

STRUCTURAL DESIGN CALCULATIONS

Shake Shack, **Sign DTC.1 Qty. 2** 2051 NW Lowenstein Drive Lee's Summit, MO 64081

DESIGN SPECIFICATIONS							
IBC	2018	with	MO	amendments			
				r Buildings & Other Structures			
	ACI 318-14 Building Code Requirements for Structural Concrete						
ANSI/AISC	ANSI/AISC 360-16 Specification for Stuctural Steel Buildings						
DESIGN LOADS							
Wind	V =	115	mph				
Exposure	C						
Risk Cat.	H						
Grnd. Snow	Pg =	20	psf				

DATE ISSUED: 8/06/2021 BY: JERE MURDOCH, PE MI LIC. # 6201060837

WIND LOADING & STEEL CALCULATIONS

Ultimate Wind Speed=	115	IBC-2018
Normal Wind Speed=	89.08	IBC-2018 Nominal
Exposure=	С	open terrain, scattered buildings <30Ft.
Cf=	1.70	ASCE 7-10 Force Coefficient
G=	0.85	Gust Factor
Kh=	0.85	Velocity pressure Coefficient @ height
Kzt=	1	Topographic factor
l=	1	Importance factor
Kd=	0.85	Wind directionality factor

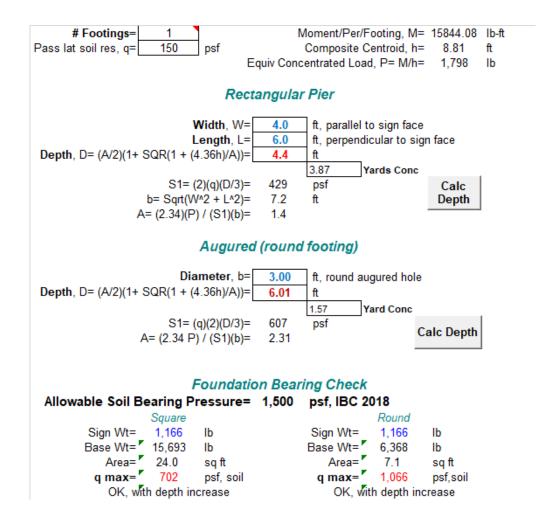
STEEL COLUMN DESIGN

Areas Subject to Wind Forces

		Height	Width	Area	Centroid	Wind
Description	(cF)	(ft)	(ft)	(sqft)	(ft)	(psf)
Roof 21psf*1.2 = 25.2> (20psf sL)	1.70	6.00	9.00	54.00	10.0	25.2
Pole Cladding	1.67	11.00	1.76	19.36	5.5	21

Calculation of Design Forces at Critical Heights								
y (ft)	M (#')	V (#)		y (ft)	M (#')	V (#)	M (#) Per/Colum	V (#) Per/Colur
@ grade	15,844	1,767		17.67			15,844	1,767
9.00	1,361	1,361		17.67			1,021	1,021
17.67				17.67				

Column Support Design Table


# of Cols	Column Type	Column Size	Length	Start Elev	End Elev	Sleeve Depth	S act	fb
	(P,TS)		(ft)	(ft)	(ft)	(in)	(in^3)	(ksi)
1	TS	5XX.25	9.00		9.00	N/A	6.41	29.7
2	TS	2XX.125	9.00	8.67	17.67	4.0	0.49	16.8

TS = Steel Tube 6x6x3/8" > 5"x5"x1/4" Min. = OK

TS = Steel Tube (Canopy Roof) = Proposed 3.5"x3.5" x 3/16" > 2"x2" x 1/8" Min. = OK

FOOTING CALCULATIONS

BASEPLATE CALCULATIONS

Plate Design							
# of Base Plates=	1						
Maximum Column Dimension, OD=	6.00	in, perpendicular to sign face					
Number of Bolts, n=	2	per line front and back					
Compressive Strength of Concrete, fc=	3,000	psi at 28 days					
Moment / per/Base Plate, M=	15,844	lb-ft					
Bolt Line Spacing, L=	9.04	in, from front to back					
Base Plate Dimensions:	N=	12.50 in B = 12.50 in					
Tension per Bolt Line, T=	21,032	lb, = M/L (simple moment couple)					
Maximum Moment on the Plate, Mpl=	31,969	lb-in, = (T)((L-OD)/2)					
Plate Thickness w/o Gussets, t=	0.94	in, = Sqrt((6M)/(0.75Fy(4/3) Beff))					
Plate Thickness w/ Gussets, t=	0.75	in, = Sqrt((6M)/(0.75Fy(4/3) Beff)*0.8)					
Alum. PL Thickness w/o Gussets, t=	1.10	in, = Sqrt((6M)/(0.52Fy(4/3) Beff)					
Alum. PL Thickness w/ Gussets, t=	0.88						

Anchor Bolt Design

(using A36 threaded rod with embedded end nut)

Tension per Anchor, Ta=	10,516	lb, = T/n
Req. Gross Area of Anchor Bolts, Ag=	0.41	sq in, = Ta\0.33Fu (1/3 inc)
Min. Diameter of Anchor Bolts, D=	0.73	in
Actual Bolt Diameter to be Used=	1.375	in
Req Proj Concrete Surface Area, Ap=	83	sq in, = Ta/(2 sqrt(fc)) (1/3 inc)
Req Embeded Bolt Length, L=	27.50	in, = sqrt(Ap/3.14), min 20D
Min. Spacing to Edge of Concrete=	27.50	in
Min. Spacing Between Bolts in a Line,s=	13.75	in, = 2L
Actual Spacing Between Bolts in a Line, s=	9.04	in
# of Overlaps=	1	
Revised Ap Based on Overlap=	1380.60	in^2
Actual Shear Capacity of Concrete Cone=	201,145	lb. (1/3 inc)

Shear Engineering OK

Shear stress per bolt, fv= 298 psi, = Va/Ab

Allowed Tension Stress with Shear, Ft= 25,456 psi, = 0.43Fu - 1.8fv, max 0.33Fu (1/3 inc)

Actual Tension Stress per Bolt, ft= 7,082 psi, = Ta/Ab

Tension Engineering OK

Weld Design

(check connection of base column to plate, pipe and square tube only)

Shape of Column=	TS	(P=round, TS=square)
1/32" Less TS or P Thk. Fillet Weld Leg Size, a=	0.344	in, Max.
Section Modulus of Weld, Sw=	16.59	in3, = 1.34(b^2)(a)
Actual Weld Stress, fw=	11,457	psi, = M/Sw

Weld Engineering OK, <0.3Ft of E7018