

RE: P210272 - Juneau Townhomes - Osa	age	MiTek USA, Inc.
Site Information:		16023 Swingley Ridge Rd Chesterfield, MO 63017
Project Customer: Clover & Hive Project I	Name:	314-434-1200
Lot/Block:	Subdivision: Osage	
Model: Juneau Iownnomes		
Address: Svv Pryor Rd	State: MO	
General Truss Engineering Criteria & Des	siale. MO	Design
Drawings Show Special Loading Condition	ons):	Design
Design Code: IRC2018/TPI2014	Design Program: Mi	iTek 20/20 8 5
Wind Code: ASCE 7-16 Wind Speed: 115 m	ph Design Method: MV	VFRS (Envelope)/C-C hybrid Wind ASCE 7-16
Roof Load: 45.0 psf	Floor Load: N/A pst	f
Mean Roof Height (feet): 35	Exposure Category:	С
No Seal# Truss Name Date No	Seal# Truss Name Da	ate
1 146739390 A1 6/25/21 35	146739424 D3 6/25	5/21
2 146739391 A2 6/25/21 36 3 146739392 A3 6/25/21 37	146739425 D4 6/25 146739426 D5 6/29	5/21
4 146739393 A4 6/25/21 38	146739427 D6 6/25	5/21
6 146739394 A5 6/25/21 39 6 146739395 A6 6/25/21 40	146739428 D7 6/25 146739429 D8 6/25	5/21
7 146739396 A7 6/25/21 41 8 146739397 A8 6/25/21 42	I46739430 HG1 6/25	5/21
9 146739398 A9 6/25/21 43	146739432 HG3 6/25	5/21
10 146739399 A10 6/25/21 44 11 146739400 A11 6/25/21 45	146739433 JA1 6/25 146739434 JA2 6/25	5/21 5/21
12 146739401 A12 6/25/21 46	146739435 JA3 6/26	5/21
14 146739402 A13 6/25/21 47	146739430 JA4 0/20 146739437 V1 6/20	5/21
15 I46739404 A15 6/25/21 49 16 I46739405 A16 6/25/21 50	I46739438 V2 6/25 I46739439 VB1 6/25	5/21 5/21
17 146739406 A17 6/25/21 51	146739440 VB2 6/25	5/21
18 146739407 A18 6/25/21 52 19 146739408 A19 6/25/21 53	I46739441 VB3 6/25	5/21 5/21
20 146739409 A20 6/25/21 54 21 146739410 A21 6/25/21 55	146739443 VB5 6/25	5/21
22 I46739411 A22 6/25/21 56	146739445 VB7 6/25	5/21
23 I46739412 A23 6/25/21 57 24 I46739413 B1 6/25/21 58	146739446 VB8 6/25 146739447 VB9 6/25	5/21 5/21
25 146739414 B2 6/25/21 59	146739448 VB10 6/2	5/21
26 146739415 B3 6/25/21 60 27 146739416 B4 6/25/21 61	I46739449 VB11 6/25	5/21
28 46739417 C1 6/25/21 62 29 46739418 C2 6/25/21 63	I46739451 VB13 6/25	5/21 5/21
30 46739419 CJA1 6/25/21 64	146739453 VC1 6/25	5/21
31 140739420 CJA2 6/25/21 65 32 146739421 CJA3 6/25/21 66	146739454 VC2 6/25 146739455 VC3 6/25	5/21
33 I46739422 D1 6/25/21 67 34 I46739423 D2 6/25/21 68	146739456 VC4 6/28 146739457 VC5 6/28	5/21 5/21

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Premier Building Supply (Springhill, KS)20300 W 207th Street.

Truss Design Engineer's Name: Johnson, Andrew

My license renewal date for the state of Missouri is December 31, 2021.

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Johnson, Andrew

Job	Truss	Truss Type	Qty	Ply	Juneau Townhomes - Osage
					146739390
P210272	A1	ROOF SPECIAL GIRDER	2	2	Job Reference (optional)
Premier Building Supply (Sp	rinahill. KS). Sprina Hills.	KS - 66083.	8	.510 s Jun	18 2021 MiTek Industries. Inc. Thu Jun 24 20:30:54 2021 Page 2

ID:DUjzAB0GCWoOJpyMsoTzILz3uah-x_XzYuMQbdCBZqAVIJqCDeYEUZ24vN8O6tKRPhz2ysI

NOTES-

- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=610, 12=541.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 16) Use Simpson Strong-Tie LUS24 (4-10d Girder, 2-10d Truss, Single Ply Girder) or equivalent spaced at 28-0-0 oc max. starting at 1-6-0 from the left end to 33-6-0 to connect truss(es) to back face of bottom chord.
- 17) Fill all nail holes where hanger is in contact with lumber.
- 18) "NAILED" indicates 3-10d Nails (0.148" x 3") toe-nails per NDS guidelines.

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
- Vert: 1-3=-70, 3-5=-70, 9-11=-70, 5-7=-70, 7-9=-70, 11-13=-70, 2-12=-20 Concentrated Loads (lb)
 - Vert: 3=-108(B) 22=-26(B) 18=-26(B) 11=-108(B) 14=-26(B) 24=-108(B) 25=-108(B) 27=-108(B) 28=-108(B) 30=-108(B) 31=-108(B) 33=-108(B) 34=-108(B) 36=-222(B) 38=-180(B) 39=-26(B) 40=-26(B) 42=-26(B) 43=-26(B) 44=-26(B) 45=-26(B) 46=-26(B) 47=-26(B) 49=-26(B) 50=-26(B) 51=-180(B) 53=-222(B) 45=-26(B) 45=-26(

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **MSIVTP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		8-1-8	15-6	6-7		19-5-9		2	26-10-8			35-0-0	
Plate Offsets (X,Y) [2:0-8	B-0,0-0-4], [5:0-6-0,0-1-14],	 [7:0-6-0,0-1-14,], [10:0-8-0	0,0-0-4], [14:	0-3-8,0-2	2-0], [15:0-	-3-8,0-2-	-0]			0-1-0	
LOADING (ps TCLL (roof) Snow (Pf) TCDL BCLL BCDI	sf) 25.0 25.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TP	2-0-0 1.15 1.15 NO 1/2014	CSI. TC BC WB Matri	0.48 0.46 0.96 x-SH		DEFL. /ert(LL) /ert(CT) lorz(CT)	in -0.28 -0.49 0.08	(loc) 12-14 12-14 10	l/defl >999 >857 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 203 lb	GRIP 197/144 197/144 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS REACTIONS.	2x4 SPF No. 4-5,7-8: 2x6 2x6 SP 2400 2x4 SPF No. (size) 2 Max Horz 2 Max Horz 2 Max Uplift 2 Max Grav 2	2 *Except* SP 2400F 2.0E JF 2.0E 3 =0-3-8, 10=0-3-8 =100(LC 16) =-256(LC 16), 10=-256(LC =1986(LC 77), 10=1986(L	C 17) C 82)			BRACI TOP CI BOT CI WEBS	NG- Hord Hord	Sheat 2-0-0 Rigid 1 Rov	thed or oc purli ceiling v at mid	2-6-8 oc p ns (5-5-1 directly ap pt	ourlins, exce 2 max.): 4-5, oplied or 10-1 5-17, 7	pt ,7-8. 0-0 oc bracing. -12	
FORCES. (IL TOP CHORD BOT CHORD WEBS	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-3423/518, 3-4=-3278/456, 4-5=-2877/447, 5-6=-4508/682, 6-7=-4508/698, 7-8=-2877/447, 8-9=-3278/469, 9-10=-3423/506 BOT CHORD 2-17=-426/2934, 15-17=-422/4003, 14-15=-303/3162, 12-14=-426/4003, 10-12=-389/2934 WEBS 3-17=-303/177, 4-17=-37/948, 5-17=-1442/181, 5-15=-1925/371, 6-15=-325/2355, 6-14=-332/2355, 7-14=-1925/378, 7-12=-1442/181, 8-12=-31/948, 9-12=-303/178												
 TOP CHORD 2-3-3423/518, 3-4-3278/456, 45-2877/447, 5-64508/682, 6-7-4508/698, 7-8-2877/447, 8-9-3278/469, 9-10-3243/506 BOT CHORD 2.17-426/2934, 15-17-422/4003, 14-15-303/3162, 12-14-426/4003, 10-12-389/2934 WEBS 3-17303/177, 4-17-37/948, 5-171442/181, 5-15-4925/371, 6-15-325/3355, 6-14-332/2355, 7-14-1925/371, 6-15-325/3356, 6-14-332/2355, 7-14-1925/371, 6-15-302/378 NOTES- Uhobalanced roof live loads have been considered for this design. Wind: ASC 7-16; Vult=115mph (3-second gus!) Yasd-91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-11-0 to 3-11-13, Interior(1) 3-11-15, Interior(1) 3-11-0 to 3-5-9, Interior(1) 9-15-9 to 26-10-8, Exterior(2R) 26-10-8 to 31-10-8, Interior(1) 3-11-0 to 3-5-9, Interior(1) 19-5-9 to 26-10-8, Exterior(2R) 26-10-8, texterior(2R) 26-0, texterior(2R) 17-6-0 to 19-5-9, Interior(1) 9-5-9 to 26-10-8, texterior(2R) 26-0, texterior(2R) 17-6-0 to 19-5-9, Interior(1) 9-10-8, texterior(2R) 26-0, texterior(2R) 26-0, texterior(2R) 17-6-0 to 19-1.60 TCLL: ASC 50-6, top:(to:LL: und DCL=1.15) Plate DDL=1.60 This truss has been designed for a live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on toverhangs non-concurrent with ave been considered for this design. This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. Provide adedinated for a live load of 250 ofto the tex													
WARNING Design valid for a truss system building desig is always requ fabrication, str	- Verify design par for use only with M n. Before use, the in. Bracing indicat uired for stability an orage, delivery, er orage, delivery, er	ameters and READ NOTES ON TT Tek® connectors. This design is building designer must verify the e ed is to prevent buckling of indivio d to prevent collapse with possib ection and bracing of trusses and row Truce Rite beritute. 2670.0:	HIS AND INCLUDED based only upon pa applicability of desig dual truss web and/c le personal injury ar truss systems, see rain bliobway. Suite J	MITEK REFE rameters sho n parameters or chord mem nd property da AN3 2003 Waldorf	ERENCE PAGE wn, and is for ar and properly in bers only. Addi amage. For ger SI/TPI1 Quality MD 20601	MII-7473 re n individual corporate t tional temp leral guidar Criteria, D	v. 5/19/2020 building com his design in orary and pe ice regarding SB-89 and E	BEFORE I nponent, no to the over rmanent b g the BCSI Build	USE. lot rall bracing ding Com	ponent		16023 Swingley Ridge Rr Chesterfield, MO 63017	1

TOP CHORD

BOT CHORD

WEBS

Sheathed or 3-9-2 oc purlins, except

Rigid ceiling directly applied or 10-0-0 oc bracing.

5-14, 5-10

2-0-0 oc purlins (4-2-11 max.): 4-6.

1 Row at midpt

L	U	М	в	Е	R-

TOP CHORD 2x6 SPF No.2 BOT CHORD 2x6 SPF No.2 WEBS 2x4 SPF No.3

REACTIONS. (size) 8=Mechanical, 2=0-3-8

Max Horz 2=113(LC 16) Max Uplift 8=-154(LC 17), 2=-183(LC 16)

Max Grav 8=1901(LC 72), 2=1978(LC 66)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-3570/437, 3-4=-3024/409, 4-5=-2624/401, 5-6=-2600/393, 6-7=-2994/409,

7-8=-3485/427

- BOT CHORD 2-15=-336/3085, 14-15=-336/3085, 12-14=-271/3132, 10-12=-271/3132, 9-10=-315/2985, 8-9=-315/2985 WEBS 3-15=0/419, 3-14=-755/192, 4-14=-49/912, 5-14=-858/169, 5-12=0/462, 5-10=-882/171,
 - 6-10=-49/908, 7-10=-674/192, 7-9=-24/418

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior(1) 4-1-0 to 10-9-8, Exterior(2R) 10-9-8 to 17-10-6, Interior(1) 17-10-6 to 24-2-8, Exterior(2R) 24-2-8 to 31-3-6. Interior(1) 31-3-6 to 34-7-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.

- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Refer to girder(s) for truss to truss connections.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=154, 2=183.

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

12) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

9) Refer to girder(s) for truss to truss connections.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=210. 9=181.

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and Continetiere one obstanzed and ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Juneau Townhomes - Osage		
					14673939	93	
P210272	A4	Hip	2	1			
					Job Reference (optional)		
Premier Building Supply (Springhill, KS), Spring Hills,		KS - 66083,	8.510 s Jun 18 2021 MiTek Industries, Inc. Thu Jun 24 20:31:42 2021 Page 2				
	ID:DUjzAE	ID:DUjzAB0GCWoOJpyMsoTzILz3uah-XDR6dIxXINFNKCrkYOhSAmXM0vVw8xxS8Ky_5uz2ys?					

12) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord,

concurrent with live and dead loads.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/ITPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

⊢	8-1-12	16-1-8	18-10-8	26-7-12		34-8-8				
Plate Offsets (X,Y)	[2:Edge,0-3-2], [12:0-0-0,0-3-4]	2-9-0	7-9-4		0-0-12				
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	* SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/T	2-0-0 CSI. 1.15 TC 0.9 1.15 BC 0.9 NO WB 0.3 Pl2014 Matrix-SH	DEFL. 33 Vert(LL) 98 Vert(CT) 99 Horz(CT) 1 Horz(CT)	in (loc) l/defl -0.35 16-18 >999 -0.59 16-18 >703 0.12 12 n/a	L/d 240 180 n/a	PLATES C MT20 1 Weight: 181 lb	GRIP 197/144 FT = 20%			
LUMBER- TOP CHORD 2x4 SI 6-7: 2x BOT CHORD 2x4 SI WEBS 2x4 SI WEDGE Left: 2x4 SPF No.2 SLIDER Right 2	1650F 1.5E *Except* 4 SPF No.2, 1-4: 2x4 SP 24000 2400F 2.0E F No.3 x4 SPF No.2 3-0-2	= 2.0E	BRACING- TOP CHORD BOT CHORD WEBS	Sheathed or 2-2-1 oc 2-0-0 oc purlins (3-8- Rigid ceiling directly a 1 Row at midpt	: purlins, except 1 max.): 6-7. applied or 10-0-0 5-16, 7-16) oc bracing. 6, 8-15				
REACTIONS. (size) 2=0-3-8, 12=Mechanical Max Horz 2=158(LC 16) Max Uplift 2=-232(LC 16), 12=-205(LC 17) Max Grav 2=2268(LC 41), 12=2197(LC 41)										
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-4102/410, 3-5=-3736/402, 5-6=-2736/375, 6-7=-2302/370, 7-8=-2732/377, 8-10=-3645/405, 10-12=-4017/415 BOT CHORD 2-18=-424/3533, 16-18=-259/2967, 15-16=-72/2295, 13-15=-196/2934, 12-13=-284/3428 WEBS 3-18=-472/204, 5-18=-57/768, 5-16=-962/249, 6-16=-74/832, 7-16=-240/298, 7-15=-125/961, 8-15=-943/245, 8-13=-54/711, 10-13=-436/195										
BOT CHORD 2:18=-424/3533, 16:18=-259/2967, 15:16=-72/2295, 13:15=-196/2934, 12:13=-284/3428 3:18=-472/204, 5:18=-57/68, 5:16=-962/249, 6:16=-74/832, 7:16=-240/298, 7:15=-125/961, 8:15=-943/245, 8:13=-54/711, 10:13=-436/195 NOTES- 1) Uhbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-11:0 to 4-1-0, Interior(1) 4-1-0 to 16-1-8, Exterior(2E) 16-1-8 to 18:10-8, Exterior(2E) 18:10-8 to 25:11-6, Interior(1) 25:11-6 to 34-8-8 zone; cantilever left and right exposed; card vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15); Pf=25.0 psf (Lum DOL=1.15); Is=1.0; Rough Cat C; Fully Exp;: Ce=0.9; Cs=1.00; CL=1.10 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads. 6) Provide adequate drainage to prevent water ponding. 7) This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) Refer to girder(s) for truss to next connections. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=232, 12=205. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. 2011: Weinvelore end candard and State to 208 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1										
WARNING - Verify de	sign parameters and READ NOTES ON " with MiTek® connectors. This design is	HIS AND INCLUDED MITEK REFERENC	CE PAGE MII-7473 rev. 5/19/2020 E	BEFORE USE.		MI				

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Mitek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Juneau Townhomes - Osage		
					146739394		
P210272	A5	Hip	2	1			
					Job Reference (optional)		
Premier Building Supply (Springhill, KS), Spring Hills,		KS - 66083,	8.510 s Jun 18 2021 MiTek Industries, Inc. Thu Jun 24 20:31:45 2021 Page 2				
	ID:DUj	ID:DUjzAB0GCWoOJpyMsoTzILz3uah-xo7FFK_PbIdyBfZJEXF9oO9tM6S9LRguqIAehDz2yry					

12) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord,

concurrent with live and dead loads.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/ITPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Mitek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Juneau Townhomes - Osage		
					146739395		
P210272	A6	Common	2	1			
					Job Reference (optional)		
Premier Building Supply (Springhill, KS), Spring Hills, KS		KS - 66083,	8.510 s Jun 18 2021 MiTek Industries, Inc. Thu Jun 24 20:31:46 2021 Page 2				
	ID:DUjzAB0GCWoOJpyMsoTzILz3uah-P?hdTg?1Mc			TzILz3uah-P?hdTg?1Mclpop8VnEmOKci26WoK4pl23ywBDgz2yrx			

12) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Mitek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Juneau Townhomes - Osage			
5040070					146739	9396		
P210272	A/	Roof Special	2	1				
					Job Reference (optional)			
Premier Building Supply (Springhill, KS), Spring Hills, KS -		KS - 66083,	8.510 s Jun 18 2021 MiTek Industries, Inc. Thu Jun 24 20:31:48 2021 Page 2					
			JjzAB0GC\	VoOJpyMs	oTzILz3uah-MNoNuM0ItD0X27ItvfosQ1nNeKTsYhrLWGPIIYz2yrv	v		

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Juneau Townhomes - Osage			
P210272	A8	Roof Special	2	1	2	46739397		
. 210272	710		-		Job Reference (optional)			
Premier Building Supply (Springhill, KS), Spring Hills, KS -		KS - 66083,	8.510 s Jun 18 2021 MiTek Industries, Inc. Thu Jun 24 20:31:51 2021 Page 2					
			ID:DUjzAB0GCWoOJpyMsoTzILz3uah-myUWWN2AA806va1SanMZ1fP_?XVal2lnCEdyvtz2yrs					

12) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord,

concurrent with live and dead loads.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/ITPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

to 22-6-0, Interior(1) 22-6-0 to 34-6-12 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.

6) Provide adequate drainage to prevent water ponding.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Refer to girder(s) for truss to truss connections.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 12=228, 2=241.

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Juneau Townhomes - Osage	-	
P210272	A9	Roof Special	2	1	1467393	98	
. 210272	710		-		Job Reference (optional)		
Premier Building Supply (Springhill, KS), Spring Hills, KS - 66		KS - 66083,	8.510 s Jun 18 2021 MiTek Industries, Inc. Thu Jun 24 20:31:53 2021 Page 2				
		ID:DUjz	AB0GCW0	oOJpyMso	TzILz3uah-iLcGx34Qimep8uAriCO174UEMLAsDvZ4gY63zmz2yrq		

12) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord,

concurrent with live and dead loads.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/ITPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

MiTek

Job	Truss	Truss Type	Qty	Ply	Juneau Townhomes - Osage		
P210272	A10	Roof Special	2	1	1467393	399	
1210272			2		Job Reference (optional)		
Premier Building Supply (Springhill, KS), Spring Hills, K		KS - 66083,	8.510 s Jun 18 2021 MiTek Industries, Inc. Thu Jun 24 20:30:56 2021 Pag				
ID:DUjzAB0GCWoOJpyMsoTzILz3uah			/IsoTzILz3uah-tNfjzaOg7FSvp7KusksgJ3dVIMjiN8ZhZApYTZz2ysj				

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

13) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord,

concurrent with live and dead loads.

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Mitek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Juneau Townhomes - Osage
P210272	A11	Roof Special	2	1	146739400
					Job Reference (optional)
Premier Building Supply (Sp	ringhill, KS), Spring Hills,	KS - 66083,	8.510 s Jun 18 2021 M		18 2021 MiTek Industries, Inc. Thu Jun 24 20:30:58 2021 Page 2
			zAB0GCW	oOJpyMs	oTzILz3uah-pmnTOFPwfsid2RTG_9v8OUirHARbr4c_0UIfYSz2ysh

13) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord,

concurrent with live and dead loads.

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/ITPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Juneau Townhomes - Osage
D010070					146739401
P210272	A12	Common Supported Gable	2	1	
					Job Reference (optional)
Premier Building Supply (Springhill, KS), Spr		KS - 66083,	8.510 s Jun 18 2021 MiTek Industries, Inc. Thu Jun 24 20:31:0		18 2021 MiTek Industries, Inc. Thu Jun 24 20:31:03 2021 Page 2
	ID:DUjzAB0	ID:DUjzAB0GCWoOJpyMsoTzILz3uah-AjaMRzT3UOLw8CMEmiUJ5XQunBFUVTWjAm?QDfz2ysc			

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

14) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/ITPIT Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

MiTek

Job	Truss	Truss Type	Qty	Ply	Juneau Townhomes - Osage	-
					14673940)2
P210272	A13	Common Supported Gable	2	1		
					Job Reference (optional)	
Premier Building Supply (Sp	ringhill, KS), Spring Hills,	KS - 66083,	8	.510 s Jun	18 2021 MiTek Industries, Inc. Thu Jun 24 20:31:08 2021 Page 2	
			ID:DUjzAB0GCWoOJpyMsoTzILz3uah-XhOFVgXCIxzCF_EBZF4Uob7lWC?TAklSK2jButz2ysX			

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

14) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		6-2-0	11-10-0		17-6-0	23-2-0			28-10-0			35-0-0	1
LOADING (psf) TCLL (roof) Snow (Pf) TCDL) 25.0 25.0 10.0	SPACING- Plate Grip DC Lumber DOL Pop Stress In	2-0-0 DL 1.15 1.15	CSI TC BC	0.93 0.62 0.73	DEFL. Vert(LL) Vert(CT)	in -0.33 -0.52	(loc) 15-17 15-17	l/defl >999 >798	L/d 240 180		PLATES MT20	GRIP 197/144
BCLL	0.0 *	Code IRC201	18/TPI2014	Mat	rix-SH	11012(01)	0.07	10	n/a	n/a		Weight: 196 lb	FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS REACTIONS.	2x4 SPF No. 1-4,8-11: 2x4 2x6 SP 2400 14-16: 2x6 S 2x4 SPF No. (size) 2 Max Horz 2 Max Horz 2 Max Uplift 2 Max Grav 2	2 *Except* 4 SP 1650F 1.5E)F 2.0E *Except*)FF No.2 .3 =0-3-8, 10=0-3-8 =168(LC 16) =-243(LC 16), 10=-2 =1986(LC 46), 10=15	43(LC 17) 986(LC 52)	I		BRACING- TOP CHORD BOT CHORD WEBS	Sheat Rigid 1 Row	thed. ceiling o v at mid	directly ap	oplied c 7	or 10-0-0 o -15, 5-15	bc bracing.	
FORCES. (Ib) TOP CHORD	- Max. Comp 2-3=-3505/ 9-10=-3505	o./Max. Ten All forc /403, 3-5=-2909/397, 5/403	es 250 (lb) or less 5-6=-2204/387, 6-7	except whe 7=-2204/38	n shown. 7, 7-9=-2909/	/397,							
BOT CHORD	2-18=-426/ 10-12=-26	/3012, 17-18=-426/30 60/3012	12, 15-17=-258/25	20, 13-15=	-170/2520, 12	2-13=-260/3012,							
WEBS	6-15=-184/ 5-15=-1044	/1542, 7-15=-1044/25 4/258, 5-17=-28/700,	8, 7-13=-28/700, 9 3-17=-856/193, 3-1	-13=-856/1 8=-23/462	94, 9-12=-23/	/462,							
NOTES- 1) Unbalanced 2) Wind: ASCE Enclosed; Mt to 22-6-0, Int and forces & 3) TCLL: ASCE Rough Cat C 4) Unbalanced 5) This truss ha non-concurre 6) All plates are 7) This truss ha 8) * This truss ha 8) * This truss ha will fit betweed 9) Provide meci 2=243, 10=2 10) This truss is referenced 11) This truss h panel points	 10:12=-260/3012 WEBS 6:15=-184/1542, 7:15=-1044/258, 7:13=-28/700, 9:13=-856/194, 9:12=-23/462, 5:15=-1044/258, 5:17=-28/700, 3:17=-856/194, 9:12=-23/462, 5:15=-1044/258, 5:17=-28/700, 3:17=-856/194, 3:18=-23/462 NOTES- Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(22): 0-11-0 to 4:1-0, Interior(1) 4:1-0 to 17:6-0, Exterior(2R) 17:6-0 to 22:6-0, Interior(1) 22:6-0 to 35:11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pre-25:0 psf (root IL: Lum DOL=1.15); Pf=25.0 psf (Lum DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Urbalanced snow loads have been considered for this design. This truss has been designed for ration of live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads. All plates are 3x4 MT20 unless otherwise indicated. This truss has been designed for a 10.0 psf bottom chord nive load of non-concurrent with any other live loads. This truss has been designed for a 10.0 psf bottom chord nive load of 20.0psf on the bottom chord and any other members. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (it=lb) 2=-2017018993, 50 (2010) and referenced standard ANS/TP1 1. This truss has been designed for a moving concentrated load of 250.0bl live and 100.0bl dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead locads. 												
Design valid for	Verify design par use only with M	ameters and READ NOTES	ON THIS AND INCLUD	ED MITEK REI	ERENCE PAGE	MII-7473 rev. 5/19/2020 In individual building com	BEFORE L	JSE. ot					

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ocllapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Qty

Juneau Townhomes - Osage

		onounou, onoopt on	a vortioulo, una 2 0 0 00 pun
1-4: 2x4 SP 1650F 1.5E		9-10.	
2x6 SP 2400F 2.0E *Except*	BOT CHORD	Rigid ceiling directly a	pplied or 10-0-0 oc bracing,
18-20: 2x6 SPF No.2		6-0-0 oc bracing: 13-1	4.
2x4 SPF No.3 *Except*	WEBS	1 Row at midpt	5-19, 7-19, 9-14
9-16,9-15,9-14,11-13,11-14,10-14: 2x4 SPF No.2			
	1-4: 2x4 SP 1650F 1.5E 2x6 SP 2400F 2.0E *Except* 18-20: 2x6 SPF No.2 2x4 SPF No.3 *Except* 9-16,9-15,9-14,11-13,11-14,10-14: 2x4 SPF No.2	1-4: 2x4 SP 1650F 1.5E BOT CHORD 2x6 SP 2400F 2.0E *Except* BOT CHORD 18-20: 2x6 SPF No.2 2x4 SPF No.3 *Except* 9-16,9-15,9-14,11-13,11-14,10-14: 2x4 SPF No.2 WEBS	LA: 2x4 SP 1650F 1.5E 9-10. 2x6 SP 2400F 2.0E *Except* BOT CHORD Rigid ceiling directly a 6-0-0 oc bracing: 13-1 18-20: 2x6 SPF No.2 6-0-0 oc bracing: 13-1 2x4 SPF No.3 *Except* WEBS 1 Row at midpt 9-16,9-15,9-14,11-13,11-14,10-14: 2x4 SPF No.2 I Row at midpt

REACTIONS. (size) 2=0-3-8, 13=0-3-8 Max Horz 2=168(LC 93) Max Uplift 2=-251(LC 16), 13=-284(LC 17) Max Grav 2=2082(LC 72), 13=2158(LC 80)

Truss

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 2-3=-3704/432, 3-5=-3016/423, 5-6=-2421/421, 6-7=-2416/430, 7-8=-3191/464, TOP CHORD 8-9=-4081/546, 9-10=-2003/304, 10-11=-2315/319, 11-13=-2125/347 BOT CHORD 2-22=-437/3188, 21-22=-437/3188, 19-21=-251/2606, 17-19=-252/2791, 16-17=-392/3598, 15-16=-522/4360, 14-15=-525/4342 WEBS 3-22=0/475, 3-21=-914/214, 5-21=-37/714, 5-19=-1010/248, 7-19=-1309/277,

Truss Type

9-16=-1243/173, 9-15=-117/305, 9-14=-2826/339, 6-19=-240/1774, 11-14=-259/2216, 7-17=-78/1034, 8-17=-1252/221, 8-16=-76/1049, 10-14=-41/752

NOTES-

WEBS

Job

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior(1) 4-1-0 to 17-6-0, Exterior(2R) 17-6-0 to 22-6-4, Interior(1) 22-6-4 to 34-2-7, Exterior(2E) 34-2-7 to 37-11-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.

6) Provide adequate drainage to prevent water ponding.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=251, 13=284

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Except:

Job	Truss	Truss Type	Qty	Ply	Juneau Townhomes - Osage	
D010070					146739404	
P210272	A15	Roof Special Girder	2	1		
					Job Reference (optional)	
Premier Building Supply (Springhill, KS), Spring Hills, KS		KS - 66083,	8.510 s Jun 18 2021 MiTek Industries, Inc. Thu Jun 24 20:31:13 2021 P			
			AB0GCWo	OJpyMsoT	zILz3uah-teB8YObK7TbVLI79MogfVeqPsDbHrqRBTKQya4z2ysS	

- 11) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) Use Simpson Strong-Tie TJC37 (4 nail 90-150) or equivalent at 34-2-7 from the left end to connect truss(es) to front face of bottom chord, skewed 53.1 deg.to the right, sloping 0.0 deg. down.
- 14) Fill all nail holes where hanger is in contact with lumber.
- 15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 48 lb down and 89 lb up at 34-2-7 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- 16) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
- Vert: 1-6=-70, 6-9=-70, 9-10=-70, 10-11=-70, 11-12=-70, 2-13=-20 Concentrated Loads (lb)

Vert: 14=1(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Continuer or or of the accordance with the 2018 international Residential Code sections R502.11.1 and R602.10.2 and Continuer or or of the accordance with the 2018 international Residential Code sections R502.11.1 and R602.10.2 and Continuer or of the accordance with the 2018 international Residential Code sections R502.11.1 and R602.10.2 and Continuer or of the accordance with the 2018 international Residential Code sections R502.11.1 and R602.10.2 and Continuer or of the accordance with the 2018 international Residential Code sections R502.11.1 and R602.10.2 and Continuer or of the accordance with the 2018 international Residential Code sections R502.11.1 and R602.10.2 and Continuer or of the accordance with the 2018 international Residential Code sections R502.11.1 and R602.10.2 and Continuer or of the accordance with the 2018 international Residential Code sections R502.11.1 and R602.10.2 and Continuer or of the accordance with the 2018 international Residential Code sections R502.11.1 and R602.10.2 and R502.10.2 and R502.10.2 and R502.11.1 and R502.10.2 and R502.11.1 and R

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Juneau Townhomes - Osage	
P210272	A16	Poof Special	2	1	146739405	
F210272	AIO	Rooi Special	2	1	Job Reference (optional)	
Premier Building Supply (Springhill, KS), Spring		KS - 66083,	8.510 s Jun 18 2021 MiTek Industries, Inc. Thu Jun 24 20:31:16 2021			
	ID:DUjzAE	ID:DUjzAB0GCWoOJpyMsoTzILz3uah-IDsHAPdDQOz3CCrk1xDM7HSv9Qc22CWd9IfcAPz2ysP				

11) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord,

concurrent with live and dead loads.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=248, 13=267.

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

E

PE-2017018993

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

MiTek

Job	Truss	Truss Type	Qty	Ply	Juneau Townhomes - Osage	
P210272	A18	Roof Special	2	1		46739407
					Job Reference (optional)	
Premier Building Supply (Springhill, KS), Spring		KS - 66083,	8.510 s Jun 18 2021 MiTek Industries, Inc. Thu Jun 24 20:31:22 2021			Page 2
	ID:DUjzAB	ID:DUjzAB0GCWoOJpyMsoTzILz3uah-6NEYRTi_?EkDw7JuOBKmMYizurfKSvnWYD6wO3z2ysJ				

12) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord,

concurrent with live and dead loads.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Juneau Townhomes - Osage		
P210272	Δ10	Roof Special	2	1	146739408		
1210272	713		2		Job Reference (optional)		
Premier Building Supply (Springhill, KS), Sprin		KS - 66083,	8.510 s Jun 18 2021 MiTek Industries, Inc. Thu Jun 24 20:31:24 2021				
			ID:DUjzAB0GCWoOJpyMsoTzILz3uah-3mLJr8kEXr_xARTGVcNERznGYfHAwoFp?Xb1Txz2ysH				

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

12) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord,

concurrent with live and dead loads.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Continetiere one obstanzed and ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017
Job	Truss	Truss Type	Qty	Ply	Juneau Townhomes - Osage
					146739409
P210272	A20	Hip	2	1	
					Job Reference (optional)
Premier Building Supply (Sp	ringhill, KS), Spring Hills,	KS - 66083,	8	.510 s Jun	18 2021 MiTek Industries, Inc. Thu Jun 24 20:31:30 2021 Page 2

ID:DUjzAB0GCWoOJpyMsoTzILz3uah-twja6Co?7hk4uMwQrtTehE1Jc3S_KY4hNT2Lgbz2ysB

NOTES-

12) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord,

concurrent with live and dead loads.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Mitek* 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

MiTek

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty F		Juneau Townhomes - Osage	
D040070	400	Common Supported Cable			146739412	
P210272	A23	Common Supported Gable	2	1	Job Reference (optional)	
Premier Building Supply (Sp	ringhill, KS), Spring Hills,	KS - 66083,	8.510 s Jun 18 2021 MiTek Industries, Inc. Thu Jun 24 20:31:38 2021 Page 2			
		ID:DU	JjzAB0GC	NoOJpyM:	soTzILz3uah-eSCbnxu0E9lyrbXyJYdW0wMtyIClCIPsDj_my7z2ys3	

NOTES-

- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 24, 2, 35, 37, 38, 39, 40, 41, 42, 43, 44, 32, 31, 30, 29, 28, 27, 26 except (jt=lb) 25=132.
- 13) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

15) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Mitek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-4=-1021/146, 4-6=-263/216, 6-7=-335/190

 BOT CHORD
 2-8=-306/722, 7-8=-306/722

 WEBS
 4-8=0/515, 4-7=-887/259

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior(1) 4-1-0 to 13-6-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 7=193.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job)	Truss	Truss Type	Qty	Ply	Juneau Townhomes - Osage
						146739415
P2	10272	B3	MONOPITCH GIRDER	2	2	
					-	Job Reference (optional)
P	remier Building Supply (Sp	ringhill, KS), Spring Hills,	KS - 66083,	8	.510 s Jun	18 2021 MiTek Industries, Inc. Thu Jun 24 20:31:59 2021 Page 2

ID:DUjzAB0GCWoOJpyMsoTzILz3uah-XVzXC69BlcOzspe?2TVRMLkGumKMdhTy2UZNBPz2yrk

NOTES-

- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.
- Use Simpson Strong-Tie HUS26 (14-10d Girder, 6-10d Truss, Single Ply Girder) or equivalent spaced at 6-0-0 oc max. starting at 1-6-12 from the left end to 7-6-12 to connect truss(es) to back face of bottom chord.
- 13) Use Simpson Strong-Tie HUS28 (22-10d Girder, 4-10d Truss) or equivalent at 3-6-12 from the left end to connect truss(es) to back face of bottom chord.
- 14) Use Simpson Strong-Tie HUS26 (14-10d Girder, 6-10d Truss) or equivalent at 5-6-12 from the left end to connect truss(es) to back face of bottom chord.
- 15) Use Simpson Strong-Tie HUS28 (22-10d Girder, 4-10d Truss, Single Ply Girder) or equivalent at 9-6-12 from the left end to connect truss(es) to back face of bottom chord.
- 16) Fill all nail holes where hanger is in contact with lumber.
- 17) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1718 lb down and 235 lb up at 11-9-2 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (plf) Vert: 1-2=-70, 2-7=-70, 1-13=-20, 2-10=-20, 8-9=-20
 - Concentrated Loads (lb)
 - Vert: 12=-2298(B) 10=-1618(B) 15=-1942(B) 16=-1967(B) 18=-1618(B) 19=-1618(B)

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Juneau Townhomes - Osage
					146739416
P210272	B4	Monopitch Supported Gable	1	1	
					Job Reference (optional)
Premier Building Supply (Sp	ringhill, KS), Spring Hills,	KS - 66083,	8	.510 s Jun	18 2021 MiTek Industries, Inc. Thu Jun 24 20:32:01 2021 Page 2
		ווסיסו	izAB0GCV		oTzll z3uah-Tt5lcoARaDeh67oNAuXyRmphI76c5hfFWo2LFIz2yri

NOTES-

13) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Juneau Townhomes - Osage		
					146739417		
P210272	C1	Common Structural Gable	2	1			
					Job Reference (optional)		
Premier Building Supply (Springhill, KS), Sp		KS - 66083,	8	.510 s Jun	18 2021 MiTek Industries, Inc. Thu Jun 24 20:32:03 2021 Page 2		
		ID:DUjzAB	ID:DUjzAB0GCWoOJpyMsoTzILz3uah-PGC21UCiLquPLQxmHIZNWBv0QNhhZSZYz6XbKBz2yrg				

NOTES-

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

13) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.

Job	Truss	Truss Type	Qty	Ply	Juneau Townhomes - Osage
P210272	C2	ROOF SPECIAL GIRDER	2		146739418
. 2.02.2	02		-	3	Job Reference (optional)
Premier Building Supply (Sp	ringhill, KS). Spring Hills.	KS - 66083.	8	.510 s Jun	18 2021 MiTek Industries, Inc. Thu Jun 24 20:32:06 2021 Page 2

ID:DUjzAB0GCWoOJpyMsoTzILz3uah-qruBgVEaeIHzCugLyR748qXTtaeomta_f3mFxVz2yrd

NOTES-

- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=1164, 9=1075.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.
- 13) Use Simpson Strong-Tie HUS26 (14-10d Girder, 6-10d Truss) or equivalent spaced at 12-1-8 oc max. starting at 1-11-12 from the left end to 18-1-4 to connect truss(es) to back face of bottom chord.
- 14) Use Simpson Strong-Tie HUS28 (22-10d Girder, 4-10d Truss, Single Ply Girder) or equivalent spaced at 6-0-0 oc max. starting at 4-1-4 from the left end to 10-1-4 to connect truss(es) to back face of bottom chord.
- 15) Use Simpson Strong-Tie HUS26 (14-10d Girder, 6-10d Truss, Single Ply Girder) or equivalent spaced at 6-0-0 oc max. starting at 6-1-4 from the left end to 12-1-4 to connect truss(es) to back face of bottom chord.
- 16) Use Simpson Strong-Tie HUS26 (14-10d Girder, 4-10d Truss) or equivalent at 8-1-4 from the left end to connect truss(es) to back face of bottom chord.
- 17) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
 - Vert: 1-2=-70, 2-5=-70, 5-8=-70, 1-16=-20, 2-12=-20, 9-11=-20

Concentrated Loads (lb)

Vert: 16=-1782(B) 14=-1682(B) 20=-1594(B) 21=-1528(B) 24=-1828(B) 26=-1531(B) 28=-2177(B) 29=-2036(B) 31=-1810(B)

LUMBER-						BRACING-						
BCLL BCDL	10.0	Code IRC2018/TPI20	14	Matri	x-P						Weight: 6 lb	FT = 20%
TCDL	10.0	Rep Stress Incr	NO	WB	0.00	Horz(CT)	-0.00	3	>335 n/a	n/a		
Snow (Pf)	25.0	Lumber DOL 1	1.15	BC	0.31	Vert(CT)	-0.00	2	>999 >9999	240 180	IVIT20	197/144
TCLL (roof)	25.0			TC	0.04		0.00	(100)		240	MT20	407/444

```
LUMBER-
```

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x6 SPF No.2 TOP CHORD BOT CHORD Sheathed or 1-2-13 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-4-13, 4=Mechanical Max Horz 2=45(LC 16)

Max Uplift 3=-113(LC 22), 2=-92(LC 12)

Max Grav 3=17(LC 12), 2=586(LC 37), 4=362(LC 38)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 3=113.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

REACTIONS. (size) 3=Mechanical, 4=Mechanical, 2=0-5-13

Max Horz 2=45(LC 16)

Max Uplift 3=-28(LC 22), 2=-54(LC 12)

Max Grav 3=44(LC 23), 4=366(LC 38), 2=527(LC 37)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.

LUMBER-

TOP CHORD 2x4 SPF No.2 2x4 SPF No.2 BOT CHORD WEBS 2x4 SPF No.3 BRACING-TOP CHORD BOT CHORD

Sheathed or 2-10-11 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-4-13, 3=Mechanical, 4=Mechanical Max Horz 5=78(LC 13) Max Uplift 5=-59(LC 12), 3=-50(LC 16), 4=-3(LC 13) Max Grav 5=624(LC 37), 3=92(LC 23), 4=371(LC 38)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-362/236

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed ; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.
- 10) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

te USE. t, not vverall

> Mitek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

BOT CHORD 2x4 SP 2400F 2.0E WEBS 2x4 SPF No.3

REACTIONS. (size) 3=Mechanical, 2=0-3-8 Max Horz 2=117(LC 13) Max Uplift 3=-69(LC 16), 2=-103(LC 12) Max Grav 3=646(LC 38), 2=732(LC 37)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-4=0/417

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior(1) 4-1-0 to 6-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 6) will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3 except (jt=lb) 2=103.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.
- 11) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

June 25,2021

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.
- 11) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

Mitek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

Plate Offsets (X,Y)-- [2:0-2-0,0-1-12] LOADING (psf) SPACING-GRIP 2-0-0 CSL DEFL. in (loc) l/defl L/d PLATES TCLL (roof) 25.0 Plate Grip DOL 1.15 тс 0.43 Vert(LL) -0.00 n/r 120 MT20 197/144 Snow (Pf) 25.0 Lumber DOL 1.15 BC 0.25 Vert(CT) -0.01 n/r 90 TCDL 10.0 WB 0.11 Horz(CT) Rep Stress Incr NO 0.00 6 n/a n/a BCLL 0.0 Code IRC2018/TPI2014 Weight: 21 lb FT = 20% Matrix-R BCDL 10.0 BRACING-

TOP CHORD

BOT CHORD

Sheathed or 5-0-0 oc purlins. except end verticals.

Rigid ceiling directly applied or 6-0-0 oc bracing.

LUMBER-

TOP CHORD	2x4 SPF No.2
BOT CHORD	2x4 SPF No.2
WEBS	2x4 SPF No.3
OTHERS	2x4 SPF No.3

REACTIONS. All bearings 5-0-0.

(lb) -Max Horz 9=130(LC 13)

- Max Uplift All uplift 100 lb or less at joint(s) 9, 6, 7 except 8=-158(LC 13)
- Max Grav All reactions 250 lb or less at joint(s) except 9=491(LC 39), 6=416(LC 42), 7=550(LC 41), 8=441(LC 40)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 3-8=-165/334

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-11-0 to 4-1-0, Exterior(2N) 4-1-0 to 4-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.

- 6) Gable requires continuous bottom chord bearing.
- 7) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 6, 7 except
- (it=lb) 8=158.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.

		<u> </u>	<u>5-0-0</u> 5-0-0	
LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrNOCode IRC2018/TPI2014	CSI. TC 0.64 BC 0.85 WB 0.08 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) -0.12 4-5 >484 240 Vert(CT) -0.19 4-5 >296 180 Horz(CT) -0.00 4 n/a n/a	PLATES GRIP MT20 197/144 Weight: 24 lb FT = 20%

BRACING-

TOP CHORD

BOT CHORD

3x4 =

Sheathed or 5-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SP 1650F 1.5E WEBS 2x4 SPF No.3

REACTIONS. (size) 4=Mechanical, 5=0-3-8 Max Horz 5=130(LC 13) Max Uplift 4=-52(LC 16), 5=-84(LC 12) Max Grav 4=553(LC 38), 5=645(LC 37)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-5=-365/273 TOP CHORD

BOT CHORD 4-5=-277/168

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-11-0 to 4-1-0, Interior(1) 4-1-0 to 4-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

1.5x4 ||

- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.

All plates are 1.5x4 MT20 unless otherwise indicated.

7) Gable requires continuous bottom chord bearing.

8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

9) Gable studs spaced at 2-0-0 oc.

10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 9, 10, 11 except (jt=lb) 12=246.

This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and 13) referenced standard ANSI/TPI 1.

14) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TATE ANDREW THOMAS OHNSO PROPERTY PE-NUMBER PE-2017018993 E June 25,2021

OF MISSOL

Mitek* 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Juneau Townhomes - Osag	ge 146739431
P210272	HG2	GABLE	4	1	lab Deferre en (antianal)	10100101
Premier Building Supply (Sp	ringhill, KS), Spring Hills,	KS - 66083,	8	.510 s Jun	18 2021 MiTek Industries, In	nc. Thu Jun 24 20:32:21 2021 Page 1
			ID:DUjzAB0GCWo 11-10-6	oOJpyMso	TzILz3uah-uklspeQ_6MArVB	3JDL4ubF_e9rdvSnmaC6vuYy8z2yrO
		· · ·	11-10-6			
				3x4		Scale = 1:62.0
		Ī			I	
			6			
		10.82 12	5		-5-0	
					ø	
		9 8	15			
		10	R III			
		3		8		
				22	မှ	
		2		9 3x4	r II <mark>6</mark>	
			21			
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10.8	32 12	
		16 14 17 13 18 3x4 //	12 19 11 10 ²⁰ 3x4 //			
		344 1/				
		7-1-7	<u> </u>	-6 5		
LOADING (psf)	SPACING-	2-0-0 <b>CSI</b>	DEFI	in (l	oc) l/defl l/d	PLATES GRIP
TCLL (roof) 25.0 Snow (Pf) 25.0	Plate Grip DOL	1.15 TC 0.38	Vert(LL)	n/a	- n/a 999	MT20 197/144
TCDL 10.0	Rep Stress Incr	NO WB 0.20	Horz(CT)	n/a -0.00	- n/a 999 8 n/a n/a	
BCDL 10.0	Code IRC2018/TPI	2014 Matrix-SH				Weight: 64 lb FT = 20%
			BRACING-	Shootha		nt and vorticals
BOT CHORD 2x4 SPF N	lo.2		BOT CHORD	Rigid ce	iling directly applied or 6-0-	or oc bracing.
WEBS 2x4 SPF N OTHERS 2x4 SPF N	lo.3 lo.3					
REACTIONS All bearing	ngs 11-10-6					
(lb) - Max Horz	1=349(LC 13)				07/1 0	
Μαχ Οριπ	16), 10=-102(LC 16), 12=-10	07(LC 16), 13=-106(LC 16), 14=-102	(LC 15), 11=-119(LC 2(LC 16)	40), 9=-1	07(LC	
Max Grav	All reactions 250 lb or less 48), 10=522(LC 47), 12=526	at joint(s) except 1=399(LC 42), 8=4 6(LC 45), 13=533(LC 44), 14=524(L0	419(LC 49), 11=359(L C 43)	.C 46), 9=	540(LC	
FORCES (Ib) - Max Con	mn /Max Ten - All forces 25	(lb) or less except when shown	,			
TOP CHORD 1-2=-672	2/476, 2-3=-579/418, 3-4=-47	0/349, 4-5=-362/282, 5-6=-260/221				
WEBS 6-9=-267	/1/2					
NOTES- 1) Wind: ASCE 7-16: Vult=	115mph (3-second gust) Vas	sd=91mph: TCDL=6.0psf: BCDL=6.0	)psf: h=35ft: Ke=0.96	: Cat. II: E	xp C:	
Enclosed; MWFRS (env	velope) gable end zone and C	C-C Exterior(2E) 0-4-9 to 5-4-9, Inter	ior(1) 5-4-9 to 11-8-10	) zone; ca	antilever left	
DOL=1.60 plate grip DC	DL=1.60			iown, Lun		
<ol> <li>TCLL: ASCE 7-16; Pr=2 Rough Cat C; Fully Exp</li> </ol>	25.0 psf (roof LL: Lum DOL=1 .; Ce=0.9; Cs=1.00; Ct=1.10	1.15 Plate DOL=1.15); Pf=25.0 psf (l	um DOL=1.15 Plate	DOL=1.15	5); Is=1.0;	
<ol> <li>Unbalanced snow loads</li> <li>All plates are 1 5x4 MT2</li> </ol>	have been considered for the con	is design. I				
5) Gable requires continuo	us bottom chord bearing.					A Marca
7) * This truss has been de	esigned for a live load of 20.0	psf on the bottom chord in all areas	where a rectangle 3-6	6-0 tall by	2-0-0 wide	JE OT MISSO
<ul><li>will fit between the botto</li><li>8) Provide mechanical con</li></ul>	om chord and any other mem nection (by others) of truss to	bers. b bearing plate capable of withstand	ing 131 lb uplift at joir	nt 1, 147 ll	ouplift at	ANDREW E
joint 8, 119 lb uplift at jo	int 11, 107 lb uplift at joint 9,	102 lb uplift at joint 10, 107 lb uplift	at joint 12, 106 lb uplit	t at joint 1	3 and 102 lb	
9) Beveled plate or shim re	equired to provide full bearing	surface with truss chord at joint(s)	3, 9, 10.			momente
referenced standard A	NSI/TPI 1.	International Residential Code Secti	ons R502.11.1 and R	802.10.2	and AFR	NUMBER
<ol> <li>This truss has been de panel points along the</li> </ol>	esigned for a moving concent Bottom Chord, concurrent wi	rated load of 250.0lb live and 100.0l ith live and dead loads.	b dead located at all r	nid panel	s and at all	PE-2017018993
	•				Y	SSIONAL ENGINE
						ALL STALL
						June 25,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 16023 Swingley Ridge Rd Chesterfield, MO 63017



			2-1-	4		11-5	-12						
LOADING (ps TCLL (roof) Snow (Pf) TCDL BCLL	f) 25.0 25.0 10.0 0.0 *	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code, IRC2018/TI	2-0-0 1.15 1.15 NO 2/2014	CSI. TC BC WB Matrix	0.62 0.30 0.14 x-SH		DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 87 lb	<b>GRIP</b> 197/144 FT = 20%
BCDL	10.0		12014	Iviatio								Weight: 07 lb	11 = 2070
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.2					BRA TOP BOT	<b>CING-</b> CHORD CHORD	2-0-0 Rigid 10-0-0	oc purlii ceiling c ) oc bra	ns (6-0-0 lirectly ap cing: 15-	max.): 1-8, oplied or 6-0- 16,14-15.	except end verticals. 0 oc bracing, Except	÷

WEBS

1 Row at midpt

### WFBS

2x4 SPF No.3 OTHERS

REACTIONS. All bearings 14-0-15.

(lb) - Max Horz 16=-296(LC 14)

Max Uplift All uplift 100 lb or less at joint(s) 16, 13, 12, 11, 10, 9 except 8=-113(LC 13), 14=-233(LC 14), 15=-119(LC 13)

Max Grav All reactions 250 lb or less at joint(s) except 16=420(LC 44), 8=409(LC 52), 14=357(LC 46), 15=559(LC 36), 13=528(LC 47), 12=531(LC 48), 11=530(LC 49), 10=529(LC 50), 9=536(LC 51)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

BOT CHORD	13-14=-270/255, 12-13=-267/250, 11-12=-267/250, 10-11=-267/250, 9-10=-268/250,
	8-9=-265/242

### NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are 1.5x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 13, 12, 11, 10, 9 except (jt=lb) 8=113, 14=233, 15=119.
- 9) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 8, 13, 12, 11, 10, 9.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



1-16, 2-15, 3-13

June 25,2021





LOADING (psf)           TCLL (roof)         25.0           Snow (Pf)         25.0           TCDL         10.0           PCL         0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	<b>CSI.</b> TC 0.11 BC 0.24 WB 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 -0.00 -0.00	(loc) 2-4 2-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	<b>GRIP</b> 197/144
BCDL 10.0	Code IRC2018/TPI2014	Matrix-P						Weight: 5 lb	FT = 20%
LUMBER-			BRACING-						

TOP CHORD

BOT CHORD

Sheathed or 1-5-4 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

# LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2

REACTIONS.

(size) 3=Mechanical, 2=0-3-8, 4=Mechanical Max Horz 2=48(LC 16)

Max Uplift 3=-26(LC 16), 2=-31(LC 16) Max Grav 3=37(LC 23), 2=501(LC 37), 4=364(LC 38)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

# NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 6) will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.







WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Mitek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Juneau Townhomes - Osage
P210272	JA2	Half Hip Girder	4	1	146739434
. 2.02.12	0,12				Job Reference (optional)

Premier Building Supply (Springhill, KS), Spring Hills, KS - 66083,

8.510 s Jun 18 2021 MiTek Industries, Inc. Thu Jun 24 20:32:26 2021 Page 2 ID:DUjzAB0GCWoOJpyMsoTzILz3uah-Eh5IsLU7xvo8czCB7eUmy2M1oeeES37xGBcJeLz2yrJ

# LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-70, 3-4=-70, 2-5=-20 Concentrated Loads (lb)

Vert: 3=34(B)





WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Mitek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017



LOADING (psf) TCLL (roof) 2 Snow (Pf) 2 TCDL 1	25.0 25.0 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO	CSI. TC BC WB	0.33 0.68 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.08 0.02	(loc) 4-5 4-5 3	l/defl >886 >567 n/a	L/d 240 180 n/a	PLATES MT20	<b>GRIP</b> 197/144
BCLL BCDL 1	0.0 * 10.0	Code IRC2018/TP	12014	Matri	x-R	()		-			Weight: 12 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

Sheathed or 3-10-0 oc purlins. except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

## LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.3

REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical

Max Horz 5=124(LC 16)

Max Uplift 5=-19(LC 16), 3=-80(LC 16)

Max Grav 5=610(LC 37), 3=178(LC 23), 4=391(LC 38)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-382/140

# NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.







June 25,2021





# THOMAS JOHNSON NUMBER PE-2017018993 June 25,2021

NiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017




	1							
LOADING (psf)           TCLL (roof)         25.0           Snow (Pf)         25.0           TCDL         10.0           BCLL         0.0           BCDL         10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.50 BC 0.60 WB 0.19 Matrix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (lo n/a n/a -0.00	oc) l/defl - n/a - n/a 5 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 40 lb	<b>GRIP</b> 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF No. BOT CHORD 2x4 SPF No. WEBS 2x4 SPF No. OTHERS 2x4 SPF No.	2 2 3 3		BRACING- TOP CHORD BOT CHORD	Sheatheo Rigid ceil	d or 6-0-0 oc ling directly a	purlins, exc pplied or 10-	ept end verticals. -0-0 oc bracing.	
<b>EACTIONS.</b> All bearings 10-8-7. (lb) - Max Horz 1=277(LC 13) Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 6=-164(LC 16), 7=-126(LC 16) Max Grav All reactions 250 lb or less at joint(s) except 1=412(LC 38), 5=490(LC 41), 6=748(LC 40), 7=657(LC 39)								
FORCES.       (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.         TOP CHORD       1-2=-445/282, 2-3=-342/236         WEBS       3-6=-473/275, 2-7=-271/187								
<ul> <li>NOTES-</li> <li>1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior(1) 5-5-12 to 10-6-11 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces &amp; MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60</li> <li>2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp; Ce=0.9; Cs=1.00; Ct=1.10</li> <li>3) Unbalanced snow loads have been considered for this design.</li> <li>4) Gable requires continuous bottom chord live load nonconcurrent with any other live loads.</li> <li>6) * This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.</li> <li>6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.</li> <li>7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 6-164, 7-126.</li> <li>8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.</li> <li>9) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.</li> </ul>								

D.2 and anels and at all ANDREW THOMAS JOHNSON NUMBER PE-2017018993 SONAL ENGT June 25,2021

> 16023 Swingley Ridge Rd Chesterfield, MO 63017



LOADING         (psf)           TCLL (roof)         25.0           Snow (Pf)         25.0           TCDL         10.0           DOLL         0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	<b>CSI.</b> TC 0.43 BC 0.76 WB 0.15	<b>DEFL.</b> Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	<b>GRIP</b> 197/144
BCDL 0.0 ^A	Code IRC2018/TPI2014	Matrix-SH						Weight: 32 lb	FT = 20%
LUMBER-			BRACING-						

BOT CHORD

Sheathed or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

# TOP CHORD

2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.3 OTHERS 2x4 SPF No.3

REACTIONS. (size) 1=9-2-7, 4=9-2-7, 5=9-2-7 Max Horz 1=236(LC 13)

Max Uplift 4=-48(LC 13), 5=-197(LC 16)

Max Grav 1=520(LC 37), 4=472(LC 39), 5=829(LC 38)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-357/244 WEBS 2-5=-514/311

## NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-12 to 5-2-7, Interior(1) 5-2-7 to 9-0-11 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 5=197.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.







# 1.5x4 || 3 8.00 12 1.5x4 || 2 6 0-0-4 3x4 💋 8 5 9 4 1.5x4 || 1.5x4 ||

									-			
LOADING (psf) TCLL (roof) Snow (Pf) TCDL BCLL	25.0 25.0 10.0	SPACING-       2-0         Plate Grip DOL       1.         Lumber DOL       1.         Rep Stress Incr       N	0-0 15 15 NO	<b>CSI.</b> TC BC WB	0.36 0.61 0.12	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	<b>GRIP</b> 197/144
BCDL	10.0	Code IRC2018/TPI201	4	Matrix	(-P						Weight: 26 lb	FT = 20%
LUMBER-			·			BRACING-						

TOP CHORD

BOT CHORD

Sheathed or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

## LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.3 OTHERS 2x4 SPF No.3

REACTIONS. (size) 1=7-8-1, 4=7-8-1, 5=7-8-1

Max Horz 1=194(LC 13) Max Uplift 1=-10(LC 12), 4=-42(LC 13), 5=-163(LC 16)

Max Grav 1=460(LC 37), 4=479(LC 39), 5=748(LC 38)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-333/223 WEBS 2-5=-478/292

# NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior(1) 5-5-12 to 7-6-11 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4 except (jt=lb) 5=163.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.



Scale = 1:32.3

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017



2

8

						ł			
LOADING (psf)           TCLL (roof)         25.0           Snow (Pf)         25.0           TCDL         10.0           BCDL         0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.25 BC 0.46 WB 0.09 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	<b>GRIP</b> 197/144 FT = 20%
LUMBER-			BRACING-						

TOP CHORD

BOT CHORD

5

1.5x4 ||

9

 $\times$ 

4

1.5x4 ||

Sheathed or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

#### LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.3 OTHERS 2x4 SPF No.3

REACTIONS. (size) 1=6-2-1, 4=6-2-1, 5=6-2-1

Max Horz 1=153(LC 13) Max Uplift 1=-9(LC 12), 4=-34(LC 13), 5=-129(LC 16)

Max Grav 1=434(LC 37), 4=453(LC 39), 5=664(LC 38)

0-0-4

3x4 🥢

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-279/187 WEBS 2-5=-404/249

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior(1) 5-5-12 to 6-0-11 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;
- Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4 except (jt=lb) 5=129.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.







LOADING (psf) TCLL (roof) Snow (Pf) TCDL	25.0 25.0 10.0	SPACING- 2- Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr	-0-0 1.15 1.15 NO	CSI. TC BC WB	0.14 0.32 0.06	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	<b>GRIP</b> 197/144
BCDL	10.0	Code IRC2018/TPI20	14	Matri	x-P						Weight: 15 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

Sheathed or 4-8-7 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

# LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.3 OTHERS 2x4 SPF No.3

REACTIONS.

(size) 1=4-8-1, 4=4-8-1, 5=4-8-1

Max Horz 1=112(LC 13) Max Uplift 1=-7(LC 12), 4=-25(LC 13), 5=-94(LC 16)

Max Grav 1=409(LC 37), 4=428(LC 39), 5=580(LC 38)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 2-5=-288/192

## NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4, 5.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.
- 9) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.



MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017



LOADING         (psf)           TCLL (roof)         25.0           Snow (Pf)         25.0           TCDL         10.0           BCLL         0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC/2018/TPI2014	CSI. TC 0.20 BC 0.50 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a - 0.00 3	l/defl n/a n/a 8 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 9 lb	<b>GRIP</b> 197/144 FT = 20%
BCDL 10.0	Code IRC2018/TPI2014	Matrix-P					Weight: 9 lb	FT = 20%
LUMBER-			BRACING-					

BOT CHORD

Sheathed or 3-2-7 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2

WEBS 2x4 SPF No.3 REACTIONS. (size) 1=3-2-'

DNS. (size) 1=3-2-1, 3=3-2-1 Max Horz 1=71(LC 13) Max Uplift 1=-11(LC 16), 3=-36(LC 16) Max Grav 1=466(LC 36), 3=466(LC 37)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

## NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.60
- right exposed; C-C for members and forces & MVFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.







ł LOADING (psf) SPACING-PLATES GRIP CSL DEFL. 2-0-0 in (loc) I/defl I/d TCLL (roof) 25.0 197/144 Plate Grip DOL 1.15 тс 0.03 Vert(LL) n/a n/a 999 MT20 Snow (Pf) 25.0 Lumber DOL 1.15 BC 0.18 Vert(CT) n/a n/a 999 TCDL 10.0 Rep Stress Incr NO WB 0.00 Horz(CT) 0.00 3 n/a n/a BCLL 0.0 Code IRC2018/TPI2014 Matrix-P Weight: 4 lb FT = 20% BCDL 10.0 LUMBER-BRACING-TOP CHORD Sheathed or 1-8-7 oc purlins, except end verticals.

BOT CHORD

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.3

REACTIONS. (size) 1=1-8-1, 3=1-8-1 Max Horz 1=30(LC 13) Max Uplift 1=-5(LC 16), 3=-15(LC 16) Max Grav 1=398(LC 36), 3=398(LC 37)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

## NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.60
- right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.



Rigid ceiling directly applied or 10-0-0 oc bracing.





1.5x4 ||

3x4 ||

1.5x4 ||

			1									
LOADING (psf TCLL (roof) Snow (Pf) TCDL BCLL BCDL	) 25.0 25.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TF	2-0-0 1.15 1.15 NO Pl2014	<b>CSI.</b> TC BC WB Matri	0.51 0.60 0.19 x-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 40 lb	<b>GRIP</b> 197/144 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS OTHERS	2x4 SPF No. 2x4 SPF No. 2x4 SPF No. 2x4 SPF No.	2 2 3 3				BRACING- TOP CHORD BOT CHORD	Sheat Rigid	thed or 6 ceiling o	5-0-0 oc p directly ap	ourlins, exce oplied or 10-	ept end verticals. 0-0 oc bracing.	
REACTIONS. (lb) -	EACTIONS. All bearings 10-8-15. (Ib) - Max Horz 1=278(LC 13) Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 6=-164(LC 16), 7=-127(LC 16) Max Grav All reactions 250 lb or less at joint(s) except 1=414(LC 38), 5=490(LC 41), 6=748(LC 40), 7=658(LC 39)											
FORCES. (Ib) TOP CHORD WEBS	<b>CORCES.</b> (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown.         COP CHORD       1-2=-445/282, 2-3=-342/236         VEBS       3-6=-473/274, 2-7=-272/187											
<ul> <li>NOTES-</li> <li>1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior(1) 5-5-12 to 10-7-3 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces &amp; MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60</li> <li>2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp; Cs=0.9; Cs=1.00; Ct=1.10</li> <li>3) Unbalanced snow loads have been considered for this design.</li> <li>4) Gable requires continuous bottom chord bearing.</li> <li>5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.</li> <li>6) "This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.</li> <li>7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 6=164, 7=127.</li> <li>8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANS/TPI 1.</li> <li>9) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.</li> </ul>												

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



June 25,2021

PE-20170189

SIONAL E



LOADING (ps TCLL (roof) Snow (Pf) TCDL BCLL BCDL	sf) 25.0 25.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/T	2-0-0 1.15 1.15 NO PI2014	CSI. TC BC WB Matri	0.43 0.77 0.15 x-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 32 lb	<b>GRIP</b> 197/144 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS OTHERS	2x4 SPF No. 2x4 SPF No. 2x4 SPF No. 2x4 SPF No.	2 2 3 3				BRACING- TOP CHORD BOT CHORD	Sheat Rigid	hed or ceiling o	6-0-0 oc directly a	ourlins, exc oplied or 6-0	ept end verticals. -0 oc bracing.	

#### REACTIONS. (size) 1=9-2-15, 4=9-2-15, 5=9-2-15 Max Horz 1=237(LC 13) Max Uplift 4=-48(LC 13), 5=-198(LC 16)

Max Grav 1=522(LC 37), 4=471(LC 39), 5=832(LC 38)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-358/245 WEBS 2-5=-516/311

NOTE	ES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-12 to 5-2-15, Interior(1) 5-2-15 to 9-1-3 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

ł

2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;

Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 5 = 198

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.



MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017





Scale = 1:32.5

LOADING (psf)           TCLL (roof)         25.0           Snow (Pf)         25.0           TCDL         10.0           PCLL         0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	CSI. TC 0.36 BC 0.61 WB 0.12	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	<b>GRIP</b> 197/144
BCDL 10.0	Code IRC2018/TPI2014	Matrix-P						Weight: 26 lb	FT = 20%
LUMBER-			BRACING-						

TOP CHORD

BOT CHORD

Sheathed or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

## LUMBER

TOP CHORD	2x4 SPF No.2
BOT CHORD	2x4 SPF No.2
WEBS	2x4 SPF No.3
OTHERS	2x4 SPF No.3

REACTIONS. (size) 1=7-8-9, 4=7-8-9, 5=7-8-9

Max Horz 1=196(LC 13) Max Uplift 1=-10(LC 12), 4=-43(LC 13), 5=-164(LC 16) Max Grav 1=461(LC 37), 4=479(LC 39), 5=751(LC 38)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-334/224 WEBS 2-5=-480/293

•	•	_	-	-		

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior(1) 5-5-12 to 7-7-3 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;
- Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4 except (jt=lb) 5=164.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.







1.5x4 ||

1.5x4 ||

Sheathed or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

LOADING (psf TCLL (roof) Snow (Pf) TCDL	) 25.0 25.0 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	CSI. TC 0.25 BC 0.47 WB 0.09	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	<b>GRIP</b> 197/144
BCDL	10.0	Code IRC2018/TPI2014	Matrix-P						Weight: 21 lb	FT = 20%
LUMBER-				BRACING-					·	

TOP CHORD

BOT CHORD

# LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.3 OTHERS 2x4 SPF No.3

REACTIONS. (size) 1=6-2-9, 4=6-2-9, 5=6-2-9

Max Horz 1=154(LC 13)

Max Uplift 1=-9(LC 12), 4=-34(LC 13), 5=-130(LC 16) Max Grav 1=435(LC 37), 4=454(LC 39), 5=666(LC 38)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-281/188 WEBS 2-5=-407/250

- NOTES-1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior(1) 5-5-12 to 6-1-3 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0;
- Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide
- will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4 except (jt=lb) 5=130.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.



MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017



LOADING (psf) TCLL (roof) 25.0 Snow (Pf) 25.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	<b>CSI.</b> TC 0.14 BC 0.33	DEFL. Vert(LL) Vert(CT)	in (loc) n/a - n/a -	l/defl n/a n/a	L/d 999 999	PLATES MT20	<b>GRIP</b> 197/144
ICDL         I0.0           BCLL         0.0 *           BCDL         10.0	Rep Stress Incr NO Code IRC2018/TPI2014	WB 0.07 Matrix-P	Horz(CT)	0.00 4	n/a	n/a	Weight: 15 lb	FT = 20%
LUMBER-			BRACING-					

BOT CHORD

Sheathed or 4-8-15 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

# LUMBER-

TOP CHORD 2x4 SPF No.2 2x4 SPF No.2 BOT CHORD WEBS 2x4 SPF No.3 OTHERS 2x4 SPF No.3

REACTIONS. (size) 1=4-8-9, 4=4-8-9, 5=4-8-9

Max Horz 1=113(LC 13)

Max Uplift 1=-7(LC 12), 4=-25(LC 13), 5=-95(LC 16)

Max Grav 1=410(LC 37), 4=429(LC 39), 5=582(LC 38)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. WEBS 2-5=-291/193

## NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4, 5.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.
- 9) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.



MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017



LOADING (psf)           TCLL (roof)         25.0           Snow (Pf)         25.0           TCDL         10.0           BCLL         0.0 *           BCDI         10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.21 BC 0.51 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (lo n/a n/a 0.00	oc) l/defl - n/a - n/a 3 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 9 lb	<b>GRIP</b> 197/144 FT = 20%
LUMBER-			BRACING-					

BOT CHORD

Sheathed or 3-2-15 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.3

REACTIONS. (size) 1=3-2-9, 3=3-2-9 Max Horz 1=72(LC 13) Max Uplift 1=-11(LC 16), 3=-36(LC 16) Max Grav 1=468(LC 36), 3=468(LC 37)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

#### NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.60
- right exposed; C-C for members and forces & MVFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.







LOADING (psf TCLL (roof) Snow (Pf) TCDL	) 25.0 25.0 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO	CSI. TC BC WB	0.03 0.19 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	<b>GRIP</b> 197/144
BCLL BCDL	0.0 ^ 10.0	Code IRC2018/TF	912014	Matri	x-P						Weight: 4 lb	FT = 20%
LUMBER.						BRACING.						

BOT CHORD

Sheathed or 1-8-15 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2

WEBS 2x4 SPF No.2 WEBS 2x4 SPF No.3

REACTIONS. (size) 1=1-8-9, 3=1-8-9 Max Horz 1=31(LC 13) Max Uplift 1=-5(LC 16), 3=-16(LC 16) Max Grav 1=400(LC 36), 3=400(LC 37)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

## NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.60
- right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.







								·				
LOADING (pst TCLL (roof) Snow (Pf) TCDL BCLL BCDL	f) 25.0 25.0 10.0 0.0 * 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TF	2-0-0 1.15 1.15 NO Pl2014	CSI. TC BC WB Matri	0.44 0.64 0.10 x-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 -0.01 -0.00	(loc) 3-4 3-4 5	l/defl n/r n/r n/a	L/d 120 90 n/a	PLATES MT20 Weight: 29 lb	<b>GRIP</b> 197/144 FT = 20%
LUMBER- TOP CHORD BOT CHORD WEBS OTHERS	2x4 SPF No.2 2x4 SPF No.2 2x4 SPF No.3 2x4 SPF No.3	2		-		BRACING- TOP CHORD BOT CHORD	Shea Rigid	thed or ceiling of	6-0-0 oc directly a	purlins, exc pplied or 10	ept end verticals. -0-0 oc bracing.	

REACTIONS. (size) 1=8-0-1, 5=8-0-1, 6=8-0-1 Max Horz 1=240(LC 13)

Max Uplift 1=-14(LC 12), 5=-120(LC 13), 6=-155(LC 16) Max Grav 1=471(LC 38), 5=608(LC 40), 6=738(LC 39)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-392/249, 3-5=-391/240

WEBS 2-6=-392/269

## NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior(1) 5-5-12 to 9-3-14 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs
- non-concurrent with other live loads.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 5=120, 6=155.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.







BOT CHORD

Sheathed or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

## TOP CHORD

2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.3 OTHERS 2x4 SPF No.3

REACTIONS. (size) 1=6-6-1, 5=6-6-1, 6=6-6-1 Max Horz 1=199(LC 13)

Max Uplift 1=-12(LC 12), 5=-115(LC 13), 6=-116(LC 16) Max Grav 1=447(LC 38), 5=589(LC 40), 6=647(LC 39)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-347/216, 3-5=-365/234

WEBS 2-6=-315/228

#### NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior(1) 5-5-12 to 7-9-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs
- non-concurrent with other live loads.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 5=115, 6=116.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.



MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017



LOADING (psf)           TCLL (roof)         25.0           Snow (Pf)         25.0           TCDL         10.0           DOUL         20.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	CSI. TC 0.29 BC 0.35 WB 0.05	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (I -0.02 -0.02 0.00	loc) l/def 4 n/ 3-4 n/ 5 n/a	L/d 120 90 n/a	PLATES MT20	<b>GRIP</b> 197/144
BCLL 0.0 * BCDL 10.0	Code IRC2018/TPI2014	Matrix-P					Weight: 18 lb	FT = 20%
LUMBER-			BRACING-					

BOT CHORD

l

Sheathed or 5-0-7 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

#### LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.3 OTHERS 2x4 SPF No.3

REACTIONS. (size) 1=5-0-1, 5=5-0-1, 6=5-0-1

Max Horz 1=158(LC 13)

Max Uplift 1=-10(LC 12), 5=-112(LC 13), 6=-75(LC 16) Max Grav 1=424(LC 38), 5=572(LC 40), 6=551(LC 39)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-286/174, 3-5=-342/226

## NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-5-12 to 5-5-12, Interior(1) 5-5-12 to 6-3-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 6 except (jt=lb) 5=112.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.



June 25,2021





LOADING (psf TCLL (roof) Snow (Pf)	) 25.0 25.0	SPACING- 2-0-0 Plate Grip DOL 1.15	<b>CSI.</b> TC 0.3	.30 Vert(LL	in ) -0.01	(loc) 3	l/defl n/r	L/d 120	PLATES MT20	<b>GRIP</b> 197/144
TCDL BCLL BCDL	10.0 0.0 * 10.0	Rep Stress Incr NO Code IRC2018/TPI2014	WB 0. Matrix-P	.00 Horz(C	) 0.00 T) 0.00	4	n/a	n/a	Weight: 12 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

Sheathed or 3-6-7 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

## LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.3

REACTIONS. (size) 1=3-6-1, 4=3-6-1 Max Horz 1=116(LC 13) Max Uplift 4=-113(LC 16)

Max Holz 1=116(LC 13) Max Uplift 4=-113(LC 16) Max Grav 1=456(LC 37), 4=606(LC 38)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-370/280

## NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 4=113.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEX REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see MISUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017



LOADING (psf) TCLL (roof) Snow (Pf) TCDL	25.0 25.0 10.0	<b>SPACING-</b> Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO	CSI. TC BC WB	0.27 0.24 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 3 3 4	l/defl n/r n/r n/a	L/d 120 90 n/a	PLATES MT20	<b>GRIP</b> 197/144
BCDL	10.0	Code IRC2018/TPI	2014	Matri	x-P						Weight: 7 lb	FT = 20%
LUMBER-						BRACING-						

BOT CHORD

Sheathed or 2-0-7 oc purlins, except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

## LUMBER-

TOP CHORD 2x4 SPF No.2 2x4 SPF No.2 BOT CHORD WEBS 2x4 SPF No.3

REACTIONS. (size) 1=2-0-1, 4=2-0-1 Max Horz 1=70(LC 17) Max Uplift 1=-60(LC 22), 4=-88(LC 16) Max Grav 1=362(LC 37), 4=565(LC 38)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-274/301

## NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=35ft; Ke=0.96; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=25.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 25.0 psf on overhangs non-concurrent with other live loads.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) This truss has been designed for a moving concentrated load of 250.0lb live and 100.0lb dead located at all mid panels and at all panel points along the Bottom Chord, concurrent with live and dead loads.



MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

