RELEASE FOR CONSTRUCTION **AS NOTED ON PLANS REVIEW DEVELOPMENT SERVICES** LEE'S SUMMIT, MISSOURI

03/09/2021

MiTek USA, Inc. 16023 Swinglev Ridge Rd Chesterfield, MO 63017 314-434-1200

RE: 210303 Lot 102 MN

Site Information:

Customer: Project Name: 210303 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: N/A Roof Load: 45.0 psf

Design Program: MiTek 20/20 8.4 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 42 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	142923357	A1	2/23/2021	21	142923377	H7	2/23/2021
2	142923358	A2	2/23/2021	22	142923378	H8	2/23/2021
3	142923359	B1	2/23/2021	23	142923379	H9	2/23/2021
4	142923360	B2	2/23/2021	24	142923380	J1	2/23/2021
5	142923361	C1	2/23/2021	25	l42923381	J2	2/23/2021
6	142923362	C2	2/23/2021	26	142923382	J3	2/23/2021
7	142923363	D1	2/23/2021	27	142923383	J4	2/23/2021
8	142923364	D2	2/23/2021	28	142923384	J5	2/23/2021
9	142923365	E1	2/23/2021	29	142923385	R1	2/23/2021
10	142923366	E2	2/23/2021	30	142923386	V1	2/23/2021
11	142923367	E3	2/23/2021	31	142923387	V2	2/23/2021
12	142923368	G1	2/23/2021	32	142923388	V3	2/23/2021
13	142923369	G2	2/23/2021	33	142923389	V4	2/23/2021
14	142923370	G3	2/23/2021	34	142923390	V5	2/23/2021
15	142923371	H1	2/23/2021	35	l42923391	V6	2/23/2021
16	142923372	H2	2/23/2021	36	l42923392	V7	2/23/2021
17	142923373	H3	2/23/2021	37	142923393	V8	2/23/2021
18	142923374	H4	2/23/2021	38	142923394	V9	2/23/2021
19	142923375	H5	2/23/2021	39	142923395	V10	2/23/2021
20	142923376	H6	2/23/2021	40	142923396	V11	2/23/2021

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Kansas is April 30, 2022.

Kansas COA: E-943

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Garcia, Juan

03/09/2021

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

RE: 210303 - Lot 102 MN

Site Information:

Project Customer: Project Name: 210303 Lot/Block: Address:				Subdivision:
City, 0	County:			State:
No. 41 42	Seal# I42923397 I42923398	Truss Name V12 V13	Date 2/23/2021 2/23/2021	

Fe

RELEASE FOR CONSTRUCTION AS NOTED ON PLANS REVIEW DEVELOPMENT SERVICES LEE'S SUMMIT, MISSOURI

03/09/2021

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

RE: 210303 Lot 102 MN

Site Information:

Customer: Project Name: 210303 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: N/A Roof Load: 45.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 42 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date	No.	Seal#	Truss Name	Date
1	142923357	A1	2/23/2021	21	I42923377	H7	2/23/2021
2	I42923358	A2	2/23/2021	22	I42923378	H8	2/23/2021
3	I42923359	B1	2/23/2021	23	l42923379	H9	2/23/2021
4	142923360	B2	2/23/2021	24	I42923380	J1	2/23/2021
5	I42923361	C1	2/23/2021	25	l42923381	J2	2/23/2021
6	142923362	C2	2/23/2021	26	I42923382	J3	2/23/2021
7	142923363	D1	2/23/2021	27	I42923383	J4	2/23/2021
8	142923364	D2	2/23/2021	28	l42923384	J5	2/23/2021
9	I42923365	E1	2/23/2021	29	142923385	R1	2/23/2021
10	I42923366	E2	2/23/2021	30	I42923386	V1	2/23/2021
11	142923367	E3	2/23/2021	31	I42923387	V2	2/23/2021
12	142923368	G1	2/23/2021	32	I42923388	V3	2/23/2021
13	142923369	G2	2/23/2021	33	I42923389	V4	2/23/2021
14	142923370	G3	2/23/2021	34	I42923390	V5	2/23/2021
15	I42923371	H1	2/23/2021	35	I42923391	V6	2/23/2021
16	142923372	H2	2/23/2021	36	I42923392	V7	2/23/2021
17	142923373	H3	2/23/2021	37	I42923393	V8	2/23/2021
18	142923374	H4	2/23/2021	38	I42923394	V9	2/23/2021
19	I42923375	H5	2/23/2021	39	142923395	V10	2/23/2021
20	142923376	H6	2/23/2021	40	142923396	V11	2/23/2021

The truss drawing(s) referenced above have been prepared by MiTek USA, Inc under my direct supervision

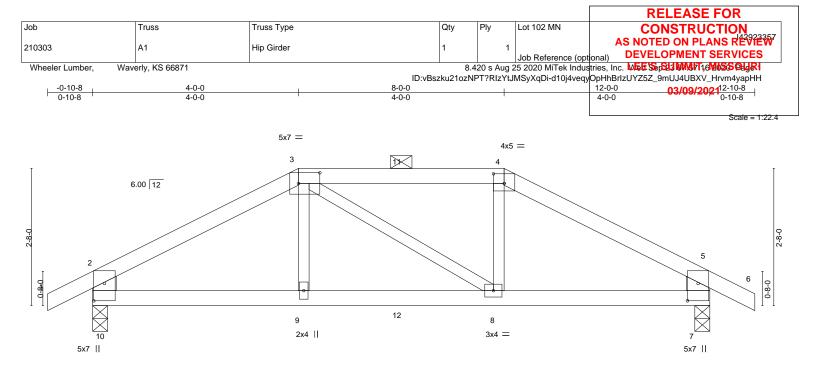
based on the parameters provided by Wheeler - Waverly.

Truss Design Engineer's Name: Garcia, Juan

My license renewal date for the state of Missouri is December 31, 2022. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Garcia, Juan


03/09/2021

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

RE: 210303 - Lot 102 MN

Site Information:

Project Customer: Project Name: 210303 Lot/Block: Address:				Subdivision:
City, 0	County:			State:
No. 41 42	Seal# I42923397 I42923398	Truss Name V12 V13	Date 2/23/2021 2/23/2021	

L	4-0-0		8-0-0		12-0-0
· · · · ·	4-0-0	•	4-0-0	1	4-0-0
Plate Offsets (X,Y)	[3:0-5-0,0-2-8], [4:0-2-8,0-2-4], [7:0-4-1,	0-2-8], [10:0-4-1,0-2-8]			
LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.71 BC 0.67 WB 0.10 Matrix-S	DEFL. in (Vert(LL) -0.07 Vert(CT) -0.13 Horz(CT) 0.02 Wind(LL) 0.06	(loc) l/defl L/d 8-9 >999 360 8-9 >999 240 7 n/a n/a 8-9 >999 240	PLATES GRIP MT20 197/144 Weight: 39 lb FT = 10%

BRACING-

LUMBER-

TOP CHORD	2x4 SPF No.2
BOT CHORD	2x4 SPF No.2
WEBS	2x3 SPF No.2 *Except*
	2-10,5-7: 2x6 SP DSS

TOP CHORD Structural wood sheathing directly applied or 4-3-4 oc purlins, except end verticals, and 2-0-0 oc purlins (5-0-4 max.): 3-4. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 10=0-3-8, 7=0-3-8 Max Horz 10=50(LC 7) Max Uplift 10=-201(LC 8), 7=-201(LC 9) Max Grav 10=899(LC 1), 7=899(LC 1)

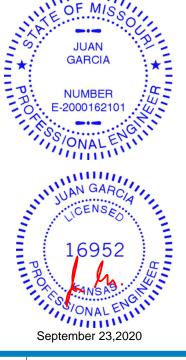
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

2-3=-1231/277, 3-4=-1024/269, 4-5=-1232/276, 2-10=-806/214, 5-7=-806/213 TOP CHORD

BOT CHORD 9-10=-219/1012, 8-9=-219/1023, 7-8=-196/1013

WEBS 3-9=0/271, 4-8=-5/279

NOTES

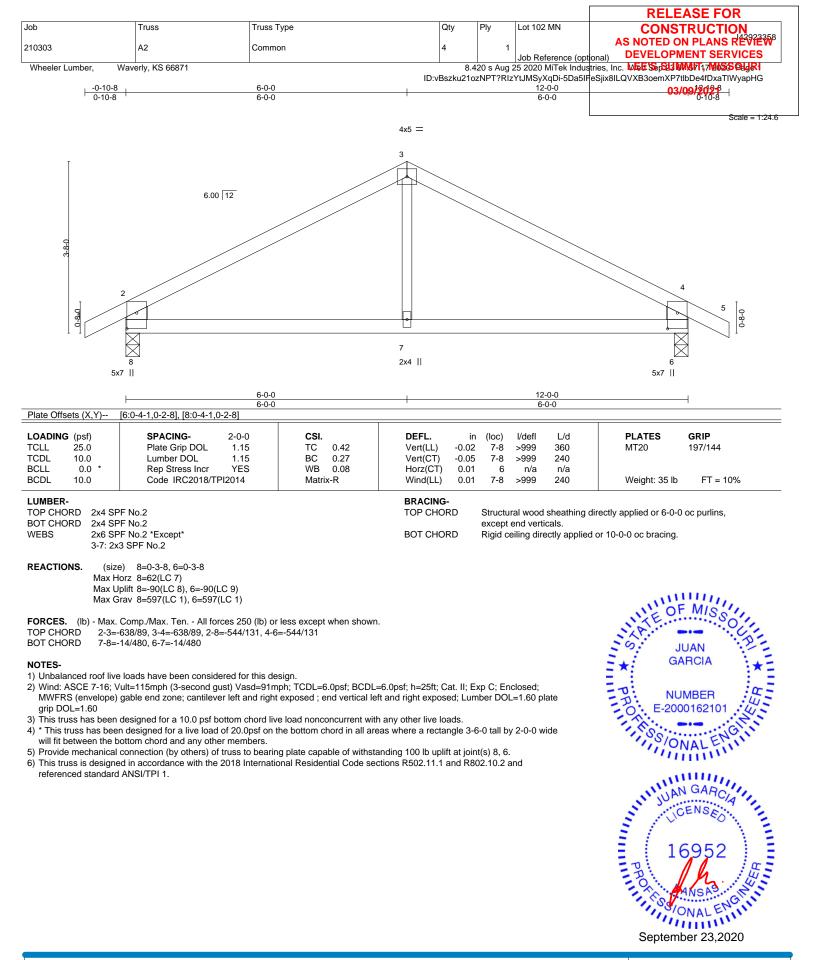

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 10=201, 7=201.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 9) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 79 lb down and 74 lb up at 4-0-0, and 86 lb down and 74 lb up at 6-0-0, and 79 lb down and 74 lb up at 8-0-0 on top chord, and 220 lb down and 76 lb up at 4-0-0, and 31 lb down at 6-0-0, and 220 lb down and 76 lb up at 7-11-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

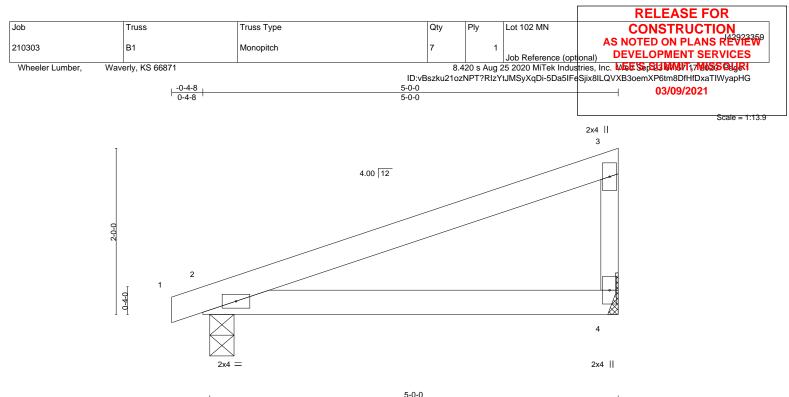
- 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
 - Vert: 1-2=-70, 2-3=-70, 3-4=-70, 4-5=-70, 5-6=-70, 7-10=-20

Continued on page 2

🔺 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


11111

3923357 VIEW
VIEW
CES
d R1
pHH
2


Vert: 3=-46(F) 4=-46(F) 9=-220(F) 8=-220(F) 11=-46(F) 12=-25(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

					4-11-0						
LOADIN	u /	SPACING-	2-0-0	CSI.	DEFL.		(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL	1.15	TC 0.42	Vert(LL)	-0.03	2-4	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC 0.23	Vert(CT)	-0.06	2-4	>933	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB 0.00	Horz(CT)	-0.00	4	n/a	n/a		
BCDL	10.0	Code IRC2018/TP	12014	Matrix-P	Wind(LL)	0.00	2	****	240	Weight: 13 lb	FT = 10%

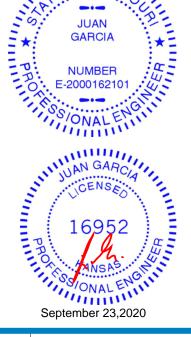
LUMBER-

TOP CHORD 2x4 SPF No 2 BOT CHORD WEBS

2x4 SPF No.2 2x3 SPF No.2

BRACING-TOP CHORD

BOT CHORD

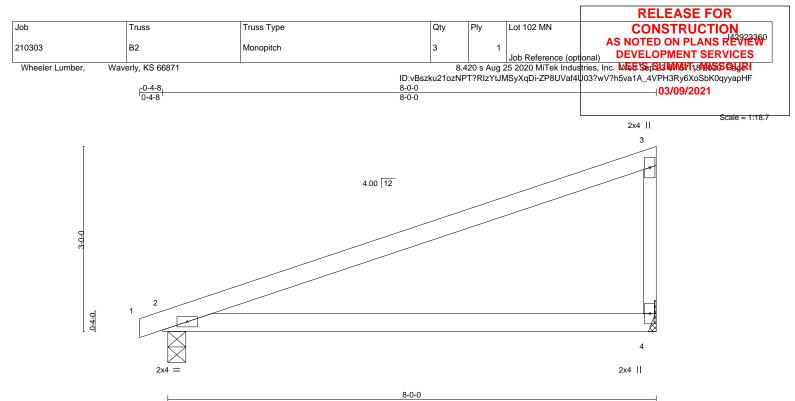

Structural wood sheathing directly applied or 5-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 4=Mechanical, 2=0-3-8 (size) Max Horz 2=76(LC 5) Max Uplift 4=-45(LC 8), 2=-58(LC 4) Max Grav 4=212(LC 1), 2=252(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 3) will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



111

0

MIS

	I		7-11-0	1
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 25.0	Plate Grip DOL 1.15	TC 0.77	Vert(LL) -0.17 2-4 >553 360	MT20 197/144
TCDL 10.0	Lumber DOL 1.15	BC 0.42	Vert(CT) -0.34 2-4 >276 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00 4 n/a n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-P	Wind(LL) 0.00 2 **** 240	Weight: 21 lb FT = 10%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

 TOP CHORD
 2x4 SPF 2100F 1.8E

 BOT CHORD
 2x4 SPF 2100F 1.8E

 WEBS
 2x3 SPF No.2

REACTIONS. (size) 4=Mechanical, 2=0-3-8 Max Horz 2=121(LC 5) Max Uplift 4=-74(LC 8), 2=-79(LC 4)

Max Grav 4=348(LC 1), 2=386(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-4=-270/121

NOTES-

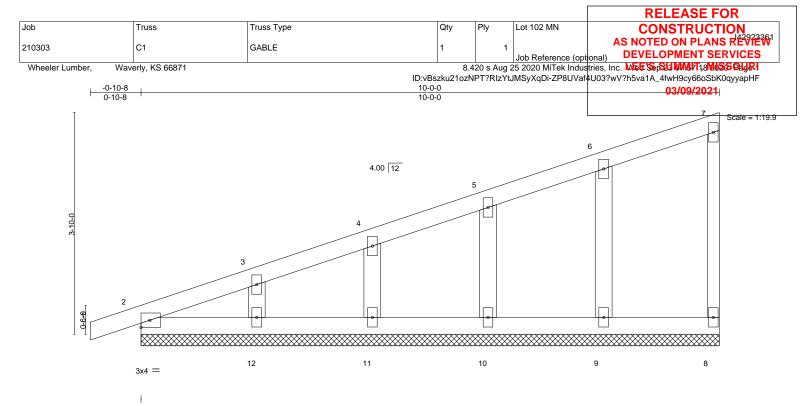
- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

JUAN GARCIA NUMBER E-2000162101 SS/ONAL ENGINE DO E-2000162101 UAN GARCA CENSES 16952 BO 16952 BO 16952 September 23,2020

MI


0

Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

16023 Swingley Ridge Rd Chesterfield, MO 63017

LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.09 BC 0.03 WB 0.03	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (lo 0.00 0.00 -0.00	c) l/defl 1 n/r 1 n/r 8 n/a	L/d 120 120 n/a	PLATES MT20
BCDL 10.0	Code IRC2018/TPI2014	Matrix-S		0.00	0a	10,00	Weight: 35 lb

LUMBER-

 TOP CHORD
 2x4 SPF No.2

 BOT CHORD
 2x4 SPF No.2

 WEBS
 2x3 SPF No.2

 OTHERS
 2x4 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 10-0-0.

(Ib) - Max Horz 2=158(LC 5) Max Uplift All uplift 100 lb or less at joint(s) 8, 2, 12, 11, 10, 9

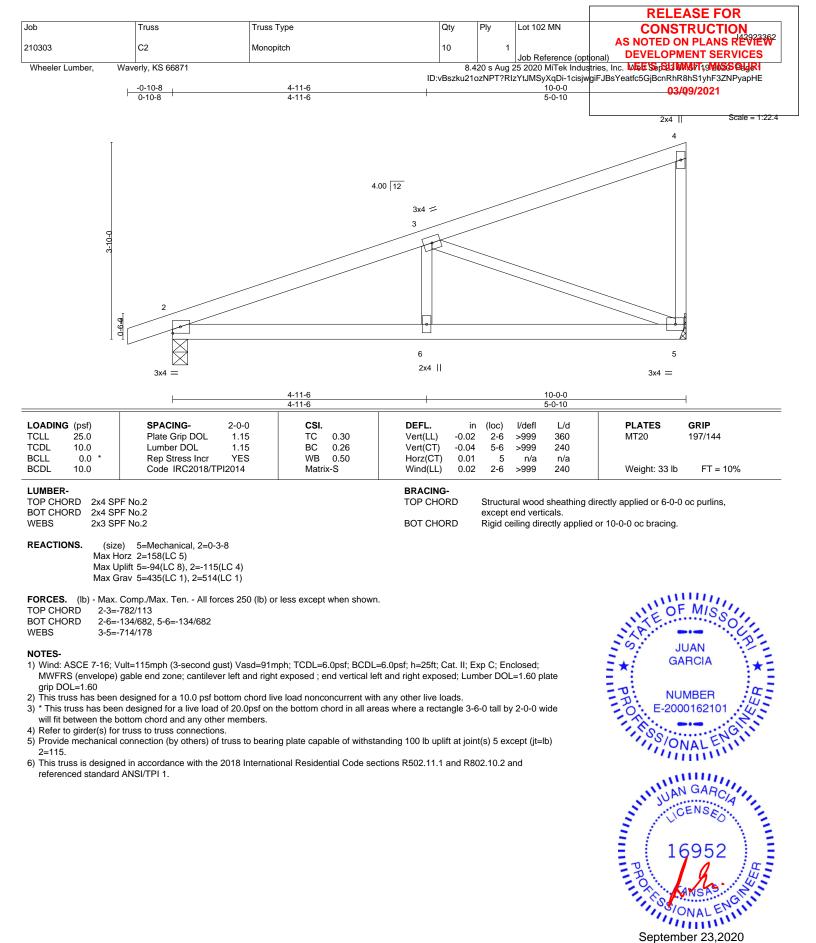
Max Grav All reactions 250 lb or less at joint(s) 8, 2, 12, 11, 10, 9

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) All plates are 2x4 MT20 unless otherwise indicated.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 2, 12, 11, 10, 9.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

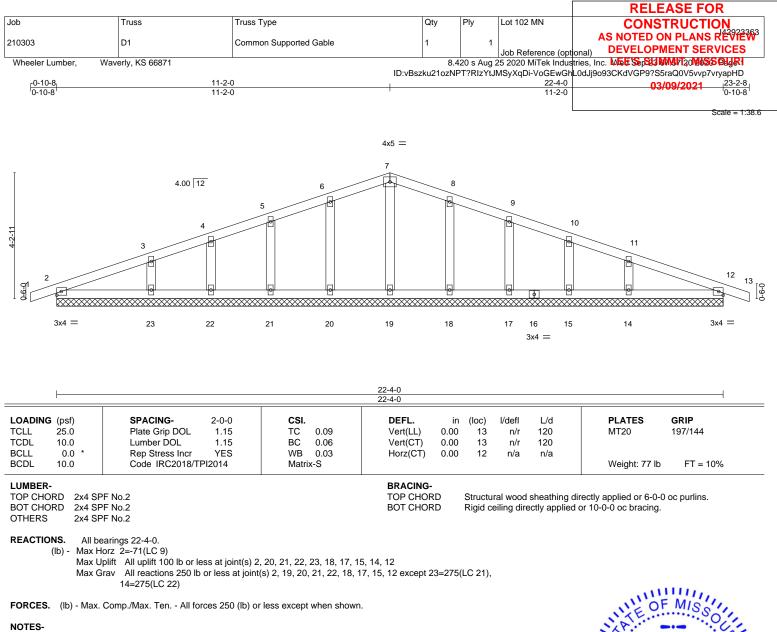
referenced standard ANSI/TPI 1.


GRIP 197/144

MI

0

FT = 10%

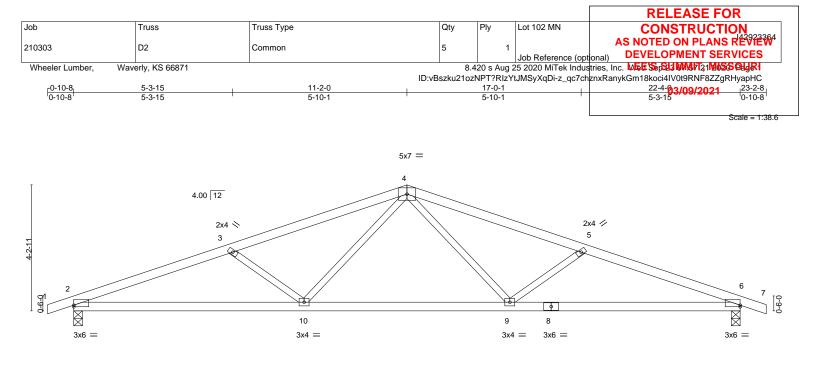

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 23,2020

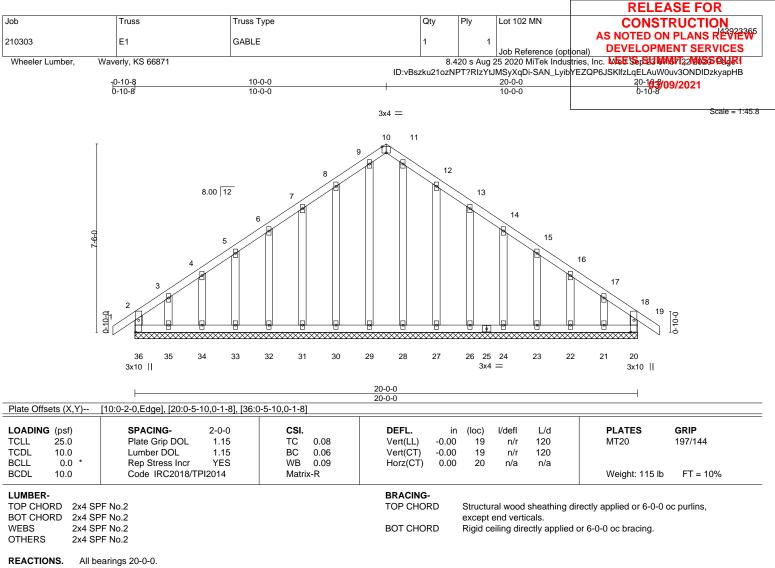

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.


- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 5) Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 2-0-0 oc.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 20, 21, 22, 23, 18, 17, 15, 14, 12.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2, 12.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


	7-8-10 7-8-10		<u>14-7-6</u> 6-10-12		22-4-0 7-8-10
Plate Offsets (X,Y)	[2:0-0-0,0-0-10], [6:0-0-0,0-0-10]				
LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.47 BC 0.69 WB 0.19 Matrix-S	Vert(LL) -0.12 Vert(CT) -0.25 Horz(CT) 0.07	(loc) I/defl L/d 9-10 >999 360 6-9 >999 240 6 n/a n/a 9-10 >999 240	PLATES GRIP MT20 197/144 Weight: 68 lb FT = 10%
BOT CHORD 2x4 SF WEBS 2x3 SF REACTIONS. (siz Max H Max L	PF No.2 PF No.2 PF No.2 PF No.2 e) 2=0-3-8, 6=0-3-8 lorz 2=-71(LC 13) lplift 2=-189(LC 4), 6=-189(LC 5) grav 2=1063(LC 1), 6=1063(LC 1)			Structural wood sheathing d	lirectly applied or 3-7-2 oc purlins. or 10-0-0 oc bracing.
TOP CHORD 2-3= BOT CHORD 2-10: WEBS 4-9= NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; \ MWFRS (envelope) grip DOL=1.60 3) This truss has been 4) * This truss has been	Comp./Max. Ten All forces 250 (lb) o -2232/355, 3-4=-1909/259, 4-5=-1909/2 =-333/2049, 9-10=-127/1406, 6-9=-280/ -59/541, 5-9=-418/221, 4-10=-58/541, 3 e loads have been considered for this dd /ult=115mph (3-second gust) Vasd=91n gable end zone; cantilever left and righ designed for a 10.0 psf bottom chord lin n designed for a 10.0 psf bottom chord lin n designed for a 10.0 psf bottom chord lin on designed for a 10.0 psf bottom chord lin	60, 5-6=-2232/355 2049 -10=-418/221 esign. nph; TCDL=6.0psf; BCDL= t exposed ; end vertical lef ve load nonconcurrent with	and right exposed; Lumb any other live loads.	er DOL=1.60 plate	JUAN GARCIA

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=189, 6=189.

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

(lb) - Max Horz 36=213(LC 7)

Max Uplift All uplift 100 lb or less at joint(s) 36, 20, 34, 33, 32, 31, 30, 27, 26, 24, 23, 22 except 35=-133(LC 8), 21=-120(LC 9) Max Grav All reactions 250 lb or less at joint(s) 36, 20, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 24, 23, 22,

Grav All reactions 250 lb or less at joint(s) 36, 20, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 24, 23, 22, 21

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

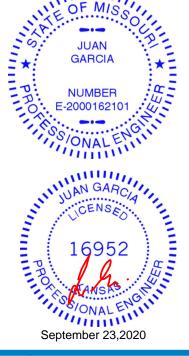
NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

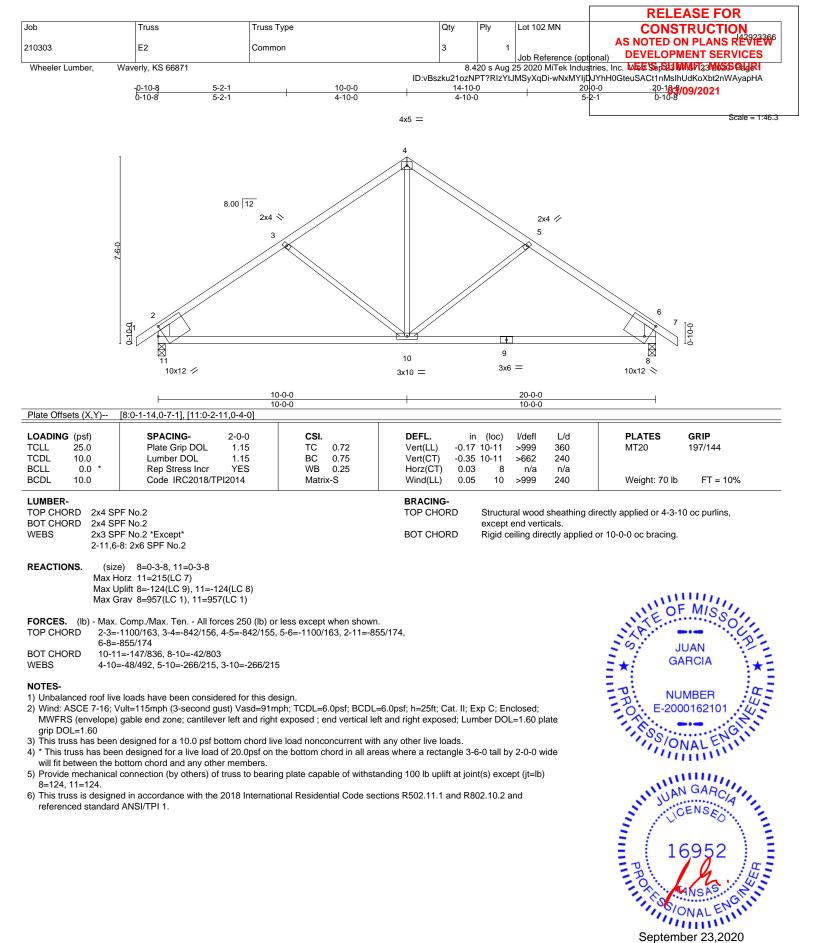
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 4) All plates are 2x4 MT20 unless otherwise indicated.

Gable requires continuous bottom chord bearing.


6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

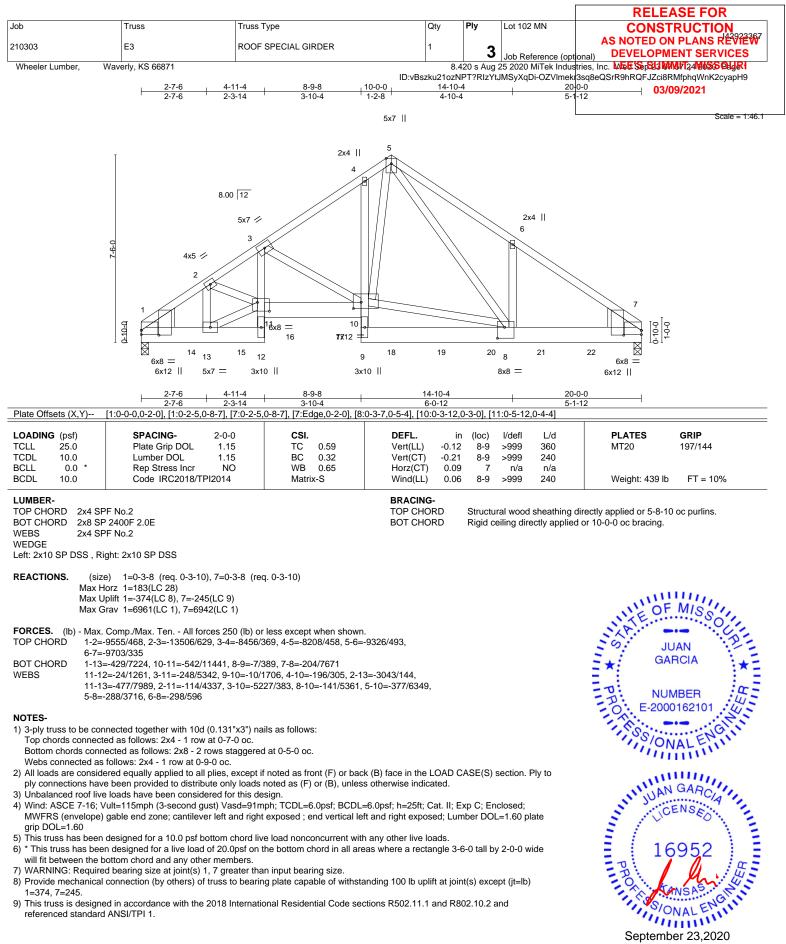
- 7) Gable studs spaced at 1-4-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 36, 20, 34, 33, 32, 31, 30, 27, 26, 24, 23, 22 except (jt=lb) 35=133, 21=120.

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

ALLIN



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 23,2020

Continued on page 2

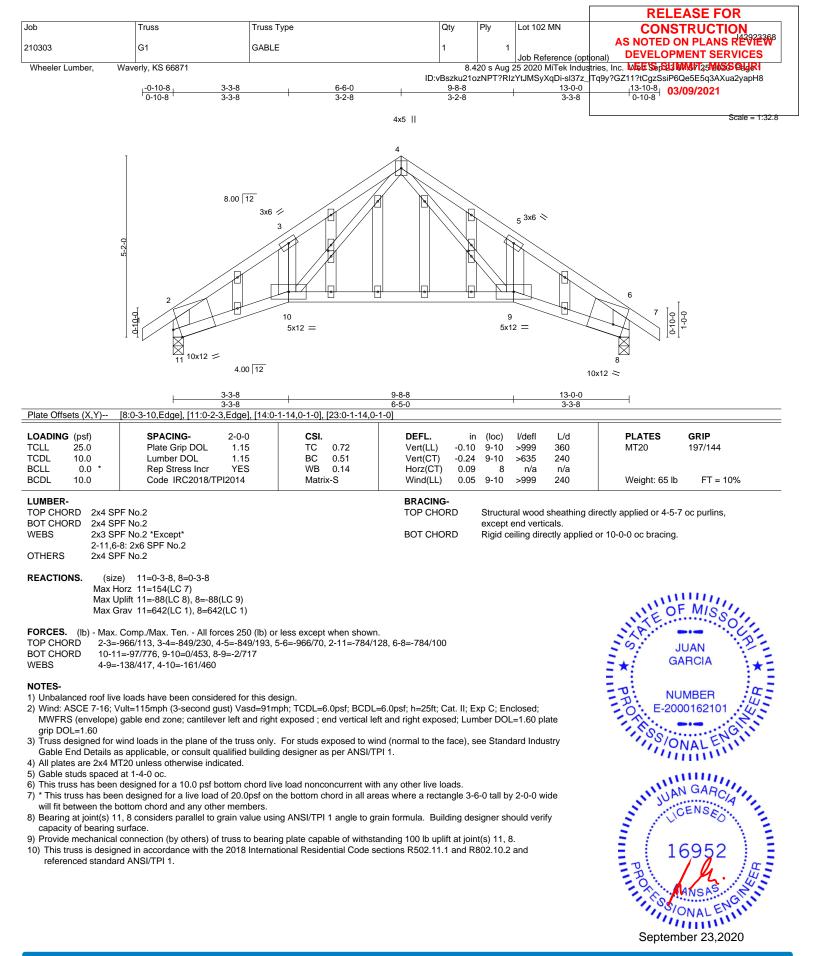
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 MITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

						RELEASE FOR
Job	Truss	Truss Type	Qty	Ply	Lot 102 MN	CONSTRUCTION AS NOTED ON PLANS REVIEW
210303	E3	ROOF SPECIAL GIRDER	1	3	Job Reference (optic	onal) DEVELOPMENT SERVICES
Wheeler Lumber,	Waverly, KS 66871					ries, Inc. MEE SepSid MM61724M6SS PugR2
			ID:vBszku21oz	NPT?RIzYt	JMSyXqDi-OZVImeki3	sq8eQSrR9hRQFJZci8RMfphqWnK2cyapH9
NOTES-						03/09/2021

10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1338 lb down and 188 lb up at 2-0-0 1351 lb down and 35 lb up at 4-0-0, 1363 lb down and 44 lb up at 6-0-0, 1363 lb down and 44 lb up at 8-0-0, 1351 lb down and 35 lb up at 10-0-0, 1351 lb down and <u>35 lb up at 12-0-0, 1338 lb down</u> and 36 lb up at 14-0-0, and 1338 lb down and 36 lb up at 14-0-0, and 1338 lb down and 36 lb up at 16-0-0, and 1338 lb down and 36 lb up at 18-0-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

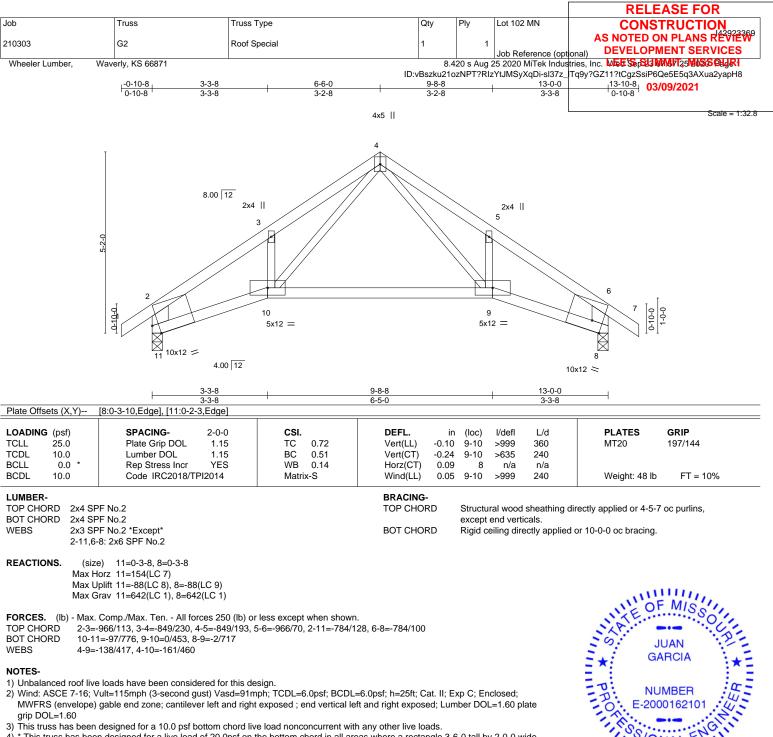
LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

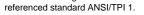

Uniform Loads (plf)

Vert: 1-5=-70, 5-7=-70, 1-12=-20, 10-11=-20, 7-9=-20

Concentrated Loads (lb)


Vert: 14=-1338(B) 15=-1351(B) 16=-1363(B) 17=-1363(B) 18=-1351(B) 19=-1351(B) 20=-1338(B) 21=-1338(B) 22=-1338(B) 21=-1338(B) 22=-1338(B) 21=-1338(B) 22=-1338(B) 21=-1338(B) 22=-1338(B) 21=-1338(B) 22=-1338(B) 21=-1338(B) 22=-1338(B) 23=-1338(B) 22=-1338(B) 23=-1338(B) 23=-1338(B)

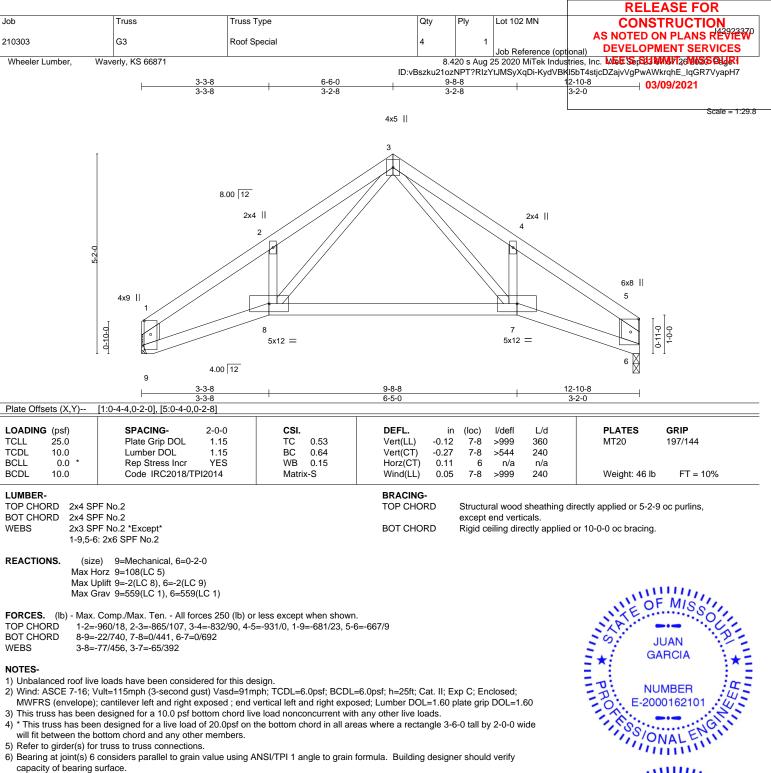
16023 Swingley Ridge Rd Chesterfield, MO 63017


2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

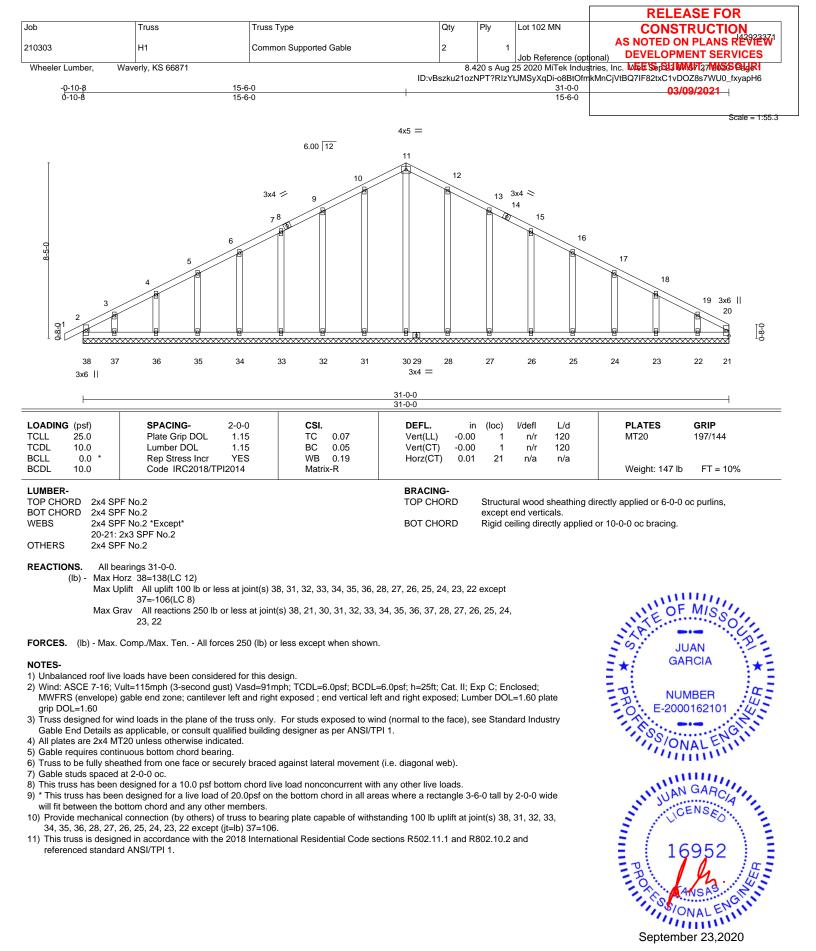
3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 4) will fit between the bottom chord and any other members.

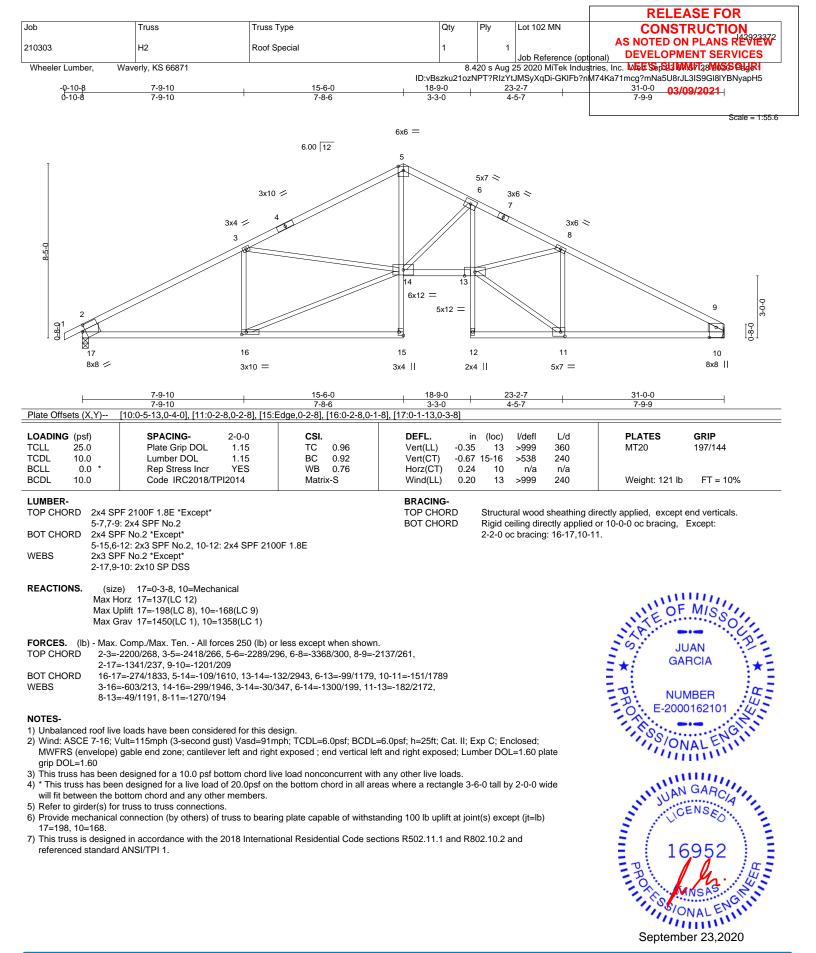
5) Bearing at joint(s) 11, 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

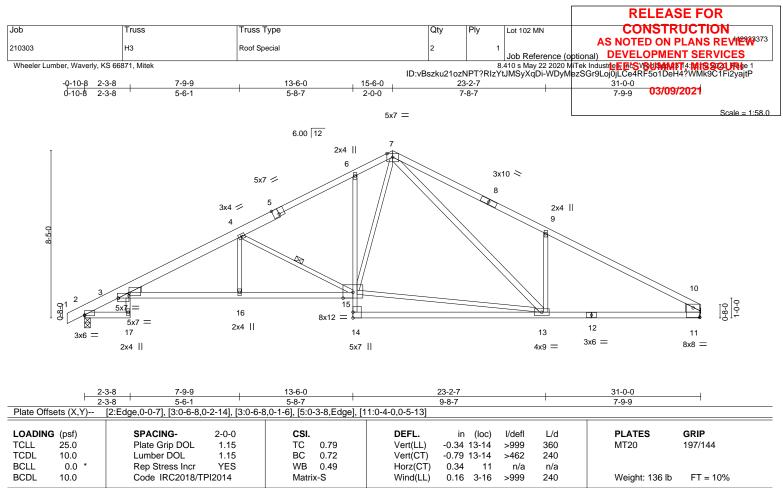

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 11, 8. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

E-2000162101



- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 6.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.





WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 16023 Swingley Ridge Rd Chesterfield, MO 63017

LUMBER-		BRACING-	
TOP CHORD	2x4 SPF 2100F 1.8E *Except*	TOP CHORD	Structural wood sheathing directly applied or 3-3-12 oc purlins,
	5-7: 2x4 SPF No.2, 1-5: 2x6 SP 2400F 2.0E		except end verticals.
BOT CHORD	2x4 SPF No.2 *Except*	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing, Except:
	3-17,6-14: 2x3 SPF No.2, 3-15,11-12: 2x4 SPF 2100F 1.8E		6-0-0 oc bracing: 2-17.
WEBS	2x3 SPF No.2 *Except*	WEBS	1 Row at midpt 4-15
	7-13: 2x4 SPF No.2, 10-11: 2x10 SP DSS		

WEDGE Left: 2x4 SPF No.2

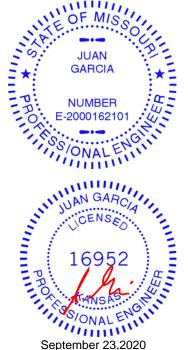
REACTIONS. (lb/size) 2=1455/0-3-8, 11=1371/Mechanical Max Horz 2=106(LC 5) Max Uplift 2=-21(LC 8), 11=-15(LC 9)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 2-3=-809/45, 3-4=-2945/55, 4-5=-2012/31, 5-6=-1943/58, 6-7=-1824/104, 7-8=-2062/159, TOP CHORD 8-9=-2186/122, 9-10=-2224/36, 10-11=-1235/55 BOT CHORD 3-16=-57/2687, 15-16=-57/2687, 12-13=0/1869, 11-12=0/1869 WFBS 4-16=0/304, 4-15=-1168/116, 13-15=0/1258, 7-15=-54/896, 7-13=-135/724, 9-13=-507/203

NOTES-

1) Unbalanced roof live loads have been considered for this design.

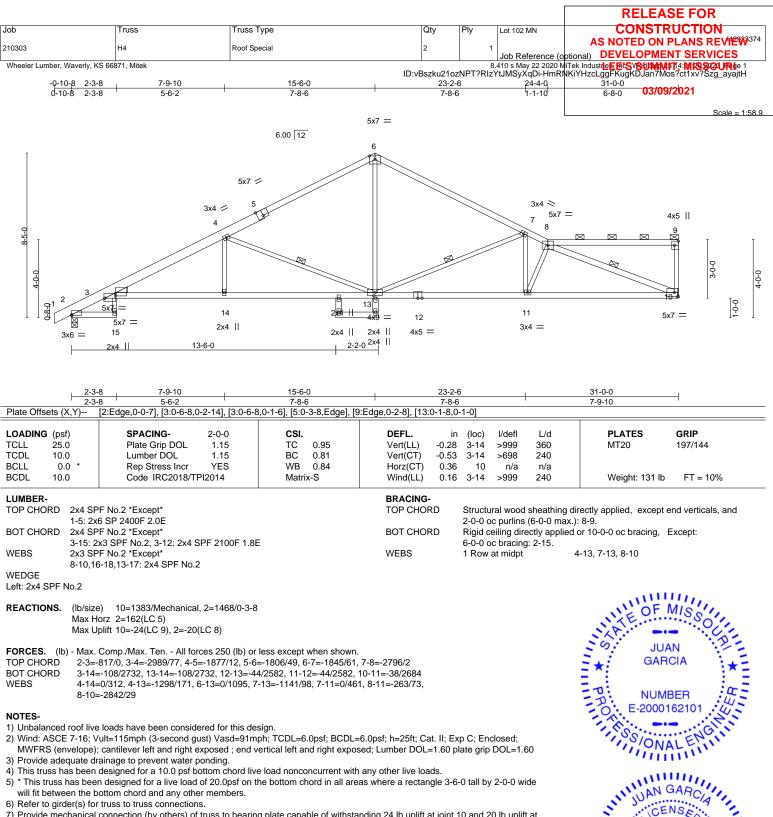
2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60


3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

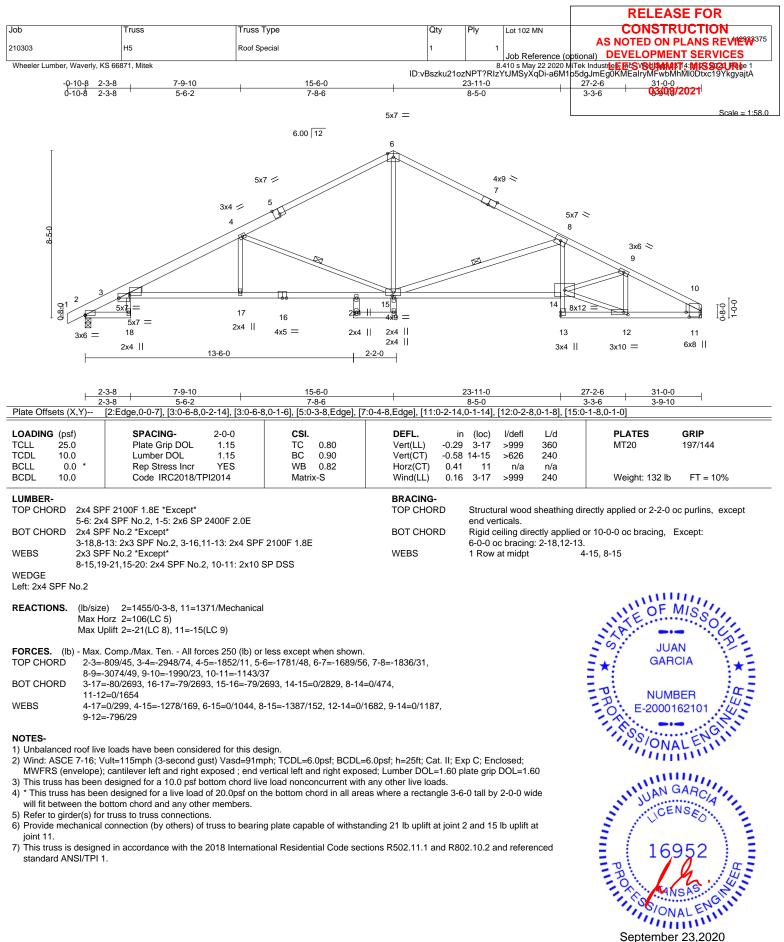
5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 2 and 15 lb uplift at ioint 11.


7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

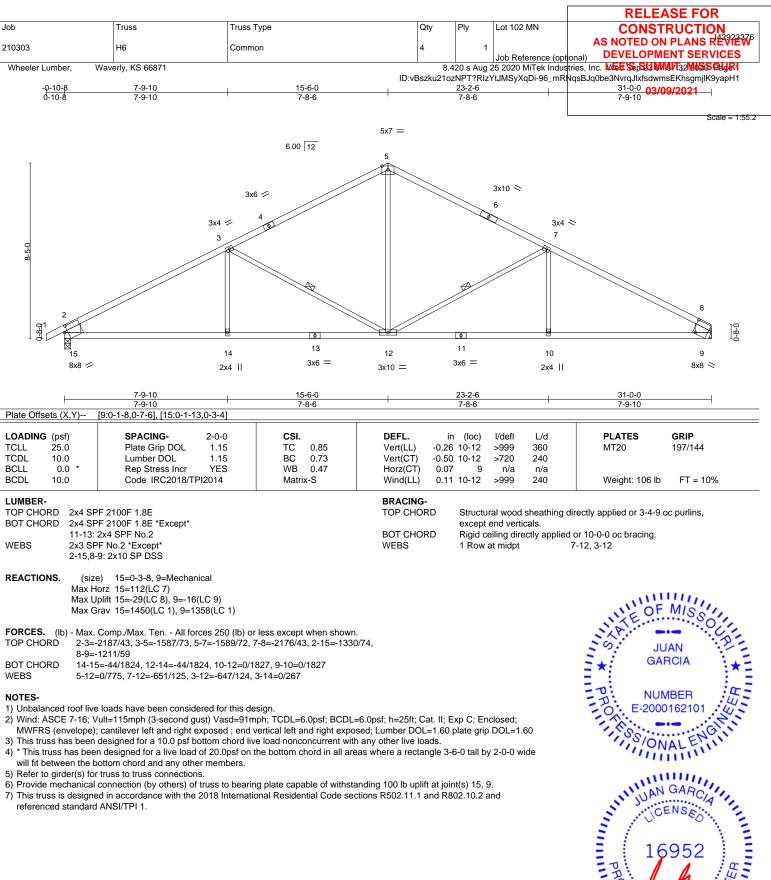
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss system. See MSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

September 23,2020


7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 10 and 20 lb uplift at joint 2.

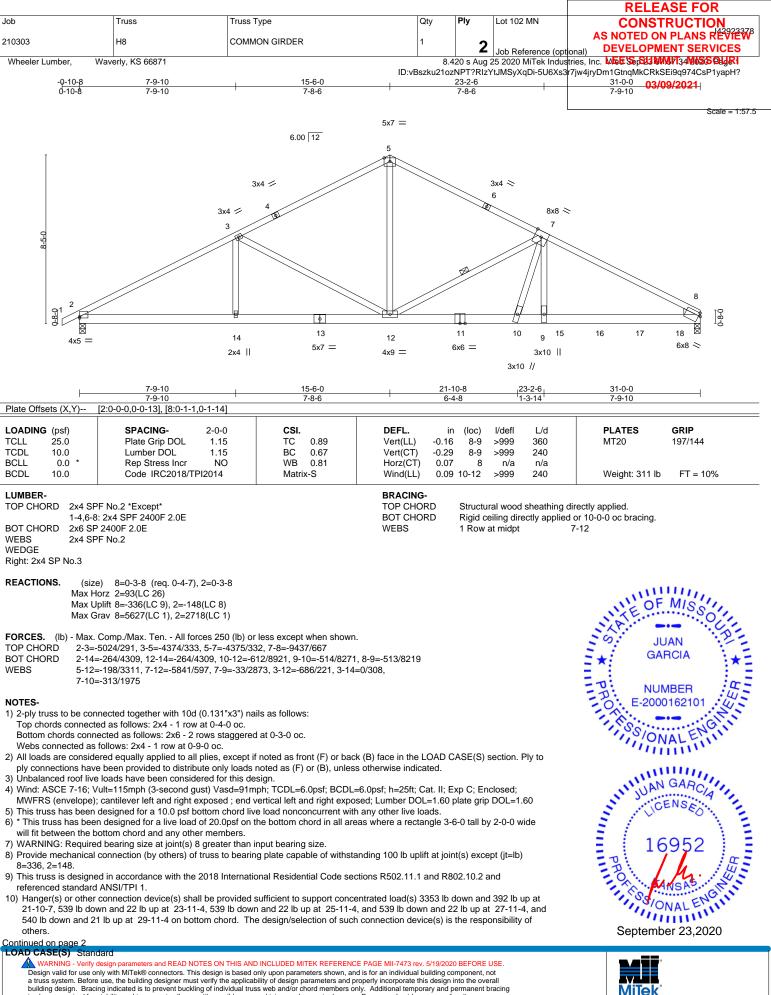
8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



MITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

September 23,2020



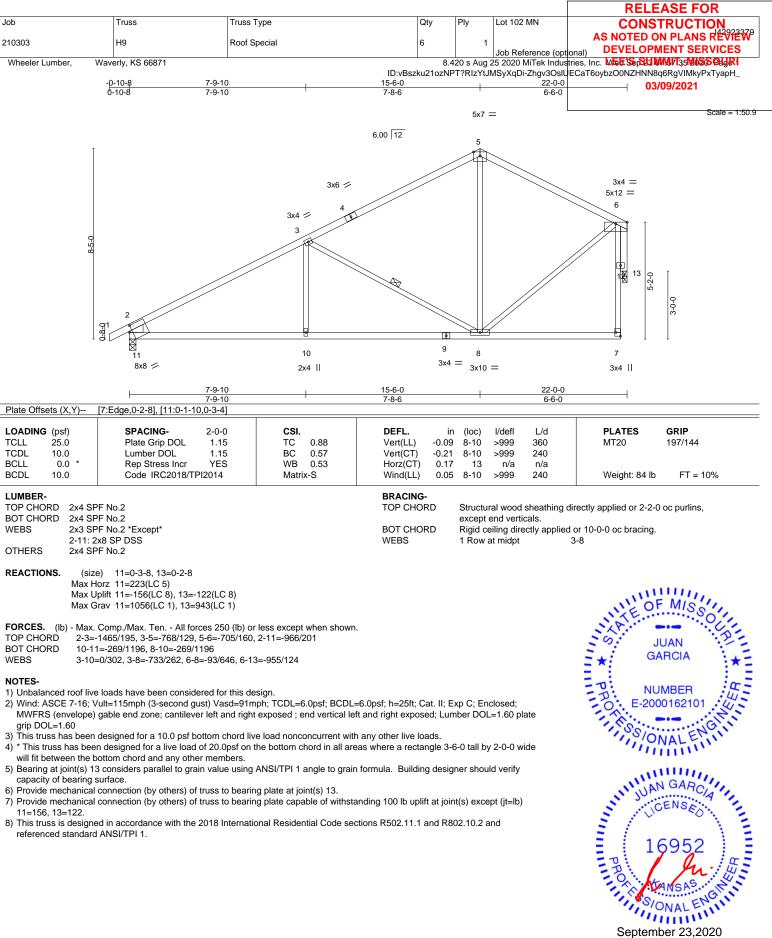
						RELEA	SE FOR
Job	Truss	Truss Type	Qty	Ply Lo	ot 102 MN	CONST	RUCTION
210303	H7	Common	3	1			PLANS REVIEW
Wheeler Lumber, V	Vaverly, KS 66871		8.4	Jo 420 s Aug 25 2	b Reference (opt 2020 MiTek Indus	tries, Inc. Met SepSid M	
-0-10-8	7-9-10	15-6-0				UydytDoeZTYLYH8B1fK3	
0-10-8	7-9-10	7-8-6		7-8-6		7-9-10	0-10-8
					l		Scale = 1:55.7
			4x9 =				
		6.00 12	5				
Ī							
		3x10 =			0.40		
					3x10 <>		
		3x4 = 4			3x4 =	2	
q		3			7		
8-5-0						\sim	
				_			
2							8 9
0-8-0				Φ]	8		
16		15 14	13	12	11		
8x8 📁		2x4 3x6 =	3x10 =	3x6 =	2x4		8x8 📚
	7-9-10 7-9-10	15-6-0 7-8-6		23-2-6 7-8-6		<u>31-0-0</u> 7-9-10	
Plate Offsets (X,Y)	[10:0-1-8,0-7-10], [16:0-1-1	3,0-3-8]					
LOADING (psf) TCLL 25.0	SPACING- Plate Grip DOL	2-0-0 CSI. 1.15 TC 0.89		n (loc) l/d 2 11-13 >9		PLATES MT20	GRIP 197/144
TCDL 10.0	Lumber DOL	1.15 BC 0.92	Vert(CT) -0.44	11-13 >8	20 240	10120	137/144
BCLL 0.0 * BCDL 10.0	Rep Stress Incr Code IRC2018/TPI2	YES WB 0.47 2014 Matrix-S	Horz(CT) 0.09 Wind(LL) 0.13	9 10 r 313-15 >9	n/a n/a 99 240	Weight: 108 lb	FT = 10%
LUMBER-			BRACING-				
TOP CHORD 2x4 SP			TOP CHORD			directly applied or 2-2-0 c	oc purlins,
BOT CHORD 2x4 SP WEBS 2x3 SP	F No.2 F No.2 *Except*		BOT CHORD	except end Rigid ceiling		d or 2-2-0 oc bracing.	
	10: 2x10 SP DSS		WEBS	1 Row at m	idpt	7-13, 3-13	
	e) 16=0-3-8, 10=0-3-8						
	orz 16=-126(LC 6) olift 16=-198(LC 8), 10=-19	8(LC 9)					
	rav 16=1449(LC 1), 10=14					고만분	MICH
		es 250 (lb) or less except when show				INTE.	SSO!
	2187/271, 3-5=-1582/243, ! 1336/239	5-7=-1582/243, 7-8=-2187/271, 2-16	5=-1336/239,				
BOT CHORD 15-16	=-265/1821, 13-15=-265/18	821, 11-13=-140/1821, 10-11=-140/ 11=0/274, 3-13=-647/250, 3-15=0/2					
	-40/700, 7-13=-047/230, 7-	-11=0/274, 3-13=-047/250, 3-15=0/2	.74			= *	× =
NOTES- 1) Unbalanced roof live	loads have been considered	ed for this desian.				PP: NUM	MBER :
2) Wind: ASCE 7-16; V	ult=115mph (3-second gus	t) Vasd=91mph; TCDL=6.0psf; BCD				O. E-2000	162101
grip DOL=1.60		left and right exposed ; end vertical		nber DOL=1.	ou plate		Glin
/	0	tom chord live load nonconcurrent w 20.0psf on the bottom chord in all a		6-0 tall by 2-0)-0 wide	INON	ALEN
will fit between the b	ottom chord and any other	members.					1111
 5) Provide mechanical 16=198, 10=198. 	connection (by others) of tr	uss to bearing plate capable of with	standing 100 lb uplift at joi	nt(s) except (j	lt=lb)		
6) This truss is designe		018 International Residential Code s	ections R502.11.1 and R8	02.10.2 and		IN JUAN	GAHCIA
referenced standard	ANGI/TELL					I CF	NSE

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

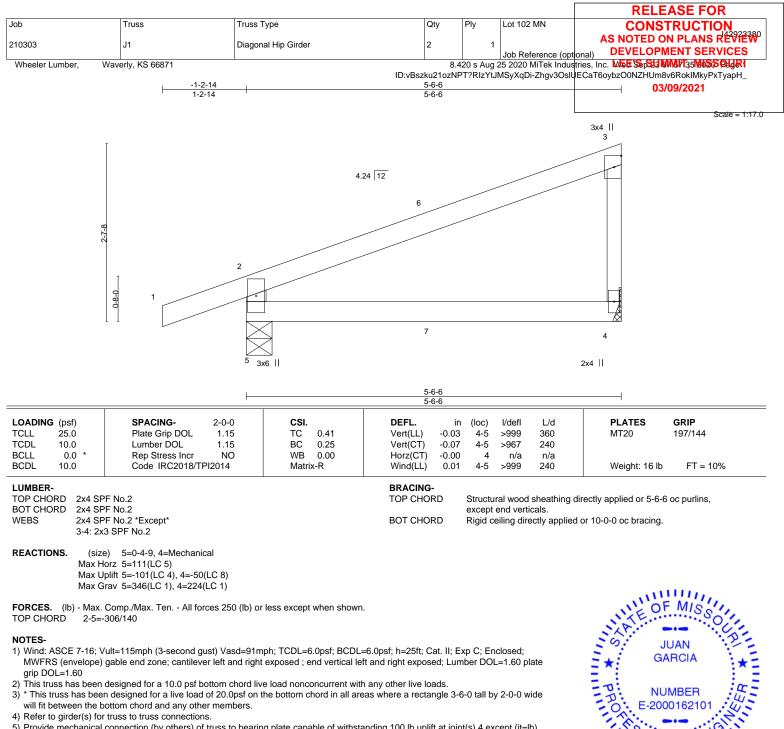
16023 Swingley Ridge Rd Chesterfield, MO 63017

						RELEASE FOR
Job	Truss	Truss Type	Qty	Ply	Lot 102 MN	CONSTRUCTION AS NOTED ON PLANS REVIEW
210303	H8	COMMON GIRDER	1	-		AS NOTED ON PLANS REVIEW
210000		COMMON GINDER	1		Job Reference (opt	
Wheeler Lumber, Wav	erly, KS 66871		8.4	20 s Aug 2	25 2020 MiTek Indus	tries, Inc. MEESepSUMMIT34MISS Old R1
		ID:vE	3szku21oz	NPT?RIzY	tJMSyXqDi-5U6Xs3	r7jw4jryDm1GtnqMkCRkSEi9q974CsP1yapH?
						03/09/2021
LOAD CASE(S) Standard						
 Dead + Roof Live (balar 	ced): Lumber Increase=1.15	Plate Increase=1.15				


d): Lumber Increase=1.15, Plate Increase

Uniform Loads (plf) Vert: 1-5=-70, 5-8=-70, 2-8=-20

Concentrated Loads (lb)


Vert: 10=-3353(B) 15=-539(B) 16=-539(B) 17=-539(B) 18=-540(B)

September 23,2020

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 3) will fit between the bottom chord and any other members.

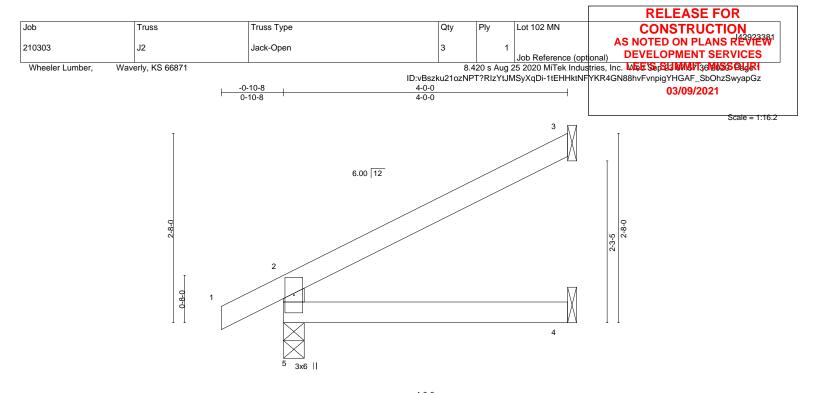
4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 5 = 101

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 69 lb down and 36 lb up at 2-9-8, and 69 lb down and 36 lb up at 2-9-8 on top chord, and 3 lb down and 1 lb up at 2-9-8, and 3 lb down and 1 lb up at 2-9-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).


LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15. Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-70, 2-3=-70, 4-5=-20 Concentrated Loads (lb) Vert: 7=2(F=1, B=1)

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

			4-0-0 4-0-0			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc) l/de	efl L/d	PLATES GRIP
TCLL 25.0	Plate Grip DOL 1.15	TC 0.20	Vert(LL) -0.01	4-5 >99	99 360	MT20 197/144
TCDL 10.0	Lumber DOL 1.15	BC 0.13	Vert(CT) -0.02	4-5 >99	99 240	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) 0.01	3 n	l/a n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-R	Wind(LL) 0.01	4-5 >99	99 240	Weight: 11 lb FT = 10%

LUMBER-

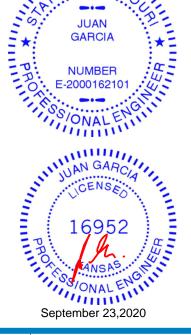
2x4 SPF No 2 TOP CHORD BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 4-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

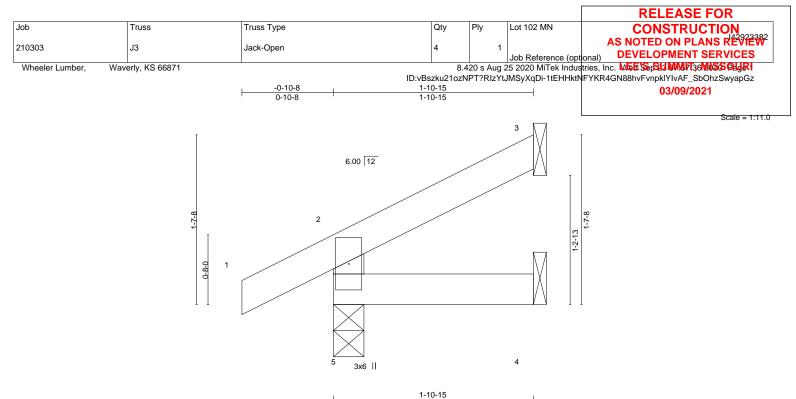
REACTIONS. 5=0-3-8, 3=Mechanical, 4=Mechanical (size)


Max Horz 5=89(LC 8) Max Uplift 5=-30(LC 8), 3=-66(LC 8)

Max Grav 5=252(LC 1), 3=116(LC 1), 4=71(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 3) will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

1111 MIS

0

1-10-15												
LOADING (psi TCLL 25.0	,	PACING- Plate Grip DOL	2-0-0 1.15	CSI. TC	0.07	DEFL. Vert(LL)	in -0.00	(loc)	l/defl >999	L/d 360	PLATES MT20	GRIP 197/144
TCDL 10.) L	umber DOL	1.15	BC	0.02	Vert(CT)	-0.00	5	>999	240	1120	131/144
BCLL 0. BCDL 10.		Rep Stress Incr Code IRC2018/TP	YES 12014	WB Matrix	0.00 (-R	Horz(CT) Wind(LL)	-0.00 0.00	3 5	n/a >999	n/a 240	Weight: 6 lb	FT = 10%

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 1-10-15 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-3-8, 3=Mechanical, 4=Mechanical Max Horz 5=48(LC 8)

Max Horz 5=48(LC 8) Max Uplift 5=-26(LC 8), 3=-30(LC 8)

Max Grav 5=171(LC 1), 3=44(LC 1), 4=31(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

FMIS

0

2x4 =

1	

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. i	n (loc)	l/defl	L/d	PLATES	GRIP
CLL 25.0	Plate Grip DOL 1.15	TC 0.03	Vert(LL) -0.00) 1	n/r	120	MT20	197/144
CDL 10.0	Lumber DOL 1.15	BC 0.02	Vert(CT) 0.00) 1	n/r	120		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00) 4	n/a	n/a		
3CDL 10.0	Code IRC2018/TPI2014	Matrix-P					Weight: 4 lb	FT = 10%
UMBER-			BRACING-				L	
TOP CHORD 2x4 SPF No.2			TOP CHORD	Struct	ural wood	sheathing di	rectly applied or 1-6-	0 oc purlins,

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

REACTIONS. (size) 4=1-6-0, 2=1-6-0

Max Horz 2=24(LC 5) Max Uplift 4=-12(LC 8), 2=-28(LC 4)

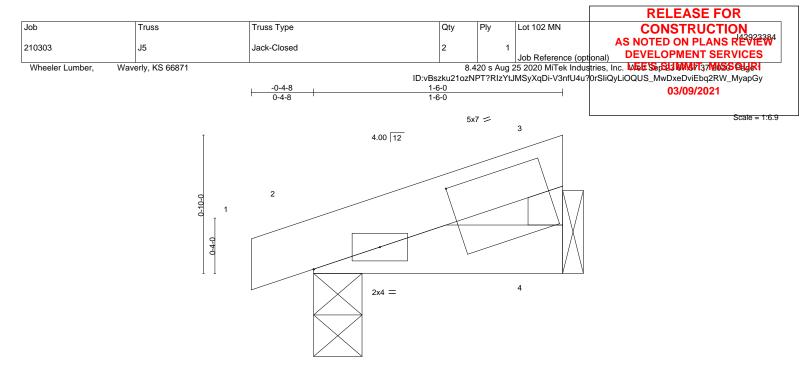
Max Grav 4=59(LC 1), 2=93(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.


- 3) Gable requires continuous bottom chord bearing.
- 4) Gable studs spaced at 2-0-0 oc.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

1111 11 MIS

0

		1	1-6-0	1	
		Γ	1-6-0	1	
Plate Offsets (X,Y)	[3:0-10-14,0-2-8]				

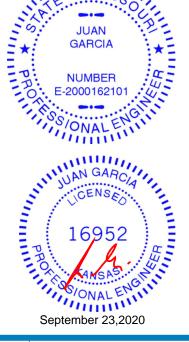
LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.02 BC 0.02 WB 0.00 Matrix-P	DEFL. in Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) -0.00 Wind(LL) 0.00	(loc) 2 2 4 2	l/defl >999 >999 n/a ****	L/d 360 240 n/a 240	PLATES GRIP MT20 197/144 Weight: 4 lb FT = 10%
LUMBER-		WathA-1	BRACING-	2		240	

TOP CHORD

BOT CHORD

LUMBER-

2x4 SPF No.2 TOP CHORD BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2


REACTIONS. (size) 4=Mechanical, 2=0-3-8

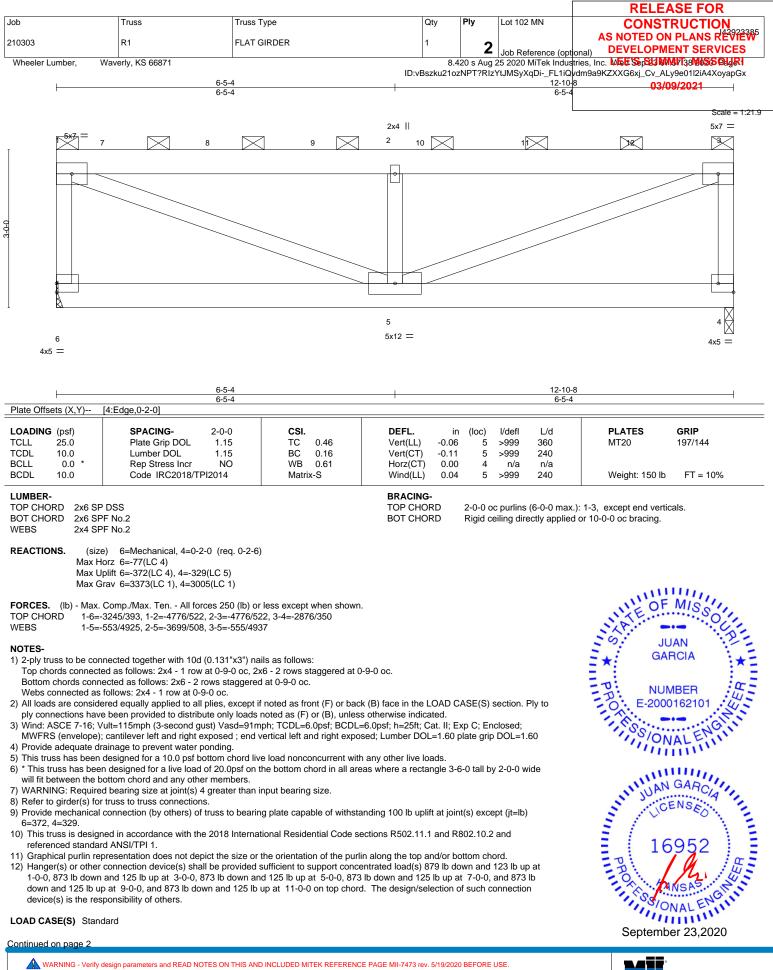
Max Horz 2=24(LC 5) Max Uplift 4=-12(LC 8), 2=-30(LC 4) Max Grav 4=57(LC 1), 2=94(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11111 MIS


0

Structural wood sheathing directly applied or 1-6-0 oc purlins,

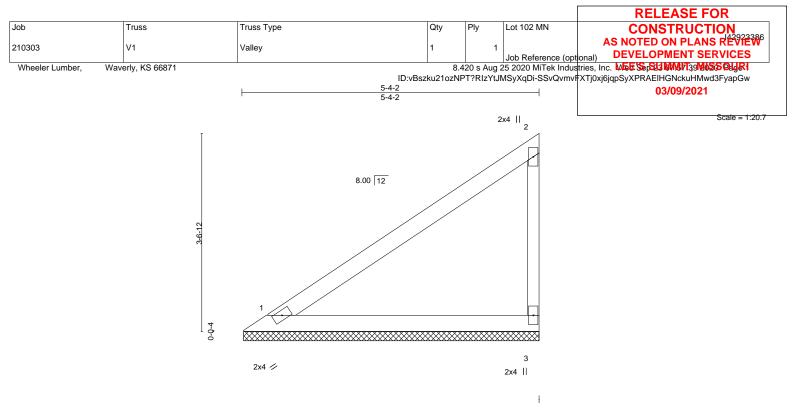
Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-74/3 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MITEK[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

						RELEASE FOR
Job	Truss	Truss Type	Qty	Ply	Lot 102 MN	CONSTRUCTION AS NOTED ON PLANS REVIEW
210303	R1	FLAT GIRDER	1			AS NOTED ON PLANS REVIEW
210000				2	Job Reference (opt	
Wheeler Lumber, Wa	verly, KS 66871		8.4	420 s Aug	25 2020 MiTek Indus	tries, Inc. MEESepSUMMIT38M05SPUGR1
			ID:vBszku21o	zNPT?RI	zYtJMSyXqDiFL1iQ	vdm9a9KZXXG6xj_Cv_ALy9e01l2iA4XoyapGx
LOAD CASE(S) Standa	rd					03/09/2021
		se=1.15. Plate Increase=1.15				


umber Increase 1.15, Plate Increase

Uniform Loads (plf) Vert: 1-3=-70, 4-6=-20

Concentrated Loads (lb)

Vert: 7=-879 8=-873 9=-873 10=-873 11=-873 12=-873

LOADIN	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL	1.15	TC	0.44	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.23	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2018/TI	PI2014	Matri	x-P						Weight: 15 lb	FT = 10%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

2x4 SPF No 2 TOP CHORD BOT CHORD 2x4 SPF No.2

WEBS 2x3 SPF No.2

REACTIONS. 1=5-3-12, 3=5-3-12 (size) Max Horz 1=126(LC 5) Max Uplift 1=-18(LC 8), 3=-62(LC 8) Max Grav 1=214(LC 1), 3=230(LC 15)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

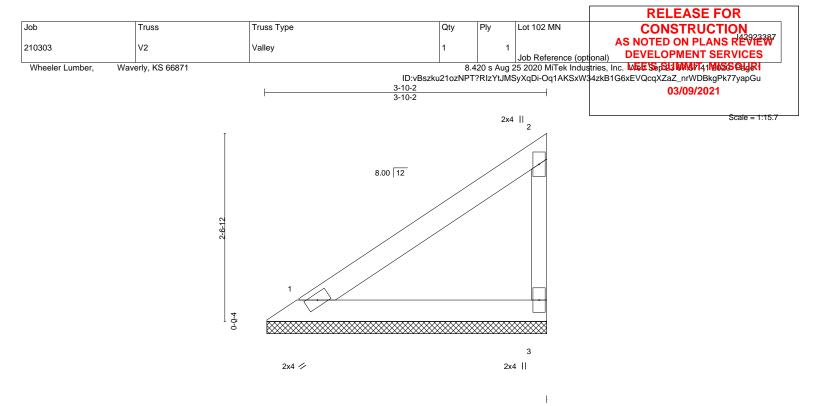
NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

1111 MIS


0

Structural wood sheathing directly applied or 5-4-2 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

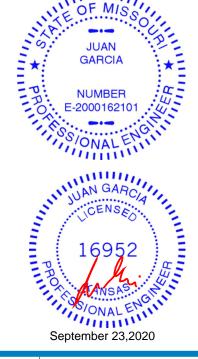
LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.19 BC 0.10 WB 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT) -	in (l n/a n/a -0.00	loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
BCDL 10.0	Code IRC2018/TPI2014	Matrix-P						Weight: 11 lb	FT = 10%

LUMBER-

TOP CHORD 2x4 SPF No 2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

REACTIONS. 1=3-9-12, 3=3-9-12 (size) Max Horz 1=86(LC 7)

Max Uplift 1=-12(LC 8), 3=-42(LC 8) Max Grav 1=147(LC 1), 3=157(LC 15)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

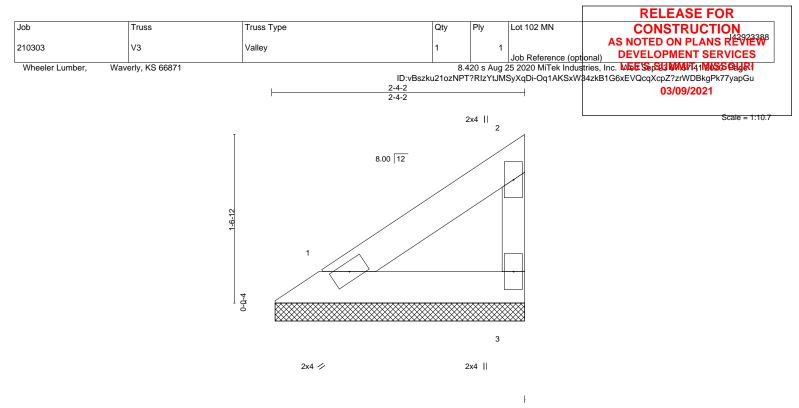
1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11 1111

0


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

BRACING-TOP CHORD

Structural wood sheathing directly applied or 3-10-2 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

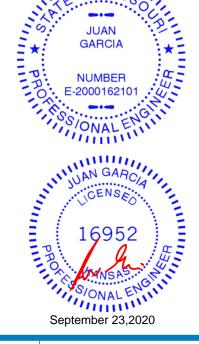
LOADING (psf)	SPACING- 2-0-0	CSI.		(loc) l/defl	L/d	PLATES GRIP
TCLL 25.0 TCDL 10.0	Plate Grip DOL 1.15 Lumber DOL 1.15	TC 0.05 BC 0.03	Vert(LL) n/a Vert(CT) n/a	- n/a - n/a	999 999	MT20 197/144
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00	3 n/a	n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-P				Weight: 6 lb FT = 10%

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x3 SPF No.2

REACTIONS. (size) 1=2-3-12, 3=2-3-12 Max Horz 1=47(LC 5)

Max Uplift 1=-7(LC 8), 3=-23(LC 8) Max Grav 1=79(LC 1), 3=85(LC 15)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

FMIS

0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

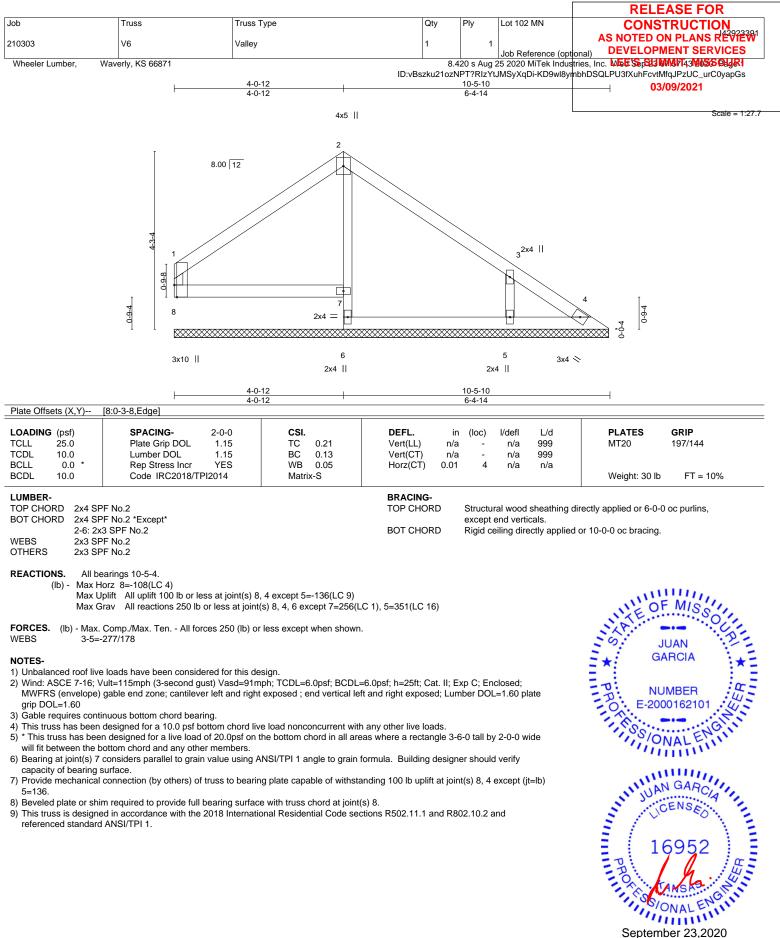
BRACING-TOP CHORD

Structural wood sheathing directly applied or 2-4-2 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

				RELEASE FOR
Job	Truss	Truss Type	Qty Ply Lot 102 MN	CONSTRUCTION AS NOTED ON PLANS REVIEW
210303	V4	Valley	1 1 Job Reference (opt	onal) DEVELOPMENT SERVICES
Wheeler Lumber,	Waverly, KS 66871	1	8.420 s Aug 25 2020 MiTek Indus	tries, Inc. MEESept130005004281 Xoy8qO5boBgIVx0f923jPyJiaxIKzK8HgZyapGt
	H	4-0-12	13-5-10 9-4-14	
		4x5		Scale = 1:39.2
		4x5		
	8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.00 1.0 8.00 8.00 8.00 1.0	2 2 7 2x4 =	2x4 3 9	4
	2-9-4	<u>.</u>		<u></u>
		· ·	5 3x4 ≈	· · · · · · · · · · · · · · · · · · ·
		6 2x4	5 3x4 < 2x4	
	 	4-0-12	<u>13-5-10</u> 9-4-14]
Plate Offsets (X,Y)	[8:0-3-8,Edge]	4-0-12		
LOADING (psf) TCLL 25.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.11 Lumber DOL 1.11 Rep Stress Incr YES Code IRC2018/TPI2014	5 TC 0.32 5 BC 0.19	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.02 4 n/a n/a	PLATES GRIP MT20 197/144 Weight: 41 lb FT = 10%
WEBS 2x3 SF			BRACING- TOP CHORD Structural wood sheathing of except end verticals. BOT CHORD Rigid ceiling directly applied	directly applied or 6-0-0 oc purlins, d or 6-0-0 oc bracing.
(lb) - Max H Max U	earings 13-5-4. łorz 8=-171 (LC 9) Jplift All uplift 100 lb or less at jo śrav All reactions 250 lb or less			OF MISSIN
	Comp./Max. Ten All forces 25			THE SOUTH SOUTH
BOT CHORD 2-7=-	-292/42 -390/243			JUAN GARCIA
 Wind: ASCE 7-16; MWFRS (envelope) grip DOL=1.60 Gable requires conti 4) This truss has been 5) * This truss has been will fit between the b Bearing at joint(s) 7 capacity of bearing at 8-145, 5=191. Beveled plate or shi 	gable end zone; cantilever left a inuous bottom chord bearing. designed for a 10.0 psf bottom of n designed for a live load of 20.0 bottom chord and any other mem considers parallel to grain value surface. connection (by others) of truss t m required to provide full bearing ed in accordance with the 2018 I	sd=91mph; TCDL=6.0psf; BCDL nd right exposed ; end vertical le shord live load nonconcurrent wit opsf on the bottom chord in all ar bers, with BCDL = 10.0psf. using ANSI/TPI 1 angle to grain o bearing plate capable of withst g surface with truss chord at join	reas where a rectangle 3-6-0 tall by 2-0-0 wide I formula. Building designer should verify tanding 100 lb uplift at joint(s) 4, 7 except (jt=lb)	NUMBER E-2000162101
				16952 MINSAS ONAL ENOT

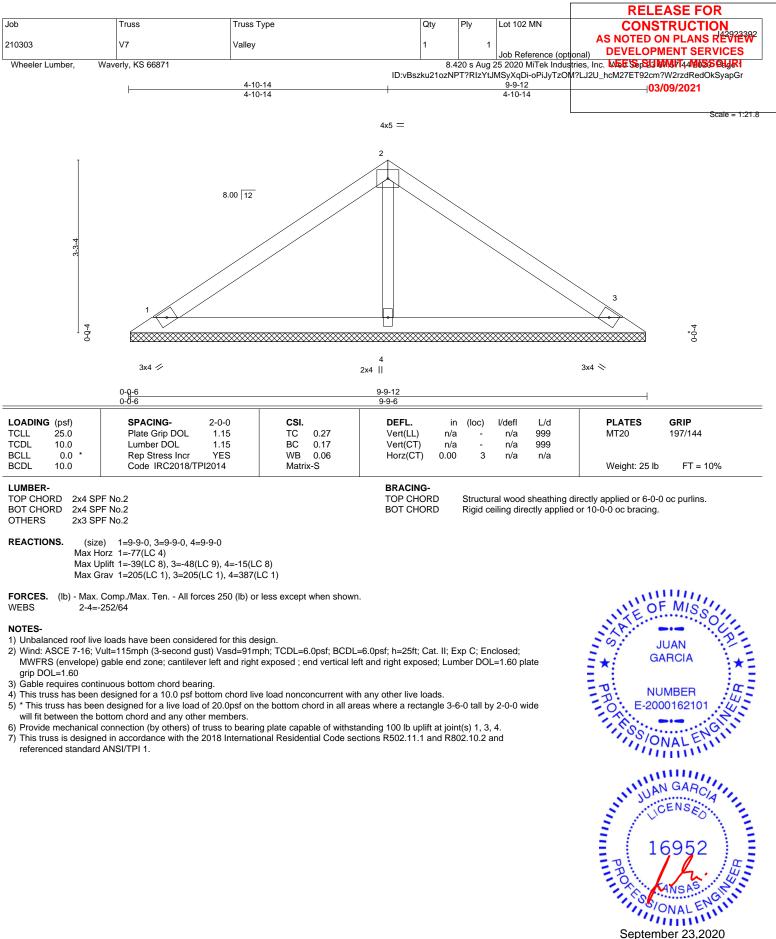
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


September 23,2020

				RELEASE FOR
Job	Truss	Truss Type	Qty Ply Lot 102 MN	CONSTRUCTION
210303	V5	Valley	1 1 Job Reference (op	AS NOTED ON PLANS REVIEW DEVELOPMENT SERVICES
Wheeler Lumber, W	averly, KS 66871		8.420 s Aug 25 2020 MiTek Indu ID:vBszku21ozNPT?RIzYtJMSyXqDi-KD9wl8yn	stries, Inc. MEESEPSIJ MMS/743M05S PugR1
		4-0-12	11-11-10 7-10-14	03/09/2021
		4-0-12	7-10-14	
		4x5		Scale = 1:32.9
		2		
	8.00	12		
	v 1		2x4 3	
	5-3-4			
		7		I
	8	2x4 =		
	7 6- 5- 10			4 4 7

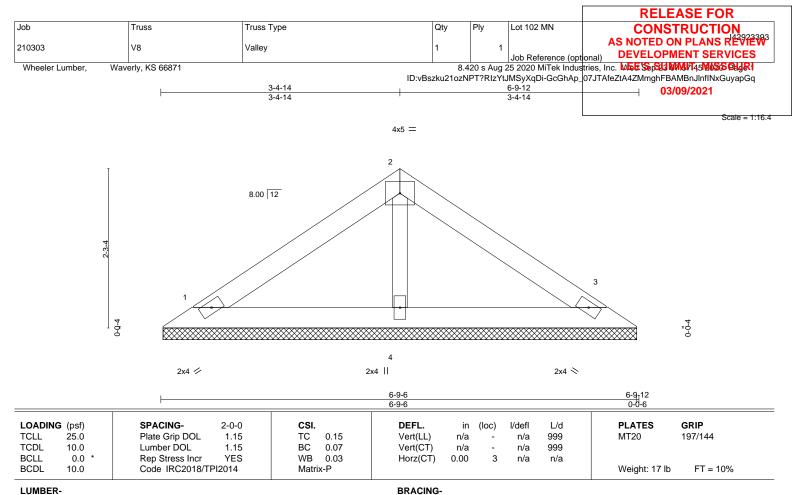
		6 2x4	5 3x4 2x4	
	L	4-0-12	11-11-10	1
Plate Offsets (X,Y) [8	3:0-3-8,Edge]	4-0-12	7-10-14	1
LOADING (psf)	SPACING- 2-0-	CSI.	DEFL. in (loc) l/defl L/d	PLATES GRIP
TCLL 25.0	Plate Grip DOL 1.1	5 TC 0.21	Vert(LL) n/a - n/a 999	MT20 197/144
TCDL 10.0 BCLL 0.0 *	Lumber DOL 1.1 Rep Stress Incr YE	S WB 0.06	Vert(CT) n/a - n/a 999 Horz(CT) 0.02 4 n/a n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-S		Weight: 35 lb FT = 10%
LUMBER- TOP CHORD 2x4 SPF	No 2		BRACING- TOP CHORD Structural wood sheathing	directly applied or 6-0-0 oc purlins,
BOT CHORD 2x4 SPF	No.2 *Except*		except end verticals.	
WEBS 2x3 SPF			BOT CHORD Rigid ceiling directly applie	ed of 10-0-0 oc bracing.
OTHERS 2x3 SPF	No.2			
	rings 11-11-4. rz 8=-131(LC 4)			
Max Upl	ift All uplift 100 lb or less at je	bint(s) 4, 7 except 8=-106(LC 9),		OF MISSIN
Max Gra	All reactions 250 lb or less	at joint(s) 8, 4, 6 except 7=313(l	_C 15), 5=413(LC 16)	LE OF MISSO
FORCES. (Ib) - Max. C BOT CHORD 2-7=-20		0 (lb) or less except when showr	l.	
WEBS 3-5=-3	17/201			GARCIA
NOTES-				E^
2) Wind: ASCE 7-16; Vu		sd=91mph; TCDL=6.0psf; BCDL	=6.0psf; h=25ft; Cat. II; Exp C; Enclosed;	NUMBER
MWFRS (envelope) g grip DOL=1.60	able end zone; cantilever left a	ind right exposed ; end vertical le	ft and right exposed; Lumber DOL=1.60 plate	E-2000162101
	uous bottom chord bearing.	chord live load nonconcurrent wit	h any other live loads	SS ENGIN
5) * This truss has been		psf on the bottom chord in all are	eas where a rectangle 3-6-0 tall by 2-0-0 wide	THIN WALL
6) Bearing at joint(s) 7 co	onsiders parallel to grain value		formula. Building designer should verify	AMUUL.
capacity of bearing su 7) Provide mechanical of		o bearing plate capable of withst	anding 100 lb uplift at joint(s) 4, 7 except (jt=lb)	WAN GARCIN
8=106, 5=156. 8) Beveled plate or shim	required to provide full bearing	g surface with truss chord at joint	(5) 8	CENSE
	in accordance with the 2018 I		ctions R502.11.1 and R802.10.2 and	
referenced standard P	(NSI/TPTT.			16952
				16952
				Elon Mana Sta
				SOMAL ENGIN
				September 23,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


16023 Swingley Ridge Rd Chesterfield, MO 63017

September 23,2020

September 23,2020



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven tbuckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

BOT CHORD

LUMBER-

2x4 SPF No 2 TOP CHORD BOT CHORD 2x4 SPF No.2

OTHERS 2x3 SPF No.2

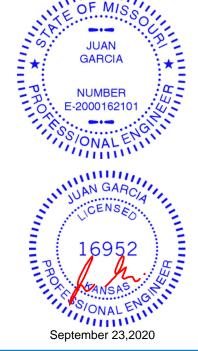
REACTIONS. 1=6-9-0, 3=6-9-0, 4=6-9-0 (size) Max Horz 1=-51(LC 4) Max Uplift 1=-33(LC 8), 3=-39(LC 9) Max Grav 1=148(LC 1), 3=148(LC 1), 4=230(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

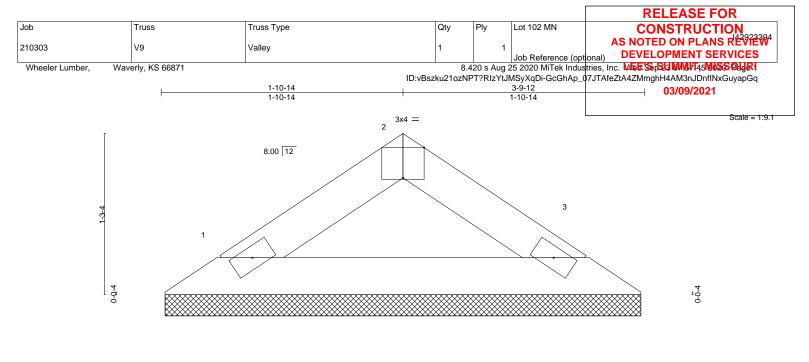

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



0

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

2x4 1/

2x4 📎

Structural wood sheathing directly applied or 3-9-12 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

<u>3-9-</u>12 0-0-6 3-9-6 3-9-6 Plate Offsets (X,Y)--[2:0-2-0,Edge] SPACING-PLATES GRIP LOADING (psf) 2-0-0 CSI. DEFL in (loc) l/defl L/d 25.0 TCLL Plate Grip DOL 1.15 тс 0.03 Vert(LL) n/a n/a 999 MT20 197/144 TCDL 10.0 Lumber DOL 1.15 BC 0.08 Vert(CT) n/a n/a 999 BCLL 0.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 3 n/a n/a Code IRC2018/TPI2014 FT = 10% BCDL 10.0 Matrix-F Weight: 8 lb BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2

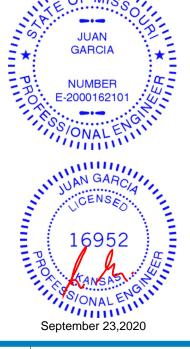
REACTIONS. 1=3-9-0, 3=3-9-0 (size) Max Horz 1=-25(LC 4) Max Uplift 1=-15(LC 8), 3=-15(LC 9) Max Grav 1=128(LC 1), 3=128(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

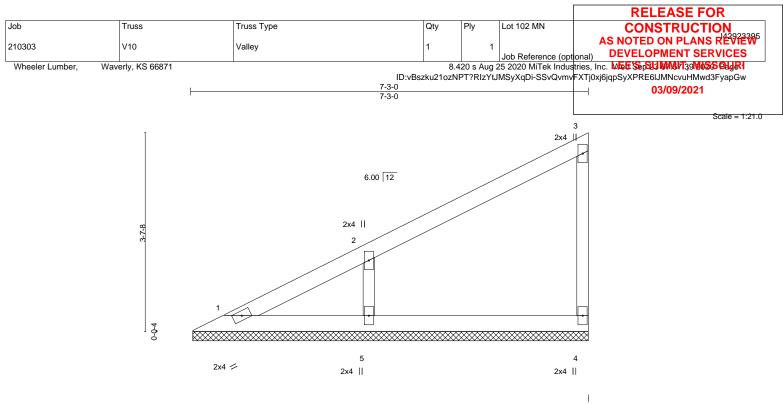
2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60


3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.


7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11111 MIS

0

BCLL 0.0 * Rep Stress Incr YES WB 0.05 Horz(CT) -0.00 4 n/a n/a BCDL 10.0 Code IRC2018/TPI2014 Matrix-P Weight: 20 lb Weight: 20 lb	197/144
	FT = 10%

BOT CHORD

LUMBER-

2x4 SPF No.2 TOP CHORD 2x4 SPF No.2 BOT CHORD 2x3 SPF No.2 WEBS OTHERS 2x3 SPF No.2

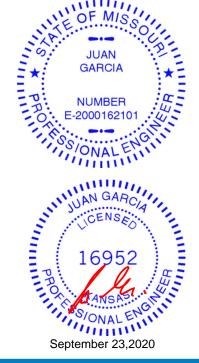
REACTIONS. (size) 1=7-2-8, 4=7-2-8, 5=7-2-8 Max Horz 1=136(LC 5)

Max Uplift 4=-26(LC 8), 5=-113(LC 8) Max Grav 1=82(LC 16), 4=141(LC 1), 5=378(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 2-5=-294/164WEBS

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

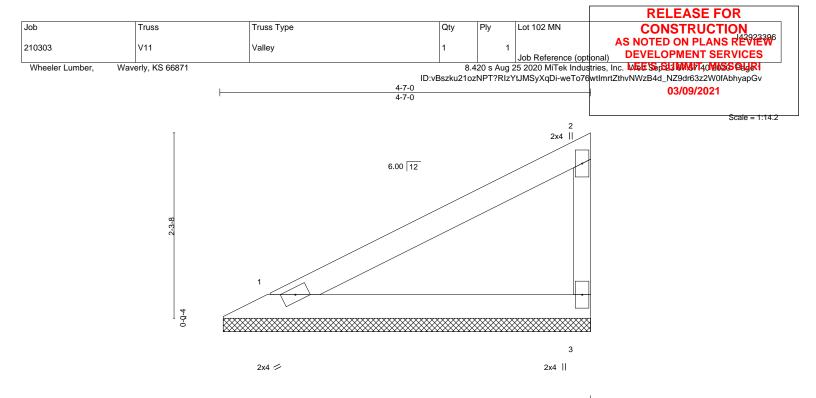

2) Gable requires continuous bottom chord bearing.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 5 = 113

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



Structural wood sheathing directly applied or 6-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc)	l/defl L/d	PLATES GRIP
CLL 25.0	Plate Grip DOL 1.15	TC 0.27	Vert(LL) n/a	-	n/a 999	MT20 197/144
CDL 10.0	Lumber DOL 1.15	BC 0.15	Vert(CT) n/a	-	n/a 999	
3CLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00	3	n/a n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-P				Weight: 12 lb FT = 10%

BOT CHORD

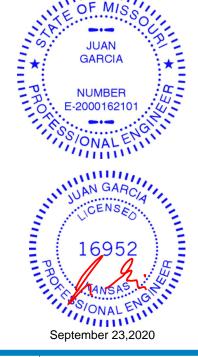
LUMBER-

TOP CHORD 2x4 SPF No 2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

REACTIONS. 1=4-6-8, 3=4-6-8 (size)

Max Horz 1=80(LC 5) Max Uplift 1=-22(LC 8), 3=-42(LC 8)

Max Grav 1=173(LC 1), 3=173(LC 1)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

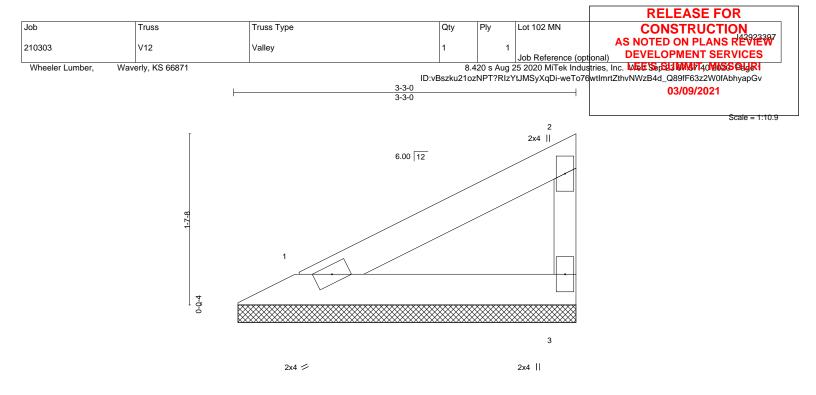
NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

1111


0

Structural wood sheathing directly applied or 4-7-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (loc) I/defl L/d	PLATES GRIP
TCLL 25.0	Plate Grip DOL 1.15	TC 0.11	Vert(LL) n/a - n/a 999	MT20 197/144
TCDL 10.0	Lumber DOL 1.15	BC 0.06	Vert(CT) n/a - n/a 999	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.00	Horz(CT) -0.00 3 n/a n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-P		Weight: 8 lb FT = 10%

BOT CHORD

LUMBER-

TOP CHORD 2x4 SPF No 2 BOT CHORD 2x4 SPF No.2 WEBS 2x3 SPF No.2

REACTIONS. 1=3-2-8, 3=3-2-8 (size) Max Horz 1=53(LC 5)

Max Uplift 1=-15(LC 8), 3=-28(LC 8) Max Grav 1=113(LC 1), 3=113(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

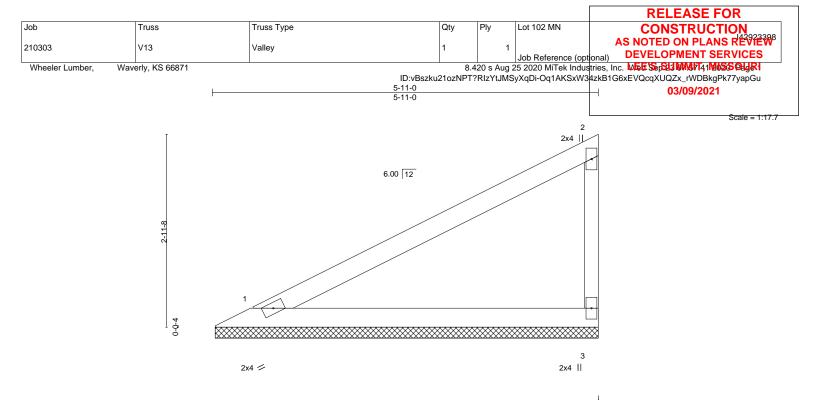
NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.

- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11 1111 MIS


0

Structural wood sheathing directly applied or 3-3-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	25.0	Plate Grip DOL	1.15	тс	0.52	Vert(LL)	n/a	-	n/a	999	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.28	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.00	3	n/a	n/a		
BCDL	10.0	Code IRC2018/TI	PI2014	Matri	x-P						Weight: 15 lb	FT = 10%

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x3 SPF No.2

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 5-11-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

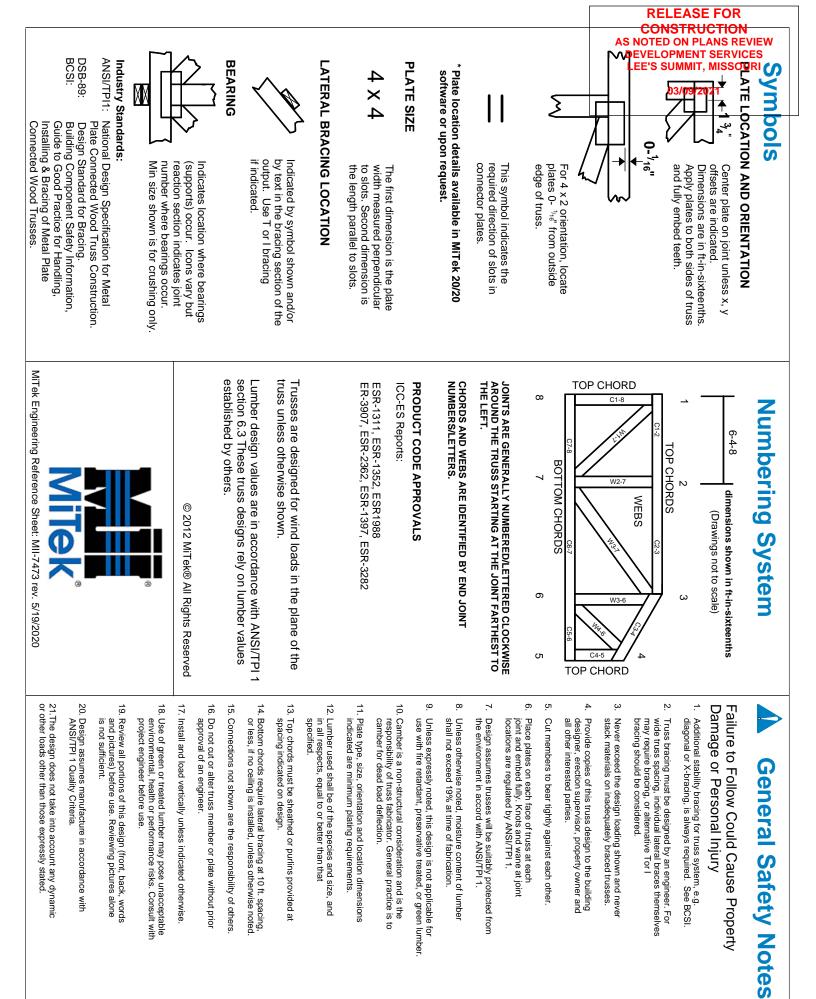
REACTIONS. (size) 1=5-10-8, 3=5-10-8 Max Horz 1=108(LC 5) Max Uplift 1=-30(LC 8), 3=-57(LC 8) Max Grav 1=233(LC 1), 3=233(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) Gable requires continuous bottom chord bearing.


- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

MIS

0

