

RE: 2694977 Summit/22 Woodside

Site Information:

Customer: Project Name: 2694977 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: N/A Roof Load: 55.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 115 mph Floor Load: N/A psf

MiTek USA, Inc.

314-434-1200

16023 Swingley Ridge Rd Chesterfield, MO 63017

This package includes 49 individual, dated Truss Design Drawings and 0 Additional Drawings.

No. 1 2 3 4 5 6 7 8 9 10 11 12 13	Seal# I45148930 I45148931 I45148932 I45148933 I45148934 I45148936 I45148937 I45148938 I45148939 I45148940 I45148941 I45148942	Truss Name A1 A2 A3 A4 A5 A6 A7 A8 A9 A9 A9 A10 A11 A12	Date 3/11/2021 3/11/2021 3/11/2021 3/11/2021 3/11/2021 3/11/2021 3/11/2021 3/11/2021 3/11/2021 3/11/2021 3/11/2021 3/11/2021	No. 21 22 23 24 25 26 27 28 29 30 31 32 33	Seal# I45148950 I45148951 I45148952 I45148953 I45148954 I45148955 I45148956 I45148957 I45148958 I45148959 I45148960 I45148961 I45148962	Truss Name B2 B3 CJ1 CJ2 D1 D2 E1 E2 E3 LG1 LG2 LG3 LG4	Date 3/11/2021 3/11/2021 3/11/2021 3/11/2021 3/11/2021 3/11/2021 3/11/2021 3/11/2021 3/11/2021 3/11/2021 3/11/2021
9	145148938	A9	3/11/2021	29	I45148958	E3	3/11/2021
10 11	l45148939 l45148940	A9A A10	3/11/2021 3/11/2021	30 31	l45148959 l45148960	LG1 LG2	3/11/2021 3/11/2021
12 13	I45148941	A11	3/11/2021	32 33	I45148961	LG3	3/11/2021
13 14 15	145148942 145148943	A12 A13	3/11/2021	34 35	I45148963 I45148964	M1 M2	3/11/2021
16 17	145148945 145148946	A15 A16	3/11/2021	36 37	I45148965 I45148966	M2 M3 M5	3/11/2021
18 19 20	I45148947 I45148948 I45148949	A17 A18 B1	3/11/2021 3/11/2021 3/11/2021	38 39 40	I45148967 I45148968 I45148969	M6 M7 M8	3/11/2021 3/11/2021 3/11/2021 3/11/2021
-				-			

The truss drawing(s) referenced above have been prepared by

MiTek USA, Inc under my direct supervision

based on the parameters provided by Builders FirstSource (Valley Center).

Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2021. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

March 11, 2021

RE: 2694977 - Summit/22 Woodside

Site Information:

Proje Lot/B Addre	ct Customer: lock: ess:	Project Name: 26	694977	Subdivision:
City,	County:			State:
No.	Seal#	Truss Name	Date	
41	145148970	V1	3/11/2021	
42	145148971	V2	3/11/2021	
43	145148972	V3	3/11/2021	

44 145148973 V4 3/11/2021 45 145148974 V5 3/11/2021 46 l45148975 V6 3/11/2021 47 l45148976 V7 3/11/2021 48 V8 3/11/2021 I45148977 49 l45148978 V9 3/11/2021 MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Job	Truss	Truss Type	Qty	Ply	Summit/22 Woodside	
2694977	A1	HIP GIRDER	1			l45148930
				2	Job Reference (optional)	
Builders FirstSource (Valley	Center) Valley Center K	S - 67147	8	430 s Eeb	12 2021 MiTek Industries Inc. Thu Mar 11 08:27:03 2021	Page 2

NOTES-

- ID:b0jcEzO0th2MAe1aMpWBnxzu4zI-_iULVAnvzPzkFQKjZCExrw9y2m7WMP5G882frczc2X6
- 8) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 288 lb uplift at joint 2, 686 lb uplift at joint 27, 660 lb uplift at joint 22 and 294 lb
- uplift at joint 15. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- (11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 200 lb down and 96 lb up at 6-0-0, 176 lb down and 96 lb up at 8-0-12, 176 lb down and 96 lb up at 10-0-12, 176 lb down and 96 lb up at 10-0-12, 176 lb down and 96 lb up at 30-0-12, 176 lb down and 96 lb up at 30-0-12, 176 lb down and 96 lb up at 32-0-12, and 176 lb down and 96 lb up at 32-0-12, and 176 lb down and 96 lb up at 32-0-12, and 176 lb down and 96 lb up at 32-0-12, and 176 lb down and 96 lb up at 32-0-12, and 176 lb down and 96 lb up at 32-0-12, and 176 lb down and 96 lb up at 32-0-12, and 176 lb down and 96 lb up at 32-0-12, and 176 lb down and 96 lb up at 34-0-12 on top chord, and 401 lb down and 159 lb up at 6-0-0, and 458 lb down and 150 lb up at 37-11-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (plf) Vert: 1-4=-90, 4-13=-90, 13-16=-90, 30-31=-20, 27-30=-20, 23-26=-20, 20-22=-20, 19-34=-20

Concentrated Loads (lb)

Vert: 4=-176(B) 8=-114(B) 27=-59(B) 6=-114(B) 12=-176(B) 29=-401(B) 25=-59(B) 7=-114(B) 13=-114(B) 18=-458(B) 37=-176(B) 38=-176(B) 39=-176(B) 40=-176(B) 41=-114(B) 42=-114(B) 42=-114(B) 44=-176(B) 45=-176(B) 46=-176(B) 46=-176(B) 47=-114(B) 52=-59(B) 53=-59(B) 54=-59(B) 55=-59(B) 59=-59(B) 54=-59(B) 54=-59(B) 55=-59(B) 54=-59(B) 55=-59(B) 55=-

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems. see **ANSUTPTI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Mitek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

	4-3-8 10-0-0 1	5-11-8 21-11-0	27-10-8	34-0-0	44-0-0			
	4-3-8 5-8-8 5	5-11-8 5-11-8	5-11-8	6-1-8	10-0-0			
Plate Offsets (X,Y)	[13:0-3-8,0-2-8], [15:0-3-0,0-2-4], [18:0-	4-4,Edge], [23:0-8-0,0-5-0]						
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.58 BC 0.64 WB 0.99 Matrix-AS	DEFL. in Vert(LL) -0.40 Vert(CT) -0.88 Horz(CT) 0.35	(loc) l/defl L/d 19 >999 240 18-19 >600 180 13 n/a n/a	PLATES GRIP MT20 197/144 MT20HS 148/108 Weight: 248 lb FT = 20%			
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x6 SF 2-23: 2 13-16: WEBS 2x4 SF SLIDER Right 2	PF No.2 PF 2100F 1.8E *Except* x8 SP 2400F 2.0E, 9-17,16-17: 2x4 SPF 2x4 SP 2400F 2.0E PF No.2 x4 SPF No.2 -t 3-0-0	⁻ No.2	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing c 2-0-0 oc purlins (2-6-2 max. Rigid ceiling directly applied	lirectly applied, except): 4-10. I.			
REACTIONS. (size) 2=0-3-8, 13=0-3-8 Max Horz 2=110(LC 12) Max Uplift 2=-316(LC 12), 13=-284(LC 13) Max Grav 2=2642(LC 1), 13=2499(LC 1)								
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-7477/813, 3-4=-5228/557, 4-5=-4633/538, 5-6=-5988/689, 6-7=-6521/740, 7-9=-6023/696, 9-10=-5994/697, 10-11=-4112/459, 11-13=-4295/508 ROT CHORD 2-3=-753/6749, 22-23=-729/6474, 20-22=-729/6474, 20-22=-721/6475, 18-19=-680/6429								
BOT CHORD 2-23 9-18 WEBS 3-23 10-11	BOT CHORD 2-23=-753/6749, 22-23=-729/6474, 20-22=-582/5457, 19-20=-711/6475, 18-19=-680/6429, 9-18=-421/118, 15-17=-31/383, 13-15=-370/3770 WEBS 3-23=-90/1296, 3-22=-1872/308, 4-22=-174/1804, 15-18=-279/3334, 10-18=-388/2813, 10-15=-411/142, 5-22=-1475/270, 5-20=-117/960, 6-20=-876/182, 7-18=-717/135							
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; \ MWFRS (envelope) Interior(1) 14-2-15 tr end vertical left and DOL=1.60 3) Provide adequate di 4) All plates are MT20 5) This truss has been 6) Bearing at joint(s) 2 capacity of bearing : 7) Provide mechanical joint 13. 8) This truss designer referenced standarce 9) This truss design re sheetrock be applie 10) Graphical purlin re 	e loads have been considered for this de (ult=115mph (3-second gust) Vasd=91m gable end zone and C-C Exterior(2E) -2 0 34-0-0, Exterior(2R) 34-0-0 to 38-2-15, right exposed;C-C for members and ford rainage to prevent water ponding. plates unless otherwise indicated. designed for a 10.0 psf bottom chord liv considers parallel to grain value using A surface. connection (by others) of truss to bearin ed in accordance with the 2018 Internation ANSI/TPI 1. quires that a minimum of 7/16" structural d directly to the bottom chord. presentation does not depict the size or	sign. ph; TCDL=6.0psf; BCDL=4 -6-0 to 0-6-0, Interior(1) 0-6 Interior(1) 38-2-15 to 44-10 ces & MWFRS for reactions e load nonconcurrent with a NSI/TPI 1 angle to grain for g plate capable of withstand onal Residential Code section wood sheathing be applied the orientation of the purlin	2psf; h=15ft; Cat. II; E -0 to 10-0-0, Exterior(2 -8 zone; cantilever left shown; Lumber DOL= uny other live loads. mula. Building design ding 316 lb uplift at joir ons R502.11.1 and R8 I directly to the top cho along the top and/or bu	xp C; Enclosed; 2R) 10-0-0 to 14-2-15, t and right exposed ; e1.60 plate grip er should verify at 2 and 284 lb uplift at 02.10.2 and ord and 1/2" gypsum ottom chord.	NUMBER PE-2001018807 March 11,2021			

4-3-	8 8-1-12 12-0-0	18-6-13	25-1-11	27-10-8	29-10-8 32-0-0	36-10-4	41-8-8	44-0-0
Plate Offsets (X Y)	5)-2-0 Edge] [23:0-8-0.0-5	-41	2-0-13	2-0-0 2-1-8	4-10-4	4-10-4	2-3-8
	[<u>]</u>]	2 0,Edgej, [20.0 0 0,0 0						
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.83 BC 0.91 WB 0.85 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.37 1 -0.82 1 0.42	(loc) l/defl 8-19 >999 8-19 >642 13 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 298 lb	GRIP 197/144 148/108 FT = 20%
LUMBER- TOP CHORD 2x6 SF 1-5: 2x BOT CHORD 2x4 SF 2-23: 2 13-14, WEBS 2x4 SF OTHERS 2x8 SF LBR SCAB 10-13 2	PF No.2 *Except* 4 SPF No.2, 10-13: 2x8 SP 2400F 2.0E PF No.2 *Except* x8 SP 2400F 2.0E, 20-23,12-17: 2x6 SI 17-20: 2x6 SPF No.2 PF No.2 2400F 2.0E 2x8 SP 2400F 2.0E one side	PF 2100F 1.8E	BRACING- TOP CHOR BOT CHOR JOINTS	D S 2 D F 1	Structural wood 2-0-0 oc purlins Rigid ceiling dire I Brace at Jt(s):	sheathing dired (2-10-15 max.) ectly applied. 16, 15	ctly applied, except : 5-10.	
REACTIONS. (size) 2=0-3-8, 13=0-3-8 Max Horz 2=64(LC 11) Max Uplift 2=-7(LC 9), 13=-4(LC 8) Max Grav 2=2492(LC 1), 13=2416(LC 1)								
FORCES. (ib) - Max. TOP CHORD 2-3=- 7-9=- BOT CHORD 2-23 16-1 WEBS 12-14 6-21= 9-16=	Comp./Max. Ten All forces 250 (lb) or 7139/625, 3-4=-5529/521, 4-5=-4659/44 5124/514, 9-10=-4233/446, 10-11=-476 =-521/6397, 22-23=-505/6202, 21-22=-3 8=-336/4835, 15-16=-432/5533, 12-15= 4=-38/486, 3-23=-48/985, 5-21=-153/184 =-1386/144, 6-19=-14/655, 7-19=-493/83 =-1173/121, 11-15=0/294, 4-21=-1045/1	less except when shown 69, 5-6=-4084/439, 6-7=-5 1/469, 11-12=-5980/539, 70/4909, 19-21=-329/480 -432/5533 61, 10-16=-129/1677, 11- 3, 7-18=-472/80, 9-18=-13 44, 4-22=-41/769, 3-22=-	5114/510, 12-13=-1140/126 6, 18-19=-373/53; 16=-1503/192, 3/622, 1385/145	32,				
NOTES- 1) Attached 13-8-4 sca at 3-8-15 from end at 4-4-4. 2) Unbalanced roof live 3) Wind: ASCE 7-16; V MWFRS (envelope) 16-2-15 to 32-0-0, E left and right expose 4) Provide adequate di 5) All plates are MT20 6) This truss has been 7) Bearing at joint(s) 2, capacity of bearing s 8) Provide mechanical 13. 9) This truss is designe Correference of sign and	b 10 to 13, front face(s) 2x8 SP 2400F 2 tt joint 10, nail 2 row(s) at 7" o.c. for 2-10 e loads have been considered for this de fult=115mph (3-second gust) Vasd=91m and C-C Exterior(2E) -0-10-8 to 2-1-8, I xterior(2R) 32-0-0 to 36-2-15, Interior(1 di;C-C for members and forces & MWFF ainage to prevent water ponding, plates unless otherwise indicated. designed for a 10.0 psf bottom chord liv 13 considers parallel to grain value usi surface. connection (by others) of truss to bearir ed in accordance with the 2018 Internati ANSI/TPI 1.	2.0E with 2 row(s) of 10d ()-2; starting at 8-10-13 fro sign. ph; TCDL=6.0psf; BCDL= nterior(1) 2-1-8 to 12-0-0, 36-2-15 to 43-10-5 zone RS for reactions shown; Lu e load nonconcurrent with ng ANSI/TPI 1 angle to gr ng plate capable of withsta onal Residential Code sec	(0.131"x3") nails s m end at joint 10, =4.2psf; h=15ft; Ca Exterior(2R) 12-0 ; cantilever left and umber DOL=1.60 n any other live loa ain formula. Build anding 7 lb uplift at ctions R502.11.1 a	paced 9" nail 2 rov at. II; Exp -0 to 16-2 I right ex plate grip ds. ing desig joint 2 a nd R802	o.c.except : sta w(s) at 2" o.c. fo c; Enclosed; 2-15, Interior(1) posed ; end ver DOL=1.60 gner should verif and 4 lb uplift at .10.2 and	rting or tical	State of Score	MISSOLUTI MISSOLUTI MER 1018807
WARNING - Verify Design valid for use o a truss system. Before building design. Braci	design parameters and READ NOTES ON THIS AN nly with MiTek® connectors. This design is based a use, the building designer must verify the applica ng indicated is to prevent buckling of individual tru	D INCLUDED MITEK REFERENC only upon parameters shown, an pility of design parameters and p ss web and/or chord members or	E PAGE MII-7473 rev. 6 d is for an individual bu roperly incorporate this nly. Additional tempora	5/19/2020 B ilding comp design into ry and pern	EFORE USE. Donent, not the overall manent bracing			

billing design. Dialong indicates is to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Summit/22 Woodside	
						145148933
2694977	A4	HIP	1	1		
					Job Reference (optional)	
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	8.	430 s Feb	12 2021 MiTek Industries, Inc. Thu Mar 11 08:27:20 2021	Page 2
		ID:b0jo	EzO0th2N	1Ae1aMpV	VBnxzu4zl- z0n4??Zzd6Jo27 2H2w1VMpncpor?Im2Hq2w	7zc2Wr

NOTES-

10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Summit/22 Woodside	
						145148934
2694977	A5	Hip	1	1		
					Job Reference (optional)	
Builders FirstSource (Valley	Center), Valley Center, F	(S - 67147,	8.	430 s Feb	12 2021 MiTek Industries, Inc. Thu Mar 11 08:27:21 2021	Page 2
			zO0th2MA	e1aMpWB	nxzu4zI-SAa9HK?BkxEAQBiAc_Z9Zju?n0CJaQpwGxQcSZ	zc2Wq

NOTES-

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MILEX REFERENCE PAGE MIL-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

MiTek

Job	Truss	Truss Type	Qty	Ply	Summit/22 Woodside		
					I	45148935	
2694977	A6	Hip	1	1			
					Job Reference (optional)		
Builders FirstSource (Valley Center), Valley Center, KS - 67		S - 67147,	8.430 s Feb 12 2021 MiTek Industries, Inc. Thu Mar 11 08:27:23 2021 Page 2				
			jcEzO0th2	2MAe1aMp	oWBnxzu4zI-OYivi01SFYUufVsZkPbde8_I_pvt2RNDkFvjXSz	c2Wo	

NOTES-

10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

ł	4-3-8 11-1-12	18-0-0	26-0-0 27-1	0-8 29-10-8 35-9-8	41-8-8 44-0-0
Plate Offsets (X,Y)	[6:0-8-4.0-2-0], [8:0-4-10.Edge], [10:0-4-	-0.Edae]. [12:0-10-2.0-0-0	0]. [23:0-3-8.0-2-0]. [24:0		5-11-0 2-3-6
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.91 BC 0.70 WB 0.99 Matrix-AS	DEFL. ir Vert(LL) -0.30 Vert(CT) -0.68 Horz(CT) 0.39	n (loc) l/defl L/d 2 21 >999 240 3 20-21 >771 180 0 13 n/a n/a	PLATES GRIP MT20 197/144 MT20HS 148/108 Weight: 334 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF 8-10: 2 10-13: BOT CHORD 2x4 SF 2-24: 2 15-22: WEBS 2x4 SF OTHERS 2x8 SF LBR SCAB 10-13 2 REACTIONS. (sizt Max H	PF No.2 *Except* x6 SPF No.2, 1-4: 2x4 SPF 1650F 1.5E 2x8 SP 2400F 2.0E PF No.2 *Except* x8 SP 2400F 2.0E, 22-24,12-15: 2x6 SF 2x6 SPF No.2 PF No.2 2400F 2.0E 2x8 SP 2400F 2.0E 2x8 SP 2400F 2.0E both sides e) 2=0-3-8, 13=0-3-8 orz 2=154(LC 16)	PF 2100F 1.8E	BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing 2-0-0 oc purlins (2-11-13 m Rigid ceiling directly applied 1 Row at midpt	directly applied, except nax.): 6-8. d. 3-23, 5-21, 7-21, 7-20
FORCES. (lb) - Max. TOP CHORD 2-3=- 8-9=- BOT CHORD 2-24- 16-1 WEBS 3-24- 8-200 7-200	pint 2=-236(LC 12), 13=-217(LC 13) rav 2=2492(LC 1), 13=2416(LC 1) Comp./Max. Ten All forces 250 (lb) or 7327/727, 3-5=-4925/475, 5-6=-3698/42 3673/427, 9-11=-5738/595, 11-12=-548 =-752/6589, 23-24=-730/6372, 21-23=-3 9=-263/3846, 14-16=-259/3899, 12-14=- =-81/1149, 3-23=-2113/359, 5-23=-30/68 =-96/1170, 9-20=-1071/253, 9-14=-233/1 =-399/122	less except when shown 3, 6-7=-3167/414, 7-8=-3 3/480, 12-13=-1070/119 79/4305, 20-21=-160/326 358/5048 33, 5-21=-1376/287, 6-21 767, 11-14=-1072/237, 7	3182/407, 37, 19-20=-259/3899, =-81/1124, 21=-449/121,		
NOTES- 1) Attached 13-4-12 so starting at 8-10-4 fro 2) Unbalanced roof live 3) Wind: ASCE 7-16; V MWFRS (envelope) Interior(1) 22-00 to vertical left and right 4) Provide adequate dr 5) All plates are MT20 6) This truss has been 7) Bearing at joint(s) 2, capacity of bearing s 8) Provide mechanical joint 13. 9) This truss is designe Contriferent or based and	ab 10 to 13, both face(s) 2x8 SP 2400F m end at joint 10, nail 3 row(s) at 4" o.c. e loads have been considered for this de 'ult=115mph (3-second gust) Vasd=91m gable end zone and C-C Exterior(2E) -0 26-0-0, Exterior(2R) 26-0-0 to 30-2-15, I exposed;C-C for members and forces 8 ainage to prevent water ponding. plates unless otherwise indicated. designed for a 10.0 psf bottom chord liv. 13 considers parallel to grain value usir surface. connection (by others) of truss to bearin ed in accordance with the 2018 Internatio ANSI/TPI 1.	2.0E with 2 row(s) of 10d for 2-10-5. sign. ph; TCDL=6.0psf; BCDL: -10-8 to 2-1-8, Interior(1) nterior(1) 30-2-15 to 43-1 & MWFRS for reactions sl e load nonconcurrent with g ANSI/TPI 1 angle to gr g plate capable of withsta onal Residential Code sec	I (0.131"x3") nails space =4.2psf; h=15ft; Cat. II; E 2-1-8 to 18-0-0, Exterior 0-4 zone; cantilever left hown; Lumber DOL=1.6(h any other live loads. ain formula. Building de anding 238 lb uplift at joir ctions R502.11.1 and R8	d 9" o.c.except : Exp C; Enclosed; r(2R) 18-0-0 to 22-0-0, and right exposed ; end 0 plate grip DOL=1.60 signer should verify nt 2 and 217 lb uplift at i02.10.2 and	NUMBER PE-2001018807 March 11,2021
WARNING - Verify Design valid for use o a truss system. Before building design. Braci is always required for	design parameters and READ NOTES ON THIS AND hy with MITek® connectors. This design is based of use, the building designer must verify the application ing indicated is to prevent buckling of individual trus stability and to prevent buckling of individual trus	D INCLUDED MITEK REFERENCE only upon parameters shown, an ility of design parameters and p ss web and/or chord members o mail injury and property damage	E PAGE MII-7473 rev. 5/19/202 d is for an individual building co roperly incorporate this design nly. Additional temporary and p Eor general quidace repard	0 BEFORE USE. mponent, not into the overall sermanent bracing on the	MiTek

16023 Swingley Ridge Rd Chesterfield, MO 63017

a duss system. Jeolore use, including designer must vering the appricability of design parameters and property incorporate mit design in the overlain building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Job	Truss	Truss Type	Qty	Ply	Summit/22 Woodside	
					14	15148936
2694977	A7	Hip	1	1		
					Job Reference (optional)	
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	8.430 s Feb 12 2021 MiTek Industries, Inc. Thu Mar 11 08:27:25 20			age 2
		ID:b0jcE	zO0th2M	Ae1aMpW	Bnxzu4zl-Kxpg7i2in9kcup?xrqd5kZ3eFdbGWDKVBZOpbKzc2	2Wm

NOTES-

10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Summit/22 Woodside	
						145148937
2694977	A8	Hip	1	1		
					Job Reference (optional)	
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	8.	430 s Feb	12 2021 MiTek Industries, Inc. Thu Mar 11 08:27:26 2021	Page 2
		ID:b0jcEzO0	th2MAe1a	MpWBnxz	zu4zl-p7N2K23KYTsTWza7PX9KGmcvW1wQFkSfQD7N8i	mzc2WI

NOTES-

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MITEK[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

MiTek

NITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

						5
LUMBER-				BRACING-		
TOP CHORD	2x4 SPI	F No.2 *Except*		TOP CHORD	Structural wood sheathing dir	ectly applied, except
	1-5,10-1	14: 2x4 SPF 1650F 1.5E			2-0-0 oc purlins (3-4-11 max.): 7-8.
BOT CHORD	2x4 SPI	F No.2 *Except*		BOT CHORD	Rigid ceiling directly applied.	Except:
	2-21: 2>	(8 SP 2400F 2.0E, 19-21,13-16: 2x4 SP	2400F 2.0E		1 Row at midpt 6	-19
WEBS	2x4 SPI	F No.2		WEBS	1 Row at midpt 3	-20, 4-19, 7-17, 9-17
SLIDER	Right 2>	<4 SPF No.2 -t 3-0-0				

REACTIONS.	(size)	2=0-3-8, 13=0-3-8
	Max Horz	2=-164(LC 17)
	Max Uplift	2=-269(LC 12), 13=-270(LC 13)
	Max Grav	2=2490(LC 1), 13=2504(LC 1)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-3=-7209/823, 3-4=-4804/510, 4-6=-3594/421, 6-7=-3413/480, 7-8=-2602/396, 8-9=-3058/404, 9-11=-3968/444, 11-13=-4238/463

 BOT CHORD
 2-21=-848/6479, 20-21=-824/6270, 19-20=-452/4221, 6-19=-285/154, 15-17=-207/3240, 13-15=-318/3700

 WEBS
 3-21=-101/1161, 3-20=-2099/381, 4-20=-25/676, 4-19=-1392/285, 17-19=-131/2638, 7-19=-296/1617, 7-17=-602/140, 8-17=-84/800, 9-17=-933/260, 9-15=-53/537,

NOTES-

F

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 19-10-8, Exterior(2E) 19-10-8 to 24-1-8, Exterior(2R) 24-1-8 to 28-4-7, Interior(1) 28-4-7 to 44-10-8 zone; cantilever left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

11-15=-391/185

- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 269 lb uplift at joint 2 and 270 lb uplift at joint 13.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

1	4-3-8 11-1-0	17-10-8 18 ₁ 1-0 22-0	0-0 26-1-8	32-0-14	38-0-5	44-0-0
	4-3-8 6-9-8	6-9-8 0-2-8 3-11	-0 4-1-8	5-11-6	5-11-6	5-11-11
Plate Offsets (X,Y)	[6:0-8-4,0-2-0], [10:0-3-8,0-3-0], [13:Ed	ge,0-2-4], [16:0-3-0,0-2-12], [20:0-4-0,0-2-12]			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc) l/defl	L/d	PLATES GRIP
TCU 25.0	Plate Grip DOI 115	TC 0.91	Vert(LL) -0.3	33 24-26 >999	240	MT20 197/144
TCDI 20.0	Lumber DOL 115	BC 0.71	Vert(CT) -0.7	73 24-26 \717	180	MT20HS 148/108
BCU 0.0	Ren Stress Incr VES	WB 0.72	Horz(CT) 0.3	32420 2117 34 13 n/a	n/a	MT18HS 197/144
BCDI 10.0		Motrix AS	11012(01) 0.0	15 11/a	n/a	Woight: 224 lb ET = 209/
BCDL 10.0	CODE IRC2010/1712014	Watrix-AS				weight. 234 lb $FT = 20\%$
LUMBER-			BRACING-	<u> </u>		a e e e
TOP CHORD 2x4 SF	PF No.2 ^Except^		TOP CHORD	Structural wood	sheathing dire	ctly applied, except
1-5,10	-14: 2x4 SPF 1650F 1.5E			2-0-0 oc purlins	(3-0-5 max.): 6	ò-8.
BOT CHORD 2x4 SF	PF No.2 *Except*		BOT CHORD	Rigid ceiling dir	ectly applied.	
2-27: 2	2x8 SP 2400F 2.0E, 25-27,13-17: 2x4 SF	2400F 2.0E	WEBS	1 Row at midpt	3-2	26, 4-24, 7-24, 7-20
20-25:	2x4 SPF 1650F 1.5E		JOINTS	1 Brace at Jt(s)	: 21	
WEBS 2x4 SF	PF No.2					
SLIDER Right 2	2x4 SPF No.2 -t 3-0-0					
5						
REACTIONS. (siz	e) 2=0-3-8, 13=0-3-8					
Max H	$r_{10r_{7}} = -147(1 \text{ C} 12)$					
Max I	loi2 2 - 77(1 - 12)					
Max C	$2r_{2} = 272(10 + 12), 13 = 274(10 + 13)$					
Iviax C	SIAV 2=2490(LC 1), 15=2504(LC 1)					
FORCES (Ib) Max	Comp (Max Top All forces 250 (lb) or	loss avcont when shown				
	7202/221 2 4 4221/220 4 C 26C4/4	21 + 7 - 2127/410 + 7 - 20	007/440			
TOP CHORD 2-3=	-7203/821, 3-4=-4821/520, 4-6=-3664/4	21, 6-7=-3137/410, 7-8=-3	087/412,			
8-9=	-3557/422, 9-11=-3860/430, 11-13=-422	2/455				
BOT CHORD 2-27	=-829/6473, 26-27=-805/6265, 24-26=-4	45/4237, 23-24=-187/3216	6, 21-23=-199/2797,			
20-2	21=-199/2797, 19-22=0/419, 18-19=0/41	9, 16-18=0/477, 15-16=-31	17/3688,			
13-1	5=-317/3688					
WEBS 3-27:	-97/1156, 3-26-2080/369, 4-26-29/6	70, 8-20=-102/1105, 16-20	=-235/2952,			
11-10	6=-382/141, 6-24=-88/1107, 4-24=-1340	/281, 9-20=-475/192, 7-24	=-404/138,			
7-20:	=-497/135					
NOTES-						all the second s
1) Unbalanced roof live	e loads have been considered for this de	sian.				A FILL
2) Wind: ASCE 7-16: \	/ult=115mph (3-second gust) Vasd=91m	ph: TCDL=6.0psf: BCDL=	4.2psf: h=15ft: Cat. II:	Exp C: Enclosed:		B OF MISS
MWFRS (envelope)	able end zone and C-C Exterior(2E) -()-10-8 to 2-1-8 Interior(1)	2-1-8 to 17-10-8 Exte	rior(2R) 17-10-8 to		A Stores of M
22-0-0 Interior(1) 2	2_{-0-0} to 26_{-1-8} Exterior(2P) 26_{-1-8} to 30	-4-7 Interior(1) 30-4-7 to	11-10-8 zone: cantiles	er left and right ev	hesed	A A A A A A A A A A A A A A A A A A A
22-0-0, Interior(1) 2	d right expanded. C for members and fo	roop & MW/EDS for roootic	ha chown: Lumber DC	Ver left and right ex	poseu	BST SCOTT M. YAY
	u right exposed,C-C for members and to	ices & WWFRS IOI Teacuo	Ins shown, Lumber DC	JL=1.60 plate grip		SEVIER V
DOL=1.00	reine as to provent water pending					k★/ \★1
3) Provide adequate d	rainage to prevent water ponding.					
4) All plates are M120	plates unless otherwise indicated.					1 I AS Parts
5) This truss has been	designed for a 10.0 psf bottom chord liv	e load nonconcurrent with	any other live loads.			A SCONUMER MOU
Bearing at joint(s) 2	considers parallel to grain value using A	NSI/TPI 1 angle to grain fo	ormula. Building desig	gner should verify		NOT PE-2001018807
capacity of bearing	surface.					N ALL LOUIDING
Provide mechanical	connection (by others) of truss to bearing	g plate capable of withsta	nding 272 lb uplift at jo	pint 2 and 274 lb up	lift at	N.Co.
joint 13.						A STONEY EN
8) This truss is designed	ed in accordance with the 2018 Internation	onal Residential Code sec	tions R502.11.1 and R	802.10.2 and		WAL Y
referenced standard	ANSI/TPI 1.					Contra
9) This truss design re	quires that a minimum of 7/16" structura	I wood sheathing be applie	ed directly to the top cl	nord and 1/2" gyps	um	March 11.2021
Continentrock bacapolie	d directly to the bottom chord.					
and a second sec						
WARNING - Verify	design parameters and READ NOTES ON THIS ANI	DINCLUDED MITEK REFERENCE	E PAGE MII-7473 rev. 5/19/2	020 BEFORE USE.		
Design valid for use o	only with MiTek® connectors. This design is based	only upon parameters shown, and	is for an individual building	component, not		
a truss system. Before	e use, the building designer must verify the applical	pility of design parameters and pr	operly incorporate this desig	n into the overall		
building design. Brac	ing indicated is to prevent buckling of individual true	ss web and/or chord members on	ly. Additional temporary and	d permanent bracing		

is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Summit/22 Woodside	
						I45148942
2694977	A12	Hip	1	1		
					Job Reference (optional)	
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	8.	430 s Feb	12 2021 MiTek Industries, Inc. Thu Mar 11 08:27:07 2021	Page 2
		ID:b0j	EzO0th2N	Ae1aMp	WBnxzu4zI-sTksLYqP1dT9k2dUo2Jt?mJZvNQxI85s2m1s	Nzc2X2

NOTES-

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

16023 Swingley Ridge Rd Chesterfield, MO 63017

 	<u>6-2-3</u> <u>12-4-0</u> 6-2-3 <u>6-1-13</u>	<u>3-10-8 16-8-8 23</u>	3-5-0 30-	1-8 37-0-9	44-0-0	
Plate Offsets (X,Y)	[2:0-1-7,0-2-0], [11:0-4-0,0-1-15], [15:)-1-7,0-2-0], [19:0-3-0,0-0-	0], [20:0-3-0,0-3-4], [22:0	-5-0,0-3-4], [23:0-5-0,0-3-4]	, [25:0-3-8,Edge]	
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.95 BC 0.84 WB 0.95 Matrix-S	DEFL. in Vert(LL) -0.26 Vert(CT) -0.60 Horz(CT) 0.25	(loc) I/defl L/d 22-23 >999 240 22-23 >880 180 15 n/a n/a	PLATES MT20 Weight: 231 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SF 5-7,11 BOT CHORD 2x4 SF 2-24,1 WEBS 2x4 SF SLIDER Left 2x	PF 1650F 1.5E *Except* -12: 2x4 SP 2400F 2.0E PF No.2 *Except* 5-19: 2x4 SP 2400F 2.0E, 22-23: 2x4 PF No.2 4 SPF No.2 -t 3-4-5, Right 2x4 SPF N	SPF 1650F 1.5E 9.2 -t 3-9-8	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing 2-0-0 oc purlins (2-2-0 ma Rigid ceiling directly applie	directly applied, except x.): 7-11. ed or 10-0-0 oc bracing.	
REACTIONS. (siz Max H Max U Max G	e) 2=0-3-8, 15=0-3-8 lorz 2=115(LC 12) Jplift 2=-279(LC 12), 15=-279(LC 13) Grav 2=2496(LC 1), 15=2496(LC 1)					
FORCES. (lb) - Max. TOP CHORD 2-4=- 9-11: 9-11: BOT CHORD 2-25: 17-11: WEBS 4-25: 9-20: 7-23: 7-23: 17-23:	Comp./Max. Ten All forces 250 (lb) -4361/462, 4-6=-4455/500, 6-7=-4413, =-3739/440, 11-13=-3701/420, 13-15= =-436/3692, 6-23=-385/151, 22-23=-3 8=-317/3699, 15-17=-317/3699 =-500/128, 23-25=-425/3530, 4-23=-7 =-1058/224, 11-20=-169/956, 11-18=- =-218/1038, 7-22=-172/1092	or less except when shown 572, 7-8=-4082/474, 8-9=-4 4342/465 4/3648, 8-22=-541/147, 18 /399, 20-22=-258/3581, 9- 6/477, 13-18=-589/189, 13	n. 4066/474, 8-20=-175/3192, -22=-148/526, 3-17=0/263,			
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; \ MWFRS (envelope) 18-1-7, Interior(1) 14; ; end vertical left am DOL=1.60 3) Provide adequate d 4) This truss has been 5) Provide mechanical joint 15. 6) This truss is designer referenced standarc 7) Graphical purlin rep 	e loads have been considered for this /ult=115mph (3-second gust) Vasd=9' gable end zone and C-C Exterior(2E) 8-1-7 to 30-1-8, Exterior(2R) 30-1-8 to d right exposed;C-C for members and rainage to prevent water ponding. designed for a 10.0 psf bottom chord connection (by others) of truss to bea ed in accordance with the 2018 Interna i ANSI/TPI 1. resentation does not depict the size of	lesign. mph; TCDL=6.0psf; BCDL: -0-10-8 to 2-1-8, Interior(1) 34-4-7, Interior(1) 34-4-7 to forces & MWFRS for reacti ive load nonconcurrent with ing plate capable of withsta tional Residential Code set the orientation of the purlir	=4.2psf; h=15ft; Cat. II; E) 2-1-8 to 13-10-8, Exterior o 44-10-8 zone; cantileve ions shown; Lumber DOL h any other live loads. anding 279 lb uplift at joir ctions R502.11.1 and R8 h along the top and/or bot	xp C; Enclosed; or(2R) 13-10-8 to r left and right exposed =1.60 plate grip at 2 and 279 lb uplift at 02.10.2 and tom chord.	State of Several Sever	MISSOLP TM. TIER UNISSO THE THE THE THE THE THE THE THE THE THE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

5	-11-7 11-10-8 12-	-0 16-8-8	24-5-0	32-1-8	38-0-9 44-0	-0
	-11-7 5-11-1 0-5	8 4-4-8	7-8-8	7-8-8	5-11-1 5-11	-7
Plate Offsets (X,Y)	[2:0-1-7,0-2-0], [5:0-4-10,Edge], [9:)-4-10,Edge], [12:0-1-7,0-2-	<u>0], [17:0-6-0,0-2-12], [19:0</u>	-4-4,0-3-4], [23:0-3-8,	Edge], [24:0-5-4,0-2-4]	
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.71 BC 0.92 WB 0.91 Matrix-S	DEFL. in Vert(LL) -0.28 Vert(CT) -0.64 Horz(CT) 0.26 BRACING-	n (loc) I/defi L 6 >999 24 17-18 >818 18 12 n/a n/	/d PLATES 10 MT20 10 MT20HS 14 Weight: 238 lb	GRIP 197/144 148/108 FT = 20%
TOP CHORD 2x4 SF 5-7,7-4 5-7,7-4 BOT CHORD 2x4 SF 2-21,1 WEBS 2x4 SF 17-19: SLIDER Left 2x	⁹ 2400F 2.0E *Except* 9: 2x6 SPF No.2 ⁹ F No.2 *Except* 2-16: 2x4 SP 2400F 2.0E, 19-20: 2x ⁹ F No.2 *Except* 2x4 SPF 1650F 1.5E 4 SPF No.2 -t 3-2-12, Right 2x4 SP	4 SPF 1650F 1.5E ⁻ No.2 -t 3-2-12	TOP CHORD BOT CHORD	Structural wood shea except 2-0-0 oc purlins (2-10 Rigid ceiling directly 2-2-0 oc bracing: 15-	athing directly applied or 2-9-14 0-9 max.): 5-9. applied or 10-0-0 oc bracing, -17.	4 oc purlins, Except:
REACTIONS. (siz Max H Max L Max C	e) 2=0-3-8, 12=0-3-8 lorz 2=98(LC 12) plift 2=-277(LC 12), 12=-281(LC 13 rav 2=2505(LC 1), 12=2499(LC 1)					
FORCES. (lb) - Max. TOP CHORD 2-4= 9-10 BOT CHORD 2-23 14-1 4-23 9-17 4-20	Comp./Max. Ten All forces 250 (I -4396/461, 4-5=-4639/503, 5-6=-498 =-3880/442, 10-12=-4375/472 421/3724, 19-20=-357/4081, 6-19 =-333/3705, 12-14=-333/3705 =-542/131, 5-19=-233/1420, 17-19= =-229/1400, 9-15=-16/398, 10-15=-3 =-100/565	 or less except when show 8/529, 6-8=-4953/526, 8-9= -657/171, 17-18=-16/274, 7 378/4165, 8-19=-182/725, 8 44/146, 5-20=-58/648, 20-2 	/n. 4409/478, 15-17=-221/3413, 3-17=-1226/265, /3=-418/3689,			
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; MWFRS (envelope) 16-1-7, Interior(1) 11; ; end vertical left an DOL=1.60 3) Provide adequate d 4) All plates are MT20 5) This truss has been 6) Provide mechanical joint 12. 7) This truss is design referenced standard 8) Graphical purlin rep	e loads have been considered for th /ult=115mph (3-second gust) Vasd= gable end zone and C-C Exterior(2 6-1-7 to 32-1-8, Exterior(2R) 32-1-8 d right exposed;C-C for members at rainage to prevent water ponding. plates unless otherwise indicated. designed for a 10.0 psf bottom cho connection (by others) of truss to b ed in accordance with the 2018 Inte ANSI/TPI 1. resentation does not depict the size	s design. 91mph; TCDL=6.0psf; BCD 5) -0-10-8 to 2-1-8, Interior(o 36-4-7, Interior(1) 36-4-7 d forces & MWFRS for reac d live load nonconcurrent w aring plate capable of withs national Residential Code s or the orientation of the purl	L=4.2psf; h=15ft; Cat. II; E 1) 2-1-8 to 11-10-8, Exterio to 44-10-8 zone; cantileve stions shown; Lumber DOL ith any other live loads. standing 277 lb uplift at joir ections R502.11.1 and R8 lin along the top and/or bol	xp C; Enclosed; r(2R) 11-10-8 to r left and right exposed =1.60 plate grip ht 2 and 281 lb uplift at 02.10.2 and ttom chord.	d State OF State OF SCO SE SCO NUT PE-200 Mar	MISSOLUE VIER MBER 1018807

Mitek* 16023 Swingley Ridge Rd Chesterfield, MO 63017

Scale = 1:72.5

	9-10-8	+ <u>12-4-0</u> <u>16-8-8</u> 2-5-8 <u>4-4-8</u>	20-3-8	3 27	-2-8	34-1-8	40-0-	<u>)</u>
Plate Offsets (X,Y)	[2:0-3-8,Edge], [12:0-2-0,0-1-8	<u>2-3-0 + + 0</u> 3]	5-1-0	0-	1-0	0-11-0	5-10-1	5
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0 Plate Grip DOL 1. Lumber DOL 1. Rep Stress Incr YI Code IRC2018/TPI201	D-0 CSI. 15 TC 15 BC ES WB 4 Matri	0.71 0.61 0.54 x-AS	DEFL. Vert(LL) - Vert(CT) - Horz(CT)	in (loc)).14 22-25).30 22-25).02 17	l/defl L/d >999 240 >814 180 n/a n/a	PLATES MT20 Weight: 189 lb	GRIP 197/144 D FT = 20%
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF WEDGE Left: 2x4 SPF No.2	PF No.2 PF No.2 PF No.2			BRACING- TOP CHORD BOT CHORD	Structo 2-0-0 Rigid o	ural wood sheathing di oc purlins (6-0-0 max.): ceiling directly applied.	rectly applied, excep : 4-11.	t end verticals, and
REACTIONS. All be (lb) - Max H Max U Max G	earings 20-0-0 except (jt=lengtl lorz 2=125(LC 11) Jplift All uplift 100 lb or less at Srav All reactions 250 lb or les 17=2105(LC 1), 15=532(L	h) 2=0-3-8. : joint(s) 13, 15 except ss at joint(s) 13 excep .C 26)	2=-135(LC 12), t 2=987(LC 1), 1	, 14=-111(LC 13), 14=686(LC 26), 17	17=-311(LC /=2105(LC 1	: 12) 1),		
FORCES. (lb) - Max. TOP CHORD 2-3=: 9-10: 9-10: BOT CHORD 2-22: WEBS 3-22: 17-11: 11:	Comp./Max. Ten All forces 2 -1384/219, 3-4=-933/148, 4-5= =-47/264 =-212/1173, 5-20=-336/95, 6-1 =-490/169, 20-22=-39/788, 6-2 9=-777/204, 7-19=-171/1145, 9	250 (lb) or less except -713/149, 5-6=-727/1 9=-1067/221, 15-17=- 0=-172/1013, 11-14=- 9-17=-785/150, 10-15=	when shown. 52, 7-9=-114/77 323/118 390/103, 7-17=- 506/126	1, -1098/199,				
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; \ MWFRS (envelope) Interior(1) 14-1-7 to vertical left and righ 3) Provide adequate d 4) This truss has been 5) Provide mechanical (it=lb) 2=135, 14=11 6) This truss id esignre referenced standard 7) This truss design re sheetrock be applie 8) Graphical purlin rep	e loads have been considered i /ult=115mph (3-second gust) \/ gable end zone and C-C Exter 34-1-8, Exterior(2R) 34-1-8 to t exposed;C-C for members an rainage to prevent water pondii designed for a 10.0 psf bottom connection (by others) of truss 11, 17=311. ed in accordance with the 2018 J ANSI/TPI 1. quires that a minimum of 7/16" d directly to the bottom chord. resentation does not depict the	for this design. /asd=91mph; TCDL=6 rior(2E) -0-10-8 to 2-1 38-4-7, Interior(1) 38- id forces & MWFRS for ng. n chord live load nonce is to bearing plate capa B International Resider structural wood shea a size or the orientation	6.0psf; BCDL=4. -8, Interior(1) 2- 4-7 to 39-10-4 z or reactions show concurrent with a able of withstand ntial Code section thing be applied n of the purlin al	.2psf; h=15ft; Cat. 1-8 to 9-10-8, Ext cone; cantilever lef wn; Lumber DOL= any other live loads ding 100 lb uplift a ons R502.11.1 and I directly to the top long the top and/o	II; Exp C; E erior(2R) 9-7 t and right e 1.60 plate g s. t joint(s) 13, I R802.10.2 chord and r bottom cho	nclosed; 10-8 to 14-1-7, ixposed ; end irip DOL=1.60 15 except and 1/2" gypsum ord.	SINTE ON SINTE ON SI SI NU PE-20	S MISSOLA DTT M. EVIER MBER 01018807

March 11,2021

Scale = 1:73.8

⊢	8-0-0 12-4-0	16-8-8 20	0-1-12 20-3-8 28-	0-0	32-0-0	36-0-0 40-	0-0
Plate Offsets (X Y)	8-0-0 4-4-0 [2:0-3-8 Edge] [3:1-6-4 0-2-0] [8:0-4	4-4-8 0 Edge] [10:0-3-0 Edge] [3-5-4 0-1-12 7-4 [17:0-3-8 0-1-8]	3-8	4-0-0	4-0-0 4-1	0-0
	[2.0-3-0,Luge], [3.1-0-4,0-2-0], [0.0-4	, Lugej, [10.0-5-0, Lugej,]					
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.86 BC 0.60 WB 0.69 Matrix-AS	DEFL. i Vert(LL) -0.1 Vert(CT) -0.2 Horz(CT) 0.0	n (loc) l/defl 1 13-14 >999 3 13-14 >999 4 13 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 190 lb	GRIP 197/144 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SF 8-9,9-1 BOT CHORD 2x4 SF 16-18: WEBS 2x4 SF WEDGE Left: 2x4 SPF No.2	PF No.2 *Except* 10: 2x6 SPF No.2 PF No.2 *Except* 2x4 SP 2400F 2.0E PF No.2		BRACING- TOP CHORD BOT CHORD	Structural wood 2-0-0 oc purlins Rigid ceiling dir	I sheathing dir (4-5-15 max.) ectly applied.	ectly applied, except of 1: 3-8, 10-11.	end verticals, and
REACTIONS. (siz Max H Max U Max G	e) 2=0-3-8, 17=0-3-8, 13=Mechanic forz 2=127(LC 11) Jplift 2=-152(LC 12), 17=-332(LC 12), Grav 2=998(LC 25), 17=2603(LC 1), 1	al 13=-112(LC 13) 3=875(LC 1)					
FORCES. (lb) - Max. TOP CHORD 2-3= 10-11 2-22: BOT CHORD 2-22: 13-11 34: WEBS 20-22: 7-15: 11-11	Comp./Max. Ten All forces 250 (lb) -1260/202, 3-4=-969/217, 7-8=-748/19 1=-877/157 =-164/1002, 4-20=-20/339, 19-20=-16 4=-108/610 2=-158/983, 4-19=-1231/182, 17-19=- =-202/1800, 8-15=-937/217, 9-15=-10 4=-10/378, 11-13=-811/141	or less except when shown 7, 8-9=-909/200, 9-10=-10 0/998, 15-17=-847/132, 14 351/157, 7-19=-151/1014, 1/265, 9-14=-104/610, 10-1	n.)01/194, -15=-80/645, 7-17=-2172/353, 14=-718/148,				
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; \ MWFRS (envelope) Interior(1) 11-0-0 to to 39-10-4 zone; cat reactions shown; Lu 3) Provide adequate d 4) All plates are MT20 5) This truss has been 6) Refer to girder(s) fo 7) Provide mechanical 2=152, 17=332, 13= 8) This truss is designer referenced standarce 9) This truss design re sheetrock be applie 10) Graphical purin re 	e loads have been considered for this /ult=115mph (3-second gust) Vasd=9 gable end zone and C-C Exterior(2E) 30-0-0, Exterior(2E) 30-0-0 to 32-0-0, ntilever left and right exposed; end ve imber DOL=1.60 plate grip DOL=1.60 rainage to prevent water ponding, plates unless otherwise indicated. designed for a 10.0 psf bottom chord r truss to truss connections. connection (by others) of truss to bea =112. ed in accordance with the 2018 Intern I ANSI/TPI 1. quires that a minimum of 7/16" structu d directly to the bottom chord. presentation does not depict the size	design. mph; TCDL=6.0psf; BCDL -0-10-8 to 2-1-8, Interior(1 Interior(1) 32-0-0 to 36-0-0 rtical left and right exposed live load nonconcurrent wit ring plate capable of withst tional Residential Code se ral wood sheathing be app or the orientation of the pur	L=4.2psf; h=15ft; Cat. II;) 2-1-8 to 8-0-0, Exterior 0, Exterior(2R) 36-0-0 to d;C-C for members and f th any other live loads. tanding 100 lb uplift at jo actions R502.11.1 and R blied directly to the top ch rlin along the top and/or l	Exp C; Enclosed; (2R) 8-0-0 to 11-0 39-0-0, Interior(1) orces & MWFRS f int(s) except (jt=lb 802.10.2 and ord and 1/2" gyps pottom chord.	-0, 39-0-0 or) um	STATE OF STATE OF SCO SE NON PE-200 Marc	MISSOLUTI MISSOLUTI MBER 1018807

5x5 =

<u>3-0</u> 3-0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>	0-1-12 26 3-5-4 5-	-0-0	30-0-0	34-0-0	38-0-0	+40-0-0
Plate Offsets (X,Y)	[2:0-0-0,0-0-11], [7:0-3-8,0-1-8], [8:	-4-0,0-2-0], [10:0-3-6,Edge],	, [20:0-5-12,0-3-0],	21:Edge,0-3-8	3]			
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.88 BC 0.65 WB 0.50 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.15 15-17 -0.31 15-17 0.06 13	l/defl L/d >999 240 >775 180 n/a n/a		PLATES MT20 Weight: 186 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SP 3-6,6-8 BOT CHORD 2x4 SP 2-21: 2 WEBS 2x4 SP	PF No.2 *Except* 8: 2x4 SPF 1650F 1.5E 9F No.2 *Except* 1x6 SPF No.2, 16-18: 2x4 SP 2400F 9F No.2	2.0E	BRACING- TOP CHOR BOT CHOR WEBS	D Structu except D Rigid c 1 Row	iral wood sheati end verticals, a eiling directly ap at midpt	ning directly nd 2-0-0 oc oplied or 6-0 4-19,	/ applied or 3-3-2 (c purlins (3-3-10 m 0-0 oc bracing. 8-17	oc purlins, 1ax.): 3-8, 10-11.
REACTIONS. (size Max H Max U Max G	e) 2=0-3-8, 13=Mechanical, 17=0 lorz 2=126(LC 7) plift 2=-290(LC 8), 13=-79(LC 9), 1 rav 2=1466(LC 21), 13=747(LC 1),	3-8 =-493(LC 8) 17=3180(LC 1)						
FORCES. (ib) - Max. TOP CHORD 2-3=- 9-10 BOT CHORD 2-22= 14-12 WEBS 3-22= 10-14 11-14	Comp./Max. Ten All forces 250 (I -2422/498, 3-4=-2018/468, 4-5=-87/ =-674/41, 10-11=-858/79 =-456/2071, 21-22=-27/286, 4-20=- 5=-75/867, 13-14=-63/377 =0/442, 4-19=-2751/567, 8-15=-64/6 4=-315/45, 7-17=-1378/310, 17-19= 4=-18/639, 11-13=-712/106, 20-22=) or less except when shown 95, 5-7=-84/630, 7-8=-346/1 2/488, 19-20=-412/1973, 15- 12, 9-15=-37/268, 10-15=-50 1916/390, 7-19=-317/1600, 8 434/1788	n. 1949, 8-9=-684/58, i-17=-227/408, 09/114, 8-17=-2152/295,					
 NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; V MWFRS (envelope) grip DOL=1.60 3) Provide adequate dr 4) This truss has been 5) Refer to girder(s) for 6) Provide mechanical 2=290, 17=493. 7) This truss is designe referenced standard 8) Graphical purlin repr 9) "NAILED" indicates in 10) Hanger(s) or other 6-0-0 on bottom ch 11) In the LOAD CASE LOAD CASE(S) Standard 	a loads have been considered for th /ult=115mph (3-second gust) Vasd= gable end zone; cantilever left and rainage to prevent water ponding. designed for a 10.0 psf bottom choir truss to truss connections. connection (by others) of truss to b ed in accordance with the 2018 Inter I ANSI/TPI 1. resentation does not depict the size 3-10d (0.148"x3") or 3-12d (0.148"x connection device(s) shall be provi ford. The design/selection of such of E(S) section, loads applied to the fact dard	e design. 11mph; TCDL=6.0psf; BCDL: ght exposed ; end vertical le 1 live load nonconcurrent with aring plate capable of withstand national Residential Code server or the orientation of the purlin .25") toe-nails per NDS guid ed sufficient to support concou- princetion device(s) is the reserver of the truss are noted as from	L=4.2psf; h=15ft; Ca eft and right expose th any other live loa tanding 100 lb uplift ections R502.11.1 a in along the top and dlines. centrated load(s) 45 isponsibility of other ront (F) or back (B).	:. II; Exp C; Er d; Lumber DO ds. at joint(s) 13 e nd R802.10.2 for bottom cho 3 lb down and 3.	nclosed; L=1.60 plate except (jt=lb) and rd. 150 lb up at		SCO SE SCO SCO SE SCO SCO SE SCO SCO SE SCO SCO SE SCO SCO SCO SCO SE SCO SCO SCO SCO SCO SCO SCO SCO SCO SCO	MISSOLUTI TT M. VIER

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	Summit/22 Woodside	
						145148948
2694977	A18	Roof Special Girder	1	1		
					Job Reference (optional)	
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	8.	430 s Feb	12 2021 MiTek Industries, Inc. Thu Mar 11 08:27:15 2021 F	Page 2

ID:b0jcEzO0th2MAe1aMpWBnxzu4zI-d0Du1HxR85T1hGF0GjSIKSfyJbAmAqW1u?zHFvzc2Ww

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-90, 3-8=-90, 8-9=-90, 9-10=-90, 10-11=-90, 11-12=-90, 21-23=-20, 19-20=-20, 13-18=-20 Concentrated Loads (lb)

Vert: 3=-114(F) 22=-458(F) 26=-114(F) 27=-114(F) 28=-59(F) 29=-59(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

March 11,2021

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss system. See **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

- 4) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=130, 2=138.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
 - Vert: 1-5=-90, 5-6=-40, 9-11=-20, 7-9=-20 Concentrated Loads (lb)
 - Vert: 15=-4(F=-2, B=-2) 16=-15(F=-8, B=-8) 17=-76(F=-38, B=-38)

16023 Swingley Ridge Rd Chesterfield, MO 63017

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 1-11-8, Exterior(2N) 1-11-8 to 4-7-8, Corner(3R) 4-7-8 to 7-7-8, Exterior(2N) 7-7-8 to 10-1-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 1-4-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 8, 13, 14, 11, 10.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

2x4 SPF No.2

2x4 SPF No.2

Left: 2x4 SPF No.2 , Right: 2x4 SPF No.2

 TOP CHORD
 2-3=-637/220, 3-4=-637/220

 BOT CHORD
 2-6=-93/500, 4-6=-93/500

NOTES-

LUMBER-

WEBS

WEDGE

BOT CHORD

REACTIONS.

TOP CHORD 2x4 SPF No.2

1) Unbalanced roof live loads have been considered for this design.

(size) 2=0-3-8, 4=0-3-8 Max Horz 2=-44(LC 13)

Max Uplift 2=-69(LC 12), 4=-69(LC 13) Max Grav 2=587(LC 1), 4=587(LC 1)

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 4-7-8, Exterior(2R) 4-7-8 to 7-7-8, Interior(1) 7-7-8 to 10-1-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 Milek[®]

16023 Swingley Ridge Rd Chesterfield, MO 63017

L	8-0-0	1	12-0-0	1		20-0-0	
	8-0-0		4-0-0	1		8-0-0	1
Plate Offsets (X,Y)	[2:0-3-8,Edge], [4:0-4-0,0-1-15], [5:0-3-8	,Edge]					
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.87 BC 0.73 WB 0.10 Matrix-S	DEFL. in Vert(LL) -0.12 Vert(CT) -0.30 Horz(CT) 0.04	(loc) l/defl 5-6 >999 5-6 >800 5 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 73 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SP 3-4: 2x BOT CHORD 2x4 SP WEBS 2x4 SP WEDGE Left: 2x4 SPF No.2 , Ri	2 2400F 2.0E *Except* 4 SPF No.2 F No.2 F No.2 ght: 2x4 SPF No.2		BRACING- TOP CHORD BOT CHORD	Structural wood 2-0-0 oc purlins Rigid ceiling dire	l sheathing dir (4-7-15 max. ectly applied c	ectly applied or 2-2-0): 3-4. or 10-0-0 oc bracing.	oc purlins, except
REACTIONS. (size Max H Max U Max G	e) 2=0-3-8, 5=0-3-8 orz 2=71(LC 12) plift 2=-134(LC 12), 5=-114(LC 13) rav 2=1178(LC 1), 5=1082(LC 1)						
FORCES. (lb) - Max. TOP CHORD 2-3=- BOT CHORD 2-8=- WEBS 3-8=0	Comp./Max. Ten All forces 250 (lb) or 1628/219, 3-4=-1286/248, 4-5=-1594/21 113/1287, 6-8=-115/1282, 5-6=-101/129)/262, 4-6=-1/262	less except when shown 6 1	ι.				
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; V MWFRS (envelope) Exterior(2R) 12-0-0 exposed;C-C for me 3) Provide adequate dr 4) This truss has been 5) Provide mechanical 2=134, 5=114. 6) This truss is designer referenced standard 7) Graphical purlin repr	e loads have been considered for this de fult=115mph (3-second gust) Vasd=91m gable end zone and C-C Exterior(2E) -0 to 16-2-15, Interior(1) 16-2-15 to 19-10-4 mbers and forces & MWFRS for reaction ainage to prevent water ponding. designed for a 10.0 psf bottom chord liv connection (by others) of truss to bearin and in accordance with the 2018 Internation ANSI/TPI 1. resentation does not depict the size or th	sign. ph; TCDL=6.0psf; BCDL: -10-8 to 2-1-8, Interior(1) 2 zone; cantilever left and ns shown; Lumber DOL= e load nonconcurrent with g plate capable of withsta onal Residential Code ser e orientation of the purlin	=4.2psf; h=15ft; Cat. II; Ex 2-1-8 to 8-0-0, Exterior(2 I right exposed ; end vertii 1.60 plate grip DOL=1.60 h any other live loads. anding 100 lb uplift at join ctions R502.11.1 and R80 h along the top and/or both	(p C; Enclosed; E) 8-0-0 to 12-0- cal left and right t(s) except (jt=lb) 02.10.2 and com chord.	-0,) –	STATE OF	MISSOLIR VIER

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

PE-2001018807

OFFSSIONAL ET

Job	Truss	Truss Type	Qty	Ply	Summit/22 Woodside	
						145148958
2694977	E3	HIP GIRDER	1	2		
				2	Job Reference (optional)	
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	8.	430 s Feb	12 2021 MiTek Industries, Inc. Thu Mar 11 08:27:41 2021	Page 2
		ID:b0jc	EzO0th2M	IAe1aMpW	/Bnxzu4zl-s0njUAFk04lLpGE0nBwsNxjQa42?GcFst2GfAPz	c2WW

NOTES-

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-5=-90, 5-6=-90, 6-9=-90, 22-25=-20, 28-31=-630(F=-610)

REACTIONS. All bearings 19-8-9.

(lb) - Max Horz 1=258(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 11 except 1=-112(LC 10), 17=-122(LC 12), 18=-127(LC 12), 19=-124(LC 12), 20=-122(LC 12), 15=-120(LC 13), 14=-128(LC 13), 13=-124(LC 13), 12=-122(LC 13) Max Grav All reactions 250 lb or less at joint(s) 11, 16, 18, 19, 20, 14, 13, 12 except 1=265(LC 12), 17=254(LC 19), 15=252(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 1-2=-369/232, 2-3=-256/190, 10-11=-333/231

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-3-15 to 3-3-15, Interior(1) 3-3-15 to 9-10-4, Exterior(2R) 9-10-4 to 12-10-4, Interior(1) 12-10-4 to 19-4-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 2x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11 except (jt=lb) 1=112, 17=122, 18=127, 19=124, 20=122, 15=120, 14=128, 13=124, 12=122.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

		3	31-8-9 31-8-9		
Plate Offsets (X,Y)	[5:0-2-10,Edge], [10:0-2-8,0-3-0], [15:0-2	-10,Edge], [27:0-2-8,0-3-0)]		
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.06 BC 0.03 WB 0.13 Matrix-S	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.01	(loc) l/defl L/d - n/a 999 - n/a 999 19 n/a n/a	PLATES GRIP MT20 197/144 Weight: 167 lb FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S OTHERS 2x4 S	PF No.2 PF No.2 PF No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing direc 2-0-0 oc purlins (6-0-0 max.): 5 Rigid ceiling directly applied or	- ctly applied or 6-0-0 oc purlins, except -15. 10-0-0 oc bracing.

REACTIONS. All bearings 31-8-9.

(lb) - Max Horz 1=-156(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 19, 27, 28, 29, 30, 31, 32, 26, 25, 24, 23 except 33=-136(LC 12), 34=-119(LC 12), 21=-138(LC 13), 20=-119(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 19, 27, 28, 29, 30, 31, 32, 34, 26, 25, 24, 23, 22, 20 except 33=253(LC 19), 21=255(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-3-15 to 3-3-15, Interior(1) 3-3-15 to 6-0-1, Exterior(2R) 6-0-1 to 10-3-0, Interior(1) 10-3-0 to 25-8-7, Exterior(2R) 25-8-7 to 29-10-4, Interior(1) 29-10-4 to 31-4-10 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 19, 27, 28, 29, 30, 31, 32, 26, 25, 24, 23 except (jt=lb) 33=136, 34=119, 21=138, 20=119.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

¹⁾ Unbalanced roof live loads have been considered for this design.

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-3-15 to 3-3-15, Interior(1) 3-3-15 to 3-10-10, Exterior(2R) 3-10-10 to 6-10-10, Interior(1) 6-10-10 to 7-5-5 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 3) Gable requires continuous bottom chord bearing.

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=140. 6=140.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

						-	10-13					
Plate Off	Plate Offsets (X,Y) [2:0-3-8,Edge]											
	G (nof)	SPACING	200	60		DEEL	in	(loc)	l/dofl	L/d		CDID
LUADIN	G (psi)	SFACING-	2-0-0	001.		DEFL.		(100)	i/ueii	L/u	FLATES	GRIF
TCLL	25.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	-0.00	7	>999	240	MT20	197/144
TCDL	20.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	-0.00	7	>999	180		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2018/TI	PI2014	Matri	x-MP						Weight: 7 lb	FT = 20%

3x8 Ш

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE

BRACING-TOP CHORD BOT CHORD

1-10-15 1-10-15

> Structural wood sheathing directly applied or 1-10-15 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

4

Left: 2x4 SPF No.2

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=49(LC 12) Max Uplift 3=-23(LC 12), 2=-22(LC 12), 4=-3(LC 12) Max Grav 3=60(LC 1), 2=201(LC 1), 4=35(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) Refer to girder(s) for truss to truss connections.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2, 4.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.

Plate Offs	sets (X,Y)	[2:0-3-8,Edge]										
LOADING TCLL	6 (psf) 25.0	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC	0.23	DEFL. Vert(LL)	in 0.02	(loc) 4-7	l/defl >999	L/d 240	PLATES MT20	GRIP 197/144
TCDL BCLL	20.0 0.0	Lumber DOL Rep Stress Incr	1.15 YES	BC WB	0.19 0.00	Vert(CT) Horz(CT)	-0.03 0.01	4-7 2	>999 n/a	180 n/a		
BCDL	10.0	Code IRC2018/TF	912014	Matri	k-MP	- (- /					Weight: 11 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEDGE Left: 2x4 SPF No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-10-15 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=84(LC 12) Max Uplift 3=-52(LC 12), 2=-27(LC 12), 4=-1(LC 12) Max Grav 3=143(LC 1), 2=299(LC 1), 4=76(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-10-3 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) Refer to girder(s) for truss to truss connections.

- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2, 4.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

BRACING-

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

 184	ъΓ	D
	BE	R -
		- A

 TOP CHORD
 2x4 SPF No.2

 BOT CHORD
 2x4 SPF No.2

 WEBS
 2x4 SPF No.2

 WEDGE
 2x4 SPF No.2

Left: 2x4 SPF No.2

REACTIONS. (size) 4=Mechanical, 2=0-3-8, 5=Mechanical Max Horz 2=123(LC 12) Max Uplift 4=-42(LC 12), 2=-34(LC 12), 5=-38(LC 12) Max Grav 4=163(LC 1), 2=411(LC 1), 5=158(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 5-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3) Refer to girder(s) for truss to truss connections.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2, 5.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOADING TCLL TCDL BCLL BCDL	(psf) 25.0 20.0 0.0 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matri	0.08 0.03 0.00 x-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 0.00 0.00	(loc) 1 1 4	l/defl n/r n/r n/a	L/d 120 120 n/a	PLATES MT20 Weight: 7 lb	GRIP 197/144 FT = 20%
LUMBER-	RD 2x4 S	PF No.2				BRACING- TOP CHOF	D	Structu	ral wood	sheathing di	rectly applied or 2-0-	0 oc purlins,
BOT CHOP WEBS	RD 2x4 S 2x4 S	PF No.2 PF No.2				BOT CHOP	D	except Rigid ce	end vertio eiling dire	ctly applied	or 10-0-0 oc bracing.	

WEDGE

Left: 2x4 SPF No.2

REACTIONS. (size) 4=2-0-0, 2=2-0-0 Max Horz 2=45(LC 9)

Plate Offsets (X,Y)-- [2:0-3-8,Edge]

Max Hol2 2=45(LC 9) Max Uplift 4=-21(LC 12), 2=-19(LC 12) Max Grav 4=96(LC 1), 2=153(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) zone; cantilever left and right exposed; end vertical left and right

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable End Details as applicable, or consult qualified building (Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 1-4-0 oc.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LUMBER-

 TOP CHORD
 2x4 SPF No.2

 BOT CHORD
 2x4 SPF No.2 *Except*

 2-6: 2x6 SPF No.2

 WEBS
 2x4 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied. Rigid ceiling directly applied.

REACTIONS. (size) 4=Mechanical, 2=0-3-8, 5=Mechanical Max Horz 2=123(LC 12) Max Uplift 4=-86(LC 12), 2=-34(LC 12) Max Grav 4=304(LC 1), 2=411(LC 1), 5=33(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 5-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) Refer to girder(s) for truss to truss connections.
- 4) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Plate Offsets (X,Y)-- [2:0-0-6,0-1-8]

LOADING	G (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL 1.15	TC 0.19	Vert(LL)	0.01	4-7	>999	240	MT20	197/144
TCDL	20.0	Lumber DOL 1.15	BC 0.13	Vert(CT)	-0.01	4-7	>999	180		
BCLL	0.0	Rep Stress Incr YES	WB 0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code IRC2018/TPI2014	Matrix-MP						Weight: 14 lb	FT = 20%

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x6 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-10-15 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical Max Horz 2=84(LC 12)

Max Uplift 3=-47(LC 12), 2=-27(LC 12), 4=-5(LC 12) Max Grav 3=128(LC 1), 2=299(LC 1), 4=89(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior(1) 2-1-8 to 3-10-3 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) Refer to girder(s) for truss to truss connections.

- 4) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2, 4.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

	(psf)	SPACING- Plate Grip DOI	2-0-0 1 15	CSI. TC	0.07	DEFL.	in -0.00	(loc) 7	l/defl	L/d 240	PLATES	GRIP 197/144
TCDL	20.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	-0.00	7	>999	180		101/111
BCLL BCDL	0.0 10.0	Rep Stress Incr Code IRC2018/TPI2	YES 2014	WB Matri	0.00 x-MP	Horz(CT)	0.00	3	n/a	n/a	Weight: 7 lb	FT = 20%

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x6 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 1-10-15 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical Max Horz 2=49(LC 12) Max Uplift 3=-21(LC 12), 2=-22(LC 12), 4=-4(LC 12) Max Grav 3=55(LC 1), 2=201(LC 1), 4=41(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) Refer to girder(s) for truss to truss connections.

- 4) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2, 4.
 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802. referenced standard ANSI/TPI 1.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

referenced standard ANSI/TPI 1.

2x4 💋

BOT CHORD

2x4 📚

Rigid ceiling directly applied or 10-0-0 oc bracing.

<u>אר</u> 0-0 2-0-0	3		4-0-0 3-11-8	
Plate Offsets (X,Y)	[2:0-3-0,Edge]			
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.04 BC 0.08 WB 0.00 Matrix-P	DEFL. in (loc) I/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 3 n/a n/a	PLATES GRIP MT20 197/144 Weight: 8 lb FT = 20%
LUMBER- TOP CHORD 2x4 SF	PF No.2		BRACING- TOP CHORD Structural wood sheathing di	rectly applied or 4-0-0 oc purlins.

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2

REACTIONS. (size) 1=3-11-0, 3=3-11-0 Max Horz 1=11(LC 16) Max Uplift 1=-15(LC 12), 3=-15(LC 13) Max Grav 1=151(LC 1), 3=151(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;

- MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right
- exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	20.0	Lumber DOL	1.15	BC	0.12	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2018/TP	12014	Matri	x-R						Weight: 12 lb	FT = 20%

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-8-8 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 4=3-8-8, 3=3-8-8 Max Horz 4=93(LC 9) Max Holit 4 15(C 12) 2 1

Max Uplift 4=-15(LC 12), 3=-41(LC 12) Max Grav 4=188(LC 1), 3=188(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior(1) 3-1-12 to 3-6-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 3.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

TCLL 25.0 TCDL 20.0 BCLL 0.0	Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.24 BC 0.10 WB 0.00	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
BCDL 10.0	Code IRC2018/TPI2014	Matrix-P	1012(01) 0.00	Ū	n/a	n/a	Weight: 10 lb	FT = 20%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No 2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

REACTIONS. 1=3-11-8, 3=3-11-8 (size) Max Horz 1=60(LC 11)

Max Uplift 1=-19(LC 12), 3=-34(LC 12)

Max Grav 1=177(LC 1), 3=177(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

OF MISS F SCOTT M. SEVIER NUMBER PE-2001018807 O SSIONAL F March 11,2021

Structural wood sheathing directly applied or 4-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.23 BC 0.10 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 3 n/a n/a	PLATES GRIP MT20 197/144 Weight: 10 lb FT = 20%
LUMBER-		1	BRACING-	

TOP CHORD

BOT CHORD

LUMBER-

2x4 SPF No 2 TOP CHORD BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

REACTIONS. 1=3-10-12, 3=3-10-12 (size) Max Horz 1=59(LC 9)

Max Uplift 1=-18(LC 12), 3=-33(LC 12)

Max Grav 1=174(LC 1), 3=174(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

OF MISS SCOTT M. SEVIER NUMB PE-2001018807 C SSIONAL F March 11,2021

Structural wood sheathing directly applied or 3-11-4 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4. 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

referenced standard ANSI/TPI 1.

2x4 💋

2x4 📚

Rigid ceiling directly applied or 10-0-0 oc bracing.

0- <u>0-</u> 8 0-0-8			<u>5-0-0</u> 4-11-8	
Plate Offsets (X,Y)	[2:0-3-0,Edge]			
LOADING (psf) TCLL 25.0 TCDL 20.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.07 BC 0.15 WB 0.00 Matrix-P	DEFL. in (loc) I/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 3 n/a n/a	PLATES GRIP MT20 197/144 Weight: 10 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP	F No.2		BRACING- TOP CHORD Structural wood sheathing dire	ectly applied or 5-0-0 oc purlins.

BOT CHORD

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2

REACTIONS. (size) 1=4-11-0, 3=4-11-0 Max Horz 1=15(LC 16) Max Uplift 1=-21(LC 12), 3=-21(LC 13) Max Grav 1=206(LC 1), 3=206(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;

- MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right
- exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

