

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEVELOPMENT SERVICES LEE'S SUMMIT, MISSOURI

03/30/2021

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Re: H3-94

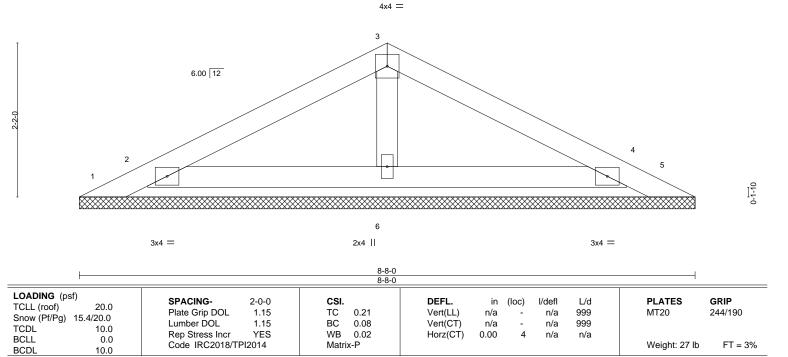
SUMMIT HOMES

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Mid America MO.

Pages or sheets covered by this seal: I44987034 thru I44987086

My license renewal date for the state of Missouri is December 31, 2021.

Missouri COA: Engineering 001193


March 1,2021

Sevier, Scott

,Engineer

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIEW H3-94 C₁ **GABLE** 20 **DEVELOPMENT SERVICES** Job Reference (optional) 8.430 s Feb 12 2021 MiTek Inquistries, Ind. Effi Se S26 NBW2014 4 Val 12 5 Page 1 Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-P2E7jwRzZUzKlIAc?IWO1qClK5lvKF0?V8AdK8zhDqr 8-8-0 03/30/2021 4-4-0 4-4-0 Scale = 1:16.2

BRACING-

LUMBER-

TOP CHORD 2x4 SP No 2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **OTHERS** 2x4 SP No.2

REACTIONS. All bearings 8-8-0.

Max Horz 1=23(LC 8)

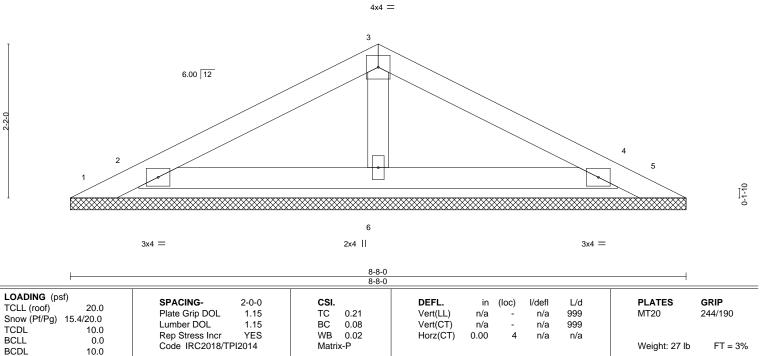
Max Uplift All uplift 100 lb or less at joint(s) 2, 4 except 1=-114(LC 16), 5=-114(LC 17) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 6 except 2=363(LC 16), 4=363(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) Plates checked for a plus or minus 3 degree rotation about its center.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4 except (jt=lb) 1=114, 5=114.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

March 1,2021



RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIEW H3-94 C1GE **GABLE** 2 **DEVELOPMENT SERVICES** Job Reference (optional) 8.430 s Feb 12 2021 MiTek Inquistries, Ind. Effi Se S26 NEW 26745 12 15 Page 1 Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-tEoVxGSbKn5BNSloZT1da1lw4V583iG9jovAsbzhDqq 8-8-0 03/30/2021 4-4-0 4-4-0 Scale = 1:16.2

LUMBER-BRACING-

TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD 2x4 SP No.2 BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **OTHERS** 2x4 SP No.2

REACTIONS. All bearings 8-8-0.

Max Horz 1=23(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 2, 4 except 1=-114(LC 16), 5=-114(LC 17) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 6 except 2=363(LC 16), 4=363(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) Plates checked for a plus or minus 3 degree rotation about its center.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4 except (jt=lb) 1=114, 5=114.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

March 1,2021

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIEW H3-94 CJ1 Diagonal Hip Girder 2 **DEVELOPMENT SERVICES** Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-LRMt8cSD55E2?bK?7AYs7FH2avM4o9olySfkO1zhDqp 6-10-5 03/30/2021 1-2-14 6-10-5 3x4 || Scale = 1:19.6 3 Special 4.24 12 Specia 4 Specia Special 2x4 || 6-10-5 LOADING (psf) SPACING-2-0-0 DEFL. I/defI L/d **PLATES GRIP** CSI. (loc) TCLL (roof) 20.0 Plate Grip DOL Vert(LL) 244/190 1.15 TC 0.35 0.01 2-4 >999 360 MT20 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 ВС 0.42 Vert(CT) -0.12 >676 240 2-4 TCDI 10.0 Rep Stress Incr NO WB 0.00 Horz(CT) -0.00 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-P Weight: 35 lb FT = 3% **BCDL** 10.0 BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1 2x4 SP No.2 BOT CHORD

WEBS 2x4 SP No.2

WEDGE Left: 2x4 SP No.2

REACTIONS.

(size) 4=Mechanical, 2=0-5-5

Max Horz 2=94(LC 8)

Max Uplift 4=-27(LC 8), 2=-60(LC 7) Max Grav 4=303(LC 16), 2=372(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 64 lb down and 38 lb up at 4-1-7, and 64 lb down and 38 lb up at 4-1-7 on top chord, and 12 lb down and 5 lb up at 4-1-7, and 12 lb down and 5 lb up at 4-1-7 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B)

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-51, 2-4=-20 Concentrated Loads (lb)

Vert: 6=-35(F=-18, B=-18) 7=-7(F=-3, B=-3)

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

March 1,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RELEASE FOR CONSTRUCTION Job Truss Truss Type Qty SUMMIT HOMES AS NOTED ON PLANS REVIEW H3-94 CJ2 Diagonal Hip Girder 2 **DEVELOPMENT SERVICES** Job Reference (optional)

DEVELOPMENT SERVICES

8.430 s Feb 12 2021 MiTek Industries, Inc. Hai Se 524 MANDE 4 MITES DAUGH Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-pdvFMyTrsPMvdlvBgu35fSq3nldWXayRB6OHxTzhDqo 7-6-12 03/30/2021 1-2-14 1-6-11 6-0-1 Scale = 1:21.1 4x4 || 5 Special 4.24 12 Special 10 Special 5x10 = Special 5x10 = 12 0-6-0 Special 3x4 = Special 8 Special 3x4 =Special 4-5-6 Plate Offsets (X,Y)-- [4:0-4-0,0-2-4], [6:Edge,0-1-8], [9:0-2-0,0-4-12] LOADING (psf) SPACING-CSI. **DEFL** (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.96 Vert(LL) -0.17 6-7 >512 360 244/190 MT20 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 BC 0.73 Vert(CT) -0.286-7 >309 240 TCDL 10.0 Rep Stress Incr NO WB 0.13 Horz(CT) 0.10 6 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 FT = 3% Matrix-SH Weight: 36 lb BCDL 10.0 LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 4-10-14 oc purlins, **BOT CHORD** except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing

2x4 SP No.2

2x4 SP No.2 **WEBS**

REACTIONS.

(size) 9=0-5-5, 6=Mechanical

Max Horz 9=97(LC 30)

Max Uplift 9=-68(LC 7), 6=-50(LC 11) Max Grav 9=408(LC 16), 6=373(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 3-4=-785/94

BOT CHORD 8-9=-76/383, 7-8=-39/252

WFBS 3-8=-327/80, 3-9=-452/49, 3-7=-99/549

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 6.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 49 lb down and 17 lb up at 1-11-15, 49 lb down and 17 lb up at 1-11-15, and 68 lb down and 32 lb up at 4-9-14, and 68 lb down and 32 lb up at 4-9-14 chord, and 4 lb down and 9 lb up at 1-11-15, 4 lb down and 9 lb up at 1-11-15, and 27 lb down and 23 lb up at 4-9-14, and 27 lb down and 23 lb up at 4-9-14 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-51, 2-5=-51, 8-9=-20, 6-7=-20

Vert: 10=-32(F=-16, B=-16) 11=1(F=1, B=1) 12=-55(F=-27, B=-27)

March 1,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIEW H3-94 GR1 PIGGYBACK BASE GIRDE **DEVELOPMENT SERVICES** 2 Job Reference (optional) DEVELOPMENT SERVICES
8.430 s Feb 12 2021 MiTek Industries, Int. Etc. Section May 12 10 Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-iO9mBKWMvdsL5NDyvj81ql?qjw18TDq16kMV4EzhDqk 13-2-0 6-7-0 20-6-0 24-10-0 36-0-0 39-<mark>03/30/2021</mark> 3-8-0 3-8-0 3-8-0 4-4-0 4-4-0 6-10-0 7x8 = Scale = 1:77.5 7x8 = 5x5 = 7 23 8 24 5x5 / 6.00 12 6 5x5 < 3x6 II 22 10 5 25 6x6 ≥ 5x5 🖊 5x8 / 5 0-6-0 16 14 13 12 7x12 = 15 26 6x10 = 6x10 = 5x5 = 3x6 || 20 18 5x8 = 5x10 8x10 || 7x12 = 5x6 = JUS24 Special 36-0-0 39-8-0 2-11-8 3-7-8 6-10-0 Plate Offsets (X,Y)--[1:0-0-0,0-0-1], [18:Edge,0-2-8], [20:0-6-4,0-4-0] LOADING (psf) SPACING-CSI. **DEFL** (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.65 Vert(LL) -0.14 16-17 >999 360 244/190 MT20 Snow (Pf/Pg) 20.4/20.0 Lumber DOL 1.15 BC 0.55 Vert(CT) -0.27 16-17 >999 240 TCDL 10.0 Rep Stress Incr NO WB 0.85 Horz(CT) 0.09 12 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-SH Weight: 726 lb FT = 3%BCDL 10.0

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x6 SP No.1

2x6 SP No.1 *Except* **BOT CHORD**

1-18: 2x8 SP 2400F 2.0E

2x4 SP No.2 *Except* WEBS 2-20: 2x10 SP 2400F 2.0E

REACTIONS. (size) 1=0-4-0 (req. 0-5-7), 12=0-4-0

Max Horz 1=243(LC 78)

Max Grav 1=9237(LC 33), 12=2322(LC 33)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD

1-2=-15465/0, 2-4=-8755/0, 4-5=-5798/0, 5-6=-5800/0, 6-7=-3234/0, 7-8=-2843/0,

8-9=-1961/0, 9-10=-2325/0, 10-11=-1470/0, 5-17=-454/142, 11-12=-2290/0

1-20=0/13176, 19-20=0/13176, 18-19=0/1067, 16-17=0/3767, 14-16=0/2408,

2-20=0/6626, 2-19=-5934/0, 4-19=0/2144, 17-19=0/6890, 4-17=-3059/0, 6-17=0/3036, WEBS

6-16=-2119/0, 7-16=0/1154, 8-16=0/1083, 8-14=-1210/0, 9-14=0/629, 10-14=0/958,

10-13=-1467/0, 11-13=0/2020

NOTES-

BOT CHORD

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-2-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x10 - 4 rows staggered at 0-2-0 oc, 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 6) Unbalanced snow loads have been considered for this design.
- 7) Provide adequate drainage to prevent water ponding.
- 8) Plates checked for a plus or minus 3 degree rotation about its center.
- 9) WARNING: Required bearing size at joint(s) 1 greater than input bearing size.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Use USP JUS24 (With 4-10d nails into Girder & 2-10d nails into Truss) or equivalent at 1-6-0 from the left end to connect truss(es) to front face of bottom chord, skewed 0.0 deg.to the right, sloping 0.0 deg. down.

Cantifilled on bages where hanger is in contact with lumber.

Structural wood sheathing directly applied or 3-8-8 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals. Except:

10-0-0 oc bracing: 17-18

March 1,2021

🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply SUMMIT HOMES GR1 PIGGYBACK BASE GIRDE H3-94

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW **DEVELOPMENT SERVICES**

ID:Fpza38BVdcFyJDKwxgHN8dztCCb-Aaj8PfX_gx_CjWn8TRfGMWX?TJNNCg4AKO62chzhDqj

03/30/2021

13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 7604 lb down at 2-11-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

Mid America Truss, Jefferson City, MO - 65101,

such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-5=-51, 5-7=-51, 7-9=-61, 9-11=-51, 1-18=-20, 12-17=-20

Concentrated Loads (lb)

Vert: 20=-7604(F) 26=-544(F)

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIEW H3-94 H1 Hip Girder **DEVELOPMENT SERVICES** Job Reference (optional) 8.430 s Feb 12 2021 MiTek Industries, In LEFE'Se \$26M\$ 2025 4415 5 Old R Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-6zqvqLZECYEvyqxXbshkRxcHe7?bghQToib9gZzhDqh 13-10-4 1-1-12 | 0¹/₂/9¹/₂/20²/₂-10-8 1-1-12 0-10-8 12-8-8 0-10-8 1-1-12 1-1-12 3-1-12 3-1-12

5x5 = 5x6 = 5 6 6.00 12 6x10 = 17 6x10 = 4x12 / 4x12 > 14 13 19 7x8 = 5x5 = JUS24 Special Special 16 11 3x4 =

3-1-12 Plate Offsets (X,Y)--[5:0-2-8,0-2-4], [6:0-3-0,0-2-0], [7:0-3-12,0-0-0], [9:Edge,0-4-10], [14:0-4-0,0-3-4] LOADING (psf) SPACING-2-0-0 (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.92 Vert(LL) -0.14 14-15 >999 360 244/190 MT20 Snow (Pf/Pg) 20.4/20.0 Lumber DOL 1.15 BC 0.82 Vert(CT) -0.23 14-15 >768 240 **TCDL** 10.0 Rep Stress Incr NO WB 0.34 Horz(CT) 0.23 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 FT = 3% Matrix-SH Weight: 159 lb BCDL 10.0

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2

2x4 SP No.2 *Except* **BOT CHORD**

14-15,12-13: 2x4 SP No.1, 13-14: 2x6 SP No.1 2x4 SP No.2 WEBS

3x5 ||

SLIDER Left 2x4 SP No.2 -t 1-2-2, Right 2x4 SP No.2 -t 1-2-2

REACTIONS. (size) 2=0-4-0, 9=0-4-0

Max Horz 2=36(LC 8)

Max Uplift 2=-128(LC 11), 9=-128(LC 12) Max Grav 2=1453(LC 34), 9=1453(LC 34)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD $2-3=-1940/181,\ 3-4=-3972/385,\ 4-5=-3289/341,\ 5-6=-2967/329,\ 6-7=-3294/322,$

7-8=-3973/345, 8-9=-1939/180

BOT CHORD 2-16=-140/1333, 15-16=-47/555, 4-15=-28/570, 14-15=-288/2971, 13-14=-242/2972,

12-13=-242/2976, 11-12=-30/554, 7-12=-10/567, 9-11=-106/1332

WFBS 3-16=-863/93, 5-14=-101/1072, 6-13=-107/1075, 8-11=-863/65, 3-15=-268/2791,

8-12=-212/2792

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc. 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 6) Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 8) Provide adequate drainage to prevent water ponding.
- 9) Plates checked for a plus or minus 3 degree rotation about its center.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb)
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and Continuiere naestagia 12 dard ANSI/TPI 1

3x4 =

Structural wood sheathing directly applied or 3-10-5 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

3x5 ||

March 1,2021

Scale = 1:27.7

🗥 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	SUMMIT HOMES	
H3-94	 H1	Hip Girder	1			AS

RELEASE FOR CONSTRUCTION NOTED ON PLANS REVIEW **DEVELOPMENT SERVICES**

2 Job Reference (optional) DEVELOPMENT SERVICES
8.430 s Feb 12 2021 MiTek Industries, Ind. Eric 15:0544MM215514115504481

ID:Fpza38BVdcFyJDKwxgHN8dztCCb-a9OH1hZszsMma_Wj8ZCz_89SOXLqP8gd1MKiD?zhDqg

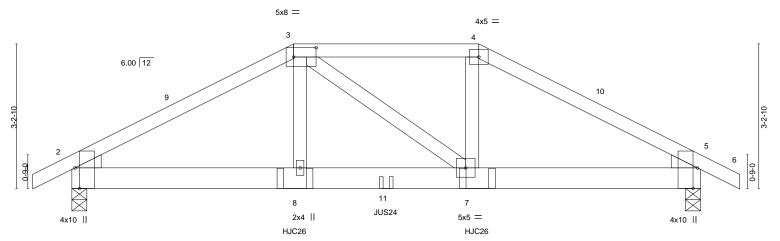
Jefferson City, MO - 65101, NOTES-NOTES12) Use USP JUS24 (With 4-10d nails into Girder & 2-10d nails into Truss) or equivalent at 7-6-0 from the left end to connect truss(es) to front face of bottom chord, skewed

0.0 deg.to the right, sloping 0.0 deg. down.

13) Fill all nail holes where hanger is in contact with lumber. 14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 576 lb down and 122 lb up at 5-5-4, and 576 lb down and 122 lb up at 9-6-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Mid America Truss,


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-5=-51, 5-6=-61, 6-10=-51, 2-16=-20, 12-15=-20, 9-11=-20

Concentrated Loads (lb)

Vert: 14=-576(F) 13=-576(F) 19=-231(F)

ı	4-11-4	4-1-8				4-11-4	ı	
Plate Offsets (X,Y) [2:0-5-8,	Edge], [3:0-6-0,0-2-8], [5:0-5-8,Edge]							
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	CSI. TC 0.40 BC 0.25 WB 0.09	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.02 7-8 -0.04 7-8 0.01 5	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190
BCDI 10.0	Code IRC2018/TPI2014	Matrix-P					Weight: 148 lb	FT = 3%

BRACING-

TOP CHORD

BOT CHORD

9-0-12

LUMBER-

TOP CHORD 2x4 SP No.2 2x6 SP No.1 **BOT CHORD** WEBS 2x4 SP No.2

WEDGE

Left: 2x4 SP No.2, Right: 2x4 SP No.2

REACTIONS. (size) 2=0-4-0, 5=0-4-0

Max Horz 2=-33(LC 55)

Max Uplift 2=-101(LC 11), 5=-101(LC 12) Max Grav 2=1288(LC 34), 5=1288(LC 34)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

4-11-4

TOP CHORD 2-3=-1942/161, 3-4=-1623/167, 4-5=-1942/161 **BOT CHORD** 2-8=-130/1590, 7-8=-132/1625, 5-7=-111/1590

3-8=-37/680, 4-7=-49/712 **WEBS**

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0 Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 6) Unbalanced snow loads have been considered for this design.
- 7) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads
- 8) Provide adequate drainage to prevent water ponding.
- 9) Plates checked for a plus or minus 3 degree rotation about its center.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=101, 5=101.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Use USP HJC26 (With 16-16d nails into Girder & 10d nails into Truss) or equivalent spaced at 4-0-12 oc max. starting at 4-11-10 from the left end to 9-0-6 to connect truss(es) to back face of bottom chord.

14-0-0

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply SUMMIT HOMES H3-94 H2 Hip Girder

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW **DEVELOPMENT SERVICES**

2 Job Reference (optional) DEVELOPMENT SERVICES
8.430 s Feb 12 2021 MiTek Industries, Ind. Ed. (2014) 12 2021 MITEK INDUSTRIES 10 2021 MITEK INDU

ID:Fpza38BVdcFyJDKwxgHN8dztCCb-XYW1SNb6\reftyTcUpIg6G_FR3ZEwzK9Ht69wUgppHuzhDqe

Mid America Truss, Jefferson City, MO - 65101,

03/30/2021
13) Use USP JUS24 (With 4-10d nails into Girder & 2-10d nails into Truss) or equivalent at 7-0-0 from the left end to connect truss(es) to back face of bottom chord.

14) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-51, 3-4=-61, 4-6=-51, 2-5=-20 Concentrated Loads (lb)

Vert: 8=-480(B) 7=-480(B) 11=-206(B)

Job Truss Truss Type Qty SUMMIT HOMES H3-94 J1 Jack-Closed 3

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW **DEVELOPMENT SERVICES**

Job Reference (optional)

DEVELOPMENT SERVICES

8.430 s Feb 12 2021 MiTek Industries, Inc. Hai Se Salmanou 5 Muto 5 Page 11

03/30/2021

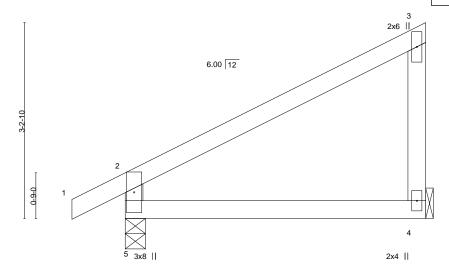
PLATES

Weight: 22 lb

MT20

Structural wood sheathing directly applied or 4-11-4 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.


except end verticals.

GRIP 244/190

FT = 3%

Scale = 1:18.9

ID:Fpza38BVdcFyJDKwxgHN8dztCCb-XYW1SNb6VTcUplg6G_FR3ZExeKAit7WwUgppHuzhDqe -0-10-8 4-11-4 0-10-8 4-11-4

4-11-4

BRACING-

TOP CHORD

BOT CHORD

LOADING (psf)	CDACING 000	001	DEEL		(1)	1/-161	1.74
TCLL (roof) 20.0	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d
Snow (Pf/Pg) 15.4/20.0	Plate Grip DOL 1.15	TC 0.36	Vert(LL)	-0.01	4-5	>999	360
	Lumber DOL 1.15	BC 0.16	Vert(CT)	-0.03	4-5	>999	240
TCDL 10.0	Rep Stress Incr YES	WB 0.00	Horz(CT)	-0.00	4	n/a	n/a
BCLL 0.0	Code IRC2018/TPI2014	Matrix-R	11012(01)	0.00	•	11/4	11/4
RCDI 10.0	Code INC2016/1712014	IVIALITX-IX					

LUMBER-

Mid America Truss,

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.2

> 5=0-4-0, 4=Mechanical (size) Max Horz 5=99(LC 10)

Max Uplift 5=-11(LC 11), 4=-20(LC 8) Max Grav 5=289(LC 16), 4=226(LC 16)

Jefferson City, MO - 65101,

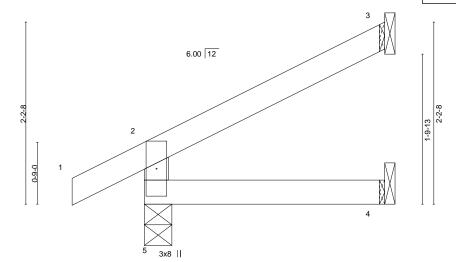
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-5=-258/45

NOTES-

REACTIONS.

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



March 1,2021

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIEW H3-94 J2 Jack-Open **DEVELOPMENT SERVICES** Job Reference (optional)

DEVELOPMENT SERVICES
8.430 s Feb 12 2021 MiTek Industries, Ind. Etc. Section May 2015 Page 1 Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-?k4PfjclGnkLRRFlqhmgcnnAEkYccam3jKZMpKzhDqd 2-10-15 2-10-15 03/30/2021 0-10-8

	ŀ		2-10-15 2-10-15			_			
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCDL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.12 BC 0.05 WB 0.00 Matrix-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.00 -0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 3%

TOP CHORD

BOT CHORD

LUMBER-BRACING-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD

WEBS

2x4 SP No.2 (size)

Max Horz 5=46(LC 11)

Max Uplift 5=-1(LC 11), 3=-30(LC 11) Max Grav 5=221(LC 16), 3=86(LC 16), 4=29(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

5=0-4-0, 3=Mechanical, 4=Mechanical

NOTES-

REACTIONS.

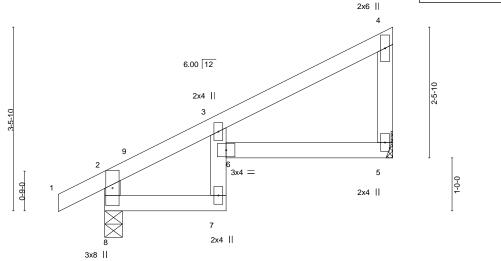
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 2-10-15 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

March 1,2021


Scale = 1:14.0

RELEASE FOR CONSTRUCTION Job Truss Truss Type Qty SUMMIT HOMES AS NOTED ON PLANS REVIEW H3-94 J3 Jack-Closed 3 **DEVELOPMENT SERVICES** Job Reference (optional)

DEVELOPMENT SERVICES

8.430 s Feb 12 2021 MiTek Industries, Inc. Hai Se 524 May 2015 9 July 18 Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-Txeot3cN15sC3bqVNPHv8_KH18pEL10Cx_lwMnzhDqc 03/30/2021 2-3-8 0-10-8 3-1-12

	 	2-3-8 2-3-8	5-5-4 3-1-12		
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.37 BC 0.35 WB 0.00 Matrix-R	(,	6 >999 360 6 >787 240	PLATES GRIP MT20 244/190 Weight: 24 lb FT = 3%

TOP CHORD

BOT CHORD

LUMBER-BRACING-

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2

REACTIONS. 8=0-4-0, 5=Mechanical (size) Max Horz 8=95(LC 8)

Max Uplift 8=-10(LC 11), 5=-23(LC 11) Max Grav 8=300(LC 16), 5=251(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-8=-278/28

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 5.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 5-5-4 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

March 1,2021

Scale = 1:21.8

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIE H3-94 J4 Jack-Open **DEVELOPMENT SERVICES** Job Reference (optional)

DEVELOPMENT SERVICES

8.430 s Feb 12 2021 MiTek Industries, Inc. Hai Se Salmand Quitto S Out 13 S OUT 1 Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-x7CA4Pd?o\psi_3glPhx6o8hCsWeYD64UGMAe2TuDzhDqb -0-10-8 3-4-15 03/30/2021 0-10-8 1-1-7 Scale = 1:15.2 2x4 || 6.00 12 3 2x4 = 0-0-1 0-6-0 ⁷2x4 || 3x8

BRACING-

TOP CHORD

BOT CHORD

Snow (Pf/Pg) 15.4/20.0 TCDI 10.0 **BCLL** 0.0 **BCDL** 10.0

SPACING-2-0-0 20.0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014

CSI. TC 0.12 ВС 0.11 WB 0.00 Matrix-R

DEFL. in I/defI L/d (loc) Vert(LL) -0.01 360 6 >999 Vert(CT) -0.01 >999 240 Horz(CT) 0.00 5 n/a n/a

except end verticals.

PLATES MT20

Structural wood sheathing directly applied or 3-4-15 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

GRIP 244/190

Weight: 15 lb FT = 3%

LUMBER-

REACTIONS.

LOADING (psf)

TCLL (roof)

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS

(size)

2x4 SP No.2

Max Horz 8=53(LC 11) Max Uplift 4=-19(LC 11), 5=-5(LC 11)

Max Grav 8=247(LC 16), 4=88(LC 16), 5=56(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

8=0-4-0, 4=Mechanical, 5=Mechanical

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 1,2021

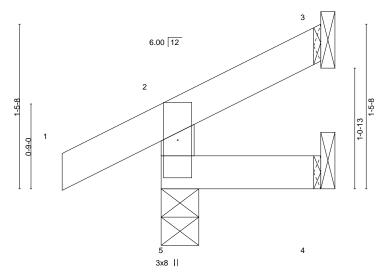
Job Truss Truss Type Qty SUMMIT HOMES H3-94 J5 Jack-Open

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW **DEVELOPMENT SERVICES**

Job Reference (optional)

DEVELOPMENT SERVICES

8.430 s Feb 12 2021 MiTek Industries, Inc. Hai Se Salmand Quitto S Out 13 S OUT 1


Structural wood sheathing directly applied or 1-4-15 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

ID:Fpza38BVdcFyJDKwxgHN8dztCCb-x7CA4Pd?oQ_3glPhx6o8hCsW0YEO4UGMAe2TuDzhDqb 0-10-8 1-4-15

03/30/2021 Scale = 1:10.2

1-4-15

BRACING-

TOP CHORD

BOT CHORD

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.10 BC 0.03 WB 0.00	DEFL. in (loc) l/defl L/d Vert(LL) 0.00 5 >999 360 Vert(CT) 0.00 5 >999 240 Horz(CT) -0.00 3 n/a n/a	PLATES GRIP MT20 244/190
BCLL 0.0 BCDL 10.0	Code IRC2018/TPI2014	Matrix-R	,	Weight: 7 lb FT = 3%

LUMBER-

REACTIONS.

Mid America Truss,

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2 WEBS

2x4 SP No.2

5=0-4-0, 3=Mechanical, 4=Mechanical (size)

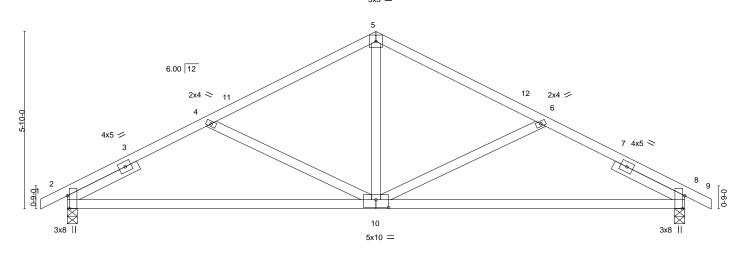
Max Horz 5=30(LC 8) Max Uplift 5=-5(LC 11), 3=-14(LC 11)

Jefferson City, MO - 65101,

Max Grav 5=157(LC 16), 3=22(LC 16), 4=12(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 1,2021

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIEW Т1 H3-94 Common **DEVELOPMENT SERVICES** Job Reference (optional) 8.430 s Feb 12 2021 MiTek Industries, Ind. Effi Se S26NIM 01011/155 Page I Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-PJmYlkedZi6wlvztVqJNEPPaJyQwpu6VPIn0QfzhDqa 0-10-8 0-10-8 20-4-0 03/30/202 21-2-8 4-8-14 5-5-2 5-5-2 4-8-14 Scale = 1:37.9 5x5 =

10-2-0 Plate Offsets (X,Y)--[2:0-5-1,Edge], [8:0-5-1,Edge], [10:0-5-0,0-3-0] LOADING (psf) SPACING-CSI. (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.57 Vert(LL) -0.04 10 >999 360 MT20 244/190 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 BC 0.65 Vert(CT) -0.18 2-10 >999 240 **TCDL** 10.0 Rep Stress Incr YES WB 0.22 Horz(CT) 0.04 8 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 FT = 3% Matrix-SH Weight: 101 lb BCDL 10.0

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

WEBS 2x4 SP No.2 **SLIDER** Left 2x4 SP No.2 -t 2-7-6, Right 2x4 SP No.2 -t 2-7-6

REACTIONS.

(size) 2=0-4-0, 8=0-4-0 Max Horz 2=63(LC 8)

Max Uplift 2=-20(LC 11), 8=-20(LC 12) Max Grav 2=866(LC 2), 8=866(LC 2)

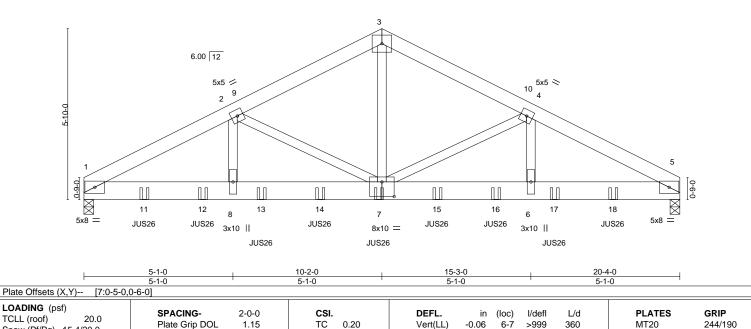
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-4=-1272/66, 4-5=-962/32, 5-6=-962/32, 6-8=-1272/66 TOP CHORD

BOT CHORD 2-10=-56/1055 8-10=0/1055

WEBS 5-10=0/458, 6-10=-328/127, 4-10=-328/127

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 3 degree rotation about its center.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


Structural wood sheathing directly applied or 5-0-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

March 1,2021

RELEASE FOR Job Truss Truss Type Qty Ply SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIEW H3-94 T1G Roof Special Girder **DEVELOPMENT SERVICES** 2 Job Reference (optional) DEVELOPMENT SERVICES
8.430 s Feb 12 2021 MiTek Industries, Inc. Hai Se 546 MANOT 19 1413 SO 1413 INC. Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-?0crEXpPG?tx_32ZJmZgoM_2Zblr58VZdTAmwrzhDqM 10-2-0 03/30/2021 5-1-0 7x8 = Scale = 1:39.3

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

-0.13

0.04

6-7

5

>999

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

240

n/a

Structural wood sheathing directly applied or 5-11-8 oc purlins.

LUMBER-

TCDL

BCLL

BCDL

2x6 SP No.1 TOP CHORD 2x8 SP 2400F 2.0E **BOT CHORD** 2x4 SP No.2 **WEBS**

10.0

10.0

0.0

REACTIONS.

Snow (Pf/Pg) 15.4/20.0

(size) 1=0-4-0, 5=0-4-0 Max Horz 1=60(LC 33)

Max Uplift 1=-100(LC 11), 5=-98(LC 12) Max Grav 1=4471(LC 2), 5=4404(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 1-2=-7614/179, 2-3=-5408/155, 3-4=-5408/155, 4-5=-7616/180 TOP CHORD BOT CHORD 1-8=-162/6612, 7-8=-162/6612, 6-7=-108/6612, 5-6=-108/6612 WFBS 3-7=-70/4421, 4-7=-2083/123, 4-6=0/1978, 2-7=-2083/122, 2-8=0/1973

Lumber DOL

Rep Stress Incr

Code IRC2018/TPI2014

NOTES-

- 1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

1.15

NO

BC

WB

Matrix-SH

0.29

0.54

- 6) Unbalanced snow loads have been considered for this design
- 7) Plates checked for a plus or minus 3 degree rotation about its center.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Use USP JUS26 (With 4-10d nails into Girder & 4-10d nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 2-0-12 from the left end to 18-0-12 to connect truss(es) to back face of bottom chord.
- 11) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-51, 3-5=-51, 1-5=-20

March 1,2021

FT = 3%

Weight: 292 lb

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply SUMMIT HOMES H3-94 T1G Roof Special Girder

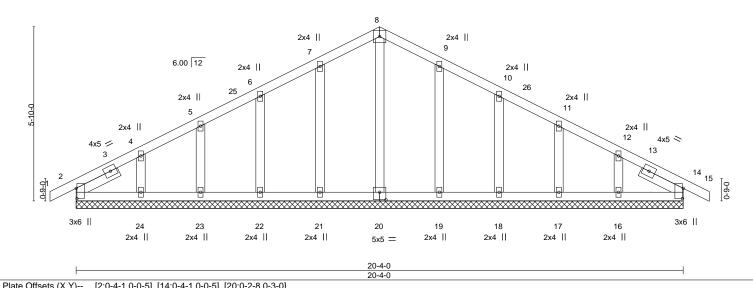
RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW **DEVELOPMENT SERVICES**

| Z | Job Reference (opt onal) | DEVELOPMENT SERVICES | 8.430 s Feb 12 2021 MiTek Industries, Int. HE SESSIMUM 13/11/125 PAUR LED SERVICES | ID:Fpza38BVdcFyJDKwxgHN8dztCCb-?0crEXpPG?tx_32ZJmZgoM_2ZbIr58VZdTAmwrzhDqM

03/30/2021

LOAD CASE(S) Standard

Mid America Truss,


Concentrated Loads (lb)

Jefferson City, MO - 65101,

Vert: 7=-738(B) 11=-738(B) 12=-738(B) 13=-738(B) 14=-738(B) 15=-738(B) 16=-738(B) 17=-738(B) 18=-738(B)

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIEW H3-94 T1GE Common Supported Gable **DEVELOPMENT SERVICES** Job Reference (optional)

DEVELOPMENT SERVICES
8.430 s Feb 12 2021 MiTek Industries, Ind. Etc. Section May 10 Uto 5 Page 11 Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-TCADRtq11J?obDdmtT4vKaXFU_hCqjFjs7wJSlzhDqL 0-10-8 10-2-0 03/30/2021 2-8 10-2-0 10-2-0 5x5 = Scale = 1:38.6

Flate Offsets (A, I) [2.0-4-1,	0-0-3], [14.0-4-1,0-0-3], [20.0-2-8,0-3-0]							
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.06 BC 0.03 WB 0.06 Matrix-SH	DEFL. in Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) 0.00	(loc) 14 14 14	l/defl n/r n/r n/a	L/d 120 90 n/a	PLATES MT20 Weight: 113 lb	GRIP 244/190 FT = 3%

BOT CHORD

LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD

BOT CHORD 2x4 SP No.2 **OTHERS** 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -t 1-7-3, Right 2x4 SP No.2 -t 1-7-3

REACTIONS. All bearings 20-4-0.

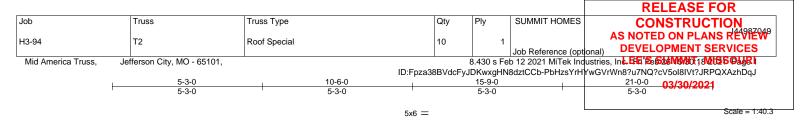
Max Horz 2=-63(LC 7) (lb) -

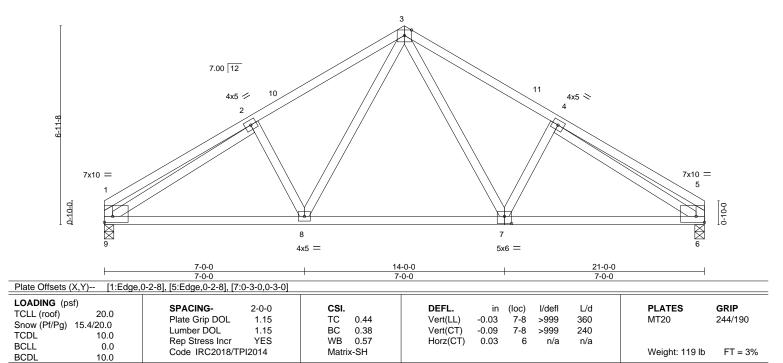
Max Uplift All uplift 100 lb or less at joint(s) 2, 21, 22, 23, 24, 19, 18, 17, 16

All reactions 250 lb or less at joint(s) 2, 20, 21, 22, 23, 24, 19, 18, 17, 16, 14

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 7) Plates checked for a plus or minus 3 degree rotation about its center.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 21, 22, 23, 24,
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.




Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

March 1,2021

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2

REACTIONS. (size) 9=0-4-0, 6=0-4-0 Max Horz 9=145(LC 8)

Max Uplift 9=-8(LC 11), 6=-8(LC 12) Max Grav 9=828(LC 2), 6=828(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-317/51, 2-3=-1047/79, 3-4=-1047/79, 4-5=-317/51, 1-9=-264/51, 5-6=-264/51

BOT CHORD 8-9=-38/933, 7-8=0/651, 6-7=0/929

WFBS 3-7=-37/411, 3-8=-37/410, 2-9=-874/0, 4-6=-874/0

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 6.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 5-3-11 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

March 1,2021

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIEW H3-94 T2GE Roof Special Supported Gable **DEVELOPMENT SERVICES** Job Reference (optional)

DEVELOPMENT SERVICES
8.430 s Feb 12 2021 MiTek Industries, Ind. Etc. Section May 13 MILES PAUL IN INC. SERVICES Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-tnrL3uswJEOMSgMLYcecyC9lCCil13W9Y58z3czhDql 21-0-0 ²¹ **03/**30/2021 10-6-0 10-6-0 5x5 = Scale = 1:46.6 6 2x4 || 2x4 || 5 7.00 12 2x4 || 2x4 || ⁸ 26 2x4 || ₂₅ 2x4 || 9 3 2x4 || 2x4 || 11 12 0-10-Q 24 23 22 21 20 19 18 17 16 15 14 13 3x6 =3x8 || 2x4 || 3x8 || 2x4 II

21-0-0 21-0-0							——	
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.10 BC 0.07 WB 0.09 Matrix-R	- ()	in (loc) -0.00 12 -0.00 12 0.00 13	l/defl n/r n/r n/a	L/d 120 90 n/a	PLATES MT20 Weight: 122 lb	GRIP 244/190 FT = 3%

LUMBER-BRACING-

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2 TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 21-0-0.

2x4 SP No.2

Max Horz 24=-153(LC 7) (lb) -

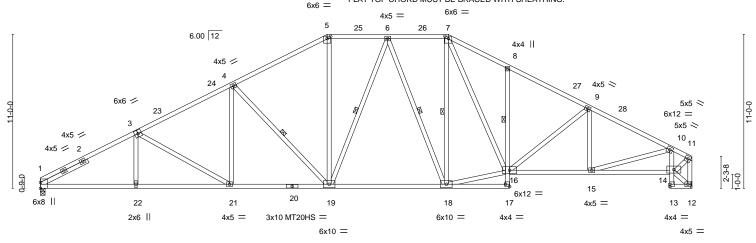
Max Uplift All uplift 100 lb or less at joint(s) 24, 13, 20, 21, 22, 23, 18, 16, 15, 14 Max Grav All reactions 250 lb or less at joint(s) 24, 13, 19, 20, 21, 22, 23, 18, 16, 15, 14

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

OTHERS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 7) Plates checked for a plus or minus 3 degree rotation about its center.
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 24, 13, 20, 21, 22, 23, 18, 16, 15, 14.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



March 1,2021

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIEW H3-94 Т3 Piggyback Base 3 **DEVELOPMENT SERVICES** Job Reference (optional)

DEVELOPMENT SERVICES
8.430 s Feb 12 2021 MiTek Industries, Ind. Etc. Section May 21/11/15 Page 11 Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-qAz6UauArre4i_Vjg1g41dEwy?CcVtnS?Pd48VzhDqG 45-0-03/30/2021 5-8-12 29-2-0 33-6-8 6-10-0 6-10-0 6-10-0 4-4-0 4-4-0 4-4-8 5-8-1 Scale = 1:82.4 FLAT TOP CHORD MUST BE BRACED WITH SHEATHING. 6x6 = 4x5 = 5 25 6 26 6.00 12 4x4 ||

' 6-10-0	' 6-10-0 ' 6-10)-0 ' 8-	-8-0 '	4-4-8	5-8-12 '	5-8-12 '1-7-0	'
Plate Offsets (X,Y) [5:0-3-0,	0-2-0], [7:0-3-0,0-2-0], [17:Edge,0-2-0]						
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.79 BC 0.84 WB 0.49 Matrix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.21 19 -0.46 18-19 0.22 12	l/defl L/d >999 360 >999 240 n/a n/a	PLATES MT20 MT20HS Weight: 327 lb	GRIP 244/190 187/143 FT = 3%

BRACING-

TOP CHORD

BOT CHORD

WEBS

1 Row at midpt

1 Row at midpt

LUMBER-

TOP CHORD 2x4 SP No.2 *Except*

6-10-0

3-5: 2x4 SP No.1, 1-3: 2x4 SP 2400F 2.0E

BOT CHORD 2x4 SP No.2 *Except*

1-20: 2x4 SP No.1 WEBS 2x4 SP No.2

Left 2x4 SP No.2 -t 3-9-9 **SLIDER**

REACTIONS. (size) 1=0-4-0, 12=Mechanical

Max Horz 1=166(LC 8)

Max Uplift 1=-13(LC 11)

Max Grav 1=1958(LC 33), 12=2005(LC 33)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-3583/33, 3-4=-3173/53, 4-5=-2543/67, 5-6=-2145/87, 6-7=-2030/70, 7-8=-2936/109, 8-9=-2964/30, 9-10=-3143/9, 10-11=-1655/4, 11-12=-1945/0 **BOT CHORD**

1-22=-71/3060, 21-22=-72/3057, 19-21=0/2779, 18-19=0/2105, 8-16=-473/126,

15-16=0/2755, 14-15=-29/1564, 10-14=-1183/58

WEBS 3-21=-385/94, 4-21=0/330, 4-19=-930/130, 5-19=0/727, 6-18=-429/95, 16-18=0/2002,

7-16=-105/1263, 9-16=-263/85, 10-15=0/1240, 11-14=-19/1896

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

20-6-0

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are MT20 plates unless otherwise indicated
- 7) Plates checked for a plus or minus 3 degree rotation about its center.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 1,2021

46-7-0

Structural wood sheathing directly applied, except end verticals.

4-19, 6-19, 6-18, 7-18

Rigid ceiling directly applied or 10-0-0 oc bracing. Except:

8-16

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIEW H3-94 ТЗА Piggyback Base **DEVELOPMENT SERVICES** Job Reference (optional) 8.430 s Feb 12 2021 MiTek Industries, Ind. Effi Se S26NIMO 244155 PAGE Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-EkfE7cw28m0fZREIL9EnfGsRDDDSiD_uhNskkqzhDqD 45-0-**03/30/2021** 5-8-12 24-10-0 29-2-0 33-0-0 36-10-0 39-3-4

4-4-0

4-4-0

3-10-0

6-10-0

2-5-4 Scale = 1:82.4 FLAT TOP CHORD MUST BE BRACED WITH SHEATHING.

Structural wood sheathing directly applied, except end verticals.

4-20, 6-20, 6-19, 8-19

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Row at midpt

3-10-0

6x6 = 6x6 = 4x5 = 5 26 6 27 6.00 12 4x5 < 4x5 / 4x4 || 25 28 4x5 > 10 6x6 / 5x5 < 6x12 = 3 5x5 🗢 4x5 / 11 12 4x5 / 2 16 21 6x8 || 23 22 20 19 186x12 = 14 13 4x4 = 2x6 | 4x5 = 3x10 MT20HS = 6x10 = 4x4 = 4x5 = 4x5 =

29-2-0 36-10-0 45-0-0 20-6-0 39-3-4 6-10-0 6-10-0 6-10-0 Plate Offsets (X,Y)--[5:0-3-0,0-2-0], [7:0-3-0,0-2-0], [18:Edge,0-2-0], [19:0-4-8,0-3-0]

6x10 =

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.78 BC 0.84 WB 0.53	DEFL. in (loc) l/defl L/d Vert(LL) -0.21 20 >999 360 Vert(CT) -0.45 19-20 >999 240 Horz(CT) 0.21 13 n/a n/a	PLATES GRIP MT20 244/190 MT20HS 187/143
BCLL 0.0 BCDI 10.0	Code IRC2018/TPI2014	Matrix-SH		Weight: 337 lb FT = 3%

BRACING-

TOP CHORD

BOT CHORD

WEBS

LUMBER-

TOP CHORD 2x4 SP No.2 *Except*

6-10-0

6-10-0

3-5: 2x4 SP No.1, 1-3: 2x4 SP 2400F 2.0E

BOT CHORD 2x4 SP No.2 *Except*

1-21: 2x4 SP No.1 WEBS 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -t 3-9-9

REACTIONS. (size) 1=0-4-0, 13=Mechanical

Max Horz 1=166(LC 10)

Max Uplift 1=-13(LC 11)

Max Grav 1=1958(LC 33), 13=2005(LC 33)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD $1-3=-3583/33,\ 3-4=-3173/53,\ 4-5=-2542/67,\ 5-6=-2145/88,\ 6-7=-2031/69,\ 7-8=-2350/60,\ 3-4=-3173/53,\ 4-5=-2542/67,\ 5-6=-2145/88,\ 6-7=-2031/69,\ 7-8=-2350/60,\ 3-4=-3173/53,\ 4-5=-2542/67,\ 5-6=-2145/88,\ 6-7=-2031/69,\ 7-8=-2350/60,\ 3-4=-3173/53,\ 4-5=-2542/67,\ 5-6=-2145/88,\ 6-7=-2031/69,\ 7-8=-2350/60,\ 3-4=-3173/53,\ 4-5=-2542/67,\ 5-6=-2145/88,\ 6-7=-2031/69,\ 7-8=-2350/60,\ 7-8=$ 8-9=-3028/82, 9-10=-3046/40, 10-11=-3127/9, 11-12=-1657/4, 12-13=-1942/0

BOT CHORD 1-23=-71/3059, 22-23=-73/3057, 20-22=0/2779, 19-20=0/2105, 16-17=0/2733,

15-16=-32/1590, 11-15=-1196/64

WEBS 3-22=-385/94, 4-22=0/332, 4-20=-931/129, 5-20=0/725, 6-19=-425/98, 7-19=0/791,

8-19=-784/130, 17-19=0/2146, 8-17=-62/723, 11-16=0/1190, 12-15=-22/1917

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are MT20 plates unless otherwise indicated
- 7) Plates checked for a plus or minus 3 degree rotation about its center.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 1,2021

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIEW H3-94 T3B Piggyback Base 2 **DEVELOPMENT SERVICES** Job Reference (optional) 8.430 s Feb 12 2021 MiTek Industries, Inc. FFE S26NIMO 2510125 PAGE Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-ixCdKyxgv48WAbpUvsl0CTPc0dZdRhW1w1bIHGzhDqC 24-10-0 29-2-0 36-0-0 03/30/<u>20</u>29

4-4-0

4-4-0

6-10-0

36-0-0

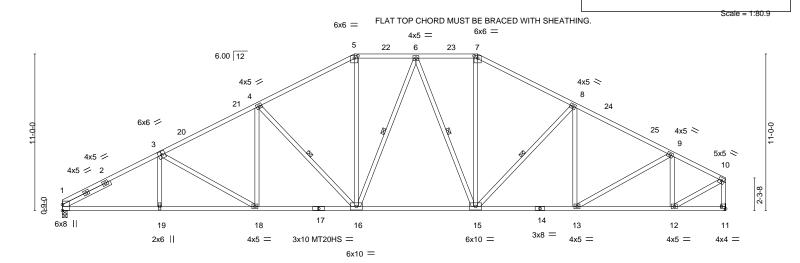
1 Row at midpt

6-10-0

42-10-0

6-10-0

Structural wood sheathing directly applied, except end verticals.


4-16, 6-16, 6-15, 8-15

Rigid ceiling directly applied or 10-0-0 oc bracing.

46-7-0

6-10-0

20-6-0

[5:0-3-0,0-2-0], [7:0-3-0,0-2-0], [11:Edge,0-2-0] Plate Offsets (X,Y)--LOADING (psf) **PLATES** SPACING-CSI. **DEFL** (loc) I/defl L/d GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.78 Vert(LL) -0.19 18 >999 360 MT20 244/190 Snow (Pf/Pg) 20.4/20.0 Lumber DOL 1.15 BC 0.84 Vert(CT) -0.42 15-16 >999 240 MT20HS 187/143 TCDL 10.0 Rep Stress Incr YES WB 0.51 Horz(CT) 0.16 n/a n/a 11 **BCLL** 0.0 Code IRC2018/TPI2014 FT = 3% Matrix-SH Weight: 307 lb BCDL 10.0

29-2-0

BRACING-

WEBS

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 *Except*

6-10-0

6-10-0

6-10-0

6-10-0

5-7: 2x4 SP No.2, 1-3: 2x4 SP 2400F 2.0E

BOT CHORD 2x4 SP No.2 *Except*

1-17: 2x4 SP No.1 WEBS 2x4 SP No.2

SLIDER Left 2x4 SP No.2 -t 3-9-9

REACTIONS. (size) 1=0-4-0, 11=Mechanical

Max Horz 1=166(LC 10)

Max Uplift 1=-13(LC 11)

Max Grav 1=1958(LC 33), 11=2005(LC 33)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD $1-3=-3583/33,\ 3-4=-3173/53,\ 4-5=-2543/67,\ 5-6=-2145/87,\ 6-7=-2038/72,\ 7-8=-2421/50,\ 3-4=-3173/53,\ 4-5=-2543/67,\ 5-6=-2145/87,\ 6-7=-2038/72,\ 7-8=-2421/50,\ 3-4=-3173/53,\ 4-5=-2543/67,\ 5-6=-2145/87,\ 6-7=-2038/72,\ 7-8=-2421/50,\ 3-4=-3173/53,\ 4-5=-2543/67,\ 5-6=-2145/87,\ 6-7=-2038/72,\ 7-8=-2421/50,\ 3-4=-3173/53,\ 4-5=-2543/67,\ 5-6=-2145/87,\ 6-7=-2038/72,\ 7-8=-2421/50,\ 7-8=$

8-9=-2721/31, 9-10=-2048/7, 10-11=-1978/6

BOT CHORD 1-19=-71/3060, 18-19=-72/3057, 16-18=0/2779, 15-16=0/2103, 13-15=0/2351,

6-10-0

12-13=0/1814

WEBS 3-18=-385/94, 4-18=0/331, 4-16=-930/130, 5-16=0/721, 6-15=-423/97, 7-15=0/662,

8-15=-466/126, 9-13=0/617, 9-12=-917/64, 10-12=0/2074

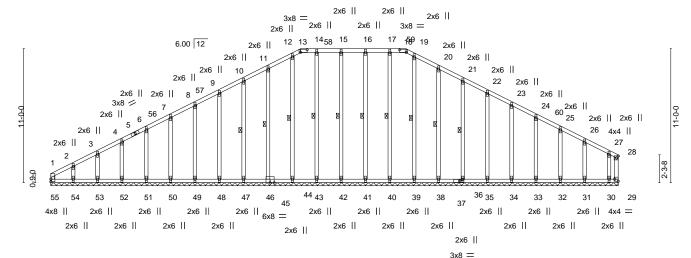
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.
- 6) All plates are MT20 plates unless otherwise indicated
- 7) Plates checked for a plus or minus 3 degree rotation about its center.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 1,2021

Job Truss Truss Type Qty SUMMIT HOMES H3-94 T3GE **GABLE** Mid America Truss, Jefferson City, MO - 65101,

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW **DEVELOPMENT SERVICES**

Job Reference (optional)


DEVELOPMENT SERVICES
8.430 s Feb 12 2021 MiTek Industries, Ind. #fd 'Sessal MANDIC 2011 13 Feb. 18

ID:Fpza38BVdcFyJDKwxgHN8dztCCb-biS7AJ_BzJeyfC6G8ipyMJZTjE6SNardreZVQ1zhDq8

17-5-0

03/30/2021

Scale = 1:94.6

29-2-0

8-8-0

Plate Offsets (X,Y)--[13:0-6-8,0-2-12], [18:0-6-8,0-2-12], [29:Edge,0-2-0], [37:0-2-8,0-1-8] LOADING (psf) SPACING-2-0-0 **DEFL** in (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.10 Vert(LL) 999 244/190 n/a n/a MT20 Snow (Pf/Pg) 20.4/20.0 Lumber DOL 1.15 BC 0.08 Vert(CT) n/a n/a 999 **TCDL** 10.0 Rep Stress Incr YES WB 0.17 Horz(CT) 0.00 29 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Weight: 376 lb FT = 3%Matrix-R BCDL 10.0

LUMBER-BRACING-

20-6-0

TOP CHORD 2x4 SP No.2 Structural wood sheathing directly applied or 6-0-0 oc purlins, TOP CHORD **BOT CHORD** 2x4 SP No.2 except end verticals.

BOT CHORD

WEBS 2x4 SP No.2 Rigid ceiling directly applied or 10-0-0 oc bracing. **OTHERS** 2x4 SP No.2 **WEBS** 10-47, 11-46, 12-44, 14-43, 15-42, 16-41, 1 Row at midpt

17-40, 19-39, 20-38, 21-36

REACTIONS. All bearings 46-7-0.

Max Horz 55=164(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 55, 29, 54, 53, 52, 51, 50, 49, 48, 47, 46, 42, 41, 38, 36, 35,

34, 33, 32, 31 except 30=-109(LC 12)

All reactions 250 lb or less at joint(s) 55, 29, 54, 53, 52, 51, 50, 49, 48, 47, 46, 44, 43, 42, 41, Max Grav

40, 39, 38, 36, 35, 34, 33, 32, 31, 30

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 5) Unbalanced snow loads have been considered for this design.
- 6) Provide adequate drainage to prevent water ponding.
- 7) Plates checked for a plus or minus 3 degree rotation about its center.
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 55, 29, 54, 53, 52, 51, 50, 49, 48, 47, 46, 42, 41, 38, 36, 35, 34, 33, 32, 31 except (jt=lb) 30=109.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 1,2021

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIEW H3-94 T4 Common 2 **DEVELOPMENT SERVICES** Job Reference (optional)

DEVELOPMENT SERVICES

8.430 s Feb 12 2021 MiTek Industries, Inc. Hai Se Salmandi 3 Muta 5 Paul 1 Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-X5aub??RUwufuWGeF7sQRkflv1IFrQswly2cUwzhDq6 1-0-0 9-11-0 12-6-0 03/30/2021 4-11-8 4-11-8 2-7-0

5x6 =

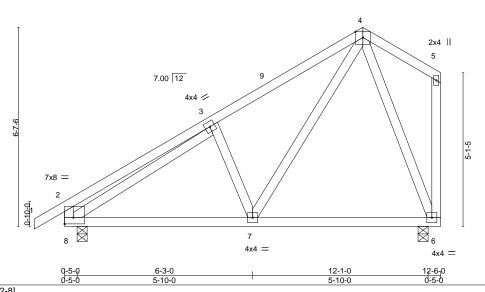


Plate Offsets (X,Y)-- [2:Edge,0-2-8] LOADING (psf) SPACING-DEFL. 2-0-0 CSI. (loc) I/defl L/d **PLATES** GRIP 20.0 TCLL (roof) Plate Grip DOL 1.15 TC 0.37 Vert(LL) -0.01 >999 360 MT20 244/190 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 BC 0.31 Vert(CT) -0.05 7-8 >999 240 **TCDL** 10.0 Rep Stress Incr YES WB 0.33 Horz(CT) 0.01 6 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 FT = 3% Matrix-P Weight: 83 lb BCDL 10.0

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2

2x4 SP No.2 **BOT CHORD** WEBS 2x4 SP No.2

REACTIONS. (size) 6=0-4-0, 8=0-4-0 Max Horz 8=196(LC 8)

Max Uplift 6=-23(LC 11), 8=-18(LC 11) Max Grav 6=485(LC 2), 8=560(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 3-4=-517/76 **BOT CHORD** 7-8=-73/499

3-7=-277/139, 4-7=-44/472, 4-6=-409/38, 3-8=-566/0 WFBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 3 degree rotation about its center.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 8.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

March 1,2021

Scale = 1:38.3

Job Truss Truss Type Qty SUMMIT HOMES H3-94 T4GE Common Structural Gable

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW **DEVELOPMENT SERVICES**

03/30/2021

Scale = 1:43.3

5x6 =

2x4 = 2x4 || 2x4 || 2x4 || 7.00 12 2x4 || 22 4x4 / 2x4 || 5-1-5 7x8 = 2x4 2x4 || 2x4 || 2x4 || 2x4 || 2x4 || 4x4 = 4x4 =13 10 12 11 12-6₁0 0-5-0

0-4-0 0-4-0 5-10-0

Plate Offsets	(X,Y)-	[2:Edge,0-2-8], [4:0-2-0,	0-0-0]

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.37 BC 0.04 WB 0.13	DEFL. in (loc) l/defl L/d Vert(LL) -0.00 8 >999 360 Vert(CT) -0.00 11 >999 240 Horz(CT) -0.00 6 n/a n/a	PLATES GRIP MT20 244/190
BCLL 0.0 BCDI 10.0	Code IRC2018/TPI2014	Matrix-P		Weight: 113 lb FT = 3%

LUMBER-BRACING-

TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, **BOT CHORD** 2x4 SP No.2 except end verticals. **WEBS** 2x4 SP No.2 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 11-9-0 except (jt=length) 7=0-3-8.

Max Horz 13=195(LC 10)

2x4 SP No.2

Max Uplift All uplift 100 lb or less at joint(s) 10, 13, 6

Max Grav All reactions 250 lb or less at joint(s) 13, 6, 8, 9, 11, 12, 7 except 10=438(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 3-10=-324/142

Mid America Truss,

Jefferson City, MO - 65101,

NOTES-

OTHERS

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 7) Plates checked for a plus or minus 3 degree rotation about its center.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 13, 6.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 1,2021

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIEW H3-94 T5 Roof Special 2 **DEVELOPMENT SERVICES** Job Reference (optional) 8.430 s Feb 12 2021 MiTek Industries, Ind. Effi Se S26N6W6033V2025 PAGE Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-TThe?h1iQX9N8qQ1NYuuX9k5PrP3JKBDmGXjZpzhDq4 -0-10-8 + 0-10-8 + 13-10-4 1503/30/2529-8 1-1-12 0-10-8 4-10-12 10-1-4 12-8-8 7-6-0 2-7-4 1-1-12 1-1-12 2-7-4 2-7-4 1-1-12

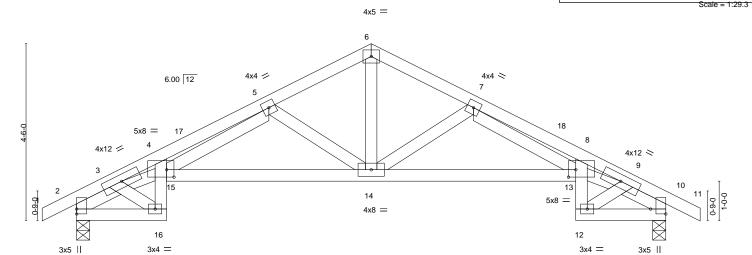


Plate Offsets (X,Y)--[4:0-2-4,0-2-4], [10:Edge,0-4-10], [13:0-2-4,0-2-4] LOADING (psf) SPACING-CSI. **DEFL** (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.37 Vert(LL) -0.07 14 >999 360 MT20 244/190 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 BC 0.42 Vert(CT) -0.15 14-15 >999 240 TCDL 10.0 Rep Stress Incr YES WB 0.34 Horz(CT) 0.14 10 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 FT = 3% Matrix-P Weight: 86 lb BCDL 10.0

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

WEBS 2x4 SP No.2 Left 2x4 SP No.2 -t 1-2-2, Right 2x4 SP No.2 -t 1-2-2 SLIDER

REACTIONS. (size) 2=0-4-0, 10=0-4-0

Max Horz 2=48(LC 8)

Max Uplift 2=-17(LC 11), 10=-17(LC 12) Max Grav 2=653(LC 2), 10=652(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-790/20, 3-4=-1773/60, 4-5=-2064/106, 5-6=-852/9, 6-7=-852/15, 7-8=-2064/28, TOP CHORD

8-9=-1773/0 9-10=-790/20

BOT CHORD 2-16=-41/538, 15-16=-10/269, 14-15=-17/1066, 13-14=0/1066, 12-13=0/269,

10-12=0/538

WEBS 6-14=0/618, 7-14=-482/77, 7-13=-10/948, 9-12=-447/0, 5-14=-482/90, 5-15=-67/948,

3-16=-447/42, 3-15=-54/1366, 9-13=0/1366

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 3 degree rotation about its center.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 3-7-13 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

March 1,2021

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIEW H3-94 T5A Roof Special **DEVELOPMENT SERVICES** Job Reference (optional)

DEVELOPMENT SERVICES

8.430 s Feb 12 2021 MiTek Industries, Inc. Hai Se 524 MANO 35 MIDS PAULI Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-QspPQM2yY9P5N7aPUzwMcapQzf4ZnEnWDa0qdhzhDq2 0-10-5 13-6-12 7-2-8 2-7-4 9-9-12 + 03/30/2021 3-9-0 2-7-4 4x5 = Scale = 1:28.7 5 6.00 12 4x4 / 4x4 > 17 5x8 = 16 4x10 🖊 4x10 > 2x4 -11 0-10-12 12 5x12 = 4x8 = 14 10 15 3x4 = 3x4 =3x5 || 4x4 = 2-0-0 12-5-0 14-8-8 2-0-0 Plate Offsets (X,Y)--[3:0-2-4,0-2-4], [9:Edge,0-4-10] LOADING (psf) SPACING-2-0-0 CSI. **DEFL** in (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.37 Vert(LL) -0.06 >999 360 244/190 11 MT20 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 BC 0.42 Vert(CT) -0.13 11-12 >999 240 TCDL 10.0 9 Rep Stress Incr YES WB 0.33 Horz(CT) 0.12 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 FT = 3% Matrix-P Weight: 82 lb BCDL 10.0

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2

SLIDER Right 2x4 SP No.2 -t 1-2-2

REACTIONS.

(size) 9=0-4-0, 15=Mechanical

Max Horz 15=-62(LC 7)

Max Uplift 9=-8(LC 12), 15=-6(LC 11) Max Grav 9=582(LC 2), 15=582(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-3=-1489/52, 3-4=-1701/95, 4-5=-813/8, 5-6=-814/13, 6-7=-2035/36, 7-8=-1748/4, TOP CHORD

8-9=-781/24

14-15=-29/338, 12-13=-15/978, 11-12=0/1033, 10-11=0/277, 9-10=-3/548

BOT CHORD WEBS 2-14=-288/32, 4-13=-59/659, 4-12=-417/88, 6-12=-484/78, 6-11=-16/956, 8-10=-462/6,

5-12=0/581, 2-15=-644/13, 8-11=0/1345, 2-13=-49/1167

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; enveloped; enveloped; cantilever left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33 are proposed; Lumber DOL=1.15 Plate DOL=1.15 Plate DOL=1.15; Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15 Plate DOL=1.15 Plate DOL=1.15 Plate DOL=1.15 Plat
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 15.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 3-8-3 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

March 1,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIEW H3-94 T5G Roof Special Girder **DEVELOPMENT SERVICES** 2 Job Reference (optional) DEVELOPMENT SERVICES
8.430 s Feb 12 2021 MiTek Industries, Inc. Hai Se 546 MANO 30 ULD SO JULI Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-u2Nnei3aJ\$Xy?H9c2gRb8oMT_2M1WZtfSEmN97zhDq1 03/30/2021 3-9-0 5x5 || Scale = 1:29.6

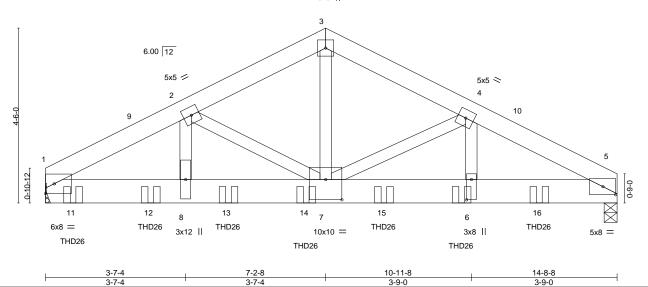


Plate Offsets (X,Y)--[5:0-3-14,0-2-8], [6:0-6-4,0-1-8], [7:0-5-0,0-6-4] LOADING (psf) DEFL. SPACING-CSI. (loc) I/defl L/d **PLATES** GRIP 20.0 TCLL (roof) Plate Grip DOL 1.15 TC 0.86 Vert(LL) -0.07 6-7 >999 360 MT20 244/190 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 BC 0.66 Vert(CT) -0.136-7 >999 240 TCDL 10.0 Rep Stress Incr NO WB 0.85 Horz(CT) 0.04 5 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 FT = 3% Matrix-P Weight: 212 lb

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

BCDL

2x6 SP No.1 TOP CHORD 2x8 SP 2400F 2.0E **BOT CHORD** 2x4 SP No.2 **WEBS**

10.0

REACTIONS. (size) 1=Mechanical, 5=0-4-0 (req. 0-4-2)

Max Horz 1=45(LC 35)

Max Grav 1=7624(LC 15), 5=6956(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-2=-11057/0, 2-3=-8201/0, 3-4=-8206/0, 4-5=-11405/0 TOP CHORD

BOT CHORD 1-8=0/9392, 7-8=0/9392, 6-7=0/9807, 5-6=0/9807

WEBS 2-8=0/3167, 2-7=-2405/0, 3-7=0/6940, 4-7=-2832/0, 4-6=0/3291

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-4-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

- 3) Unbalanced roof live loads have been considered for this design.
 4) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 6) Unbalanced snow loads have been considered for this design.
- 7) Plates checked for a plus or minus 3 degree rotation about its center.
- 8) WARNING: Required bearing size at joint(s) 5 greater than input bearing size.
- 9) Refer to girder(s) for truss to truss connections.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Use USP THD26 (With 18-16d nails into Girder & 12-10d x 1-1/2 nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 0-8-8 from the left end to 12-8-8 to connect truss(es) to back face of bottom chord.
- 12) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-51, 3-5=-51, 1-5=-20

Structural wood sheathing directly applied or 4-8-13 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

SUPPLEMENTARY BEARING PLATES, SPECIAL ANCHORAGE, OR

ARE THE RESPONSIBILITY OF THE TRUSS MANUFACTURER

OR THE BUILDING DESIGNER.

OTHER MEANS TO ALLOW FOR THE MINIMUM REQUIRED SUPPORT WIDTH (SUCH AS COLUMN CAPS, BEARING BLOCKS, ETC.)

March 1,2021

Continued on page 2

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty Ply H3-94 T5G Roof Special Girder

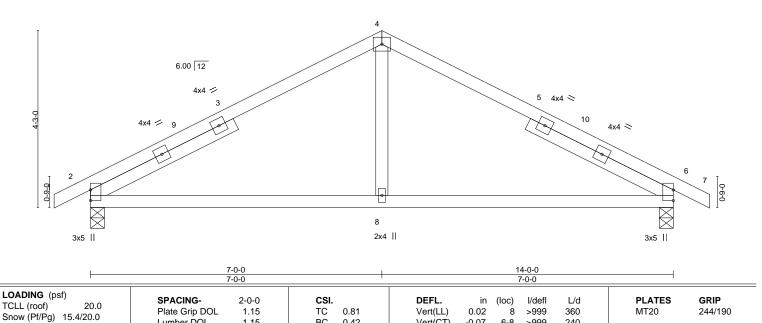
SUMMIT HOMES

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW **DEVELOPMENT SERVICES**

| Z | Job Reference (optional) | DEVELOPMENT SERVICES | 8.430 s Feb 12 2021 MiTek Industries, Int. HE SEMMMO 3 (1915) | 1.450

ID:Fpza38BVdcFyJDKwxgHN8dztCCb-u2Nnei3aJ\$Xy?H9c2gRb8oMT_2M1WZtfSEmN97zhDq1 03/30/2021

Mid America Truss, Jefferson City, MO - 65101,


LOAD CASE(S) Standard Concentrated Loads (lb)

Vert: 6=-1985(B) 11=-1543(B) 12=-1985(B) 13=-1985(B) 14=-1985(B) 15=-1985(B) 16=-1985(B)

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIEW H3-94 T6 Common **DEVELOPMENT SERVICES** Job Reference (optional)

DEVELOPMENT SERVICES
8.430 s Feb 12 2021 MiTek Industries, Ind. Etc. Section May 12 2021 MiTek Industries, Ind. Section May 12 2021 MiTek Industries, Ind. Etc. Section May 12 2021 MiTek Industries, Ind. Section MiTek Ind. Section May 12 2021 MiTek Ind. Section MiTek Ind. Se Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-MFx9r24C4mfpcRkocOzqh?ufYSm0FDaohuVwiazhDq0 -0-10-8 0-10-8 7-0-0 7-0-0 03/30/2<mark>021</mark>0-8 7-0-0 4x5 = Scale = 1:27.7

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

-0.07

0.01

6-8

6

>999

n/a

Rigid ceiling directly applied or 10-0-0 oc bracing.

240

n/a

Structural wood sheathing directly applied or 3-6-8 oc purlins.

LUMBER-

TCDI

BCLL

BCDL

TOP CHORD 2x4 SP No.1 2x4 SP No.2

10.0

0.0

10.0

BOT CHORD 2x4 SP No.2 WEBS

SLIDER Left 2x4 SP No.2 -t 3-10-11, Right 2x4 SP No.2 -t 3-10-11

REACTIONS. (size) 2=0-4-0, 6=0-4-0

Max Horz 2=45(LC 8)

Max Uplift 2=-16(LC 11), 6=-16(LC 12) Max Grav 2=612(LC 2), 6=612(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

Lumber DOL

Rep Stress Incr

Code IRC2018/TPI2014

TOP CHORD 2-4=-693/4, 4-6=-692/0 **BOT CHORD** 2-8=0/524, 6-8=0/524

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

1.15

YES

ВС

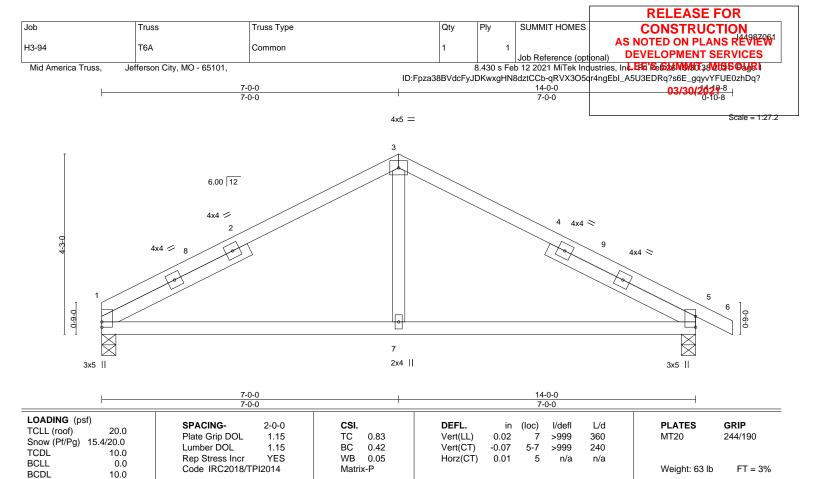
WB

Matrix-P

0.42

0.05

- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 3 degree rotation about its center.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



Weight: 64 lb

FT = 3%

March 1,2021

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.2

2x4 SP No.2 WEBS

SLIDER Left 2x4 SP No.2 -t 3-10-11, Right 2x4 SP No.2 -t 3-10-11

REACTIONS.

(size) 1=0-4-0, 5=0-4-0 Max Horz 1=45(LC 8)

Max Uplift 1=-7(LC 11), 5=-16(LC 12) Max Grav 1=558(LC 2), 5=614(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-3=-694/4, 3-5=-696/0 **BOT CHORD** 1-7=0/527, 5-7=0/527

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 3 degree rotation about its center.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 2-2-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

March 1,2021

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIEW H3-94 T7 Piggyback Base **DEVELOPMENT SERVICES** Job Reference (optional)

DEVELOPMENT SERVICES

8.430 s Feb 12 2021 MiTek Industries, Inc. Hai Se 524 MANDI 40 MIDS PAULI Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-mpclT465Nh1OTvSNHWWXJeW8zgjsSQLFNskbHvzhDpz 19-2-0 26-6-0 32-10-0 36<mark>03/30/2</mark>021 3-8-0 6-10-0 4-4-0 7-4-0 5x5 = FLAT TOP CHORD MUST BE BRACED WITH SHEATHING. Scale = 1:69.3 4x5 = 3 6.00 12 4x5 / 21 4x5 ≈ 2 6 18 4x4 / 10-0-0 11-0-0 22 4x5 < 4x4 < 8 ₩ 17 12 6x12 15 16 14 13 3x4 =3x6 =4x5 = 5x10 = 5x10 = 11 10 9 3x4 =3x4 =5x10 = 10-6-0 19-2-0 32-10-0 36-7-0 3-8-0 6-10-0 7-4-0 Plate Offsets (X,Y)--[3:0-2-8,0-2-4], [5:0-3-0,0-2-0], [9:Edge,0-1-8] LOADING (psf) SPACING-2-0-0 CSI. DEFL. (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.93 Vert(LL) -0.09 12-13 >999 360 244/190 MT20 Snow (Pf/Pg) 20.4/20.0 Lumber DOL 1.15 BC 0.73 Vert(CT) -0.23 12-13 >999 240 TCDL 10.0 Rep Stress Incr YES WB 0.69 Horz(CT) 0.08 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-SH Weight: 265 lb FT = 3%BCDL 10.0 LUMBER-BRACING-2x4 SP No.2 *Except* TOP CHORD TOP CHORD Structural wood sheathing directly applied, except end verticals. 5-8: 2x4 SP No.1 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing, Except: **BOT CHORD** 2x4 SP No.2 6-0-0 oc bracing: 16-17. WEBS 2x4 SP No.2 **WEBS** 1 Row at midpt 4-14, 4-13, 6-13 REACTIONS. (size) 17=0-4-0, 9=Mechanical Max Horz 17=-223(LC 7) Max Uplift 9=-14(LC 12)

Max Grav 17=1634(LC 33), 9=1559(LC 33)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 $1-2=-987/21,\ 2-3=-1465/49,\ 3-4=-1182/57,\ 4-5=-1452/89,\ 5-6=-1783/66,\ 6-7=-2315/56,$ TOP CHORD 7-8=-1572/24. 1-17=-1610/0. 8-9=-1531/25

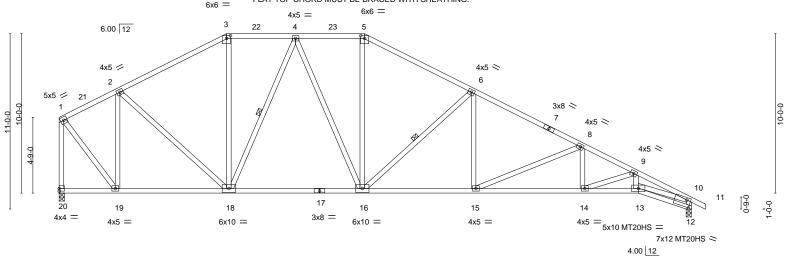
14-16=-36/871, 13-14=0/1327, 12-13=0/2026

WEBS 2-16=-1005/59, 2-14=-17/509, 3-14=0/297, 4-14=-518/78, 4-13=-34/318, 5-13=0/348,

6-13=-735/131, 10-12=0/1304, 7-12=0/684, 7-10=-886/71, 1-16=0/1413, 8-10=0/1573

BOT CHORD

1) Unbalanced roof live loads have been considered for this design.


- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.
- 6) Plates checked for a plus or minus 3 degree rotation about its center.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 1,2021

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIEW H3-94 T8 Piggyback Base 2 **DEVELOPMENT SERVICES** Job Reference (optional) 8.430 s Feb 12 2021 MiTek Industries, Inc. FFE S26NIMO 42/1025 PAGE Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-iCk2um8LvIH5jCclPxY?O3cTiTNbwGDXqADhMnzhDpx 14-10-0 19-2-0 26-0-0 32-10-0 36-4-0 303/30/202 3-8-0 6-10-0 4-4-0 4-4-0 6-10-0 6-10-0 3-6-0 FLAT TOP CHORD MUST BE BRACED WITH SHEATHING. Scale = 1:72.3 6x6 =

	3-8-0	6-10-0	8-8-0	0	6	S-10-0		6-10-	0	3-6-0	3-4-0	
Plate Offs	sets (X,Y) [3:0	-3-0,0-2-0], [5:0-3-0,0-2-0], [12:0-3-0,0-5-4]									
LOADING TCLL (roc Snow (Pf/ TCDL BCLL BCDL	· · ·	SPACING- Plate Grip DC Lumber DOL Rep Stress In Code IRC20	1.15 icr YES	BC 0	0.97 0.78 0.92 6H	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.22 -0.46 0.21		l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 MT20HS Weight: 269 lb	GRIP 244/190 187/143 FT = 3%

26-0-0

BRACING-

WEBS

TOP CHORD

BOT CHORD

32-10-0

1 Row at midpt

36-4-0

Structural wood sheathing directly applied, except end verticals.

4-18, 6-16

Rigid ceiling directly applied or 10-0-0 oc bracing.

39-8-0

LUMBER-

2x4 SP No.2 TOP CHORD

2x4 SP No.2 *Except* **BOT CHORD**

13-17: 2x4 SP No.1

WEBS 2x4 SP No.2

REACTIONS. (size) 20=0-4-0, 12=0-4-0

Max Horz 20=-235(LC 7)

Max Uplift 12=-37(LC 12)

Max Grav 20=1762(LC 34), 12=1693(LC 34)

10-6-0

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 $1\hbox{-}2\hbox{--}1067/22,\ 2\hbox{-}3\hbox{--}1619/51,\ 3\hbox{-}4\hbox{--}1322/58,\ 4\hbox{-}5\hbox{--}1697/92,\ 5\hbox{-}6\hbox{--}2041/73,\ 6\hbox{-}8\hbox{--}2898/60,}$ TOP CHORD

8-9=-3751/55, 9-10=-4750/52, 1-20=-1737/0, 10-12=-1754/61 18-19=0/942, 16-18=0/1521, 15-16=0/2511, 14-15=0/3360, 13-14=-9/4090,

12-13=-22/468

WEBS 2-19=-1099/53, 2-18=-12/587, 3-18=0/361, 4-18=-644/74, 4-16=-35/444, 5-16=0/490,

6-16=-1105/126, 6-15=0/491, 8-15=-920/85, 8-14=0/403, 9-14=-803/43, 9-13=0/695,

1-19=0/1528, 10-13=0/3766

NOTES-

BOT CHORD

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

19-2-0

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are MT20 plates unless otherwise indicated
- 8) Plates checked for a plus or minus 3 degree rotation about its center.
- 9) Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 1,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIEW H3-94 Т9 Piggyback Base **DEVELOPMENT SERVICES** Job Reference (optional) 8.430 s Feb 12 2021 MiTek Industries, Inc. FFE S26NIMO 444055 PAGE Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-fbsoJR9bRwXpyWm8WMbTTUhrgH2TOCYqlUioRgzhDpv 2-10-0 2-10-0 32-0-0 32**03/30/2021** 3-4-0 0-10-8 25-2-0 28-8-4-0-8 6-10-0 6-10-0 3-6-6.00 12 6x8 = Scale = 1:69.1 3x4 II 6x8 = 2 322 21 4x5 / 4x5 > 3x6 < 11-0-0 6 4x5 > 4x5 > 8 10] [6] [5] 15 14 13 12 5x12 = 16 ∑ 20 4x5 = 4x5 = 7x10 = 18 19 3x6 3x4 =7x10 < 5x10 = 3x4 =4x5 = 4.00 12 11-6-0 24-0-0 28-8-0 32-0-0 2-10-0 2-10-0 4-7-8 4-0-8 4-8-0 Plate Offsets (X,Y)--[2:0-6-0,0-2-8], [4:0-6-0,0-2-8], [11:0-2-12,0-2-4], [18:Edge,0-1-8] LOADING (psf) SPACING-2-0-0 **DEFL** (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.88 Vert(LL) -0.17 13-14 >999 360 MT20 244/190 Snow (Pf/Pg) 20.4/20.0 Lumber DOL 1.15 BC 0.88 Vert(CT) -0.35 13-14 >999 240 **TCDL** 10.0 Rep Stress Incr YES WB 0.81 Horz(CT) 0.18 11 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 FT = 3% Matrix-SH Weight: 259 lb

LUMBER-

BCDL

WEBS

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

10.0

2x4 SP No.2

BRACING-

TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. Except: 1 Row at midpt

WEBS 1 Row at midpt 2-19, 4-17, 5-15, 1-20

REACTIONS.

BOT CHORD

(size) 20=0-4-0, 11=0-4-0 Max Horz 20=-330(LC 7)

Max Uplift 20=-19(LC 7), 11=-37(LC 12) Max Grav 20=1267(LC 2), 11=1367(LC 34)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-2=-386/97, 2-3=-733/77, 3-4=-734/76, 4-5=-1270/77, 5-7=-2115/60, 7-8=-2900/57, TOP CHORD

8-9=-3741/53, 1-20=-1242/31, 9-11=-1413/62 19-20=-78/272, 3-17=-430/86, 15-17=0/1012, 14-15=0/1811, 13-14=0/2595,

12-13=-11/3211, 11-12=-22/386 WEBS

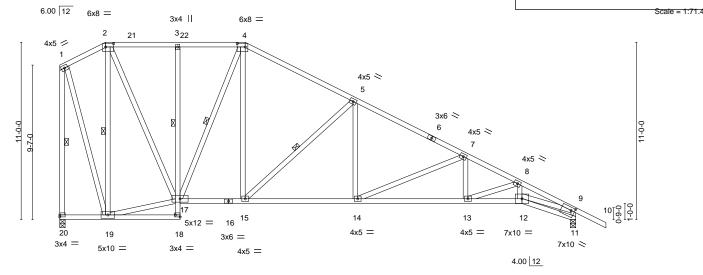
2-19=-999/72, 17-19=0/348, 2-17=-1/1044, 4-17=-755/51, 4-15=-7/851, 5-15=-1091/121, 5-14=0/476, 7-14=-850/87, 7-13=0/356, 8-13=-689/43, 8-12=0/562, 1-19=-55/1059,

9-12=0/2943

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed: MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) Plates checked for a plus or minus 3 degree rotation about its center.
- 8) Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 11.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 1,2021


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIEW H3-94 T10 Piggyback Base 2 **DEVELOPMENT SERVICES** Job Reference (optional) 8.430 s Feb 12 2021 MiTek Industries, Ind. Effi Se S26N8W6003V6125 PAGE Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-LitliQgt4JNeXD7GcFLrJqUq0l27HfcoscG7VYzhDqY 2-10-0 2-10-0 11-6-0 28-8-0 32-0-0 33-10<mark>8</mark>/30/2021 4-0-8 6-10-0 6-10-0 3-6-0 3-4-0

1	2-10-0	7-5-8	11-6-0	18-4-0	25-2-0	28-8-0	32-0-0
	2-10-0	4-7-8	4-0-8	6-10-0	6-10-0	3-6-0	3-4-0

Plate Offsets (X,Y) [2:0-6-0,0	Plate Offsets (X,Y) [2:0-6-0,0-2-8], [4:0-6-0,0-2-8], [11:0-2-12,0-2-4], [18:Edge,0-1-8]										
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.88 BC 0.86 WB 0.79	DEFL. in (loc) l/defl L/d PLATES GR Vert(LL) -0.17 13-14 >999 360 MT20 244 Vert(CT) -0.35 13-14 >999 240 444	RIP 4/190							
BCDI 10.0	Code IRC2018/TPI2014	Matrix-SH	Weight: 261 lb F	T = 3%							

LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD

Structural wood sheathing directly applied or 2-2-0 oc purlins, **BOT CHORD** 2x4 SP No.2 except end verticals. 2x4 SP No.2 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing, Except: **WEBS**

6-0-0 oc bracing: 11-12. 1 Row at midpt

WEBS 2-19, 4-17, 5-15, 1-20 1 Row at midpt

REACTIONS. (size) 20=0-4-0, 11=0-4-0

Max Horz 20=-337(LC 7)

Max Uplift 20=-18(LC 7), 11=-48(LC 12) Max Grav 20=1264(LC 2), 11=1420(LC 34)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

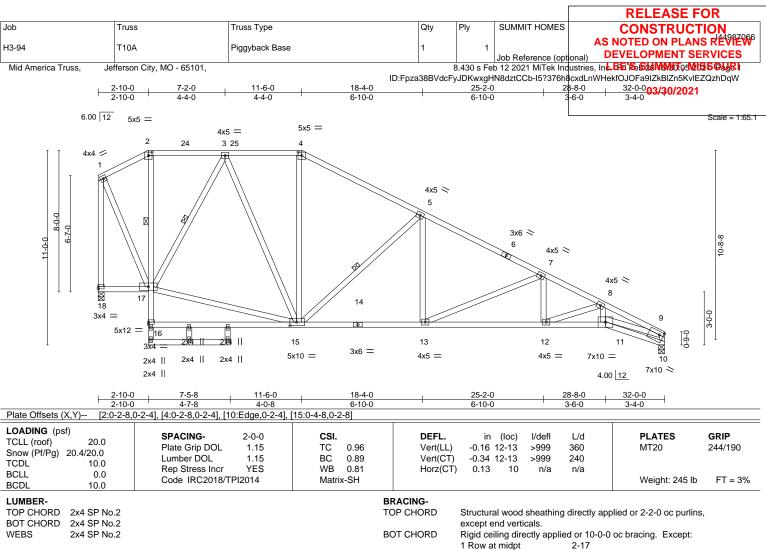
TOP CHORD 1-2=-385/97, 2-3=-731/75, 3-4=-732/75, 4-5=-1267/75, 5-7=-2107/56, 7-8=-2876/46,

8-9=-3672/26, 1-20=-1239/31, 9-11=-1435/62

19-20=-77/279, 3-17=-430/86, 15-17=0/1009, 14-15=0/1804, 13-14=0/2574, **BOT CHORD**

12-13=0/3149, 11-12=-36/283

WFBS 2-19=-996/70, 17-19=0/353, 2-17=0/1040, 4-17=-752/50, 4-15=-6/847, 5-15=-1086/119, 5-14=0/470, 7-14=-835/81, 7-13=0/339, 8-13=-638/27, 8-12=0/535, 1-19=-55/1057,


9-12=0/2976

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) Plates checked for a plus or minus 3 degree rotation about its center.
- 8) Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 11.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 1,2021

WEBS

1 Row at midpt 1 Row at midpt

3-17, 5-15

REACTIONS. (size) 18=0-4-0, 10=0-4-0

Max Horz 18=-285(LC 7) Max Uplift 10=-39(LC 12)

Max Grav 18=1268(LC 2), 10=1314(LC 33)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 $1-2=-509/64,\ 2-3=-425/61,\ 3-4=-989/120,\ 4-5=-1251/105,\ 5-7=-2116/95,\ 7-8=-2910/96,$ TOP CHORD

8-9=-3764/108, 1-18=-1226/11, 9-10=-1339/64

BOT CHORD 13-15=0/1812, 12-13=-17/2603, 11-12=-71/3242, 10-11=-24/320

WEBS 15-17=0/774, 3-17=-778/98, 3-15=-55/599, 5-15=-1096/128, 5-13=0/470, 7-13=-857/91,

7-12=0/369, 8-12=-717/57, 8-11=0/553, 1-17=-27/1030, 9-11=-52/3037

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33 plate grip DOL=1.15 Plate DOL=1.15; Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design
- 5) Provide adequate drainage to prevent water ponding.
- 6) Plates checked for a plus or minus 3 degree rotation about its center.
- 7) Bearing at joint(s) 10 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPL1

March 1,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIEW H3-94 T10B PIGGYBACK BASE 5 **DEVELOPMENT SERVICES** Job Reference (optional)

DEVELOPMENT SERVICES

8.430 s Feb 12 2021 MiTek Industries, Inc. Hai Se Salmando Auto Sealel Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-ET7pYojO8Yt30qR1r4QoTgfW_MQfDTJOnDELeJzhDqU 2-10-0 2-10-0 32-0-0 03/30/2021 11-6-0 28-8-0 4-0-8 6-10-0 6-10-0 3-4-0 6.00 12 6x8 = Scale = 1:68.4 3x4 || 6x8 = 2 321 20 4x5 / 4x5 < 3x6 > 1-0-0 6 4x5 < 9-7-0 4x5 < 8 10-9-0 10-0-0-1 15 14 13 12 11 5x12 = ₩ 19 4x5 = 4x5 = 7x10 = 10 18 17 3x6 = 3x4 =7x10 < 5x10 = 3x4 =4x5 = 4.00 12 11-6-0 28-8-0 32-0-0 2-10-0 4-7-8 4-0-8 6-10-0 Plate Offsets (X,Y)--[2:0-6-0,0-2-8], [4:0-6-0,0-2-8], [10:Edge,0-2-4], [17:Edge,0-1-8] LOADING (psf) SPACING-2-0-0 DEFL. (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.88 Vert(LL) -0.17 12-13 >999 360 MT20 244/190 Snow (Pf/Pg) 20.4/20.0 Lumber DOL 1.15 BC 0.89 Vert(CT) -0.36 12-13 >999 240 **TCDL** 10.0 Rep Stress Incr YES WB 0.81 Horz(CT) 0.18 10 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 FT = 3% Matrix-SH Weight: 258 lb BCDL 10.0 LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, **BOT CHORD** 2x4 SP No.2 except end verticals. WEBS 2x4 SP No.2 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing. Except: 1 Row at midpt 3-16 **WEBS** 1 Row at midpt 2-18, 4-16, 5-14, 1-19

REACTIONS. (size) 19=0-4-0, 10=0-4-0

Max Horz 19=-322(LC 7)

Max Uplift 19=-19(LC 7), 10=-26(LC 12) Max Grav 19=1268(LC 2), 10=1314(LC 33)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

1-2=-386/97, 2-3=-734/78, 3-4=-735/78, 4-5=-1271/78, 5-7=-2117/63, 7-8=-2909/62, TOP CHORD

8-9=-3765/66, 1-19=-1243/31, 9-10=-1339/50

BOT CHORD 18-19=-80/264, 3-16=-430/86, 14-16=0/1013, 13-14=0/1813, 12-13=0/2602,

11-12=-35/3242, 10-11=-21/320

WEBS 2-18=-1000/73, 16-18=-2/343, 2-16=-3/1045, 4-16=-756/51, 4-14=-8/852,

5-14=-1094/122, 5-13=0/477, 7-13=-855/90, 7-12=0/367, 8-12=-718/51, 8-11=0/555,

1-18=-55/1060, 9-11=-18/3037

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed: MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.
- 6) Plates checked for a plus or minus 3 degree rotation about its center.
- 7) Bearing at joint(s) 10 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 19, 10.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 1,2021

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIEW H3-94 T11 Piggyback Base **DEVELOPMENT SERVICES** Job Reference (optional) 8.430 s Feb 12 2021 MiTek Industries, Inc. FFE S26NIMO 10M125 PAGE Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-e2oyApIGRTFetHAcXD_V5JH2uaQ5Qr9qTBT?FezhDqR 2-10-0 2-10-0 18-1-0 25-2-0 28-8-32-0-0 **-03/30/2021** 2-3-8 3-3-8 3-3-8 3-6-3-4-0 6.00 12 6x8 = Scale = 1:69.9 4x4 = 5x5 = 3 25 4x5 / 5x10 ≥ 3x4 II 6 3x6 <> X 4x5 < 0 - 2 - 68 4x5 < 19 6x12 = 13 12 5x12 = Ď Š 7x10 = 4x5 = 23 22 21 16 15 18 3x4 7x10 > 5x10 = 5x10 = 3x4 = 3x4 = 3x4 =4.00 | 12 28-8-0 32-0-0 2-10-0 11-2-8 18-1-0 2-10-0 6-4-8 2-0-0 3-7-0 3-3-8 Plate Offsets (X,Y)--[2:0-6-0,0-2-8], [4:0-2-8,0-2-4], [11:Edge,0-2-4], [15:Edge,0-1-8], [17:0-0-0,0-1-8], [21:Edge,0-1-8] LOADING (psf) SPACING-2-0-0 CSI. (loc) I/defl L/d **PLATES** GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.78 Vert(LL) -0.19 13-14 >999 360 MT20 244/190 Snow (Pf/Pg) 20.4/20.0 Lumber DOL 1.15 BC 0.90 Vert(CT) -0.42 13-14 >900 240 **TCDL** 10.0 Rep Stress Incr YES WB 0.74 Horz(CT) 0.24 11 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Weight: 294 lb FT = 3%Matrix-SH BCDL 10.0 LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 2-5-1 oc purlins, **BOT CHORD** 2x4 SP No.2 except end verticals. 2x4 SP No.2 **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc bracing. Except: **WEBS** 1 Row at midpt 3-20 10-0-0 oc bracing: 17-19 **WEBS** 1 Row at midpt 2-22, 5-16, 8-14, 1-23 REACTIONS. (size) 23=0-4-0, 11=0-4-0 Max Horz 23=-322(LC 7) Max Uplift 23=-13(LC 7), 11=-23(LC 12) Max Grav 23=1278(LC 2), 11=1319(LC 33) FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-391/93, 2-3=-1097/28, 3-4=-1253/41, 4-5=-1460/31, 5-6=-2021/134, 6-8=-2072/57, 8-9=-2950/53, 9-10=-3761/55, 1-23=-1263/18, 10-11=-1346/49 **BOT CHORD** 22-23=-80/264, 3-20=-711/101, 19-20=0/1096, 4-19=0/495, 6-14=-492/140, 13-14=0/2650, 12-13=-24/3238, 11-12=-22/329 WFBS

2-22=-1087/16, 20-22=0/402, 2-20=0/1255, 3-19=-50/585, 16-19=0/1596, 5-19=-27/300,

5-16=-1335/0, 14-16=0/1210, 5-14=-73/1398, 8-14=-961/96, 8-13=0/377, 9-13=-677/45,

9-12=0/545, 1-22=-48/1093, 10-12=-6/3022

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) Provide adequate drainage to prevent water ponding.
- 6) Plates checked for a plus or minus 3 degree rotation about its center.
- 7) Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 23, 11.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 1,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job Truss Truss Type Qty SUMMIT HOMES H3-94 T11GE **GABLE** Mid America Truss, Jefferson City, MO - 65101,

8-8-0

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW **DEVELOPMENT SERVICES**

Scale = 1:73.9

Structural wood sheathing directly applied or 6-0-0 oc purlins,

10-30, 11-29

1-38, 2-37, 4-36, 5-35, 6-34, 7-33, 9-31,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

1 Row at midpt

ID:Fpza38BVdcFyJDKwxgHN8dztCCb-bRwibVnXz4VM6bJ_ee0zAkMTfNHoute7xVy6JWzhDqF 32-0-0 — 03/30/2021 20-6-0

6.00 12 3x6 = $2x4 \parallel 2x4 \parallel 2x4 \parallel 2x4 \parallel 3x6 = {2x4 \parallel}$ 2x4 || 4 39 5 640 2 3 R 2x4 || 3x4 II 10 2x4 || 11 2x4 || 12 2x4 13 2x4 || 14 2x4 || 1-0-0 41 15 2x4 || 2x4 || 16 2x4 || 3x6 > 17 18 19 5x6 || 20 31 33 30 38 37 36 35 34 29 28 27 26 25 24 23 22 21

32-0-0

32

Plate Offsets (X,Y) [3:0-3-0,	,0-2-0], [8:0-3-0,0-2-0], [20:Edge,0-3-8]							
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.50 BC 0.25 WB 0.17	Vert(CT)	in (loc) n/a - n/a - 0.01 21	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2018/TPI2014	Matrix-R					Weight: 274 lb	FT = 3%

TOP CHORD

BOT CHORD

WEBS

 $3x4 = 2x4 \parallel 2x4$

LUMBER-BRACING-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.2 **OTHERS** 2x4 SP No.2

REACTIONS. All bearings 32-0-0. Max Horz 38=-321(LC 9) (lb) -

2-10-0

Max Uplift All uplift 100 lb or less at joint(s) 38, 21, 37, 36, 35, 34, 33, 31, 30, 29, 28, 27, 26, 25, 24, 23 except 22=-121(LC 7)

Max Grav All reactions 250 lb or less at joint(s) 38, 21, 37, 36, 35, 34, 33, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 17-19=-254/79, 19-20=-300/89

BOT CHORD 37-38=-80/263, 36-37=-80/263, 35-36=-80/263, 34-35=-80/263, 33-34=-80/263, 31-33=-80/263, 30-31=-80/263, 29-30=-80/263, 28-29=-80/263, 27-28=-80/263, 26-27=-80/263, 25-26=-80/263, 24-25=-80/263, 23-24=-80/263, 22-23=-80/263,

21-22=-80/263

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 5) Unbalanced snow loads have been considered for this design.
- 6) Provide adequate drainage to prevent water ponding.
- 7) Plates checked for a plus or minus 3 degree rotation about its center.
- 8) Gable requires continuous bottom chord bearing.
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 38, 21, 37, 36, 35, 34, 33, 31, 30, 29, 28, 27, 26, 25, 24, 23 except (jt=lb) 22=121.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 1,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIEW H3-94 V1 **GABLE DEVELOPMENT SERVICES** Job Reference (optional) 8.430 s Feb 12 2021 MiTek Industries, Ind. Effi Se S26N8W0145V2125 PAGE Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-7nQBXnADBDfgagLK436i0hE2ZhYJ7ri_W8SLz6zhDpu 11-10-1 03/30/2021 5-11-6 5-11-6 Scale = 1:20.4 4x5 = 2 6.00 12 3x5 > 3x5 / 2x4 || 11-10-11 11-10-11 LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defI L/d **PLATES GRIP** (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.74 Vert(LL) 999 244/190 n/a n/a MT20 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 ВС 0.20 Vert(CT) 999 n/a n/a **TCDL** 10.0 Rep Stress Incr YES WB 0.05 Horz(CT) 0.00 3 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-P Weight: 39 lb FT = 3% **BCDL** 10.0 **BRACING-**

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

OTHERS 2x4 SP No.2

1=11-10-11, 3=11-10-11, 4=11-10-11 REACTIONS. (size) Max Horz 1=30(LC 8)

Max Uplift 1=-22(LC 11), 3=-27(LC 12)

Max Grav 1=247(LC 15), 3=247(LC 16), 4=422(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-4=-289/47 WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

March 1,2021

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIEW Valley H3-94 V2 **DEVELOPMENT SERVICES** Job Reference (optional) 8.430 s Feb 12 2021 MiTek Industries, Inc. FFE S26NIMO 5314125 PAGE Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-uKvCCWGFJhgYXuytYlFaKNZXDvJ4?S19MNOnFezhDpm 7-10-11 03/30/2021 3-11-6 3-11-6 Scale = 1:14.6 4x4 = 6.00 12 3x4 🖊 2x4 || 3x4 <> 7-10-11 7-10-3 LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defI L/d **PLATES GRIP** (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.25 Vert(LL) 999 244/190 n/a n/a MT20 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 ВС 0.08 Vert(CT) 999 n/a n/a **TCDL** 10.0 Rep Stress Incr YES WB 0.02 Horz(CT) 0.00 3 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-P Weight: 25 lb FT = 3% **BCDL** 10.0

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

OTHERS 2x4 SP No.2

REACTIONS. 1=7-9-11, 3=7-9-11, 4=7-9-11 (size)

Max Horz 1=19(LC 8)

Max Uplift 1=-14(LC 11), 3=-17(LC 12)

Max Grav 1=156(LC 15), 3=156(LC 16), 4=263(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

March 1,2021

RELEASE FOR CONSTRUCTION Job Truss Truss Type Qty SUMMIT HOMES AS NOTED ON PLANS REVIEW H3-94 V3 Valley **DEVELOPMENT SERVICES** Job Reference (optional) 8.430 s Feb 12 2021 MiTek Industries, Inc. FFE S26NIMO 5314125 PAGE Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-uKvCCWGFJhgYXuytYIFaKNZagvKK?SN9MNOnFezhDpm 03/30/2021 1-11-6 3x4 = Scale = 1:7.5 6.00 12 3 3x4 / 3x4 ≥

3-10-11 [2:0-2-0 Edge] Plate Offsets (X V)--

Titale Office (7, 1) [2.0-2-0, Luye]											
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.03 BC 0.06 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 3%		

LUMBER-BRACING-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 TOP CHORD **BOT CHORD**

Structural wood sheathing directly applied or 3-10-11 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 1=3-9-11, 3=3-9-11 (size)

Max Horz 1=-8(LC 7)

Max Uplift 1=-1(LC 11), 3=-1(LC 12) Max Grav 1=105(LC 2), 3=105(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 1,2021

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS RE H3-94 V4 **GABLE DEVELOPMENT SERVICES** Job Reference (optional)

DEVELOPMENT SERVICES

8.430 s Feb 12 2021 MiTek Industries, Inc. Hai Se 524 MANO 54415 SO JUNI Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-MWTaQsHt4_oP92X36Smpta6hnJe0kvfJb17Kn5zhDpl 03/30/2021 8-6-6 2-7-0 4x5 = Scale = 1:31.0 3 2x4 || 7.00 12 2x4 II 2 3x5 / 7 5 2x4 || 2x4 || 2x4 || 11-1-6 11-1-6 LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defI L/d **PLATES GRIP** (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.26 Vert(LL) 999 244/190 n/a n/a MT20 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 ВС 0.10 Vert(CT) 999 n/a n/a TCDI 10.0 Rep Stress Incr YES WB 0.06 Horz(CT) -0.00 5 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-P Weight: 49 lb FT = 3% **BCDL** 10.0

LUMBER-

TOP CHORD 2x4 SP No.2 2x4 SP No.2

BOT CHORD 2x4 SP No.2 WEBS **OTHERS** 2x4 SP No.2 BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 11-1-6.

Max Horz 1=134(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 5, 7

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 6 except 7=406(LC 22)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-7=-313/130

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 7.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 1,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS RE H3-94 V5 **GABLE DEVELOPMENT SERVICES** Job Reference (optional)

DEVELOPMENT SERVICES
8.430 s Feb 12 2021 MiTek Industries, Ind. Etc. Section May 12 2021 MiTek Ind. Etc. Section May 12 2021 MiTek Ind. Etc. Section Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-qi0ydCIVrlwFnC6FfAH2Qoettj_ITMESqhttJXzhDpk 9-4-13 03/30/2021 6-9-13 2-7-0 4x4 = Scale = 1:25.8 3 7.00 12 2x4 || 2x4 || 2 2-5-10 4-0-0 3x4 / 2x4 || 2x4 || LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defI L/d **PLATES GRIP** (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC Vert(LL) 999 244/190 0.24 n/a n/a MT20 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 ВС 0.06 Vert(CT) 999 n/a n/a TCDI 10.0 Rep Stress Incr YES WB 0.04 Horz(CT) -0.00 5 n/a n/a **BCLL** 0.0

LUMBER-TOP CHORD

BCDL

2x4 SP No.2 2x4 SP No.2

10.0

BOT CHORD 2x4 SP No.2 WEBS **OTHERS** 2x4 SP No.2 BRACING-TOP CHORD

Matrix-P

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 9-4-13.

Max Horz 1=102(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 7

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 6 except 7=335(LC 22)

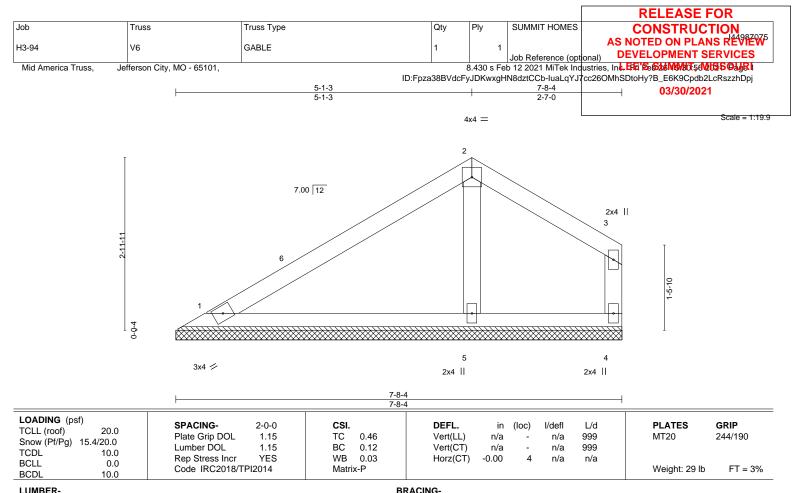
Code IRC2018/TPI2014

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-7=-262/109 WEBS

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 7.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



Weight: 39 lb

FT = 3%

March 1,2021

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

2x4 SP No.2 WEBS **OTHERS** 2x4 SP No.2

(size) 1=7-8-4, 4=7-8-4, 5=7-8-4

Max Horz 1=70(LC 8)

Max Uplift 1=-14(LC 11), 4=-24(LC 12)

Max Grav 1=174(LC 15), 4=107(LC 16), 5=305(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

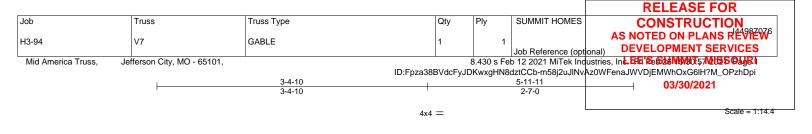
- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 4.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

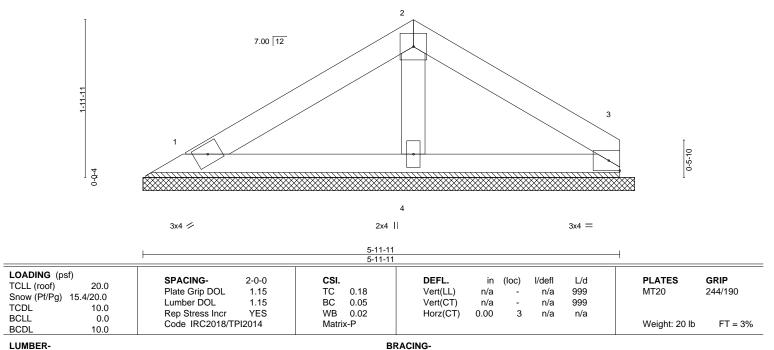
Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

March 1,2021




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

BOT CHORD

LUMBER-

REACTIONS.

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2

OTHERS 2x4 SP No.2

> 1=6-1-15, 3=6-1-15, 4=6-1-15 (size)

Max Horz 1=-35(LC 7)

Max Uplift 1=-12(LC 11), 3=-15(LC 12)

Max Grav 1=136(LC 15), 3=125(LC 16), 4=207(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 5-11-11 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

March 1,2021

RELEASE FOR CONSTRUCTION Job Truss Truss Type Qty SUMMIT HOMES AS NOTED ON PLANS RE H3-94 V8 **GABLE DEVELOPMENT SERVICES** Job Reference (optional)

DEVELOPMENT SERVICES

8.430 s Feb 12 2021 MiTek Industries, Inc. Hai Se 524 MANO 59 ULD SO JULI Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-EHi5FEKN7DIqegqqLIrl1QGL7w0EghOuWf5XwszhDph 03/30/2021 1-2-0 8-8-0 2x4 || Scale = 1:45.1 2x4 || 2x4 || 4x5 = 4x5 =3 6.00 12 2x4 || 3-9-11 13 3x5 / 12 11 10 9 2x4 || 4x4 = 2x4 || 2x4 || 2x4 || LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defI L/d **PLATES GRIP** (loc) TCLL (roof) 20.0 Plate Grip DOL TC Vert(LL) 999 244/190 1.15 0.43 n/a n/a MT20 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 ВС 0.08 Vert(CT) 999 n/a n/a TCDI 10.0 Rep Stress Incr YES WB 0.14 Horz(CT) -0.00 8 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-P Weight: 91 lb FT = 3% **BCDL** 10.0 BRACING-

LUMBER-

TOP CHORD 2x4 SP No.2

BOT CHORD 2x4 SP No.2 2x4 SP No.2 WEBS **OTHERS** 2x4 SP No.2 TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. All bearings 17-10-0

Max Horz 1=236(LC 10) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 8, 12, 11, 10, 9

Max Grav All reactions 250 lb or less at joint(s) 1, 8 except 12=398(LC 33), 11=319(LC 2), 10=378(LC 35),

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-12=-320/105, 5-10=-296/93

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Provide adequate drainage to prevent water ponding.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 12, 11, 10, 9.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 1,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chorembers only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see

AMSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIEW H3-94 V9 **GABLE DEVELOPMENT SERVICES** Job Reference (optional) DEVELOPMENT SERVICES
8.430 s Feb 12 2021 MiTek Industries, Int. Litt. Session 534 155 04 151 Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-jTGTTaL?uXQhFpP1u?M_aepUlKMnP9O2kJr5SlzhDpg 5-3-7 5-3-7 03/30/2021 1-2-0 8-8-0 Scale = 1:37.9 2x4 || 2x4 || 5 2x4 || 4x5 =6-4-11 6.00 12 4x5 = 2 2-7-11 2-0-11 3x5 < 9 8 ₇2x4 || 10 4x4 = 2x4 || 2x4 || 15-0-15 LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defI L/d **PLATES GRIP** (loc) TCLL (roof) 20.0 Plate Grip DOL Vert(LL) 999 244/190 1.15 TC 0.57 n/a n/a MT20 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 ВС 0.12 Vert(CT) 999 n/a n/a TCDI 10.0

LUMBER-

BCLL

BCDL

TOP CHORD 2x4 SP No.2

0.0

10.0

BOT CHORD 2x4 SP No.2 2x4 SP No.2 WEBS **OTHERS** 2x4 SP No.2 BRACING-TOP CHORD

Horz(CT)

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

n/a

n/a

BOT CHORD

-0.00

Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

6-0-0 oc bracing: 1-10

REACTIONS. All bearings 15-0-15.

Max Horz 1=198(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 7, 10, 9, 8

Rep Stress Incr

Code IRC2018/TPI2014

Max Grav All reactions 250 lb or less at joint(s) 1, 7 except 10=391(LC 2), 9=372(LC 35), 8=272(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 4-9=-296/93

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

YES

WB

Matrix-P

0.09

- 3) Unbalanced snow loads have been considered for this design.
- 4) Provide adequate drainage to prevent water ponding.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 10, 9, 8.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Weight: 73 lb

FT = 3%

March 1,2021

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIEW H3-94 V10 **GABLE DEVELOPMENT SERVICES** Job Reference (optional)

DEVELOPMENT SERVICES

8.430 s Feb 12 2021 MiTek Industries, Inc. Hai Se 524 MANDI 40 UID S O JUNI Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-bz_Zk7BryXnXCqwXendxYvmMx4xgsll7loBvVYzhDpt 12-9-7 03/30/2021 2-11-7 1-2-0 8-8-0 2x4 Scale = 1:31.1 6 2x4 || 5 2x4 || 4x5 = 6.00 12 4x5 || 2 0-10-11 3x5 / 3x5 ≥ 9 8 7 2x4 || 11 2x4 || 2x4 || 2x4 || 12-9-7 12-8-15 LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defI L/d **PLATES GRIP** (loc) TCLL (roof) 20.0 Plate Grip DOL TC Vert(LL) 999 244/190 1.15 0.19 n/a n/a MT20 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 ВС 0.06 Vert(CT) 999 n/a n/a TCDI 10.0 Rep Stress Incr YES WB 0.06 Horz(CT) -0.00 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-P Weight: 58 lb FT = 3%

LUMBER-TOP CHORD

BCDL

2x4 SP No.2

10.0

BOT CHORD 2x4 SP No.2 2x4 SP No.2 WEBS **OTHERS** 2x4 SP No.2 BRACING-

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 12-8-15

Max Horz 1=159(LC 10) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 7, 11, 9, 8

Max Grav All reactions 250 lb or less at joint(s) 1, 10, 7, 11 except 9=337(LC 35), 8=271(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 4-9=-268/91

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Plates checked for a plus or minus 3 degree rotation about its center.
- 5) Gable requires continuous bottom chord bearing.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 11, 9, 8.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

March 1,2021

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIEW H3-94 V11 **GABLE DEVELOPMENT SERVICES** Job Reference (optional)

DEVELOPMENT SERVICES
8.430 s Feb 12 2021 MiTek Industries, Ind. Etc. Section May 12 2021 MiTek Industries, Ind. Section May 12 2021 MiTek Industries, Ind. Etc. Section May 12 2021 MiTek Industries, Ind. Section May 12 2021 MiTek Ind. Section May 12 2021 MiTek Ind. Section May 12 2021 MiTek Ind. Section May 12 2021 M Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-3AXxxTCUjrvOpzVjBU8A56JVXUGOblGH_SxS1?zhDps 03/30/2021 8-1-7 2x4 || Scale = 1:24.6 3 6.00 12 2x4 || 0-0-4 4 2x4 || 3x4 / 2x4 ||

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.26 BC 0.10 WB 0.04	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2018/TPI2014	Matrix-P					Weight: 32 lb	FT = 3%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

2x4 SP No.2 TOP CHORD

2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS

OTHERS 2x4 SP No.2

REACTIONS. (size) 1=8-1-7, 4=8-1-7, 5=8-1-7

Max Horz 1=121(LC 8)

Max Uplift 4=-14(LC 8), 5=-53(LC 11)

Max Grav 1=102(LC 23), 4=159(LC 15), 5=420(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-5=-327/108 WEBS

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Plates checked for a plus or minus 3 degree rotation about its center.
- 5) Gable requires continuous bottom chord bearing.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

March 1,2021

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS REVIEW H3-94 V12 Valley **DEVELOPMENT SERVICES** Job Reference (optional)

DEVELOPMENT SERVICES

8.430 s Feb 12 2021 MiTek Industries, Inc. Hai Se 524 MANDI 4 MUS POLICE

REFERENCE (Optional) Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-3AXxxTCUjrvOpzVjBU8A56JPPUEUbluH_SxS1?zhDps 03/30/2021 2x4 || Scale = 1:17.7 2 6.00 12 0-0-4 2x4 || 3x4 / LOADING (psf)

Snow (Pf/Pg) 15.4/20.0 TCDI 10.0 **BCLL** 0.0 **BCDL** 10.0 SPACING-2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014

CSI. TC 0.66 ВС 0.22 WB 0.00 Matrix-P

BRACING-

TOP CHORD

BOT CHORD

DEFL. I/defI L/d (loc) Vert(LL) 999 n/a n/a Vert(CT) 999 n/a n/a Horz(CT) -0.00 3 n/a n/a

except end verticals.

PLATES MT20

Structural wood sheathing directly applied or 5-9-7 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

GRIP 244/190

Weight: 21 lb FT = 3%

LUMBER-TOP CHORD

REACTIONS.

WEBS

TCLL (roof)

2x4 SP No.2 BOT CHORD 2x4 SP No.2

20.0

2x4 SP No.2

1=5-8-15, 3=5-8-15 (size) Max Horz 1=83(LC 8) Max Uplift 1=-3(LC 11), 3=-19(LC 11) Max Grav 1=239(LC 15), 3=249(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Plates checked for a plus or minus 3 degree rotation about its center.
- 5) Gable requires continuous bottom chord bearing.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 1,2021

RELEASE FOR CONSTRUCTION Job Truss Truss Type Qty SUMMIT HOMES AS NOTED ON PLANS REVIEW H3-94 V13 **GABLE DEVELOPMENT SERVICES** Job Reference (optional)

DEVELOPMENT SERVICES
8.430 s Feb 12 2021 MiTek Industries, Ind. Etc. Section May 12 2021 MiTek Ind. Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-XM5J9pC6U81FR73vlBfPdKshJub3KBaQD6g0aRzhDpr 03/30/2021 6-11-7 2x4 || Scale = 1:21.4 3 6.00 12 2x4 ||

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.20 BC 0.07 WB 0.04	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2018/TPI2014	Matrix-P						Weight: 27 lb	FT = 3%

5

BRACING-

TOP CHORD

BOT CHORD

2x4 ||

4

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

2x4 ||

except end verticals.

LUMBER-

2x4 SP No.2 TOP CHORD 2x4 SP No.2 BOT CHORD

2x4 SP No.2 WEBS

OTHERS 2x4 SP No.2

REACTIONS. (size) 1=6-11-7, 4=6-11-7, 5=6-11-7

Max Horz 1=102(LC 8)

Max Uplift 4=-11(LC 8), 5=-45(LC 11)

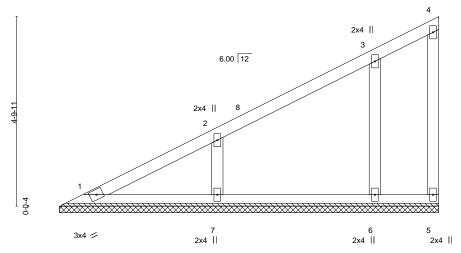
0-0-4

3x4 /

Max Grav 1=106(LC 23), 4=100(LC 15), 5=372(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-5=-294/91


- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Plates checked for a plus or minus 3 degree rotation about its center.
- 5) Gable requires continuous bottom chord bearing.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

RELEASE FOR Job Truss Truss Type Qty SUMMIT HOMES CONSTRUCTION AS NOTED ON PLANS RE H3-94 V14 **GABLE DEVELOPMENT SERVICES** Job Reference (optional)

DEVELOPMENT SERVICES
8.430 s Feb 12 2021 MiTek Industries, Ind. Etc. Section May 12 2021 MiTek Ind. Etc. Section May 12 2021 MiTek Ind. Etc. Section Mid America Truss, Jefferson City, MO - 65101, ID:Fpza38BVdcFyJDKwxgHN8dztCCb-?YfhM9DkFSA63He6JvAeAXOs_lx43dMZRmQZ6tzhDpq 03/30/2021 2x4 || Scale = 1:29.2

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.20 BC 0.08 WB 0.07	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2018/TPI2014	Matrix-P						Weight: 43 lb	FT = 3%

LUMBER-BRACING-

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD

2x4 SP No.2 WEBS **OTHERS** 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 9-7-7.

Max Horz 1=146(LC 8) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 5, 7, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=340(LC 2), 6=335(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

2-7=-255/100, 3-6=-269/76 WEBS

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Plates checked for a plus or minus 3 degree rotation about its center.
- 5) Gable requires continuous bottom chord bearing.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 7, 6.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 1,2021

Job Truss Truss Type Qty SUMMIT HOMES H3-94 V15 **GABLE**

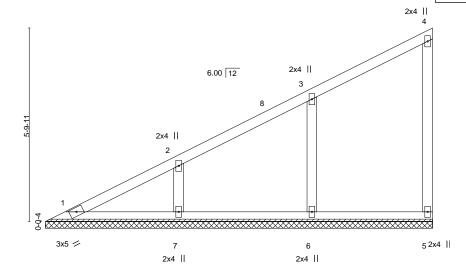
RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW **DEVELOPMENT SERVICES**

Job Reference (optional)

BLAGGER SERVICES

JOB Reference (optional)

DEVELOPMENT SERVICES


8.430 s Feb 12 2021 MiTek Industries, Ind. ERG Section MANO 504415 FOLICE

BLAGGER SERVICES

ID:Fpza38BVdcFyJDKwxgHN8dztCCb-TlD3aVEM0mlzgRDltchtjlx0FiHMo4SjgQ96eJzhDpp

03/30/2021

Scale = 1:34.6

11-7-7

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.23 BC 0.08 WB 0.08	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loo n/a n/a -0.00	c) I/defl - n/a - n/a 5 n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2018/TPI2014	Matrix-P					Weight: 51 lb	FT = 3%

LUMBER-BRACING-

2x4 SP No.2 TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS

Mid America Truss,

Jefferson City, MO - 65101,

OTHERS 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 11-7-7.

Max Horz 1=178(LC 10) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 5, 7, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=326(LC 2), 6=389(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 3-6=-306/97 WEBS

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Plates checked for a plus or minus 3 degree rotation about its center.
- 5) Gable requires continuous bottom chord bearing.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 7, 6.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 1,2021

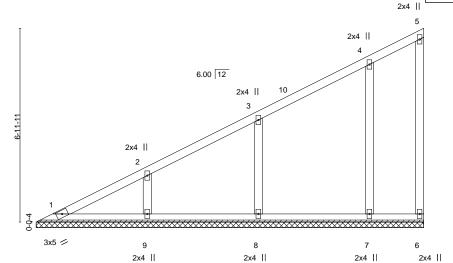
Job Truss Truss Type Qty SUMMIT HOMES H3-94 V16 **GABLE**

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW **DEVELOPMENT SERVICES**

Job Reference (optional)

DEVELOPMENT SERVICES

8.430 s Feb 12 2021 MiTek Industries, Inc. Hai Se 524 MANO 5 MUS POUR INC. ID:Fpza38BVdcFyJDKwxgHN8dztCCb-yxnSnrF_n3QqlboUQKD6FyU935dcXWWsv3vgAmzhDpo


Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

03/30/2021

Scale = 1:41.5

13-11-7

LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defI L/d **PLATES GRIP** (loc) TCLL (roof) 20.0 Plate Grip DOL TC Vert(LL) 999 244/190 1.15 0.36 n/a n/a MT20 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 ВС 0.08 Vert(CT) 999 n/a n/a TCDI 10.0 Rep Stress Incr YES WB 0.15 Horz(CT) -0.00 6 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-P Weight: 68 lb FT = 3% **BCDL** 10.0

LUMBER-BRACING-TOP CHORD

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.2 WEBS

Mid America Truss,

Jefferson City, MO - 65101,

BOT CHORD 2x4 SP No.2

REACTIONS. All bearings 13-11-7. Max Horz 1=217(LC 10) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 6, 9, 8, 7

Max Grav All reactions 250 lb or less at joint(s) 1, 6 except 9=326(LC 2), 8=330(LC 2), 7=337(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 4-7=-269/78

NOTES-

OTHERS

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Plates checked for a plus or minus 3 degree rotation about its center.
- 5) Gable requires continuous bottom chord bearing.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 9, 8, 7.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 1,2021

Job Truss Truss Type Qty SUMMIT HOMES H3-94 V17 **GABLE**

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW **DEVELOPMENT SERVICES**

Job Reference (optional)

DEVELOPMENT SERVICES

8.430 s Feb 12 2021 MiTek Industries, Inc. Hai Se 524 MANO 52 MITE POLICE

B. 430 s Feb 12 2021 MiTek Industries, Inc. Hai Se 524 MANO 52 MITE POLICE

B. 430 s Feb 12 2021 MiTek Industries, Inc. Hai Se 524 MANO 52 MITE POLICE

B. 430 s Feb 12 2021 MiTek Industries, Inc. Hai Se 524 MANO 52 MITE POLICE

B. 430 s Feb 12 2021 MiTek Industries, Inc. Hai Se 524 MANO 52 MITE POLICE

B. 430 s Feb 12 2021 MITEK INDUSTRIES, INC. HAI SE 524 MANO 52 MITE POLICE

B. 430 s Feb 12 2021 MITEK INDUSTRIES, INC. HAI SE 524 MANO 52 MITE POLICE

B. 430 s Feb 12 2021 MITEK INDUSTRIES, INC. HAI SE 524 MANO 52 MITE POLICE

B. 430 s Feb 12 2021 MITEK INDUSTRIES, INC. HAI SE 524 MANO 52 MITE POLICE

B. 430 s Feb 12 2021 MITEK INDUSTRIES, INC. HAI SE 524 MANO 52 MITE POLICE

B. 430 s Feb 12 2021 MITEK INDUSTRIES, INC. HAI SE 524 MANO 52 MITE POLICE

B. 430 s Feb 12 2021 MITEK INDUSTRIES, INC. HAI SE 524 MANO 52 MITE POLICE

B. 430 s Feb 12 2021 MITEK INDUSTRIES, INC. HAI SE 524 MANO 52 MITE POLICE

B. 430 s Feb 12 2021 MITEK INDUSTRIES, INC. HAI SE 524 MANO 52 MITER POLICE

B. 430 s Feb 12 2021 MITEK INDUSTRIES, INC. HAI SE 524 MITER POLICE

B. 430 s Feb 12 2021 MITEK INDUSTRIES MITER POLICE

B. 430 s Feb 12 2021 MITEK INDUSTRIES MITER POLICE

B. 440 s Feb 12 2021 MITEK INDUSTRIES MITER POLICE

B. 440 s Feb 12 2021 MITEK INDUSTRIES MITER POLICE

B. 440 s Feb 12 2021 MITEK INDUSTRIES MITER POLICE

B. 440 s Feb 12 2021 MITEK INDUSTRIES MITER POLICE

B. 440 s Feb 12 2021 MITEK INDUSTRIES MITER POLICE

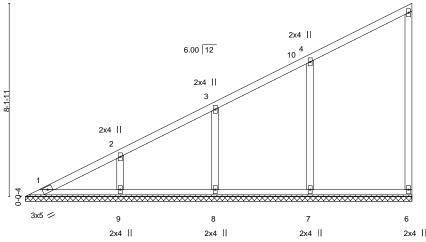
B. 440 s Feb 12 2021 MITEK INDUSTRIES MITER POLICE

B. 440 s Feb 12 2021 MITEK INDUSTRIES MITER POLICE

B. 440 s Feb 12 2021 MITEK INDUSTRIES MITER POLICE

B. 440 s Feb 12 2021 MITER POL ID:Fpza38BVdcFyJDKwxgHN8dztCCb-Q7Lq?BGcYNYhwlNg_1kLoA0HIVzWGzE07jeDjCzhDpn

03/30/2021


2x4 ||

5

Scale = 1:48.5

16-3-7

LOADING (psf) SPACING-2-0-0 CSI. DEFL. I/defI L/d **PLATES GRIP** (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC Vert(LL) 999 244/190 0.52 n/a n/a MT20 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 ВС 0.10 Vert(CT) 999 n/a n/a TCDI 10.0 Rep Stress Incr YES WB 0.19 Horz(CT) -0.00 6 n/a n/a **BCLL** 0.0 Code IRC2018/TPI2014 Matrix-P Weight: 77 lb FT = 3% **BCDL** 10.0

BOT CHORD

LUMBER-BRACING-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.2 WEBS

Mid America Truss,

Jefferson City, MO - 65101,

OTHERS 2x4 SP No.2

Structural wood sheathing directly applied or 6-0-0 oc purlins, TOP CHORD except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 16-3-7. Max Horz 1=255(LC 10) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 6, 9, 8, 7

Max Grav All reactions 250 lb or less at joint(s) 1, 6 except 9=332(LC 2), 8=305(LC 2), 7=421(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 4-7=-328/109

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Plates checked for a plus or minus 3 degree rotation about its center.
- 5) Gable requires continuous bottom chord bearing.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 9, 8, 7.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 1,2021

MiTek

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW BEVELOPMENT SERVICES SUMMIT, MISSOURIES are indicated. Dimensions are in t-in-sixteenths. Apply plates to both sides of truss and fully embed teeth. For 4 x 2 orientation, locate plate on joint unless x, y offsets are indicated. For 4 x 2 orientation, locate

* Plate location details available in MiTek 20/20 software or upon request.

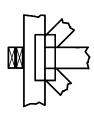
connector plates.

This symbol indicates the required direction of slots in plates 0- 1/16" from outside

edge of truss.

PLATE SIZE

4 × 4

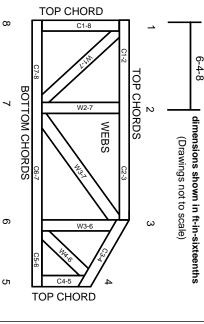

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number where bearings occur.


Min size shown is for crushing only

Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction. Design Standard for Bracing.
Building Component Safety Information, Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-89:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

PRODUCT CODE APPROVALS

ICC-ES Reports:

ESR-1311, ESR-1352, ESR1988 ER-3907, ESR-2362, ESR-1397, ESR-3282

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2012 MiTek® All Rights Reserved

MiTek Engineering Reference Sheet: MII-7473 rev. 5/19/2020

General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.

Ņ

Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.

Ģ

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber

9

- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- 17. Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21.The design does not take into account any dynamic or other loads other than those expressly stated.