

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Re: W2-63 SUMMIT HOMES

The truss drawing(s) referenced below have been prepared by MiTek USA, Inc. under my direct supervision based on the parameters provided by Mid America MO.

Pages or sheets covered by this seal: I44987087 thru I44987160

My license renewal date for the state of Missouri is December 31, 2021.

Missouri COA: Engineering 001193

March 1,2021

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	SUMMIT HOMES		
W2-63	CJ1	Diagonal Hip Girder	2	1			144987087
Mid America Truss, Je	fferson City, MO - 65101,			8.430 s Fe	Job Reference (optional) b 12 2021 MiTek Industries, Inc. I	Fri Feb 26 15:34:52 202	21 Page 1
· · · · · · · , · · ·	-1-2-14	1-6-11 3-1-6	ID:Fpza38BVdcFyJ 5-4-1	IDKwxgHN	l8dztCCb-OIrZMF9916ndidjo2R1d	WnyNmFowVWsLJ3nw	8lzhDm1
	1-2-14	1-6-11 1-6-11	2-2-11		2-2-11		
					2x4		Scale = 1:21.0
		3.54 12 Special	Spo Sp 1	ecial 4x4 pecial 5	6	0	
		Special 7x8 =			$K \setminus I$	2-2-	
2-0		4x4 =	1				
Ŕ	3x4 =	3	1				
T	2	THE H	3		&	l I	
4	1			15	7	0-0	
0-1			5	Special Special	3x4 =	<u>+</u>	
1 1	\square	10 14 9				1	
	11	3x8 = 2x4	П				
	2x4	Special					
		Special					
		1-6-11 3-1-6 1-6-11 1-6-11		7-6 4-	5-12 5-6		
Plate Offsets (X,Y) [4:0	0-2-8,0-4-12]						
LOADING (psf) TCLL (roof) 20.0	SPACING- Plate Grip DOI	2-0-0 CSI. 1 15 TC 0 20	DEFL.	in -0.03	(loc) I/defl L/d 7-8 >999 360	PLATES O	GRIP 244/190
Snow (Pf/Pg) 15.4/20.0 TCDL 10.0	Lumber DOL	1.15 BC 0.40	Vert(CT)	0.00	7-8 >999 240	11120	
BCLL 0.0 BCDL 10.0	Code IRC2018/	TPI2014 Matrix-P	HOIZ(CT) 0.02	7 11/a 11/a	Weight: 44 lb	FT = 3%
LUMBER- TOP CHORD 2x4 SP No BOT CHORD 2x4 SP No WEBS 2x4 SP No	.2		BRACING- TOP CHORD	Structur except e	al wood sheathing directly applied or 10.0.0.0	ed or 5-4-11 oc purlins	s,
			BOT CHORD	Rigiu ce	aning directly applied of 10-0-0 0	c bracing.	
REACTIONS. (size) Max Horz Max Uplift Max Grav	11=0-5-4, 7=Mechanical 11=85(LC 8) 11=-68(LC 7), 7=-47(LC 11) 11=406(LC 16), 7=365(LC 2)	6)					
FORCES. (lb) - Max. Cor TOP CHORD 2-11=-39 BOT CHORD 7-8=-78/4 WEBS 2-10=-11	np./Max. Ten All forces 25 10/75, 2-3=-360/27, 3-4=-975 427 /363, 3-10=-314/54, 8-10=-6	0 (lb) or less except when shown. /123, 4-5=-1104/159 2/311, 3-8=-81/584, 5-8=-95/702, 5-7	′=-497/91				
NOTES-		, , , , , ,					
 Wind: ASCE 7-16; Vult= MWFRS (envelope); car TCLL: ASCE 7-16; Pr=2 DOL=1.15); Is=1.0; Rou Unbalanced snow loads This truss has been des non-concurrent with othe Plates checked for a plu 	115mph (3-second gust) Va ntilever left and right exposed (0.0 psf (roof LL: Lum DOL=' (gh Cat C; Partially Exp.; Ce= thave been considered for the igned for greater of min roof er live loads. Is or minus 3 degree rotation	sd=91mph; TCDL=6.0psf; BCDL=6.0p d; end vertical left and right exposed; 1.15 Plate DOL=1.15); Pg=20.0 psf; P =1.0; Cs=1.00; Ct=1.10 iis design. live load of 12.0 psf or 2.00 times flat about its center.	psf; h=25ft; Cat. II; E Lumber DOL=1.33 f=15.4 psf (Lum DO roof load of 15.4 ps	Exp C; End plate grip IL=1.15 Pl f on overh	closed; DOL=1.33 ate nangs		
 b) Refer to girder(s) for true 7) Provide mechanical con 8) This trues is designed in 	ss to truss connections. Inection (by others) of truss to accordance with the 2010 l	o bearing plate capable of withstandir	ng 100 lb uplift at joir	nt(s) 11, 7	nd 4	OF MISS	D
referenced standard AN	ISI/TPI 1.			02.10.2 a		ATE	923
1-11-15, 49 lb down and	$\frac{16}{16}$ lb up at 1-11-15, and 68	B b down and 30 lb up at 4-9-14, and	68 lb down and 30	Ib up at 4	I-9-14 on top	SCOTT M. SEVIER	1/2 8
chord, and 4 lb down an down and 22 lb up at 4-	ed 8 lb up at 1-11-15, 4 lb do -9-14 on bottom chord. The	wn and 8 lb up at 1-11-15, and 25 lb design/selection of such connection d	down and 22 lb up a levice(s) is the respo	at 4-9-14, onsibility o	f others.	Att li	1787
	section, loads applied to the	Tace of the truss are noted as front (F	-) of dack (B).		E N	NUMBER	120
1) Dead + Snow (balanced	d): Lumber Increase=1.15, PI	ate Increase=1.15			N.O.	PE-2001018807	VEA
Vert: 1-2=-51, 2	2-6=-51, 9-11=-20, 7-8=-20				Ø	SSIONAL ET	N'A
Vert: 13=-30(F=	<i>)</i> =-15, B=-15) 14=1(F=1, B=1)	15=-50(F=-25, B=-25)				Contract	~
						March 1,20	J21
WARNING - Verify desig	n parameters and READ NOTES ON	THIS AND INCLUDED MITEK REFERENCE PA	GE MII-7473 rev. 5/19/202	0 BEFORE L	JSE.		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-7473 rev. 5/19/2/02/ BEFORE USE. Design valid for use only with MITER connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Mitek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

BRACING-

TOP CHORD

BOT CHORD

Matrix-P

LUMBER-

TOP CHORD

BOT CHORD

BCLL

BCDL

WEBS 2x4 SP No.2 REACTIONS. 4=Mechanical, 5=0-3-8 (size)

0.0

10.0

2x4 SP No.2

2x4 SP No.2

Max Horz 5=71(LC 8) Max Uplift 4=-42(LC 11), 5=-91(LC 7)

Max Grav 4=209(LC 16), 5=345(LC 16)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-5=-283/81

Code IRC2018/TPI2014

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 18 lb down and 33 lb up at 2-1-6, and 18 lb down and 33 lb up at 2-1-6 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-51, 2-3=-51, 4-5=-20 Concentrated Loads (lb) Vert: 6=-29(F=-14, B=-14)

Weight: 26 lb

Structural wood sheathing directly applied or 4-10-4 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

FT = 3%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

MiTek

Job	Truss	Truss Type		Qty	Ply	SUMMIT HOMES	14 400 7000				
W2-63	CJ6	Diagonal Hip Girder		2	1		144987092				
Mid America Truss.	Jefferson City, MO - 65101.			Job Reference (optional) 8.430 s Feb 12 2021 MiTek Industries. Inc. Fri Feb 26 15:34:58 2021 Page 1							
· · · · · · · · ,	1014	274	ID:Fpza	a38BVdcF	/JDKwxgH	N8dztCCb-DSCqdIEwcyXnQYByOi	81m2CP6gv2vFIDi?EELxzhDlx				
	1-2-14	3-7-4				3-7-4	-				
						2x4	Scale = 1:20.0				
						4					
I							1				
			3.54 12	S	pecial Special	~ ~ ~	-				
			3	x4 📁	10		-				
		Special	3								
		Special		FA							
3-0-1		9		K							
	2	1024 == 8									
		4									
4		the second secon					r.				
ç		•									
l				-		k	8				
		11 Special	6	_	12 Special	5					
		2x4 Special	380	_	Special	3x4 =					
		3-7-4				7-2-9					
		3-7-4				3-7-4					
Plate Offsets (X,Y)	[6:0-3-8,0-1-8]										
TCLL (roof) 20	.0 SPACING-	2-0-0 CSI.	0.21	DEFL.	in -0.01	(loc) I/defl L/d	PLATES GRIP MT20 244/190				
Snow (Pf/Pg) 15.4/20. TCDL 10	0 Lumber DOL	1.15 BC	0.16	Vert(CT)	-0.01	5-6 >999 240	W120 244/130				
BCLL 0	.0 Rep Stress Ir Code IRC20	cr NO WB I8/TPI2014 Matr	0.11 ix-P	Horz(CT) 0.00	5 n/a n/a	Weight: 40 lb FT = 3%				
BCDL 10	.0		BRACIN								
TOP CHORD 2x4 SF	No.2		TOP CH	IORD	Structur	al wood sheathing directly applied	d or 6-0-0 oc purlins,				
BOT CHORD 2x4 SP	No.2				except e	end verticals.	bracing				
	110.2				rtigiu co		bracing.				
REACTIONS. (size Max H	e) 7=0-5-5, 5=Mechanical orz 7=94(LC 8)										
Max U	plift 7=-70(LC 7), 5=-31(LC 1	1)									
Max G	1av 7=385(LC 16), 5=322(LC	16)									
FORCES. (lb) - Max.	Comp./Max. Ten All forces	250 (lb) or less except when sl	nown.								
BOT CHORD 5-6=-	62/383										
WEBS 2-6=-	9/391, 3-5=-427/58										
NOTES-											
 Wind: ASCE 7-16; V MWFRS (envelope) 	'ult=115mph (3-second gust)	Vasd=91mph; TCDL=6.0psf; B sed : end vertical left and right	CDL=6.0psf; h=25ft; exposed: Lumber D	; Cat. II; E OL=1.33	xp C; Enc plate grip	losed; DOL=1.33					
2) TCLL: ASCE 7-16; F	Pr=20.0 psf (roof LL: Lum DO	_=1.15 Plate DOL=1.15); Pg=2	0.0 psf; Pf=15.4 psf	(Lum DO	L=1.15 PI	ate					
3) Unbalanced snow lo	ads have been considered fo	r this design.									
 This truss has been non-concurrent with 	designed for greater of min re	of live load of 12.0 psf or 2.00	times flat roof load of	of 15.4 ps	f on overh	angs					
5) Plates checked for a	plus or minus 3 degree rotat	on about its center.									
 Refer to girder(s) for Provide mechanical 	truss to truss connections.	s to bearing plate capable of w	ithstanding 100 lb u	nlift at inir	nt(s) 7 5		Janua				
8) This truss is designed	ed in accordance with the 201	8 International Residential Cod	e sections R502.11.	1 and R8	02.10.2 a	nd 🥖	E OF MISS				
referenced standard	ANSI/TPI 1.	provided sufficient to support or	oncentrated load(s)	49 lh dow	n and 13 I	hunat AN					
1-7-11, 49 lb down a	and 13 lb up at 1-7-11, and 6	b down and 41 lb up at 4-5-1	10, and 67 lb down a	and 39 lb	up at 4-5	10 on top	SEVIER				
chord, and 5 lb down at 4-5-10 on bottom	n and 6 lb up at 1-7-11, 5 lb (chord. The design/selection	lown and 6 lb up at 1-7-11, and of such connection device(s) is	d 17 lb down at 4-5 s the responsibility o	-10, and 1 f others.	5 lb dowr	and 4 lb up	×8				
10) In the LOAD CASE	(S) section, loads applied to	he face of the truss are noted a	as front (F) or back ((B).		850	Jer South				
LOAD CASE(S) Stan	dard					1	other and the second second				
1) Dead + Snow (balar	iced): Lumber Increase=1.15	Plate Increase=1.15				N ON	PE-2001018807				
Uniform Loads (plf) Vert: 1-2=-5	51, 2-4=-51, 5-7=-20					No	SSIONLY ENGINE				
Concentrated Loads	(lb) 8(E-23 B-26) 11-2(E-1 P	-1) 12-13(E-1 P- 0)				V.	WAL				
ven. 10=-4	$u_1 = 20, D = 20, 11 = 2(\Gamma = 1, D)$	-,, 12- 10(1- 1 , D=3)					March 1,2021				
WARNING - Verify	design parameters and READ NOTES	ON THIS AND INCLUDED MITEK REFE	RENCE PAGE MII-7473 r	ev. 5/19/202		ISE.					

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	SUMMIT HOMES	
						144987094
W2-63	H1	Hip Girder	1	2		
				_	Job Reference (optional)	
Mid America Truss,	Jefferson City, MO - 65101,			8.430 s Fe	b 12 2021 MiTek Industries, Inc. Fri Feb 26 15:35:02 2021	Page 2
		ID:Fr	za38BVdcF	/JDKwxqH	N8dztCCb-5DSLTfHRqB2Cv9UjdYDzwuNz?HBDr?0pddCSI	UjzhDlt

NOTES-

14) Use USP JUS26 (With 4-10d nails into Girder & 4-10d nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 7-3-0 from the left end to 11-3-0 to connect truss(es) to front face of bottom chord.

15) Use USP JUS24 (With 4-10d nails into Girder & 2-10d nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 13-3-0 from the left end to 19-3-0 to connect truss(es) to front face of bottom chord.

16) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-51, 3-4=-61, 4-6=-51, 1-6=-20

Concentrated Loads (lb)

Vert: 16=-114(F) 17=-220 18=-2205(F) 19=-969(F) 20=-746(F) 21=-913(F) 22=-755(F) 23=-694(F) 24=-615(F) 25=-586(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	SUMMIT HOMES	
					4	44987095
W2-63	H2	Hip Girder	1	2		
				~	Job Reference (optional)	
Mid America Truss, Je	fferson City, MO - 65101,			3.430 s Fe	b 12 2021 MiTek Industries, Inc. Fri Feb 26 15:35:33 2021 P	Page 2
		ID:Fpza3	38BVdcFy	JDKwxqHl	N8dztCCb-hBp3zGftNiyp7wMhyYGEhQ9M8nmrc?6NlxCb4Q	zhDlO

NOTES-

13) Fill all nail holes where hanger is in contact with lumber.

14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 584 lb down and 119 lb up at 5-5-4, and 584 lb down and 119 lb up at 9-6-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-51, 2-5=-51, 5-6=-61, 6-9=-51, 9-10=-51, 17-18=-20, 13-16=-20, 11-12=-20

Concentrated Loads (lb)

Vert: 15=-584(B) 14=-584(B) 19=-248(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

MiTek

Job	Truss	Truss Type	Qty	Ply	SUMMIT HOMES	
						144987096
W2-63	H3	Hip Girder	1	2		
				-	Job Reference (optional)	
Mid America Truss, Je	fferson City, MO - 65101,			8.430 s Fe	b 12 2021 MiTek Industries, Inc. Fri Feb 26 15:35:44 2021	Page 2

ID:Fpza38BVdcFyJDKwxgHN8dztCCb-sI_DH1onn5KFydio5Mzpdk6HwCd0h2G_H9NgzHzhDID

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-51, 2-3=-61, 3-5=-51, 1-4=-20 Concentrated Loads (lb)

Vert: 7=-506(F) 6=-506(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven toukling of individual truss wee and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- 6) Plates checked for a plus or minus 3 degree rotation about its center.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 9.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

- 6) Plates checked for a plus or minus 3 degree rotation about its center.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 9.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	SUMMIT HOMES	
						I44987100
W2-63	H7	Hip Girder	1	2		
				_	Job Reference (optional)	
Mid America Truss,	efferson City, MO - 65101,			8.430 s Fe	b 12 2021 MiTek Industries, Inc. Fri Feb 26 15:35:50 2021	Page 2

ID:Fpza38BVdcFyJDKwxgHN8dztCCb-hSLUX4sYMx5PgY9yRd4Dt?MBHdeS5l3tf5q_BxzhDl7

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (pf) Vert: 1-3=-51, 3-4=-61, 4-6=-51, 1-6=-20 Concentrated Loads (lb)

Vert: 9=-872(F) 8=-872(F) 14=-305(F) 15=-305(F) 16=-305(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

		7-0-0	7-0-0				7-0-0)	
Plate Offsets (X	(,Y) [3:0-2-8,0	0-2-7], [4:0-3-0,0-2-4], [8:0-3-0,0-3-0]							
LOADING (psf TCLL (roof) Snow (Pf/Pg) 2 TCDL BCLL BCDL) 20.0 20.4/20.0 10.0 0.0 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.35 BC 0.48 WB 0.73 Matrix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc -0.06 8- -0.12 8- 0.04) l/defl 9 >999 9 >999 7 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 115 lb	GRIP 244/190 FT = 3%
LUMBER- TOP CHORD BOT CHORD WEBS REACTIONS.	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 (size) 10=M Max Horz 10=2 Max Uplift 10=-4 Max Grav 10=9	Mechanical, 7=0-4-0 23(LC 27) 5(LC 11), 7=-5(LC 12) 089(LC 33), 7=989(LC 33)	B B	RACING- OP CHORD OT CHORD	Structural wo except end ve Rigid ceiling o	od sheathir articals. lirectly app	ng directly app lied or 10-0-0	blied or 4-8-4 oc purlins oc bracing.	,
FORCES. (lb) TOP CHORD BOT CHORD WEBS	- Max. Comp./M 1-2=-349/34, 2 6-7=-307/46 9-10=-15/1358 3-9=0/367, 4-8	lax. Ten All forces 250 (lb) or less exc 2-3=-1394/23, 3-4=-1080/42, 4-5=-1401/ 8, 8-9=0/1077, 7-8=0/1359 8=0/373, 2-10=-1266/0, 5-7=-1269/0	ept when shown. 25, 5-6=-348/35, 1-10=-3	308/46,					

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate

DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

Unbalanced snow loads have been considered for this design.

5) Provide adequate drainage to prevent water ponding.

6) Plates checked for a plus or minus 3 degree rotation about its center.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 7. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

6) Refer to girder(s) for truss to truss connections.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 10.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

L	6-1-15	12-4-6	20-7-0 2	0 ₁ 11-8 27-11-0) 28-6 _r 0	33-10-1	40-0-0	
	6-1-15	6-2-7	8-2-10	0-4-8 6-11-8	0-7-0	5-4-1	6-1-15	
Plate Offsets	s (X,Y) [4:0-3-0,0	-2-4], [7:0-4-0,0-1-13], [11:0-2-0,0-1-12], [15:0-0-0,0-2-0], [19	9:Edge,0-2-0]				
LOADING (TCLL (roof) Snow (Pf/Pg TCDL BCLL BCDL	(psf) 20.0 g) 20.4/20.0 10.0 0.0 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.95 BC 0.44 WB 0.67 Matrix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.03 20-22 -0.16 17-18 0.03 13	l/defl L/d >999 360 >999 240 n/a n/a	PLATES MT20 Weight: 253 lb	GRIP 244/190 FT = 3%
LUMBER- TOP CHORI BOT CHORI WEBS	D 2x4 SP No.2 D 2x4 SP No.2 2x4 SP No.2			BRACING- TOP CHORD BOT CHORD WEBS	Structural wood except end vertic Rigid ceiling dire 6-0-0 oc bracing 10-0-0 oc bracin 1 Row at midpt	sheathing directly a cals. ctly applied or 10-(: 19-20,14-15. g: 15-17 7-18	applied or 2-2-0 oc purlins)-0 oc bracing, Except:	,
REACTION	S. (size) 18=0	-3-8, 23=Mechanical, 13=0-4-0						

Max Horz 23=-47(LC 12) Max Uplift 18=-23(LC 8), 23=-26(LC 11), 13=-41(LC 12) Max Grav 18=1962(LC 33), 23=775(LC 34), 13=818(LC 34)

- 13-14=-41/849 WEBS 3-20=-724/86, 5-20=0/836, 5-18=-991/29, 7-18=-1257/0, 14-17=0/875, 9-17=-456/65,
- 2-23=-947/67, 10-13=-901/72, 7-17=-20/825

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

- 6) Provide adequate drainage to prevent water ponding.
- 7) Plates checked for a plus or minus 3 degree rotation about its center.
- 8) Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18, 23, 13.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-1060/61, 3-4=-512/56, 4-5=-397/71, 5-6=0/785, 6-7=0/775, 7-8=-564/92, 8-9=-608/61, 9-10=-977/62

 BOT CHORD
 22-23=-74/901, 20-22=-42/963, 6-18=-551/107, 17-18=0/374, 8-17=-320/86,

	6-1-15	14-4-6		20-7-	-0	20-11-8	27-11-0)	_	33-10-	2		40-0-0	
Plate Offsets (X,Y)	[5:0-3-0,0)-2-4], [7:0-3-0,0-2-4], [11:0-2	2-0,0-1-12]	18:Edge,0	-2-0]	0-4-0	0-11-0			5-11-1			0-1-15	
LOADING (psf) TCLL (roof) Snow (Pf/Pg) 20.4 TCDL BCLL BCDI	20.0 4/20.0 10.0 0.0 10.0	SPACING- 2 Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TPI20	0-0 .15 .15 ′ES 14	CSI. TC BC WB Matri	0.77 0.39 0.47 ix-SH		DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.13 0.02	(loc) 19-21 19-21 13	l/defl >999 >999 n/a	L/d 360 240 n/a		PLATES MT20 Weight: 256 lb	GRIP 244/190 FT = 3%
LUMBER- TOP CHORD 2x- BOT CHORD 2x- WEBS 2x- REACTIONS.	4 SP No.2 4 SP No.2 4 SP No.2 4 SP No.2 (size) 17=0 ax Horz 22=-5 ax Uplift 17=-5	-3-8, 22=Mechanical, 13=0 56(LC 14) 5(LC 8), 22=-29(LC 11), 13=	-0 47(LC 12)	I		BRAG TOP BOT WEB	CING- CHORD CHORD S	Structur except e Rigid ce 1 Row a	al wood end verti iling dire t midpt	sheathing cals. ectly appli	g directly ied or 6- 5-17,	y applie 0-0 oc 7-17	ed or 5-7-7 oc purlins bracing.	
FORCES. (lb) - N TOP CHORD 2 BOT CHORD 2 WEBS 37 1	Ax. Comp./M -3=-1007/52, -9=-480/81, 9 1-22=-92/894 -21=-315/79, '-17=-1156/30 0-13=-840/76	ax. Ten All forces 250 (lb) 3-4=-1014/100, 4-5=-276/74 -10=-910/76 , 19-21=-25/540, 6-17=-562/ 4-21=-18/607, 4-19=-665/10 , 7-16=-52/944, 14-16=-0/83	r3=722(L1 pr less exc , 5-6=0/872 107, 8-16= 2, 5-19=0/0 0, 9-16=-50	ept when sh 2, 6-7=0/873 -401/100, 1 550, 5-17=-1 60/64, 2-22=	nown. 3, 7-8=- 3-14=-4 1262/23 =-986/73	448/125, 18/791 3, 3,								
NOTES- 1) Unbalanced roo 2) Wind: ASCE 7-1 MWFRS (envelo 3) TCLL: ASCE 7- DOL=1.15); Is=' surcharge applie 4) Unbalanced sno 5) This truss has b non-concurrent 6) Provide adequa 7) Plates checked 8) Refer to girder(c 9) Provide mechar 10) This truss is de referenced sta	f live loads ha 16; Vult=115m ppe); cantileve 16; Pr=20.0 pi 1.0; Rough Ca dt o all expose w loads have een designed with other live te drainage to for a plus or n s) for truss to t ical connection signed in acconnection signed in acconnection hard ANSI/T	ve been considered for this ph (3-second gust) Vasd=91 er left and right exposed ; en- sf (roof LL: Lum DOL=1.15 F tt C; Partially Exp.; Ce=1.0; (sed surfaces with slopes less been considered for this de- for greater of min roof live lo loads. prevent water ponding. ninus 3 degree rotation abour russ connections. on (by others) of truss to bea ordance with the 2018 Intern Pl 1.	design. mph; TCD I vertical le late DCL= 2s=1.00; C than 0.500 ign. ad of 12.0 . its center ing plate c ational Re	L=6.0psf; B(ft and right (1.15); Pg=2(t=1.10, Lu={ 0/12 in acco psf or 2.00 f apable of wi sidential Co	CDL=6. expose 0.0 psf; 50-0-0; rdance times fla ithstanc de sect	0psf; h=2 d; Lumbe Pf=20.4 Min. flat r with IBC at roof loa ting 100 II ions R502	25ft; Cat. II; Ex r DOL=1.33 p psf (Lum DOL roof snow load 1608.3.4. ad of 15.4 psf b uplift at joint 2.11.1 and R8	p C; Enc late grip =1.15 Pl I governs on overh (s) 17, 2 02.10.2	closed; DOL=1. ate s. Rain angs 2, 13. and	33		Contraction of the	PE-200101880	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

the

March 1,2021

	10-0	-0	16-4-6	2	2.10	20-11-8	27-11-0			33-10-	2	40-0-0	
Plate Offsets ()	(,Y) [4:0-3-0,0	-0 0-2-4], [6:0-3-0,0-2-4]	, [10:0-2-0,0-1-12],	4 [17:Edge,0-	-2-0]	0-4-0	0-11-0			5-11-1		0-1-15	
LOADING (psf TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	20.0 20.4/20.0 10.0 0.0 10.0	SPACING- Plate Grip DO Lumber DOL Rep Stress In Code IRC201	2-0-0 L 1.15 1.15 cr YES 8/TPI2014	CSI. TC BC WB Matrit	0.54 0.58 0.70 x-SH		DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.26 1 0.02	(loc) 19 19-20 12	l/defl >999 >952 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 260 lb	GRIP 244/190 FT = 3%
LUMBER- TOP CHORD BOT CHORD WEBS REACTIONS.	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 (size) 16=0 Max Horz 20=- Max Uplift 20=- Max Grav 16=2)-3-8, 20=Mechanical 65(LC 14) 31(LC 11), 12=-50(Lư 2297(LC 34), 20=635	l, 12=0-4-0 C 12) (LC 34), 12=641(LC	\$ 50)		BRA TOF BOT WE	ACING- • CHORD • CHORD • CHORD 3S	Structural except er Rigid ceili 1 Row at	l wood nd verti ing dire midpt	sheathin cals. ectly appli	g directly ap ied or 6-0-0 4-16, 6-1	plied or 6-0-0 oc purlins, oc bracing. 6	,
FORCES. (Ib) TOP CHORD BOT CHORD WEBS) - Max. Comp./M 1-2=-352/12, 2 7-8=-407/89, 8 19-20=-103/80 12-13=-53/681 2-19=-472/137 6-16=-1138/57 9-12=-723/82	lax. Ten All forces : 2-3=-615/69, 3-4=-40, 3-9=-814/81, 1-20=-2 77, 18-19=-9/343, 5-1 7, 3-19=0/520, 3-18=- 7, 6-15=-79/1116, 13-	250 (lb) or less exc /287, 4-5=0/916, 5- /2/42 6=-367/67, 15-16=- 827/89, 4-18=-37/8 15=-2/739, 8-15=-5	ept when sh 6=0/918, 6-7 412/88, 7-1 07, 4-16=-1 48/59, 2-20	own. 7=-420, 5=-475 276/50 =-620/9	/152, 5/119, 0, 93,							
NOTES- 1) Unbalanced 2) Wind: ASCE MWFRS (en 3) TCLL: ASCE DOL=1.15); surcharge a	roof live loads ha 7-16; Vult=115m velope); cantileve 7-16; Pr=20.0 p Is=1.0; Rough Ca oplied to all expos	ave been considered nph (3-second gust) \ er left and right expos sf (roof LL: Lum DOL at C; Partially Exp.; C sed surfaces with slo	for this design. /asd=91mph; TCDI sed ; end vertical let =1.15 Plate DOL=1 e=1.0; Cs=1.00; Ct pes less than 0.500	.=6.0psf; BC t and right e .15); Pg=20 =1.10, Lu=5 /12 in accor	CDL=6. exposed 0.0 psf; 50-0-0; rdance	0psf; h= d; Lumb Pf=20.4 Min. flat with IBC	25ft; Cat. II; Ex er DOL=1.33 pl psf (Lum DOL roof snow load 1608.3.4.	p C; Enclo ate grip D =1.15 Pla governs.	osed;)OL=1. te Rain	33		OF MIS-	Ð

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

6) Provide adequate drainage to prevent water ponding.

7) Plates checked for a plus or minus 3 degree rotation about its center.

8) Refer to girder(s) for truss to truss connections.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 20, 12.

10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

......

F	10	0-0-0	18-4-6	;	20-7-0	27-11-	0	33-10)-2	40-0-0	
Plate Offsets ()	X,Y) [5:0-3-0,0	0-2-4], [7:0-3-0,0-2-4], [12	2:0-2-0,0-1-12],	[19:Edge,0-	-2-0]	+-0 0-11-4	>	5-11	-1	0-1-13	
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	f) 20.0 20.4/20.0 10.0 0.0 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matri	0.72 0.60 0.50 x-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (lc -0.04 -0.24 21-: 0.01	c) l/defl 8 >999 22 >999 14 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 266 lb	GRIP 244/190 FT = 3%
LUMBER- TOP CHORD BOT CHORD WEBS REACTIONS.	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 (size) 18=0 Max Horz 22=- Max Uplift 22=- Max Grav 18=2)-3-8, 22=Mechanical, 14 73(LC 14) 33(LC 11), 14=-52(LC 12 446(LC 34), 22=641(LC	=0-4-0) 49), 14=644(LC	: 50)	BF TC BC W	RACING- DP CHORD DT CHORD EBS	Structural w except end v Rigid ceiling 1 Row at mi	ood sheathir verticals. directly app dpt	ng directly ap lied or 6-0-0 4-20, 5- ⁻	pplied or 6-0-0 oc purlins) oc bracing. 18, 7-18	,
FORCES. (Ib TOP CHORD BOT CHORD WEBS	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 1-2=-354/19, 2-4=-642/73, 4-5=0/510, 5-6=0/793, 6-7=0/795, 7-8=-448/181, 8-10=-412/97, 10-11=-776/84, 1-22=-275/45 BOT CHORD 21-22=-113/783, 20-21=-27/369, 17-18=-600/108, 8-17=-579/144, 14-15=-57/660 WEBS 2-21=-391/131, 4-21=0/481, 4-20=-950/108, 5-20=-38/915, 18-20=-317/179, 5-18=-1409/79, 7-18=-1202/106, 15-17=0/679, 10-17=-470/53, 2-22=-608/88, 11-14=-701/87, 7-17=-117/1313										
 NOTES- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15; Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 6) Provide adequate drainage to prevent water ponding. 7) Plates checked for a plus or minus 3 degree rotation about its center. 8) Refer to girder(s) for truss to truss connections. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 22, 14. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 											

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	SUMMIT HOMES
					I44987107
W2-63	H14	HIP GIRDER	1	3	
				J	Job Reference (optional)
Mid America Truss, Jet	fferson City, MO - 65101,			3.430 s Fe	b 12 2021 MiTek Industries, Inc. Fri Feb 26 15:35:17 2021 Page 2

ID:Fpza38BVdcFyJDKwxgHN8dztCCb-96s?coTr8ow4CT8c0B_U12VWZKF9sdL03SKIWLzhDle

NOTES-

9) All plates are MT20 plates unless otherwise indicated.

Plates checked for a plus or minus 3 degree rotation about its center.

- 11) Bearing at joint(s) 29, 16 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 29=364, 16=247.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 14) Use USP HJC26 (With 16-16d nails into Girder & 10d nails into Truss) or equivalent at 6-8-10 from the left end to connect truss(es) to back face of bottom chord, skewed 0.0 deg. to the left, sloping 0.0 deg. down.
- 15) Use USP JUS24 (With 4-10d nails into Girder & 2-10d nails into Truss) or equivalent spaced at 2-0-0 oc max. starting at 8-9-0 from the left end to 22-9-0 to connect truss(es) to back face of bottom chord.
- 16) Use USP THD26-2 (With 18-16d nails into Girder & 12-10d nails into Truss) or equivalent at 25-2-8 from the left end to connect truss(es) to back face of bottom chord, skewed 0.0 deg.to the right, sloping 0.0 deg. down.
- 17) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-2=-51, 2-4=-51, 4-12=-61, 12-14=-51, 14-15=-51, 28-29=-20, 23-28=-20, 20-22=-20, 17-19=-20, 16-17=-20 Concentrated Loads (lb)

Vert: 27=-783(B) 24=-283(B) 32=-283(B) 33=-283(B) 34=-283(B) 35=-271(B) 36=-271(B) 37=-271(B) 38=-283(B) 39=-1119(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	SUMMIT HOMES		
						I44987108	
W2-63	H15	Hip	1	1			
					Job Reference (optional)		
Mid America Truss,	Jefferson City, MO - 65101,			8.430 s Fe	b 12 2021 MiTek Industries, Inc. Fri Feb 26 15:35:20 2021	Page 2	
		ID:Fpza38BVdcFyJDKwxgHN8dztCCb-ZhX8EpVjRjJf3wsBhJXBfh7?yXGu3?bSmQZP7gzhDlb					

NOTES-

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:70.2

Mitek* 16023 Swingley Ridge Rd Chesterfield, MO 63017

FLAT TOP CHORD MUST BE BRACED WITH SHEATHING.

2-8-13	1	10-4-6	20-0)-0		25-5-0	27-6-5	29-11-3	3 33	-7-13	37-3-3	40-0-0	
2-8-13	1	7-7-9	9-7-	10	0.0.01.000	5-5-0	2-1-5	2-4-14	3	-8-10	3-7-6	2-8-13	
Plate Offsets (X,Y)-	- [5:0-4-0,0-	-2-2], [10:0-4-0,0-2-2], [13:0-3-8,0-1-12], [19:Edge,	0-2-0], [26	:0-3-8,0-2-0]							
LOADING (psf)		SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	F	PLATES	GRIP
I CLL (root)	20.0	Plate Grip DOL	1.15	TC	0.94	Vert(LL)	-0.46 2	22-23	>999	360	Ν	/T20	244/190
Show (Pt/Pg) 20.4/	/20.0	Lumber DOL	1.15	BC	0.96	Vert(CT)	-0.93 2	23-24	>510	240	N	/T20HS	187/143
RCU	10.0	Rep Stress Incr	YES	WB	0.78	Horz(CT) 0.55	15	n/a	n/a			
BCDI	10.0	Code IRC2018/T	PI2014	Matri	x-SH						V	Veight: 256 lb	FT = 3%
	10.0												
	SD No 2 *Ev	cont*					Structura	Jwood	choothir	a directly	applied av	cont and vartic	
1-5-	· 2x4 SP No.1	5-10: 2v6 SP No 1				BOT CHORD	Rigid coil	ling dire	orthy ann	lied or 10-	applied, ex	ing Except	ais.
BOT CHORD 2x4	LSP No 2 *Fx	cent*				BOT CHOILD	2-2-0 oc	hracino	· 23-24			ing, Except.	
23-2	25 16-18 22-2	23 [.] 2x4 SP No 1				WEBS	1 Row at	midnt	. 20 24.	6-24	9-20		
WEBS 2x4	SP No.2 *Ex	cept*					ai	mapt		0 _ 1, 0	20		
2-25	5,13-16: 2x4 \$	SP No.1											
REACTIONS. ((size) 26=0-	-4-0, 15=0-4-0											
Ma	ax Horz 26=33	3(LC 11)											
Ma	ax Uplift 26=-3	36(LC 7), 15=-33(LC 8)											
Ma	ax Grav 26=16	657(LC 2), 15=1649(LC	2)										
	lov Comp /Ma	av Tan All foress 250	(lb) or loop over	ont when oh	0.00								
	26- 1660/24	ax. Ten All lorces 250	(ID) OF IESS EXCE	21/06 = 56	10WN.								
10F CHORD 2-	-20=-1009/34, -74521/133	, 2-3=-3079/01, 3-4=-30 7-84005/140 8-04	44/120, 4-5=-30	224/90, 0-0=		65/106							
	1_124020/71	, /-04095/140, 0-94 1 12_135055/39 13_1	51654/45	-5211/100,	10-11=-33	00/100,							
BOT CHORD 25	5-26=-27/259	24-25=-26/3481 23-24	l=-94/4459 22-2	23=-76/444	0 10-18=-	5/1256							
17	7-18=-13/3715	5. 16-17=-16/4499. 15-1	6=-1/257	20-10/111	0, 10 10-	0/1200,							
WEBS 2-	-25=-30/4403,	4-25=-107/1623, 4-24=	-612/110, 5-24	=0/1118, 6-2	24=-1341/	115,							
7-	-22=-665/52, 2	20-22=-27/3198, 9-22=-	44/2285, 9-20=-	2669/53, 18	8-20=-26/3	3150,							
9-	-18=0/589, 11	-18=-836/49, 11-17=0/3	840, 12-17=-919	/35, 12-16=	0/576, 13-	16=-16/4374							
NOTES-													
1) Unbalanced roof	live loads hav	ve been considered for	this design.				0 5 1					man	
2) Wind: ASCE 7-16	6; Vult=115mp	ph (3-second gust) Vaso	d=91mpn; ICDL	_=6.0pst; B0	JDL=6.0ps	st; h=25ft; Cat. II; E	xpC;Encl	osed;	22		B	OF MISC	de la
	e; Br-20.0 pc	f (roof LL: Lum DOL =1	; end vertical lei	15) · Da-2	axposed; L	-20 4 pcf (Lum DOL		JOL=1.	33		ASE	-55	N.O.
DOI =1 15) le=1	0; Pough Cat	t C: Partially Evp : Co-1		_1 10 Lu_P	50_0_0 Mir	=20.4 psr (Luni DO	d governe	Rain		4	4.51	CONTRACT	Nes/
surcharge applie	d to all exposi-	ed surfaces with slopes	less than 0 500	/12 in acco	rdance wit	h IBC 1608 3 4	u governs.	. Italii		4	15/	SCOTT M.	15 M
4) Unbalanced snov	w loads have	been considered for this	s design.	, 12 III 0000		1120 1000.0.1.				g	. /	SEVIER	\ X
5) This truss has be	en desianed	for greater of min roof li	ve load of 12.0	osf or 2.00 t	times flat r	oof load of 15.4 pst	on overha	anas		- CH		L) ·1.	1×1
non-concurrent w	with other live	loads.						J =		N	LAD		IN NAME AS
6) Provide adequate	e drainage to	prevent water ponding.									Ser C	NUMBER	12 W
All plates are MT	20 plates unle	ess otherwise indicated.								N N	B DE	200101880	A BA
Plates checked fe	or a plus or m	ninus 3 degree rotation a	about its center.							y y	y solin	-200101880	158
Bearing at joint(s	s) 26, 15 consi	iders parallel to grain va	alue using ANSI	/TPI 1 angle	e to grain fo	ormula. Building de	esigner sho	ould ve	rify		NºC-		NB
capacity of bearing	ng surface.							_			1231	ONAL EN	A
10) Provide mechar	nical connecti	on (by others) of truss to	o bearing plate	capable of v	vithstandir	ng 100 lb uplift at jo	int(s) 26, 1	5.			and the	NAL	9
11) This truss is de	signed in acco	ordance with the 2018 li	nternational Res	sidential Co	de section	s R502.11.1 and R	802.10.2 a	ind				Manah	004
reterenced stan	ndard ANSI/TF	-11.										warch 1,2	2021
	erify design param	eters and READ NOTES ON T	HIS AND INCLUDED	MITEK REFE	RENCE PAGI	E MII-7473 rev. 5/19/2020	BEFORE US	SE.				8	
	,,												

ARKING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-7473 rev. 5/19/2/02/ BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2-8-13	11-1-9 2	0-0-0	25-5-0	30-10-4	3	3-9-8	37-3-3	40-0-0			
2-8-13	8-4-12 8	-10-7	5-5-0	5-5-4	' 2	-11-4 '	3-5-11	2-8-13			
Plate Offsets (X,Y) [5:0-3-0	<u>,0-2-4], [8:0-3-0,0-2-4], [12:0-3-8,0-1-12]</u>	, [17:Edge,0-2-0], [24:0-3-	-8,0-1-12]								
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.73 BC 0.91 WB 0.75 Matrix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.34 20-21 -0.71 21-22 0.46 14	l/defl >999 >673 n/a	L/d 360 240 n/a	PL MT MT	ATES 20 20HS eight: 247 lb	GRIP 244/190 187/143 FT = 3%		
LUMBER- TOP CHORD 2x4 SP 2400F 3 8-13: 2x4 SP N BOT CHORD 2x4 SP No.2 *E 21-23,15-16: 2 WEBS 2x4 SP No.2 *E 2-23,12-15: 2x4	2.0E *Except* o.2 ixcept* <4 SP No.1 ixcept* 4 SP No.1	BI TC BC	RACING- OP CHORD OT CHORD	Structural wood except end vert Rigid ceiling dire	sheathing icals. ectly applie	directly ap	plied or 2-2	2-0 oc purlins g.	.,		
REACTIONS. (size) 24= Max Horz 24= Max Uplift 24= Max Grav 24=	0-4-0, 14=0-4-0 42(LC 11) -21(LC 7), 14=-18(LC 8) 1731(LC 34), 14=1724(LC 34)										
FORCES. (lb) - Max. Comp.// TOP CHORD 2-24=-1764/1 6-7=-3527/11 11-12=-5192/	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-24=-1764/15, 2-3=-5251/0, 3-4=-5237/62, 4-5=-3293/66, 5-6=-3528/118, 6-7=-3527/118, 7-8=-3092/100, 8-9=-2728/92, 9-10=-3872/57, 10-11=-3975/29, 11-12=-5192/0, 12-14=-1734/28										
BOT CHORD 23-24=-40/27	6, 22-23=0/3355, 21-22=0/2836, 20-21=	0/3116, 7-20=-615/72,									
WEBS 2-23=0/4534, 7-21=-23/543 16-18=0/2442	4-23=-94/1733, 4-22=-726/121, 5-22=0 3, 18-20=0/2479, 8-20=-19/1325, 8-18=- 2, 9-16=-2/1710, 11-16=-1000/43, 11-15	/768, 5-21=-38/816, 6-21= 396/54, 9-18=-1137/67, =0/608, 12-15=0/4478	=-647/126,								
NOTES- 1) Unbalanced roof live loads h 2) Wind: ASCE 7-16; Vult=115r MWFRS (envelope); cantilev 3) TCLL: ASCE 7-16; Pr=20.0 ţ DOL=1.15); Is=1.0; Rough C surcharge applied to all expo 4) Unbalanced snow loads haw 5) This truss has been designe non-concurrent with other liv 6) Provide adequate drainage t 7) All plates are MT20 plates un 8) Plates checked for a plus or 9) Bearing at joint(s) 24, 14 cor capacity of bearing surface. 10) Provide mechanical conneed (11) This truss is designed in ador referenced standard ANSI/	ave been considered for this design. nph (3-second gust) Vasd=91mph; TCD er left and right exposed ; end vertical le osf (roof LL: Lum DOL=1.15 Plate DOL= iat C; Partially Exp.; Ce=1.0; Cs=1.00; C sed surfaces with slopes less than 0.50 e been considered for this design. d for greater of min roof live load of 12.0 e loads. o prevent water ponding. nless otherwise indicated. minus 3 degree rotation about its center isiders parallel to grain value using ANS ction (by others) of truss to bearing plate cordance with the 2018 International Re TPI 1.	L=6.0psf; BCDL=6.0psf; H ff and right exposed; Lun 1.15); Pg=20.0 psf; Pf=20 t=1.10, Lu=50-0-0; Min. fl 0/12 in accordance with If psf or 2.00 times flat roof I/TPI 1 angle to grain form capable of withstanding f sidential Code sections R	h=25ft; Cat. II; E) hber DOL=1.33 p 0.4 psf (Lum DOL lat roof snow load BC 1608.3.4. f load of 15.4 psf nula. Building de 100 lb uplift at joi (502.11.1 and R8	xp C; Enclosed; late grip DOL=1. =1.15 Plate d governs. Rain on overhangs esigner should ve nt(s) 24, 14. 302.10.2 and	33 rrify		PE-SSIC	OF MISS COTT M. SEVIER UMBER 200101880 DNAL EN March 1,2			
WARNING - Verify design para Design valid for use only with Mi a truss system. Before use, the b	imeters and READ NOTES ON THIS AND INCLUDE Tek® connectors. This design is based only upon p uilding designer must verify the applicability of des	D MITEK REFERENCE PAGE M arameters shown, and is for an i	II-7473 rev. 5/19/2020 individual building cor orporate this design ir	BEFORE USE. mponent, not nto the overall				a			

Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

1-9-12	2 3-7-8	11-1-9	2	0-0-0	27-11-0		33-10-1	1	40-0-0		
1-9-12	2 ' 1-9-12 '	7-6-1	8	-10-7	7-11-0	1	5-11-1	1	6-1-15		
Plate Offsets (X	,Y) [7:0-4-0,0)-1-13], [8:0-3-0,0-2-4],	[12:0-2-0,0-1-12	?], [21:Edge,0-2-0]							
LOADING (psf) TCLL (roof) Snow (Pf/Pg) 2 TCDL BCLL	20.0 20.4/20.0 10.0 0.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/	2-0-0 1.15 1.15 YES IPI2014	CSI. TC 0.84 BC 0.82 WB 0.69 Matrix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT	in (loc) -0.30 19 -0.61 17-18) 0.31 14	l/defl >999 : >777 : n/a	L/d 360 240 n/a	PLATES MT20 Weight: 247 lb	GRIP 244/190 FT = 3%	
BCDL	10.0										
LUMBER- TOP CHORD	2x4 SP No.2 *Ex 7-8: 2x4 SP 240	ccept* 0F 2.0E			BRACING- TOP CHORD	Structural wood except end vert	I sheathing d icals.	lirectly appli	ed or 1-10-8 oc purlin	IS,	
WEBS	2x4 SF N0.2 EX 18-20,17-18: 2x4 2x4 SP No.2	4 SP No.1			WEBS	1 Row at midpt	ectly applied	6-18, 9-18	ic bracing.		
REACTIONS.	REACTIONS. (size) 23=0-4-0, 14=0-4-0 Max Horz 23=-59(LC 14) Max Uplift 23=-18(LC 11), 14=-18(LC 12) Max Grav 23=1810(LC 34), 14=1810(LC 34)										
FORCES. (Ib) TOP CHORD	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2169/11, 3-4=-5123/56, 4-5=-3654/19, 6-7=-2408/53, 7-8=-2593/24, 8-9=-2490/54, 9-10=-3564/0, 10-11=-3188/17, 11-12=-273/8, 2-2-173/67, 12-14-273/26										
BOT CHORD	21-22=-21/300), 19-20=-18/3800, 18-1	9=0/2878, 17-18	3=0/3220, 9-17=0/520),						
WEBS	WEBS 3-22=-1850/40, 20-22=-35/1943, 3-20=-26/2807, 5-20=-67/1364, 5-19=-771/133, 6-19=0/853, 6-18=-959/94, 7-18=-0/855, 8-18=0/755, 9-18=-1148/77, 15-17=0/2829, 10-17=0/348, 10-15=-669/48, 11-15=0/652, 2-22=0/1979, 11-14=-2601/31										
NOTES- 1) Unbalanced r 2) Wind: ASCE MWFRS (env 3) TCLL: ASCE DOL=1.15); I: surcharge ap 4) Unbalanced s 5) This truss has non-concurre	roof live loads ha 7-16; Vult=115m relope); cantileve 7-16; Pr=20.0 p: s=1.0; Rough Ca plied to all expos snow loads have s been designed int with other live	ave been considered for rph (3-second gust) Vas er left and right exposed sf (roof LL: Lum DOL=1 at C; Partially Exp.; Ce= sed surfaces with slope: been considered for th for greater of min roof loads.	this design. d=91mph; TCDi ; end vertical le .15 Plate DOL= 1.0; Cs=1.00; Ci s less than 0.500 is design. live load of 12.0	L=6.0psf; BCDL=6.0j ft and right exposed; 1.15); Pg=20.0 psf; P t=1.10, Lu=50-0-0; M D/12 in accordance w psf or 2.00 times flat	osf; h=25ft; Cat. II; E Lumber DOL=1.33 f=20.4 psf (Lum DO in. flat roof snow loa ith IBC 1608.3.4. roof load of 15.4 ps	xp C; Enclosed; plate grip DOL=1 L=1.15 Plate Id governs. Rain f on overhangs	.33	S'A	TE OF MISS ME SCOTT M. SEVIER	HOURI +	

- 6) Provide adequate drainage to prevent water ponding.
- 7) Plates checked for a plus or minus 3 degree rotation about its center.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 23, 14.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

F	2-11-4 5-9-0	0 11-1-9	20-0-0	21-7-10	27-11-0	33-10-1	40	0-0-0			
Plate Offsets ((X,Y) [8:0-3-0,0	<u>2 5-4-9</u> 0-2-4], [9:0-3-0,0-2-4], [14:0-2-0,0-1-	12], [23:Edge,0-2-0]	1-7-10	6-3-6	5-11-1	6-	1-15			
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	sf) 20.0 20.4/20.0 10.0 0.0 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.93 BC 0.77 WB 0.71 Matrix-SH	DEF Vert(Vert(Horz	L. in (LL) -0.31 19 (CT) -0.61 20 (CT) 0.27	loc) l/defl L 9-20 >999 3i 9-21 >781 2i 16 n/a r	/d P 60 M 40 1/a V	LATES IT20 /eight: 251 lb	GRIP 244/190 FT = 3%		
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 *E: 20-22,19-20: 2x 2x4 SP No.2	xcept* 4 SP No.1		BRACING- TOP CHORD BOT CHORD WEBS	Structural v Rigid ceilin 1 Row at n	wood sheathing di Ig directly applied nidpt 7	rectly applied, exo or 10-0-0 oc bracio 7-20, 10-20	cept end vertic ng.	als.		
REACTIONS.	Reactions. (size) 25=0-4-0, 16=0-4-0 Max Horz 25=-68(LC 14) Max Uplift 25=-29(LC 11), 16=-29(LC 12) Max Grav 25=1850(LC 34), 16=1853(LC 34)										
FORCES. (III TOP CHORD	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2763/33, 3-4=-4710/70, 4-5=-4754/93, 5-7=-3863/52, 7-8=-2636/28, 8-9=-2538/32, 9-10=-2700/30, 10-12=-3805/33, 12-13=-3290/36, 13-14=-286/8, 2-25=-1785/43, 14-16=-274/21 14 16=-274/21 14										
BOT CHORD WEBS	21-22=-48/396 3-24=-1457/64 7-21=0/792, 7 12-17=-707/50	64, 20-21=0/3110, 19-20=0/3469, 10 4, 22-24=-71/2448, 3-22=-1/1900, 5- -20=-1030/117, 8-20=0/841, 9-20=0 0, 13-17=0/705, 2-24=-3/2401, 13-16	-19=0/484, 16-17=-23/2 22=-32/638, 5-21=-721/ 704, 17-19=0/2901, 12 =-2656/50, 10-20=-125	2398 /118, -19=0/432, 51/109							
NOTES- 1) Unbalanced 2) Wind: ASCI MWFRS (et 3) TCLL: ASCC DOL=1.15); surcharge a 4) Unbalanced 5) This truss h non-concur 6) Provide add 7) Plates ched	d roof live loads ha E 7-16; Vult=115m nvelope); cantileve E 7-16; Pr=20.0 p ; Is=1.0; Rough Ca applied to all expoo d snow loads have has been designed rent with other live equate drainage to ked for a plus or r	ave been considered for this design. nph (3-second gust) Vasd=91mph; T er left and right exposed ; end vertic: ssf (roof LL: Lum DOL=1.15 Plate DC at C; Partially Exp.; Ce=1.0; Cs=1.0; sed surfaces with slopes less than 0 e been considered for this design. d for greater of min roof live load of 1 e loads. o prevent water ponding. minus 3 degree rotation about its cer	CDL=6.0psf; BCDL=6.0 I left and right exposed IL=1.15); Pg=20.0 psf; I ; Ct=1.10, Lu=50-0-0; I 500/12 in accordance v 2.0 psf or 2.00 times fla ter.	Opsf; h=25ft; Cat. 1; Lumber DOL=1 Pf=20.4 psf (Lum Min. flat roof snow with IBC 1608.3.4 at roof load of 15.4	II; Exp C; Enclos .33 plate grip DC DOL=1.15 Plate / load governs. 1 4 psf on overhan	sed; DL=1.33 e Rain ıgs	STATE STATE	OF MISS SCOTT M. SEVIER	HOLINI *		

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25, 16.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	SUMMIT HOMES	
						I44987114
W2-63	H21	Hip Girder	1	2	lob Reference (optional)	
Mid America Truss, Je	efferson City, MO - 65101,			8.430 s Fe	b 12 2021 MiTek Industries, Inc. Fri Feb 26 15:35:39 2021	Page 2

ID:Fpza38BVdcFyJDKwxgHN8dztCCb-WLBKEJkeyYiyrrprlpNewhPL7Bu10nlF7tfvl3zhDll

NOTES-

14) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-4=-51, 4-5=-61, 5-8=-51, 2-7=-20 Concentrated Loads (lb)

Vert: 11=-872(B) 10=-872(B) 16=-305(B) 17=-305(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

L	6-9-5	13-6-11		20-4-0		4
			I	6-9-5		1
Plate Olisets (X, Y) [2:1	_dge,0-2-0j, [4:0-2-8,0-2-7], [5:0-3-0,0-2-4], [9:Edge,0-2-0J, [10:0-3-0,0-3-0]				
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. DEFL. TC 0.36 Vert(LL) BC 0.45 Vert(CT) WB 0.54 Horz(CT) Matrix-SH Horz(CT)	in (loc) l/d -0.06 10-11 >99 -0.11 10-11 >99 0.04 9 r	efl L/d 99 360 99 240 n/a n/a	PLATES MT20 Weight: 113 lb	GRIP 244/190 FT = 3%
LUMBER- TOP CHORD 2x4 SP No BOT CHORD 2x4 SP No WEBS 2x4 SP No Case (size) Max Horz	0.2 0.2 0.2 12=0-4-0, 9=0-4-0 12=-27(LC 14)	BRACING- TOP CHORD BOT CHORD	Structural wood sheat except end verticals. Rigid ceiling directly	athing directly app applied or 10-0-0	blied or 4-6-1 oc purlins oc bracing.	.,
Max Uplif Max Grav FORCES. (lb) - Max. Co TOP CHORD 2-3=-29 7-9=-347 BOT CHORD 11-12=-2	: 12=-17(LC 11), 9=-17(LC 12) 12=1059(LC 34), 9=1059(LC 34) mp./Max. Ten All forces 250 (lb) or less ex //27, 3-4=-1347/18, 4-5=-1041/50, 5-6=-1352 7/47 26/1316, 10-11=0/1039, 9-10=0/1317	cept when shown. //20, 6-7=-290/28, 2-12=-347/47,				
WEBS 4-11=0/3	304, 5-10=0/308, 3-12=-1285/13, 6-9=-1287/	11				
NOTES- 1) Unbalanced roof live loa 2) Wind: ASCE 7-16; Vult- MWFRS (envelope); ca 3) TCLL: ASCE 7-16; Pr=: DOL=1.15); Is=1.0; Roo surcharge applied to all	ads have been considered for this design. =115mph (3-second gust) Vasd=91mph; TCL ntilever left and right exposed ; end vertical l 20.0 psf (roof LL: Lum DOL=1.15 Plate DOL= 1gh Cat C; Partially Exp.; Ce=1.0; Cs=1.00; C exposed surfaces with slopes less than 0.50	DL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Eb eft and right exposed; Lumber DOL=1.33 p :1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL Ct=1.10, Lu=50-0-0; Min. flat roof snow load 0/12 in accordance with IBC 1608.3.4.	ap C; Enclosed; late grip DOL=1.33 ⊨1.15 Plate d governs. Rain			

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs

non-concurrent with other live loads.

6) Provide adequate drainage to prevent water ponding.

7) Plates checked for a plus or minus 3 degree rotation about its center.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 9.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

16023 Swingley Ridge Rd Chesterfield, MO 63017

	Job	Truss	Truss Type	Qty	Ply	SUMMIT HOMES	
							144987116
	W2-63	H23	Hip Girder	1	2		
l					-	Job Reference (optional)	
	Mid America Truss, Je	fferson City, MO - 65101,			8.430 s Fe	b 12 2021 MiTek Industries, Inc. Fri Feb 26 15:35:42 2021	Page 2
			ID:Fpza	38BVdcFy	JDKwxgH	N8dztCCb-wwsSsLmWFT4XiJYQzxxLYJ10 PvTD8ZipruZv	vOzhDIF

NOTES-

14) Fill all nail holes where hanger is in contact with lumber.

LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-4=-51, 4-5=-61, 5-8=-51, 2-7=-20 Concentrated Loads (lb)

Vert: 10=-497(B) 9=-497(B) 13=-200(B)

	I	2-3-8	3-1-12	1			
LOADING (psf) SF TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	PACING- 2-0-0 ate Grip DOL 1.15 Imber DOL 1.15 ep Stress Incr YES ode IRC2018/TPI2014	CSI. TC 0.30 BC 0.28 WB 0.06 Matrix-SH	DEFL. in (I Vert(LL) -0.03 Vert(CT) -0.05 Horz(CT) 0.03	loc) l/defl 10 >999 9 >999 8 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 3%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No 2 2x4 SP No.2 BOT CHORD WEBS

- 2x4 SP No.2
- REACTIONS. 11=0-4-0, 8=Mechanical (size) Max Horz 11=89(LC 8) Max Uplift 11=-12(LC 7), 8=-24(LC 8) Max Grav 11=298(LC 16), 8=268(LC 16)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 3-4=-373/25

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 8.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 5-5-4 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 DOLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.12 BC 0.11 WB 0.00	DEFL. Vert(LL) -0. Vert(CT) -0. Horz(CT) 0.	in (loc) 01 6 01 7 .00 5	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190
BCDL 0.0	Code IRC2018/TPI2014	Matrix-R					Weight: 15 lb	FT = 3%
· · · · · · · · · · · · · · · · · · ·								

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.2

BRACING-TOP CHORD

 TOP CHORD
 Structural wood sheathing directly applied or 3-4-15 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 8=0-4-0, 4=Mechanical, 5=Mechanical Max Horz 8=47(LC 8) Max Uplift 8=-8(LC 7), 4=-18(LC 11), 5=-5(LC 11) Max Grav 8=241(LC 16), 4=87(LC 16), 5=53(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 4, 5.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

REACTIONS. (size) 5=0-4-0, 3=Mechanical, 4=Mechanical Max Horz 5=30(LC 8)

Max Uplift 5=-18(LC 7), 3=-14(LC 11) Max Grav 5=154(LC 16), 3=21(LC 16), 4=11(LC 9)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

			4-11-4		
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.50 BC 0.18 WB 0.01	DEFL. in (loc) I/d Vert(LL) 0.00 5 ** Vert(CT) -0.03 4-5 >9 Horz(CT) -0.00 4 r	efl L/d *** 360 99 240 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code IRC2018/TPI2014	Matrix-P			Weight: 28 lb FT = 3%

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.2

BRACING-TOP CHORD

 Structural wood sheathing directly applied or 4-11-4 oc purlins, except end verticals.
 Bigid exiling directly applied or 10.0.0 oc bracing

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-4-0, 4=Mechanical Max Horz 5=92(LC 10) Max Uplift 5=-16(LC 7), 4=-18(LC 8) Max Grav 5=296(LC 16), 4=220(LC 16)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

16023 Swingley Ridge Rd Chesterfield, MO 63017

MiTek

Job	Truss	Truss Type	Qty	Ply	SUMMIT HOMES	
						144987121
W2-63	J5	Jack-Closed Girder	1	2		
				-	Job Reference (optional)	
Mid America Truss, J	efferson City, MO - 65101,			8.430 s Fe	b 12 2021 MiTek Industries, Inc. Fri Feb 26 15:36:03 2021	Page 2

ID:Fpza38BVdcFyJDKwxgHN8dztCCb-pydOGW0hJwjZkXfSirpGvIPVjtwrefWnecUA7gzhDkw

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-51, 4-5=-20 Concentrated Loads (lb)

Vert: 9=-546(B) 10=-540(B) 11=-549(B)

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2 BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 7=0-4-0, 5=Mechanical (size) Max Horz 7=106(LC 8) Max Uplift 7=-15(LC 11), 5=-26(LC 11) Max Grav 7=343(LC 16), 5=302(LC 16)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 2-7=-317/50, 2-3=-718/68

TOP CHORD

BOT CHORD 5-6--93/614

WEBS 2-6=-34/643, 3-5=-630/105

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

5) Plates checked for a plus or minus 3 degree rotation about its center.

6) Refer to girder(s) for truss to truss connections.

7) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 5. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOADING (pst TCLL (roof) Snow (Pf/Pg) TCDL	f) 20.0 15.4/20.0 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.39 BC 0.22 WB 0.14	DEFL. in Vert(LL) -0.01 Vert(CT) -0.03 Horz(CT) 0.01	(loc) 6 5-6 5	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190
BULL	0.0	Code IRC2018/TPI2014	Matrix-P					Weight: 38 lb	FT - 3%
BCDL	10.0		Matrix-1					Weight. 50 lb	11 = 378

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2 BRACING-TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 7=0-4-0, 5=Mechanical (size) Max Horz 7=112(LC 8) Max Uplift 7=-38(LC 7), 5=-23(LC 11) Max Grav 7=399(LC 16), 5=291(LC 16)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 2-7=-373/68, 2-3=-660/56

TOP CHORD

BOT CHORD 5-6=-88/551

WEBS 2-6=-13/578, 3-5=-565/91

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

- MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

5) Plates checked for a plus or minus 3 degree rotation about its center.

Refer to girder(s) for truss to truss connections.

7) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 5. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 1,2021

SSIONAL

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-7-15 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 7=0-4-0, 4=Mechanical, 5=Mechanical (size) Max Horz 7=59(LC 8) Max Uplift 7=-3(LC 7), 4=-40(LC 11) Max Grav 7=292(LC 16), 4=191(LC 16), 5=19(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-7=-266/41

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

5) Plates checked for a plus or minus 3 degree rotation about its center.

6) Refer to girder(s) for truss to truss connections.

7) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 4.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

REACTIONS. (size) 6=0-4-0, 3=Mechanical, 4=Mechanical

Max Horz 6=53(LC 8)

Max Uplift 3=-40(LC 11) Max Grav 6=213(LC 15), 3=194(LC 15), 4=19(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Plates checked for a plus or minus 3 degree rotation about its center.

5) Refer to girder(s) for truss to truss connections.

- 6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOADING (psf) SPACING TCLL (roof) 20.0 Plate Grip Snow (Pf/Pg) 15.4/20.0 Lumber DC TCDL 10.0 Rep Stress BCDL 10.0 Code IRC2	2-0-0 DOL 1.15 DL 1.15 Incr YES 2018/TPI2014	CSI. TC 0.12 BC 0.04 WB 0.00 Matrix-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 -0.00 -0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 3%
---	--	---	---	------------------------------	--------------------------	-------------------------------	--------------------------	---------------------------------	-----------------------------------

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2 BRACING-TOP CHORD

Structural wood sheathing directly applied or 2-7-15 oc purlins, except end verticals. BOT CHORD

Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. 5=0-4-0, 3=Mechanical, 4=Mechanical (size) Max Horz 5=43(LC 8)

Max Uplift 5=-14(LC 7), 3=-26(LC 11) Max Grav 5=218(LC 16), 3=71(LC 16), 4=23(LC 16)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

BRACING-

TOP CHORD

BOT CHORD

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

4=0-4-0, 2=Mechanical, 3=Mechanical

Max Grav 4=109(LC 15), 2=80(LC 15), 3=30(LC 15)

NOTES-

LUMBER-

WEBS

TOP CHORD

BOT CHORD

REACTIONS.

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Plates checked for a plus or minus 3 degree rotation about its center.

5) Refer to girder(s) for truss to truss connections.

2x4 SP No.2

2x4 SP No.2

2x4 SP No.2

(size) 4=0-4-0, 2=M Max Horz 4=35(LC 8) Max Uplift 2=-27(LC 11)

- 6) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 2-7-15 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

LOADING (psf) SPACING- 2-0-0 CSI. DEFL. in (loc) I/defl L/d PLATES GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.11 Vert(LL) 0.00 4-5 >999 360 MT20 244/190 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 BC 0.05 Vert(CT) -0.00 4-5 >999 240				2-10-15	
TCDL 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) -0.00 3 n/a Meight: 11 lb FT = 3% BCDL 10.0 10.0 10.0 10.0 Weight: 11 lb FT = 3%	LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.11 BC 0.05 WB 0.00 Matrix-R	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) 0.00 4-5 >999 360 MT20 244/19 Vert(CT) -0.00 4-5 >999 240 MT20 244/19 Horz(CT) -0.00 3 n/a n/a Weight: 11 lb FT =	0 = 3%

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.2

BRACING-TOP CHORD

 TOP CHORD
 Structural wood sheathing directly applied or 2-10-15 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-4-0, 3=Mechanical, 4=Mechanical Max Horz 5=43(LC 8)

Max Uplift 5=-10(LC 7), 3=-28(LC 11) Max Grav 5=216(LC 16), 3=84(LC 16), 4=29(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

loh	Truco		Otv	Dh	
1000	11035	Truss Type	Qty	FIY	SOMMIT HOMES
					144987130
W2-63	J12	JACK	4	1	
					Job Reference (optional)
Mid America Truss.	Jefferson City, MO 65101, Mitek				8.430 s Jan 20 2021 MiTek Industries, Inc. Mon Mar 1 08:00:12 2021 Page 1

Scale = 1:10.7

								-	
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.10 BC 0.03 WB 0.00 Matrix B	DEFL. Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 -0.00	(loc) 5 5 3	l/defl >999 >999 n/a	L/d 360 240 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2018/1P12014	Matrix-R						weight: 7 ib	FT = 3%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2		BF	Racing- DP Chord	Structural	l wood	sheathin cals.	g directly app	blied or 1-5-15 oc pu	rlins,

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

2x4 SP No.2 BOT CHORD WEBS 2x4 SP No.2

REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical

Max Horz 5=31(LC 8)

Max Uplift 5=-18(LC 7), 3=-14(LC 11)

Max Grav 5=156(LC 16), 3=24(LC 16), 4=12(LC 9)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Bearings are assumed to be: Joint 5 SYP No.2 crushing capacity of 565 psi.
- 7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 5 and 14 lb uplift at joint 3.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

			3-0-4	
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCU 0.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.14 BC 0.06 WB 0.00	DEFL. in (loc) l/defl L/d Vert(LL) 0.00 5 >999 360 Vert(CT) -0.00 4-5 >999 240 Horz(CT) -0.00 5 n/a n/a	PLATES GRIP MT20 244/190
BCDL 10.0	Code IRC2018/TPI2014	Matrix-R		Weight: 16 lb FT = 3%

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.2

BRACING-

 TOP CHORD
 Structural wood sheathing directly applied or 3-6-4 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-3-8, 4=Mechanical Max Horz 4=73(LC 8) Max Uplift 5=-20(LC 7), 4=-17(LC 8) Max Grav 5=242(LC 16), 4=141(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Plate Olisets (Λ, T) [4.Euge,	J-1-0]							
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.80 BC 0.35 WB 0.00	DEFL. Vert(LL) -/ Vert(CT) -/ Horz(CT)	in (loc) -0.03 4-5 -0.12 4-5 0.00 4	l/defl >999 3 >686 2 n/a	L/d PLA 360 MT2 240 n/a	ATES 20	GRIP 244/190
BCDL 10.0	Code IRC2018/TPI2014	Matrix-R				Wei	ight: 29 lb	FT = 3%
LUMBER- TOP CHORD 2x4 SP No.2		BRAC TOP	CHORD Str	ructural wood	sheathing d	irectly applied or 6-0-	-0 oc purlins	3,

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2

REACTIONS. (size) 5=0-4-0, 4=Mechanical

Max Horz 5=124(LC 10) Max Uplift 5=-15(LC 11), 4=-26(LC 11) Max Grav 5=349(LC 16), 4=325(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-302/65

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate

DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

5) Plates checked for a plus or minus 3 degree rotation about its center.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

	3-1-15									
			5-1-1	15			1			
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0 Plate Grip DOL 1. Lumber DOL 1. Rep Stress Incr YI Code IRC2018/TPI201	0-0 CSI. .15 TC .15 BC ES WB 14 Matrix	0.50 0.27 0.00 x-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.06 0.04	(loc) 4-5 4-5 3	l/defl >999 >994 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 3%

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.2

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 5-1-15 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-4-0, 3=Mechanical, 4=Mechanical Max Horz 5=63(LC 11) Max Uplift 5=-2(LC 11), 3=-48(LC 11)

Max Grav 5=298(LC 16), 3=172(LC 16), 4=63(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-262/44

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

BRACING-

TOP CHORD

BOT CHORD

Matrix-R

FORCES.	(lb) - Max. Comp./Max.	Ten All forces 250 (lb) of	or less except when shown.
---------	------------------------	----------------------------	----------------------------

NOTES-

BCLL

BCDL

WEBS

LUMBER-

TOP CHORD

BOT CHORD

REACTIONS.

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

- MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

5=0-4-0, 3=Mechanical, 4=Mechanical

Max Grav 5=228(LC 16), 3=94(LC 16), 4=32(LC 16)

Code IRC2018/TPI2014

3) Unbalanced snow loads have been considered for this design.

Max Uplift 5=-9(LC 7), 3=-30(LC 11)

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.

0.0

10.0

2x4 SP No.2

2x4 SP No.2

2x4 SP No.2

(size) Max Horz 5=45(LC 8)

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Weight: 12 lb

Structural wood sheathing directly applied or 3-1-15 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

FT = 3%

Scale = 1:14.2

2x4 ||

		<u>3-1-15</u> 3-1-15						
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.16 BC 0.09 WB 0.00 Matrix-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc -0.00 3 -0.01 3 0.01) l/defl 4 >999 4 >999 2 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 3%
LUMBER-		BRA	CING-					

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-1-15 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 4=Mechanical, 2=Mechanical, 3=Mechanical Max Horz 4=38(LC 8)

Max Uplift 2=-31(LC 11)

Max Grav 4=134(LC 15), 2=97(LC 15), 3=37(LC 15)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) Plates checked for a plus or minus 3 degree rotation about its center.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

REACTIONS. (size) 5=0-4-0, 3=Mechanical, 4=Mechanical Max Horz 5=28(LC 8) Max Uplift 5=-21(LC 7), 3=-21(LC 15), 4=-2(LC 8) Max Grav 5=148(LC 16), 3=7(LC 16), 4=9(LC 9)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

		5-1-15				7			
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.52 BC 0.29 WB 0.00 Matrix-R	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (-0.03 -0.06 0.04	(loc) 3-4 3-4 2	l/defl >999 >932 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 3%
			ACINIC						

UMBER-TOP CHORD

2x4 SP No 2 2x4 SP No.2 BOT CHORD WEBS 2x4 SP No.2

RACING TOP CHORD

Structural wood sheathing directly applied or 5-1-15 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 4=0-4-0, 2=Mechanical, 3=Mechanical (size)

Max Horz 4=56(LC 8)

Max Uplift 2=-48(LC 11)

Max Grav 4=240(LC 15), 2=175(LC 15), 3=65(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Plates checked for a plus or minus 3 degree rotation about its center.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOADING (psf) SPACING- 2-0-0 TCLL (roof) 20.0 Plate Grip DOL 1.15 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 TCDL 10.0 Rep Stress Incr YES BCDL 10.0 Code IRC2018/TPI2014	CSI. TC 0.39 BC 0.16 WB 0.00 Matrix-R	DEFL. in (I Vert(LL) -0.01 Vert(CT) -0.03 Horz(CT) 0.00	loc) l/defl 4-5 >999 4-5 >999 4 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 3%

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2WEBS2x4 SP No.2

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 5-2-4 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-4-0, 4=Mechanical Max Horz 5=96(LC 10) Max Uplift 5=-15(LC 7), 4=-19(LC 11) Max Grav 5=295(LC 16), 4=233(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-261/49

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

March 1,2021

March 1,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

SSIONAL March 1,2021

March 1,2021

L	6-1-15	12-8-8	20-0-0	27-11-0)	33-10-2	2	40-0-0	_
1	6-1-15	6-6-10	7-3-8	7-11-0	1	5-11-2		6-1-14	1
Plate Offsets ((X,Y) [2:0-2-0,0	<u>)-1-12], [12:0-2-0,0-1-12], [20:Ec</u>	lge,0-2-0]						
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	sf) 20.0 15.4/20.0 10.0 0.0 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.78 BC 0.98 WB 0.60 Matrix-SH	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.21 18-19 -0.50 17-18 0.21 14	l/defl >999 3 >951 2 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 246 lb	GRIP 244/190 FT = 3%
LUMBER- TOP CHORD BOT CHORD WEBS REACTIONS.	2x4 SP No.2 *Ex 5-7: 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 (size) 22=0 Max Horz 22=-7 Max Uplift 22=-3 Max Grav 22=1	ccept* 1, 7-9: 2x4 SP 2400F 2.0E -4-0, 14=0-4-0 75(LC 12) 36(LC 11), 14=-36(LC 12) 650(LC 2), 14=1650(LC 2)		BRACING- TOP CHORD BOT CHORD WEBS	Structural woo except end ver Rigid ceiling di 2-2-0 oc bracir 1 Row at midpi	d sheathing d ticals. rectly applied g: 18-19,17-1	lirectly applie or 10-0-0 oc 18. 6-18, 8-18	ed or 2-2-0 oc purlins, c bracing, Except:	
FORCES. (III TOP CHORD BOT CHORD	o) - Max. Comp./M 2-3=-254/12, 3 10-11=-2799/ 21-22=-107/20	ax. Ten All forces 250 (lb) or l- -4=-2810/51, 4-6=-3121/72, 6-7 49, 2-22=-271/34, 12-14=-264/3 84, 6-19=0/430, 18-19=-20/284	ess except when shown. =-2275/54, 7-8=-2283/63, 8-1) 7, 17-18=0/2936, 8-17=0/432	10=-3196/56, ,					

 14-15=-35/2090

 WEBS
 3-21=0/553, 4-21=-507/73, 19-21=-56/2450, 4-19=0/260, 6-18=-995/135, 7-18=0/1249, 8-18=-1061/134, 15-17=0/2454, 10-17=0/357, 10-15=-547/51, 11-15=0/529, 3-22=-2310/55, 11-14=-2320/65

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate

- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 3 degree rotation about its center.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 22, 14.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

hitek 16023 Swingley Ridge Rd Chesterfield, MO 63017

March 1,2021

___a

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-264/18, 3-4=-264/18, 2-8=-329/40, 4-6=-329/40

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate

DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

- 6) Plates checked for a plus or minus 3 degree rotation about its center.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) Plates checked for a plus or minus 3 degree rotation about its center.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 4.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

SIONAL

March 1,2021

5-6-4									
LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 PCUL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.40 BC 0.12 WB 0.03	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2018/TPI2014	Matrix-P						Weight: 30 lb	FT = 3%
LUMBER- BRACING-									

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No 2 2x4 SP No.2 BOT CHORD OTHERS

2x4 SP No.2 REACTIONS. (size)

1=9-8-4, 3=9-8-4, 4=9-8-4 Max Horz 1=-18(LC 12) Max Uplift 1=-17(LC 11), 3=-20(LC 12) Max Grav 1=190(LC 15), 3=190(LC 16), 4=333(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Max Uplift 1=-8(LC 11), 3=-10(LC 12)

Max Grav 1=90(LC 15), 3=90(LC 16), 4=170(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Snow (Pf/Pg) TCDL BCLL BCDL	20.0 15.4/20.0 10.0 0.0 10.0	Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	TC 0.19 BC 0.08 WB 0.05 Matrix-P	Vert(LL) Vert(CT) Horz(CT)	n/a n/a -0.00	- - 5	n/a n/a n/a	999 999 n/a	MT20 Weight: 41 lb	244/190 FT = 3%
LUMBER-			B	RACING-						
TOP CHORD	2x4 SP No.2		то	OP CHORD	Structural w	vood sh	eathin	g directly ap	plied or 6-0-0 oc purlins	i,
BOT CHORD	2x4 SP No.2				except end	vertica	ls.			
WEBS	2x4 SP No.2		B	DT CHORD	Rigid ceiling	g direct	ly appl	ied or 10-0-0	oc bracing.	
OTHERS	2x4 SP No.2									

REACTIONS. All bearings 10-0-0.

Max Horz 1=127(LC 10) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 5, 7, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=333(LC 2), 6=333(LC 15)

- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- 3-6=-266/72 WEBS

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Plates checked for a plus or minus 3 degree rotation about its center.

5) Gable requires continuous bottom chord bearing.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 7, 6.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

OF MISS P SCOTT M. SEVIER JII. PE-2001018807 C SSIONAL F March 1,2021

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33

- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) Plates checked for a plus or minus 3 degree rotation about its center.

5) Gable requires continuous bottom chord bearing.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOADING (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.18 BC 0.06 WB 0.03 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190 FT = 3%
BCDL 10.0	Code 11(C2010/1112014	Matrix-1						Weight. 22 lb	11 = 570
LUMBER-		BF	ACING-						

TOP CHORD

BOT CHORD

LUMBER-

2x4 SP No.2 TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS OTHERS 2x4 SP No.2

REACTIONS. (size) 1=6-0-0, 4=6-0-0, 5=6-0-0

Max Horz 1=72(LC 10) Max Uplift 4=-6(LC 8), 5=-32(LC 11)

Max Grav 1=128(LC 15), 4=39(LC 15), 5=329(LC 15)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 2-5=-261/72WEBS

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;

- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) Plates checked for a plus or minus 3 degree rotation about its center.

5) Gable requires continuous bottom chord bearing.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

OF MISS SCOTT M. SEVIER NUMBER PE-2001018807 0 SSIONAL March 1,2021

3x4 ⋍

ł LOADING (psf) SPACING-2-0-0 CSI. DEFL. l/defl L/d PLATES GRIP in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.21 Vert(LL) 999 244/190 n/a n/a MT20 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 BC 0.08 Vert(CT) 999 n/a n/a TCDL 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) -0.00 3 n/a n/a BCLL 0.0 Code IRC2018/TPI2014 Matrix-P Weight: 13 lb FT = 3% BCDL 10.0 LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 4-0-0 oc purlins, BOT CHORD 2x4 SP No.2

BOT CHORD

except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 1=4-0-0, 3=4-0-0 (size) Max Horz 1=44(LC 10) Max Uplift 1=-3(LC 11), 3=-10(LC 11) Max Grav 1=142(LC 15), 3=142(LC 15)

2x4 SP No.2

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

WEBS

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Plates checked for a plus or minus 3 degree rotation about its center.
- 5) Gable requires continuous bottom chord bearing.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.33 plate grip DOL=1.33 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 3 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

