

Structural Calculations

<u>Client:</u> Wingstop Restaurants, Inc

## Project: Wingstop Restaurant 1041 NE Sam Walton Lane

Lee's Summit, MO 64086

Project # WIL-MO-04-21

Date: June 16, 2021



## ATC Hazards by Location

#### **Search Information**

| Address:     | 1041 NE Sam Walton Lane Lee's Summit, M<br>64086 |
|--------------|--------------------------------------------------|
| Coordinates: | 38.9312921, -94.36108949999999                   |
| Elevation:   | 993 ft                                           |
| Timestamp:   | 2021-06-08T18:26:54.111Z                         |
| Hazard Type: | Wind                                             |



#### ASCE 7-16

**ASCE 7-10** 

#### **ASCE 7-05**

| MRI 10-Year             | mph | MRI 10-Year          | 76 mph  | ASCE 7-05 Wind Speed | <br>90 mph |
|-------------------------|-----|----------------------|---------|----------------------|------------|
| MRI 25-Year             | mph | MRI 25-Year          | 84 mph  |                      |            |
| MRI 50-Year 88 r        | mph | MRI 50-Year          | 90 mph  |                      |            |
| MRI 100-Year 94 r       | mph | MRI 100-Year         | 96 mph  |                      |            |
| Risk Category I 103 r   | mph | Risk Category I      | 105 mph |                      |            |
| Risk Category II 109 r  | mph | Risk Category II     | 115 mph |                      |            |
| Risk Category III 117 r | mph | Risk Category III-IV | 120 mph |                      |            |
| Risk Category IV 122 r  | mph |                      |         |                      |            |

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

#### Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer. Per ASCE 7, islands and coastal areas outside the last contour should use the last wind speed contour of the coastal area – in some cases, this website will extrapolate past the last wind speed contour and therefore, provide a wind speed that is slightly higher. NOTE: For queries near wind-borne debris region boundaries, the resulting determination is sensitive to rounding which may affect whether or not it is considered to be within a wind-borne debris region.

Mountainous terrain, gorges, ocean promontories, and special wind regions shall be examined for unusual wind conditions.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the

## ATC Hazards by Location

#### Search Information 350 Unity Village Address: 1041 NE Sam Walton Lane Lee's Summit, MO Sair 993 ft East Hospital 64086 ecue **Coordinates:** 38.9312921, -94.36108949999999 nmi **Elevation:** 993 ft Timestamp: 2021-06-08T18:28:00.410Z Snow Hazard Type: Lee's Summit Google RMap data ©2021 **ASCE 7-16 ASCE 7-10 ASCE 7-05** Ground Snow Load 20 lb/sqft Ground Snow Load 20 lb/sqft Ground Snow Load 20 lb/sqft

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

#### Disclaimer

Hazard loads are interpolated from data provided in ASCE 7 and rounded up to the nearest whole integer.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

## ATC Hazards by Location

#### **Search Information**

| Address:               | 1041 NE Sam Walton Lane Lee's Summit, MO<br>64086 |
|------------------------|---------------------------------------------------|
| Coordinates:           | 38.9312921, -94.36108949999999                    |
| Elevation:             | 993 ft                                            |
| Timestamp:             | 2021-06-08T18:28:40.827Z                          |
| Hazard Type:           | Seismic                                           |
| Reference<br>Document: | ASCE7-16                                          |
| Risk Category:         | П                                                 |

D-default

**MCER Horizontal Response Spectrum** 



#### Design Horizontal Response Spectrum





#### **Basic Parameters**

Site Class:

| Name            | Value | Description                                  |
|-----------------|-------|----------------------------------------------|
| SS              | 0.1   | MCE <sub>R</sub> ground motion (period=0.2s) |
| S <sub>1</sub>  | 0.068 | MCE <sub>R</sub> ground motion (period=1.0s) |
| S <sub>MS</sub> | 0.16  | Site-modified spectral acceleration value    |
| S <sub>M1</sub> | 0.164 | Site-modified spectral acceleration value    |
| S <sub>DS</sub> | 0.106 | Numeric seismic design value at 0.2s SA      |
| S <sub>D1</sub> | 0.109 | Numeric seismic design value at 1.0s SA      |

#### Additional Information

| Name | Value | Description                       |
|------|-------|-----------------------------------|
| SDC  | В     | Seismic design category           |
| Fa   | 1.6   | Site amplification factor at 0.2s |
| Fv   | 2.4   | Site amplification factor at 1.0s |

| CR <sub>S</sub>  | 0.927 | Coefficient of risk (0.2s)                                                               |
|------------------|-------|------------------------------------------------------------------------------------------|
| CR <sub>1</sub>  | 0.876 | Coefficient of risk (1.0s)                                                               |
| PGA              | 0.047 | MCE <sub>G</sub> peak ground acceleration                                                |
| F <sub>PGA</sub> | 1.6   | Site amplification factor at PGA                                                         |
| PGA <sub>M</sub> | 0.076 | Site modified peak ground acceleration                                                   |
| ΤL               | 12    | Long-period transition period (s)                                                        |
| SsRT             | 0.1   | Probabilistic risk-targeted ground motion (0.2s)                                         |
| SsUH             | 0.108 | Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years) |
| SsD              | 1.5   | Factored deterministic acceleration value (0.2s)                                         |
| S1RT             | 0.068 | Probabilistic risk-targeted ground motion (1.0s)                                         |
| S1UH             | 0.078 | Factored uniform-hazard spectral acceleration (2% probability of exceedance in 50 years) |
| S1D              | 0.6   | Factored deterministic acceleration value (1.0s)                                         |
| PGAd             | 0.5   | Factored deterministic acceleration value (PGA)                                          |

The results indicated here DO NOT reflect any state or local amendments to the values or any delineation lines made during the building code adoption process. Users should confirm any output obtained from this tool with the local Authority Having Jurisdiction before proceeding with design.

#### Disclaimer

Hazard loads are provided by the U.S. Geological Survey Seismic Design Web Services.

While the information presented on this website is believed to be correct, ATC and its sponsors and contributors assume no responsibility or liability for its accuracy. The material presented in the report should not be used or relied upon for any specific application without competent examination and verification of its accuracy, suitability and applicability by engineers or other licensed professionals. ATC does not intend that the use of this information replace the sound judgment of such competent professionals, having experience and knowledge in the field of practice, nor to substitute for the standard of care required of such professionals in interpreting and applying the results of the report provided by this website. Users of the information from this website assume all liability arising from such use. Use of the output of this website does not imply approval by the governing building code bodies responsible for building code approval and interpretation for the building site described by latitude/longitude location in the report.

St. Louis, MO 63026 636.349.1600 JOB TITLE Wingstop Restaurant Lee's Summit, MO JOB NO. WIL-MO-04-21 SHEET NO. CALCULATED BY K. Woodard DATE 6/10/21 CHECKED BY CRH DATE

www.struware.com

#### Code Search

**Code:** International Building Code 2018

#### Occupancy:

Occupancy Group = B Business

#### **Risk Category & Importance Factors:**

| Risk Category =  | П    |
|------------------|------|
| Wind factor =    | 1.00 |
| Snow factor =    | 1.00 |
| Seismic factor = | 1.00 |

#### **Type of Construction:**

Fire Rating:

| Roof =  | 0.0 hr |
|---------|--------|
| Floor = | 0.0 hr |

#### **Building Geometry:**

| 0.25 / 12 | 1.2 deg                                                          |
|-----------|------------------------------------------------------------------|
| 160.0 ft  |                                                                  |
| 70.0 ft   |                                                                  |
| 17.0 ft   |                                                                  |
| 23.0 ft   |                                                                  |
| 3.0 ft    |                                                                  |
|           | 0.25 / 12<br>160.0 ft<br>70.0 ft<br>17.0 ft<br>23.0 ft<br>3.0 ft |

#### Live Loads:

| <u>Roof</u> | 0 to 200 sf:   | 20 psf                                  |
|-------------|----------------|-----------------------------------------|
|             | 200 to 600 sf: | 24 - 0.02Area, but not less than 12 psf |
|             | over 600 sf:   | 12 psf                                  |

#### Floor:

| Typical Floor | N/A |
|---------------|-----|
| Partitions    | N/A |

#### Case Engineering Inc.

796 Merus Ct St. Louis, MO 63026

636.349.1600

ASCE 7-16

#### JOB TITLE Wingstop Restaurant Lee's Summit, MO JOB NO. WIL-MO-04-21 SHEET NO. CALCULATED BY K. Woodard DATE 6/10/21 CHECKED BY CRH DATE

#### Wind Loads :

| 109 mph           |  |
|-------------------|--|
| 84.4 mph          |  |
| II                |  |
| В                 |  |
| Enclosed Building |  |
| +/-0.18           |  |
| 0.85              |  |
| 0.701             |  |
| 0.596             |  |
| Monoslope         |  |
|                   |  |

| Topographic Fa   | ctor (ł | <u>(zt)</u>            |
|------------------|---------|------------------------|
| Topography       |         | Flat                   |
| Hill Height      | (H)     | 80.0 ft                |
| Half Hill Length | (Lh)    | 100.0 ft               |
| Actual H/Lh      | =       | 0.80                   |
| Use H/Lh         | =       | 0.50                   |
| Modified Lh      | =       | 160.0 ft               |
| From top of cre  | st: x = | 50.0 ft                |
| Bldg up/down w   | vind?   | downwind               |
| H/Lh= 0.50       |         | K <sub>1</sub> = 0.000 |
| x/Lh = 0.31      |         | K <sub>2</sub> = 0.792 |
| z/Lh = 0.11      |         | K <sub>3</sub> = 1.000 |
| At Mean Roof H   | łt:     |                        |
|                  | 14.1    |                        |

$$Kzt = (1+K_1K_2K_3)^2 = 1.00$$







| <u>Gust E</u> | ffect Factor |
|---------------|--------------|
| h =           | 17.0 ft      |
| B =           | 70.0 ft      |
| /z (0.6h) =   | 30.0 ft      |

| Flexible st | ructure if natural freque | ency < 1 Hz (T > 1 second).       |
|-------------|---------------------------|-----------------------------------|
| If building | h/B>4 then may be fle     | xible and should be investigated. |
|             | h/B = 0.24                | Rigid structure (low rise bldg)   |

#### G = 0.85 Using rigid structure formula

| Rig                | <u>gid Structure</u>     | Flexible or Dynamically Sensitive Structure |        |     |       |     |         |  |
|--------------------|--------------------------|---------------------------------------------|--------|-----|-------|-----|---------|--|
| ē =                | 0.33                     | Natural Frequency $(\eta_1) =$              | 0.0 Hz |     |       |     |         |  |
| ł =                | 320 ft                   | Damping ratio (β) =                         | 0      |     |       |     |         |  |
| z <sub>min</sub> = | 30 ft                    | /b =                                        | 0.45   |     |       |     |         |  |
| с =                | 0.30                     | /α =                                        | 0.25   |     |       |     |         |  |
| $g_Q, g_v =$       | 3.4                      | Vz =                                        | 70.2   |     |       |     |         |  |
| $L_z =$            | 310.0 ft                 | N <sub>1</sub> =                            | 0.00   |     |       |     |         |  |
| Q =                | 0.88                     | R <sub>n</sub> =                            | 0.000  |     |       |     |         |  |
| $I_z =$            | 0.30                     | R <sub>h</sub> =                            | 28.282 | η = | 0.000 | h = | 17.0 ft |  |
| G =                | <b>0.86</b> use G = 0.85 | R <sub>B</sub> =                            | 28.282 | η = | 0.000 |     |         |  |
|                    |                          | R <sub>L</sub> =                            | 28.282 | η = | 0.000 |     |         |  |
|                    |                          | g <sub>R</sub> =                            | 0.000  |     |       |     |         |  |
|                    |                          | R =                                         | 0.000  |     |       |     |         |  |

$$Gf = 0.000$$

#### Case Engineering Inc.

796 Merus Ct St. Louis, MO 63026 636.349.1600

| JOB TITLE Wingstop Restaurant |                  |           |         |  |  |
|-------------------------------|------------------|-----------|---------|--|--|
|                               | Lee's Summit, MO |           |         |  |  |
| JOB NO.                       | WIL-MO-04-21     | SHEET NO. |         |  |  |
| CALCULATED BY                 | K. Woodard       | DATE      | 6/10/21 |  |  |
| CHECKED BY                    | CRH              | DATE      |         |  |  |
|                               |                  |           |         |  |  |

#### Snow Loads : ASCE 7- 16

| Ri<br>Llariz, agya ta  | oof slope         | = 1.2 deg  |
|------------------------|-------------------|------------|
| Horiz. eave to         | riage alst (vv) : | = 70.0 π   |
| Roof length parall     | el to ridge (L) : | = 160.0 ft |
|                        |                   |            |
| Type of Roof           |                   | Monoslope  |
| Ground Snow Load       | Pg :              | = 20.0 psf |
| Risk Category          | :                 | =          |
| Importance Factor      | :                 | = 1.0      |
| Thermal Factor         | Ct :              | = 1.00     |
| Exposure Factor        | Ce :              | = 1.0      |
|                        |                   |            |
| Pf = 0.7*Ce*Ct*I*Pa    | :                 | = 14.0 psf |
| Unobstructed Slipperv  | Surface           | no po.     |
|                        | Ganade            | 110        |
| Sloped-roof Factor     | Cs :              | = 1.00     |
| Balancod Snow Load     |                   | - 14 0 pcf |
| Dalaliceu Show Luau    | •                 | - 14.0 psi |
| Dain an Onaw Comba     |                   | 1 10 de m  |
| Rain on Snow Surchal   | ge Angle          | 1.40 deg   |
| Code Maximum Rain S    | Surcharge         | 5.0 pst    |
| Rain on Snow Surchar   | rge ÷             | = 5.0 psf  |
| Ps plus rain surcharge | . :               | = 19.0 psf |
| Minimum Snow Load      | Pm :              | = 20.0 psf |
|                        |                   |            |
| Uniform Roof Design    | Snow Load         | = 20.0 psf |

#### Nominal Snow Forces

Near ground level surface balanced snow load = 20.0 psf

NOTE: Alternate spans of continuous beams shall be loaded with half the design roof snow load so as to produce the greatest possible effect - see code for loading diagrams and exceptions for gable roofs..

#### lu = Up or downwind fetch 0.0 ft Projection height h = 0.0 ft Projection width/length lp = 0.0 ft Snow density g = 16.6 pcf Balanced snow height hb = 0.84 ft hd = 0.92 ft hc = -0.84 ft hc/hb <0.2 = -1.0 Ip <15', drift not req'd Drift height (hc) 0.00 ft = Drift width w = -6.75 ft $pd = \gamma^{*}hd =$ 0.0 psf Surcharge load: 14.0 psf Balanced Snow load: = 14.0 psf Windward Snow Drifts 2 - Against walls, parapets, etc Up or downwind fetch lu = 0.0 ft Projection height h = 0.0 ft 0.0 ft Projection width/length lp = g = Snow density 16.6 pcf hb = Balanced snow height 0.84 ft hd = 0.92 ft hc = -0.84 ft hc/hb < 0.2 = -1.0Ip <15', drift not req'd Drift height (hc) 0.00 ft Drift width w = -6.75 ft Surcharge load: 0.0 psf $pd = \gamma^*hd =$ Balanced Snow load: = 14.0 psf 14.0 psf



Note: If bottom of projection is at least 2 feet above hb then snow drift is not required.

#### Windward Snow Drifts 1 - Against walls, parapets, etc

| CASSE<br>Engineering Inc.<br>Office: 636-349-1600<br>Fax: 636-349-1730<br>Website: www.caseengineeringinc.com |            | Client:<br>Location:<br>Subject:<br>Engineer: | Wingstop<br>Lee's Summit, MO<br>Mechanical Rooftop Unit Weights and<br>K. Woodard | Project Number: WIL-MO-04-21<br>Date: 6/10/2021<br>Reactions |
|---------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------|
| <u>Equipm</u>                                                                                                 | ent Weight | Factor                                        | <u>Supports</u>                                                                   | Reaction Load                                                |
| RTU1:                                                                                                         | 855 lb     | 1.3                                           | 6                                                                                 | 186                                                          |
| RTU2:                                                                                                         | 785 lb     | 1.3                                           | 4                                                                                 | 256                                                          |
| RTU3:                                                                                                         | lb         | 1.3                                           | 4                                                                                 |                                                              |
| MAU:                                                                                                          | 525 lb     | 1.2                                           | 4                                                                                 | 158                                                          |
| Hood:                                                                                                         | 955 lb     | 1.1                                           | 14                                                                                | *76 or 138                                                   |
| EF:                                                                                                           | 218 lb     | 1.0                                           | 4                                                                                 | 55                                                           |

\*When using this load case a 300 lb additional load must be added to any single hanger rod to account for a worker/tools hanging from the hanger.

| Steel Joist Analysis of Irregular Loads J-1:Joist = 20K4Length =34 ftTrib. Width =5 ftE = 29000 (ks)Shear Failed from 0to 16, 23to 40Live $\Delta_a = L/240$ Max DCR =Allowable Loads:DCR Limits without reinforcement:Total Loads =212 plf (for stress)Live Load =212 plf (for deflection)Full Uniform Loads:Partial Uniform Loads:Dead Load =15 psfDead Load =15 psfDead Load =20 psfLive Load =20 psfLive Load =20 psfLive Load =0 psfFull Uniform Loads:End, =Dead Load =0 ftKart, =0 ftKart, =0 ftLive Load =0 lbsLive Load =0 lbsLive Load, =0 lbsLocation, =13.75 ftStart, =0 ftLive Load, =0 lbsLocation, =0 lbsLive Load, =0 lbsLocation, =0 lbsLive Load, =0 lbsLocation, =0 lbsLocation, =0 lbsLoad, =0 lbsLive Load, =0 lbsLocation, =0 lbsLoad, =0 lbsLive Load, =0 lbsLive Load, =0 lbsLive Load,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CA<br>Engineer<br>Office: 536<br>Fax: 6363<br>Website: www.casee                                                                                                         | CONSTRUE       CUSTOMER:       Wingstop         LOCATION:       Lee's Summit, MO         SUBJECT:       Steel Joist Analysis for Mechanica         PREPARED BY:       K. Woodard       File: |                    | PRC<br>Il Units                     | DJECT N                  | UMBER: WIL-MO<br>DATE: 6/10/202 | -04-21<br>:1   |          |                |       |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------|--------------------------|---------------------------------|----------------|----------|----------------|-------|--|
| Joist = 20K4Strength Analysis Results:<br>Bending 'assedLength =34 ftMax DCR =0.97Trib. Witht =5 ftMax DCR =0.97E = 20000 ksiShear Failed from 0to16, 23to40Max DCR =1.19Allowable Loads:DCR Limits without reinforcement:DCR Limits without reinforcement:Total Load, =212 pif (for deflection)DCR Limits without reinforcement:Full Uniform Loads:Partial Uniform Loads:Joist Reinforcement Design:Tead Load =15 psfDead Load, =0 psfT&B Chords:Live Load =20 psfLive Load, =0 psfFy =Opint Loads:End, =0 ftK =0.00Point Loads:End, =0 ftK =0.00Live Load, =0 lbsDisLive Load, =0 psfLive Load, =0 lbsLive Load, =0 ftFy =36 ksiRTU-2 =320 lbsDead Load, =0 psfUcR =1.00Live Load, =0 lbsLoading =0 ftFy =36 ksiRTU-2 =320 lbsEnd, =0 ftFy =36 ksiLoadion, =13.75 ftStart, =0 ftFy =36 ksiRTU-2 =320 lbsEnd, =0 ftK =1Live Load, =0 lbsPeak, =0 ftK =1Live Load, =0 lbsPeak, =0 ftK =1Live Load, =0 lbsPeak, =0 ftK =1Live Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Steel Joist                                                                                                                                                              | Analys                                                                                                                                                                                       | sis of Irre        | gular Loads                         | s J-1:                   |                                 |                |          |                |       |  |
| Length =34 ftBending basedTrib. Witht =5 ftMax DCR =0.97E =29000 ksiShear Failed from 0to16, 23to40Live Lad, =L/240Max DCR =1.19Allowable Loads:212 plf (for stress)DCR Limits without reinforcement:Total Load, =212 plf (for deflection)DCR Limits without reinforcement:Full Uniform Loads:Partial Uniform Loads:Joist Reinforcement Design:Dead Load =15 psfDead Load, =0 psfLive Load =20 psfLive Load, =0 psfFy =Dint Loads:Eart, =0 ftK =Doint Loads:Dead Load, =0 psfDCR =Ive Load, =0 tbsDead Load, =0 psfDCR =Ive Load, =0 tbsLive Load, =0 psfDCR =Live Load, =0 tbsLive Load, =0 psfDCR =Live Load, =0 tbsLive Load, =0 psfDCR =Live Load, =0 tbsEnd_2 =0 ftK =Live Load, =0 tbsPeak, =0 ftDCR =Loadion, =10 tbsPeak, =0 ftNot RequiredLocation, =10 tbsPeak, =0 ftNot RequiredLocation, =0 tbsPeak, =0 ftWeb Reinforcement:Live Load, =0 tbsPeak, =0 ftWeb Reinforcement:Live Load, =0 tbsPeak, =0 ftWeb Reinforcement:Live Load, =0 tbsPeak, =0 ftWeb Reinforc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Joist =                                                                                                                                                                  | 20K4                                                                                                                                                                                         |                    |                                     |                          |                                 | Strength Anal  | lysis Re | esults:        |       |  |
| Trib. Width =5 ftMax DCR =0.97E =29000 ksiShear Failed from 0to16, 23to40Live $\Lambda_a =$ L/240Max DCR =1.19Allowable Loads:DCR Limits without reinforcement:Total Load, =212 plf (for stress)Bending:1.00Live Load, =212 plf (for deflection)Shear:1.00Full Uniform Loads:Partial Uniform Loads:DCR Limits without reinforcement:Dead Load =15 psfDead Load, =0 psfT&B Chords:Full Uniform Loads:Partial Uniform Loads:Joist Reinforcement Design:Table Chords:0 psfFy =36 ksiLive Load =10 bsLive Load, =0 psfChord 8:Point Loads:End, =0 ftL =12 inRTU-2 =320 lbsDead Load, =0 psfDCR =0.00Live Load, =0 bsLive Load, =0 psfWebs:L2X2X1/8Location, =13.75 ftStart, =0 ftDCR =0.00Live Load, =0 lbs+Drift Load, =0 psfChord Reinforcement:Location, a =0 ftOpsf End, =0 ftDCR =0.03Loadion, a =0 ftOpsf End, =0 ftNot RequiredLoadion, a =0 ftOpsf End, =0 ftNot RequiredLoadion, a =0 ftOpsf End, =0 ftNot RequiredLoadion, a =0 ftNote: Bar jotst are typically constructedSymmetrically with equal sized web membersLocation, a =<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Length =                                                                                                                                                                 | 34 f                                                                                                                                                                                         | t                  |                                     |                          |                                 | Bending        | 'assed   |                |       |  |
| E = 29000 ksiShear Failed from 0to 16, 23to 40Live $\Delta_a = 1/240$ Max DCR = 1.19Allowable Loads:DCR Limits without reinforcement:Total Load_a = 212 plf (for stress)Bending: 1.00Live Load_a = 212 plf (for deflection)Shear: 1.00Full Uniform Loads:Partial Uniform Loads:Dead Load = 15 psfDead Load = 0 psfLive Load = 20 psfLive Load, = 0 psfFoint Loads:Start, = 0 ftRTU-2 = 320 lbsDead Load, = 0 ftRTU-2 = 320 lbsDead Load, = 0 psfVe Load, = 0 lbsLive Load, = 0 ftLive Load, = 0 lbsLive Load, = 0 ftLive Load, = 0 lbsLive Load, = 0 ftLive Load, = 0 lbsEnd, = 0 ftLive Load, = 0 lbsEnd, = 0 ftLive Load, = 0 lbsDCR = 0.03Location, = 13.75 ftStart, = 0 ftRTU-2 = 320 lbsEnd, = 0 ftLocation, = 13.75 ftStart, = 0 ftNot RequiredDCR = 0.03Location, = 0 lbsPeak, = 0 ftLocation, = 0 ftOpsf End, = 0 ftLoad, = 0 lbsPeak, = 0 ftLocation, a = 0 ftOpsf End, = 0 ftLoad, = 0 lbsPeak, = 0 ftLoad, = 0 lbsPeak, = 0 ftLoad, = 0 lbsIs reinforcing reasonable?Load, = 0 lbsShear capacity 1.5 x Deft = 3021Location, a = 0 ftOpsf End, = 0 ftLocation, a = 0 ftNot RequiredLocation, a = 0 ftNote Start ord start bis endged. The<br>accompanying shear diagram is based on the<br>cocdeminimum allowable capacit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Trib. Width =                                                                                                                                                            | 5 f                                                                                                                                                                                          | t                  |                                     |                          |                                 | Max DCR =      | 0.97     |                |       |  |
| Live $\Delta_a = L/240$ Max DCR = 1.19Allowable Loads:DCR Limits without reinforcement:Total Load, =212 plf (for stress)Live Load, =212 plf (for deflection)Full Uniform Loads:Partial Uniform Loads:Dead Load =15 psfDead Load =20 psfLive Load =20 psfLive Load =20 psfLive Load =0 psfTRU 2 =320 lbsDead Load =0 psfRTU-2 =320 lbsLive Load =0 lbsLoads:Triangular Snow Drift Loads:Dead Load =0 lbsLoads:0 lbsLocation =19.33 ftTriangular Snow Drift Loads:Dead Load =0 lbsLoads:0 lbsLoads:0 lbsDead Load =0 ftDead Load =0 lbsDead Load =0 lbsLive Load =0 lbsDead Load =0 lbsLive Load = <td< td=""><td>E =</td><td>29000 k</td><td>si</td><td></td><td></td><td></td><td>Shear</td><td>Failed</td><td>from 0to16, 23</td><td>3to40</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E =                                                                                                                                                                      | 29000 k                                                                                                                                                                                      | si                 |                                     |                          |                                 | Shear          | Failed   | from 0to16, 23 | 3to40 |  |
| Allowable Loads:<br>Total Load, =DCR Limits without reinforcement:Total Load, =212 plf (for stress)<br>Live Load, =212 plf (for deflection)Full Uniform Loads:<br>Live Load =212 plf (for deflection)Joist Reinforcement Design:<br>T&B Chords:Full Uniform Loads:<br>Live Load =20 psfLive Load, =0 psfFull Uniform Loads:<br>Live Load =20 psfLive Load, =0 psfFoint Loads:<br>Live Load, =0 psfFy =36 ksiPoint Loads:<br>Live Load, =0 lbsLive Load, =0 psfPoint Loads:<br>Live Load, =0 lbsLive Load, =0 psfRTU-2 =320 lbsDead Load, =0 psfWebs:<br>L2X2X1/8Location, =13.75 ftStart, =0 ftFy =Stora, =0 lbsEnd, =0 ftK =Live Load, =0 lbsHort Loads:DCR =0.03Location, =13.75 ftStart, =0 ftNot RequiredLocation, =0 lbs+Drift Load, =0 psfChord Reinforcement:Live Load, =0 lbs+Drift Load, =0 psfChord Reinforcement:Live Load, =0 lbs+Drift Load, =0 psfFrom 8.25 ft to 13.5 ftLive Load, =0 lbsShear capacity at 1.5 x Depth =3021Live Load, =0 lbsIs reinforcing reasonable?NoLoad Load, =0 lbsShear capacity at 1.5 x Depth =302.1Location, a0 ftNote: Bar joits are typically constructed<br>symmetrically with equil aiszed web members<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Live $\Delta_a$ =                                                                                                                                                        | L/240                                                                                                                                                                                        |                    |                                     |                          |                                 | Max DCR =      | 1.19     |                |       |  |
| Total Load, =       212 plf (for stress)       Bending:       1.00         Live Load, =       212 plf (for deflection)       Shear:       1.00         Full Uniform Loads:       Dead Load, =       0 psf       T&B Chords:       0.500 Dia. Rods         Live Load =       20 psf       Live Load, =       0 psf       T&B Chords:       0.500 Dia. Rods         Point Loads:       End, =       0 ft       K =       12 in         RTU-2 =       320 lbs       Dead Load, =       0 psf       DCR =       0.00         Live Load, =       0 lbs       Live Load, =       0 ft       Fy =       36 ksi         RTU-2 =       320 lbs       Dead Load, =       0 psf       Webs: L2X2X1/8         Location, =       13.75 ft       Start, =       0 ft       Fy =       36 ksi         RTU-2 =       320 lbs       End, =       0 ft       DCR =       0.00         Live Load, =       0 lbs       Peak, =       0 ft       Not Required         Location, =       19.33 ft       Triangular Snow Drift Loads:       DCR =       0.03         Location, =       0 ft       Opsf End, =       0 ft       Not Required         Live Load, =       0 lbs       Peak2 =       0 ft       (1) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Allowable Loa                                                                                                                                                            | ds:                                                                                                                                                                                          |                    |                                     |                          |                                 | DCR Limits w   | ithout r | einforcement:  |       |  |
| Live Load, = 212 pf (for deflection) Shear: 1.00<br>Full Uniform Loads: Partial Uniform Loads: Joist Reinforcement Design:<br>Dead Load = 15 psf Dead Load, = 0 psf T&B Chords: 0.500 Dia. Rods<br>Live Load = 20 psf Live Load, = 0 psf T&B Chords: 0.500 Dia. Rods<br>Start, = 0 ft K = 0.65<br>Point Loads: End, = 0 ft L = 12 in<br>RTU-2 = 320 lbs Dead Load <sub>2</sub> = 0 psf DCR = 0.00<br>Live Load, = 0 lbs Live Load <sub>2</sub> = 0 ft Fy = 36 ksi<br>RTU-2 = 320 lbs Dead Load <sub>2</sub> = 0 ft Fy = 36 ksi<br>RTU-2 = 320 lbs End <sub>2</sub> = 0 ft K = 1<br>Live Load <sub>2</sub> = 0 lbs Live Load <sub>2</sub> = 0 ft K = 1<br>Live Load <sub>2</sub> = 0 lbs End <sub>2</sub> = 0 ft K = 1<br>Live Load <sub>3</sub> = 0 lbs +Drift Loads:<br>Dead Load <sub>3</sub> = 0 lbs +Drift Loads:<br>Dead Load <sub>3</sub> = 0 lbs +Drift Load <sub>1</sub> = 0 psf Chord Reinforcement:<br>Live Load <sub>4</sub> = 0 lbs Peak, = 0 ft Not Required<br>Location <sub>3</sub> = 0 ft Opsf End <sub>1</sub> = 0 ft<br>Location <sub>4</sub> = 0 lbs Peak <sub>2</sub> = 0 ft Web Reinforcement:<br>Live Load <sub>4</sub> = 0 lbs Peak <sub>2</sub> = 0 ft Web Reinforcement:<br>Live Load <sub>4</sub> = 0 lbs Peak <sub>2</sub> = 0 ft Heat Not Required<br>Location <sub>4</sub> = 0 lbs Peak <sub>2</sub> = 0 ft Heat Not Required<br>Location <sub>5</sub> = 0 ft Opsf End <sub>2</sub> = 0 ft (1) - L2X2X1/8 at Each Member<br>From 8.25 ft to 13.5 ft<br>Live Load <sub>6</sub> = 0 lbs Shear capacity at 1.5 x Depth = 3021<br>Live Load <sub>6</sub> = 0 lbs capacity at 1.5 x Depth = 3021<br>Live Load <sub>6</sub> = 0 lbs capacity at 0 ft Note: Bar loifs are typically constructed<br>Symmetrically with equal sized web members<br>along the lengh. As a result the allowable<br>Live Load <sub>6</sub> = 0 lbs capacity is constant, except at the ends where<br>Location <sub>7</sub> = 0 ft decreases until the web is engaged. The<br>accompanying sheat diagram is based on the<br>code minimum allowable capacity<br>decreases to about 3021 lbs before leveling<br>Add load = 0 lbs constant, except at the ends where<br>Live Load <sub>6</sub> = 0 lbs constant, except at the ends where<br>Location <sub>7</sub> = 0 ft decreases to about 3021 lbs before leveling<br>Add load = 0 lbs constant, except at the ends where<br>Live Load <sub>6</sub> = 0 lbs constant, except at the ends where<br>Location <sub>7</sub> = 0 ft decreases to about 3021 lbs before leveling<br>Add load = 0 lbs constant, except | Total Load <sub>a</sub> =                                                                                                                                                | 212 p                                                                                                                                                                                        | olf (for stress    | 3)                                  |                          |                                 | Bending:       | 1.00     |                |       |  |
| Full Uniform Loads:Joist Reinforcement Design:Dead Load =15psfDead Load_1 =0psfT&B Chords:0.500 Dia, RodsLive Load =20psfLive Load_1 =0psfFy =36ksiStart_1 =0ftL12in10101010Point Loads:End_1 =0ftL12in10101010RTU-2 =320lbsDead Load_2 =0psfDCR =0.00001010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010101010 <td>Live Load<sub>a</sub> =</td> <td>212 p</td> <td>olf (for deflea</td> <td>ction)</td> <td></td> <td></td> <td>Shear:</td> <td>1.00</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Live Load <sub>a</sub> =                                                                                                                                                 | 212 p                                                                                                                                                                                        | olf (for deflea    | ction)                              |                          |                                 | Shear:         | 1.00     |                |       |  |
| Dead Load =15 psfDead Load =0 psfT&B Chords:0.500 Dia. RodsLive Load =20 psfLive Load =0 psf $Fy =$ 36 ksiPoint Loads:End =0 ftK =0.65Point Loads:End =0 ftL =12 inRTU-2 =320 lbsDead Load =0 psfDCR =0.00Live Load =0 lbsLive Load =0 psfWebs:L2X2X1/8Location =13.75 ftStart =0 ftFy =36 ksiRTU-2 =320 lbsEnd =0 ftK =1Live Load =0 lbsEnd =0 ftK =1Live Load =0 lbsEnd =0 ftK =1Location =19.33 ftTriangular Snow Drift Loads:DCR =0.03Dead Load =0 lbsPeak =0 ftNot RequiredLocation =0 lbsPeak =0 ftNot RequiredLocation =0 lbsPeak =0 ft(1) - L2X2X1/8 at Each MemberDead Load =0 lbsPeak =0 ft(1) - L2X2X1/8 at Each MemberLocation =0 lbsIs reinforcing reasonable?NoFrom 8.25 ft to 13.5 ftLive Load =0 lbsIs reinforcing reasonable?NoFrom 8.25 ft to 13.5 ftLive Load =0 lbsShear capacity at 1.5 x Dept =3021And From 20.5 ft to 25.25 ftLocation =0 lbsshear capacity is constant, except at the ends where<br>along the lengh. As a result the allowableChord Reinforcement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Full Uniform L                                                                                                                                                           | .oads:                                                                                                                                                                                       |                    | Partial Unifo                       | rm Load                  | s:                              | Joist Reinford | ement    | Design:        |       |  |
| Live Load = 20 psf Live Load, = 0 psf Fy = 36 ksi<br>Start, = 0 ft K = 0.65<br>Point Loads: End, = 0 ft Let $L = 12$ in<br>RTU-2 = 320 lbs Dead Load <sub>2</sub> = 0 psf DCR = 0.00<br>Live Load, = 0 lbs Live Load_2 = 0 psf Webs: L2X2X1/8<br>Location, = 13.75 ft Start <sub>2</sub> = 0 ft Fy = 36 ksi<br>RTU-2 = 320 lbs End <sub>2</sub> = 0 ft K = 1<br>Live Load <sub>2</sub> = 0 lbs End <sub>2</sub> = 0 ft K = 1<br>Live Load <sub>3</sub> = 0 lbs +Drift Load, = 0 psf Chord Reinforcement:<br>Live Load <sub>3</sub> = 0 lbs +Drift Load, = 0 psf Chord Reinforcement:<br>Live Load <sub>4</sub> = 0 lbs Peak <sub>1</sub> = 0 ft Not Required<br>Location <sub>3</sub> = 0 ft Opsf End, = 0 ft Web Reinforcement:<br>Live Load <sub>4</sub> = 0 lbs Peak <sub>2</sub> = 0 ft (1) - L2X2X1/8 at Each Member<br>Dead Load <sub>4</sub> = 0 lbs Peak <sub>2</sub> = 0 ft (1) - L2X2X1/8 at Each Member<br>Dead Load <sub>5</sub> = 0 lbs Is reinforcing reasonable? No From 8.25 ft to 13.5 ft<br>Live Load <sub>5</sub> = 0 lbs Shear capacity at 1.5 x Depth = 3021<br>Location <sub>5</sub> = 0 ft Note: Bar joists are typically constructed<br>symmetrically with equal sized web members<br>along the lengh. As a result the allowable<br>Live Load <sub>6</sub> = 0 lbs constant, except at the ends where<br>Location <sub>6</sub> = 0 ft Oft Cord Reinforcement Welds:<br>Location <sub>7</sub> = 0 ft Reinforcement is only required at<br>Live Load <sub>6</sub> = 0 lbs constant, except at the ends where<br>Location <sub>7</sub> = 0 ft Reinforcement is only required at<br>Live Load <sub>6</sub> = 0 lbs constant, except at the ends where<br>Location <sub>7</sub> = 0 ft Reinforcement is only required at<br>Live Load <sub>6</sub> = 0 lbs constant, except at the ends where<br>Location <sub>7</sub> = 0 ft hote: Bar joists practices. For this<br>Location <sub>7</sub> = 0 ft hote: Bar joists practices. For this<br>Location <sub>7</sub> = 0 ft hote: Bar joist practices. For this<br>Location <sub>7</sub> = 0 ft hote: Bar joist practices. For this<br>Location <sub>7</sub> = 0 ft hote: Bar joist practices. For this<br>Location <sub>8</sub> = 0 lbs constant, except at the ends where<br>Location <sub>8</sub> = 0 lbs constant endered at to the code minimum and wable capacity<br>Add load = 0 lbs constant end end practices. For this<br>Locations where the applied shear is greater<br>Locations at the the applied shear is greater<br>Locations where the applied shear i                         | Dead Load =                                                                                                                                                              | 15 p                                                                                                                                                                                         | osf                | Dead Load <sub>1</sub> =            | = 0                      | psf                             | T&B Chords:    | 0.500    | Dia. Rods      |       |  |
| Start, 10ftK =0.65Point Loads:End, 10ftL =12RTU-2 =320IbsDead Load2 =0psfDCR =0.00Live Load, 20ftLive Load, 20ftFy =36kisLocation, 13.75ftStart, 20ftFy =36kisLocation, 13.75ftStart, 20ftFy =36kisLocation, 20ftFy =36kisLocation, 20ftFy =36kisLocation, 20ftftftLocation, 20ftftMoFrom 8.25ftNoFrom 20.5 ft to 25.25 ftLocation, 2OffWeb ReinforcementLocation, 2OffKeree Align Colspan="2"Location, 2 <td c<="" td=""><td>Live Load =</td><td><mark>20</mark> p</td><td>osf</td><td>Live Load<sub>1</sub> =</td><td>= 0</td><td>psf</td><td>Fy =</td><td>36</td><td>ksi</td><td></td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <td>Live Load =</td> <td><mark>20</mark> p</td> <td>osf</td> <td>Live Load<sub>1</sub> =</td> <td>= 0</td> <td>psf</td> <td>Fy =</td> <td>36</td> <td>ksi</td> <td></td> | Live Load =                                                                                                                                                                                  | <mark>20</mark> p  | osf                                 | Live Load <sub>1</sub> = | = 0                             | psf            | Fy =     | 36             | ksi   |  |
| Point Loads:End1 = 0 ftL = 12 inRTU-2 = 320 lbsDead Load2 = 0 psfDCR = 0.00Live Load1 = 0 lbsLive Load2 = 0 psfDCR = 0.00Live Load1 = 13.75 ftStar2 = 0 ftFy = 36 ksiRTU-2 = 320 lbsEnd2 = 0 ftK = 1Live Load2 = 0 lbsDCR = 0.03Location2 = 19.33 ftTriangular Snow Drift Loads:Dead Load3 = 0 lbs+ Drift Load1 = 0 psfLocation3 = 0 ftOpsf End1 = 0 ftLocation4 = 0 lbsPeak2 = 0 ftLocation5 = 0 ftOpsf End1 = 0 ftLocation4 = 0 ftOpsf End2 = 0 ftLocation5 = 0 ftOpsf End2 = 0 ftLocation4 = 0 ftOpsf End2 = 0 ftLocation5 = 0 ftShear capacity at 1.5 x Depth = 3021Location6 = 0 lbsShear capacity at 1.5 x Depth = 3021Location6 = 0 ftNote Reinforcement:Location6 = 0 ftNote Reinforcement welds:Location6 = 0 ftNote Reinforcement along the lengh. As a result the allowableLive Load6 = 0 lbsconstruction and design practices. For thisLocation7 = 0 ftIt decreases until the web is engaged. The<br>accompanying shear diagram is based on the<br>code minimums and does not reflect actualLive Load6 = 0 lbsConstruction and design practices. For this<br>instance, minimum allowable capacity<br>decreases to about 3021 lbs before leveling<br>off. Reinforcement is only required atLive Load6 = 0 lbsIbsLocation7 = 0 ftIbsLocation8 = 0 ftIbsLocation8 = 0 ftIbsLocat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                          |                                                                                                                                                                                              |                    | Start <sub>1</sub> =                | = 0                      | ft                              | K =            | 0.65     |                |       |  |
| RTU-2 =320 lbsDead Load2 =0 psfDCR =0.00Live Load1 =0 lbsLive Load2 =0 psfWebs: L2X2X1/8Location1 =13.75 ftStart2 =0 ftFy =36 ksiRTU-2 =320 lbsEnd2 =0 ftK =1Live Load2 =0 lbsDCR =0.03DCR =0.03Location2 =19.33 ftTriangular Snow Drift Loads:DCR =0.03Dead Load3 =0 lbs+Drift Load1 =0 psfChord Reinforcement:Live Load3 =0 lbs+Drift Load2 =0 psfChord Reinforcement:Location3 =0 ft0 psf End1 =0 ftNot RequiredLocation4 =0 lbs+Drift Load2 =0 psfChord Reinforcement:Location4 =0 lbs+Drift Load2 =0 psfChord Reinforcement:Location4 =0 lbsPeak2 =0 ftWeb Reinforcement:Location4 =0 lbsPeak2 =0 ft(1) - L2X2X1/8 at Each MemberDead Load5 =0 lbsIs reinforcing reasonable?NoFrom 8.25 ft to 13.5 ftLocation5 =0 ftNote: Bar joists are typically constructedsymmetrically with equal sized web members<br>along the lengh. As a result the allowable<br>code minimums and does not reflect actualChord Reinforcement Welds:Location5 =0 ftlbsconstruction and design practices. For this<br>instance, minimum allowable capacityChord Reinforcement Welds:Location7 =0 ftlbsconstruction and design practices. For this<br>instance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Point Loads:                                                                                                                                                             |                                                                                                                                                                                              |                    | End <sub>1</sub> =                  | = 0                      | ft                              | L =            | 12       | in             |       |  |
| Live Load <sub>1</sub> = 0 lbs Live Load <sub>2</sub> = 0 psf Webs: L2X2X1/8<br>Location <sub>1</sub> = 13.75 ft Start <sub>2</sub> = 0 ft Fy = 36 ksi<br>RTU-2 = 320 lbs End <sub>2</sub> = 0 ft K = 1<br>Live Load <sub>2</sub> = 0 lbs DCR = 0.03<br>Location <sub>2</sub> = 19.33 ft Triangular Snow Drift Loads:<br>Dead Load <sub>3</sub> = 0 lbs +Drift Load <sub>1</sub> = 0 psf Chord Reinforcement:<br>Live Load <sub>3</sub> = 0 lbs Peak <sub>1</sub> = 0 ft Not Required<br>Location <sub>3</sub> = 0 ft 0 psf Chord Reinforcement:<br>Live Load <sub>4</sub> = 0 lbs +Drift Load <sub>2</sub> = 0 psf<br>Location <sub>4</sub> = 0 lbs Peak <sub>1</sub> = 0 ft Not Required<br>Location <sub>4</sub> = 0 lbs Peak <sub>2</sub> = 0 ft (1) - L2X2X1/8 at Each Member<br>Dead Load <sub>5</sub> = 0 lbs Is reinforcing reasonable? No From 8.25 ft to 13.5 ft<br>Live Load <sub>6</sub> = 0 lbs Shear capacity at 1.5 x Depth = 3021<br>Location <sub>5</sub> = 0 ft Note: Bar joists are typically constructed<br>symmetrically with equal sized web members<br>along the lengh. As a result the allowable<br>Live Load <sub>7</sub> = 0 lbs constant, except at the ends where<br>Location <sub>6</sub> = 0 ft accept and the allowable<br>Live Load <sub>7</sub> = 0 lbs constant, except at the allowable<br>Location <sub>7</sub> = 0 ft accept at the allowable<br>Location <sub>7</sub> = 0 ft Bbs constant, except at the ends where<br>Location <sub>7</sub> = 0 ft accept at the applied shear is greater<br>Location <sub>8</sub> = 0 lbs off. Reinforcement is only required at<br>Live Load <sub>8</sub> = 0 lbs and there the applied shear is greater<br>Location <sub>8</sub> = 0 ft bls bar off. Reinforcement is only required at<br>Live Load <sub>8</sub> = 0 lbs and there the applied shear is greater<br>than these allowables. Web Reinforcement:<br>Deam Load <sub>8</sub> = 0 lbs and there the applied shear is greater<br>than these allowables. Web Reinforcement:<br>Deam Load <sub>8</sub> = 0 lbs and there the applied shear is greater<br>than these allowables. Deam the the transmitter the the transmitter the transmitter the transmitter the transmitter the transmitter than these allowables. Deam there the applied shear is greater<br>than these allowables. Deam there the applied shear is greater than these allowables. Deam the transmitter the transmitter the transmitter the transmitter the transmitter than these allowables. Deam the transmitter the transmitter                           | RTU-2 =                                                                                                                                                                  | 320 II                                                                                                                                                                                       | os                 | Dead Load <sub>2</sub> =            | = 0                      | psf                             | DCR =          | 0.00     |                |       |  |
| Location 113.75 ftStart 20 ftFy =36 ksiRTU-2 =320 lbsEnd 20 ftK =1Live Load 20 lbsEnd 20 ftK =1Live Load 2 =0 lbs+Drift Load 1 =0 psfChord Reinforcement:Live Load 3 =0 lbs+Drift Load 1 =0 ftNot RequiredLocation 2 =10 lbs+Drift Load 2 =0 psfChord Reinforcement:Live Load 3 =0 lbsPeak 1 =0 ftNot RequiredLocation 3 =0 ft0 psf End 2 =0 psf(1) - L2X2X1/8 at Each MemberLocation 4 =0 lbsPeak 2 =0 ft(1) - L2X2X1/8 at Each MemberDead Load 5 =0 lbsIs reinforcing reasonable?NoFrom 8.25 ft to 13.5 ftLive Load 5 =0 lbsShear capacity at 1.5 x Depth =3021And From 20.5 ft to 25.25 ftLocation 5 =0 lbssa result the allowablecapacity is constant, except at the ends whereLocation 6 =0 lbscapacity is constant, except at the ends whereLocation 6 =0 lbsconstruction and design practices. For thisLocation 7 =0 ftinstance, minimum allowable capacityLive Load 7 =0 lbsoff. Reinforcement is only required atLive Load 8 =0 lbsoff. Reinforcement is only required atLocation 7 =0 ftinstance, minimum allowable capacityLocation 8 =0 ftlbsLocation 8 =0 ftLocation 8 =0 ftLocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Live Load <sub>1</sub> =                                                                                                                                                 | 0                                                                                                                                                                                            | os                 | Live Load <sub>2</sub> =            | = 0                      | psf                             | Webs:          | L2X2X    | (1/8           |       |  |
| RTU-2 =320lbsEnd2 =0ftK =1Live Load2 =0lbsDCR =0.030.03Location2 =19.33ftTriangular Snow Drift Loads:Dead Load3 =0lbs+Drift Load1 =0psfChord Reinforcement:Live Load3 =0lbsPeak1 =0ftNot RequiredLocation3 =0ft0psf End1 =0ftNot RequiredLocation4 =0lbs+Drift Load2 =0psfItLocation4 =0lbsPeak2 =0ft(1) - L2X2X1/8 at Each MemberDead Load5 =0lbsls reinforcing reasonable?NoFrom 8.25 ft to 13.5 ftLocation4 =0lbsShear capacity at 1.5 x Depth =3021And From 20.5 ft to 25.25 ftLocation5 =0lbscapacity is constant, except at the ellowableLive Load6 =0Location6 =0lbscapacity is constant, except at the ellowableChord Reinforcement Welds:Location6 =0lbsconstruction and design practices. For thisChord Reinforcement Welds:Location7 =0ftinstance, minimum allowable capacityChord Reinforcement Welds:Location7 =0ftinstance, minimum allowable capacityChord Reinforcement:Location8 =0lbsoff. Reinforcement is only required atVeb Reinforcement:Location8 =0lbsoff. Reinforcement is only required atVeb R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Location <sub>1</sub> =                                                                                                                                                  | 13.75 f                                                                                                                                                                                      | t                  | Start <sub>2</sub> =                | = 0                      | ft                              | Fy =           | 36       | ksi            |       |  |
| Live Load <sub>2</sub> = 0 lbs $DCR = 0.03$<br>Location <sub>2</sub> = 19.33 ft <i>Triangular Snow Drift Loads:</i><br>Dead Load <sub>3</sub> = 0 lbs +Drift Load <sub>1</sub> = 0 psf <i>Chord Reinforcement:</i><br>Live Load <sub>3</sub> = 0 lbs Peak <sub>1</sub> = 0 ft Not Required<br>Location <sub>3</sub> = 0 ft 0psf End <sub>1</sub> = 0 ft<br>Dead Load <sub>4</sub> = 0 lbs +Drift Load <sub>2</sub> = 0 psf<br>Live Load <sub>4</sub> = 0 lbs Peak <sub>2</sub> = 0 ft <i>Web Reinforcement:</i><br>Location <sub>4</sub> = 0 ft 0psf End <sub>2</sub> = 0 ft (1) - L2X2X1/8 at Each Member<br>Dead Load <sub>5</sub> = 0 lbs Is reinforcing reasonable? No From 8.25 ft to 13.5 ft<br>Live Load <sub>5</sub> = 0 lbs Shear capacity at 1.5 x Depth = 3021<br>Location <sub>5</sub> = 0 ft Note: Bar joists are typically constructed<br>symmetrically with equal sized web members<br>along the lengh. As a result the allowable<br>Live Load <sub>6</sub> = 0 lbs construction and design practices. For this<br>Location <sub>6</sub> = 0 ft list construction and design practices. For this<br>Location <sub>7</sub> = 0 ft list construction and design practices. For this<br>Location <sub>7</sub> = 0 ft list construction and design practices. For this<br>Location <sub>7</sub> = 0 ft list construction and design practices. For this<br>Location <sub>7</sub> = 0 ft list construction and design practices. For this<br>Location <sub>7</sub> = 0 ft list construction and design practices. For this<br>Location <sub>7</sub> = 0 ft list construction and design practices. For this<br>Location <sub>7</sub> = 0 ft list construction and design practices. For this<br>Location <sub>8</sub> = 0 lbs lostions where the applied shear is greater<br>Location <sub>8</sub> = 0 lbs lostions where the applied shear is greater<br>Location <sub>8</sub> = 0 ft than these allowables. Chord Reinforcement:<br>Web Reinforcement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RTU-2 =                                                                                                                                                                  | 320 II                                                                                                                                                                                       | os                 | End <sub>2</sub> =                  | = 0                      | ft                              | K =            | 1        |                |       |  |
| Location19.33 ftTriangular Snow Drift Loads:Dead Load0 lbs+Drift Load0 psfChord Reinforcement:Live Load0 lbsPeak0 ftNot RequiredLocation0 ft0psf End0 ftNot RequiredDead Load0 lbs+Drift Load0 psfWeb Reinforcement:Live Load0 lbs+Drift Load0 psfWeb Reinforcement:Location0 lbsPeak0 psf(1) - L2X2X1/8 at Each MemberLocation0 ft0psf End0 ft(1) - L2X2X1/8 at Each MemberDead Load0 lbsIs reinforcing reasonable?NoFrom 8.25 ft to 13.5 ftLive Load0 lbsShear capacity at 1.5 x Depth =3021And From 20.5 ft to 25.25 ftLocation0 lbsShear capacity is constant, except at the ends whereAnd From 20.5 ft to 25.25 ftLocation0 lbscapacity is constant, except at the ends wherecompanying shear diagram is based on the<br>code minimums and does not reflect actualLive Load0 lbsofffinstance, minimum allowable capacity<br>decreases to about 3021 lbs before leveling<br>Add load =0 lbsoff. Reinforcement is only required at<br>Live LoadChord Reinforcement:Live Load0 lbsoff. Reinforcement is only required at<br>LocationNot RequiredNot RequiredLocation0 lbsoff. Reinforcement is only required at<br>LocationNot Required at<br>LocationNot RequiredLocation0 lbsoff. Reinforcement is only required at<br>LocationNot Required <td>Live Load<sub>2</sub> =</td> <td>0   </td> <td>os</td> <td></td> <td></td> <td></td> <td>DCR =</td> <td>0.03</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Live Load <sub>2</sub> =                                                                                                                                                 | 0                                                                                                                                                                                            | os                 |                                     |                          |                                 | DCR =          | 0.03     |                |       |  |
| Dead Load_3 =0 lbs+Drift Load_1 =0 psfChord Reinforcement:Live Load_3 =0 lbsPeak_1 =0 ftNot RequiredLocation_3 =0 ft0 psf End_1 =0 ftItDead Load_4 =0 lbs+Drift Load_2 =0 psfItLive Load_4 =0 lbsPeak_2 =0 ftWeb Reinforcement:Location_4 =0 ft0 psf End_2 =0 ft(1) - L2X2X1/8 at Each MemberDead Load_5 =0 lbsIs reinforcing reasonable?NoFrom 8.25 ft to 13.5 ftLive Load_5 =0 lbsShear capacity at 1.5 x Depth =3021And From 20.5 ft to 25.25 ftLocation_5 =0 ftNote: Bar joists are typically constructedAnd From 20.5 ft to 25.25 ftDead Load_6 =0 lbscapacity is constant, except at the ends whereaccompanying shear diagram is based on the<br>code minimums and does not reflect actualLive Load_7 =0 lbsocn struction and design practices. For this<br>instance, minimum allowable capacity<br>decreases to about 3021 lbs before leveling<br>Add load =0 lbsocn struction and design practices. For this<br>instance, minimum allowable capacity<br>decreases to about 3021 lbs before leveling<br>Add load =0 lbsocn struction and design practices. For this<br>instance, minimum allowable shear is greater<br>than these allowables.Chord Reinforcement:Live Load_8 =0 lbsoff. Reinforcement is only required at<br>locations where the applied shear is greater<br>than these allowables.Web Reinforcement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Location <sub>2</sub> =                                                                                                                                                  | 19.33 f                                                                                                                                                                                      | t                  | Triangular Si                       | now Drit                 | t Loads:                        |                |          |                |       |  |
| Live Load3 =0lbsPeak1 =0ftNot RequiredLocation3 =0ft0psf End1 =0ftDead Load4 =0lbs+Drift Load2 =0psfLive Load4 =0lbsPeak2 =0ftWeb Reinforcement:Location4 =0ft0psf End2 =0ft(1) - L2X2X1/8 at Each MemberDead Load5 =0lbsIs reinforcing reasonable?NoFrom 8.25 ft to 13.5 ftLive Load5 =0lbsShear capacity at 1.5 x Depth =3021And From 20.5 ft to 25.25 ftLocation5 =0ftNote: Bar joists are typically constructedsymmetrically with equal sized web membersLocation6 =0lbscapacity is constant, except at the ends wherealong the lengh. As a result the allowableLive Load6 =0lbscompanying shear diagram is based on the<br>code minimums and does not reflect actualChord Reinforcement Welds:Location7 =0ftinstance, minimum allowable capacity<br>decreases to about 3021 lbs before leveling<br>Add load =0lbsconstruction and design practices. For this<br>instance, minimum allowable capacity<br>decreases to about 3021 lbs before leveling<br>Add load =0lbsconstruction and design practices.Add load =0lbsoff. Reinforcement is only required at<br>locations where the applied shear is greater<br>than these allowables.Web Reinforcement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dead Load <sub>3</sub> =                                                                                                                                                 | 0                                                                                                                                                                                            | os                 | +Drift Load <sub>1</sub> =          | = 0                      | psf                             | Chord Reinfo   | rcemen   | nt:            |       |  |
| Location0ft $0 psf End_1 = 0$ 0ftDead Load_40lbs $+Drift Load_2 = 0$ psfLive Load_40lbsPeak_2 = 0ft <i>Web Reinforcement:</i> Location_40ft0psf End_2 = 0ft(1) - L2X2X1/8 at Each MemberDead Load_50lbsIs reinforcing reasonable?NoFrom 8.25 ft to 13.5 ftLive Load_50lbsShear capacity at 1.5 x Depth = 3021And From 20.5 ft to 25.25 ftLocation_50ftNote: Bar joists are typically constructedDead Load_60lbssare aresult the allowableLive Load_60lbscapacity is constant, except at the ends whereLocation_60ftit decreases until the web is engaged. The<br>accompanying shear diagram is based on the<br>code minimums and does not reflect actualLive Load_70lbsconstruction and design practices. For this<br>instance, minimum allowable capacity<br>decreases to about 3021 lbs before leveling<br>off. Reinforcement is only required at<br>Live Load_8O lbsChord Reinforcement Welds:<br>Not RequiredAdd load =0lbsoff. Reinforcement the applied shear is greater<br>than these allowables.Web Reinforcement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Live Load <sub>3</sub> =                                                                                                                                                 | 0 II                                                                                                                                                                                         | os                 | Peak <sub>1</sub> =                 | = 0                      | ft                              | Not Required   | 1        |                |       |  |
| Dead Load_40lbs+Drift Load_20psfLive Load_40lbsPeak_20ftWeb Reinforcement:Location_40ft0psf End_20ft(1) - L2X2X1/8 at Each MemberDead Load_50lbsIs reinforcing reasonable?NoFrom 8.25 ft to 13.5 ftLive Load_50lbsShear capacity at 1.5 x Depth =3021And From 20.5 ft to 25.25 ftLocation_50ftNote: Bar joists are typically constructedDead Load_60lbscapacity is constant, except at the ends whereLive Load_60lbscapacity is constant, except at the ends whereLocation_60ftit decreases until the web is engaged. The<br>accompanying shear diagram is based on the<br>code minimums and does not reflect actualLive Load_70lbsconstruction and design practices. For this<br>instance, minimum allowable capacity<br>decreases to about 3021 lbs before leveling<br>off. Reinforcement is only required at<br>Live Load_6O lbsAdd load =0lbslocations where the applied shear is greater<br>than these allowables.Not RequiredVeb Reinforcement:Veb Reinforcement:Veb Reinforcement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Location <sub>3</sub> =                                                                                                                                                  | 0 f                                                                                                                                                                                          | t                  | 0psf End₁ =                         | = 0                      | ft                              |                |          |                |       |  |
| Live Load_4 =0lbsPeak_2 =0ftWeb Reinforcement:Location_4 =0ft0psf End_2 =0ft(1) - L2X2X1/8 at Each MemberDead Load_5 =0lbsIs reinforcing reasonable?NoFrom 8.25 ft to 13.5 ftLive Load_5 =0lbsShear capacity at 1.5 x Depth =3021And From 20.5 ft to 25.25 ftLocation_5 =0ftNote: Bar joists are typically constructedsymmetrically with equal sized web membersDead Load_6 =0lbscapacity is constant, except at the ends whereaccompanying shear diagram is based on the<br>code minimums and does not reflect actualLive Load_7 =0lbsconstruction and design practices. For thisChord Reinforcement Welds:Location_7 =0ftReinforcement is only required atNot RequiredLive Load_8 =0lbslocations where the applied shear is greater<br>than these allowables.Web Reinforcement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dead Load <sub>4</sub> =                                                                                                                                                 | 0                                                                                                                                                                                            | os                 | +Drift Load <sub>2</sub> =          | = 0                      | psf                             |                |          |                |       |  |
| Location $=$ 0 ft0psf End $=$ 0 ft(1) - L2X2X1/8 at Each MemberDead Load $=$ 0 lbsIs reinforcing reasonable?NoFrom 8.25 ft to 13.5 ftLive Load $=$ 0 lbsShear capacity at 1.5 x Depth =3021And From 20.5 ft to 25.25 ftLocation $=$ 0 ftNote: Bar joists are typically constructedAnd From 20.5 ft to 25.25 ftDead Load $=$ 0 lbssymmetrically with equal sized web membersalong the lengh. As a result the allowableLive Load $=$ 0 lbscapacity is constant, except at the ends wherecapacity is constant, except at the ends whereLocation $=$ 0 ftit decreases until the web is engaged. The<br>accompanying shear diagram is based on the<br>code minimums and does not reflect actualChord Reinforcement Welds:Location $=$ 0 lbsoff. Reinforcement is only required at<br>locations where the applied shear is greater<br>than these allowables.Chord Reinforcement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Live Load <sub>4</sub> =                                                                                                                                                 | 0                                                                                                                                                                                            | os                 | Peak <sub>2</sub> =                 | = 0                      | ft                              | Web Reinford   | ement:   |                |       |  |
| Dead Loads=0lbsIs reinforcing reasonable?NoFrom 8.25 ft to 13.5 ftLive Loads =0lbsShear capacity at 1.5 x Depth = $3021$ And From 20.5 ft to 25.25 ftLocations =0ftNote: Bar joists are typically constructedsymmetrically with equal sized web members<br>along the lengh. As a result the allowableLive Load6 =0lbscapacity is constant, except at the ends where<br>to capacity is constant, except at the ends where<br>cocation6 =0Location6 =0ftit decreases until the web is engaged. The<br>accompanying shear diagram is based on the<br>code minimums and does not reflect actual<br>Live Load7 =0Live Load7 =0lbsconstruction and design practices. For this<br>instance, minimum allowable capacity<br>decreases to about 3021 lbs before leveling<br>Add load =Chord Reinforcement Welds:<br>Not RequiredAdd load =0lbslbslocations where the applied shear is greater<br>than these allowables.Web Reinforcement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $Location_4 =$                                                                                                                                                           | 0 f                                                                                                                                                                                          | t                  | 0psf End <sub>2</sub> =             | = 0                      | ft                              | (1) - L2X2X1/  | 8 at Ea  | ch Member      |       |  |
| Live Load <sub>5</sub> = 0 lbs Shear capacity at $1.5 \times Depth = 3021$ And From 20.5 ft to 25.25 ft<br>Location <sub>5</sub> = 0 ft Note: Bar joists are typically constructed<br>Symmetrically with equal sized web members<br>along the lengh. As a result the allowable<br>Live Load <sub>6</sub> = 0 lbs capacity is constant, except at the ends where<br>Location <sub>6</sub> = 0 ft it decreases until the web is engaged. The<br>accompanying shear diagram is based on the<br>code minimums and does not reflect actual<br>Live Load <sub>7</sub> = 0 lbs construction and design practices. For this<br>Location <sub>7</sub> = 0 ft instance, minimum allowable capacity<br>Add load = 0 lbs off. Reinforcement is only required at<br>Live Load <sub>8</sub> = 0 lbs locations where the applied shear is greater<br>Location <sub>8</sub> = 0 ft than these allowables. Web Reinforcement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dead Load <sub>5</sub> =                                                                                                                                                 | 0                                                                                                                                                                                            | os Is reinf        | orcing reasonable                   | ?                        | No                              | From 8.25 ft   | to 13.5  | ft             |       |  |
| Location0ftNote: Bar joists are typically constructed<br>symmetrically with equal sized web members<br>along the lengh. As a result the allowableLive Load0lbscapacity is constant, except at the ends where<br>it decreases until the web is engaged. The<br>accompanying shear diagram is based on the<br>code minimums and does not reflect actual<br>Live LoadThe<br>accompanying shear diagram is based on the<br>code minimums and does not reflect actual<br>code minimum allowable capacity<br>decreases to about 3021 lbs before leveling<br>Add load =Chord Reinforcement Welds:<br>Not RequiredAdd load =0lbsoff. Reinforcement is only required at<br>Locations where the applied shear is greater<br>than these allowables.Web Reinforcement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Live Load <sub>5</sub> =                                                                                                                                                 | 0                                                                                                                                                                                            | Shear              | capacity at 1.5 x D                 | epth =                   | 3021                            | And From 20    | .5 ft to | 25.25 ft       |       |  |
| Dead Load_60lbssymmetrically with equal sized web members<br>along the lengh. As a result the allowable<br>capacity is constant, except at the ends where<br>it decreases until the web is engaged. The<br>accompanying shear diagram is based on the<br>code minimums and does not reflect actual<br>Live Load_7Chord Reinforcement Welds:<br>Not RequiredLocation_70ftinstance, minimum allowable capacity<br>decreases to about 3021 lbs before leveling<br>off. Reinforcement is only required at<br>Live Load_8Chord Reinforcement Welds:<br>Not RequiredAdd load =0lbslbslocations where the applied shear is greater<br>than these allowables.Web Reinforcement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Location <sub>5</sub> =                                                                                                                                                  | 0 f                                                                                                                                                                                          | t Note:            | Bar joists are ty                   | pically co               | Instructed                      |                |          |                |       |  |
| Live Load_6 =0lbscapacity is constant, except at the ends where<br>it decreases until the web is engaged. The<br>accompanying shear diagram is based on the<br>code minimums and does not reflect actual<br>Live Load_7 =0lbscapacity is constant, except at the ends where<br>it decreases until the web is engaged. The<br>accompanying shear diagram is based on the<br>code minimums and does not reflect actual<br>code minimum allowable capacity<br>decreases to about 3021 lbs before leveling<br>Add load =Chord Reinforcement Welds:<br>Not RequiredAdd load =0lbsoff. Reinforcement is only required at<br>locations where the applied shear is greater<br>than these allowables.Web Reinforcement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dead Load <sub>6</sub> =                                                                                                                                                 | 0                                                                                                                                                                                            | os along           | the lengh. As a                     | result the               | e allowable                     |                |          |                |       |  |
| Location <sub>6</sub> =0ftit decreases until the web is engaged. The<br>accompanying shear diagram is based on the<br>code minimums and does not reflect actual<br>Live Load <sub>7</sub> =0lbsChord Reinforcement Welds:Live Load <sub>7</sub> =0lbsconstruction and design practices. For this<br>instance, minimum allowable capacity<br>decreases to about 3021 lbs before leveling<br>off. Reinforcement is only required at<br>Live Load <sub>8</sub> =Chord Reinforcement Welds:<br>Not RequiredAdd load =0lbslocations where the applied shear is greater<br>than these allowables.Web Reinforcement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Live Load <sub>6</sub> =                                                                                                                                                 | 0                                                                                                                                                                                            | os capac           | ity is constant, e                  | except at                | the ends where                  | l.             |          |                |       |  |
| Dead LoadOIbscode minimums and does not reflect actual<br>construction and design practices. For this<br>instance, minimum allowable capacity<br>decreases to about 3021 lbs before leveling<br>Add load = 0Chord Reinforcement Welds:<br>Not RequiredAdd load = 0Ibsoff. Reinforcement is only required at<br>locations where the applied shear is greater<br>than these allowables.Web Reinforcement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Location <sub>6</sub> =                                                                                                                                                  | 0 f                                                                                                                                                                                          | t it decr          | eases until the v                   | veb is er<br>diagram     | igaged. The                     |                |          |                |       |  |
| Live Load7 =0lbsconstruction and design practices. For this<br>instance, minimum allowable capacity<br>decreases to about 3021 lbs before leveling<br>off. Reinforcement is only required at<br>Live Load8 =Chord Reinforcement Welds:<br>Not RequiredAdd load =0lbslocations where the applied shear is greater<br>than these allowables.Web Reinforcement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dead Load <sub>7</sub> =                                                                                                                                                 | 0                                                                                                                                                                                            | os code i          | minimums and d                      | oes not                  | reflect actual                  |                |          |                |       |  |
| Location0ftInstance, minimum allowable capacity<br>decreases to about 3021 lbs before leveling<br>off. Reinforcement is only required at<br>locations where the applied shear is greater<br>than these allowables.Chord Reinforcement Welds:<br>Not RequiredLocation0lbslocations where the applied shear is greater<br>than these allowables.Web Reinforcement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Live Load <sub>7</sub> =                                                                                                                                                 | 0                                                                                                                                                                                            | os constr          | uction and desig                    | gn practio               | ces. For this                   |                |          |                |       |  |
| Add load =0lbsoff. Reinforcement is only required at<br>locations where the applied shear is greater<br>than these allowables.Not RequiredLocation<br>80ftWeb Reinforcement:<br>$Web Reinforcement:$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Location <sub>7</sub> =                                                                                                                                                  | 0 f                                                                                                                                                                                          | t Instan<br>decres | ce, minimum all<br>ases to about 30 | owable c<br>)21 lhs h    | apacity<br>efore leveling       | Chord Reinfo   | rcemen   | t Welds:       |       |  |
| Live Load <sub>8</sub> = $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Add load =                                                                                                                                                               | 0                                                                                                                                                                                            | DS off. Re         | einforcement is o                   | only requ                | ired at                         | Not Required   | 1        |                |       |  |
| Location <sub>8</sub> = 0 ft Web Reinforcement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Live Load <sub>8</sub> =                                                                                                                                                 | 0                                                                                                                                                                                            | os locatio         | ons where the ap                    | oplied sh                | ear is greater                  |                |          |                |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Location <sub>8</sub> =                                                                                                                                                  | <mark>0</mark> f                                                                                                                                                                             | t than t           | nese allowables                     |                          |                                 | Web Reinford   | ement:   |                |       |  |

 CASSE
 CUSTOMER:
 Wingstop
 PROJECT NUMBER: WIL-MO-04-21

 LOCATION:
 Lee's Summit, MO
 DATE: 6/10/2021

 Office: 536-349-1730
 SUBJECT:
 Steel Joist Analysis for Mechanical Units

 Website: www.caseengineeringinc.com
 PREPARED BY: K. Woodard
 File:
 0



| CASSE<br>Engineering Inc.<br>Office: 636-349-1600<br>Fax: 636-349-1730<br>Website: www.caseengineeringinc.com |                        | CUSTOMER:<br>LOCATION:<br>SUBJECT:<br>PREPARED BY: | Wingstop<br>Lee's Summit, MO<br>Steel Joist Analysis<br>K. Woodard | for Mechanical Ui<br>File: | PRO           | JECT NUMBER: WIL-MO-04-21<br>DATE: 6/10/2021 |
|---------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------|--------------------------------------------------------------------|----------------------------|---------------|----------------------------------------------|
| Steel Joist                                                                                                   | Analysis o             | of Irregular I                                     | ₋oads J-2:                                                         |                            |               |                                              |
| Joist =                                                                                                       | 20K4                   |                                                    |                                                                    | S                          | trength Analy | /sis Results:                                |
| Length =                                                                                                      | <mark>34</mark> ft     |                                                    |                                                                    |                            | Bending       | Failed from 9 to 31                          |
| Trib. Width =                                                                                                 | <mark>5</mark> ft      |                                                    |                                                                    |                            | Max DCR =     | 1.04                                         |
| E =                                                                                                           | <mark>29000</mark> ksi |                                                    |                                                                    |                            | Shear         | Failed from 0to16, 23to40                    |
| Live $\Delta_a$ =                                                                                             | L/240                  |                                                    |                                                                    |                            | Max DCR =     | 1.31                                         |
|                                                                                                               |                        |                                                    |                                                                    |                            |               |                                              |
| Allowable Loa                                                                                                 | ds:                    |                                                    |                                                                    | D                          | CR Limits wi  | thout reinforcement:                         |
| Total Load <sub>a</sub> =                                                                                     | 212 plf (foi           | <sup>-</sup> stress)                               |                                                                    |                            | Bending:      | 1.00                                         |
| Live Load <sub>a</sub> =                                                                                      | 212 plf (for           | deflection)                                        |                                                                    |                            | Shear:        | 1.00                                         |

Full Uniform Loads:

15 psf

~ ~

Dead Load =

.. . .

| Live Load =              | 20    | psr |
|--------------------------|-------|-----|
| Point Loads:             |       |     |
| RTU-2 =                  | 320   | lbs |
| Live Load <sub>1</sub> = | 0     | lbs |
| Location <sub>1</sub> =  | 13.75 | ft  |
| RTU-2 =                  | 320   | lbs |
| Live Load <sub>2</sub> = | 0     | lbs |
| Location <sub>2</sub> =  | 19.33 | ft  |
| EF =                     | 91.85 | lbs |
| Live Load <sub>3</sub> = | 0     | lbs |
| Location <sub>3</sub> =  | 0.67  | ft  |
| EF =                     | 91.85 | lbs |
| Live Load <sub>4</sub> = | 0     | lbs |
| Location <sub>4</sub> =  | 2.167 | ft  |
| Hood =                   | 91.2  | lbs |
| Live Load <sub>5</sub> = | 0     | lbs |
| Location <sub>5</sub> =  | 3.1   | ft  |
| Hood =                   | 15.2  | lbs |
| Live Load <sub>6</sub> = | 0     | lbs |
| Location <sub>6</sub> =  | 5.04  | ft  |
| Hood =                   | 391.2 | lbs |
| Live Load <sub>7</sub> = | 0     | lbs |
| Location <sub>7</sub> =  | 8.92  | ft  |
| Hood =                   | 15.2  | lbs |
| Live Load <sub>8</sub> = | 0     | lbs |
| Location <sub>a</sub> =  | 9.92  | ft  |

Partial Uniform Loads: Dead Load<sub>1</sub>= 0 psf Live Load<sub>1</sub> = 0 psf Start₁ = 0 ft  $End_1 =$ 0 ft Dead Load<sub>2</sub>= 0 psf Live Load<sub>2</sub> = 0 psf Start<sub>2</sub> = 0 ft  $End_2 =$ 0 ft Triangular Snow Drift Loads: +Drift Load<sub>1</sub>= 0 psf Peak<sub>1</sub> = 0 ft  $0psf End_1 =$ 0 ft +Drift Load<sub>2</sub>= 0 psf Peak<sub>2</sub> = 0 ft  $0psf End_2 =$ 0 ft Is reinforcing reasonable? No 3021 Shear capacity at 1.5 x Depth = Note: Bar joists are typically constructed symmetrically with equal sized web members along the lengh. As a result the allowable capacity is constant, except at the ends where it decreases until the web is engaged. The accompanying shear diagram is based on the code minimums and does not reflect actual construction and design practices. For this instance, minimum allowable capacity decreases to about 3021 lbs before leveling off. Reinforcement is only required at locations where the applied shear is greater

than these allowables.

 T&B Chords:
 0.500
 Dia. Rods

 Fy =
 36
 ksi

 K =
 0.65
 12

 L =
 12
 in

 DCR =
 0.13
 Uebs:

 L1X1X1/8
 Fy =
 36
 ksi

 K =
 1
 DCR =
 0.26

Joist Reinforcement Design:

Chord Reinforcement: (2) - 0.5" Dia. 36 ksi Rods, T&B From 13 ft to 19.75 ft

Web Reinforcement: (1) - L1X1X1/8 at Each Member From 0 ft to 8.75 ft And From 11.75 ft to 13 ft And From 19.75 ft to 28.75 ft

Chord Reinforcement Welds: (2) - 0.125" x 1" Welds at 12"oc

Web Reinforcement: 0.125" x 1" Total Weld at Each End 

 CASSE
 CUSTOMER:
 Wingstop
 PROJECT NUMBER: WIL-MO-04-21

 LOCATION:
 Lee's Summit, MO
 DATE: 6/10/2021

 Office: 636-349-1730
 SUBJECT:
 Steel Joist Analysis for Mechanical Units

 Website: www.caseengineeringinc.com
 PREPARED BY: K. Woodard
 File:
 0



| CASE<br>Engineering Inc.<br>Office: 836-349-1800<br>Fax: 836-349-1730<br>Website: www.caseengineeringinc.com |       | CUSTOMER:<br>LOCATION:<br>SUBJECT:<br>PREPARED BY: | Wingstop<br>Lee's Summit, MO<br>Steel Joist Analysis<br>K. Woodard | for Mechanical<br>File: | PRO | DJECT NUMI<br>D | BER: WIL-MO-04-21<br>ATE: 6/11/2021 |                  |
|--------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------|--------------------------------------------------------------------|-------------------------|-----|-----------------|-------------------------------------|------------------|
| Steel Joist                                                                                                  | Analy | /sis o                                             | f Irregular L                                                      | ₋oads J-3:              |     |                 |                                     |                  |
| Joist =                                                                                                      | 20K4  |                                                    |                                                                    |                         |     | Strength Ana    | lysis Resu                          | lts:             |
| Length =                                                                                                     | 34    | ft                                                 |                                                                    |                         |     | Bending         | Failed fro                          | om 9 to 31       |
| Trib. Width =                                                                                                | 5     | ft                                                 |                                                                    |                         |     | Max DCR =       | 1.05                                |                  |
| E =                                                                                                          | 29000 | ksi                                                |                                                                    |                         |     | Shear           | Failed fro                          | om 0to16, 23to40 |
| Live $\Delta_a =$                                                                                            | L/240 |                                                    |                                                                    |                         |     | Max DCR =       | 1.30                                |                  |
|                                                                                                              |       |                                                    |                                                                    |                         |     |                 |                                     |                  |

0 psf

0 psf

0 ft

0 ft

0 psf

0 psf

0 ft

0 ft

0 psf

0 ft

0 ft

0 psf

0 ft

0 ft

No

3021

Start₁ =

End₁ =

Start<sub>2</sub> =

 $End_2 =$ 

Peak<sub>1</sub> =

Peak<sub>2</sub> =

0psf End₁ =

 $0psf End_2 =$ 

DCR Limits without reinforcement: Bending: 1.00 1.00 Shear:

Joist Reinforcement Design:

T&B Chords: 0.500 Dia. Rods Fv = 36 ksi K = 0.65 L = 12 in DCR = 0.14 Webs: L1X1X1/8 Fv = 36 ksi K = 1 DCR = 0.33

Chord Reinforcement: (2) - 0.5" Dia. 36 ksi Rods, T&B From 12.5 ft to 19.75 ft

Web Reinforcement: (1) - L1X1X1/8 at Each Member From 0 ft to 9.75 ft And From 19.75 ft to 28.5 ft

Chord Reinforcement Welds:

(2) - 0.125" x 1" Welds at 12"oc

Web Reinforcement: 0.125" x 1" Total Weld at Each End

Allowable Loads: Total Load<sub>a</sub> = 212 plf (for stress) Live Load<sub>a</sub> = 212 plf (for deflection) Full Uniform Loads: Partial Uniform Loads: Dead Load = Dead Load₁= 15 psf Live Load = Live Load<sub>1</sub> = 20 psf Point Loads: MAU = 263.9 lbs Dead Load<sub>2</sub>= Live Load₁ = 0 lbs Live Load<sub>2</sub> = Location<sub>1</sub> = 13.25 ft MAU = 263.9 lbs Live Load<sub>2</sub> = 0 lbs Location<sub>2</sub> = 19.17 ft Triangular Snow Drift Loads: EF = 18.15 lbs +Drift Load<sub>1</sub>= Live Load<sub>3</sub> = 0 lbs Location<sub>3</sub> = 0.67 ft Hood+EF = 145.1 lbs +Drift Load<sub>2</sub>= Live Load₄ = 0 lbs Location<sub>4</sub> = 2.167 ft Is reinforcing reasonable? Hood = 76 lbs Live Load<sub>5</sub> = 0 lbs Shear capacity at 1.5 x Depth = Note: Bar joists are typically constructed  $Location_5 =$ 3.1 ft symmetrically with equal sized web members Hood = 126.9 lbs along the lengh. As a result the allowable Live Load<sub>6</sub> = 0 lbs capacity is constant, except at the ends where it decreases until the web is engaged. The  $Location_6 = 5.04$  ft accompanying shear diagram is based on the Hood = 76 lbs code minimums and does not reflect actual Live Load<sub>7</sub> = 0 lbs construction and design practices. For this instance, minimum allowable capacity Location<sub>7</sub> = 8.92 ft decreases to about 3021 lbs before leveling Hood = 426.9 lbs off. Reinforcement is only required at Live Load<sub>8</sub> = locations where the applied shear is greater 0 lbs than these allowables.  $Location_8 = 9.92$  ft

 
 CASSE
 CUSTOMER:
 Wingstop
 PROJECT NUMBER: WIL-MO-04-21

 LOCATION:
 Lee's Summit, MO
 DATE: 6/11/2021

 Office: 636-349-1700 Fax: 636-349-1700
 SUBJECT:
 Steel Joist Analysis for Mechanical Units

 Website: www.caseengineeringinc.com
 PREPARED BY: K. Woodard
 File:
 0



| CA<br>Enginee             | SE<br>ring Inc. | CUSTC<br>LOCAT<br>SUBJE | MER: Wingsto<br>ION: Lee's St<br>CT: Steel Jo | p<br>ummit, MO<br>ist Analysis for | PRC<br>Mechanical Units | DJECT N  | UMBER: WIL-MO-04-21<br>DATE: 6/11/2021 |
|---------------------------|-----------------|-------------------------|-----------------------------------------------|------------------------------------|-------------------------|----------|----------------------------------------|
| Website: www.cased        | engineeringi    | inc.com PREPA           | RED BY: K. Wood                               | dard F                             | ile:                    |          |                                        |
|                           | Anal            |                         |                                               | 1.4.                               |                         |          |                                        |
| Steel Joist               | Analy           | ysis of irreg           | gular Loads                                   | J-4:                               |                         |          |                                        |
| Joist =                   | 20K4            |                         |                                               |                                    | Strength Anal           | ysis Re  | esults:                                |
| Length =                  | 34              | ft                      |                                               |                                    | Bending                 | assed    |                                        |
| Trib. Width =             | 5               | ft                      |                                               |                                    | Max DCR =               | 0.89     |                                        |
| E =                       | 29000           | ksi                     |                                               |                                    | Shear                   | assed    |                                        |
| Live $\Delta_a =$         | L/240           |                         |                                               |                                    | Max DCR =               | 0.98     |                                        |
|                           |                 |                         |                                               |                                    |                         |          |                                        |
| Allowable Loa             | ds:             |                         |                                               |                                    | DCR Limits w            | ithout r | einforcement:                          |
| Total Load <sub>a</sub> = | 212             | plf (for stress         | )                                             |                                    | Bending:                | 1.00     |                                        |
| Live Load <sub>a</sub> =  | 212             | plf (for deflec         | tion)                                         |                                    | Shear:                  | 1.00     |                                        |
|                           |                 |                         |                                               |                                    |                         |          |                                        |
| Full Uniform L            | .oads:          |                         | Partial Unifori                               | m Loads:                           | Joist Reinford          | ement    | Design:                                |
| Dead Load =               | 15              | psf                     | Dead Load <sub>1</sub> =                      | 0 psf                              | T&B Chords:             | 0.500    | Dia. Rods                              |
| Live Load =               | 20              | psf                     | Live Load <sub>1</sub> =                      | 0 psf                              | Fy =                    | 36       | ksi                                    |
|                           |                 |                         | Start <sub>1</sub> =                          | <mark>0</mark> ft                  | K =                     | 0.65     |                                        |
| Point Loads:              |                 |                         | End <sub>1</sub> =                            | <mark>0</mark> ft                  | L =                     | 12       | in                                     |
| MAU =                     | 79              | lbs                     | Dead Load <sub>2</sub> =                      | 0 psf                              | DCR =                   | 0.00     |                                        |
| Live Load <sub>1</sub> =  | 0               | lbs                     | Live Load <sub>2</sub> =                      | 0 psf                              | Webs:                   | L2X2X    | (1/8                                   |
| Location <sub>1</sub> =   | 13.25           | ft                      | Start <sub>2</sub> =                          | <mark>0</mark> ft                  | Fy =                    | 36       | ksi                                    |
| MAU =                     | 79              | lbs                     | $End_2 =$                                     | <mark>0</mark> ft                  | K =                     | 1        |                                        |
| Live Load <sub>2</sub> =  | 0               | lbs                     |                                               |                                    | DCR =                   | 0.00     | -                                      |
| $Location_2 =$            | 19.17           | ft                      | Triangular Sn                                 | ow Drift Loa                       | ds:                     |          |                                        |

0 psf

0 ft

0 ft

0 psf

0 ft

0 ft

+Drift Load<sub>1</sub>=

 $0psf End_1 =$ 

 $0psf End_2 =$ 

+Drift Load<sub>2</sub>=

Peak<sub>1</sub> =

Peak<sub>2</sub> =

RTU-1 = 325.5 lbs

Hood = 25.08 lbs

Hood = 25.08 lbs

Hood = 124.1 lbs

 $Location_8 = 9.92$  ft

 $Location_6 = 5.04$  ft

Location<sub>3</sub> = 1.33 ft

Location<sub>4</sub> = 2.167 ft

0 lbs

0 lbs

0 lbs

0 lbs

0 ft

0 lbs

0 lbs

0 lbs

0 ft

0 lbs

Live Load<sub>3</sub> =

Live Load<sub>4</sub> =

Dead Load =

Live Load<sub>5</sub> =

Location<sub>5</sub> =

Live Load<sub>6</sub> =

Dead Load =

Live Load<sub>7</sub> =

 $Location_7 =$ 

Live Load<sub>8</sub> =

Chord Reinforcement: **Not Required** 

Web Reinforcement: **Not Required** 

Chord Reinforcement Welds: **Not Required** 

Web Reinforcement: **Not Required** 

 CASSE
 CUSTOMER:
 Wingstop
 PROJECT NUMBER: WIL-MO-04-21

 LOCATION:
 Lee's Summit, MO
 DATE: 6/11/2021

 Office: 636-349-1730
 SUBJECT:
 Steel Joist Analysis for Mechanical Units

 Website: www.caseengineeringinc.com
 PREPARED BY: K. Woodard
 File:
 0



| Enginee<br>Office: 638<br>Fax: 638-<br>Website: www.case | CUSTO<br>LOCATI<br>SUBJEC<br>inc.com PREPA   | MER:<br>ON:<br>CT:<br>RED BY: | Wingstop<br>Lee's Sumi<br>Steel Joist<br>K. Woodare | mit, MO<br>Analysis<br>d | for Mechanical<br>File: | UMBER: WIL-MO-04-21<br>DATE: 6/10/2021 |                |          |               |  |  |  |  |  |  |
|----------------------------------------------------------|----------------------------------------------|-------------------------------|-----------------------------------------------------|--------------------------|-------------------------|----------------------------------------|----------------|----------|---------------|--|--|--|--|--|--|
| Steel Joist                                              | Steel Joist Analysis of Irregular Loads J-5: |                               |                                                     |                          |                         |                                        |                |          |               |  |  |  |  |  |  |
| Joist =                                                  | 20K4                                         |                               |                                                     |                          |                         |                                        | Strength Anal  | ysis Re  | sults:        |  |  |  |  |  |  |
| Length =                                                 | 34                                           | ft                            |                                                     |                          |                         | Bending'assed                          |                |          |               |  |  |  |  |  |  |
| Trib. Width =                                            | 5                                            | ft                            |                                                     |                          |                         | Max DCR = <b>0.86</b>                  |                |          |               |  |  |  |  |  |  |
| E =                                                      | 29000                                        | ksi                           |                                                     |                          |                         | Shear Failed from 0to16, 23to40        |                |          |               |  |  |  |  |  |  |
| Live $\Delta_a =$                                        | L/240                                        |                               |                                                     |                          |                         |                                        | Max DCR =      | 1.02     |               |  |  |  |  |  |  |
| Allowable Loa                                            | ads:                                         |                               |                                                     |                          |                         |                                        | DCR Limits w   | ithout r | einforcement: |  |  |  |  |  |  |
| Total Load <sub>a</sub> =                                | 212                                          | plf (for stress)              | )                                                   |                          |                         |                                        | Bending:       | 1.00     |               |  |  |  |  |  |  |
| Live Load <sub>a</sub> =                                 | 212                                          | plf (for deflect              | ion)                                                |                          |                         |                                        | Shear:         | 1.00     |               |  |  |  |  |  |  |
| Full Uniform L                                           | .oads:                                       |                               | Partial                                             | Uniform I                | Loads:                  |                                        | Joist Reinforc | ement    | Design:       |  |  |  |  |  |  |
| Dead Load =                                              | 15                                           | psf                           | Dead I                                              | Load <sub>1</sub> =      | 0 ps                    | f                                      | T&B Chords:    | 0.500    | Dia. Rods     |  |  |  |  |  |  |
| Live Load =                                              | 20                                           | psf                           | Live L                                              | .oad <sub>1</sub> =      | <mark>0</mark> ps       | f                                      | Fy =           | 36       | ksi           |  |  |  |  |  |  |
|                                                          |                                              |                               | 5                                                   | Start₁ =                 | <mark>0</mark> ft       |                                        | K =            | 0.65     |               |  |  |  |  |  |  |
| Point Loads:                                             |                                              |                               |                                                     | End₁ =                   | 0 ft                    |                                        | L =            | 12       | in            |  |  |  |  |  |  |

0 psf

0 psf

0 ft

0 ft

0 psf

0 ft

0 ft

0 psf

0 ft

0 ft

No

3021

Hood =

Live Load<sub>1</sub> =

Live Load<sub>2</sub> =

Dead Load =

Live Load<sub>3</sub> =

 $Location_3 =$ 

Dead Load =

Live Load₄ =

Location₄ =

Dead Load =

Live Load<sub>5</sub> =

Location<sub>5</sub> =

Dead Load =

Live Load<sub>6</sub> =

 $Location_6 =$ 

Dead Load =

Live Load<sub>7</sub> =

Location<sub>7</sub> =

Dead Load =

Live Load<sub>8</sub> =

 $Location_8 =$ 

 $Location_2 =$ 

Location<sub>1</sub> =

509 lbs

2.33 ft

5.25 ft

RTU-1 = 148.8 lbs

0 lbs

0 lbs

0 lbs

0 lbs

0 ft

Dead Load<sub>2</sub>=

Live Load<sub>2</sub> =

+Drift Load<sub>1</sub>=

 $0psf End_1 =$ 

+Drift Load<sub>2</sub>=

 $0psf End_2 =$ 

Is reinforcing reasonable?

than these allowables.

Shear capacity at 1.5 x Depth =

Peak<sub>1</sub> =

Peak<sub>2</sub> =

Note: Bar joists are typically constructed

along the lengh. As a result the allowable

symmetrically with equal sized web members

capacity is constant, except at the ends where it decreases until the web is engaged. The

accompanying shear diagram is based on the

code minimums and does not reflect actual

construction and design practices. For this instance, minimum allowable capacity

decreases to about 3021 lbs before leveling

locations where the applied shear is greater

off. Reinforcement is only required at

Start<sub>2</sub> =

 $End_2 =$ 

Triangular Snow Drift Loads:

Web Reinforcement: (1) - L1X1X1/8 at Each Member From 1 ft to 2.25 ft

DCR =

Fy =

K =

DCR =

Chord Reinforcement:

Not Required

0.00

36 ksi

1

0.05

Webs: L1X1X1/8

Chord Reinforcement Welds:

**Not Required** 

Web Reinforcement: 0.125" x 1" Total Weld at Each End 

 CASSE
 CUSTOMER:
 Wingstop
 PROJECT NUMBER: WIL-MO-04-21

 LOCATION:
 Lee's Summit, MO
 DATE: 6/10/2021

 Office: 536-349-1730
 SUBJECT:
 Steel Joist Analysis for Mechanical Units

 Website: www.caseengineeringinc.com
 PREPARED BY: K. Woodard
 File:
 0



| CASE                                                                                         |                                                        |                           |                         |            |
|----------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------|-------------------------|------------|
|                                                                                              |                                                        |                           |                         |            |
| Engineering Inc.                                                                             |                                                        |                           |                         |            |
| PROJECT NAME:                                                                                | Wingstop                                               |                           | PROJ # WIL-MO-04-       | 21         |
| LOCATION:                                                                                    |                                                        |                           |                         |            |
| SUBJECT:                                                                                     | Unit Overturning Check RTU-2                           |                           | Updated                 | 8/8/2019   |
| PREPARED BY:                                                                                 | K. Woodard                                             |                           | DATE:                   | 6/10/2021  |
| Ur                                                                                           | hit Overturning per ASCE 7-16 W                        | ind Design                |                         | Input      |
| Risk Category                                                                                |                                                        |                           | (Table 1.5-1)           | Output     |
| Exposure Category                                                                            |                                                        | В                         | (Section 26.7.3)        |            |
| Height Above Ground Level, z (ft)                                                            |                                                        | 17                        |                         |            |
| Velocity Pressure Exposure Coefficient Kz                                                    | 0.6125                                                 | (Table 26.10-1)           |                         |            |
| Topographic Factor, K <sub>zt</sub>                                                          | 1.0                                                    | (Section 26.8-2 and Fi    | gure 26.8-1)            |            |
| Wind Directionality Factor, K <sub>d</sub>                                                   |                                                        | 0.85                      | (Section 26.6 and Tab   | le 26.6-1) |
| Ground Elevation Factor, K <sub>e</sub>                                                      |                                                        | 1                         | (Section 26.9 and Tab   | le 26.9-1) |
| Ultimate Wind Speed 3-s Gust, V (mph)                                                        |                                                        | 109                       | (Figures 26.5-1 and 26  | 5.5-2)     |
| Velocity Pressure a (nef)                                                                    | $a = 0.0256 K V V V V^2$                               | 15.0                      | (Equation 26.10-1)      |            |
| verservy riessure, q <sub>z</sub> (psi)                                                      | $q_Z = .00230\Lambda_Z\Lambda_Zt\Lambda_d\Lambda_eV^2$ | 15.8                      |                         |            |
|                                                                                              |                                                        |                           |                         |            |
| Equipment Parame                                                                             | ters                                                   |                           |                         |            |
| Depth, D (in) (Least horizontal dimension at the                                             | e elevation considered)                                | 44.3                      |                         |            |
| Wight, W (in)<br>Height, H (in) (add curb beight to this, curb is tw                         | nically 14" MIN)                                       | 70.0                      |                         |            |
| Weight, W. (lb)                                                                              |                                                        | 785                       |                         |            |
|                                                                                              |                                                        | 705                       |                         |            |
| Gust Factor, GC <sub>r</sub>                                                                 |                                                        | 1.9                       | (Section 29.4.1)        |            |
| Decide that $A_{rec}$ Normal to the $M(red A_{rec}^2)$                                       | $W \times H$                                           | 22.0                      |                         |            |
| Projected Area Normal to the wind, A <sub>f</sub> (Ft )                                      | $A_f =$                                                | 22.0                      |                         |            |
| Design Wind Force, F <sub>b</sub> (lb), (ASD)                                                | $F_h = q_z(GC_r)A_f$                                   | 411                       | (Equation 29.4-1)       |            |
|                                                                                              | · · · · · · ,                                          |                           |                         |            |
|                                                                                              |                                                        |                           |                         |            |
| Overturning Moment, M <sub>o</sub> (lb-in)                                                   | $M_0 = F_h x.67H$                                      | 12919                     |                         |            |
| Postoring Moment M (Ib in)                                                                   | D                                                      | 10424                     |                         |            |
| Restoring Moment, M <sub>R</sub> (ID-IN)                                                     | $M_R = .6W_p x \frac{1}{2}$                            | 10421                     |                         |            |
|                                                                                              |                                                        |                           |                         |            |
| Resulant Force, (Ib)                                                                         | $=\frac{M_O-M_R}{R}$                                   | 56                        |                         |            |
| n.                                                                                           | D                                                      |                           |                         |            |
| Uplift?                                                                                      | sultant Force $> 0 \rightarrow YES$                    | YES                       |                         |            |
|                                                                                              |                                                        |                           |                         |            |
| Curb to Roof Fast                                                                            | ener Strength                                          |                           |                         |            |
| 3/8" Ø Steel Bolt                                                                            |                                                        |                           |                         |            |
| <b>Tensile Strength, lbs</b> $= \frac{F_{nt} \times A_b}{1000} \times 1000$                  | 2485                                                   | Ω = 2                     | .0                      |            |
| Ω                                                                                            |                                                        | Ept (kai) - 4             | 5.0                     |            |
| (2) Bolts per side O.K.?                                                                     | BOLTS O.K.                                             | riit(KSI) = 4             | 5.0                     |            |
| Resultant Force                                                                              | Resultant Force                                        | 1                         |                         |            |
| $\frac{1}{2} < Tensile Strength \rightarrow 0.K.$                                            | 2 > 7                                                  | ensile Stren              | $gth \rightarrow N.G.$  |            |
| Shear Strength lbs $-F_{nv} \times A_b \times 1000$                                          | 1491                                                   | Fnv (ksi) = 2             | 7.0                     |            |
| $\frac{1}{\Omega} = \frac{1}{\Omega} \times 1000$                                            | 1+71                                                   |                           |                         |            |
| (2) Bolts per side O.K.?                                                                     | BOLTS O.K.                                             | Ab (in <sup>2</sup> ) = 0 | .11                     |            |
|                                                                                              |                                                        | J                         |                         |            |
| $\frac{\text{Design Wind Force}}{\text{Constraint}} < \text{Shear Strength} \rightarrow 0.8$ | Lesign Wind Force                                      | > Shear Stre              | $ngth \rightarrow N.G.$ |            |
| 4                                                                                            | 4                                                      |                           |                         |            |
|                                                                                              |                                                        |                           |                         |            |

|                                                              | -                       |                                                                                 |
|--------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------|
| #10 Wood Screws                                              |                         |                                                                                 |
| Allowable Tensile Strength, lbs                              | 216                     |                                                                                 |
| (4) Screws per side O.K.?                                    | SCREWS O.K.             |                                                                                 |
| $\frac{Resultant \ Force}{4} < Allowable \ Tensile \ Streng$ | $th \rightarrow 0.K.$   | $\frac{Resultant \ Force}{4} > Allowable \ Tensile \ Strength \rightarrow N.G.$ |
| Allowable Shear Strength, lbs                                | 144                     |                                                                                 |
| (4) Screws per side O.K.?                                    | SCREWS O.K.             |                                                                                 |
| Design Wind Force<br>8 < Allowable Shear Stren               | $igth \rightarrow 0.K.$ | $\frac{Design Wind Force}{8} > Allowable Shear Strength \rightarrow N.G.$       |
| Curb Screw Streng                                            | ŗth                     |                                                                                 |
| #10 Self-Tapping Screws into 18ga Curb                       |                         |                                                                                 |
| Allowable Tensile Strength (per SSMA), lbs                   | 109                     |                                                                                 |
| (4) Screws per side O.K.?                                    | SCREWS O.K.             |                                                                                 |
| $\frac{Resultant \ Force}{4} < Allowable \ Tensile \ Streng$ | $th \rightarrow 0.K.$   | $\frac{Resultant \ Force}{4} > Allowable \ Tensile \ Strength \rightarrow N.G.$ |
| Allowable Shear Strength (per SSMA), lbs                     | 263                     |                                                                                 |
| (4) Screws per side O.K.?                                    | SCREWS O.K.             |                                                                                 |
| Design Wind Force<br>8 < Allowable Shear Stren               | $igth \rightarrow 0.K.$ | $\frac{Design Wind Force}{8} > Allowable Shear Strength \rightarrow N.G.$       |

-

| CASE                                                                        |                                       |                            |                         |              |  |  |  |  |  |  |
|-----------------------------------------------------------------------------|---------------------------------------|----------------------------|-------------------------|--------------|--|--|--|--|--|--|
| SAJL                                                                        |                                       |                            |                         |              |  |  |  |  |  |  |
| Engineering Inc.                                                            |                                       |                            |                         |              |  |  |  |  |  |  |
| PROJECT NAME:                                                               | Wingstop                              | PROJ # WIL-MO-04-21        |                         |              |  |  |  |  |  |  |
| LOCATION:                                                                   |                                       |                            |                         |              |  |  |  |  |  |  |
| SUBJECT:                                                                    |                                       | Updated                    | 8/8/2019                |              |  |  |  |  |  |  |
| PREPARED BY:                                                                | K. Woodard                            |                            | DATE:                   | 6/10/2021    |  |  |  |  |  |  |
| <u>Ur</u>                                                                   | nit Overturning per ASCE 7-16 W       | <u>ind Design</u>          |                         |              |  |  |  |  |  |  |
| Pick Catagony                                                               |                                       |                            |                         | Input        |  |  |  |  |  |  |
| RISK Category                                                               |                                       | (Table 1.5-1)              | Output                  |              |  |  |  |  |  |  |
| Height Above Ground Level, z (ft)                                           | 17                                    | (Section 20.7.5)           |                         |              |  |  |  |  |  |  |
| Velocity Pressure Exposure Coefficient K.                                   | 0.6125                                | (Table 26.10-1)            |                         |              |  |  |  |  |  |  |
| Tonographic Factor, K                                                       |                                       | 1.0                        | (Section 26 8-2 and Ei  | guro 26 8-1) |  |  |  |  |  |  |
| Wind Directionality Easter K                                                |                                       | 1.0                        | (Section 20.6-2 and Tab | guie 20.8-1) |  |  |  |  |  |  |
| Ground Elevation Factor, K                                                  |                                       | 0.05                       |                         | 1= 20.0-1)   |  |  |  |  |  |  |
| Ground Elevation Factor, Ke                                                 |                                       | 1                          | (Section 26.9 and Tab   | ie 26.9-1)   |  |  |  |  |  |  |
| Ultimate wind Speed 3-s Gust, V (mph)                                       |                                       | 110                        | (Figures 26.5-1 and 26  | o.5-2)       |  |  |  |  |  |  |
| Velocity Pressure, q <sub>z</sub> (psf)                                     | $q_z = .00256 K_z K_{zt} K_d K_e V^2$ | 16.1                       | (Equation 26.10-1)      |              |  |  |  |  |  |  |
|                                                                             |                                       |                            |                         |              |  |  |  |  |  |  |
| Equipment Paramet                                                           | ters                                  |                            |                         |              |  |  |  |  |  |  |
| Depth, D (in) (Least horizontal dimension at the                            | elevation considered)                 | 24.0                       |                         |              |  |  |  |  |  |  |
| Width, W (in)                                                               |                                       | 100.0                      |                         |              |  |  |  |  |  |  |
| Height, H (in) (add curb height to this, curb is ty                         | pically 14" MIN)                      | 29.0                       |                         |              |  |  |  |  |  |  |
| Weight, W <sub>p</sub> (lb)                                                 |                                       | 525                        |                         |              |  |  |  |  |  |  |
|                                                                             |                                       |                            |                         |              |  |  |  |  |  |  |
| Gust Factor, GC <sub>r</sub>                                                |                                       | 1.9                        | (Section 29.4.1)        |              |  |  |  |  |  |  |
| Projected Area Normal to the Wind, A <sub>c</sub> (Ft <sup>2</sup> )        | $A_{f} = \frac{W \times H}{W}$        | 20.1                       |                         |              |  |  |  |  |  |  |
|                                                                             | 144                                   |                            | (                       |              |  |  |  |  |  |  |
| Design Wind Force, F <sub>h</sub> (lb), (ASD)                               | $F_h = q_z(GC_r)A_f$                  | 370                        | (Equation 29.4-1)       |              |  |  |  |  |  |  |
|                                                                             |                                       |                            |                         |              |  |  |  |  |  |  |
| Quarturning Moment M. (Ib in)                                               | M D (50                               | 7404                       |                         |              |  |  |  |  |  |  |
| Overturning Moment, M <sub>o</sub> (Ib-In)                                  | $M_0 = F_h x.6/H$                     | /194                       |                         |              |  |  |  |  |  |  |
| Restoring Moment. Ma (Ib-in)                                                | $M_{-} = 6W_{-} r \frac{D}{D}$        | 3780                       |                         |              |  |  |  |  |  |  |
|                                                                             | $M_R = .0 W_p \times \frac{1}{2}$     | 3700                       |                         |              |  |  |  |  |  |  |
|                                                                             | M M                                   |                            |                         |              |  |  |  |  |  |  |
| Resulant Force, (lb)                                                        | $=\frac{M_0-M_R}{D}$                  | 142                        |                         |              |  |  |  |  |  |  |
|                                                                             | D                                     |                            |                         |              |  |  |  |  |  |  |
| Uplift?                                                                     | sultant Force $> 0 \rightarrow YES$   | YES                        |                         |              |  |  |  |  |  |  |
|                                                                             |                                       |                            |                         |              |  |  |  |  |  |  |
| Curb to Roof Fast                                                           | ener Strength                         |                            |                         |              |  |  |  |  |  |  |
| 3/8" Ø Steel Bolt                                                           |                                       |                            | _                       |              |  |  |  |  |  |  |
| <b>Tensile Strength, lbs</b> $= \frac{F_{nt} \times A_b}{1000} \times 1000$ | 2485                                  | Ω = 2.                     | 0                       |              |  |  |  |  |  |  |
| Ω                                                                           |                                       | Fint (lect)                |                         |              |  |  |  |  |  |  |
| (2) Bolts per side O.K.?                                                    | BOLTS O.K.                            | FITT (KSI) = 45            |                         |              |  |  |  |  |  |  |
| Resultant Force                                                             | Resultant Force                       | J                          |                         |              |  |  |  |  |  |  |
| $\frac{1}{2}$ < Tensile Strength $\rightarrow 0.K.$                         | 1000000000000000000000000000000000000 | <sup>r</sup> ensile Streng | $th \rightarrow N.G.$   |              |  |  |  |  |  |  |
| Shear Strongth lbs $F_{nv} \times A_h$                                      | 1401                                  | Fnv (ksi) = 27             | .0                      |              |  |  |  |  |  |  |
| Snear strength, ibs $=\frac{nv}{\Omega} \times 1000$                        | 1491                                  |                            |                         |              |  |  |  |  |  |  |
| (2) Bolts per side O.K.?                                                    | BOITSOK                               | Ab (in <sup>2</sup> ) = 0. | 11                      |              |  |  |  |  |  |  |
| L' Dons per side Onti:                                                      | BOLIS O.K.                            |                            |                         |              |  |  |  |  |  |  |
| Design Wind Force                                                           | , Design Wind Force                   | > Shear Stro               | $ath \rightarrow N G$   |              |  |  |  |  |  |  |
| $\frac{1}{4} < \text{Shear Strength} \rightarrow 0.K$                       | . 4                                   | - 511041 51161             | <i>igui / 11.0.</i>     |              |  |  |  |  |  |  |
|                                                                             |                                       |                            |                         |              |  |  |  |  |  |  |

|                                                              | -                       |                                                                                 |
|--------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------|
| #10 Wood Screws                                              |                         |                                                                                 |
| Allowable Tensile Strength, lbs                              | 216                     |                                                                                 |
| (4) Screws per side O.K.?                                    | SCREWS O.K.             |                                                                                 |
| $\frac{Resultant \ Force}{4} < Allowable \ Tensile \ Streng$ | $th \rightarrow 0.K.$   | $\frac{Resultant \ Force}{4} > Allowable \ Tensile \ Strength \rightarrow N.G.$ |
| Allowable Shear Strength, lbs                                | 144                     |                                                                                 |
| (4) Screws per side O.K.?                                    | SCREWS O.K.             |                                                                                 |
| Design Wind Force<br>8 < Allowable Shear Stren               | $igth \rightarrow 0.K.$ | $\frac{Design Wind Force}{8} > Allowable Shear Strength \rightarrow N.G.$       |
| Curb Screw Streng                                            | ŗth                     |                                                                                 |
| #10 Self-Tapping Screws into 18ga Curb                       |                         |                                                                                 |
| Allowable Tensile Strength (per SSMA), lbs                   | 109                     |                                                                                 |
| (4) Screws per side O.K.?                                    | SCREWS O.K.             |                                                                                 |
| $\frac{Resultant \ Force}{4} < Allowable \ Tensile \ Streng$ | $th \rightarrow 0.K.$   | $\frac{Resultant \ Force}{4} > Allowable \ Tensile \ Strength \rightarrow N.G.$ |
| Allowable Shear Strength (per SSMA), lbs                     | 263                     |                                                                                 |
| (4) Screws per side O.K.?                                    | SCREWS O.K.             |                                                                                 |
| Design Wind Force<br>8 < Allowable Shear Stren               | $igth \rightarrow 0.K.$ | $\frac{Design Wind Force}{8} > Allowable Shear Strength \rightarrow N.G.$       |

-

# Joist Reference for Calcs



# PARTIAL EXISTING ROOF FRAMING PLAN

### PLAN NOTES:

 $\bigcirc$ SCALE: 1/4" = 1'-0"

- SEE SHEET S1 FOR GENERAL NOTES AND TYPICAL DETAILS.
- 2. IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO VERIFY ALL DIMENSIONS AND
- ELEVATIONS PRIOR TO BEGINNING CONSTRUCTION.
- REFERENCE MECHANICAL DRAWINGS FOR EXACT WEIGHTS AND LOCATIONS OF 3. MECHANICAL EQUIPMENT.
- 4. SEE ARCHITECTURAL DRAWINGS FOR DIMENSIONS, SECTIONS, AND ELEVATIONS NOT
- SHOWN HEREON.
- 5. ALL NEW AND EXISTING MECHANICAL EQUIPMENT MOUNTED TO OR HUNG FROM EXISTING **ROOF** FRAMING STRUCTURE THAT HAS BEEN ACCOUNTED FOR IN STRUCTURAL CAPACITY ANALYSIS IS SHOWN ON FRAMING PLAN. GENERAL CONTRACTOR SHALL NOTIFY ARCHITECT AND ENGINEER OF RECORD IMMEDIATELY IF EQUIPMENT EXISTS THAT IS NOT SHOWN ON PLAN.

## STANDARD LOAD TABLE Based on a Maximum Allowable Tensile Stress of 30 ksi **OPEN WEB STEEL JOISTS, K-SERIES**

Stress of 30 ksi

Adopted by the Steel Joist Institute November 4, 1985; Revised to May 2, 1994 - Effective September 1, 1994

The black figures in the following table give the TOTAL safe uniformly distributed load-carrying capacities, in pounds per linear foot, of K-Series Steel Joists. The weight of DEAD loads, including the joists. must be deducted to determine the LIVE load-carrying capacities of the joists. The load table may be used for parallel chord joists installed to a maximum slope of 1/2 inch per foot.

The figures shown in RED in this load table are the LIVE loads per linear foot of joist which will produce an approximate deflection of 1/360 of the span. LIVE loads which will produce a deflection of 1/240 of the span may be obtained by multiplying the figures in RED by 1.5. In no case shall the TOTAL load capacity of the joists be exceeded.

The approximate joist weights per linear foot shown in these tables do not include accessories.

The approximate moment of inertia of the joist, in inches<sup>4</sup> is:  $I_1 = 26.767(W_{LL})(L^3)(10^6)$ , where  $W_{LL} = RED$  figure in the Load Table and L = (Span - .33) in feet.

For the proper handling of concentrated and/or varying loads, see Section 5.5 in the Recommended Code of Standard Practice.

Where the joist span exceeds the unshaded area of the table, the row of bridging nearest the mid span shall be diagonal bridging with bolted connections at chords and midspan.

| Joist<br>Designation      | 8K1        | 10K1       | 12K1       | 12K3       | 12K5       | 14K1       | 14K3       | 14K4       | 14K6       | 16K2       | 16K3       | 16K4       | 16K5       | 16K6       | 16K7       | 16K9       |
|---------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Depth (In.)               | 8          | 10         | 12         | 12         | 12         | 14         | 14         | 14         | 14         | 16         | 16         | 16         | 16         | 16         | 16         | 16         |
| Approx. Wt.<br>(lbs./ft.) | 5.1        | 5.0        | 5.0        | 5.7        | 7.1        | 5.2        | 6.0        | 6.7        | 7.7        | 5.5        | 6.3        | 7.0        | 7.5        | 8.1        | 8.6        | 10.0       |
| Span (ft.)<br>↓           |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 8                         | 550<br>550 |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 9                         | 550<br>550 |            |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 10                        | 550<br>480 | 550<br>550 |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 11                        | 532<br>377 | 550<br>542 |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 12                        | 444<br>288 | 550<br>455 | 550<br>550 | 550<br>550 | 550<br>550 |            |            |            |            |            |            |            |            |            |            |            |
| 13                        | 377<br>225 | 479<br>363 | 550<br>510 | 550<br>510 | 550<br>510 |            |            |            |            |            |            |            |            |            |            |            |
| 14                        | 324<br>179 | 412<br>289 | 500<br>425 | 550<br>463 | 550<br>463 | 550<br>550 | 550<br>550 | 550<br>550 | 550<br>550 |            |            |            |            |            |            |            |
| 15                        | 281<br>145 | 358<br>234 | 434<br>344 | 543<br>428 | 550<br>434 | 511<br>475 | 550<br>507 | 550<br>507 | 550<br>507 |            | 1.1        |            |            |            |            |            |
| 16                        | 246<br>119 | 313<br>192 | 380<br>282 | 476<br>351 | 550<br>396 | 448<br>390 | 550<br>467 | 550<br>467 | 550<br>467 | 550<br>550 |
| 17                        |            | 277<br>159 | 336<br>234 | 420<br>291 | 550<br>366 | 395<br>324 | 495<br>404 | 550<br>443 | 550<br>443 | 512<br>488 | 550<br>526 | 550<br>526 | 550<br>526 | 550<br>526 | 550<br>526 | 550<br>526 |
| 18                        |            | 246<br>134 | 299<br>197 | 374<br>245 | 507<br>317 | 352<br>272 | 441<br>339 | 530<br>397 | 550<br>408 | 456<br>409 | 508<br>456 | 550<br>490 | 550<br>490 | 550<br>490 | 550<br>490 | 550<br>490 |
| 19                        |            | 221<br>113 | 268<br>167 | 335<br>207 | 454<br>269 | 315<br>230 | 395<br>287 | 475<br>336 | 550<br>383 | 408<br>347 | 455<br>386 | 547<br>452 | 550<br>455 | 550<br>455 | 550<br>455 | 550<br>455 |
| 20                        |            | 199<br>97  | 241<br>142 | 302<br>177 | 409<br>230 | 284<br>197 | 356<br>246 | 428<br>287 | 525<br>347 | 368<br>297 | 410<br>330 | 493<br>386 | 550<br>426 | 550<br>426 | 550<br>426 | 550<br>426 |
| 21                        |            |            | 218<br>123 | 273<br>153 | 370<br>198 | 257<br>170 | 322<br>212 | 388<br>248 | 475<br>299 | 333<br>255 | 371<br>285 | 447<br>333 | 503<br>373 | 548<br>405 | 550<br>406 | 550<br>406 |
| 22                        |            |            | 199<br>106 | 249<br>132 | 337<br>172 | 234<br>147 | 293<br>184 | 353<br>215 | 432<br>259 | 303<br>222 | 337<br>247 | 406<br>289 | 458<br>323 | 498<br>351 | 550<br>385 | 550<br>385 |
| 23                        |            |            | 181<br>93  | 227<br>116 | 308<br>150 | 214<br>128 | 268<br>160 | 322<br>188 | 395<br>226 | 277<br>194 | 308<br>216 | 371<br>252 | 418<br>282 | 455<br>307 | 507<br>339 | 550<br>363 |
| 24                        |            |            | 166<br>81  | 208<br>101 | 282<br>132 | 196<br>113 | 245<br>141 | 295<br>165 | 362<br>199 | 254<br>170 | 283<br>189 | 340<br>221 | 384<br>248 | 418<br>269 | 465<br>298 | 550<br>346 |
| 25                        |            |            |            |            |            | 180<br>100 | 226<br>124 | 272<br>145 | 334<br>175 | 234<br>150 | 260<br>167 | 313<br>195 | 353<br>219 | 384<br>238 | 428<br>263 | 514<br>311 |
| 26                        |            |            |            |            |            | 166<br>88  | 209<br>110 | 251<br>129 | 308<br>156 | 216<br>133 | 240<br>148 | 289<br>173 | 326<br>194 | 355<br>211 | 395<br>233 | 474<br>276 |
| 27                        |            |            |            |            |            | 154<br>79  | 193<br>98  | 233<br>115 | 285<br>139 | 200<br>119 | 223<br>132 | 268<br>155 | 302<br>173 | 329<br>188 | 366<br>208 | 439<br>246 |
| 28                        |            |            |            |            |            | 143<br>70  | 180<br>88  | 216<br>103 | 265<br>124 | 186<br>106 | 207<br>118 | 249<br>138 | 281<br>155 | 306<br>168 | 340<br>186 | 408<br>220 |
| 29                        |            |            |            |            |            |            |            |            |            | 173<br>95  | 193<br>106 | 232        | 261<br>139 | 285<br>151 | 317<br>167 | 380<br>198 |
| 30                        |            |            |            | 1.4        |            |            |            |            |            | 161<br>86  | 180<br>96  | 216        | 244        | 266<br>137 | 296<br>151 | 355<br>178 |
| 31                        |            |            |            |            |            |            |            |            |            | 151<br>78  | 168<br>87  | 203        | 228        | 249<br>124 | 277        | 332<br>161 |
| 32                        |            |            |            |            |            |            |            |            |            | 142<br>71  | 158<br>79  | 190<br>92  | 214        | 233        | 259<br>124 | 311<br>147 |

#### STANDARD LOAD TABLE/OPEN WEB STEEL JOISTS, K-SERIES Based on a Maximum Allowable Tensile Stress of 30 ksi

| Joist<br>Designation      | 18K3       | 18K4       | 18K5       | 18K6       | 18K7       | 18K9       | 18K10      | 20K3       | 20K4       | 20K5       | 20K6       | 20K7       | 20K9       | 20K10      | 22K4       | 22K5       | 22K6       | 22K7       | 22K9       | 22K10      | 22K11      |
|---------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Depth (In.)               | 18         | 18         | 18         | 18         | 18         | 18         | 18         | 20         | 20         | 20         | 20         | 20         | 20         | 20         | 22         | 22         | 22         | 22         | 22         | 22         | 22         |
| Approx. Wt.<br>(lbs./ft.) | 6.6        | 7.2        | 7.7        | 8.5        | 9.0        | 10.2       | 11.7       | 6.7        | 7.6        | 8.2        | 8.9        | 9.3        | 10.8       | 12.2       | 8.0        | 8.8        | 9.2        | 9.7        | 11.3       | 12.6       | 13.8       |
| Span (ft.)                |            |            |            |            |            |            |            |            |            |            |            |            |            | 1          |            |            |            |            |            |            |            |
|                           | 550        | 550        | 550        | 550        | 550        | 550        | 550        |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 18                        | 550        | 550        | 550        | 550        | 550        | 550        | 550        |            |            |            |            |            |            |            |            |            |            |            |            | -          |            |
| 19                        | 514<br>494 | 550<br>523 | 550<br>523 | 550<br>523 | 550<br>523 | 550<br>523 | 550<br>523 |            |            |            |            |            |            |            |            |            |            |            |            |            |            |
| 20                        | 463<br>423 | 550<br>490 | 550<br>490 | 550<br>490 | 550<br>490 | 550<br>490 | 550<br>490 | 517<br>517 | 550<br>550 | 550<br>550 | 550<br>550 | 550<br>550 | 550<br>550 | 550<br>550 |            |            |            |            |            |            |            |
| 21                        | 420<br>364 | 506<br>426 | 550<br>460 | 550<br>460 | 550<br>460 | 550<br>460 | 550<br>460 | 468<br>453 | 550<br>520 | 550<br>520 | 550<br>520 | 550<br>520 | 550<br>520 | 550<br>520 |            |            |            |            |            |            |            |
| 22                        | 382<br>316 | 460<br>370 | 518<br>414 | 550<br>438 | 550<br>438 | 550<br>438 | 550<br>438 | 426<br>393 | 514<br>461 | 550<br>490 | 550<br>490 | 550<br>490 | 550<br>490 | 550<br>490 | 550<br>548 |
| 23                        | 349        | 420        | 473        | 516        | 550        | 550        | 550<br>418 | 389        | 469        | 529        | 550        | 550        | 550        | 550        | 518        | 550        | 550        | 550        | 550        | 550        | 550        |
| 24                        | 320        | 385        | 434        | 473        | 526        | 550        | 550        | 357        | 430        | 485        | 528        | 550        | 550        | 550        | 475        | 536        | 550        | 550        | 550        | 550        | 550        |
| 25                        | 294        | 355        | 400        | 435        | 485        | 550        | 550        | 302        | 396        | 446        | 430        | 448<br>541 | 448<br>550 | 448<br>550 | 431        | 483        | 495<br>537 | 495<br>550 | 495<br>550 | 495<br>550 | 495<br>550 |
| 26                        | 214        | 328        | 369        | 402        | 448        | 538        | 377<br>550 | 304        | 312<br>366 | 350<br>412 | 380<br>449 | 421<br>500 | 426<br>550 | 426<br>550 | 381<br>404 | 427<br>455 | 464<br>496 | 474<br>550 | 474<br>550 | 474<br>550 | 474<br>550 |
| 20                        | 190<br>252 | 222<br>303 | 249<br>342 | 271<br>372 | 299<br>415 | 354<br>498 | 361<br>550 | 236        | 277<br>339 | 310<br>382 | 337<br>416 | 373<br>463 | 405<br>550 | 405<br>550 | 338<br>374 | 379<br>422 | 411<br>459 | 454<br>512 | 454<br>550 | 454<br>550 | 454<br>550 |
| 21                        | 169<br>234 | 198<br>282 | 222        | 241        | 267        | 315        | 347<br>548 | 211        | 247        | 277        | 301        | 333        | 389        | 389        | 301        | 337        | 367        | 406        | 432        | 432        | 432        |
| 28                        | 151        | 177        | 199        | 216        | 239        | 282        | 331        | 189        | 221        | 248        | 269        | 298        | 353        | 375        | 270        | 302        | 328        | 364        | 413        | 413        | 413        |
| 29                        | 136        | 159        | 179        | 322<br>194 | 215        | 431<br>254 | 298        | 170        | 199        | 330<br>223 | 360<br>242 | 401<br>268 | 482<br>317 | 359        | 324<br>242 | 365        | 398<br>295 | 443<br>327 | 532<br>387 | 550<br>399 | 550<br>399 |
| 30                        | 203<br>123 | 245<br>144 | 276<br>161 | 301<br>175 | 335<br>194 | 402<br>229 | 477<br>269 | 227<br>153 | 274<br>179 | 308<br>201 | 336<br>218 | 374<br>242 | 450<br>286 | 533<br>336 | 302<br>219 | 341<br>245 | 371<br>266 | 413<br>295 | 497<br>349 | 550<br>385 | 550<br>385 |
| 31                        | 190<br>111 | 229<br>130 | 258<br>146 | 281<br>158 | 313<br>175 | 376<br>207 | 446<br>243 | 212<br>138 | 256<br>162 | 289<br>182 | 314<br>198 | 350<br>219 | 421<br>259 | 499<br>304 | 283<br>198 | 319<br>222 | 347<br>241 | 387<br>267 | 465<br>316 | 550<br>369 | 550<br>369 |
| 32                        | 178<br>101 | 215<br>118 | 242<br>132 | 264<br>144 | 294<br>159 | 353<br>188 | 418<br>221 | 199<br>126 | 240<br>147 | 271<br>165 | 295<br>179 | 328<br>199 | 395<br>235 | 468<br>276 | 265<br>180 | 299<br>201 | 326<br>219 | 363<br>242 | 436<br>287 | 517<br>337 | 549<br>355 |
| 33                        | 168<br>92  | 202        | 228<br>121 | 248<br>131 | 276<br>145 | 332<br>171 | 393<br>201 | 187<br>114 | 226<br>134 | 254<br>150 | 277        | 309<br>181 | 371        | 440<br>251 | 249<br>164 | 281        | 306<br>199 | 341        | 410        | 486        | 532<br>334 |
| 34                        | 158<br>84  | 190<br>98  | 214        | 233        | 260        | 312        | 370<br>184 | 176        | 212        | 239        | 261        | 290        | 349        | 414        | 235        | 265        | 288        | 321        | 386        | 458        | 516        |
| 35                        | 149        | 179        | 202        | 220        | 245        | 294        | 349        | 166        | 200        | 226        | 246        | 274        | 329        | 390        | 221        | 249        | 272        | 303        | 364        | 432        | 494        |
| 36                        | 141        | 169        | 191        | 208        | 232        | 278        | 330        | 157        | 189        | 213        | 232        | 259        | 311        | 369        | 209        | 236        | 257        | 286        | 344        | 408        | 467        |
| 37                        | 70         | 82         | 92         | 101        | 111        | 132        | 154        | 148        | 103        | 202        | 125        | 245        | 164<br>294 | 193<br>349 | 126        | 223        | 153<br>243 | 169<br>271 | 201<br>325 | 236<br>386 | 269<br>442 |
| 20                        |            |            |            |            |            |            |            | 81<br>141  | 95<br>170  | 106<br>191 | 115<br>208 | 128<br>232 | 151<br>279 | 178<br>331 | 116<br>187 | 130<br>211 | 141<br>230 | 156<br>256 | 185<br>308 | 217<br>366 | 247<br>419 |
|                           | -          |            |            |            |            |            |            | 74         | 87         | 98<br>181  | 106        | 118        | 139        | 164<br>314 | 107        | 119        | 130        | 144        | 170        | 200        | 228<br>397 |
| 39                        | _          |            |            | _          |            |            |            | 69         | 81         | 90         | 98         | 109        | 129        | 151        | 98         | 110        | 120        | 133        | 157        | 185        | 211        |
| 40                        |            |            |            |            |            |            |            | 64         | 75         | 84         | 91         | 101        | 119        | 140        | 91         | 102        | 111        | 123        | 146        | 171        | 195        |
| 41                        |            |            |            |            |            |            |            |            |            |            |            |            |            |            | 161<br>85  | 95         | 197        | 114        | 135        | 314<br>159 | 359<br>181 |
| 42                        |            |            |            |            |            |            |            |            |            |            |            |            |            |            | 153<br>79  | 173<br>88  | 188<br>96  | 209<br>106 | 252<br>126 | 299<br>148 | 342<br>168 |
| 43                        |            |            |            |            |            |            |            |            |            |            |            | 0          |            |            | 146<br>73  | 165<br>82  | 179<br>89  | 200<br>99  | 240<br>117 | 285<br>138 | 326<br>157 |
| 44                        |            |            |            |            |            |            |            |            |            |            |            |            |            |            | 139<br>68  | 157<br>76  | 171<br>83  | 191<br>92  | 229<br>109 | 272<br>128 | 311<br>146 |



Office: 636-349-1600 Fax: 636-349-1730 Website: www.caseengineeringinc.com