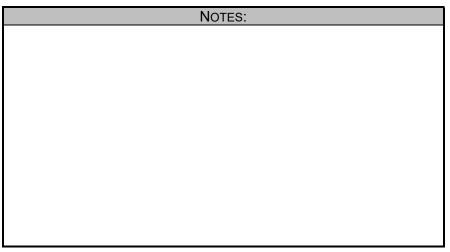
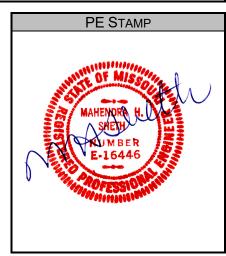


HYDRAULIC DESIGN COVER SHEET

CALCULATED BY: **Jeff Keltner**


ORIGINAL DATE: **06/04/2021**


REVISION DATE:

JOB INFORMATION							
JOB NAME: The Princeton							
ADDRESS: 1701 SE Oldham Parkway	CITY, STATE: Lee's Summit, MO						
Building Info:	CONSTRUCTION: Combustible, Unobstructed						
CONTRACTOR: Aegis Fire Protection, LLC	CONTRACT #: 13553						

	AREA SUMMARY
AREA NO: 19	DESCRIPTION: Canopy Attic
AREA NO: 20	DESCRIPTION: Canopy Ceiling
AREA NO:	DESCRIPTION:
AREA NO:	

WATER SUPPLY INFORMATION							
FLOW TEST? Yes	Pump? No						
DATE: 02/22/2019	RATED CAPACITY (GPM):						
STATIC PRESSURE (PSI): 76	RATED PRESSURE (PSI):						
RESIDUAL PRESSURE (PSI): 47	ELEVATION:						
FLOW (GPM): 1600	PUMP MOTOR TYPE:						
ELEVATION: Same as Fin FIr	TANK? No						
LOCATION: 1716 SE 11th St.	CAPACITY (GALLONS):						
Source: Provided by Aegis Fire Protection	ELEVATION:						

Hydrant Flow Test WORKORDER

WorkOrder #: 91453

Supervisor: **DOLAN, EVAN**Submit To: **JOHNSON, JD**

WO Address: <u>1716 SE 11TH ST, 1716 SE 11TH ST</u> Start Date: 2/22/2019 12:00:00 PM Priority: Low Initiated By: JOHNSON, JD WO Map Page: 068 Associated Service Requests SR Description Date Initiated Problem Address Details Additional Information PRESSURE STATIC (PSI) 76 PRESSURE RESIDUAL 47 (PSI) GPM 1600 Crew Lead: _____ Estimated Labor Hours: ___ Finish Date Finish Time Valid Rate Types **Employee** Start Date Start Time Hours Rate Type A = Hourly B = Overtime C = Holiday/Emerg D = Fixed Rate PW Restoration? **Curb LF** Location Pavement Sq. Ft. Driveway Sq. Ft. Sidewalk Sq. Ft. Yard Sq. Ft. Front / Rear / Side | Asphalt_ Concrete Asphalt Concrete Material used (Please list all dimensions):
 Vehicle 1: ______ Hours: _____ Vehicle 2: ______ Hours: _____ Vehicle 3: ______ Hours:
 Hours: Vehicle 5: Hours: Vehicle 6: Hours: Vehicle 4: Other: (explain in detail) Other Tools & Consumables Instructions: Perform flow test for water engineering on FH 068-070. **Comments:** By JOHNSON, JD: 2/26/2019 9:08:30 AM Tested 2-26-19 WPressurizedMain Information:

WHYDRANT								
OBJECTID	2390							
AdministrativeArea	LEES SUMMIT							
FacilityID	068-070 FH							
Location	1716 SE 11TH ST							
InstallDate	1/1/1995 12:00:00 AM							
LifeCycleStatus	ACTIVE							
WarrantyDate								
Manufacturer	WATEROUS							
Model	PACER							
PaintCondition	GOOD							
HydOwner	PUBLIC							
DETAILS								

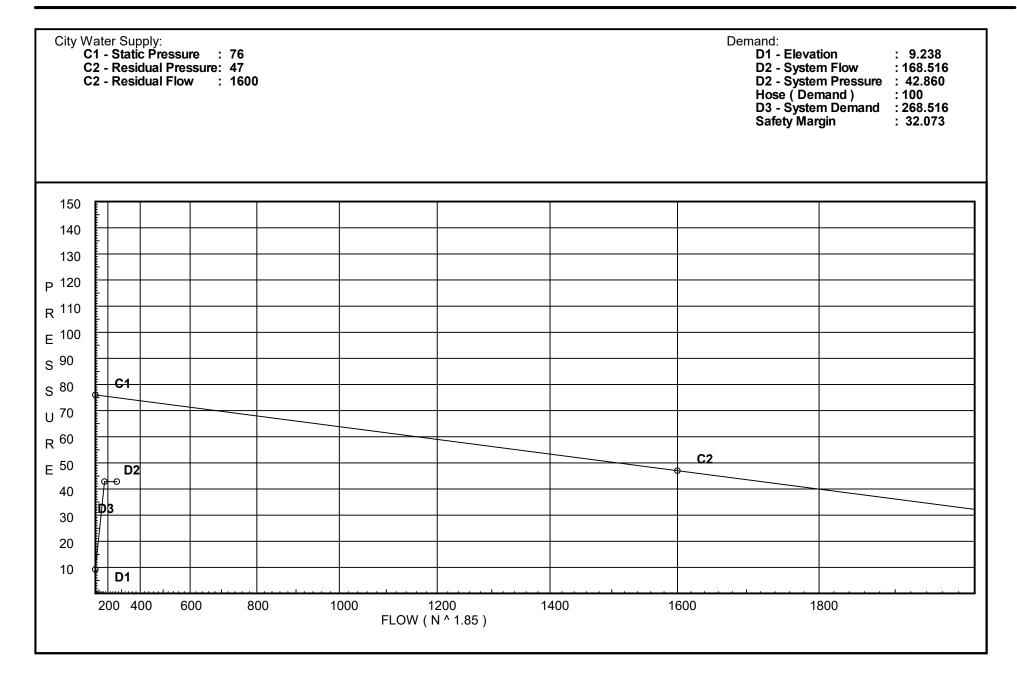
HYDRAULIC DESIGN COVER SHEET

AREA: 19 – Canopy Attic CALCULATED BY: Jeff Keltner ORIGINAL DATE: 06/04/2021 LATEST REVISION DATE:

JOB INFORMATION						
JOB NAME: The Princeton						
ADDRESS: 1701 SE Oldham Parkway	CITY, STATE: Lee's Summit, MO					
BUILDING INFO:	CONSTRUCTION: Combustible, Obstructed					
CONTRACTOR: Aegis Fire Protection, LLC	Contract #: 13553					

WATER SUPPLY INFORMATION						
FLOW TEST? See Front Cover Page	Pump? No					
DATE:	RATED CAPACITY (GPM):					
STATIC PRESSURE (PSI):	RATED PRESSURE (PSI):					
RESIDUAL PRESSURE (PSI):	ELEVATION:					
FLOW (GPM):	PUMP MOTOR TYPE:					
ELEVATION:	TANK? No					
LOCATION:	CAPACITY (GALLONS):					
Source:	ELEVATION:					

OPERATING AREA INFORMATION							
AREA #: 19	SHEET NUMBER: 2 of 14						
CEILING HEIGHT: Varies	STORAGE HEIGHT: N/A	QR Sprinkler Discount: No					


SPRINKLER INFORMATION							
Brand: Viking Model: V-BB							
K-Factor: 5.6	TEMPERATURE (°F): 200						

System Design Information						
Design Per: NFPA 13 , 2013	Hazard Classification: Light Hazard					
DESIGN CRITERIA: (SEE ATTACHED SPRINKLER LITERATUR	E)					
DENSITY (GPM/SQ FT):	OPERATING AREA (SQ FT): 7 Back to Back					
AREA PER SPRINKLER (SQ FT):	TOTAL SPRINKLERS OPERATING: 7					
MIN. FLOW PER HEAD (GPM): N/A	MIN. PRESSURE PER HEAD (PSI): N/A					
Inside Hose Allowance (GPM): 0	Outside Hose Allowance (GPM): 100					
OVERHEAD PIPING C-FACTOR: 100/120	UNDERGROUND PIPING C-FACTOR: 140					

CALCULATION SUMMARY									
DEMAND @: Base of Riser	Pressure Req'd (PSI): 38.325								
DEMAND @: Conn to City Main	FLOW REQ'D (GPM): 268.52	Pressure Req'd (PSI): 42.860							
AREA SAFETY MARGIN (PSI): 32.073	-								

Notes:	PE STAMP
<u> </u>	

Date

Fittings Used Summary

Watts 757 Horiz

Zwe

	BIC Design Company The Princeton Area #19 - 7 Back to Back Heads												Pa Da								
Fitting Legend Abbrev. Name 1/2 3/4 1 11/4 11/2 2 21/2 3 31/2 4 5 6 8 10 12 14 16 18											20	24									
B Dvc	NFPA 13 Butterfly Valve Dry Vic 768 NXT	0	0	0	0	0	6 9	7 8	10 17	0	12 21	9	10 22	12 50	19	21	0	0	0	0	0
Ε	NFPA 13 90' Standard Elbow	1	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
F	NFPA 13 45' Elbow	1	1	1	1	2	2	3	3	3	4	5	7	9	11	13	17	19	21	24	28
G	NFPA 13 Gate Valve	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
S	NFPA 13 Swing Check	0	0	5	7	9	11	14	16	19	22	27	32	45	55	65					
Τ	NFPA 13 90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121

Units Summary

Diameter Units Inches Length Units Feet

Flow Units US Gallons per Minute Pressure Units Pounds per Square Inch

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

Fitting generates a Fixed Loss Based on Flow

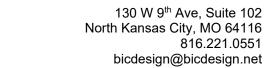
Pressure / Flow Summary - STANDARD

BIC Design Company The Princeton Area #19 - 7 Back to Back Heads Page 3 Date

Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
DP01	16.0	5.6	12.13	na	19.5	0.15	130	7.0
EQ01	16.92		12.15	na				
C01	21.33	5.6	18.37	na	24.0	0.1	240	7.0
C02	21.33	5.6	18.37	na	24.0	0.1	240	7.0
C03	21.33	5.6	18.39	na	24.02	0.1	240	7.0
C04	21.33	5.6	18.43	na	24.04	0.1	240	7.0
C05	21.33	5.6	18.5	na	24.09	0.1	240	7.0
206	21.33	5.6	18.57	na	24.13	0.1	240	7.0
C07	21.33	5.6	18.72	na	24.23	0.1	240	7.0
701	16.92		23.07	na				
702	16.92		23.07	na				
703	16.92		23.07	na				
704	16.92		23.09	na				
705	16.92		23.09	na				
706	16.92		23.14	na				
707	16.92		23.15	na				
708	16.92		23.22	na				
709	16.92		23.26	na				
710	16.92		23.3	na				
711	16.92		23.47	na				
712	16.92		23.48	na				
713	16.92		23.77	na				
714	16.92		24.07	na				
715	16.92		24.38	na				
716	16.92		24.7	na				
717	13.04		27.46	na				
718	8.125		32.83	na				
719	5.0		35.81	na				
HDR	5.0		36.02	na	100.0			
BOR	1.0		38.32	na	100.0			
JG1	0.0		39.4	na				
JG2	0.0		39.51	na				
JG3	0.0		39.49	na				
JG4	0.0		39.47	na				
JG5	0.0		39.46	na				
BFP	0.0		39.72	na				
ΓEST	0.0		42.86	Πü				

The maximum velocity is 8.99 and it occurs in the pipe between nodes C07 and 711

BIC Design Company The Princeton Area #19 - 7 Back to Back Heads Page 4 Date


Hyd.	Qa	Dia.	Fitting	I	Pipe	Pt	Pt	*****	N 1 1	*****
Ref. Point	Qt	"C" Pf/Ft	or Eqv.	Ln.	Ftng's Total	Pe Pf	Pv Pn	*****	Notes	*****
DP01	19.50	1.049	E	1.427	1.000	12.125		K Factor =	= 5.60	
o EQ01	19.5	100.0 0.1739		0.0	1.427 2.427	-0.398 0.422		Vel = 7.2	24	
	0.0 19.50					12.149		K Factor =	= 5.59	
C01	24.00	1.049	E	1.427	5.920	18.367		K Factor =	= 5.60	
to 701	24.0	100.0 0.2555	Т	3.568 0.0	4.995 10.915	1.910 2.789		Vel = 8.9	91	
	0.0 24.00					23.066		K Factor =	= 5.00	
C02	24.00	1.049	E	1.427	5.920	18.373		K Factor =		
to	04.0	100.0	Т	3.568	4.995	1.910		\/-I 0.0	24	
703	24.0 0.0	0.2555		0.0	10.915	2.789		Vel = 8.9	91	
	24.00					23.072		K Factor =	= 5.00	
C03	24.02	1.049	E	1.427	5.920	18.392		K Factor =	= 5.60	
10 705	24.02	100.0	Т	3.568	4.995	1.910		\/al = 0.0	2	
705	24.02 0.0	0.2558		0.0	10.915	2.792		Vel = 8.9	92	
	24.02					23.094		K Factor =	= 5.00	
C04	24.04	1.049	Е	1.427	5.920	18.433		K Factor =	= 5.60	
o 706	24.04	100.0 0.2563	Т	3.568 0.0	4.995	1.910 2.798		Vel = 8.9	2	
700	0.0	0.2505		0.0	10.915	2.190		Vei - 0.8	92	
	24.04					23.141		K Factor =	= 5.00	
C05	24.09	1.049	Е	1.427	5.920	18.503		K Factor =	= 5.60	
to 708	24.09	100.0 0.2573	Т	3.568 0.0	4.995 10.915	1.910 2.808		Vel = 8.9	24	
700	0.0	0.2573		0.0	10.915	2.000		Vei - 0.8	74	
	24.09					23.221		K Factor =	= 5.00	
C06	24.13	1.049	Е	1.427	5.920	18.574		K Factor =	= 5.60	
o 710	24.13	100.0 0.2581	Т	3.568 0.0	4.995 10.915	1.910 2.817		Vel = 8.9	16	
710	0.0	0.2561		0.0	10.915	2.017		Vei - 0.8	90	
	24.13					23.301		K Factor =	= 5.00	
C07	24.23	1.049	Е	1.427	5.920	18.722		K Factor =	= 5.60	
0 711	24.22	100.0	Т	3.568	4.995	1.910		\/al = 0 (00	
711	24.23 0.0	0.2600		0.0	10.915	2.838		Vel = 8.9	19	
	24.23					23.470		K Factor =	= 5.00	
701	24.00	3.26		0.0	1.880	23.066				
702	24.0	100.0		0.0	0.0	0.0		\/al = \0.0	2	
702 702	24.0 0.0	0.0011 3.26		0.0	1.880 4.120	0.002 23.068		Vel = 0.9	1 <u>/</u>	
702 to	0.0	3.26 100.0		0.0	4.120 0.0	23.068 0.0				
703	24.0	0.0010		0.0	4.120	0.004		Vel = 0.9	92	
703	24.00	3.26		0.0	4.040	23.072				
io	48.0	100.0 0.0037		0.0 0.0	0.0 4.040	0.0 0.015		Vel = 1.8		

BIC Design Company The Princeton Area #19 - 7 Back to Back Heads Page 5 Date

Hyd.	Qa	Dia.	Fitting		Pipe	Pt	Pt			
Ref.	Qu	"C"	or		Ftng's	Pe	Pv	*****	Notes	*****
Point	Qt	Pf/Ft		Ln.	Total	Pf	Pn		110100	
704	0.0	3.26		0.0	2.000	23.087				
to 705	48.0	100.0		0.0 0.0	0.0 2.000	0.0 0.007		Val = 19	2.4	
705	24.02	0.0035 3.26		0.0	6.000	23.094		Vel = 1.8	54	
to	24.02	100.0		0.0	0.00	0.0				
706	72.02	0.0078		0.0	6.000	0.047		Vel = 2.	77	
706	24.04	3.26		0.0	0.330	23.141				
to		100.0		0.0	0.0	0.0				
707	96.06	0.0121		0.0	0.330	0.004		Vel = 3.0	59	
707	0.0	3.26		0.0	5.670	23.145				
to 708	96.06	100.0 0.0134		0.0 0.0	0.0 5.670	0.0 0.076		Vel = 3.0	39	
708	24.09	3.26		0.0	2.000	23.221		VCI - 0.0		
to	۷٦.03	100.0		0.0	0.0	0.0				
709	120.15	0.0200		0.0	2.000	0.040		Vel = 4.0	32	
709	0.0	3.26		0.0	2.000	23.261				
to		100.0		0.0	0.0	0.0				
710	120.15	0.0200		0.0	2.000	0.040		Vel = 4.0	52	
710	24.14	3.26		0.0	6.000	23.301				
to 711	144.29	100.0 0.0282		0.0 0.0	0.0 6.000	0.0 0.169		Vel = 5.	55	
711	24.23	3.26		0.0	0.330	23.470		Vei - 3.	J.J.	
to	24.23	100.0		0.0	0.330	0.0				
712	168.52	0.0394		0.0	0.330	0.013		Vel = 6.4	48	
712	0.0	3.26		0.0	7.670	23.483				
to		100.0		0.0	0.0	0.0				
713	168.52	0.0375		0.0	7.670	0.288		Vel = 6.4	48	
713	0.0	3.26		0.0	8.000	23.771				
to 714	168.52	100.0 0.0376		0.0 0.0	0.0 8.000	0.0 0.301		Vel = 6.4	1Ω	
714	0.0	3.26		0.0	8.330	24.072		Vei - 0.4	+0	
to	0.0	100.0		0.0	0.0	0.0				
715	168.52	0.0376		0.0	8.330	0.313		Vel = 6.4	48	
715	0.0	3.26	Е	6.714	1.667	24.385				
to		100.0		0.0	6.714	0.0				
716	168.52	0.0376		0.0	8.381	0.315		Vel = 6.4	48	
716	0.0	3.26		3.428	15.320	24.700				
to 717	168.52	100.0 0.0376		0.0 0.0	13.429 28.749	1.680 1.081		Vel = 6.4	18	
717	0.0	3.26		0.0	45.860	27.461		vei – 0.4	1 0	
717 to	0.0	3.26 100.0		0.285 0.0	45.860 40.285	27.461				
718	168.52	0.0376		0.0	86.145	3.238		Vel = 6.4	48	
718	0.0	3.26		6.306	3.125	32.828				
to		100.0	В	9.592	40.285	1.353				
719	168.52	0.0376		4.388	43.410	1.632		Vel = 6.4	48	
719	0.0	4.26		6.334	2.500	35.813				
to	400.50	120.0		0.0	26.334	0.0		\/-1 0:	70	
HDR	168.52	0.0073		0.0	28.834	0.210		Vel = 3.	19	

BIC Design Company The Princeton Area #19 - 7 Back to Back Heads Page 6 Date

	Cton / trea //	10 / Daok to	Daok i icc	iuo				Date	•
Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fittin oı Eqv.	-	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	*****	Notes ****
HDR	100.00	4.26	S	28.968	4.000	36.023		Qa = 100	
to	100.00	120.0	J	0.0	28.968	1.732		Qa .00	
BOR	268.52	0.0173		0.0	32.968	0.570		Vel = 6.0)4
BOR	0.0	6.16	2E	40.168	190.000	38.325			
to	000.50	140.0	2F	20.084	107.593	0.433		\/-I 0.0	00
UG1	268.52	0.0022	T G	43.037 4.304	297.593	0.640		Vel = 2.8	39
	0.0								
	268.52					39.398		K Factor =	= 42.78
UG1	234.24	6.16		0.0	65.000	39.398			
to		140.0		0.0	0.0	0.0			_
UG2	234.24	0.0017		0.0	65.000	0.109		Vel = 2.5	52
UG2	-268.52	6.16	2T	86.075	200.000	39.507			
to		140.0		0.0	86.075	0.0			_
UG3	-34.28	0.0		0.0	286.075	-0.013		Vel = 0.3	<u>87 </u>
UG3	0.0	6.16	5F	50.21	490.000	39.494			
to		140.0		0.0	50.210	0.0			_
UG4	-34.28	0.0		0.0	540.210	-0.026		Vel = 0.3	37
UG4	0.0	6.16	Т	43.037	165.000	39.468			
to	04.00	140.0		0.0	43.037	0.0			\ -
UG5	-34.28	0.0		0.0	208.037	-0.010		Vel = 0.3	37
UG5	0.0	6.16	4F	40.168	1160.000	39.458			
to	04.00	140.0	2E	40.168	80.336	0.0		\/-I 0.0	.7
UG1	-34.28	0.0		0.0	1240.336	-0.060		Vel = 0.3	57
	0.0					00.000		W.F. 1	F 40
	-34.28					39.398		K Factor =	= -5.46
UG2	268.52	6.16	2E	40.168	60.000	39.507			
to	200 50	140.0		0.0	40.168	0.0		\/a! = 0.0	20
BFP	268.52	0.0022		0.0	100.168	0.216		Vel = 2.8	9
BFP	0.0	6.16	2E	40.168	60.000	39.723		+ + - · ··	0.040
to	000.50	140.0	Zwe	0.0	87.509	2.819			_oss = 2.819
TEST	268.52	0.0022	T G	43.037 4.304	147.509	0.318		Vel = 2.8	9
	0.0								
	268.52					42.860		K Factor =	= 41.02

HYDRAULIC DESIGN COVER SHEET

AREA: 20 – Canopy Ceiling CALCULATED BY: Jeff Keltner

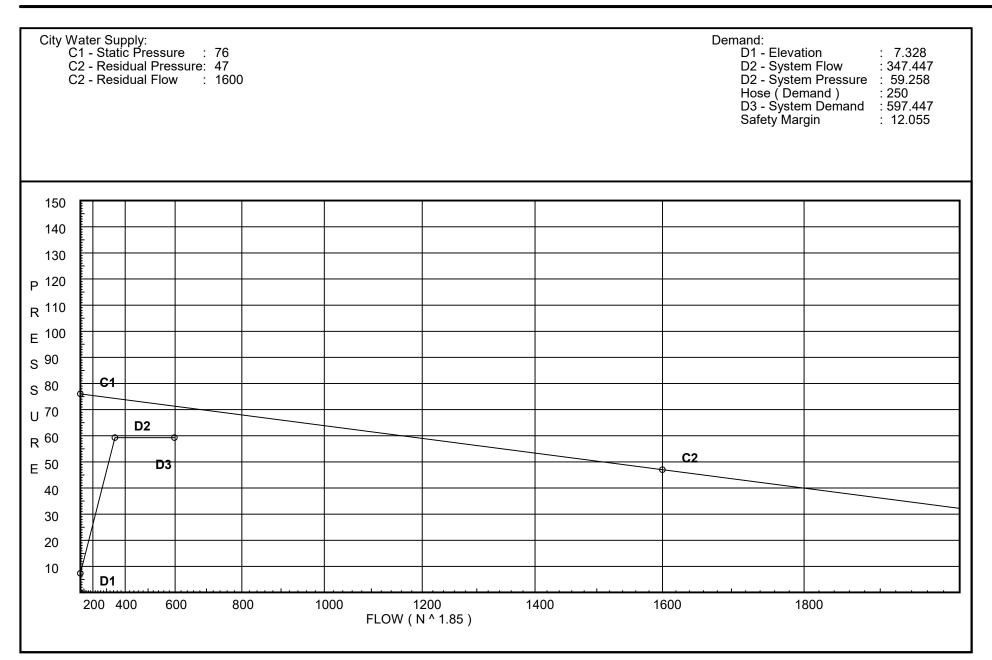
ORIGINAL DATE: **06/04/2021**LATEST REVISION DATE:

JOB INFORMATION								
JOB NAME: The Princeton								
ADDRESS: 1701 SE Oldham Parkway	CITY, STATE: Lee's Summit, MO							
BUILDING INFO:	CONSTRUCTION: Combustible, Obstructed							
CONTRACTOR: Aegis Fire Protection, LLC	Contract #: 13553							

WATER SUPPLY INFORMATION								
FLOW TEST? See Front Cover Page	Pump? No							
DATE:	RATED CAPACITY (GPM):							
STATIC PRESSURE (PSI):	RATED PRESSURE (PSI):							
RESIDUAL PRESSURE (PSI):	ELEVATION:							
FLOW (GPM):	PUMP MOTOR TYPE:							
ELEVATION:	TANK? No							
LOCATION:	CAPACITY (GALLONS):							
Source:	ELEVATION:							

OPERATING AREA INFORMATION									
AREA#: 20	SYSTEM TYPE: Dry	SHEET NUMBER: 2 of 14							
CEILING HEIGHT: Varies	STORAGE HEIGHT: N/A	QR Sprinkler Discount: No							

SPRINKLER INFORMATION								
Brand: Victaulic	Model: V3506							
K-Factor: 5.6	TEMPERATURE (°F): 200							


System Design Information							
Design Per: NFPA 13, 2013	HAZARD CLASSIFICATION: Ordinary Hazard Group 1						
DESIGN CRITERIA: (SEE ATTACHED SPRINKLER LITERATUR	E)						
DENSITY (GPM/SQ FT): 0.15	OPERATING AREA (SQ FT): Entire Canopy Ceiling						
AREA PER SPRINKLER (SQ FT): 130	TOTAL SPRINKLERS OPERATING: 17						
MIN. FLOW PER HEAD (GPM): N/A	MIN. PRESSURE PER HEAD (PSI): N/A						
INSIDE HOSE ALLOWANCE (GPM): 0	Outside Hose Allowance (GPM): 250						
OVERHEAD PIPING C-FACTOR: 100/120	UNDERGROUND PIPING C-FACTOR: 140						

CALCULATION SUMMARY									
DEMAND @: Base of Riser	FLOW REQ'D (GPM): 597.45	Pressure Req'd (PSI): 50.123							
DEMAND @: Conn to City Main	FLOW REQ'D (GPM): 597.45	Pressure Req'd (PSI): 59.258							
AREA SAFETY MARGIN (PSI): 12.055									

Notes:	PE STAMP

Page 1

Date

Fittings Used Summary

	esign Company inceton Area #20 - 0.15 for E	Entire C	anopy																age 2 ate	2	
Fitting L		1/2	3/4	1	11/4	11/2	2	2½	3	3½	4	5	6	8	10	12	14	16	18	20	24
Abbiev.	Namo	/2	/4		1/4	1/2		L /2		0/2					10	12		10	10		
В	NFPA 13 Butterfly Valve	0	0	0	0	0	6	7	10	0	12	9	10	12	19	21	0	0	0	0	0
Dvc	Dry Vic 768 NXT		_	_	_	3	9	8	17	_	21		22	50							
E	NFPA 13 90' Standard Elbow	1	2	2	3	4	5	6	7	8	10	12	14	18	22	27	35	40	45	50	61
F	NFPA 13 45' Elbow	1	1	1	1	2	2	3	3	3	4	5	7	9	11	13	17	19	21	24	28
G	NFPA 13 Gate Valve	0	0	0	0	0	1	1	1	1	2	2	3	4	5	6	7	8	10	11	13
S	NFPA 13 Swing Check	0	0	5	7	9	11	14	16	19	22	27	32	45	55	65					
T	NFPA 13 90' Flow thru Tee	3	4	5	6	8	10	12	15	17	20	25	30	35	50	60	71	81	91	101	121
Zwe	Watts 757 Horiz	Fittir	na aener	ates a F	ixed Los	s Base	d on Flo	W													

Units Summary

Diameter Units Inches Length Units Feet

US Gallons per Minute Flow Units Pounds per Square Inch **Pressure Units**

Note: Fitting Legend provides equivalent pipe lengths for fittings types of various diameters. Equivalent lengths shown are standard for actual diameters of Sched 40 pipe and CFactors of 120 except as noted with *. The fittings marked with a * show equivalent lengths values supplied by manufacturers based on specific pipe diameters and CFactors and they require no adjustment. All values for fittings not marked with a * will be adjusted in the calculation for CFactors of other than 120 and diameters other than Sched 40 per NFPA.

Pressure / Flow Summary - STANDARD

BIC Design Company The Princeton Area #20 - 0.15 for Entire Canopy Page 3 Date

	COLOTI AICA #20	7 - 0.10 IOI Entire Gan	~P)				Date	
Node No.	Elevation	K-Fact	Pt Actual	Pn	Flow Actual	Density	Area	Press Req.
DP01	16.0	5.6	12.13	na	19.5	0.15	130	7.0
EQ01	16.92		12.15	na				
B01	16.92	K = K @ EQ01	12.15	na	19.5			
B02	16.92	K = K @ EQ01	12.63	na	19.88			
B03	16.92	K = K @ EQ01	12.17	na	19.51			
B04	16.92	K = K @ EQ01	12.65	na	19.9			
B05	16.92	K = K @ EQ01	12.23	na	19.57			
B06	16.92	K = K @ EQ01	12.72	na	19.95			
B07	16.92	K = K @ EQ01	12.36	na	19.67			
B08	16.92	K = K @ EQ01	12.86	na	20.06			
B09	16.92	K = K @ EQ01	12.6	na	19.86			
B10	16.92	K = K @ EQ01	13.11	na	20.25			
B11	16.92	K = K @ EQ01	12.94	na	20.13			
B12	16.92	K = K @ EQ01	13.46	na	20.52			
B13	16.92	K = K @ EQ01	13.44	na	20.51			
B14	16.92	K = K @ EQ01	13.97	na	20.91			
B15	16.92	K = K @ EQ01	14.13	na	21.03			
B16	16.92	K = K @ EQ01	14.69	na	21.44			
B17	12.17	5.6	19.52	na	24.74	0.1	150	7.0
701	16.92	3.0	14.18	na	24.74	0.1	100	7.0
702	16.92		14.18	na				
702	16.92		14.2	na				
703	16.92		14.21	na				
704	16.92		14.22	na				
706	16.92		14.28	na				
707	16.92		14.28					
708	16.92		14.39	na na				
709	16.92		14.43					
710	16.92		14.5	na na				
710	16.92		14.7					
711	16.92		14.71	na				
712	16.92		15.1	na				
			15.67	na				
714 715	16.92			na				
715	16.92		16.47	na				
716	16.92 13.04		17.52 21.17	na				
716A				na				
717	13.04		23.04	na				
718	8.125		37.51	na				
719	5.0		45.09 45.00	na	250.0			
HDR	5.0		45.89	na	250.0			
BOR	1.0		50.12	na				
UG1	0.0		53.37	na				
UG2	0.0		53.85	na				
UG3	0.0		53.79	na				
UG4	0.0		53.67	na				
UG5	0.0		53.63	na				
BFP	0.0		54.8	na				
TEST	0.0		59.26	na				

The maximum velocity is 13.45 and it occurs in the pipe between nodes HDR and BOR

Page 4 Date

Hyd. Ref.	Qa	Dia. "C"	Fittino or	•	Pipe Ftng's	Pt Pe	Pt Pv	****** Notes ****
Point	Qt	Pf/Ft	Eqv.	Ln.	Total	Pf	Pn	Notes
DP01	19.50	1.049 100.0	E	1.427 0.0	1.000 1.427	12.125 -0.398		K Factor = 5.60
EQ01	19.5	0.1739		0.0	2.427	0.422		Vel = 7.24
	0.0 19.50					12.149		K Factor = 5.59
B01	19.50	1.049 100.0	Т	3.568 0.0	8.130 3.568	12.149 0.0		K Factor @ node EQ01
702	19.5	0.1740		0.0	11.698	2.035		Vel = 7.24
	0.0 19.50					14.184		K Factor = 5.18
302	19.88	1.049	Т	3.568	5.030	12.633		K Factor @ node EQ01
702	19.88	100.0 0.1804		0.0 0.0	3.568 8.598	0.0 1.551		Vel = 7.38
	0.0 19.88					14.184		K Factor = 5.28
303	19.55	1.049	Т	3.568	8.130	12.167		K Factor @ node EQ01
704	19.51	100.0 0.1742		0.0 0.0	3.568 11.698	0.0 2.038		Vel = 7.24
104	0.0	0.1742		0.0	11.000			VOI 1.24
D04	19.51	4.040		2.500	F 020	14.205		K Factor = 5.18
B04 o	19.90	1.049 100.0	Т	3.568 0.0	5.030 3.568	12.652 0.0		K Factor @ node EQ01
704	19.9	0.1806		0.0	8.598	1.553		Vel = 7.39
	0.0 19.90					14.205		K Factor = 5.28
B05	19.57	1.049 100.0	Т	3.568 0.0	8.130 3.568	12.234		K Factor @ node EQ01
707	19.57	0.1751		0.0	11.698	0.0 2.048		Vel = 7.26
	0.0 19.57					14.282		K Factor = 5.18
B06	19.95	1.049	Т	3.568	5.030	12.721		K Factor @ node EQ01
o 707	19.95	100.0 0.1816		0.0 0.0	3.568 8.598	0.0 1.561		Vel = 7.41
101	0.0	0.1010		0.0	0.030	1.501		V C I - 1.41
	19.95					14.282		K Factor = 5.28
B07 o	19.67	1.049 100.0	Т	3.568 0.0	8.130 3.568	12.363 0.0		K Factor @ node EQ01
709	19.67	0.1769		0.0	11.698	2.069		Vel = 7.30
	0.0 19.67					14.432		K Factor = 5.18
B08	20.06	1.049	Т	3.568	5.030	12.856		K Factor @ node EQ01
709	20.06	100.0 0.1833		0.0 0.0	3.568 8.598	0.0 1.576		Vel = 7.45
	0.0	0000		<u> </u>	0.000			
P00	20.06	1.040	т	2 560	0 120	14.432		K Factor @ pode FO01
B09 o	19.86	1.049 100.0	Т	3.568 0.0	8.130 3.568	12.604 0.0		K Factor @ node EQ01
712	19.86	0.1800		0.0	11.698	2.106		Vel = 7.37

Page 5 Date

Hyd. Ref.	Qa	Dia. "C"	Fitting or	l	Pipe Ftng's	Pt Pe	Pt Pv	****** Notes *****
Point	Qt	Pf/Ft	Eqv.	Ln.	Total	Pf	Pn	1,1112
	0.0 19.86					14.710		K Factor = 5.18
B10	20.25	1.049	Т	3.568	5.030	13.105		K Factor @ node EQ01
o 712	20.25	100.0 0.1867		0.0 0.0	3.568 8.598	0.0 1.605		Vel = 7.52
7 12	0.0	0.1007		0.0	0.530	1.003		V GI = 1.52
	20.25					14.710		K Factor = 5.28
B11	20.13	1.049 100.0	Т	3.568 0.0	8.130 3.568	12.941 0.0		K Factor @ node EQ01
o 713	20.13	0.1845		0.0	11.698	2.158		Vel = 7.47
	0.0					4.5.000		
B12	20.13	1.049	T	3.568	5.030	15.099 13.455		K Factor = 5.18 K Factor @ node EQ01
.O	20.52	100.0	ı	0.0	3.568	0.0		K Factor @ Hode EQUI
713	20.52	0.1912		0.0	8.598	1.644		Vel = 7.62
	0.0 20.52					15.099		K Factor = 5.28
B13	20.51	1.049	Т	3.568	8.130	13.438		K Factor @ node EQ01
o 714	20.51	100.0 0.1910		0.0 0.0	3.568 11.698	0.0 2.234		Vel = 7.61
7 14	0.0	0.1910		0.0	11.090	2.234		Vei - 7.01
	20.51					15.672		K Factor = 5.18
B14 o	20.91	1.049 100.0	Т	3.568 0.0	5.030 3.568	13.970 0.0		K Factor @ node EQ01
714	20.91	0.1980		0.0	8.598	1.702		Vel = 7.76
	0.0					45.070		I/ F
B15	20.91	1.049	T	3.568	8.130	15.672 14.134		K Factor = 5.28 K Factor @ node EQ01
0	21.00	100.0	'	0.0	3.568	0.0		_
715	21.03	0.2000		0.0	11.698	2.340		Vel = 7.81
	0.0 21.03					16.474		K Factor = 5.18
B16	21.44	1.049	Т	3.568	5.030	14.691		K Factor @ node EQ01
o 715	21.44	100.0 0.2074		0.0 0.0	3.568 8.598	0.0 1.783		Vel = 7.96
713	0.0	0.2074		0.0	0.090	1.703		Vei – 7.30
	21.44					16.474		K Factor = 5.28
B17 o	24.74	1.049 100.0	E T	1.427 3.568	2.500 4.995	19.519 -0.377		K Factor = 5.60
716A	24.74	0.2703		0.0	7.495	2.026		Vel = 9.18
	0.0							WE 4
701	24.74	3.26		0.0	1.880	21.168 14.184		K Factor = 5.38
701 :0	0.0	3.26 100.0		0.0 0.0	0.0	0.0		
702	0.0	0.0		0.0	1.880	0.0		Vel = 0
702 o	39.38	3.26 100.0		0.0 0.0	4.120 0.0	14.184 0.0		
703	39.38	0.0027		0.0	4.120	0.0		Vel = 1.51

Page 6 Date

Hyd.	Qa	Dia.	Fittin	q	Pipe	Pt	Pt			
Ref.	Qu	"C"	or	-	Ftng's	Pe	Pv	*****	Notes	*****
Point	Qt	Pf/Ft	Eqv.	Ln.	Total	Pf	Pn			
703	0.0	3.26		0.0	4.040	14.195				
704	20.20	100.0		0.0	0.0	0.0		\/al =1	E 1	
704 704	39.38 39.42	0.0025 3.26		0.0	2.000	0.010 14.205		Vel = 1.	31	
70 4 :0	39.42	100.0		0.0	0.0	0.0				
705	78.8	0.0095		0.0	2.000	0.019		Vel = 3.	03	
705	0.0	3.26		0.0	6.000	14.224				
o 706	78.8	100.0 0.0092		0.0 0.0	0.0 6.000	0.0 0.055		Vel = 3.	na	
706	0.0	3.26		0.0	0.330	14.279		Vei – 3.	00	
to		100.0		0.0	0.0	0.0				
707	78.8	0.0091		0.0	0.330	0.003		Vel = 3.	03	
707	39.52	3.26		0.0	5.670	14.282				
to 708	118.32	100.0 0.0196		0.0 0.0	0.0 5.670	0.0 0.111		Vel = 4.	55	
708	0.0	3.26		0.0	2.000	14.393		7.51 7.		
to		100.0		0.0	0.0	0.0				
709	118.32	0.0195		0.0	2.000	0.039		Vel = 4.	55	
709	39.73	3.26		0.0	2.000	14.432				
to 710	158.05	100.0 0.0335		0.0 0.0	0.0 2.000	0.0 0.067		Vel = 6.	08	
710	0.0	3.26		0.0	6.000	14.499		V 01 0.		
to		100.0		0.0	0.0	0.0				
711	158.05	0.0333		0.0	6.000	0.200		Vel = 6.	08	
711	0.0	3.26		0.0	0.330	14.699				
to 712	158.05	100.0 0.0333		0.0 0.0	0.0 0.330	0.0 0.011		Vel = 6.	08	
712	40.11	3.26		0.0	7.670	14.710				
to		100.0		0.0	0.0	0.0				
713	198.16			0.0	7.670	0.389		Vel = 7.	62	
713	40.65	3.26		0.0	8.000	15.099				
to 714	238.81	100.0 0.0716		0.0 0.0	0.0 8.000	0.0 0.573		Vel = 9.	18	
714	41.42	3.26		0.0	8.330	15.672				
to		100.0		0.0	0.0	0.0				
715	280.23	0.0963		0.0	8.330	0.802		Vel = 10	.77	
715	42.48	3.26 100.0	E	6.714 0.0	1.667 6.714	16.474 0.0				
to 716	322.71	0.1250		0.0	8.381	1.048		Vel = 12	.40	
716	0.0	3.26	E	6.714	9.000	17.522				
to		100.0		0.0	6.714	1.680				
716A	322.71	0.1251		0.0	15.714	1.966		Vel = 12	.40	
716A	24.74	3.26	E	6.714	6.320	21.168				
o 717	347.45	100.0 0.1433		0.0 0.0	6.714 13.034	0.0 1.868		Vel = 13	.36	
717	0.0	3.26	6E	40.285	45.860	23.036				
0		100.0		0.0	40.285	2.129				
718	347.45	0.1434		0.0	86.145	12.349		Vel = 13	.36	

Page 7 Date

THE FILL	cion Alca #	20 - 0. 13 101 L	Intile Carr	ЭРУ			Date		
Hyd. Ref. Point	Qa Qt	Dia. "C" Pf/Ft	Fittir o Eqv.	-	Pipe Ftng's Total	Pt Pe Pf	Pt Pv Pn	*****	Notes *****
718	0.0	3.26	Dvc	16.306	3.125	37.514			
to		100.0	В	9.592	40.285	1.353			
719	347.45	0.1434	<u>T</u>	14.388	43.410	6.224		Vel = 13	.36
719 to	0.0	4.26 120.0	Т	26.334 0.0	2.500 26.334	45.091 0.0			
HDR	347.45	0.0278		0.0	28.834	0.801		Vel = 7.	82
HDR	250.00	4.26	S	28.968	4.000	45.892		Qa = 250	
to	200.00	120.0	O	0.0	28.968	1.732		Qa – 250	,
BOR	597.45	0.0758		0.0	32.968	2.499		Vel = 13	.45
BOR	0.0	6.16	2E	40.168	190.000	50.123			
to		140.0	2F	20.084	107.593	0.433			
UG1	597.45	0.0095	Ţ	43.037	297.593	2.814		Vel = 6.	43
			G	4.304					
	0.0					53.370		K Factor	- 01 70
1104	597.45	0.40		0.0	CF 000			K Factor	- 01.70
UG1 to	521.17	6.16 140.0		0.0 0.0	65.000 0.0	53.370 0.0			
UG2	521.17	0.0074		0.0	65.000	0.478		Vel = 5.	61
UG2	-597.45	6.16	2T	86.075	200.000	53.848			
to	007.10	140.0	_,	0.0	86.075	0.0			
UG3	-76.28	-0.0002		0.0	286.075	-0.060		Vel = 0.	82
UG3	0.0	6.16	5F	50.21	490.000	53.788			
to	70.00	140.0		0.0	50.210	0.0			00
UG4	-76.28	-0.0002		0.0	540.210	-0.114		Vel = 0.	82
UG4	0.0	6.16	Т	43.037	165.000 43.037	53.674			
to UG5	-76.28	140.0 -0.0002		0.0 0.0	208.037	0.0 - 0.043		Vel = 0.	82
UG5	0.0	6.16	4F	40.168	1160.000	53.631		VC1 0.	02
to	0.0	140.0	2E	40.168	80.336	0.0			
UG1	-76.28			0.0	1240.336	-0.261		Vel = 0.	82
	0.0								
	-76.28					53.370		K Factor	= -10.44
UG2	597.45	6.16	2E	40.168	60.000	53.848			
to	F07.45	140.0		0.0	40.168	0.0		\/	40
BFP	597.45	0.0095		0.0	100.168	0.947		Vel = 6.	43
BFP	0.0	6.16	2E	40.168	60.000	54.795 3.068		* * Eivad	Loss = 3.068
to TEST	597.45	140.0 0.0095	Zwe T	0.0 43.037	87.509 147.509	3.068 1.395		Vel = 6.	
0 1	557.40	0.0000	Ġ	4.304		1.000		V 51 0.	. •
	0.0								
	597.45					59.258		K Factor	= 77.61

VicFlex[™] Style VS1 Dry Sprinkler Models V3505, V3506, V3509, V3510, V3517, V3518

1.0 PRODUCT DESCRIPTION

Style

• Pendent, Concealed Pendent, Horizontal Sidewall

K Factor

• 5.6/8.1 S.I. For system design purposes, no equivalent length calculations are required.

Sprinkler Length

• 38"/965 mm, 50"/1270 mm, 58"/1475 mm

Nominal Orifice Size

• ½"/13 mm

Maximum Working Pressure

• 175 psi/1200 kPa

Factory Hydrostatic Test

• 100% @ 500 psi/3450 kPa

Minimum Operating Pressure

• 7 psi/48 kPa

Connections

• To branch line (inlet) via 1"/25 mm NPT or 1" BSPT

Minimum Bend Radius:

• **UL:** 2"/51 mm

• **FM**: 7"/178 mm

Maximum Number of 90° Bends:

UL: 4

• FM: 2 bends for 38", 3 bends for 50", 4 bends for 58"

Hazard Classifications

Light and Ordinary Hazard

NOTE

• The VS1 is classified as a dry sprinkler and has no equivalent length.

ALWAYS REFER TO ANY NOTIFICATIONS AT THE END OF THIS DOCUMENT REGARDING PRODUCT INSTALLATION, MAINTENANCE OR SUPPORT.

System No.	Location	Spec Section	Paragraph	
Submitted By	Date	Approved	Date	

2.0 CERTIFICATION/LISTINGS

	Model								
Approvals/Listings	V3505	V3505	V3506	V3506	V3509	V3509	V3510	V3517	V3518
Orifice Size (inches)	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"	1/2"
Orifice Size (mm)	13	13	13	13	13	13	13	13	13
Nominal K Factor Imperial	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6
Nominal K Factor S.I.	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1
Response	Standard	Standard	Quick	Quick	Standard	Standard	Quick	Standard	Quick ¹
							Hor. SW,		Conc. Pend.
Deflector Type	Pendent	Recessed	Pendent	Recessed	Hor. SW	Rec. Hor. SW	Recessed Hor.	Conc. Pend.	w/Clean
							Sidewall		room gasket
Approved Temperature Ratings					F°/C°				
	135/57	135/57	135/57	135/57	135/57	135/57	135/57	_	135/57
	155/68	155/68	155/68	155/68	155/68	155/68	155/68	_	155/68
FM	175/79	175/79	175/79	175/79	175/79	175/79	175/79	_	175/79
	200/93	200/93	200/93	200/93	200/93	200/93	200/93	_	200/93
	286/141	_	_	_	286/141	_	_	_	_
	135/57	135/57	135/57	135/57	135/57	135/57	135/57	135/57	135/57
	155/68	155/68	155/68	155/68	155/68	155/68	155/68	155/68	155/68
UL	175/79	175/79	175/79	175/79	175/79	175/79	175/79	175/79	175/79
	200/93	200/93	200/93	200/93	200/93	200/93	200/93	200/93	200/93
	286/141	286/141	286/141	286/141	286/141	_	286/141	-	_

¹ Model V3518 is a Standard Response FM sprinkler.

3.0 MATERIAL SPECIFICATIONS

Deflector: Brass

Bulb: Glass with glycerin solution

Bulb Nominal Diameter:
Quick Response: 3.0 mm
Standard Response: 5.0 mm

Split Spacers: Stainless steel

Load Screw: Brass **Pip Cap:** Stainless steel

Spring Seal Assembly: PTFE tape coated beryllium nickel and stainless steel

Frame: Brass

Flexible Hose: Stainless steel
Collar/Weld Fitting: Stainless steel
Gasket Seal: Victaulic EPDM

Isolation Ring: Nylon

Hose Fittings: Carbon steel, zinc-plated

Inlet Fitting: Brass

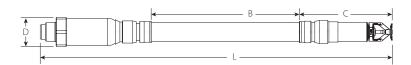
Outer Tube: Stainless steel

Concealed Cup: Carbon steel, zinc-plated **Brackets:** Carbon steel, zinc-plated

3.1 ACCESSORIES SPECIFICATIONS

Sprinkler Finishes:

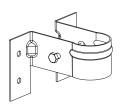
Standard: VC-250 White painted RAL 9010

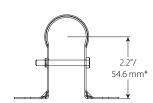


4.0 DIMENSIONS

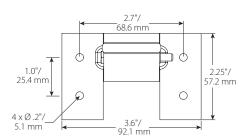
Product Details and Optional Components

Style VS1 Dry Sprinkler




Sprinkler	Overall Length (pendent)	Live Length	Outlet End Length	Maximum OD
Length	L	В	С	D
inches	inches	inches	inches	inches
mm	mm	mm	mm	mm
38	39.2	25.1	6.5	2.2
965	995	638	165	56
50	51.2	37.1	6.5	2.2
1270	1300	943	165	56
58	59.2	45.1	6.5	2.2
1475	1505	1145	165	56

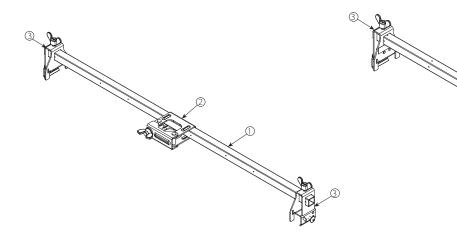
NOTE


• Add ½" to Overall Length and Outlet End Length for increased length of sidewall deflector

Style VB1 Bracket

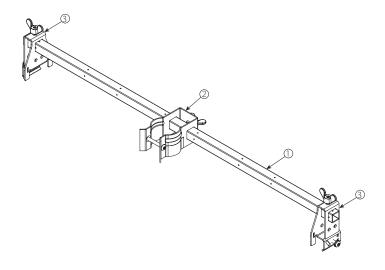
*Note: Theoretical center point of sprinkler in bracket.

10.91 9374 Rev L Updated 11/2020 © 2020 Victaulic Company. All rights reserved.


4.0 DIMENSIONS (CONTINUED)

Style VB2 Bracket Recessed Pendent, Suspended Ceilings

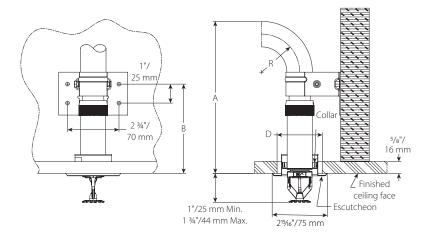
Item	Description
1	24"/610 mm or 48"/1220 mm Square Bar
2	Patented 1-Bee Center Bracket
3	End Bracket


Style VB3 Bracket Concealed Pendent, Suspended Ceilings

Item	Description
1	24"/610 mm or 48"/1220 mm Square Bar
2	Patented 1-Bee Center Bracket
3	End Bracket

Style VB4 Bracket Sleeve and Skirt Pendent, Suspended Ceilings

_	
Item	Description
1	24"/610 mm or 48"/1220 mm Square Bar
2	Center Bracket
3	End Bracket


4.1 DIMENSIONS

Sprinkler Finishes: Dimensions and Mounting Conditions

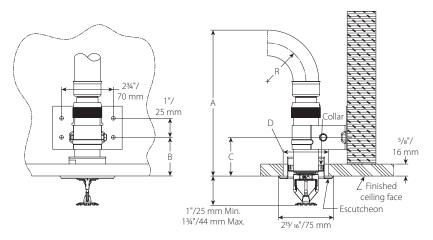
NOTE

• Drawings are shown with %" finished ceiling thickness. Adjustments to "B" and "C" dimensions will be required if finished ceiling thickness deviate from drawing.

Recessed Pendent:

Clearance Chart						
	inc	hes				
Dimension	m	m				
"R" Minimum Bend Radius	2	7				
K Willillium Dena Kadias	50	175				
"A" Minimum Required Installation Space	7 5/8	12 %				
A Millimum Required installation Space	193	320				
"P" Mounting Corou Hole Leastion	4	3/4				
"B" Mounting Screw Hole Location	1	19				
Cailing Hala Diameter "D"	2 – 2 3/8					
Ceiling Hole Diameter "D"	50 – 60					

NOTE


• Dimensions are shown with 3/4" escutcheon at middle of height adjustment range.

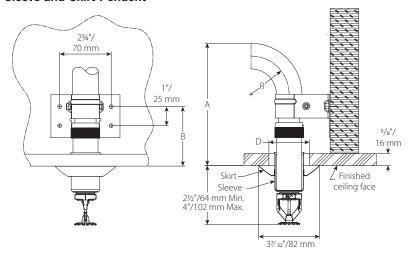
10.91 9374 Rev L Updated 11/2020 © 2020 Victaulic Company. All rights reserved.

4.2 DIMENSIONS

Recessed Pendent Alternative Bracket Location

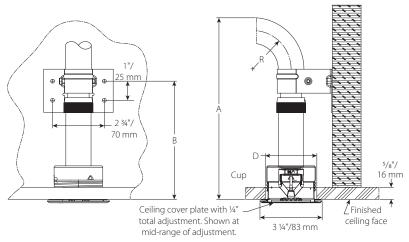
Clearance Chart		
inches		
Dimension	mm	
"R" Minimum Bend Radius	2	7
	50	175
"A" Minimum Required Installation Space	7 5/8	12 %
A Minimum Required Installation Space	193	320
"B" Mounting Screw Hole Location		2
B Mounting Screw Hole Location	50	
Coiling Holo Diameter "D"	2 – 2 3/8	
Ceiling Hole Diameter "D"	50 – 60	

NOTE


• Dimensions are shown with 3/4" escutcheon at middle of height adjustment range.

6

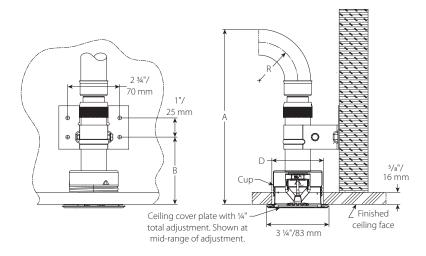
4.3 DIMENSIONS


Sleeve and Skirt Pendent

Clearance Chart		
Dimension	inches	
Dimension	mm	
"R" Minimum Bend Radius	2	7
it Willilliam Dena Radias	50	175
"A" Minimum Poquired Installation Chase	61/2	111/2
"A" Minimum Required Installation Space	163	290
"P" Marinting Carour Hala Lagation	3 1/8	
"B" Mounting Screw Hole Location	79	
Cailing Hala Diameter "D"	1 3/4 - 2 1/8	
Ceiling Hole Diameter "D"	44 – 54	

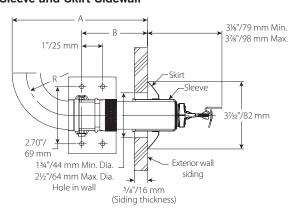
4.4 DIMENSIONS

Concealed Pendent


Clearance Chart			
Dimension	inches mm		
"R" Minimum Bend Radius	2	7	
K Willilliam Bena Kadius	50	175	
"A" Minimum Required Installation Space	9½	141/2	
A Millimum Required installation Space	241	369	
"B" Mounting Screw Hole Location	61/4		
B Mounting Screw Hole Location	157		
Cailing Hala Diameter "D"	25/8-23/4		
Ceiling Hole Diameter "D"	67 – 70		

10.91 9374 Rev L Updated 11/2020 © 2020 Victaulic Company. All rights reserved.

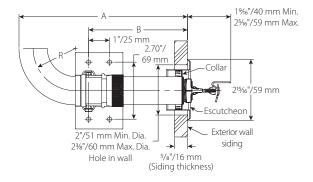
4.5 DIMENSIONS


Concealed Pendent Alternative Bracket Location

Clearance Chart		
	inches	
Dimension	mm	
"R" Minimum Bend Radius	2	7
K Willilliam Dena Radius	50	175
"A" Minimum Required Installation Space	9 1/8	14 1/8
A Millimum Required installation Space	231	358
"B" Mounting Screw Hole Location	31/2	
b Mounting Sciew Hole Location	89	
Cailing Hala Diameter "D"	2 1/8 - 2 3/4	
Ceiling Hole Diameter "D"	67 – 70	

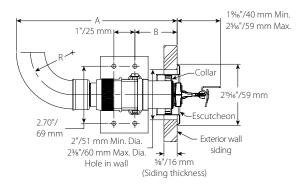
4.6 DIMENSIONS

Sleeve and Skirt Sidewall


Clearance Chart		
	inches	
Dimension	mm	
"R" Minimum Bend Radius	2	7
K Willilliam Della Radius	50	175
"A" Minimum Required Installation Space	61/2	111/2
A Willimum Required installation Space	163	290
"B" Mounting Screw Hole Location	3 1/8	
B Mounting Screw Hole Location	79	
Cailing Hala Diameter "D"	1 3/4 - 2 1/8	
Ceiling Hole Diameter "D"	44 -	- 54

10.91 9374 Rev L Updated 11/2020 © 2020 Victaulic Company. All rights reserved.

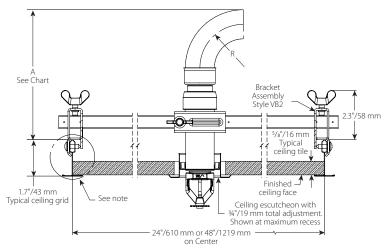
4.7 DIMENSIONS


Recessed Sidewall

Clearance Chart		
	inches	
Dimension	mm	
"R" Minimum Bend Radius	2	7
K Willilliam Bena Kadius	50	175
"A" Minimum Required Installation Space	8	13
A Millimum Required installation Space	203	330
"B" Mounting Screw Hole Location	4 3/4	
B Mounting Screw Hole Location	119	
Coiling Hole Diameter "D"	2 – 2 %	
Ceiling Hole Diameter "D"	51 – 60	

4.8 DIMENSIONS

Recessed Sidewall Alternative Bracket Location

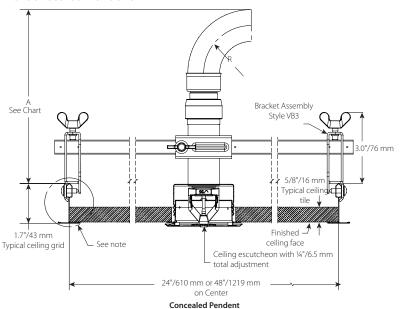

Clearance Chart		
Dimonoion	inches	
Dimension	mm	
"R" Minimum Bend Radius	2	7
IV Willimum Dena Nadius	50	175
"A" Minimum Required Installation Space	8	13
A Willimum Required installation Space	203	330
"P" Mounting Covery Hole Leastion	2	
"B" Mounting Screw Hole Location	51	
Cailing Hala Diamatay "D"	2 – 2 3/8	
Ceiling Hole Diameter "D"	51 – 60	

10.91 9374 Rev L Updated 11/2020 © 2020 Victaulic Company. All rights reserved.

4.9 DIMENSIONS

VB2 Recessed Pendent

Recessed Pendent


Clearance Chart		
inches		hes
Dimension	mm	
"R" Minimum Bend Radius	2	7
K Willilliam Della Radius	50	175
"A" Minimum Required Installation Space	61/2	111/2
A Millimum Required instantation Space	163	290

NOTE

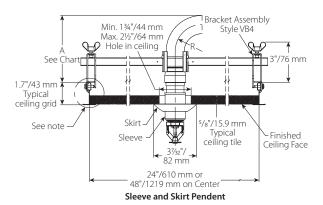
• Victaulic VicFlex Style VB2 Bracket assemblies shall be used only with Style VS1 recessed pendent sprinklers.

4.10 DIMENSIONS

VB3 Concealed Pendent

Clearance Chart		
inches		hes
Dimension	mm	
"R" Minimum Bend Radius	2	7
R Willillium Benu Radius	50	175
"A" Minimum Required Installation Space	7 5/8	12 %
A willimum Required installation space	193	320

NOTE

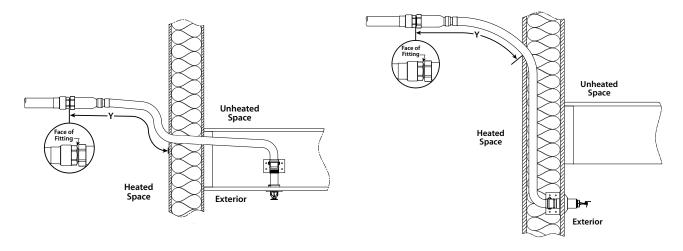

• Victaulic VicFlex Style VB3 Bracket assemblies shall be used only with Style VS1 concealed pendent sprinklers.

10.91 9374 Rev L Updated 11/2020 © 2020 Victaulic Company. All rights reserved.

4.11 DIMENSIONS

VB4 Sleeve and Skirt Pendent

Clearance Chart		
Bend Radius		
	inches	inches
	mm	mm
"R" Minimum Bend Radius	2	7
	51	178
"A" Minimum Required Installation Space	5	10
	127	254


NOTE

• Victaulic VicFlex Style VB2 Bracket assemblies shall be used only with Style VS1 recessed pendent sprinklers.

5.0 PERFORMANCE

Freeze Protection

Ambient Temperature Exposed to Discharge End of Sprinkler	Exposed Minimum Barrel Length "Y" inches mm		
°F °C	40°F/4°C	50°F/10°C	60°F/16°C
40 4	0 0	0 0	0
30 -1	0	0	0
20	4	0	0
-7	100	0	0
10	8	1	0
-12	200	25	
0	12	3	0 0
-18	300	75	
-10	14	4	1
-23	350	100	25
-20	14	6	3
-29	350	150	75
-30	16	8	4
-34	400	200	100
-40	18	8	4
-40	450	200	100
-50	20	10	6
-46	500	250	150
-60	20	10	6
-51	500	250	150

NOTE

Maximum Allowable Number of Bends

Sprinkler Length inches mm	Maximum Allowable Number of 90° Bends at 2"/51mm Bend Radius for UL Listing	Maximum Allowable Number of 90° Bends at 7"/178mm Bend Radius for FM Approval
38 965	4	2
50 1270	4	3
58 1475	4	4

10.91 9374 Rev L Updated 11/2020 © 2020 Victaulic Company. All rights reserved.

[•] Exposed minimum barrel lengths are inclusive up to 30-mph/48-kph wind velocities.

6.0 NOTIFICATIONS

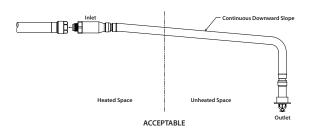
WARNING

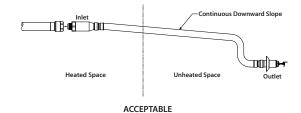
- Read and understand all instructions before attempting to install any Victaulic products.
- Always verify that the piping system has been completely depressurized and drained immediately prior to installation, removal, adjustment, or maintenance of any Victaulic products.
- · Wear safety glasses, hardhat, and foot protection.
- These products shall be used only in fire protection systems that are designed and installed in accordance
 with current, applicable National Fire Protection Association (NFPA 13, 13D, 13R, etc.) standards, or equivalent standards, and in accordance with applicable building and fire codes. These standards and codes contain
 important information regarding protection of systems from freezing temperatures, corrosion, mechanical damage, etc.
- The installer shall understand the use of this product and why it was specified for the particular application.
- The installer shall understand common industry safety standards and potential consequences of improper product installation.

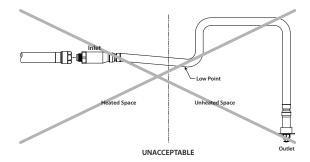
WARNING

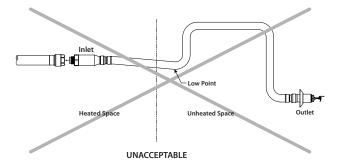
- It is the responsibility of the system designer to verify suitability of 300-series stainless steel flexible hose for use with the intended fluid media within the piping system and external environments.
- The effect of chemical composition, pH level, operating temperature, chloride level, oxygen level, and flow rate
 on 300-series stainless steel flexible hose must be evaluated by the material specifier to confirm system life will
 be acceptable for the intended service.
- It is the responsibility of the owner of a building or their authorized agent to provide the sprinkler system installer
 with any knowledge that the water supply might be contaminated with or conducive to the development of
 microbiologically influenced corrosion (MIC), including as required by NFPA 13. Failure to identify adverse water
 quality issues may affect the VicFlex product and void the manufacturer's warranty.

Failure to follow these instructions could cause product failure, resulting in serious personal injury and/or property damage.


DO NOT paint, coat, or firestop the outlet/inlet portion of the Style VS1 Dry Sprinkler. Braided hose and fitting portions of the Style VS1 Dry Sprinkler may be painted or coated, provided that the paint or coating is compatible with stainless steel material. This includes penetration through firestop-filled annular space of a firewall. The firestop material in direct contact with the flexible braided hose will not impede functionality of the Style VS1 Dry Sprinkler, provided that the components are installed in accordance with Victaulic's installation instructions.

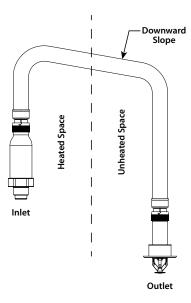



6.0 NOTIFICATIONS (CONTINUED)


Important Installation Notes:

- 1. Shall be installed only in accordance with NFPA 13 Standard for the the Installation of Sprinkler Systems and applicable FM Data Sheets.
- 2. Install and tighten swivel hex nut at inlet of sprinkler fitting only.
- 3. Do not remove deflector or inlet end of sprinkler.

6.0 NOTIFICATIONS (CONTINUED)

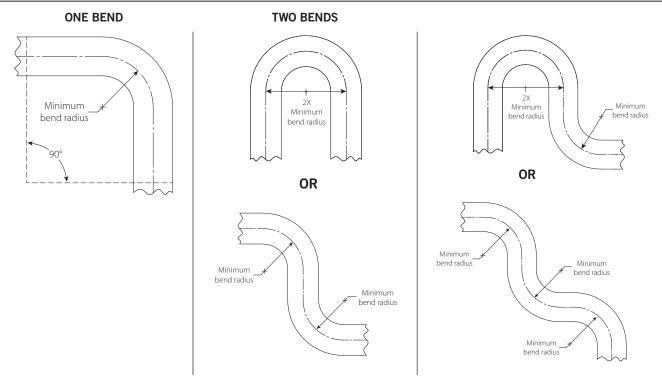

FOR DRY SYSTEMS ONLY:

• The Style VS1 Dry Sprinkler's inlet shall be installed only into the outlet of a fitting (excluding elbows) or welded outlet that meets the dimensional requirements of ANSI B16.3 and ANSI B16.4, Class 125 and Class 150. Use a sample fitting to confirm proper engagement and to verify that there is no interference between the sprinkler and the fitting.

Style VS1 Dry Sprinklers in an unheated space shall be installed with a continuous downward slope along its entire length from the branch line fitting to the sprinkler. No localized low points shall be present along the length of the Style VS1 Dry Sprinkler.

Style VS1 Dry Sprinklers in an unheated space are not permitted to be installed into the top of the branch line piping. Style VS1 Dry Sprinklers shall be installed into the side or from the bottom of the branch line piping.

In a heated space, if a portion of the Style VS1 Dry Sprinkler is installed from the top of a branch line and then extends into an unheated space, it shall be installed with a continuous downward slope along the entire length from the inside wall to the outlet of the sprinkler. No localized low points shall be present along the length of the sprinkler in the unheated space. Refer to the drawing below.


FOR WET SYSTEMS ONLY:

- **DO NOT** install Victaulic[®] VicFlex[™] Style VS1 Dry Sprinklers into any threaded elbow, threaded-by-thread coupling, or fitting that interferes with thread penetration. The inlet of the Victaulic[®] VicFlex[™] Style VS1 Dry Sprinkler **SHALL NOT** bottom out in the fitting. Use a sample fitting to confirm proper engagement.
- To ensure unobstructed flow during operation, the Victaulic® VicFlexTM Style VS1 Dry Sprinkler shall be installed into a fitting that will prevent water and debris from accumulating at the dry sprinkler's inlet.
- Verify that the exposed minimum barrel length in the heated space is measured and maintained in accordance with the table on page 1.

In a heated space, if a portion of the Style VS1 Dry Sprinkler extends into an unheated space, it shall be installed with a continuous downward slope along the entire length from the inside wall to the outlet end of the dry sprinkler. No localized low points shall be present along the length of the sprinkler in the unheated space. Refer to the drawing above.

7.0 REFERENCE MATERIALS

NOTE

For out-of-plane (three-dimensional) bends, care must be taken to avoid imparting torsional stress on the sprinkler.

7.0 REFERENCE MATERIALS

7.0 REFERENCE MATERIALS (CONTINUED)

29.01: Victaulic Terms and Conditions of Sale

I-VICFLEX.VS1: Victaulic® VicFlex™ Style VS1 Dry Sprinkler Installation Instructions

User Responsibility for Product Selection and Suitability

Each user bears final responsibility for making a determination as to the suitability of Victaulic products for a particular end-use application, in accordance with industry standards and project specifications, and the applicable building codes and related regulations as well as Victaulic performance, maintenance, safety, and warning instructions. Nothing in this or any other document, nor any verbal recommendation, advice, or opinion from any Victaulic employee, shall be deemed to alter, vary, supersede, or waive any provision of Victaulic Company's standard conditions of sale, installation guide, or this disclaimer.

Intellectual Property Rights

No statement contained herein concerning a possible or suggested use of any material, product, service, or design is intended, or should be constructed, to grant any license under any patent or other intellectual property right of Victaulic or any of its subsidaries or affiliates covering such use or design, or as a recommendation for the use of such material, product, service, or design in the infringement of any patent or other intellectual property right. The terms "Patented" or "Patent Pending" refer to design or utility patents or patent applications for articles and/or methods of use in the United States and/or other countries.

Note

This product shall be manufactured by Victaulic or to Victaulic specifications. All products to be installed in accordance with current Victaulic installation/assembly instructions. Victaulic reserves the right to change product specifications, designs and standard equipment without notice and without incurring obligations.

Installation

Reference should always be made to the Victaulic installation handbook or installation instructions of the product you are installing. Handbooks are included with each shipment of Victaulic products, providing complete installation and assembly data, and are available in PDF format on our website at www.victaulic.com.

Warranty

Refer to the Warranty section of the current Price List or contact Victaulic for details.

Trademarks

Victaulic and all other Victaulic marks are the trademarks or registered trademarks of Victaulic Company, and/or its affiliated entities, in the U.S. and/or other countries.

10.91 9374 Rev L Updated 11/2020 © 2020 Victaulic Company. All rights reserved.

MODEL V-BB SPECIFIC APPLICATION ATTIC SPRINKLER

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com.

1. DESCRIPTION

The Model V-BB (Back to Back) is a Specific Application Attic Sprinkler designed to provide superior fire protection in combustible and non-combustible sloped attic spaces when compared to standard spray attic protection. With specific application criteria for use with Model V-SD (Single Directional) and VK696 Attic Upright Specific Application Sprinklers, Viking attic sprinklers provide an extended coverage spacing alternative to standard spray sprinklers. They make it possible to use a single line of piping at the attic peak, eliminating the need for branch lines and greatly reducing the number of required sprinklers and associated material and installation costs. Model V-BB sprinklers also have lower minimum flow and pressure requirements than competitive products.

Viking Attic Sprinklers can be installed with either steel or CPVC piping (CPVC allowed on wet pipe systems only), and are available in brass or with corrosion-resistant Electroless Nickel PTFE (ENT) coatings where salt water and other corrosive elements are a consideration. They are cULus Listed with specific application guidelines for use as special sprinklers as defined by the National Fire Protection Association (NFPA), and are cULus Listed for extended coverage in combustible and non-combustible construction. The cULus Listing was achieved using full-scale fire tests within wood truss construction.

The Model V-BB Attic Sprinkler provides a reduced response time due to its narrow ridge spacing of 6 ft. (1,8 m) and long throw pattern (up to 30 ft. in each direction measured horizontally), and is offered in three different slope ranges and two different orifice sizes (K=5.6 or 8.0). Listed for specific pitches 4:12<7:12, 7:12<10:12, and 10:12≤12:12; and spans of 60 ft. and 40 ft. The 8.0K can protect up to 80 ft. span when used along with the Model Attic Upright VK696.

V-BB Sprinkler							
8.0K 5.6K Pitch							
VK681	VK684	4:12 < 7:12					
VK682	VK685	7:12 < 10:12					
VK683	VK686	10:12 ≤ 12:12					

2. LISTINGS AND APPROVALS

cULus Listed: Category VNIV

Refer to the Approval Chart on page 4.

3. TECHNICAL DATA

Specifications:

Minimum Operating Pressure: See Design Criteria - UL Rated to 175 psi (12 bar) water working pressure Factory tested hydrostatically to 500 psi (34.5 bar) Thread size: 1/2" (15 mm) or 3/4" (19 mm) NPT

Nominal K-Factor: 5.6 U.S. (80.6 metric*) or 8.0 (115.2 metric*)

* Metric K-factor measurement shown is when pressure is measured in Bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0.

Glass-bulb fluid temperature rated to -65 °F (-55 °C)

Overall Length: 2-5/8" (67,6 mm)

Covered by the following US Patent No.: 9,149,818

Material Standards:

Frame Casting: Brass UNS-C84400 or QM Brass

Deflector: Brass UNS-C23000 Bulb: Glass, nominal 3 mm diameter

Belleville Spring Sealing Assembly: Nickel Alloy, coated on both sides with Teflon Tape

Screw: Brass UNS-C36000

Pip Cap and Insert Assembly: Copper UNS-C11000 and Stainless Steel UNS-S30400

Ordering Information: (Also refer to the current Viking price list.)

To order the Attic Sprinkler, add the appropriate suffix for the sprinkler finish and then the appropriate suffix for the temperature rating to the sprinkler base part number.

Finish Suffix: Brass = A, ENT = JN
Temperature Suffix: E = 200 °F (93.3 °C)

MODEL V-BB SPECIFIC APPLICATION ATTIC SPRINKLER

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058

Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com.

Available Finishes And Temperature Ratings:

Refer to the approval chart on page 4.

Accessories: (Also refer to the "Sprinkler Accessories" section of the Viking website under Technical Data)

Sprinkler Wrench:

Standard Wrench: Part No. 10896W/B

Sprinkler Cabinets:

A. Six-head capacity: Part No. 01724A

B. Twelve-head capacity: Part No. 01725A

4. INSTALLATION

Refer to appropriate NFPA Installation Standards.

5. OPERATION

During a fire condition, the heat sensitive liquid in the glass bulb expands, causing the glass to shatter, releasing the pip cap and sealing spring assembly. Water flowing through the sprinkler orifice strikes the deflector, forming a uniform spray pattern to extinguish or control the fire, and protect the piping in the interstitial space.

6. INSPECTIONS, TESTS AND MAINTENANCE

Refer to NFPA 25 for Inspection, Testing and Maintenance requirements.

7. AVAILABILITY

The Model V-BB Specific Application Sprinkler is available through a network of domestic and international distributors. See The Viking Corporation web site for the closest distributor or contact The Viking Corporation.

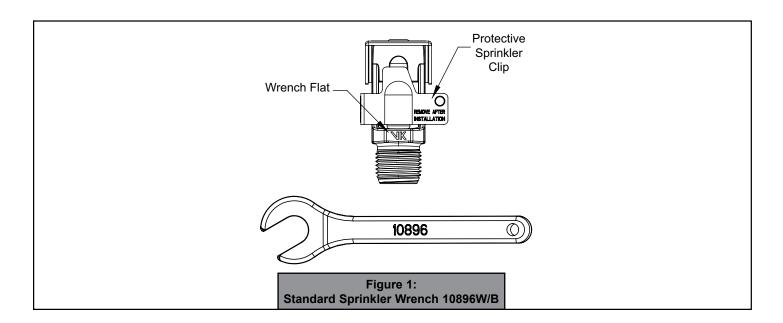
8. GUARANTEE

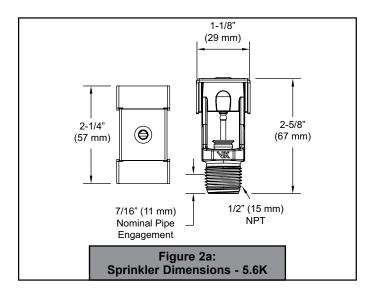
For details of warranty, refer to Viking's current list price schedule or contact Viking directly.

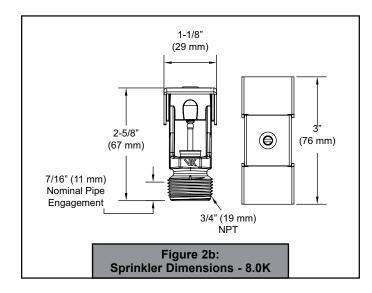
TABLE 1: AVAILABLE SPRINKLER TEMPERATURE RATINGS AND FINISHES							
Sprinkler Temperature Classification	· · · · · · · · · · · · · · · · · · ·						
Intermediate	200 °F (93.3 °C)	150 °F (65°C)	Green				

Sprinkler Finishes: Brass, ENT³

Footnotes


¹ The sprinkler temperature rating is stamped on the deflector.


² Based on NFPA-13. Other limits may apply, depending on fire loading, sprinkler location, and other requirements of the Authority Having Jurisdiction. Refer to specific installation standards.


³ cULus Listed as corrosion resistant.

MODEL V-BB SPECIFIC APPLICATION ATTIC SPRINKLER

MODEL V-BB SPECIFIC APPLICATION ATTIC SPRINKLER

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com.

Approval Chart 1 Viking V-BB Specific Application Sprinkler For Combustible and Non-Combustible Sloped Attic Spaces Temperature KEY ATX ← Escutcheon (if applicable)													
Part SIN Maximum Thread Size Nominal K-Factor						Overall I	Length	Listings and Approvals ³					
Number ¹	-	Pressure	NPT	BSP	U.S.	metric ²	Inches	mm	cULus⁴	FM	LPCB	Œ	•
19627	VK684	175 psi	1/2"	15 mm	5.6	80,6	2-5/8	68	A1, A2				
19801	VK685	175 psi	1/2"	15 mm	5.6	80,6	2-5/8	68	A1, A2				
19754	VK686	175 psi	1/2"	15 mm	5.6	80,6	2-5/8	68	A1, A2				
19626	VK681	175 psi	3/4"	20 mm	8.0	115,2	2-5/8	68	A1, A2				
19798	VK682	175 psi	3/4"	20 mm	8.0	115,2	2-5/8	68	A1, A2				
19751	VK683	175 psi	3/4"	20 mm	8.0	115,2	2-5/8	68	A1, A2				
Approved Temperature Rating A - 200 °F (93.3 °C)					Approved Finishes 1 - Brass, 2 - ENT ⁵								

¹ Also refer to Viking's current price schedule.

⁵ cULus Listed as corrosion resistant.

DESIGN CRITERIA - UL Chart 1 (Also refer to Approval Chart 1) Allowable , flow, pressure and slope for attic protection using Viking V-BB Sprinklers																			
Sprinkler Base Part	SIN	Type	Thread Size Nominal K-Factor				Thread Size		Size Allowable Roof						Minimum Flow		mum	Pitch ¹	Dry Pipe System Maximum Water
Number		-71	NPT	BSP	U.S.	metric	ft. (m)	GPM	LPM	PSI	BAR		Delivery Time ³ (in seconds)						
19627	VK684	V-BB	1/2"	15 mm	5.6	80,6	<u>≤</u> 40 (12,2)	24	91	18.4	1,3	4:12 < 7:12	See footnote 3						
19801	VK685	V-BB	1/2"	15 mm	5.6	80,6	<u>≤</u> 40 (12,2)	24	91	18.4	1,3	7:12 < 10:12	See footnote 3						
19754	VK686	V-BB	1/2"	15 mm	5.6	80,6	<u>≤</u> 40 (12,2)	24	91	18.4	1,3	10:12 ≤ 12:12	See footnote 3						
19626	VK681	V-BB	3/4"	20 mm	8.0	115,2	<u>≤</u> 60 (18,3)	38	144	22.6	1,5	4:12 < 7:12	See footnote 3						
19798	VK682	V-BB	3/4"	20 mm	8.0	115,2	≤60 (18,3)	38	144	22.6	1,5	7:12 < 10:12	See footnote 3						
19751	VK683	V-BB	3/4"	20 mm	8.0	115,2	≤60 (18,3)	38	144	22.6	1,5	10:12 ≤12:12	See footnote 3						

¹ Pitch and slope indicate the incline of a roof, expressed as a proportion of the vertical to the horizontal.

IMPORTANT: Always refer to Bulletin Form No. F_091699 - Care and Handling of Sprinklers. Also refer to page SR1-3 for general care, installation, and maintenance information. Viking sprinklers are to be installed in accordance with the latest edition of Viking technical data, the appropriate standards of NFPA, LPCB, APSAD, VdS or other similar organizations, and also with the provisions of governmental codes, ordinances, and standards, whenever applicable.

² Metric K-factor measurement shown is when pressure is measured in Bar. When pressure is measured in kPa, divide the metric K-factor shown by 10.0.

³ This table shows the listings and approvals available at the time of printing. Other approvals may be in process.

⁴ Listed by Underwriters Laboratories Inc for use in the United States and Canada.

² Refer to the Viking Attic Upright VK696 data sheet for roof spans over 60 ft (18,29 m) up to 80 ft (24,38 m) wide.

³ Refer to NFPA 13, 2013, Section 7.2.3.

MODEL V-BB SPECIFIC APPLICATION ATTIC SPRINKLER

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com.

ADDITIONAL DESIGN CRITERIA - UL Chart 2

(Also refer to DESIGN CRITERA Chart 1)

Allowable roof span, flow, pressure and slope for attic protection using Viking V-BB Sprinklers

Design Criteria: Flow and Pressures refer to Design Chart 1.

System Type:

Wet systems and dry systems.

Antifreeze Systems:

Use only listed antifreeze in accordance with the applicable NFPA standard as follows:

Option 1: Use any listed antifreeze in accordance with the manfacturer's installation instructions.

Option 2: For a Light Hazard Unoccupied attic

- 1. System Volume ≤200 gal (764 L)
- 2. Use freezemaster™ antifreeze (refer to Manufacturer's documentation)
- 3. Viking Attic Sprinklers (V-BB, V-HIP, V-SD, VK696, VK697)
- 4. Calculate the number of sprinklers in the hydraulically remote area in accordance with wet system criteria.*
- * NOTE: For systems greater than 40 Gal (151 L), pipe sizing shall be determined using both the Darcy-Weisbach and Hazen-Williams approved hydraulic calculations. Because of the density of freezemaster™ antifreeze, the K-factor must be adjusted, and the friction loss must be considered in the system design.

Piping Types:

Steel (wet and dry) CPVC (wet systems only).

Occupancy Classification: Light hazard only.

Viking V-BB Sprinkler Spacing

Maximum Coverage Area:

400 ft² (37,16 m²) as measured along the slope.

Coverage area is determined by the twice the maximum distance thrown measured along the slope, multiplied by the distance along the branch line.

Example: 60' (18,3 m) span with a 10:12 slope, when measured along the slope provides a distance of approximately 39'-1" (11,9 m). This number must be multiplied by 2 to equal the overall span, which would be approximately 78'-2" (23,8 m). 400 ft² divided by 78'-2" (23,8 m) allows a maximum spacing along the branchline of 5'-1" (15,5 m).

Along the Branch Line:

Minimum Spacing: 4'-0" (1,2 m) between V-BB's and from V-SD's. 7'-0" (2,1 m) from Viking Attic Uprights. 6'-0" (1,8 m) from Standard Spray Sprinklers

Maximum Spacing: 6'-0" (1,8 m) between V-BB's and from V-SD's.

Measured Down the Slope:

Minimum Spacing: 26'-0" (7,9 m) from Viking Attic Uprights and Standard Spray Sprinklers.

Deflector Position below Peak, Ridge, or Deck:

For all roof pitches as per the listing from 4:12 – 12:12 the maximum deflector distance down is 22" (560 mm), and the minimum deflector distance down is 16" (405 mm).

Deflector Position above Scissor Truss:

For all roof pitches as per the listing from 4:12 - 12:12 the minimum distance above a scissor truss is 18" (458 mm).

Maximum distance from center line of the ridge:

6" (152 mm) on either side of the center line.

Minimum distance from Truss:

6" (152 mm) from nearest edge of the truss.

Draft Curtains:

Where used to allow Attic Upright Sprinkler installation shall be constructed to contain heat, may be constructed of minimum ½" (13 mm) plywood or equivalent.

Continues on next page.

MODEL V-BB SPECIFIC APPLICATION ATTIC SPRINKLER

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com.

Continued from previous page.

Use of UL Listed CPVC Blazemaster Piping (Wet Systems Only):

Can be used to supply the sprinklers protecting the floor below the combustible concealed space when covered with 6" (152 mm) of non-combustible insulation over the horizontal or vertical piping, and extending 12" (304 mm) on both sides of the center line of the piping. If the piping is located in the joist, the width of the joist channel must be entirely covered to 6" (152 mm) above the top of the piping. The area above the piping must be protected with the Model V-BB's, V-SD's, or the Attic Upright Sprinklers.

Listed CPVC Blazemaster piping may also be used exposed to feed wet systems using Viking V-BB sprinklers in accordance with the following requirements, and in accordance with Figure 15:

- · Risers are vertical and protected by V-BB or V-SD sprinklers located a maximum of 12 (304 mm)" away from the riser centerline.
- Model V-BB or V-SD sprinklers are mounted directly to the branchline.
- Model V-BB or V-SD sprinklers are installed on arm-overs a maximum of 6" (152 mm) laterally from the center line of the branch line.
- Model V-BB or V-SD sprinklers are installed on Vertical Sprigs attached to the branchline.
- Model V-BB or V-SD sprinklers are installed on angled sprigs a maximum of 6" (152 mm) laterally from the centerline of the branchline.
- Installed with a minimum lateral distance of 18" (456 mm) from any device that produces and releases heat, i.e. attic furnace, kitchen or bathroom exhaust fan, flue vents, heat lamps, and other such devices.

Insulation requirements are provided solely for Fire Protection purposes and not for freeze protection.

Non-combustible insulation being used needs to be verified for chemical compatibility with the CPVC piping at www.lubrizol.com

Obstruction Criteria:

Refer to Figures 4-14

Refer to Sections 8.8.5.2.1.3 and 8.8.5.2.1.7 of NFPA 13, 2013 for requirements if installed on greater than 2-1/2" (64 mm) diameter piping.

Hydraulic Requirements:

Viking V-BB Sprinklers must be calculated in accordance with the following figures and guidelines.

The design area shall include the most hydraulically demanding sprinklers, and in certain cases may require more than one set of calculations to verify the system's design.

The following figures cover Hydraulic Requirements for Viking V-BB Sprinklers only, and when installed with Attic Upright or Standard Spray Sprinklers.

For areas using Viking V-SD Sprinklers refer to the applicable data sheets.

Refer to Figures-unless otherwise noted, all Figures portray a 60' (18,3 m) roof span:

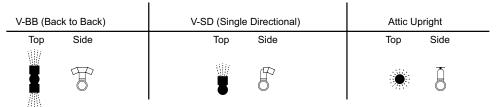
Figure 16 – V-BB Sprinklers

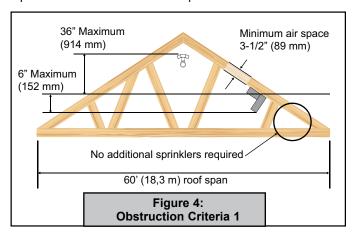
Figure 17 – V-BB Sprinklers & Attic Upright or Standard Spray Sprinklers Beyond an Obstruction

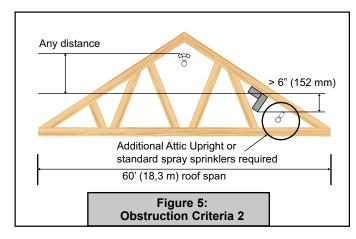
Figure 18 – V-BB Sprinklers & Attic Upright or Standard Spray Sprinklers at the Hip

Figure 19 - V-BB Sprinklers & Attic Upright or Standard Spray Sprinklers in a Dormer, at a Hip, or at an Ell.

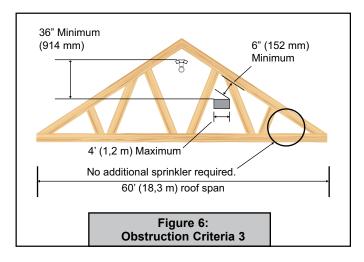
Figure 20 – V-BB Sprinklers & Attic Upright or Standard Spray Sprinklers separated by compartmentalization.

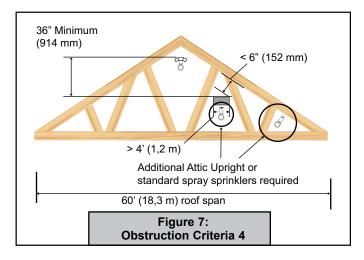



Figure 3: Sprinkler Type Legend

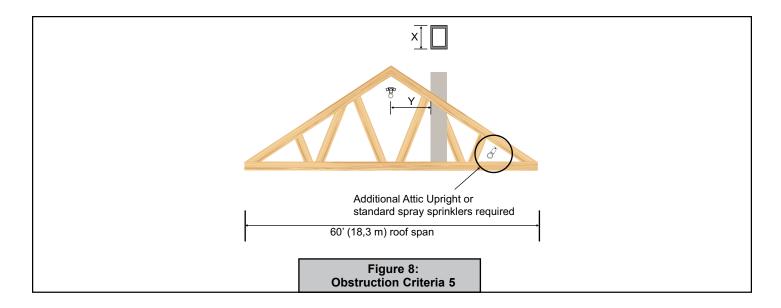


MODEL V-BB SPECIFIC APPLICATION ATTIC SPRINKLER


The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com.


Refer to figures 4 and 5 below-unless otherwise noted, all Figures portray a 60' (18,3 m) roof span. Maximum 6" (152 mm) obstruction allowed provided it sits at least 36" (914 mm) vertically below the Viking V-BB Sprinkler. Larger or closer obstructions require an additional sprinkler on the opposite side of the obstruction. This criteria only limits the obstructions that run across the trusses or rafters, not the top chord of the trusses or the depth of the rafter.

Refer to Figures 6 and 7 below where the maximum spacing for Attic Upright Sprinklers is 12 ft. (3,7 m) and standard spray sprinklers is 15 ft (4,6 m). Any horizontal obstruction that is 4 ft. (1,2 m) or less in width requires minimum 6" (152 mm) clearance over the top to allow for sufficient water flow over and under. The clearance must be measured perpendicular to and from the bottom of the rafter. If the clearance is less than 6" (152 mm), an additional sprinkler is required on the opposite side of the obstruction. If the obstruction is more than 4 ft. (1,2 m) wide, an additional sprinkler is required underneath.

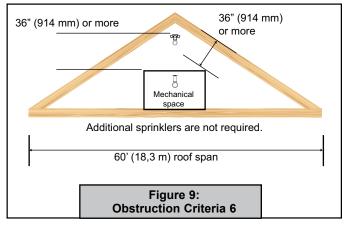


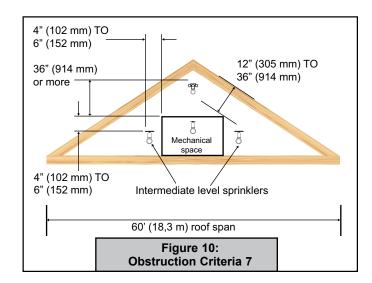
MODEL V-BB SPECIFIC APPLICATION ATTIC SPRINKLER

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com.

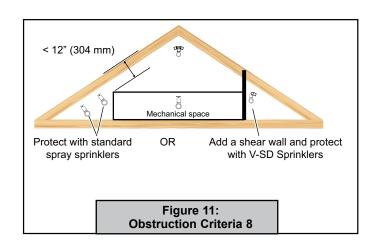
Refer to Figure 8 below. For vertical obstructions, the maximum dimension of the obstruction is the width and the horizontal distance is measured horizontally.

TABLE 2: OBSTRUCTION CRITERIA						
Dimension X	Distance Y	Additional Sprinklers Required Beyond Obstruction				
Maximum Horizontal Dimension of Obstruction	Minimum Horizontal Distance to Obstruction					
All vertical obstructions	< 6" (152 mm)	YES				
1/2" - 1" (13 mm - 25 mm)	6" (152 mm)	NO				
1" - 4" (25 mm - 102 mm)	12" (305 mm)	NO				
4" - 8" (101 mm - 203 mm)	24" (610 mm)	NO				
8" - 10 " (203,mm - 254 mm)	5'-0" (1,5 m)	NO				
10" - 20" (254 mm - 508 mm)	10'-0" (3,0 m)	NO				
20" - 30" (508 mm - 762mm)	15'-0" (4,6 m)	NO				
30" - 40 " (762 mm - 1016 mm)	20'-0" (6,1 m)	NO				
40" - 48" (1016 mm - 1219 mm)	25'-0" (7,6 m)	NO				
> 48" (1219 mm)	Any distance	YES				



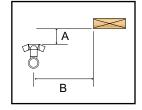

MODEL V-BB SPECIFIC APPLICATION ATTIC SPRINKLER

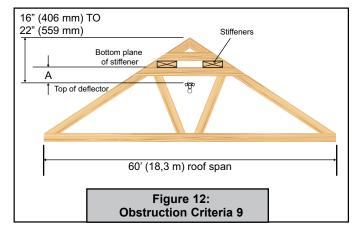
The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com.


If a V-BB Sprinkler is 36" (914 mm) or greater avove the space, and 36" (914 mm) or greater clearance above the space is present, additional sprinklers are not needed.

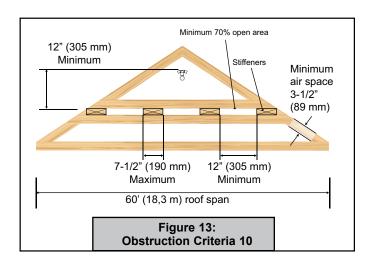
If a V-BB sprinkler is 36" (914 mm) or greater above the space, and a 12" - 36" (304 - 914 mm) clearance above the space is present, intermediate level standard sprinklers are required.

Otherwise, the area outside the mechanical space is to be protected as shown using standard spray sprinklers as necessary or by building a shear wall and installing V-SD Sprinklers.

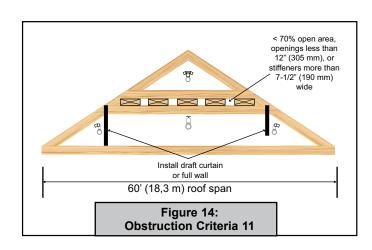



MODEL V-BB SPECIFIC APPLICATION ATTIC SPRINKLER

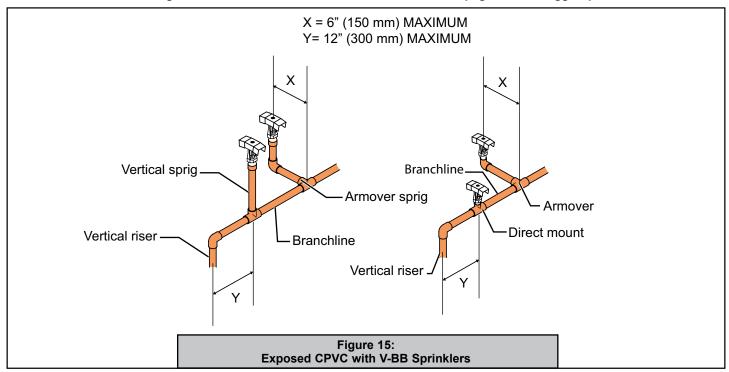
The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com.

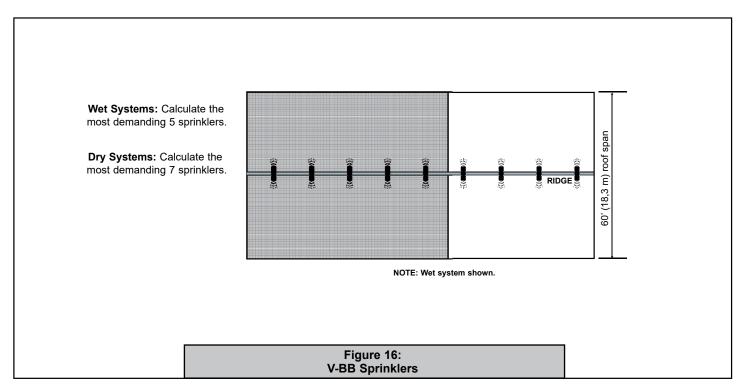

If a V-BB Sprinkler can be installed below or between stiffeners and 16 to 22" (404 to 559 mm) distance to peak can be maintained, as well as A and B clearances to the stiffeners, no additional sprinklers are required.

	В									
A	VK681 VK684	VK682 VK685	VK683 VK686							
0"	0"	0"	0"							
A >0"	A +15"	A +10"	A +8"							

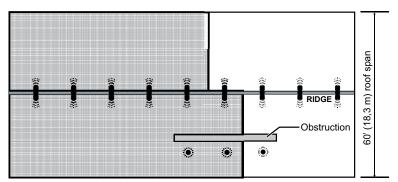


When the stiffeners are located a minimum of 12" (305 mm) below the V-BB Sprinkler, the stiffeners are 7-12" (190 mm) maximum wide, the openings are 12" (305 mm) minimum, and there is 70% minimum open area, no additional sprinklers are required.




Otherwise, additional sprinklers are required as shown.

MODEL V-BB SPECIFIC APPLICATION ATTIC SPRINKLER



MODEL V-BB SPECIFIC APPLICATION ATTIC SPRINKLER

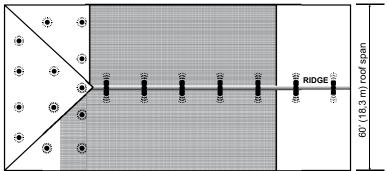
The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com.

Wet Sytems: Calculate the most demanding 5 V-BB sprinklers and add up to 2 of the most demanding Attic Upright or Standard Spray Sprinklers.

Dry Sytems: Calculate the most demanding 7 V-BB sprinklers and add up to 2 of the most demanding Attic Upright or Standard Spray Sprinklers.

NOTE: Wet system shown.

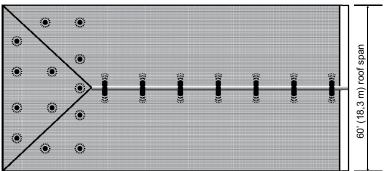
Figure 17:
V-BB and Attic Upright or Standard Spray Sprinklers Beyond an Obstruction



MODEL V-BB SPECIFIC APPLICATION ATTIC SPRINKLER

The Viking Corporation, 210 N Industrial Park Drive, Hastings MI 49058
Telephone: 269-945-9501 Technical Services: 877-384-5464 Fax: 269-818-1680 Email: techsvcs@vikingcorp.com
Visit the Viking website for the latest edition of this technical data page www.vikinggroupinc.com.

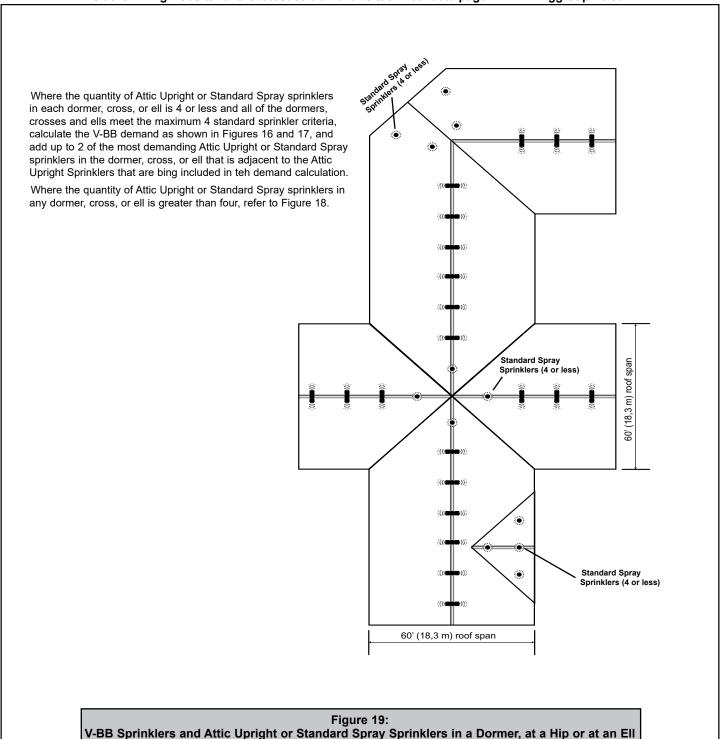
Wet Sytems: Calculate the most demanding 5 V-BB sprinklers plus the 2 most demanding Attic Upright Sprinklers, and then calculate the most demanding area up to 1500 ft² (137m²) having Attic Upright sprinklers. Use the most demanding calculation.


Wet Sytems: Calculate the most demanding 5 V-BB Sprinklers and add up to 2 of the most demanding Standard Spray Sprinklers, then calculate the most demanding remote design area (including ALL sprinkler types) per NFPA 13. For example, area reduction for quick response and 30% increase for sloped ceilings. Use the most demanding calculation.

NOTE: Wet system shown.

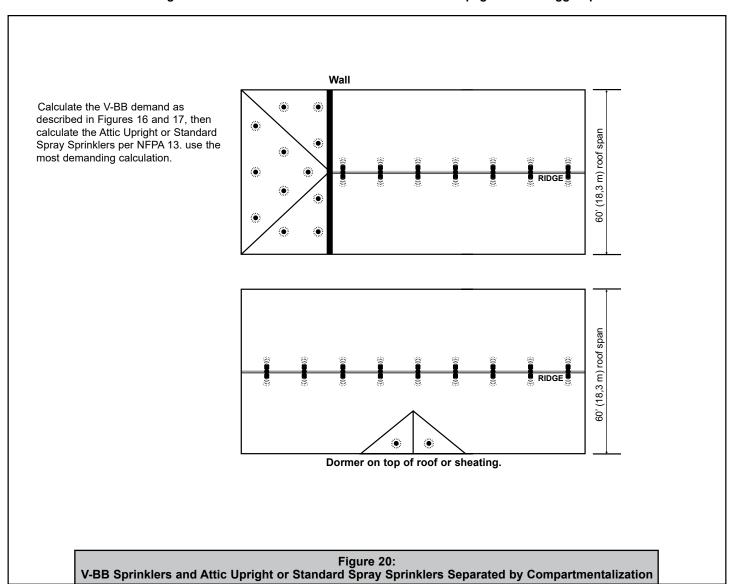
Dry Sytems: Calculate the most demanding 7 V-BB sprinklers plus the 2 most demanding Attic Upright sprinklers, and then calculate the most demanding area up to 1950 ft² (181 m²) having Attic Upright sprinklers. Use the most demanding calculation.

Dry Sytems: Calculate the most demanding 7 V-BB Sprinklers and add up to 2 of the most demanding Standard Spray Sprinklers, then calculate the most demanding remote design area (including ALL sprinkler types) per NFPA 13. For example, 30% increase for sloped ceilings and 30% increase for dry systems. Use the most demanding calculation.



NOTE: Wet system shown.

Figure 18: V-BB and Attic Upright or Standard Spray Sprinklers at the Hip



MODEL V-BB SPECIFIC APPLICATION ATTIC SPRINKLER

MODEL V-BB SPECIFIC APPLICATION ATTIC SPRINKLER

