March 03, 2021

CONSTRUCTION **AS NOTED ON PLANS REVIEW DEVELOPMENT SERVICES** LEE'S SUMMIT, MISSOURI

RELEASE FOR

03/10/2021

MiTek USA, Inc. 16023 Swinglev Ridge Rd Chesterfield, MO 63017 314-434-1200

RE: 210310 Lot 72 RR

Site Information:

Customer: Project Name: 210310 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: N/A Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.4 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 45 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	145026353	B1	3/3/2021	21	I45026373	E2	3/3/2021
2	145026354	B2	3/3/2021	22	145026374	E3	3/3/2021
3	145026355	B3A	3/3/2021	23	145026375	G1	3/3/2021
4	145026356	B4A	3/3/2021	24	145026376	G2	3/3/2021
5	145026357	B6A	3/3/2021	25	I45026377	G3	3/3/2021
6	145026358	C1A	3/3/2021	26	l45026378	J5	3/3/2021
7	I45026359	C2A	3/3/2021	27	l45026379	J6	3/3/2021
8	145026360	C3A	3/3/2021	28	l45026380	J7	3/3/2021
9	I45026361	C4A	3/3/2021	29	l45026381	J8	3/3/2021
10	I45026362	C5A	3/3/2021	30	l45026382	J9	3/3/2021
11	I45026363	C6	3/3/2021	31	l45026383	J10	3/3/2021
12	I45026364	C7	3/3/2021	32	l45026384	V1	3/3/2021
13	I45026365	C8	3/3/2021	33	l45026385	V2	3/3/2021
14	145026366	C9	3/3/2021	34	l45026386	V3	3/3/2021
15	145026367	C10	3/3/2021	35	l45026387	V4	3/3/2021
16	I45026368	C11	3/3/2021	36	l45026388	V5	3/3/2021
17	I45026369	D1	3/3/2021	37	l45026389	V6	3/3/2021
18	l45026370	D2	3/3/2021	38	I45026390	V7	3/3/2021
19	I45026371	D3	3/3/2021	39	l45026391	V8	3/3/2021
20	145026372	E1	3/3/2021	40	145026392	V9	3/3/2021

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Kansas is April 30, 2022.

Kansas COA: E-943

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Garcia, Juan

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEVELOPMENT SERVICES LEE'S SUMMIT, MISSOURI

03/10/2021

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

RE: 210310 - Lot 72 RR

Site Information:

Proje Lot/B Addr	ect Customer: Block: ess:	Project Name: 21	0310	Subdivision:
City,	County:			State:
No.	Seal#	Truss Name	Date	
41	145026393	V10	3/3/2021	
40	145000004	1/44	2/2/2024	

INO.	Seal#	Truss Name	Date
41	145026393	V10	3/3/2021
42	145026394	V11	3/3/2021
43	145026395	V12	3/3/2021
44	145026396	V13	3/3/2021
45	145026397	V14	3/3/2021

March 03, 2021

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEVELOPMENT SERVICES LEE'S SUMMIT, MISSOURI

03/10/2021

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

RE: 210310 Lot 72 RR

Site Information:

Customer: Project Name: 210310 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: N/A Roof Load: 45.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 45 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	145026353	B1	3/3/2021	21	l45026373	E2	3/3/2021
2	145026354	B2	3/3/2021	22	145026374	E3	3/3/2021
3	145026355	B3A	3/3/2021	23	l45026375	G1	3/3/2021
4	145026356	B4A	3/3/2021	24	145026376	G2	3/3/2021
5	145026357	B6A	3/3/2021	25	145026377	G3	3/3/2021
6	145026358	C1A	3/3/2021	26	l45026378	J5	3/3/2021
7	145026359	C2A	3/3/2021	27	l45026379	J6	3/3/2021
8	145026360	C3A	3/3/2021	28	l45026380	J7	3/3/2021
9	I45026361	C4A	3/3/2021	29	l45026381	J8	3/3/2021
10	145026362	C5A	3/3/2021	30	l45026382	J9	3/3/2021
11	145026363	C6	3/3/2021	31	l45026383	J10	3/3/2021
12	145026364	C7	3/3/2021	32	l45026384	V1	3/3/2021
13	145026365	C8	3/3/2021	33	l45026385	V2	3/3/2021
14	145026366	C9	3/3/2021	34	l45026386	V3	3/3/2021
15	145026367	C10	3/3/2021	35	145026387	V4	3/3/2021
16	145026368	C11	3/3/2021	36	l45026388	V5	3/3/2021
17	145026369	D1	3/3/2021	37	l45026389	V6	3/3/2021
18	145026370	D2	3/3/2021	38	l45026390	V7	3/3/2021
19	l45026371	D3	3/3/2021	39	l45026391	V8	3/3/2021
20	l45026372	E1	3/3/2021	40	145026392	V9	3/3/2021

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Missouri is December 31, 2022. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Garcia, Juan

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEVELOPMENT SERVICES LEE'S SUMMIT, MISSOURI

03/10/2021

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

RE: 210310 - Lot 72 RR

Site Information:

Proje Lot/B Addr	ect Customer: Block: ess:	Project Name: 21	0310	Subdivision:
City,	County:			State:
No.	Seal#	Truss Name	Date	
41	145026393	V10	3/3/2021	
40	145000004	1/44	2/2/2024	

INO.	Seal#	Truss Name	Date
41	145026393	V10	3/3/2021
42	145026394	V11	3/3/2021
43	145026395	V12	3/3/2021
44	145026396	V13	3/3/2021
45	145026397	V14	3/3/2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

MiTek[°] 16023 Swingley Ridge Rd Chesterfield, MO 63017

16023 Swingley Ridge Rd Chesterfield, MO 63017

MITEK[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

						RELEASE FOR
Job	Truss	Truss Type	Qty	Ply	Lot 72 RR	CONSTRUCTION
210310	C1A	Roof Special Girder	1	1		AS NOTED ON PLANS REVIEW
210010					Job Reference (opt	ional) DEVELOPMENT SERVICES
Wheeler Lumber, Wa	verly, KS - 66871,			8.430 s Fel	b 12 2021 MiTek Ind	ustries, Incl. E.E. Shas UMBVB4T24VLCSS OALBE
		ID:b	DIjNJA6?	5tiTk6EI3KU	KZyAkTB-a8iqoJaQN	z2yUSDCOt5mxznUhWW_bpIUQfXotozew6T
NOTES- 12) In the LOAD CASE(S) section, loads applied to the	e face of the truss are noted as front (F) or back	к (В).			03/10/2021
LOAD CASE(S) Standar	d					

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-2=-70, 2-3=-70, 3-4=-70, 4-9=-70, 9-11=-70, 19-22=-20, 12-18=-20

Concentrated Loads (lb) Vert: 21=-0(F)

16023 Swingley Ridge Rd Chesterfield, MO 63017

Mitek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

Mitek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

16023 Swingley Ridge Rd Chesterfield, MO 63017

16023 Swingley Ridge Rd Chesterfield, MO 63017

March 3,2021

NITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MITEK[°] 16023 Swingley Ridge Rd Chesterfield, MO 63017

						RELEASE FOR
Job	Truss	Truss Type	Qty	Ply	Lot 72 RR	
210310	C10	Roof Special Girder	1	1		AS NOTED ON PLANS REVIEW
210010	010				Job Reference (opt	ional) DEVELOPMENT SERVICES
Wheeler Lumber, Wave	erly, KS - 66871,		6	.430 s Feb	o 12 2021 MiTek Ind	ustries, Incl. E. E. Stas UM\$V\$4720405504982
		ID	:bDljNJA6'	?5tiTk6El3ł	KUKZyAkTB-hNSJy	XvJIYW?qvR920qn7dktv9sf_JuV1Zak0zew6X
LOAD CASE(S) Stondard						03/10/2021
1) Dead + Roof Live (balan	ced): Lumber Increase=1 15	Plate Increase=1 15				

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-70, 2-3=-70, 3-4=-70, 4-8=-70, 8-10=-70, 11-19=-20

Concentrated Loads (lb) Vert: 3=21(B) 18=3(B)

March 3,2021

16023 Swingley Ridge Rd Chesterfield, MO 63017

mponent 16023 Swingley Ridge Rd Chesterfield, MO 63017

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

						RELEASE FOR
Job	Truss	Truss Type	Qty	Ply	Lot 72 RR	CONSTRUCTION
210310	50	Common Girder	1			AS NOTED ON PLANS REVIEW
210010	5		1	3	Job Reference (opt	ional) DEVELOPMENT SERVICES
Wheeler Lumber, Wave	erly, KS - 66871,		8	.430 s Feb	12 2021 MiTek Ind	ustries, Incl. E.E. Stas UMW84737405504982
			ID:bDljNJ	A6?5tiTk6l	EI3KUKZyAkTB-ie_ł	XlkaJzh6YSiie6qpziqj1l1b8iHOQAB_qXzew6G
						03/10/2021
1) Dood + Boof Live (belon	and): Lumber Increase -1.15	Blate Increase 1 15				

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-70, 3-4=-70, 1-5=-20

Concentrated Loads (lb)

Vert: 7=-1796(B) 8=-1796(B) 9=-1796(B) 10=-1796(B) 11=-1796(B) 12=-1796(B)

LUWBER-	
TOP CHORD	2x4 SPF No.2
BOT CHORD	2x4 SPF No.2
WEBS	2x3 SPF No.2

 BRACING

 TOP CHORD
 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 20-6-0.

(lb) - Max Horz 25=-190(LC 6)

2x4 SPF No.2

Max Uplift All uplift 100 lb or less at joint(s) 25, 14, 21, 22, 23, 19, 17, 16, 15 except 24=-101(LC 8) Max Grav All reactions 250 lb or less at joint(s) 25, 14, 20, 21, 22, 23, 24, 19, 17, 16, 15

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

OTHERS

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25, 14, 21, 22, 23, 19, 17, 16, 15 except (jt=lb) 24=101.

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

LUMBER-

2x4 SPF No.2 TOP CHORD BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 *Except* 1-10,5-6: 2x8 SP DSS

BRACING-TOP CHORD Structural wood sheathing directly applied or 4-1-14 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 10=Mechanical, 6=0-3-8 Max Horz 10=141(LC 5) Max Uplift 10=-7(LC 8), 6=-7(LC 9) Max Grav 10=980(LC 13), 6=980(LC 14)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 1-2=-1301/38, 2-3=-1176/78, 3-4=-1176/78, 4-5=-1301/38, 1-10=-833/44, 5-6=-833/44 TOP CHORD
- BOT CHORD 9-10=-35/1114, 8-9=0/786, 6-8=0/1013
- WEBS 3-8=-38/486, 4-8=-264/130, 3-9=-38/486, 2-9=-264/130

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 4) will fit between the bottom chord and any other members, with BCDL = 10.0psf.

Refer to airder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 10, 6.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11111 MIS

JUAN

0

BOT CHORD

TOP CHORD 2x4 SPF No 2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2 OTHERS 2x4 SPF No.2

REACTIONS. All bearings 20-8-0.

(lb) -Max Horz 25=-89(LC 6)

Max Uplift All uplift 100 lb or less at joint(s) 25, 14, 21, 22, 23, 24, 19, 17, 16, 15

Max Grav All reactions 250 lb or less at joint(s) 25, 14, 20, 21, 22, 23, 24, 19, 17, 16, 15

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.

6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 9) will fit between the bottom chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 25, 14, 21, 22,

23, 24, 19, 17, 16, 15.

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

March 3,2021

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Mitek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

						RELEASE FOR
Job	Truss	Truss Type	Qty	Ply	Lot 72 RR	CONSTRUCTION
210310	63		1	_		AS NOTED ON PLANS REVIEW
210010	60			3	Job Reference (opt	onal) DEVELOPMENT SERVICES
Wheeler Lumber, Way	/erly, KS - 66871,		8	.430 s Feb	o 12 2021 MiTek Ind	istries, Incl. E.E. Sias UMW94T42W055O4g82
		ID:bl	DIjNJA6?5	tiTk6El3KL	JKZyAkTB-2cndaToi	7VKOeDbgRfQ?gmXfYmlOp4q8ZSulWlzew6B
						03/10/2021
LOAD CASE(S) Standard	b					
1) Dead + Roof Live (bala	nced): Lumber Increase=1.15	5, Plate Increase=1.15				

Uniform Loads (plf) Vert: 1-4=-70, 4-7=-70, 2-6=-20

Concentrated Loads (lb)

Vert: 11=-881(F) 12=-875(F) 13=-875(F) 14=-875(F) 15=-875(F) 16=-873(F) 17=-873(F) 18=-873(F) 19=-873(F) 20=-873(F)

2x4 =

2x4 ||

DEFL. in (loc) I/defl L/d	PLATES GRIP
/ert(LL) -0.00 1 n/r 120	MT20 197/144
/ert(CT) 0.00 1 n/r 120	
Horz(CT) -0.00 4 n/a n/a	
. ,	Weight: 5 lb FT = 10%
ŀ	Vert(CT) 0.00 1 n/r 120 Horz(CT) -0.00 4 n/a n/a

TOP CHORD

BOT CHORD

LUMBER-

2x4 SPF No 2 TOP CHORD 2x4 SPF No.2 BOT CHORD WEBS 2x3 SPF No.2

REACTIONS. 4=1-6-0, 2=1-6-0 (size) Max Horz 2=36(LC 5)

Max Uplift 4=-16(LC 8), 2=-16(LC 8) Max Grav 4=59(LC 1), 2=93(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 6) will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11111 MIS

0

Structural wood sheathing directly applied or 1-6-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

			1-6-0	
LOADING (psf) TCLL 25.0 TCDI 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.02 BC 0.02	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) -0.00 2 >999 360 MT20 197/144 Vert(CT) -0.00 2 >999 240 MT20 197/144	
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2018/TPI2014	WB 0.00 Matrix-P	Horz(CT) -0.00 4 n/a n/a Wind(LL) 0.00 2 **** 240 Weight: 5 lb $FT = 10\%$	

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

2x4 SPF No 2 TOP CHORD BOT CHORD 2x4 SPF No.2 WEBS

- 2x3 SPF No.2
- REACTIONS. 4=Mechanical, 2=0-3-8 (size) Max Horz 2=36(LC 5) Max Uplift 4=-16(LC 8), 2=-17(LC 8) Max Grav 4=57(LC 1), 2=94(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 3) will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11111

0

Structural wood sheathing directly applied or 1-6-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

				' 1-3-9 '
LOADING	G (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATES GRIP
TCLL	25.0	Plate Grip DOL 1.15	TC 0.12	Vert(LL) -0.00 5 >999 360 MT20 197/144
TCDL	10.0	Lumber DOL 1.15	BC 0.01	Vert(CT) -0.00 5 >999 240
BCLL	0.0 *	Rep Stress Incr NO	WB 0.00	Horz(CT) 0.00 3 n/a n/a
BCDL	10.0	Code IRC2018/TPI2014	Matrix-R	Wind(LL) 0.00 5 >999 240 Weight: 5 lb FT = 10%

LUMBER-

TOP CHORD 2x4 SPF No 2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 1-3-9 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 5=0-4-8, 3=Mechanical, 4=Mechanical (size) Max Horz 5=46(LC 7)

Max Uplift 5=-147(LC 12), 3=-20(LC 5), 4=-1(LC 5) Max Grav 5=68(LC 9), 3=32(LC 15), 4=18(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 3) will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4 except (jt=lb) 5=147.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1 lb down and 3 lb up at -1-4-2, and 1 lb down and 3 lb up at -1-4-2 on top chord. The design/selection of such connection device(s) is the responsibility of others. 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Concentrated Loads (lb)
- Vert: 1=5(F=2, B=2)

Trapezoidal Loads (plf)

Vert: 1=-0(F=35, B=35)-to-2=-27(F=21, B=21), 2=-27(F=21, B=21)-to-3=-50(F=10, B=10), 5=-8(F=6, B=6)-to-4=-14(F=3, B=21)-to-3=-50(F=10, B=10), 5=-8(F=6, B=6)-to-4=-14(F=3, B=10), 5=-8(F=6, B=10 B=3)

March 3,2021

Plate Olisets (A, I)	[5.0-3-8,Edge]			
LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.07 BC 0.01 WB 0.00	DEFL. in (loc) I/defl L/d Vert(LL) -0.00 5 >999 240 Vert(CT) -0.00 5 >999 180 Horz(CT) -0.00 3 n/a n/a	PLATES GRIP MT20 197/144
BCDL 10.0	Code IRC2018/TPI2014	Matrix-R		Weight: 4 lb FT = 10%
LUMBER- TOP CHORD 2x4 SF	PF No.2		BRACING- TOP CHORD Structural wood sheathing dire	ectly applied or 0-11-4 oc purlins,

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x3 SPF No.2

REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical

Max Horz 5=33(LC 5) Max Uplift 5=-21(LC 8), 3=-11(LC 8), 4=-4(LC 8) Max Grav 5=146(LC 1), 3=7(LC 4), 4=14(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3, 4.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

FMIS

0

1 1010 0110				
LOADING	i (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) -0.00 5 >999 360 MT20 197/144
TCLL	25.0	Plate Grip DOL 1.15	TC 0.09	
TCDL	10.0	Lumber DOL 1.15	BC 0.02	Vert(CT) -0.00 5 >999 240
BCLL	0.0 *	Rep Stress Incr NO	WB 0.00	Horz(CT) -0.00 3 n/a n/a
BCDL	10.0	Code IRC2018/TPI2014	Matrix-R	Wind(LL) 0.00 5 >999 240 Weight: 7 lb F I = 10%

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 2-0-12 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

. (size) 5=0-4-8, 3=Mechanical, 4=Mechanical

REACTIONS.

Max Horz 5=59(LC 7) Max Uplift 5=-120(LC 12), 3=-20(LC 12)

Max Grav 5=72(LC 1), 3=24(LC 1), 4=26(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3 except (jt=lb) 5=120.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 10 lb down and 4 lb up at -1-4-2, and 10 lb down and 4 lb up at -1-4-2 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- 8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Concentrated Loads (lb)
 - Vert: 1=-15(F=-7, B=-7)
 - Trapezoidal Loads (plf)
 - Vert: 1=-0(F=35, B=35)-to-6=-10(F=30, B=30), 6=0(F=35, B=35)-to-2=-16(F=27, B=27), 2=-16(F=27, B=27)-to-3=-49(F=10, B=10), 5=-5(F=8, B=8)-to-4=-14(F=3, B=3)

FMIS

0

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d PLATES GRIP							
TCDL 25.0 TCDL 10.0 BCU 0.0 *	Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr. YES	BC 0.03	Vert(LL) -0.00 4 >999 360 M120 197/144 Vert(CT) -0.00 4 >999 240 Horz(CT) -0.00 2 p/a p/a							
BCDL 10.0	Code IRC2018/TPI2014	Matrix-R	Wind(LL) 0.00 2 $10d$ $10d$ Weight: 4 lb FT = 10%							
LUMBER-			BRACING-							

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

TOP CHORD BOT CHORD Structural wood sheathing directly applied or 1-5-4 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 4=0-3-8, 2=Mechanical, 3=Mechanical

Max Horz 4=29(LC 5) Max Uplift 2=-32(LC 8)

Max Grav 4=59(LC 1), 2=48(LC 15), 3=26(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11111 MIS

0

March 3,2021

March 3,2021

JOIT

	[z.0-z-0,Luge]							
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 25.0	Plate Grip DOL 1.15	TC 0.03	Vert(LL) n/a	-	n/a	999	MT20	197/144
TCDL 10.0	Lumber DOL 1.15	BC 0.07	Vert(CT) n/a	-	n/a	999		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.00	3	n/a	n/a		
BCDL 10.0	Code IRC2018/TPI2014	Matrix-P					Weight: 8 lb	FT = 10%
LUMBER-			BRACING-					

BOT CHORD

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2

REACTIONS. 1=3-8-1, 3=3-8-1 (size) Max Horz 1=20(LC 7) Max Uplift 1=-14(LC 8), 3=-14(LC 9) Max Grav 1=120(LC 1), 3=120(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

NYS * PROVIN JUAN GARCIA NUMBER E-2000162101 T GIT S 2 ONALE De Lanses ONALES

11111 MIS

0 ¢

Structural wood sheathing directly applied or 3-8-14 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

mini March 3,2021

LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.41 BC 0.22 WB 0.00 Matrix-P	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) -0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 197/144 FT = 10%
LUMBER-			BRACING-				1	

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No 2 BOT CHORD 2x4 SPF No.2 WEBS

2x3 SPF No.2

REACTIONS. 1=5-4-2, 3=5-4-2 (size) Max Horz 1=97(LC 5) Max Uplift 1=-27(LC 8), 3=-51(LC 8) Max Grav 1=209(LC 1), 3=209(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11 1111 MIS

0

Structural wood sheathing directly applied or 5-4-10 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.09 BC 0.05 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) -0.00 3 n/a n/a	PLATES GRIP MT20 197/144 Weight: 7 lb FT = 10%
LUMBER-			BRACING-	

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No 2 BOT CHORD 2x4 SPF No.2

WEBS 2x3 SPF No.2

REACTIONS. 1=3-0-2, 3=3-0-2 (size) Max Horz 1=48(LC 5) Max Uplift 1=-13(LC 8), 3=-26(LC 8) Max Grav 1=104(LC 1), 3=104(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Will & PROIN JUAN GARCIA NUMBER E-2000162101 8 6 E ONAL 1111 16952 PROK SOONAL ENG March 3,202 GI March 3,2021

11 1111 MIS

0

Structural wood sheathing directly applied or 3-0-10 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

 IM	RF	R.	

BCLL

BCDL

2x4 SPF No 2 TOP CHORD 2x4 SPF No.2 BOT CHORD OTHERS 2x3 SPF No.2

0.0

10.0

BRACING-

TOP CHORD BOT CHORD

Horz(CT)

0.00

3

n/a

n/a

Structural wood sheathing directly applied or 5-1-11 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

Weight: 12 lb

FT = 10%

REACTIONS. 1=5-0-14, 3=5-0-14, 4=5-0-14 (size) Max Horz 1=-31(LC 4) Max Uplift 1=-22(LC 8), 3=-26(LC 9) Max Grav 1=99(LC 1), 3=99(LC 1), 4=167(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

Rep Stress Incr

Code IRC2018/TPI2014

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

WB

Matrix-P

0.02

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

YES

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11 1111 MIS

JUAN

GARCIA

0

With PROM NUMBER E -2000162101 3 6 E ONAL min 16952 Bon Mansas VONAL ENGLI March 3,2021

LOADING	i (psf)	SPACING- 2-0-0	CSI.	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL 1.15	TC 0.17	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL 1.15	BC 0.08	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0 *	Rep Stress Incr YES	WB 0.03	Horz(CT)	-0.00	4	n/a	n/a		
BCDL	10.0	Code IRC2018/TPI2014	Matrix-R						Weight: 14 lb	FT = 10%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

 TOP CHORD
 2x4 SPF No.2

 BOT CHORD
 2x4 SPF No.2

 WEBS
 2x3 SPF No.2

 OTHERS
 2x3 SPF No.2

REACTIONS. (size) 6=3-6-8, 4=3-6-8, 5=3-6-8

Max Horz 6=127(LC 5) Max Uplift 6=-29(LC 4), 4=-22(LC 5), 5=-96(LC 5) Max Grav 6=120(LC 7), 4=71(LC 1), 5=183(LC 15)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable requires continuous bottom chord bearing.
- 4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 4, 5.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

FMIS

0

Structural wood sheathing directly applied or 3-6-8 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL	1.15	TC	0.16	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2018/TF	912014	Matri	x-R						Weight: 11 lb	FT = 10%

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x3 SPF No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 3-6-8 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 4=3-6-8, 3=3-6-8 Max Horz 4=106(LC 5) Max Uplift 4=-14(LC 8), 3=-44(LC 5) Max Grav 4=150(LC 1), 3=150(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

FMIS

0

LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.15 BC 0.08 WB 0.00 Matrix-P	DEFL. in (loc) I/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) -0.00 3 n/a n/a	PLATES GRIP MT20 197/144 Weight: 9 lb FT = 10%
LUMBER-			BRACING-	

LUMBER-

TOP CHORD 2x4 SPF No 2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

REACTIONS. 1=3-7-2, 3=3-7-2 (size) Max Horz 1=61(LC 5)

Max Uplift 1=-17(LC 8), 3=-32(LC 8) Max Grav 1=131(LC 1), 3=131(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11 1111 MIS

0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

TOP CHORD

Structural wood sheathing directly applied or 3-7-10 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

40000 March 3,2021

- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

