

RE: 2648535 Summit/66 Woodside

Site Information:

Customer:SUMMIT CUSTOM HOMESProject Name:2648535Lot/Block:Model:Address:Subdivision:City:State:

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: N/A Roof Load: 45.0 psf Design Program: MiTek 20/20 8.2 Wind Speed: 115 mph Floor Load: N/A psf

This package includes 83 individual, dated Truss Design Drawings and 0 Additional Drawings.

	(12/2021 (12/2021 (12/2021 (12/2021 (12/2021
2 I41762448 A02 2/12/2021 22 I41762468 D05 2/ ⁻	/12/2021 /12/2021
	/12/2021
3 I41762449 A03 2/12/2021 23 I41762469 D06 2/ ⁻	
4 I41762450 A04 2/12/2021 24 I41762470 D07 2/ ²	40/0004
5 I41762451 A05 2/12/2021 25 I41762471 D08 2/ ²	/12/2021
6 I41762452 B01 2/12/2021 26 I41762472 D09 2/ ⁻	/12/2021
7 I41762453 B02 2/12/2021 27 I41762473 D10 2/ ⁻	/12/2021
8 I41762454 B03 2/12/2021 28 I41762474 D11 2/ ⁻	/12/2021
9 I41762455 C01 2/12/2021 29 I41762475 D12 2/ ⁻	/12/2021
10 I41762456 C02 2/12/2021 30 I41762476 D13 2/	/12/2021
11 I41762457 C03 2/12/2021 31 I41762477 D15 2/ ²	/12/2021
12 I41762458 C04 2/12/2021 32 I41762478 D16 2/ [.]	/12/2021
13 I41762459 C05 2/12/2021 33 I41762479 E01 2/ ⁻	/12/2021
14 I41762460 C06 2/12/2021 34 I41762480 E02 2/ ⁻	/12/2021
15 I41762461 C07 2/12/2021 35 I41762481 E03 2/ ⁻	/12/2021
16 I41762462 C08 2/12/2021 36 I41762482 E04 2/ ⁻	/12/2021
17 I41762463 C09 2/12/2021 37 I41762483 J01 2/ ⁻	/12/2021
18 I41762464 D01 2/12/2021 38 I41762484 J02 2/ ²	/12/2021
19 I41762465 D02 2/12/2021 39 I41762485 J03 2/ ²	/12/2021
20 I41762466 D03 2/12/2021 40 I41762486 J04 2/12/2021	/12/2021

The truss drawing(s) referenced above have been prepared by

MiTek USA, Inc under my direct supervision

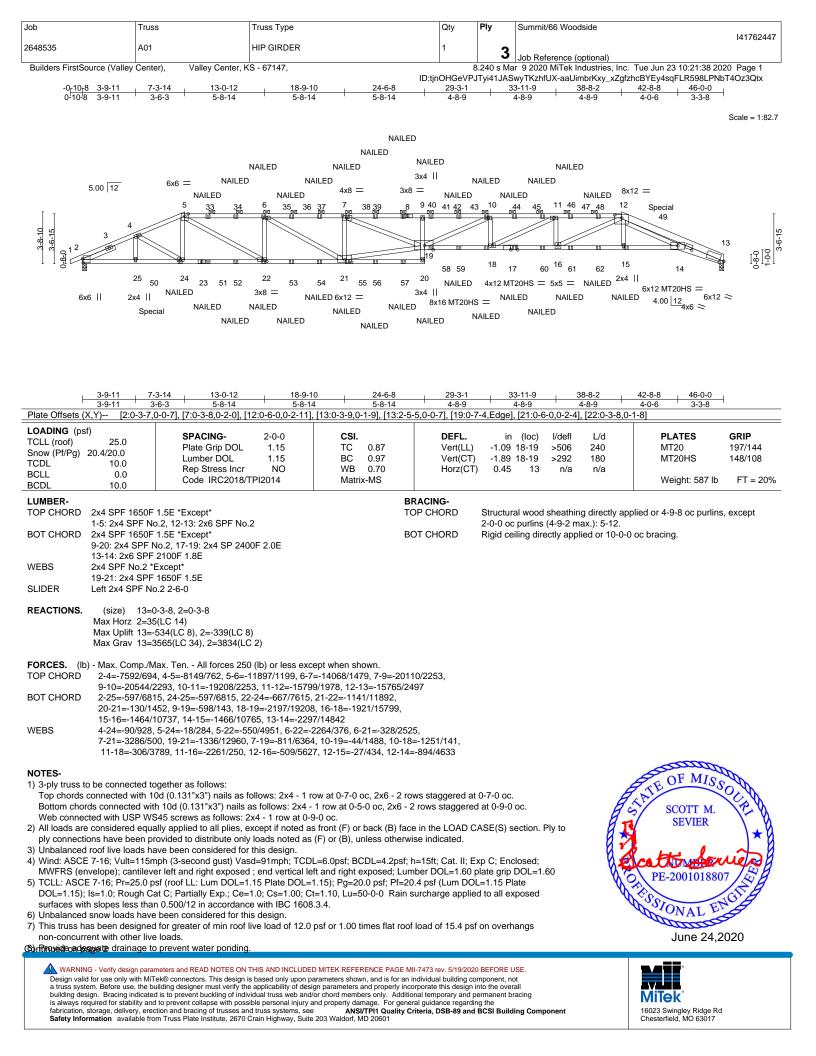
based on the parameters provided by Builders FirstSource (Valley Center).

Truss Design Engineer's Name: Sevier, Scott

My license renewal date for the state of Missouri is December 31, 2021. Missouri COA: 001193

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek. Any project specific information included is for MiTek customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Sevier, Scott


RE: 2648535 - Summit/66 Woodside

Site Information:

35
3

No.	Seal#	Truss Name	Date
41	l41762487	J05	2/12/2021
42	l41762488	J06	2/12/2021
43	l41762489	J07	2/12/2021
44	l41762490	J08	2/12/2021
45	l41762491	J09	2/12/2021
46	l41762492	J10	2/12/2021
47	l41762493	J11	2/12/2021
48	141762494	J12	2/12/2021
49	l41762495	J13	2/12/2021
50	l41762496	J14	2/12/2021
51	l41762497	J15	2/12/2021
52	l41762498	J16	2/12/2021
53	l41762499	J17	2/12/2021
54	l41762500	J18	2/12/2021
55	l41762501	J19	2/12/2021
56	141762502	J20	2/12/2021
57	141762503	J21	2/12/2021
58	141762504	J22	2/12/2021
59	141762505	J23	2/12/2021
60	141762506	J24	2/12/2021
61	141762507	J25	2/12/2021
62	141762508	J26	2/12/2021
63	141762509	J27	2/12/2021
64	l41762510	J28	2/12/2021
65	l41762511	J29	2/12/2021
66	141762512	J30	2/12/2021
67	l41762513	J31	2/12/2021
68	141762514	JD01	2/12/2021
69	141762515	JD02	2/12/2021
70	l41762516	JD03	2/12/2021
71	141762517	LG1	2/12/2021
72	l41762518	LG2	2/12/2021
73	141762519	LG3	2/12/2021
74	141762520	LG4	2/12/2021
75	141762521	LG5	2/12/2021
76	141762522	LG6	2/12/2021
77	141762523	LG7	2/12/2021
78	141762524	R1	2/12/2021
79	141762525	V01	2/12/2021
80	141762526	V02	2/12/2021
81	141762527	V03	2/12/2021
82	141762528	V04	2/12/2021
83	141762529	V05	2/12/2021

MiTek USA, Inc. 16023 Swingley Ridge Rd Chesterfield, MO 63017 314-434-1200

Job	Truss	Truss Type	Qty	Ply	Summit/66 Woodside
2648535	A01	HIP GIRDER	1		141762447
2040535			1	3	Job Reference (optional)

Builders FirstSource (Valley Center), Valley Center, KS - 67147,

8.240 s Mar 9 2020 MiTek Industries, Inc. Tue Jun 23 10:21:38 2020 Page 2 ID:tjnOHGeVPJTyi41JASwyTKzhfUX-aaUimbrKxy_xZgfzhcBYEy4sqFLR598LPNbT4Oz3Qtx

NOTES-

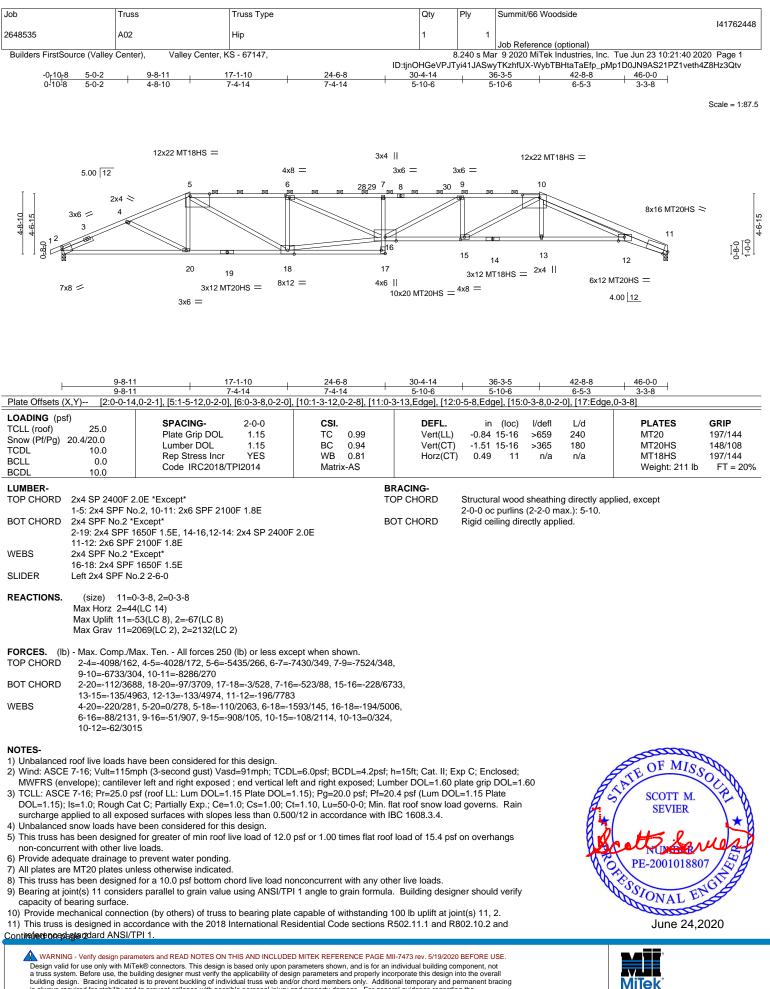
9) All plates are MT20 plates unless otherwise indicated.

- 10) All plates are 3x6 MT20 unless otherwise indicated.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

12) Bearing at joint(s) 13 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 13=534, 2=339.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 16) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 17) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 285 lb down and 270 lb up at 41-0-0 on top chord, and 488 lb down and 62 lb up at 5-0-0 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard


- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
 - Vert: 1-5=-51, 5-12=-61, 12-13=-51, 20-29=-20, 14-19=-20, 14-26=-20

Concentrated Loads (lb)

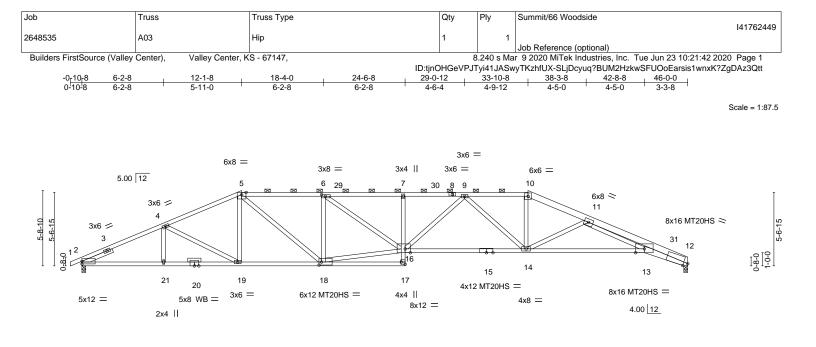
Vert: 17=-79(F) 24=-51(F) 22=-51(F) 6=-146(F) 7=-146(F) 10=-118(F) 18=-79(F) 15=-8(F) 33=-146(F) 34=-146(F) 36=-146(F) 37=-146(F) 39=-146(F) 39=-146(F) 40=-146(F) 41=-118(F) 43=-118(F) 44=-118(F) 46=-118(F) 47=-118(F) 49=-254(F) 50=-488(F) 51=-51(F) 52=-51(F) 53=-51(F) 55=-51(F) 55=-51

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Design valid for use only with MITeK connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Summit/66 Woodside		
					141762448		
2648535	A02	Hip	1	1			
					Job Reference (optional)		
Builders FirstSource (Valley Center), Valley Center, KS - 67147,			8.240 s Mar 9 2020 MiTek Industries, Inc. Tue Jun 23 10:21:40 2020 Page 2				
ID:tjnOHGeVPJTyi41JASwyTKzhfUX-WybTBHtaTaEfp_pMp1D0JN9AS21PZ1veth4z							


NOTES-

12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

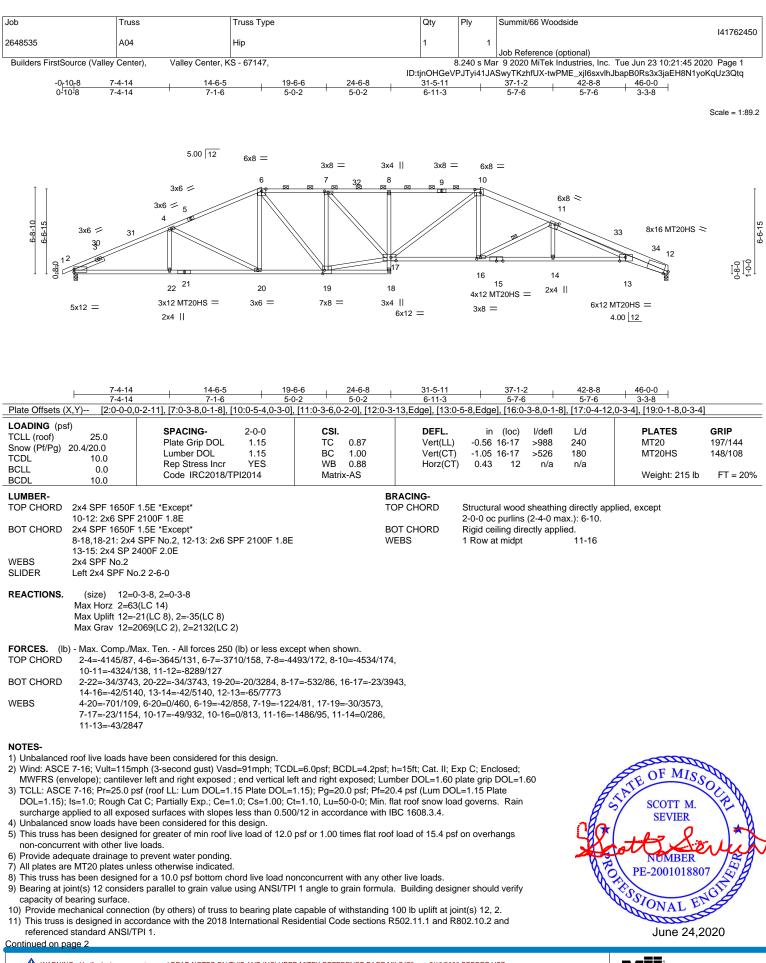
F	6-2-8 6-2-8	12-1-8	<u>18-4-0</u> 6-2-8	24-6-8		<u>33-10-8</u> 9-4-0		42- 8-1		46-0-0	
Plate Offsets (2		0-2-7], [6:0-3-8,0-1-8], [1					2-4,0-2-12]	0-1	0-0	3-3-8	
LOADING (ps	· · · ·				<u> </u>		· •				
TCLL (roof)	25.0	SPACING-	2-0-0	CSI.		DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
Snow (Pf/Pg)		Plate Grip DOL	1.15		.74	Vert(LL)	-0.65 14-16	>843	240	MT20 MT20HS	197/144
TCDL	10.0	Lumber DOL Rep Stress Incr	1.15 YES		.00 .85	Vert(CT) Horz(CT)	-1.27 14-16 0.44 12	>435 n/a	180 n/a	WI 20H5	148/108
BCLL	0.0	Code IRC2018/T		Matrix-A		11012(01)	0.44 12	n/a	n/a	Weight: 212 lb	FT = 20%
BCDL	10.0		12011		.0					Wolght: 212 lb	
LUMBER-					В	RACING-					
TOP CHORD	2x4 SPF 1650F				Т		Structural wood			oplied, except	
		2100F 1.8E, 8-10: 2x4 S	SPF No.2				2-0-0 oc purlins				
BOT CHORD	2x4 SP 2400F 2				В	OT CHORD	Rigid ceiling dire	ectly applie	ed.		
	,	SPF No.2, 15-16: 2x4 S	PF 1650F 1.5E								
WEBS	12-13: 2x6 SPF 2x4 SPF No.2 *										
WEB3	16-18: 2x4 SPF										
OTHERS	2x4 SPF No.2	10301 1.32									
SLIDER	Left 2x4 SPF No	o.2 2-6-0									
REACTIONS.		0-3-8, 2=0-3-8									
	Max Horz 2=54										
		·37(LC 8), 2=-51(LC 8)									
	Max Grav 12=2	2069(LC 2), 2=2132(LC 2	2)								
BOT CHORD WEBS	2-21=-67/373 ⁻ 14-16=-137/5 ⁻ 4-19=-475/95,	58, 10-11=-4784/161, 11 1, 19-21=-67/3731, 18-19 166, 13-14=-114/5407, 1 5-19=0/367, 5-18=-66/1 3, 9-16=-5/661, 9-14=-12	9=-62/3505, 17- 2-13=-106/8157 311, 6-18=-141	, 8/114, 16-18=-!	93/4162,						
 Wind: ASCE MWFRS (er TCLL: ASCE DOL=1.15); surcharge a Unbalanced This truss ha non-concurr Provide ade All plates arr This truss ha Bearing at ja capacity of t Provide me 	E 7-16; Vult=115n ivelope); cantileve E 7-16; Pr=25.0 p Jls=1.0; Rough C pplied to all expo snow loads have as been designed ent with other live quate drainage to as been designed int(s) 12 conside pearing surface.	ave been considered for nph (3-second gust) Vas er left and right exposed sis (roof LL: Lum DOL=1. at C; Partially Exp.; Ce=' sed surfaces with slopes a been considered for this d for greater of min roof li e loads. o prevent water ponding. less otherwise indicated d for a 10.0 psf bottom ch rrs parallel to grain value tion (by others) of truss t	d=91mph; TCDl ; end vertical le 15 Plate DOL=' l.0; Cs=1.0; Cf less than 0.500 s design. ve load of 12.0	ft and right exp I.15); Pg=20.0 (=1.10, Lu=50-()/12 in accordance psf or 1.00 time (nconcurrent with angle to grain	osed; Lur psf; Pf=20 0-0; Min. f nce with I es flat roo th any oth in formula	nber DOL=1.60 pl 0.4 psf (Lum DOL lat roof snow load BC 1608.3.4. f load of 15.4 psf her live loads. building design	ate grip DOL=1. =1.15 Plate I governs. Rain on overhangs er should verify	60		SCOTT M. SEVIER DE-200101880 PE-200101880 PE-200101880 June 24,2	
Continued on page 2											
Design valio	d for use only with MiT	meters and READ NOTES ON T Fek® connectors. This design is uilding designer must verify the	based only upon pa applicability of desig	arameters shown, a gn parameters and	and is for an	individual building con	nponent, not				

16023 Swingley Ridge Rd Chesterfield, MO 63017

Design valid or use only with Mill New Connectors. This design is based only upon parameters shown, and is for an individual building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Store and the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer must verify the applicability of design parameters and properly incorporate this design into the overall building designer. Start design into the overall design at the system set of a stability of the stability o

ſ	Job	Truss	Truss Type	Qty	Ply	Summit/66 Woodside			
						141762449			
	2648535	A03	Hip	1	1				
						Job Reference (optional)			
	Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	8.240 s Mar 9 2020 MiTek Industries, Inc. Tue Jun 23 10:21:42 2020 Page 2					
	ID:tjnOHGeVPJTyi41JASwyTKzhfUX-SLjDcyuq?BUM2HzkwSFUOoEarsis1wnxK?ZgDAz3Qtt								

NOTES-


11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

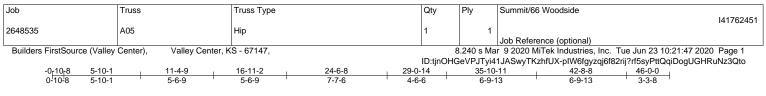
13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

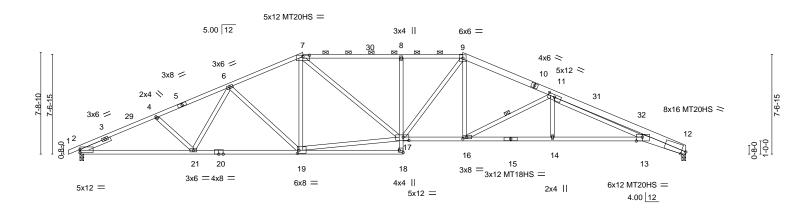
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

MiTek[®] 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Summit/66 Woodside		
					141762450		
2648535	A04	Hip	1	1			
					Job Reference (optional)		
Builders FirstSource (Valley	S - 67147,	8.240 s Mar 9 2020 MiTek Industries, Inc. Tue Jun 23 10:21:45 2020 Page 2					
ID:tjnOHGeVPJTyi41JASwyTKzhfUX-twPME_xjl6sxvlhJbapB0Rs3x3jaEH8N1yoKqUz3Qtc							


NOTES-

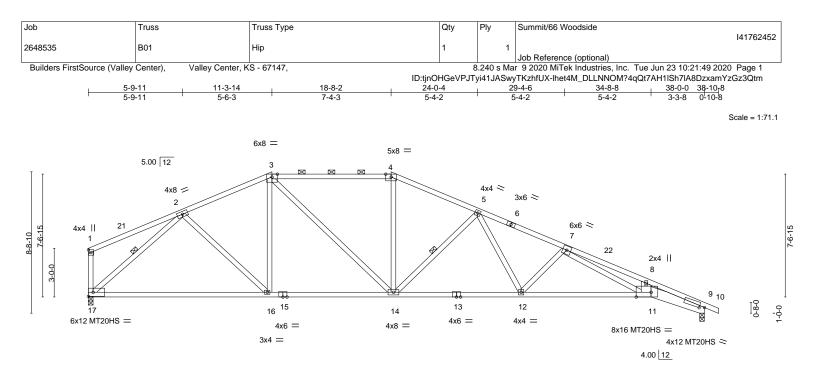
12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

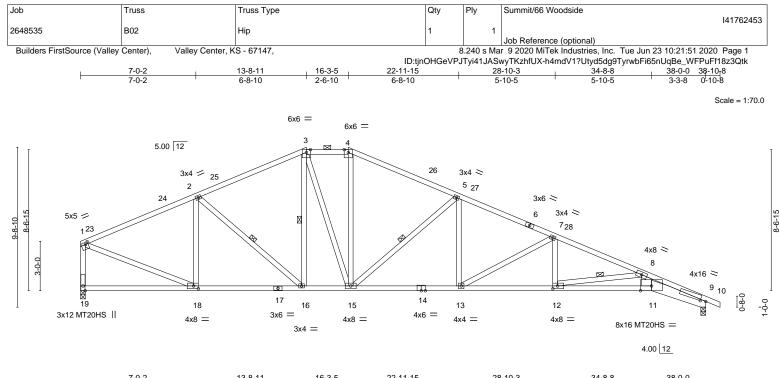
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Scale = 1:87.5

F	8-7-5	16-11-2	24-6-8	29-0-14	35-10-11		2-8-8	46-0-0			
Plate Offsets (8-7-5 X Y) [2·0-0-0 (8-3-13 D-2-11], [7:0-6-0,0-1-5], [11:0-5-14,0-2-4	7-7-6 1 [12:0-3-13 Edge] [13:0	4-6-6 0-5-8 Edge] [16:(6-9-13)-3-8 ()-1-8] [17:(-9-13 [18·Edae	<u>3-3-8</u> - 0-3-8] [19 [.] 0-1-8 0-2-1]	21		
LOADING (ps];[1210 0 10;20g0];[101				110.2030				
TCLL (roof) Snow (Pf/Pg) TCDL	25.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.85 BC 0.95	DEFL. Vert(LL) Vert(CT)	in (loc) -0.52 16-17 -0.97 13-14	>999 >571	L/d 240 180	PLATES MT20 MT20HS	GRIP 197/144 148/108		
BCLL BCDL	0.0 10.0	Rep Stress Incr YES Code IRC2018/TPI2014	WB 0.74 Matrix-AS	Horz(CT)	0.43 12	n/a	n/a	MT18HS Weight: 220 lb	197/144 FT = 20%		
		0.2, 9-10: 2x6 SPF No.2, 10-12: 2x6 SPF	T F 2100F 1.8E	RACING-	Structural wood 2-0-0 oc purlins	(2-2-0 max.): 7-9.	plied, except			
	BOT CHORD 2x4 SPF No.2 *Except* BOT CHORD Rigid ceiling directly applied. 2-20,15-17: 2x4 SPF 1650F 1.5E, 12-13: 2x6 SPF 2100F 1.8E WEBS 1 Row at midpt 11-16 13-15: 2x4 SP 2400F 2.0E X X X X X										
WEBS SLIDER	WEBS 2x4 SPF No.2										
REACTIONS.	Max Horz 2=72 Max Uplift 2=-3	3-8, 12=0-3-8 2(LC 14) 3(LC 12), 12=-26(LC 13) 32(LC 2), 12=2069(LC 2)									
TOP CHORD	2-4=-4140/67, 9-11=-3964/10	lax. Ten All forces 250 (lb) or less exc 4-6=-3963/62, 6-7=-3388/106, 7-8=-380)1, 11-12=-8199/106	00/130, 8-9=-3801/125,								
BOT CHORD		4, 19-21=-14/3494, 8-17=-623/94, 16-17 , 12-13=-30/7691	=0/3536, 14-16=0/4888,								
WEBS		-19=-728/107, 7-19=-10/353, 17-19=-2/2 9-16=-2/869, 11-16=-1615/116, 11-14=									
 Wind: ASCE MWFRS (en) TCLL: ASC DOL=1.15); surcharge a Unbalanced This truss h Provide ade All plates ar This truss h Bearing at j capacity of Provide m This truss 	E 7-16; Vult=115m nvelope); cantileve E 7-16; Pr=25.0 p ; Is=1.0; Rough Ca applied to all expos d snow loads have has been designed rent with other live equate drainage to rent MT20 plates un has been designed oint(s) 12 conside bearing surface. echanical connect is designed in acc	o prevent water ponding. less otherwise indicated. I for a 10.0 psf bottom chord live load no rs parallel to grain value using ANSI/TP tion (by others) of truss to bearing plate cordance with the 2018 International Res	ft and right exposed; Lur I.15); Pg=20.0 psf; Pf=20 =1.10, Lu=50-0-0; Min. f)/12 in accordance with I psf or 1.00 times flat roo nconcurrent with any oth I angle to grain formula capable of withstanding	mber DOL=1.60 p 0.4 psf (Lum DOL flat roof snow load IBC 1608.3.4. If load of 15.4 psf her live loads. a. Building desigr 100 lb uplift at joi	late grip DOL=1. =1.15 Plate d governs. Rain on overhangs her should verify nt(s) 2, 12.	60	C	STATE OF MISS SCOTT M. SEVIER NOMBER PE-200101880 PE-200101880	wit		
12) This truss		PI 1. hat a minimum of 7/16" structural wood s y to the bottom chord.	heathing be applied dire	ectly to the top ch	ord and 1/2" gyps	sum		June 24,2	.020		
WARNIN Design vali a truss syst building de- is always re fabrication,	NG - Verify design parar id for use only with MiT tem. Before use, the bu sign. Bracing indicated equired for stability and storage, delivery, erec	neters and READ NOTES ON THIS AND INCLUDED ek® connectors. This design is based only upon pr juliding designer must verify the applicability of desis d is to prevent buckling of individual truss web and/ to prevent collapse with possible personal injury a tion and bracing of trusses and truss systems, see m Truss Plate Institute, 2670 Crain Highway, Suite	arameters shown, and is for an gn parameters and properly inc or chord members only. Additi nd property damage. For gene ANS/TPI1 Quality C	individual building cor corporate this design in onal temporary and pe	mponent, not nto the overall ermanent bracing g the	ponent		NITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017			


Job	Truss	Truss Type	Qty	Ply	Summit/66 Woodside		
					141762451		
2648535	A05	Hip	1	1			
					Job Reference (optional)		
Builders FirstSource (Valley	S - 67147,	8.240 s Mar 9 2020 MiTek Industries, Inc. Tue Jun 23 10:21:48 2020 Page 2					
ID:tjnOHGeVPJTyi41JASwyTKzhfUX-HV4Ut0zbb1EWmCQuHiMue3UadHm3Rg2pjw0?Qpz3Qt							

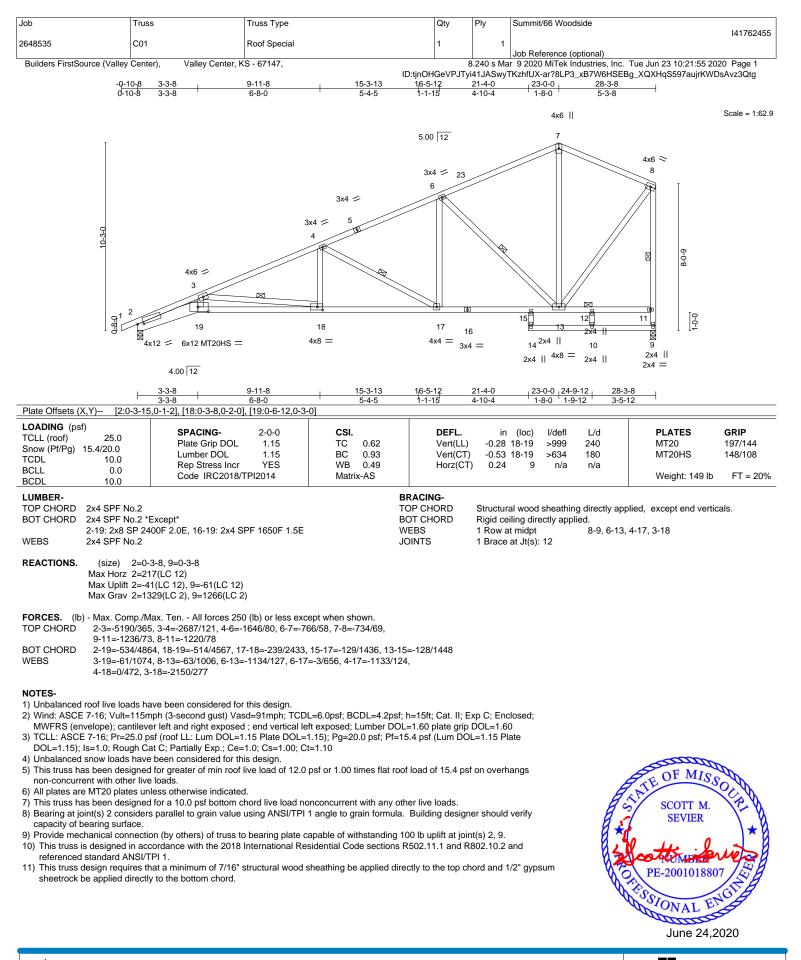
NOTES-


13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

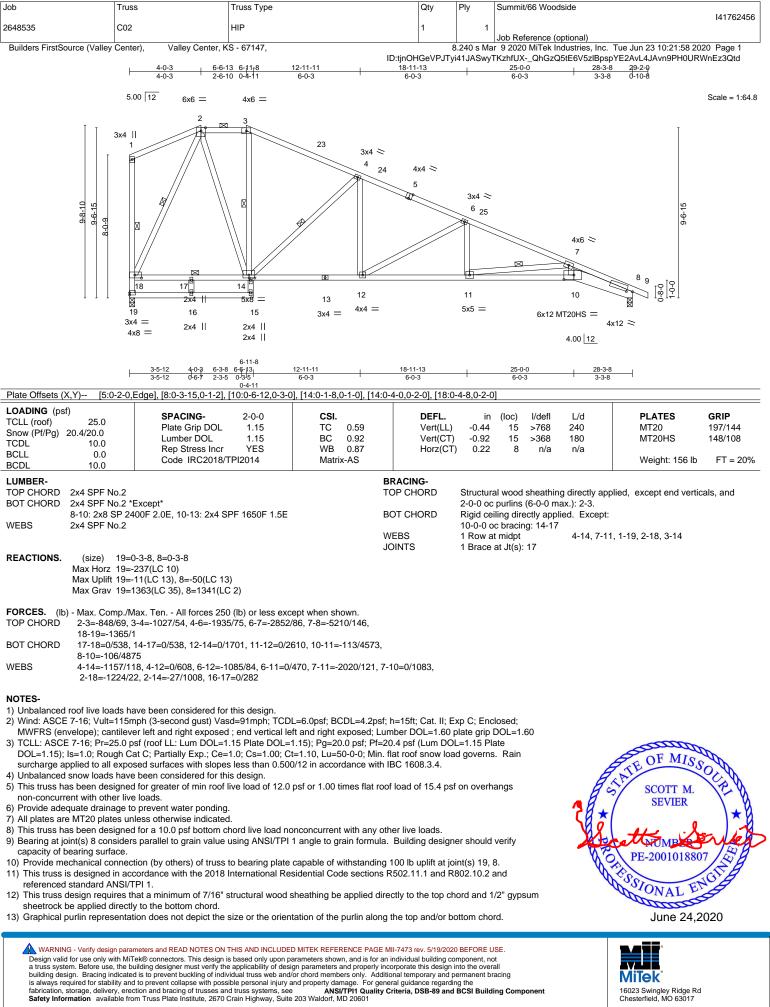
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



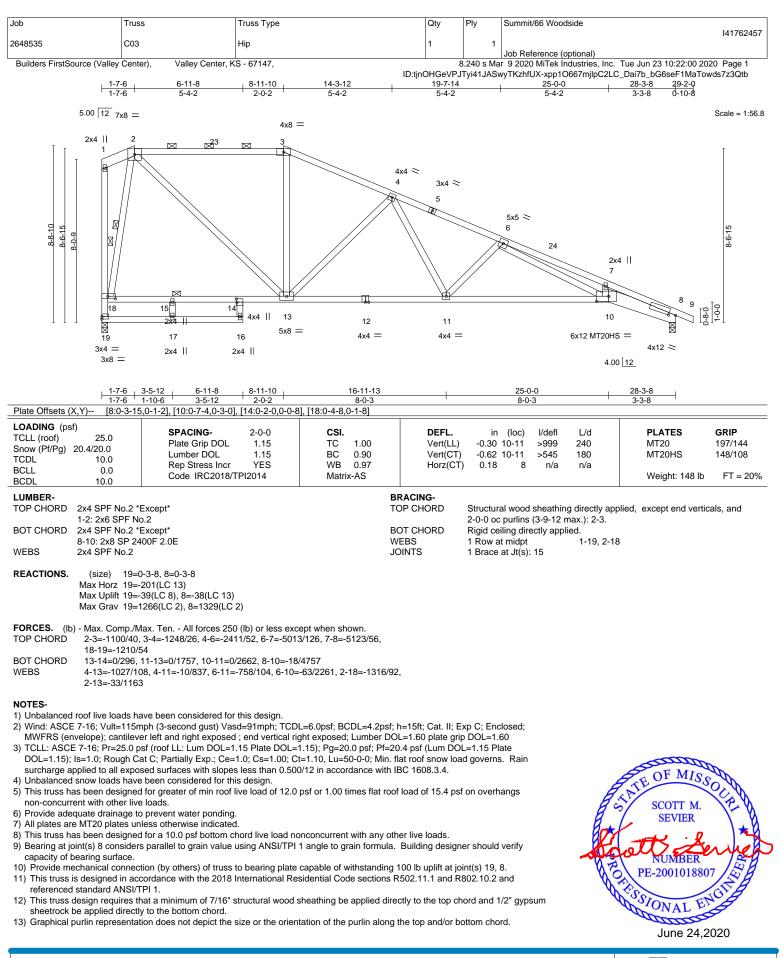
	5-9-11 5-9-11	<u> </u>		<u>18-8-2</u> 7-4-3		26-8-5 8-0-3		34-8-8 8-0-3	38-0-0		
Plate Offsets (,0-1-6], [11:0-11-0,Edge]				000			000		
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	25.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TF	2-0-0 1.15 1.15 YES Pl2014	CSI. TC BC WB Matri	0.84 0.86 0.68 x-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.38 11-12 -0.75 11-12 0.24 9	l/defl L/d >999 240 >606 180 n/a n/a	PLATES MT20 MT20HS Weight: 177 lb	GRIP 197/144 148/108 FT = 20%	
LUMBER- TOP CHORD BOT CHORD WEBS	2x4 SPF 1650F	650F 1.5E, 6-10: 2x4 SP 2 1.5E *Except* 100F 2.0E, 13-15: 2x4 SP Except*			т В	RACING- OP CHORD OT CHORD /EBS		(2-10-4 max.): 3-4. ectly applied.		cals, and	
REACTIONS.	REACTIONS. (size) 17=0-3-8, 9=0-3-8 Max Horz 17=-102(LC 8) Max Uplift 17=-5(LC 12), 9=-55(LC 13) Max Grav 17=1709(LC 35), 9=1765(LC 2)										
FORCES. (IIL TOP CHORD BOT CHORD WEBS	FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2093/69, 3-4=-2236/87, 4-5=-2483/77, 5-7=-3696/102, 7-8=-6864/206, 8-9=-7112/130, 1-17=-260/32 BOT CHORD 16-17=0/1608, 14-16=0/1877, 12-14=0/2910, 11-12=-30/3917, 9-11=-84/6601										
 Wind: ASCI MWFRS (ei 3) TCLL: ASCC DOL=1.15); surcharge a Unbalancec This truss h non-concur Provide ade All plates ai This truss h Bearing at j capacity of Provide m Provide m This truss referencec This truss sheetrock 	E 7-16; Vult=115n nvelope); cantileve E 7-16; Pr=25.0 p ; Is=1.0; Rough G applied to all expo d snow loads have mas been designed rent with other live equate drainage to re MT20 plates un as been designed oint(s) 9 considers bearing surface. is designed in act d standard ANSI/T design requires tt be applied direct!	o prevent water ponding. less otherwise indicated. I for a 10.0 psf bottom ch s parallel to grain value us tion (by others) of truss to cordance with the 2018 In	I=91mph; TCD end vertical le 15 Plate DOL= 0; Cs=1.00; C less than 0.500 design. ve load of 12.0 ord live load no sing ANSI/TPI b bearing plate tternational Re ructural wood	oft and right of 1.15); Pg=2(t=1.10, Lu=4 0/12 in acco psf or 1.00 f psf or 1.00 f capable of the sidential Co sheathing be	exposed; Lur 0.0 psf; Pf=2 50-0-0; Min. 1 rdance with I times flat roo t with any oth rain formula. withstanding de sections f a applied dire	nber DOL=1.60 p 0.4 psf (Lum DOI lat roof snow loa BC 1608.3.4. f load of 15.4 psf her live loads. Building design 100 lb uplift at jo 8502.11.1 and R ctly to the top ch	alate grip DOL=1 =1.15 Plate d governs. Rain on overhangs er should verify int(s) 17, 9. 302.10.2 and ord and 1/2" gyp		STATE OF MISS SCOTT M. SEVIER PE-200101880 PE-200101880 June 24,2		
Design vali a truss sys building de is always re fabrication,	id for use only with MiT tem. Before use, the bi sign. Bracing indicate equired for stability and storage, delivery, ered	meters and READ NOTES ON Th 'ek® connectors. This design is in uliding designer must verify the a d is to prevent buckling of indivic to prevent collapse with possib- ction and bracing of trusses and rm Truss Plate Institute, 2670 Cr	based only upon p applicability of des lual truss web and le personal injury a truss systems, see	arameters show ign parameters /or chord memb and property da e ANS	vn, and is for an and properly inc ers only. Additi mage. For gene I/TPI1 Quality (individual building co orporate this design i onal temporary and p	mponent, not nto the overall ermanent bracing ng the	ponent	NITEK° 16023 Swingley Ridge Ro Chesterfield, MO 63017	I	


	7-0-		13-8-11	16-3-5		22-11-15		28-10-3		34-8-8	38-0-0	
	7-0-		6-8-10	2-6-10	0.0.01	6-8-10		5-10-5	1	5-10-5	3-3-8	
Plate Offsets (X	(,Y) [1:0-2-0,0	0-1-8], [9:0-3-15,0-0-12], [12:0-3-8,0-2-0)], [18:0-3-8 	,0-2-0]						1	
LOADING (psf TCLL (roof) Snow (Pf/Pg) 2 TCDL BCLL	25.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI. TC BC WB	0.79 0.73 0.88		DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.33 11-12 -0.62 11-12 0.22 9	l/defl >999 >734 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS	GRIP 197/144 148/108
BCDL	10.0	Code IRC2018/	TPI2014	Matr	ix-AS						Weight: 192 lb	FT = 20%
LUMBER-						BRACIN	G-					
TOP CHORD	2x4 SPF No.2 *	00F 2.0E, 11-14: 2x4 5 Except*	P 2400F 2.0E			TOP CHO BOT CHO WEBS	ORD	Structural wood 2-0-0 oc purlins Rigid ceiling di 1 Row at midpt	s (3-8-11 r ectly app	max.): 3-4. lied.	blied, except end vertio	als, and
REACTIONS.	Max Horz 19=- Max Uplift 19=-	-3-8, 9=0-3-8 108(LC 13) 18(LC 12), 9=-63(LC 1 830(LC 35), 9=1765(L										
FORCES. (lb) TOP CHORD	1-2=-2158/37,	ax. Ten All forces 25 2-3=-2156/89, 3-4=-20 9, 8-9=-7139/196, 1-19:	08/109, 4-5=-22									
BOT CHORD		15-16=0/1883, 13-15=		33/3928, 11	1-12=-156/6	6064,						
WEBS	2-18=-595/60,	3-15=-61/562, 4-15=-1 -12=-2279/124, 8-11=(,	,	=0/667, 7-1	3=-1154/8	38,					
 2) Wind: ASCE MWFRS (en 3) TCLL: ASCE DOL=1.15); surcharge at 4) Unbalanced 5) This truss ha non-concurred 6) Provide adeed 7) All plates are 8) This truss ha 9) Bearing at jo capacity of b 10) Provide mee 11) This truss is referenced 12) This truss of sheetrock b 	7-16; Vult=115m velope); cantileve 7-16; PT=25.0 p Is=1.0; Rough Ca opplied to all expos snow loads have as been designed ent with other live quate drainage to as been designed int(s) 9 considers bearing surface. cchanical connect s designed in acc standard ANSI/T design requires th be applied directly	prevent water ponding less otherwise indicate for a 10.0 psf bottom of s parallel to grain value tion (by others) of truss cordance with the 2018	sd=91mph; TCD d; end vertical le 1.15 Plate DOL= e1.0; Cs=1.00; C s less than 0.500 iis design. live load of 12.0 g. d. hord live load nd using ANSI/TPI to bearing plate International Re structural wood	ft and right 1.15); Pg=2 t=1.10, Lu= 0/12 in accc psf or 1.00 pnconcurrer 1 angle to g capable of sidential Cc sheathing b	exposed; L 0.0 psf; Pf= 50-0-0; Min ordance with times flat ro twith any o grain formul withstandin ode sections e applied d	umber DC 20.4 psf (. flat roof b IBC 160 bof load o bther live l a. Buildir g 100 lb u s R502.11 irectly to t	DL=1.60 pl Lum DOL: snow load 8.3.4. f 15.4 psf of loads. g designe uplift at joir .1 and R8 he top cho	ate grip DOL=1 =1.15 Plate I governs. Rair on overhangs r should verify nt(s) 19, 9. 02.10.2 and ord and 1/2" gyp			PE-200101880 June 24,2	
Design valid a truss syste building desi is always ree fabrication, s	I for use only with MiT em. Before use, the build ign. Bracing indicated quired for stability and storage, delivery, erect	neters and READ NOTES ON ek® connectors. This design illding designer must verify th 1 is to prevent buckling of ind to prevent collapse with pos tion and bracing of trusses a m Truss Plate Institute, 2670	is based only upon p e applicability of des vidual truss web and sible personal injury a nd truss systems, see	arameters sho ign parameters /or chord memi and property da e ANS	wn, and is for a and properly bers only. Add amage. For ge SI/TPI1 Quality	an individual incorporate t ditional temp eneral guidar	building com his design in orary and pe nce regarding	ponent, not to the overall rmanent bracing	ponent		NITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017	

June 24,2020

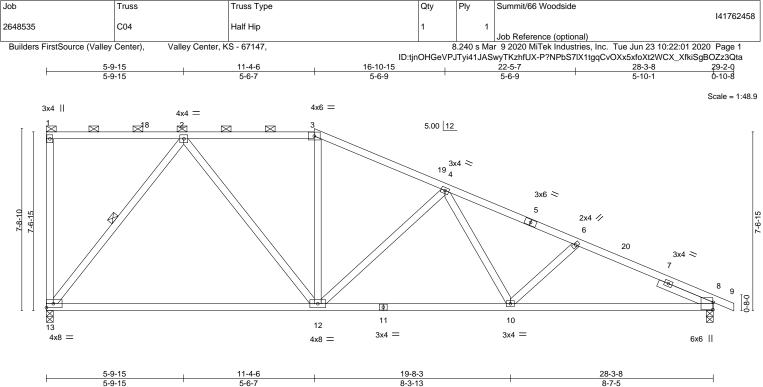


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



ig Nitek Component 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



16023 Swingley Ridge Rd Chesterfield, MO 63017

MITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

5-9-	10 0-0-7	0-3-13		6-7-5
Plate Offsets (X,Y) [8:0-	3-11,0-0-3]			
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. DEF TC 0.55 Vert BC 0.92 Vert WB 0.78 Horz Matrix-AS	(LL) -0.43 12-13 >780 240	PLATES GRIP MT20 197/144 Weight: 125 lb FT = 20%
LUMBER-		BRACING-		
TOP CHORD 2x4 SPF No	0.2	TOP CHORD	Structural wood sheathing directl	y applied, except end verticals, and
BOT CHORD 2x4 SPF No	0.2		2-0-0 oc purlins (4-11-13 max.): "	1-3.
WEBS 2x4 SPF No	0.2	BOT CHORD	Rigid ceiling directly applied.	
SLIDER Right 2x4 S	PF No.2 2-6-0	WEBS	1 Row at midpt 2-13	

REACTIONS. (size) 13=0-3-8, 8=0-3-8 Max Horz 13=-221(LC 10) Max Uplift 13=-67(LC 8), 8=-47(LC 13) Max Grav 13=1266(LC 2), 8=1329(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1217/78, 3-4=-1393/68, 4-6=-2115/90, 6-8=-2329/100

BOT CHORD 12-13=0/796. 10-12=0/1712. 8-10=-40/2100

WEBS 2-13=-1249/107, 2-12=-16/764, 4-12=-801/111, 4-10=-1/389, 6-10=-315/91

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain

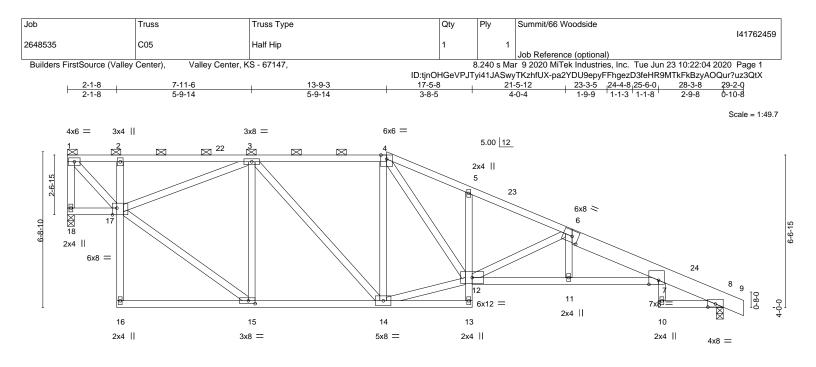
surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. 4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

6) Provide adequate drainage to prevent water ponding.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 13, 8.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

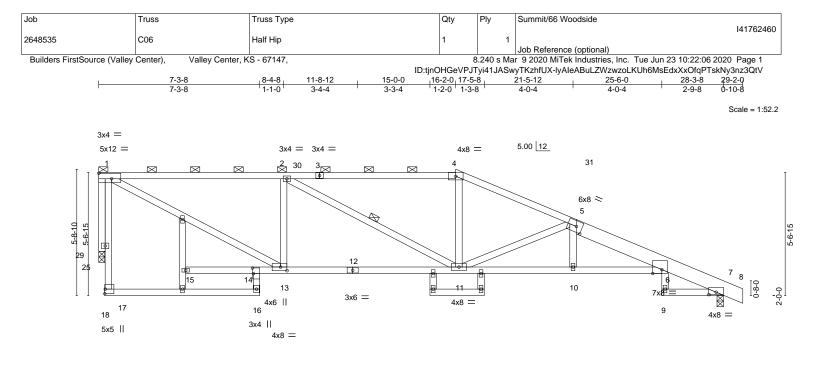

10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

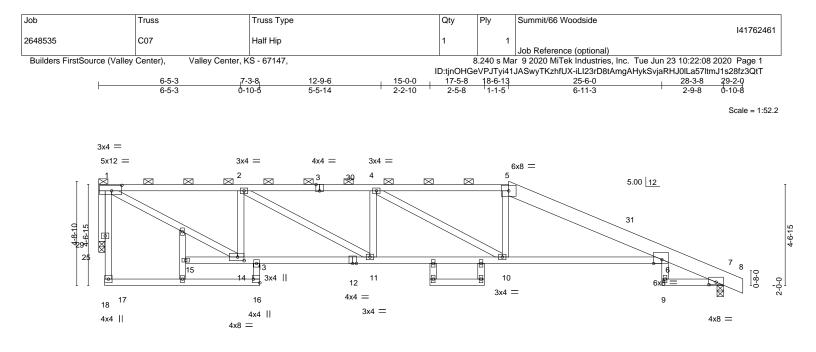
2-1-8	<u>7-11-6</u> 5-9-14		3-9-3	17-5-8		-5-12		25-6-0	28-3-8	
	-3-4,0-3-0], [7:0-5-0,Edge], [-9-14 15:0-3-8 0-1-8] [17:0	3-8-5 -2-4 Edgel	4-	-0-4		4-0-4	2-9-8	
LOADING (psf)										
TCLL (roof) 25.0	SPACING-	2-0-0	CSI.	DEFL.	in		l/defl	L/d	PLATES	GRIP
Snow (Pf/Pg) 20.4/20.0	Plate Grip DOL	1.15	TC 0.66	Vert(LL		7-11	>999	240	MT20	197/144
TCDL 10.0	Lumber DOL Rep Stress Incr	1.15 YES	BC 0.83 WB 0.49	Vert(C Horz(C		7-11 8	>721 n/a	180 n/a		
BCLL 0.0	Code IRC2018/		Matrix-AS		1) 0.15	0	n/a	n/a	Weight: 157 lb	FT = 20%
BCDL 10.0		11 12014	Matrix 710						Weight: 107 lb	11 = 2070
LUMBER-				BRACING-						
TOP CHORD 2x4 SPF N				TOP CHORD					lied, except end vertic	als, and
	P 2400F 2.0E							ax.): 1-4.		
BOT CHORD 2x4 SPF N	0.2 "Except" SPF 1650F 1.5E			BOT CHORD	Rigia cei	lling air	ectly appl	led.		
WEBS 2x4 SPF N										
	-									
	18=0-3-8, 8=0-3-8									
	18=-146(LC 8)									
	18=-44(LC 8), 8=-55(LC 13) 18=1266(LC 2), 8=1329(LC									
Wax Grav	18=1200(LC 2), 8=1329(LC	2)								
FORCES. (lb) - Max. Cor	np./Max. Ten All forces 25) (lb) or less exc	ept when shown.							
	00/50, 1-2=-1090/56, 2-3=-1			39,						
	0/98, 6-7=-3210/112, 7-8=-4									
	7/59, 14-15=0/1180, 5-12=-2	,	,							
	/1565, 15-17=0/1421, 3-15=-		9/472, 4-14=-561/38	,						
12-14=0/	1353, 4-12=-65/1352, 6-12=-	1104/72								
NOTES-										
1) Unbalanced roof live loa	ds have been considered for	this design.								
	115mph (3-second gust) Vas									
	tilever left and right exposed						.60			
	5.0 psf (roof LL: Lum DOL=1 gh Cat C; Partially Exp.; Ce=									
	exposed surfaces with slope				au governs	. Nain			Samo	A
	have been considered for th							4	E OF MISS	AV.
	igned for greater of min roof	live load of 12.0	psf or 1.00 times flat	roof load of 15.4 p	sf on overh	angs		A	ATE OF MISS	N.S.
non-concurrent with oth								AS	SCOTT M.	NSI
	age to prevent water ponding			u ath an live less -!-				A	SEVIER	N Y
	igned for a 10.0 psf bottom on nection (by others) of truss to				int(c) 18 9			Std ★	1 1	1 ***
	accordance with the 2018 Ir							- N X	- He . X	OA LA
referenced standard AN					002. 10.2 UI				Coll	e ye
	res that a minimum of 7/16"	etructural wood	sheathing be applied	directly to the top	bord and 1	/2" ava	m	22	NOWIDER	1EG


10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

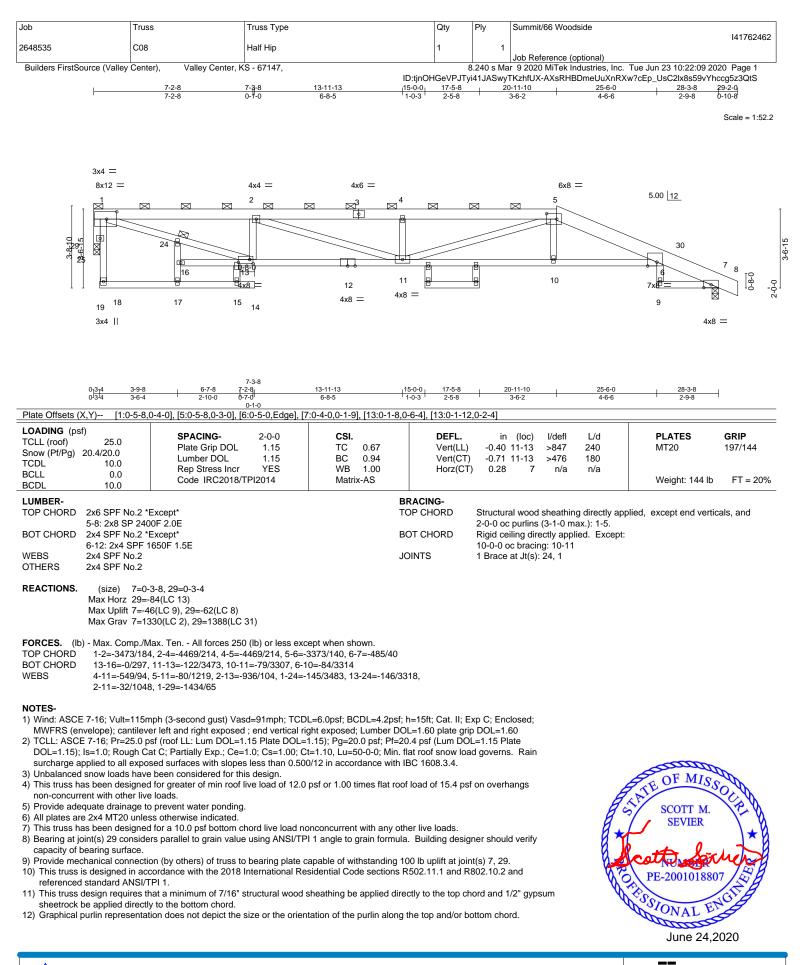
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

07 <u>374 3-9-8</u> 0-3-4 3-6-4	7-3-8 8-4-8	15-0-0	16-2-0 17-5-8		1-5-12		25-6-0	28-3-8	
	3-6-0 '1-1-0')-3-0], [5:0-3-4,0-3-0], [6:0-5-0,Edge], [7	6-7-8	1-2-0 1-3-8		4-0-4		4-0-4	2-9-8	
		.0-4-0,0-1-5], [15.0-5-6,	<u>0-2-0], [14.0-3-0,0</u>	-0-0]					
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0 BCLL 0.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.92 BC 0.82 WB 0.68	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.35 -0.69 0.25	(loc) 15 15 7	l/defl >966 >487 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL 10.0	Code IRC2018/TPI2014	Matrix-AS						Weight: 144 lb	FT = 20%
LUMBER- TOP CHORD 2x4 SPF No.2 *E 1-3: 2x4 SPF 16 BOT CHORD 2x4 SPF No.2 *E 6-12: 2x4 SPF No.2 *E WEBS 2x4 SPF No.2 OTHERS 2x4 SPF No.2	50F 1.5E, 5-8: 2x8 SP 2400F 2.0E Except*	Т	BOT CHORD	Structural 2-0-0 oc p Rigid ceilii 1 Row at r	ourlins (ng direo	2-2-0 ma	ix.): 1-4.	lied, except end vertic	als, and
TOP CHORD 1-2=-1929/76, BOT CHORD 11-13=0/1929,	ax. Ten All forces 250 (lb) or less exc 2-4=-2104/71, 4-5=-2356/64, 5-6=-321 10-11=0/3145, 6-10=0/3156 -11=-1250/92, 2-11=-62/407, 2-13=-742	4/37, 6-7=-490/32							
 Wind: ASCE 7-16; Vult=115m MWFRS (envelope); cantileve TCLL: ASCE 7-16; Pr=25.0 pr DOL=1.15); Is=1.0; Rough Ca surcharge applied to all expose Unbalanced snow loads have This truss has been designed non-concurrent with other live Provide adequate drainage to All plates are 2x4 MT20 unles This truss has been designed Bearing at joint(s) 29 conside capacity of bearing surface. Provide mechanical connect 	prevent water ponding. so otherwise indicated. I for a 10.0 psf bottom chord live load no rs parallel to grain value using ANSI/TP tion (by others) of truss to bearing plate cordance with the 2018 International Re	ft and right exposed; Lu 1.15); Pg=20.0 psf; Pf=2 t=1.10, Lu=50-0-0; Min. D/12 in accordance with psf or 1.00 times flat roc pnconcurrent with any ot I 1 angle to grain formul capable of withstanding	mber DOL=1.60 pi 20.4 psf (Lum DOL flat roof snow load IBC 1608.3.4. of load of 15.4 psf ther live loads. a. Building design 100 lb uplift at joir	ate grip D =1.15 Plat governs. on overhar er should n nt(s) 7, 29.	OL=1.6 e Rain ngs verify	0		SCOTT M. SEVIER PE-200101880	CR.

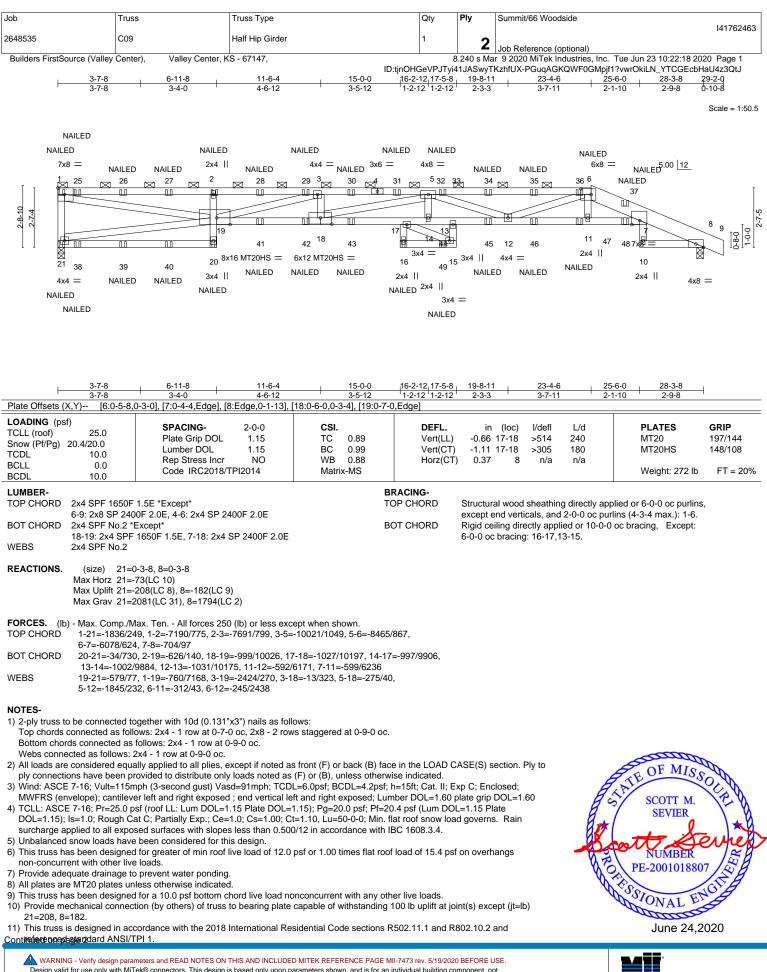

12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601



	0- <u>3-4</u> 0-3-4	3-9-8	6-5-			12-9-6		15-0-0	17-5-8	18-6-13			5-6-0	28-3-8	4
Plate Offsets		3-6-4 1:0-5-8.0	<u>2-7-1</u> -3-0], [3:0-2-0,		-	5-5-14]. [7:0-4-0.0-1-	5]. [14:0	2-2-10)-3-8.0-2-	2-5-8 -0]. [16:Edae.0	<u>'1-1-5'</u>)-3-8]		6-	11-3	2-9-8	
LOADING (ps TCLL (roof) Snow (Pf/Pg) TCDL BCLL	sf) 25. 20.4/20.1 10. 0.	0) 0 0	SPACIN Plate Gr Lumber Rep Stre	G- Ip DOL DOL	2-0-0 1.15 1.15 YES	CSI TC BC WB	0.71		DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.39 -0.74	(loc) 6-10 6-10 7	l/defl >871 >456 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 141 lb	GRIP 197/144 FT = 20%
BCDL LUMBER- TOP CHORD BOT CHORD WEBS OTHERS	5-8: 2x8	F No.2 *E 3 SP 2400 F No.2 F No.2						TOP	CHORD	2-0-0 oc Rigid ce	purlins	(3-0-6 m	ax.): 1-5. lied. Excep	applied, except end verti	cals, and
REACTIONS.	Max Ho Max Up	, orz 29=-1 olift 7=-28	8-8, 29=0-3-4 03(LC 8) 8(LC 9), 29=-41 38(LC 2), 29=1		31)										
FORCES. (II TOP CHORD BOT CHORD WEBS	1-2=-2 13-14 5-10=	2131/100, =-56/1980	ax. Ten All fo , 2-4=-2873/12 0, 11-13=-17/2 11=-307/69, 4- 2	3, 4-5=-2 131, 10-1	599/95, 5-6 1=-41/2873	=-2738/89, 6-7 , 6-10=-15/259	=-488/3 94		27/887,						
 TCLL: ASC DOL=1.15) surcharge a Unbalanced This truss f non-concur Provide add All plates a This truss f Bearing at j capacity of Provide me This truss referenced This truss 	envelope); CE 7-16; P (; Is=1.0; F applied to d snow loss has been of prent with equate dra- rrent with equate dra- rre 2x4 MT has been of bearing s bearing s bea	cantilever r=25.0 ps Rough Ca all expos ads have designed other live ainage to '20 unless designed urface. consider urface. connectio ed in accc d ANSI/TF quires tha d directly	r left and right ff (roof LL: Lum t C; Partially E ed surfaces wi been consider for greater of r loads. prevent water s otherwise inc for a 10.0 psf t s parallel to gra n (by others) o ordance with th Pl 1. at a minimum of to the bottom	exposed DOL=1. xp.; Ce=1 th slopes ed for this nin roof li ponding. licated. pottom ch ain value f truss to le 2018 li of 7/16" si chord.	; end vertica 15 Plate DC .0; Cs=1.00 less than 0. s design. ve load of 1: ord live load using ANSI, bearing plat thernational tructural woo	al left and right JL=1.15); Pg=2 ; Ct=1.10, Lu= 500/12 in accord 2.0 psf or 1.00 d nonconcurrent TPI 1 angle to the capable of w Residential Cord pd sheathing b	expose 20.0 psf; 50-0-0; ordance times fl nt with a grain fo vithstand ode sect e applie	d; Lumbe; Pf=20.4 Min. flat with IBC lat roof lo lat roof lo any other ormula. If ding 100 tions R50 ed directly	er DOL=1.60 p psf (Lum DOL roof snow load : 1608.3.4. ad of 15.4 psf live loads. Building design lb uplift at join 02.11.1 and R{ y to the top ch	late grip _=1.15 Pl d governs on overh her shoul t(s) 7, 29 302.10.2 ord and 1	DOL=1. ate s. Rain angs d verify and /2" gypt			STATE OF MIS SCOTT M. SEVIER NUMBER PE-200101880 PE-20010180 PE-200100 PE-200100 PE-200100 PE-20010	


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

RE USE. nt, not overall Int bracing Building Component Building Component 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

[Job	Truss	Truss Type	Qty	Ply	Summit/66 Woodside			
						141762463			
	2648535	C09	Half Hip Girder	1	2				
						Job Reference (optional)			
	Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	8.240 s Mar 9 2020 MiTek Industries, Inc. Tue Jun 23 10:22:18 2020 Page 2					
		KzhfUX-PGuqAGKQWF0GMpjf1?vwrOkiLN_YTCGEcbHaU4z3QtJ							

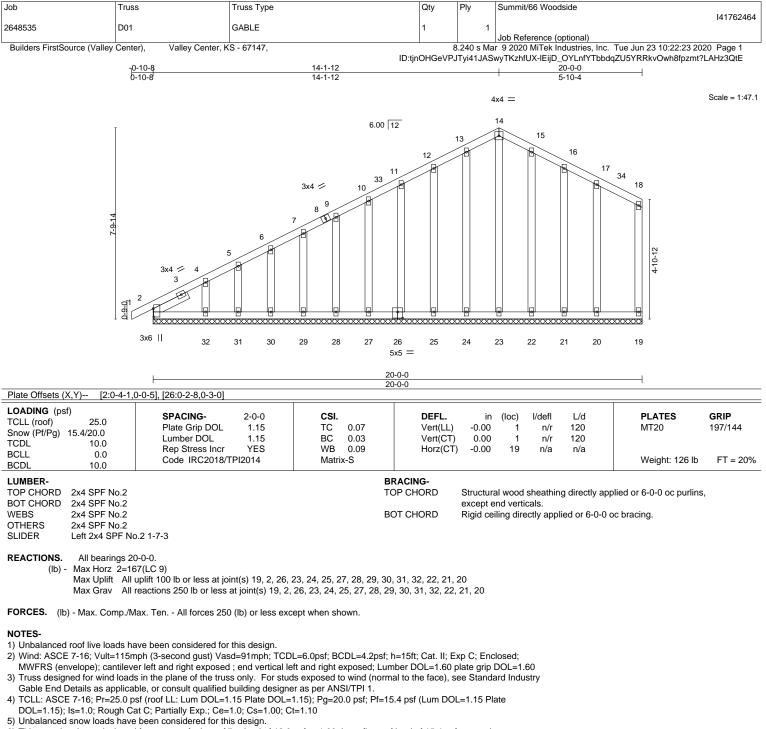
NOTES-

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

13) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

LOAD CASE(S) Standard

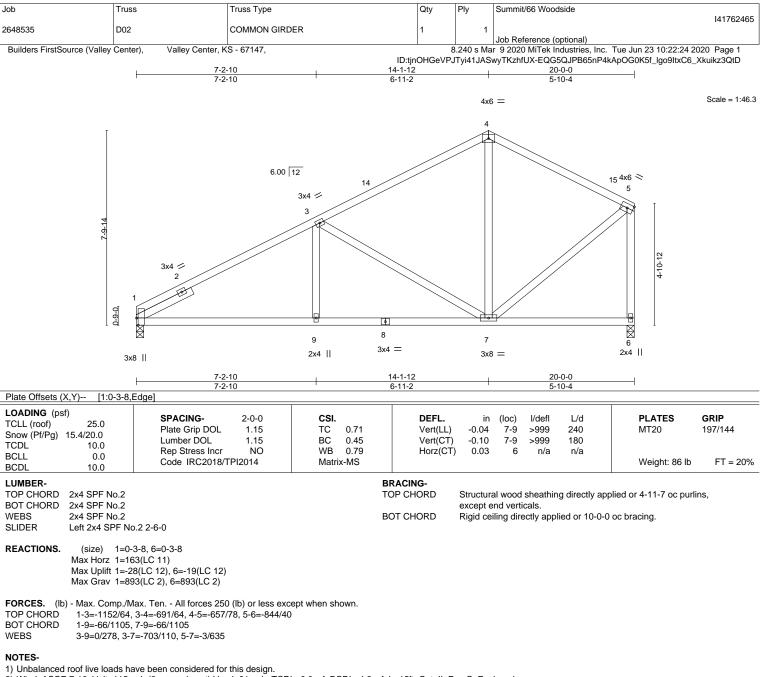
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-6=-61, 6-9=-51, 20-21=-20, 17-19=-20, 7-13=-20, 15-16=-20, 10-22=-20

Concentrated Loads (lb)

Vert: 21=-35(B) 1=-88(B) 20=-27(B) 2=-64(B) 17=-53(B) 25=-72(B) 26=-64(B) 27=-64(B) 28=-40(B) 29=-40(B) 30=-40(B) 31=-40(B) 33=-68(B) 34=-36(B) 35=-36(B) 36=-38(B) 37=-75(B) 38=-30(B) 39=-27(B) 40=-27(B) 41=-53(B) 42=-53(B) 43=-53(B) 44=-25(B) 45=-57(B) 46=-57(B) 48=-107(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 1-4-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 19, 2, 26, 23, 24, 25, 27, 28, 29, 30, 31, 32, 22, 21, 20.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **MSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;

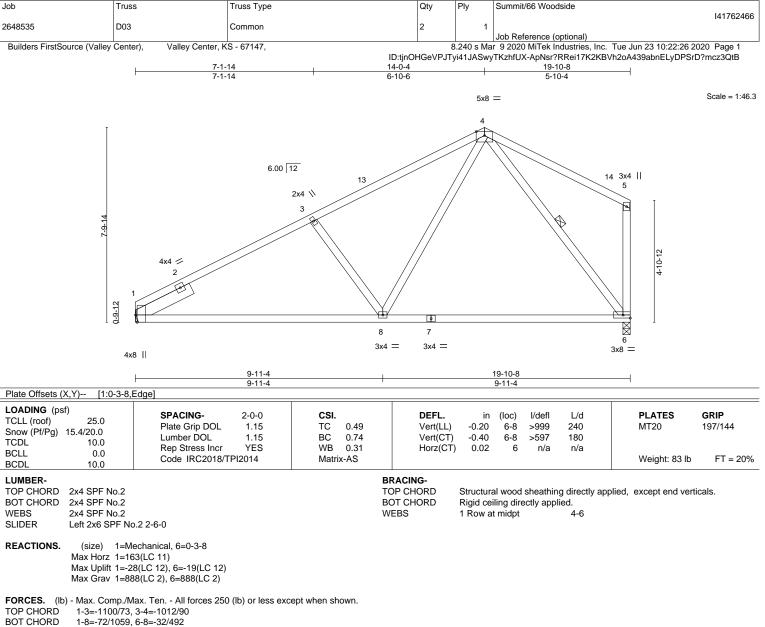
MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate

DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 6.7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WEBS 3-8=-461/133, 4-8=-28/668, 4-6=-748/33

NOTES-

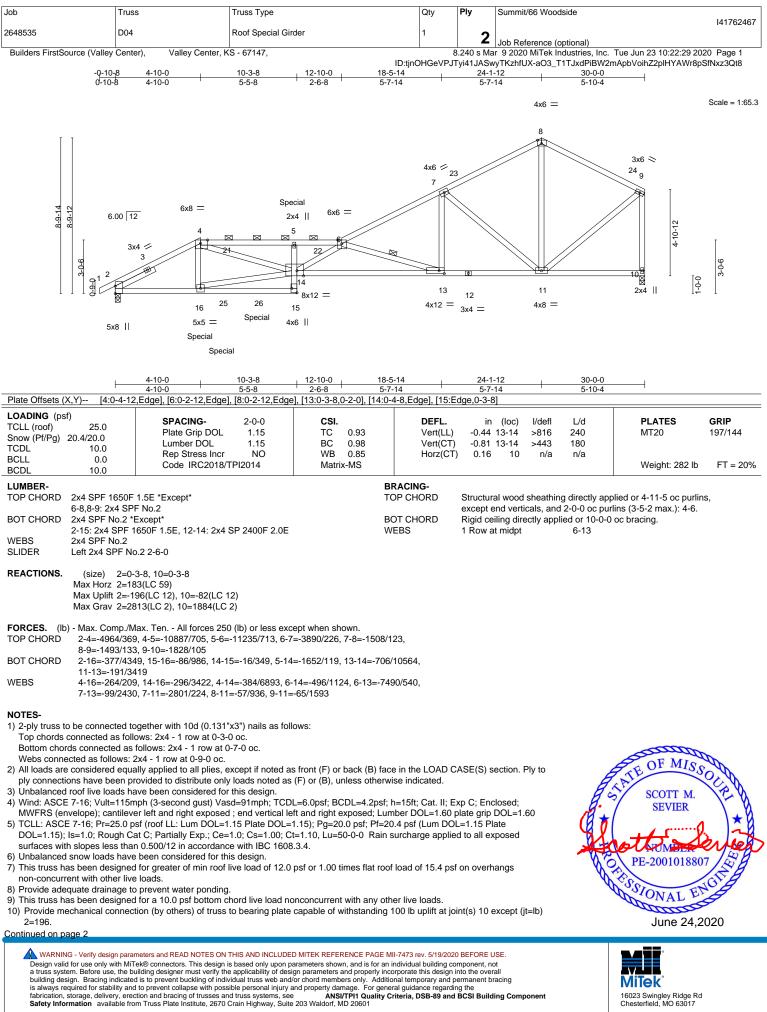
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;

- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) Refer to girder(s) for truss to truss connections.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 6.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and


referenced standard ANSI/TPI 1.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

NITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses sand truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Summit/66 Woodside
					141762467
2648535	D04	Roof Special Girder	1	2	
				2	Job Reference (optional)
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	8	3.240 s Ma	r 9 2020 MiTek Industries, Inc. Tue Jun 23 10:22:29 2020 Page 2

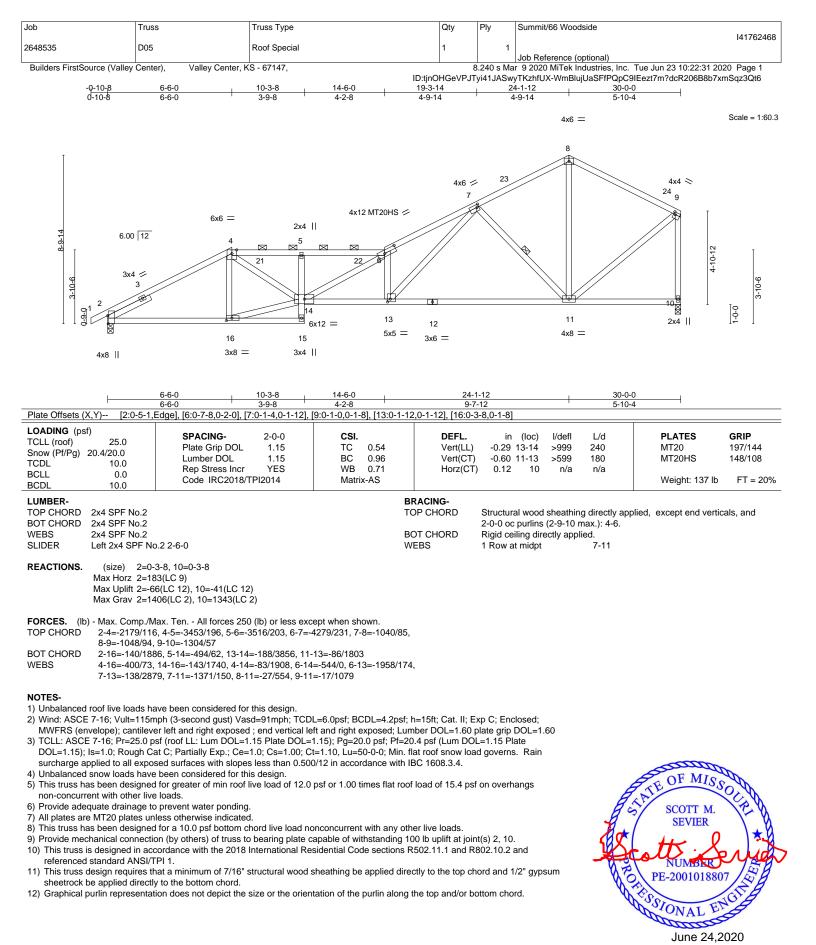
8.240 s Mar 9 2020 MiTek Industries, Inc. Tue Jun 23 10:22:29 2020 Page 2 ID:tinOHGeVPJTyi41JASwyTKzhfUX-aO3_T1TJxdPiBW2mApbVoihZ2pIHYAWr8pSfNxz3Qt8

NOTES-

1) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

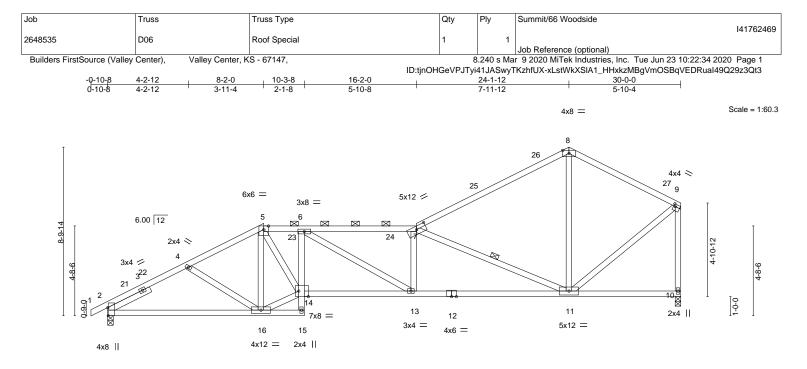
12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1125 lb down and 71 lb up at 10-0-12 on top chord, and 420 lb down and 51 lb up at 4-10-0, and 280 lb down and 51 lb up at 6-0-12, and 280 lb down and 51 lb up at 8-0-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.


LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
 - Vert: 1-4=-51, 4-6=-61, 6-8=-51, 8-9=-51, 15-17=-20, 10-14=-20 Concentrated Loads (lb)

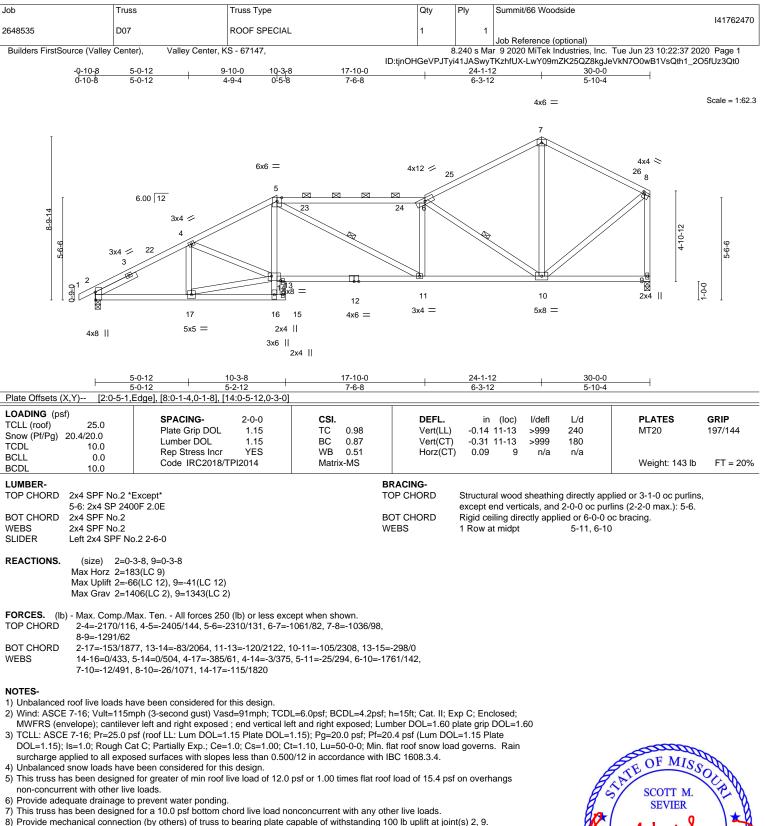
Vert: 5=-929(F) 16=-420(F) 25=-280(F) 26=-280(F)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

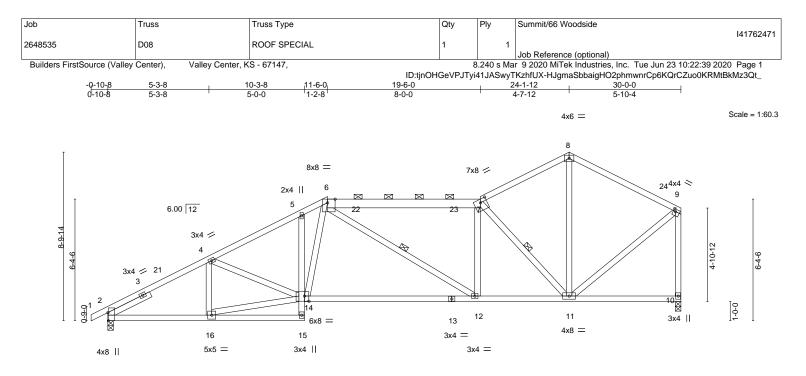
F	8-2-0	10-3-8	16-2-0		24-1-12		30-0-0		
Plate Offsets (X,Y)	8-2-0 [2:0-5-1,Edge], [7:0-6	2-1-8 6-0,0-2-1], [9:0-1-0,0-1-8], [1	5-10-8 14:0-6-0,Edge]		7-11-12		5-10-4		
Snow (Pf/Pg) 20.4/20 TCDL 1 BCLL	5.0 Plate 0.0 Lumb 0.0 Rep \$	CING- 2-0-0 Grip DOL 1.15 ber DOL 1.15 Stress Incr YES PIRC2018/TPI2014 1	CSI. TC 0.77 BC 0.80 WB 0.84 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.20 13-14 -0.38 11-13 0.12 10	l/defl L/ >999 244 >953 184 n/a n/a	0 0	PLATES MT20 Weight: 139 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 S 7-8: 2 BOT CHORD 2x4 S WEBS 2x4 S	PF No.2 *Except* x4 SPF 1650F 1.5E PF No.2 PF No.2 x4 SPF No.2 2-6-0		T(B(RACING- DP CHORD DT CHORD EBS	Structural wood 2-0-0 oc purlins Rigid ceiling dire 1 Row at midpt	(2-11-0 max.):	5-7.	except end vertic	als, and
Max H Max U Max C FORCES. (lb) - Max TOP CHORD 2-4= 8-9= BOT CHORD 2-16 WEBS 5-16	2164/129, 4-5=-2051 1049/98, 9-10=-1298 5=-169/1868, 6-14=-52)=-41(LC 12) D=1343(LC 2) II forces 250 (lb) or less exi /116, 5-6=-2669/168, 6-7=- /61 0/58, 13-14=-167/2724, 11 /1920, 5-14=-92/1650, 6-13	2960/155, 7-8=-1103/76, -13=-151/2958						
NOTES- 1) Unbalanced roof liv 2) Wind: ASCE 7-16; MWFRS (envelope 3) TCLL: ASCE 7-16; DOL=1.15); Is=1.0; surcharge applied t 4) Unbalanced snow I 5) This truss has beer non-concurrent witt 6) Provide adequate of 7) This truss has beer 8) Provide mechanica	e loads have been cor Vult=115mph (3-secor); cantilever left and rig Pr=25.0 psf (roof LL: L Rough Cat C; Partially o all exposed surfaces oads have been consi o designed for greater in other live loads. Irainage to prevent wa o designed for a 10.0 p I connection (by others ed in accordance with d ANSI/TPI 1.	nsidered for this design. Ind gust) Vasd=91mph; TCE ght exposed ; end vertical le um DOL=1.15 Plate DOL= y Exp.; Ce=1.0; Cs=1.00; C s with slopes less than 0.50 dered for this design. of min roof live load of 12.0	eft and right exposed; Lun (1.15); Pg=20.0 psf; Pf=20 (t=1.10, Lu=50-0-0; Min. fi 0/12 in accordance with II psf or 1.00 times flat root onconcurrent with any oth capable of withstanding 10 idential Code sections R5	nber DOL=1.60 p 0.4 psf (Lum DOL lat roof snow load BC 1608.3.4. i load of 15.4 psf her live loads. 00 lb uplift at join 002.11.1 and R80	Late grip DOL=1. =1.15 Plate d governs. Rain on overhangs t(s) 2, 10.	60		SCOTT M. SEVIER	outer

10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

June 24,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601


9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

referenced standard ANSI/TPI 1. 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

Plate Offsets (X,Y) [<u>5-3-8</u> <u>5-3-8</u> 2:0-5-1,Edge], [6:0-4		<u>1-6-0</u> -2-8 [9:0-1-4,0-1-8], [14:	<u>19-6-0</u> 8-0-0 0-2-12,0-3-4]	24-1-12 4-7-12	+ <u>30-0-0</u> 5-10-4		
LOADING (psf) TCLL (roof) 25. Snow (Pf/Pg) 20.4/20.0 TCDL 10. BCLL 0. BCDL 10.	0 Plate 0 Lumb 0 Rep S 0 Code	ING- 2-0-0 Grip DOL 1.15 er DOL 1.15 itress Incr YES IRC2018/TPI2014	CSI. TC 0.68 BC 0.79 WB 0.46 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/de -0.23 12-14 >99 -0.51 12-14 >70 0.08 10 n/	9 240 7 180	PLATES MT20 Weight: 151 lb	GRIP 197/144 FT = 20%
6-7: 2x6 BOT CHORD 2x4 SPF WEBS 2x4 SPF		BOT CHORD	Structural wood shea except end verticals, Rigid ceiling directly a 6-0-0 oc bracing: 15- 1 Row at midpt	and 2-0-0 oc purlins applied or 10-0-0 oc	s (4-3-8 max.): 6-7.	IS,		

REACTIONS. (size) 2=0-3-8, 10=0-3-8 Max Horz 2=183(LC 9) Max Uplift 2=-66(LC 12), 10=-41(LC 12) Max Grav 2=1406(LC 2), 10=1343(LC 2)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-4=-2178/115, 4-5=-2310/148, 5-6=-2218/169, 6-7=-1823/111, 7-8=-1024/90, 8-9=-1030/99, 9-10=-1284/65

 BOT CHORD
 2-16=-151/1886, 12-14=-106/1874, 11-12=-63/1817

 WEBS
 4-16=-349/69, 14-16=-131/1875, 7-12=0/324, 7-11=-1450/112, 8-11=-32/551, 9-11=-26/1056, 6-14=-28/787

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

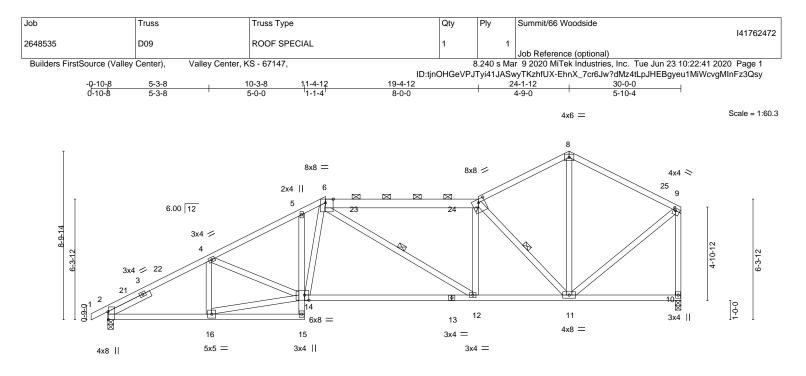
3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

6) Provide adequate drainage to prevent water ponding.

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.


9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

	5-3-8	10-3-8	1 ₁ 1-4-12	19-4-12		24-1-12	30-0-0)	
	5-3-8	5-0-0	1-1-4	8-0-0		4-9-0	5-10-4	4	
Plate Offsets (X,Y)-	[2:0-5-1,Edge], [6:0-4	-12,Edge], [7:0-4-0,0-2-1	1], [9:0-1-	4,0-1-8], [14:0-2-12,0	0-3-4]				
LOADING (psf) TCLL (roof) Snow (Pf/Pg) 20.4 TCDL BCLL BCDL	25.0 Plate 4/20.0 Lumb 10.0 Rep S	CING- 2-0-0 Grip DOL 1.15 er DOL 1.15 Stress Incr YES IRC2018/TPI2014		CSI. TC 0.67 BC 0.79 WB 0.46 Matrix-MS	DEFL. Vert(LL) Vert(CT) Horz(CT)	-0.22 12-14 > -0.49 12-14 >	/defl L/d •999 240 •729 180 n/a n/a	PLATES MT20 Weight: 151 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF No.2 *Except* 6-7: 2x6 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 SLIDER Left 2x4 SPF No.2 2-6-0					ACING- P CHORD T CHORD BS	except end vertica	ls, and 2-0-0 oc pur ly applied or 10-0-0	lied or 3-3-12 oc purlir lins (4-3-4 max.): 6-7. oc bracing, Except:	ns,

REACTIONS. (size) 2=0-3-8, 10=0-3-8 Max Horz 2=183(LC 9) Max Uplift 2=-66(LC 12), 10=-41(LC 12) Max Grav 2=1406(LC 2), 10=1343(LC 2)

 FORCES.
 (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

 TOP CHORD
 2-4=-2178/115, 4-5=-2309/148, 5-6=-2212/168, 6-7=-1850/112, 7-8=-1026/90, 8-9=-1030/99, 9-10=-1284/65

 BOT CHORD
 2-16=-151/1885, 12-14=-107/1889, 11-12=-65/1844

 WEBS
 4-16=-348/69, 14-16=-132/1873, 7-12=0/318, 7-11=-1464/114, 8-11=-30/546, 9-11=-26/1057, 6-14=-26/774

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

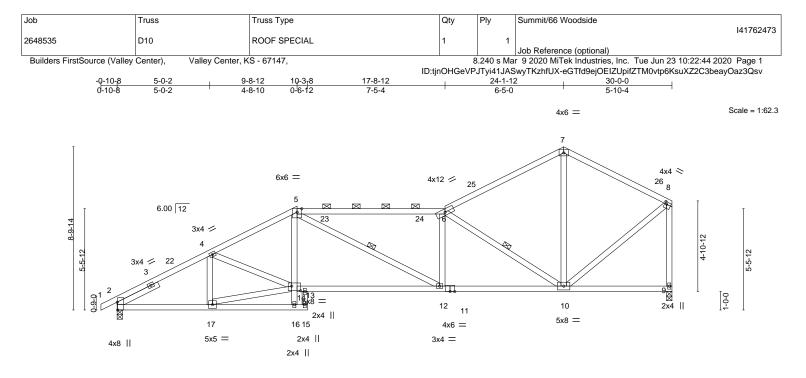
4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

6) Provide adequate drainage to prevent water ponding.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 10.

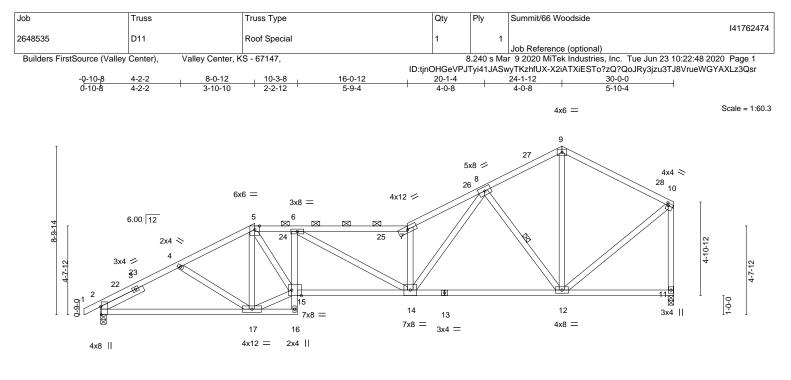

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

16023 Swingley Ridge Rd Chesterfield, MO 63017

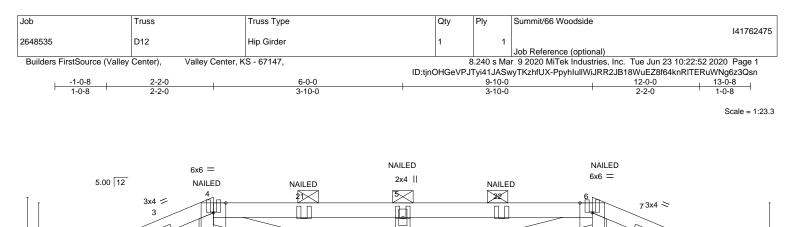
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

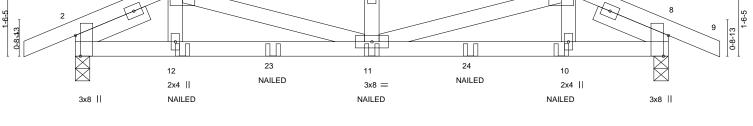
L	5-0-2 10-3-8	17-8-12	24-1-12	30-0-0		
	5-0-2 5-3-6	7-5-4	6-5-0	5-10-4	I	
Plate Offsets (X,Y) [2:0-5-1	,Edge], [8:0-1-4,0-1-8], [14:0-5-12,0-3-0]					
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0 BCLL 0.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYES	CSI. TC 0.98 BC 0.86 WB 0.53	DEFL. in (loc) Vert(LL) -0.15 12-13 Vert(CT) -0.32 12-13 Horz(CT) 0.10 9	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20	GRIP 197/144
BCDL 10.0	Code IRC2018/TPI2014	Matrix-MS			Weight: 143 lb	FT = 20%
Max Horz 2=1 Max Uplift 2=-	100F 2.0E No.2 2-6-0)-3-8, 9=0-3-8		CHORD Structural wood except end verti CHORD Rigid ceiling dire	sheathing directly app cals, and 2-0-0 oc purl ectly applied or 6-0-0 o 5-12, 6-10	ins (2-2-0 max.): 5-6. c bracing.	,
	Max. Ten All forces 250 (lb) or less exc 15, 4-5=-2421/144, 5-6=-2345/132, 6-7=- 2					
WEBS 14-16=0/383,	377, 13-14=-82/2085, 12-13=-122/2137, , 5-14=0/502, 4-17=-392/61, 5-12=-14/31 72, 14-17=-114/1823, 4-14=-1/388		/487,			
 2) Wind: ASCE 7-16; Vult=115 MWFRS (envelope); cantilev 3) TCLL: ASCE 7-16; Pr=25.0 	nave been considered for this design. mph (3-second gust) Vasd=91mph; TCD ver left and right exposed ; end vertical le psf (roof LL: Lum DOL=1.15 Plate DOL= Cat C; Partially Exp.; Ce=1.0; Cs=1.00; C	ft and right exposed; Lumber 1.15); Pg=20.0 psf; Pf=20.4 p	DOL=1.60 plate grip DOL=1. sf (Lum DOL=1.15 Plate	60	and the second	


- surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 9.
 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11** Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601




F		8-0-12 8-0-12	10-3-8	16-0- 5-9-			24-1-12 8-1-0			<u>30-0-0</u> 5-10-4		
Plate Offsets (X,Y)	[2:0-5-1,E	Edge], [10:0-1-0,0-1-8], [1		-9·	-4		8-1-0			5-10-4		
Snow (Pf/Pg) 20.4/2 TCDL 1 BCLL	25.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/TP	2-0-0 1.15 1.15 YES	CSI. TC BC WB Matrix	0.62 0.69 0.55 x-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	-0.21 -0.38		l/defl >999 >939 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 144 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S	SPF No.2 SPF No.2 SPF No.2 Ex4 SPF No	0.2 2-6-0				BRACING- TOP CHORD BOT CHORD WEBS	Structura 2-0-0 oc Rigid ceil 1 Row at	purlins ling dire	(2-8-3 m	ax.): 5-7.	lied, except end vertic	als, and
Max Max Max Max TOP CHORD 2-4 8-9: BOT CHORD 2-17 WEBS 5-17	Horz 2=18 Uplift 2=-60 Grav 2=14 (. Comp./M =-2163/129 =-1014/89, 7=-169/186 7=-703/68,	3-8, 11=0-3-8 3(LC 9) 6(LC 12), 11=-41(LC 12) 06(LC 2), 11=1343(LC 2) ax. Ten All forces 250 (1, 4-5=-2056/116, 5-6=-27 9-10=-1042/96, 10-11=-1 i7, 6-15=-517/55, 14-15=-9 15-17=-97/1901, 5-15=-9 18, 8-12=-1271/134, 9-12=	lb) or less exc 18/172, 6-7=-2 296/61 173/2782, 12- 5/1657, 6-14=	2975/147, 7- 14=-64/1607 0/336, 7-14=	·8=-3324/ [.] 7							
 Wind: ASCE 7-16; MWFRS (envelope) TCLL: ASCE 7-16; DOL=1.15); Is=1.0 surcharge applied Unbalanced snow This truss has bee non-concurrent witi Provide adequate of This truss has bee This truss has bee Provide mechanica 	Vult=115m Pr=25.0 ps ; Rough Ca to all exposions have n designed h other live drainage to n designed al connectioned in acco	prevent water ponding. for a 10.0 psf bottom cho on (by others) of truss to b rdance with the 2018 Inte	=91mph; TCD end vertical le 5 Plate DOL=' 0; Cs=1.00; Ci ess than 0.500 design. e load of 12.0 prd live load no bearing plate c	ft and right e 1.15); Pg=20 =1.10, Lu=5 //12 in accor psf or 1.00 ti pnconcurrent apable of with	exposed; I).0 psf; Pf 60-0-0; Mii rdance with imes flat r t with any thstanding	Lumber DOL=1.60 p =20.4 psf (Lum DOL n. flat roof snow load th IBC 1608.3.4. roof load of 15.4 psf other live loads. g 100 lb uplift at join	late grip I =1.15 Pla d governs. on overha	DOL=1. ate . Rain angs	60	Here and the second sec	SCOTT M. SEVIER	HOURI +

- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

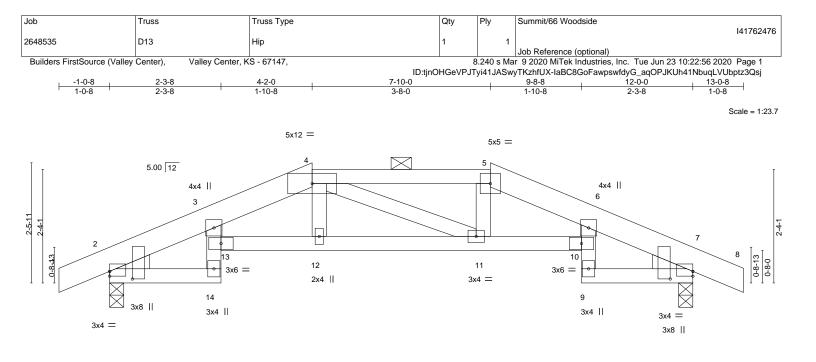
	2-2-0 6-0 2-2-0 3-1		<u>9-10-0</u> 3-10-0		12-0-0	
Plate Offsets (X,Y) [2:0-5-1,I						
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2018/TPI2014	CSI. TC 0.29 BC 0.39 WB 0.19 Matrix-MS	DEFL. in (loc) Vert(LL) -0.05 11 Vert(CT) -0.09 11 Horz(CT) 0.01 8	l/defl L/d >999 240 >999 180 n/a n/a	PLATES MT20 Weight: 46 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2	0.2 1-7-0, Right 2x4 SPF No.2 1-7-0	TOP	2-0-0 oc purlins	t sheathing directly app (4-6-8 max.): 4-6. ectly applied or 10-0-0		s, except
TOP CHORD 2-4=-837/41, 4 BOT CHORD 2-12=-15/755,	lax. Ten All forces 250 (lb) or less exc I-5=-1493/81, 5-6=-1493/81, 6-8=-837/4 11-12=-18/757, 10-11=-23/757, 8-10=- 5-11=-405/63, 6-11=-44/774	1				
 Wind: ASCE 7-16; Vult=115m MWFRS (envelope); cantileve TCLL: ASCE 7-16; PT=25.0 p DOL=1.15); Is=1.0; Rough Cá surfaces with slopes less that Unbalanced snow loads have This truss has been designed non-concurrent with other live Provide adequate drainage to This truss has been designed This truss has been designed Provide mechanical connectif This truss is designed in accorreferenced standard ANSI/TF Graphical purlin representat "NAILED" indicates 3-10d (0 In the LOAD CASE(S) section 	o prevent water ponding. I for a 10.0 psf bottom chord live load no on (by others) of truss to bearing plate c ordance with the 2018 International Resi	ft and right exposed; Lumbo 1.15); Pg=20.0 psf; Pf=20.4 t=1.10, Lu=50-0-0 Rain sur .3.4. psf or 1.00 times flat roof lo ponconcurrent with any other apable of withstanding 100 dential Code sections R502 tation of the purlin along the ails per NDS guidlines. are noted as front (F) or ba	er DOL=1.60 plate grip DOL=1 psf (Lum DOL=1.15 Plate charge applied to all exposed ad of 15.4 psf on overhangs live loads. Ib uplift at joint(s) 2, 8. 2.11.1 and R802.10.2 and e top and/or bottom chord.		SCOTT M. SEVIER NUMBER PE-200101880 PE-200101880	weet

Continued on page 2

1-7-11

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

June 24,2020


Job	Truss	Truss Type	Qty	Ply	Summit/66 Woodside
					I41762475
2648535	D12	Hip Girder	1	1	
					Job Reference (optional)
Builders FirstSource (Valley	S - 67147,	8	8.240 s Ma	r 9 2020 MiTek Industries, Inc. Tue Jun 23 10:22:53 2020 Page 2	

ID:tjnOHGeVPJTyi41JASwyTKzhfUX-t?W3WEINH?RI3CuOas17mmhqsU40ACiNfYGxCYz3Qsm

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 12=1(F) 11=0(F) 10=1(F) 23=0(F) 24=0(F)

⊢	2-3-8 4-2-0 2-3-8 1-10-8	7-10-0	9-8-8	12-0-0	
Plate Offsets (X,Y) [2:0	-0-0,0-1-3], [2:0-1-14,0-5-10], [7:0-0-0,0-1-3]	, [7:0-1-14,0-5-10]			
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. DEFL. TC 0.27 Vert(LL) BC 0.50 Vert(CT) WB 0.03 Horz(CT) Matrix-AS Horz (CT)	in (loc) l/defl -0.04 12 >999 -0.07 11-12 >999 0.05 7 n/a	L/d PLATES 240 MT20 180 n/a Weight: 49 lb	GRIP 197/144 FT = 20%
LUMBER-	o.2 o.2		Structural wood sheathing 2-0-0 oc purlins (5-5-11 n Rigid ceiling directly appli	nax.): 4-5.	
Max Hórz Max Uplifi	2=0-3-8, 7=0-3-8 2=-20(LC 13) 2=-23(LC 8), 7=-23(LC 9) 2=613(LC 2), 7=613(LC 2)				

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-696/18, 3-4=-1147/24, 4-5=-1098/27, 5-6=-1148/26, 6-7=-696/17
- BOT CHORD 2-14=-0/522, 12-13=0/1087, 11-12=0/1097, 10-11=0/1088, 7-9=0/522

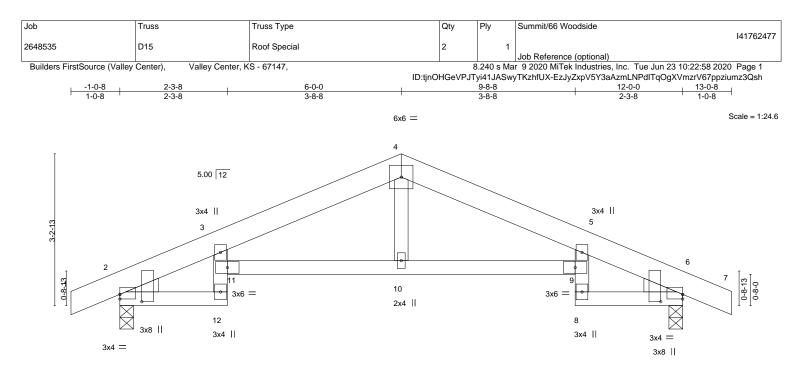
NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate

3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.

4) Unbalanced snow loads have been considered for this design.


5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

6) Provide adequate drainage to prevent water ponding.

- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- 10) This truss is designed in accordance with the 2018 international Residential Code sections Roo2. 11.1 and Roo2. 10.2 and referenced standard ANSI/TPI 1.
 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum
- sheetrock be applied directly to the bottom chord.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

iponent 16023 Swingley Ridge Rd Chesterfield, MO 63017

Plate Offsets (X,Y) [2:0-0-0,	2-3-8 2-3-8 0-1-3], [2:0-1-14,0-5-10], [6:0	6-0-0 3-8-8 -0-0,0-1-3], [6:0-1-14,0-5-10]	9-8-8 3-8-8	12-0-0 2-3-8	
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Plate Grip DOL Lumber DOL	-0-0 CSI. 1.15 TC 0.30 1.15 BC 0.47 YES WB 0.05 114 Matrix-AS	DEFL. in (loc) l/def Vert(LL) -0.05 10-11 >998 Vert(CT) -0.09 10-11 >999 Horz(CT) 0.06 6 n/a	9 240 MT20 9 180	197/144
LUMBER- TOP CHORD 2x6 SPF No.2			BRACING- TOP CHORD Structural wood sheat	thing directly applied.	

BOT CHORD

Rigid ceiling directly applied.

TOP CHORD2x6 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2WEDGE

Left: 2x4 SPF No.2, Right: 2x4 SPF No.2

REACTIONS. (size) 2=0-3-8, 6=0-3-8 Max Horz 2=28(LC 12) Max Uniff 2= 22(LC 12) 6= 22

Max Uplift 2=-22(LC 12), 6=-22(LC 13) Max Grav 2=613(LC 2), 6=613(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-673/20, 3-4=-953/19, 4-5=-953/29, 5-6=-673/25

BOT CHORD 2-12=-18/495, 10-11=0/882, 9-10=0/882, 6-8=0/495

NOTES-

1) Unbalanced roof live loads have been considered for this design.

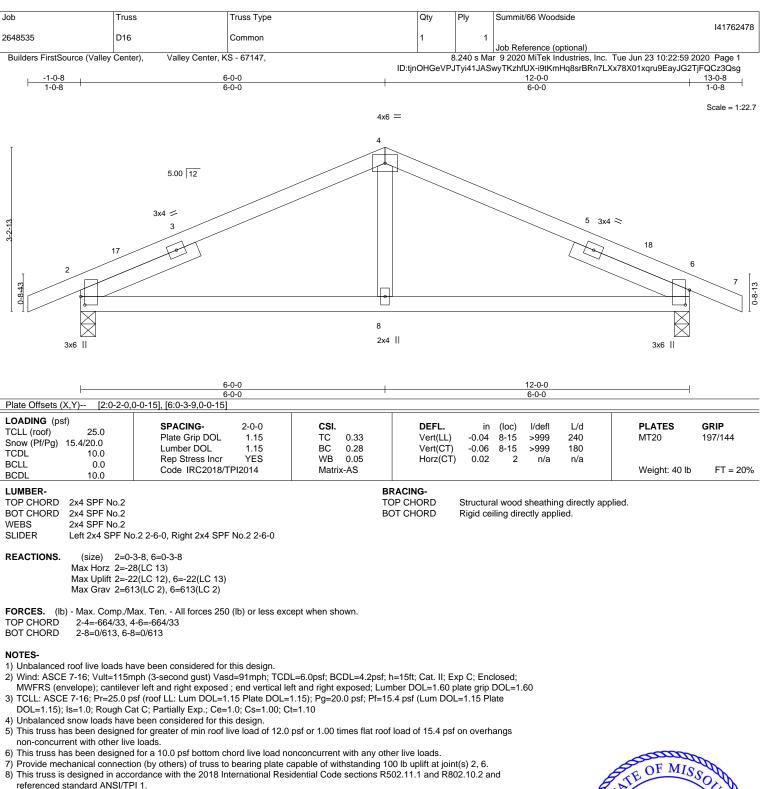
2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

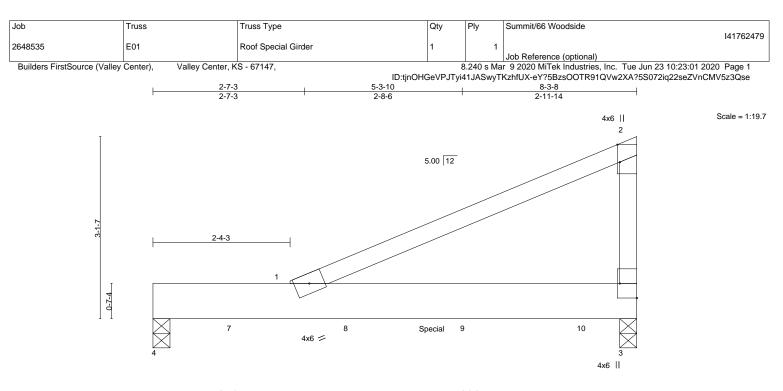
4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.


6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.
 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


16023 Swingley Ridge Rd Chesterfield, MO 63017

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

	2-7-3	1	8-3-8		
	2-7-3	1	5-8-5	I	
Plate Offsets (X,Y) [2:0-3-9,I	Edge], [3:Edge,0-3-8]				
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO	CSI. TC 0.54 BC 0.32 WB 0.00	DEFL. in (loc) I/defl Vert(LL) -0.07 3-5 >999 Vert(CT) -0.12 3-5 >801 Horz(CT) 0.00 3 n/a	L/d PLATES 240 MT20 180 n/a	GRIP 197/144
BCLL 0.0	Code IBC2019/TDI2014	Motrix MD		Woight: 25 lb	ET 200/

BRACING-

Matrix-MP

LUMBER-

BCDL

2x4 SPF No.2 TOP CHORD BOT CHORD 2x8 SP 2400F 2.0E WEBS 2x4 SPF No.2

10.0

Code IRC2018/TPI2014

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=0-3-8, 4=0-3-8

Max Horz 4=78(LC 9) Max Grav 3=810(LC 16), 4=573(LC 16)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 113 lb down at 1-5-3, 132 lb down at 3-5-3, 132 lb down at 5-5-3, and 137 lb down at 7-5-3, and 147 lb down at 8-1-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

7) Special hanger(s) or other connection device(s) shall be provided at 4-9-8 from the left end sufficient to connect truss(es) to back face of bottom chord. The design/selection of such special connection device(s) is the responsibility of others.

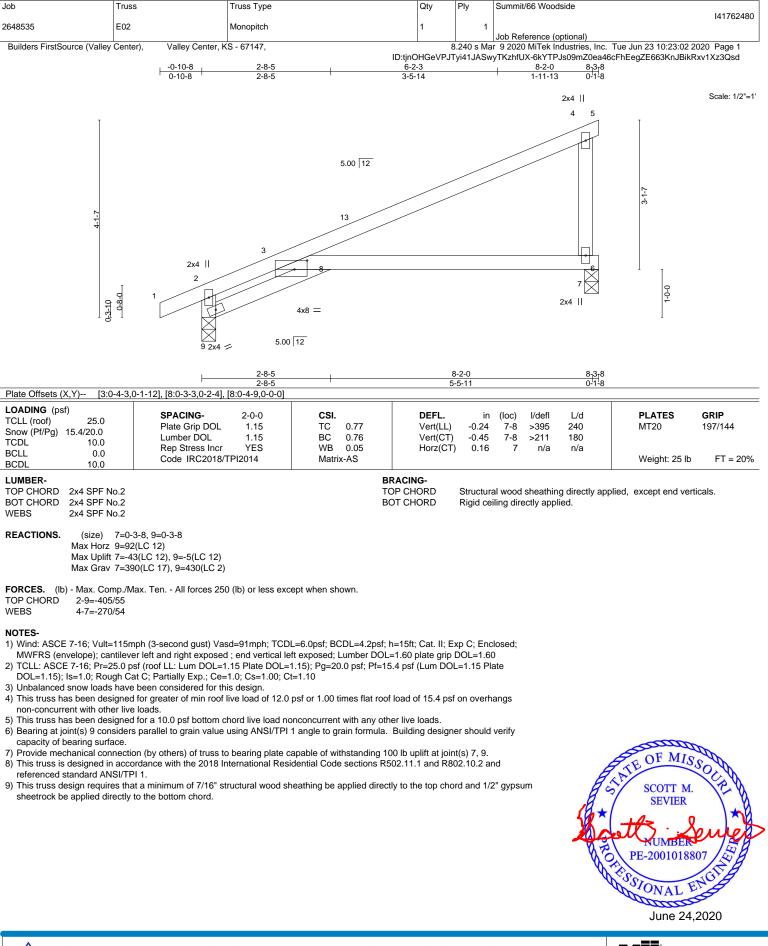
8) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

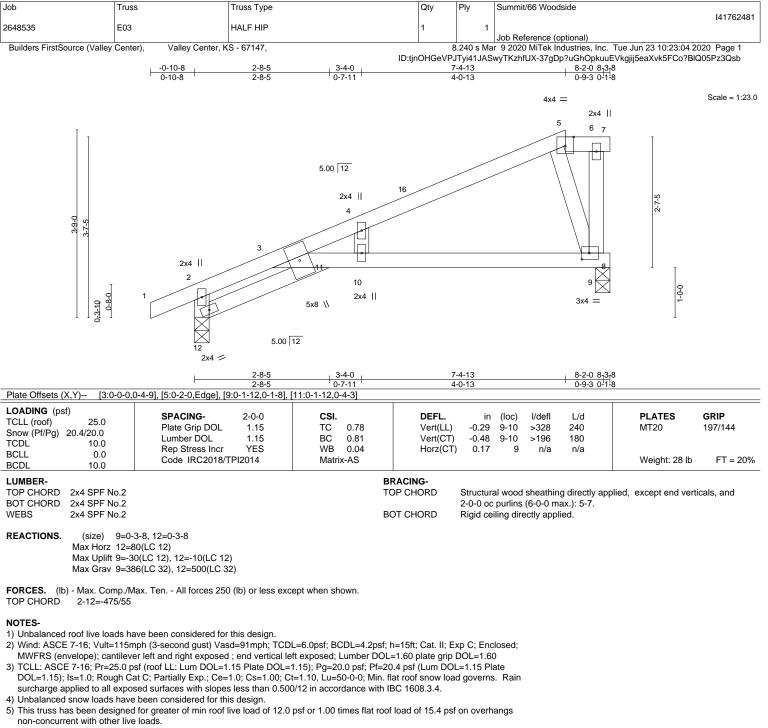
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-51, 1-4=-81, 1-3=-20

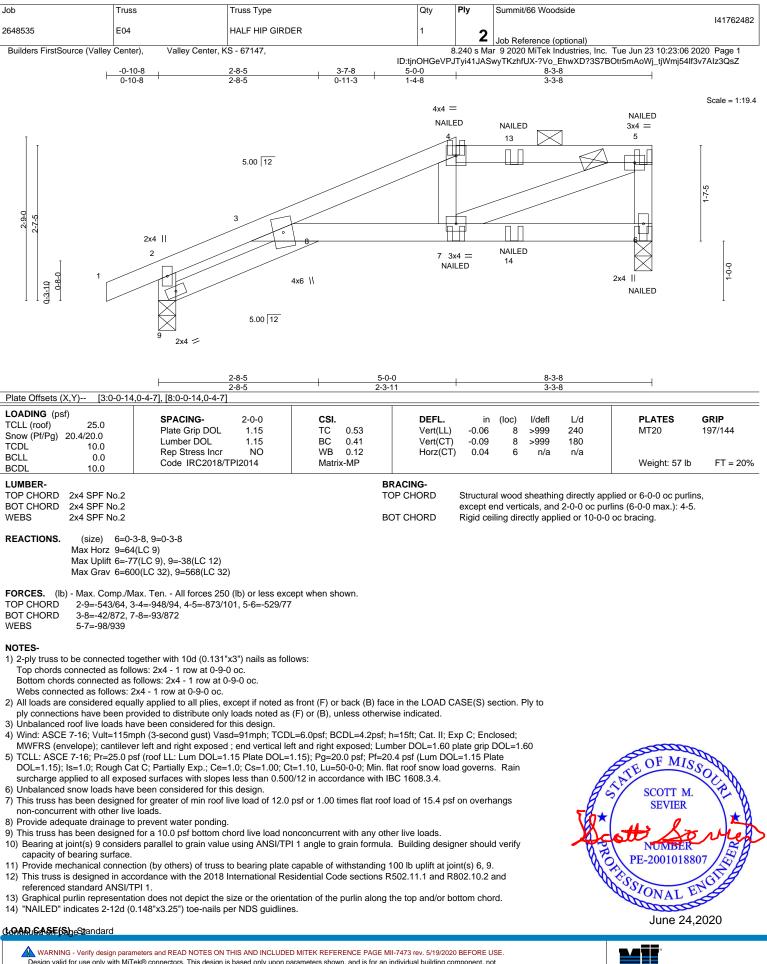
Concentrated Loads (lb) Vert: 3=-147(B) 7=-113(B) 8=-132(B) 9=-132(B) 10=-137(B)



FT = 20%


Weight: 35 lb

June 24,2020

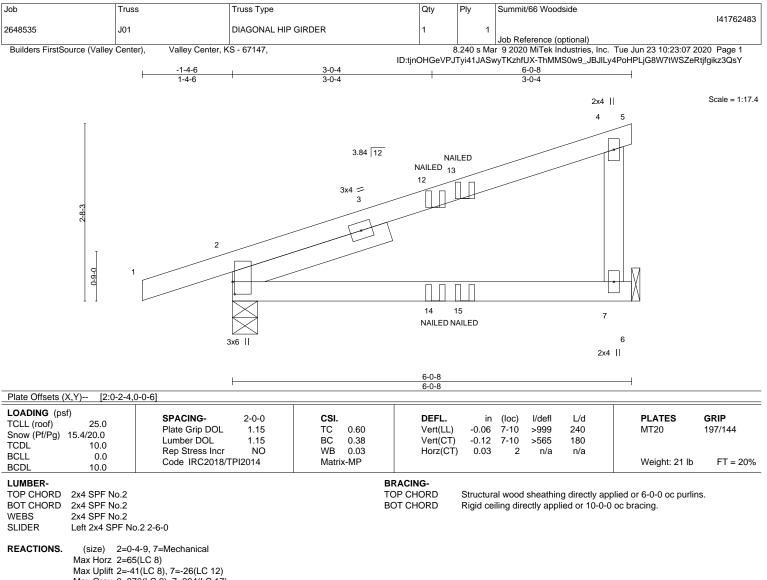


- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Bearing at joint(s) 12 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 9, 12.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MiTek° 16023 Swingley Ridge Rd Chesterfield, MO 63017

Job	Truss	Truss Type	Qty	Ply	Summit/66 Woodside
					I41762482
2648535	E04	HALF HIP GIRDER	1	2	
				2	Job Reference (optional)
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	6	3.240 s Ma	r 9 2020 MiTek Industries, Inc. Tue Jun 23 10:23:06 2020 Page 2

ID:tjnOHGeVPJTyi41JASwyTKzhfUX-?Vo_EhwXD?3S7BOtr5mAoWj_tjWmj54lf3v7Alz3QsZ


LOAD CASE(S) Standard

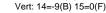
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-51, 2-4=-51, 4-5=-61, 8-9=-20, 6-8=-20 Concentrated Loads (lb)

Vert: 4=-79(F) 6=-54(F) 7=-70(F) 5=-74(F) 13=-50(F) 14=-46(F)

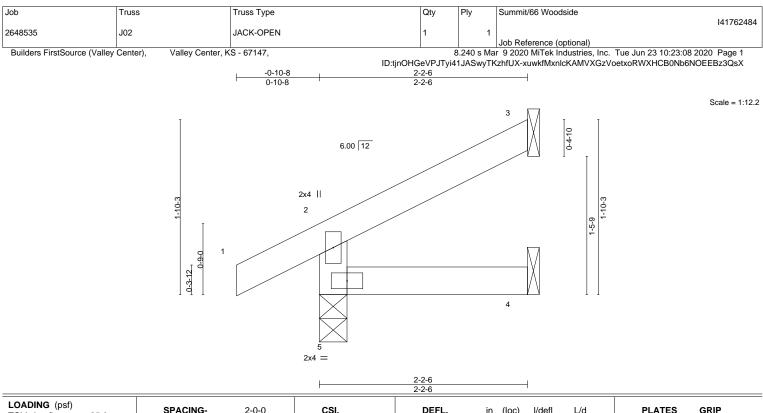
Max Grav 2=370(LC 2), 7=294(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-4=-300/45


NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 7.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-5=-51, 6-8=-20 Concentrated Loads (lb)

16023 Swingley Ridge Rd Chesterfield, MO 63017

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 2-2-6 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc b

REACTIONS. (size) 3=Mechanical, 4=Mechanical, 5=0-3-8 Max Horz 5=33(LC 9)

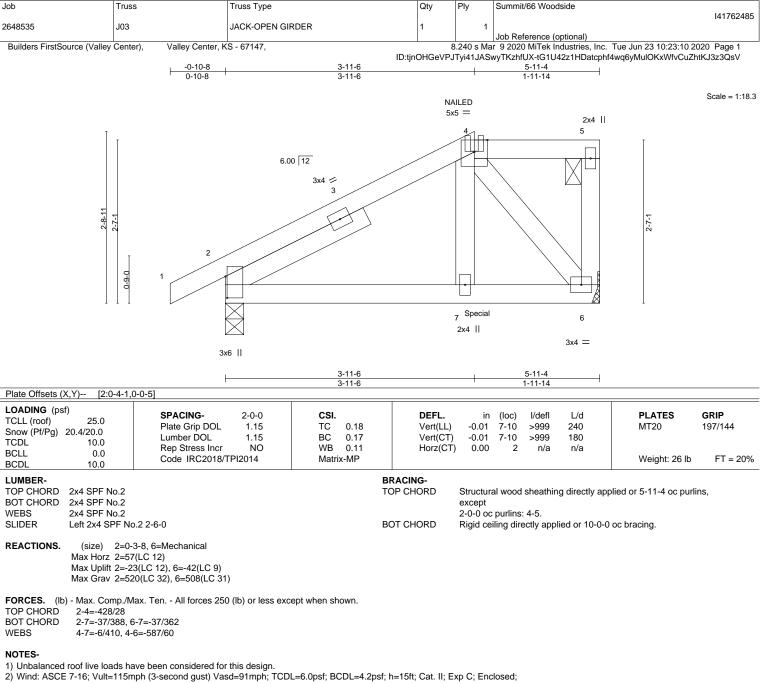
Max Uplift 3=-19(LC 12), 5=-2(LC 12) Max Grav 3=56(LC 17), 4=36(LC 7), 5=187(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.


- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 5.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

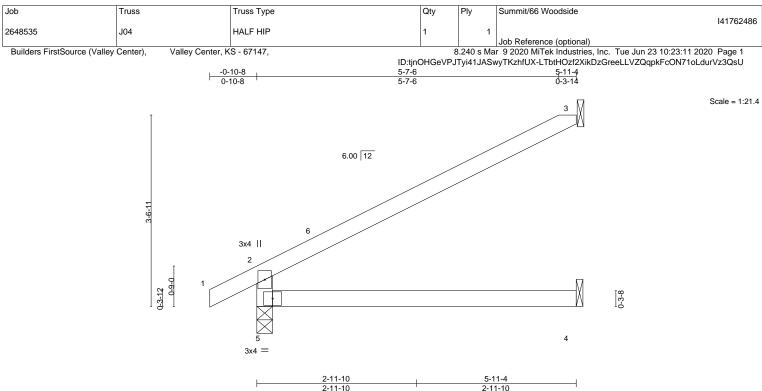
- 2) Wind: ASCE 7-16, Volie 115mpn (3-second gust) Vasde9 impn, TDDE=0.0pst, BCDE=4.2pst, n=15it, Cat. It, Exp. c, Enclos MWFRS (envelope); cantilever left and right exposed ; end vertical left exposed; Lumber DDL=1.60 plate grip DDL=1.60 0.2014 (ASCE 7-16, Volie 115mpn (3-second gust) Vasde9 impn, TDDE=0.0pst, BCDE=4.2pst, n=15it, Cat. It, Exp. c, Enclos MWFRS (envelope); cantilever left and right exposed ; end vertical left exposed; Lumber DDL=1.60 plate grip DDL=1.60 0.2014 (ASCE 7-16, Volie 115mpn (3-second gust) Vasde9 impn, TDDE=0.0pst, BCDE=4.2pst, n=15it, Cat. It, Exp. c, Enclos MWFRS (envelope); cantilever left and right exposed ; end vertical left exposed; Lumber DDL=1.60 plate grip DDL=1.60 0.2014 (ASCE 7-16, Volie 115mpn (3-second gust) Vasde9 impn, TDDE=0.0pst, BCDE=4.2pst, n=15it, Cat. It, Exp. c, Enclos 0.2014 (ASCE 7-16, Volie 115mpn (3-second gust) Vasde9 impn, TDDE=0.0pst, BCDE=4.2pst, n=15it, Cat. It, Exp. c, Enclos 0.2014 (ASCE 7-16, Volie 115mpn (3-second gust) Vasde9 impn, TDDE=0.0pst, BCDE=4.2pst, n=15it, Cat. It, Exp. c, Enclos 0.2014 (ASCE 7-16, Volie 115mpn (3-second gust) Vasde9 impn, TDDE=0.0pst, BCDE=4.2pst, n=15it, Cat. It, Exp. c, Enclos 0.2014 (ASCE 7-16, Volie 115mpn (3-second gust) Vasde9 impn, TDDE=0.0pst, BCDE=4.2pst, n=15it, Cat. It, Exp. c, Enclos 0.2014 (ASCE 7-16, Volie 115mpn (3-second gust) (3-
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 331 lb down and 47 lb up at 3-11-6 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

Continued on page 2

[Job	Truss	Truss Type	Qty	Ply	Summit/66 Woodside
						141762485
	2648535	J03	JACK-OPEN GIRDER	1	1	
						Job Reference (optional)
	Builders FirstSource (Valley Center), Valley Center, KS - 67147,			6	.240 s Ma	r 9 2020 MiTek Industries, Inc. Tue Jun 23 10:23:10 2020 Page 2

8.240 s Mar 9 2020 MiTek Industries, Inc. Tue Jun 23 10:23:10 2020 Page 2 ID:tjnOHGeVPJTyi41JASwyTKzhfUX-tG1U42z1HDatcphf4wq6yMulOKxWfvCuZhtKJ3z3QsV


LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-51, 4-5=-61, 6-8=-20 Concentrated Loads (Ib)

Vert: 4=-93(B) 7=-331(B)

		2-11-10	2-11-10	1		
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.52 BC 0.30 WB 0.00 Matrix-AS	DEFL. in (loc) I/defl Vert(LL) -0.05 4-5 >999 Vert(CT) -0.11 4-5 >639 Horz(CT) 0.04 3 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 16 lb	GRIP 197/144 FT = 20%

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (size) 3=Mechanical, 4=Mechanical, 5=0-3-8 Max Horz 5=83(LC 12) Max Uplift 3=-51(LC 12) Max Grav 3=207(LC 17), 4=107(LC 7), 5=336(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-290/34

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=-1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

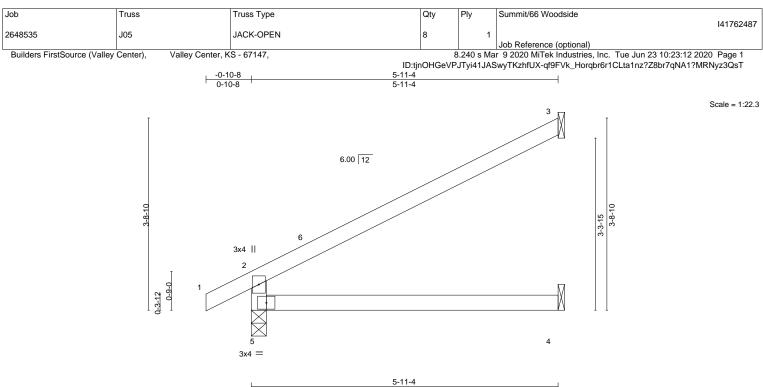
3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) Refer to girder(s) for truss to truss connections.

 Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.


8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

MITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

		5-	11-4		1			
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.52 BC 0.30 WB 0.00	DEFL. Vert(LL) -0.0 Vert(CT) -0.1 Horz(CT) 0.0	1 4-5	l/defl >999 >639 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCLL 0.0 BCDL 10.0	Code IRC2018/TPI2014	Matrix-AS	10/2(01) 0.0		Π/α	n/a	Weight: 16 lb	FT = 20%

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (size) 3=Mechanical, 4=Mechanical, 5=0-3-8 Max Horz 5=80(LC 12) Max Uplift 3=-51(LC 12) Max Grav 3=207(LC 17), 4=107(LC 7), 5=336(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-290/34

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

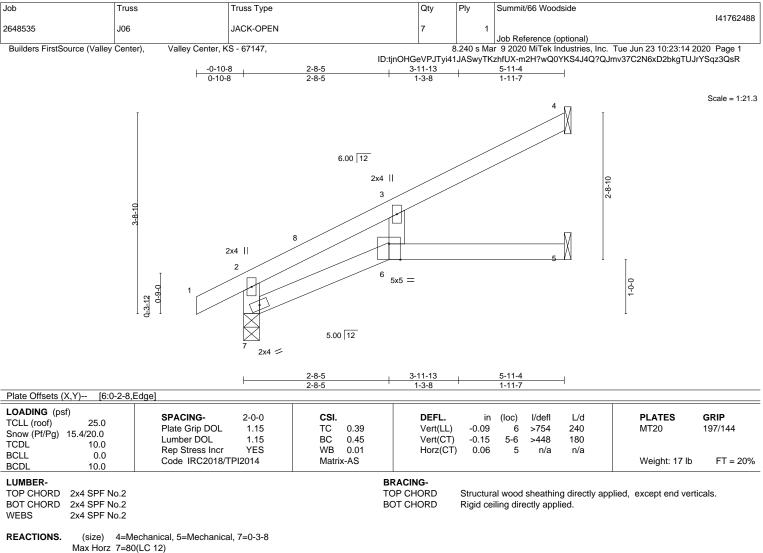
3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) Refer to girder(s) for truss to truss connections.

 Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.


8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

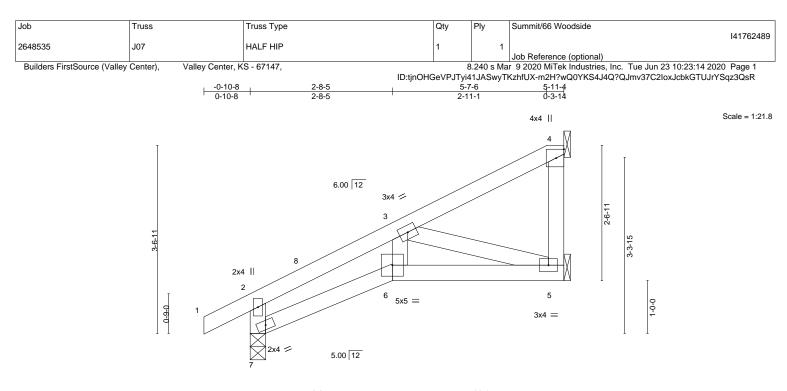
10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Max Uplift 4=-38(LC 12), 5=-1(LC 12)

Max Grav 4=179(LC 17), 5=99(LC 17), 7=336(LC 2)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.5); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); ls=-1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

		<u>2-8-5</u> 2-8-5	5-11-4 3-2-15		
TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDI 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2018/TPI2014	CSI. TC 0.73 BC 0.09 WB 0.04 Matrix-AS	DEFL. in (loc) Vert(LL) -0.18 6 Vert(CT) -0.30 6 Horz(CT) 0.12 5	 	RIP)7/144 FT = 20%

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (size) 5=Mechanical, 7=0-3-8, 4=Mechanical Max Horz 7=82(LC 12) Max Uplift 5=-10(LC 12), 4=-29(LC 12)

Max Grav 5=56(LC 7), 7=332(LC 2), 4=246(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. WEBS 2-7=-307/42

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.5); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

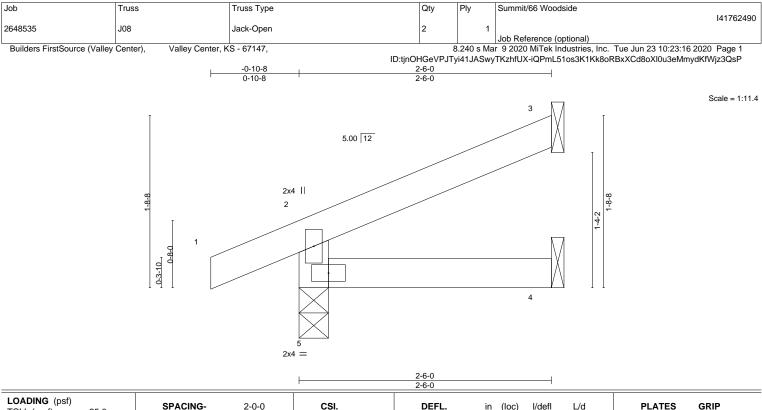
4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) Refer to girder(s) for truss to truss connections.

7) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 4.


9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

11) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.07 BC 0.04 WB 0.00	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 -0.00 0.00	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCDL 10.0	Code IRC2018/TPI2014	Matrix-MR						Weight: 7 lb	FT = 20%

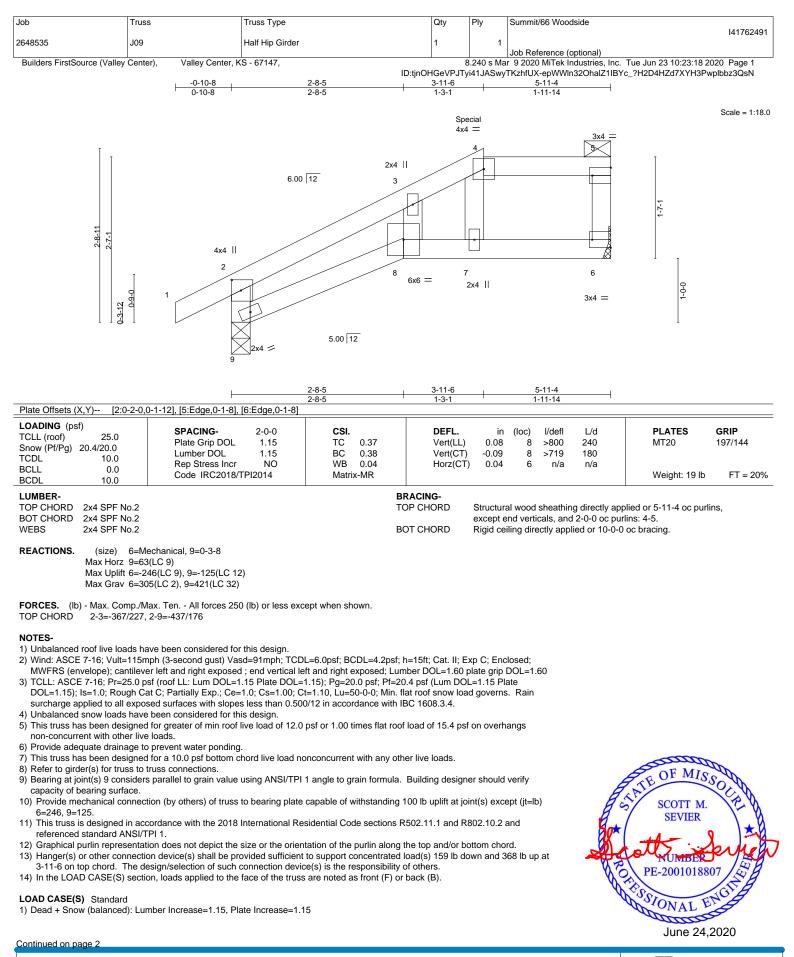
TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING-TOP CHORD

 TOP CHORD
 Structural wood sheathing directly applied or 2-6-0 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

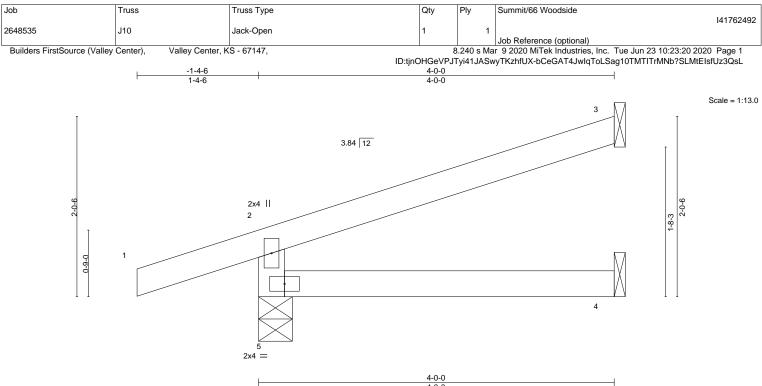
REACTIONS. (size) 3=Mechanical, 4=Mechanical, 5=0-3-8 Max Horz 5=31(LC 9) Max Uplift 3=-19(LC 12), 5=-14(LC 8)

Max Grav 3=67(LC 17), 4=42(LC 7), 5=196(LC 17)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 5.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


Job	Truss	Truss Type	Qty	Ply	Summit/66 Woodside
					I41762491
2648535	J09	Half Hip Girder	1	1	
					Job Reference (optional)
Builders FirstSource (Valley	Center), Valley Center, K	S - 67147,	8	8.240 s Ma	r 9 2020 MiTek Industries, Inc. Tue Jun 23 10:23:18 2020 Page 2

ID:tjnOHGeVPJTyi41JASwyTKzhfUX-epWWIn32OhalZ1IBYc_?H2D4HZd7XYH3Pwplbbz3QsN

LOAD CASE(S) Standard

Uniform Loads (plf) Vert: 1-2=-51, 2-4=-51, 4-5=-61, 8-9=-20, 6-8=-20 Concentrated Loads (lb) Vert: 4=-120(F)

			4-0-0	
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.18 BC 0.12 WB 0.00 Matrix-AS	DEFL. in (loc) l/defl L/d Vert(LL) -0.01 4-5 >999 240 Vert(CT) -0.02 4-5 >999 180 Horz(CT) 0.01 3 n/a n/a	20%
BCDL 10.0		Widthx-A0		2070

TOP CHORD 2x4 SPF No 2 BOT CHORD 2x4 SPF No.2 WEBS

2x4 SPF No.2

TOP CHORD BOT CHORD

BRACING-

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. 5=0-4-9, 3=Mechanical, 4=Mechanical (size) Max Horz 5=44(LC 8) Max Uplift 5=-46(LC 8), 3=-27(LC 12)

Max Grav 5=312(LC 17), 3=117(LC 17), 4=69(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-5=-275/66

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

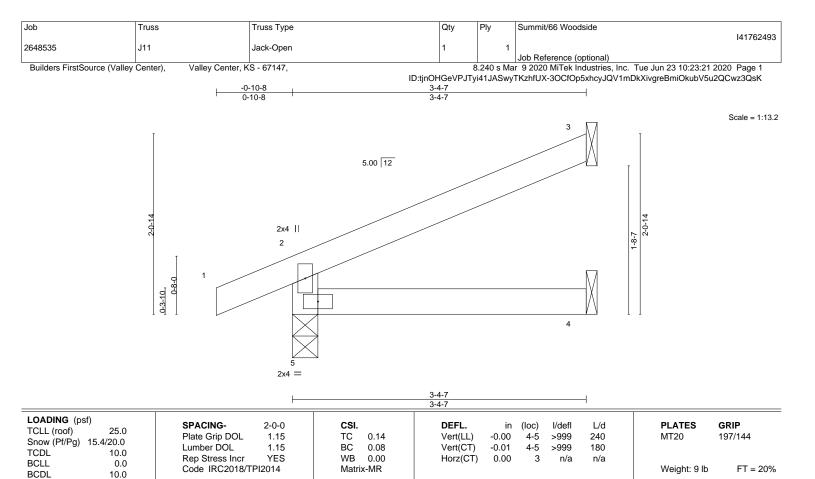
3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) Refer to girder(s) for truss to truss connections.

7) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.


8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

LU	MB	ER-	

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING-TOP CHORD

 TOP CHORD
 Structural wood sheathing directly applied or 3-4-7 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 4=Mechanical, 5=0-3-8

Max Horz 5=39(LC 12)

Max Uplift 3=-25(LC 12), 5=-10(LC 8) Max Grav 3=102(LC 17), 4=59(LC 7), 5=239(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

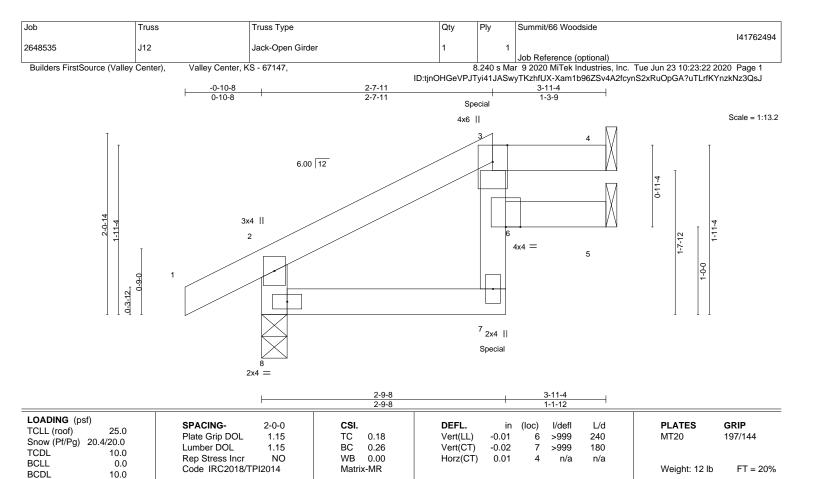
NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Pf=15.4 psf (Lum DOL=1.15); Pf=15.4 ps

DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.


- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 5.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

WEBS

TOP CHORD

BOT CHORD

REACTIONS.

TOP CHORD

NOTES-

4=Mechanical, 5=Mechanical, 8=0-3-8

Max Uplift 4=-15(LC 9), 5=-12(LC 12), 8=-16(LC 12) Max Grav 4=119(LC 31), 5=117(LC 32), 8=329(LC 32) FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4. 4) Unbalanced snow loads have been considered for this design.

5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

- 6) Provide adequate drainage to prevent water ponding.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Refer to girder(s) for truss to truss connections.

2x4 SPF No.2

2x4 SPF No.2

2x4 SPF No.2

(size)

2-8=-302/30

Max Horz 8=36(LC 53)

- 9) Bearing at joint(s) 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5, 8.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 126 lb down and 77 lb up at 2-7-11 on top chord, and 52 lb down at 2-7-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.
- 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
 - Vert: 1-2=-51, 2-3=-51, 3-4=-61, 7-8=-20, 5-6=-20

Continued on page 2

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE Design valid for use only with MITeK connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

Structural wood sheathing directly applied or 3-11-4 oc purlins,

except end verticals, and 2-0-0 oc purlins: 3-4.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Job	Truss	Truss Type	Qty	Ply	Summit/66 Woodside
					141762494
2648535	J12	Jack-Open Girder	1	1	
					Job Reference (optional)
Builders FirstSource (Valley Center), Valley Center, KS - 67147,				3.240 s Ma	r 9 2020 MiTek Industries, Inc. Tue Jun 23 10:23:23 2020 Page 2

8.240 s Mar 9 2020 MiTek Industries, Inc. Tue Jun 23 10:23:23 2020 Page 2 ID:tjnOHGeVPJTyi41JASwyTKzhfUX-?mKPpV7BDDC1gpB9L9ZA_5w_0aL7Co5oZCXWGpz3QsI

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 7=-30(B) 3=-92(B)

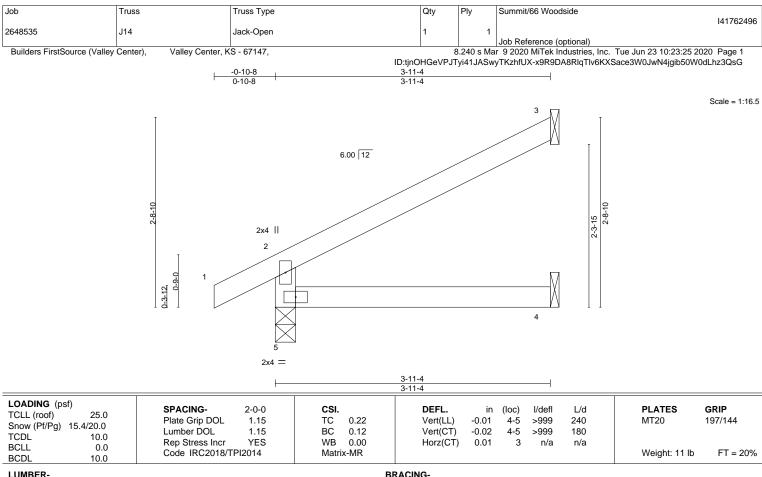
TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

TOP CHORD

Structural wood sheathing directly applied or 3-11-4 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 4=Mechanical, 5=Mechanical, 8=0-3-8 (size) Max Horz 8=55(LC 12) Max Uplift 4=-17(LC 12), 5=-10(LC 12)

Max Grav 4=96(LC 17), 5=77(LC 17), 8=276(LC 17)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-8=-251/17

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Bearing at joint(s) 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

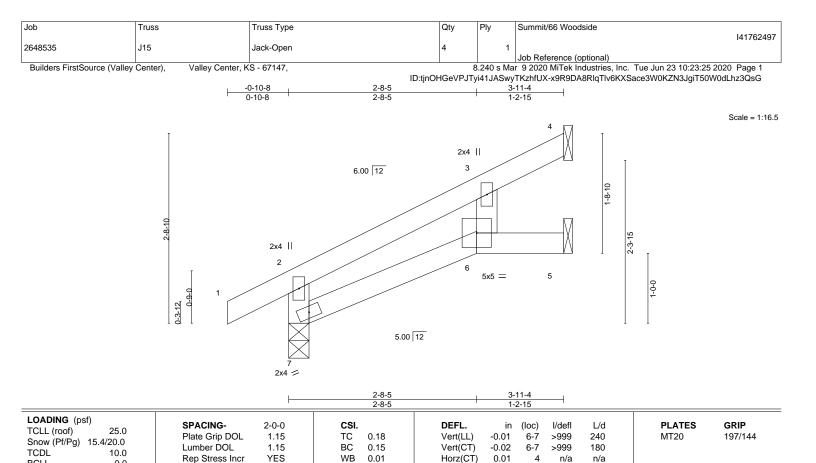
TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

TOP CHORD

Structural wood sheathing directly applied or 3-11-4 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. 3=Mechanical, 4=Mechanical, 5=0-3-8 (size) Max Horz 5=55(LC 12) Max Uplift 3=-34(LC 12)

Max Grav 3=128(LC 17), 4=70(LC 7), 5=276(LC 17)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

BRACING-

TOP CHORD

BOT CHORD

Matrix-MF

N	O.	TF	S.

BCLL

BCDL

WEBS

LUMBER-

TOP CHORD

BOT CHORD

REACTIONS.

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;

- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

Max Uplift 4=-19(LC 12), 5=-9(LC 12)

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Code IRC2018/TPI2014

4=Mechanical, 5=Mechanical, 7=0-3-8

Max Grav 4=101(LC 17), 5=73(LC 17), 7=276(LC 17) FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

6) Refer to girder(s) for truss to truss connections.

0.0

10.0

2x4 SPF No.2

2x4 SPF No.2

2x4 SPF No.2

(size)

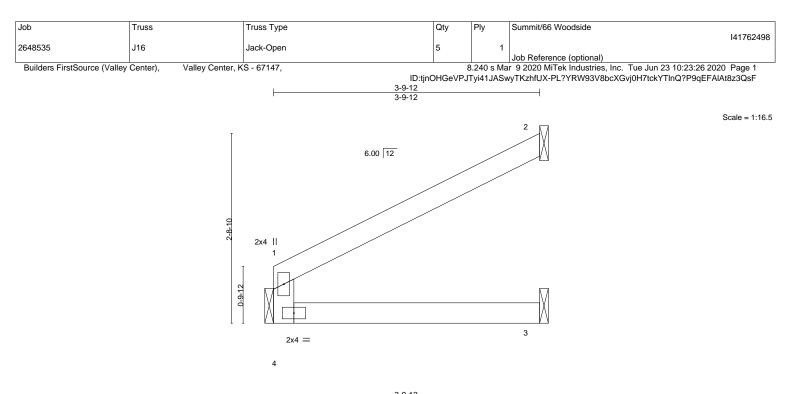
Max Horz 7=54(LC 12)

7) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Weight: 12 lb


Structural wood sheathing directly applied or 3-11-4 oc purlins,

Rigid ceiling directly applied or 6-0-0 oc bracing.

except end verticals.

FT = 20%

		3-9- 3-9-					
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.22 BC 0.12 WB 0.00 Matrix-MR	DEFL. Vert(LL) Vert(CT) Horz(CT)	oc) l/defl -4 >999 -4 >999 2 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 10 lb	GRIP 197/144 FT = 20%
LUMBER-		BF	RACING-				

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2

WEBS 2x4 SPF No.2

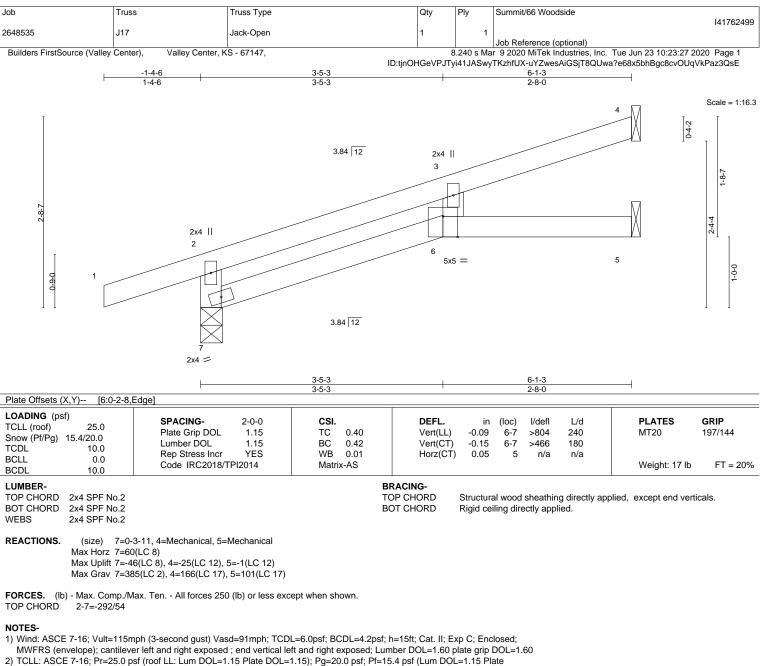
BRACING-TOP CHORD

Structural wood sheathing directly applied or 3-9-12 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=Mechanical, 3=Mechanical, 4=Mechanical Max Horz 4=42(LC 9)

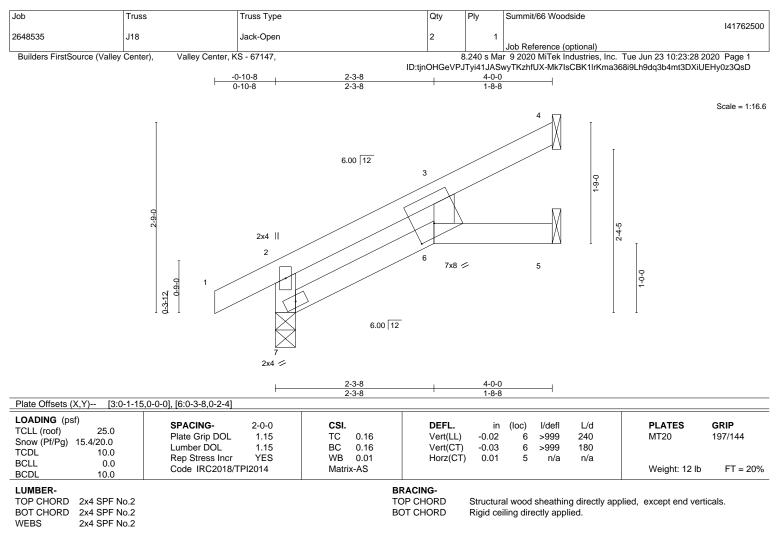
Max Horz 4=42(LC 9) Max Uplift 2=-34(LC 12)

Max Grav 2=125(LC 16), 3=69(LC 7), 4=172(LC 16)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

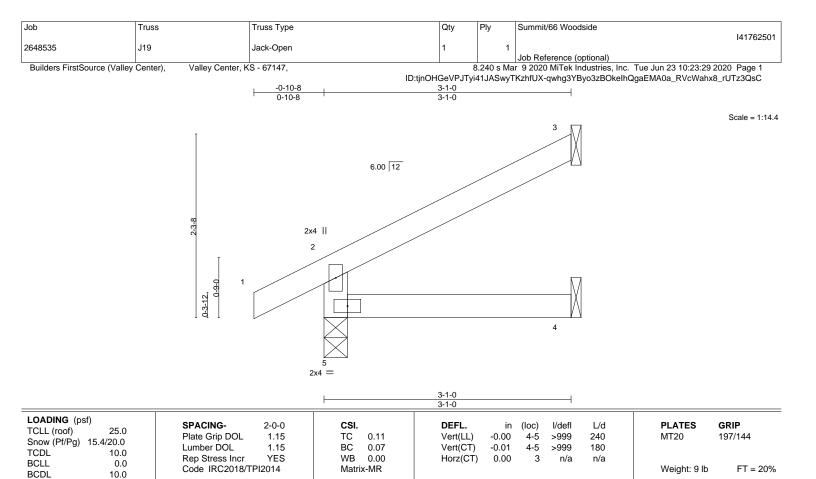


- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- Refer to girder(s) for truss to truss connections.
- 7) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 7, 4, 5.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

REACTIONS. (size) 4=Mechanical, 5=Mechanical, 7=0-3-8

Max Horz 7=55(LC 12) Max Uplift 4=-24(LC 12), 5=-4(LC 12)

Max Grav 4=111(LC 17), 5=66(LC 17), 7=279(LC 17)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

BRACING-

TOP CHORD

BOT CHORD

FORCES.	(Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown.	

3=Mechanical, 4=Mechanical, 5=0-3-8

Max Grav 3=93(LC 17), 4=54(LC 7), 5=230(LC 17)

NOTES-

LUMBER-

WEBS

TOP CHORD

BOT CHORD

REACTIONS.

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

Max Uplift 3=-27(LC 12), 5=-1(LC 12)

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.

2x4 SPF No.2

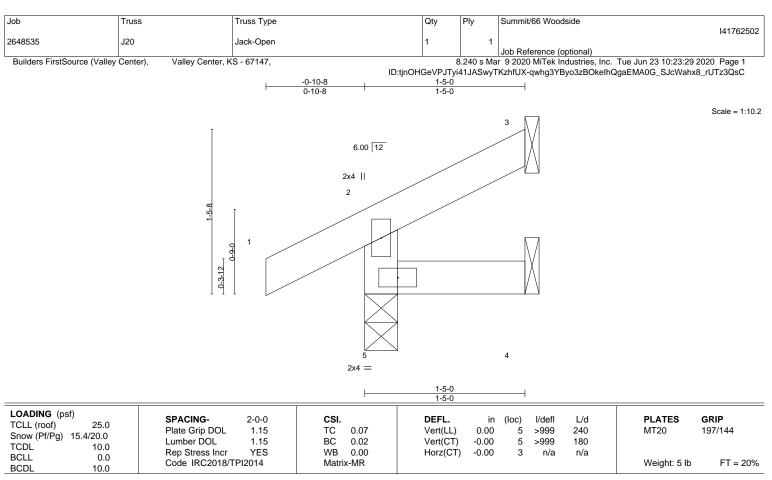
2x4 SPF No.2

2x4 SPF No.2

(size)

Max Horz 5=44(LC 12)

- Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 5.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.



Structural wood sheathing directly applied or 3-1-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 1-5-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 4=Mechanical, 5=0-3-8 Max Horz 5=27(LC 9) Max Uplift 3=-12(LC 12), 5=-3(LC 12)

Max Grav 3=22(LC 17), 4=22(LC 7), 5=158(LC 17)

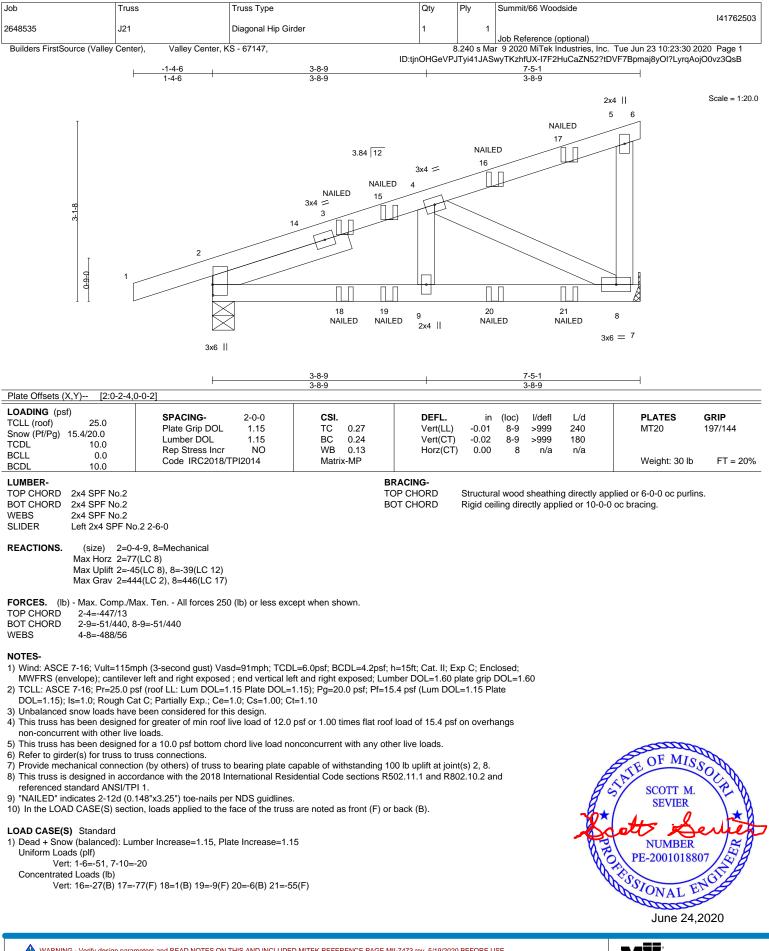
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

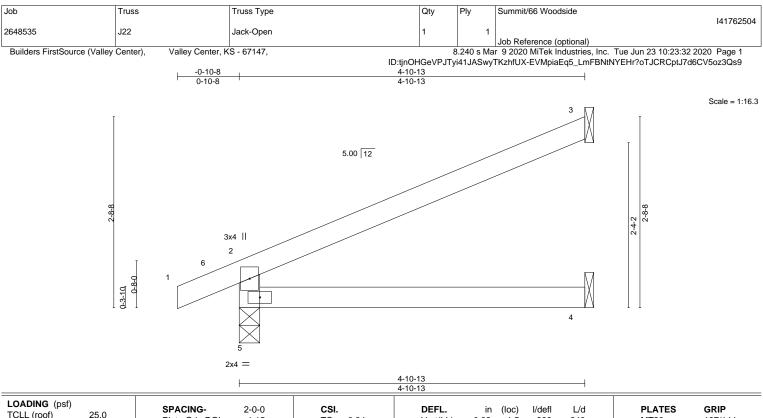
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.


- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 5.


9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.34 BC 0.20 WB 0.00	DEFL. in (loc) l/defl L/d Vert(LL) -0.02 4-5 >999 240 Vert(CT) -0.05 4-5 >999 180 Horz(CT) 0.02 3 n/a n/a	PLATES GRIP MT20 197/144
BCLL 0.0 BCDL 10.0	Code IRC2018/TPI2014	Matrix-AS		Weight: 13 lb FT = 20%

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (size) 3=Mechanical, 4=Mechanical, 5=0-3-8 Max Horz 5=56(LC 12) Max Uplift 3=-37(LC 12), 5=-6(LC 12) Max Grav 3=164(LC 17), 4=87(LC 7), 5=296(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 2-5=-261/34

NOTES-

1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;

MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

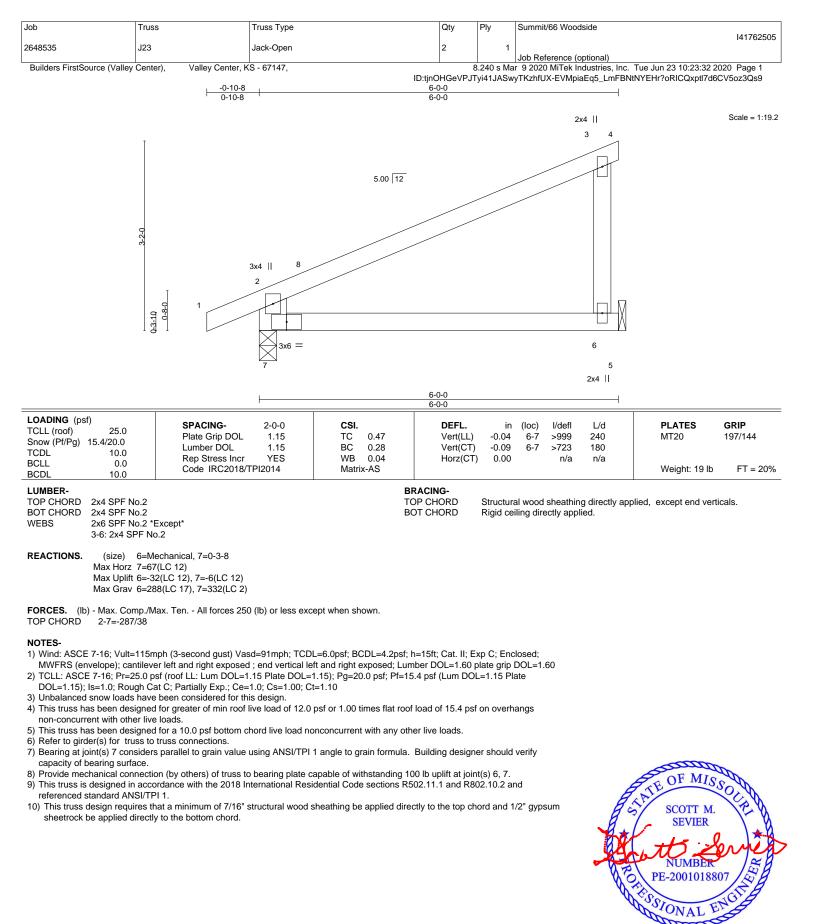
3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) Refer to girder(s) for truss to truss connections.

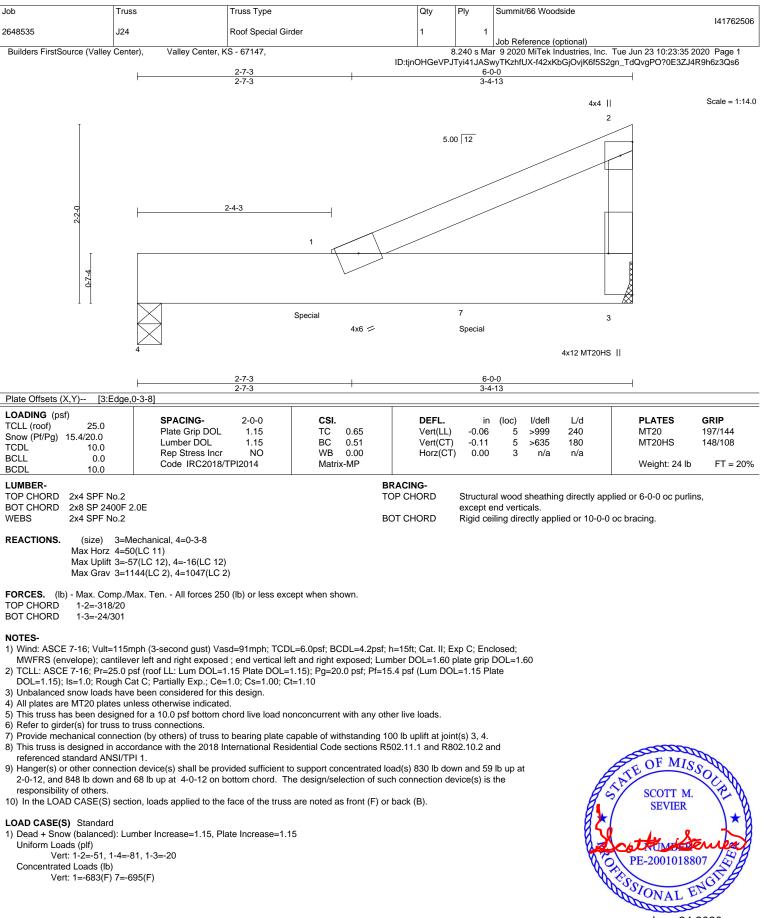
 Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.


8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 5.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

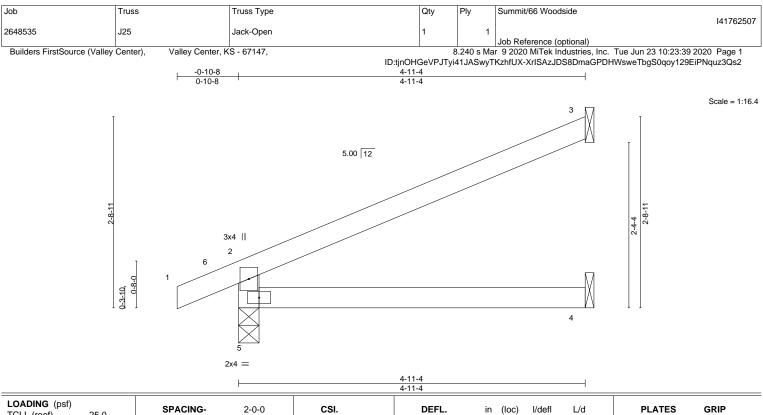
10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

16023 Swingley Ridge Rd Chesterfield, MO 63017



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

E


June 24,2020

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601 June 24,2020

LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 POLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.34 BC 0.20 WB 0.00	Vert(CT) -0.	in (loc) 0.02 4-5 0.05 4-5 0.02 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCLL 0.0 BCDL 10.0	Code IRC2018/TPI2014	Matrix-AS					Weight: 13 lb	FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

2x4 SPF No 2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

TOP CHORD

REACTIONS. 3=Mechanical, 4=Mechanical, 5=0-3-8 (size) Max Horz 5=56(LC 12) Max Uplift 3=-38(LC 12), 5=-6(LC 12)

Max Grav 3=165(LC 17), 4=88(LC 7), 5=297(LC 17)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-5=-261/35

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

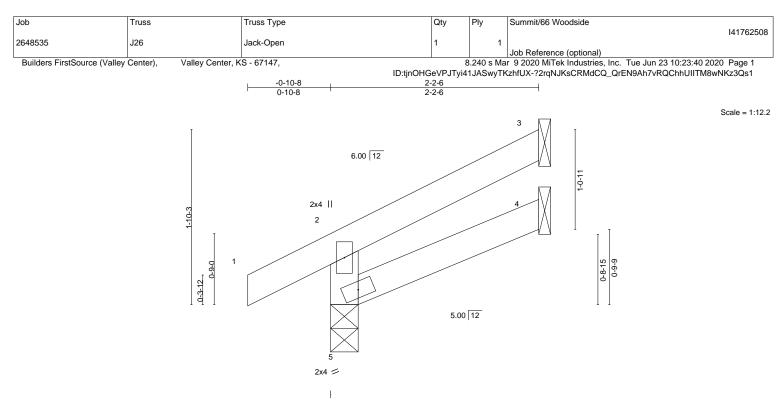
6) Refer to girder(s) for truss to truss connections.

7) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 5.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.



Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.07 BC 0.03 WB 0.00 Matrix-MR	DEFL. ii Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) -0.00	5 4-5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 7 lb	GRIP 197/144 FT = 20%
BCDL 10.0	Code 1802018/11/12014	IVIdu1X-IVIT					weight. 7 ib	FT = 20%

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

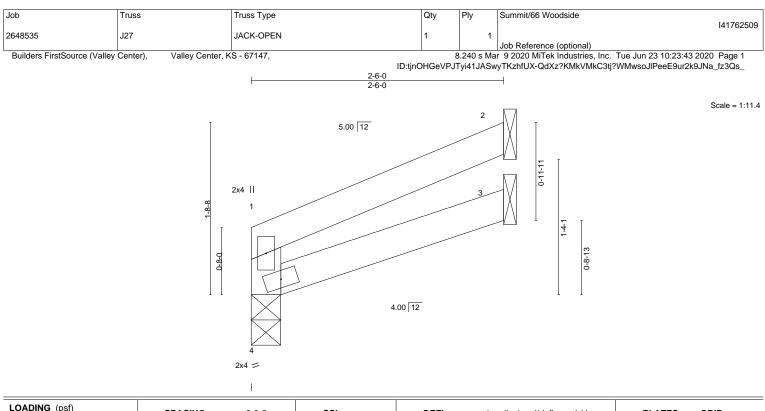
BRACING-TOP CHORD

Structural wood sheathing directly applied or 2-2-6 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bra

REACTIONS. (size) 3=Mechanical, 4=Mechanical, 5=0-3-8 Max Horz 5=34(LC 9)

Max Uplift 3=-20(LC 12), 5=-1(LC 12) Max Grav 3=56(LC 17), 4=36(LC 7), 5=187(LC 17)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Pf=15.4 psf (Lum DOL=1.15); Pf=15.4 ps
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 5.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.08 BC 0.04 WB 0.00 Matrix-MR	Vert(LL) -0.00 3-4 >	'defl L/d 999 240 999 180 n/a n/a	PLATES MT20 Weight: 7 lb	GRIP 197/144 FT = 20%
BCDL 10.0		WIGUIX-IVIN			Weight. 7 lb	FT = 2078

LUMBER-TOP CHORD

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING-TOP CHORD

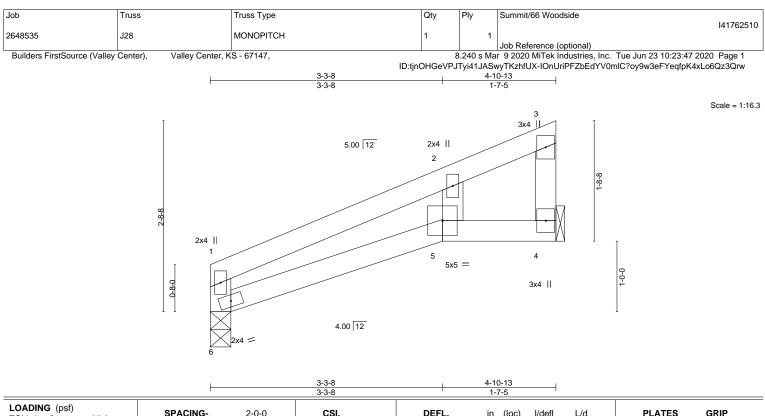
BOT CHORD

Structural wood sheathing directly applied or 2-6-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 2=Mechanical, 3=Mechanical, 4=0-3-8

Max Horz 4=26(LC 9)

Max Uplift 2=-20(LC 12) Max Grav 2=75(LC 2), 3=44(LC 7), 4=103(LC 2)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) Refer to girder(s) for truss to truss connections.
- 6) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.20 BC 0.20 WB 0.01	Vert(LL) -0.02	loc) l/defl 5-6 >999 5-6 >999 4 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 197/144
BCLL 0.0 BCDL 10.0	Code IRC2018/TPI2014	Matrix-AS	()			Weight: 14 lb	FT = 20%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

REACTIONS. (size) 4=Mechanical,

CTIONS. (size) 4=Mechanical, 6=0-3-8 Max Horz 6=59(LC 9) Max Uplift 4=-20(LC 12), 6=-4(LC 12)

Max Grav 4=221(LC 12), 6=221(LC 12)Max Grav 4=221(LC 16), 6=221(LC 16)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

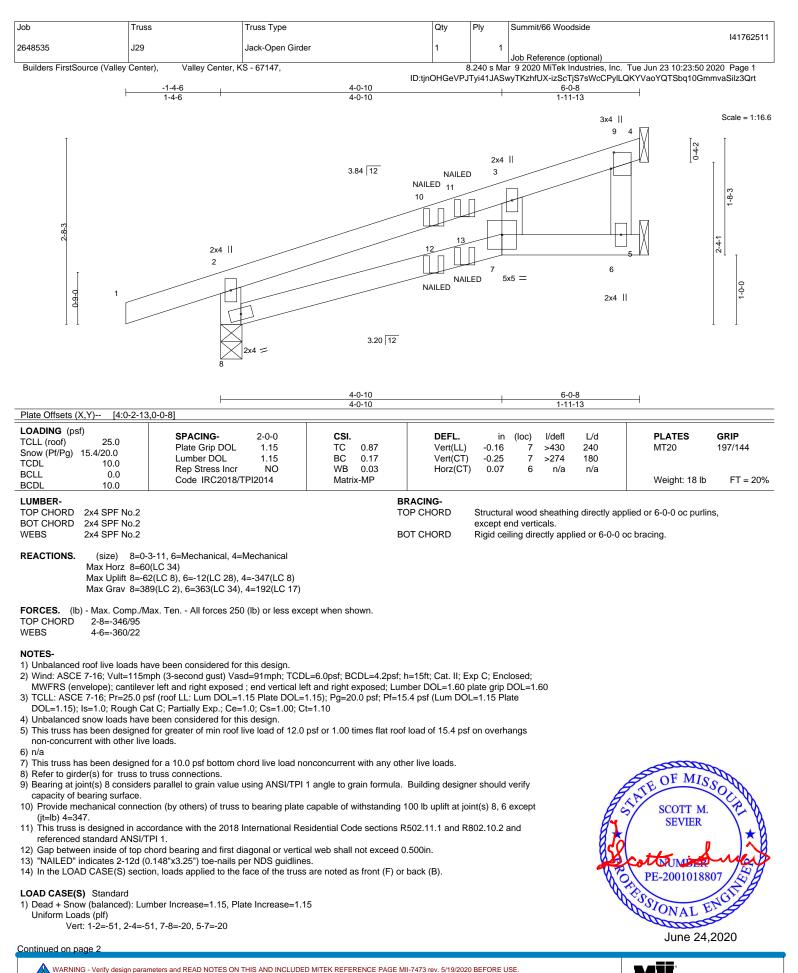
4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) Refer to girder(s) for truss to truss connections.

6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

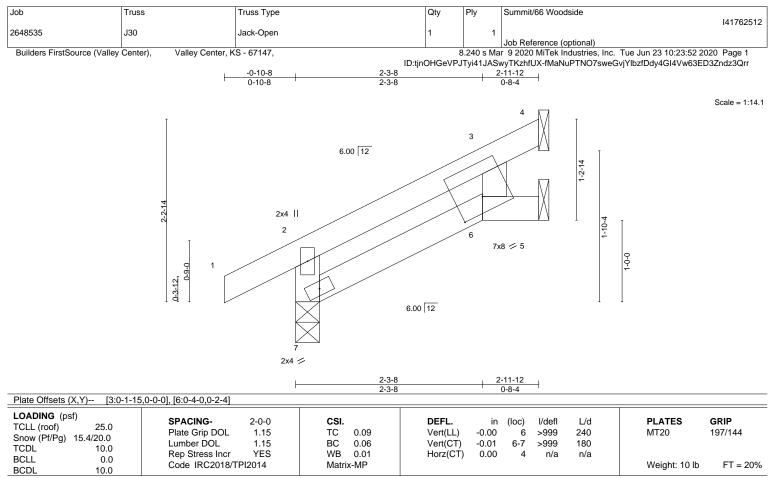
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 6.

 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.


Job	Truss	Truss Type	Qty	Ply	Summit/66 Woodside
					141762511
2648535	J29	Jack-Open Girder	1	1	
					Job Reference (optional)
Builders FirstSource (Valley Center), Valley Center, KS - 67147,			8	3.240 s Ma	r 9 2020 MiTek Industries, Inc. Tue Jun 23 10:23:50 2020 Page 2

ID:tjnOHGeVPJTyi41JASwyTKzhfUX-izScTjS7sWcCPyILQKYVaoYQTSbq10GmmvaSilz3Qrt

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 12=-17(F) 13=0(B)

LUMBER-

TOP CHORD2x4 SPF No.2BOT CHORD2x4 SPF No.2WEBS2x4 SPF No.2

BRACING-TOP CHORD

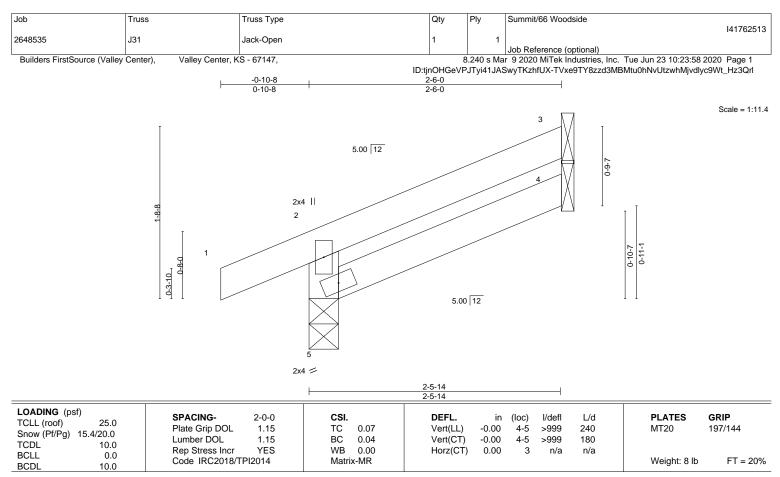
 TOP CHORD
 Structural wood sheathing directly applied or 2-11-12 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 4=Mechanical, 5=Mechanical, 7=0-3-8

Max Horz 7=42(LC 12) Max Uplift 4=-17(LC 12), 5=-6(LC 12)

Max Grav 4=73(LC 17), 5=46(LC 17), 7=225(LC 17)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Bearing at joint(s) 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LUMBER-

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2 BRACING-TOP CHORD

 TOP CHORD
 Structural wood sheathing directly applied or 2-6-0 oc purlins, except end verticals.

 BOT CHORD
 Rigid ceiling directly applied or 6-0-0 oc bracing.

REACTIONS. (size) 3=Mechanical, 4=Mechanical, 5=0-3-8 Max Horz 5=32(LC 9)

Max Uplift 3=-19(LC 12), 5=-13(LC 8)

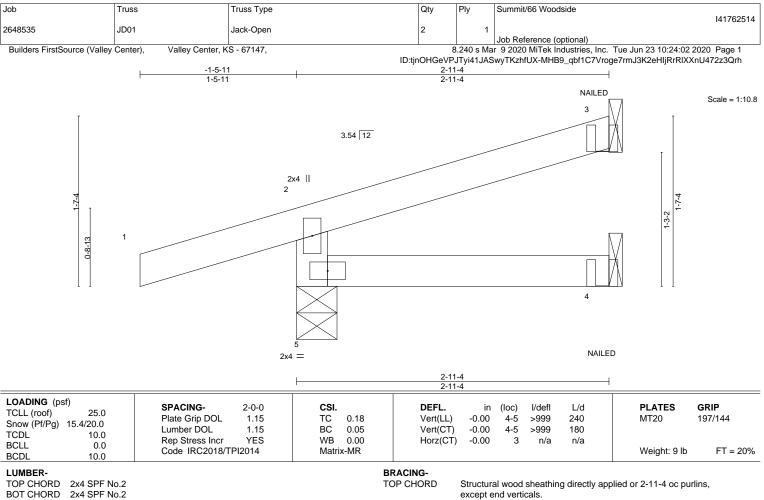
Max Grav 3=67(LC 17), 4=42(LC 7), 5=196(LC 17)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Pf=15.4 psf (Lum DOL=1.15); Pf=15.4 ps
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.


- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 5.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

BOT CHORD

2x4 SPF No.2 2x4 SPF No.2

except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 5=0-4-9, 3=Mechanical, 4=Mechanical

Max Horz 5=33(LC 8) Max Uplift 5=-53(LC 8), 3=-19(LC 12)

Max Grav 5=275(LC 17), 3=70(LC 17), 4=48(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

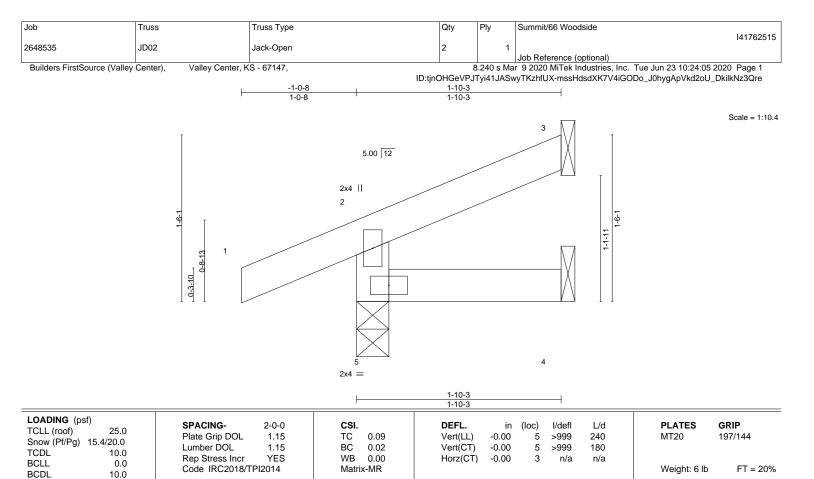
NOTES-

WEBS

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 3.

- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).


LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-51, 2-3=-51, 4-5=-20 Concentrated Loads (lb) Vert: 3=-1(F) 4=1(F)

 TOP CHORD
 2x4 SPF No.2

 BOT CHORD
 2x4 SPF No.2

 WEBS
 2x4 SPF No.2

BRACING-TOP CHORD

Structural wood sheathing directly applied or 1-10-3 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD Rigid ceiling directly applied or 10-0-

REACTIONS. (size) 3=Mechanical, 4=Mechanical, 5=0-3-8 Max Horz 5=28(LC 9) Max Uplift 3=-14(LC 12), 5=-21(LC 8)

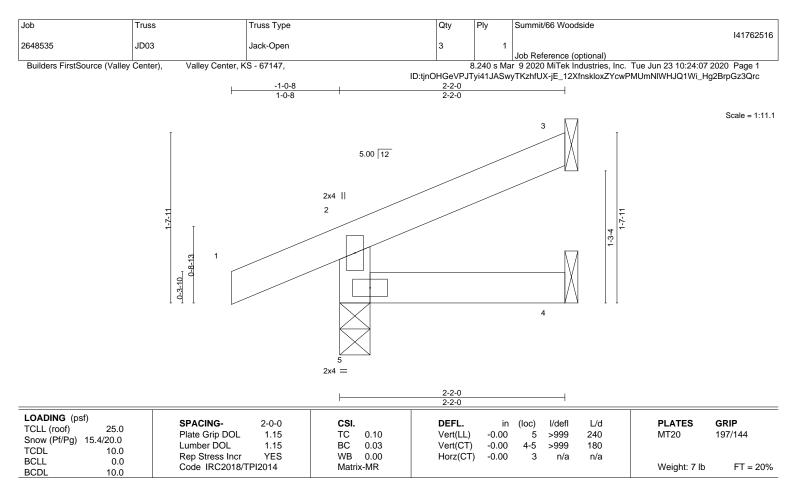
Max Grav 3=37(LC 17), 4=29(LC 7), 5=190(LC 17)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.


- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 5.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11	IM	RF	ER-
L.(ואוכ	DD	-71

TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2

WEBS 2x4 SPF No.2

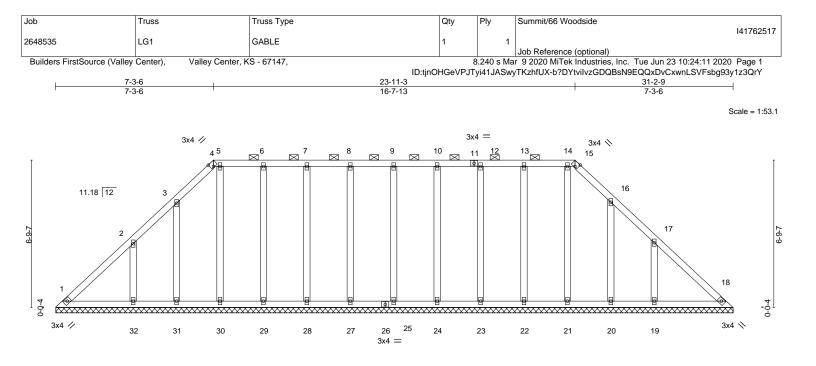
BRACING-TOP CHORD

Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

BOT CHORD Rigid ceiling directly applied or 10-0-0

REACTIONS. (size) 3=Mechanical, 4=Mechanical, 5=0-3-8 Max Horz 5=30(LC 9) Max Uplift 3=-16(LC 12), 5=-19(LC 8)

Max Grav 3=49(LC 17), 4=35(LC 7), 5=201(LC 17)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Refer to girder(s) for truss to truss connections.
- Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 5.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

0-Q-4		31-2-9						
0-0-4		31-2-5						1
Plate Offsets (X,Y) [4:0-1-10),Edge], [15:0-1-10,Edge]							
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 20.4/20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.12 BC 0.07 WB 0.11	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a - 0.00 18	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 197/144
BCLL 0.0 BCDL 10.0	Code IRC2018/TPI2014	Matrix-S					Weight: 157 lb	FT = 20%

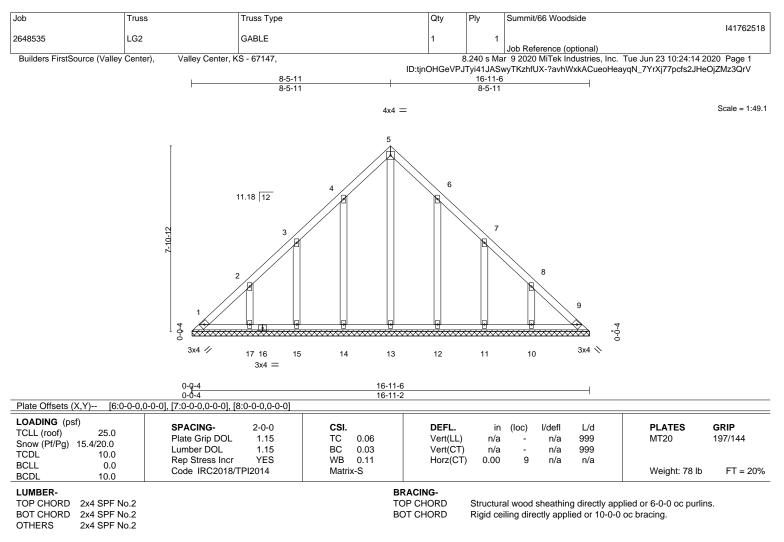
LUMBER-	BRACING-
TOP CHORD 2x4 SPF No.2	TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except
BOT CHORD 2x4 SPF No.2	2-0-0 oc purlins (6-0-0 max.): 4-15.
OTHERS 2x4 SPF No.2	BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 31-2-5.

(lb) - Max Horz 1=-122(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 32, 31, 30, 29, 28, 27, 25, 24, 23, 22, 20, 19

Max Grav All reactions 250 lb or less at joint(s) 1, 18, 31, 30, 29, 28, 27, 25, 24, 23, 22, 21, 20 except 32=307(LC 19), 19=312(LC 20)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain
- surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 32, 31, 30, 29, 28, 27, 25, 24, 23, 22, 20, 19.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

MITEK 16023 Swingley Ridge Rd Chesterfield, MO 63017

REACTIONS. All bearings 16-11-2.

(lb) - Max Horz 1=-142(LC 6)

Max Uplift All uplift 100 lb or less at joint(s) 1, 9, 17, 15, 14, 12, 11, 10 Max Grav All reactions 250 lb or less at joint(s) 1, 9, 17, 15, 14, 13, 12, 11, 10

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

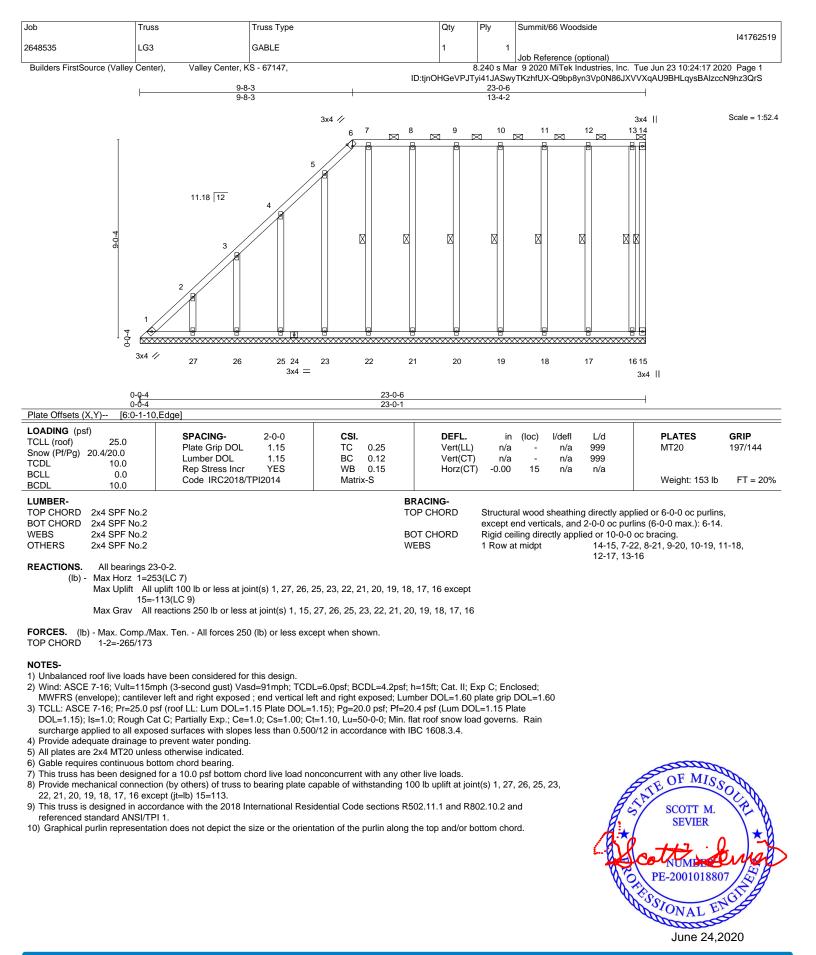
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate

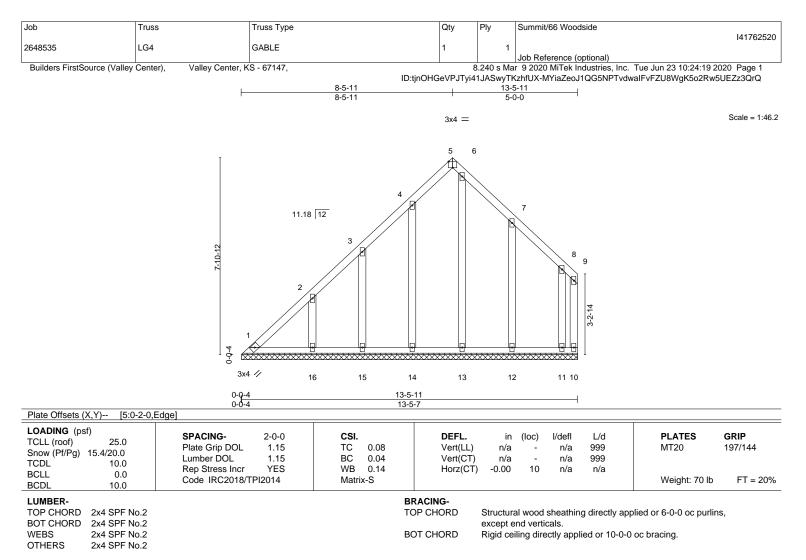
DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing.


6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9, 17, 15, 14, 12, 11, 10.

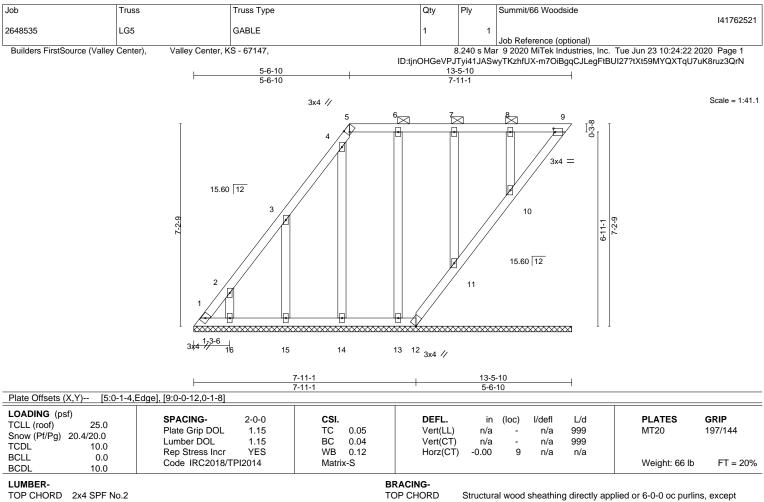

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

REACTIONS. All bearings 13-5-7.

(lb) - Max Horz 1=173(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-


1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) All plates are 2x4 MT20 unless otherwise indicated.
- 4) All plates are 2x4 M120 unless otherwise indicate5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 10, 16, 15, 14, 13, 12, 11.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Max Uplift All uplift 100 lb or less at joint(s) 1, 10, 16, 15, 14, 13, 12, 11 Max Grav All reactions 250 lb or less at joint(s) 1, 10, 16, 15, 14, 13, 12, 11

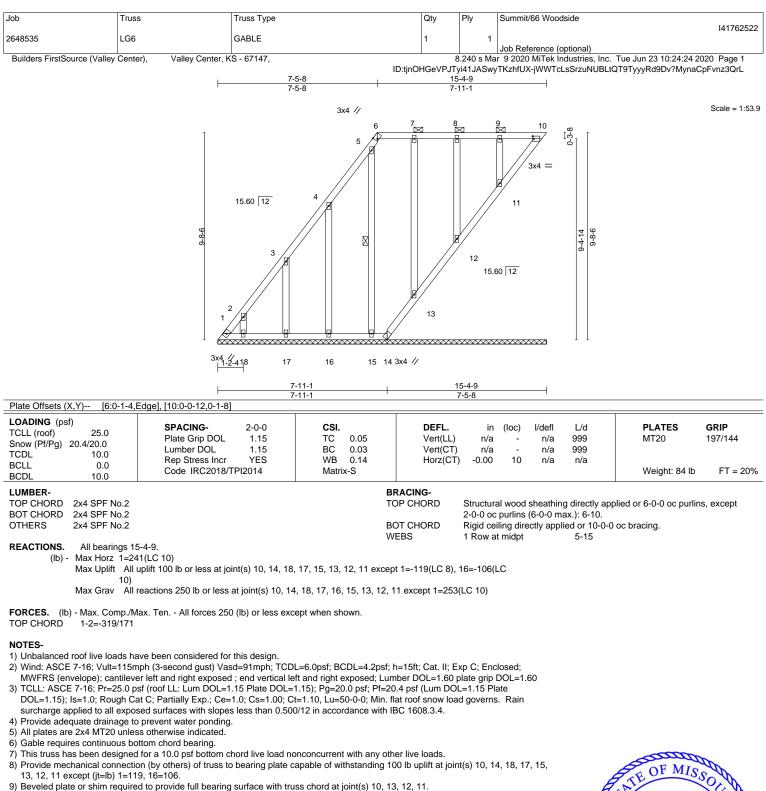
REACTIONS. All bearings 13-5-10.

(lb) - Max Horz 1=178(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 1, 9, 12, 16, 14, 13, 11, 10 except 15=-109(LC 10) Max Grav All reactions 250 lb or less at joint(s) 1, 9, 12, 16, 15, 14, 13, 11, 10

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

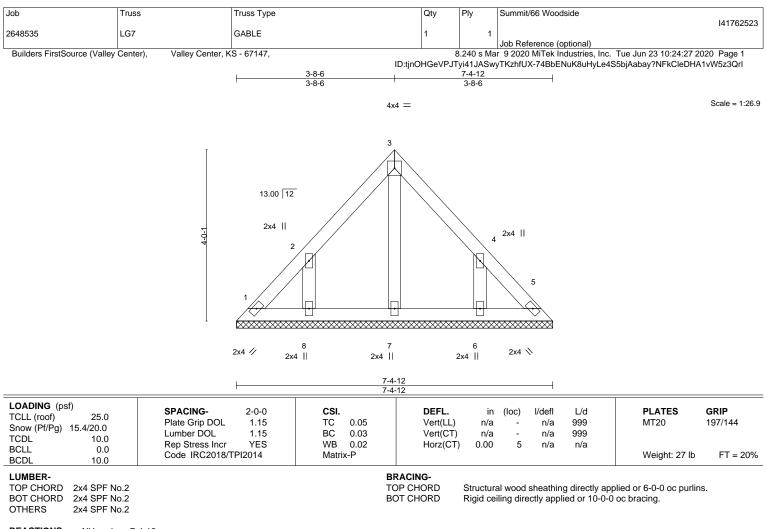
NOTES-


1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
 TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15 Plate

- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0; Min. flat roof snow load governs. Rain surcharge applied to all exposed surfaces with slopes less than 0.500/12 in accordance with IBC 1608.3.4.
- Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 9, 12, 16, 14, 13, 11, 10 except (jt=lb) 15=109.
- 9) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 9, 11, 10.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

16023 Swingley Ridge Rd Chesterfield, MO 63017



- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

June 24,2020

REACTIONS. All bearings 7-4-12. (lb) - Max Horz 1=70(LC 7

Max Horz 1=70(LC 7) Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 8, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 7, 8, 6

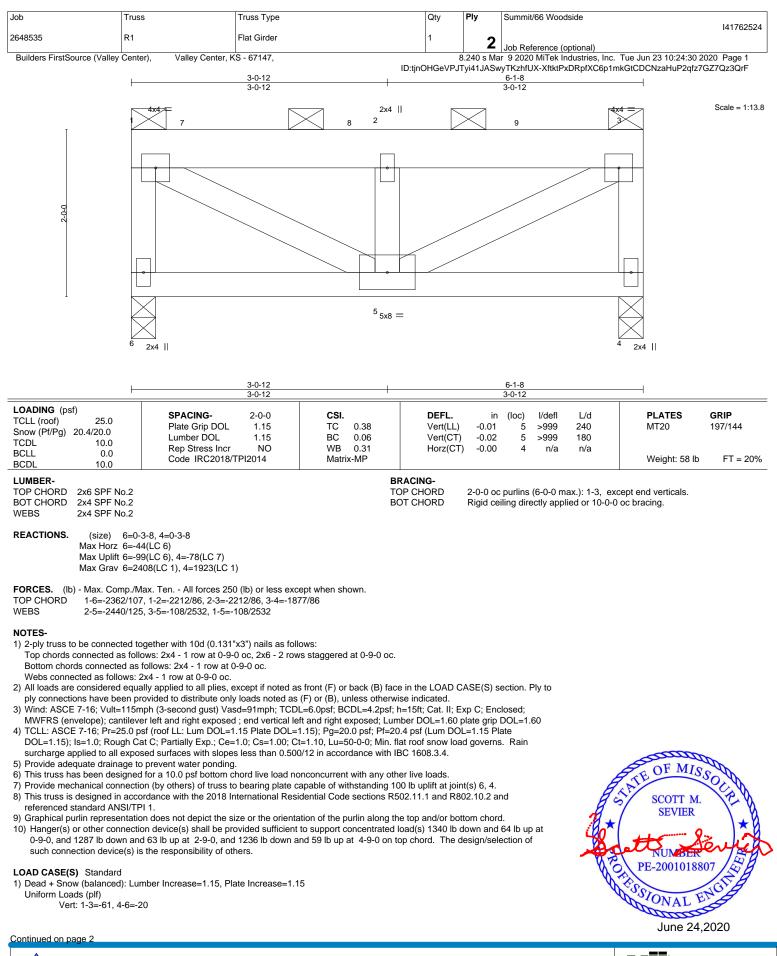
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;

- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 8, 6.

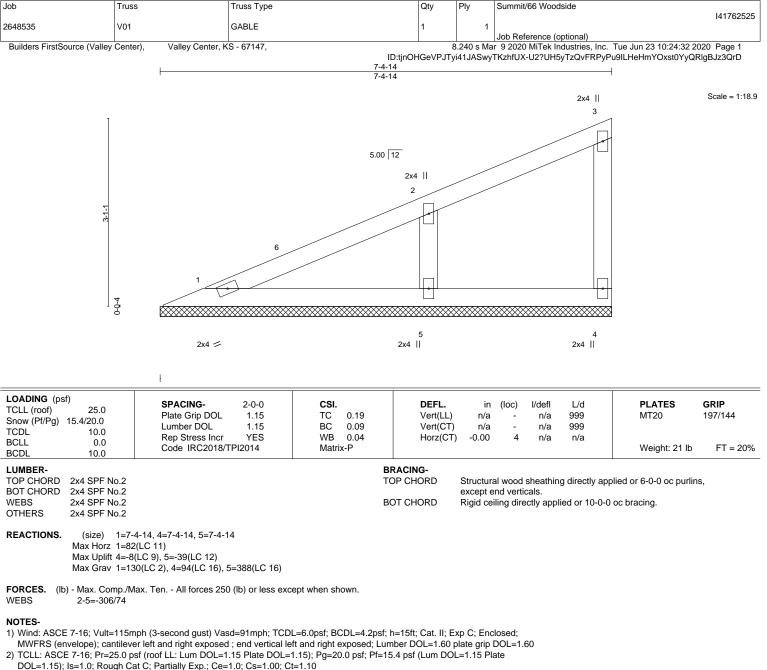
7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 5/19/2020 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss we band/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria, DSB-89 and BCSI Building Component Safety Information** available from Truss Plate Institute, 2670 Crain Highway, Suite 203 Waldorf, MD 20601

16023 Swingley Ridge Rd Chesterfield, MO 63017

[Job	Truss	Truss Type	Qty	Ply	Summit/66 Woodside
						I41762524
	2648535	R1	Flat Girder	1	2	
					2	Job Reference (optional)
	Builders FirstSource (Valley Center), Valley Center, KS - 67147,				8.240 s Ma	r 9 2020 MiTek Industries, Inc. Tue Jun 23 10:24:30 2020 Page 2


ID:tjnOHGeVPJTyi41JASwyTKzhfUX-XftktPxDRpfXC6p1mkGtCDCNzaHuP2qfz7GZ7Qz3QrF

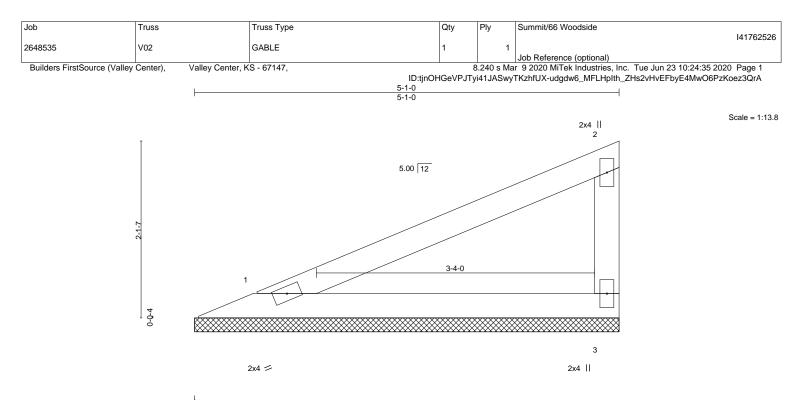
LOAD CASE(S) Standard

Concentrated Loads (Ib)

Vert: 7=-1339 8=-1286 9=-1235

3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.


5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 5.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.35 BC 0.18 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 13 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF No.2			RACING- DP CHORD	Structura	ıl wood	sheathin	g directly ap	plied or 5-1-0 oc purlir	IS,

BOT CHORD

except end verticals.

Rigid ceiling directly applied or 10-0-0 oc bracing.

TOP CHORD 2x4 SPE No 2 2x4 SPF No.2 BOT CHORD WEBS 2x4 SPF No.2

REACTIONS. 1=5-1-0, 3=5-1-0 (size) Max Horz 1=53(LC 11)

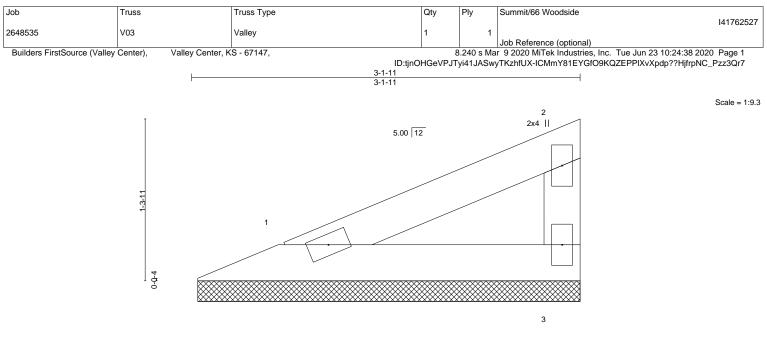
Max Uplift 1=-6(LC 12), 3=-15(LC 12) Max Grav 1=198(LC 16), 3=198(LC 16)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.


- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

referenced standard ANSI/TPI 1.

2x4 💋

2x4 ||

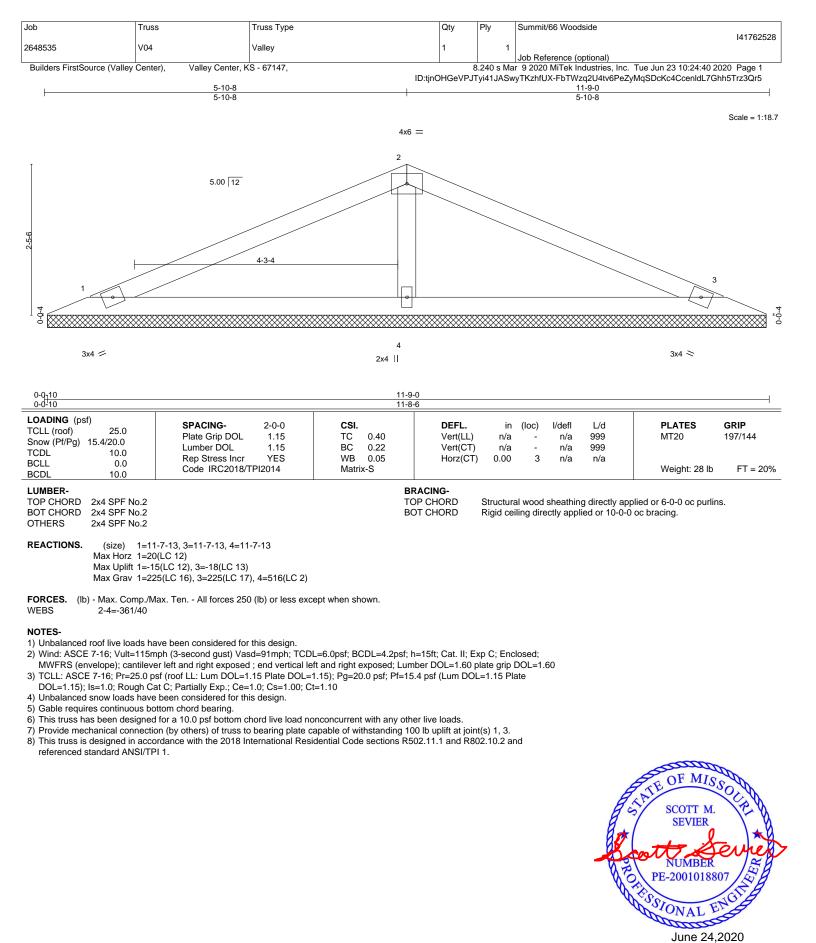
Rigid ceiling directly applied or 10-0-0 oc bracing.

							ſ		
LOADING (psf) TCLL (roof) 25.0 Snow (Pf/Pg) 15.4/20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.08 BC 0.05 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	n/a n/a	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 7 lb	GRIP 197/144 FT = 20%
LUMBER- TOP CHORD 2x4 SPF No.2 BOT CHORD 2x4 SPF No.2			ACING- P CHORD	Structura except er			g directly ap	plied or 3-1-11 oc pu	rlins,

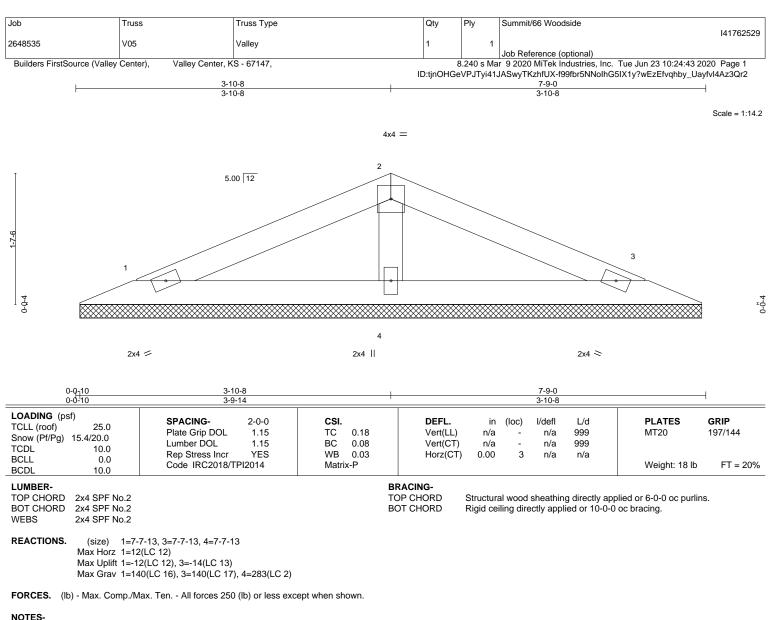
BOT CHORD

BOT CHORD 2x4 SPF No.2 WEBS 2x4 SPF No.2

REACTIONS. 1=3-1-2, 3=3-1-2 (size) Max Horz 1=28(LC 9) Max Uplift 1=-3(LC 12), 3=-8(LC 12) Max Grav 1=101(LC 2), 3=101(LC 2)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-


- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed;
- MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate
- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1.

- 1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=4.2psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=25.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate

- DOL=1.15); Is=1.0; Rough Cat C; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

5) Gable requires continuous bottom chord bearing.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

referenced standard ANSI/TPI 1.

June 24,2020

MiTek 16023 Swingley Ridge Rd Chesterfield, MO 63017

