(lb/size)		-3, 4=122/9-6-3,	
		5=489/9-6	-	
	Max Horiz	· ·	,	
	Max Uplift	4=-23 (LC	5), 5=-130 (LC 8)	
FORCES	()	imum Com	pression/Maximum	
	Tension			
TOP CHORD		,	06/29, 3-4=-96/39	
BOT CHORD		9, 4-5=-51/	39	
WEBS	2-5=-371/	182		
NOTES				
A) \A/C = -1 A O/		It AAC as a la	(0	


- Wind: ASCE 7-16; Vult=115mph (3-second gust) 1) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 3)
- Gable studs spaced at 4-0-0 oc. 4)
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 23 lb uplift at joint 4 and 130 lb uplift at joint 5.

Matrix-S


- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and
- R802.10.2 and referenced standard ANSI/TPI 1.

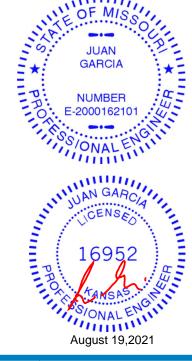
LOAD CASE(S) Standard

FT = 10%

WEBS	2x3 SPF I	No.2				
BRACING						
TOP CHORD	Structural wood sheathing directly applied or					
	6-4-6 oc p	ourlins, except end verticals.				
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc					
	bracing.					
REACTIONS	(lb/size)	1=248/6-3-13, 3=248/6-3-13				
	Max Horiz	1=101 (LC 7)				
	Max Uplift	1=-36 (LC 8), 3=-56 (LC 8)				
FORCES	(lb) - Max	imum Compression/Maximum				

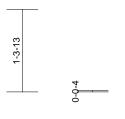
TOP CHORD 1-2=-90/60, 2-3=-193/89 BOT CHORD 1-3=-33/25

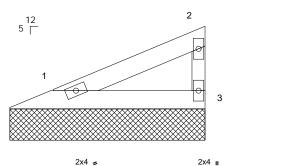
NOTES


- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing. 3) Gable studs spaced at 4-0-0 oc.

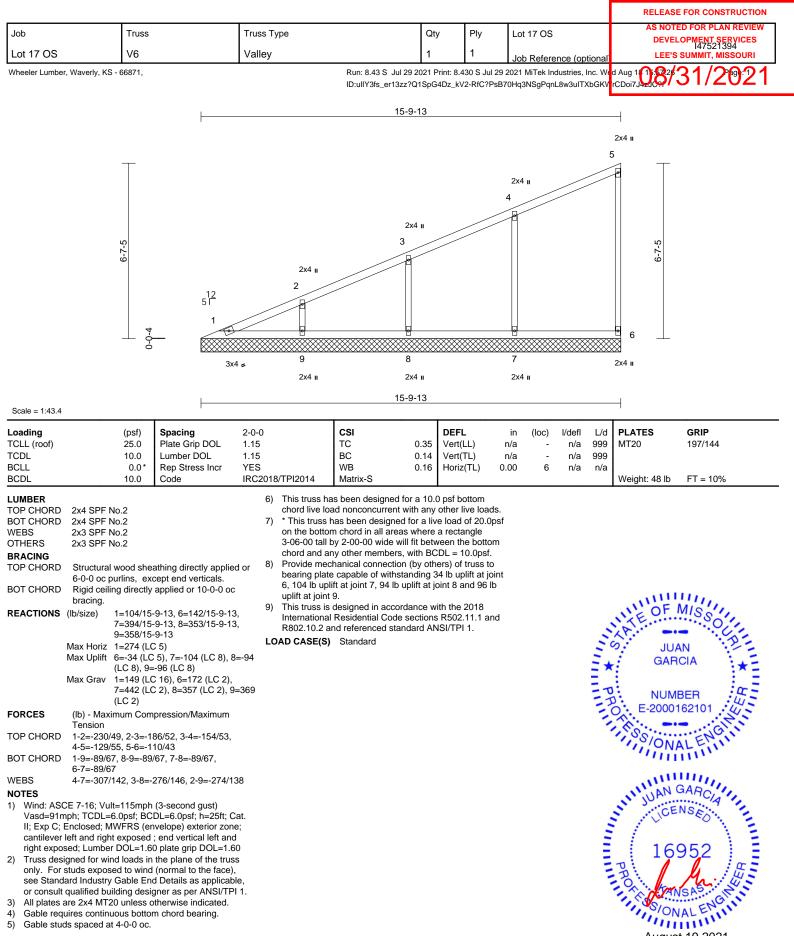
Tension


- 4)
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 7) bearing plate capable of withstanding 36 lb uplift at joint 1 and 56 lb uplift at joint 3.


R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 17 OS	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 147521393
Lot 17 OS	V5	Valley	4	1	Job Reference (optional	LEE'S SUMMIT, MISSOURI
Wheeler Lumber, Waverly, KS - 66871, Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Indust ID:ullY3fs_er13zz?Q1SpG4Dz_kV2-RfC?PsB70Hq3NSgPqnL8w					29 2021 MiTek Industries, Inc. We B70Hq3NSgPqnL8w3uITXbGKV	^{d Aug 1} 082/31/2921
					-	
			3-1-6			
		I			Ι	
					2x4 u	

3-1-6


1-3-13

. . . .

TCLL (roof) 25.0 Plate Grip DOL 1.15 TC 0.09 Vert(LL) n/a - n/a 999 TCDL 10.0 Lumber DOL 1.15 BC 0.05 Vert(TL) n/a - n/a 999 BCLL 0.0* Rep Stress Incr YES WB 0.00 Horiz(TL) 0.00 3 n/a n/a	PLATES GRIP MT20 197/144
LUMBER 8) This truss is designed in accordance with the 2018	Weight: 7 lb FT = 10%
TOP CHORD 2x4 SPF No.2 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. WEBS 2x3 SPF No.2 LOAD CASE(S) BRACING TOP CHORD Structural wood sheathing directly applied or 3-2-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0 oc bracing. Structural wood sheathing directly applied or 10-0.0 cc bracing. REACTIONS (Ib/size) 1=104/3-1-6, 3=104/3-1-6 Max Upilit 1=-15 (LC 8), 3=-24 (LC 8) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-38/25, 2-3=-81/38 BOT CHORD 1-3=-14/10 NOTES 1) Wind: ASCE 7-16; Vulte115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; Cat. I; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; und vertical left and right exposed; und vertical left and right exposed; und vertical left and right exposed; end vertical left and right exposed; und vertical left and right exposed; und vertical left and right exposed; under of the truss only. For studs exposed to wind (normal to the face),	Weight: 7 lb FT = 10% FE OF MISSO JUAN GARCIA NUMBER E-2000162101 S/ONALENG 16952 TANSA S/ONALENG

- 4) Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 5)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 6)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 15 lb uplift at joint 1 and 24 lb uplift at joint 3.

V MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult gualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated. 3)
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

4411111

August 19,2021

JGIT

							RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type		Qty	Ply	Lot 17 OS	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 147521395
Lot 17 OS	V7	Valley		1	1	Job Reference (optiona	
Wheeler Lumber, Way	verly, KS - 66871,					2021 MiTek Industries, Inc. V PsB70Hq3NSgPqnL8w3uITX	
			6-1-10				
			12 5			5	
			5	3			
	2-6-11		2	P			2. 6. 11
		1		0		6	

9

6-1-10

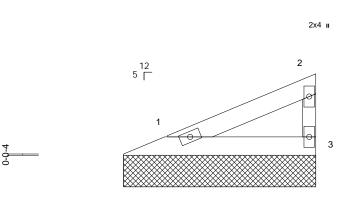
8

7

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 25.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-P	0.05 0.02 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 19 lb	GRIP 197/144 FT = 10
	6-0-0 oc purlins, exc Rigid ceiling directly bracing. (lb/size) 1=70/6-1- 7=106/6-1 9=176/6-1 Max Horiz 1=96 (LC Max Uplift 6=-9 (LC § (LC 8), 9= Max Grav 1=70 (LC	applied or 10-0-0 oc 10, 6=19/6-1-10, 1-10, 8=106/6-1-10, 1-10 5) 5), 7=-26 (LC 8), 8=-2 46 (LC 8)	9) LC 9 06	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 6, 46 lb uplift uplift at joint This truss is International	designed in a Residential (nd referenced	rent with any igned for a liv areas where de will fit betw bers. ection (by oth vithstanding § Ib uplift at joi accordance w Code sections	other live load re load of 20.1 a rectangle veen the both ers) of truss t 0 lb uplift at jo int 8 and 26 ll ith the 2018 \$ R502.11.1 a	Opsf om to int o			11111111 A * 1111	JU/ GAR	CIA
FORCES	(lb) - Maximum Com Tension	pression/Maximum										E-20001	
TOP CHORD	1-2=-78/30, 2-3=-58/ 4-5=-39/23, 5-6=-15/											ESS:	ENC
BOT CHORD	1-9=-31/24, 8-9=-31/ 6-7=-31/24	/24, 7-8=-31/24,										NON/	告前
WEBS NOTES	2-9=-137/70, 3-8=-83	3/43, 4-7=-82/41											

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- All plates are 2x4 MT20 unless otherwise indicated. 3)
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 1-4-0 oc.

Scale = 1:19.5



FT = 10%

M MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

						RELEASE FOR CONSTRUCTION
Job	Truss	Truss Type	Qty	Ply	Lot 17 OS	AS NOTED FOR PLAN REVIEW DEVELOPMENT SERVICES 147521396
Lot 17 OS	V8	Valley	1	1	Job Reference (optional	
Wheeler Lumber, Waverly, KS -	Wheeler Lumber, Waverly, KS - 66871,			430 S Jul 29 V2-RfC?PsB7	2021 MiTek Industries, Inc. We 70Hq3NSgPqnL8w3uITXbGKV	^{d Aug 1} 082/31/2021
		I	3-0-10			

3-0-10

2x4 ı

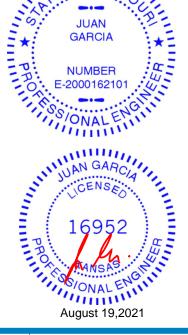
	Scale = 1:18.3											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.05	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 7 lb	FT = 10%

2x4 🚅

WEBS	2x3 SPF I	No.2			
BRACING					
TOP CHORD	Structural	wood sheathing directly applied or			
	3-1-3 oc p	ourlins, except end verticals.			
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc				
	bracing.				
REACTIONS	(lb/size)	1=101/3-0-10, 3=101/3-0-10			
	Max Horiz	1=41 (LC 7)			
	Max Uplift	1=-15 (LC 8), 3=-23 (LC 8)			
FORCES	(lb) - Max	imum Compression/Maximum			
	Tension				
TOP CHORD	1-2=-37/2	4, 2-3=-78/36			

1-3-8

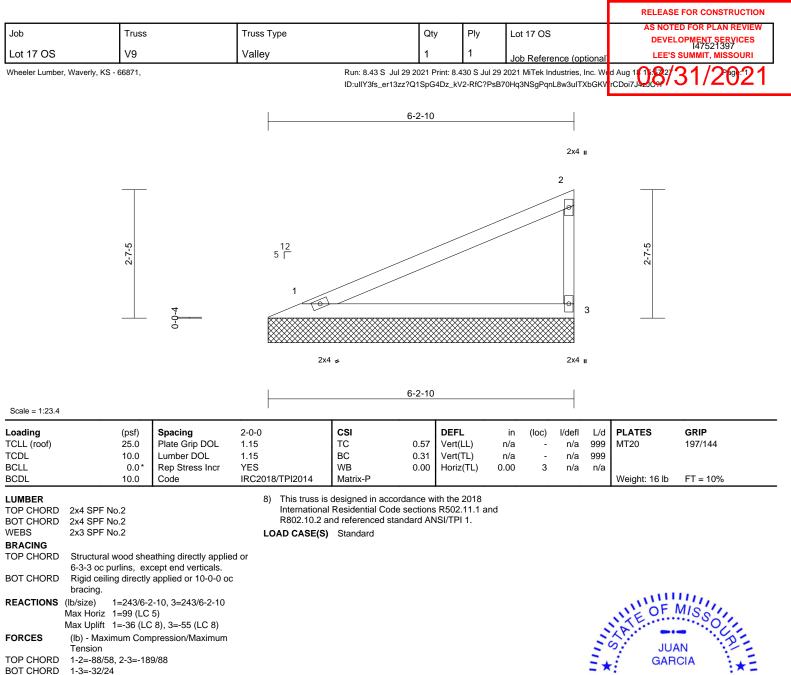
TOP CHORD 1-2=-37/24, BOT CHORD 1-3=-13/10


NOTES

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

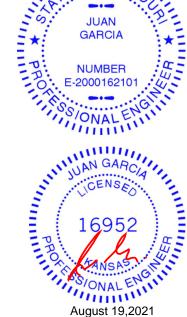
3) Gable requires continuous bottom chord bearing.

- 4) Gable studs spaced at 4-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 15 lb uplift at joint 1 and 23 lb uplift at joint 3.

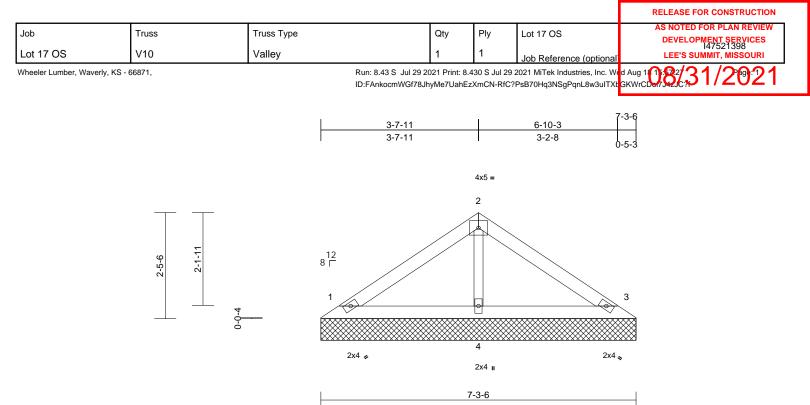

LOAD CASE(S) Standard

MIS

0



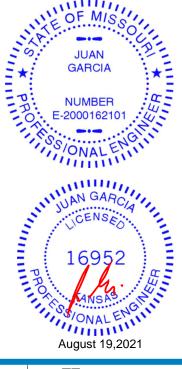
NOTES


- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing. 3)

- Gable studs spaced at 4-0-0 oc 4)
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to 7) bearing plate capable of withstanding 36 lb uplift at joint 1 and 55 lb uplift at joint 3.

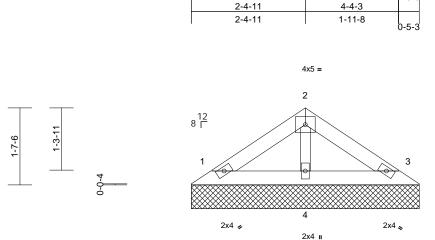
Scale = 1:26.6								1				
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.09	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2018/TPI2014	Matrix-P							Weight: 19 lb	FT = 10%


BOT CHORD	2x4 SPF I	No.2					
OTHERS	2x3 SPF I	No.2					
BRACING							
TOP CHORD	Structural wood sheathing directly applied or						
	6-0-0 oc p	ourlins.					
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc					
	bracing.						
REACTIONS	(lb/size)	1=162/7-3-6, 3=162/7-3-6,					
		4=251/7-3-6					
	Max Horiz	1=56 (LC 5)					
	Max Uplift	1=-36 (LC 8), 3=-43 (LC 9)					

FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=-100/51, 2-3=-96/38
BOT CHORD	1-4=-11/47, 3-4=-11/47
WEBS	2-4=-171/43
NOTES	

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

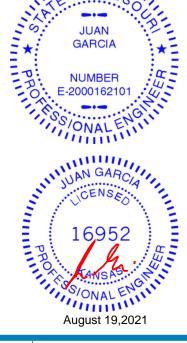
- standing 36 lb uplift at joint 1 and 43 lb uplift at joint 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and
- R802.10.2 and referenced standard ANSI/TPI 1.


LOAD CASE(S) Standard

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

						RELEASE FOR CONSTRUCTION		
Job	Truss	Truss Type	Qty	Ply	Lot 17 OS	AS NOTED FOR PLAN REVIEW		
305	11035	Truss Type	Qiy	I IY	101 17 03	DEVELOPMENT SERVICES 147521399		
Lot 17 OS	V111	Valley	1	1	Job Reference (optional			
Wheeler Lumber, Waverly, KS - 66871,			Run: 8.43 S Jul 29 2021 Print: 8.430 S Jul 29 2021 MiTek Industries, Inc. Wed Aug 1 🏤 😰 🖊 🆊 🏸 🌖 🕇					
			ID:WkhxC7Vt2j983LdKTnau7Xz	_X2L-RfC?Ps	sB70Hq3NSgPqnL8w3ulTXbGK			

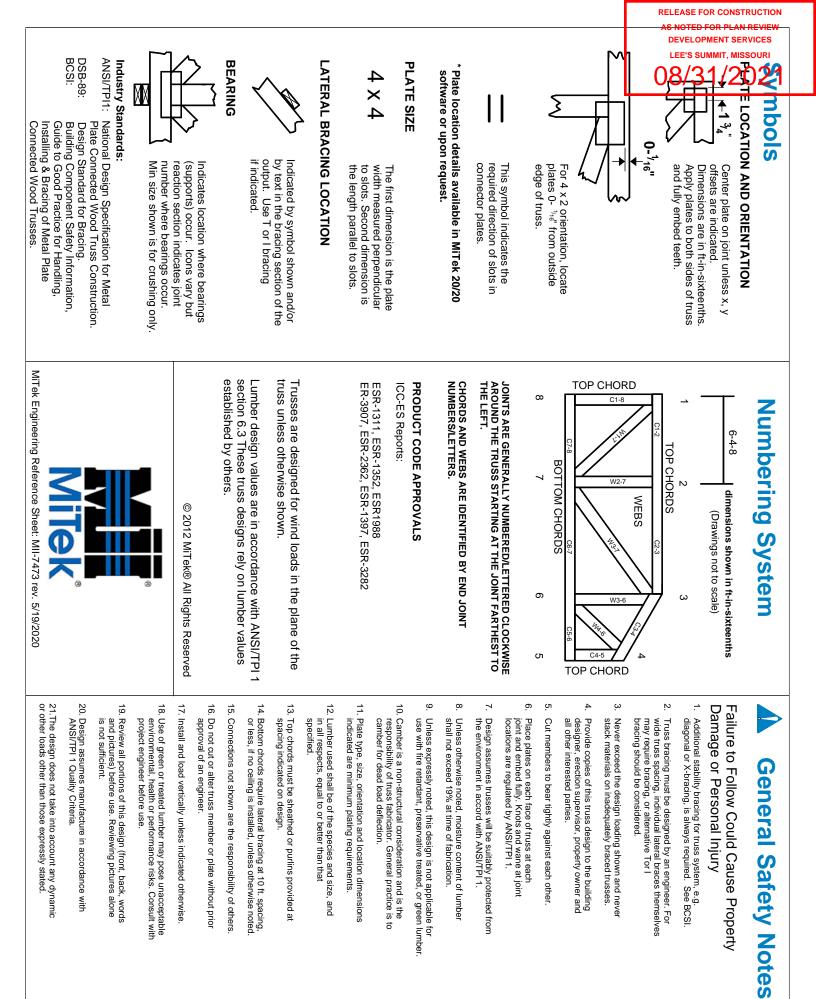
4-9-6


Scale = 1:24.2											I		
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	25.0	Plate Grip DOL	1.15		тс	0.06	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15		BC	0.03	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.02	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC20	18/TPI2014	Matrix-P							Weight: 12 lb	FT = 10%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SPF No.2 2x4 SPF No.2 2x3 SPF No.2 Structural wood she 4-10-2 oc purlins. Rigid ceiling directly bracing.	0 7 11	ed or L	bearing plat 1 and 26 lb This truss is Internationa	chanical conne e capable of w uplift at joint 3. designed in a l Residential C and referenced Standard	ccordance w	22 lb uplift at ith the 2018 s R502.11.1 a	joint					
	bracing.											2011	1.1.2

4-9-6

REACTIONS	(lb/size)	1=98/4-9-6, 3=98/4-9-6, 4=153/4-9-6						
	Max Horiz	1=-34 (LC 4)						
	Max Uplift	1=-22 (LC 8), 3=-26 (LC 9)						
FORCES	(lb) - Max	imum Compression/Maximum						
	Tension							
	4 0 04/0	4 0 0 50/00						

TOP CHORD 1-2=-61/31, 2-3=-59/23 BOT CHORD 1-4=-7/28, 3-4=-7/28 WEBS 2-4=-104/26


- NOTES
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=115mph (3-second gust) 2) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

FMIS

0

